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Abstract: In order to increase the potential kidney transplants between patients and their incompatible
donors, kidney exchange programs have been created in many countries. In the programs, designing
algorithms for the kidney exchange problem plays a critical role. The graph theory model of the
kidney exchange problem is to find a maximum weight packing of vertex-disjoint cycles and chains
for a given weighted digraph. In general, the length of cycles is not more than a given constant
L (typically 2 ≤ L ≤ 5), and the objective function corresponds to maximizing the number of
possible kidney transplants. In this paper, we study the parameterized complexity and randomized
algorithms for the kidney exchange problem without chains from theory. We construct two different
parameterized models of the kidney exchange problem for two cases L = 3 and L ≥ 3, and propose
two randomized parameterized algorithms based on the random partitioning technique and the
randomized algebraic technique, respectively.

Keywords: kidney exchange problem; randomized algorithm; parameterized algorithm; random
partitioning; multilinear monomial detection

1. Introduction

Kidney transplantation is one of the best treatment methods for those who are suffering from
end-stage renal failure. Unfortunately, it is quite difficult for some patients to find suitable kidneys
because of a lack of deceased donors and incompatibility of their blood and tissue types with willing
donors. Although some patients can buy living donor kidneys from marketplaces, it is commonly
considered to be unethical to commercialize of human organs. Moreover, it is in fact illegal in most
countries. Living donation is regarded as legal as long as it occurs as a gift instead of a commodity to
make profit. But it often arises that a donor who in general is a relative or friend of a patient is willing
to donate a kidney to the patient even though their kidneys are not physiologically compatible such
that the kidney transplantation cannot be carried out. Therefore, it is a significant research topic to
effectively utilize living-donor kidneys such that their incompatible intended recipients can obtain
one compatible kidney from these living-donor kidneys by exchanging. In 1986, Rapaport [1] first
presented the idea of kidney paired donation where two incompatible patient-donor pairs reciprocally
exchange the donors’ kidneys so that two patients respectively obtain a compatible kidney, where an
incompatible patient-donor pair represents a patient and his willing but incompatible donor. Since
then, kidney exchange programs have developed rapidly and have already been established in some
countries, for example, the USA, the UK, Turkey, Switzerland, and South Korea [2].

Algorithms 2019, 12, 50; doi:10.3390/a12020050 www.mdpi.com/journal/algorithms
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The Kidney Exchange problem (KEP) is the central issue of kidney exchange programs from
a computational point of view. In a set of incompatible patient-donor pairs, the KEP is to find the
exchanges with the maximum collective benefit such that each patient-donor pair of the exchanges
can donate a kidney to some pair and receive a compatible kidney from another pair. The collective
benefit is usually measured by the total number of possible kidney transplants [3–8]. From a graph
theory perspective, as a type of barter exchange, kidney exchange is implemented by cycles comprising
patient-donor pairs, where each donor in a pair donates a kidney to the patient in the next pair.
Theoretically speaking, long cycle exchanges are better, since they are beneficial in improving the
chances that more incompatible pairs are contained into the exchanges. However, the length of cycles
must be limited in a certain range for the following reasons. First, to ensure an exchange cycle is
executed successfully, all operations should be performed simultaneously so as to reduce the risk that a
donor might break his promise after his incompatible patient has obtained a kidney before he donates
his kidney. Long cycle exchanges may bring substantial logistical difficulties because the number of
personnel and facilities required for simultaneous operations is too large. Second, all exchanges of
a cycle will be cancelled if the final crossmatch test before operations detects new incompatibilities.
Hence, longer cycles may cause greater logistical complexity and greater exchange failure risk. As
a result, the length of cycles is generally limited in the range [2, L], where L is a given constant and
usually 2 ≤ L ≤ 5. Therefore, the KEP can be regarded as finding an optimal packing of vertex-disjoint
cycles from a given directed graph such that the length of each cycle is at most L.

When considering altruistic donors, kidney exchange allows the inclusion of chains which start
from altruistic donors and end with either a pair or a patient in a wait list. The KEP becomes more
complex, and can be modelled as finding an optimal set of vertex-disjoint cycles and chains from
the directed graph of given instance such that the length of each cycle is at most L [5]. In a chain
exchange, if the donor of a patient-donor pair backs out of the chain after his patient has received a
transplant, no pair in the remaining tail of the planned chain suffers irreparable harm. Hence, a chain
exchange can be conducted non-simultaneously [9] and the length of a chain exchange can be much
longer than that of a cycle exchange [10,11]. But a donor in a non-simultaneous exchange still has the
risk of reneging, which can make some patient-donor pairs lose exchange opportunity, thus in some
literatures the limitation of chain length is still considered, e.g., the same length constrained for chains
and cycles in [12]. An altruistic donor can be seen as a patient-donor pair with a “dummy” patient
which is compatible with each donor of other incompatible patient-donor pairs. Thus, in this way,
chain exchange and cycle exchange can be treated similarly in optimization models. In this paper, we
mainly address the KEP without chains.

Over the past decades, there has been a rich literature on models, market mechanisms, and
optimal algorithms for the KEP. There are many different variations of the KEP when considering
different scenarios and limitations. The reader is referred to surveys on KEP variants [2,13]. In this
section, we mainly describe the previous work of the KEP from a computational point of view. The
complexity of the KEP was investigated in [3,4], and [14]. When L ≥ 3, the KEP is NP-hard, meaning
that it is unlikely there exists a polynomial time exact algorithm.

For the KEP, most exact algorithms are based on Integer Programming (IP) approaches, and
research work focuses mainly on IP formulations. Roth et al. [5] proposed two noncompact
formulations of IP for the KEP: the edge formulation and the cycle formulation with exponential
numbers of constraints and variables, respectively. Abraham et al. [3] compared the two formulations
and showed that the cycle formulation is tighter than the edge formulation when the cycle size
is limited. They presented an incremental formulation approach to solve the cycle formulation
based on enhancing the column generation method and the branch-and-price search technique [15].
To reduce the number of constraints and variables of the two formulations from exponential to
polynomial, Constantino et al. [2] gave two compact formulations for the KEP: the edge assignment
formulation and the extended edge formulation, and showed by computational analysis that when
the scale of KEP becomes large, the compact formulations have more merits than non-compact ones.

2



Algorithms 2019, 12, 50

Klimentova et al. [16] presented the disaggregated cycle decomposition model which is regarded as
a Dantzig-Wolfe decomposition [17] of the extended edge formulation proposed in [2], and solved
the model by a branch-and-price method. Recently, Dickerson et al. [18] introduced models where
chains are represented by only a polynomial number of position-indexed edge variables which bring
about great improvements on running time for the KEP with chains. Mak-Hau [19] studied the edge
formulations for the KEP with and without chains and presented some polyhedral results. For a
detailed review of various IP approaches to solving the KEP, see a recent survey of Mak-Hau [20].

Approximation technique is also one of the main approaches of solving the KEP. Biró et al. [4]
proved the APX-completeness of the maximum size KEP when L = 3, and gave an (L − 1 +

ε)-approximation algorithm for the maximum cycle weight KEP and an (L/2 + ε)-approximation
algorithm for the maximum size KEP (for any ε > 0). Luo et al. [21] proved three inapproximability
results for the KEP in a weighted graph. It is NP-hard to approximate the KEP within 14

13 under a fixed
integer L > 3 and within 434

433 when L = 3. In an unweighted graph, it is NP-hard to approximate
the KEP within 698

697 when L = 3. Jia et al. [22] presented near optimal approximation algorithms by
combining heuristics and local search technique.

Recently, some researchers started studying exact exponential algorithms and parameterized
algorithms for the KEP. For the maximum cycle weight KEP with L = 3, an O∗(2k) FPT algorithm [4]
was proposed by turning it into a maximum weight matching problem, where k is the minimum size
of an arc set S where there is at least one arc in S from each 3-cycle of the instance. However, the
problem finding an arc set S with the minimum size is NP-hard. Recently, Xiao and Wang [8] studied
the variant of the KEP which contains chain exchanges and allows some compatible patient-donor
pairs to participate in exchanges to find better matched kidneys. They designed two O(2nn3) exact
algorithms based on dynamic programming and subset convolution for the KEP with and without
length constraints, respectively. Dickerson et al. [23] contracted the representation of a compatibility
graph by introducing a way to class the vertices in the graph into different types according to
some actual meaning. Based on the number k of vertex types, Xiao and Wang [8] designed an
FPT algorithm of running time O(2O(k2)k2k2

+ n(n + m)) for the KEP without length constraints by
using decomposition technique.

Randomness is an essential resource for solving many computational problems, and
randomization is a powerful tool for developing algorithms [24–29]. Recently, stochastic matching
approaches have been applied to deal with the KEP [30,31]. In fact, stochastic methods can naturally
describe many settings of barter exchange problems [32,33]. Thus, in the future stochastic approaches
for the KEP will become an important research issue.

In this paper, we study randomized algorithms for the parameterized KEP without chains by
the random partitioning technique [24,25] and the randomized algebraic technique [26–29]. For ease
of description, in what following we use “KEP” to refer to the kidney exchange problem without
chains. We consider the parameterized KEP involving only 2-cycle and 3-cycle exchanges (namely
the case of L = 3), with respect to parameters that correspond to the numbers k2 and k3 of 2-cycle
exchanges and 3-cycle exchanges, respectively. We note that the solution P of a given instance of the
KEP involves only 2-cycle and 3-cycle exchanges. Suppose that the vertex set of a given instance can
be correctly split into two subsets S1 and S2, where the subset S1 involves only 2-cycle exchanges of P
and the subset S2 involves 3-cycle exchanges of P. Then we can easily find these 2-cycle exchanges
in S1 by transforming it into maximum matching problem and find these 3-cycle exchanges in S2 by
utilizing an existing 3-set-packing algorithm [34]. Hence, we obtain a parameterized algorithm of
running time O∗(4.63k3 · 22k2) by the random partitioning technique. For the case of L ≥ 3, we discuss
the parameterized KEP with respect to the number k of possible kidney transplants. Applying the
randomized algebraic technique, we reduce the KEP to the multilinear monomial detection problem,
and obtain an O∗(2(k+L)(k + L)2L3nL) algorithm based on the results of Koutis and Williams [27–29].

This paper is organized as follows. Section 2 covers the preliminaries and notations, and
introduces the formal definitions of the KEP without chains. In Sections 3 and 4, we investigate
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the randomized algorithms for two parameterized models of the KEP, and we present two randomized
FPT algorithms. Finally, in Section 5 we give a short summary of our works and some future directions.

2. Preliminaries and Problem Definitions

In this paper, all graphs are simple finite graphs. For an undirected graph G, V(G) and E(G)

denote the sets of vertices and edges of G, respectively. When the graph is clear from the context,
we write short notations V and E. For two vertices u and v, {u, v} represents the edge between u
and v. A matching of G is an edge set where there is no shared vertex between arbitrary two edges.
A matching M is said to be maximum if for any other matching M0, |M| ≥ |M0|. For a directed graph
D, V(D) and A(G) denote the sets of vertices and arcs of D, respectively. We use short notations V
and A when the graph is clear. For two vertices u and v, (u, v) denotes an arc from u to v. For a subset
U ⊆ V, D[U] represents the subgraph induced by U in graph D. Suppose that a graph W is a sequence
of arcs (v1, v2),(v2, v3),· · · ,(vk−1, vk) in a directed graph D. If the vertices v1, v2, · · · , vk are distinct,
then graph W is a directed path. If the vertices v1, v2, · · · , vk−1 are distinct, v1 = vk and k ≥ 3, then
graph W is a directed cycle. A k-cycle is a cycle of length k.

2.1. Parameterized Complexity

Parameterized complexity, introduced by Downey and Fellows [35], is a two-dimensional
framework to measure the complexity of NP-complete problems by a function depending on the
input size n and a fixed parameter k. Problems with some fixed parameter k are called parameterized
problems. A parameterized problem is called fixed-parameter tractable (FPT) [35,36] if there is an algorithm
with running time of the form f (k) · nO(1), where the f (k) is a computable function independent of the
input size n.

2.2. KEP Definitions

From the graph theory perspective, the KEP without chains may be modeled as finding a
maximum weighted packing of vertex-disjoint cycle in a directed graph D = (V, A), where each
vertex corresponds to an incompatible patient-donor pair consisting of a patient and his incompatible
donor, each arc (i, j) represents that the donor of i is compatible with the patient of j. The weight wij
of each arc (i, j) represents the collective benefit of the kidney swap between the patient of j and the
donor of i. In kidney exchange without altruistic donors, a donor is willing to donate his kidney if and
only if his associated patient receives a kidney. The kidney transplants may proceed in the same cycle
of the graph D because each vertex of the cycle is compatible with the donating kidney of the previous
vertex. Thus, when a cycle consists of k patient-donor pairs, it is called a k-cycle exchange. Because the
length of exchange cycles is restricted for logistical reasons and to avoid risk, for a k-cycle exchange, k
does not exceed an integer L (2 ≤ L ≤ 5). The kidney exchange problem without chains is defined
as follows:

Kidney Exchange Problem without Chains:
Input: Directed graph D = (V, A), arc weight function w : A → R+, and positive integer L.
Question: Finding a maximum weighted set of vertex-disjoint cycles with length at most L.

When L = 2, the KEP becomes the maximum weighted matching problem for an undirected graph G,
where V(G) = V(D) [7]. For two vertices vi, vj ∈ V(G) there is an edge {vi, vj} ∈ E(G) in G if there are
both arc (vi, vj) ∈ A(D) and (vj, vi) ∈ A(D) in D, and edge weight w({vi, vj}) = w(vi, vj) + w(vj, vi).
Therefore, we can solve the KEP by utilizing the maximum matching algorithm which has running time
O(|V(G)|(|E(G)|+ |V(G)| log |V(G)|)) [37]. If L = ∞ (i.e., there is no upper bound on the maximum
length of a cycle), we can transform the KEP into the maximum weight perfect matching problem of
a bipartite graph. The bipartite graph G = ({Vd, Vp}, E) can be constructed in the following way: if
vertex vi ∈ V(D) in digraph D, there are a vertex vid ∈ Vd, a vertex vip ∈ Vp and an edge {vid, vip} ∈ E
with weight w({vid, vip}) = 0 in graph G; if arc (vi, vj) ∈ A(D) (i �= j) in digraph D, there is an edge
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{vid, vjp} ∈ E with weight w({vid, vjp}) = w(vi, vj) in graph G. If {vid, vjp} is in the maximum weight
perfect matching of graph G and i �= j, then vi and vj are in the same exchange cycle of D. If {vid, vip}
is in the maximum weight perfect matching of graph G, then vi is not in any exchange cycle of D. Thus,
if there is no upper bound on the length of cycles, the KEP can be transformed into the maximum
weight perfect matching problem and solved in polynomial time. When L ≥ 3, the KEP is NP-hard by
reducing from the 3D-matching problem [3,4].

3. A Randomized Algorithm Based on Random Partitioning Technique

For the KEP, Roth [5] showed that in a large population, all the gains from exchange can be
obtained by using 2-cycle, 3-cycle and 4-cycle exchanges. Especially, 2-cycle and 3-cycle exchanges
capture almost all the gains from exchange, and their marginal contribution is significantly large.
In practice, 2-cycle and 3-cycle exchanges are typically used, such as in the New England Program [38]
and the kidney exchange program of the United Network for Organ Sharing [5]. In this section,
we consider the maximum exchange size KEP whose exchanges is limited only 2-cycle and 3-cycle
exchanges (namely L = 3). The model is defined as follows:

Parameterized KEPL=3 (p-KEPL=3):
Input: a simple directed graph D = (V, A), and two positive integers k2 and k3;
Parameter: k2 and k3;
Question: Is there a packing of vertex-disjoint cycles in D, comprising at least k2 2-cycles
and at least k3 3-cycles?

Applying random partitioning technique, we design a randomized algorithm for the p-KEPL=3.
Given an instance (D, k2, k3) of the p-KEPL=3, we stochastically divide the vertex set V into two subsets
V2 and V3 by putting v into V2 or V3 with probability 1/2 for each vertex v ∈ V. When the instance is
a Yes-instance, there exists a proper partition such that k2 2-cycles are in D[V2] and k3 3-cycles are in
D[V3]. We can easily find a packing with k2 vertex-disjoint 2-cycles in D[V2] through transforming into
the maximum matching problem of an undirected graph and invoking the corresponding algorithm,
and find a packing with k3 vertex-disjoint 3-cycles in D[V3] by transforming into the 3-set-packing
problem and invoking the corresponding algorithm. Algorithm 1 RKEP(D, k2, k3) is the detailed
randomized algorithm of the p-KEPL=3 based on the random partitioning technique, where c is a
constant which is applied to adjust the probability that Algorithm RKEP(D, k2, k3) fails.

Algorithm 1 RKEP(D, k2, k3)

Input: a directed graph D = (V, A), positive integer c, and two positive integers k2 and k3;
Output: a packing of vertex-disjoint cycles in D, comprising at least k2 2-cycles and at least k3 3-cycles,

otherwise return no solution exists.
1: times=0;
2: while times ≤ c · 23k3+2k2 do
3: times = times + 1;
4: V2 = V3 = ∅;
5: for all v ∈ V do
6: put v into V2 or V3 with probability 1/2;
7: end for
8: for the induced subgraph D[V2], find a packing P2 of at least k2 vertex-disjoint 2-cycles;
9: if no P2 exists then

10: goto next loop iteration;
11: end if
12: for the induced subgraph D[V3], find a packing P3 of at least k3 vertex-disjoint 3-cycles;
13: if no P3 exists then
14: goto next loop iteration;
15: end if
16: return P2 ∪ P3;
17: end while
18: return no solution exists;
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Theorem 1. For the p-KEPL=3, there exists a randomized algorithm of running time O∗(4.63k3 · 22k2) which,
for any given constant c > 0, produces the desired packing in a Yes-instance with probability at least 1− 1

ec .

Proof. For the p-KEPL=3, if an instance (D, k2, k3) is a No-instance, then no matter how the vertex set
V is split, we cannot find a required packing in V2 and V3. Thus, no solution to the p-KEPL=3 will be
returned in line 18 of Algorithm RKEP(D, k2, k3).

Now assume that the given instance (D, k2, k3) is a Yes-instance and P is a solution to the p-KEPL=3.
Then there are k2 vertex-disjoint 2-cycles and k3 vertex disjoint 3-cycles in D[P]. Let P2 and P3 be the
vertex sets of k2 vertex-disjoint 2-cycles and k3 vertex disjoint 3-cycles, respectively. Thus, |P2| = 2k2

and |P3| = 3k3. By random partitioning, if the vertex set V can be correctly divided into V2 and V3 such
that P2 ⊆ V2 and P3 ⊆ V3, then we can obtain P2 by maximum matching algorithm for V2 in line 8 and
obtain P3 by 3-set-packing algorithm for V3 in line 12. Thus in line 16, P2 ∪ P3 can be correctly returned.

We analyze the probability that RKEP(D, k2, k3) fails to find a packing P in D. Since each vertex
v ∈ V is put into V2 or V3 with probability 1/2 in each while loop, the vertices V2 and V3 can be correctly
partitioned in line 5–7 with probability ( 1

2 )
2k2 · ( 1

2 )
3k3 = 2−2k2−3k3 . Thus, the probability in each loop

iteration is 1− 2−2k2−3k3 such that there exists at least one vertex v ∈ P2 which is put into V3 or at least
one vertex u ∈ P3 which is put into V2. Hence, after executing c · 22k2+3k3 loops, the probability that P2

and P3 are not divided correctly is (1− 2−2k2−3k3)c·22k2+3k3 = ((1− 1
22k2+3k3

)22k2+3k3 )c ≤ 1
ec . Therefore, by

the random partitioning operation, there exist P2 ⊆ V2 and P3 ⊆ V3 with a probability at least 1− 1
ec .

We analyze the running time of RKEP(D, k2, k3). In each loop iteration, lines 5–7 run in O(|V(D)|)
time. For line 8, we transform it into the maximum matching problem of an undirected graph G.
Graph G can be constructed in time O(|V2|2) in the following way: Let V(G) = V2. For vi, vj ∈ V2,
if (vi, vj) ∈ A(D[V2]) and (vj, vi) ∈ A(D[V2]), then there is an edge {vi, vj} ∈ E(G). Line 8 takes
O(|E(G)|

√
|V2|) time by applying Edmonds’ algorithm [39] for the maximum matching problem of

graph G. For line 12, we find a packing of k3 vertex-disjoint 3-cycles in V3 by transforming into the
3-set-packing problem and invoking the corresponding algorithm in O∗(2.33k3) [34]. Thus, the running
time of Algorithm 1 RKEP(D, k2, k3) is O∗(4.63k3 · 22k2).

4. A Randomized Algorithm Based on Algebraic Technique

Efficient kidney exchange can be achieved by 2-cycle and 3-cycle exchange. However, with the
progress of technology, cycle exchange with length more than 3 has proved useful in kidney exchange.
Limitations on the maximum length of cycles may be weakened in the future. It is reported that a
9-cycle exchange was performed successfully in 2015 [20]. In this section, we discuss the KEP with
L ≥ 3 parameterized by the size of kidney transplants. The parameterized model is defined as follows:

Parameterized KEP (p-KEP):
Input: a simple directed graph D = (V, A), and a positive integer k;
Parameter: k;
Question: In graph D, is there a packing S of vertex-disjoint cycles such that |V(S)| ≥ k and
the length of each cycle is in the range [2, L]?

Here, L is a fixed integer at least 3. For an integer t and a packing S, if |V(S)| = t and t ≥ k, then S is
called a solution set of size t for the p-KEP.

By the above definition, the p-KEP is a special class of the set packing problem. For the set packing
problem, most work has focused on the case that each set has the same size, such as the deterministic
time O∗(2.33k) algorithm for the 3-set k-packing problem [34] and the randomized algorithm with time
O∗(2mk) for the m-set k-packing problem [27]. However, so far relatively little research has been carried
out on the set packing problem such as the p-KEP which the size of each set is limited in a range [2, L].
In the section, we develop a randomized algorithm for the p-KEP based on the algebraic technique,
introduced by Koutis in [27]. Developed by Koutis and Williams [28,29], the randomized algebraic
technique has been successfully applied to some graph problems and counting problems [26,40,41].
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An outstanding example is the improved algorithm with running time O(1.657n) for the Hamiltonian
path problem [26], which resolves the open problem for half of a century whether there exists an
O(cn) time algorithm with some constant c < 2 for the Hamiltonian path problem. The main idea of
the algebraic approach is as follows: By constructing an appropriate multivariate polynomial for a
given problem instance, the problem is reduced to the multilinear monomial detection problem for
the sum-product expansion of the polynomial represented by a monotone arithmetic circuit, where
a monomial xi1

1 xi2
2 · · · x

ik
k whose degree is ∑k

j=1 ij is called multilinear if each ij (1 ≤ j ≤ k) is either
0 or 1, and the degree of a polynomial is the maximum degree of all monomials in its expansion.
A monotone arithmetic circuit is a directed acyclic graph in which each vertex of in-degree 0 is an input
gate labeled either with variable or a non-negative real constant, the other vertices have in-degree
2 and are labeled either “+” (addition gates) or “×” (multiplication gates), and there is exactly one
vertex with out-degree 0 which is called output gate. A polynomial is represented by a monotone
arithmetic circuit if it can be computed by the output gate of the circuit. The multilinear monomial
detection problem is to decide whether a polynomial P(X) which can be represented by an arithmetic
circuit contains a multilinear monomial of degree at most k in its sum-product expansion. Koutis and
Williams gave randomized algorithms for multilinear monomial detection problem in [27] and [29],
respectively. In [28], they extended their methods and gave Lemma 1 which is rephrased as follows in
terms of our notation.

Lemma 1 (see Lemma 1 in [28]). Let X be a variable set, z be an extra variable, and P(X, z) be a polynomial
represented by a monotone arithmetic circuit of size s(n). Assume that the sum-product expansion of P(X, z) is
expressed the form ∑i∈N Qi(X)zi. There is a randomized algorithm that on every P(X, z) runs O∗(2kt2s(n))
time, outputs "YES" with high probability if Qt(X) contains a multilinear monomial of degree at most k, and
always outputs "NO" if there is no multilinear monomial of degree at most k in Qt(X).

Our algorithm for the p-KEP relies on Lemma 1. For a given directed graph D = (V, A) of the
p-KEP, we construct a suitable polynomial P(X, z) such that for a positive integer k, the coefficient
of zk is a polynomial Qk(X) in the sum-product expansion of P(X, z), the degree of each monomial
in Qk(X) is k, and each multilinear monomial in Qk(X) maps to a packing of vertex-disjoint cycle in
D = (V, A). Hence, we can prove that there is a solution set S of size k for the p-KEP if and only if
Qk(X) contains a multilinear monomial of degree k (see Lemma 2 below).

According to the above idea, we first construct a polynomial from the given instance. In a given
directed graph D = (V, A), let vertex set V = {v1, v2, · · · , vn}, variable set X = {x1, x2, · · · , xn} and z
be an extra variable. There is a one-to-one mapping relationship between V and X which each vertex
vi ∈ V is mapped to a product zxi for i = 1, · · · , n. If vi1 · · · vij vi1 form a directed cycle C in graph

D, then define a monomial π(C) = zxi1 · · · zxij = z|V(C)|xi1 · · · xij . In graph D, let C denote the cycle
set which contains all cycles of length in the range [2, L], and C(vi) denote a cycle set, each of which
passes through vertex vi. For graph D, we partition C into C(v1), C(v2), · · · , C(vn) by the following
Partitioning Operation.

Partitioning Operation

1: C = ∅;
2: for each vi ∈ V do
3: In graph D, find cycle set C(vi) such that C(vi) contains all directed cycles of length in [2, L]
4: and each cycle in C(vi) passes through vi;
5: C = C ∪ C(vi);
6: D = D[V(D)− {vi}];
7: end for

In the Partitioning Operation, we find cycle set C(vi) by applying Tarjan’s algorithm for strongly
connected components [42]: find a strongly connected component by the depth-first search starting
vertex vi on graph D, where the search depth is at most L, and then find all cycles passing through vi by
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the backtracking algorithm. It takes O(|V|+ |E|) time running Tarjan’s algorithm. By the Partitioning
Operation, we obtain C(v1), C(v2), · · · , C(vn) and C. We define

p(C(vi)) =

{
1, i f C(vi) = ∅;
1 + ∑C∈C(vi)

π(C), i f C(vi) �= ∅.
(1)

P(C) =
n

∏
i=1

p(C(vi)). (2)

Let P(X, z) = P(C). If we view z as an extra indeterminate, the sum-product expansion of P(X, z)
can be expressed as follows:

P(X, z) = 1 +
n

∑
t=1

Qt(X)zt. (3)

Since each vertex vi ∈ V is mapped to a product zxi (where xi ∈ X). From expressions (1) and
(2), we know that if in the expansion expression (3) of P(X, z) there is a term which contains zk, then
Qk(X) is a polynomial, where the degree of each monomial is k. By the polynomial construction, we
have the following lemma.

Lemma 2. For a given graph D of the p-KEP, there is a solution set S of size k if and only if the polynomial
Qk(X) contains a multilinear monomial of degree k.

Proof. (⇒): For a given instance of the p-KEP, assume that S is a solution set of size k and it is
comprised of the vertices in s mutually vertex-disjoint cycles of length in range [2, L]. We use C′ to
denote the cycle set and have C′ ⊆ C. Let {Ci} = C′ ∩ C(vi) and si = |V({Ci})|, 1 ≤ i ≤ n. By
the Partitioning Operation, we know that C(vi) ∩ C(vj) = ∅ when i �= j. Since the cycles in C′ are
mutually vertex-disjoint, either {Ci} = ∅ or {Ci} has only one cycle Ci of length in range [2, L], we
also have si = 0 when {Ci} = ∅ and si = |V(Ci)| when Ci is a cycle. Thus, we have ∑n

i=1 si = k. For
1 ≤ i ≤ n, let p(Ci) = 1 if {Ci} = ∅, or p(Ci) = π(Ci) if Ci is a cycle in C(vi). It follows from the
above definition and expression (1) that p(Ci) is a monomial term in p(C(vi)). Let p(C′) = ∏n

i=1 p(Ci).
Since the cycles in C′ are mutually vertex-disjoint and ∑n

i=1 si = k, p(C′) = zkq(X) where q(X) is a
multilinear monomial of degree k. Hence, by expressions (1), (2) and (3), there is a degree k multilinear
monomial q(X) in the polynomial Qk(X).

(⇐): Assume that there is a monomial of the form zkq(X) in the sum-product expansion of
P(X, z), where q(X) is a multilinear monomial of degree k. Obviously, q(X) is a monomial in Qk(X).
It follows from expressions (1) and (2) that there exists an expression zkq(X) = ∏n

i=1 pi (where pi is
corresponding to a term from p(C(vi))) such that either pi = 1 or pi = π(Ci) for some cycle Ci ∈ C(vi).
Let C′ = {Ci|pi �= 1, pi = π(Ci), 1 ≤ i ≤ n}. Since q(X) is a multilinear monomial of degree k, the
cycles in C′ are mutually vertex-disjoint. Let si denote the degree of monomial pi, then si = 0 when
pi = 1, or si = |V(Ci)| when pi �= 1, and ∑n

i=1 si = k, namely, ∑C∈C′ |V(C)| = k. By the Partitioning
Operation, the length of each cycle in C′ is in the range [2, L]. Therefore, the vertex set of C′ is a solution
of size k for the p-KEP.

For the p-KEP, we require to decide whether there is a packing S of vertex-disjoint cycles of
lengths in the range [2, L] such that |V(S)| ≥ k. We can prove the following Lemma 3.

Lemma 3. For a given graph D of the p-KEP, if each polynomial Qi(X) for k ≤ i ≤ k + L− 1 does not contain
any multilinear monomial of degree i, then there does not exist a solution S with |V(S)| ≥ k for the given
instance.
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Proof. By Lemma 2, we know that there is no solution of size in range [k, k + L− 1] if each polynomial
Qi(X) for k ≤ i ≤ k + L− 1 does not contain any multilinear monomial of degree i. Thus, we only
prove there is no solution of size at least k + L by contradiction. Assume that there is a solution S with
|V(S)| ≥ k + L when each polynomial Qi(X) for k ≤ i ≤ k + L− 1 does not contain any multilinear
monomial of degree i. Suppose that S is comprised of mutually vertex-disjoint cycles C1, C2, · · · , Cl
of length in range [2, L] and S = {C1, C2, · · · , Cl}. Let Smax<k ⊂ S be the cycle set whose |V(Smax<k)|
is maximum and |V(Smax<k)| < k. Thus, there is a vertex-disjoint cycle set S′ = Smax<k ∪ {Ci}
where Ci ∈ S− Smax<k and |V(S′)| ∈ [k, k + L− 1]. Otherwise, |V(Ci)| > L and it contradicts that
|V(Ci)| ∈ [2, L] for 1 ≤ i ≤ l. Thus, S′ is also a solution of size |V(S′)| ∈ [k, k + L− 1]. By Lemma 2, we
can get that there is a polynomial Q|V(S′)|(X) containing a multilinear monomial of degree |V(S′)|. It
contradicts the fact that each polynomial Qi(X) for k ≤ i ≤ k + L− 1 dose not contain any multilinear
monomial of degree i.

Now, we represent the polynomial P(X, z) by a monotone arithmetic circuit. First, we require
n + 2 input gates for the variables set X, variable z and constant 1. For a directed cycle C of length in
the range [2, L], we represent monomial π(C) by at most (L− 1) “×” gates. Since there are at most
∑L

i=2 (
n
i ) cycles in C, we need at most (L− 1)∑L

i=2 (
n
i ) “×” gates and at most n + ∑L

i=2 (
n
i ) “+” gates to

represent all of p(C(vj)) for 1 ≤ j ≤ n. At last, we need at most n “×” gates to represent the products
of all p(C(vj)) for 1 ≤ j ≤ n. Since ∑L

i=2 (
n
i ) = O(LnL),the size s(n) of the whole circuit is O(L2nL).

Based on Lemmas 1, 2 and 3, we can call the algorithm in [28] to decide whether in P(X, z) there is
polynomial Qi(X) for k ≤ i ≤ k + L− 1 which contains a multilinear monomial of degree i. If it exists,
then graph D has a solution for the p-KEP and return “YES”. Otherwise, it returns “NO”. By Lemma 1,
it takes time O∗(2ii2L2nL) to decide whether there exists a polynomial Qi(X) containing a multilinear
monomial of degree i, and we need do this at most L times. Hence, the total time of the algorithm is
T(n) = O∗(2(k+L)(k + L)2L3nL).

Note that parameter k and constant L are at most n. Therefore, by Lemmas 1, 2, and 3, we obtain
clearly the following Theorem 2.

Theorem 2. There is a randomized algorithm of running time O∗(2(k+L)(k + L)2L3nL) for the p-KEP which
produces the desired packing in a Yes-instance with high probability.

5. Conclusions

We develop two randomized algorithms for the p-KEPL=3 and the p-KEP. By stochastically
partitioning the vertex set V into two subsets V2 and V3 which respectively contains 2-cycle or 3-cycle
exchanges of the solution for a given instance, we propose a randomized algorithm of running time
O∗(4.63k3 · 22k2) for the p-KEPL=3. By applying the randomized algebraic technique, we transform the
p-KEP into the multilinear monomial detection problem, and obtain the other randomized algorithm
which can be executed in time O∗(2(k+L)(k + L)2L3nL). Both algorithms improve previous theoretical
running-time bounds for the KEP. Our algorithms can be extended to the case where the KEP
involves chain exchanges of length bounded by a fixed constant by viewing each altruistic donor as a
patient-donor pair whose patient is compatible with each donor of other incompatible patient-donor
pairs, but not compatible with other altruistic donor. They will be interesting to further extend the
algebraic technique to maximum weight variants of the KEP with and without chains, and study the
effectiveness of the two algorithms on realistic instances.

In fact, patients’ autonomy and their individual optimality criteria are critical factors which we
should consider in the kidney exchange problem. The game-theoretical approaches were introduced
in [43,44] and [6] to study the kidney exchange problem. In these kidney exchange game models,
there also exist a lot of NP-complete problems [14,45–47]. Developing randomized methods for those
NP-complete problems is also an interesting research topic for the future research.
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Abstract: Parameterized complexity theory has led to a wide range of algorithmic breakthroughs
within the last few decades, but the practicability of these methods for real-world problems is still
not well understood. We investigate the practicability of one of the fundamental approaches of
this field: dynamic programming on tree decompositions. Indisputably, this is a key technique
in parameterized algorithms and modern algorithm design. Despite the enormous impact of this
approach in theory, it still has very little influence on practical implementations. The reasons for
this phenomenon are manifold. One of them is the simple fact that such an implementation requires
a long chain of non-trivial tasks (as computing the decomposition, preparing it, . . . ). We provide
an easy way to implement such dynamic programs that only requires the definition of the update
rules. With this interface, dynamic programs for various problems, such as 3-COLORING, can be
implemented easily in about 100 lines of structured Java code. The theoretical foundation of the
success of dynamic programming on tree decompositions is well understood due to Courcelle’s
celebrated theorem, which states that every MSO-definable problem can be efficiently solved if a tree
decomposition of small width is given. We seek to provide practical access to this theorem as well,
by presenting a lightweight model checker for a small fragment of MSO1 (that is, we do not consider
“edge-set-based” problems). This fragment is powerful enough to describe many natural problems,
and our model checker turns out to be very competitive against similar state-of-the-art tools.

Keywords: fixed-parameter tractability; treewidth; model checking

1. Introduction

Parameterized algorithms aim to solve intractable problems on instances where the value of some
parameter tied to the complexity of the instance is small. This line of research has seen enormous
growth in the last few decades and produced a wide range of algorithms—see, for instance, [1].
More formally, a problem is fixed-parameter tractable (in FPT), if every instance I can be solved in time
f (κ(I)) · poly(|I|) for a computable function f : N → N, where κ(I) is the parameter of I. While
the impact of parameterized complexity to the theory of algorithms and complexity cannot be
overstated, its practical component is much less understood. Very recently, the investigation of the
practicability of fixed-parameter tractable algorithms for real-world problems has started to become an
important subfield (see e. g., [2,3]). We investigate the practicability of dynamic programming on tree
decompositions—one of the most fundamental techniques of parameterized algorithms. A general
result explaining the usefulness of tree decompositions was given by Courcelle [4], who showed
that every property that can be expressed in monadic second-order logic (MSO) is fixed-parameter
tractable if it is parameterized by treewidth of the input graph. By combining this result (known as
Courcelle’s Theorem) with the f (tw(G)) · |G| algorithm of Bodlaender [5] to compute an optimal tree
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decomposition in FPT-time, a wide range of graph-theoretic problems is known to be solvable on these
tree-like graphs. Unfortunately, both ingredients of this approach are very expensive in practice.

One of the major achievements concerning practical parameterized algorithms was the discovery
of a practically fast algorithm for treewidth due to Tamaki [6]. Concerning Courcelle’s Theorem,
there are currently two contenders concerning efficient implementations of it: D-Flat, an Answer Set
Programming (ASP) solver for problems on tree decompositions [7]; and Sequoia, an MSO solver
based on model checking games [8]. Both solvers allow to solve very general problems and the
corresponding overhead might, thus, be large compared to a straightforward implementation of the
dynamic programs for specific problems.

Our Contributions

In order to study the practicability of dynamic programs on tree decompositions, we expand
our tree decomposition library Jdrasil with an easy to use interface for such programs: the user
only needs to specify the update rules for the different kind of nodes within the tree decomposition.
The remaining work—computing a suitable optimized tree decomposition and performing the actual
run of the dynamic program—is done by Jdrasil. This allows users to implement a wide range of
algorithms within very few lines of code and, thus, gives the opportunity to test the practicability of
these algorithms quickly. This interface is presented in Section 3.

In order to balance the generality of MSO solvers and the speed of direct implementations,
we introduce an MSO fragment (actually, a MSO1 fragment), which avoids quantifier alternation,
in Section 4. By concentrating on this fragment, we are able to build a model checker, called Jatatosk,
that runs nearly as fast as direct implementations of the dynamic programs. To show the feasibility of
our approach, we compare the running times of D-Flat, Sequoia, and Jatatosk for various problems.
It turns out that Jatatosk is competitive against the other solvers and, furthermore, its behaviour is
much more consistent (that is, it does not fluctuate greatly on similar instances). We conclude that
concentrating on a small fragment of MSO gives rise to practically fast solvers, which are still able to
solve a large class of problems on graphs of bounded treewidth.

2. Preliminaries

All graphs considered in this paper are undirected, that is, they consist of a set of vertices V
and of a symmetric edge-relation E ⊆ V ×V. We assume the reader to be familiar with basic graph
theoretic terminology—see, for instance, [9]. A tree decomposition of a graph G = (V, E) is a tuple (T, ι)

consisting of a rooted tree T and a mapping ι from nodes of T to sets of vertices of G (which we call
bags) such that (1) for all v ∈ V there is a non-empty, connected set { x ∈ V(T) | v ∈ ι(x) }, and (2) for
every edge {v, w} ∈ E there is a node y in T with {v, w} ⊆ ι(y). The width of a tree decomposition
is the maximum size of one of its bags minus one, and the treewidth of G, denoted by tw(G), is the
minimum width any tree decomposition of G must have.

In order to describe dynamic programs over tree decompositions, it turns out be helpful to
transform a tree decomposition into a more structured one. A nice tree decomposition is a triple (T, ι, η)

where (T, ι) is a tree decomposition and η : V(T) → {leaf, introduce, forget, join} is a labeling such
that (1) nodes labeled “leaf” are exactly the leaves of T, and the bags of these nodes are empty;
(2) nodes n labeled “introduce” or “forget” have exactly one child m such that there is exactly one
vertex v ∈ V(G) with either v �∈ ι(m) and ι(n) = ι(m) ∪ {v} or v ∈ ι(m) and ι(n) = ι(m) \ {v},
respectively; (3) nodes n labeled “join” have exactly two children x, y with ι(n) = ι(x) = ι(y). A very
nice tree decomposition is a nice tree decomposition that also has exactly one node labeled “edge” for
every e ∈ E(G), which virtually introduces the edge e to the bag—that is, whenever we introduce a
vertex, we assume it to be “isolated” in the bag until its incident edges are introduced. It is well known
that any tree decomposition can efficiently be transformed into a very nice one without increasing
its width (essentially, traverse through the tree and “pull apart” bags) [1]. Whenever we talk about
tree decompositions in the rest of the paper, we actually mean very nice tree decompositions. Note
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that this increases the space needed to store the decomposition but only by a small factor of O(tw(G)).
Due to the exponential (in tw(G)) space requirement typical for the dynamic programs, this overhead
is usually negligible. However, we want to stress that all our interfaces also support “just” nice
tree decompositions.

We assume the reader to be familiar with basic logic terminology and give just a brief overview
over the syntax and semantic of monadic second-order logic (MSO)—see, for instance, [10] for a
detailed introduction. A vocabulary (or signature) τ = (Ra1

1 , . . . , Ran
n ) is a set of relational symbols Ri of

arity ai ≥ 1. A τ-structure is a set U—called universe—together with an interpretation RU
i ⊆ Rai of the

relational symbols in U. Let x1, x2, . . . be a sequence of first-order variables and X1, X2, . . . be a sequence
of second-order variables Xi of arity ar(Xi). The atomic τ-formulas are xi = xj for two first-order
variables and R(xi1 , . . . , xik ), where R is either a relational symbol or a second-order variable of arity k.
The set of τ-formulas is inductively defined by (1) the set of atomic τ-formulas; (2) Boolean connections
¬φ, (φ ∨ ψ), and (φ ∧ ψ) of τ-formulas φ and ψ; (3) quantified formulas ∃xφ and ∀xφ for a first-order
variable x and a τ-formula φ; (4) quantified formulas ∃Xφ and ∀Xφ for a second-order variable X of
arity 1 and a τ-formula φ. The set of free variables of a formula φ consists of the variables that appear in φ

but are not bounded by a quantifier. We denote a formula φ with free variables x1, . . . , xk, X1, . . . , X� as
φ(x1, . . . , xk, X1, . . . , X�). Finally, we say a τ-structure S with an universe U is a model of an τ-formula
φ(x1, . . . , xk, X1, . . . , X�) if there are elements u1, . . . , uk ∈ U and relations U1, . . . , U� with Ui ⊆ Uar(Xi)

with φ(u1, . . . , uk, U1, . . . , U�) being true in S . We write S |= φ(u1, . . . , uk, U1, . . . , U�) in this case.

Example 1. Graphs can be modeled as {E2}-structures with universe U = V(G) and a symmetric
interpretation of E. Properties such as “is 3-colorable” can then be described by formulas as:

φ̃3col = ∃R∃G∃B (∀x R(x) ∨ G(x) ∨ B(x)) ∧ (∀x∀y E(x, y)→
∧

C ∈ {R, G, B}
¬C(x) ∨ ¬C(y)).

For instance, we have |= φ̃3col and �|= φ̃3col. Here, and in the rest of the paper, we indicate with the tilde
(as in φ̃) that we will present a more refined version of φ later on.

The model checking problem asks, given a logical structure S and a formula φ, whether S |= φ

holds. A model checker is a program that solves this problem. To be useful in practice, we also require
that a model checker outputs an assignment of the free and existential bounded variables of φ in the
case of S |= φ.

3. An Interface for Dynamic Programming on Tree Decompositions

It will be convenient to recall a classical viewpoint of dynamic programming on tree
decompositions to illustrate why our interface is designed the way it is. We will do so by the guiding
example of 3-COLORING: Is it possible to color the vertices of a given graph with three colors such
that adjacent vertices never share the same color? Intuitively, a dynamic program for 3-COLORING

will work bottom-up on a very nice tree decomposition and manages a set of possible colorings per
node. Whenever a vertex is introduced, the program “guesses” a color for this vertex; if a vertex is
forgotten, we have to remove it from the bag and identify configurations that become eventually equal;
for join-bags, we just have to take the configurations that are present in both children; and, for edge
bags, we have to reject colorings in which both endpoints of the introduced edge have the same color.
To formalize this vague algorithmic description, we view it from the perspective of automata theory.

3.1. The Tree Automaton Perspective

Classically, dynamic programs on tree decompositions are described in terms of tree automata [10].
Recall that, in a very nice tree decomposition, the tree T is rooted and binary; we assume that the
children of T are ordered. The mapping ι can then be seen as a function that maps the nodes of T to
symbols from some alphabet Σ. A naïve approach to manage ι would yield a huge alphabet (depending
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on the size of the graph). We thus define the so-called tree-index, which is a map idx : V(G) →
{0, . . . , tw(G)} such that no two vertices that appear in the same bag share a common tree-index.
The existence of such an index follows directly from the property that every vertex is forgotten exactly
once: We can simply traverse T from the root to the leaves and assign a free index to a vertex V when
it is forgotten, and release the used index once we reach an introduce bag for v. The symbols of Σ then
only contain the information for which tree-index there is a vertex in the bag. From a theoretician’s
perspective, this means that |Σ| depends only on the treewidth; from a programmer’s perspective,
the tree-index makes it much easier to manage data structures that are used by the dynamic program.

Definition 1 (Tree Automaton). A nondeterministic bottom-up tree automaton is a tuple A = (Q, Σ, Δ, F),
where Q is the set of states of the automaton, F ⊆ Q is the set of accepting states, Σ is an alphabet, and
Δ ⊆ (Q ∪ {⊥})× (Q ∪ {⊥})× Σ×Q is a transition relation in which ⊥ �∈ Q is a special symbol to treat
nodes with less than two children. The automaton is deterministic if, for every x, y ∈ Q ∪ {⊥} and every
σ ∈ Σ, there is exactly one q ∈ Q with (x, y, σ, q) ∈ Δ.

Definition 2 (Computation of a Tree Automaton). The computation of a nondeterministic bottom-up
tree automaton A = (Q, Σ, Δ, F) on a labeled tree (T, ι) with ι : V(T) → Σ and root r ∈ V(T) is an
assignment q : V(T) → Q such that, for all n ∈ V(T), we have (1) (q(x), q(y), ι(n), q(n)) ∈ Δ if n
has two children x, y; (2) (q(x),⊥, ι(n), q(n)) ∈ Δ or (⊥, q(x), ι(n), q(n)) ∈ Δ if n has one child x;
(3) (⊥,⊥, ι(n), q(n)) ∈ Δ if n is a leaf. The computation is accepting if q(r) ∈ F.

Simulating Tree Automata

A dynamic program for a decision problem can be formulated as a nondeterministic tree
automaton that works on the decomposition—see the left side of Figure 1 for a detailed example.
Observe that a nondeterministic tree automaton A will process a labeled tree (T, ι) with n nodes in
time O(n). When we simulate such an automaton deterministically, one might think that a running
time of the form O(|Q| · n) is sufficient, as the automaton could be in any potential subset of the Q
states at some node of the tree. However, there is a pitfall: for every node, we have to compute the
set of potential states of the automaton depending on the sets of potential states of the children of
that node, leading to a quadratic dependency on |Q|. This can be avoided for transitions of the form
(⊥,⊥, ι(x), p), (q,⊥, ι(x), p), and (⊥, q, ι(x), p), as we can collect potential successors of every state of
the child and compute the new set of states in linear time with respect to the cardinality of the set.
However, transitions of the form (qi, qj, ι(x), p) are difficult, as we now have to merge two sets of states.
In detail, let x be a node with children y and z and let Qy and Qz be the set of potential states in which
the automaton eventually is in at these nodes. To determine Qx, we have to check for every qi ∈ Qy

and every qj ∈ Qz if there is a p ∈ Q such that (qi, qj, ι(x), p) ∈ Δ. Note that the number of states |Q|
can be quite large, as for tree decompositions with bags of size k the set Q is typically of cardinality
2Ω(k), and we will thus try to avoid this quadratic blow-up.

Observation 1. A tree automaton can be simulated in time O(|Q|2 · n).

Unfortunately, the quadratic factor in the simulation cannot be avoided in general, as the
automaton may very well contain a transition for all possible pairs of states. However, there are
some special cases in which we can circumnavigate the increase in the running time.

Definition 3 (Symmetric Tree Automaton). A symmetric nondeterministic bottom-up tree automaton is a
nondeterministic bottom-up tree automaton A = (Q, Σ, Δ, F) in which all transitions (l, r, σ, q) ∈ Δ satisfy
either l = ⊥, r = ⊥, or l = r.

Assume as before that we wish to compute the set of potential states for a node x with children y
and z. Observe that, in a symmetric tree automaton, it is sufficient to consider the set Qy ∩Qz and that
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the intersection of two sets can be computed in linear time if we take some care in the design of the
underlying data structures.

Observation 2. A symmetric tree automaton can be simulated in time O(|Q| · n).

The right side of Figure 1 illustrates the deterministic simulation of a symmetric tree automaton.
The massive time difference in the simulation of tree automata and symmetric tree automata
significantly influenced the design of the algorithms in Section 4, in which we try to construct an
automaton that is (1) “as symmetric as possible” and (2) allows for taking advantage of the “symmetric
parts” even if the automaton is not completely symmetric.
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Figure 1. The left picture shows a part of a tree decomposition of the grid graph with vertices
{0, . . . , 8} (i. e., with rows {i, i + 1, i + 2} for i ∈ {0, 3, 6} and columns {i, i + 3, i + 6} for i ∈ {0, 1, 2}).
The index of a bag shows the type of the bag: a positive sign means “introduce”, a negative one
“forget”, a pair represents an “edge”-bag, and the text is self explanatory. Solid lines represent real
edges of the decomposition, while dashed lines illustrate a path (that is, some bags are skipped).
On the left branch of the decomposition, a run of a nondeterministic tree automaton with tree-index(

0 1 2 3 4 5 6 7 8
2 3 0 1 2 3 0 1 0

)
for 3-COLORING is illustrated. To increase readability, states of the automaton are

connected to the corresponding bags with gray lines, and, for some nodes, the states are omitted. In the
right picture, the same automaton is simulated deterministically.

3.2. The Interface

We introduce a simple Java-interface to our library Jdrasil, which originally was developed
for the computation of tree decompositions only. The interface is built up from two classes:
StateVectorFactory and StateVector. The only job of the factory is to generate StateVector objects
for the leaves of the tree decomposition, or with the terms of the previous section: “to define the initial
states of the tree automaton.” The StateVector class is meant to model a vector of potential states
in which the nondeterministic tree automaton is at a specific node of the tree decomposition. Our
interface does not define what a “state” is, or how a collection of states is managed. The only thing
the interface requires a user to implement is the behaviour of the tree automaton when it reaches a
node of the tree decomposition, i. e., given a StateVector for some node x of the tree decomposition
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and the information that the next node y reached by the automaton is of a certain type, the user has to
compute the StateVector for y. To this end, the interface contains the methods shown in Listing 1.

Listing 1: The four methods of the interface describe the behaviour of the tree automaton. Here, “T” is
a generic type for vertices. Each function obtains as a parameter the current bag and a tree-index “idx”.
Other parameters correspond to bag-type specifics, e. g., the introduced or forgotten vertex v.

S ta teVector <T> introduce ( Bag<T> b , T v , Map<T , Integer > idx ) ;
S ta teVector <T> f o r g e t ( Bag<T> b , T v , Map<T , Integer > idx ) ;
S ta teVector <T> j o i n ( Bag<T> b , Sta teVector <T> o , Map<T , Integer > idx ) ;
S ta teVector <T> edge ( Bag<T> b , T v , T w, Map<T , Integer > idx ) ;

This already rounds up the description of the interface, everything else is done by Jdrasil. In detail,
given a graph and an implementation of the interface, Jdrasil will compute a tree decomposition
(see [11] for the concrete algorithms used by Jdrasil), transform this decomposition into a very nice
tree decomposition, potentially optimize the tree decomposition for the following dynamic program,
and finally traverse through the tree decomposition and simulate the tree automaton described by the
implementation of the interface. The result of this procedure is the StateVector object assigned to the
root of the tree decomposition.

3.3. Example: 3-Coloring

Let us illustrate the usage of the interface with our running example of 3-COLORING. A State

of the automaton can be modeled as a simple integer array that stores a color (an integer) for every
vertex in the bag. A StateVector stores a set of State objects, that is, essentially a set of integer arrays.
Introducing a vertex v to a StateVector therefore means that three duplicates of each stored state have
to be created, and, for every duplicate, a different color has to be assigned to v. Listing 2 illustrates
how this operation could be realized in Java.

Listing 2: Exemplary implementation of the introduce method for 3-COLORING. In the listing,
the variable states is stored by the StateVector object and represents all currently possible states.

S ta teVector <T> introduce ( Bag<T> b , T v , Map<T , Integer > idx ) {
Set <Sta te > newStates = new HashSet < >( ) ;
for ( S t a t e s t a t e : s t a t e s ) { / / ’ s t a t e s ’ i s t h e s e t o f s t a t e s
for ( i n t c o l o r = 1 ; c o l o r <= 3 ; c o l o r ++) {
S t a t e newState = new S t a t e ( s t a t e ) ; / / copy t h e s t a t e
newState . c o l o r s [ idx . get ( v ) ] = c o l o r ;
newStates . add ( newState ) ;
}
}
s t a t e s = newStates ;
return t h i s ;
}

The three other methods can be implemented in a very similar fashion: in the forget-method,
we set the color of v to 0; in the edge-method, we remove states in which both endpoints of the
edge have the same color; and, in the join-method, we compute the intersection of the state sets
of both StateVector objects. Note that, when we forget a vertex v, multiple states may become
identical, which is handled here by the implementation of the Java Set-class, which takes care of
duplicates automatically.

A reference implementation of this 3-COLORING solver is publicly available [12], and a detailed
description of it can be found in the manual of Jdrasil [13]. Note that this implementation is only meant
to illustrate the interface and that we did not make any effort to optimize it. Nevertheless, this very
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simple implementation (the part of the program that is responsible for the dynamic program only
contains about 120 lines of structured Java-code) performs surprisingly well.

4. A Lightweight Model Checker for an MSO-Fragment

Experiments with the coloring solver of the previous section have shown a huge difference in
the performance of general solvers as D-Flat and Sequoia against a concrete implementation of a tree
automaton for a specific problem (see Section 5). This is not necessarily surprising, as a general solver
needs to keep track of way more information. In fact, an MSO model checker on formula φ can
probably (unless P = NP) not run in time f (|φ|+ tw) · poly(n) for any elementary function f [14].
On the other hand, it is not clear (in general) what the concrete running time of such a solver is for
a concrete formula or problem (see e. g., [15] for a sophisticated analysis of some running times in
Sequoia). We seek to close this gap between (slow) general solvers and (fast) concrete algorithms.
Our approach is to concentrate only on a fragment of MSO, which is powerful enough to express many
natural problems, but which is restricted enough to allow model checking in time that matches or is
close to the running time of a concrete algorithm for the problem. As a bonus, we will be able to derive
upper bounds on the running time of the model checker directly from the syntax of the input formula.

Based on the interface of Jdrasil, we have implemented a publicly available prototype called
Jatatosk [16]. In Section 5, we describe various experiments on different problems on multiple sets of
graphs. It turns out that Jatatosk is competitive against the state-of-the-art solvers D-Flat and Sequoia.
Arguably, these two programs solve a more general problem and a direct comparison is not entirely
fair. However, the experiments do reveal that it seems very promising to focus on smaller fragments of
MSO (or perhaps any other description language) in the design of treewidth based solvers.

4.1. Description of the Used MSO-Fragment

We only consider vocabularies τ that contain the binary relation E2, and we only consider
τ-structures with a symmetric interpretation of E2, that is, we only consider structures that contain an
undirected graph (but may also contain further relations). The fragment of MSO that we consider is
constituted by formulas of the form φ = ∃X1 . . . ∃Xk

∧n
i=1 ψi, where the Xj are second-order variables

and the ψi are first-order formulas of the form

ψi ∈ { ∀x∀y E(x, y)→ χi, ∀x∃y E(x, y) ∧ χi, ∃x∀y E(x, y)→ χi,

∃x∃y E(x, y) ∧ χi, ∀x χi, ∃x χi }.

Here, the χi are quantifier-free first-order formulas in canonical normal form. It is easy to see that
this fragment is already powerful enough to encode many classical problems as 3-COLORING (φ̃3col
from the introduction is part of the fragment), or VERTEX-COVER (note that, in this form, the formula is
not very useful—every graph is a model of the formula if we choose S = V(G); we will discuss how to
handle optimization in Section 4.4):

φ̃vc = ∃S∀x∀y E(x, y)→ S(x) ∨ S(y).

4.2. A Syntactic Extension of the Fragment

Many interesting properties, such as connectivity, can easily be expressed in MSO, but not directly
in the fragment that we study. Nevertheless, a lot of these properties can directly be checked by a
model checker if it “knows” what kind of properties it actually checks. We present a syntactic extension
of our MSO-fragment which captures such properties. The extension consists of three new second
order quantifiers that can be used instead of ∃Xi.
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The first extension is a k-partition quantifier, which quantifies over partitions of the universe:

∃partitionX1, . . . , Xk ≡ ∃X1∃X2 . . . ∃Xk
(
∀x

k∨
i=1

Xi(x)
)
∧

(
∀x

k∧
i=1

∧
j �=i

¬Xi(x) ∧ ¬Xj(x)
)
.

This quantifier has two advantages. First, formulas like φ̃3col can be simplified to

φ3col = ∃partitionR, G, B ∀x∀y E(x, y)→
∧

C ∈ {R, G, B}
¬C(x) ∨ ¬C(y),

and, second, the model checking problem for them can be solved more efficiently: the solver directly
“knows” that a vertex must be added to exactly one of the sets.

We further introduce two quantifiers that work with respect to the symmetric relation E2 (recall
that we only consider structures that contain such a relation). The ∃connectedX quantifier guesses
an X ⊆ U that is connected with respect to E (in graph theoretic terms), that is, it quantifies over
connected subgraphs. The ∃forestF quantifier guesses a F ⊆ U that is acyclic with respect to E (again in
graph theoretic terms), that is, it quantifies over subgraphs that are forests. These quantifiers are quite
powerful and allow, for instance, expressing that the graph induced by E2 contains a triangle as minor:

φtriangle-minor =∃connectedR ∃connectedG ∃connectedB ·(
∀x (¬R(x) ∨ ¬G(x)) ∧ (¬G(x) ∨ ¬B(x)) ∧ (¬B(x) ∨ ¬R(x))

)
∧
(
∃x∃y E(x, y) ∧ R(x) ∧ G(y)

)
∧

(
∃x∃y E(x, y) ∧ G(x) ∧ B(y)

)
∧
(
∃x∃y E(x, y) ∧ B(x) ∧ R(y)

)
.

We can also express problems that usually require more involved formulas in a very natural way.
For instance, the FEEDBACK-VERTEX-SET problem can be described by the following formula (again,
optimization will be handled in Section 4.4):

φ̃fvs = ∃S ∃forestF ∀x S(x) ∨ F(x).

4.3. Description of the Model Checker

We describe our model checker in terms of a nondeterministic tree automaton that works on
a tree decomposition of the graph induced by E2 (note that, in contrast to other approaches in the
literature (see, for instance, [10]), we do not work on the Gaifman graph). We define any state of
the automaton as a bit-vector, and we stipulate that the initial state at every leaf is the zero-vector.
For any quantifier or subformula, there will be some area in the bit-vector reserved for that quantifier or
subformula and we describe how state transitions effect these bits. The “algorithmic idea” behind the
implementation of these transitions is not new, and a reader familiar with folklore dynamic programs
on tree decompositions (for instance for VERTEX-COVER or STEINER-TREE) will probably recognize
them. An overview over common techniques can be found in the standard textbooks [1,10].

4.3.1. The Partition Quantifier

We start with a detailed description of the k-partition quantifier ∃partitionX1, . . . , Xq (in fact, we do
not implement an additional ∃X quantifier, as we can always state ∃X ≡ ∃partitionX, X̄): Let k be the
maximum bag-size of the tree decomposition. We reserve k · log2 q bit in the state description (Here,
and in the following, log(x) denotes the number of bits to store x, i. e., log(x) = �log2(x)�+ 1), where
each block of length log q indicates in which set Xi the corresponding element of the bag is. On an
introduce-bag (e. g., for v ∈ U), the nondeterministic automaton guesses an index i ∈ {1, . . . , q} and
sets the log q bits that are associated with the tree-index of v to i. Equivalently, the corresponding bits
are cleared when the automaton reaches a forget-bag. As the partition is independent of any edges,
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an edge-bag does not change any of the bits reserved for the k-partition quantifier. Finally, on join-bags,
we may only join states that are identical on the bits describing the partition (as otherwise the vertices
of the bag would be in different partitions)—meaning this transition is symmetric with respect to these
bits (in terms of Section 3.1).

4.3.2. The Connected Quantifier

The next quantifier we describe is ∃connectedX, which has to overcome the difficulty that an
introduced vertex may not be connected to the rest of the bag in the moment it got introduced, but may
be connected to it when further vertices “arrive.” The solution to this dilemma is to manage a partition
of the bag into k′ ≤ k connected components P1, . . . , Pk′ , for which we reserve k · log k bit in the state
description. Whenever a vertex v is introduced, the automaton either guesses that it is not contained in
X and clears the corresponding bits, or it guesses that v ∈ X and assigns some Pi to v. Since v is isolated
in the bag in the moment of its introduction (recall that we work on a very nice tree decomposition),
it requires its own component and is therefore assigned to the smallest empty partition Pi. When a
vertex v is forgotten, there are four possible scenarios:

1. v �∈ X, then the corresponding bits are already cleared and nothing happens;
2. v ∈ X and v ∈ Pi with |Pi| > 1, then v is just removed and the corresponding bits are cleared;
3. v ∈ X and v ∈ Pi with |Pi| = 1 and there are other vertices w in the bag with w ∈ X, then the

automaton rejects the configuration, as v is the last vertex of Pi and may not be connected to any
other partition anymore;

4. v ∈ X is the last vertex of the bag that is contained in X, then the connected component is “done”,
the corresponding bits are cleared and one additional bit is set to indicate that the connected
component cannot be extended anymore.

When an edge {u, v} is introduced, components might need to be merged. Assume u, v ∈ X,
u ∈ Pi, and v ∈ Pj with i < j (otherwise, an edge-bag does not change the state), then we essentially
perform a classical union-operation from the well-known union-find data structure. Hence, we assign
all vertices that are assigned to Pj to Pi. Finally, at a join-bag, we may join two states that agree locally
on the vertices that are in X (that is, they have assigned the same vertices to some Pi); however, they
do not have to agree in the way the different vertices are assigned to Pi (in fact, there does not have to
be an isomorphism between these assignments). Therefore, the transition at a join-bag has to connect
the corresponding components analogous to the edge-bags—in terms of Section 3.1, this transition is
not symmetric.

The description of the remaining quantifiers and subformulas is very similar and summarized in
the following overview:

∃forestX
#Bit: k · log k
Introduce: As for ∃connectedX.

Forget:
Just clear the corresponding
bits.

Edge:
As for ∃connectedX, but reject
if two vertices of the same
component are connected.

Join:
As for ∃connectedX, but track
if the join introduces a cycle.

∀x∀y E(x, y)→ χi

#Bit: 0
Introduce: -
Forget: -

Edge:
Reject if χi is not satisfied for
the vertices of the edge.

Join: -
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∀x∃y E(x, y) ∧ χi

#Bit: k
Introduce: -

Forget:
Reject if the bit
corresponding to v is not set.

Edge:
Set the bit of v if χi is
satisfied.

Join:
Compute the logical-or of
the bits of both states.

∃x∀y E(x, y)→ χi

#Bit: k + 1
Introduce: Set the corresponding bit.

Forget:
If the corresponding bit is
set, set the additional bit.

Edge:
If χi is not satisfied, clear the
corresponding bit.

Join:
Compute the logical-and of
all but the last bit, for the last
bit use a logical-or.

∃x∃y E(x, y) ∧ χi

#Bit: 1
Introduce: -
Forget: -
Edge: Set the bit if χi is satisfied.

Join:
Compute logical-or of the bit
in both states.

∀x χi (∃x χi)

#Bit: 0 (1)

Introduce:
Test if χi is satisfied and
reject if not (set the bit if so).

Forget: -
Edge: -

Join:
- (Compute logical-or of the

bit in both states.)

4.4. Extending the Model Checker to Optimization Problems

As the example formulas from the previous section already indicate, performing model checking
alone will not suffice to express many natural problems. In fact, every graph is a model of the formula
φ̃vc if S simply contains all vertices. It is therefore a natural extension to consider an optimization
version of the model checking problem, which is usually formulated as follows [1,10]: Given a logical
structure S , a formula φ(X1, . . . , Xp) of the MSO-fragment defined in the previous section with free
unary second-order variables X1, . . . , Xp, and weight functions ω1, . . . , ωp with ωi : U → Z; find
S1, . . . , Sp with Si ⊆ U such that ∑

p
i=1 ∑s∈Si

ωi(s) is minimized under S |= φ(S1, . . . , Sp), or conclude
that S is not a model for φ for any assignment of the free variables. We can now correctly express the
(actually weighted) optimization version of VERTEX-COVER as follows:

φvc(S) = ∀x∀y E(x, y)→
(
S(x) ∨ S(y)

)
.

Similarly, we can describe the optimization version of DOMINATING-SET if we assume the input does
not have isolated vertices (or is reflexive), and we can also fix the formula φ̃fvs:

φds(S) = ∀x∃y E(x, y) ∧
(
S(x) ∨ S(y)

)
,

φfvs(S) = ∃forestF ∀x
(
S(x) ∨ F(x)

)
.

We can also maximize the term ∑
p
i=1 ∑s∈Si

ωi(s) by multiplying all weights with −1 and, thus, express
problems such as INDEPENDENT-SET:

φis(S) = ∀x∀y E(x, y)→
(
¬S(x) ∨ ¬S(y)

)
.

The implementation of such an optimization is straightforward: there is a 2-partition quantifier for
every free variable Xi that partitions the universe into Xi and X̄i. We assign a current value of
∑

p
i=1 ∑s∈Si

ωi(s) to every state of the automaton, which is adapted if elements are “added” to some of
the free variables at introduce nodes. Note that, since we optimize an affine function, this does not
increase the state space: even if multiple computational paths lead to the same state with different
values at some node of the tree, it is well defined which of these values is the optimal one. Therefore,
the cost of optimization only lies in the partition quantifier, that is, we pay with k bits in the state
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description of the automaton per free variable—independently of the weights (Of course, for each
state, we still have to store the weight and we have to perform arithmetic operations on these weights).

4.5. Handling Symmetric and Non-Symmetric Joins

In Section 4.3, we have defined the states of our automaton with respect to a formula, Table 1
gives an overview of the number of bits we require for the different parts of the formula. Let bit(φ, k)
be the number of bits that we have to reserve for a formula φ and a tree decomposition of maximum
bag size k that is, the sum over the required bits of each part of the formula. By Observation 1,
this implies that we can simulate the automaton (and hence solve the model checking problem)
in time O∗

(
(2bit(φ,k))2), or by Observation 2 in time O∗

(
2bit(φ,k)), if the automaton is symmetric

(The notation O∗ supresses polynomial factors). Unfortunately, this is not always the case, in fact,
only the quantifier ∃partitionX1, . . . , Xq, the bits needed to optimize over free variables, as well as
the formulas that do not require any bits, yield a symmetric tree automaton. This means that the
simulation is wasteful if we consider a mixed formula (for instance, one that contains a partition and
a connected quantifier). To overcome this issue, we partition the bits of the state description into
two parts: first, the “symmetric” bits of the quantifiers ∃partitionX1, . . . , Xq and the bits required for
optimization, and in the “asymmetric” ones of all other elements of the formula. Let symmetric(φ, k)
and asymmetric(φ, k) be defined analogously to bit(φ, k). We implement the join of states as in the
following lemma, allowing us to deduce the running time of the model checker for concrete formulas.
Table 2 provides an overview for formulas presented here.

Lemma 1. Let x be a join node of T with children y and z, and let Qy and Qz be sets of states in which the
automaton may be at y and z. Then, the set Qx of states in which the automaton may be at node x can be
computed in time O∗

(
2symmetric(φ,k)+2·asymmetric(φ,k)).

Proof. To compute Qx, we first split Qy into B1, . . . , Bq such that all elements in one Bi share the
same “symmetric bits.” This can be done in time |Qy| using bucket-sort. Note that we have
q ≤ 2symmetric(φ,k) and |Bi| ≤ 2asymmetric(φ,k). With the same technique, we identify for every element v
in Qz its corresponding partition Bi. Finally, we compare v with the elements in Bi to identify those
for which there is a transition in the automaton. This yields an overall running time of the form
|Qz| ·maxq

i=1 |Bi| ≤ 2bit(φ,k) · 2asymmetric(φ,k) = 2symmetric(φ,k)+2·asymmetric(φ,k).

Table 1. The table shows the precise number of bits we reserve in the description of a state of the tree
automaton for different quantifiers and formulas. The values are with respect to a tree decomposition
with maximum bag size k.

Quantifier/Formula Number of Bits

free variables X1, . . . , Xq q · k
∃partitionX1, . . . , Xq k · log q

∃connectedX k · log k + 1
∃forestX k · log k

∀x∀y E(x, y)→ χi 0
∀x∃y E(x, y) ∧ χi k
∃x∀y E(x, y)→ χi k + 1
∃x∃y E(x, y) ∧ χi 1

∀x χi 0
∃x χi 1
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Table 2. The table gives an overview of formulas φ used within this paper, together with the values
symmetric(φ, k) and asymmetric(φ, k), as well as the precise time our algorithm will require to model
check an instance for that particular formula.

φ symmetric(φ, k) asymmetric(φ, k) Time

φ3col k · log(3) 0 O∗(3k)
φvc(S) k 0 O∗(2k)
φds(S) k k O∗(8k)

φtriangle-minor 0 3k · log(k) + 3 O∗(k6k)

φfvs(S) k k · log(k) O∗(2kk2k)

5. Applications and Experiments

To show the feasibility of our approach, we have performed experiments for widely investigated
graph problems: 3-COLORING (Figure 2), VERTEX-COVER (Figure 3), DOMINATING-SET (Figure 4),
INDEPENDENT-SET (Figure 5), and FEEDBACK-VERTEX-SET (Figure 6). All experiments were performed
on an Intel Core processor containing four cores of 3.2 GHz each and 8 Gigabyte RAM. Jdrasil was
used with Java 8.1 and both Sequoia and D-Flat were compiled with gcc 7.2. All compilations were
performed with the default optimization settings. The implementation of Jatatosk uses hashing to
realize Lemma 1, which works well in practice. We use a data set assembled from different sources
containing graphs with 18 to 956 vertices and treewidth 3 to 13. The first source is a collection of transit
graphs from GTFS-transit feeds [17] that was also used for experiments in [18], the second source is
real-world instances collected in [19], and the last one is that of the PACE challenge [2] with treewidth
at most 11. In each of the experiments, the left picture always shows the difference of Jatatosk against
D-Flat and Sequoia. A positive bar means that Jatatosk is faster by this amount in seconds, and a
negative bar means that either D-Flat or Sequoia is faster by that amount. The bars are capped at
100 seconds. On every instance, Jatatosk was compared against the solver that was faster on this
particular instance. The image also shows for every instance the treewidth of the input. The right
image always shows a cactus plot that visualizes the number of instances that can be solved by each of
the solvers in x seconds, that is, faster growing functions are better. For each experiment, there is a
table showing the average, standard deviation, and median of the time (in seconds) each solver needed
to solve the problem. The best values are highlighted.

The experiments reveal that Jatatosk is faster than its competitors on many instances. However,
there are also formulas such as the one for the vertex cover problem on which one of the other solvers
performs better on some of the instances. For an overall picture, the cactus plot in Figure 7 is the sum of
all cactus plots from the experiments. It reveals that overall Jatatosk in fact outperforms its competitors.
However, we stress once more that the comparison is not completely fair, as both Sequoia and D-Flat
are powerful enough to model check the whole of MSO (and actually also MSO2), while Jatatosk can
only handle a fragment of MSO1.
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Figure 2. Experiment for the 3-COLORING problem.

As we can see, Jatatosk outperforms Sequoia and D-Flat if we consider the graph coloring problem.
Its average time is more than a factor of 10 smaller than the average time of its competitors and Jatatosk
solves about 30% of the instances more. This result is not surprising, as the fragment used by Jatatosk
is directly tailored towards coloring and, thus, Jatatosk has a natural advantage.
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Figure 3. Experiment for the VERTEX-COVER problem.

The VERTEX-COVER problem is solved best by Sequoia, which becomes apparent if we consider
the difference plot. Furthermore, the average time used by Sequoia is better than the time used by
Jatatosk. However, considering the cactus plot, the difference between Jatatosk and Sequoia with
respect to solved instances is small, while D-Flat falls behind a bit. We assume that the similarity
between Jatatosk and Sequoia is because both compile internally a similar algorithm.
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Figure 4. Experiment for the DOMINATING-SET problem.

In this experiment Jatatosk performs best with respect to all: the difference plot, the cactus plot,
and the used average time. However, the difference to Sequoia is small and there are in fact a couple of
instances that are solved faster by Sequoia. We are surprised by this result, as the worst-case running
time of Jatatosk for DOMINATING-SET is O∗(8k) and, thus, far from optimal. Furthermore, Sequoia
promises in theory a better performance with a running time of the form O∗(5k) [15].
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Figure 5. Experiment for the INDEPENDENT-SET problem.

This is the simplest test set that we consider within this paper, which is reflected by the fact that
all solvers are able to solve almost the whole set. The difference between Jatatosk and Sequoia is minor:
while Jatatosk has a slightly better peek-performance, there are more instances that are solved faster
by Sequoia than the other way around.
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Figure 6. Experiment for the FEEDBACK-VERTEX-SET problem.

This is the hardest test set that we consider within this paper, which is reflected by the fact that
no solver is able to solve much more than 50% of the instances. Jatatosk outperforms its competitors,
which is reflected in the difference plot, the cactus plot, and the used average time. We assume this is
because Jatatosk uses the dedicated forest quantifier directly, while the other tools have to infer the
algorithmic strategy from a more general formula.
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Figure 7. The cactus plot is the sum of the plots from Figures 2–6. Over all experiments, there are 300
instances in total that were tested. Jatatosk solves 88% of these, while Sequoia only manages to solve
76% and D-Flat 50% of the instances.

6. Conclusions and Outlook

We investigated the practicability of dynamic programming on tree decompositions, which is
arguably one of the cornerstones of parameterized complexity theory. We implemented a simple
interface for such programs and used it to build a competitive graph coloring solver with just a few
lines of code. We hope that this interface allows others to implement and explore various dynamic
programs. The whole power of these algorithms is well captured by Courcelle’s Theorem, which
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states that there is an efficient version of such a program for every problem definable in monadic
second-order logic. We took a step towards practice by implementing a “lightweight” version of a
model checker for a small fragment of the logic. This fragment turns out to be powerful enough to
express many natural problems such as 3-COLORING, FEEDBACK-VERTEX-SET, and more. Various
experiments showed that the model checker is competitive against the state-of-the-art solvers D-Flat
and Sequoia. It therefore seems promising, from a practical perspective, to study smaller fragments
of MSO.
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1. Introduction

The remarkable performance of today’s SAT solvers (see, e.g., [1]) offers a practically successful
strategy for solving NP-complete combinatorial search problems by reducing them in polynomial
time to the propositional satisfiability problem—also known as SAT. In order to apply this strategy
to problems that are harder than NP, one needs to employ reductions that are more powerful than
polynomial-time reductions. A compelling option for this strategy is to use fixed-parameter tractable
reductions (or fpt-reductions)—i.e., reductions that are computable in time f (k)nc for some computable
function f and some constant c—as they can exploit some structural aspects of the problem instances
in terms of a problem parameter k.

To illustrate this approach, let us consider as an example the problem of deciding the truth of
quantified Boolean formulas (QBFs) of the form ϕ = ∃X.∀Y.ψ, where ψ is a DNF formula over the
variables in X ∪ Y. (We define and consider this example problem—as well as the parameterized
variants of this problem that we consider in this section—in more detail in Section 3.3.) This problem
is Σp

2 -complete [2,3], so there is no polynomial-time reduction from this problem to SAT, unless the
Polynomial Hierarchy collapses. In other words, the strategy of first reducing the problem to SAT,
and then using a SAT solver to solve the problem seems not viable.

Another strategy would be to consider the problem from a parameterized point of view—i.e.,
investigating in which cases structural properties of the input allow the problem to be solved efficiently
(in fpt-time). For example, if the incidence treewidth of the DNF formula ψ is bounded, we can solve
the problem in fpt-time [4,5]. However, this is the case only in very restricted settings, and so this
strategy is also only viable to a limited extent.

The approach of using fpt-reductions to SAT combines the merits of the above two strategies.
It uses the remarkable performance of today’s SAT solvers, and it can exploit structural properties of
the problem inputs. As a result, this approach has the potential of being useful in a much wider range
of settings than either of the two separate strategies. It can work for problems that lie at higher levels
of the Polynomial Hierarchy. Moreover, it can work for choices of problem parameters that are much
less restrictive than those needed to get traditional fixed-parameter tractability results.

Algorithms 2019, 12, 188; doi:10.3390/a12090188 www.mdpi.com/journal/algorithms
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As a demonstration of this, let us consider two other parameterized variants of our example
problem of deciding the truth of formulas of the form ϕ = ∃X.∀Y.ψ. In the first variant, the parameter
is the treewidth of the incidence graph of ψ where we delete all nodes corresponding to variables
in X—in other words, the incidence graph of ψ with respect to the universally quantified variables.
This variant is para-NP-complete [6,7], which means that it allows an fpt-reduction to SAT. Thus,
for this variant, we can exploit the problem parameter to efficiently reduce the problem to SAT,
and subsequently use a SAT solver to solve the problem. In the second variant that we consider,
the parameter is the treewidth of the incidence graph of ψ where we delete all nodes corresponding to
variables in Y—in other words, the incidence graph of ψ with respect to the existentially quantified
variables. This variant is para-Σp

2 -complete [6,7], indicating that fpt-reductions to SAT are not possible
(unless the Polynomial Hierarchy collapses).

For both of these variants of our example problem, both the approach of polynomial-time reducing
the problem to SAT and the approach of finding (traditional) fixed-parameter tractable algorithms
do not work. However, for only one of them, an fpt-reduction to SAT is possible (under common
complexity-theoretic assumptions). This indicates that, to establish whether an fpt-reduction to
SAT is possible, a suitable parameterized complexity analysis at higher levels of the Polynomial
Hierarchy is needed. Various parameterized complexity classes have been developed for this
purpose [7,8] that, together with previously studied classes, enable such analyses. This includes
both classes that correspond to various types of fpt-reductions to SAT—e.g., para-NP, para-co-NP,
and FPTNP[few]—and classes that indicate that no fpt-reductions to SAT are possible, under suitable
complexity-theoretic assumptions—e.g., Σp

2 [k∗], Σp
2 [∗k, 1], Σp

2 [∗k, P], Πp
2 [k∗], Πp

2 [∗k, 1], Πp
2 [∗k, P],

para-Σp
2 , para-Πp

2 , PH[level], and para-PSPACE. (We define all of these parameterized complexity
classes in Sections 2.2 and 2.3.)

Outline

In this compendium, we give a list of parameterized problems that are based on problems at
higher levels of the Polynomial Hierarchy, together with a complexity classification indicating whether
they allow a (many-to-one or Turing) fpt-reduction to SAT or not.

The compendium that we provide is similar in concept to the compendia by Schaefer and
Umans [9] and Cesati [10] that also list problems along with their computational complexity. We group
the list by the type of problems. A list of problems grouped by their complexity can be found at the
end of this paper.

The remainder of the paper is structured as follows. In Section 2, we give an overview of
the parameterized complexity classes involved in the classification of whether problems allow
an fpt-reduction to SAT, as well as some other notions and definitions that are used throughout the
paper. Then, in Sections 3–6, we present (i) problems related to (quantified variants of) propositional
logic, (ii) problems from the area of Knowledge Representation and Reasoning, (iii) graph problems,
and (iv) other problems, respectively. Finally, we conclude in Section 7.

2. Preliminaries

2.1. Computational Complexity

We assume that the reader is familiar with basic notions from the theory of computational
complexity, such as the complexity classes P and NP. For more details, we refer to textbooks on the
topic (see, e.g., [11,12]).

There are many natural decision problems that are not contained in the classical complexity
classes P and NP (under some common complexity-theoretic assumptions). The Polynomial
Hierarchy [2,3,12,13] contains a hierarchy of increasing complexity classes Σp

i , for all i ≥ 0. We give
a characterization of these classes based on the satisfiability problem of various classes of quantified
Boolean formulas. A quantified Boolean formula is a formula of the form Q1X1Q2X2 . . . QmXmψ, where
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each Qi is either ∀ or ∃, the Xi are disjoint sets of propositional variables, and ψ is a Boolean formula
over the variables in

⋃m
i=1 Xi. The quantifier-free part of such formulas is called the matrix of the

formula. Truth of such formulas is defined in the usual way. Let γ = {x1 �→ d1, . . . , xn �→ dn} be
a function that maps some variables of a formula ϕ to other variables or to truth values. We let ϕ[γ]

denote the application of such a substitution γ to the formula ϕ. We also write ϕ[x1 �→ d1, . . . , xn �→ dn]

to denote ϕ[γ]. For each i ≥ 1, the decision problem QSATi is defined as follows.

QSATi
Instance: A quantified Boolean formula ϕ = ∃X1∀X2∃X3 . . . QiXiψ, where Qi is a universal
quantifier if i is even and an existential quantifier if i is odd.
Question: Is ϕ true?

Input formulas to the problem QSATi are called Σp
i -formulas. For each nonnegative integer i ≥

0, the complexity class Σp
i can be characterized as the closure of the problem QSATi under

polynomial-time reductions [2,3]—that is, all decision problems that are polynomial-time reducible
to QSATi. The Σp

i -hardness of QSATi holds already when the matrix of the input formula is restricted
to 3CNF for odd i, and restricted to 3DNF for even i. Note that the class Σp

0 coincides with P,
and the class Σp

1 coincides with NP. For each i ≥ 1, the class Πp
i is defined as co-Σp

i —that is,
Πp

i = { {0, 1}∗ \ L : L ∈ Σp
i }.

The classes Σp
i and Πp

i can also be defined by means of nondeterministic Turing machines with
an oracle. Intuitively, oracles are black-box machines that can solve a problem in a single time step—for
more details, see, e.g., Chapter 3 of [11]. For any complexity class C, we let NPC be the set of decision
problems that are decided in polynomial time by a nondeterministic Turing machine with an oracle for
a problem that is in the class C. Then, the classes Σp

i and Πp
i , for i ≥ 0, can be equivalently defined by

letting Σp
0 = Πp

0 = P, and for each i ≥ 1 letting Σp
i = NPΣp

i−1 and Πp
i = co-NPΣp

i−1 .
The Polynomial Hierarchy also includes complexity classes between Σp

i and Σp
i+1—such as the

classes Δp
i+1 and Θp

i+1. The class Δp
i+1 consists of all decision problems that are decided in polynomial

time by a deterministic Turing machine with an oracle for a problem that is in the class Σp
i . Similarly,

the class Θp
i+1 consists of all decision problems that are decided in polynomial time by a deterministic

Turing machine with an oracle for a problem that is in the class Σp
i , with the restriction that the Turing

machine is only allowed to make O(log n) oracle queries, where n denotes the input size [14,15].
It holds that Σp

i ∪Πp
i ⊆ Θp

i+1 ⊆ Δp
i+1 ⊆ Σp

i+1 ∩Πp
i+1.

There are also natural decision problems that are located between NP and Θp
2 . The Boolean

Hierarchy (BH) [16–18] consists of a hierarchy of complexity classes BHi, for each i ≥ 1, that can
be used to classify the complexity of decision problems between NP and Θp

2 . Each class BHi can
be characterized as the class of problems that can be reduced to the problem BHi-SAT, which is
defined inductively as follows. The problem BH1-SAT consists of all sequences (ϕ) of length 1,
where ϕ is a satisfiable propositional formula. For even i ≥ 2, the problem BHi-SAT consists of all
sequences (ϕ1, . . . , ϕi) of propositional formulas such that both (ϕ1, . . . , ϕi−1) ∈ BH(i−1)-SAT and ϕi is
unsatisfiable. For odd i ≥ 2, the problem BHi-SAT consists of all sequences (ϕ1, . . . , ϕi) of propositional
formulas such that (ϕ1, . . . , ϕi−1) ∈ BH(i−1)-SAT or ϕi is satisfiable. The class BH2 is also denoted
by DP, and the problem BH2-SAT is also denoted by SAT-UNSAT. The class BH is defined as the union
of all BHi, for i ≥ 1. It holds that NP∪ co-NP ⊆ BH2 ⊆ BH3 ⊆ · · · ⊆ BH ⊆ Θp

2 .

2.2. Parameterized Complexity

We introduce some core notions from parameterized complexity theory. For an in-depth treatment,
we refer to other sources [19–23]. A parameterized problem L is a subset of Σ∗ × N for some finite
alphabet Σ. For an instance (x, k) ∈ Σ∗ ×N, we call x the main part and k the parameter. The following
generalization of polynomial-time computability is commonly regarded as the main tractability notion
of parameterized complexity theory. A parameterized problem L is fixed-parameter tractable if there
exists a computable function f and a constant c such that there exists an algorithm that decides
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whether (x, k) ∈ L in time f (k) · |x|c, where |x| denotes the size of x. Such an algorithm is called
an fpt-algorithm, and this amount of time is called fpt-time. FPT is the class of all parameterized
problems that are fixed-parameter tractable. If the parameter is constant, then fpt-algorithms run in
polynomial time where the order of the polynomial is independent of the parameter. This provides
a good scalability in the parameter in contrast to running times of the form |x|k, which are also
polynomial for fixed k, but are already impractical for, say, k > 5.

Parameterized complexity also generalizes the notion of polynomial-time reductions. Let L ⊆
Σ∗ ×N and L′ ⊆ (Σ′)∗ ×N be two parameterized problems. A (many-one) fpt-reduction from L to L′ is
a mapping R : Σ∗ ×N→ (Σ′)∗ ×N from instances of L to instances of L′ for which there exist some
computable function g : N→ N such that for all (x, k) ∈ Σ∗ ×N: (i) (x, k) is a yes-instance of L if and
only if (x′, k′) = R(x, k) is a yes-instance of L′, (ii) k′ ≤ g(k), and (iii) R is computable in fpt-time. Let K
be a parameterized complexity class. A parameterized problem L is K-hard if for every L′ ∈ K there
is an fpt-reduction from L′ to L. A problem L is K-complete if it is both in K and K-hard. Reductions
that satisfy properties (i) and (ii) but that are computable in time O(|x| f (k)), for some fixed computable
function f , we call xp-reductions.

The parameterized complexity classes W[t], for t ≥ 1, W[SAT], and W[P] can be used to give
evidence that a given parameterized problem is not fixed-parameter tractable. These classes are based
on the satisfiability problems of Boolean circuits and formulas. We consider Boolean circuits with
a single output gate. We call input nodes variables. We distinguish between small gates, with fan-in ≤ 2,
and large gates, with fan-in > 2. The depth of a circuit is the length of a longest path from any variable
to the output gate. The weft of a circuit is the largest number of large gates on any path from a variable
to the output gate. We say that a circuit C is in negation normal form if all negation nodes in C have
variables as inputs. A Boolean formula can be considered as a Boolean circuit where all gates have
fan-out ≤ 1. We adopt the usual notions of truth assignments and satisfiability of a Boolean circuit.
We say that a truth assignment for a Boolean circuit has weight k if it sets exactly k of the variables of the
circuit to true. We denote the class of Boolean circuits with depth u and weft t by CIRCt,u. We denote
the class of all Boolean circuits by CIRC, and the class of all Boolean formulas by FORM. For any class C
of Boolean circuits, we define the following parameterized problem:

p-WSAT[C]
Instance: A Boolean circuit C ∈ C, and an integer k.
Parameter: k.
Question: Does there exist an assignment of weight k that satisfies C?

We denote closure under fpt-reductions by [ · ]fpt—that is, for any set L of parameterized
problems, [ L ]fpt is the set of all parameterized problems L′ that are fpt-reducible to some
problem L ∈ L. The classes W[t] are defined by letting W[t] = [ { p-WSAT[CIRCt,u] : u ≥ 1 } ]fpt

for all t ≥ 1. The classes W[SAT] and W[P] are defined by letting W[SAT] = [ p-WSAT[FORM] ]fpt and
W[P] = [ p-WSAT[CIRC] ]fpt.

Let K be a classical complexity class, e.g., NP. The parameterized complexity class para-K is
defined as the class of all parameterized problems L ⊆ Σ∗ × N, for some finite alphabet Σ, for
which there exist a computable function f : N → Σ∗, and a problem P ⊆ Σ∗ such that P ∈ K
and for all instances (x, k) ∈ Σ∗ × N of L we have that (x, k) ∈ L if and only if (x, f (k)) ∈ P.
(Here, we implicitly use a representation of pairs of strings in Σ∗ × Σ∗ as strings in Σ∗.) Intuitively,
the class para-K consists of all problems that are in K after a precomputation that only involves the
parameter. The class para-NP can also be defined via nondeterministic fpt-algorithms [24]. The class
para-K can be seen as a direct analogue of the class K in parameterized complexity. In particular,
for the case of K = P, we have FPT = para-P.

We consider the following (trivial) parameterization of SAT, the satisfiability problem for
propositional logic. We let SAT1 = { (ϕ, 1) : ϕ ∈ SAT }. In other words, SAT1 is the parameterized
variant of SAT where the parameter is the constant value 1. Similarly, we let UNSAT1 = { (ϕ, 1) : ϕ ∈
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UNSAT }. The problem SAT1 is para-NP-complete, and the problem UNSAT1 is para-co-NP-complete.
In other words, the class para-NP consists of all parameterized problems that can be fpt-reduced to
SAT1, and para-co-NP consists of all parameterized problems that can be fpt-reduced to UNSAT1.

Another analogue to the classical complexity class K is the parameterized complexity class XKnu,
that is defined as the class of those parameterized problems Q whose slices Qk are in K, i.e., for each
positive integer k the classical problem Qk = { x : (x, k) ∈ Q } is in K [20]. For instance, the class XPnu

consists of those parameterized problems whose slices are decidable in polynomial time. Note that
this definition is non-uniform, that is, for each positive integer k, there might be a completely different
polynomial-time algorithm that witnesses that Qk is polynomial-time solvable. There are also uniform
variants XK of these classes XKnu. We define XP to be the class of parameterized problems Q for
which there exists a computable function f and an algorithm A that decides whether (x, k) ∈ Q
in time |x| f (k) [20,22,24]. Similarly, we define XNP to be the class of parameterized problems that
are decidable in nondeterministic time |x| f (k). Its dual class we denote by Xco-NP. Alternatively,
we can view XNP as the class of parameterized problems for which there exists an xp-reduction to
SAT1 and Xco-NP as the class of parameterized problems for which there exists an xp-reduction to
UNSAT1. (For any L ∈ XNP, we know that L can be xp-reduced to SAT1 by following a suitable
variant of the proof of the Cook-Levin Theorem [25,26]. Conversely, any parameterized problem L
that can be xp-reduced to SAT1 we can solve in nondeterministic time |x| f (k) by first carrying out the
xp-reduction, and then solving the resulting instance of SAT1. The case for Xco-NP and UNSAT1 is
entirely analogous.)

2.3. Fpt-Reductions to SAT and Parameterized Complexity Classes at Higher Levels of the PH

Problems in NP and co-NP can be encoded into SAT in such a way that the time required to
produce the encoding and consequently also the size of the resulting SAT instance are polynomial in
the input (the encoding is a polynomial-time many-one reduction). Typically, the SAT encodings of
problems proposed for practical use are of this kind (see, e.g., [27]). For problems that are “beyond
NP”, say for problems on the second level of the PH, such polynomial SAT encodings do not exist,
unless the PH collapses. However, for such problems, there still could exist SAT encodings which can
be produced in fpt-time with respect to some parameter associated with the problem. In fact, such
fpt-time SAT encodings have been obtained for various problems on the second level of the PH [28–31].
The classes para-NP and para-co-NP contain exactly those parameterized problems that admit such
a many-one fpt-reduction to SAT1 and UNSAT1, respectively. Thus, with fpt-time encodings, one can
go significantly beyond what is possible by conventional polynomial-time SAT encodings.

Fpt-time encodings to SAT also have their limits. Clearly, para-Σp
2 -hard and para-Πp

2 -hard
parameterized problems do not admit fpt-time encodings to SAT, even when the parameter is a fixed
constant, unless the PH collapses. There are problems that apparently do not admit fpt-time encodings
to SAT, but seem not to be para-Σp

2 -hard nor para-Πp
2 -hard either. Recently, several complexity classes

have been introduced to classify such intermediate problems [7,8,30]. These parameterized complexity
classes are dubbed the k-∗ class and the ∗-k hierarchy, inspired by their definition, which is based on
the following weighted variants of the quantified Boolean satisfiability problem that is canonical for
the second level of the PH. The problem Σp

2 [k∗]-WSAT(C) provides the foundation for the k-∗ class.

Σp
2 [k∗]-WSAT

Instance: A quantified Boolean formula ∃X.∀Y.ψ, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X with weight k such that for all truth
assignments β to Y the assignment α ∪ β satisfies ψ?

Similarly, the problem Σp
2 [∗k]-WSAT(C) provides the foundation for the ∗-k hierarchy—where C is

a class of Boolean circuits. (The parameterized problems Σp
2 [∗k]-WSAT(C) seem not to be fpt-reducible

to each other for various classes C of Boolean circuits—similarly to the problems p-WSAT[C] that are
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used to define the classes W[t], W[SAT], and W[P]. This is in contrast to the case of Σp
2 [k∗]-WSAT,

where we can use a Tseitin transformation [32] to reduce arbitrary Boolean circuits to equisatisfiable
3CNF formulas.)

Σp
2 [∗k]-WSAT(C)

Instance: A Boolean circuit C ∈ C over two disjoint sets X and Y of variables, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X such that for all truth assignments β to Y with
weight k the assignment α ∪ β satisfies C?

The parameterized complexity class Σp
2 [k∗] (also called the k-∗ class) is then defined as follows:

Σp
2 [k∗] = [ Σp

2 [k∗]-WSAT ]fpt.

Similarly, the classes of the ∗-k hierarchy are defined as follows:

Σp
2 [∗k, t] = [ {Σp

2 [∗k]-WSAT(CIRCt,u) : u ≥ 1 } ]fpt,

Σp
2 [∗k, SAT] = [ Σp

2 [∗k]-WSAT(FORM) ]fpt, and

Σp
2 [∗k, P] = [ Σp

2 [∗k]-WSAT(CIRC) ]fpt.

Note that these definitions are entirely analogous to those of the parameterized complexity classes
of the W-hierarchy [20]. The following inclusion relations hold between the classes of the ∗-k hierarchy:

Σp
2 [∗k, 1] ⊆ Σp

2 [∗k, 2] ⊆ · · · ⊆ Σp
2 [∗k, SAT] ⊆ Σp

2 [∗k, P].

(See also Figure 1 for a visual overview of these inclusion relations.)
Dual to the classical complexity class Σp

2 is its co-class Πp
2 , whose canonical complete problem

is complementary to the problem QSAT2. Similarly, we can define dual classes for the k-∗ class and
for each of the parameterized complexity classes in the ∗-k hierarchy. These co-classes are based on
problems complementary to the problems Σp

2 [k∗]-WSAT and Σp
2 [∗k]-WSAT—i.e., these problems have

as yes-instances exactly the no-instances of Σp
2 [k∗]-WSAT and Σp

2 [∗k]-WSAT, respectively. Equivalently,
these complementary problems can be considered as variants of Σp

2 [k∗]-WSAT and Σp
2 [∗k]-WSAT where

the existential and universal quantifiers are swapped, and are therefore denoted with Πp
2 [k∗]-WSAT

and Πp
2 [∗k]-WSAT. We use a similar notation for the dual complexity classes, e.g., we denote

co-Σp
2 [∗k, t] by Πp

2 [∗k, t].
The class Σp

2 [k∗] includes the class para-co-NP as a subset, and is contained in the class Xco-NP
as a subset. Similarly, each of the classes Σp

2 [∗k, t] include the the class para-NP as a subset, and is
contained in the class XNP. Under some common complexity-theoretic assumptions, the class Σp

2 [k∗]
can be separated from para-NP on the one hand, and para-Σp

2 on the other hand. In particular,
assuming that NP �= co-NP, it holds that Σp

2 [k∗] �⊆ para-NP, that para-NP �⊆ Σp
2 [k∗] and that Σp

2 [k∗] �
para-Σp

2 [7,8]. Similarly, the classes Σp
2 [∗k, t] can be separated from para-co-NP and para-Σp

2 .
Assuming that NP �= co-NP, it holds that Σp

2 [∗k, 1] �⊆ para-co-NP, that para-co-NP �⊆ Σp
2 [∗k, P]

and thus in particular that para-co-NP �⊆ Σp
2 [∗k, 1], and that Σp

2 [∗k, P] � para-Σp
2 [7,8].

One can also enhance the power of polynomial-time SAT encodings by considering polynomial-
time algorithms that can query a SAT solver multiple times—that is, polynomial-time Turing reductions.
Such an approach has been shown to be quite effective in practice (see, e.g., [33–35]) and extends the
scope of SAT solvers to problems in the class Δp

2 , but not to problems that are Σp
2 -hard or Πp

2 -hard. In
addition, here, switching from polynomial-time to fpt-time provides a significant increase in power.
The class para-Δp

2 contains all parameterized problems that can be decided by an fpt-algorithm that
can query a SAT oracle multiple times—i.e., by an fpt-time Turing reduction to SAT. (One can prove
this by following the proof of Theorem 4 in [24] that FPT = para-P, with the modification that the
algorithms are given access to a SAT oracle.) In addition, one could restrict the number of queries that
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the algorithm is allowed to make. The class para-Θp
2 consists of all parameterized problems that can

be decided by an fpt-algorithm that can query a SAT oracle at most f (k) log n many times, where k
is the parameter value, n is the input size, and f is some computable function. (This statement one
can prove by following the proof of Theorem 4 in [24] that FPT = para-P, with the modification that
the algorithms can query a SAT oracle an amount of times that depends logarithmically on the input
size.) Restricting the number of queries even further, we define the parameterized complexity class
FPTNP[few] as the class of all parameterized problems that can be decided by an fpt-algorithm that
can query a SAT oracle at most f (k) times, where k is the parameter value and f is some computable
function [7,8].

We get the parameterized analogue para-PSPACE of the class PSPACE by using the definition
of para-K for K = PSPACE. Similarly, we can define the parameterized complexity class XPSPACE,
consisting of all parameterized problems Q for which there exists a computable function f and
an algorithm A that decides whether (x, k) ∈ Q in space |x| f (k). We also consider another
parameterized variant of PSPACE, which is based on parameterizing the number of quantifier
alternations in QSAT. An unbounded number of quantifier alternations in this problem results
in the class PSPACE, and bounding the number of quantifier alternations by a constant leads to
some fixed level of the PH. The parameterized complexity class PH[level] is based on bounding the
number of quantifier alternations by the problem parameter [7,36]. Formally, we consider the following
parameterized problem QSAT(level).

QSAT(level)
Instance: A quantified Boolean formula ϕ = ∃X1∀X2∃X3 . . . QkXkψ, where Qk is a universal
quantifier if k is even and an existential quantifier if k is odd, and where ψ is quantifier-free.
Parameter: k.
Question: Is ϕ true?

The parameterized complexity class PH[level] is defined to be the class of all parameterized
problems that can be fpt-reduced to QSAT(level). We have that para-Σp

2 ∪ para-Πp
2 ⊆ PH[level] ⊆

para-PSPACE.
An overview of the parameterized complexity classes relevant for this paper can be found in

Figure 1.
In the early literature on this topic [6,28,30,37–41], the class Σp

2 [k∗] appeared under the names ∃k∀
and ∃k∀∗. Similarly, the classes Σp

2 [∗k, t] appeared under the names ∃∀k-W[t] and ∃∗∀k-W[t]. In
addition, the class FPTNP[few] appeared under the name FPTNP[ f (k)].

36



Algorithms 2019, 12, 188

para-Σp
2 para-Πp
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Figure 1. An overview of parameterized complexity classes up to the second level of the Polynomial
Hierarchy, and higher. Dashed lines indicate a hierarchy of classes—e.g., between W[1] and W[P] lies
the hierarchy W[1] ⊆ W[2] ⊆ · · · ⊆ W[P].

2.4. Treewidth and Tree Decompositions

We conclude this section with explaining the notions of tree decompositions and treewidth
that we use in various places through the paper. For more details on these notions, we refer to
textbooks—e.g., [19–23,42].

A tree decomposition of a graph G = (V, E) is a pair (T , (Bt)t∈T) where T = (T, F) is a rooted
tree and (Bt)t∈T is a family of subsets of V such that:

• for every v ∈ V, the set B−1(v) = { t ∈ T : v ∈ Bt } is nonempty and connected in T ; and
• for every edge {v, w} ∈ E, there is a t ∈ T such that v, w ∈ Bt.

The width of the decomposition (T , (Bt)t∈T) is the number max{ |Bt| : t ∈ T } − 1. The treewidth
of G is the minimum of the widths of all tree decompositions of G. Let G be a graph and k a nonnegative
integer. There is an fpt-algorithm that computes a tree decomposition of G of width k if it exists,
and fails otherwise [43]. We call a tree decomposition (T , (Bt)t∈T) nice if every node t ∈ T is of one of
the following four types:
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• leaf node: t has no children and |Bt| = 1;
• introduce node: t has one child t′ and Bt = Bt′ ∪ {v} for some vertex v �∈ Bt′ ;
• forget node: t has one child t′ and Bt = Bt′ \{v} for some vertex v ∈ Bt′ ; or
• join node: t has two children t1, t2 and Bt = Bt1 = Bt2 .

Given any graph G and a tree decomposition of G of width k, a nice tree decomposition of G of
width k can be computed in polynomial time [42].

3. Propositional Logic Problems

We start with the quantified circuit satisfiability problems on which the k-∗ and ∗-k hierarchies
are based. We present two canonical forms of the problems in the k-∗ hierarchy. For problems in the
∗-k hierarchy, we let C range over classes of Boolean circuits.

Σp
2 [k∗]-WSAT(C)

Instance: A Boolean circuit C ∈ C over two disjoint sets X and Y of variables, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X of weight k, such that for all truth
assignments β to Y the assignment α ∪ β satisfies C?

Complexity: Σp
2 [k∗]-complete [7,8].

Σp
2 [k∗]-WSAT

Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X with weight k, such that ∀Y.ψ[α] evaluates to
true?

Complexity: Σp
2 [k∗]-complete [7,8].

Σp
2 [∗k]-WSAT(C)

Instance: A Boolean circuit C ∈ C over two disjoint sets X and Y of variables, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X, such that for all truth assignments β to Y of
weight k the assignment α ∪ β satisfies C?

Complexity:

Σp
2 [∗k, t]-complete when restricted to circuits of weft t, for any t ≥ 1 (by definition);

Σp
2 [∗k, SAT]-complete if C = FORM (by definition);

Σp
2 [∗k, P]-complete if C = CIRC (by definition).

3.1. Weighted Quantified Boolean Satisfiability for the k-∗ Classes

Consider the following variants of Σp
2 [k∗]-WSAT, most of which are Σp

2 [k∗]-complete.

Σp
2 [k∗]-WSAT(3DNF)

Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ with ψ ∈ 3DNF, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X with weight k, such that ∀Y.ψ[α] evaluates to
true?

Complexity: Σp
2 [k∗]-complete [7,8].
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Σp
2 [k∗]-WSAT≤k

Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ, and an integer k.
Parameter: k.
Question: Does there exist an assignment α to X with weight at most k, such that ∀Y.ψ[α] evaluates
to true?

Complexity: Σp
2 [k∗]-complete [7,8].

Σp
2 [k∗]-WSAT≥k

Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ, and an integer k.
Parameter: k.
Question: Does there exist an assignment α to X with weight at least k, such that ∀Y.ψ[α] evaluates
to true?

Complexity: para-Σp
2 -complete [7].

Σp
2 [k∗]-WSATn−k

Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ, and an integer k.
Parameter: k.
Question: Does there exist an assignment α to X with weight |X| − k, such that ∀Y.ψ[α] evaluates
to true?

Complexity: Σp
2 [k∗]-complete [7].

3.2. Weighted Quantified Boolean Satisfiability in the ∗-k Hierarchy

Let d ≥ 2 be an arbitrary constant. Then, the following problem is also Σp
2 [∗k, 1]-complete.

Σp
2 [∗k]-WSAT(d-DNF)

Instance: A quantified Boolean formula ϕ = ∃X.∀Y.ψ with ψ ∈ d-DNF, and an integer k
Parameter: k.
Question: Does there exist an assignment α to X, such that for all assignments β to Y of weight k
the assignment α ∪ β satisfies ψ?

Complexity: Σp
2 [∗k, 1]-complete for any d ≥ 2 [7,8].

The problem Σp
2 [∗k]-WSAT(2-DNF) is Σp

2 [∗k, 1]-hard, even when we restrict the input formula to be
anti-monotone in the universal variables, i.e., the universal variables occur only in negative literals [7,8].

Let C be a Boolean circuit with input nodes Z that is in negation normal form, and let Y ⊆ Z
be a subset of the input nodes. We say that C is monotone in Y if the only negation nodes that occur
in the circuit C act on input nodes in Z\Y, i.e., input nodes in Y can appear only positively in the
circuit. Similarly, we say that C is anti-monotone in Y if the only nodes that have nodes in Y as input are
negation nodes, i.e., all input nodes in Y appear only negatively in the circuit. The following problems
are Σp

2 [∗k, P]-complete.

Σp
2 [∗k]-WSAT(∀-monotone)

Instance: A Boolean circuit C ∈ CIRC over two disjoint sets X and Y of variables that is in negation
normal form and that is monotone in Y, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X, such that for all truth assignments β to Y of
weight k the assignment α ∪ β satisfies C?

Complexity: Σp
2 [∗k, P]-complete [7,8].
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Σp
2 [∗k]-WSAT(∀-anti-monotone)

Instance: A Boolean circuit C ∈ CIRC over two disjoint sets X and Y of variables that is in negation
normal form and that is anti-monotone in Y, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X, such that for all truth assignments β to Y of
weight k the assignment α ∪ β satisfies C?

Complexity: Σp
2 [∗k, P]-complete [7].

It remains open what the exact parameterized complexity is of ∃-monotone and ∃-anti-monotone
variants of Σp

2 [∗k]-WSAT—i.e., variants of Σp
2 [∗k]-WSAT that are based on circuits C ∈ CIRC over two

disjoint sets X and Y of variables that are in negation normal form and that are (anti-)monotone in X.
The proofs used to show Σp

2 [∗k, P]-completeness of the ∀-monotone and ∀-anti-monotone variants [7,8]
do not immediately carry over to this case.

3.3. Quantified Boolean Satisfiability with Bounded Treewidth

Let ψ = δ1 ∨ · · · ∨ δu be a DNF formula. For any subset Z ⊆ Var(ψ) of variables, we define
the incidence graph IG(Z, ψ) of ψ with respect to Z to be the graph IG(Z, ψ) = (V, E), where V =

Z ∪ {δ1, . . . , δu} and E = { {δj, z} : 1 ≤ j ≤ u and z ∈ Z and z occurs in the clause δj }. If ψ is a DNF
formula, Z ⊆ Var(ψ) is a subset of variables, and (T , (Bt)t∈T) is a tree decomposition of IG(Z, ψ),
we let Var(t) denote Bt ∩ Z, for any t ∈ T.

The following parameterized decision problems are variants of QSAT2, where the treewidth of
the incidence graph graph for certain subsets of variables is bounded.

QSAT2(itw)

Instance: A quantified Boolean formula ϕ = ∃X.∀Y.ψ, with ψ in DNF.
Parameter: The treewidth of the incidence graph IG(X ∪Y, ψ) of ψ with respect to X ∪Y.
Question: Is ϕ satisfiable?

Complexity: fixed-parameter tractable [4,5].

QSAT2(∃-itw)

Instance: A quantified Boolean formula ϕ = ∃X.∀Y.ψ, with ψ in DNF.
Parameter: The treewidth of the incidence graph IG(X, ψ) of ψ with respect to X.
Question: Is ϕ satisfiable?

Complexity: para-Σp
2 -complete [6,7].

QSAT2(∀-itw)

Instance: A quantified Boolean formula ϕ = ∃X.∀Y.ψ, with ψ in DNF.
Parameter: The treewidth of the incidence graph IG(Y, ψ) of ψ with respect to Y.
Question: Is ϕ satisfiable?

Complexity: para-NP-complete [6,7].

The above problems are parameterized by the treewidth of the incidence graph of the formula ψ

(with respect to different subsets of variables). Since computing the treewidth of a given graph is
NP-hard, it is unlikely that the parameter value can be computed in polynomial time for these problems.
Alternatively, one could consider a variant of the problem where a tree decomposition of width k is
given as part of the input.
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3.4. Other Quantified Boolean Satisfiability

The following parameterized quantified Boolean satisfiability problem is para-NP-complete.

QSAT(#∀-vars)
Instance: A quantified Boolean formula ϕ.
Parameter: The number of universally quantified variables of ϕ.
Question: Is ϕ true?

Complexity: para-NP-complete [6,44,45].

3.5. Minimization for DNF Formulas

Let ϕ be a propositional formula in DNF. We say that a set C of literals is an implicant of ϕ if all
assignments that satisfy

∧
l∈C l also satisfy ϕ. Moreover, we say that a DNF formula ϕ′ is a term-wise

subformula of ϕ′ if for all terms t′ ∈ ϕ′ there exists a term t ∈ ϕ such that t′ ⊆ t. The following
parameterized problems are natural parameterizations of problems shown to be Σp

2 -complete by
Umans [46].

SHORTEST-IMPLICANT-CORE(core size)
Instance: A DNF formula ϕ, an implicant C of ϕ, and an integer k.
Parameter: k.
Question: Does there exist an implicant C′ ⊆ C of ϕ of size k?

Complexity: Σp
2 [k∗]-complete [6,7].

SHORTEST-IMPLICANT-CORE(reduction size)
Instance: A DNF formula ϕ, an implicant C of ϕ of size n, and an integer k.
Parameter: k.
Question: Does there exist an implicant C′ ⊆ C of ϕ of size n− k?

Complexity: Σp
2 [k∗]-complete [6,7].

DNF-MINIMIZATION(reduction size)
Instance: A DNF formula ϕ of size n, and an integer k.
Parameter: k.
Question: Does there exist a term-wise subformula ϕ′ of ϕ of size n− k such that ϕ ≡ ϕ′?

Complexity: Σp
2 [k∗]-complete [6,7].

DNF-MINIMIZATION(core size)
Instance: A DNF formula ϕ of size n, and an integer k.
Parameter: k.
Question: Does there exist an DNF formula ϕ′ of size k, such that ϕ ≡ ϕ′?

Complexity: para-co-NP-hard, in FPTNP[few], and in Σp
2 [k∗] [6,7].

3.6. Sequences of Propositional Formulas

The following problem is related to a Boolean combination of satisfiability checks on a sequence
of propositional formulas. This is a parameterized version of the problem BHi-SAT, which is canonical
for the different levels of the Boolean Hierarchy (see Section 1). The problem is complete for the class
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FPTNP[few].

BH-SAT(level)
Instance: A positive integer k and a sequence (ϕ1, . . . , ϕk) of propositional formulas.
Parameter: k.
Question: Is it the case that (ϕ1, . . . , ϕk) ∈ BHk-SAT?

Complexity: FPTNP[few]-complete [7,28,37].

The above problem is used to show the following lower bound result for FPTNP[few]-complete
problems. No FPTNP[few]-hard problem can be decided by an fpt-algorithm that uses only O(1) many
queries to an NP oracle, unless the Polynomial Hierarchy collapses to the third level [18,37].

The next FPTNP[few]-complete problem is based on the problem SAT-UNSAT = { (ϕ1, ϕ2) : ϕ1 ∈
SAT, ϕ2 ∈ UNSAT }.

BOUNDED-SAT-UNSAT-DISJUNCTION

Instance: A family (ϕi, ϕ′i)i∈[k] of pairs of propositional formulas.
Parameter: k.
Question: Is there some � ∈ [k] such that (ϕ�, ϕ′�) ∈ SAT-UNSAT?

Complexity: FPTNP[few]-complete [7,28,37].

3.7. Maximal Models

The following FPTNP[few]-complete problems are based on various notions of (local) maximality
for models of propositional formulas. Let ϕ be a (satisfiable) propositional formula, and let X ⊆ Var(ϕ)

be a subset of variables. Then, a truth assignment α : Var(ϕ) → {0, 1} is an X-maximal model of ϕ if
(i) α satisfies ϕ and (ii) there is no truth assignment β : Var(ϕ)→ {0, 1} that satisfies ϕ and that sets
more variables among X to true than α. Moreover, take an arbitrary ordering over the variables X ⊆
Var(ϕ)—for the sake of presentation, let X = {x1, . . . , xk} and let the ordering < specify x1 < · · · < xk.
We say that a truth assignment α : Var(ϕ)→ {0, 1} is the lexicographically X-maximal model of ϕ (with
respect to the given ordering) if (i) α satisfies ϕ and (ii) each truth assignment β : Var(ϕ)→ {0, 1} that
satisfies ϕ (with α �= β) has the property that there is some 1 ≤ � ≤ k such that α(x�) = 1 and β(x�) = 0
and for all 1 ≤ �′ < � it holds that α(x�′) = β(x�′).

LOCAL-MAX-MODEL

Instance: A satisfiable propositional formula ϕ, a subset X ⊆ Var(ϕ) of variables, and a variable
w ∈ X.
Parameter: |X|.
Question: Is there a X-maximal model of ϕ that sets w to true?

Complexity: FPTNP[few]-complete [7,47].

LOCAL-LEX-MAX-MODEL

Instance: A satisfiable propositional formula ϕ, a subset X ⊆ Var(ϕ) of variables, and a variable
w ∈ X.
Parameter: |X|.
Question: Is there a lexicographically X-maximal model of ϕ that sets w to true?

Complexity: FPTNP[few]-complete [7].
(The problem LOCAL-LEX-MAX-MODEL isn’t considered explicitly in the literature.
FPTNP[few]-completeness for this problem follows immediately from proofs in the
literature—i.e., Propositions 73 and 74 in [7]).
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ODD-LOCAL-MAX-MODEL

Instance: A propositional formula ϕ, and a subset X ⊆ Var(ϕ) of variables.
Parameter: |X|.
Question: Do the X-maximal models of ϕ set an odd number of variables in X to true?

Complexity: FPTNP[few]-complete [7].

ODD-LOCAL-LEX-MAX-MODEL

Instance: A propositional formula ϕ, a subset X ⊆ Var(ϕ) of variables, and an ordering < over the
variables in X.
Parameter: |X|.
Question: Does the lexicographically X-maximal model of ϕ (w.r.t. <) set an odd number of
variables in X to true?

Complexity: FPTNP[few]-complete [7].

4. Knowledge Representation and Reasoning Problems

4.1. Disjunctive Answer Set Programming

The following problems from the setting of disjunctive answer set programming (ASP) are
based on the notions of disjunctive logic programs and answer sets for such programs (cf. [48,49]).
A disjunctive logic program P is a finite set of rules of the form r = (a1 ∨ · · · ∨ ak ← b1, . . . , bm,
not c1, . . . , not cn), for k, m, n ≥ 0, where all ai, bj and cl are atoms. For each such rule, a1 ∨ · · · ∨ ak
is called the head of the rule, and b1, . . . , bm, not c1, . . . , not cn is called the body of the rule. A rule is
called disjunctive if k > 1, and it is called normal if k ≤ 1 (note that we only call rules with strictly
more than one disjunct in the head disjunctive). A rule is called dual-normal if m ≤ 1. A program
is called normal if all its rules are normal, it is called negation-free if all its rules are negation-free,
and it is called dual-normal if all its rules are dual-normal. We let At(P) denote the set of all atoms
occurring in P. By literals, we mean atoms a or their negations not a. The (Gelfond–Lifschitz) reduct
of a program P with respect to a set M of atoms, denoted PM, is the program obtained from P by:
(i) removing rules with not a in the body, for each a ∈ M, and (ii) removing literals not a from all other
rules [50]. An answer set A of a program P is a subset-minimal model of the reduct PA. One important
decision problem is to decide, given a disjunctive logic program P, whether P has an answer set.

We consider various parameterizations of this problem. Two of these are related to atoms that
must be part of any answer set of a program P. We identify a subset Comp(P) of compulsory atoms,
that any answer set must include. Given a program P, we let Comp(P) be the smallest set such
that: (i) if (w ← not w) is a rule of P, then w ∈ Comp(P); and (ii) if (b ← a1, . . . , an) is a rule of P,
and a1, . . . , an ∈ Comp(P), then b ∈ Comp(P). We then let the set Cont(P) of contingent atoms be those
atoms that occur in P but are not in Comp(P). We call a rule contingent if all the atoms that appear
in the head are contingent. Another of the parameterizations that we consider is based on the notion
of backdoors to normality for disjunctive logic programs. A set B of atoms is a normality-backdoor for
a program P if deleting the atoms b ∈ B from the rules of P results in a normal program. Deciding if
a program P has a normality-backdoor of size at most k can be decided in fixed-parameter tractable
time [29].

ASP-CONSISTENCY(#cont.atoms)
Instance: A disjunctive logic program P.
Parameter: The number of contingent atoms of P.
Question: Does P have an answer set?

Complexity: para-co-NP-complete [7,30].
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ASP-CONSISTENCY(#cont.rules)
Instance: A disjunctive logic program P.
Parameter: The number of contingent rules of P.
Question: Does P have an answer set?

Complexity: Σp
2 [k∗]-complete [7,30].

ASP-CONSISTENCY(#disj.rules)
Instance: A disjunctive logic program P.
Parameter: The number of disjunctive rules of P.
Question: Does P have an answer set?

Complexity: Σp
2 [∗k, P]-complete [7,30].

ASP-CONSISTENCY(#dual-normal.rules)
Instance: A disjunctive logic program P.
Parameter: The number of rules of P that are dual-normal.
Question: Does P have an answer set?

Complexity: Σp
2 [∗k, P]-complete [7].

ASP-CONSISTENCY(str.norm.bd-size)
Instance: A disjunctive logic program P.
Parameter: The size of the smallest normality-backdoor for P.
Question: Does P have an answer set?

Complexity: para-NP-complete [29].

ASP-CONSISTENCY(max.atom.occ.)
Instance: A disjunctive logic program P.
Parameter: The maximum number of times that any atom occurs in P.
Question: Does P have an answer set?

Complexity: para-Σp
2 -complete [7,30].

4.2. Robust Constraint Satisfaction

The following problem is based on the class of robust constraint satisfaction problems introduced
by Gottlob [51] and Abramsky, Gottlob and Kolaitis [52]. These problems are concerned with the
question of whether every partial assignment of a particular size can be extended to a full solution,
in the setting of constraint satisfaction problems.

A CSP instance N is a triple (X, D, C), where X is a finite set of variables, the domain D is a finite set
of values, and C is a finite set of constraints. Each constraint c ∈ C is a pair (S, R), where S = Var(c),
the constraint scope, is a finite sequence of distinct variables from X, and R, the constraint relation, is
a relation over D whose arity matches the length of S, i.e., R ⊆ Dr, where r is the length of S.

Let N = (X, D, C) be a CSP instance. A partial instantiation of N is a mapping α : X′ → D defined
on some subset X′ ⊆ X. We say that α satisfies a constraint c = ((x1, . . . , xr), R) ∈ C if Var(c) ⊆ X′

and (α(x1), . . . , α(xr)) ∈ R. If α satisfies all constraints of N then it is a solution of N. We say that α

violates a constraint c = ((x1, . . . , xr), R) ∈ C if there is no extension β of α defined on X′ ∪Var(c) such
that (β(x1), . . . , β(xr)) ∈ R.

Let k be a positive integer. We say that a CSP instance N = (X, D, C) is k-robustly satisfiable if for
each instantiation α : X′ → D defined on some subset X′ ⊆ X of k many variables (i.e., |X′| = k)
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that does not violate any constraint in C, it holds that α can be extended to a solution for the CSP
instance (X, D, C).

ROBUST-CSP-SAT

Instance: A CSP instance (X, D, C), and an integer k.
Parameter: k.
Question: Is (X, D, C) k-robustly satisfiable?

Complexity: Πp
2 [k∗]-complete [7,30].

4.3. Abductive Reasoning

The setting of (propositional) abductive reasoning can be formalized as follows. An abduction
instance P consists of a tuple (V, H, M, T), where V is the set of variables, H ⊆ V is the set of
hypotheses, M ⊆ V is the set of manifestations, and T is the theory, a formula in CNF over V. It is
required that M ∩ H = ∅. A set S ⊆ H is a solution (or explanation) of P if (i) T ∪ S is consistent
and (ii) T ∪ S |= M. One central problem is to decide, given an abduction instance P and an integer m,
whether there exists a solution S of P of size at most m. This problem is Σp

2 -complete in general [53].

ABDUCTION(Krom-bd-size):
Input: an abduction instance P = (V, H, M, T), and a positive integer m.
Parameter: The size of the smallest strong 2CNF-backdoor for T.
Question: Does there exist a solution S of P of size at most m?

Complexity: para-NP-complete [31].

ABDUCTION(#non-Krom-clauses):
Input: an abduction instance P = (V, H, M, T), and a positive integer m.
Parameter: The number of clauses in T that contains more than 2 literals.
Question: Does there exist a solution S of P of size at most m?

Complexity: Σp
2 [∗k, 1]-complete [7].

ABDUCTION(Horn-bd-size):
Input: an abduction instance P = (V, H, M, T), and a positive integer m.
Parameter: The size of the smallest strong Horn-backdoor for T.
Question: Does there exist a solution S of P of size at most m?

Complexity: para-NP-complete [31].

ABDUCTION(#non-Horn-clauses):
Input: an abduction instance P = (V, H, M, T), and a positive integer m.
Parameter: The number of clauses in T that are not Horn.
Question: Does there exist a solution S of P of size at most m?

Complexity: Σp
2 [∗k, P]-complete [7].

5. Graph Problems

5.1. Clique Extensions

Let G = (V, E) be a graph. A clique C ⊆ V of G is a subset of vertices that induces a complete
subgraph of G, i.e., {v, v′} ∈ E for all v, v′ ∈ C such that v �= v′. The W[1]-complete problem of
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determining whether a graph has a clique of size k is an important problem in the W-hierarchy,
and is used in many W[1]-hardness proofs. We consider a related problem that is complete for Πp

2 [∗k, 1].

SMALL-CLIQUE-EXTENSION

Instance: A graph G = (V, E), a subset V′ ⊆ V, and an integer k.
Parameter: k.
Question: Is it the case that for each clique C ⊆ V′, there is some k-clique D of G such that C ∪ D is
a (|C|+ k)-clique?

Complexity: Πp
2 [∗k, 1]-complete [7].

5.2. Graph Coloring Extensions

The following problem related to extending colorings to the leaves of a graph to a coloring on the
entire graph, is Πp

2 -complete in the most general setting [54].
Let G = (V, E) be a graph. We will denote those vertices v that have degree 1 by leaves. We call

a (partial) function c : V → {1, 2, 3} a 3-coloring (of G). Moreover, we say that a 3-coloring c is proper if c
assigns a color to every vertex v ∈ V, and if for each edge e = {v1, v2} ∈ E it holds that c(v1) �= c(v2).
The problem of deciding, given a graph G = (V, E) with n many leaves and an integer m, whether any
3-coloring that assigns a color to exactly m leaves of G (and to no other vertices) can be extended to
a proper 3-coloring of G, is Πp

2 -complete [54]. We consider several parameterizations.

3-COLORING-EXTENSION(degree)
Instance: a graph G = (V, E) with n many leaves, and an integer m.
Parameter: the degree of G.
Question: can any 3-coloring that assigns a color to exactly m leaves of G (and to no other vertices)
be extended to a proper 3-coloring of G?

Complexity: para-Πp
2 -complete [7,41].

3-COLORING-EXTENSION(#leaves)
Instance: a graph G = (V, E) with n many leaves, and an integer m.
Parameter: n.
Question: can any 3-coloring that assigns a color to exactly m leaves of G (and to no other vertices)
be extended to a proper 3-coloring of G?

Complexity: para-NP-complete [7,41].

3-COLORING-EXTENSION(#col.leaves)
Instance: a graph G = (V, E) with n many leaves, and an integer m.
Parameter: m.
Question: can any 3-coloring that assigns a color to exactly m leaves of G (and to no other vertices)
be extended to a proper 3-coloring of G?

Complexity: Πp
2 [k∗]-complete [7,41].
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3-COLORING-EXTENSION(#uncol.leaves)
Instance: a graph G = (V, E) with n many leaves, and an integer m.
Parameter: n−m.
Question: can any 3-coloring that assigns a color to exactly m leaves of G (and to no other vertices)
be extended to a proper 3-coloring of G?

Complexity: para-Πp
2 -complete [7,41].

6. Other Problems

6.1. First-Order Logic Model Checking

First-order logic model checking is at the basis of a well-known hardness theory in parameterized
complexity theory [22]. The following problem, also based on first-order logic model checking, offers
another characterization of the parameterized complexity class Σp

2 [k∗]. We introduce a few notions that
we need for defining the model checking perspective on Σp

2 [k∗]. A (relational) vocabulary τ is a finite set
of relation symbols. Each relation symbol R has an arity arity(R) ≥ 1. A structure A of vocabulary τ,
or τ-structure (or simply structure), consists of a set A called the domain and an interpretation RA ⊆
Aarity(R) for each relation symbol R ∈ τ. We use the usual definition of truth of a first-order logic
sentence ϕ over the vocubulary τ in a τ-structure A. We let A |= ϕ denote that the sentence ϕ is true
in structure A.

Σp
2 [k∗]-MC

Instance: A first-order logic sentence ϕ = ∃x1, . . . , xk.∀y1, . . . , yn.ψ over a vocabulary τ, where ψ is
quantifier-free, and a finite τ-structure A.
Parameter: k.
Question: Is it the case that A |= ϕ?

Complexity: Σp
2 [k∗]-complete [41].

6.2. Quantified Fagin Definability

The W-hierarchy can also be defined by means of Fagin-definable parameterized problems [22], which
are based on Fagin’s characterization of NP. We provide an additional characterization of the class Πp

2 [k∗]
by means of some parameterized problems that are quantified analogues of Fagin-defined problems.

Let τ be an arbitrary vocabulary, and let τ′ ⊆ τ be a subvocabulary of τ. We say that
a τ-structure A extends a τ′-structure B if (i) A and B have the same domain, and (ii) A and B
coincide on the interpretation of all relational symbols in τ′, i.e., RA = RB for all R ∈ τ′. We say that A
extends B with weight k if ∑R∈τ\τ′ |RA| = k. Let ϕ be a first-order formula over τ with a free relation
variable X of arity s.

We let Π2 denote the class of all first-order logic formulas of the form ∀y1, . . . , yn.∃x1, . . . , xm.ψ,
where ψ is quantifier-free. Let ϕ(X) be a first-order logic formula over τ, with a free relation variable X
with arity s. Consider the following parameterized problem.

Πp
2 [k∗]-FD(τ,τ′)

ϕ

Instance: A τ′-structure B, and an integer k.
Parameter: k.
Question: Is it the case that for each τ-structure A extending B with weight k, there exists some
relation S ⊆ As such that A |= ϕ(S)?

Complexity: in Πp
2 [k∗] for each ϕ(X), τ′ and τ; Πp

2 [k∗]-hard for some ϕ(X) ∈ Π2, τ′ and τ [7].
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Note that this means the following. We let T denote the set of all relational vocabularies, and for
any τ ∈ T we let FOX

τ denote the set of all first-order logic formulas over the vocabulary τ with a free
relation variable X. We then get the following characterization of Πp

2 [k∗] [7]:

Πp
2 [k∗] = [ {Πp

2 [k∗]-FD(τ′ ,τ)
ϕ : τ ∈ T, τ′ ⊆ τ, ϕ ∈ FOX

τ } ]fpt.

Additionally, the following parameterized problem is hard for Πp
2 [∗k, 1].

Πp
2 [∗k]-FD(τ,τ′)

ϕ

Instance: A τ′-structure B, and an integer k.
Parameter: k.
Question: Is it the case that for each τ-structure A extending B, there exists some relation S ⊆ As

with |S| = k such that A |= ϕ(S)?

Complexity: Πp
2 [∗k, 1]-hard for some ϕ(X) ∈ Π2 [7].

6.3. Symbolic Model Checking for Temporal Logics

The following problems are concerned with the task of verifying whether a temporal logic
formula is true in a Kripke structure. This task is of importance in the area of software and hardware
verification (see, e.g., [55,56]). We consider three different temporal logics: linear-time temporal logic
(LTL), computation tree logic (CTL), and CTL�, which is a superset of both LTL and CTL.

Truth of formulas ϕ in these logics is defined over Kripke structuresM—we writeM |= ϕ if ϕ

is true in M. We consider Kripke structures that are represented symbolically using propositional
formulas. Moreover, for each of the logics L ∈ {LTL, CTL, CTL�}, we consider various restricted
fragments L\X, L\U and L\U,X, where certain operators are disallowed. For a full description of the
syntax and semantics of these logics, how Kripke structures can be represented symbolically and the
restricted fragments that we consider, we refer to Appendix A.

In general, the problem of deciding whether a given temporal logic formula ϕ is true in a given
symbolically represented Kripke structureM is PSPACE-hard, even when restricted to formulas ϕ of
constant size [7,36]. We consider a variant of this problem where the Kripke structures have limited
recurrence diameter. The recurrence diameter rd(M) of a Kripke structureM is the length of the longest
simple (non-repeating) path inM.

SYMBOLIC-MC�[L]
Input: A symbolically represented Kripke structureM, rd(M) in unary, and an L formula ϕ.
Parameter: |ϕ|.
Question: M |= ϕ?

Complexity:

• para-co-NP-complete if L = LTL\U,X [7,36],

• PH[level]-complete if L ∈ {CTL, CTL\X, CTL\U, CTL\U,X, CTL�\U,X} [7,36], and

• para-PSPACE-complete if L ∈ {CTL�, CTL�\X, CTL�\U} [7,36].

6.4. Judgment Aggregation

The following problems are related to judgment aggregation, in the domain of computational
social choice. Judgment aggregation studies procedures that combine individuals’ opinions into
a collective group opinion.

An agenda is a finite nonempty set Φ = {ϕ1, . . . , ϕn,¬ϕ1, . . . ,¬ϕn} of formulas that is closed
under complementation. A judgment set J for an agenda Φ is a subset J ⊆ Φ. We call a judgment set J
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complete if ϕi ∈ J or ¬ϕi ∈ J for all formulas ϕi, and we call it consistent if there exists an assignment
that makes all formulas in J true. Let J (Φ) denote the set of all complete and consistent subsets of Φ.
We call a sequence J ∈ J (Φ)n of complete and consistent subsets a profile. A (resolute) judgment
aggregation procedure for the agenda Φ and n individuals is a function F : J (Φ)n → P(Φ\∅)\∅ that
returns for each profile J a non-empty set F(J) of non-empty judgment sets. An example is the majority
rule Fmaj, where Fmaj(J) = {J∗} and where ϕ ∈ J∗ if and only if ϕ occurs in the majority of judgment
sets in J, for each ϕ ∈ Φ. We call F complete and consistent, if each J∗ ∈ F(J) is complete and consistent,
respectively, for every J ∈ J (Φ)n. For instance, the majority rule Fmaj is complete, whenever the
number n of individuals is odd. An agenda Φ is safe with respect to an aggregation procedure F, if F
is consistent when applied to profiles of judgment sets over Φ. We say that an agenda Φ satisfies
the median property (MP) if every inconsistent subset of Φ has itself an inconsistent subset of size at
most 2. Safety for the majority rule can be characterized in terms of the median property as follows: an
agenda Φ is safe for the majority rule if and only if Φ satisfies the MP [57,58]. The problem of deciding
whether an agenda satisfies the MP is Πp

2 -complete [57].

MAJ-AGENDA-SAFETY(formula size)
Instance: an agenda Φ.
Parameter: � = max{ |ϕ| : ϕ ∈ Φ }.
Question: Is Φ safe for the majority rule?

Complexity: para-Πp
2 -complete [7,37].

MAJ-AGENDA-SAFETY(degree)
Instance: an agenda Φ containing only CNF formulas.
Parameter: The degree d of Φ.
Question: Is Φ safe for the majority rule?

Complexity: para-Πp
2 -complete [7,37].

MAJ-AGENDA-SAFETY(degree + formula size)
Instance: an agenda Φ containing only CNF formulas, where � = max{ |ϕ| : ϕ ∈ B(Φ) }, and
where d is the degree of Φ.
Parameter: �+ d.
Question: Is Φ safe for the majority rule?

Complexity: para-Πp
2 -complete [7,37].

The above three parameterized problems remain para-Πp
2 -hard even when restricted to agendas

based on formulas that are Horn formulas containing only clauses of size at most 2 [7,37].

MAJ-AGENDA-SAFETY(agenda size)
Instance: an agenda Φ.
Parameter: |Φ|.
Question: Is Φ safe for the majority rule?

Complexity: FPTNP[few]-complete [7,37].

Moreover, the following upper and lower bounds on the number of oracle queries are known
for the above problem. MAJ-AGENDA-SAFETY(agenda size) can be decided in fpt-time using 2O(k)

queries to an NP oracle, where k = |Φ| [7,37]. In addition, there is no fpt-algorithm that decides
MAJ-AGENDA-SAFETY(agenda size) using o(log k) queries to an NP oracle, unless the Polynomial
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Hierarchy collapses [7,37].

MAJ-AGENDA-SAFETY(counterexample size)
Instance: an agenda Φ, and an integer k.
Parameter: k.
Question: Does every inconsistent subset Φ′ of Φ of size k have itself an inconsistent subset of size
at most 2?

Complexity: Πp
2 [k∗]-hard [7,37].

Let Φ = {ϕ1, . . . , ϕm,¬ϕ1, . . . ,¬ϕm} be an agenda, where each ϕi is a CNF formula. We define
the following graphs that are intended to capture the interaction between formulas in Φ. The formula
primal graph of Φ has as vertices the variables Var(Φ) occurring in the agenda, and two variables are
connected by an edge if there exists a formula ϕi in which they both occur. The formula incidence graph
of Φ is a bipartite graph whose vertices consist of (1) the variables Var(Φ) occurring in the agenda
and (2) the formulas ϕi ∈ Φ. A variable x ∈ Var(Φ) is connected by an edge with a formula ϕi ∈ Φ
if x occurs in ϕi, i.e., x ∈ Var(ϕi). The clausal primal graph of Φ has as vertices the variables Var(Φ)

occurring in the agenda, and two variables are connected by an edge if there exists a formula ϕi
and a clause c ∈ ϕi in which they both occur. The clausal incidence graph of Φ is a bipartite graph
whose vertices consist of (1) the variables Var(Φ) occurring in the agenda and (2) the clauses c
occurring in formulas ϕi ∈ Φ. A variable x ∈ Var(Φ) is connected by an edge with a clause c of the
formula ϕi ∈ Φ if x occurs in c, i.e., x ∈ Var(c). Consider the following parameterizations of the
problem MAJ-AGENDA-SAFETY.

MAJ-AGENDA-SAFETY(f-tw)

Instance: an agenda Φ containing only CNF formulas.
Parameter: The treewidth of the formula primal graph of Φ.
Question: Is Φ safe for the majority rule?

Complexity: fixed-parameter tractable [7,37].

MAJ-AGENDA-SAFETY(f-tw∗)
Instance: an agenda Φ containing only CNF formulas.
Parameter: The treewidth of the formula incidence graph of Φ.
Question: Is Φ safe for the majority rule?

Complexity: para-Πp
2 -complete [7,37].

MAJ-AGENDA-SAFETY(c-tw)

Instance: an agenda Φ containing only CNF formulas.
Parameter: The treewidth of the clausal primal graph of Φ.
Question: Is Φ safe for the majority rule?

Complexity: para-co-NP-complete [7,37].

MAJ-AGENDA-SAFETY(c-tw∗)
Instance: an agenda Φ containing only CNF formulas.
Parameter: The treewidth of the clausal incidence graph of Φ.
Question: Is Φ safe for the majority rule?

Complexity: para-co-NP-complete [7,37].
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6.5. Planning

The following parameterized problems are related to planning in the face of uncertainty. We begin
by describing the framework of SAS+ planning (see, e.g., [59]). Let V = {v1, . . . , vn} be a finite set
of variables over a finite domain D. Furthermore, let D+ = D ∪ {u}, where u is a special undefined
value not present in D. Then Dn is the set of total states and (D+)n is the set of partial states over V
and D. Intuitively, a state (d1, . . . , dn) ∈ Dn corresponds to an assignment that assigns to each
variable vi ∈ V the value di ∈ D, and a partial state corresponds to a partial assignment that assigns
a value to some variables vi ∈ V. Clearly, Dn ⊆ (D+)n—that is, each total state is also a partial
state. Let (d1, . . . , dn) = s ∈ (D+)n be a state. Then, the value of a variable vi in state s is denoted
by s[vi] = di.

An SAS+ instance is a tuple P = (V, D, A, I, G), where V is a set of variables, D is a domain, A is
a set of actions, I ∈ Dn is the initial state and G ∈ (D+)n is the (partial) goal state. Each action a ∈ A has
a precondition pre(a) ∈ (D+)n and an effect eff(a) ∈ (D+)n.

We will frequently use the convention that a variable has the value u in a precondition/effect
unless a value is explicitly specified. Furthermore, by a slight abuse of notation, we denote actions
and partial states such as preconditions, effects, and goals as follows. Let a ∈ A be an action,
and let {p1, . . . , pm} ⊆ V be the set of variables that are not assigned by pre(a) to the value u—that
is, { v ∈ V : pre(a)[v] �= u } = {p1, . . . , pm}. Moreover, suppose that pre(a)[p1] = d1, . . . , pre(a)[pm] =

dm. Then, we denote the precondition pre(a) by pre(a) = {p1 �→ d1, . . . , pm �→ dm}. In particular,
if pre(a) is the partial state such that pre(a)[v] = u for each v ∈ V, we denote pre(a) by ∅. We use a
similar notation for effects. Let a be the action with pre(a) = {p1 �→ d1, . . . , pm �→ dm} and eff(a) =
{e1 �→ d′1, . . . , e� �→ d′�}. We then use the notation a : {p1 �→ d1, . . . , pm �→ dm} → {e1 �→ d′1, . . . , em′ �→
d′m′ } to describe the action a.

Let a ∈ A be an action and s ∈ Dn be a state. Then, a is valid in s if for all v ∈ V, either pre(a)[v] =
s[v] or pre(a)[v] = u. The result of a in s is the state t ∈ Dn defined as follows. For all v ∈ V, t[v] =
eff(a)[v] if eff(a)[v] �= u and t[v] = s[v] otherwise. Let s0, s� ∈ Dn and let ω = (a1, . . . , a�) be a sequence
of actions (of length �). We say that ω is a plan from s0 to s� if either (i) ω is the empty sequence (and � = 0,
and thus s0 = s�), or (ii) there are states s1, . . . , s�−1 ∈ Dn such that for each i ∈ [�], ai is valid in si−1
and si is the result of ai in si−1. A state s ∈ Dn is a goal state if for all v ∈ V, either G[v] = s[v]
or G[v] = u. An action sequence ω is a plan for P if ω is a plan from I to a goal state.

We also allow actions to have conditional effects (see, e.g., [60]). A conditional effect is of the
form s � t, where s, t ∈ (D+)n are partial states. Intuitively, such a conditional effect ensures that
the variable assignment t is only applied if the condition s is satisfied. When allowing conditional
effects, the effect of an action is not a partial state eff(a) ∈ (D+)n, but a set eff(a) = {s1 � t1, . . . , s� � t�}
of conditional effects. (For the sake of simplicity, we assume that the partial states t1, . . . , t� are
non-conflicting—that is, there exist no v ∈ V and no i1, i2 ∈ [�] with i1 < i2 such that u �= ti1 [v] �=
ti2 [v] �= u.) The result of an action a with eff(a) = {s1 � t1, . . . , s� � t�} in a state s (in which a is valid)
is the state t ∈ Dn that is defined as follows. For all v ∈ V, t[v] = ti[v] if there exists some i ∈ [�] such
that si is satisfied in s and ti[v] �= u, and t[v] = s[v] otherwise.

For the parameterized planning problems that we consider, in addition to the variables V,
we consider a set Vu of n′ variables—constituting an uncertain planning instance P = (V, Vu, D, A, I, G).
Intuitively, the value of the variables in Vu in the initial state is unknown. The question is whether there
exists an action sequence ω such that, for each state I0 ∈ Dn+n′ that extends I—that is, I0[v] = I[v] for
each v ∈ V—it holds that ω is a plan for the SAS+ instance (V ∪Vu, D, A, I0, G). If there exists such
an action sequence ω, we say that ω is a plan that works for each complete initial state I0 that extends I.
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BOUNDED-UNCERTAIN-PLANNING

Instance: an uncertain planning instance P = (V, Vu, D, A, I, G), and an integer k.
Parameter: k.
Question: Is there a plan of length k for P that works for each complete initial state I0 that extends I?

Complexity: Σp
2 [k∗]-complete [7,39].

POLYNOMIAL-PLANNING(bounded-deviation)
Instance: an uncertain planning instance P = (V, Vu, D, A, I, G), an integer d, and an integer u
given in unary.
Parameter: d.
Question: Is there a plan for P of length ≤ u that works for each complete initial state I0 that
extends I and for which at most d unknown variables deviate from the base value?

Complexity: Σp
2 [∗k, P]-complete [7,39].

6.6. Turing Machine Halting

The following problems are related to alternating Turing machines (ATMs), possibly with multiple
tapes. ATMs are nondeterministic Turing machines where the states are divided into existential
and universal states, and where each configuration of the machine is called existential or universal
according to the state that the machine is in. A run ρ of the ATM M on an input x is a tree whose nodes
correspond to configurations of M in such a way that (1) for each non-root node v of the tree with parent
node v′, the machine M can transition from the configuration corresponding to v′ to the configuration
corresponding to v, (2) the root node corresponds to the initial configuration of M, and (3) each leaf
node corresponds to a halting configuration. A computation path in a run of M is a root-to-leaf path in
the run. Moreover, the nodes of a run ρ are labelled accepting or rejecting, according to the following
definition. A leaf of ρ is labelled accepting if the configuration corresponding to it is an accepting
configuration, and the leaf is labelled rejecting if it is a rejecting configuration. A non-leaf node of ρ that
corresponds to an existential configuration is labelled accepting if at least one of its children is labelled
accepting. A non-leaf node of ρ that corresponds to a universal configuration is labelled accepting if all
of its children are labelled accepting. An ATM M is 2-alternating if for each input x, each computation
path in the run of M on input x switches at most once from an existential configuration to a universal
configuration, or vice versa. For more details on the terminology, we refer to the work of De Haan and
Szeider [8,41] and to the work of Flum and Grohe—Appendix A.1 in [22].

We consider the following restrictions on ATMs. An ∃∀-Turing machine (or simply ∃∀-machine)
is a 2-alternating ATM, where the initial state is an existential state. Let �, t ≥ 1 be positive integers.
We say that an ∃∀-machine M halts (on the empty string) with existential cost � and universal cost t if:
(1) there is an accepting run of M with the empty input ε, and (2) each computation path of M contains
at most � existential configurations and at most t universal configurations. The following problem,
where the number of Turing machine tapes is given as part of the input, is Σp

2 [k∗]-complete.

Σp
2 [k∗]-TM-HALT∗.

Instance: Positive integers m, k, t ≥ 1, and an ∃∀-machine M with m tapes.
Parameter: k.
Question: Does M halt on the empty string with existential cost k and universal cost t?

Complexity: Σp
2 [k∗]-complete [7,8].

Let m ≥ 1 be a constant integer. Then, the following parameterized decision problem, where the
number of Turing machine tapes is fixed, is also Σp

2 [k∗]-complete.
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Σp
2 [k∗]-TM-HALTm.

Instance: Positive integers k, t ≥ 1, and an ∃∀-machine M with m tapes.
Parameter: k.
Question: Does M halt on the empty string with existential cost k and universal cost t?

Complexity: Σp
2 [k∗]-complete [7,8].

In addition, the parameterized complexity class Σp
2 [k∗] can also be characterized by means

of alternating Turing machines in the following way. Let P be a parameterized problem.
An Σp

2 [k∗]-machine for P is a ∃∀-machine M such that there exists a computable function f and
a polynomial p such that: (1) M decides P in time f (k) · p(|x|); and (2) for all instances (x, k) of P and
each computation path R of M with input (x, k), at most f (k) · log |x| of the existential configurations
of R are nondeterministic. We say that a parameterized problem P is decided by some Σp

2 [k∗]-machine
if there exists a Σp

2 [k∗]-machine for P. Then, Σp
2 [k∗] is exactly the class of parameterized decision

problems that are decided by some Σp
2 [k∗]-machine [7,8].

7. Conclusions

In this paper, we provided a list of parameterized problems that are based on problems at higher
levels of the Polynomial Hierarchy, together with a complexity classification indicating whether they
allow a (many-to-one or Turing) fpt-reduction to SAT or not. These complexity classifications are
based in part on recently developed parameterized complexity classes—e.g., Σp

2 [k∗] and Σp
2 [∗k, P] [7,8],

FPTNP[few] [6,7] and PH[level] [7,36]. The problems that we considered are related to propositional
logic, quantified Boolean satisfiability, disjunctive answer set programming, constraint satisfaction,
(propositional) abductive reasoning, cliques, graph coloring, first-order logic model checking, temporal
logic model checking, judgment aggregation, planning, and (alternating) Turing machines.
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Appendix A

We begin by defining the syntax of the logic LTL. LTL formulas ϕ are formed according to the
following grammar (here p ranges over a fixed set P of propositional variables), given by:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Xϕ | Fϕ | (ϕUϕ).

(Further temporal operators that are considered in the literature can be defined in terms of the
operators X and U.)

The semantics of LTL is defined along paths of Kripke structures. A Kripke structure is a tupleM =

(S, R, V, s0), where S is a finite set of states, where R ⊆ S× S is a binary relation on the set of states
called the transition relation, where V : S → 2P is a valuation function that assigns each state to
a set of propositions, and where s0 ∈ S is the initial state. We say that a finite sequence s1 . . . s� of
states si ∈ S is a finite path inM if (si, si+1) ∈ R for each i ∈ [�− 1]. Similarly, we say that an infinite
sequence s1s2s3 . . . of states si ∈ S is an infinite path inM if (si, si+1) ∈ R for each i ≥ 1.
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Let M = (S, R, V, s0) be a Kripke structure, and s1 = s1s2s3 . . . be a path in M. Moreover,
let si = sisi+1si+2 . . . for each i ≥ 2. Truth of LTL formulas ϕ on paths s (denoted s |= ϕ) is defined
inductively as follows:

si |= p if p ∈ V(si),
si |= ϕ1 ∧ ϕ2, if si |= ϕ1 and si |= ϕ2,
si |= ¬ϕ, if si �|= ϕ,
si |= Xϕ, if si+1 |= ϕ,
si |= Fϕ, if for some j ≥ 0, si+j |= ϕ,
si |= ϕ1Uϕ2 if there is some j ≥ 0 such that si+j |= ϕ2 and si+j′ |= ϕ for each j′ ∈ [0, j− 1].

Then, we say that an LTL formula ϕ is true in the Kripke structureM (denotedM |= ϕ) if for all
infinite paths s starting in s0 it holds that s |= ϕ.

Next, we define the syntax of the logic CTL�, which consists of two different types of formulas:
state formulas and path formulas. When we refer to CTL� formulas without specifying the type,
we refer to state formulas. Given the set P of atomic propositions, the syntax of CTL� formulas is
defined by the following grammar (here Φ denotes CTL� state formulas, ϕ denotes CTL� path formulas,
and p ranges over P), given by:

Φ ::= p | ¬Φ | (Φ ∧Φ) | ∃ϕ,

ϕ ::= Φ | ¬ϕ | (ϕ ∧ ϕ) | Xϕ | Fϕ | (ϕUϕ).

Path formulas have the same intended meaning as LTL formulas. State formulas, in addition,
allow explicit quantification over paths, which is not possible in LTL.

Formally, the semantics of CTL� formulas are defined inductively as follows. LetM = (S, R, V, s0)

be a Kripke structure, s ∈ S be a state in M and s1 = s1s2s3 . . . be a path in M. Again, let si =

sisi+1si+2 . . . for each i ≥ 2. The truth of CTL� state formulas Φ on states s ∈ S (denoted s |= Φ) is
defined as follows:

s |= p if p ∈ V(s),
s |= Φ1 ∧Φ2, if s |= Φ1 and s |= Φ2,
s |= ¬Φ, if s �|= Φ,
s |= ∃ϕ, if there is some path s inM starting in s such that s |= ϕ.

The truth of CTL� path formulas ϕ on paths s (denoted s |= ϕ) is defined as follows:

si |= Φ if si |= Φ,
si |= ϕ1 ∧ ϕ2, if si |= ϕ1 and si |= ϕ2,
si |= ¬ϕ, if si �|= ϕ,
si |= Xϕ, if si+1 |= ϕ,
si |= Fϕ, if for some j ≥ 0, si+j |= ϕ,
si |= ϕ1Uϕ2, if there is some j ≥ 0 such that si+j |= ϕ2 and si+j′ |= ϕ for each j′ ∈ [0, j− 1].

Then, we say that a CTL� formula Φ is true in the Kripke structureM (denotedM |= Φ) if s0 |= Φ.
The syntax of the logic CTL is defined similarly to the syntax of CTL�. Only the grammar for path

formulas ϕ differs, namely:
ϕ ::= XΦ | FΦ | (ΦUΦ).

In particular, this means that every CTL state formula, (CTL formula for short) is also a CTL�

formula. The semantics for CTL formulas is defined as for their CTL� counterparts. Moreover, we say
that a CTL formula Φ is true in the Kripke structureM (denotedM |= Φ) if s0 |= Φ.

For each of the logics L ∈ {LTL, CTL, CTL�}, we consider the fragments L\X, L\U and L\U,X.
In the fragment L\X, the X-operator is disallowed. Similarly, in the fragment L\U, the U-operator is
disallowed. In the fragment L\U,X, neither the X-operator nor the U-operator is allowed.

Next, we define how Kripke structures can be represented symbolically using propositional
formulas. Let P = {p1, . . . , pm} be a finite set of propositional variables. A symbolically represented Kripke
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structure over P is a tupleM = (ϕR, α0), where ϕR(x1, . . . , xm, x′1, . . . , x′m) is a propositional formula
over the variables x1, . . . , xm, x′1, . . . , x′m, and where α0 ∈ {0, 1}m is a truth assignment to the variables
in P. The Kripke structure associated withM is (S, R, V, α0), where S = {0, 1}m consists of all truth
assignments to P, where (α, α′) ∈ R if and only if ϕR[α, α′] is true, and where V(α) = { pi : α(pi) = 1 }.
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Abstract: Recently, Creignou et al. (Theory Comput. Syst. 2017), introduced the class DelayFPT into
parameterised complexity theory in order to capture the notion of efficiently solvable parameterised
enumeration problems. In this paper, we propose a framework for parameterised ordered
enumeration and will show how to obtain enumeration algorithms running with an FPT delay
in the context of general modification problems. We study these problems considering two different
orders of solutions, namely, lexicographic order and order by size. Furthermore, we present two
generic algorithmic strategies. The first one is based on the well-known principle of self-reducibility
and is used in the context of lexicographic order. The second one shows that the existence of a
neighbourhood structure among the solutions implies the existence of an algorithm running with
FPT delay which outputs all solutions ordered non-decreasingly by their size.

Keywords: parameterised complexity; enumeration; bounded search tree; parameterised
enumeration; ordering

1. Introduction

Given a computational problem one often is interested in generating all solutions. For instance,
one wants to list all answers to a query to a database [1] or is interested in all hits that a web search
engine produces [2]. Even in bioinformatics [3] or computational linguistics [4] such enumeration
problems play a crucial role. In this setting, one is more interested in the delay between output
solutions rather than in the overall runtime of such algorithms. Here, a uniform stream of solutions
is highly desired. Johnson et al. [5] explain in their seminal paper that the notion of the complexity
class DelayP, which consists of problems whose delay is bounded by a polynomial in the input length,
is very important.

A view on studied enumeration problems fuels the observation that often a specific order in
the output solutions is very central: Many applications benefit from printing “cheap” solutions
first. Moreover, enumerating all solutions in non-decreasing order allows to determine not only
the smallest solution, but also the kth-smallest one. Such a generating algorithm allows finding the
smallest solution obeying further constraints (at each generation step one verifies which constraints
match). Unfortunately, this technique cannot guarantee efficient enumeration because a long prefix of
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candidates may not satisfy them. Yet, this technique is very versatile due to its applicability to any
additional decidable constraint [6]. Now, we want to exemplify this observation.

Creignou and Hébrard [7] studied, within the well-known Schaefer framework for Boolean
constraint satisfaction problems [8], which classes of propositional CNF formulas enumerating all
satisfying solutions is possible in DelayP. They showed that for the classes of Horn, anti-Horn, affine
or bijunctive formulas, such an algorithm exists. However, for any other class of formulas, having
a DelayP algorithm implies P = NP. Interestingly, their proof builds on the self-reducibility of the
propositional satisfiability problem. By the approach of a flashlight search, that is, trying first an
assignment 0 and then 1, they observed that their enumeration algorithm obeys lexicographic order.

Later, Creignou et al. [9] studied enumerating satisfying assignments for propositional formulas in
non-decreasing weight. Surprisingly, now, efficiently enumerating is only possible for Horn formulas
and width-2 affine formulas (that is, affine formulas with at most two literals per clause). To achieve
their result, the authors exploited priority queues to ensure enumeration in order (as was observed
already by Johnson et al. [5]).

While parameterised enumeration had already been considered before (see, e.g., the works of
Fernau, Damaschke and Fomin et al. [10–12]), the notion of fixed-parameter tractable delay was novel,
leading to the complexity class DelayFPT [13]. Intuitively, the “polynomial time” in the definition
of DelayP here is substituted by a fixed-parameter runtime-bound of the form nO(1) · f (k), where n
denotes the input length, k is the input parameter and f is a computable function. This introduces
the notion of efficiency in the context of the parameterised world, that is, fixed-parameter tractability
(FPT), to the enumeration framework. Creignou et al. [13] investigated a wealth of problems from
propositional logic and developed enumeration algorithms based on self-reducibility and on the
technique of kernelisation. Particularly, the membership of an enumeration problem in DelayFPT can
be characterised by a specificly tailored form of kernelisability, very much as in the context of usual
decision problems.

As this area of parameterised enumeration is rather young and has received less attention, we want
to further support this topic with this paper. Here, we study ordered enumeration in the context of
parameterised complexity. First, we introduce arbitrary orders to the parameterised enumeration
framework. Then we consider the special context of graph modification problems where we are
interested in ordered enumeration for the two mostly studied orders, namely by lexicographic and
by non-decreasing size (where the size is the number of modifications that have to be made). We use
two algorithmic strategies, depending on the respective order as follows. Based on the principle of
self-reducibility we obtain DelayFPT (and polynomial-space) enumeration algorithms for lexicographic
order, as soon as the decision problem is efficiently solvable. Secondly, we present a DelayFPT
enumeration algorithm for order by size as soon as a certain FPT-computable neighbourhood function
on the solutions set exists (see Theorem 1). Notice that the presented algorithms do not enumerate the
set of minimal solutions but the set of solutions of bounded size. Extending to such solutions from
minimal ones in the enumeration process is not generally trivial. To cope with the order, we use a
priority queue that may require exponential space in the input length (as there exist potentially that
many solutions).

Eventually, we show that the observed principles and algorithmic strategies can be applied to
general modification problems as well. For instance, a general modification problem could allow
to flip bits of a string. It is a rather rare situation that a general algorithmic scheme is developed.
Usually algorithms are devised on a very individual basis. We prove a wide scope of applicability of our
method by presenting new FPT delay ordered enumeration algorithms for a large variety of problems,
such as cluster editing [14], triangulation [15], triangle deletion [16], closest-string [17] and backdoor
sets [18]. Furthermore, there already exists work which adopts the introduced framework of Creignou
et al. [13] in the area of conjunctive query enumeration [19], triangle enumeration [20], combinatorial
optimisation [21], abstract argumentation [22] and global constraints [23].
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2. Preliminaries

We start by defining parameterised enumeration problems with a specific ordering and their
corresponding enumeration algorithms. Most definitions in this section transfer those of Johnson et al.
and Schmidt [5,24] from the context of enumeration and those of Creignou et al. [13] from the context
of parameterised enumeration to the context of parameterised ordered enumeration.

The studied orderings of enumeration problems in this paper are quasi-orders which will be
defined in the following.

Definition 1 (Quasi-Order). Let R be a set and� a binary relation on R. Then� is a preorder (or quasi-order)
if we have for all elements a, b, c ∈ R:

• a � a and
• if a � b and b � c then a � c.

We will write z �� y whenever z � y is not true.
Now, we proceed by introducing parameterised enumeration problems with ordering. Intuitively,

the corresponding enumeration algorithm for such problems has to obey the given ordering, that is,
it has to produce solutions without violating that ordering.

Definition 2. A parameterised enumeration problem with ordering is a quadruple E = (I, κ, Sol,�) such that
the following holds:

• I is the set of instances.
• κ : I → N is the parameterisation function; κ is required to be polynomial time computable.
• Sol is a function such that for all x ∈ I, Sol(x) is a finite set, the set of solutions of x. Further we write

S =
⋃

x∈I Sol(x).
• � is a quasi-order on S .

Notice that this order on all solutions is only a short way of simultaneously giving an order for
each instance. Furthermore, we will write an index E letter, e.g., IE, κE, to denote that we are talking
about an instance set, parameterisation function, etc., of a given enumeration problem E. In the next
step, we fix the notion of enumeration algorithms in our setting.

Definition 3 (Enumeration Algorithm). Let E = (I, κ, Sol,�) be a parameterised enumeration problem
with ordering. Then an algorithm A is an enumeration algorithm for E if the following holds:

• For every x ∈ I, A(x) terminates after a finite number of steps.
• For every x ∈ I, A(x) outputs exactly the elements of Sol(x) without duplicates.
• For every x ∈ I and y, z ∈ Sol(x), if y � z and z �� y then A(x) outputs solution y before solution z.

Before we define complexity classes for parameterised enumeration, we need the notion of delay
for enumeration algorithms.

Definition 4 (Delay). Let E = (I, κ, Sol,�) be a parameterised enumeration problem with ordering and A be
an enumeration algorithm for E. Let x ∈ I be an instance. The ith delay of A is the elapsed runtime with respect
to |x| of A between outputting the ith and (i + 1)th solution in Sol(x). The 0th delay is the precomputation
time which is the elapsed runtime with respect to |x| of A from the start of the computation to the first output
statement. Analogously, the nth delay, for n = |Sol(x)|, is the postcomputation time, which is the elapsed
runtime with respect to |x| of A after the last output statement until A terminates. Then, the delay of A is the
maximum over all 0 ≤ i ≤ n of the ith delay of A.

Now we are able to define two different complexity classes for parameterised enumeration
following the notion of Creignou et al. [13].
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Definition 5. Let E = (I, κ, Sol,�) be a parameterised enumeration problem. We say that E is FPT enumerable
if there exists an enumeration algorithm A, a computable function f : N→ N and a polynomial p such that for
every x ∈ I, A outputs all solutions of Sol(x) in time f (κ(x)) · p(|x|).

An enumeration algorithm A is a DelayFPT algorithm if there exists a computable function f : N→ N

and a polynomial p such that for every x ∈ I, A outputs all solutions of Sol(x) with delay of at most
f (κ(x)) · p(|x|).

The class DelayFPT consists of all parameterised enumeration problems that admit a
DelayFPT-enumeration algorithm.

Some of our enumeration algorithms will make use of priority queues to enumerate all solutions
in the correct order and to avoid duplicates. We will follow the approach of Johnson et al. [5].
For an instance x of a parameterised enumeration problem whose sizes of solutions are polynomially
bounded in |x|; we use a priority queue Q to store a subset of Sol(x) of cardinality potentially
exponential in |x|. The insert operation of Q requires O(|x| · log |Sol(x)|) time. The extract minimum
operation requires O(|x| · log |Sol(x)|) time, too. It is important, however, that the computation of the
order between two elements takes at most O(|x|) time. As pointed out by Johnson et al., the required
queue can be implemented with the help of standard balanced tree schemes [25].

2.1. Graph Modification Problems

Graph modification problems have been studied for a long time in computational complexity
theory [26]. Already in the monograph by Garey and Johnson [27], among the graph-theoretic problems
considered, many fall into this problem class. To the best of our knowledge, graph modification
problems were studied in the context of parameterised complexity for the first time in [28].

In this paper, we consider only undirected graphs. Let G denote the set of all undirected graphs.
A graph property P ⊆ G is a set of graphs. Given a graph property P and an undirected graph G,
we write G |= P if the graph G obeys the property P , that is, G ∈ P .

Definition 6 (Graph Operations). A graph operation for G is either of the following:

• removing a vertex: A function remv : G → G such that remv(G) is the graph obtained by removing the
vertex v from G (if v is present; otherwise remv is the identity) and deleting all incident edges to v,

• adding/removing an edge: A function add{u,v}, rem{u,v} : G → G such that add{u,v}(G), rem{u,v}(G)

is the graph obtained by adding/removing the edge {u, v} to G if u and v are present in G; otherwise both
functions are the identity

Two operations o, o′ are dependent if

• o = remv and o′ = rem{u,v} (o removes the vertex v and o′ removes an edge incident to v) or
• o = rem{u,v} and o′ = add{u,v} (o removes the edge {u, v} and o′ adds the same edge {u, v} again).

A set of operations is consistent if it does not contain two dependent operations. Given such a consistent
set of operations S, the graph obtained from G by applying the operations in S on G is denoted by S(G).

Now, we turn towards the definition of solutions and will define minimality in terms of
being inclusion-minimal.

Definition 7 (Solutions). Given a graph property P , a graph G, k ∈ N and a set of operations O, we say that
S is a solution for (G, k, O) with respect to P if the following three properties hold:

1. S ⊆ O is a consistent set of operations,
2. |S| ≤ k and
3. S(G) |= P .

A solution S is minimal if there is no solution S′ such that S′ � S.
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Cai [28] was interested in the following parameterised graph modification decision problem with
respect to a given graph property P :

Problem: MP

Input: (G, k, O), G undirected graph, k ∈ N, O set of operations on G.
Parameter: The integer k.
Question: Does there exist a solution for (G, k, O) with respect to P?

Some of the most important examples of graph modification problems are presented now. A
chord in a graph G = (V, E) is an edge between two vertices of a cycle C in G which is not part of
C. A given graph G = (V, E) is triangular (or chordal) if each of its induced cycles of four or more
nodes has a chord. The problem TRIANGULATION then asks, given an undirected graph G and k ∈ N,
whether there exists a set of at most k edges such that adding this set of edges to G makes it triangular.
Yannakakis showed that this problem is NP complete [15]. Kaplan et al. [29] and independently
Cai [28] have shown that the parameterised problem is in FPT. For this problem, a solution is a set of
edges which have to be added to the graph to make the graph triangular. Observe that, in this special
case of the modification problem, the underlying property P , “to be triangular”, does not have a finite
forbidden set characterisation (since cycles of any length are problematic). Nevertheless, we will see
later, that one can efficiently enumerate all minimal solutions as well.

A cluster is a graph such that all its connected components are cliques. In order to transform
(or modify) a graph G we allow here only two kinds of operations: Adding or removing an edge.
CLUSTER-EDITING asks, given a graph G and a parameter k, whether there exists a consistent set of
operations of cardinality at most k such that S(G) is cluster. It was shown by Shamir et al., that the
problem is NP complete [14].

The problem TRIANGLE-DELETION asks whether a given graph can be transformed into a
triangle-free graph by deletion of at most k vertices. Yannakakis has shown that the problem is
NP complete [16].

Analogous problems can be defined for many other classes of graphs, e.g., line graphs, claw-free
graphs, Helly circular-arc graphs, etc., see [30].

Now, we turn towards the main focus of the paper. Here, we are interested in corresponding
enumeration problems with ordering. In particular, we will focus on two well-known preorders,
lexicographic ordering and ordering by size. Since our solutions are subsets of an ordered set of
operations, they can be encoded as binary strings in which the ith bit from right indicates whether the
ith operation is in the subset. We define the lexicographic ordering of solutions as the lexicographic
ordering of these strings. Then, the size of a solution simply is its cardinality.

Problem: ENUM-MLEX
P

Input: (G, k, O), G undirected graph, k ∈ N, O ordered set of operations on G.
Parameter: The integer k.
Output: All solutions of (G, k, O) with respect to P in lexicographic order.

Problem: ENUM-MSIZE
P

Input: (G, k, O), G undirected graph, k ∈ N, O set of operations on G.
Parameter: The integer k.
Output: All solutions of (G, k, O) with respect to P in non-decreasing size.

If the context is clear, we omit the subscript P for the graph modification problem and simply
write M. Furthermore, we write SolM(x) for the function associating solutions to a given instance,
and also SM for the set of all solutions ofM.
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3. Enumeration of Graph Modification Problems with Ordering

In this section, we study the two previously introduced parameterised enumeration problems
with ordering (lexicographic and size ordering).

3.1. Lexicographic Ordering

We first prove that, for any graph property P , if the decision problemMP is in FPT then there is
an efficient enumeration algorithm for ENUM-MLEX

P .

Lemma 1. LetMP be a graph modification problem. IfMP is in FPT then ENUM-MLEX
P ∈ DelayFPT with

polynomial space.

Proof. Algorithm 1 enumerates all solutions of an instance of a given modification problemMP by
the method of self-reducibility (it is an extension of the flash light search of Creignou and Hébrard [7]).
The algorithm uses a function ExistsSol(G, k, O) that tests if the instance (G, k, O) of the modification
problem MP has a solution. By the assumption of the lemma, MP ∈ FPT so this function runs in
FPT time. We use calls to this function to avoid exploration of branches of the recursion tree that do
not lead to any output. Moreover, we ensure that the solutions using op have to be consistent. This
consistency check runs in polynomial time for graph operations. The rest yields a search tree of depth
at most k. From this it follows that, for any instance of length n, the time beween the output of any two
solutions is bounded by f (k) · p(n) for some polynomial p and a computable function f .

Algorithm 1: Enumerate all solutions ofMP in lexicographic order

Input: (G, k, O): A graph G, k ∈ N, an ordered set of operations O = {o1, . . . , on}
Output: all consistent sets S ⊆ O s.t. |S| ≤ k, S(G) |= P in lexicographic order

1 if ExistsSol(G, k, O) then Generate(G, k, O, ∅);

Procedure Generate(G, k, O, S):
1 if O = ∅ or k = 0 then return S;
2 else

3 let op be the lexicographically last operation in O, O′ := O \ {op};
4 if ExistsSol(S(G), k, O′) then Generate(S(G), k, O′, S);
5 if S ∪ {op} is consistent and ExistsSol((S ∪ {op})(G), k− 1, O′) then

6 Generate((S ∪ {op})(G), k− 1, O′, S ∪ {op}).

Corollary 1. ENUM-TRIANGULATIONLEX ∈ DelayFPT with polynomial space.

Proof. Kaplan et al. [29] and Cai [28] showed that TRIANGULATION ∈ FPT. Now, by applying
Lemma 1, we get the result.

Cai [28] identified a class of graph properties whose associated modification problems belong to
FPT. Let us introduce some terminology.

Definition 8. Given two graphs G = (V, E) and H = (V′, E′), we write H � G if H is an induced subgraph
of G, i.e., V′ ⊆ V and E′ = E ∩ (V′ ×V′). Let F be a set of graphs and P be a graph property. We say that F
is a forbidden set characterisation of P if for any graph G it holds that: G |= P iff for all H ∈ F , H �� G.

Among the problems presented in the previous section (see page 5), TRIANGLE-DELETION and
CLUSTER-EDITING have a finite forbidden set characterisation, namely by triangles and paths of
length two. In contrast to that, TRIANGULATION has a forbidden set characterisation which is infinite,
since cycles of arbitrary length are problematic. Actually, for properties having a finite forbidden set
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characterisation, the corresponding modification problem is fixed-parameter tractable. Together with
Lemma 1, this provides a positive result in terms of enumeration.

Proposition 1 ([28]). If a property P has a finite forbidden set characterisation thenMP is in FPT.

Corollary 2. For any graph modification problem, if P has a finite forbidden set characterisation then
ENUM-MLEX

P ∈ DelayFPT with polynomial space.

Proof. This result follows by combining Proposition 1 with Lemma 1.

3.2. Size Ordering

A common strategy in the enumeration context consists of defining a notion of a neighbourhood
that allows to compute a new solution from a previous one with small amounts of computation
time (see, e.g., the work of Avis and Fukuda [31]). We introduce the notion of a neighbourhood
function, which, roughly speaking, generates some initial solutions from which all solutions can
be produced. A priority queue then takes care of the ordering and avoids duplicates, which may
require exponential space. For the graph modification problems of interest, we show that if the
inclusion-minimal solutions can be generated in FPT, then such a neighbourhood function exists,
accordingly providing a DelayFPT-enumeration algorithm. In the following, O (the “seed”) is a
technical symbol that will be used to generate the initial solutions.

Definition 9. LetM be a graph modification problem. A neighbourhood function forM is a (partial) function
NM : IM × (SM ∪ {O})→ 2SM such that the following holds:

1. For all x = (G, k, O) ∈ IM and S ∈ SolM(x) ∪ {O}, NM(x, S) is defined.
2. For all x ∈ IM, NM(x,O) = ∅ if SolM(x) = ∅, and NM(x,O) is an arbitrary set of solutions

otherwise.
3. For all x ∈ IM and S ∈ SolM(x), if S′ ∈ NM(x, S) then |S| < |S′|.
4. For all x ∈ IM and all S ∈ SolM(x), there exists p > 0 and S1, . . . , Sp ∈ SolM(x) such that (i)

S1 ∈ NM(x,O), (ii) Si+1 ∈ NM(x, Si) for 1 ≤ i < p and (iii) Sp = S.

Furthermore, we say that NM is FPT computable, when NM(x, S) is computable in time f (κ(x)) ·
poly(|x|) for any x ∈ IM and S ∈ SolM(x).

As a result, a neighbourhood function for a problemM is a function that in a first phase computes
from scratch an initial set of solutions (see Definition 9(2)). In many of our applications below,
NM(x,O) will be the set of all minimal solutions for x. In a second phase these solutions are iteratively
extended (see condition (3)), where condition (4) guarantees that we do not miss any solution, as we
will see in the next theorem.

Theorem 1. Let M be a graph modification problem. If M admits a neighbourhood function NM that is
FPT-computable, then ENUM-MSIZE ∈ DelayFPT.

Proof. Algorithm 2 outputs all solutions in DelayFPT time. By the definition of the priority queue
(recall in particular that insertion of an element is done only if the element is not yet present in the
queue) and by the fact that all elements of NM((G, k, O), S) are of bigger size than S by Definition 9(3),
it is easily seen that the solutions are output in the right order and that no solution is output twice.

Besides, no solution is omitted. Indeed, given S ∈ SolM(G, k, O) and S1, . . . , Sp associated with S
by Definition 9(4), we prove by induction that each Si is inserted in Q during the run of the algorithm:

i = 1: This proceeds from line 2 of the algorithm.
i > 1: The solution Si−1 is inserted in Q by induction hypothesis and hence all elements of

NM((G, k, O), Si−1), including Si, are inserted in Q (line 5 of Algorithm 2). Consequently,
each Si is inserted in Q and then output during the run. In particular, this is true for S = Sp.
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Finally, we claim that Algorithm 2 (see Figure 1 for a graphical representation) runs in DelayFPT
time. Indeed, the delay between the output of two consecutive solutions is bounded by the time
required to compute a neighbourhood of the form NM((G, k, O),O) or NM((G, k, O), S) and to insert
all its elements in the priority queue. This is in FPT due to the assumption on NM being FPT
computable and as there is only a single extraction and many FPT insertion operations in the queue.

Algorithm 2: DelayFPT algorithm for ENUM-M
Input : (G, k, O) : G is an undirected graph, k ∈ N, and O is a set of operations.

1 compute NM((G, k, O),O);
2 insert all elements of NM((G, k, O),O) into priority queue Q (ordered by size);
3 while Q is not empty do

4 extract the minimum solution S of Q and output it;
5 insert all elements of NM((G, k, O), S) into Q;

N((G, k, O),O)
priority
queue

output current
solution S

initial
solutions

extract
head

insert N((G, k, O), S)

Figure 1. Structure of Algorithm 2.

A natural way to provide a neighbourhood function for a graph modification problemM is to
consider the inclusion minimal solutions ofM. Let us denote by MIN-M the problem of enumerating
all inclusion minimal solutions ofM.

Theorem 2. Let M be a graph modification problem. If MIN-M is FPT enumerable then ENUM-MSIZE ∈
DelayFPT.

Proof. Let A be an FPT algorithm for MIN-M. Because of Theorem 1, it is sufficient to build an
FPT-neighbourhood function forM. For an instance (G, k, O) ofM and for S ∈ SolM(G, k, O) ∪ {O},
we define NM((G, k, O), S) as the result of Algorithm 3.

Algorithm 3: Procedure for computing NM((G, k, O), S)
Input : (G, k, O), S: G is an undirected graph, k ∈ N, O and S are sets of operations.

1 if S = O then return A(G, k, O);
2 res := ∅;
3 for all t ∈ O do

4 for all S′ ∈ A((S ∪ {t})(G), k− |S| − 1, O \ {t}) do

5 if S ∪ S′ ∪ {t} is consistent then res := res∪ {S ∪ S′ ∪ {t}} ;

6 return res;

Accordingly, the function NM clearly fulfils Conditions 2 and 3 of Definition 9. We prove by
induction that it also satisfies Condition 4 (that is, each solution T of size k comes with a sequence
T1, . . . , Tp = T such that T1 ∈ NM((G, k, O),O) and Ti+1 ∈ NM((G, k, O), Ti) for each i). If T is a
minimal solution for (G, k, O), then T ∈ NM((G, k, O),O) and the expected sequence (Ti)1≤i≤p reduces
to T1 = T. Otherwise, there exists an S ∈ SolM(G, k, O) and a non-empty set of transformations,
say S′ ∪ {t}, such that T = S ∪ S′ ∪ {t} and there is no solution for G between S and S ∪ S′ ∪ {t}.
This entails that S′ is a minimal solution for

(
(S ∪ {t})(G), k − |S| − 1

)
and, as a consequence,

T ∈ NM((G, k, O), S) (see lines 4–5 of Algorithm 3). The conclusion follows from the induction
hypothesis that guarantees the existence of solutions S1, . . . , Sq such that S1 ∈ NM((G, k, O),O),
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Si+1 ∈ NM((G, k, O), Si) and Sq = S. The expected sequence T1, . . . , Tp for T is nothing but
S1, . . . , Sq, T. To conclude, it remains to show that Algorithm 3 is FPT. This follows from the fact that
A is an FPT algorithm (Lines 1 and 4 of Algorithm 3).

Corollary 3. ENUM-TRIANGULATIONSIZE ∈ DelayFPT.

Proof. All inclusion-minimal k-triangulations can be output in time O(24k · |E|) for a given graph G
and k ∈ N as shown by Kaplan et al. [29] (Theorem 2.4). This immediately yields the expected result
via Theorem 2.

Corollary 4. For any property P that has a finite forbidden set characterisation, the problem ENUM-MSIZE
P is

in DelayFPT.

Proof. The algorithm developed by Cai [28] for the decision problem is based on a bounded search
tree, whose exhaustive examination provides all size minimal solutions in FPT. Theorem 2 yields the
conclusion.

Corollary 5. ENUM-CLUSTER-EDITINGSIZE and ENUM-TRIANGLE-DELETIONSIZE are in DelayFPT.

Proof. Both problems have a finite forbidden set characterisation. For the cluster editing problem,
paths of length two are the forbidden pattern, and, regarding ENUM-TRIANGLE-DELETIONSIZE,
the forbidden patterns are triangles. The result then follows from Corollary 4.

4. Generalisation to Modification Problems

In this section, we will show how the algorithmic strategy that has been defined and formalised
in the context of graph modification can be of use for many other problems, coming from various
combinatorial frameworks.

Definition 10 (General Operations). Let Q ⊆ Σ∗ be a language defined over an alphabet and let x ∈ Σ∗ be
an input. A set of operations Ω(Q) = {ωn : Σ∗ → Σ∗ | n ∈ N } is an infinite set of operations on instances of
Q. We say that an operation ω is valid with respect to an instance x ∈ Q, if ω(x) ∈ Q. We write Ω/x for the
set of possible (valid) operations on an instance x.

Two operations ω, ω′ are dependent with respect to an instance x ∈ Q if

• ω(ω′(x)) = x or (intuitively, ω and ω′ cancel out)
• ω(ω′(x)) = ω′(x) or ω(ω′(x)) = ω(x). (intuitively, the order of ω and ω′ does not matter)

A set of operations O ⊆ Ω/x is consistent with respect to x if it does not contain two dependent operations.
Similarly, we say that an operation ω is consistent with a set S if and only if S ∪ {ω} is consistent.

For instance, the set Ω could contain operations that add edges or, in another case, flip bits.
How exactly Ω is defined highly depends on the corresponding language Q.

Example 1. Let G ⊆ {0, 1}∗ be the language of all undirected graphs encoded by adjacency matrices.
Then Ω(G) is the set of all graph operations in the sense of Definition 6: Removing vertices or edges, adding
edges. Note that Ω(G) contains all operations of the kind

remi : G → G, rem{i,j} : G → G, add{i,j} : G → G

for all i, j ∈ N. Furthermore, let G = (V, E) ∈ {0, 1}∗ be a concrete input graph. As a result, Ω/G then is the
restriction of Ω to those i, j ∈ N such that vi, vj ∈ V encode vertices in G.
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Similarly to how it was defined in Section 2.1, a property is just a set. In the following context, it
is a subset of a considered language Q. Intuitively, in the concept of graph modification problems, one
may think of Q as G. Then a graph property P is just a subset of G.

Definition 11 (General Solutions). Let Q ⊆ Σ∗ be a language defined over an alphabet, S ⊆ Ω/x be a finite
set of operations on x ∈ Q and P ⊆ Q be a property. We say that S is a solution (of x) if S is a consistent set
of operations and S(x) ∈ P . Furthermore, we denote by SQ :=

⋃
x∈Q{ S | S is a solution of x } the set of all

solutions for every instance x ∈ Q. In addition, Sol(x) is the set of solutions for every instance x ∈ Q.

Example 2. Continuing the previous example, if the property P is “to be a cluster” then a consistent solution
S to a given graph is a sequence of removing vertices, adding and deleting of edges where

• there is no edge (i, j) added or deleted such that vertex i or j is removed,
• there is no edge (i, j) added and removed and
• S(G) |= P .

Similarly, adding edge (i, j) together with removing vertex i or j or removing edge (i, j) is an inconsistent
set of operations.

Now we want to define the corresponding decision and enumeration tasks. On that account, let
P be a property, Π = (Q, κ) be a parametrised problem with Q ⊆ Σ∗ and Ω be a set of operations.

Problem: ΠP—parameterised modification problem Π w.r.t. a property P over Σ

Input: x ∈ Σ∗, k ∈ N, Ω/x set of operations.
Parameter: The integer k.
Question: Is there a solution S ⊆ Ω/x and |S| ≤ k?

Problem: ENUM-MIN-ΠP—parameterised minimum enumeration modification problem
w.r.t. a property P over Σ

Input: x ∈ Σ∗, k ∈ N, Ω/x set of operations.
Parameter: The integer k.
Output: All minimal (w.r.t. some order) solutions S ⊆ Ω/x with |S| ≤ k.

The enumeration modification problem where we want to output all possible sets of
transformations on a given instance x (and not only the minimum ones) then is ENUM-ΠP .

In the following, we show how the notion of neighbourhood functions can be generalised as well.
This will in turn yield generalisations of the results for graph modification problems afterwards.

Definition 12. Let Σ be an alphabet, P ⊆ Σ∗ be a property and ΠP be a parameterised modification problem
over Σ. A neighbourhood function for ΠP is a (partial) function NΠP : Σ∗ ×

(
SΠP ∪ {O}

)
→ 2SΠP such that

the following holds:

1. For all x ∈ Σ∗ and S ∈ SolΠP (x) ∪ {O}, NΠP (x, S) is defined.
2. For all x ∈ Σ∗, NΠP (x,O) = ∅ if SolΠP (x) = ∅, and NΠP (x,O) is an arbitrary set of

solutions otherwise.
3. For all x ∈ Σ∗ and S ∈ SolΠP (x), if S′ ∈ NΠP (x, S) then |S| < |S′|.
4. For all x ∈ Σ∗ and all S ∈ SolΠP (x), there exists p > 0 and S1, . . . , Sp ∈ SolΠP (x) such that (i)

S1 ∈ NΠP (x,O), (ii) Si+1 ∈ NΠP (x, Si) for 1 ≤ i < p and (iii) Sp = S.

Furthermore, we say thatNΠP is FPT computable whenNΠP (x, S) is computable in time f (k) · poly(|x|)
for any x ∈ Σ∗ and S ∈ SolΠP (x).

As already announced before, we are able to state generalised versions of Theorems 1 and 2 which
can be proven in a similar way. However, one has to replace the graph modification problems by
general modification problems.

67



Algorithms 2019, 12, 189

Corollary 6. Let P be a property, Π ⊆ Σ∗ ×N be a parameterised modification problem and Ω be a set of
operations such that Ω/x is finite for all x ∈ Σ∗. If ΠP admits a neighbourhood function that is FPT computable
then ENUM-ΠP ∈ DelayFPT using

• polynomial space for lexicographic order and
• exponential space for size order.

Corollary 7. Let P be a property, Π ⊆ Σ∗ ×N be a parameterised modification problem and Ω be a set of
operations such that Ω/x is finite for all x ∈ Σ∗. If ENUM-MIN-ΠP is FPT enumerable and the consistency of
solutions can be checked in FPT then ENUM-ΠP ∈ DelayFPT and using

• polynomial space for lexicographic order and
• exponential space for size order.

4.1. Closest String

In the following, we consider a central NP complete problem in coding theory [32]. Given a set of
binary strings I, we want to find a string s with maximum Hamming distance max{ dH(s, s′) | s′ ∈
I } ≤ d for a d ∈ N, where dH(s, s′) is the Hamming distance between two strings.

Definition 13 (Bit-Flip operation). Given a string w = w1 · · ·wn with wi ∈ {0, 1}, n ∈ N and a set
S ⊆ {1, . . . , n}, S(w) denotes the string obtained from w by flipping the bits indicated by S, more formally
S(w) := S(w1) · · · S(wn), where S(wi) = 1− wi if i ∈ S and S(wi) = wi otherwise.

The corresponding parametrised version is the following.

Problem: CLOSEST-STRING

Input: A sequence (s1, s2, ..., sk) of k strings over {0, 1} each of given length n ∈ N and
an integer d ∈ N.

Parameter: The integer d.
Question: Does there exist S ⊆ {1, . . . , n} such that dH(S(s1), si) ≤ d for all 1 ≤ i ≤ k?

Proposition 2 ([17]). CLOSEST-STRING is in FPT.

Moreover, an exhaustive examination of a bounded search tree constructed from the idea
of Gramm et al. [17] (Figure 1), allows to produce all minimal solutions of this problem in FPT.
Accordingly, we get the following result for the corresponding enumeration problems.

Theorem 3.

• ENUM-CLOSEST-STRINGLEX ∈ DelayFPT with polynomial space.
• ENUM-CLOSEST-STRINGSIZE ∈ DelayFPT with exponential space.

Proof. Ω is just the set of operations which flip the ith bit of a string for every i ∈ N. By combining
Proposition 2 with Corollary 7 we get the desired result.

4.2. Backdoors

In this section, we will consider the concept of backdoors. Let C be a class of propositional
formulas. Intuitively, a C backdoor is a set of variables of a given propositional formula with the
following property. Applying assignments over these variables to the formula always yields a formula
in the class C. Of course, one aims for formula classes for which satisfiability can be decided efficiently.
Informally speaking, with the parameter backdoor size of a formula one tries to describe a distance to
tractability. This definition was first introduced by Golmes, Williams and Selman [18] to model short
distances to efficient subclasses. Until today, backdoors gained copious attention in many different
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areas: abduction [33], answer set programming [34,35], argumentation [36], default logic [37], temporal
logic [38], planning [39] and constraint satisfaction [40,41].

Consider a formula φ in conjunctive normal form. Denote by φ[τ] for a partial truth assignment τ

the result of removing all clauses from φ which contain a literal � with τ(�) = 1 and removing literals
� with τ(�) = 0 from the remaining clauses.

Definition 14. Let C be a class of CNF formulas and φ be a CNF formula. A set V ⊆ Vars(φ) of variables of φ

is a strong C backdoor set of φ if for all truth assignments τ : V → {0, 1} we have that φ[τ] ∈ C.

Definition 15 ([42,43]). Let C be a class of CNF formulas and φ be a CNF formula. A set V ⊆ Vars(φ) of
variables of φ is a C-deletion backdoor set of φ if φ[V] is in C, where φ[V] denotes the formula obtained from φ

by deleting in φ all occurrences of variables from V.

Definition 16 (Weak Backdoor Sets). Let C be a class of CNF formulas and φ be a propositional CNF formula.
A set V ⊆ Vars(φ) of variables from φ is a weak C backdoor set of φ if there exists an assignment θ ∈ Θ(V)

such that φ[θ] ∈ C and φ[θ] is satisfiable.

Now let us consider the following enumeration problem.

Problem: ENUM-WEAK-BACKDOORSET(C)
Input: A formula φ in CNF, k ∈ N.
Parameter: The integer k.
Output: The set of all weak C backdoor sets of φ of size at most k.

Similarly, define ENUM-STRONG-BACKDOORSET(C) for the set of all strong C backdoor sets of φ

of size at most k. Observe that the backdoor set problems can be seen as modification problems where
solutions are sequences of variable assignments. The target property then simply is the class of CNF
formulas C.

Notice that Creignou et al. [13] (Theorem 4), have studied enumeration for exact strong
HORNbackdoor sets and provided an algorithm running in DelayFPT, where HORN denotes the set
of all Horn formulas, that is, CNF formulas whose clauses contain at most one positive literal.

Definition 17 (Base Class [44]). The class C is a base class if it can be recognised in P (that is, C ∈ P), the
satisfiability of its formulas is in P and the class is closed under isomorphisms w.r.t. variable names. We say that
C is clause defined if for every CNF formula φ we have: φ ∈ C if and only if {C} ∈ C for all clauses C from φ.

Proposition 3 ([44] (Proposition 2)). For every clause-defined base class C, the detection of weak C backdoor
sets is in FPT for input formulas in 3-CNF.

In their proof, Gaspers and Szeider [44] describe how utilising a bounded search tree allows one
to solve the detection of weak C backdoors in FPT time. Interesting to note, this technique results in
obtaining all minimal solutions in FPT time. This observation results in the following theorem.

Theorem 4. For every clause-defined base class C and input formula in 3-CNF

• ENUM-WEAK-C-BACKDOORSLEX ∈ DelayFPT with polynomial space and
• ENUM-WEAK-C-BACKDOORSSIZE ∈ DelayFPT with exponential space.

Proof. The set of operations Ω contains functions that replace a specific variable i ∈ N

by a truth value t ∈ {0, 1}. A solution encodes the chosen backdoor set together with
the required assignment. Proposition 3 yields ENUM-MIN-WEAK-CBACKDOORSLEX, resp.,
ENUM-MIN-WEAK-C-BACKDOORSSIZE being FPT enumerable. As the consistency check for solutions
is in polynomial time, applying Corollary 7 completes the proof.
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In the following result, we will examine the parametrised enumeration complexity of the task to
enumerate all strong C-backdoor sets of a given 3-CNF formula for some clause-defined base class C.
Crucially, every strong backdoor set has to contain at least one variable from a clause that is not in C
which relates to “hitting all bad clauses” like in the definition of deletion backdoors (see Definition 15).

Theorem 5. For every clause-defined base class C and input formula in 3-CNF:

• ENUM-STRONG-C-BACKDOORSLEX ∈ DelayFPT with polynomial space and
• ENUM-STRONG-C-BACKDOORSSIZE ∈ DelayFPT with exponential space.

Proof. We show that for every clause-defined base class C and input formula in 3-CNF, the problem
MIN-STRONG-C-BACKDOORS is FPT enumerable. Indeed, we only need to branch on the variables
from a clause C /∈ C and remove the corresponding literals over the considered variable from φ.
The size of the branching tree is at most 3k. As for base classes the satisfiability test is in P, this yields
an FPT algorithm. The neighbourhood function N(x, S) for x = (φ, k) is defined to be the set of the
pairwise unions of all minimal strong C backdoors of (φ[(S∪ {xi})], k− |S| − 1) together with S∪ {xi}
for all variables xi �∈ S. If Vars(φ) = {x1, . . . , xn}, then the operations are ωi : φ �→ φ(0/xi) ∧ φ(1/xi).
As application of the functions ωi happens only with respect to the backdoor size k, which is the
parameter, the formula size increases by an exponential factor in the parameter only. This yields the
preconditions for Corollary 7 .

4.3. Weighted Satisfiability Problems

Finally, we consider satisfiability questions for formulas in the Schaefer framework [8].
A constraint language Γ is a finite set of relations. A Γ formula φ, is a conjunction of constraints
using only relations from Γ and, consequently, is a quantifier-free first order formula.

As opposed to the approach of Creignou et al. [13], who examined maximum satisfiability, we
now focus on the problem MINONES-SAT(Γ) defined below.

If θ : X → {0, 1}, θ′ : Y → {0, 1} are two (partial) assignments over some set of variables X and Y,
then θ ⊂ θ′ is true, if θ(x) = θ′(x) for all x ∈ X and X ⊂ Y.

Definition 18 (Minimality). Given a propositional formula φ and an assignment θ over the variables in φ

with θ |= φ, we say that θ is minimal if there does not exist an assignment θ′ ⊂ θ and θ′ |= φ. The size |θ| of θ

is the number of variables it sets to true.

Formally, the problem of interest is defined with respect to any fixed constraint language Γ:

Problem: MIN-MINONES-SATSIZE(Γ)

Input: (φ, k), a Γ formula φ, k ∈ N.
Parameter: The integer k.
Output: Generate all inclusion-minimal satisfying assignments θ of φ with |θ| ≤ k by

non-decreasing size.

Similarly, the problem ENUM-MINONES-SAT(Γ) asks for all satisfying assignments θ of φ with
|θ| ≤ k. In this context, the operations in Ω are functions that replace the variable with index i ∈ N

by true.

Theorem 6. For all constraint languages Γ, we have: MIN-MINONES-SATSIZE(Γ) is FPT enumerable and
ENUM-MINONES-SATSIZE(Γ) ∈ DelayFPT with exponential space.

Proof. For the first claim we can simply compute the minimal assignments by a straightforward
branching algorithm: Initially, begin with the all 0-assignment, then consider all unsatisfied clauses in
turn and flip one of the occurring variables to true. The second claim follows by a direct application
of Corollary 7.
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5. Conclusions

We presented FPT delay ordered enumeration algorithms for a large variety of problems, such as
cluster editing, chordal completion, closest-string and weak and strong backdoors. An important point
of our paper is that we propose a general strategy for efficient enumeration. This is rather rare in the
literature, where algorithms are usually devised individually for specific problems. In particular, our
scheme yields DelayFPT algorithms for all graph modification problems that are characterised by a
finite set of forbidden patterns.

Initially, we focussed on graph-theoretic problems. Afterwards, the generic approach we
presented covered problems which are not only of a graph-theoretic nature. Here, we defined general
modification problems detached from graphs and constructed generic enumeration algorithms for
arising problems in the world of strings, numbers, formulas, constraints, etc.

As an observation, we would like to mention that the DelayFPT algorithms presented in this
paper require exponential space due to the inherent use of the priority queues to achieve ordered
enumeration. An interesting question, continuing the research of Meier [45], is whether there is a
method which requires less space but uses a comparable delay between the output of solutions and
still obeys the underlying order on solutions.
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Abstract: We present an algorithm selection framework based on machine learning for the exact
computation of treewidth, an intensively studied graph parameter that is NP-hard to compute.
Specifically, we analyse the comparative performance of three state-of-the-art exact treewidth
algorithms on a wide array of graphs and use this information to predict which of the algorithms,
on a graph by graph basis, will compute the treewidth the quickest. Experimental results show that
the proposed meta-algorithm outperforms existing methods on benchmark instances on all three
performance metrics we use: in a nutshell, it computes treewidth faster than any single algorithm
in isolation. We analyse our results to derive insights about graph feature importance and the strengths
and weaknesses of the algorithms we used. Our results are further evidence of the advantages to
be gained by strategically blending machine learning and combinatorial optimisation approaches
within a hybrid algorithmic framework. The machine learning model we use is intentionally simple to
emphasise that speedup can already be obtained without having to engage in the full complexities of
machine learning engineering. We reflect on how future work could extend this simple but effective,
proof-of-concept by deploying more sophisticated machine learning models.

Keywords: treewidth; tree decomposition; algorithm selection; machine learning; combinatorial
optimisation

1. Introduction

1.1. The Importance of Treewidth

The treewidth of an undirected graph G = (V, E), denoted tw(G), is a measure of how “treelike”
it is [1]. Trees have treewidth 1 and the treewidth of a graph can be as large as |V| − 1. The concept
of treewidth is closely linked to that of a tree decomposition of G, which is the arrangement of a set of
subsets of V into a tree backbone, such that certain formal criteria are satisfied; these are described in
the preliminaries. The width of the tree decomposition is equal to the size of its largest subset, minus 1
and tw(G) is the minimum width, ranging over all possible tree decompositions of G [2]. In recent
decades treewidth has attracted an immense amount of attention, due to the observation that many
NP-hard problems on graphs become polynomial-time solveable on graphs of bounded treewidth.
This is because, when a tree decomposition of width t is available, it is usually possible to organise
dynamic programming algorithms in a hierarchical way such that the intermediate lookup-tables
consulted by the dynamic programming, have size that is bounded by a function of t [3]. In fact,
because of this many NP-hard problems on graphs can actually be solved in time f (tw(G)) · poly(n),
where n = |V(G)| and f is a computable (typically exponential) function that depends only on tw(G).

Algorithms 2019, 12, 200; doi:10.3390/a12100200 www.mdpi.com/journal/algorithms
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We say then that the problem is fixed parameter tractable (FPT) with respect to tw(G). For this reason,
treewidth has become a cornerstone of the parameterized complexity literature, which advocates a
more fine-grained approach to running time complexity than the traditional approach of expressing
worst-case running times purely as a function of the size of the input [4].

Given its relevance as a ‘gateway to tractability’, treewidth has attracted enormous interest not just
from the combinatorial optimisation and theoretical computer science communities but also from many
other domains such as artificial intelligence (particularly Bayesian inference and constraint satisfaction:
see Reference [5] for a highly comprehensive list), computational biology [6] and operations research [7].
Unfortunately, computing the treewidth (equivalently, a minimum-width tree decomposition) is
NP-hard [8]. This does not nullify its usefulness, however. Alongside practical heuristics (see e.g.,
References [9,10]) there is an extensive literature on computing the treewidth of a graph exactly,
in spite of its NP-hardness. Some of these results have a purely theoretical flavour, most famously in
Reference [11] but there has also been a consistent stream of research on computing treewidth exactly
in practice. Such practical algorithms have an interesting history. Until a few years ago, progress
had been somewhat incremental; see References [12,13] for representative articles from this period.
However, in 2016 the Parameterized Algorithms and Computational Experiments (PACE) treewidth
challenge, an initiative of the parameterized complexity community to promote the development of
practically efficient algorithms, stimulated a major breakthrough. The positive-instance driven dynamic
programming approach pioneered by Tamaki [14] allowed the treewidth to be computed exactly
for many graphs that had hitherto been considered out of range [14,15]. This 2017 edition of PACE
subsequently yielded an additional hundred-fold speed-up over PACE 2016 results [16].

Following the advances triggered by PACE 2016 and Tamaki’s approach, there are now a number
of highly advanced exact treewidth solvers, several of which we will encounter later in this article.
When studying these solvers we observed that, once the solving time rose above a few seconds, no
single solver universally dominated over (i.e., ran more quickly than) all the others. This led us to
the following insight: if we could decide, on a graph-by-graph basis, which solver will compute the
treewidth of the graph most quickly, we could contribute to a further reduction in the time required to
compute treewidth by selecting this fastest algorithm. Traditionally, such an approach would involve
a blend of comparing worst-case time complexities, analysing the ‘inner workings’ of the algorithms
and an ad-hoc exploration of which types of graphs do and do not solve quickly on certain algorithms.
Such a process, however, is time-consuming, requires algorithm-specific knowledge and may have
limited efficacy due to the opaqueness of the algorithmic approaches used and/or highly complex
correlations between input characteristics and algorithmic performance. Hence the question: can we,
as far as possible, automatically learn the relative strengths of a set of algorithms? This brings us to
the domain of machine learning [17] and machine learning-driven algorithm selection in particular. We
note that, although interest has peaked in recent years due to the emergence of data science, there
is already a quite extensive literature on the use of machine learning in combinatorial optimisation
and integer linear programming in particular (see e.g, References [18–20]). In addition to algorithm
selection, which we will elaborate upon below, this literature focuses on topics such as classification of
instances by difficulty [21], running time regression [22,23] and learning to branch [24–26]. We refer to
References [22,27] for excellent surveys of the area and References [28–30] for some recent case-specific
applications in operations research.

1.2. Algorithm Selection

The algorithm selection problem was initially formulated by Rice [31] to deal with the following
question: given a problem instance and a set of algorithms, which algorithm should be selected to
solve the instance? The simplest answer to this question is dubbed the ‘winner takes all’ approach—all
candidate algorithms’ performance is measured on a set of problem instances and only the algorithm
with the best average performance is used. However, there is always a risk that the algorithm that is
best on average will be a sub-optimal choice for many specific instances.
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Conversely, the ideal solution to the problem would be an oracle predictor that always knows
which algorithm is best for any instance. In practice, it is rarely possible to create such a predictor.
Instead, researchers strive to heuristically approximate an oracle. In 2003 Leyton-Brown et al. provided
the first proof-of-concept of per-instance selection [32]. Since then, notable applications and successes
include SAT solvers [33,34], classification [35], probabilistic inference [36], graph coloring [37], integer
linear programming [38] and many others. For a thorough history of the development and applications
of algorithm selection, the reader is referred to Kerschke et al. [39].

1.3. Our Contribution

Although machine learning has been applied to learn desirable characteristics of a given set of
tree decompositions [40] (with a view to speeding up dynamic programming algorithms that then
run over the tree decompositions), algorithm selection has not been applied to the computation of
treewidth itself. This paper sets out to fill that gap by demonstrating a working algorithm selection
framework for the problem. Specifically, we use standard, “out of the box” techniques from machine
learning to train a classifier which subsequently decides, on a graph by graph basis, which out of a
set of state-of-the-art exact treewidth solvers will terminate fastest. The exact treewidth algorithms
were all submissions to Track A of the aforementioned PACE 2017 tournament. The resulting hybrid
algorithm significantly outperforms any single one of the algorithms in isolation. We also investigate
the features (i.e., measurable characteristics) of problem instances and solvers that make some (graph,
algorithm) pairings better than others. The data used to train the classifier has been made publicly
available at github.com/bslavchev/as-treewidth-exact. We feel that the combination of treewidth and
the machine learning approach to algorithm selection is particularly timely, given that they both fit into
the wider movement towards fine-grained, multivariate analysis of running-time complexity. In order
to keep the exposition compact and accessible for a wider audience we have deliberately chosen for a
stripped-down machine learning framework in which we only use a generic, easy-to-compute set of
features and a small number of pre-selected classifiers. As we explain in the section on future work,
more features, classifiers and analytical techniques can certainly be explored in the future. However,
the take-away message for this article is that machine learning-driven algorithm selection can already
be effective without having to resort to highly sophisticated machine learning frameworks.

The structure of this paper is as follows: Section 2 will formally define treewidth and the algorithm
selection problem. Section 3 will describe the graph features, treewidth solvers and machine learning
models that we used. Section 4 will present the datasets used, the experiments conducted and their
results. Section 5 will further analyse the experiment results, while Section 6 contains a discussion of
the insights that the research has yielded. Finally, Section 7 reflects on possible future work and the
trend towards the incorporation of machine learning techniques within combinatorial optimisation.

2. Preliminaries

2.1. Tree Decompositions and Treewidth

Formally, given an undirected graph G = (V, E), a tree decomposition of G is a pair (X, T) where
X is a set whose individual elements Xi are subsets of V called bags and T is a tree whose nodes are
the subsets Xi. Additionally, the following three rules hold:

1. The union of all bags Xi equals V, i.e., every vertex of the original graph G is in at least one bag in
the tree decomposition.

2. For every edge (u, v) in G, there exists a bag X that contains both u and v, i.e., both endpoints
of every edge in the original graph G can be found together in at least one bag in the tree
decomposition.

3. If two bags Xi and Xj both contain a vertex v, then every bag on the path between Xi and Xj also
contains v.
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The treewidth of a tree decomposition (X, T) is the size of the largest bag in the decomposition,
minus one and the treewidth of a graph G is the minimum width ranging over all tree decompositions
of G [2].

2.2. Algorithm Selection

The Algorithm Selection problem, as formulated by Rice [31], deals with the following question:
Given a problem instance and a set of algorithms, which algorithm should be selected to solve the
instance? Rice identified four defining characteristics of the algorithm selection problem:

1. the set of algorithms A,
2. the instances of the problem, also known as the problem space P,
3. measurable characteristics (features) of a problem instance, known as the feature space F,
4. the performance space Y.

The selection procedure S is what connects these four components together and produces the
final answer—given an instance pi, S selects from A an algorithm ai based on the features fi that pi
has, in order to maximize the performance yi.

3. Methodology

3.1. Features

Algorithm selection is normally based on a set of features that are extracted from problem instances
under the assumption that those features contain signal for which algorithm to select. The choice of
features is, of course, subjective. To enhance generality and avoid circularity, we deliberately avoided
selecting features based on specific knowledge of how the treewidth algorithms operate. To that end,
we extracted thirteen features from each of the graphs, listed below. These are very standard summary
statistics of graphs, which are a subset of the features used by Reference [37] where algorithm selection
was used to tackle the NP-hard graph colouring problem. More specifically, we selected these features
because they are trivial to compute, ensuring that the feature extraction phase of our hybrid algorithm
requires only a negligible amount of time to execute. The remaining features used by Reference [37]
are more complex and time-consuming to compute, requiring non-trivial polynomial-time algorithms
to approximate a number of other graph parameters, several of which are themselves NP-hard to
compute. Compared to many machine learning frameworks, our selected subset is a fairly small set
of features: it is more common to start with a very large set of features and then to progressively
eliminate features that do not seem to contain signal. Nevertheless, as we shall see in due course, our
parsimonious choice of features seems well-suited to the problem at hand.

1: number of nodes: v
2: number of edges: e

3,4: ratio: v
e , e

v
5: density: 2e

v(v−1)
6–13: degree statistics: min, max, mean, median, Q0.25, Q0.75, variation coefficient, entropy.

For brevity, the features Q0.25, Q0.75 and variation coefficient will be referred to as q1 (first quartile),
q3 (third quartile) and variation in the rest of this paper. We note that there are some mathematical
correlations in the above features, particularly between v/e and e/v. We keep both to align with
Reference [37], where both features were also used but also because we wish to defer the question of
feature correlations and significance to our post-facto feature analysis later in the article. There we
observe that leaving out exactly one of e/v and v/e in any case does not improve performance. Other
correlations in the features are more indirect and occur via more complex mathematical transformations.
There is no guarantee that the classifiers we use can easily ‘learn’ these complex correlations, which
justifies inclusion. It is also useful to keep all 13 features to illustrate that careful pre-processing
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of features, which can be quite a complex process, is not strictly necessary to obtain a powerful
hybrid algorithm.

3.2. Treewidth Algorithms

The treewidth implementations and algorithms used were submissions to Track A of the 2017
Parameterized Algorithms and Computational Experiments (PACE) competition [16]. All solvers used
are listed below with a brief description and a link to where the implementation can be accessed.
We emphasise that, where solvers have multiple functionalities, we used used them in exact mode.
That is, we ask the solver to compute the true treewidth of the graph, not a heuristic approximation of it.

• tdlib, by Lukas Larisch and Felix Salfelder, referred to as tdlib. This is an implementation of
the algorithm that Tamaki proposed [14] for the 2016 iteration of the PACE challenge [15], which
itself builds on the algorithm by Arnborg et al. [8]. Implementation available at github.com/
freetdi/p17

• Exact Treewidth, by Hisao Tamaki and Hiromu Ohtsuka, referred to as tamaki. Also an
implementation of Tamaki’s algorithm [14]. Implementation available at github.com/TCS-Meiji/
PACE2017-TrackA

• Jdrasil, by Max Bannach, Sebastian Berndt and Thorsten Ehlers, referred to as Jdrasil [41].
Implementation available at github.com/maxbannach/Jdrasil

Tamaki’s original 2016 implementation [14] was initially considered but later excluded due
to being dominated by other algorithms, that is, there was no problem instance where it was the
fastest solver.

3.3. Machine Learning Algorithms

We start by introducing two standard techniques from machine learning. Both these techniques
generate, after analysing training data, a classifier: in our case, an algorithm to which we input the
13 features of the input graph and which then outputs which of the three treewidth solvers to run on
that graph.

Decision Trees are a widely-used model for solving classification problems [42]. The model works
by partitioning the training dataset according to the features of each instance, with each partition being
assigned one of the target labels. The partitioning is done in steps—first, the entire dataset is partitioned
and then each of the resulting partitions may be further partitioned recursively, until a certain condition
is met. The resulting model can be expressed hierarchically as a rooted tree, where every node
represents a partition and every edge represents a partitioning rule based on instance features. Then,
classifying an instance is as simple as starting at the root node and following the path that the instance
takes according to its features and the partitioning rules it encounters. The leaf node in which the
instance ends up determines the label that it should be assigned. A comprehensive introduction to
decision trees is due to Kotsiantis [42]. Decisions trees are popular due to their interpretability. Some of
their disadvantages include a propensity for overfitting through building too-complex trees, as well as
the possibility for small changes in the training dataset to produce radical differences in the resulting
tree [43].

Random Forest is also a widely-used model for solving classification problems, based on decision
trees [44]. Essentially, a Random Forest is an ensemble model that uses a majority-voting system
between multiple decision trees to classify instances. The trees themselves are also built according to
special rules—a detailed explanation of those and Random Forests in general is due to Liaw et al. [44].
Random Forests exhibit strong predictive performance and resistance to over-fitting.

Due to their strong predictive performance, our primary results use Random Forests to learn the
mapping from graphs to algorithms. However, compared to a single decision tree, Random Forest
classifiers can be difficult to interpret. For this reason we also consider classification based on a single
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decision tree, which in this article turns out to have marginally lower predictive power but allows us
to analyse and interpret the sequence of decisions taken to map graphs to algorithms. Once built, the
computational time required to execute our classifiers is negligible.

3.4. Reflections on the Choice of Machine Learning Model

First, we note that in addition to Random Forests and decision trees the machine learning literature
encompasses a wide range of other classifiers which could be used to select the best algorithm. It is
not the purpose of this article to undertake comparative analysis of all these different classifiers in
order to identify the best classifier, although this is something that future work could certainly explore.
Rather, we wish to demonstrate that, armed with a sensible choice of classifier, algorithm selection
can already outperform the original algorithms in isolation. Random Forests are renowned for their
predictive power (see e.g., the discussions in References [37,45]), motivating our choice in this case.
For completeness we did also try a Support Vector Machine (SVM) model [46], which attempts to
classify instances through the use of separating hyperplanes but due to very weak performance in
preliminary experiments we did not explore it further.

Second, we remark that our current model—selecting the fastest algorithm—is only one of many
possibilities for estimating performance. For example, one could try a regression-based approach
whereby a mathematical model is trained that estimates the actual running time of an algorithm on a
given input graph. Then, the (estimated) running times of the three algorithms could be computed and
compared, allowing us a more detailed insight into the relative performance of the algorithms. Such an
approach certainly has its merits and would also obviate the need for moderate difficulty filtering, which
we describe in the next section. However, we defer this to future work, since our simple classification
model already proves to be highly effective, even with the aforementioned filtering technicality. Also,
there are quite some complexities and choices involved in modelling and learning the running times of
sophisticated algorithms, which at this stage would over-complicate the exposition and introduce an
extra layer of parameter estimation.

We return to both these points in the future work section.

4. Experiments and Results

4.1. Datasets

The dataset we used is composed of a multitude of publicly available graph datasets—this section
will provide a list of all datasets used and where they can be found. Some needed to be converted to
the PACE treewidth format from their original format—those are marked with an asterisk (*) in the list
below. Additionally, the list will also provide a shorthand name for every dataset. Datasets used are:

• PACE 2017 treewidth exact competition instances, referred to as ex. Available at github.com/
PACE-challenge/Treewidth-PACE-2017-instances

• PACE 2017 bonus instances, referred to as bonus. Available at github.com/PACE-challenge/
Treewidth-PACE-2017-bonus-instances

• Named graphs, referred to as named. (These are graphs with special names, originally extracted
from the SAGE graphs database). Available at github.com/freetdi/named-graphs

• Control flow graphs, referred to as cfg. Available at github.com/freetdi/CFGs
• PACE 2017 treewidth heuristic competition instances, referred to as he. Available at github.com/

PACE-challenge/Treewidth-PACE-2017-instances
• UAI 2014 Probabilistic Inference Competition instances, referred to as uai. Available at github.

com/PACE-challenge/UAI-2014-competition-graphs
• SAT competition graphs, referred to as sat_sr15. Available at people.mmci.uni-saarland.de/

~hdell/pace17/SAT-competition-gaifman.tar
• Transit graphs, referred to as transit. Available at github.com/daajoe/transit_graphs
• TreeDecomposition.com database [10]*, referred to as toto. Available at treedecompositions.com/
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• PACE 2016 treewidth instances [15], referred to as pace2016. Available at bit.ly/pace16-tw-
instances-20160307

• Asgeirsson and Stein [47]*, referred to as vc. Available at ru.is/kennarar/eyjo/vertexcover.html
• PACE 2019 Vertex Cover challenge instances*, referred to as vcPACE. Available at pacechallenge.

org/files/pace2019-vc-exact-public-v2.tar.bz2
• DIMACS Maximum Clique benchmark instances*, referred to as dimacsMC. Available at iridia.

ulb.ac.be/~fmascia/maximum_clique/DIMACS-benchmark

In total, 30,340 graphs from these datasets were used.

4.2. Experimental Setup

The features described in Section 3.1 were extracted from all graphs. All algorithms described in
Section 3.2 were run on all graphs from Section 4.1.

The three exact algorithms tested in this research output a solution as soon as they find one and
then terminate. However, a limit of 30 min run time was imposed to keep tests within an acceptable
time frame; this is the same as the time limit used in the PACE 2017 competition. If an algorithm
was terminated due to going above the time limit, it was presumed to have failed to find a solution.
For each run, we recorded whether the algorithm terminated within the time limit, the running time (if
it did) and the treewidth of the solution. Recording the treewidth is not strictly necessary, since we are
primarily interested in which algorithm terminates most quickly but it is useful auxiliary information
and we have made it publicly available. All experiments were conducted on Google Cloud Compute
virtual machines with 50 vCPUs and 325GB memory. Since all algorithm implementations used are
single-threaded, fifty experiments were run in parallel. Where necessary (e.g., Java-based solvers),
each experiment was allocated 6.5GB of heap space.

The extracted features and experimental results were combined into a single dataset, in order to
train the machine learning models. There were 162 graphs on which attempting to run a solver or
the feature extractor would cause either the process or the machine where the process was running
to crash. Most of the time, these graphs came from datasets that were not meant for exact treewidth
computation, such as sat_sr15, he and dimacsMC (Section 4.1) and were therefore too big. For instance,
all graphs of the sat_sr15 dataset were too hard for any solver to terminate. For an even more extreme
example, graphs 195 through 200 of the PACE 2017 Heuristic Competition dataset were all too big
for our feature extractor to load them into memory, with graph 195 being the smallest of them at
1.3 million vertices and graph 200 being the biggest at 15.5 million. These graphs are three orders of
magnitude larger than the graphs the implementations were built to work on—the biggest graph from
the PACE 2017 Exact Competition dataset is graph number 198, which has 3104 vertices. Other errors
included unusual yet trivial cases like the graph collect-neighbor_collect_neighbor_init.gr from the dataset
cfg, which only contained one vertex and which broke assumptions of both our feature extractor and
the solvers we used. All such entries were discarded from the dataset. An additional 680 entries were
discarded because no solver managed to obtain a solution on them in the given time limit—presumably
those problem instances were too hard. The resulting dataset contained a total of 29,498 instances.

In the course of preliminary experiments, it was discovered that the dataset we assembled required
some further pre-processing. When each graph in the dataset was assigned a label corresponding to
the exact algorithm that found a solution the fastest, a very large class imbalance was detected—tdlib

was labeled the best algorithm for about 99% (29,234) of instances; Jdrasil—for under 0.2% (55); and
tamaki—for about 0.7% (209). Under these circumstances, an algorithm selection approach could
trivially achieve 99% accuracy by simply always selecting tdlib. To create genuine added value above
this trivial baseline, we imposed additional rules in order to re-balance the dataset towards graphs that
are neither too easy, nor too hard; we call these graphs of moderate difficulty. Graphs were considered
not of moderate difficulty if either all algorithms found a solution quicker than some lower bound (i.e.,
the graph is too easy), or all algorithms failed to find a solution within the allotted time (i.e., the graph
is too hard). The reasoning behind this approach is that if algorithms’ run times lie outside of the
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defined moderate area, there is little gains to be made with algorithm selection anyway. If a graph is too
easy, a comparatively weak algorithm can still solve it quickly; if a graph is too hard, there simply is no
“correct" algorithm to select. Formally, if lb is the lower bound, ub is the allotted time (upper bound) and
rt(A, G) is the run time of algorithm A on graph G, then if (∀A : lb ≥ rt(A, G))∨ (∀A : ub ≤ rt(A, G))

holds, G will be excluded.
Three different lower bounds were used—1, 10 and 30 s—and graphs that passed the conditions

were stored in datasets A, B and C, respectively. (For the upper bound, we used the time-out limit of
30 min). This necessitates us making a distinction between source datasets and filtered datasets—the
source datasets are those publicly available datasets that we started with; the filtered datasets are the
sum of all graphs from all source datasets which passed through the respective filter. Table 1 breaks
down how many graphs from each source dataset remained in each filtered dataset.

Table 1. The total number of graphs per source dataset and the number of those graphs in filtered
datasets A, B and C (see Sections 4.1 and 4.2 for clarification).

Datasets Unfiltered A B C

bonus 100 36 36 35
cfg 1797 43 1 0
ex 200 200 172 137
he 200 26 17 17

named 150 47 14 11
pace2016 145 95 16 13

toto 27,123 594 92 53
transit 19 10 4 4

uai 133 27 14 43
vc 178 58 42 38

vcPACE 100 6 6 6
dimacsMC 80 20 13 10

sat_sr15 115 0 0 0
Total 30,340 1162 427 337

The same label-assigning procedure described above was repeated. The resulting class
distributions are shown in Table 2. Afterwards, Random Forest models were trained using the Python
machine-learning package scikit-learn [48], using all default settings except for allowing for up to
1000 trees in the forest. Both Leave-One-Out (LOO) cross-validation and 5-fold cross-validation were
used in order to decrease the importance of randomness in the train-test split. 5-fold cross validation
was repeated 100 times with different random seeds for the same purpose; at the end, the results
from all 100 runs were averaged. These two cross-validation methods produced virtually identical
results, hence we only present the results for LOO cross-validation. The results presented are for the
entire dataset. Our algorithm selector is evaluated based on its predictions for each graph when it
was in the test set—that is, a model is never evaluated on a graph that it has been trained on. We
deemed the usage of a hold-out set unnecessary, as no hyper-parameter optimisation took place.
(For readers not familiar with these technical machine learning terms, we refer to survey literature
such as Tsamardinos et al. [49]).

Table 2. Number of graphs, within each dataset, for which the given algorithm was fastest (see
Sections 4.1 and 4.2).

Unfiltered Dataset A Dataset B Dataset C

Jdrasil 55 55 49 42
tamaki 209 209 186 168
tdlib 29,234 898 192 127
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An additional model was trained on Dataset B, using a single CART decision tree as a classifier
and 50% of the data as a training set. The purpose of this model was not to optimise predictive
performance but interpretability, as a Decision Tree model is significantly easier to interpret than a
Random Forest model. We hoped that this interpretation would provide insight into what makes
solvers good on some instances and bad on others. Dataset B was chosen due to having the best class
distribution, with no clearly best algorithm.

An experiment using Principal Component Analysis (PCA) for dimensionality reduction was also
undertaken on Dataset B. The purpose was to evaluate to what extent the feature set can be shrunk
without significant loss of performance and potentially to provide insight into feature importance
through examination of the principal components.

Reflections on filtering. Before turning to the results, we wish to reflect further on moderate difficulty
filtering, described above. Recall: graphs which are not of moderate difficulty, are those where all
the solvers terminated extremely quickly (i.e., more quickly than the lower bound) or all the solvers
exceeded the upper bound (here: exceeded 30 min of run time, that is, timed out). As mentioned earlier,
we originally introduced this filtering after observing heavy skew in the initial dataset. We did not
know a priori what the ‘correct’ lower bound should be, which is why we tried three different values
(1, 10, 30 s) (Note that, once the bound is chosen, the Random Forest classifier can be trained on our
data in less than a minute, although cross-validation takes longer). As our results show, this filtering is
sufficient to obtain a hybrid algorithm that clearly outperforms the individual algorithms. Interestingly,
the filtering also mirrors our practical experience of solving NP-hard problems exactly. That is,
many different algorithms can solve easy instances of NP-hard problems within a few seconds but
beyond this running times of algorithms tend to increase dramatically and relative efficiencies of
different algorithms become more pronounced: one algorithm might take seconds, while another takes
hours or days. Once inputs are eliminated that are far too hard for any existing exact algorithm to
solve, we are left with inputs that are harder than a certain triviality threshold but not impossibly
hard—and it is particularly useful to be able to distinguish between algorithmic performance in this
zone. A second issue concerns the choice of lower bound. If we wish to use the hybrid algorithm in
practice, by training it on newly gathered data, what should the lower bound be? If we do not have
any information at all concerning the underlying distribution of running times—which will always
be a challenge for any machine learning model—we propose training using a lower bound such as
1 or 10 s. Unseen graphs which are moderately difficult (subject to the chosen bound) will utilise the
classifier in the region it was trained for. Others will be solved very quickly by all solvers—a running
time of at most 10 s is, for many NP-hard problems, very fast—or all solvers will time out, and then it
does not, in practice, matter which algorithm the model chose. In the future work section we consider
alternatives to moderate difficulty filtering.

4.3. Experimental Results

This section is divided into five subsections where each of the first three subsections covers the
results of experimenting on one of the three datasets generated by setting a different lower bound for
algorithms’ run time, as described in Section 4.2. The hybrid algorithm—essentially, the mapping from
graph to algorithm that is prescribed by the trained classifier—will be compared against the solvers
and against an ‘oracle’ algorithm, which is a hypothetical hybrid algorithm that always selects the best
solver. Three performance metrics will be used:

• Victories. A ‘victory’ is defined as being (or selecting, in the case of the hybrid algorithm or the
oracle algorithm) the fastest algorithm for a certain graph.

• Total run time on the entire dataset.
• Terminations. A ‘termination’ is defined as successfully solving the given problem instance

within the given time. No regard is given to the run-time, the only thing that matters is whether
the algorithm managed to find a solution at all.
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Please refer to Figure 1 for detailed results from these three experiments. We note that the running
times for the hybrid algorithm do not include the time to execute the Random Forest classifier. This is
acceptable because in the context of the experiments its contribution to the running time is negligible:
approximately a hundredth of a second for a single graph.
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Figure 1. Experimental results using Leave-One-Out cross-validation. Each chart presents the results
from the experiment on one of the three datasets (A, B and C) based on one of the three performance
metrics (victories, total run time and terminations). For the Oracle and Hybrid algorithms, results
are not presented as an aggregate of all solver choices—instead, each solver’s contribution to each
performance metric is presented separately (see Sections 4.2 and 4.3). Total running times are measured
in seconds.
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The fourth subsection covers the experiment conducted on Dataset B with a decision tree classifier,
while the fifth subsection covers the Principal Component Analysis experiment.

4.3.1. Dataset A

(The information in this subsection can also be found in Figure 1; similarly for Datasets B and C).
The hybrid algorithm selected the fastest algorithm on 1025 out of 1162 graphs, whereas the best
individual solver (tdlib) was fastest for 898. The hybrid algorithm’s run time was 87,500 s, while the
overall fastest solver (tamaki) required 137,447 s and the perfect algorithm—54,810 s). The hybrid
algorithm terminated on 1145 out of the 1162 graphs, whereas the best solver (tamaki) terminated
on 1115.

4.3.2. Dataset B

The hybrid algorithm selected the fastest algorithm on 326 out of 427 graphs, whereas the best
individual solver (tdlib) was fastest for 192. The hybrid algorithm’s run time was 82,085 s, while the
overall fastest solver (tamaki) required 135,935 s and the perfect algorithm—54,466 s. The hybrid
algorithm terminated on 413 out of the 427 graphs, whereas the best solver (tamaki) terminated on 380.

4.3.3. Dataset C

The hybrid algorithm selected the fastest algorithm on 261 out of 337 graphs, whereas the best
individual solver (tamaki) was fastest for 168. The hybrid algorithm’s run time was 80,697 s, while
the overall fastest solver (tamaki) required 134,910 s and the perfect algorithm—54,060 s. The hybrid
algorithm terminated on 323 out of the 337 graphs, whereas the best solver (tamaki) terminated on 290.

4.3.4. Dataset B—Decision Tree

A decision tree was trained with the default scikit-learn settings but it was too large to interpret,
having more than 40 leaf nodes. We optimised the model’s hyper-parameters until we obtained a
model that was small enough that it could be easily interpreted, without sacrificing too much accuracy.
The final model was built with the following restrictions: any leaf node must contain at least 2 samples;
the maximum depth of the tree is 3; a node is not allowed to split if its impurity is lower than 0.25.

The resulting hybrid algorithm’s performance was deemed satisfactorily close to the Random
Forest selector we trained on the same dataset. The decision tree selected the fastest algorithm on 151
out of 214 graphs, whereas the Random Forest model selected the fastest for 153. The decision tree
selector’s run time was 54,017 s, while the Random Forest selector required 55,696 s. The decision
tree selector terminated on 202 out of the 214 graphs, whereas the Random Forest selector terminated
on 201.

4.3.5. Dataset B—Principal Component Analysis

Principal Component Analysis with three components was applied to the dataset and used to
train a Random Forest classifier, which was trained and evaluated in the same way as the other
Random Forest models. The three components cumulatively explained about 90% of the variance
in the data; for a detailed breakdown, please refer to Table 3. The trained model had an accuracy of
about 73% compared to the baseline model’s accuracy of 76.5%. While the loss of accuracy is small,
our drop-column feature analysis in Section 5 shows many sets of three features that can be used to
build a model of similar or higher accuracy.
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Table 3. The individual components in the Principal Component Analysis. Each row refers to one of the
three components. The leftmost column shows how much of the total variance of the data is explained
by that component; all other columns show how the respective feature is factored into the component.

VE v e v/e e/v Density q1 Median q3 Minimum Mean Maximum Variation Entropy

0.58 −0.01 0.33 −0.17 0.36 0.30 0.36 0.36 0.36 0.32 0.36 0.00 −0.02 0.12
0.25 0.55 0.09 0.15 0.00 −0.07 0.00 0.00 0.00 0.00 0.00 0.55 0.55 0.24
0.08 −0.14 0.21 0.63 0.05 −0.44 0.07 0.06 0.04 0.02 0.05 −0.18 −0.17 0.52

5. Analysis

In this section, the experimental results and the machine learning models behind them are
analysed with the intention of deriving insights into why certain algorithm-graph pairings are stronger
than others and to determine which features of a graph are the most predictive.

We begin by analysing the importance of features for a Random Forest model trained on 50%
of Dataset B. We chose to train a separate model, instead of using one from our cross-validation,
because those models are all trained on all but one samples. We chose that dataset because of its
class distribution—the two solvers that are strong on average (tdlib and tamaki) have nearly equal
results and the third solver (Jdrasil) is still best for a significant number of problem instances, unlike in
Dataset A. This guarantees that the hybrid algorithm’s task is the hardest, as the trivial ‘winner-takes-all’
approach would be the least effective.

We used the feature importance functionality that is built into the scikit-learn package. The results
are presented in Figure 2. The results indicate that almost all features are important for the classification
and their importance varies within relatively tight bounds.

variation density minimum mean v/e e/v q1 maximum e entropy v q3 median
Individual 13.94% 9.89% 9.72% 8.83% 8.77% 8.74% 6.88% 6.43% 6.13% 6.13% 5.98% 4.65% 3.88%
Cumulative 13.94% 23.83% 33.55% 42.38% 51.16% 59.90% 66.79% 73.22% 79.35% 85.48% 91.47% 96.12% 100.00%
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Figure 2. Feature importance for the Random Forest model trained on Dataset B (Section 4.2). We refer
the reader to Section 3.1 for the list of features used. Each bar indicates the fraction of impurity in the
dataset that is removed by splits on the relevant feature in all trees of the model.

In order to gain further insight, we decided to exclude certain features from the dataset, retraining
the model on the reduced dataset and measuring its accuracy against the baseline of the original full
model, which is 76.5%. In order to obtain more statistically robust results, we made multiple runs of
10-fold cross-validation and kept their scores. Afterwards, the scores were compared to the baseline of
using all features using the Wilcoxon Signed-Rank Test with an alpha of 0.05.
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At first, we attempted excluding single features. We did 10-fold cross-validation 50 times for
every excluded feature. No result was statistically significantly different from the baseline.

Next, we attempted excluding two features at a time. Again, we did 10-fold cross-validation
50 times for every excluded set of features. Two pairs of features obtained a statistically significant
worse accuracy score—variation and minimum degree, as well as variation and entropy.

Finally, we attempted excluding three features at a time. This time, we did 10-fold cross-validation
only 5 times, as here the computational cost of doing otherwise was prohibitive. While there were
14 sets of features that led to significantly worse scores, the magnitude of the change was rather
small—the worst performance was 74.5% and was achieved by removing minimum degree, maximum

degree and variation. Of note is also the fact that 13 of 14 sets contained at least two of these same
features and one set contained only one of them.

Since removing features seemed to provide us with little insight, we attempted another
approach—removing all features except for a small number of designated features. Then we repeated
the same procedure—we retrained the model on the reduced dataset and measured its accuracy against
the original model. Again, we did 10-fold cross-validation a multitude of times. We began by only
selecting one feature to retain, repeating the training 50 times. The feature minimum degree emerged
as a clear winner, having 72% accuracy. We highlight the fact that by removing three features at
a time, we only managed to lower the accuracy to about 74.5%, while a model with only one feature
successfully reached 72%.

Next, we selected pairs of features to keep and did 10-fold cross-validation 50 times. 7 sets of
features performed at least as well as the original model. All of them contained variation and/or
maximum degree.

Finally, we selected sets of 3 features to keep and did 10-fold cross-validation 5 times. More than
50 sets of features performed at least as well as the original model. Notably, despite the previously
demonstrated importance of variation, minimum degree and maximum degree, adding all three of
them produced results that were around the middle of the pack at 74.5%. However, a large majority of
the best results contained at least one or more often two of those features.

All experiments also showed models that surpassed the performance of the benchmark model,
reaching 78.5% by only adding mean, variation and maximum degree—compared to 76.5% for the
original model. Naturally, we view such results with caution. They could well be the result of chance,
especially seeing as how we use no validation set—however, another possibility is that the classifiers
can be more efficiently trained on smaller subsets of features.

The frequency with which the features variation, minimum degree and maximum degree appear
in our analysis indicates that they carry some critically important signal that the classifier needs in
order to be accurate. However, it appears that one or two of the features are sufficient to reproduce the
signal and adding the third one does not help much.

We also attempted to determine feature importance by examining the Decision Tree model that
was built for Dataset B (Figure 3). Our analysis ignores nodes that offer under 50% accuracy and nodes
that contain very few (less than four) samples, as those are deemed not to bring a significant amount
of insight to the analysis.
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q1 ≤ 4.5
gini = 0.594

samples = 213
salue=[24,93,96]

class = tdlib

entropy ≤ 4.73
gini = 0.452

samples = 116
salue=[11,23,82]

class = tdlib

minimum ≤ 3.5
gini = 0.321

samples = 90
salue=[5,12,73]

class= tdlib

gini = 0.281
samples = 87

salue=[4,10,73]
class = tdlib

variation ≤ 0.603
gini = 0.44

samples = 97
salue=[13,70,14]

class = tamaki

gini = 0.209
samples = 77

salue=[1,68,8]
class = tamaki

gini = 0.444
samples = 3

salue=[1,2,0]
class = tamaki

e ≤ 2184.0
gini = 0.54

samples = 20
salue=[12,2,6]
class = Jdrasil

gini = 0.408
samples = 7

salue=[0,2,5]
class = tdlib

gini = 0.142
samples = 13

salue=[12,0,1]
class = Jdrasil

variation ≤ 0.866
gini = 0.648

samples = 26
salue=[6,11,9]
class= = tamaki

gini = 0.0
samples = 3

salue=[3,0,0]
class = Jdrasil

gini = 0.601
samples = 23

salue=[3,11,9]
class = tamaki

True False

Figure 3. The CART Decision Tree trained on Dataset B. Each rectangle represents a node in the tree.
The first line in each internal node indicates the condition according to which that node splits instances.
In leaf nodes, this line is omitted, as no split is executed there. Each internal node’s left child pertains
to the subset of instances that met the condition, whereas the right child pertains to those that did not
meet the condition. The next line describes the node’s Gini impurity, which is the probability that a
randomly chosen element from the set would be incorrectly labeled if its label was randomly drawn
from the distribution of labels in the subset. The next line shows how many graphs are in the subset
that the node represents, while the following line shows how many instances of each class are in that
subset, with the three values corresponding to Jdrasil, tamaki and tdlib, respectively. The last line
shows the class which is the most represented in the subset, which is also the class that the Decision
Tree would assign to all instances in that subset.

The very first split in the model already provides a dramatic improvement in accuracy. Its left
branch is heavily dominated by tdlib—after that split alone, selecting tdlib would be the correct choice
about 70% of the time. On the right side of the split, a similar situation is observed with tamaki being
the correct choice about 72% of the time. This shows that the first split, which sends to the left graphs
where the first quartile of the degree distribution is smaller than or equal to 4.5, is very important
for solvers’ performance. The first quartile being low is an indicator for a small or sparse graph and
according to the model, tdlib’s performance on those is better, while tamaki seems to cope better with
larger or denser graphs.

There are two paths that lead to Jdrasil being the correct label, both of which require that the
variation coefficient feature is higher than a certain threshold, which is quite high (0.603 and 0.866).
This leads us to believe that Jdrasil performs well on graphs where there is significant variation in
the degree of all vertices. One of these paths also requires the graph to have more than 2184 edges or
otherwise tdlib is selected instead. This again indicates that tdlib is better at solving smaller or sparser
graphs, while Jdrasil can deal with variability in larger graphs too.

One thing worth highlighting is that tdlib also seems to excel on graphs where the degree
distribution has a low first quartile and the minimum degree is low. This also confirms our belief that
tdlib excels on smaller and sparser graphs.

6. Discussion

In this section, the experimental results and analysis are discussed and some general insights are
derived. One such general insight is the relative unavailability of graph sets of moderate difficulty.
Depending on the definition of ‘moderate’, only between 1 and 3 percent of the graphs we tested could
be considered as such. A likely explanation for this is that most datasets were assembled before the
2016 and 2017 editions of the PACE challenge, which introduced implementations that were multiple
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orders of magnitude faster than what was previously available, which in turn rendered many instances
too easy.

Moving to specific points, we start by noting the promising performance of our hybrid algorithm
compared to individual solvers. Our experiments clearly demonstrate the strength of the algorithm
selection approach, as it outperformed all solvers on all datasets and all performance metrics,
even though our underlying machine learning model is (deliberately) simple. However, the comparison
with an omniscient algorithm selector also demonstrates that there is room for improvement in our
framework. Section 7 lays out some suggestions for how our work can be improved upon.

Next, we reflect on the question: which features of a problem instance are the most predictive?
We utilised three different approaches to answering this question—measuring how much each feature
reduces impurity in our Random Forest model on Dataset B, measuring the performance of models
that were only trained on a subset of all features and analysing the Decision Tree model we trained on
Dataset B. Overall, our three approaches provided different and sometimes conflicting insights but
some insights were confirmed by multiple approaches. One such insight is that there do not seem to be
critically important individual features, as it appears that many different features can carry the same
information, partly or in whole, which makes determining their individual importance difficult.

Measuring the impurity reduction of all features indicated that all features have a positive
contribution to prediction. The most important feature, degree variation coefficient, was only about
3.5 times more important than the least important feature, median degree. The overall distribution of
feature importances is such that the most important five features together account for about 50% of
the importance, while the remaining eight account for the rest. Our interpretation of these results is
that they show all features being significant contributors and while there are features that are more
important than others, there are no clearly dominant features that eliminate the need for others.

The feature removal analysis indicated that three features—variation, minimum degree and
maximum degree—all seem to be related in that removing all of them significantly reduces performance
and performance increases as more of them are added, until all three are added, which does not provide
a significant improvement in performance. Our interpretation is that there is a predictive signal that
is present only in those three features but any two of them are sufficient to reproduce it. Besides this
insight, feature removal provided little that we could interpret and that was not in direct conflict with
other parts of the same analysis.

The analysis of the Decision Tree model indicated that size, density and variability are the most
important characteristics of a graph; however, those could be expressed through different numerical
features. For instance, the first quartile of the degree distribution (q1), which could be an indicator
for graph size or density, was by far the most predictive feature in our Decision Tree model. To make
discussing this easier, we will separate the concepts characteristic and feature. Characteristics are a more
general characteristic that can be represented by many different features; features are specifically the
numbers we described in Section 3.1.

Combining the results from all three approaches is difficult, as they often conflict. However,
the insight from the Decision Tree analysis that size, density and variability are the most important
characteristics of a graph, no matter what specific numerical proxy they are represented by, is consistent
with results from other analysis approaches. The feature removal analysis indicated that variation,
minimum degree and maximum degree together carry an important signal—these features can be
considered a proxy for size, density and variability. The impurity reduction results are also consistent
with this, as they showed variation, density and minimum degree being the three most important
features. The relative lack of importance stemming from which proxy is used for these characteristics
of a graph is also demonstrated by q1—while that feature is by far the most important in the Decision
Tree analysis, the other two analytical approaches did not show it being particularly important, as it
was only seventh out of thirteen in impurity reduction and did not make even one appearance in the
sets of important features that the feature removal analysis yielded.
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Our experiments also yield some insights into the strengths and weaknesses of the solvers.
One insight that becomes clear from the class distribution in both our unfiltered dataset and the
three filtered datasets (as per Section 4.2) is that the solver tdlib is dominant on ‘easy’ graphs. In the
unfiltered dataset, tdlib was the best algorithm for 97% of graphs which became progressively less
with a higher lower bound being imposed on difficulty. At the lower bound of 30 s (Dataset A), tdlib

was the best algorithm for 77% of graphs; at 10 s (Dataset B) that number went further down to 45%;
and at 30 s (Dataset C) it was only 38%. Notably, tdlib kept the “most victories" title in the unfiltered
dataset, Dataset A and Dataset B; however, in Dataset C, tamaki dethroned it with 49% versus 38%.
Undeniably, going from a 97% dominance to no longer being the best algorithm as difficulty increases
tells us something about the strengths and weaknesses of the solver. This is also confirmed by our
analysis of the Decision Tree model, which clearly showed tdlib had an aptitude for smaller and
sparser graphs.

Another insight is tamaki’s robustness. It is the best solver in terms of terminations and run
time on all three datasets, despite not being the best in terms of victories on datasets A and B.
Most interesting is tamaki’s time performance on Dataset A—while tdlib has more than four times as
many victories on that dataset as tamaki does, tamaki’s run time is still about 30% better than tdlib’s.
Our analysis of the Decision Tree model showed tamaki having an affinity for larger or denser graphs,
complementing tdlib’s strength on smaller or sparser graphs. The weakness of tamaki on sparse
graphs that we discover is consistent with the findings of the solver’s creator [14].

Finally, Jdrasil seemed to have a tighter niche than the other solvers—specifically, larger
graphs with a lot of variability in their vertices’ degree. However, Jdrasil clearly struggles on
most graphs, as evidenced by its always coming in last in our experiments on all datasets and
all performance metrics.

Summarizing, our analysis suggests that the most important characteristics of a graph are size,
density and variability and that when focussing on these characteristics the three algorithms have
the following strengths: tdlib—low density and size; tamaki—high density and size, low variability;
Jdrasil—high density and size, high variability.

7. Conclusions and Future Work

7.1. Conclusions

In this article, we presented a novel approach based on machine learning for algorithm selection
to compute the treewidth of a graph. Given a set of algorithms and a set of features of a specific
problem instance, our system predicts which algorithm is most likely to have the best performance,
according to a previously learned classification model. For this purpose, 13 features of graphs were
identified and used. To evaluate our approach, we compared three state-of-the-art solvers, our hybrid
algorithm and a hypothetical, perfect ‘oracle’ algorithm selection system, on thirteen publicly-available
graph datasets and three performance measures. Our intentionally stripped-down machine learning
approach outperformed all individual solvers on all datasets and on all performance metrics, which
clearly demonstrates its utility. However, the hypothetical perfect algorithm selector still significantly
outperformed our approach, which indicates that there are further improvements to be made. Based on
our results, we argued that size, density and degree variability are the most important characteristics
of a graph that determine which algorithm would be fastest on it. We also identified specific solvers’
strengths and weaknesses based on these same characteristics.

7.2. Future Work

One weakness of our work is that algorithms were only run once on each graph, so any
randomness in algorithms’ run time is completely unaccounted for—future work may try to alleviate
that by running algorithms several times and obtaining a confidence interval on the run time. Another
sensitive part of our experimental framework concerns the selection of the three running time lower
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bounds (1, 10 and 30 s) that defined our three moderately difficult datasets A, B and C. These choices
echo the practical experience of many algorithm designers that, if an exponential-time algorithm
takes more than a few seconds to terminate, the running time quickly explodes and the comparative
efficiencies of the algorithms become more important. It would be interesting to try to place the
selection of such lower bounds on a more formal footing; in some sense they capture an interesting
‘triviality threshold’ beyond which the performance of existing treewidth solvers starts to deviate
in a practically significant way. Future work could also explore whether the moderate difficulty
filtering can be removed altogether, obviating the need to select the lower bound during training.
One logical step in this direction would be to switch from our ‘who wins?’ classification model, to a
regression-based model which is capable of predicting the running time of individual algorithms
(or some kind of weighted classification model which takes the margin of victory into account).
The regression model(s) could be used to estimate the running time of the different treewidth solvers
on a given input graph, the fastest solver would then be chosen and auxiliary sensitivity analysis such
as the margin of victory would then also be immediately available. There has been some interesting
work on running-time regression of this kind (see e.g., References [22,23,50]). Such an approach could
be effective but it is non-trivial to learn the running times of sophisticated algorithms, particularly
if—as in this case—it is unclear what type of mathematical function (modelling the running time)
we are trying to learn or whether the same function is applicable to all the different solvers. Indeed,
more experimental parameters will need to be estimated and tuned and when modelling running
times some kind of context-sensitive choices seem unavoidable to ensure that the regression model
focuses on running times of the appropriate order of magnitude. For example, in the present context it
would be most important that the regression model predicts well when running times are seconds
or minutes, not microseconds or years. In other words, it is possible that the parameter estimation
inherent in our moderate difficulty filtering will re-emerge somewhere else in the regression model.
Nevertheless we regard this as a very interesting route for future research.

Introducing more solvers could offer further improvement, as additional solvers might exhibit
a different set of strengths and weaknesses which the algorithm selection approach can then exploit.
Also, as already discussed in Section 6, using a larger and more diverse set of graphs to experiment
on, with a focus on graphs that are neither too easy nor too hard for algorithm selection to be useful,
could strengthen the research: given the advances of PACE 2016, there is an urgent need for new,
more difficult (but not too difficult!) datasets. Following standard machine learning methodology,
we could consider incorporating different/more features, experimenting with different classifiers and
carefully optimising hyper-parameters. In order to make such research easier, we have provided full
access to the dataset we generated for this project. The dataset can be found on github.com/bslavchev/
as-treewidth-exact.

More generally, we suggest a more thorough and rigorous analysis of feature importance (and
their interactions). It would be fascinating to delve into the underlying mechanics of the three treewidth
solvers (tdlib, tamaki, Jdrasil) to try to shed more light on why certain (graph, algorithm) pairings
are superior to others and to analyse how different features of the graph contribute to the running
times of the algorithms. It is highly speculative but perhaps such an analysis could help to identify
new parameters which can then be analysed using the formal machinery of parameterized complexity.
In this article we chose emphatically not to “open the black box” in this way, preferring instead to
see how far a simple machine learning framework could succeed using generic graph features and
without in-depth, algorithm-specific knowledge. Nevertheless, such an analysis would be a valuable
contribution to the algorithm selection literature. (Beyond treewidth, it would be interesting to explore
whether our simple machine learning framework can be effective, without extensive modification,
in the computation of other NP-hard graph parameters.)

Finally we suggest the development of an easy-to-use software package that utilises our work and
the state of the art in treewidth solvers to provide the best possible performance out of the box and to
aid researchers and practitioners alike. Rather than re-inventing the wheel anew, it is probably wisest
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to integrate an algorithm selection framework into an existing general treewidth framework (such
as the wider tdlib ecosystem, which is available at github.com/freetdi/tdlib), as it would provide
numerous opportunities and benefits—for example, selecting not just solvers but also pre-processors
and kernelisation algorithms for treewidth (see Reference [51] and the references therein) and using
the results from pre-processors as features for the solver selection, among others. Such a framework
could also incorporate advances in computing treewidth using parallel processing [52].

7.3. The Best of Both Worlds

As a final note, we view our work as part of the accelerating trend towards the use of machine
learning to derive data-driven insights, which are then used to enhance the in-practice performance of
combinatorial optimisation algorithms. The deepening synthesis between predictive and prescriptive
analytics in operations research is also part of this trend. Combinatorial optimisation traditionally
focusses on aggressively optimised algorithms, which are then analysed using worst-case, univariate
complexity analysis. Apart from the simplest algorithms, such one-dimensional analyses cannot
adequately capture the role of many implicit parameters in determining the running time of algorithms
(and indeed, the emergence of parameterized/multivariate complexity is a formal reaction to this).
Machine learning, although not the appropriate instrument for combinatorial optimisation per se,
can fulfill a powerful role in automatically fathoming such implicit parameters.
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Abstract: Chen and Flum showed that any FPT-approximation of the k-CLIQUE problem is not in
para-AC0 and the k-DOMINATINGSET (k-DOMSET) problem could not be computed by para-AC0 circuits.
It is natural to ask whether the f (k)-approximation of the k-DOMSET problem is in para-AC0 for some
computable function f . Very recently it was proved that assuming W[1] �= FPT, the k-DOMSET problem
cannot be f (k)-approximated by FPT algorithms for any computable function f by S., Laekhanukit and
Manurangsi and Lin, seperately. We observe that the constructions used in Lin’s work can be carried
out using constant-depth circuits, and thus we prove that para-AC0 circuits could not approximate
this problem with ratio f (k) for any computable function f . Moreover, under the hypothesis that the
3-CNF-SAT problem cannot be computed by constant-depth circuits of size 2εn for some ε > 0, we show
that constant-depth circuits of size no(k) cannot distinguish graphs whose dominating numbers are either

≤k or >
(

log n
3 log log n

)1/k
. However, we find that the hypothesis may be hard to settle by showing that it

implies NP �⊆ NC1.

Keywords: parameterized AC0; dominating set; inapproximability

1. Introduction

The dominating set problem is often regarded as one of the most important NP-complete problems
in computational complexity. A dominating set in a graph is a set of vertices such that every vertex in
the graph is either in the set or adjacent to a vertex in it. The dominating set problem is, given a graph
G = (V, E) and a number k ∈ N, to decide the minimum dominating set of G has a size of at most k.
This problem is tightly connected to the set cover problem, which was firstly shown to be NP-complete
in Karp’s famous NP-completeness paper [1]. Unless P = NP, we do not expect to solve this problem
and its optimization variant in polynomial time. Furthermore, the set cover conjecture asserts that for
every fixed ε > 0, no algorithm can solve the set cover problem in time 2(1−ε)npoly(m), even if set sizes
are bounded by Δ = Δ(ε) [2,3]. One way to handle NP-hard problems is to use approximation algorithms.
One key measurement of an approximation algorithm for the dominating set problem is its approximation
ratio, i.e., the ratio between the size of the solution output by the algorithm and the size of the minimum
dominating set. It is known that greedy algorithms can achieve an approximation ratio of ≈ln n [4–8].
Though this problem has a PTAS (polynomial-time approximation scheme, an algorithm which takes an
instance of an optimization problem and a parameter ε > 0 and, in polynomial time, approximate the
problem with ratio 1 + ε) applied to apex-minor-free graphs for contraction-bidimensional parameters [9],
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after a long line of works [10–14], the approximation ratio of this problem was matched by the lower bound
by Dinur and Steurer [15], who followed the construction presented in Feige’s work [12], showing that for
every ε > 0, we could not obtain a (1− ε) ln n-approximation for this problem unless P = NP. Besides
approximation, another widely-considered technique to circumvent the intractability of NP-hard problems
is parameterization. If we take the minimum solution size k as a parameter, then the brute-force algorithm
can solve the k-DOMINATINGSET (k-DOMSET) problem in O(nk+1) time. However, it is recently proved
that, assuming FPT �= W[1], for any computable function f , there is no f (k)-FPT-approximation algorithm,
that is, there is no approximation algorithm running in FPT-time and with a ratio of f (k) [16–18].

Circuit complexity was thought to be a promising direction to solve P vs. NP. Though it has been
long known that some problems, like the parity problem, are not in AC0 [19–21], proving that non-uniform

lower bounds for functions in nondeterministic complexity classes such as NP, NQP = NTIME[nlogO(1) n],

or NEXP is a well-known challenge. After Williams’ proving that NEXP does not have nlogO(1) n-size
ACC ◦ THR circuits (ACC composed with a layer of linear threshold gates at the bottom) [22,23], Murray
and Williams showed that for every k, d, and m there is an e and a problem in NTIME[nloge n] which does
not have depth-d nlogk n-size AC[m] circuits with linear threshold gates at the bottom layer [24].

Rossman showed that the k-CLIQUE problem has no bounded-depth and unbounded fan-in circuits
of size O(nk/4) [25], which may be viewed as an AC0 version of FPT �= W[1]. Chen and Flum [26] showed
that any FPT-approximation of the k-CLIQUE problem is not in para-AC0. The parameterized circuit
complexity class para-AC0 introduced by Elberfeld, Stockhusen, and Tantau [27] as the AC0 analog of the
class FPT, is the class of parameterized problems computed by constant-depth circuits of size f (k)poly(n)
for some computable function f . In the same paper, based on Rossman’s result, they also showed that the
k-DOMSET problem could not be computed in para-AC0. This brings us to the main question addressed
in our work: Is there a computable function f such that the f (k)-approximation of k-DOMSET is in para-AC0?
Furthermore, since we could enumerate every k tuple of vertices by depth-3 circuits of size O(nk+1)

using brute force, we might wonder whether it is possible to have a computable function f such that the
f (k)-approximation of k-DOMSET could be computed by constant-depth circuits of size no(k).

Our Work

In this paper, we show that for any computable function f , the f (k)-FPT-approximation of the
k-DOMSET problem is not in para-AC0. Furthermore, under the hypothesis that constant-depth circuits of
size 2o(n) could not compute 3-CNF-SAT (we call it AC0-ETH, the constant-depth version of ETH—the
exponential time hypothesis), there is no computable function f such that the f (k)-approximation of
k-DOMSET could be computed by constant-depth circuits of size no(k). Theorems 1 and 2 are direct
consequences of Theorems 3 and 4, respectively.

Theorem 1. Given a graph G with n vertices, there is no constant-depth circuits of size f (k)no(
√

k) for any
computable function f which distinguish between:

• The size of the minimum dominating set is at most k,

• The size of the minimum dominating set is greater than
(

log n
log log n

)1/(k
2).

Note that this theorem implies the nonexistence of para-AC0 circuits which f (k)-approximates the
k-DOMSET problem for any computable function f . This is because if there is an f (k)-approximation
para-AC0 circuit Cn,k whose size is g(k)poly(n), we can construct a constant-depth para-AC0 circuit C′n,k

to distinguish the size of the minimum dominating set is at most k or greater than
(

log n
log log n

)1/(k
2) as
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follows. Compare f (k) and
(

log n
log log n

)1/(k
2) — if f (k) is smaller, we let C′n,k be Cn,k; otherwise, since

f (k) ≥
(

log n
log log n

)1/(k
2), we let C′n,k be the circuit which, using brute force, computes the size of a minimum

dominating set with the depth-3 circuit of size O(nk+1). Since f (k) ≥
(

log n
log log n

)1/(k
2), we have f (k)k3 ≥

(
log n

log log n )
2k

; by simple calculations we know that k · log2k−1 n ≥ (k + 1)(log log n)2k for k ≥ 2, n ≥ 2, which

implies k · ( log n
log log n )

2k ≥ (k + 1) · log n, that is, 2k·( log n
log log n )

2k

≥ nk+1. Thus, we know 2k f (k)k3

≥ nk+1, which

means the circuit is still a para-AC0 circuit.

Hypothesis 1 (AC0-ETH, the constant-depth version of ETH). There exists δ > 0 such that no constant-depth
circuits of size 2δn can decide whether the 3-CNF-SAT instance ϕ is satisfiable, where n is the number of variables
of ϕ.

Theorem 2. Assuming AC0-ETH, given a graph G with n vertices, there is no constant-depth circuits of size
f (k)no(k) for any computable function f which distinguish between:

• The size of the minimum dominating set of G is at most k,

• The size of the minimum dominating set of G is greater than
(

log n
3 log log n

)1/k
.

Though AC0-ETH seems much weaker than ETH (ETH implies the nonexistence of uniform circuits
of size 2δn and any depth which could compute the 3-CNF-SAT problem), we show that the hypothesis
is hard to settle by proving it implies NP �⊆ NC1, which, believed to be true, remains open for decades.
Moreover, it is still unknown whether the weaker version, NP �⊆ ACC ◦ THR, holds or not.

Since our hard set cover instances can be easily reduced to the instances of the total dominating set
problem, the connected dominating set problem and the independent dominating set problem, we can
apply our inapproximability results to these variants of the dominating set problem. More discussion
of the variants can be found in the work of Downey and Fellows [28] and the work of Chlebík and
Chlebíková [29].

Compared with the conference version [30] of this article, the proofs of Lemmas 1–7 are firstly given
here; some results are slightly improved by more careful analyses.

2. Preliminaries

We denote by N the set of nonnegative integers. For each n, m ∈ N, we define [n] := {1, . . . , n} and
[n, m] := [m] \ [n− 1] for m > n > 0. For any set A and k ∈ N, we let (A

k ) := {B ⊆ A | |B| = k} be the set
of subsets with exactly k elements of A. For a sequence of bits b, we let b[l] be the l-th bit of b.

For a graph G, the set of vertices of G is denoted by VG and the set of edges is denoted by EG; for
a vertex v ∈ VG, we let NG(v) := {u ∈ VG | {u, v} ∈ EG} be the neighbors of v. Since a graph G is
represented using a binary string, we express the bit of the edge {u, v} by bitG{u, v}. For a bipartite graph
G = (L, R, E), we often tacitly represent G only using O(|L| · |R|) bits.

In this article, logarithms have base 2, and fractions and irrational numbers are rounded up
if necessary.

2.1. Problem Definitions

The decision problems studied in this paper are listed below:
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• In the k-DOMINATINGSET (k-DOMSET) problem, our goal is to decide if there is a dominating set of
size k in the given graph G.

• In the k-SETCOVER problem, we are given a bipartite graph I = (S, U, E) and the goal is to decide
whether there is a subset X of S with cardinality k such that for each vertex v in U, there exists a vertex
u in X that covers v, i.e., {u, v} ∈ E.

• In the k-CLIQUE problem, our goal is to determine if there is a clique of size k in the given graph G.
• In the 3-CNF-SAT problem, we are given a propositional formula ϕ in which every clause contains

at most 3 literals and the goal is to decide whether ϕ is satisfiable.

We say a set cover instance I = (S, U, E) has set cover number m if the size of a minimum set X ⊆ S
such that X could cover U is m. Similarly, we say a graph G has dominating number m if the size of
a minimum dominating set of G is m.

As we mentioned, the dominating set problem is tightly connected to the set cover problem. Given
a k-DOMSET instance G = (V, E), we can construct a k-SETCOVER instance I = (S, U, E′) with S = V,
U = V and E′ =

⋃
{u,v}∈E{{uS, uU}, {vS, vU}, {uS, vV}, {vS, uU}}; here, for each vertex v ∈ V, we denote

the corresponding vertices in S, U by vS and vU , respectively. It is quite clear that G has dominating
number k if and only if I has set cover number k. Also, given a k-SETCOVER instance I = (S, U, E), we
can construct a k-DOMSET instance G = (D ∪U1 ∪U2, C ∪ E1 ∪ E2) by letting D = S, U1 = U2 = U,
C = {{u, v} | u, v ∈ D}, E1 = {{s, u} | s ∈ D, u ∈ U1} and E2 = {{s, u} | s ∈ D, u ∈ U2}. It is trivial
that I has set cover number k if and only if G has dominating number k. The reductions can also be found
in the work of Chlebík and Chlebíková [29].

It is notable that each hard instance with gap reduced from a CLIQUE or 3-CNF-SAT instance satisfies
that the size of the sets M is at most poly(N) where N is the size of the universe. Hence, it is safe to tacitly
apply the inapproximability of k-SETCOVER to the k-DOMSET problem.

2.2. Circuit Complexity

For n, m ∈ N, an n-input, m-output Boolean circuit C is a directed acyclic graph with n vertices with
no incoming edges and m vertices with no outgoing edges. All nonsource vertices are called gates and
are labeled with one of either ∨,∧, or ¬. The size of C, denoted by |C|, is the number of vertices in it. The
depth of C is the length of the longest directed path from an input node to the output node. We often
tacitly identify C with the function C : {0, 1}n → {0, 1}m it computes.

All the circuits considered in this paper are non-uniform and with unbounded fan-in ∧ and ∨ gates
unless otherwise stated.

The classes of AC0, para-AC0, and NC1 are defined as follows:

• AC0 is the class of problems which can be computed by constant-depth circuit families (Cn)n∈N where
every Cn has size poly(n), and whose gates have unbounded fan-in.

• Para-AC0 is the class of parameterized problems which can be computed by a circuit family (Cn,k)n,k∈N
satisfying that there exist d ∈ N and a computed function f such that for every n ∈ N, k ∈ N, Cn,k has
depth d and size f (k)poly(n), and whose gates have unbounded fan-in.

• NC1 is the class of problems which can be computed by a circuit family (Cn)n∈N where Cn has depth
O(log n) and size poly(n), and whose gates have a fan-in of 2.

2.3. Covering Arrays

A covering array CA(N; t, p, v) is an N × p array A whose cells take values from a set V of size
v and the set of rows of every N × t subarray of A is the whole set Vt. The smallest number N such
that CA(N; t, p, v) exists is denoted by CAN(t, p, v). Covering arrays are discussed extensively since the
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1990s, as they play an important role in the interaction testing of complex engineered systems. The recent
discussion about the upper bounds of the size of covering arrays can be found as presented by Sarkar and
Colbourn [31].

In this article, we always assume V = {0, 1}. It is noted that in Lin’s work [18], a covering array
CA(N; k, n, 2) is also called an (n, k)-universal set.

3. Introducing Gap to the k-SETCOVER Problem

Theorem 1 and Theorem 2 show that the para-AC0 circuits cannot approximate the k-DOMSET problem
with ratio f (k) for any computable function f . To achieve this, we need to introduce gaps for k-DOMSET

instances. In this section, we present the lemmas which allow us to introduce gaps to the k-SETCOVER

problem, using gap-gadgets as presented in Lin’s work [18]. Lemma 1 gives an upper bound for CAN(k, n, 2).
The next two lemmas also follow the idea from Lin’s work [18]. Lemma 2 allows us to construct gap gadgets
with h ≤ log n

log log n and k log log n ≤ log n. In Lemma 3, we present the construction which introduces gaps
to set cover instances.

Definition 1. A (k, n, m, �, h)-Gap-Gadget is a bipartite graph T = (A, B, E) satisfying the following conditions.

(G1) A is partitioned into (A1, . . . , Am) where |Ai| = � for every i ∈ [m].
(G2) B is partitioned into (B1, . . . , Bk) where |Bj| = n for every j ∈ [k].
(G3) For each b1 ∈ B1, . . . , bk ∈ Bk, there exists a1 ∈ A1, . . . , am ∈ Am such that ai is adjacent to bj for

i ∈ [m], j ∈ [k].
(G4) For any X ⊆ B and a1 ∈ A1, . . . , am ∈ Am, if ai has k + 1 neighbors in X for i ∈ [m], then |X| > h.

Lemma 1. CAN(k, n, 2) ≤ k2k log n for n ≥ 5.

Proof. We let M = 2k(n
k)(1− 1

2k )
k2k log n

. Kleitman and Spencer showed that if 2k(n
k)(1− 1

2k )
r
< 1,

CAN(k, n, 2) ≤ r [32]. Thus, we only need to show that M < 1. Since 2x log ( 2x

2x−1 ) >
1

ln 2 and n > 5, we
have

log M < k + k log n + k2k log n log(1− 1
2k )

< k + k log n− 1
ln 2

k log n

< 0

.

This implies M < 1.

Lemma 2. There is a constant-depth circuit family (Ck,n,h)k,n,h∈N which, for sufficiently large n and k, h ∈
N with h ≤ log n

log log n and k log log n ≤ log n, given S = S1 ∪ · · · ∪ Sk with |Si| = n for i ∈ [k], outputs

a (k, n, n log h, hk, h)-Gap-Gadget T = (A, B, E) with |A| = hkn log h, B = S. Furthermore, Ck,n,h has size at most
khkn2 log h and could output whether a and b are adjacent using O(1) gates, for every a ∈ A, b ∈ B.

Proof. Let m = n log h. Note that log((h log h)2h log h log m) ≤ (h + 2) log h + log log n, that is,
(h log h)2h log h log m ≤ n ≤ n log h; by Lemma 1, we know that there exists a covering array
CA(n log h; k, n, 2), denoted by S .
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We partition every row of S into n = m
log h blocks so that each block has length log h, interpreted as an

integer in [h]. From the m× n numbers of S , we could obtain an m× n matrix M by setting Mr,c to be the
c-th integer of the r-th row.

Claim. For any C ⊆ [n] with |C| ≤ h, there exists r ∈ [m] such that |{Mr,c | c ∈ C}| = |C|.

This claim says that for any C = {i1, . . . , ij} ⊆ [n] for j ≤ h, there is a row r such that the i1-th, . . . ,
ij-th numbers of r are distinct. This is because we could choose the corresponding bits C′ = ∪c∈C[(c−
1) log h + 1, c log h] (since for each c ∈ [n], the c-th number of a row is from the

(
(c− 1) log h + 1

)
-th bit to

the (c log n)-th bit) of the row, with |C′| ≤ h log h; by the property of a CA(n log h; k, n, 2) covering array,
there must be a row r such that for each ij′ ∈ C, Mr,ij′ = j′.

Now we construct a bipartite graph T = (A, B, E) as follows.

• A = ∪i∈[m]Ai with each Ai = {a | a = (a1, . . . , ak), aj ∈ [h] for j ∈ [k]};
• B = ∪i∈[k]Bi with Bi = Si for i ∈ [k];
• E = {{a, b} | a ∈ Ai, b ∈ Bj and Mi,b = a[j], for i ∈ [m], j ∈ [k]}, that is, for every i ∈ [m], j ∈ [k]

and every a ∈ Ai, b ∈ Bj, if Mi,b = a[j] then we add an edge between a and b.

We prove that T is a (k, n, n log h, hk, h)-Gap-Gadget. It is clear that (G1) and (G2) hold for T. For (G3),
given any b1 ∈ B1, . . . , bk ∈ Bk, we know that for each i ∈ [m], (Mi,b1 , . . . , Mi,bk

) ∈ Ai, which is adjacent to
b1, . . . , bk.

If T does not satisfy (G4), then there exists X ⊆ B with |X| ≤ h such that there is a1 ∈ A1, . . . , am ∈ Am

and ai has at least k + 1 neighbors in X for each i ∈ [m]. Since |X| ≤ h, we know that there is a row
r ∈ [m] such that |{Mr,c | c ∈ X}| = X. For this r, there exist some j ∈ [k] such that ar has at least 2
neighbors b1 �= b2 in Bj. However, {ar, b1} and {ar, b2} ∈ E means that b1 = b2 = Mi,b1 . This implies
|{Mr,c | c ∈ X}| < X, which is a contradiction.

The Ck,n,h outputs T with khkn2 log h bits where whether a and b are connected is determined by

bitT{a, b} =
{

1 if Mi,b = a[j]

0 otherwise

for every a ∈ Ai, b ∈ Bj.

Given a set cover instance I = (S, U, E), we construct the gap gadget T = (A, B, ET) with B = S.
To use the gap gadget, we construct a new set cover instance I′ = (S′, U′, E′) with S′ = S such that for
every X ⊆ S′ which covers U′, there exists a1 ∈ A1, . . . , am ∈ Am witnessing that there is an X′ ⊆ X which
covers U and each vertex of which is adjacent to ai for some i ∈ [m].

In the following lemma, we use the hypercube set system, which is firstly presented in Feige’s
work [12] and is also used in [16–18]. The set XY = { f : Y → X} is considered to be all the functions from
Y to X with |XY| = |X||Y|.

Lemma 3. There is a constant-depth circuit family (Cn,k)n,k∈N which, for each k ∈ N, given a set cover instance
I = (S, U, E) where S = S1 ∪ · · · ∪ Sk and |Si| = n for i ∈ [k] and a (k, n, m, �, h)-Gap-Gadget constructed with
S as Lemma 2 describes, outputs a set cover instance I′ = (S′, U′, E) with S′ = S and |U′| = m|U|� such that

• If there exists s1 ∈ S1, . . . , sk ∈ Sk which could cover U, then the set cover number of I′ is at most k;
• If the set cover number of I is larger than k, then the set cover number of I′ is greater than h.

Furthermore, the circuit Cn,k has size at most knm�|U|� and could output whether s and f are connected with
at most (�+ 1) gates.
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Proof. Let T = (A = ∪i∈[m]Ai, B, ET) be the (k, n, m, �, h)-Gap-Gadget with Bi = Si for i ∈ [k]. I′ =
(S′, U′, E′) is defined as follows.

• S′ = S;
• U′ = ∪i∈[m]UAi ;
• For every s ∈ S′ and f ∈ UAi for each i ∈ [m], {s, f } ∈ E′ if there is an a ∈ Ai such that {s, f (a)} ∈ E

and {a, s} ∈ ET .

If there exist s1 ∈ S1, . . . , sk ∈ Sk that can cover U, then we show that for each f ∈ U′, it is covered by
some vertex in C = {s1, . . . , sk}. Suppose f ∈ UAi . By (G3) we know that, for s1 ∈ S1, . . . , sk ∈ Sk, there
exists a1 ∈ A1, . . . , am ∈ Am such that ap is adjacent to sq for p ∈ [m], q ∈ [k]. Since C covers U, there must
be sj ∈ C for some j ∈ [k] covers f (ai). That is, we have { f (ai), sj} ∈ E and {ai, sj} ∈ ET , which means sj
covers f .

If the set cover number of I is greater than k, we show that for every X ⊆ S′ that covers U′, we must
have |X| > h.

Claim. For any X ⊆ S′ that covers U′, there exist a1 ∈ A1, . . . , am ∈ Am that |NT(ai) ∩ X| ≥ k + 1 for every
i ∈ [m].

Otherwise, there is some i ∈ [m] such that for any a ∈ Ai, we have |NT(a) ∩ X| ≤ k, which means
there is some u ∈ U not covered by NT(a)∩X since the covering number of I is greater than k. For f ∈ UAi

such that f (a′) = u for any a′ ∈ Ai, it is covered by S only if it is covered by some s ∈ S \ NT(a) since u
can only be covered by S \ NT(a). However, for any s ∈ S \ NT(a), s is not a neighbor of a. That is, f is not
adjacent to S \ NT(a), either. Hence, f is not covered by X, which is a contradiction.

With the claim, we know that for any X ⊆ S′ that covers U′, there exist a1 ∈ A1, . . . , am ∈ Am that ai
has k + 1 neighbors in X for every i ∈ [m]. With (G4), we must have |X| ≥ h.

The Cn,k outputs I′ with knm�|U|� bits where whether there is an edge between s and f is determined
by

bitI′ {s, f } =
∨

a∈Ai

bitT{s, a} ∧ bitI{s, f (a)},

for every s ∈ S′, f ∈ UAi using at most (�+ 1) gates.

4. Inapproximability of k-DOMINATINGSET

In this section, we show the inapproximability of the dominating set problem by proving Theorems 3
and 4. To show Theorem 3, we have Lemmas 4 and 5. Lemma 4 follows the idea in recent papers [17,
18], presenting the circuits that output a (k

2)-SETCOVER instance given a k-CLIQUE instance as input.
With Lemma 4, Lemma 5 introduces circuits reducing k-CLIQUE instances to set cover instances with
gaps. To prove Theorem 4, Lemma 6 (firstly shown by Pătraşcu and Williams [33]) is used to prove the
inapproximability of set cover problem using constant-depth no(k) circuits, assuming Hypothesis 1. At the
end of this section, we show that Hypothesis 1 may be hard to settle by showing that it implies NP �⊆ NC1,
which has remained open for decades.

4.1. The Unconditional Inapproximability of k-DOMINATINGSET

Now we give the circuits which reduce k-CLIQUE instances to (k
2)-SETCOVER instances, and introduce

gaps to them. Finally we use Rossman’s result [25], i.e., the unconditional lower bounds of the size
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of constant-depth circuits determining the k-CLIQUE problem, to show the inapproximability of the
k-DOMSET problem.

Lemma 4. There is a (Cn,k)n,k∈N circuit family which, given a k-CLIQUE instance G with |VG| = n, outputs a set
cover instance I = (S, U, E) with |U| ≤ k3 log n and S ≤ (k

2)(
n
2) such that G contains a k-clique if and only if the

set cover number of I is at most (k
2). Furthermore, Cn,k has constant depth and size at most k5n2 log n.

Proof. Firstly, we construct G′ = (V1 ∪ · · · ∪Vk, E′), a k-colored version of G as follows. Let each V(i) be
a copy of V and for every v ∈ VG, we call the corresponding vertex in V(i) by v(i); let E′ = ∪1≤i<j≤kEi,j

with Ei,j = {{u(i), v(j)} | {u, v} ∈ EG}. Note that each V(i) is an independent set for i ∈ [k] and G′

contains a k-clique if and only if G contains a k-clique.
Now we construct the the set cover instance I = (S, U, E) according to G′ in the following way. Given

v ∈ G′, we denote by b(v) the bit representation of v. Note that when i is fixed, every vertex in Vi could be
determined using log n bits.

• S = E′ = ∪1≤i<j≤kEi,j;

• U = ∪i∈[k]Ui with Ui = {( f (i), l) | f (i) : {0, 1} → [k] \ {i}, l ∈ [log n]};

• For every i ∈ [k], we connect every ( f (i), l) ∈ Ui to each {vi, vj} ∈ S, with vi ∈ Vi, vj ∈ Vj, such that
f (i)(b(vi)[l]) = j.

Suppose that there is a k-clique in G′ with vertices u1 ∈ V1, . . . , uk ∈ Vk. We claim that {{ui, uj} | 1 ≤
i < j ≤ k} covers U. This is because for any ( f (i), l) ∈ Ui, we have f (i)(b(ui)[l]) ∈ [k] \ {i} and thus, it is
covered by {ui, uj}.

If there is X ⊆ S covers U with cardinality at most (k
2), then we show that there is a k-clique in G′.

Firstly, |X ∩ Ei,j| = 1 for 1 ≤ i < j ≤ k. Otherwise, let f (i)(0) = f (i)(1) = j and for any l ∈ [log n],
( f (i), l) ∈ Ui is not covered by X.

Now we let X be the vertices ei,j ∈ Ei,j for every 1 ≤ i < j ≤ k. For each i ∈ [k] and distinct
j, j′ ∈ [k] \ {i}, we let ei,j = {v, u(j)} and ei,j′ = {v′, u(j′)}. We claim that v = v′. Otherwise, there must be
a bit l ∈ [log n] such that b(v)[l] �= b(v′)[l]. Without loss of generality, we assume b(v)[l] = 0, b(v′)[l] = 1.
Now we take f (i) such that f (i)(0) = j′ and f (i)(1) = j. Then ( f (i), l) is not covered by X, which is
a contradiction.

Hence, for every i ∈ [k], we could safely take the vertex v(i) ∈ Vi such that v(i) is in the edge
ei,j ∈ X ∩ Ei,j for arbitrary j as the i-th vertex of the k-clique.

The Cn,k outputs I′ with at most k5n2 log n bits where whether eu(i) ,vj j and ( f (i), l) is connected is
determined by

bitI{eu(i) ,v(j) , ( f (i), l)} =
{

1, if f (i)(b(u(i))[l]) = j

0, otherwise

for every 1 ≤ i < j ≤ k, eu(i) ,v(j) ∈ Ei,j and every ( f (i), l) ∈ Ui. Hence, Cn,k is with each output gate of
depth at most 3 and of size at most k5n2 log n.

Lemma 5. There is a (Cn,k)n,k∈N circuit family which, given a k-CLIQUE instance G with |VG| = n, could output
a set cover instance I = (S, U, E) with |U| ≤ n5 and S ≤ (k

2)(
n
2) such that

• If G contains a k-clique, then the set cover number of I is at most (k
2);

• If G contains no k-clique, then the set cover number of I is greater than
(

log n
log log n

)1/(k
2).
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Furthermore, Cn,k has constant depth and size at most n7 log n.

Proof. By Lemma 4, we can construct a (k
2)-SETCOVER instance I = (S, U, E) with |S| ≤ (k

2)(
n
2) and

|U| ≤ k3 log n, using a constant-depth circuit of size at most k5n2 log n. Let m = (n
2). By Lemma 2, we can

construct a ((k
2), m, m log h, h(

k
2), h)-Gap-Gadget T with h = (

log m
log log m )

1/(k
2) given S, using a constant-depth

circuit of size at most O(n2 log2 n). By Lemma 3, we could have a constant-depth circuit of size at most

n7 log n which computes a set cover instance I′ = (S′, U′, E′) with S′ = S, |U′| ≤ m log h(k3 log n)h(
k
2)

such
that

• If G contains a k-clique, then the set cover number of I is at most (k
2);

• If G contains no k-clique, then the set cover number of I is greater than (
log m

log log m )
1/(k

2) ≥
(

log n
log log n

)1/(k
2).

Here, since (k3 log n)
log m

log log m ≤ (k3 log n)
2 log n

log log n ≤ (k
log n

log log n )
6
· n2 ≤ n

6k
log log n · n2 ≤ n2+o(1), we can

conclude that |U′| ≤ m log h(k3 log n)h(
k
2) ≤ n2 log n · n2+o(1) ≤ n4+o(1) < n5 .

Theorem 3. Given a set cover instance I = (S, U, E) with n = |S|+ |U|, for k > 28, any constant-depth circuit

of size O(n
√

k
20 ) cannot distinguish between

• The set cover number of I is at most k, or

• The set cover number of I is greater than
(

log n
log log n

)1/(k
2).

Proof. Rossman showed that for every k ∈ N, the k-CLIQUE problem on n-vertex graphs requires

constant-depth circuits of size ω(n
k
4 ) [25]. Now if there is a constant-depth circuit Cn,k of size O(n

√
k

20 )

that could distinguish between the set cover number of I where |VI | = n is at most k or greater

than
(

log n
log log n

)1/(k
2), then by Lemma 5, given k ∈ N and a graph G with |VG| = n, we can construct

a set cover instance I with vertex number at most 2n5 satisfying that if G has a k-clique then the set

cover number of I is at most (k
2) and otherwise it is greater than

(
log n

log log n

)1/(k
2)—we could use C2n5,(k

2)

to decide whether the set cover number of I is either ≤ (k
2) or >

(
log n

log log n

)1/(k
2). The circuits are

of size O((n5)

√
(k

2)/20
) + O(n7 log n) = O(n

k
4 ) when k > 28, which contradicts the result shown by

Rossman [25].

Note that Theorem 3 implies Theorem 1 since for every set cover instance I = (S, U, E) we can
construct a dominating set instance I′ = (S ∪U, E ∪ {{u, v} | u, v ∈ S}) simply by adding edges to S so
that it becomes a clique. Then the dominating number of I′ is the same as the set cover number of I.

4.2. The Inapproximability of k-DOMINATINGSET Assuming AC0-ETH

Next we show the f (k)-inapproximability of the set cover problem for constant-depth circuits of
size no(k) for any computable function f , assuming AC0-ETH. To achieve this, we use Lemma 6 to reduce
3-CNF-SAT formulas to set cover instances with gaps.

Lemma 6. There is a circuit family (Cn,k)n,k∈N which for every k ∈ N, given a 3-CNF-SAT instance ϕ with n
variables where n is much larger than k, outputs N ≤ 2

11n
2k and a set cover instance I = (S, U, E) satisfying
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• |S|+ |U| ≤ N;
• If ϕ is satisfiable, then the set cover number of I is at most k;

• If ϕ is not satisfiable, then the set cover number of I is greater than
(

log N
3 log log N

)1/k
;

Furthermore, Cn,k has constant depth and size at most 2
11n
2k .

Proof. Firstly, we construct a set cover instance I′ = (S′, U′, E′) whose set cover number is k if and only if
ϕ is satisfiable, as follows.

Partition n variables into k parts and each part has n/k variables. We let S′ = S1 ∪ · · · ∪ Sk and for
i ∈ [k], each Si be the set of all the assignments of the variables from the i-th part. Thus, |Si| = 2n/k for
each i ∈ [k]. Let U′ := {C | C ∈ ϕ} ∪ {xi | i ∈ [k]} be the clauses of ϕ and vertices x1, . . . , xk. We define
E′ := ∪i∈[k]

(
{{s, C} | s satisfies C for s ∈ Si, C ∈ U′} ∪ {{s, xi} | s ∈ Si}

)
the edges connecting each

s ∈ Si with xi and every C ∈ U′ such that s satisfies C, for each i ∈ [k].
It is clear that if ϕ is satisfied by assignment σ, then we know that there are s1 ∈ S1, . . . , sk ∈ Sk such

that we can combine s1, . . . , sk to get the σ, satisfying ϕ. Now suppose s1 ∈ S1, . . . , sk ∈ Sk can cover U′.
Note that the set cover number of I′ cannot be less than k because of the existence of x1, . . . , xk. Since
the different sets S1, ..., Sk of variables are pairwise disjoint, we could simply combine the assignments
s1, . . . , sk, which together satisfy all the clauses, to have the assignment satisfying ϕ.

We have I′ with |S′| = k2n/k and |U′| ≤ (n
3) + k ≤ 2n3 and let m = 2n/k. By Lemma 2, there is

a constant-depth circuit which can compute a (k, m, m log h, hk, h)-Gap-Gadget T with h = k
√

log m
log log m ≥(

log N
3 log log N

)1/k
which has size O(k2m2h2k+1) = O(k2m2 log3 m). By Lemma 3, there is a constant-depth

circuit C that can construct a set cover instance I = (S, U, E) which, given I′ and T such that

• If ϕ is satisfiable, then the set cover number of I is at most k;
• If ϕ is unsatisfiable, then the set cover number of I is greater than h;

• S = S′, |U| = m log h|U′|hk ≤ 1
k m(log log m− log log log m)(2n3)

log m
log log m ≤ m · log log m · (2

log m
log log m +

n
3n

k(log n−log k) ) ≤ m · log log m · (2
log m

log log m + n
3n
k ) = m4+o(1).

Thus, |S|+ |U| = km+m4+o(1) ≤ 2
11n
2k = N. Furthermore, C has size at most (hk + 1)(km ·m4+o(1)) =

O(m5+o(1)) = 2
11n
2k .

Theorem 4. Assuming AC0-ETH, there is ε > 0 such that, given a set cover instance I = (S, U, E) with
n = |S|+ |U|, any constant-depth Boolean circuit of size nεk cannot distinguish between

• The set cover number of I is at most k, or

• The set cover number of I is greater than
(

log n
3 log log n

)1/k
.

Proof. By AC0-ETH, there exists δ > 0 such that no constant-depth circuits of size 2δn can decide whether
the 3-CNF-SAT instance ϕ is satisfiable where n is the number of variables of ϕ. For every 3-CNF-SAT
formula ϕ, there is a constant-depth circuit Cn,k of size 2

11n
2k which, given ϕ, computes a set cover instance

I = (S, U, E) with |S|+ |U| ≤ N for N ≤ 2
11n
2k whose set cover number is either at most k or greater than(

log N
3 log log N

)1/k
by Lemma 6. Now take ε = δ/12.

If a constant-depth circuit Cn of size nεk could distinguish between the set cover number of I being at

most k or greater than
(

log n
3 log log n

)1/k
where n is the vertex number of the given set cover instance I, then we
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could use C
(N

2 )
to determine the set cover number of I is whether at most k, i.e., to decide if ϕ is satisfiable.

The used circuits have size at most 2
11n
2k + (N2)

εk ≤ 212εn = 2δn, which contradicts AC0-ETH.

Using the same trick for Theorem 1, we know that Theorem 4 implies Theorem 2.

4.3. The Difficulty of Proving AC0-ETH

Though AC0-ETH seems much weaker than ETH, we find that it is still very hard to settle by showing
Theorem 5, i.e., AC0-ETH implies NP �⊆ NC1. Firstly, we show the trade off between depth compression
and size expansion when simulating NC1 circuits using constant-depth ones. Then we prove the Theorem 5
by showing that AC0-ETH implies that 3-CNF-SAT �∈ NC1.

Lemma 7. For every L ∈ NC1, i.e., there exists c ∈ N such that L could be computed by a family of circuits
(Cn)n∈N such that Cn has size at most nc and depth at most c log n, there exists d ∈ N such that there is a family of
circuits (C′n)n∈N which satisfies

• s ∈ L if and only if C′|s| outputs 1;

• C′n has depth d and size at most n3c/2(2n2c/d+1 + 1).

Proof. We show that for every n ∈ N, Cn could be simulated by a circuit Cn
′ that has depth d and size

n3c/2(2n2c/d+1 + 1). Suppose Cn has size nc and depth c log n (otherwise, we could add dummy gates to
Cn). For every gate σ of depth c log n

1
2 d

, let fσ be the Boolean function computed by σ. Note that fσ has at

most n2c/d input bits, denoted by b1, . . . , bn2c/d since Cn is of fan-in 2. Now we could replace σ using brute
force by

∨
fσ(�)=1,�∈{0,1}n2c/d

∧
i∈[n2c/d ]

βi

where βi = bi if �[i] = 1 and βi = ¬bi if �[i] = 0. That is, σ could be simulated by a 2-depth circuit which
has size at most 2n2c/d+1 + 1.

Assume for every l ∈ [d/2− 1], every gate σ of depth l·2c log n
d could be replaced by a 2l-depth circuit

C(σ) which has size n
(l−1)·3c

d (2n2c/d+1 + 1). Now we could simulate each gate γ of depth (l+1)·2c log n
d , whose

output is determined by the gates σ1, . . . , σn2c/d from the l·2c log n
d -th layer, in the similar way. That is, σ is

replaced by

∨
fσ(�)=1,�∈{0,1}n2c/d

∧
i∈[n2c/d ]

C(i)

where C(i) = C(σi) if �[i] = 1 and C(i) = ¬C(σi) if �[i] = 0. Now, C(γ) has depth 2(l + 1) and size at most

(2n2c/d+1 + 1) + n2c/d · n
(l−1)·3c

d (2n2c/d+1 + 1) ≤ n
l·3c

d (2n2c/d+1 + 1).
Thus, the output gate of Cn could be simulated by a depth d circuit whose size is at most

n3c/2(2n2c/d+1 + 1).

Theorem 5. AC0-ETH implies NP �⊆ NC1.

Proof. We show that AC0-ETH implies 3-CNF-SAT �∈ NC1. If there exists c ∈ N such that 3-CNF-SAT
could be computed by a family of circuits (Cn)n∈N satisfying Cn has size at most nc and depth at most
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c log n. By Lemma 7, 3-CNF-SAT could be computed by 5c-depth, size n3c/2(2n2/5+1 + 1) = O(2
√

n)

circuits for sufficiently large n, which contradicts AC0-ETH.

5. Conclusions and Open Questions

We have presented that para-AC0 circuits could not approximate the k-DOMSET problem with ratio
f (k) for any computable function f . With the hypothesis that the 3-CNF-SAT problem cannot be computed
by constant-depth circuits of size 2δn for some δ > 0, we could show that constant-depth circuits of size

no(k) cannot distinguish graphs whose dominating numbers are either ≤k or >
(

log n
3 log log n

)1/k
.

A natural question is to settle the hypothesis, which may be hard since we show that it implies NP �⊆
NC1. Another question is to ask: Are constant-depth circuits of size no(k) unable to approximate dominating
number with ratio f (k) for any computable function f without assuming AC0-ETH? Sparsification is one of
the key techniques when ETH is involved. Could sparsification be implemented using constant-depth
circuits with size 2εn for any ε > 0? Moreover, we could have more results assuming the set cover
conjecture [3]. Can we prove the inapproximability of the set cover problem based on this conjecture?
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Abstract: Integer Linear Programming (ILP) is among the most successful and general paradigms for
solving computationally intractable optimization problems in computer science. ILP is NP-complete,
and until recently we have lacked a systematic study of the complexity of ILP through the lens
of variable-constraint interactions. This changed drastically in recent years thanks to a series of
results that together lay out a detailed complexity landscape for the problem centered around the
structure of graphical representations of instances. The aim of this survey is to summarize these
recent developments, put them into context and a unified format, and make them more approachable
for experts from many diverse backgrounds.

Keywords: integer linear programming; parameterized complexity; treewidth; treedepth

1. Introduction

Integer Linear Programming (ILP) is among the most successful and general paradigms for solving
computationally intractable optimization problems in computer science. In particular, a wide variety
of problems in areas such as process scheduling [1], planning [2,3], vehicle routing [4], packing [5],
and network hub location [6], to name a few, are efficiently solved in practice via a translation into
an Integer Linear Program.

ILP is NP-complete, and a significant amount of research has been carried out on tractable
fragments of ILP defined in terms of the algebraic properties of the instance (see, e.g., the work of
Papadimitriou and Steiglitz exploiting total unimodularity (Section 13.2, [7])) or in terms of restrictions
on the number of constraints or variables (see Lenstra’s algorithm [8] together with its subsequent
improvements by Kannan [9], Frank and Tardos [10]).

On the other hand, until recently we have lacked a systematic study of the complexity of
ILP through the lens of variable-constraint interactions. This represented a stark contrast to our
understanding of other fundamental problems such as BOOLEAN SATISFIABILITY and CONSTRAINT

SATISFACTION, where we have classical results that explore and showcase how interactions between
variables and constraints (formalized via graphical representations) can be used to define natural
tractable fragments of the problem—consider, e.g., the early work of Freuder [11], Dechter and
Pearl [12]. The situation for ILP changed drastically in recent years thanks to a flurry of results that
together lay out a detailed complexity landscape for the problem centered around variable-constraint
interactions, captured in terms of graphical representations of instances. The aim of this survey is
to summarize these recent developments, put them into context and a unified format, and make
them more approachable for experts from many diverse backgrounds. We will also call attention to
prominent open problems in the area.

Algorithms 2019, 12, 248; doi:10.3390/a12120248 www.mdpi.com/journal/algorithms

108



Algorithms 2019, 12, 248

Survey Organization. After introducing some basic preliminaries for ILPs, graphical representations
and structural parameters in Section 2, Section 3 proceeds to a brief overview of classical algorithms
for ILP that rely on explicit restrictions such as bounds on the number of variables and/or
constraints. In Section 4 we focus on algorithms and lower bounds for ILP that target instances
whose variable-constraint interactions give rise to graphical representations of bounded treewidth
and/or treedepth. Section 5 then covers results utilizing other structural parameters related to
variable-constraint interactions, and the final Section 6 provides an outlook to future work in the area.

2. Preliminaries

For a positive integer n, we use [n] to denote the set {1, . . . , n}. We use bold face letters for vectors
and normal font when referring to their components, that is, x is a vector and x3 is its third component.

2.1. Graphs

We use standard graph terminology, see for instance Diestel’s handbook [13]. A graph G is a tuple
(V, E), where V or V(G) is the vertex set and E or E(G) is the edge set. A graph H is a subgraph of
a graph G, denoted H ⊆ G, if H can be obtained by deleting vertices and edges from G. All our graphs
are simple and loopless.

A path from vertex v to vertex w in G is a sequence of pairwise distinct vertices v1, . . . , vj of G
such that v = v1 and w = vj and {vi, vi+1} ∈ E(G) for every i with 1 ≤ i < j; and we define the length
of a path to be equal the number of vertices it contains (i.e., j). A tree is a graph in which, for any two
vertices v, w ∈ G, there is precisely one unique path from v to w; a tree is rooted if it contains a specially
designated vertex r, the root. Given a vertex v in a tree G with root r, the parent of v is the unique vertex
w with the property that {v, w} is the first edge on the path from v to r.

2.2. Integer Linear Programming

We consider instances of Integer Linear Programming (ILP) in the following two normal forms.
In the first case, which we call the equality normal form, instances consist of a matrix A ∈ Zm×n with
m rows (constraints) and n columns (variables) and vectors c, b ∈ Zm, l, u ∈ Zn ∪ {∞,−∞}. The set of
solutions for the equality normal form is given by:

{ y | Ay = b, l ≤ y ≤ u } (EQ)

In the second case, which we call the inequality normal form, instances consist of a matrix
A ∈ Zm×n with m rows (constraints) and n columns (variables) and vectors c, b ∈ Zm. Here, the set of
solutions is given by:

{ y | Ay ≤ b } (INEQ)

We denote by ILPF= and ILPF≤ the feasibility problem for ILPs, whose sets of solutions are
given in the equality respectively the inequality form, e.g., ILPF= is the problem of deciding whether
{ y | Ay = b, l ≤ y ≤ u } is non-empty and if so to output a vector y in { y | Ay = b, l ≤ y ≤ u }.
Moreover, ILP= and ILP≤ denote the corresponding minimization versions, e.g., ILP= is the problem
of deciding whether y ∈ { y | Ay = b, l ≤ y ≤ u } contains a vector y that minimizes cy and if so
outputs such a vector.

For the matrix A of an instance I , we let x = (x1, . . . , xn) be a vector representing the columns
in A and let the variable set, denoted var(I), be the set of such columns. If I is given in equality
normal form, then its constraint set denoted by con(I) contains one equation for every equation in the
system Ax = b respectively one inequality for every inequality in the system Ax ≤ b, if I is given in
inequality normal form.

We will also make use of the following notions which describe specific properties of ILP instances.
We denote by ‖A‖∞, ‖b‖, and ‖c‖ the maximum absolute value of any coefficient (entry) in the matrix
A, in the vector b, and in the vector c, respectively.
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For an ILP instance I in inequality form, we say that the domain of the variable xi is bounded if
there are constraints p and r of the form xi ≤ bp and −xi ≤ br, otherwise we say that its domain is
unbounded. Moreover, we denote by ‖xi‖ the maximum domain span of the i-th variable, i.e., given by
‖bp − br‖ if xi has bounded domain and ∞ otherwise. We denote by ‖x‖∞ the maximum domain span
of any variable, i.e., maxi ‖xi‖. On the other hand, if I is in equality form, we say that the domain of
the i-th variable xi is bounded if li, ui /∈ {−∞, ∞}, where li, ui are the i-th entries of l, u, respectively;
otherwise, we say that the domain of x is unbounded. Moreover, we denote by ‖xi‖ the maximum
domain span of the i-th variable, i.e., ‖ui − li‖ any variable, and by ‖x‖∞ the maximum domain span of
any variable, i.e., maxi ‖xi‖.

In either case, we say that an ILP instance has bounded domain if all variables have bounded
domain, and we say that the instance has unary bounded domain if the coefficients bounding the domain
of variables are encoded in unary.

Finally, we call an ILP instance unary if all coefficients in A, b, c, as well as l, u (if they are part of
the input) are given in unary. We say that an ILP instance is fully unary if it is unary and all variables
have (unary) bounded domain.

2.3. Parameterized Complexity

In parameterized algorithmics [14–17] the runtime of an algorithm is studied with respect to
a parameter k ∈ N and input size n. The basic idea is to find a parameter that describes the structure of
the instance such that the combinatorial explosion can be confined to this parameter. In this respect,
the most favorable complexity class is FPT (fixed-parameter tractable) which contains all problems
that can be decided by an algorithm running in time f (k) · nO(1), where f is a computable function.
Algorithms with this running time are called fpt-algorithms.

There is a variety of classes capturing parameterized intractability. Here we require only the
class paraNP, which is defined as the class of problems that are solvable by a nondeterministic
Turing-machine in fpt-time. We will make use of the characterization of paraNP-hardness given by
Flum and Grohe (Theorem 2.14, [15]): any parameterized (decision) problem that remains NP-hard
when the parameter is set to some constant is paraNP-hard. Showing paraNP-hardness for a problem
rules out the existence of an fpt-algorithm under the assumption that P �= NP. In fact, it even allows
us to rule out algorithms running in time n f (k) for any function f (these are called XP algorithms).

2.4. Graph Parameters

Treewidth. Treewidth is the most prominent structural parameter and has been extensively studied
in a number of fields. In order to define treewidth, we begin with the definition of its associated
decomposition. A tree-decomposition T of a graph G = (V, E) is a pair (T, χ), where T is a tree
and χ is a function that assigns each tree node t a set χ(t) ⊆ V of vertices such that the following
conditions hold:

(T1) For every edge {u, v} ∈ E(G) there is a tree node t such that u, v ∈ χ(t).
(T2) For every vertex v ∈ V(G), the set of tree nodes t with v ∈ χ(t) forms a non-empty subtree of T.

The sets χ(t) are called bags of the decomposition T and χ(t) is the bag associated with
the tree node t. The width of a tree-decomposition (T, χ) is the size of a largest bag minus 1.
A tree-decomposition of minimum width is called optimal. The treewidth of a graph G, denoted
by tw(G), is the width of an optimal tree decomposition of G.

Proposition 1 ([18–20]). It is possible to compute an optimal tree-decomposition of an n-vertex graph G with
treewidth k in time kO(k3)n, and to compute a 5-approximate one in time 2O(k)n. Moreover, the number of nodes
in the obtained tree decompositions is at most O(n).
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Treedepth. Another important notion that we make use of extensively is that of treedepth. Treedepth
is a structural parameter closely related to treewidth, and the structure of graphs of bounded treedepth
is well understood [21]. A useful way of thinking about graphs of bounded treedepth is that they are
(sparse) graphs with no long paths.

We formalize a few notions needed to define treedepth. A rooted forest is a disjoint union of rooted
trees. For a vertex x in a tree T of a rooted forest, the height (or depth) of x in the forest is the number
of vertices in the path from the root of T to x. The height of a rooted forest is the maximum height of
a vertex of the forest.

Definition 1 (Treedepth). Let the closure of a rooted forest F be the graph clos(F ) = (Vc, Ec) with the
vertex set Vc =

⋃
T∈F V(T) and the edge set Ec = {xy : x is an ancestor of y in some T ∈ F}. A treedepth

decomposition of a graph G is a rooted forest F such that G ⊆ clos(F ). The treedepth td(G) of a graph G is
the minimum height of any treedepth decomposition of G.

We will later use Tx to denote the vertex set of the subtree of T rooted at a vertex x of T. Similarly
to treewidth, it is possible to determine the treedepth of a graph in FPT time.

Proposition 2 ([21]). Given a graph G with n nodes and a constant w, it is possible to decide whether G has
treedepth at most w, and if so, to compute an optimal treedepth decomposition of G in time On.

The following alternative (equivalent) characterization of treedepth will be useful later.

Proposition 3 ([21]). Let Gi be the connected components of G. Then

td(G) =

⎧⎪⎪⎨⎪⎪⎩
1, if |V(G)| = 1;

1 + minv∈V(G) td(G− v), if G is connected and |V(G)| > 1;

maxi td(Gi), otherwise.

We conclude with a few useful facts about treedepth.

Proposition 4 ([21]).

1. If a graph G has no path of length d, then td(G) ≤ d.
2. If td(G) ≤ d, then G has no path of length 2d.
3. tw(G) ≤ td(G).
4. If td(G) ≤ d, then td(G′) ≤ d + 1 for any graph G′ obtained by adding one vertex into G.

(Signed) Clique-width. Let k be a positive integer. A k-graph is a graph whose vertices are labeled
by [k]; formally, the graph is equipped with a labeling function γ : V(G)→ [k], and we also use γ−1(i)
to denote the set of vertices labeled i for i ∈ [k].

We consider an arbitrary graph as a k-graph with all vertices labeled by 1. We call the k-graph
consisting of exactly one vertex v (say, labeled by i) an initial k-graph and denote it by i(v). The clique-width
of a graph G is the smallest integer k such that G can be constructed from initial k-graphs by means of
repeated application of the following three operations:

1. Disjoint union (denoted by ⊕);
2. Relabeling: changing all labels i to j (denoted by pi→j);
3. Edge insertion: adding an edge between each vertex labeled by i and each vertex labeled by j,

where i �= j (denoted by ηi,j or ηj,i).

A construction of a k-graph G using the above operations can be represented by an algebraic term
composed of ⊕, pi→j and ηi,j (where i �= j and i, j ∈ [k]). Such a term is called a k-expression defining
G, and the clique-width of G is the smallest integer k such that G can be defined by a k-expression.
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A k-expression tree (also called parse trees in the literature [22]) is a rooted tree representation of
a k-expression; specifically, the k-expression tree can be built from a k-expression in a leaves-to-root
fashion by using a leaf to represent each i(v), each ⊕ operator is represented by an ⊕ node with two
children, and each pi→j and ηj,i operator is represented by a corresponding node with a single child.

There are many graph classes which are known to have bounded clique-width. Examples of such
graph classes include every graph class of bounded treewidth [23], co-graphs [23], complete (bipartite)
graphs and distance hereditary graphs [24].

If the edges of G have signs, then one can define two different variants of clique-width for G.
The unsigned clique-width of G is simply the clique-width of the graph G′ obtained by removing all
signs on the edges of G. On the other hand, the signed clique-width of G is the minimum k such that G
can be defined by a signed k-expression, which is analogous to a k-expression with the sole distinction
that the operation ηi,j is replaced by η�

i,j which adds an edge with sign � between all vertices labeled i
and j. An example is provided in Figure 1.

+2
-1

+3

-1

Figure 1. An example of a graph with clique-width 2 and signed clique-width 4.

We list a few known facts and observations about clique-width below:

• The difference between the signed clique-width (scw) and unsigned clique-width (cw) of a signed
graph G can be arbitrarily large; more precisely, for every gap g there exists a signed graph G
such that scw(G) ≥ cw(G) + g [25].

• There exists a function f and a polynomial-time algorithm which takes as input a (signed)
graph G and either outputs a (signed) f (k)-expression or correctly determines that the (signed)
clique-width of G is greater than k [26,27].

• Every signed graph of (signed) clique-width k can be defined by a (signed) k-expression
which does not use the ηi,j operator to create edges between vertices that are already adjacent
(i.e., each edge is created only once).

• A signed k-expression of a bipartite signed graph G with bi-partition V1, V2 can be converted to
a signed (k + 1)-expression of G such that the labels used for V1 are completely disjoint from
those used for V2 (this is because any label that was originally used for V1 and V2 cannot be used
to create new edges).

2.5. Graphical Representations

Here, we overview some natural graphical representations which have been used to capture
the variable-constraint interactions of ILP instances. We remark that such representations are not
unique to the ILP setting: indeed, they have been used and studied extensively also in settings such as,
e.g., constraint programming [28,29] and Boolean satisfiability [11,30].

Let A be an m × n integer matrix that is provided as part of an ILP instance I . The signed
incidence graph of A (or, equivalently, of I) is the edge-labeled bipartite graph GSI(I) = (R ∪ C, E, λ),
where R = {r1, . . . , rm} contains one vertex for each row of A and C = {c1, . . . , cn} contains one vertex
for each column of A. There is an edge {r, c} with label λ({r, c}) = Ar,c between the vertex r ∈ R
and c ∈ C if Ar,c �= 0, that is, if row r contains a nonzero coefficient in column c. In other words,
the vertex set of GSI is con(I) ∪ var(I), a variable is adjacent to a constraint if and only if it occurs in
that constraint with a non-zero coefficient, and the labels on edges encode this coefficient.

The incidence graph of A (or I), denoted GI(I), is equal to the signed incidence graph without the
edge-labels. The primal graph of A (or I) is the graph GP(I) = (C, E), where C is the set of columns
of A and {c, c′} ∈ E whenever there exists a row of A with a nonzero coefficient in both columns c
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and c′. This graph is also sometimes called the Gaifman graph in the literature. The dual graph of A
(or I) is the graph GD(I) = (R, E), where R is the set of rows of A and {r, r′} ∈ E whenever there
exists a column of A with a nonzero coefficient in both rows r and r′. In other words, the vertex sets of
these graphs are var(I) and con(I), respectively; an edge then signifies that two variables directly
interact via a constraint or that two constraints directly interact via a variable, respectively. For all
graph representations introduced above, we drop the I in the parenthesis when the instance is clear
from context. Figure 2 illustrates the four graphical representations of a constraint matrix.

constraint matrix

A =

⎛⎜⎜⎝
1 −2 0 0 0
0 0 −1 3 1
−2 −4 0 0 0
0 1 1 0 0

⎞⎟⎟⎠
1 2 3 4 5

primal graph

1 2 3 4

dual graph

1 2 3 4 5

1 2 3 4

incidence graph

1 2 3 4 5

1 2 3 4

1 −2−2

−4

1−1

1 3 1

signed incidence graph

Figure 2. The primal, dual, incidence, and signed incidence graph of the constraint matrix shown
in the top left corner. Vertices corresponding to variables (constraints) of the matrix are indicated by
circles (rectangles). The label of a vertex corresponds to its row/column-index in the constraint matrix.

For a decompositional width measure dw ∈ {td, tw, cw, scw}, we denote by dwSI(I), dwI(I),
dwP(I), dwD(I), the width of the signed incidence graph, the incidence graph, the primal graph,
and the dual graph of I , respectively.

2.6. Representation Stability

Changing between the equality and inequality representations for ILP does not have a significant
effect on most of the structural parameters considered in this paper. In particular, it is easy to show
that the parameters td, tw, cw, scw as well as the parameters fracture number (frac) and torso-width
(defined in Section 5) differ at most by a factor of two when switching between the two representations.
To see this it suffices to consider the standard transformations between ILP= and ILP≤, which are
given as follows.

Given an instance I= of ILP=, we obtain an equivalent instance of ILP≤ by replacing every
equality constraint of I= with two inequality constraints and by adding the lower and upper bounds
for the variables to the constraint matrix. It is easy to see that this transformation increases the above
mentioned parameters for the primal, dual, and incidence graph by at most a factor of two.

Similarly, given an instance I≤ of ILP≤, we obtain an equivalent instance of ILP= by introducing
(i.e., adding) one novel “slack” variable to every constraint with a lower bound of 0. It is, similarly to
the previous case, straightforward to show that this does not increase any of the considered parameters
by more than a factor of two. As a consequence, for the statement of most of our complexity results
we will simply consider instances of ILP and/or ILPF (which may be given in equality as well as in
inequality form).
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3. Solving ILPs with Explicit Restrictions

Initial work on mapping the complexity of integer linear programming predominantly focused
on identifying tractable classes by placing restrictions on explicit properties of instances, such as the
number of variables or of constraints. Lenstra [8] showed that ILP can be solved by an algorithm which
has an exponential dependency on the number of variables, but only a linear dependency on the size of
the instance. His running time was subsequently improved by Kannan [9] and Frank and Tardos [10].

Theorem 1 ([8–10]). An ILP instance I with n variables can be solved in time O(n2.5n+o(n) · |I|); in other
words, ILP is fixed-parameter tractable parameterized by n.

Papadimitriou showed that ILP is fixed-parameter tractable parameterized by m + ‖A‖∞ +

‖b‖ [31]. His result was recently improved by Eisenbrand and Weismantel [32], and then further
improved by Jansen and Rohwedder [33]. Even more recently, Knop, Pilipczuk and Wrochna showed
that the running time of this result cannot be substantially improved [34].

Theorem 2 ([32–34]). An ILP= instance I with m constraints can be solved in time O((m · ‖A‖∞)m ·
log ‖b‖); in other words, ILP is fixed-parameter tractable parameterized by m + ‖A‖∞.

On the other hand, ILP remains intractable when all other obvious numerical measures are
bounded. In particular, ILPF remains NP-complete even when ‖A‖∞ = ‖b‖ = ‖u‖ = 1 and ‖l‖ = 0,
as witnessed by the folklore encoding of the VERTEX COVER problem into ILP, i.e., given a graph
G and an integer k, the ILP instance has one binary variable for every vertex of G (representing of
whether or not the vertex is chosen to be in a vertex cover) and for every edge between u and v
a constraint ensuring that the sum of the variables for u and v is at least one (ensuring that the vertex
cover contains at least one vertex from every edge).

While this is not the focus of this survey, we also mention that there is a significant body of work on
exploiting algebraic properties to solve ILP. Perhaps the most prominent example of a complexity result
obtained in this vein is the well-known fact that instances I whose matrix A is totally unimodular (i.e., each
of its square submatrices has a determinant in {−1, 0, 1}) can be solved in polynomial time [35]).

Theorem 3 ([35,36]). An ILP instance I having a totally unimodular constraint matrix can be solved in
polynomial-time.

We say that an ILP instance is non-negative if all entries of A and b are non-negative. Cunningham
and Geelen [37] showed that non-negative ILP= is fixed-parameter tractable parameterized by ‖b‖ and
ω, where ω is the branchwidth of the column-matroid of A, i.e., the matroid whose elements are the
column vectors of A and whose independent sets are the set of all linearly independent column vectors.

Theorem 4 ([37]). A non-negative ILP= instance I with m constraints and n variables can be solved in time
O((‖b‖∞ + 1)2ωωmn + m2n), where ω is equal to the branchwidth of the column-matroid of A.

4. Parameters for Sparse Variable-Constraint Interactions: Treewidth and Treedepth

We note that due to the discussion at the end of Section 2.5 all the results presented in this section
hold regardless of whether our instance is provided in inequality or equality form. In 2015, Jansen and
Kratsch [36] showed that the treewidth of the primal graph can be used to efficiently solve ILP when
the variable domains are bounded by the parameter. More precisely:

Theorem 5 ([36]). Let c be a constant. Given an ILPF instance I with unary bounded domain satisfying
the property that all but at most c variables have domain span at most d, and let GP be the primal graph of I .
Then I admits a fixed-parameter algorithm when parameterized by d + twP(I).
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The result follows from standard leaves-to-root dynamic programming along a tree decomposition
of GP(I), and can be straightforwardly adapted to also solve ILP. This result provides a useful tool
for dealing with instances where all variables have bounded domain. One year after Jansen and
Kratsch’s result, Ganian and Ordyniak used a reduction from SUBSET SUM to rule out the application
of treewidth In the setting of unbounded domain—even for extremely restricted instances of ILPF.

Theorem 6 ([38]). ILPF is NP-complete even when restricted to instances I such that twP(I) ≤ 2 and
‖b‖ = ‖A‖∞ = 1.

In the same paper, Ganian and Ordyniak complemented this result with a fixed-parameter
algorithm for ILP parameterized by tdP(I) + ‖A‖∞ + ‖b‖; the proof uses a pruning technique
which transforms the instance into an equivalent one of size bounded by the parameter (a “kernel”).
Their result was later superseded by Koutecký, Levin and Onn [39], who used Graver-best oracles
to show:

Theorem 7 ([39]). ILP is FPT when parameterized by tdP(I) + ‖A‖∞.

We note that both parameters tdP(I) and ‖A‖∞ are required to achieve even XP algorithms:
it is well known that ILP is NP-hard when restricted to instances with ‖A‖∞ = 1, and Ganian and
Ordyniak [38] showed that it is also NP-hard when restricted to instances with tdP(I) ≤ 4. It is worth
noting that both Theorem 7 and its predecessor have a non-elementary dependency on the parameter.

In their paper, Koutecký, Levin and Onn also used the same techniques to obtain a fixed-parameter
algorithm that uses the treedepth of the dual graph (as opposed to the primal one):

Theorem 8 ([39]). ILP is FPT when parameterized by tdD(I) + ‖A‖∞.

They also established an analogue to Theorem 6 for dual graphs, showing that restricting the dual
or primal graphs leads to a similar complexity behavior for ILP:

Theorem 9 ([39]). ILPF is NP-complete even when restricted to instances I such that twD(I) ≤ 3 and with
‖A‖∞ = 2.

Since the classical encoding of SUBSET SUM into an instance I of ILPF only uses a single constraint
(i.e., | con(I)| = 1), it is immediate that ILPF is also NP-complete when tdD(I) = 1; in other words,
it is not possible to strengthen Theorem 8 by dropping any of the parameters. By the standard reduction
from SUBSET SUM we mean the reduction to the ILP instance that has one binary variable for every
integer in the SUBSET SUM instance (representing whether or not the integer is in a solution) and one
constraint over all variables ensuring that the sum of all chosen integers equals the target value of the
SUBSET SUM instance.

The third fundamental graph representation that has been considered for restricting the
variable-constraint interactions of an ILP instance I is the incidence graph. It is worth noting that
a trivial transformation of the respective decompositions yields tdI(I) ≤ max(tdP(I), tdD(I)) and
similarly twI(I) ≤ max(twP(I), twD(I)); on the other hand, there are instances where both tdI(I)
and twI(I) are bounded but the dual and primal graphs exhibit neither bounded treewidth nor
treedepth. Hence, tractability results using the treewidth and treedepth of the incidence graph have the
potential to supersede similar results for both previously considered graph representations, while any
obtained hardness results carry over from primal and dual graphs to incidence graphs.

Ganian, Ordyniak and Ramanujan [40] identified conditions under which twI(I) can be used to
obtain algorithms for ILP. Notably, after factoring in Proposition 1 their result states:
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Theorem 10. ILP can be solved in time ΓO(twI(I)) · |I|, where Γ is the maximum absolute value of any partial
evaluation of a constraint by any feasible assignment of I ; here, a partial evaluation of a constraint/row r of
A with a feasible assignment x is equal to rx′, where x′ is any vector obtained from x after setting some of its
entries to 0.

Note that Γ ≤ n‖A‖∞d, where d is the maximum domain span of every variable in I . Hence,
Theorem 10, e.g., implies that fully unary ILP can be solved in polynomial-time if twI(I) is bounded
by a constant.

On the other hand, ILPF remains NP-complete even when restricted to instances with strong
restrictions on the treewidth and coefficients—to some extent justifying the dependency of the above
algorithm on Γ. Indeed, the first part of the following theorem follows from the classical encoding of
SUBSET SUM into ILPF, while the second part was shown by Ganian et al. [40].

Theorem 11. ILPF remains NP-complete even on instances I with (1) twI(I) = 1 and Boolean domains for
all variables, as well as with (2) twI(I) ≤ 3 and max(‖A‖∞, ‖b‖) = 2.

A natural question is whether one can use tdI(I) instead of twI(I) in order to obtain tractability
for ILP under a weaker restriction than by bounding Γ—notably, can one lift Theorems 7 and 8 to
the incidence treedepth setting? Very recently, Eiben et al. [41] answered the question in the negative
by showing:

Theorem 12 ([41]). ILP remains NP-complete even when restricted to instances I such that
max(‖A‖∞, ‖b‖) = 1 and tdI(I) ≤ 5.

In the full version of that paper, they also showed that restricting the structure by the size
of a minimum vertex cover of GI(I)—a significantly stronger restriction than treedepth—leads
to tractability.

Theorem 13. ILP is FPT parameterized by ‖A‖∞ and the vertex cover number of GI(I).

Note that even though the vertex cover number is sensitive to changes between the equality and
inequality form of ILP in general, the above theorem still holds for both forms. This is because the
proof of Theorem 13 works by first observing that the number of (linearly independent) equalities
is bounded by a function of the vertex cover number and ‖A‖∞ and then uses Theorem 2 to show
tractability. Almost the same approach can be used for inequalities, i.e., one can again observe that
the number of inequalities is bounded in terms of the parameters (otherwise there are redundant
inequalities) and then use the standard reduction from ILP≤ to ILP=; since the reduction does not
increase the number of constraints, one can again apply Theorem 2.

We conclude this section by touching on the complexity of integer linear programs whose graph
representations have an extremely simple structure—notably, have treewidth 1 (i.e., are acyclic).
This setting was investigated by Eiben et al. [42], who showed that ILP≤ restricted to unary instances
whose graph representations are acycllic exhibit a different complexity behavior than ILP restricted to
instances of bounded treewidth. We summarize their results in Table 1.
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Table 1. The complexity map for ILP≤ for unary instances (first row), instances whose coefficients are
encoded in unary (second row), and instances with unary bounded domain (third row). Without these
restrictions, the problem becomes intractable due to the simple acyclic structure of the classical encoding
of SUBSET SUM into ILP.

Acyclic Primal Graph
Acyclic Incidence Graph

ILPF ILP

UNARY P P P
UNARY-C NP-hard P NP-hard
UNARY-D P P NP-hard

5. Other Parameters Exploiting Variable-Constraint Interactions

Of course, ILP has also been studied through the lens of structural parameters that are different than
treewidth. The first example of such a parameter is the fracture number of Dvořák et al. [43], which captures
the “distance” of an ILP instance from being fractured into small independent components.

Three variants of the fracture number will be of interest for the purposes of this survey:
the constraint fracture number of an ILP I (fracC(I)) is the minimum number � of constraints that need
to be deleted from I so that the resulting instance I′ satisfies the following: each connected component
of GI(I′) contains at most � vertices. The variable fracture number (fracV(I)) and mixed fracture number
(frac(I)) are then defined analogously, with the distinction that we may only delete variables or are
allowed to delete both variables and constraints, respectively.

The constraint fracture number is bounded whenever the dual graph has bounded treedepth,
and the mixed fracture number is bounded whenever the incidence graph has bounded treedepth
(and similarily for the variables fracture number and the primal graph); however, the converse of these
statements is not true. Intuitively, this means that the fracture number can be viewed as a stronger
restriction than treedepth. Dvořák et al. [43] showed that the fracture number can be used to obtain
XP-algorithms for ILP in settings which would remain NP-hard if treedepth were used instead
(see Theorem 12). See Figure 3 for an illustration of the relationships between the different variants of
fracture number as well as their relation to treewidth and treedepth.

twP

tdP

fracV

twI

tdI

frac

twD

tdD

fracC

primal incidence dual

Figure 3. The relationship between the structural parameters treewidth, treedepth, and fracture
number for the primal, dual, and incidence graph. An arc from one parameter to another indicates
that the former is a more general parameter, i.e., whenever the later is bounded so is the former.
The variable, constraint, and mixed fracture number are defined in Section 5.
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Theorem 14 (Corollary 8, [43]). ILP admits an XP-algorithm parameterized by ‖A‖∞ + frac(I).

Theorem 15 (Theorem 12, [43]). ILP restricted to unary instances admits an XP-algorithm parameterized
by fracC(I).

Note that theorem 15 cannot be improved to an FPT-algorithm due to (Theorem 14, [43]). Moreover,
an analogous result does not hold for the mixed respectively variable fracture number as already unary ILP
is NP-hard if the variable fracture number is bounded by a constant (Theorem 13, [43]), which also excludes
the use of a less restrictive parameter than constraint fracture number (such as treedepth) in Theorem 15.

Another structural parameter that can be used to solve ILP is the torso-width. The base idea
behind torso-width is to decompose instances into (possibly many) separate parts with only limited
interaction between them, and to solve some parts with Lenstra’s algorithm (Theorem 1) and others
with dynamic programming along a tree decomposition as per Theorem 5.

To define torso-width, we will need the operation of collapsing: for a graph G and a vertex set X,
the operation of collapsing X deletes X from the graph and adds an edge between each pair of neighbors
of X. We denote the resulting graph G ◦ X. Now, let q be a fixed constant. A graph G is a q-torso
of I iff there exists a set P of variables, each with domain span at most q, such that G = GP(I) ◦ P.
The q-torso-width of I , denoted torq(I), is then the minimum integer k such that I has a q-torso G such
that:

• G has treewidth at most k, and
• the largest connected component of the subgraph of GP(I) induced on V(GP(I)) \V(G) contains

at most k vertices.

Ganian, Ordyniak and Ramanujan [40] showed that the q-torso-width of I can be approximated
by a fixed-parameter algorithm, and that this parameter can also be used to solve ILP. This result can
be seen as a generalization of Theorem 1 as well as Theorem 5.

Theorem 16 (Theorem 5, [40]). For every fixed integer q, ILP is FPT parameterized by q-torso-width.

Eiben, Ganian, Knop and Ordyniak [42] also investigated the complexity of ILP with respect to
the parameter clique-width. They showed (and it is also not difficult to observe) that ILPF remains
NP-complete even when restricted to extremely simple instances whose incidence, primal, and/or dual
graphs have bounded clique-width. However, ILP becomes polynomially tractable when restricted
to unary instances of bounded signed clique-width (of their signed incidence graph), under the
assumption that a suitable k-expression is provided in the input.

Theorem 17. There exists an algorithm which takes as input a unary instance I of ILP and a signed
k-expression tree T of GSI(I), runs in time O(|I|4k · |T|), and solves I .

6. Summary and Future Work

This survey provides an overview of recently obtained (as well as previously known)
(in-)tractability results for ILP with a focus on structural restrictions of the primal, dual, and incidence
graph. The classes based on fracture number and treedepth can alternatively be defined in terms of
block matrices and are also known as n-fold, tree-fold, 2-stage stochastic, and multi-stage stochastic
integer linear programs; a recent and comprehensive overview for these classes, their exact relation to
the classes considered in this survey, as well as the current best algorithmic approaches and techniques
employed for these classes is given in [44].

Even though the complexity of ILP w.r.t. decompositional parameters such as treedepth, treewidth,
and clique-width is by now quite well understood, we believe that the study of parameterized
complexity of ILP is still in its infancy. Apart from studying more restrictive settings such as tree-like
instances (in combination with, e.g., ‖A‖∞) as well as related parameters such as feedback edge set,
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feedback vertex set, and bandwidth, we see at least two very promising directions for developing novel
and even more general structural parameterizations: backdoor sets and hybrid parameters. Both of
these approaches have already been successfully applied in settings such as BOOLEAN SATISFIABILITY

and CONSTRAINT SATISFACTION [29,45,46]. Informally, a backdoor set captures the situation when
an instance is “close” to being tractable, and it looks promising to develop backdoor sets into one
of the newly defined tractable classes. For instance, can we solve instances of ILP that differ from
a known tractable class only by a small set of variables or constraints? Concerning the hybrid approach,
where the aim is to solve instances consisting of many parts each of them tractable for a different
reason, the number of possible directions seems even greater—torso-width is thus far the only explored
hybrid parameter and many more tractable classes of ILP have been discovered since its introduction.
Finally, it is important to explore if, how, and how far the known tractable fragments for ILP can be
employed for well-known generalizations of ILP such as mixed or quadratic integer programs.
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Abstract: In this work, we study the d-HITTING SET and FEEDBACK VERTEX SET problems through
the paradigm of finding diverse collections of r solutions of size at most k each, which has recently
been introduced to the field of parameterized complexity. This paradigm is aimed at addressing the
loss of important side information which typically occurs during the abstraction process that models
real-world problems as computational problems. We use two measures for the diversity of such
a collection: the sum of all pairwise Hamming distances, and the minimum pairwise Hamming
distance. We show that both problems are fixed-parameter tractable in k + r for both diversity
measures. A key ingredient in our algorithms is a (problem independent) network flow formulation
that, given a set of ‘base’ solutions, computes a maximally diverse collection of solutions. We believe
that this could be of independent interest.

Keywords: solution diversity; fixed-parameter tractability; hitting sets; vertex cover; feedback vertex
set; Hamming distance

1. Introduction

The typical approach in modeling a real-world problem as a computational problem has, broadly
speaking, two steps: (i) abstracting the problem into a mathematical formulation that captures the crux
of the real-world problem, and (ii) asking for a best solution to the mathematical problem.

Consider the following scenario: Dr. O organizes a panel discussion and has a shortlist of
candidates to invite. From that shortlist, Dr.O wants to invite as many candidates as possible, such that
each of them will bring an individual contribution to the panel. Given two candidates, A and B, it may
not be beneficial to invite both A and B, for various reasons: their areas of expertise or opinions may
be too similar for both to make a distinguishable contribution, or it may be preferable not to invite
more than one person from each institution. It may even be the case that A and B do not see eye-to-eye
on some issues which could come up at the discussion, and Dr. O wishes to avoid a confrontation.

A natural mathematical model to resolve Dr. O’s dilemma is as an instance of the VERTEX COVER

problem: each candidate on the shortlist corresponds to a vertex, and for each pair of candidates A and
B, we add the edge between A and B if it is not beneficial to invite both of them. Removing a smallest
vertex cover in the resulting graph results in a largest possible set of candidates such that each of them
may be expected to individually contribute to the appeal of the event.

Algorithms 2019, 12, 254; doi:10.3390/a12120254 www.mdpi.com/journal/algorithms
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Formally, a vertex cover of an undirected graph G is any subset S ⊆ V(G) of the vertex set of G
such that every edge in G has at least one end-point in G. The VERTEX COVER problem asks for a
vertex cover of the smallest size:

VERTEX COVER

Input: Graph G.
Solution: A vertex cover S of G of the smallest size.

While the above model does provide Dr. O with a set of candidates to invite that is valid in the
sense that each invited candidate can be expected to make a unique contribution to the panel, a vast
amount of side information about the candidates is lost in the modeling process. This side information
could have helped Dr. O to get more out of the panel discussion. For instance, Dr. O may have
preferred to invite more well-known or established people over ‘newcomers’, if they wanted the panel
to be highly visible and prestigious; or they may have preferred to have more ‘newcomers’ in the
panel, if they wanted the panel to have more outreach. Other preferences that Dr. O may have had
include: to have people from many different cultural backgrounds, to have equal representation of
genders, or preferential representation for affirmative action; to have a variety in the levels of seniority
among the attendants, possibly skewed in one way or the other. Other factors, such as the total carbon
footprint caused by the participants’ travels, may also be of interest to Dr. O. This list could go on
and on.

Now, it is possible to plug in some of these factors into the mathematical model, for instance by
including weights or labels. Thus, a vertex weight could indicate ‘how well-established’ a candidate
is. However, the complexity of the model grows fast with each additional criterion. The classic field
of multicriteria optimization [1] addresses the issue of bundling multiple factors into the objective
function, but it is seldom possible to arrive at a balance in the various criteria in a way which captures
more than a small fraction of all the relevant side information. Moreover, several side criteria may be
conflicting or incomparable (or both); consider in Dr. O’s case ‘maximizing the number of different
cultural backgrounds’ vs. ‘minimizing total carbon footprint’.

While Dr. O’s story is admittedly a made-up one, the VERTEX COVER problem is in fact used to
model conflict resolution in far more realistic settings. In each case, there is a conflict graph G whose
vertices correspond to entities between which one wishes to avoid a conflict of some kind. There is
an edge between two vertices in G if and only if they could be in conflict, and finding and deleting a
smallest vertex cover of G yields a largest conflict-free subset of entities. We describe three examples to
illustrate the versatility of this model. In each case, it is intuitively clear, just like in Dr. O’s problem,
that formulating the problem as VERTEX COVER results in a lot of significant side information being
thrown away, and that while finding a smallest vertex cover in the conflict graph will give a valid
solution, it may not really help in finding a best solution, or even a reasonably good solution. We list some
side information that is lost in the modeling process; the reader should find it easy to come up with
any amount of other side information that would be of interest, in each case.

• Air traffic control. Conflict graphs are used in the design of decision support tools for aiding Air
Traffic Controllers (ATCs) in preventing untoward incidents involving aircraft [2,3]. Each node
in the graph G in this instance is an aircraft, and there is an edge between two nodes if the
corresponding aircraft are at risk of interfering with each other. A vertex cover of G corresponds
to a set of aircraft that can be issued resolution commands which ask them to change course,
such that afterwards there is no risk of interference.

In a situation involving a large number of aircraft, it is unlikely that every choice of ten aircraft to
redirect is equally desirable. For instance, in general, it is likely that (i) it is better to ask smaller
aircraft to change course in preference to larger craft, and (ii) it is better to ask aircraft which are
cruising to change course, in preference to those which are taking off or landing.
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• Wireless spectrum allocation. Conflict graphs are a standard tool in figuring out how to
distribute wireless frequency spectrum among a large set of wireless devices so that no two devices
whose usage could potentially interfere with each other are allotted the same frequencies [4,5].
Each node in G is a user, and there is an edge between two nodes if (i) the users request the
same frequency, and (ii) their usage of the same frequency has the potential to cause interference.
A vertex cover of G corresponds to a set of users whose requests can be denied, such that
afterwards there is no risk of interference.

When there is large collection of devices vying for spectrum, it is unlikely that every choice of
ten devices to deny the spectrum is equally desirable. For instance, it is likely that denying the
spectrum to a remote-controlled toy car on the ground is preferable to denying the spectrum to a
drone in flight.

• Managing inconsistencies in database integration. A database constructed by integrating
data from different data sources may end up being inconsistent (that is, violating specified
integrity constraints) even if the constituent databases are individually consistent. Handling these
inconsistencies is a major challenge in database integration, and conflict graphs are central to
various approaches for restoring consistency [6–9]. Each node in G is a database item, and there
is an edge between two nodes if the two items together form an inconsistency. A vertex cover of
G corresponds to a set of database items in whose absence the database achieves consistency.

In a database of large size, it is unlikely that all data are created equal; some database items are
likely to be of better relevance or usefulness than others, and so it is unlikely that every choice of
ten items to delete is equally desirable.

Getting back to our first example, it seems difficult to help Dr.O with their decision by employing
the ‘traditional’ way of modeling computational problems, where one looks for one best solution. If,
on the other hand, Dr.O was presented with a small set of good solutions that, in some sense, are far apart,
then they might hand-pick the list of candidates that they consider the best choice for the panel and
make a more informed decision. Moreover, several forms of side-information may only become apparent
once Dr. O is presented some concrete alternatives, and are more likely to be retrieved from alternatives
that look very different. That is, a bunch of good quality, dissimilar solutions may end up capturing
a lot of the “lost” side information. In addition, this applies to each of the other three examples as
well. In each case, finding one best solution could be of little utility in solving the original problem,
whereas finding a small set of solutions, each of good quality, which are not too similar to one another may
offer much more help.

To summarize, real-world problems typically have complicated side constraints, and the
optimality criterion may not be clear. Therefore, the abstraction to a mathematical formulation is
almost always a simplification, omitting important side information. There are at least two obstacles
to simply adapting the model by incorporating these secondary criteria into the objective function or
taking into account the side constraints: (i) they make the model complicated and unmanagable, and,
(ii) more importantly, these criteria and constraints are often not precisely formulated, potentially even
unknown a priori. There may even be no sharp distinction between optimality criteria and constraints
(the so-called “soft constraints”).

One way of dealing with this issue is to present a small number r of good solutions and let the
user choose between them, based on all the experience and additional information that the user has
and that is ignored in the mathematical model. Such an approach is useful even when the objective
can be formulated precisely, but is difficult to optimize: After generating r solutions, each of which
is good enough according to some quality criterion, they can be compared and screened in a second
phase, evaluating their exact objective function or checking additional side constraints. In this context,
it makes little sense to generate solutions that are very similar to each other and differ only in a few
features. It is desirable to present a diverse variety of solutions.
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It should be clear that the issue is scarcely specific to VERTEX COVER. Essentially any
computational problem motivated by practical applications likely has the same issue: the modeling
process throws out so much relevant side information that any algorithm that finds just one optimal
solution to an input instance may not be of much use in solving the original problem in practice.
One scenario where the traditional approach to modeling computational problems fails completely is
when computational problems may combined with a human sense of aesthetics or intuition to solve a
task, or even to stimulate inspiration. Some early relevant work is on the problem of designing a tool
which helps an architect in creating a floor plan which satisfies a specified set of constraints. In general,
the number of feasible floor plans—those which satisfy constraints imposed by the plot on which the
building has to be erected, various regulations which the building should adhere to, and so on—would
be too many for the architect to look at each of them one by one. Furthermore, many of these plans
would be very similar to one another, so that it would be pointless for the architect to look at more than
one of these for inspiration. As an alternative to optimization for such problems, Galle proposed a
“Branch & Sample” algorithm for generating a “limited, representative sample of solutions, uniformly
scattered over the entire solution space” [10].

The Diverse X Paradigm. Mike Fellows has proposed the Diverse X Paradigm as a solution for these
issues and others [11]. In this paradigm, “X” is a placeholder for an optimization problem, and we
study the complexity—specifically, the fixed-parameter tractability—of the problem of finding a few
different good quality solutions for X. Contrast this with the traditional approach of looking for just
one good quality solution. Let X denote an optimization problem where one looks for a minimum-size
subset of some set; VERTEX COVER is an example of such a problem. The generic form of X is then:

X
Input: An instance I of X.
Solution: A solution S of I of the smallest size.

Here, the form that a “solution S of I” takes is dictated by the problem X; compare this with the
earlier definition of VERTEX COVER.

The diverse variant of problem X, as proposed by Fellows, has the form:

DIVERSE X
Input: An instance I of X, and positive integers k, r, t.
Parameter: (k, r)
Solution: A set S of r solutions of I, each of size at most k, such that a diversity measure of S is at

least t.

Note that one can construct diverse variants of other kinds of problems as well, following this
model: it doesn’t have to be a minimization problem, nor does the solution have to be a subset of some
kind. Indeed, the example about floor plans described above has neither of these properties. What is
relevant is that one should have (i) some notion of “good quality” solutions (for X, this equates to a
small size) and (ii) some notion of a set of solutions being “diverse”.

Diversity measures. The concept of diversity appears also in other fields, and there are many different
ways to measure the diversity of a collection. For example, in ecology, the diversity of a set of species
(“biodiversity”) is a topic that has become increasingly important in recent times—see, for example,
Solow and Polasky [12].

Another possible viewpoint, in the context of multicriteria optimization, is to require that the
sample of solutions should try to represent the whole solution space. This concept can be quantified
for example by the geometric volume of the represented space [13,14], or by the discrepancy [15].
See ([16], Section 3) for an overview of diversity measures in multicriteria optimization.
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In this paper, we follow the simple possibility of looking for a collection of good solutions that
have large distances from each other, in a sense that will be made precise below, see Equations (1)–(2).
Direction (2), i.e., taking the pairwise sum of all Hamming distances, has been taken by many practical
papers in the area of genetic algorithms—see, e.g., [17,18]. This now classical approach can be traced
as far back as 1992 [19]. In [20], it has been boldly stated that this measure (and its variations) is one of
the most broadly used measures in describing population diversity within genetic algorithms. One of
its advantages is that it can be computed very easily and efficiently unlike many other measures,
e.g., some geometry or discrepancy based measures.

Our Problems and Results

In this work, we focus on diverse versions of two minimization problems, d-HITTING SET and
FEEDBACK VERTEX SET, whose solutions are subsets of a finite set. d-HITTING SET is in fact a class of
such problems which includes VERTEX COVER, as we describe below. We will consider two natural
diversity measures for these problems: the minimum Hamming distance between any two solutions,
and the sum of pairwise Hamming distances of all the solutions.

The Hamming distance between two sets S and S′, or the size of their symmetric difference, is

dH(S, S′) := |(S \ S′) ∪ (S′ \ S)|.

We use
divmin(S1, . . . , Sr) := min

1≤i<j≤r
dH(Si, Sj) (1)

to denote the minimum Hamming distance between any pair of sets in a collection of finite sets, and

divtotal(S1, . . . , Sr) := ∑
1≤i<j≤r

dH(Si, Sj) (2)

to denote the sum of all pairwise Hamming distances. (In Section 5, we will discuss some issues with
the latter formulation.)

A feedback vertex set of a graph G is any subset S ⊆ V(G) of the vertex set of G such that the graph
G− S obtained by deleting the vertices in S is a forest; that is, it contains no cycle.

FEEDBACK VERTEX SET

Input: A graph G.
Solution: A feedback vertex set of G of the smallest size.

More generally, a hitting set of a collection F of subsets of a universe U is any subset S ⊆ U such
that every set in the family F has a non-empty intersection with S. For a fixed positive integer d,
the d-HITTING SET problem asks for a hitting set of the smallest size of a family F of d-sized subsets of
a finite universe U:

d-HITTING SET

Input: A finite universe U and a family F of subsets of U, each of size at most d.
Solution: A hitting set S of F of the smallest size.

Observe that both VERTEX COVER and FEEDBACK VERTEX SET are special cases of finding a
smallest hitting set for a family of subsets. VERTEX COVER is also an instance of d-HITTING SET,
with d = 2: the universe U is the set of vertices of the input graph and the family F consists of all
sets {v, w}, where vw is an edge in G. There is no obvious way to model FEEDBACK VERTEX SET as
a d-HITTING SET instance, however, because the cycles in the input graph are not necessarily of the
same size.
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In this work, we consider the following problems in the DIVERSE X paradigm. Using divtotal as
the diversity measure, we consider DIVERSE d-HITTING SET and DIVERSE FEEDBACK VERTEX SET,
where X is d-HITTING SET and FEEDBACK VERTEX SET, respectively. Using divmin as the diversity
measure, we consider MIN-DIVERSE d-HITTING SET and MIN-DIVERSE FEEDBACK VERTEX SET,
where X is d-HITTING SET and FEEDBACK VERTEX SET, respectively.

In each case, we show that the problem is fixed-parameter tractable (FPT), with the following
running times:

Theorem 1. DIVERSE d-HITTING SET can be solved in time r2dkr · |U|O(1).

Theorem 2. DIVERSE FEEDBACK VERTEX SET can be solved in time 27kr · nO(1).

Theorem 3. MIN-DIVERSE d-HITTING SET can be solved in time

• 2kr2 · (kr)O(1) if |U| < kr and
• dkr · |U|O(1) otherwise.

Theorem 4. MIN-DIVERSE FEEDBACK VERTEX SET can be solved in time 2kr·max(r,7+log2(kr)) · (nr)O(1).

Defining the diverse versions DIVERSE VERTEX COVER and MIN-DIVERSE VERTEX COVER of
VERTEX COVER in a similar manner as above, we get

Corollary 1. DIVERSE VERTEX COVER can be solved in time 2kr · nO(1). MIN-DIVERSE VERTEX COVER

can be solved in time

• 2kr2 · (kr)O(1) if n < kr and
• 2kr · nO(1) otherwise.

Related Work. The parameterized complexity of finding a diverse collection of good-quality solutions
to algorithmic problems seems to be largely unexplored. To the best of our knowledge, the only
existing work in this area consists of: (i) a privately circulated manuscript by Fellows [11] which
introduces the Diverse X Paradigm and makes a forceful case for its relevance, and (ii) a manuscript by
Baste et al. [21] which applies the Diverse X Paradigm to vertex-problems with the treewidth of the input
graph as an extra parameter. In this context, a vertex-problem is any problem in which the input contains
a graph G and the solution is some subset of the vertex set of G that satisfies some problem-specific
properties. Both VERTEX COVER and FEEDBACK VERTEX SET are vertex-problems in this sense, as are
many other graph problems. The treewidth of a graph is, informally put, a measure of how tree-like
the graph is. See, e.g., ([22], Chapter 7) for an introduction of the use of the treewidth of a graph as a
parameter in designing FPT algorithms. The work by Baste et al. [21] shows how to convert essentially
any treewidth-based dynamic programming algorithm, for solving a vertex-problem, into an algorithm
for computing a diverse set of r solutions for the problem, with the diversity measure being the sum
divtotal of Hamming distances of the solutions. This latter algorithm is FPT in the combined parameter
(r, w), where w is the treewidth of the input graph. As a special case, they obtain a running time
of O((2k+2(k + 1))rkr2n) for DIVERSE VERTEX COVER. Furthermore, they show that the r-DIVERSE

versions (i.e., where the diversity measure is divtotal) of a handful of problems have polynomial kernels.
In particular, they show that DIVERSE VERTEX COVER has a kernel with O(k(k + r)) vertices, and that
DIVERSE d-HITTING SET has a kernel with a universe size of O(kd + kr).

Organization of the rest of the paper. In Section 2, we list some definitions which we use in the rest
of the paper. In Section 3, we describe a generic framework which can be used for computing solution
families of maximum diversity for a variety of problems whose solutions form subsets of some finite
set. We prove Theorem 1 in Section 3.3 and Theorem 2 in Section 4. In Section 5, we discuss some
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potential pitfalls in using divtotal as a measure of diversity. In Section 6, we prove Theorems 3 and 4.
We conclude in Section 7.

2. Preliminaries

Given two integers p and q, we denote by [p, q] the set of all integers r such that p ≤ r ≤ q holds.
Given a graph G, we denote by V(G) (resp. E(G)) the set of vertices (resp. edges) of G. For a subset
S ⊂ V(G), we use G[S] to denote the subgraph of G induced by S, and G \ S for the graph G[V(G) \ S].
A set S ⊆ V(G) is a vertex cover (resp. a feedback vertex set) if G \ S has no edge (resp. no cycle).
Given a graph G and a vertex v such that v has exactly two neighbors, say w and w′, contracting v
consists of removing the edges {v, w} and {v, w′}, removing v, and adding the edge {w, w′}. Given a
graph G and a vertex v ∈ V(G), we denote by δG(v) the degree of v in G. For two vertices u, v in a
connected graph G, we use distT(u, v) to denote the distance between u and v in G, which is the length
of a shortest path in G between u and v.

A deepest leaf in a tree T is a vertex v ∈ V(T) such that there exists a root r ∈ V(T) satisfying
distT(r, v) = maxu∈V(T) distT(r, u). A deepest leaf in a forest F is a deepest leaf in some connected
component of F. A deepest leaf v has the property that there is another leaf in the tree at distance at
most 2 from v unless v is an isolated vertex or v’s neighbor has degree 2.

The objective function divtotal in (2) has an alternative representation in terms of frequencies of
occurrence [21]: If yv is the number of sets of {S1, . . . , Sr} in which v appears, then

divtotal(S1, . . . , Sr) = ∑
v∈U

yv(r− yv). (3)

Auxiliary problems. We define two auxiliary problems that we will use in some of the algorithms
presented in Section 3. In the MAXIMUM COST FLOW problem, we are given a directed graph G, a target
d ∈ R+, a source vertex s ∈ V(G), a sink vertex t ∈ V(G), and for each edge (u, v) ∈ E(G), a capacity
c(u, v) > 0, and a cost a(u, v). A (s, t)-flow, or simply flow in G is a function f : E(G) → R, such that
for each (u, v) ∈ E(G), f (u, v) ≤ c(u, v), and for each vertex v ∈ V(G) \ {s, t}, ∑(u,v)∈E(G) f (u, v) =
∑(v,u)∈E(G) f (v, u). The value of the flow f is ∑(s,u)∈E(G) f (s, u) and the cost of f is ∑(u,v)∈E(G) f (u, v) ·
a(u, v). The objective of the MAXIMUM COST FLOW problem is to find the maximum cost (s, t)-flow of
value d.

The second problem is the MAXIMUM WEIGHT b-MATCHING problem. Here, we are given an
undirected edge-weighted graph G, and for each vertex v ∈ V(G), a supply b(v). The goal is to find a
set of edges M ⊆ E(G) of maximum total weight such that each vertex v ∈ V(G) is incident with at
most b(v) edges in M.

3. A Framework for Maximally Diverse Solutions

In this section, we describe a framework for computing solution families of maximum diversity
for a variety of hitting set problems. This framework requires that the solutions form a family of
subsets of a ground set U that is upward closed: any superset T ⊇ S of a solution S is also a solution.

The approach is as follows: In a first phase, we enumerate the class S of all minimal solutions of
size at most k. (A larger class S is also fine as long as it is guaranteed to contain all minimal solutions of
size at most k). Then, we form all r-tuples (S1, . . . , Sr) ∈ Sk. For each such family (S1, . . . , Sr), we try to
augment it to a family (T1, . . . , Tr) under the constraints Ti ⊇ Si and |Ti| ≤ k, for each i ∈ [1, r], in such
a way that divtotal(T1, . . . , Tr) is maximized.

For this augmentation problem, we propose a network flow model that computes an optimal
augmentation in polynomial time, see Section 3.1. This has to be repeated for each family, O(|S|r)
times. The first step, the generation of S , is problem-specific. Section 3.3 shows how to solve it for
d-HITTING SET. In Section 4, we will adapt our approach to deal with a FEEDBACK VERTEX SET.
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3.1. Optimal Augmentation

Given a universe U and a set S of subsets of U, the problem diverser,k(S) consists of finding an
r-tuple (S1, . . . , Sr) that maximizes divtotal(S1, . . . , Sr), over all r-tuples (S1, . . . , Sr) such that, for each
i ∈ [1, r], |Si| ≤ k, and there exists S ∈ S such that S ⊆ Si ⊆ U.

Theorem 5. Let U be a finite universe, r and k be two integers, and S be a set of s subsets of U. diverser,k(S)
can be solved in time r2sr · |U|O(1).

Proof. The algorithm that proves Theorem 5 starts by enumerating all r-tuples (S1, S2, . . . , Sr) ∈ S r of
elements from S . For each of these sr r-tuples, we try to augment each Si, using elements of U, in such
a way that the diversity d of the resulting tuple (T1, . . . , Tr) is maximized and such that, for each
i ∈ [1, r], Si ⊆ Ti ⊆ U and |Ti| ≤ k. It is clear that this algorithm will find the solution to diverser,k(S).

We show how to model this problem as a maximum-cost network flow problem with piecewise
linear concave costs. This problem can be solved in polynomial time. (See, for example, [23] for basic
notions about network flows).

Without loss of generality, let U = {1, 2, . . . , n}. We use a variable 0 ≤ xij ≤ 1 to decide whether
element j of U should belong to set Ti. In an optimal flow, these values are integral. Some of these
variables are already fixed because Ti must contain Si:

xij = 1 for j ∈ Si. (4)

The size of Ti must not exceed k:

n

∑
j=1

xij ≤ k, for i = 1, . . . , r. (5)

Finally, we can express the number yj of sets Ti in which an element j occurs:

yj =
r

∑
i=1

xij, for j = 1, . . . , n. (6)

These variables yj are the variables in terms of which the objective function (3) is expressed:

maximize
n

∑
j=1

yj(r− yj). (7)

These constraints can be modeled by a network as shown in Figure 1. There are nodes Ti
representing the sets Ti and a node Vj for each element j ∈ U. In addition, there is a source s and a
sink t. The arcs emanating from s have capacity k. Together with the flow conservation equations at
the nodes Ti, this models the constraints (5). Flow conservation at the nodes Vj gives rise to the flow
variables yj in the arcs leading to t according to (6). The arcs with fixed flow (4) could be eliminated
from the network, but, for ease of notation, we leave them in the model. The only arcs that carry a cost
are the arcs leading to t, and the costs are given by the concave function (7).
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...

s t

≤ k

0 ≤ xij ≤ 1

y1

y2

y3

yn

V1

V2

V3

Vn

T1

T2

T3

Tr

...

Figure 1. The network. The middle layer between the vertices Ti and Vj is a complete bipartite graph,
but only a few selected arcs are shown. A potential augmenting path is highlighted.

There is now a one-to-one correspondence between integral flows from s to t in the network and
solutions (T1, . . . , Tr), and the cost of the flow is equal to the diversity (2) or (3). We are thus looking
for a flow of maximum cost. The value of the flow (to total flow out of s) can be arbitrary. (It is equal to
the sum of the sizes of the sets Ti.)

The concave arc costs (7) on the arcs leading to t can be modeled in a standard way by multiple arcs.
Denote the concave cost function by fy := y(r− y), for y = 0, 1, . . . , r. Then, each arc (Vi, t) in the last
layer is replaced by r parallel arcs of capacity 1 with costs f1− f0, f2− f1, . . . , fr− fr−1. This sequence of
values fy − fy−1 = r− 2y + 1 is decreasing, starting out with positive values and ending with negative
values. If the total flow along such a bundle is y, the maximum-cost way to distribute this flow is to
fill the first y arcs to capacity, for a total cost of ( f1 − f0) + ( f2 − f1) + · · ·+ ( fy − fy−1) = fy − f0 = fy,
as desired.

An easy way to compute a maximum-cost flow is the longest augmenting path method.
(Commonly, it is presented as the shortest augmenting path method for the minimum-cost flow).
This holds for the classical flow model where the cost on each arc is a linear function of the flow.
An augmenting path is a path in the residual network with respect to the current flow, and the cost
coefficient of an arc in such a path must be taken with opposite sign if it is traversed in the direction
opposite to the original graph.

Proposition 1 (The shortest augmenting path algorithm, cf. [23] (Theorem 8.12)). Suppose a
maximum-cost flow among all flows of value v from s to t is given. Let P be a maximum-cost augmenting path
from s to t. If we augment the flow along this path, this results in a new flow, of some value v′. Then, the new
flow is a maximum-cost flow among all flows of value v′ from s to t.

Let us apply this algorithm to our network. We initialize the constrained flow variables xij
according to Equation (4) to 1 and all other variables xij to 0. This corresponds to the original solution
(S1, S2, . . . , Sr), and it is clearly the optimal flow of value ∑r

i=1 |Si| because it is the only feasible flow
of this value.

We can now start to find augmenting paths. Our graph is bipartite, and augmenting paths have a
very simple structure: They start in s, alternate back and forth between the T-nodes and the V-nodes,
and finally make a step to t. Moreover, in our network, all costs are zero except in the last layer, and an
augmenting path contains precisely one arc from this layer. Therefore, the cost of an augmenting path is
simply the cost of the final arc.

The flow variables in the final layer are never decreased. The resulting algorithm has therefore
a simple greedy-like structure. Starting from the initial flow, we first try to saturate as many of the
arcs of cost f1 − f0 as possible. Next, we try to saturate as many of the arcs of cost f2 − f1 as possible,
and so on. Once the incremental cost fy+1 − fy becomes negative, we stop.
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Trying to find an augmenting path whose last arc is one of the arcs of cost fy+1 − fy, for fixed y,
is a reachability problem in the residual graph, and it can be solved by graph search in O(nr) time
because the network has O(nr) vertices. Every augmentation increases the flow value by 1 unit. Thus,
there are at most kr augmentations, for a total runtime of O(kr2n).

3.2. Faster Augmentation

We can obtain faster algorithms by using more advanced network algorithms from the literature.
We will derive one such algorithm here. The best choice depends on the relation between n, k, and r.
We will apply the following result about b-matchings, which are generalizations of matchings: Each node
v has a given supply b(v), specifying that v should be incident to at most v edges.

Proposition 2 ([24]). A maximum-weight b-matching in a bipartite graph with N1 + N2 nodes on the two sides
of the bipartition and M edges that have integer weights between 0 and W can be found in time O(N1M log(2 +
N1

2

M log(N1W))).

We will describe below how the network flow problem from above can be converted into a
b-matching problem with N1 = r + 1 plus N2 = n nodes and M = 2rn edges of weight at most
W = 2r. Plugging these values into Proposition 2 gives a running time of O(r2n log(2 + r

n log(r2))) =

O(r2n max{1, log r log r
n }) for finding an optimal augmentation. This improves over the run time

O(r2nk) from the previous section unless r is extremely large (at least 2k).
From the network of Figure 1, we keep the two layers of nodes Ti and Vj. Each vertex Ti gets a

supply of b(Ti) := k, and each vertex Vj gets a supply of b(Vj) := r. To mimic the piecewise linear
costs on the arcs (Vj, t) in the original network, we introduce r parallel slack edges from a new source
vertex s′ to each vertex Vi. The costs are as follows. Let g1 > g2 > · · · > gr with gy = fy − fy−1 denote
the costs in the last layer of the original network, and let ĝ := r. Since g1 = r− 1, this is larger than all
costs. Then, every edge (Ti, Vj) from the original network gets a weight of ĝ, and the r new slack edges
entering each Vj get positive weights ĝ− g1, ĝ− g2, . . . , ĝ− gr. We set the supply of the extra source
node to b(s′) := rn, which imposes no constraint on the number of incident edges.

Now, suppose that we have a solution for the original network in which the total flow into vertex
Vj is y. In the corresponding b-matching, we can then use b(Vj)− y = r− y of the slack edges incident
to Vj. The r− y maximum-weight slack edges have weights ĝ− gr, ĝ− gr−1, . . . ĝ− gy+1. The total
weight of the edges incident to Vj is therefore

rĝ− gr − gr−1 − · · · − gy+1 = rĝ + (g1 + g2 + · · ·+ gy),

using the equation g1 + g2 + · · · + gr = fr − f0 = 0. Thus, up to an addition of the constant nrĝ,
the maximum weight of a b-matching agrees with the maximum cost of a flow in the original network.

3.3. Diverse Hitting Set

In this section, we show how to use the optimal augmentation technique developed in Section 3
to solve the DIVERSE d-HITTING SET. For this, we use the following folklore lemma about minimal
hitting sets.

Lemma 1. Let (U,F ) be an instance of d-HITTING SET, and let k be an integer. There are at most dk

inclusion-minimal hitting sets of F of size at most k, and they can all be enumerated in time dk|U|2.

Combining Lemma 1 and Theorem 5, we obtain the following result.

Theorem 1. DIVERSE d-HITTING SET can be solved in time r2dkr · |U|O(1).
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Proof. Using Lemma 1, we can construct the set S of all inclusion-minimal hitting sets of F , each of
size at most k. Note that the size of S is bounded by dk. As every superset of an element of S is also a
hitting set, the theorem follows directly from Theorem 5.

4. Diverse Feedback Vertex Set

A feedback vertex set (FVS) (also called a cycle cutset) of a graph G is any subset S ⊆ V(G) of vertices
of G such that every cycle in G contains at least one vertex from S. The graph G − S obtained by
deleting S from G is thus an acyclic graph. Finding an FVS of small size is an NP-hard problem [25]
with a number of applications in Artificial Intelligence, many of which stem from the fact that many
hard problems become easy to solve in acyclic graphs. An example for this is the Propositional
Model Counting (or #SAT) problem that asks for the number of satisfying assignments for a given
CNF formula, and has a number of applications, for instance in planning [26,27] and in probabilistic
inference problems such as Bayesian reasoning [28–31]. A popular approach to solving #SAT consists
of first finding a small FVS S of the CNF formula. Assigning values to all the variables in S results
in an acyclic instance of CNF. The algorithm assigns all possible sets of values to the variables in S,
computes the number of satisfying assignments of the resulting acyclic instances, and returns the sum
of these counts [32].

In this section, we focus on the DIVERSE FEEDBACK VERTEX SET problem and prove the
following theorem.

Theorem 2. DIVERSE FEEDBACK VERTEX SET can be solved in time 27kr · nO(1).

In order to solve r-DIVERSE k-FEEDBACK VERTEX SET, one natural way would be to generate every
feedback vertex set of size at most k and then check which set of k solutions provide the required sum
of Hamming distances. Unfortunately, the number of feedback vertex sets is not FPT parameterized
by k. Indeed, one can consider a graph containing k cycle of size n

k , leading to
( n

k
)k different feedback

vertex sets of size k.
We avoid this problem by generating all such small feedback vertex sets up to some equivalence

of degree two vertices. We obtain an exact and efficient description of all feedback vertex sets of size at
most k, which is formally captured by Lemma 2. A class of solutions of a graph G, is a pair (S, �) such
that S ⊆ V(G) and � : S → 2V(G) is a function such that for each u ∈ S, u ∈ �(u), and for each u, v ∈ S,
u �= v, �(u) ∩ �(v) = ∅. Given a class of solutions (S, �), we define sol(S, �) = {S′ ⊆ V(G) : |S′| =
|S| and ∀v ∈ S, |S′ ∩ �(v)| = 1}. A class of FVS solutions is a class of solutions (S, �) such that each
S′ ∈ sol(S, �) is a feedback vertex set of G. Moreover, if S′ ∈ sol(S, �) and S′ ⊆ S′′ ⊆ V(G), we say
that S′′ is described by (S, �). Note that S′′ is also a feedback vertex set. In a class of FVS solutions (S, �),
the meaning of the function � is that, for each cycle C in G, there exists v ∈ S such that each element of
�(v) hits C. This allows us to group related solutions into only one set sol(S, �).

Lemma 2. Let G be a n-vertex graph. There exists a set S of classes of FVS solutions of G of size at most
27k such that each feedback vertex set of size at most k is described by an element of S . Moreover, S can be
constructed in time 27k · nO(1).

Proof. Let G be a n-vertex graph. We start by generating a feedback vertex set F ⊆ V of size at most k.
The current best deterministic algorithm for this by Kociumaka and Pilipczuk [33] finds such a set in
time 3.62k · nO(1). In the following, we use the ideas used for the iterative compression approach [34].

For each subset F′ ⊆ F, we initiate a branching process by setting A := F′, B := F− F′, and G′ :=
G. Observe that, initially, as B ⊆ F and |F| ≤ k, the graph G[B] has at most k components. In the
branching process, we will add more vertices to A and B, and we will remove vertices and edges from
G′, but we will maintain the property that A ⊆ V(G′) and B ⊆ V(G′). The set C will always denote
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the vertex set V(G′) \ (A ∪ B). Note that G′[C] is initially a forest; we ensure that it always remains
a forest.

We also initialize a function � : V(G) → 2V(G) by setting �(v) = {v} for each v ∈ V(G).
This function will keep information about vertices that are deleted from G. While searching for
a feedback vertex set, we consider only feedback vertex sets that contain all vertices of A but no
vertex of B. Vertices in C are still undecided. The function � will maintain the invariant that, for each
v ∈ V(G′), �(v) ∩V(G′) = {v}, and, for each v ∈ C, all vertices of �(v) intersect at exactly the same
cycles in G \ A. Moreover, for each v ∈ A, the value �(v) is fixed and will not be modified anymore in
the branching process. During the branching process, we will progressively increase the size of A, B,
and the sets �(v), v ∈ V(G).

By reducing (G′, A, B, �), we mean that we apply the following rules exhaustively.

• If there is a v ∈ C such that δG′ [B∪C](v) ≤ 1, we delete v from G′.
• If there is an edge {u, v} ∈ E(G′[C]) such that δG′ [B∪C](u) = δG′ [B∪C](v) = 2, we contract u in G′

and set �(v) := �(v) ∪ �(u).

These are classical preprocessing rules for the FEEDBACK VERTEX SET problem; see,
for instance, ([22], Section 9.1). Indeed, vertices of degree one cannot appear in a cycle, and consecutive
vertices of degree 2 hit exactly the same cycles. After this preprocessing, there are no adjacent
degree-two vertices and no degree-one vertices in C. (Degrees are measured in G′[B ∪ C]).

We start to describe the branching procedure. We work on the tuple (G′, A, B, �). After each
step, the value |A| − cc(B) will increase, where cc(B) denotes the number of connected components
of G′[B].

At each step of the branching, we do the following. If |A| > k or if G′[B] contains a cycle,
we immediately stop this branch as there is no solution to be found in it. If A is a feedback vertex set
of size at most k, then (A, �|A) is a class of FVS solutions, we add it to S and stop working on this
branch. Otherwise, we reduce (G′, A, B, �). We pick a deepest leaf v in G′[C] and apply one of the two
following cases, depending on the vertex v:

• Case 1: The vertex v has at least two neighbors in B (in the graph G′).

If there is a path in B between two neighbors of v, then we have to put v in A, as otherwise this
path together with v will induce a cycle. If there is no such path, we branch on both possibilities,
inserting v either into A or into B.

• Case 2: The vertex v has at most one neighbor in B.

Since v is a leaf in G′[C], it has at most one neighbor also in C. On the other hand, we know that v
has degree at least 2 in G′[B ∪ C]. Thus, v has exactly one neighbor in B and one neighbor in C,
for a degree of 2 in G′[B ∪ C]. Let p be the neighbor in C. Again, as we have reduced (G′, A, B, �),
the degree of p in G′[B ∪ C] is at least 3. Thus, either it has a neighbor in B, or, as v is a deepest
leaf, it has another child, say w that is also a leaf in G′[C], and w has therefore a neighbor in B.
We branch on the at most 23 = 8 possibilities to allocate v, p, and w if considered, between A and
B, taking care not to produce a cycle in B.

In both cases, either we put at least one vertex in A, and so |A| increases by one, or all considered
vertices are added to B. In the latter case, the considered vertices are connected, at least two of them
have a neighbor in B, and no cycles were created; therefore, the number of components in B drops by
one. Thus, |A| − cc(B) increases by at least one. As −k ≤ |A| − cc(B) ≤ k, there can be at most 2k
branching steps.

Since we branch at most 2k times and at each branch we have at most 23 possibilities, the branching
tree has at most 26k leaves. Thus, for each of the at most 2k subsets F′ of F, we add at most 26k elements
to S .

It is clear that we have obtained all solutions of FVS and they are described by the classes of FVS
solutions in S , which is of size 27k.
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Proof of Theorem 2. We generate all 27kr r-tuples of the classes of solutions given by Lemma 2,
with repetition allowed.

We now consider each r-tuple ((S1, �1), (S2, �2), . . . , (Sr, �r)) ∈ S r and try to pick an appropriate
solution Ti from each class of solutions (Si, �i), i ∈ [1, k], in such a way that the diversity of the resulting
tuple of feedback vertex sets (T1, . . . , Tr) is maximized. The network of Section 3.1 must be adapted
to model the constraints resulting from solution classes. Let (S, �) be a solution class, with |S| = b.
For our construction, we just need to know the family { �(v) | v ∈ S } = {L1, L2, . . . , Lb} of disjoint
nonempty vertex sets. The solutions that are described by this class are all sets that can be obtained
by picking at least one vertex from each set Lq. Figure 2 shows the necessary adaptations for one
solution T = Ti. In addition to a single node T that is either directly of indirectly connected to all nodes
V1, . . . , Vn, like in Figure 1, we have additional nodes representing the sets Lq. For each vertex j that
appears in one of the sets Lq, there is an additional node Uj in an intermediate layer of the network.
The flow from s to Lq is forced to be equal to 1, and this ensures that at least one element of the set Lq

is chosen in the solution. Here, it is important that the sets Lq are disjoint.
A similar structure must be built for each set T1, . . . , Tr, and all these structures share the vertices

s and V1, . . . , Vn. The rightmost layer of the network is the same as in Figure 1.

s

≤ k − b

L1

L2

L3

T

= 1

= 1

= 1

...

V5

V6

V7

Vn

V1

V2

V3

V4

U1

U2

U3

U4

U5

U6

≤ 1

≤ 1

Figure 2. Part of the modified network for a solution T which is specified by b = 3 sets L1 = {1, 2}, L2 =

{3}, and L3 = {4, 5, 6}.

The initial flow is not so straightforward as in Section 3.1 but is still easy to find. We simply
saturate the arc from s to each of the nodes Lq in turn by a shortest augmenting path. Such a path can
be found by a simple reachability search in the residual network, in O(rn) time. The total running time
O(kr2n) from Section 3.1 remains unchanged.

5. Modeling Aspects: Discussion of the Objective Function

In Sections 3 and 4, we have used the sum of the Hamming distances, divtotal, as the measure of
diversity. While this metric is of natural interest, it appears that, in some specific cases, it may not be a
useful choice. We present a simple example where the most diverse solution according to divtotal is not
what one might expect.

Let r be an even number. We consider the path with 2r − 2 vertices, and we are looking for r
vertex covers of size at most r− 1, of maximum diversity.

Figure 3 shows an example with r = 6. The smallest size of a vertex cover is indeed r− 1, and there
are r different solutions. One would hope that the “maximally diverse” selection of r solutions would
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pick all these different solutions. However, no, the selection that maximizes divtotal consists of r/2
copies of just two solutions, the “odd” vertices and the “even” vertices (the first and last solution in
Figure 3).

}
n2

⎫⎪⎪⎪⎬⎪⎪⎪⎭n3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
n4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
n5

} n1

1 2 3 4 5 6 7 8 9 10

Figure 3. The r = 6 different vertex covers of size r− 1 = 5 in a path with 2(r− 1) = 10 vertices.

This can be seen as follows. If the selected set contains in total ni copies of the first i solutions in
the order of Figure 3, then the objective can be written as

2n1(r− n1) + 2n2(r− n2) + · · ·+ 2nr−1(r− nr−1).

Here, each term 2ni(r − ni) accounts for two consecutive vertices 2i − 1, 2i of the path in the
formulation (3). The unique way of maximizing each term individually is to set ni = r/2 for all i.
This corresponds to the selection of r/2 copies of the first solution and r/2 copies of the last solution,
as claimed.

In a different setting, namely the distribution of r points inside a square, an analogous
phenomenon has been observed ([16], Figure 1): Maximizing the sum of pairwise Euclidean distances
places all points at the corners of the square. In fact, it is easy to see that, in this geometric setting,
any locally optimal solution must place all points on the boundary of the feasible region. By contrast,
for our combinatorial problem, we don’t know whether this pathological behavior is typical or rare in
instances that are not specially constructed. Further research is needed. A notion of diversity which
is more robust in this respect is the smallest difference between two solutions, which we consider in
Section 6.

6. Maximizing the Smallest Hamming Distance

The undesired behavior highlighted in Section 5 is the fact that the collection that maximizes
the sum of the Hamming distances uses several copies of the same set. In this section, we explore
how to handle this unexpected behavior by changing the distance to the minimal Hamming distance
between two sets of the collection. This modification naturally removes the possibility of selecting
the same solution twice. We show how to solve MIN-DIVERSE d-HITTING SET and r-MIN-DIVERSE

k-FEEDBACK VERTEX SET for this metric.

Theorem 3. MIN-DIVERSE d-HITTING SET can be solved in time

• 2kr2 · (kr)O(1) if |U| < kr and
• dkr · |U|O(1) otherwise.

Proof. Let (U,F , k, r, t) be an instance of MIN-DIVERSE d-HITTING SET where |U| = n. If n < kr,
we solve the problem by complete enumeration: There are trivially at most 2n hitting sets of size at
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most k. We form all r-tuples (T1, . . . , Tr) of them and select the one that maximizes divmin(T1, . . . , Tr).
The running time is at most O((2n)rr2n) = O(2kr2

kr3).
We now assume that n ≥ kr. We use the same strategy as in Section 3: We generate all r-tuples

(S1, . . . , Sr) of minimal solutions and try to augment each one to a r-tuple (T1, . . . , Tr) such that, for each
i ∈ [1, r], |Ti| ≤ k and Si ⊆ Ti ⊆ V(G) hold. The difference is that we try to maximize divmin(T1, . . . , Tr)

instead of divtotal(T1, . . . , Tr) in the augmentation. Given that we have a large supply of n ≥ kr
elements in U, this is easy. To each set Si, we add k − |Si| new elements, taking care that we pick
different elements for each Si that are not in any of the other sets Sj. The Hamming distance between
two resulting sets is then dH(Ti, Tj) = dH(Si, Sj) + (k − |Si|) + (k − |Si|), and it is clear that this is
the largest possibly distance that two sets T′i ⊇ Si and T′j ⊇ Sj with |T′i |, |T′j | ≤ k can achieve. Thus,
since our choice of augmentation individually maximizes each pairwise Hamming distance, it also
maximizes the smallest Hamming distance. This procedure can be carried out in O(kr + n) = O(n)
time. In addition, we need O(kr2) = O(n2) time to compute the smallest distance.

Using Lemma 1, we construct the set S of all minimal solutions of the d-HITTING SET instance
(U,F ), each of size at most k. We then go through every r-tuple (S1, . . . , Sr) ∈ S r and augment it
optimally, as just described. The running time is dkr ·O(n2).

Theorem 4. MIN-DIVERSE FEEDBACK VERTEX SET can be solved in time 2kr·max(r,7+log2(kr)) · (nr)O(1).

Proof. Let G be a n-vertex graph. If n < kr, we again solve the problem by complete enumeration:
There are trivially at most 2n feedback vertex sets of size at most k. We form all r-tuples (T1, . . . , Tr) of
them and select the one that maximizes divmin(T1, . . . , Tr). The running time is at most O((2n)rr2n) =
O(2kr2

r2n).
We assume now that n ≥ kr. As in Section 4, we construct a set S of at most 27k classes

of FVS solutions of G, using Lemma 2. Then, we go through all (27k)r r-tuples of classes S =

((S1, �1), . . . , (Sr, �r)) ∈ S r. For each such r-tuple, we look for the r-tuple (T1, . . . , Tr) of feedback
vertex sets such that each Ti is described by (Si, �i), and the objective value divmin(T1, . . . , Tr) is
maximized. Thus far, the procedure is completely analogous to the algorithm of Theorem 2 in Section 4
for maximizing divtotal(T1, . . . , Tr).

Now, in going from a class (Si, �i) to Ti, we have to select a vertex from every set �i(v), for v ∈ Si,
and we may add an arbitrary number of additional vertices, up to size k. We make this selection as
follows: Whenever |�i(v)| < kr, we simply try all possibilities of choosing an element of �i(v) and
putting it into Ti. If |�i(v)| ≥ kr, we defer the choice for later. In this way, we have created at most
(kr)kr “partial” feedback vertex sets (T0

1 , . . . , T0
r )

For each such (T0
1 , . . . , T0

r ), we now add the remaining elements. In each list �i(v) which has been
deferred, we greedily pick an element that is distinct from all other chosen elements. This is always
possible since the list is large enough. Finally, we fill up the sets to size k, again choosing fresh elements
each time. Each such choice is an optimal choice because it increases the Hamming distance between
the concerned set Ti and every other set Tj by 1, which is the best that one can hope for. As we proceed
to this operation for each S ∈ S r, where |S| ≤ 27k, and that, for each such S, we create at most (kr)kr

r-tuples, and we obtain an algorithm running in time 27kr · (kr)kr · nO(1). The theorem follows.

7. Conclusions and Open Problems

In this work, we have considered the paradigm of finding small diverse collections of reasonably
good solutions to combinatorial problems, which has recently been introduced to the field of
fixed-parameter tractability theory [21].

We have shown that finding diverse collections of d-hitting sets and feedback vertex sets can be
done in FPT time. While these problems can be classified as FPT via the kernels and a treewidth-based
meta-theorem proved in [21], the methods proposed here are of independent interest. We introduced a
method of generating a maximally diverse set of solutions from a set that either contains all minimal
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solutions of bounded size (d-HITTING SET) or from a collection of structures that in some way describes
all solutions of bounded size (FEEDBACK VERTEX SET). In both cases, the maximally diverse collection
of solutions is obtained via a network flow model, which does not rely on any specific properties of the
studied problems. It would be interesting to see if this strategy can be applied to give FPT-algorithms
for diverse problems that are not covered by the meta-theorem or the kernels presented in [21].

While the problems in [21] as well as the ones in Sections 3 and 4 seek to maximize the sum
of all pairwise Hamming distances, we also studied the variant that asks to maximize the minimum
Hamming distance, taken over each pair of solutions. This was motivated by an example where the
former measure does not perform as intended (Section 5). We showed that also, under this objective,
the diverse variants of d-HITTING SET and FEEDBACK VERTEX SET are FPT. It would be interesting to
see whether this objective also allows for a (possibly treewidth-based) meta-theorem.

In [21], the authors ask whether there is a problem that is in FPT parameterized by a solution size
whose r-diverse variant becomes W[1]-hard upon adding r as another component of the parameter.
We restate this question here.

Question 1 (Open Question [21]). Is there a problem Π with solution size k, such that Π is FPT parameterized
by k, while DIVERSE Π, asking for r solutions, is W[1]-hard parameterized by k + r?

To the best of our knowledge, this problem is still wide open. We believe that the divmin measure
is more promising to obtain such a result rather than the divtotal measure. A possible way to tackle
both measures at once might be a parameterized (and strenghtened) analogue of the following
approach that is well-studied in classical complexity. Yato and Seta propose a framework [35] to
prove NP-completeness of finding a second solution to an NP-complete problem. In other words,
there are some problems where given one solution it is still NP-hard to determine whether the problem
has a different solution.

From a different perspective, one might want to identify problems where obtaining one solution is
polynomial-time solvable, but finding a diverse collection of r solutions becomes NP-hard. The targeted
running time should be FPT parameterized by r (and maybe t, the diversity target) only. We conjecture
that this is most probably NP- or W[−] hard in general. However, we believe it is interesting to search
for well-known problems where it is not the case.
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Abstract: Bioinformatics regularly poses new challenges to algorithm engineers and theoretical
computer scientists. This work surveys recent developments of parameterized algorithms and
complexity for important NP-hard problems in bioinformatics. We cover sequence assembly and
analysis, genome comparison and completion, and haplotyping and phylogenetics. Aside from
reporting the state of the art, we give challenges and open problems for each topic.
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1. Introduction

With the dawn of molecular biology came the need for biologists to process and analyze data
way over human capacity, implying the need for computer programs to assemble sequences, measure
genomic distances, spot (exceptions to) patterns, and build and compare phylogenetic relationships, to
name only few examples. While many of these problems have efficient solutions, others are inherently
hard. In this work, we survey selected NP-hard problems in genome comparison and completion
(Section 2), sequence assembly and analysis (Section 3), haplotyping (Section 4), and phylogenetics
(Section 5), along with important results regarding parameterized algorithms and hardness. While
trying to be accessible to a large audience, we assume that the reader is somewhat familiar with
common notions of algorithms and fixed-parameter tractability, such as the O∗(.)-notation, giving
only exponential parts of a running time, ignoring polynomial factors (for details about parameterized
complexity, we refer to the recent monographs [1,2]). In a nutshell, parameterized complexity
exploits the fact that the really hard instances are pathological and real-world processes generate data
which, although enormous in size, are very structured and governed by simple processes. It seems
straightforward that biological datasets abide by this “law of low real-world complexity”.

While excellent surveys of fixed-parameter tractable (FPT) problems in bioinformatics exist [3–6],
this work tries to present an update, summarizing the state of the FPT-art as well as reporting on some
additional “hot topics”. We further aim at: 1. iterating that parameterized algorithms are a viable
and widespread tool to attack NP-hard problems in the context of biological data; and 2. supplying
engineers and problem-solvers with computational problems that are actually being solved in practice,
inspiring research on concrete open questions. Herein, we focus on problems that are particular
for bioinformatics, avoiding more universal and general problems such as the various versions of
CLUSTERING which, while important for bioinformatics, have applications in many areas.

Generally, each topic has a problem description, a results section, some open problems and,
possibly, an assortment of notes, giving additional information about less popular variants, often only
mentioning results or problems related to the main topic without going into details. Finally, we want
to apologize for the limited coverage of relevant work but, as our colleague Jesper Jansson wrote,
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“Writing a survey about bioinformatics-related FPT results sounds like a monumental task!”

2. Genome Comparison and Completion

This section considers genetic data at its largest scale, i.e. as a sequence of genes, independent
of their underlying DNA sequences. At this scale, long-range evolutionary events occur, cutting and
pasting whole segments of chromosomes (“chromosomal rearrangement”) [7]. The number of such
rearrangements between the genomes of two species can be used to estimate their “genetic distance”
which, in turn, allows for phylogenetic reconstruction. Further, we consider the problems of identifying
genes with a common ancestor after duplications, and filling the gaps in an incomplete genome.

In the most general setting, a genome G may be represented as a collection of strings and circular
strings, where each string represents a chromosome and each character represents a gene or gene
family. However, for ease of representation, most models use a single-sequence representation of the
genome (which generalizes easily to multi chromosomal inputs in most cases). There is however an
important distinction between the string model, allowing gene repetitions (also called duplicates, or
paralogs), and the permutation model enforcing that each gene appears exactly once. Many problems
in the following sections can be formulated in both models. The string model is obviously the most
general in practice, but often comes with a prohibitive algorithmic cost. Parameterized algorithms
can offer a good solution, using the fact that most genes only have a small number of occurrences.
Thus, the maximum number of occurrences of any character in an input string, denoted occ in this
paper, is a ubiquitous parameter. In both models, a genome is signed if each gene is given a sign (+ or -)
representing its orientation along the DNA strand.

In the following, a string s′ is called substring of a string s if s′ = s or s′ is the result of removing
the first or last character of some substring of s. Further, s′ is called subsequence of s if s′ = s or s′ is the
result of removing any character from a subsequence of s. We say that two strings are balanced if each
character appears with the same number of occurrences in both.

2.1. Genomic Distances

The problems in this section aim at computing a distance between genomes, reflecting the
“amount of evolution” that occurred since the last common ancestor. Among the most basic distances
for the permutation model is the breakpoint distance, counting the number of pairs of genes that occur
consecutively in one genome but not in the other (a pair ab is considered to be identical to ba in the
unsigned model, however +a+b is identical only to +a+b and -b-a in the signed model). Its complement
is a measure of similarity, the number of common adjacencies (the number of pairs of consecutive genes
that occur in both genomes). Common adjacencies can easily be generalized in the string model:
adjacencies of each genome are seen as a multi-set, and the number of common adjacencies is the size
of the intersection of these multi-sets.

More advanced genomic distances are rearrangement distances. A rearrangement acts on the
genome by reordering some genes in a certain way, mimicking a large-scale evolutionary event.
The core question in rearrangement distances is to compute the minimum number of rearrangements
transforming a genome into another. These distances are more precise—in the sense that they directly
describe parsimonious evolutionary scenarios—but in most cases significantly more difficult to compute
than the breakpoint distance. Note that balanced genomes are usually considered, i.e., any character
appears with the same number of occurrences in every genome. See the work of Fertin et al. [8] for an
extensive survey on rearrangement distances.

2.1.1. Double-Cut and Join Distance

Problem Description. The double-cut and join distance needs the most general genome model as
intermediary steps, that is, a multi-set of strings and circular strings. A double-cut and join operation
splits the genome in two positions and joins the four created endpoints in any way (see Figure 1). For
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signed genomes, this operation is required to maintain consistent orientation of each gene. We focus on
the case where the source and target genomes have a single chromosome (i.e. strings or permutations).

a b c d e f g h x y z

a b c x y z
d

ef

g h

a b c x y z g h d e f

Figure 1. Two DCJ operations turn abcdefghxyz into abcxyzghdef (breakpoints are gray arcs): 1. split
cd and hx and join cx and dh, and 2. split fg and join zg.

Input: genomes G1, G2 (balanced strings or permutations), and some k ∈ N

Question: Can G1 be transformed into G2 with a series of ≤k double-cut and join operations?

DOUBLE CUT AND JOIN DISTANCE (DCJ)

Results. The DCJ distance can be computed in linear time in the signed permutations model [9,10].
However, it is NP-hard in the unsigned permutation or string models [11]. On the positive side, it
admits an O(22kn)-time algorithm for unsigned permutations [12].

An issue with the DCJ distance is that the solution space might be very large, as many different
scenarios may yield the same distance. Thus, more precise models have been designed to “focus” the
solution towards the most realistic scenarios. Fertin et al. [13] introduced the wDCJ distance, where
intergene distances are added to the genome model and must be accounted for in the DCJ scenario
(when breaking between consecutive genes, the number of intergenomic bases must be shared among
both sides). This variant makes the problem NP-hard for signed permutations, but fixed-parameter
tractable for the parameter k. Another constraint focuses on common intervals, which are segments
of the genomes that have exactly the same gene content, but in different orders. A DCJ scenario is
perfect if it never breaks a common interval. Bérard et al. [14] showed that finding a perfect scenario
with a minimum number of operations is FPT for a parameter given by the common interval structure.

2.1.2. Reversal Distance

Problem Description. A reversal [15] is a rearrangement reversing the order of the characters in any
substring of the genome. When considering signed genomes, a reversal additionally switches all the
signs in the reversed substring (see Figure 2).

+a -b +c +d -e +f

+a -b -d -c -e +f

+a +e +c +d +b +f

Figure 2. A signed genome +a-b+c+d-e+f turned into +a+e+c+d+b+f by a signed reversals on +c+d

followed by one on -b-d-c-e.

Input: genomes G1, G2 (balanced strings or permutations), and some k ∈ N

Question: Can G1 be transformed into G2 with a series of at most k reversals?

SORTING BY REVERSALS (SBR)

Results. SORTING BY REVERSALS is polynomial-time solvable in the signed-permutations model [16].
However, it is NP-hard for unsigned permutations [17] and for strings, even when occ = 2 [18] and
for binary signed strings [19]. For unsigned permutations, SORTING BY REVERSALS is easily FPT
for k, using the fact that reversals never need to cut at positions that are not breakpoints [20]. For
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balanced strings, a possible parameter, bmax, is the number of blocks of the input strings, where a block
is a maximal factor of the form an for some character a. SORTING BY REVERSALS can be solved in
O∗

(
bO(bmax)

max

)
time in both the signed and unsigned variants. [21]. As for DCJ, the variant restricting

scenarios to reversals preserving common intervals is also NP-hard, and FPT for a parameter given by
the common interval structure [22].

Notes. Other rearrangements can be considered, such as transpositions (two consecutive factors are
swapped), and the prefix and/or suffix variants of reversals and transpositions (that is, reversals and
transpositions affecting the first or last character of the sequence, respectively) (see, e.g., [23]).

No polynomial-time algorithm is known for computing these rearrangement distances, although
NP-completeness is still open, notably on permutations for signed prefix reversals and prefix
transpositions. Fixed-parameter tractability results may be achieved in the permutation model using
the relationship between these rearrangements and breakpoints [24], and in the string model using the
number of blocks bmax as a parameter [21,25].

2.2. Common Partitions

Two strings S1 and S2 have a common string partition S if S is a (multi-)set of strings called blocks
such that both S1 and S2 can be seen as the concatenation of the blocks of S. Furthermore, S is a common
strip partition if each of its blocks has length at least two. Note that any two balanced strings have a
common string partition, but may not have a common strip partition. Common strings or common
strips may be used to identify syntenic regions between two genomes. Intuitively, most genes from the
genomes of two close species should have a simple common string partition.

2.2.1. Minimum Common String Partition

Problem Description. The most natural partition problem is MINIMUM COMMON STRING

PARTITION [18] (see Figure 3), which admits slightly different formulations [26,27]. It can be seen as a
generalization of the breakpoint distance on balanced strings. Indeed, a common string partition may
be seen as a mapping between the characters of both strings, i.e. a permutation, whose breakpoints
correspond to the limits between consecutive blocks. Rather than a genomic distance, it can also be
seen as a method for assigning orthologs across two genomes, assuming that all duplication events
happened before their last common ancestor. For example, depending on how orthologs are matched,
genomes abacd and acdab may be seen as permutations 12345 and 34512 (i.e., matching two blocks
ab and acd), or 12345 and 14532 (matching four blocks a, b, a, and cd). Gene sequences alone may not
be sufficient to distinguish both cases: in such a situation, the first option presumably reflects better
the evolutionary history of these species, since it involves fewer large-scale events in the genome.

a bc d abca ed

d a ed bc abca

Figure 3. A minimum common string partition for the strings abcdabcaed and daedbcabca.

Input: genomes G1, G2 (balanced strings), and some k ∈ N

Question: Do G1 and G2 admit a common string partition of size at most k?

MINIMUM COMMON STRING PARTITION (MCSP)

Results. MCSP is FPT for several combinations of parameters, depending on the relative size of the
blocks, the size k of the partition and/or the maximum number occ of occurrences of a character [28,29].
It can also be solved in kO(k2) time [30], although this is too slow to be of practical interest. Finally,
MCSP admits a more practical algorithm for the parameter k + occ, running in O(occ2kkn) time [31].
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This last algorithm also applies to unbalanced strings where the problem is extended as follows:
excessive characters may be removed from their respective input strings, but only between consecutive
blocks.

Another possible parameter is the number of preserved duos, k′ = |G1| − k. Note that MCSP is
denoted Maximum-Duo Preserving String Mapping in the context of approximations and parameterized
algorithms maximizing k′. This version is FPT as well, and admits a kernel of size O(k′8) [32].

2.2.2. Maximal Strip Recovery

Problem Description. In the MAXIMAL STRIP RECOVERY problem [33] (see Figure 4), the goal is again
to identify common blocks between two genomes. But here, we may remove characters (genes) from
the input strings so that the resulting subsequences can be partitioned into common strips. Only the
number of deleted genes is counted in the objective function, rather than the number of strips.

a bcd ef g hij mpr x yz

hij bd g yz ef a mcpr x

Figure 4. Illustration of the CMSR problem, recovering the strips bd, ef, hij, mpr, and yz by deleting
k = 4 characters in the strings abcdefghijmprxyz and hijbdgyzefamcprx.

Input: genomes G1, G2 (balanced strings or permutations), and some k ∈ N

Question: Are there subsequences G′1 of G1 and G′2 of G2 that admit a common strip partition
with |G1| − |G′1| ≤ k?

COMPLEMENTARY MAXIMAL STRIP RECOVERY (CMSR)

Results. In the permutation model, this problem admits a linear kernel [34] and an O∗(2.36k) FPT
algorithm [35]. The picture is less simple for parameter |G′1| (i.e., the MAXIMAL STRIP RECOVERY

problem) in the permutation model. The generalization to four strings instead of two is W[1]-hard [36].
On the other hand, it is FPT for parameter |G′1|+ δ, where δ is the maximum number of consecutive
characters deleted within any strip [35]. The main case (MSR with two strings and parameter |G′1|
only) is still open.

Open Problems. Very little is known about MSR and CMSR in the string model. Both are NP-hard, and
MSR is polynomially solvable for constant parameter values (by enumerating all possible subsequences
of a given size and their strip partitions), but no other parameterized result is known. In particular, is
CMSR NP-hard on strings for k = 0? In other words, is there a polynomial-time algorithm finding any
common strip partition of two balanced strings?

2.3. Genome Completion

In both problems in this section, the goal is no longer to compare two genomes (either by building
a rearrangement scenario or identifying conserved regions), but to generate a complete genome, based
on incomplete data and/or genomic sequences of close species.

2.3.1. Scaffold Filling

Problem Description. A scaffold is a partial representation of the genome, obtained after creating
and ordering contigs from reads. Errors during DNA sequencing, low coverage, or sequence
repetitions yield unavoidable gaps in the genome assembly (see Section 3). One solution to obtain
an approximation of the original genome is to use a better-known genome to infer the missing genes.
A completion of genome G1 with respect to G2 is a supersequence G′1 of G1 such that G′1 and G2 are
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balanced. The quality of the completion is evaluated by a genomic distance (DCJ, breakpoints, etc.)
denoted by d in the following.

Input: genomes G1, G2 (strings or permutations), and some k ∈ N

Question: Is there a completion G′1 of G1 wrt. G2, such that d(G′1, G2) ≤ k?

d-SCAFFOLD FILLING (d-SF)

Results. In the signed permutations model, d-SF can be solved in polynomial time when the considered
distance d is the DCJ distance [37]. On the other hand, for the string model, only weaker distances
have been considered: the problem turns out to be NP-hard even for the common adjacencies measure,
but is FPT for this measure as parameter [38]. The string algorithms can be generalized to the variant
where one seeks extensions of both input genomes at the same time (the “two-sided” case).

Open Problems. What is the parameterized complexity of MCSP-SF on strings? As MCSP is NP-hard,
this problem must be too, but it may admit efficient algorithms parameterized by the MCSP distance
and/or the parameter occ. Another open question is the DCJ algorithm can be fully generalized to the
two-sided case.

2.3.2. Breakpoint Median

Problem Description. In the BREAKPOINT MEDIAN problem, the goal is to build a most-likely
common ancestor from three genomes, which can in turn be used to recreate all ancestral genomes in a
phylogenetic tree [39].

Input: genomes G1, G2, G3 (signed permutations), some d ∈ N

Question: Is there a genome G with ∑3
i=1 dbp(G, Gi) ≤ d?

BREAKPOINT MEDIAN (BM)

Results. The problem can be seen as a special case of TRAVELING SALESMAN [39] and can be solved in
O(2.15dn) time.

3. Genome Assembly and Sequence Analysis

Producing the genetic code (sequence of bases A, C, G, and T) present in a sample lies at the
core of almost all research in molecular biology. This, however, requires solving an intricate puzzle
with millions of pieces (“reads”), involving many computational problems on sequences, such as the
SCAFFOLDING problem [40].

Moreover, to draw conclusions from sequences, they have to be analyzed and compared. Such
comparisons are made difficult, at the most basic level, by the amount of genetic variation and errors
that can appear all along the sequences. A central task is to detect character insertions, deletions,
and substitutions within a set of strings representing “similar” DNA or peptide sequences, thereby
identifying a common structure [41].

3.1. Multiple Sequence Alignment

Problem Description. MULTIPLE SEQUENCE ALIGNMENT is the central alignment problem in
bioinformatics, used to align DNA sequences along one another, taking insertions, deletions, and
substitutions into account (see Figure 5). An extension of a string s is a string obtained from s by
inserting any number of gap characters, denoted -. An alignment of strings s1, . . . , sk is obtained by
creating an extension s′1, . . . , s′k of each input string, all of the same size. Column i of an alignment is
the tuple (s′1[i], . . . , s′k[i]). A cost function is any function assigning a positive cost to a column. The unit
cost function counts the total number of mismatches in a column, i.e. the number of pairs (j, j′) such
that sj[i] �= sj′ [i].
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A T T C - G T A A C T G - A G

A A T - - G - C A C T C T A G

A T T C G G T - A - T - T - G

A - T - - G T G A C T C T A -

0 5 0 4 3 0 3 6 0 3 0 5 3 3 3

Figure 5. A multiple sequence alignment for k = 4 strings with unit costs (shown below each column).

Input: Strings s1, . . . , sk, and some m ∈ N

Question: ∃ an alignment s′1, . . . , s′k such that the sum of the cost of each column is ≤ m?

MULTIPLE SEQUENCE ALIGNMENT with cost function φ (MSA)

Results. MULTIPLE SEQUENCE ALIGNMENT can be solved by a straightforward dynamic programming
in time �O(k) for any cost function (where � is an upper-bound on the input string length). It is NP-hard
for a wide range of cost functions, including all metric cost functions (even on binary strings), and in
particular the unit cost function [42–44]. Due to its central position in DNA analysis, this problem has
been the subject of over 100 heuristics over the last decades (this was already said in 2009 [45]), but
there does not seem to be any success so far in terms of exact parameterized algorithms.

Open Problems. Does MULTIPLE SEQUENCE ALIGNMENT admit an FPT algorithm for parameter k? If
not, can �o(k) be achieved?

3.2. Identifying Common Patterns

3.2.1. Closest String (and variants)

Problem Description. In CLOSEST STRING, the goal is to find, given a set of strings, a center string
that is close enough to all others (counting the number of mismatches, i.e. the Hamming distance,
denoted by Ham). This problem and many variants have been widely studied under the point of view
of parameterized algorithms: we only highlight some prominent results, and refer the reader to the
work of Bulteau et al. [46] for a more exhaustive review.

Input: strings s1, . . . , sk, all of length �, and some dr ∈ N

Question: Is there a string s∗ such that ∀i Ham(s∗, si) ≤ dr?

CLOSEST STRING (CS)

Results. CLOSEST STRING is NP-hard, even for binary alphabets [47]. On the other hand, it is FPT for
any of the following parameters: dr, k, and � [48]. However, the algorithm for k makes use of an integer
linear program with at most 2k variables, implying a mostly impractical combinatorial explosion. An
easier (actually trivial) variant, denoted CONSENSUS STRING, aims at minimizing the sum (or average)
of the hamming distances to the center, rather than the worst-case distance.

Closest Substring. A common generalization of CS called CLOSEST SUBSTRING asks for a common
pattern in all input strings, i.e. it allows trimming input strings until they reach a desired given
length m. In this case, the consensus variant, optimizing the sum of distances, is no longer trivial
and is denoted CONSENSUS PATTERN. Although these problems become much harder than
CLOSEST STRING and are W[1]-hard for any single parameter among �, k, d, and m, they still
admit FPT algorithms for several combinations of these parameters [49–52].

Closest String with Outliers. Another noteworthy variant allows ignoring a small number t of outliers
from the input set of strings [53]. Interestingly, all parameterized algorithms for CLOSEST STRING

extend to this variant when t is considered as an additional parameter.
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Radius or sum. A generalization for CLOSEST STRING (that also applies to the variants above)
considers both a constraint on the maximum hamming distance (the radius, dr) and on the
sum of hamming distances (denoted ds). Indeed, the radius constraint only focuses on worst-case
strings, and the sum constraint tends to overfit large sets of clustered strings, so taking both
constraints can help reduce those problems. All algorithms mentioned for the radius-only version
can be extended, in one way or another, to take both constraints into account without additional
parameters [54].

Another point of view consists in seeing the radius and sum measures as the L1 and L∞ norms,
respectively, of the vector (d(s∗, s1), . . . , d(s∗, sk)). Thus, a possible compromise consists in
optimizing the Lp norm of this vector for any rational p, 1 < p < ∞. Chen et al. [55] studied
CLOSEST STRING under these norms on binary alphabets, proved its NP-hardness, and gave an
FPT algorithm for parameter k.

3.2.2. Longest Common Subsequence

Problem Description. The LONGEST COMMON SUBSESQUENCE problem in its simplest version asks
for a string of maximal length that is a subsequence of two input strings (see Figure 6(left)). It admits a
classical dynamic programming algorithm, with complexity O(n2). However, the problem becomes
NP-hard when we increase the number of strings, as follows.

a b c d a b c d

c a b a c d a a b c b a d

a b a c b d a b b b c d

c d a b c a d a b b c d

a c b c d d a d b c d

a b c d a b c d a b c d

a d a c a c d

a b c d c d a b d

b d b d a b c

b c d b c d b c d

Figure 6. Illustration of a longest common subsequence of length m = 8 (left) and of a shortest common
supersequence of length m = 12 (right), each on a set of k = 4 strings.

Input: Strings s1, . . . , sk, all of length at most �, and some m ∈ N

Question: ∃ string s∗ of length at least m such that for all i, s∗ is a subsequence of si?

LONGEST COMMON SUBSESQUENCE (LCS)

Results. The foremost parameters for LONGEST COMMON SUBSESQUENCE are k, �, m, and the alphabet
size denoted |Σ|. However, it is W[1]-hard (or worse) for all combinations of these parameters that do
not yield a simple brute-force enumeration algorithm, i.e. k+m with any |Σ|, and k with |Σ| = 2 [56,57].

Omitted letters. Another possible parameter is the number of omitted letters, � − m: LONGEST

COMMON SUBSESQUENCE is FPT for parameters �−m and k [58], and the complexity is open for
parameter �−m only.

Sub-quadratic time? (k = 2) For two strings, there is no sub-quadratic algorithm unless the strong
exponential time hypothesis fails [59]. However, parameterized algorithms can help subdue this
lower bound to some extent: Bringmann and Künnemann [60] proposed an extensive study of
the possible combinations of parameters yielding “FPT in P” algorithms (also sometimes referred
to as “fully polynomial FPT”, see [61–63]), with matching lower-bounds in each case.

Constrained LCS. (k = 2) In this variant, the solution must contain each of a given set of f restriction
strings as subsequences. The problem is in P for f = 1 [64], NP-hard in general, and W[1]-hard
for parameter f [65]. Finally, it is FPT for the total size of the restriction strings [66].
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Restricted LCS. Here, the restriction strings are forbidden subsequences (rather than mandatory). The
problem is FPT for the parameter �+ k + f [67], as well as for the total size of restriction strings
(with k = 2) [66].

Open Problems. What is the complexity of LONGEST COMMON SUBSESQUENCE parameterized by
�−m, i.e., the maximal number of letters deleted in any string?

3.2.3. Shortest Common Supersequence

Problem Description. In SHORTEST COMMON SUPERSEQUENCE, we now want to find a larger string
of which every input string is a subsequence (see Figure 6(right)).

Input: Strings s1, . . . , sk, all of length at most �, and some m ∈ N

Question: ∃ string s∗ of length at most m such that each si is a subsequence of s∗?

SHORTEST COMMON SUPERSEQUENCE (SCS)

Results. As for LCS, SHORTEST COMMON SUPERSEQUENCE is W[1]-hard for parameter k even on
binary alphabets [56], and does not admit an �o(k) algorithm [68]. It does admit an FPT algorithm for
the number of repetitions, m− |Σ|when occ = 1 (each character appears at most once in any string) [69].

Open Problems. Can the FPT algorithm for occ = 1 be extended to more general strings?

3.2.4. Center and Median Strings

Problem Description. In the problems described so far in this section, the goal is to find a string
minimizing the distance to all input strings, where the distance counts the number of substitutions
(CLOSEST STRING and CONSENSUS STRING), deletions (LONGEST COMMON SUBSESQUENCE) or
insertions (SHORTEST COMMON SUPERSEQUENCE). Each problem has its own applications, depending
on the input data and allowed operations. A more generic variant allows for all three operations,
i.e., uses the edit distance (also referred to as the Levenshtein distance, denoted Lev) to measure the
similarity to the solution string.

Input: Strings s1, . . . , sk, and some d ∈ N

Question: ∃ string s∗ with the following property?
(CENTER STRING) ∀i Lev(s∗, si) ≤ d
(MEDIAN STRING) ∑k

i=1, Lev(s∗, si) ≤ d

CENTER STRING and MEDIAN STRING

Results. Both problems are NP-hard and W[1]-hard for k, even on binary strings [70]. On the other
hand, CENTER STRING is FPT for parameter d + k [71].

Open Problems. Are these problems FPT when parameterized by d only, or by the string length?

3.3. Scaffolding

Problem Description. As mentioned previously, overlapping reads usually does not lead to a fully
reconstructed (that is, one sequence per chromosome) genome. Instead, assembly algorithms usually
produce fairly long and correct substrings called contigs that cannot be extended by overlapping reads.
However, current sequencing techniques (“Next-Generation Sequencing” (NGS)) yield additional
information about reads. Indeed, NGS-produced reads come in pairs (“mate pairs”) and a rough
estimate about the number of base-pairs between the two reads of a pair is known. Thus, it is possible
that a read r of a pair (r, r′) aligns well with parts of some contig c while r′ aligns well with parts
of contig c′. This presents evidence that, in the target genome, contig c is followed by contig c′ and
gives us an approximation of the distance between them (see Hunt et al. [72] for more details). To
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represent this information, we can construct a scaffold graph by representing contigs as pairs of vertices
connected by a perfect matching, and connecting contig extremities u and v with an edge weighted by
the number of mate-pairs indicating that u is followed by v in the chromosome. In this graph, we are
looking for a cover of all matching edges using a small number of paths and cycles (corresponding to
linear and circular chromosomes in the genome).

Input: graph G with edge-weights ω, perfect matching M in G, some σp, σc, k ∈ N

Question: Is there a collection C of ≤ σp paths and ≤ σc cycles covering M in G of total
weight ≥ k?

SCAFFOLDING (SCA)

Huson et al. [73] considered G as multigraph in which each non-contig edge has an approximate
length. This makes for more realistic modeling since two hypotheses involving different gap-sizes
between contigs should be incompatible. The authors showed NP-completeness for this problem.

To better support repetitions, (Chateau et al. [74] unpublished) added multiplicities to the contig
edges, which can be roughly estimated from coverage numbers. Then, a solution is a set of ≤ σp open
and ≤ σc closed walks in G. They presented an ILP solving a slight generalization of this problem, but
no parameterized algorithms are known in this case. However, the multiplicity-supporting version
of SCAFFOLDING gives rise to another problem: optimal solutions are much less likely to be unique
and each individual optimal solution is thus likely to correspond to chimeric sequences (a genomic
sequence is called chimeric if it contains material from different chromosomes or from unrelated parts
of one chromosome). This gives rise to the problem of removing inter-contig edges such as to extract
the sub-walks that are shared by all decompositions of a solution into walks [75].

Input: graph G with edge-weights ω and multiplicities m, perfect matching M in G, k ∈ N

Question: Is there a set X ⊆ E(G) \M of total cost ≤ k s.t. G− E can be uniquely decomposed
into walks?

SCAFFOLD LINEARIZATION (LIN)

Results. Gao et al. [76] presented an O(|V(G)|w|E(G)|)-time algorithm for SCA where w is the
maximum number of contigs spanned by any inter-contig edge in the solution ordering. SCA is known
to be W[1]-hard for k [75] but solvable in O∗((tw!)2) time [77], where tw denotes the treewidth of G. A
simple reduction from HAMILTONIAN PATH proves SCA NP-hard even on bipartite planar graphs
with constant edge weights and σp + σc = 1 [75]. For a variation of this problem, they proved a kernel
for a parameter involving the feedback edge set number of G. Finally, SCAFFOLD LINEARIZATION has
been shown to be NP-hard under multiple cost-measures for the solution X [78], but can be solved in
O∗(ctw) time for different c ≤ 5, depending on the cost-measure [79].

Notes. Donmez and Brudno [80] approached scaffolding by first computing an orientation of the
contigs, formulated as ODD CYCLE TRANSVERSAL (the problem of removing few vertices from
a graph such that the result is bipartite), and then ordering them in the scaffold graph using a
formulation as FEEDBACK ARC SET. Note further that advances in engineering resulted in so-called
“third-generation sequencing” techniques that allow researchers to read large chunks of DNA from
a single chromosome [81]. Since these “long reads” have an elevated error rate, focus has recently
shifted to detecting and correcting these errors with short reads instead of scaffolding paired reads.

Open Questions. Dallard et al. [82] observed that a simple, fast greedy heuristic often produces good
scaffolds. It would be interesting to know if those scaffolds are generally similar to optimal scaffolds
and, if so, consider parameters measuring this distance.

4. Haplotyping

Cells of diploid (or, more generally, polyploid) species have two (multiple) copies of each
chromosome. These copies are imperfect in that they can differ in a tiny percentage of their positions
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(“sites”) and such positions are called Single-nucleotide polymorphisms (SNPs). When sequencing a
diploid genome (see Section 3 for more on sequencing), each read comes from one of the copies of some
chromosome but, a priori, there is no way of knowing whether two reads came from the same copy or
not. Thus, an assembled diploid genome of an individual contains SNPs where both chromosomes
agree (“homozygous sites”) and SNPs where they disagree (“heterozygous sites”). Since the vast
majority of SNPs exist in only two states (“biallelic SNPs”) [83,84], the SNPs of a chromosome can be
represented as a string over the alphabet {0, 1} called a haplotype and the SNPs of a diploid individual
can be represented as a string over the alphabet {0, 1, 2} called the genotype, where 0 and 1 mean that
the two chromosomes agree on one of the biallelic states, whereas 2 means that the chromosomes
disagree. Now, experimentally determining the genotype of an individual is (relatively) cheap and easy
while experimentally determining the haplotypes of the chromosomes is expensive [85,86]. For many
applications, however, knowledge of the haplotypes is required and, thus, computational methods
have been developed to infer haplotype data (“haplotyping” or “phasing”). In Section 4.1, we consider
the problem of inferring the haplotypes by overlapping reads from a diploid genome, similar to the
reconstruction of DNA sequences (see Figure 7). In Section 4.2, we consider the problem of inferring
the haplotypes of a population, given its genotypes (see Figure 8). This requires assuming that the
distribution of haplotypes follows a parsimony criterion. Although most parsimonious solutions often
do not reflect the truth [87], they can form the basis for more precise algorithms in the future.

For surveys on both variants of haplotyping, refer to the works in [88–95].

4.1. Haplotype Assembly

Problem Description. A matrix M with m length-n rows (“fragments”) over {0, 1, -} is called in
conflict if there are rows r and r′ and a position i < n such that r[i], r′[i] and - are pairwise distinct
(that is, - �= r[i] �= r′[i] �= -) and conflict-free (or 1-conflict-free), otherwise. For all p ≥ 1, M is called
p-conflict-free if its rows can be partitioned into p conflict-free sets of rows. While we prefer stating the
general (“polyploid”) version of this problem, the special case that p = 2 (“diploid” genome) is by far
the most commonly considered.

01101---00101--

010001--1101001

-11010---0101--

--001----001---

--101000--111--

----111-110----

-----1111111001

Figure 7. A matrix of reads from two chromosomes, condensed to known SNPs of the species. Flipping
the underlined (red) entries allows a bipartition into two conflict-free sets (gray and black). Note that
not all SNPs exhibit both possible states.

Input: matrix M, integer k
Question: can M be turned p-conflict-free with k operations?

p-(SINGLE) INDIVIDUAL HAPLOTYPING (also referred to as HAPLOTYPE ASSEMBLY) (p-IH)

p-IH can be interpreted as a clustering problem that finds p consensus strings such as to minimize
the sum of the radii needed to capture all input strings (rows), where the distance function depends
on the nature of allowed “operations”. Most of the results are for diploid genomes, that is, for the
2-IH problem. In the following, a row r is called active in position j if there are i and � such that
i ≤ j < � and r[i] �= - �= r[�], the set of positions in which r is active is called α(r) and a gap in a row r
is any position i ∈ α(r) with r[i] = -. We let g denote the maximum number of gaps in any row of
M, we let � := maxr |α(r)| denote the maximum number of active positions of any row, and we let
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c := maxj α−1(j) denote the “coverage”, that is, the maximum over all positions j of the number of
rows r that are active in j. Note that gapless rows can still contain chains of -at the beginning and end.

Results. The complexity of 2-IH depends on the type of operations allowed on the matrix. Mainly,
three operations have been considered in the literature:

Deleting rows. The problem of turning M 2-conflict-free by row-deletions is known as MINIMUM

FRAGMENT REMOVAL (MFR). It is equivalent to turning the “conflict graph” bipartite by
removing vertices (this problem is called ODD CYCLE TRANSVERSAL or VERTEX BIPARTIZATION

in the literature). Herein, the vertices of the conflict graph are the rows of M and rows u and v
have an edge if they cannot be assigned to the same chromosome, that is, - �= u[i] �= v[i] �= -

for some position i. MFR is NP-hard even if each row has at most one gap [96], but becomes
polynomial-time solvable for gapless M [96,97]. It can be solved in O(22gm2n + 23gm3) time [97]
and in O(nc3c + m log m + m�) time [98]. Of course, results for ODD CYCLE TRANSVERSAL

apply to MFR: it admits O∗(3k)-time [99,100] and O(2.32k)-time [101] algorithms as well as a
randomized kernel of size O(k4.5) [102].

Deleting columns. The problem of turning M 2-conflict-free by column-deletions is known as
MINIMUM SNP REMOVAL (MSR). It has been shown to be NP-hard even if each row has at most
two gaps [96], but polynomial-time solvable for gapless M [96,103]. Bafna et al. [97] showed an
O(2gmn2)-time algorithm.

Flipping values. By far the most studied approach is turning M 2-conflict-free by flipping values, that
is, turning a 1 into a 0 or vice versa. This problem is known as MINIMUM ERROR CORRECTION

(MEC) or MINIMUM LETTER FLIP in the literature and it is has been shown to be NP-hard,
even on gapless inputs [104]. A simple reduction from EDGE BIPARTIZATION [105] further
shows that MEC is still NP-hard if each row contains at most three non-(-) characters and each
column contains at most two non-(-) characters, thus excluding parameterized algorithms, even
for the combined parameter. A parameterized algorithm with running time O∗(2m) is trivial
(assign each row to one of the two partitions/chromosomes) and an O∗(2n)-time algorithm
was presented by Wang et al. [106]. Further research focused on the coverage c, which is very
small in practice. O∗(2c)-time algorithms with various polynomial factors were presented by
Xie et al. [107], Deng et al. [108], Patterson et al. [109], Pirola et al. [110], and Garg et al. [111].
MEC can be linearly reduced to ODD CYCLE TRANSVERSAL [105], implying that results for ODD

CYCLE TRANSVERSAL carry over to MEC as well (O∗(3k) time [99,100], O∗(2.32k) time [101], and
O(k4.5)-size randomized kernel [102]).

On gapless inputs, MEC can be solved in O(2�mn) time [112] (assuming that all positions in the
corrected matrix are “heterozygous”, that is, contain both 0 and 1) or in O(3��m) time [105].

Notes. A variant of MFR in which rows are to be removed such as to make M 2-conflict-free
and to maximize the number of SNPs covered by the solution, called LONGEST HAPLOTYPE

RECONSTRUCTION, has been shown to be NP-hard but solvable in O(n2(n + m)) time [104] for gapless
M. A more practical variant of MEC, incorporating the aspect of sequencing that each position in a
read is given as four probabilities (probability for C, G, A, and T (or U)) instead of a single character was
considered by Xie et al. [107], who included a “GenoSpectrum” in the input and give an algorithm
running in O(nc2c + m log m + m�) time. Another version of MEC, constraining output matrices by
a “guide-genotype” was considered by Zhang et al. [113], showing that this version can be solved in
O(4�m) time. A slight modification of the MEC problem, asking for two haplotypes h1 and h2 and a
bipartition (R1, R2) of the rows such that hi is at most k flips away from the reads in Ri for i ∈ {1, 2}, was
considered by Hermelin and Rozenberg [114]. Their algorithm solves this problem in O(2gkkmn) time.

Since diploid species usually inherit one chromosome from each of their parents, it seems plausible
that knowledge of the pedigree of a group of species helps infer their haplotypes. In this context,
Garg et al. [115] considered a set I of individuals and a set T of mother–father–child relations, given in
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addition to the fragment-matrices of each individual, and ask for a set of flips in each fragment-matrix
such as to minimize the cost of the flips plus a cost function penalizing unlikely inheritance scenarios.
They solved this modified problem in O∗(24|T|+|I|+c) time.

Finally, regarding polyploidy (that is, p > 2), Li et al. [116] showed that p-ploid MFR can be
solved in O(22gnm2 + 2t(2m)p+1) time and in O(nm2 + mp+1) time if the input matrix M is gapless.
Further, p-ploid MEC can be solved in O∗(2p(�+1)) time and in O∗(pc) time [105].

Open Questions. Parameterizations for the IH problem focus mainly around the number g of gaps per
row and the coverage c. While the coverage c was reasonably estimated with 10–30 for past sequencing
projects, future technology is expected to increase this number. Even today, whole-exome-sequencing
uses coverages of at least 100 [117]. Quoting Garg [118],

“developing a parameterized algorithm for this integrative framework and deciding
parameters that work well in practice is very important.”

Thus, a future challenge will be to find more relevant parameters and exploit them to design
parameterized algorithms. We suspect that graph-measures of the conflict graph might come to the
rescue here, using the known reductions to bipartization problems [105]. Indeed, a more thorough
investigation into the multivariate complexity of ODD CYCLE TRANSVERSAL would certainly yield
important consequences for the presented variants of (SINGLE) INDIVIDUAL HAPLOTYPING.

A second challenge for (SINGLE) INDIVIDUAL HAPLOTYPING is the development of efficient
preprocessing strategies. While some effective reduction rules for variants of IH are known [119–121],
many of them are formulated and tuned for ILP formulations—kernelization results, whether positive
or negative, have been amiss.

Finally, an obvious open question is to extend the results for the polyploid case, where only little is
known in terms of parameterized complexity. Indeed, algorithms deciding the vertex-deletion distance
into p-colorable graphs would be a good starting point to attack this problem.

4.2. Haplotype Inference

Problem Description. A genotype g is a string over the alphabet {0, 1, 2} and a haplotype is a string
over the alphabet {0, 1}. Two haplotypes h and h′ resolve a genotype g if, for each position i, g[i] = h[i]
if h[i] = h′[i] and g[i] = 2, otherwise. Then, a list of haplotypes resolves a list of genotypes if, for each
genotype on the list, there are two haplotypes on the list that resolve it.

00000110 h0
01101101 h1
11001011 h2
11011001 h3
10101100 h4

g0 02202122
g1 22002210
g2 21221201
g3 22101202
g4 12201222
g5 12221202

Figure 8. Six genotypes gj resolved by five haplotypes hi.

Input: n length-m genotypes gj, integer k
Question: find 2n length-m haplotypes resolving the gj whose total cost is ≤ k

HAPLOTYPE INFERENCE (alias HAPLOTYPE PHASING, POPULATION HAPLOTYPING) (HI)

Results. The literature considers two major variants of the HI problem.

Pure Parsimony. In the PURE PARSIMONY HAPLOTYPING problem, the cost is the number k of different
haplotypes needed to explain the given genotypes. This problem is NP-hard [122–126], even
for three letters 2 per genotype and three letters 2 per position in the genotypes, but becomes
polynomial-time solvable if each genotype has at most two letters 2 [104,127] or each position has
at most one letter 2 [126,128]. Further special cases were considered by Sharan et al. [125] who also
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presented an O(kk2+km)-time algorithm for the general case [125]. A variant where haplotypes
can only be picked from a prescribed pool H′ was considered by Fellows et al. [129] who showed
a O(kO(k2)n2m)-time algorithm. Fleischer et al. [130] later presented an O(k4k+3m)-time algorithm
for the unconstrained version that can also solve the constraint version in O(k4k+3m|H′|2) time
(indeed, these running times can be decreased to O(k4k+2m) and O(k4k+2m|H′|) on average using
perfect hashing) as well as a size-O(2kk2) kernel. Their algorithm can also output all optimal
solutions.

Perfect Phylogeny. In the HAPLOTYPING BY PERFECT PHYLOGENY problem, haplotypes are required
to fit a “perfect phylogeny”, that is, a tree whose leaves are labeled by the haplotypes resolving
the input genotypes such that, for each position i, the subtrees induced by the leaves with 0 and
1 at position i do not intersect. Gusfield [131] introduced this problem for k = ∞ and showed an
almost-linear-time algorithm, which was later improved to linear time [132,133]. Otherwise, the
problem is NP-hard [126] but admits some polynomial-time solvable special cases based on the
number of 2s in the genotypes [126].

Notes. A variant of PURE PARSIMONY HAPLOTYPING is XOR-HAPLOTYPING, where genotypes do not
contain the letter 2 and two haplotypes resolve a genotype if it is the result of the bitwise XOR of the
haplotypes. While not known to be NP-hard, this variant can be solved in O(m(2k2

k + n)) time [120].
Note that the O∗(k4k)-time algorithm of Fleischer et al. [130] can be adapted for this problem.

Another problem called SHARED CENTER that aims at identifying SNPs that correlate with certain
diseases was considered from the viewpoint of parameterized complexity by Chen et al. [134] who
showed hardness and tractability for it.

Open Questions. A prominent open question is whether PURE PARSIMONY HAPLOTYPING can be
solved in polynomial time when the number of 2s per position is bounded by two [125,135,136].
For parameterized complexity, one of the most important questions is whether PURE PARSIMONY

HAPLOTYPING admits a single-exponential-time algorithm or a polynomial-size kernel when
parameterized by k. Further, parameterizations for this problem have mostly focused on the “natural
parameter” k but, in practice, other parameters may be more relevant and promising. Some measure
of how convoluted the given genotypes are may be a promising avenue for future research. From a
biological point of view, a parameter related to the number of 2s may be promising, but the known
results suggest that such a parameter can only lead to FPT-results if combined with others. Finally,
from a practical point of view, it may be interesting to combine the HAPLOTYPE INFERENCE and
(SINGLE) INDIVIDUAL HAPLOTYPING problems. For example, it would be interesting to find a set of
few haplotypes that explain the given genotypes modulo few errors or to infer few haplotypes given a
set of genotypes along with a pedigree indicating their inheritance.

5. Phylogenetics

To put sequences of different species in perspective and to understand historical evolution, as well
as try to predict future directions of the development of life on Earth, a “phylogeny” [137] (evolutionary
tree or network) needs to be constructed. Indeed, some see the reconstruction and interpretation of a
species phylogeny as the pinnacle of biological research [138]. A likely evolutionary scenario can be
constructed from a multiple alignment, a character-state matrix, or a collection of sub-phylogenies,
and methods for this are plentiful [139,140]. In the scope of this survey, however, we focus on recent
results for NP-hard problems surrounding phylogenetic trees and networks.

5.1. Preliminaries

An evolutionary (or phylogenetic) network N is a graph whose degree-one nodes L(T) (“leaves”)
are labeled (by “taxa”). A rooted phylogenetic network N is a rooted acyclic directed graph whose
non-root nodes either have in-degree one or out-degree one and whose out-degree-zero nodes L(T)
(“leaves”) are labeled (by “taxa”). A (rooted) phylogenetic tree is a (rooted) phylogenetic network
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whose underlying undirected graph is acyclic. In the context of this section, we drop the prefix
“phylogenetic” for brevity and sometimes refer to networks as “phylogenies”. Some works consider
trees in which each leaf-label may occur more than once. These objects are called multi-labeled trees (or
MUL trees). For a set T of networks, we abbreviate

⋃
T∈T L(T) =: L(T ). An important parameter of

networks is their level, referring to the largest number of reticulations in any biconnected component
of the underlying undirected graph (see [141]).The restriction of T to L, denoted by T|L, is the result
of removing all leaves not in L from T and repeatedly removing unlabeled leaves and suppressing
(that is, contracting any one of its incident edges/arcs) degree-two nodes. A network N displays a
network T if T is a topological minor of N, respecting leaf-labels, that is, N contains a subdivision of
T as a subgraph. Herein, a directed edge can only be subdivided in accordance to its direction, that
is, the subdivision of an arc uv creates a new node w and replaces uv by the arcs uw and wv. This
notion can be generalized to the case that N is the disjoint union of some networks (see Section 5.2.3).
For non-binary networks, there are two different notions of display: the “hard”-version is defined
analogously to the binary case, while we say that a network N “soft”-displays a network T if any
binary resolution of N displays any binary resolution of T, where a binary resolution of a network N is
any binary network that can be turned into N by contracting edges/arcs. “Soft” and “hard” versions
of display are derived from the concept of “soft” and “hard” polytomies, meaning high degree nodes
that represent either a lack of knowledge of the correct evolutionary history leading to the children
taxa (“soft”) or a large fan-out of species due to high evolutionary pressure (“hard”).

Note that many kernelization results in phylogenetics bound only on the number of labels in a
reduced instance. If the input contains many trees or an intricate network, kernelization results should
more fittingly be described as “partial kernel” (see [142]). We thus usually refer to such results as
“kernel with . . . taxa”.

5.2. Combining and Comparing Phylogenies

Problem Description. An approach to reconstruct a phylogeny from the genomes of a set of species
is to first reconstruct the phylogenies of the genes (using multiple alignments and after clustering
them together into families) into so-called “gene trees” and then to combine these trees into a tree
representing the evolutionary history of the set of species called the “species tree” (see also Section 5.3
for more on the divergence between gene trees and species trees). In general, given trees Ti each on the
taxon-set Xi, we want to “amalgamate” the trees into a single tree T, which, since it agrees with and
contains all the Ti, is called an agreement supertree. This problem is known as TREE CONSISTENCY (and,
sometimes TREE COMPATIBILITY).

Input: trees T1, T2, . . . , Tt on X1,X2, . . ., respectively
Question: Is there a tree T∗ on X :=

⋃
i Xi with ∀i T∗|Xi= Ti?

TREE CONSISTENCY (TCY)

For surveys about the combination of phylogenies (“consensus methods”) we refer to Bryant [143] and
Degnan [144].

Results. For unrooted trees, TCY can be solved in polynomial time if all Ti share a common taxon [145]
but is NP-complete in general, even if all input trees contain four taxa [145] (such a “quartet” is
the smallest meaningful unrooted tree since unrooted trees with at most three taxa do not carry
any phylogenetic information). This restricted problem is also known as QUARTET INCONSISTENCY.
TCY can be solved in polynomial-time for two unrooted (non-binary) trees [146]. More generally,
using powerful meta-theorems [147,148] (problems formulatable in “Monadic Second Order Logic”
(MSOL) are FPT for the treewidth of the input structure), TCY is fixed-parameter tractable for the
treewidth of the display graph [149,150] (that is, the result of identifying all leaves of the same label
in the disjoint union of the input trees), which is smaller than the number t of trees. Baste et al. [151]
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improved the impractical running time resulting from the application of the meta-theorems, showing
an O∗(2O(t2))-time algorithm.

For rooted trees, TREE CONSISTENCY can be solved in polynomial time [152,153] (even for
non-binary trees) but, due to noisy data and more complicated evolutionary processes, practically
relevant instances are not expected to have an agreement supertree [154,155]. Thus, derivations
of the problem arose, asking for a smallest amount of modification to the input such that an
agreement supertree exists. The most prominent modification types are removing trees (ROOTED

TRIPLET INCONSISTENCY), removing taxa (MAXIMUM AGREEMENT SUPERTREE), and removing edges
(MAXIMUM AGREEMENT FOREST), which we discuss in the following.

5.2.1. Consensus by Removing Trees

When reconstructing a species tree from gene trees, we may hope that the gene trees of most of the
sampled gene families actually agree with the species phylogeny and only few such families describe
outliers that developed nonconformingly. In this case, we can hope to recover the true phylogeny by
removing a small number of gene trees.

Input: triplets T1, T2, . . . on X1,X2, . . ., respectively, and some k ∈ N

Question: Is there a tree T∗ on X :=
⋃

i Xi such that T∗|Xi �= Ti for at most k of the Ti?

ROOTED TRIPLET INCONSISTENCY (RTI)

Results. ROOTED TRIPLET INCONSISTENCY is NP-hard [156–158], even on “dense” triplet sets [159] (a
triplet set T is called dense or complete if for each leaf-triple {a, b, c}, T contains exactly one of ab|c, ac|b
and bc|a). While the general problem is W[2]-hard for k [159], the dense version admits parameterized
algorithms. Indeed, Guillemot and Mnich [160] showed parameterized algorithms running in O(4kn3)

and in O∗(2O(k1/3 log k)) time, as well as an O(n4)-time computable, sunflower-based kernel containing
O(k2) taxa (see [161] for details on the sunflower kernelization technique). Their result has recently
been improved to linear size by Paul et al. [162].

Notes. Generalizing RTI to ask for a level-� network displaying the input trees yields a somewhat
harder problem, which can be solved for dense inputs in O(|T|�+1n4�/3+1) time [163] and in O(|T|�+1)

time for a particular class of networks [164].
The unrooted-tree version of dense RTI (where the input consists of quartets) is known to be

solvable in O(4kn + n4) time [165].

5.2.2. Consensus by Removing Taxa

In many sciences, the most interesting knowledge can be gained by looking more closely to
the non-conforming data points. In this spirit, biologists are particularly interested in taxa causing
non-compatibility, that is, whose removal allows for an agreement supertree. In the spirit of parsimony,
we are thus tempted to ask for a smallest number of taxa to remove from the input trees such that
an agreement supertree exists.

Input: trees T1, T2, . . . , Tt on X1,X2, . . ., respectively, and some k ∈ N

Question: Is there a tree T∗ on X such that |⋃i Xi \ X | ≤ k and ∀i T∗|Xi= Ti|X ?

MAXIMUM AGREEMENT SUPERTREE (MASP (also SMAST or MLI in the literature))

Results. While MASP can be solved in O(n1.5) time for two rooted trees [166–168] (n denoting the
total number of labels in the input), it is NP-hard for t > 2, even if all Ti are triplets [166,169], and
the NP-hardness persists for fixed t [166] (but large trees). Guillemot and Berry [170] showed that,
on dense, binary, rooted inputs, MASP can be solved in O(4kn3) and O(3.12k + n4) time by reduction
to 4-HITTING SET. They further improved an O(t(2n2)3t2

)-time algorithm of Jansson et al. [166] for
binary Ti to O((8n)t) time [170], which was subsequently improved to O((6n)t) time by Hoang and
Sung [171]. The latter also gave an O((tΔ)tΔ+3(2n)t)-time algorithm for general rooted inputs (Δ
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denoting the maximum out-degree among the input trees). MASP is W[2]-hard for k, even if the input
consists of rooted triplets [169], and W[1]-complete in the rooted case for the dual parameter n− k,
even if we add t to it [170]. On the positive side, the problem can be solved in O((2t)ktn2) time for
binary trees [170] which has been generalized to arbitrary trees by Fernández-Baca et al. [172]. For
completeness, we want to point out that many of the results for MASP also hold for MASP’s sister
problem MAXIMUM COMPATIBLE SUPERTREE (MCSP), in which equality with the restricted agreement
supertree T∗ is relaxed to being a contraction of T∗ (with the notable exception that MCSP can be
solved in O(22tΔnt) time in both the rooted and unrooted case [171]).

Notes. The special case of MASP in which X1 = X2 = . . . is called MAXIMUM AGREEMENT

SUBTREE (MAST) and has been studied extensively. While still NP-hard for t = 3 non-binary
trees [173], MAST can be solved in O(kn3 + nΔ) [157,174], in which time we can also compute a
“kernel agreement subtree”, denoting the intersection of all leaf-sets of all optimal maximum agreement
subtrees [175]. MAST is fixed-parameter tractable for k with parameterized algorithms running in time
O(min{3ktn, 2.18k + tn3}) [176–178] (by reduction to 3-HITTING SET).

More fine-grained versions of MAST that allow removal of different taxa from each Ti were
introduced by Chauve et al. [179]. In AGREEMENT SUBTREE BY LEAF-REMOVAL (AST-LR), the objective
is to minimize the total number q of removed leaves and, in AST-LR-d, the objective is to minimize
the maximum number d of leaves that have to be removed from any of the trees. Both versions are
NP-hard [179] but can be solved in O((4q− 2)qt2n2) (AST-LR) and O(cdd3d(n3 + tn log n)) time for
some constant c (AST-LR-d) [179,180].

Lafond et al. [181] considered MAST for multi-labeled trees showing that it remains NP-hard and
can be solved in O∗((2n)tkkt) time.

Finally, Choy et al. [141] showed that a “maximum agreement subnetwork” for two binary
networks of level �1 and �2, respectively, can be computed in O∗(2�1+�2) time.

5.2.3. Consensus by Removing Edges—Agreement Forests and Tree Distances

An important biological phenomenon that governs the discordance of gene trees are non-tree-like
processes such as hybridization and horizontal gene transfer (HGT) (see also Section 5.3). If a branch
in a gene tree corresponds to a horizontal transfer, then we expect that deleting this branch results in
a forest, which is in agreement with the other gene trees. This gives rise to the idea of “agreement
forests”, resulting from the deletion of branches in the input phylogenies.

Input: rooted or unrooted trees T1, T2, . . . on X and some k ∈ N

Question: Is there a forest F with L(F) =
⋃

i L(Ti), F has ≤ k trees and each Ti displays F?

MAXIMUM AGREEMENT FOREST (MAF)

Maximum agreement forests come in three major flavors: unrooted maximum agreement forests
(uMAFs), rooted maximum agreement forests (rMAFs), and maximum acyclic agreement forests
(MAAFs). Herein, “acyclic” makes reference to the constraint that the “inheritance graph is acyclic”
(see Figure 9). Formally, the inheritance graph of an agreement forest F for two trees T1 and T2 has the
trees of F as nodes and an arc uv if and only if the root of u is an ancestor of the root of v in T1 or in
T2. Demanding acyclicity of this graph forbids, for example, that a tree u of F is “above” another tree
v in T1 but “below” v in T2. This definition generalizes straightforwardly to more than two trees Ti.
In the following, the size of an agreement forest F is the number of trees in F and it is equal to the
number of branches to remove in each input tree to form (a subdivision of) F and F is called maximum
if it minimizes this number. For surveys about tree distances and agreement forests, we refer to
Shi et al. [182] and Whidden [183].
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Figure 9. Illustration of (acyclic) agreement forests.

Results. Evidently, results heavily depend on the type of agreement forest we are looking for.
Interestingly, each of the three versions corresponds to a known and well-studied distance measure
between trees and we thus also include results stated for the corresponding distance-measure.

Unrooted Agreement Forest. The size of a uMAF of two binary trees T1 and T2 is exactly equal to the
minimum number of “TBR moves” necessary to turn T1 into T2 [184,185] (and vice versa; indeed,
this defines a metric and it is called the “TBR distance” between T1 and T2). Herein, a TBR (tree
bisection and reconnection) move consists of removing an edge uv from a tree (“bisecting” the
tree) and inserting a new edge between any two edges of the resulting subtrees (“reconnecting”
the trees), that is, subdividing an edge in each of the subtrees and adding a new edge between
the two new nodes.

For two trees, deciding uMAF is NP-hard [184], but fixed-parameter tractable in k. More
precisely, the problem can be solved in O∗(kO(k)) time [185], O(4kk5 + nO(1)) time [186], and
O(4kk + nO(1)) time [187]. These results make use of the known kernelizations with 15k [185,188]
and 11k taxa [189]. For t > 2 binary trees, Shi et al. [190] presented an O(4knt)-time algorithm.
Chen et al. [191] considered the uMAF problem on multifurcating trees, showing that it still
corresponds to the TBR problem and can be solved in O(3kn) time.

Rooted Agreement Forest. The size of an rMAF of two rooted binary trees T1 and T2 is exactly one
more than the minimum number of “rSPR moves” necessary to turn T1 into T2 [192,193] (and
vice versa; indeed, this defines a metric and it is called the “rSPR distance” between T1 and T2).
Herein, an rSPR (rooted subtree prune and regraft) move consists of removing (“pruning”) an arc
uv from a tree and “regrafting” it onto another arc xy, that is, subdividing xy with a new node z
and inserting the arc zv.

The problem is known to be NP-hard and algorithms parameterized by k have been extensively
studied and improved. An initial O(4kn4)-time algorithm [187,194] was improved to O(3kn)
time [187], O(2.42kn) time [195], O(2.344kn) time [196], and the current best O(2kn)-time
algorithm by Whidden [183]. In contrast, a kernel with 28k taxa [193] has stood since 2005.
For t > 2 trees, rMAF can be decided in O∗(6k) time [197] and O(3knt) time [190].

Collins [198] showed that using “soft”-display, rMAFs still correspond to computing the rSPR
distance between two multifurcating trees. This problem can be solved in O∗(4k) time [199] and
in O(2.42kn) time [183,200] and admits a kernel with 64k taxa [198,201]. For t > 2 trees, the
multifurcating rMAF problem is solvable in O(2.74kt3n5) time [202]. Notably, Shi et al. [202] also
considered the “hard” version of the problem and presented an O(2.42kt3n4)-time algorithm for it.

Acyclic Agreement Forest. The size of a MAAF of two rooted binary trees T1 and T2 is exactly one
more than the minimum number of reticulations found in any phylogenetic network displaying
both T1 and T2 [192] and this relation holds also if T1 and T2 are non-binary [203].

Deciding this number is known as the HYBRIDIZATION NUMBER (HN) problem and it has been
shown to be NP-hard by Bordewich and Semple [204]. The problem can be solved in O(3nn) time
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by crawling a bounded search-tree [205]. In 2009, Whidden and Zeh claimed an O(3kn log n)-time
algorithm, which they later retracted and replaced by an O(3.18kn)-time algorithm [183,195]. For
t = 3 binary trees, HN can be decided in O∗(ck) time, where c is an “astronomical constant”[206].

Concerning preprocessing, a kernel with at most 9k taxa is known [188,201] and this kernelization
result has been generalized to the case of deciding HN for t > 2 binary trees (in which case HN
and MAAF no longer coincide) by van Iersel and Linz [207], showing a kernel with 20k2 taxa
for this case, which has again been generalized to t > 2 non-binary trees by van Iersel et al. [208],
showing a kernel with at most 20k2(Δ− 1) (and at most 4k(5k)t) taxa [208]. For MAAF with
t = 2 non-binary trees, Linz and Semple [203] showed a linear bikernel (that is, a kernelization
into a different problem, see [209]) with 89k taxa, which implies a quadratic-size classical kernel.
For this setting, algorithms running in O∗(6kk!) [210] and O∗(4.83k) [211] time are also known.

Notes. Any algorithm for binary uMAF, rMAF, and MAAF with running time f (k)nO(1) can be
turned into an algorithm running in f (�)nO(1), where � is the level of any binary network displaying
the two input trees [212]. Furthermore, all three agreement forest variants are fixed-parameter
tractable for the treewidth of the display graph of the input trees [213] (see corresponding results
for unrooted TREE CONSISTENCY [149,150]). The rSPR distance has been generalized to a distance
measure for phylogenetic networks called SNPR and its computation is fixed-parameter tractable [214]
parameterized by the distance. Variations of the discussed distance measures include: (1) the uSPR
distance, which does not have an agreement-forest formulation, is NP-hard to decide [215], admits
a kernel with 76k2 taxa [216] (in a preprint, Whidden and Matsen [217] claimed an improvement to
28k taxa), and can be calculated in O∗((28k)!!16k) time [218] (using the mentioned preprint-kernel);
(2) its close sibling, the replug distance, which admits a formulation as “maximum endpoint agreement
forest”, is conjectured to be NP-hard to decide but admits an O∗(16k)-time algorithm [218]; (3) the
“temporal hybridization number”, denoting the smallest amount of reticulation required to explain
trees with a temporal network, which was shown to be NP-hard for two trees [219] but admits an
O∗((9k)9k)-time algorithm [220]; and (4) the parsimony distance, which is NP-hard [221,222] but can
be solved in O∗(1.61838dTBR) time [223], where dTBR is the TBR distance between the input trees.

Open Questions. Consensus methods in phylogenetics can profit from a wide range of parameters,
describing the particularities of likely set of inputs. While we would indeed expect that the consensus
has a small distance to the input trees, a lot depends on how we choose to measure this distance. More
general distance measures make for stronger parameters and, while the HYBRIDIZATION NUMBER

problem can be solved in single-exponential time for the “standard parameter” k, it would be interesting
to parameterize by a stronger parameter, such as the rSPR radius in which the input trees lie.

Inspired by the groundbreaking results of Bryant and Lagergren [149], research into the display
graph and its treewidth has been conducted with some success [150,224]. However, we have yet to
design concrete, practical algorithms for consensus problems parameterized by the treewidth of the
display graph. As this would potentially yield very fast, practical algorithms, we suspect that this
would be a fruitful topic in the coming years. Another interesting parameter is the “book thickness” of
the display graph, that is, the minimum number of edge-colors needed to color the display graph such
that each color class permits an outerplanar drawing. For obvious reasons, this parameter is smaller
than the number t of input trees. Can the results for t be strengthened to work with the book thickness
instead?

5.3. Reconciliation

Problem Description. In practice, trees depicting the evolutionary history of families of genes sampled
from a set of species do not agree with the evolutionary history of the species themselves; hybridization,
horizontal gene transfer, and incomplete lineage sorting being only few known causes for such
discrepancies. In theory, even gene duplication and gene loss are enough to explain gene trees
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differing arbitrarily from the corresponding species tree. To better understand how a family of genes
developed in the genome of a concurrently developing set of species, we can compute an “embedding”
of the gene tree nodes to the edges of the species phylogeny called a reconciliation (see Figure 10).
Reconciliations also allow drawing conclusions when comparing phylogenies of co-evolving species
such as hosts/parasites or flowers/pollinators. More formally, a DL-reconciliation of a (gene-)phylogeny
G with a (species-)phylogeny S is a pair (G′, r) where G′ is a subdivision of G and r : V(G)→ V(S) is
a mapping such that:

(a) for all arcs uv of G, either r(u) = r(v) (in which case u is called “duplication”) or r(v) is a child of
r(u) (in which case u is called “speciation”);

(b) for arcs uv and uw in G, we have r(u) = r(v) ⇐⇒ r(u) = r(w) (that is, no node of G can be a
speciation and a duplication at the same time); and

(c) if u is a leaf in G, then r(u) is a leaf labeled with the contemporary species that r(u) was sampled in.

We can then define the number of losses in (G′, r) as the sum over all speciations u of the outdegree of
r(u) in S minus the outdegree of u in G′. If horizontal transfers are allowed, Condition (a) is replaced by
(a’) for all arcs uv of G, either r(u) = r(v) (in which case u is called “duplication”) or r(v) is a child of

r(u) (in which case u is called “speciation”), or r(v) is incomparable to r(u) (in which case u is

called a “transfer” and uv is called a “transfer arc”),
and Condition (b) is restricted to non-transfer arcs, and each transfer with out-degree one causes
an additional loss. In this case, we call r a DTL-reconciliation. Since, in reality, transfers occur only
between species existing at the same time, Condition (a’) introduces further restrictions. In particular,
a reconciliation r is called time-consistent if G can be “dated”, that is, there is a mapping t : V(G)→ N

such that, for all arcs uv of G, we have 1. t(u) ≤ t(v); and 2. t(u) = t(v) if and only if uv is a transfer
arc of G under r.

A DTL-reconciliation may be time-inconsistent if, for example, there are transfer arcs uv and xy
such that u and x are ancestors of y and v, respectively, in G.

Now, the parsimonious principle is used to define an optimization criterion. To this end, each
evolutionary event is given a cost such as to reflect how unlikely it is to see a certain event. By the
biological setup, it is usually assumed that speciations have cost zero.

××

×

×

a a′ b b′ c c′

×

×

a a′ b b′ c c′

Figure 10. Two different reconciliations of the same gene tree with the same species tree. A small node
u drawn in an edge xy of the species tree (large outer tree) indicates that the reconciliation maps u
to y. Boxes, triangles, circles, and hexagons represent leaves, duplications, speciations, and transfers,
respectively, while crosses are losses. The left reconciliation has three duplications and four losses,
while the right has two duplications, two losses, and one transfer.

Input: species tree S, gene tree G, mapping σ : L(G)→ L(S), costs λ, δ, τ ∈ N, some k ∈ N

Question: Is there an embedding of G in S with cost at most k?

RECONCILIATION (REC)
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We specify the allowed type of embedding by prepending “DL”, “DTL”, etc. to the problem name. The
study of the formal reconciliation problem was initiated by Ma et al. [225] and Bonizzoni et al. [226]
and is surveyed in [227–230].

Results. Optimal binary DL-reconciliations can be computed—independently of the costs—by the
LCA-mapping, which maps each node of G to the LCA of the nodes that its children are mapped to [231].
Thus, this problem can be solved in linear time [232,233] using O(1)-time LCA queries [234,235]. The
non-binary variant, while not quite as straightforward, can still be solved in polynomial time [236,237].

The complexity of computing DTL-reconciliations depends heavily on their time-consistency. If
we allow producing time-inconsistent reconciliations or the given species tree already comes with a
dating function, then optimal DTL-reconciliations can be computed in polynomial time [238–240]. In
general, however, the problem is NP-hard [238,241], but can be solved in O(3k|G|+ |S|) time [238].
Hallett and Lagergren [242] showed that DTL-reconciliations with at most α speciations mapped to
any one node in the species tree is FPT in α + τ.

Duplication, transfer, and loss are not the only evolutionary events shaping a gene tree. Hasić
and Tannier [243,244] recently introduced “replacing transfers” (TR) and “gene conversion” (C)
which model important evolutionary events and showed that DLC-reconciliations can be decided in
polynomial time [243] while deciding TR-reconciliations is NP-hard and FPT for k [244]. Finally, the
concept of “incomplete lineage sorting” (ILS) is an important factor influencing discrepancies between
gene and species phylogenies, especially when speciation occurs in rapid succession [245]. Roughly,
ILS refers to the possibility that an earlier duplication or transfer does not pervade a population at
the time a speciation occurs. Thus, one branch of a speciation may carry a gene lineage while the
other does not (see Figure 11 for an illustration). In DL-reconciliation, this scenario requires a loss, but
this would not reflect the true evolutionary history. Unfortunately, no particular mathematical model
of ILS is widely accepted, so the following results might be incomparable. In 2017, Bork et al. [246]
showed that incorporating ILS into DL-reconciliation makes the problem NP-hard, even for dated
species trees. Furthermore, DTL-reconciliation for dated, non-binary species trees allows ILS to be
computed in O∗(4Δ) time [247,248].

To and Scornavacca [249] started looking into the problem of reconciling rooted gene trees with
a rooted species network, showing that, for the DL model, this problem is NP-hard, but solvable in
O∗(2k) time.

cba

A B C

Figure 11. Illustration of incomplete lineage sorting (ILS). Each row of dots represents a generation
and each dot stands for a number of individuals. The ancestral lineages of genes a, b and c, sampled in
individuals of the respective extant species A, B, and C are drawn in black. When the speciation splits
A from C, all three alleles a, b, and c exist in the population, but are not “fixated”. This is necessary
to observe ILS and gets more likely the shorter the branch to the ancestor species. The resulting gene
phylogeny differs from the species phylogeny.

Open Questions. There are three major challenges for bioinformatics concerning reconciliation. The
first and more obvious task is to include all known genomic players in the reconciliation game, meaning
to establish a standard model incorporating duplication, transfer, loss, replacing transfers, conversion,
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and incomplete lineage sorting. While Hasić and Tannier [243,244] made good progress towards this
goal, their model seems too clunky and lacks ILS support. The second challenge is to remove the need
to provide δ, τ, etc. in the input for the RECONCILIATION problem. In practice, some biologists using
implementations of algorithms for reconciliations just “play around” with these numbers until the
results roughly fit their expectations, which is understandable since nobody knows the correct values.
Indeed, in all likelihood, there are no “correct values” because the underlying assumption that the
rates of genetic modification is constant throughout a phylogeny is invalid [250]. A more realistic
approach might define expected frequencies of events for each branch and combine them with the
length of this branch in order to dynamically price duplication, transfer, loss, etc. in this branch.

5.4. Miscellaneous

Given a phylogeny T, the parsimony score of T with respect to a labeling c of its nodes is the number
of arcs in T whose extremities have a different label under c. In the SMALL PARSIMONY problem, we
are given a phylogeny T and a leaf-labeling cL and have to extend cL to a labeling of all nodes of T such
as to minimize the parsimony score. If T is a network, aside from the above definition (“hardwired”),
the “softwired” version exists, asking for the minimum parsimony score of any tree T∗ (on the same
leaf-set as T) displayed by T. While SMALL PARSIMONY is polynomial for trees [251], the problem is
NP-hard in the softwired case, even for binary T and cL, as well as in the hardwired case, unless cL is
binary [252,253]. Fischer et al. [253] also showed that hardwired SMALL PARSIMONY is FPT for the
solution parsimony score and softwired SMALL PARSIMONY is FPT for the level of the input network.

The problem of deciding whether a phylogeny T is displayed by another phylogeny N is
called TREE CONTAINMENT and it is NP-hard, even if T is a tree [254]. TREE CONTAINMENT has
polynomial-time algorithms for many special cases of N [254–261] and can be solved in O∗(1.62�)
time [262] (where � denotes the level of N; the authors also showed an algorithm for the related
CLUSTER CONTAINMENT problem) and in O∗(3t) time [261], where t is the number of “invisible tree
components” (that is, the number of tree-nodes u whose parent v is a reticulation that is not ”visible“ in
N (that is, for each leaf a, there is a root-a-path avoiding v)). TREE CONTAINMENT stays NP-hard even
if the arcs of both T and N are annotated with “branch lengths”, but admits an O∗(2�)-time algorithm
in this case [263].

Recent research into the problem of rooting an unrooted network was conducted by Huber et al. [264],
showing that orienting an undirected binary network as a directed network of a certain class is FPT for
the level � for some classes of N.
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Abstract: We present a detailed survey of results and two new results on graphical models
of uncertainty and associated optimization problems. We focus on two well-studied models,
namely, the Random Failure (RF) model and the Linear Reliability Ordering (LRO) model. We present
an FPT algorithm parameterized by the product of treewidth and max-degree for maximizing
expected coverage in an uncertain graph under the RF model. We then consider the problem of
finding the maximal core in a graph, which is known to be polynomial time solvable. We show that
the PROBABILISTIC-CORE problem is polynomial time solvable in uncertain graphs under the LRO
model. On the other hand, under the RF model, we show that the PROBABILISTIC-CORE problem is
W[1]-hard for the parameter d, where d is the minimum degree of the core. We then design an FPT
algorithm for the parameter treewidth.

Keywords: probabilistic graphs; uncertain graphs; influence maximization; cascade failure; linear
reliable ordering; expected coverage; probabilistic core.

1. Introduction

Network data analytics has come to play a key role in many scientific fields. A large body of
such real-world networks have an associated uncertainty and optimization problems are required to
be solved taking into account the uncertainty. Some of the uncertainty are due to the data collection
process, machine-learning methods employed at preprocessing, privacy-preserving reasons and due to
unknown causes during the operation of the network. Throughout this work, we study the case where
the uncertainty is associated with the availability or the nature of relationship between the vertices of
the network. The vertices themselves are assumed to be always available, in other words, the vertices
are assumed to be certain. The concepts can be naturally modified to model uncertainty by associating
uncertainty with the vertices. Road networks [1,2] are a natural source of optimization problems where
the uncertainty is due to the traffic. Indeed, in uncertain traffic networks [2], the travel-time on a
road is inherently uncertain. One way of modeling this uncertainty is by modeling the travel-time
as a random variable. Indeed, the random variable is quite complex since the probability that it
takes a certain value is dependent on other parameters like the day of the week and time of the
day. However, our focus is only on the fact that uncertainty is modeled by an appropriately defined
random variable. The natural optimization problem on an uncertain traffic network is to compute
the expected minimum-time s-t path. In biological networks [3], the protein-protein interaction (PPI)
network is an uncertain network. In a PPI network, proteins are represented by vertices and interaction
between proteins are represented by edges. The interaction between proteins are derived through
noisy and error-prone experiments which cause uncertainty. Sometimes the interactions are predicted
by the nature of proteins instead of experiments. In this example, the uncertainty can be of two
types: it can be on the presence or the absence of a protein-protein interaction or on the strength of
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an interaction between two proteins. Similarly, social networks are another example of uncertain
networks where the members of the network are known, and the uncertainty is on the link between
two members in the network. The interaction between members of an uncertain network associated
with a social network are obtained using link prediction and by evaluating peer influence [4]. In all
these three examples of networks with uncertainty, the uncertainty on the edges can be modeled as
random variables. A random variable can be used to indicate the presence or the absence of an edge.
In this case, the random variable takes values from the set {0, 1} with each value having an associated
probability. A random variable can also be used to model the strength of the interaction between two
entities in the network, in which case for an edge, the corresponding random variable takes values
from a set of values and each value has an associated probability.

In this work, we survey the different models of uncertainty and the associated optimization
problems. We then present our results on optimization problems on uncertain networks when the
networks have bounded treewidth. The fundamental motivation for this direction of study is that
a typical optimization problem on an uncertain graph is an expectation computation over many
graphs implicitly represented by the uncertain graph. A natural question is there are problems which
have efficient algorithms on a graph in which the edges have no uncertainty but become hard on
uncertain graphs. The typical optimization problems considered on uncertain graphs are shortest
path [5], reliability [6], minimum spanning trees [7,8], maxflows [9,10], maximum coverage [11–13],
influence maximization [14] and densest subgraph [15,16]. This article is structured partly as a survey
and partly as an original research article. In Section 1.1, we formally present the concepts in uncertain
graphs and then present subsequent details on uncertain graphs in Section 2. In Section 1.2, we survey
the different algorithmic results on uncertain graphs and in Section 1.3 we outline our results.

1.1. Uncertain Graphs-Definition and Semantics

We consider the graphs with uncertain edges and certain vertices. An uncertain graph, denoted
by G, is a triple that consists of a vertex set V, an edge set E and a set of outcomes {Ae | e ∈ E}.
For each edge e ∈ E, the outcome Ae is a set of values and an associated probability distribution on Ae.
The outcome Ae is considered to be an interval or a finite set. For each e ∈ E, if the outcome Ae is an
interval, the associated probability distribution is called a continuous distribution, and if it is a finite
set, the associated probability distribution is called a discrete distribution. In either case, the natural
distribution is the uniform distribution. For the case in which for each edge e ∈ E, Ae is a closed
interval [Le,Ue], the probability that e gets specific value in Le < Ue is 1

Ue−Le
. In case for each e ∈ E,

Ae is a finite set under the uniform distribution, the probability that e gets a specific value from Ae

is 1
|Ae | . Such uncertain graphs were the focus of the earliest results [5,7,9,10] and we survey these in

Section 1.2. However, in general, the uncertainty could be modeled by any probability distribution Ae.
Therefore, the uncertain graph is a succinct representation of the set of all edge weighted graphs such
that for each edge e its weight is a value from Ae. This set is an uncountable set when Ae is an interval
and it is ∏e∈E |Ae| in case each e ∈ E, Ae is a finite set. In this paper, we present our results for the case
when for each edge e, the outcome Ae is the set of values {0, 1}. Naturally, 0 models the absence of
an edge and 1 models the presence of an edge. An uncertain graph under this condition is a succinct
representation of the set of all edge subgraphs of G = (V, E). In this case, the uncertain graph G is
represented as a triple (V, E, p) where p : E → [0, 1] is a function defined on E and p(e) is said to be
the survival probability of the edge e. The failure probability of an edge e is 1− p(e). The set of all
graphs represented by an uncertain graph is well-known as the possible world semantics (PWS) [17,18] of
the uncertain graph. For each E′ ⊆ E, H = (V, E′) is called a possible world of G and this is denoted by
the notation H ! G . For an uncertain graph G = (V, E, p), there are 2|E| possible worlds. An uncertain
graph and two of its possible worlds are illustrated in Figure 1.
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Figure 1. (a) A probabilistic graph G = (V, E, p); (b) A possible world H1 of G with P(H1) = 0.0072;
(c) Another possible world H2 of G with P(H2) = 0.0588.

The probability associated with a possible world depends on the probability distributions
on Ae and, most importantly, the dependence among the edge samples. A distribution model is
a specification of the dependence among edge samples. Further, a distribution model uniquely
determines a probability distribution on the possible worlds. For example, if the edge samples
are all independent, the distribution model is called the Random Failure (RF) model. Under the
RF model, the probability of a possible world H is given by P(H) = ∏

e∈E(H)

p(e) ∏
e∈E\E(H)

(1− p(e)).

Based on the dependence among the edge samples, the literature is rich in different distributions on
the possible worlds. The distributions of interest in this paper are the Random Failure (RF) model,
Independent Cascade (IC) model, Set-based Dependency (SBD) model and the Linear Reliability
Ordering (LRO) model. These distribution models are all well-motivated by practical considerations
on uncertain graphs in influence maximization, facility location, network reliability, to name a few.
The detailed description of these distribution models and the corresponding distributions on the
possible worlds are discussed in Section 2. In short, an uncertain graph along with a distribution
model is a succinct description of an unique probability distribution on the PWS of the uncertain graph.
Therefore, an uncertain graph along with a distribution model is equivalent to a sampling procedure to
obtain a random sample from the corresponding probability distribution on the PWS of the uncertain
graph. In Section 2, we describe the different distribution models by describing the corresponding
sampling procedures of the edges in E.

The typical computational problem is posed for a fixed nature of the dependence among the edge
samples from an input uncertain graph. The distributions on the edges and the dependence among the
edge samples uniquely define the probability distribution on the possible worlds. Therefore, for a fixed
dependence among the edge samples, the generic computational problem is to compute a solution that
optimizes the expected value of a function over the distribution on the possible worlds. The problems
that have been extensively studied are facility location to maximize coverage [19] and a selection of
influentials on a social network to maximize influence [14]. Clearly, both these problems are coverage
problems, studied two decades apart motivated by different considerations. In this paper, we are
also motivated by understanding the parameterized complexity of problems on uncertain graphs.
Historically, the earliest results considered different graph problems in which the distributions are on
the set of values of the edge weights. We next present a survey of those results.

1.2. Survey of Optimization Problems in Uncertain Graphs

Graphs have been used to represent the relationships between entities. A graph is denoted by
G = (V, E) where V is set of vertices and E ⊆ V ×V is set of edges representing relationship between
pairs of vertices. PPI networks in bioinformatics, road networks and social networks are graphs with
an uncertainty among the edges and are considered as uncertain graphs. The earliest ideas in graphs
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with uncertain edge weights were introduced by Frank and Hakimi [9] in 1965. Frank and Hakimi
studied the maximum flow in a directed graph G = (V, E) with uncertain capacities. On an input,
consisting of an uncertain digraph G = (V, E) and a continuous random variable with the uniform
probability distribution on the capacity of each edge e, the probabilistic flow problem is to find the
maximum flow probability and the joint distribution of the cut set values. Later in 1969, under the same
setting Frank [5] studied the probabilistic shortest path problem on an undirected graph G = (V, E).
The probabilistic shortest path problem is to compute for each �, the probability that the shortest path
is at most �. In 1976, J. R. Evans [10] studied the probabilistic maximum flow in a directed acyclic graph
(DAG) with a discrete probability distribution on the edge capacities. A relatively recent result in 2008
is on the minimum spanning tree problem on uncertain graphs, by Erlebach et al. [7], with uncertain
edge weights from a continuous distribution. Here the goal is to optimize the number of edges whose
weight is sampled to obtain a spanning tree which achieves the expected MST weight over the possible
worlds. This problem is different from the optimization problems of interest to us in this paper- given
an uncertain graph as input, our goal is to optimize the expected value of a structural parameter over
the possible worlds of the uncertain graph.

Optimization problems on uncertain graphs related to connectedness are among the most
fundamental problems. Apart from their practical significance, they pose significant algorithmic
challenges in different computational models. Further, the computational complexity of the
problems increases significantly in the presence of uncertainty. In 1979, Valiant [6] studied the
network reliability problem on uncertain graphs. The network reliability problem is a well-studied
#P-hard problem [6,17,20–23]. The reliability problems have numerous applications in communication
networks [24,25], biological networks [3] and social networks [26,27]. For a given network, reliability is
defined as the ability of the network to remain operational after the failure of some of its links.
The input consists of an uncertain graph G = (V, E, p) and a subset S ⊆ V and the aim is to compute
the probability that S is connected. Clearly, the reliability problem on uncertain graphs generalizes
the graph connectivity problem which is polynomial time solvable. The Canadian Traveler Problem
(CTP), formulated by Papadimitriou and Yannakakis in 1991 [28], is an online problem on uncertain
graphs. Given an uncertain graph G = (V, E, p), a source s and a destination t, a traveler must find
a walk from s to t, where an edge e is known to have survived with probability p(e) only when the
walk reaches one of its end points, after which it does not fail, conditioned on it having survived.
The objective is to minimize the expected path length over the distribution on the possible worlds and
the walker’s choices.

Coverage in Uncertain Graphs. Apart from the themes of network flows and connectedness,
coverage problems are very practical when the uncertainty is on the survival of the edges. In this
framework, the uncertainty is on whether an edge will survive a disaster and the goal is to place
facilities in the network such that the expected coverage over the possible worlds is maximized.
Each possible world can be thought of as the set of edges which survive a disaster. Formally,
an uncertain graph G = (V, E, p) is a succinct description of the set of possible worlds that can
arise due to a disaster in which an edge e is known to survive with probability p(e). The nature of
dependence among the edge samples is used to model the nature of edge failures in the event of
a disaster. As mentioned earlier, a fixed nature of dependence among the edge samples uniquely
defines a probability distribution on the possible worlds. From this point, in this paper, we consider
uncertain graphs where the uncertainty is on the survival of an edge (recall, the other possibility is
on the uncertain edge weight). Further, all the results we present are for a fixed dependence among
edge samples and such a fixed dependence among the edge samples is called a distribution model.
Given the motivation of disasters, the distribution model is specified based on the dependence among
the edge failures (recall, the failure probability of an edge e is 1− p(e)). In this framework, for a fixed
distribution model, the function to be optimized is the coverage function.
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Definition 1 (Coverage within distance r). The input consists of an uncertain graph G = (V, E, p) and
an integer k. The goal is to compute a k-sized vertex set S which maximizes the expected total weight of the
vertices which are at distance at most r from S. The expectation is over the possible worlds represented by the
uncertain graph.

Naturally, we refer to k as the budget, r as the radius of coverage (the number of hops in the
network) and S is the set of vertices where facilities have to be located. For certain graphs and r = 1,
the facility location with unreliable edges problem is the well-studied budgeted dominating set problem
which is known to be NP-hard [29]. The other case of natural interest is for r = ∞. In this case,
the coverage problem is to find a set S of k vertices so as to maximize the expected number of vertices
connected to S. In the case of certain graphs, this is polynomial time solvable as the problem is to find
k connected components whose total vertex weight is the maximum.

Coverage in Social Networks. Coverage problems also have a natural interpretation in social
networks. The dynamics of a social network based on the word-of-mouth effect have been of significant
interest in marketing and consumer research [30], where a social network is referred to as an interpersonal
network. The work by Brown and Reingen [30] state the different hypotheses for estimating the
amount of uncertainty in a relationship between two persons in an interpersonal network. With the
advent of social networks on the internet, the works of Domingos and Richardson [4,31] formalized
the questions relating to the effective marketing of a product based on interpersonal relationships in
a social network. In 1969, the work of Bass [32] had modeled the adoption of products as a diffusion
process as a global phenomenon, independent of the interpersonal relationships between people in a
society. Kempe, Kleinberg and Tardos (KKT) [14] brought together the earlier works on adoption of
products in an interpersonal network and posed the question of selecting the most influential nodes in
a social network with an aim to influence the maximum number of people to adopt a certain product
or opinion. They considered the uncertainty in the social network to be the influence exerted by one
individual on another individual and this is naturally modeled as an uncertain graph G = (V, E, p).
The propagation of influence is modeled as a diffusion process which is a function of time as in
Bass [32]. The influence maximization problems in KKT are considered under distribution models,
which are described as diffusion phenomena, called the Independent Cascade model and the Linear
Threshold Model. Among these two models, the Independent Cascade model is defined as a sampling
procedure whose outcome is an edge subgraph of a given uncertain graph. Thus, this model is more
relevant for our study of uncertain graphs and the IC model is defined in Section 2. In the influence
maximization problems considered in KKT [14], the aim is to select k influential people S such that the
expected number of people connected to S is maximized. The expected number of vertices, over the
distribution model, connected to a set S is called the influence of a set S or the expected coverage of
S and is denoted by σ(S). Thus, the influence maximization problem is to find the set arg max

S⊆V,|S|=k
σ(S).

In Section 2, we discuss the computational complexity of σ(S) for different distribution models. Thus,
the influence maximization problem in Reference [14] is essentially a facility location problem where
the distribution model is specified by a diffusion phenomenon, r = ∞ and each input instance consists
of an uncertain network and a budget k.

Coverage and Facility Location. The survey due to Snyder [33] in 2006 collects the vast body of
results on the facility location problem in uncertain graphs into a single research article. The earliest
result known to us, due to Daskin [19] who formulated the maximum expected coverage problem
where vertices are uncertain, is different from our case where the uncertainty is on the edges and the
vertices are known. To the best of our knowledge, it was Daskin’s work [19] that considered the general
setting of dependence among vertex failures. In this case, the probability distribution would have
been defined uniquely on the possible worlds which would have been the set of induced subgraphs.
Subsequently, many variants of the facility location problem for uncertain graphs have been studied
for different distribution models where the uncertainty is on the survival of edges.
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Eiselt et al. [34] considered the problem with single edge failure and for r = ∞. In this case,
exactly one edge is assumed to have failed after a disaster and the objective is to place k facilities
such that the expected weight of vertices not connected to any facility is minimized. In this case,
each subgraph consisting of all the edges except one is a possible world. This problem is known to be
polynomial time solvable for any k ≥ 1. When the distribution model is the Random Failure model and
r = ∞, the most reliable source (MRS) is well-studied [35–38]. The input is an uncertain graph and k = 1.
The goal is to select one vertex v such that the expected number of vertices connected to v is maximized.
Melachrinoudis and Helander [38] gave a polynomial time algorithm for the MRS problem on trees,
followed by linear time algorithm on uncertain trees by Ding and Xue [37]. Colbourn and Xue [35]
gave an O(n2)-time algorithm for the MRS problem on uncertain series-parallel graphs. Wei Ding [36]
gave an O(n2)-time algorithm for the MRS problem on uncertain ring graphs.

Apart from the RF model, the Linear Reliability Ordering ( LRO) distribution model has been
well-studied recently. Under this distribution model, for each integer r ≥ 1, the facility location problem
is studied as MAX-EXP-COVER-r-LRO problem [11–13]. For the case when r = ∞, the problem is
known as the MAX-EXP-COVER-LRO problem. Hassin et al. [11] presented an algorithm to solve the
MAX-EXP-COVER-LRO problem via a reduction to the MAX-WEIGHTED-k-LEAF-INDUCED-SUBTREE

problem. They then showed that the MAX-WEIGHTED-k-LEAF-INDUCED-SUBTREE problem can
be solved in polynomial time on trees using a greedy algorithm. Consequently, they showed
that the MAX-EXP-COVER-LRO problem can be solved in polynomial time. For r = 1,
the MAX-EXP-COVER-1-LRO problem is NP-complete on planar graphs and the hardness follows
from the hardness of budgeted dominating set due to Khuller et al. [29]. The MAX-EXP-COVER-1-LRO
admits a (1 − 1

e )-approximation algorithm [12,13]. Similarly, Kempe et al. [14] shows that the
influence maximization under the IC distribution model and the LT distribution model has a (1− 1

e )

approximation algorithm. Both these results naturally follow due to the submodularity of the expected
neighborhood size function, the monotonicity (as r increases) and submodularity of the expected
coverage function and the result of Nemhauser et al. [39] on greedy maximization of submodular
functions. In the setting of parameterized algorithms, the MAX-EXP-COVER-1-LRO problem is
W[1]-complete for solution size as the parameter and this follows from the hardness of budgeted
dominating set problem. An FPT algorithm for the MAX-EXP-COVER-1-LRO problem with treewidth
as the parameter is presented in Reference [13]. Formally stated, given an instance 〈G = (V, E, p), k〉 of
the MAX-EXP-COVER-1-LRO problem, an optimal solution can be computed in time 4O(t)nO(1) where
t is the treewidth of the graph G = (V, E) which is presented in the input as a tree decomposition.

Finding Communities in Uncertain Graphs. Finding communities is a significant problem in
social network and in bioinformatics. A natural graph theoretic model for a community is a dense
subgraph. A well-known dense subgraph is the core. Given an integer d, a graph G = (V, E) is said
to be d-core if degree of every vertex v ∈ V is at least d. The way of obtaining the unique maximal
induced subgraph of a graph G which is a d-core is to repeatedly discard vertices of degree less than
d. If the procedure terminates with a non-empty graph, then the graph is a d-core of the graph G.
A vertex v is said to be in a d-core if there is a d-core which contains v. This idea is generalized to the
uncertain graph framework as follows: Given an uncertain graph G = (V, E, p) and the distribution
model is the RF model, the d-core probability of a vertex v ∈ V, denoted by qd(v), is the probability that
v is in the d-core of a possible world. In other words, qd(v) = ∑

H!G
P(H)I(H, d, v), where I(H, d, v) is

an indicator function that takes value one if and only if there is a d-core of H that contains v, and P(H)

is probability of the possible world H. In this setting, we consider the (d, θ)-core problem defined by
Peng et al. [16]. We refer to this problem as the INDIVIDUAL CORE problem and it is defined as follows.

Definition 2 (INDIVIDUAL-CORE). The input consists of an uncertain graph G = (V, E, p), an integer d and
a probability threshold θ ∈ [0, 1]. The objective is to compute an S ⊆ V such that for each v ∈ S, qd(v) ≥ θ.
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Peng et al. [16] shows that the INDIVIDUAL-CORE problem is NP-complete. Prior to the results of
Peng et al. [16], Bonchi et al. [15] introduced the study of d-core problem in uncertain graphs. We refer
to the d-core problem on uncertain graphs as the PROBABILISTIC-CORE problem defined the follows.

Definition 3 (PROBABILISTIC-CORE). Given an uncertain graph G = (V, E, p), an integer d and a
probability threshold θ ∈ (0, 1], then the aim of the PROBABILISTIC-CORE problem is to find a set K ⊆ V such
that the Pr(K is a d-core in G) is at least θ.

The problem of deciding on the existence of such a set K can be shown to be NP-hard using the
hardness result given in Reference [16]. On the other hand, if p(e) = 1 for all e ∈ E, then the d-problem
is polynomial time solvable as described at the beginning of this discussion.

A chronological listing of different optimization problems on uncertain graphs is presented
in Table 1. The tabulation shows that there are many distribution models under which different
optimization problems could be considered. The goal would be to understand the complexity of
computing that expectation when the input is presented as an uncertain graph. Indeed, any NP-
Complete problem on certain graphs remains NP-Complete for any distribution model when the
inputs are uncertain graphs. Therefore, our natural focus is on Exact and Parameterized Computation
of the expectation on uncertain graphs. The goal of the area of exact and parameterized computation
is to classify problems based on their computational complexity as a function of input parameters
other than the input size. The desired solution size, the treewidth of an input graph, and the input
size are natural well-studied parameters. An algorithm with running time f (k)nO(1) is said to be a
Fixed Parameter Tractable algorithm with respect to the parameter k. Interestingly, there are many
problems that do not have FPT algorithms with respect to some parameters, while they have FPT
algorithms with respect to others. A rich complexity theory has evolved over nearly four decades of
research with the W-hierarchy being the central classification. In this hierarchy problem classes are
ordered in increasing order of computational complexity. In this hierarchy the problems which have
FPT algorithms are considered the simplest in terms of computational complexity. The complete history
of this line of research can be found in the most recent textbook [40].

Table 1. A chronology of studies on uncertain graphs

Work Optimization Problem Uncertainty Model

Frank and Hakimi, 1965 [9] Probabilistic maximum flow Capacities on the edges are drawn from an
independent continuous distribution.

Frank, 1969 [5] Probabilistic shortest path Length of the edges are drawn from a
continuous distribution.

Evans, 1976 [10] Probabilistic maximum flow
Capacities on the edges are obtained from
an arbitrary but unknown discrete
probability distribution.

Valiant, 1979 [6] Network reliability
The probability p(e) is the same for each
edge and failure of every edge is
independent.

Sigal, Pritsker and Solberg,
1980 [41] Stochastic shortest path Edge weights are drawn from a known

cumulative distribution function.

Daskin, 1983 [19] Expected coverage Failure probability is the same for each
vertex

Papadimitriou Yannakakis,
1991 [28] Canadian Traveler Problem

Each edge has a survival probability, edge
failure is independent and algorithm
knows of the failure during execution.

Guerin and Orda, 1999 [42] Most reliable path and flows
with bandwidth selection

Each edge e has a survival probability
pe(x) for the availability of bandwidth x.

Hassin, Salman and Ravi, 2009
(2017) [11,12] Expected coverage Each edge e has a survival probability p(e)

and edge failure follows LRO model.
Bonchi, Gullo, Kaltenbrunner and
Volkovich, 2014 [15] PROBABILISTIC-CORE

Each edge e has a survival probability p(e)
and edge failure follows RF model.
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1.3. Our Questions and Results

Given our focus on exact and parameterized algorithms, we think that it should be possible
to classify problems based on the hardness of efficiently computing the expectation over different
distribution models. One of the contributions of this paper is to collect many of the known algorithmic
results on uncertain graphs and the different distribution models for which results have been obtained.
Our focus is on uncertain graph optimization problems on the LRO and RF distribution models,
and these models have been the focus of many previous results in the literature. Our results add to the
knowledge about these two models and are among the first parameterized algorithms on uncertain
graphs. They also give an increased understanding of how treewidth of uncertain graphs can be used
along with the structure of the distribution models to compute the expectation in time parameterized
by the treewidth. Finally, the motivation for the choice of these two models is that the number of
possible worlds with non-zero probability under the LRO model is equal to the number of edges m,
while the number of possible worlds under the RF model is an exponential in m, which is the maximum
number of possible worlds. We define the different distribution models listed in Section 1.1 in detail
and some of their properties are identified from relationships between the models in Section 2.

Our first case study on parameterized algorithms under the RF model is on maximizing expected
coverage in uncertain graphs. The starting point of our work is the reduction of the MAX-EXP-
COVER-LRO problem to the MAX-WEIGHTED-k-LEAF-INDUCED-SUBTREE problem, which can be
solved in polynomial time [11,12]. The reduction was from maximizing the expectation coverage to
maximizing the total weight of a combinatorial parameter. However, the reduction does not work
for the MAX-EXP-COVER-1-LRO, as the problem is at least as hard as budgeted dominating set.
In the case when the graph has bounded treewidth, we were able to show in a previous work [13]
that MAX-EXP-COVER-1-LRO has an FPT algorithm parameterized by treewidth. The dynamic
programming algorithm depends on properties specific to the LRO distribution model. On the other
hand, the status of the question is unclear when the distribution model is the RF model. We address
this by presenting a DP algorithm for the MAX-EXP-COVER-1-RF problem in Section 4, which is an
FPT algorithm parameterized by the product of the treewidth and max-degree of the input graph.

The second case study on parameterized algorithms under the RF model is on finding a d-core
in uncertain graphs. In Section 5, we consider the PROBABILISTIC-CORE problem, and design a
polynomial time algorithm for the LRO distribution model. For the RF distribution model, we observe
that the PROBABILISTIC-CORE problem is W[1]-hard for the parameter d, where d is the minimum
degree of the core. Then we design a DP algorithm, which is an FPT algorithm for PROBABILISTIC-CORE

with respect to treewidth as the parameter.
Essentially in both the case studies, given an uncertain graph under the RF model, the DP uses

the tree decomposition to efficiently compute the expected value, which is expressed as a weighted
summation over the exponentially many possible worlds.

2. Distribution Models for Uncertain Graphs

As mentioned in Section 1.1, a distribution model along with an uncertain graph G =

(V, E, p) uniquely describes the probability distribution on the possible worlds. We describe
the distribution model by describing a corresponding sampling procedure on the edges of G =

(V, E, p). This formalism standardizes the nomenclature of optimization problems on uncertain
graphs. For example, for the coverage problems on uncertain graphs, the problem names
MAX-EXP-COVER-1-LRO and MAX-EXP-COVER-1-RF clearly state the distribution model and the
radius of coverage relevant for the problem. An instance of each of these problems is an uncertain
graph G = (V, E, p) and an integer k ≥ 1. In this section, we present an edge sampling procedure
from a given uncertain graph G = (V, E, p) corresponding to a distribution model on G. The outcome
of a sampling procedure is a possible world, which is an edge subgraph H of the graph G = (V, E).
An edge e ∈ E(H) is called a survived edge and an edge e ∈ E \ E(H) is called a failed edge. We also
present some new observations regarding the different distribution models.
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2.1. Random Failure Model

Random Failure (RF) model is the most natural distribution model. In this sampling procedure,
an edge e ∈ E is selected with probability p(e) independent of the outcome of every other edge in
E. Thus, each edge subgraph of G is a possible world and for an edge subgraph H, the probability
that H is the outcome of the sampling procedure is denoted by P(H) which is given by the equation
P(H) = ∏e∈EH

p(e)∏e∈E\EH
(1− p(e)).

2.2. Independent Cascade Model

The sampling procedure to define the Independent Cascade (IC) model is very naturally described
by a diffusion process which proceeds in rounds. The process is as defined in Reference [14].
The diffusion process starts after round 0. In round 0, A0 is a non-empty set of vertices and these
are called active vertices. The process maintains a set of edges At after round t ≥ 0. The vertices in
At are said to be active. The sampling process is as follows. If a vertex v is in At−1, then it remains
active in round t also, that is v ∈ At. The diffusion process in round t + 1 is as follows: If v is in
At \ At−1, that is v first becomes active after round t− 1, then consider each edge e = uv such that u is
not in At. Each such edge e is sampled with probability p(e) independent of the other outcomes. If
e = uv is selected (that is, it survives), then u is added to At+1. We reiterate that the edges incident on
v will not be sampled in subsequent rounds. The sampling procedure terminates in not more than
|E| rounds. The outcome of this sampling procedure is the edge subgraph formed by a set of those
edges which were selected when the first end point of the edge becomes active. Kempe et al. [14]
showed that for any edge subgraph H of G = (V, E), the probability that H is the outcome is given by
P(H) = ∏e∈E(H) p(e)∏e∈E\E(H)(1− p(e)).

Observation 1. For an uncertain graph G = (V, E, p) the RF Model and the IC Model are identical.

The next distribution model is a generalization of the RF model and was introduced by Gunnec
and Salman [43].

2.3. Set-Based Dependency (SBD) Model

The uncertain graph G = (V, E, p) satisfies the additional properties that E is partitioned into
{E1, E2, . . . Et} of E, for some t ≥ 1. Further, p satisfies the property that for any two edges e1 and e2

that belong to the same part in the partition, p(e1) �= p(e2). Typically, this partition is a fixed partition
of E coming from the domain where the edge failures occur according to the SBD model. The sampling
procedure definition of the SBD model is as follows: the edge sets are considered in order from E1 to
Et, and for 1 ≤ i < j ≤ t, the edges in the set Ei are considered before the edges in the set Ej. For each
1 ≤ i ≤ t, the edges in Ei are considered in decreasing order of the value p. For each 1 ≤ i ≤ t,
when an edge e ∈ Ei is considered, it is sampled with probability p(e) independent of the outcome of
the previous samples. If the outcome selects the edge e (that is, if e survives), then the next edge in Ei
is considered. Otherwise, all the remaining edges of Ei that are to be considered after e, are considered
to have failed, and the set Ei+1 is considered. The procedure terminates after considering E1, . . . , Et.
The edge subgraph consisting of the selected edges (survived edges) is the outcome of this sampling
procedure. The number of possible worlds that have a non-zero probability of being an outcome of
the sampling procedure is ∏t

i=1(|Ei|+ 1). To summarize, under the SBD model, for each 1 ≤ i ≤ t,
the survival of an edge e in a set Ei implies that every edge e′ ∈ Ei with a greater survival probability
than that of e would have survived. Further, the edge samples of edges in two different sets are
mutually independent. As a consequence of this, we have the following observation.

Observation 2. The RF model on an uncertain graph G = (V, E, p) is identical to the SBD model on G and E
is partitioned into m sets each containing an edge of E.
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2.4. Linear Reliable Ordering (LRO) Model

The case when the partition of E consists of only one set, the SBD model is called the Linear
Reliability Ordering (LRO) model introduced by Hassin et al. [11]. Let p(em) < p(em−1) < . . . <
p(e2) < p(e1). Then, under the LRO model it follows that for each j > i, Pr(ej fails | ei fails ) = 1.
Further, the possible worlds is the set of m + 1 graphs {G0, . . . , Gm} where E(G0) = ∅, E(Gm) = E,
and for each 0 ≤ i ≤ m − 1, E(Gi+1) = E(Gi) ∪ {ei+1}. The following lemma shown by
Hassin et al. [11] regarding the probability distribution on the possible worlds uniquely defined
by the LRO model.

Lemma 1 (Hassin et al.[11]). For 0 ≤ i ≤ m, the probability of the possible world Gi is given by

P(Gi) =

⎧⎪⎪⎨⎪⎪⎩
1− p(e1) if i = 0

p(ei)− p(ei+1) if 1 ≤ i < m

p(em) if i = m.

Coming back to the SBD model, on the uncertain graph G = (V, E, p) and E partitioned into
{E1, E2, . . . E�} for some � ≥ 1, the probability of an outcome H under the SBD model naturally follows
from Lemma 1. The idea is to consider an outcome of the SBD model as � independent samples
from the LRO model on the uncertain graphs (V, E1, p1), (V, E2, p2), . . . , (V, E�, p�), where for each
1 ≤ i ≤ �, pi is the function p restricted to Ei.

This completes our description of the distribution models known in the literature. We next present
two dynamic programming algorithms on the input uncertain graph G = (V, E, p), when the graph
G = (V, E) is presented as a nice tree decomposition. The algorithms compute an expectation under
the RF model and have worse running times than that of corresponding algorithms for computing the
expectation under the LRO model.

3. Definitions Related to Graphs

Every graph we consider in this work are simple undirected graphs unless. A graph G = (V, E) is
an undirected graph with vertex set V and edge set E. We denote the number of vertices and edges by n
and m, respectively. For a vertex v ∈ V, N(v) denotes the set of neighbors of v and N[v] = N(v) ∪ {v}
is the closed neighborhood of v. For each vertex v ∈ V, degG(v) denote the degree of the vertex v in G.
When G is clear in the context deg(v) is used. The maximum degree of the graph G, denoted by Δ(G),
and the minimum degree of the graph G, denoted by δ(G), are the maximum and minimum degree of
its vertices. When G is clear in the context Δ and δ is used. Other than this, we follow the standard
graph theoretic terminologies from Reference [44]. We define some special notations for the uncertain
graphs as follows. Given a vertex v ∈ V, let E(v) ⊆ E denote the set of all edges incident on v. Given a
subset of vertices C ⊆ V, let E(C) = ∪v∈CE(v) denote the edge set of the vertex-induced uncertain
subgraph G[C]. Similarly, given an edge set F ⊆ E, let V(F) = ∪e=uv∈F{u, v} denote the vertex set of
the edge-induced uncertain graph G[F].

We study the parameterized complexity of the coverage problems and k-core problem on
uncertain graphs. We follow the standard parameterized complexity terminologies from Reference [40].
We define the parameter treewidth that will be relevant to our discussion.

Definition 4 (Tree Decomposition [45,46]). A tree decomposition of a graph G is a pair (X, H) such that H
is a tree and X = {Xi ⊆ V : i ∈ H}. For each node i ∈ H, Xi is referred to as bag of i. The following three
conditions hold for a tree decomposition (X, H) of the graph G.

(a) For each vertex v ∈ V, there is a node i ∈ H such that v ∈ Xi.
(b) For each edge uv ∈ E, there is a node i ∈ H such that u, v ∈ Xi.
(c) For each vertex v ∈ V, the induced subtree of the nodes in H that contains v is connected.
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The width of a tree decomposition is the maxi∈H(|Xi| − 1). The treewidth of a graph, denoted by tw,
is the minimum width over all possible tree decompositions of G. An example of a tree decomposition
is illustrated in Figure 2. For our algorithm, we require a special kind of decomposition, called the nice
tree decomposition which we define below.

v1

v2 v3

v4

v5
v6

v7

v8

v9

v1, v2, v7 v5, v6, v7

v2, v5, v7 v3, v4, v5, v9

v2, v3, v5, v8

(a) (b)

Figure 2. (a) A graph with 9 vertices; (b) An optimal tree decomposition with treewidth 3.

Definition 5 (Nice tree decomposition [46]). A nice tree decomposition is a tree decomposition, rooted by
a node r with Xr = ∅ and each node in the tree decomposition is one of the following four type of nodes.

1. Leaf node. A node i ∈ H with no child and Xi = ∅.
2. Introduce node. A node i ∈ H with one child j such that Xi = Xj ∪ {v} for some v /∈ Xj.
3. Forget node. A node i ∈ H with one child j such that Xi = Xj \ {v} for some v ∈ Xj.
4. Join node. A node i ∈ H with two children j and g such that Xi = Xj = Xg.

An example of four types of nodes is illustrated in Figure 3. Given a tree decomposition (X, H) of
a graph G with width k, a nice tree decomposition (X′, H′) with same width and O(nk) nodes can be
computed in time O(nk2) [46]. Hereafter, we will assume that the tree decompositions considered are
nice. For each node i ∈ H, let Hi denote the subtree rooted at i. Let ni = |Xi|. Let X+

i be the set of all
vertices in the bag of nodes in the subtree Hi.

X+
i =

⎧⎪⎨⎪⎩
Xi if i is a leaf node

Xi ∪
⋃

j∈ch(i)

X+
j if i is a non-leaf node,

where ch(i) is the set of all children of i in H. We use j and k to denote the two children of a join node
i in H. Further, j denotes the left child, and g denotes the right child. In case i has only one child,
as in the case of introduce and forget nodes, only the left child j is well-defined and g does not exist.
In this case, X+

g is taken to be the empty set. We refer to Reference [40] for a thorough introduction to
treewidth and its algorithmic properties.

i ∅ j u, w

i u, v, w

+v

j u, v, w

i u, w

−v

j u, v, w

i u, v, w

g u, v, w

(a) (b) (c) (d)

Figure 3. An example of leaf (a), introduce (b), forget (c) and join (d) nodes. Directed edges denote
child to parent link.

4. Max-Exp-Cover-1-RF Problem is FPT by (Treewidth · Δ)

An instance of MAX-EXP-COVER-1-RF consists of a tuple 〈G, w, k〉 where G = (V, E, p) is an
uncertain graph, w is a function that assigns weight w(v) to each vertex v, and k is the budget. The goal
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is to find a set S ⊆ V such that |S| ≤ k and the expected total weight of the vertices dominated by
S is maximized. The expectation is computed over the probability distribution uniquely defined on
the possible worlds by the RF model. We introduce the function C which we refer to as the coverage
function. The two arguments of the coverage function are subsets T and S of the vertex set V, and the
value C(T, S) is the expected coverage of T by S, where the expectation is computed over the possible
worlds. For any subsets S, T ⊆ V, the Coverage of T by S, denoted by C(T, S), is ∑

v∈T
C(v, S). For a

vertex v ∈ V and S ⊆ V, the expected coverage of v by the set S, denoted by C(v, S), is given by

C(v, S) =

⎧⎪⎨⎪⎩
w(v) if v ∈ S

w(v)
(

1− ∏
u∈S∩N(v)

(1− puv)
)

otherwise. (1)

Note that if a set is a singleton set, then we abuse notation a little and write the element instead of
the set.

Our algorithm for the MAX-EXP-COVER-1-RF follows the classical bottom-up approach for
dynamic programming based on the nice tree decomposition. We compute a certain number of
candidate solutions for the subproblem at each node i ∈ H, using only the candidate solution values
maintained in the children of i. At each node i ∈ H, we have (5 · 2Δ)ni candidate solutions which are
stored in a table denoted by Ti. The final optimal solution is obtained from the solutions stored in Tr at
the root node r of H. At any node i in H, the expected coverage of a vertex u ∈ Xi by a set S in the
subproblem at node i in H is computed by decomposing N(u) ∩ S carefully to avoid over-counting.
Towards this end, we introduce notation for the coverage conditioned on the event that some edges
have failed. We denote this event by a function f and call this the surviving neighbors (SN) function.
The SN-function f : V → 2V has the property that for each u ∈ V, f (u) ⊆ N(u). In other words,
we are interested in the expected coverage conditioned on the event that for each u ∈ V, all the edges
to vertices in N(u) \ f (u) have failed.

Definition 6. Let u be a vertex and S ⊆ V be a set and f be an SN-function such that S ∩ f (u) = S ∩ N(u).
The conditional coverage of u by S restricted by f is defined to be

C f (u, S) =
(

∏
v∈N(u)\ f (u)

(1− p(uv))
)
C(u, S ∩ f (u))

Extending this definition to sets, for any two vertex sets T, S, we define C f (T, S) = ∑
u∈T

C f (u, S).

For each u ∈ V, C f (u, S) is the expected coverage of u by S ∩ f (u) conditioned on the event that u
is not covered by any vertex from the set N(u) \ f (u). Further, C f (u, S) is the product of w(u) and the
probability of sampling a subgraph G′ ⊆ G in which u has a neighbor in S ∩ N(u) and no neighbor
from N(u) \ f (u). We refer to C f (u, S) as the conditional coverage of u by S (we leave out the phrase
restricted by f ).

Lemma 2. Let u ∈ V and X, Y ⊆ V such that X ∩ Y = ∅, and consider an SN-function f such that
f (u) = N(u) \ X. Then C(u, X ∪Y) = C(u, X) + C f (u, Y).
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Proof.

C(u, X ∪Y) = w(u)
(

1− ∏
v∈(X∪Y)∩N(u)

(1− p(uv))
)

= w(u)
(

1− ∏
v∈X∩N(u)

(1− p(uv)) · ∏
v∈Y∩N(u)

(1− p(uv))
)

= w(u)
((

1− ∏
v∈X∩N(u)

(1− p(uv))
)
+ ∏

v∈X∩N(u)
(1− p(uv))

(
1− ∏

v∈Y∩N(u)
(1− p(uv))

)
= C(u, X) + ∏

v∈X∩N(u)
(1− p(uv))C(u, Y)

= C(u, X) + C f (u, Y)

Hence the proof.

4.1. Recursive Formulation of the Value of a Solution

Let S ⊆ V be a set of size k for the MAX-EXP-COVER-1-RF problem in G. We now present a
recursive formulation to compute the expected coverage of V by S. Throughout this section S denotes
this set of size k. Let i be a node in H. Let j and g be the children of i. In case i is either introduce node
or forget node, then g is considered to be a null node with Xg = X+

g = ∅. In node i, let A = S ∩ Xi,
Si = S ∩ X+

i and Zi = Si \ A. Let Ẑ = S \ Si. For the solution S, the set Xi can be partitioned into five
sets (A, C, L, R, B) as follows.

A = {u ∈ Xi ∩ S}
C = {u ∈ Xi \ A | u ∈ N(A) \ N(Zi)}, in other words, C satisfies C(C, Zi) = 0

L = {u ∈ Xi \ A | u ∈ N(Zj) \ N(Zg)}, in other words, L satisfies C(L, Zg) = 0

R = {u ∈ Xi \ A | u ∈ N(Zg \ N(Zj)}, in other words, R satisfies C(R, Zj) = 0

B = {u ∈ Xi \ A | u ∈ N(Zj) ∩ N(Zg)}.

Further, for the solution S, define the SN-function f : X+
i → 2V as follows:

f (u) = N(u) \ {v ∈ N(u) | v ∈ Ẑ}, if u ∈ Xi

= N(u), if u ∈ X+
i \ Xi

Note: f is dependent on S and i and wherever f is used, it must be used as per the definition at
the corresponding node in the tree decomposition.

Let S ⊆ V be a subset of size k, i be a node in H in the nice tree decomposition, f be the SN-function
for X+

i defined using S, P = (A, C, L, R, B) be a partition of Xi, and Si, Zi and Ẑ be as defined above.
The following two lemmas are useful in setting up a recursive definition of C(V, S) and a bottom-up
evaluation of the recurrence.

Lemma 3. C(V, S) = C(V \ X+
i , Ẑ ∪ A) + C(Xi \ A, Ẑ) + C f (X+

i , Si).

Proof. The expected coverage of V by the set S is given by C(V, S) = C(V \ X+
i , S) + C(Xi, S) +

C(X+
i \ Xi, S). Since V is partitioned into three disjoint sets Xi, X+

i \ Xi, and V \ X+
i , we get

C(V, S) = C(V \ X+
i , Ẑ ∪ A) + C(Xi \ A, Ẑ ∪ Si) + C(A, S) + C(X+

i \ Xi, Si).

By applying Lemma 2 to C(Xi \ A, Ẑ ∪ Si), it follows that

C(V, S) = C(V \ X+
i , Ẑ ∪ A) + C(Xi \ A, Ẑ) + C f (Xi \ A, Si) + C(A, S) + C(X+

i \ Xi, Si).
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Further, C(A, Si) = C(A, S), since C(A, Si) = C(A, S) = ∑v∈A w(v), it follows that

C(V, S) = C(V \ X+
i , Ẑ ∪ A) + C(Xi \ A, Ẑ) + C f (Xi \ A, Si) + C(A, Si) + C(X+

i \ Xi, Si).

By the definition of f and C f , C f (Xi \ A, Si) + C(A, Si) + C(X+
i \ Xi, Si) = C f (X+

i , Si).
Therefore we get C(V, S) = C(V \ X+

i , Ẑ ∪ A) + C(Xi, Ẑ) + C f (X+
i , Si). Hence the lemma.

As a corollary it follows that C(V, S) = C f (X+
r , Sr). Recall that Xr = ∅, Sr = S and f is such that

f (u) = N(u) for all u ∈ X+
i . We now show that for each node i ∈ H, C f (X+

i , Si) can be written in
terms of the appropriate sub-problems in children j and g of the node i.

Lemma 4.

C f (X+
i , Si) = w(A) + C f (C, A) + C f (L, A ∪ Zj) + C f (R, A ∪ Zg) + C f (B, Si) + C(X+

i \ Xi, Si).

Proof. By definition, the expected coverage of X+
i by Si restricted by f is given by the following

equations.

C f (X+
i , Si) = C f (Xi, Si) + C f (X+

i \ Xi, Si)

= w(A) + C f (C, Si) + C f (L, Si) + C f (R, Si) + C f (B, Si) + C(X+
i \ Xi, Si)

= w(A) + C f (C, A) + C f (L, A ∪ Zj) + C f (R, A ∪ Zg) + C f (B, Si)

+C(X+
i \ Xi, Si)

The second equation follows from the first due to the definition of the partition P = (A, C, L, R, B),
and the fact that for all u ∈ X+

i \ Xi, f (u) = N(u). The third equation follows from the second due to
the fact that C f (L, Si) = C f (L, A ∪ Zj) and C f (R, Si) = C f (R, A ∪ Zg), since L and R are sets for which
C(L, Zg) = C(R, Zj) = 0.

Lemmas 3 and 4 show that the expected coverage of a set S of size k can be computed in a
bottom-up manner over the nice tree decomposition. Further, at a node i ∈ H the expected coverage of
X+

i by a S is C(Xi, Ẑ) + C f (X+
i , Si), where f is uniquely determined by S, i and the tree decomposition.

Also, C f (X+
i , Si) is decomposed into six terms based on the partition P which is uniquely determined

by S, i and the tree decomposition. Of these six terms, five of them are computed at the node i ∈ H,
and one term comes from j and g, which are the children of i. Therefore, the search for the optimum S
of size k can be performed in a bottom-up manner by enumerating all possible choices of the 5-way
partition of Xi and all possible choices of the SN-function f at Xi. For each candidate partition of Xi and
the SN-function f , the optimum Si is computed by considering the compatible solutions at Xj and Xg.
This completes the recursive formulation of the expected coverage of a set S of size k. We next present
the bottom-up evaluation of the recurrence to compute the optimum set which is arg max

|S|≤k
C(V, S).

4.2. Bottom-Up Computation of an Optimal Set

For each node i ∈ H, we associate a table Ti. Each row in the table Ti is a triple which consists
of an integer b, a five way partitioning P = (A, C, L, R, B) of Xi and an SN-function f defined on
X+

i . Throughout this section we assume that for vertices u ∈ X+
i \ Xi, f (u) = N(u). The columns

corresponding to a row (b, P, f ) is a vertex set Ti[b, P, f ].Solution and a value Ti[b, P, f ].Value. Let S
denote Ti[b, P, f ].Solution. To define the value Ti[b, P, f ].Value associated with S, consider Z = S \ A,
and let Zj = Z ∩ (X+

j \ Xj) and Zg = Z ∩ (X+
g \ Xg). Then, Ti[b, P, f ].Value = w(A) + C f (C, A) +

C f (L, A ∪ Zj) + C f (R, A ∪ Zg) + C f (B, A ∪ Z) + C(X+
i \ Xi, S). The set Ti[b, P, f ].Solution is a set S of

size b such that S ∩ Xi = A and the associated value Ti[b, P, f ].Value is maximized.
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Leaf node. Let i ∈ H be a leaf node with bag Xi = ∅. The only possible five-way partition of
an empty set is the set with five empty sets and the budget is b = 0. The only valid SN-function is
f : ∅ → ∅. Therefore, the value of the corresponding row in the table is

Ti[b, P, f ] = {Solution = ∅, Value = 0} for b = 0, P = (∅, ∅, ∅, ∅, ∅) and f : ∅ → ∅.

It is clear that the empty set is the set that achieves the maximum for the MAX-EXP-COVER-1-RF
problem on the empty graph with budget b = 0. Therefore, at the leaf nodes in H, the table Ti maintains
the optimum solution for each row. The time to update an entry is O(1).

Introduce node. Let i be an introduce node with child j such that Xi = Xj ∪ {v} for some v /∈ Xj.
Let 0 ≤ b ≤ k be an integer, P = (A, C, L, R, B) be a five-way partition of Xi and f be the SN-function
defined on X+

i . The computation of the table entry is split into two cases, depending on whether the
vertex v belongs to the set A in the partition P or not.

1. Case v ∈ A. Define Cv = {u ∈ Xi \ A | v ∈ N(u) ∩ f (u)}. Let Pj denote the partition of
Xj obtained by removing vertex v from the set A of the partition P. Let f j : Xj → 2V be the
SN-function defined as follows:

f j(u) =

{
f (u) \ {v} if u ∈ Cv

f (u) otherwise.

Then,

Ti[b, P, f ].Solution = Tj[b− 1, Pj, f j].Solution∪ {v}
Ti[b, P, f ].Value = Tj[b− 1, Pj, f j].Value+ w(v) + C f (Cv, v)

2. Case v �∈ A. Since v is in Xi but not in Xj it follows that N(v)∩X+
i ⊆ Xi. Therefore, the coverage

of the vertex v by the vertices that occur only in X+
j \ Xj is zero. Let Pj be the partition of Xj

obtained by removing the vertex v from the appropriate set in the partition P. The SN-function f j
is defined as follows on the set X+

j : For u ∈ Xi \ {v}, f j(u) = f (u).

Ti[b, P, f ].Solution = Tj[b, Pj, f j].Solution

Ti[b, P, f ].Value = Tj[b, Pj, f j].Value+ C f (v, A)

Forget node. Let i be a forget node with child j such that Xi = Xj \ {v} for some v ∈ Xj.
Let 0 ≤ b ≤ k be a budget, P = (A, C, L, R, B) be a five-way partition of Xi and f be an SN-function.
We consider the following five-way partitions of Xj.

• P1 = (A ∪ {v}, C, L, R, B)
• P2 = (A, C ∪ {v}, L, R, B)
• P3 = (A, C, L ∪ {v}, R, B)
• P4 = (A, C, L, R ∪ {v}, B)
• P5 = (A, C, L, R, B ∪ {v})

Let f j be the SN-function defined as follows: for u ∈ Xi, f j(u) = f (u) and f j(v) = N(v).
Let Pj = arg max

P′∈{Pi}5
i=1

Tj[b, P′, f j].Value. Ti[b, P, f ] is defined as follows:

Ti[b, P, f ].Solution = Tj[b, Pj, f j].Solution

Ti[b, P, f ].Value = Tj[b, Pj, f j].Value
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Join node. Let i be a join node with children j and g such that Xi = Xj = Xg. Let 0 ≤ b ≤ k be a
budget, P = (A, C, L, R, B) be a five-way partition of Xi and f be an SN-function. We consider the sets
Uj and Ug of all SN-functions defined on X+

j and X+
g , respectively, satisfying the following conditions:

• For each v ∈ L, f j(v) = f (v) and fg(v) = ∅.
• For each v ∈ R, f j(v) = ∅ and fg(v) = f (v).
• For each v ∈ B, f j(v) and fg(v) are defined as follows. For each partition f1(v) ∪ f2(v) =

f (v) ∩ X+
i , f j(v) = f1(v) ∪ ( f (v) \ X+

i ) and fg(v) = f2(v) ∪ ( f (v) \ X+
i ).

We then consider all possible candidates for Lj, Rj, Bj such that Lj ∪ Rj ∪ Bj = L∪ B and Lg, Rg, Bg

such that Lg ∪ Rg ∪ Bg = R ∪ B. Each such candidate defines a P′j = (A, C ∪ R, Lj, Rj, Bj) of Xj and a
P′g = (A, C ∪ L, Lg, Rg, Bg) of Xg. Let Rj and Rg denote the set of all such candidate partitions of Xj
and Xg, respectively.

Let Pj ∈ Rj, Pg ∈ Rg, f j ∈ Uj, fg ∈ Ug and 0 ≤ b′ ≤ b− |A| be the values at which the maximum
value for Equation (2) is achieved.

max
0≤bj≤b−|A|
P′j∈Rj ,P′g∈Rg

f ′j∈Uj , f ′g∈Ug

Tj[bj + |A|, P′j, f ′j ].Value+ Tg[b− bj, P′g, f ′g].Value. (2)

The value of the row corresponding to (b, P, f ) in Ti is given as follows:

Ti[b, P, f ].Solution = Tj[b′ + |A|, Pj, f j].Solution∪ Tg[b− b′, Pg, fg].Solution

Ti[b, P, f ].Value = Tj[b′ + |A|, Pj, f j].Value+ Tg[b− b′, Pg, fg].Value− C f (A ∪ C, A).

We now prove that the update steps presented above are correct.

Lemma 5. For each node i ∈ H, for each row (b, P, f ) in Ti, the pair Ti[b, P, f ].Solution, Ti[b, P, f ].Value is
such that C(X+

i , Ti[b, P, f ].Solution) = Ti[b, P, f ].Value, and this is the maximum possible value.

Proof. The proof is by induction on the height of a node in H. The height of a node i in a rooted
tree H is the distance to the farthest leaf in the subtree rooted at i. The base case is when i is a
leaf node in H, and clearly its height is 0. For a leaf node i with Xi = ∅, the row with b = 0,
P = (∅, ∅, ∅, ∅, ∅) and f : ∅ → ∅ is the only valid row entry and its value is 0. This completes the
proof of the base case. Let us assume that the claim is true for all nodes of height at most h− 1 ≥ 0.
We prove that if the claim is true at all nodes of height at most h− 1, then it is true for a node of
height h. Let b be a budget, P = (A, C, L, R, B) be a partition of Xi and f be an SN-function on X+

i .
Let Ti[b, P, f ].Solution = S = A ∪ Z. For any optimal S′ = A ∪ Z′ where |S′| = b, we prove that

Ti[b, P, f ].Value ≥ w(A) + C f (C, A) + C f (L, A ∪ Z′j) + C f (R, A ∪ Z′g) + C f (B, S′) + C(X+
i \ Xi, S′).

We proceed by considering the type of node i so that the induction hypothesis can be applied at
nodes of height at most h− 1.

Case when i is an introduce node. Let j be the child of i and Xi = Xj ∪ {v} for some v /∈ Xj.
We now consider two cases depending on whether v belongs to A or not.

1. Case v ∈ A. Let Pj be the partition of Xj obtained from P by removing v from A. Let f j be the
SN-function on X+

j such that f j(u) = f (u) \ v, if u ∈ Cv and f j(u) = f (u), otherwise. We know
from our claimed optimality of S′, and that S′ ∩ Xi = S∩ Xi = A, and the value of Ti[b, P, f ], that

C f (X+
i , S′) = C f j

(X+
j , S′ \ {v}) + C f (Cv, v)

> C f (X+
i , S) = C f j

(X+
j , S \ {v}) + C f (Cv, v).
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Therefore, it follows that C f j
(X+

j , S′ \ {v}) > C f j
(X+

j , S \ {v}) = Tj[b− 1, Pj, f j].Value. In other
words, we have concluded that the value for the row (b− 1, Pj, f j) in Tj is not the optimum value.
This contradicts our premise at node j, which is of height at most h− 1 for which, by induction
hypothesis, the table maintains the optimal values. Therefore, our assumption that Ti[b, P, f ] is
not optimum is wrong.

2. Case v �∈ A. Let Pj be the partition of Xj obtained by removing v from the appropriate set in the
partition P. Let f j be the SN-function on X+

j such that f j(u) = f (u) for each u ∈ X+
j . We know

from our claimed optimality of S′, and that S′ ∩ Xi = S ∩ Xi = A, and the value of Ti[b, P, f ] that
C f (X+

i , S′) = C f j
(X+

j , S′) + C f (v, A) > C f (X+
i , S) = C f j

(X+
j , S) + C f (v, A). Therefore, it follows

that C f j
(X+

j , S′) > C f j
(X+

j , S). In other words, we have concluded that the value for the row
(b, Pj, f j) in Tj is not the optimum value. This contradicts our premise at node j, which is of
height at most h− 1 for which, by induction hypothesis, the table maintains the optimal values.
Therefore, our assumption that Ti[b, P, f ] is not optimum is wrong.

Forget node. We know that X+
i = X+

j , and v is in Xj but not in Xi, it follows that N(v) ∩ Xi = ∅

and N(v) ⊆ X+
j . Define f j to be the SN-function at X+

j such that f j(u) = f (u) for each u ∈ Xi and

f j(v) = N(v). We have assumed Ti[b, P, f ].Value < C f (X+
i , S′). Further, since X+

i = X+
j and due to

the definition of f j, C f (X+
i , S′) = C f j

(X+
j , S′). Since Ti[b, P, f ] is computed identically from some row

in Tj, let us say (b, Pj, f j), it follows that Tj[b, Pj, f j].Value < C f j
(X+

j , S′). This contradicts the premise
that the table Ti is at the lowest height in the tree decomposition at which an entry is sub-optimal.
Therefore, our premise is wrong.

Join node. We assume that S′ is indeed a better solution than S for the table entry (b, P, f ) of
Ti. Let S′j = S ∩ (X+

j \ Xj) and S′g = S ∩ (X+
g \ Xg). Let b′j = |S′j|. Let P′j = (A, C ∪ R, L′j, R′j, B′j)

and P′g = (A, C ∪ L, L′g, R′g, B′g) be the partitions of Xj and Xg defined using S′j and S′g, respectively.
Note that, L′j ∪ R′j ∪ B′j = L ∪ B and L′g ∪ R′g ∪ B′g = R ∪ B. Let f ′j be the SN function on X+

j such
that f ′j (u) = f (u) for u ∈ A ∪ C ∪ L ∪ B and f ′j (u) = ∅ for u ∈ R. Let f ′g be the SN function on X+

g
such that f ′g(u) = f (u) for u ∈ A ∪ C ∪ R, f ′g(u) = ∅ for u ∈ L and f ′g(u) = f (u) \ S′j. The coverage
C f (X+

i , S′) can be written as C f (X+
i , S′) = C f ′j

(X+
j , S′j) + C f ′g(X+

g , S′g)− w(A)− C f (C, A), where the

coverage of X+
j by S′j and X+

g by S′g are restricted to the partitions P′j and P′g.
We know that Xi = Xj = Xg in case of join node. The table entry (b, P, f ) is updated using the

entries (bj + |A|, Pj, f j) and (b− bj, Pg, fg) of the table Tj and Tg, respectively. In other words, the values
of variables bj, Pj, Pg, f j and fg are obtained from the Equation (2) described in the recursive definition
of join node. The values b′j, P

′
j, P
′
g, f ′j and f ′g are also feasible for the range given in the Equation (2).

Then, we have Tj[b′j + |A|, P′j, f ′j ].Value+ Tg[b− b′j, P
′
g, f ′g].Value < Tj[b′ + |A|, Pj, f j].Value+ Tg[b−

b′, Pg, fg].Value. Since S′ is better than S for the entry (b, P, f ) of Ti, we have Tj[b′ + |A|, Pj, f j].Value+
Tg[b− b′, Pg, fg].Value < C f ′j

(X+
j , S′j) + C f ′g(X+

g , S′g). The above inequality shows that at least one of

the table entries Tj[b′j + |A|, P′j, f ′j ] or Tg[b− b′j, P
′
g, f ′g] is not optimal. This would again contradict the

premise that i is the node at the least height at which some table entry is sub-optimal.
This completes the case analysis and our proof. Hence the lemma.

Running Time. There are O(n tw)-many nodes in the nice tree decomposition H. Each node
i ∈ H has a maximum of (k + 1)(5 · 2Δ)tw entries. The 2Δ·tw comes from the fact that at each vertex
in a bag, we enumerate all subsets of neighbors to come up with the SN-functions. It is clear from
the description that at the leaf nodes, introduce nodes, and forget nodes, the update time is O(tw).
At a join node, the time taken to compute an entry depends on three basic operations. The optimal
partitions Pj and Pg are computed in 3|L|+|R|+2|B| time and budget distribution can be done in O(k)
time. The costliest operation is to enumerate the different SN-functions f j and fg for the given
SN-function f . Since we need to consider all the 2Δ-possible ways of distributing the f (v) for each
vertex v, the distribution takes O((2Δ)|B|) time. Therefore, the running time for an entry (b, P, f ) in a
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join node takes O(k · 3|L|+|R|+2|B| · (2Δ)|B|) time, and this is 2O(Δ·tw). This analysis of the running time
and Lemma 5 complete the proof of the following theorem which is our main result.

Theorem 1. The MAX-EXP-COVER-1-RF problem can be solved in time 2O(Δ·tw)nO(1).

5. Parameterized Complexity of PROBABILISTIC-CORE Problem

Let G = (V, E, p) be an uncertain graph and d be an integer. Given a set K ⊆ V, we define
the probability that the set K is being a d-core in G, denoted by ρd(G, K), to be ∑H!G P(H)I(H, K, d),
where I is an indicator variable that takes value 1 if and only if the set K forms a d-core in the graph
H. The decision version of the PROBABILISTIC-CORE problem is formally stated as follows: given
an uncertain graph G = (V, E, p), an integer d and a probability θ ∈ [0, 1], decide if there exists a set
K ⊆ V such that ρd(G, K) ≥ θ.

We study the PROBABILISTIC-CORE problem under the LRO and RF model. First we show that
the PROBABILISTIC-CORE-LRO problem and the INDIVIDUAL-CORE problem are polynomial time
solvable, due to the fact that an uncertain graph under the LRO model has only a polynomial number
of worlds. Then we show that the PROBABILISTIC-CORE-RF problem is W[1]-hard for the parameter d
and admits an FPT algorithm for the parameter treewidth.

5.1. An Exact Algorithm for the PROBABILISTIC-CORE-LRO Problem

We present a polynomial time algorithm (see as Algorithm 1) for the PROBABILISTIC-CORE-LRO
problem. Let 〈G = (V, E, p), d〉 be an instance of the PROBABILISTIC-CORE-LRO problem. As per the
definition of the LRO model, let the set {G0, . . . , Gm} be the possible worlds of G, where G0 = (V, ∅)

and for 0 ≤ i ≤ m− 1, E(Gi+1) = E(Gi) ∪ {ei}. For each 0 ≤ i ≤ m− 1, we consider the linear order
in which Gi precedes Gi+1.

Algorithm 1: PROBABILISTIC-CORE-LRO
Data: G = (V, E, p), d
Result: A set C ⊆ V with a probability q.
for i ← 0 to m do

C ← V;
while δ(Gi[C]) < d do

Let v be a vertex such that degGi [C](v) < d;
C ← C \ {v} ;

end

if C �= ∅ then

return C, p(ei);
end

end

return ∅, 0.0;

Lemma 6. The Algorithm 1 solves the PROBABILISTIC-CORE-LRO problem in polynomial time.

Proof. By definition of the possible worlds, Gm = (V, E). If δ(Gm) < d, then Gm does not contain a
d-core. Moreover, for 0 ≤ i < m, since Gi is an edge subgraph of Gm, no graph in the possible worlds
has a d-core. This is indicated by the return value-pair of the ∅ and probability 0.0. On the other hand
if δ(Gm) ≥ d, let Gi be the first graph in the linear ordering of possible worlds for which a non-empty
C is computed by Algorithm 1 on exit from the While-loop. Clearly, C induces a d-core in Gi. Since Gi
is the first graph which contains a d-core, for each 0 ≤ j ≤ i− 1, Gj does not contain a d-core. Further,
for every j > i, C is a d-core in Gj since it is an edge-subgraph of Gi. Then,
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ρd(G, C) =
m

∑
j=0

P(Gj)I(Gj, C, d) =
m

∑
j=i

P(Gj) = p(ei).

For any set K ⊆ V with ρd(G, K) > 0, the set K can form a d-core only in the possible worlds
{Gi, Gi+1, . . . , Gm}. Thus, ρd(G, K) ≤ ρd(G, C). This completes the proof.

The following observation again uses the fact that there are only a polynomial number of possible
worlds under the LRO model.

Observation 3. The INDIVIDUAL-CORE problem is polynomial time solvable on uncertain graphs under the
LRO model.

Proof. Clearly, for each 0 ≤ i ≤ m, the While-loop in Algorithm 1 computes the maximal d-core in
Gi. Therefore, for each v, qd(v) = p(ei), where i the smallest index such that the non-empty d-core
contains v. Since the number of possible worlds are m + 1, for each vertex v ∈ V, the probability qd(v)
can be computed in polynomial time. Thus, for a given uncertain graph G = (V, E, p), an integer d
and probability threshold θ, the set {v | qd(v) ≥ θ} is the optimum solution to the INDIVIDUAL-CORE

problem.

5.2. Parameterized Complexity of the PROBABILISTIC-CORE-RF Problem

We show that the PROBABILISTIC-CORE-RF problem is W[1]-hard. The reduction that we show
for the W[1]-hardness is similar to the hardness result of the INDIVIDUAL-CORE problem shown by
Peng et al. [16] (they call this the (d, θ)-CORE problem). The reduction is from the CLIQUE problem
which is as follows: given a graph G = (V, E) and an integer k, decide if G has a clique of size at least
k. The CLIQUE problem is known to be W[1]-hard [47].

Theorem 2. The PROBABILISTIC-CORE-RF problem is W[1]-hard for the parameter d.

Proof. Let 〈G = (V, E), k〉 be an instance of the CLIQUE problem. The output of the reduction is
denoted by 〈G = (V, E, p), d, θ〉, and it is an instance of PROBABILISTIC-CORE-RF problem. The vertex
set and edge set of G are same as V and E, respectively, d = k− 1 and θ = 2−(

k
2). Further, for each edge

e ∈ E, define p(e) = 1
2 in G. Now we show that the CLIQUE problem on the instance 〈G, k〉 and the

PROBABILISTIC-CORE-RF problem on the instance 〈G, d, θ〉 are equivalent.
We prove the forward direction first. Let K ⊆ V be a k-clique in G. The set K is indeed a d-core

since every vertex v ∈ K has k− 1 neighbors in K. The probability that K is a d-CORE in a random
sample from the possible worlds of G is 2−(

k
2). Thus, the set K is a feasible solution for the instance

〈G, d, θ〉 of the PROBABILISTIC-CORE-RF problem.
Now we prove the reverse direction. We claim that any feasible solution K ⊆ V contains exactly

d + 1 vertices. If K has less than d + 1 vertices then K cannot form a d-core in any possible world.
Therefore, we consider the case in which that K has more than d + 1 vertices, and each vertex in the
set K has degree at least d. Consequently, the number of edges in any possible world in which K is a
d-core is at least d(d+2)

2 = d(d+1)
2 + d

2 = (d+1
2 ) + d

2 . Then, the probability that the set K is a d-core in G is

at most 2−(
d+1

2 )− d
2 < θ, and this contradicts the hypothesis that K is a feasible solution. It follows that

any feasible solution K ⊆ V contains exactly d + 1 vertices and each vertex has degree d, thus K is a k
clique. Hence the theorem.

5.3. The PROBABILISTIC-CORE-RF Problem is FPT by Treewidth

We show that the PROBABILISTIC-CORE-RF problem admits an FPT algorithm with treewidth as
the parameter. The input consists of an instance 〈G = (V, E, p), d〉 of the PROBABILISTIC-CORE-RF
problem. A nice tree decomposition (X, T ) of the graph G = (V, E) is also given as part of the input.
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Let i be any node in T and α : Xi → {0, 1, . . . , d} and β : Xi → {0, 1, . . . , d} be a pair of functions on Xi.
Given a set K ⊆ V, the set K is said to be (α, β)-constrained d-core of G if

1. for each v ∈ Xi ∩ K, |N(v) ∩ K| = α(v) + β(v) and |N(v) ∩ K ∩ Xi| = α(v), and
2. for each v ∈ K \ Xi, |N(v) ∩ K| = d.

Let Gα,β
i denote the uncertain graph G[X+

i \ (α−1(0) ∩ β−1(0))]. We define a constrained version
of the PROBABILISTIC-CORE-RF problem as follows. Given a set K, the probability that the set K is an
(α, β)-constrained d-core in Gα,β

i is given by:

ρd(α, β,Gα,β
i , K) = ∑

H!Gα,β
i

P(H)I′(H, α, β, K, d),

where I′(H, α, β, K, d) is an indicator function that takes value 1 if and only if K is an (α, β)-constrained
d-core of H. The optimization version of the (α, β)-constrained PROBABILISTIC-CORE-RF problem
seeks to find the set K such that ρd(α, β,Gα,β

i , K) is maximized. The solution for (α, β)-constrained
PROBABILISTIC-CORE-RF problem for different values of i, α and β on G are partial solutions which
are used to come up with a recursive specification of the optimum value. The dynamic programming
(DP) formulation on the nice tree decomposition (X, T ) results in an FPT algorithm with treewidth as
the parameter.

The dynamic programming formulation maintains a table Ti at every node i ∈ X. Each row in the
table Ti is a pair of functions α and β such that α, β : Xi → {0, 1, . . . , d}. The column corresponding
to the row (α, β) is a pair (Solution, Value) which consists of a set Sα,β and a probability value.
Further, the set Sα,β is an optimal solution for the (α, β)-constrained PROBABILISTIC-CORE-RF problem

on the instance 〈Gα,β
i , d〉.

Intuitively, the functions α and β defined on Xi stand for the “in-bag-degree” and “out-bag-degree”
constraints, respectively, for each vertex v ∈ Xi. We maintain the candidate solutions in the table
for different values of the functions α and β. We allow the candidate solutions that are infeasible
at current stage and those vertices which are not satisfied with degree d will get neighbors from
nodes at a higher level in the tree decomposition. The optimal solution for the instance 〈G, d〉 of the
PROBABILISTIC-CORE-RF problem can be obtained from the table Tr where r is the root of the tree
decomposition T .

5.3.1. Dynamic Programming

We now present the dynamic programming formulation on the different types of nodes in T . Let
i ∈ T be a node with bag Xi. For a pair of functions α, β : Xi → {0, 1, . . . , d}, we show how to compute
the table entry Ti[α, β] in each type of node as follows.

Leaf node. Let i be a leaf node with bag Xi = ∅. We have one row in the table Ti. Let α, β : ∅ →
{0} be the pair of functions corresponding to the row and the value of the table entry is given as:

Ti[α, β] = (∅, 0.0).

Insert node. Let i be an insert node with a child j, and let Xi = Xj ∪ {v} for some v /∈ Xj. The row
Ti[α, β] is computed based on the value of α(v) and β(v). If β(v) > 0, then the row Ti[α, β] becomes
infeasible since N(v) ∩ X+

i ⊆ Xi. That is,

Ti[α, β] = (∅, 0.0).

In the rest of the cases we have β(v) = 0. We define β′ : Xj → {0, 1, . . . , d} to be a function
such that β′(u) = β(u) for all u ∈ Xj. When α(v) = 0, then the vertex v will not be in the solution
Sα,β. Let α′ : Xj → {0, 1, . . . , d} be a function such that α′(u) = α(u) for all u ∈ Xj. The value
of the row Ti[α, β] is same as Tj[α

′, β′] since v is excluded. When α(v) > 0, then v is part of Sα,β.
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Let U = (N(v)∩ Xi) \ α−1(0). Then, we have |U| ≥ α(v). Otherwise, no feasible solution exists for the
row Ti[α, β]. That is, degree constraint of v will not be met in any feasible solution. Assume |U| ≥ α(v).
Let Y ⊆ U be a subset of U of size α(v), and q(v, Y) = ∏u∈Y p(uv). The vertices in Y that are the
neighbors of v contribute degree α(v) to v. Then, each vertex u ∈ Y will lose a degree from α(u) in the
node j. Define αY : Xj → {0, 1, . . . , d} to be

αY(u) =

{
α(u) if u /∈ Y

α(u)− 1 if u ∈ Y.

Let

W = arg max
Y⊆U,|Y|=α(v)

q(v, Y)Tj[αY, β′].Value

be the best α(v) neighbors of v such that the solution obtained from the table Tj is maximized.
Then, the recursive definition of the row Ti[α, β] is given as,

Ti[α, β] = (Tj[αW , β′].Solution∪ {v}, q(v, W)Tj[αW , β′].Value).

Forget node. Let i be a forget node with a child j, and let Xi = Xj \ {v} for some v ∈ Xj. From the
definition of the tree decomposition, it follows that N(v) ⊆ X+

j . Since N(v) ⊆ X+
j , either v is part of

solution with constraint α(v) + β(v) = d or v is not part of solution. Let U = (N(v) ∩ Xj) \ α−1(0).
For each 0 ≤ a ≤ min(d, |U|) and Y ⊆ U of size a, we define αa,Y, βa,Y : Xj → {0, 1, . . . , d} such that

αa,Y(u) =

⎧⎪⎪⎨⎪⎪⎩
α(u) if u �= v and u /∈ Y

α(u) + 1 if u �= v and u ∈ Y

a if u = v,

and

βa,Y(u) =

⎧⎪⎪⎨⎪⎪⎩
β(u) if u �= v and u /∈ Y

β(u)− 1 if u �= v and u ∈ Y

d− a if u = v,

For 0 ≤ a ≤ min(d, |U|), let

αa, βa = arg max
αa,Y ,βa,Y :Y⊆U,|Y|=a

Tj[αa,Y, βa,Y].Value.

Let t = arg max
0≤a≤min(d,|U|)

Tj[αa, βa].Value. Then the value of the row Ti[α, β] is equal to Tj[αt, βt].

Join node. Let i be a join node with children j and g such that Xi = Xj = Xg. For a function
α defined on Xi, we consider the function α for the child node Xj and for the other child node Xg,
consider the function α′ : Xi → {0, 1, . . . , d} such that α(u) = 0 for all u ∈ Xi. Since β considers
the neighbors from outside Xi, each vertex v ∈ Xi with β(v) > 0 will get the d-core neighbors from
the set X+

i \ Xi. Since X+
i \ Xi = (X+

j \ Xj) ∪ (X+
g \ Xg) and both the sets are disjoint, we divide

β(v) into two parts. For each vertex v ∈ Xi, we try all possible ways of dividing β(v) into two parts.
For x : Xi → {0, 1, . . . , d} such that for each v ∈ Xi, 0 ≤ x(v) ≤ β(v), we define βx : Xj → {0, 1, . . . , d}
and β′x : Xg → {0, 1, . . . , d} to be βx(v) = x(v) and β′x(v) = β(v)− x(v). Let

y = arg max
x:Xi→{0,1,...,d}|∀v∈Xi ,0≤x(v)≤β(v)

Tj[α, βx].Value · Tg[α
′, β′x].Value
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Then, the recursive definition of the row Ti[α, β] is given as,

Ti[α, β] = (Tj[α, βy].Solution∪ Tg[α
′, β′y].Solution, Tj[α, βy].Value · Tg[α

′, β′y].Value).

5.3.2. Correctness and Running Time

Lemma 7. Let i be a node in T . For every pair of functions α, β : Xi → {0, 1, . . . , d}, the row Ti[α, β] is
computed optimally.

Proof. Let i be a node in T . We claim that for each pair of functions α, β : Xi → {0, 1, . . . , d},
the row Ti[α, β] computes the optimal solution for the instance Gα,β

i of the (α, β)-constrained
PROBABILISTIC-CORE problem. That is, the set Sα,β = Ti[α, β].Solution is an optimal solution for
the above instance. Let A = Xi \ (α−1(0) ∩ β−1(0)). We show that for any S = A ∪ Z for some
Z ⊆ X+

i \ Xi,

ρd(α, β,Gα,β
i , S) ≤ ρd(α, β,Gα,β

i , Sα,β).

The proof is by induction on the height of a node in T . The height of a node i in the rooted tree T
is the distance to the farthest leaf in the subtree rooted at i. The base case is when i is a leaf node in T
and height is 0. For a leaf node i with Xi = ∅, the row with α, β : ∅ → {0, 1, . . . d} completes the proof
of the base case. Let us assume that the claim is true for all nodes of height at most h− 1 ≥ 0. We now
prove that if the claim is true at all nodes of height at most h− 1, then it is true for a node of height h.
Let i be a node of height h. Clearly i is not a leaf node.

When i is an introduce node. Let j be the child of i, and Xi = Xj ∪ {v} for some v /∈ Xj.
If β(v) > 0, then no feasible solution exists since N(v) ∩ (X+

i \ Xi) = ∅. This is captured in our
dynamic programming. In the further cases, we consider β(v) = 0. Let L = N(v) ∩ Xi. Consider the
case when α(v) = 0. That is, the vertex v is not part of the solution. The recursive definition of the
dynamic programming gives

Sα,β = Ti[α, β].Solution = Tj[α
′, β′].Solution

where α′ and β′ are as defined in the dynamic programming. A feasible solution to the row Ti[α, β]

should be feasible for the row Tj[α
′, β′]. Otherwise, the degree constraints are not met by the solution.

For the solution S = A ∪ Z,

ρd(α
′, β′,Gα′ ,β′

j , S) ≤ ρd(α
′, β′,Gα′ ,β′

j , Sα,β)

since j is a node at height h− 1 and by our induction hypothesis. Also,

ρd(α
′, β′,Gα′ ,β′

j , S) = ρd(α, β,Gα,β
i , S)

since v /∈ S. Then, we have

ρd(α, β,Gα,β
i , S) = ρd(α

′, β′,Gα′ ,β′

j , S) ≤ ρd(α
′, β′,Gα′ ,β′

j , Sα,β) = ρd(α, β,Gα,β
i , Sα,β).

This completes the case when β(v) = 0 and α(v) = 0.
Now we consider the case where α(v) > 0. In the solution S = A ∪ Z, we need α(v) neighbors of

U in the d-core where the set U = (N(v) ∩ Xi) \ (α−1(0) ∩ β−1(0)). Let Sj = S \ {v}. There exists a

Y ⊆ U of size α(v) such that the probability ρd(α, β, Gα,β
i , S) can be written as follows:

ρd(α, β,Gα,β
i , S) = ρd(αY, β′,GαY ,β′

j , Sj) ∏
u∈Y

p(uv).
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The solution Sj is compatible for the row Tj[αY, β′] where the vertices in Y are neighbors of v and
degree constraint of these vertices is decreased by 1 in α such that it will be satisfied by the edge from
v. Since W in the dynamic programming is optimal over all possible α(v) sized subsets of W, we have

ρd(α, β,Gα,β
i , S) = ρd(αY , β′,GαY ,β′

j , Sj) ∏
u∈Y

p(uv) ≤ ρd(αW , β′,GαW ,β′

j , Tj[αW , β′].Solution) ∏
u∈W

p(uv)

≤ Tj[αW , β′].Value ∏
u∈W

p(uv) = Ti[α, β].Value.

This completes the argument of the case when i is an introduce node.
When i is a forget node. Let j be the child of i, and Xi = Xj \ {v} for some v ∈ Xj. We consider

two cases depending on whether v belongs to S. We first consider the case when v /∈ S. Consider the
functions α0,∅ and β0,∅ as defined in the recursive computation of forget node. Since v /∈ S, v will get
zero degree constraint in both functions α and β, and other vertices will have same constraints as α

and β values. Then, the probability ρd(α, β, Gα,β
i , S) can be written as follows:

ρd(α, β, Gα,β
i , S) = ρd(α0,∅, β0,∅, Gα0,∅ ,β0,∅

j , S).

Since j is a node at height h− 1, we have

ρd(α, β, Gα,β
i , S) = ρd(α0,∅, β0,∅, Gα0,∅ ,β0,∅

j , S) ≤ Tj[α0,∅, β0,∅].Value

≤ Tj[αt, βt].Value = Ti[α, β].Value

Secondly, we consider the case when v ∈ S. Let U = (N(v) ∩ Xj) \ α−1(0). Since v is in Xj but v
is not in its parent node Xi, v should have degree d in the (α, β)-constrained PROBABILISTIC-CORE

problem. Then, α(v) = a and β(v) = d− a for an 0 ≤ a ≤ d. Let Y ⊆ U of size a be the set of vertices
that have an edge to v to compensate the degree constraint α(v) at v. Then, each vertex u ∈ Y will
gain a degree constraint α(u) and lose a degree constraint β(u). Using the integer a and the set Y,
the probability ρd(α, β,Gα,β

i , S) can be written as follows:

ρd(α, β,Gα,β
i , S) = ρd(αa,Y, βa,Y,Gαa,Y ,βa,Y

j , S).

Since j is a node at height h− 1, we know that the row Tj[αa,Y, βa,Y] is computed optimally. That is,

ρd(αa,Y, βa,Y,Gαa,Y ,βa,Y
i , S) ≤ Tj[αa,Y, βa,Y].Value ≤ Tj[αt, βt].Value = Ti[α, β].Value

This completes the argument of the case when i is a forget node.
When i is a join node. Let j and g be the children of i, and Xi = Xj = Xg. The set S \ Xi can be

partitioned into sets Sj and Sg where Sj = (S \ Xi) ∩ Xj and Sg = (S \ Xi) ∩ Xg. Let U = {u ∈ Xi |
α(v) > 0} and Si = Xi \ α−1(0). For each vertex u ∈ U, the degree constraint α(u) should be satisfied
by the edges from U to u. Since Xi = Xj = Xg, the degree constraint α(u) is either satisfied in the node j
or node g and not in both. Without loss of generality we assume that the degree constraint α is satisfied
in the node j and no zero degree constraint α in the node g. Then we define α′ : Xg → {0, 1, . . . , d} to
be for every vertex v ∈ Xi, α′(v) = 0. For each vertex v ∈ Xi with β(v) > 0, the degree constraint β(v)
can be satisfied by the sets Sj and Sg together. There exists an integer x(v) such that x(v) neighbors in
the core are obtained from the set Sj and β(v)− x(v) neighbors in the core are obtained from the set Sg.
Then, there exists a function x : Xi → {0, 1, . . . , d} such that for each vertex v ∈ V, 0 ≤ x(v) ≤ β(v).
Using the function x, the probability ρd(α, β,Gα,β

i , S) can be given as follows:

ρd(α, β,Gα,β
i , S) = ρd(α, βx,Gα,βx

j , Si ∪ Sj) . ρd(α
′, β′x,Gα′ ,β′x

g , Si ∪ Sg)
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The functions βx and β′x for the given function x are defined in the description of dynamic
programming. Since both j and g are nodes at height at most h− 1, by induction hypothesis, the rows
Tj[αj, βx] and Tg[α′, β′x] are computed optimally. Therefore, we have

ρd(α, β,Gα,β
i , S) = ρd(α, βx,Gα,βx

j , Si ∪ Sj) . ρd(α
′, β′x,Gα′ ,β′x

g , Si ∪ Sg)

≤ Tj[α, βx].Value . Tg[α
′, β′x].Value

≤ Tj[α, βy].Value . Tg[α
′, β′y].Value = Ti[α, β].Value

where y is the optimal distribution of the degree which results in the Ti[α, β].Value, as defined in the
recursive formulation at a join node. This completes the argument for the case when i is a join node.
Hence the lemma.

For a possible world H ! G, the degree of a vertex v ∈ V(H) is at most the degree of v in
G = (V, E). A vertex with degree less than d in G cannot be an element of a core in any possible world.
Thus, those vertices can be excluded throughout the algorithm. Such a pruning results in either the
pruned graph being an empty graph or the minimum degree of the pruned graph is becoming at least
d. We state the following Lemma from Koster et al. [48].

Lemma 8 (Koster et al [48]). For a graph G = (V, E) with |V| ≥ 2, δ(G) ≤ tw(G).

In the following lemma, we analyze the running time of the dynamic programming algorithm.

Lemma 9. The PROBABILISTIC-CORE-RF problem can be solved optimally in time 2O(tw log tw)nO(1).

Proof. For each node i in T , our dynamic programming generates a table Ti with (d + 1)2tw = O(d2tw)

rows. Each row Ti[α, β] for some α, β : Xi → {0, 1, . . . , d} is computed in our dynamic programming
based on the type of node i. When i is leaf node, a single row exists in Ti and that is computed in O(1)
time. When i is introduce node, we consider two cases that α(v) = 0 and α(v) > 0. If α(v) = 0, then the
functions αj and β j can be computed in timeO(tw). If α(v) > 0, the set U′ can be found by enumerating
all α(v) sized sets in U. This will take O(|Y|β(v)) time and using the upper bound on values we get
O(twd). It follows that if i is an introduce node, then Ti[α, β] can be computed in time O(twd). When i
is a forget node, for each value of 0 ≤ a ≤ min(d, |U|), we enumerate all a sized subsets of Y.
This requires O(twkk) time. When i is join node, we need to compute the optimal distribution of β(v)
for each vertex v ∈ Xi. This requires O(dtw) time. From Lemma 8, we know that d ≤ tw, we upper
bound the value d by tw. Overall, a row Ti[α, β] can be computed in time O(twtw). The entire table Ti
can be computed in time O(tw3tw) = 2O(tw log tw). The nice tree decomposition (X, T ) has O(n · tw)

many nodes and a table on each node can be computed in time O(2O(tw log tw))nO(1). An optimal
solution to the PROBABILISTIC-CORE-RF problem on the input uncertain graph G will be obtained
from the table of the root node r. That is, Tr[α : ∅ → {0}, β : ∅ → {0}].Solution is the optimal
solution.

The preceding lemmas results in the following theorem.

Theorem 3. The PROBABILISTIC-CORE problem admits an FPT algorithm for the parameter tw.

6. Discussion

There are many natural questions related to the parameterized complexity of algorithms on
uncertain graphs under different distribution models. The following are some open questions.

1. Are there efficient reductions between distribution models so that we can classify problems
based on the efficiency of algorithms under different distribution models? This question is also
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of practical significance because the distribution models are specified as sampling algorithms.
Consequently, the complexity of expectation computation on uncertain graphs under different
distribution models is an interesting new parameterization. Further, one concrete question is
whether the LRO model is easier than the RF model for other optimization problems on uncertain
graphs. For the two case studies considered in this paper, that is the case.

2. While our results do support the natural intuition that a tree decomposition is helpful in
expectation computation, it is unclear to us how traditional techniques in parameterized
algortihms can be carried over to this setting. In particular, it is unclear to us as to whether
for any distribution model, a kernelization based algorithm can give an FPT algorithm on
uncertain graphs.

3. We have considered the coverage and the core problems on uncertain graphs under the LRO and
RF models. However, we have not been able to get an FPT algorithm with the parameter treewidth
for MAX-EXP-COVER-1-RF. Actually, any approach to avoid the exponential dependence on
(Δ . tw ) would be very interesting and would give a significant insight on other approaches to
evaluate the expected coverage.

4. Even though the INDIVIDUAL-CORE-RF problem and PROBABILISTIC-CORE-RF problem are
similar, we have not been able to get an FPT algorithm for the INDIVIDUAL-CORE-RF problem
with treewidth as the parameter. Even for other structural parameters such as vertex-cover
number and feedback vertex set number, FPT results will give a significant insight on the
INDIVIDUAL-CORE problem.
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1. Introduction

In their seminal papers of the mid 1960s, Cobham [1] and Edmonds [2] independently phrased
what is now known as the Cobham–Edmonds thesis. It states that an optimization problem is feasibly
solvable if it admits an algorithm with the following two properties:

1. Accuracy: the algorithm should always compute the best possible (optimum) solution.
2. Efficiency: the runtime of the algorithm should be polynomial in the input size n.

Shortly after the Cobham–Edmonds thesis was formulated, the development of the theory of
NP-hardness and reducibility identified a whole plethora of problems that are seemingly intractable,
i.e., for which algorithms with the above two properties do not seem to exist. Even though the
reasons for this phenomenon remain elusive up to this day, this has not hindered the development
of algorithms for such problems. To obtain an algorithm for an NP-hard problem, at least one of the
two properties demanded by the Cobham–Edmonds thesis needs to be relaxed. Ideally, the properties
are relaxed as little as possible, in order to stay close to the notion of feasible solvability suggested by
the thesis.

A very common approach is to relax the accuracy condition, which means aiming for
approximation algorithms [3,4]. The idea here is to use only polynomial time to compute an
α-approximation, i.e., a solution that is at most a factor α times worse than the optimum solution
obtainable for the given input instance. Such an algorithm may also be randomized, i.e., there is either
a high probability that the output is an α-approximation, or the runtime is polynomial in expectation.

In a different direction, several relaxations of the efficiency condition have also been proposed.
Popular among these is the notion of parameterized algorithms [5,6]. Here the input comes together
with some parameter k ∈ N, which describes some property of the input and can be expected to
be small in typical applications. The idea is to isolate the seemingly necessary exponential runtime
of NP-hard problems to the parameter, while the runtime dependence on the input size n remains
polynomial. In particular, the algorithm should compute the optimum solution in f (k)nO(1) time,
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for some computable function f : N→ N independent of the input size n. If such an algorithm exists
for a problem it is fixed-parameter tractable (FPT), and the algorithm is correspondingly referred to as
an FPT algorithm.

Approximation and FPT algorithms have been studied extensively for the past few decades,
and this has lead to a rich literature on algorithmic techniques and deep links to other research fields
within mathematics. However, in this process the limitations of these approaches have also become
apparent. Some NP-hard problems can fairly be considered to be feasibly solvable in the respective
regimes, as they admit polynomial-time algorithms with rather small approximation factors, or can
be shown to be solvable optimally with only a fairly small exponential runtime overhead due to the
parameter. However, many problems can also be shown not to admit any reasonable algorithms in
either of these regimes, assuming some standard complexity assumptions. Thus considering only
approximation and FPT algorithms, as has been mostly done in the past, we are seemingly stuck in a
swamp of problems for which we have substantial evidence that they cannot be feasibly solved.

To find a way out of this dilemma, an obvious possibility is to lift both the accuracy and the
efficiency requirements of the Cobham–Edmonds thesis. In this way, we obtain a parameterized
α-approximation algorithm, which computes an α-approximation in f (k)nO(1) time for some
computable function f , given an input of size n with parameter k. The study of such algorithms
had been suggested dating back to the early days of parameterized complexity (cf. [5,7–9]), and we
refer the readers to an excellent survey of Marx [8] for discussions on the earlier results in the area.

Recently this approach has received some increased interest, with many new results obtained
in the past few years, both in terms of algorithms and hardness of approximation. The aim of this
survey is to give an overview on some of these newer results. We would like to caution the readers
that the goal of this survey is not to compile all known results in the field but rather to give examples
that demonstrate the flavor of questions studied, techniques used to obtain them, and some potential
future research directions. Finally, we remark that on the broader theme of approximation in P,
there was an excellent survey recently made available by Rubinstein and Williams [10] focusing on the
approximability of popular problems in P which admit simple quadratic/cubic algorithms.

Organization of the Survey

The main body of the survey is organized into two sections: one on FPT hardness of approximation
(Section 3) and the other on FPT approximation algorithms (Section 4). Before these two main sections,
we list some notations and preliminaries in Section 2. Finally, in Section 5, we highlight some open
questions and future directions (although a large list of open problems have also been detailed
throughout Sections 3 and 4).

2. Preliminaries

In this section, we review several notions that will appear regularly throughout the survey.
However, we do not include definitions of basic concepts such as W-hardness, para-NP-hardness,
APX-hardness, and so forth; the interested reader may refer to [3–6] for these definitions.

Parameterized approximation algorithms. We briefly specify the different types of algorithms we will
consider. As already defined in the introduction, an FPT algorithm computes the optimum solution
in f (k)nO(1) time for some parameter k and computable function f : N → N on inputs of size n.
The common choices of parameters are the standard parameters based on solution size, structural
parameters, guarantee parameters, and dual parameters.

An algorithm that computes the optimum solution in f (k)ng(k) time for some parameter k and
computable functions f , g : N→ N, is called a slice-wise polynomial (XP) algorithm. If the parameter
is the approximation factor, i.e., the algorithm computes a (1 + ε)-approximation in f (ε)ng(ε) time,
then it is called a polynomial-time approximation scheme (PTAS). The latter type of algorithm has been
studied avant la lettre for quite a while. This is also true for the corresponding FPT algorithm, which
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computes a (1 + ε)-approximation in f (ε)nO(1) time, and is referred to as an efficient polynomial-time
approximation scheme (EPTAS). Note that if the standard parameterization of an optimization problem
is W[1]-hard, then the optimization problem does not have an EPTAS (unless FPT = W[1]) [11].

Some interesting links between these algorithms, traditionally studied from the perspective of
polynomial-time approximation algorithms, and parameterized complexity have been uncovered more
recently [8,11–16].

As also mentioned in the introduction, a parameterized α-approximation algorithm computes an
α-approximation in f (k)nO(1) time for some parameter k on inputs of size n. If α can be set to 1 + ε for
any ε > 0 and the runtime is f (k, ε)ng(ε), then we obtain a parameterized approximation scheme (PAS)
for parameter k. Note that this runtime is only truly FPT if we assume that ε is constant. If we forbid
this and consider ε as a parameter as well, i.e., the runtime should be of the form f (k, ε)nO(1), then we
obtain EPAS.

Kernelization. A further topic closely related to the FPT algorithms is kernelization. Here, the idea is
that an instance is efficiently pre-processed by removing the “easy parts” so that only the NP-hard
core of the instance remains. More concretely, a kernelization algorithm takes an instance I and a
parameter k of some problem and computes a new instance I′ with parameter k′ of the same problem.
The runtime of this algorithm is polynomial in the size of the input instance I and k, while the size
of the output I′ and k′ is bounded as a function of the input parameter k. For optimization problems,
it should also be the case that any optimum solution to I′ can be converted to an optimum solution of I
in polynomial time. The new instance I′ is called the kernel of I (for parameter k). A fundamental result
in fixed-parameter tractability is that an (optimization) problem parameterized by k is FPT if and only
if it admits a kernelization algorithm for the same parameter [17]. However the size of the guaranteed
kernel will in general be exponential (or worse) in the input parameter. Therefore, an interesting
question is whether an NP-hard problem admits small kernels of polynomial size. This can be
interpreted as meaning that the problem has a very efficient pre-processing algorithm, which can
be used prior to solving the kernel. It also gives an additional dimension to the parameterized
complexity landscape.

Kernelization has played a fundamental role in the development of FPT algorithms, where a
pre-processing step is often used to simplify the structure of the input instance. It is therefore only
natural to consider such pre-processing algorithms for parameterized approximation algorithms as
well. Lokshtanov et al. [18] define an α-approximate kernelization algorithm, which computes a
kernel I′ such that any β-approximation in I′ can be converted into an αβ-approximation to the input
instance I in polynomial time. Again, the size of I′ and k′ need to be bounded as a function of the
input parameter k, and the algorithm needs to run in polynomial time. The instance I′ is now called an
α-approximate kernel. Analogous to exact kernels, any problem has a parameterized α-approximation
algorithm if and only if it admits an α-approximate kernel for the same parameter [18], which however
might be of exponential size in the parameter.

An α-approximate kernelization algorithm that computes a polynomial-sized kernel, and for
which we may set α to 1 + ε for any ε > 0, is called a polynomial-sized approximate kernelization
scheme (PSAKS). In this case ε is necessarily considered to be a constant, since any kernelization
algorithms needs to run in polynomial time.

We remark here that apart from α-approximate kernels, there is another common workaround
for problems with no polynomial kernels, captured using the notion of Turing kernels. There is also a
lower bound framework for Turing kernels [19], and the question of approximate kernels for problems
that do not even admit Turing kernels is fairly natural to ask. However we skip this discussion for the
sake of brevity.

Finally, note that in literature, there is another notion of approximate kernels called α-fidelity
kernelization [20] which is different from the one mentioned above. Essentially, an α-fidelity kernel
is a polynomial time preprocessing procedure such that an optimal solution to the reduced instance
translates to an α-approximate solution to the original. This definition allows a loss of precision in the
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preprocessing step, but demands that the reduced instance has to be solved to optimality. See [18] for a
detailed discussion on the differences between the two approximate kernel notions.

Complexity-Theoretic Hypotheses. We assume that the readers have basic knowledge of (classic)
parameterized complexity theory, including the W-hierarchy, the exponential time hypothesis (ETH),
and the strong exponential time hypothesis (SETH). The reader may choose to recapitulate these
definitions by referring to [6] (Sections 13 and 14).

We will additionally discuss two hypotheses that may not be standard to the community. The first
is the Gap Exponential Time Hypothesis (Gap-ETH), which is a strengthening of ETH. Roughly
speaking, it states that even the approximate version of 3SAT cannot be solved in subexponential
time; a more formal statement of Gap-ETH can be found in Hypothesis 2. Another hypothesis we will
discuss is the Parameterized Inapproximability Hypothesis (PIH), which states that the multicolored
version of the DENSEST k-SUBGRAPH is hard to approximate in FPT time. Once again, we do not define
PIH formally here; please refer to Hypothesis 1 for a formal statement.

3. FPT Hardness of Approximation

In this section, we focus on showing barriers against obtaining good parameterized approximation
algorithms. The analogous field of study in the non-parameterized (NP-hardness) regime is the theory
of hardness of approximation. The celebrated PCP Theorem [21,22] and numerous subsequent works
have developed a rich set of tools that allowed researchers to show tight inapproximability results
for many fundamental problems. In the context of parameterized approximation, the field is still in
the nascent stage. Nonetheless, there have been quite a few tools that have already been developed,
which are discussed in the subsequent subsections.

We divide this section into two parts. In Section 3.1, we discuss the results and techniques in
the area of hardness of parameterized approximation under the standard assumption of W[1] �= FPT.
In Section 3.2, we discuss results and techniques in hardness of parameterized approximation under
less standard assumptions such as the Gap Exponential Time Hypothesis, where the gap is inherent in
the assumption, and the challenge is to construct gap-preserving reductions.

3.1. W[1]-Hardness of Gap Problems

In this subsection, we discuss W[1]-hardness of approximation of a few fundamental problems.
In particular, we discuss the parameterized inapproximability (i.e., W[1]-hard to even approximate)
of the DOMINATING SET problem, the (ONE-SIDED) BICLIQUE problem, the EVEN SET problem,
the SHORTEST VECTOR problem, and the STEINER ORIENTATION problem. We emphasize here that
the main difficulty that is addressed in this subsection is gap generation, i.e., we focus on how to start
from a hard problem (with no gap), say k-CLIQUE (which is the canonical W[1]-complete problem),
and reduce it to one of the aforementioned problems, while generating a non-trivial gap in the process.

3.1.1. Parameterized Intractability of Biclique and Applications to Parameterized Inapproximability

In this subsubsection, we will discuss the parametrized inapproximability of the one-sided biclique
problem, and show how both that result and its proof technique lead to more inapproximability results.

We begin our discussion by formally stating the k-BICLIQUE problem where we are given as input
a graph G and an integer k, and the goal is to determine whether G contains a complete bipartite
subgraph with k vertices on each side. The complexity of k-BICLIQUE was a long standing open
problem and was resolved only recently by Lin [23] where he showed that it is W[1]-hard. In fact,
he showed a much stronger result and this shall be the focus of attention in this subsubsection.
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Theorem 1 ([23]). Given a bipartite graph G(L∪̇R, E) and k ∈ N as input, it is W[1]-hard to distinguish
between the following two cases:

• Completeness: There are k vertices in L with at least nΘ( 1
k ) common neighbors in R;

• Soundness: Any k vertices in L have at most (k + 6)! common neighbors in R.

We shall refer to the gap problem in the above theorem as the ONE-SIDED k-BICLIQUE problem.
To prove the above result, Lin introduced a technique which we shall refer to as Gadget Composition.
The gadget composition technique has found more applications since [23]. We provide below a failed
approach (given in [23]) to prove the above theorem; nonetheless it gives us good insight into how the
gadget composition technique works.

Suppose we can construct a set family T = {S1, S2, . . . , Sn} of subsets of [n] for some integers k,
n and h > � (for example, h = n1/k and � = (k + 1)!) such that:

Property 1: Any k + 1 distinct subsets in T have intersection size at most �;
Property 2: Any k distinct subsets in T have intersection size at least h.

Then we can combine T with an instance of k-CLIQUE to obtain a gap instance of ONE-SIDED

k-BICLIQUE as follows. Given a graph G and parameter k with V(G) ⊆ [n], we construct our instance
of ONE-SIDED k-BICLIQUE, say H(L∪̇R, E(H)) by setting L := E(G) and R := [n], where for any
(vi, vj) ∈ L and v ∈ [n], we have that ((vi, vj), v) ∈ E(H) if and only if v ∈ Si ∩ Sj. Let s := k(k− 1)/2.
It is easy to check that if G has a k-vertex clique, say {v∗1, . . . , v∗k} is a clique in G, then Property
2 implies that |Δ :=

⋂
i∈[k] Sv∗i

| ≥ h. It follows that the set of s vertices in L given by {(v∗i , v∗j ) :

for all {i, j} ∈ ([k]2 )} are neighbors of every vertex in Δ ⊆ R. On the other hand, if G contains no
k-vertex clique, then any s distinct vertices in L (i.e., s edges in G) must have at least k + 1 vertices in G
as their end points. Say V′ was the set of all vertices contained the s edges. By Property 1, we know
that |Δ′ :=

⋂
v∈V′ Sv| ≤ �, and thus any s distinct vertices in L have at most � common neighbors in R.

It is indeed very surprising that this technique can yield non-trivial inapproximability results,
as the gap is essentially produced from the gadget and is oblivious to the input! This also stands in
stark contrast to the PCP theorem and hardness of approximation results in NP, where all known results
were obtained by global transformations on the input. The key difference between the parameterized
and NP worlds is the notion of locality. For example, consider the k-CLIQUE problem, if a graph does
not have a clique of size k, then given any k vertices, a random vertex pair in these k vertices does
not have an edge with probability at least 1/k2. It is philosophically possible to compose the input
graph with a simple error correcting code to amplify this probability to a constant, as we are allowed
to blowup the input size by any function of k. In contrast, when k is not fixed, like in the NP world, k is
of the same magnitude as the input size, and thus we are only allowed to blow up the input size by
poly(n) factor. Nonetheless, we have to point out that the gadgets typically needed to make the gadget
composition technique work must be extremely rich in combinatorial structure (and are typically
constructed from random objects or algebraic objects), and were previously studied extensively in the
area of extremal combinatorics.

Returning to the reduction above from k-CLIQUE to ONE-SIDED k-BICLIQUE, it turns out that we
do not know how to construct the set system T , and hence the reduction does not pan out. Nonetheless
Lin constructed a variant of T , where Property 2 was more refined and the reduction from k-CLIQUE

to ONE-SIDED k-BICLIQUE, went through with slightly more effort.
Before we move on to discussing some applications of Theorem 1 and the gadget composition

technique, we remark about known stronger time lower bound for ONE-SIDED k-BICLIQUE under
stronger running time hypotheses. Lin [23] showed a lower bound of nΩ(

√
k) for ONE-SIDED

k-BICLIQUE assuming ETH. We wonder if this can be further improved.
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Open Question 1 (Lower bound of ONE-SIDED k-BICLIQUE under ETH and SETH). Can the running
time lower bound on ONE-SIDED k-BICLIQUE be improved to nΩ(k) under ETH? Can it be improved to nk−o(1)

under SETH?

We remark that a direction to address the above question was detailed in [24]. While on the topic of
the k-BICLIQUE problem, it is worth noting that the lower bound of nΩ(

√
k) for ONE-SIDED k-BICLIQUE

assuming ETH yields a running time lower bound of nΩ(
log k

log log k ) for the k-BICLIQUE problem (due to
the soundness parameters in Theorem 1). However, assuming randomized ETH, the running time
lower bound for the k-BICLIQUE problem can be improved to nΩ(

√
k) [23]. Can this improved running

time lower bound be obtained just under (deterministic) ETH? Finally, we remark that we shall discuss
about the hardness of approximation of the k-BICLIQUE problem in Section 3.2.3.

Inapproximability of k-DOMINATING SET via Gadget Composition. We shall discuss about the
inapproximability of k-DOMINATING SET in detail in the next subsubsection. We would like to simply
highlight here how the above framework was used by Chen and Lin [25] and Lin [26] to obtain
inapproximability results for k-DOMINATING SET.

In [25], the authors starting from Theorem 1, obtain the W[1]-hardness of approximating
k-DOMINATING SET to a factor of almost two. Then they amplify the gap to any constant by using a
specialized graph product.

We now turn our attention to a recent result of Lin [26] who provided strong inapproximability
result for k-DOMINATING SET (we refer the reader to Section 3.1.2 to obtain the context for this result).
Lin’s proof of inapproximability of k-DOMINATING SET is a one-step reduction from an instance of
k-SET COVER on a universe of size O(log n) (where n is the number of subsets given in the collection) to

an instance of k-SET COVER on a universe of size poly(n) with a gap of
(

log n
log log n

)1/k
. Lin then uses this

gap-producing self-reduction to provide running time lower bounds (under different time hypotheses)

for approximating k-set cover to a factor of (1− o(1)) ·
(

log n
log log n

)1/k
. Recall that k-DOMINATING SET is

essentially [27,28] equivalent to k-SET COVER.
Elaborating, Lin designs a gadget by combining the hypercube partition gadget of Feige [29] with

a derandomizing combinatorial object called universal set, to obtain a gap gadget, and then combines
the gap gadget with the input k-SET COVER instance (on small universe but with no gap) to obtain a
gap k-SET COVER instance. This is another success story of the gadget composition technique.

Finally, we remark that Lai [30] recently extended Lin’s inapproximability results for dominating
set (using the same proof framework) to rule out constant-depth circuits of size f (k)no(

√
k) for any

computable function f .

Even Set. A recent success story of Theorem 1 is its application to resolve a long standing open
problem called k-MINIMUM DISTANCE PROBLEM (also referred to as k-EVEN SET), where we are
given as input a generator matrix A ∈ Fn×m

2 of a binary linear code and an integer k, and the goal
is to determine whether the code has distance at most k. Recall that the distance of a linear code is

min
�0 �=x∈Fm

2

‖Ax‖0 where ‖ · ‖0 denote the 0-norm (aka the Hamming norm).

In [31], the authors showed that k-EVEN SET is W[1]-hard under randomized reductions.
The result was obtained by starting from the inapproximability result stated in Theorem 1 followed by
a series of intricate reductions. In fact they proved the following stronger inapproximability result.

Theorem 2 ([31]). For any γ ≥ 1, given input (A, k) ∈ Fn×m × N, it is W[1]-hard (under randomized
reductions) to distinguish between

• Completeness: Distance of the code generated by A is at most k , and,
• Soundness: Distance of the code generated by A is more than γ · k.
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We emphasize that even to obtain the W[1]-hardness of k-EVEN SET (with no gap), they needed
to start from the gap problem given in Theorem 1.

The proof of the above theorem proceeds by first showing FPT hardness of approximation of the
non-homogeneous variant of k-MINIMUM DISTANCE PROBLEM called the k-NEAREST CODEWORD

PROBLEM. In k-NEAREST CODEWORD PROBLEM, we are given a target vector y (in Fn) in addition to
(A, k), and the goal is to find whether there is any x (in Fm) such that the Hamming norm of Ax− y is
at most k. As an intermediate step of the proof of Theorem 2, they showed that k-NEAREST CODEWORD

PROBLEM is W[1]-hard to approximate to any constant factor.
An important intermediate problem which was studied by [31] to prove the inapproximability

of k-NEAREST CODEWORD PROBLEM, was the k-LINEAR DEPENDENT SET problem where given a
set A of n vectors over a finite field Fq and an integer k, the goal is to decide if there are k vectors
in A that are linearly dependent. They ruled out constant factor approximation algorithms for this
problem running in FPT time. Summarizing, the high level proof overview of Theorem 2 follows by
reducing ONE-SIDED k-BICLIQUE to k-LINEAR DEPENDENT SET, which is then reduced to k-NEAREST

CODEWORD PROBLEM, followed by a final randomized reduction to k-MINIMUM DISTANCE PROBLEM.
Finally, we note that there is no reason to define k-MINIMUM DISTANCE PROBLEM only for binary

code, but can instead be defined over larger fields as well. It turns out that [31] cannot rule out FPT
algorithms for k-MINIMUM DISTANCE PROBLEM over Fp with p > 2, when p is fixed and is not part of
the input. Thus we have the open problem.

Open Question 2. Is it W[1]-hard to decide k-MINIMUM DISTANCE PROBLEM over Fp with p > 2, when
p is fixed and is not part on the input?

Shortest Vector Problem. Theorem 1 (or more precisely the constant inapproximability of k-LINEAR

DEPENDENT SET stated above) was also used to resolve the complexity of the parameterized
k-SHORTEST VECTOR PROBLEM in lattices, where the input (in the �p norm) is an integer k ∈ N

and a matrix A ∈ Zn×m representing the basis of a lattice, and we want to determine whether the
shortest (non-zero) vector in the lattice has length at most k, i.e., whether min

�0 �=x∈Zm
‖Ax‖p ≤ k. Again,

k is the parameter of the problem. It should also be noted here that (as in [32]), we require the basis
of the lattice to be integer valued, which is sometimes not enforced in literature (e.g., [33,34]). This is
because, if A is allowed to be any matrix in Rn×m, then parameterization is meaningless because we
can simply scale A down by a large multiplicative factor.

In [31], the authors showed that k-SHORTEST VECTOR PROBLEM is W[1]-hard under randomized
reductions. In fact they proved the following stronger inapproximability result.

Theorem 3 ([31]). For any p > 1, there exists a constant γp > 1 such that given input (A, k) ∈ Zn×m ×N,
it is W[1]-hard (under randomized reductions) to distinguish between

• Completeness: The �p norm of the shortest vector of the lattice generated by A is ≤ k, and,
• Soundness: The �p norm of the shortest vector of the lattice generated by A is > γp · k.

Notice that Theorem 2 rules out FPT approximation algorithms with any constant approximation
ratio for k-EVEN SET. In contrast, the above result only prove FPT inapproximability with some
constant ratio for k-SHORTEST VECTOR PROBLEM in �p norm for p > 1. As with k-EVEN SET, even to
prove the W[1]-hardness of k-SHORTEST VECTOR PROBLEM (with no gap), they needed to start from
the gap problem given in Theorem 1.

The proof of the above theorem proceeds by first showing FPT hardness of approximation of the
non-homogeneous variant of k-SHORTEST VECTOR PROBLEM called the k-NEAREST VECTOR PROBLEM.
In k-NEAREST VECTOR PROBLEM, we are given a target vector y (in Zn) in addition to (A, k), and the
goal is to find whether there is any x (in Zm) such that the �p norm of Ax − y is at most k. As an
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intermediate step of the proof of Theorem 2, they showed that k-NEAREST VECTOR PROBLEM is
W[1]-hard to approximate to any constant factor. Summarizing, the high level proof overview of
Theorem 3 follows by reducing ONE-SIDED k-BICLIQUE to k-LINEAR DEPENDENT SET, which is then
reduced to k-NEAREST VECTOR PROBLEM, followed by a final randomized reduction to k-SHORTEST

VECTOR PROBLEM.
An immediate open question left open from their work is whether Theorem 3 can be extended to

k-SHORTEST VECTOR PROBLEM in the �1 norm. In other words,

Open Question 3 (Approximation of k-SHORTEST VECTOR PROBLEM in �1 norm). Is k-SHORTEST

VECTOR PROBLEM in the �1 norm in FPT?

3.1.2. Parameterized Inapproximability of Dominating Set

In the k-DOMINATING SET problem we are given an integer k and a graph G on n vertices as
input, and the goal is to determine if there is a dominating set of size at most k. It was a long standing
open question to design an algorithm which runs in time T(k) · poly(n) (i.e., FPT-time), that would
find a dominating set of size at most F(k) · k whenever the graph G has a dominating set of size k,
for any computable functions T and F.

The first non-trivial progress on this problem was by Chen and Lin [25] who ruled out the
existence of such algorithms (under W[1] �= FPT) for all constant functions F (i.e., F(n) = c, where c is
any universal constant). We discussed their proof technique in the previous subsubsection. A couple
of years later, Karthik C. S. et al. [35] completely settled the question, by ruling out the existence of
such an algorithm (under W[1] �= FPT) for any computable function F. Thus, k-DOMINATING SET was
shown to be totally inapproximable. We elaborate on their proof below.

Theorem 4 ([35]). Let F : N→ N be any computable function. Given an instance (G, k) of k-DOMINATING

SET as input, it is W[1]-hard to distinguish between the following two cases:

• Completeness: G has a dominating set of size k.
• Soundness: Every dominating set of G is of size at least F(k) · k.

The overall proof follows by reducing k-MULTICOLOR CLIQUE to the gap k-DOMINATING SET

with parameters as given in the theorem statement. In the k-MULTICOLOR CLIQUE problem, we are
given an integer k and a graph G on vertex set V := V1∪̇V2∪̇ · · · ∪̇Vk as input, where each Vi is an
independent set of cardinality n, and the goal is to determine if there is a clique of size k in G. Following
a straightforward reduction from the k-CLIQUE problem, it is fairly easy to see that k-MULTICOLOR

CLIQUE is W[1]-hard.
The reduction from k-MULTICOLOR CLIQUE to the gap k-DOMINATING SET proceeds in two

steps. In the first step we reduce k-MULTICOLOR CLIQUE to k-GAP CSP. This is the step where we
generate the gap. In the second step, we reduce k-GAP CSP to gap k-DOMINATING SET. This step is
fairly standard and mimics ideas from Feige’s proof of the NP-hardness of approximating the MAX

COVERAGE problem [29].
Before we proceed with the details of the above two steps, let us introduce a small technical tool

from coding theory that we would need. We need codes known in literature as good codes, these are
binary error correcting codes whose rate and relative distances are both constants bounded away
from 0 (see [36] (Appendix E.1.2.5) for definitions). The reader may think of them as follows: for every
� ∈ N, we say that C� ⊆ {0, 1}� is a good code if (i) |C�| = 2ρ�, for some universal constant ρ > 0, (ii) for
any distinct c, c′ ∈ C� we have that c and c′ have different values on at least δ� fraction of coordinates,
for some universal constant δ > 0. An encoding of C� is an injective function EC�

: {0, 1}ρ� → C�.
The encoding is said to be efficient if EC�

(x) can be computed in poly(�) time for any x ∈ {0, 1}ρ�.
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Let us fix k ∈ N and F : N→ N as in the theorem statement. We further define

α := 1− 1(
(k

2) · F((k
2))

)(k
2)

.

From k-MULTICOLOR CLIQUE to k-GAP CSP. Starting from an instance of k-MULTICOLOR CLIQUE,
say G on vertex set V := V1∪̇V2∪̇ · · · ∪̇Vk, we write down a set of constraints P on a variable set
X := {xi,j | i, j ∈ [k], i �= j} as follows. For every i, j ∈ [k], such that i �= j, define Ei,j to be the set of all
edges in G whose end points are in Vi and Vj. An assignment to variable xi,j is an element of Ei,j, i.e.,
a pair of vertices, one from Vi and the other from Vj. Suppose that xi,j was assigned the edge {vi, vj},

where vi ∈ Vi and vj ∈ Vj. Then we define the assignment of xi
i,j to be vi and the assignment of xj

i,j to
be vj. We define P := {P1, . . . , Pk}, where the constraint Pi is defined to be satisfied if the assignment
to all of xi

1,i, xi
2,i, . . . , xi

i−1,i, xi
i+1,i, . . . , xi

k,i are the same. We refer to the problem of determining if there
is an assignment to the variables in X such that all the constraints are satisfied as the k-CSP problem.
Notice that while this is a natural way to write k-MULTICOLOR CLIQUE as a CSP, where we have tried
to check if all variables having a vertex in common, agree on its assignment, there is no gap yet in the
k-CSP problem. In particular, if there was a clique of size k in G then there is an assignment to the
variables of X (by assigning the edges of the clique in G to the corresponding variable in X) such that
all the constraints in P are satisfied; however, if every clique in G is of size less than k then there every
assignment to the variables of X may violate only one constraint in P (and not more).

In order to amplify the gap, we rewrite the set of constraints P in a different way to obtain the
set of constraints P′, on the same variable set X, as follows. Suppose that xi,j was assigned the edge

{vi, vj}, where vi ∈ Vi and vj ∈ Vj, then for β ∈ [log n], we define the assignment of xi,β
i,j to be the βth

coordinate of vi. Recall that |Vi| = n and therefore we can label all vertices in Vi by vectors in {0, 1}log n.
We define P′ := {P′1, . . . , P′log n}, where the constraint P′β is defined to be satisfied if and only if the

following holds for all i ∈ [k]: the assignment to all of xi,β
1,i , xi,β

2,i , . . . , xi,β
i−1,i, xi,β

i+1,i, . . . , xi,β
k,i are the same.

Again notice that there is an assignment to the variables of X such that all the constraints in P are
satisfied if and only if the same assignment also satisfies all the constraints in P′.

However, rewriting P as P′ allows us to simply apply the error correcting code C� (with
parameters ρ and δ, and encoding function EC�

) to the constraints in P′, to obtain a gap!
In particular, we choose � to be such that ρ� = log n. Consider a new set of constraints P′′,
on the same variable set X, as follows. For any z ∈ {0, 1}log n and β ∈ [�], we denote by
EC�

(z)β, the βth coordinate of EC�
(z). We define P′′ := {P′′1 , . . . , P′′� }, where the constraint P′′β is

defined to be satisfied if and only if the following holds for all i ∈ [k]: the assignment to all of
EC�

(xi
1,i)β, EC�

(xi
2,i)β, . . . , EC�

(xi
i−1,i)β, EC�

(xi
i+1,i)β, . . . , EC�

(xi
k,i)β are the same.

Notice, as before, that there is an assignment to the variables of X such that all the constraints in
P′ are satisfied if and only if the same assignment also satisfies all the constraints in P′′. However,
for every assignment to X that violates at least one constraint in P′, we have that the same assignment
violates at least δ fraction of the constraints in P′′. To see this, consider an assignment that violates
the constraint P1 in P′. This implies that there is some i ∈ [k] such that the assignment to all of
xi,1

1,i, xi,1
2,i, . . . , xi,1

i−1,i, xi,1
i+1,i, . . . , xi,1

k,i are not the same. Let us suppose, without loss of generality, that the

assignment to xi,1
1,i and xi,1

2,i are different. In other words, we have that xi
1,i �= xi

2,i, where we think of
xi

1,i, xi
2,i as log n bit vectors. Let Δ ⊆ [�] such that β ∈ Δ if and only if EC�

(xi
1,i)β �= EC�

(xi
2,i)β. By the

distance of the code C� we have that |Δ| ≥ δ�. Finally, notice that for all β ∈ Δ, we have that the
assignment does not satisfy constraint Pβ in P′′. We refer to the problem of distinguishing if there is an
assignment to X such that all the constraints are satisfied or if every assignment to X does not satisfy a
constant fraction of the constraints, as the k-GAP CSP problem.

In order to rule out F(k) approximation FPT algorithms for k-DOMINATING SET, we will need that
for every assignment to X that violates at least one constraint in P′, we have that the same assignment
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violates at least α fraction of the constraints in P′′ (instead of just δ; note that α is very close to 1,
whereas δ can be at most half). To boost the gap [37] we apply a simple repetition/direct-product trick
to our constraint system. Starting from P′′, we construct a new set of constraints P∗, on the same
variable set X, as follows.

P∗ := {PS | S ∈ [�]t},

where t =
log(1−α)
log(1−δ)

. For every S ∈ [�]t, we define PS to be satisfied if and only if for all β ∈ S,
the constraint Pβ is satisfied.

It is easy to see that P′′ and P∗ have the same set of completely satisfying assignments. However,
for every assignment to X that violates δ fraction of constraints inP′′, we have that the same assignment
violates at least α fraction of the constraints in P∗. To see this, consider an assignment that violates δ

fraction of constraints in P′′, say it violates all constraints Pβ ∈ P′′, for every β ∈ Δ ⊆ [�] . This implies
that the assignment satisfies constraint PS if and only if S ∈ ([�] \ Δ)t. This implies that the fraction of
constraints in P∗ that the assignment can satisfy is upper bounded by (1− δ)t = 1− α.

From k-GAP CSP to gap k-DOMINATING SET. In the second part, starting from the aforementioned
instance of k-GAP CSP (after boosting the gap), we construct an instance H of k-DOMINATING SET.
The construction is due to Feige [29,38] and it proceeds as follows. Let F be the set of all functions
from {0, 1}tk to (k

2), i.e., F := { f : {0, 1}tk → (k
2)}. The graph H is on vertex set U = A∪̇B, where

A = P∗ × F and B = E(G), i.e., B is simply the edge set of G. We introduce an edge between all pairs
of vertices in B. We introduce an edge between a := (S := (s1, . . . , st) ∈ [�]t, f : {0, 1}tk → (k

2)) ∈ A
and e := (vi, vj) ∈ E if and only if the following holds.

∃τ := (τ1, . . . , τt) ∈ {0, 1}kt, such that f (τ) = {i, j} and

∀r ∈ [t], we have EC�
(vi)sr = (τr)i and EC�

(vj)sr = (τr)j.

Notice that the number of vertices in H is |A|+ |B| ≤ (
log n

ρ )t · (k
2)

2tk

+ n2 < η(k) · n2.01, for some
computable function η. It is not hard to check that the following hold:

• (Completeness) If there is an assignment to X that satisfies all constraints in P∗, then the
corresponding (k

2) vertices in B dominate all vertices in the graph H.
• (Soundness) If each assignment can only satisfy (1− α) fraction of constraints in P∗, then any

dominating set of H has size at least F
(
(k

2)
)
· (k

2).

We skip presenting details of this part of the proof here. The proofs have been derived many
times in literature; if needed, the readers may refer to Appendix A of [35]. This completes our sketch
of the proof of Theorem 4.

A few remarks are in order. First, the k-GAP CSP problem described in the proof above,
is formalized as the k-MAXCOVER problem in [35] (and was originally introduced in [39]). In particular,
the formalism of k-MAXCOVER (which may be thought of as the parameterized label cover problem) is
generic enough to be used as an intermediate gap problem to reduce to both k-DOMINATING SET (as
in [35]) and k-CLIQUE (as in [39]). Moreover, it was robust enough to capture stronger running time
lower bounds (under stronger hypotheses); this will elaborated below. However, in order to keep the
above proof succinct, we skipped introducing the k-MAXCOVER problem, and worked with k-GAP

CSP, which was sufficient for the above proof.
Second, Karthik C. S. et al. [35] additionally showed that for every computable functions T, F :

N→ N and every constant ε > 0:

• Assuming the Exponential Time Hypothesis (ETH), there is no F(k)-approximation algorithm for
k-DOMINATING SET that runs in T(k) · no(k) time.

• Assuming the Strong Exponential Time Hypothesis (SETH), for every integer k ≥ 2, there is no
F(k)-approximation algorithm for k-DOMINATING SET that runs in T(k) · nk−ε time.
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In order to establish Theorem 4 and the above two results, Karthik C. S. et al. [35] introduced a
framework to prove parameterized hardness of approximation results. In this framework, the objective
was to start from either the W[1] �= FPT hypothesis, ETH, or SETH, and end up with the gap
k-DOMINATING SET, i.e., they design reductions from instances of k-CLIQUE, 3-CNF-SAT, and
�-CNF-SAT, to an instance of gap k-DOMINATING SET. A prototype reduction in this framework
has two modular parts. In the first part, which is specific to the problem they start from, they generate
a gap and obtain hardness of gap k-MAXCOVER. In the second part, they show a gap preserving
reduction from gap k-MAXCOVER to gap k-DOMINATING SET, which is essentially the same as the
reduction from k-GAP CSP to k-DOMINATING SET in the proof of Theorem 4.

The first part of a prototype reduction from the computational problem underlying a hypothesis
of interest to gap k-MAXCOVER follows by the design of an appropriate communication protocol.
In particular, the computational problem is first reduced to a constraint satisfaction problem (CSP)
over k (or some function of k) variables over an alphabet of size n. The predicate of this CSP would
depend on the computational problem underlying the hypothesis from which we started. Generalizing
ideas from [40], they then show how a protocol for computing this predicate in the multiparty (number
of players is the number of variables of the CSP) communication model, can be combined with the
CSP to obtain an instance of gap k-MAXCOVER. For example, for the W[1] �= FPT hypothesis and ETH,
the predicate is a variant of the equality function, and for SETH, the predicate is the well studied
disjointness function. The completeness and soundness of the protocols computing these functions
translate directly to the completeness and soundness of k-MAXCOVER.

Third, we recall that Lin [26] recently provided alternate proofs of Theorem 4 and the above
mentioned stronger running time lower bounds. While we discussed about his proof technique in
Section 3.1.1, we would like to discuss about his result here. Following the right setting of parameters
in the proof of Theorem 4 (for example set α = 1− 1

(log n)Ω(1/k) ), we can obtain that approximating

k-DOMINATING SET to a factor of (log n)1/k3
is W[1]-hard. Lin improved the exponent of 1/k3 in the

approximation factor to h(k) for any computable function h. Can this inapproximability be further
improved? On the other hand, can we do better than the simple polynomial time greedy algorithm
which provides a (1+ln n) factor approximation? This leads us to the following question:

Open Question 4 (Tight inapproximability of k-DOMINATING SET). Is there a (log n)1−o(1) factor
approximation algorithm for k-DOMINATING SET running in time nk−0.1?

We conclude the discussion on k-DOMINATING SET with an open question on W[2]-hardness of
approximation. As noted earlier, k-DOMINATING SET is a W[2]-complete problem, and Theorem 4
shows that the problem is W[1]-hard to approximate to any F(k) factor. However, is there some
computable function F for which approximating k-DOMINATING SET is in W[1]? In other words
we have:

Open Question 5 (W[2]-completeness of approximating k-DOMINATING SET). Can we base total
inapproximability of k-DOMINATING SET on W[2] �= FPT?

3.1.3. Parameterized Inapproximability of Steiner Orientation by Gap Amplification

Gap amplification is a widely used technique in the classic literatures on (NP-)hardness of
approximation (e.g., [41–43]). In fact, the arguably simplest proof of the PCP theorem, due to Dinur [43],
is indeed via repeated gap amplification. The overall idea here is simple: we start with a hardness of
approximation for a problem with small factor (e.g., 1 + 1/n). At each step, we perform an operation
that transforms an instance of our problem to another instance, in such a way that the gap becomes
bigger; usually this new instance will also be bigger than our instance. By repeatedly applying this
operation, one can finally arrive at a constant, or even super constant, factor hardness of approximation.
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There are two main parameters that determine the success/failure of such an approach: how large
the new instance is compared to the old instance (i.e., size blow-up) and how large the new gap is
compared to the old gap, in each operation. To see how these two come into the picture, let us first
consider a case study where a (straightforward) gap amplification procedure does not work: k-CLIQUE.
The standard way to amplify the gap for k-CLIQUE is through graph product. Recall that the (tensor)
graph product of a graph G = (V, E) with itself, denoted by G⊗2, is a graph whose vertex set is V2

and there is an edge between (u1, u2) and (v1, v2) if and only if (u1, v1) ∈ E and (u2, v2) ∈ E. It is not
hard to check that, if we can find a clique of size t in G⊗2, then we can find one of size

√
t in G (and

vice versa). This implies that, if we have an instance of clique that is hard to approximate to within a
factor of (1 + ε), then we may take the graph product with itself which yields an instance of CLIQUE

that is hard to approximate to within a factor of (1 + ε)2.
Now, let us imagine that we start with the hard instance of an exact version of k-CLIQUE. We may

think of this as being hard to approximate to within a factor of (1− 1/k). Hence, we may apply
the above gap amplification procedure log k times, resulting in an instance of CLIQUE that is hard

to approximate to within a factor of (1− 1/k)2log k
, which is a constant bounded away from one (i.e.,

≈ 1/e). The bad news here is that the number of the vertices of the final graph is n2log k
= nk, where n is

the number of vertices of the initial graph. This does not give any lower bound, because we can solve
k-CLIQUE in the original graph in nO(k) time trivially! In the next subsection, we will see a simple way
to prove hardness of approximating k-CLIQUE, assuming stronger assumptions. However, it remains
an interesting and important open question how to prove such hardness from a non-gap assumption:

Open Question 6. Is it W[1]-hard or ETH-hard to approximate k-CLIQUE to within a constant factor in
FPT time?

Having seen a failed attempt, we may now move on to a success story. Remarkably,
Wlodarczyk [44] recently managed to use gap amplification to prove hardness of approximation
for connectivity problems, including the k-STEINER ORIENTATION problem. Here we are given a
mixed graph G, whose edges are either directed or undirected, and a set of k terminal pairs {(si, ti)}i∈[k].
The goal is to orient all the undirected edges in such a way that maximizes the number of ti that can be
reached from si. The problem is known to be in XP [45] but is W[1]-hard even when all terminal pairs
can be connected [46]. Starting from this W[1]-hardness, Wlodarczyk [44] devises a gap amplification
step that implies a hardness of approximation with factor (log k)o(1) for the problem. Due to the
technicality of the gap amplification step, we will not go into the specifics in this survey. However,
let us point out the differences between this gap amplification and the (failed) one for CLIQUE above.
The key point here is that the new instance of Wlodarczyk’s gap amplification has size of the form
f (k) · n instead of n2 as in the graph product. This means that, even if we are applying Wlodarczyk’s
gap amplification step log(k) times, or, more generally, g(k) times, it only results in an instance of size
f ( f (· · · ( f (︸ ︷︷ ︸

g(k)times

k)))) · n, which is still FPT! Since the technique is still quite new, it is an exciting frontier to

examine whether other parameterized problems allow such similar gap amplification steps.

3.2. Hardness from Gap Hypotheses

In the previous subsection, we have seen that several hardness of approximation results can
be proved based on standard assumptions. However, as alluded to briefly, some basic problems,
including k-CLIQUE, still evades attempts at proving such results. This motivates several researchers
in the community to come up with new assumptions that allow more power and flexibility in proving
inapproximability results. We will take a look at two of these hypotheses in this subsection; we note
that there have also been other assumptions formulated, but we only focus on these two since they
arguably have been used most often.
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The first assumption, called the Parameterized Inapproximability Hypothesis (PIH) for short,
can be viewed as a gap analogue of the W[1] �= FPT assumption. There are many (equivalent) ways to
state PIH. We choose to state it in terms of an inapproximability of the colored version of DENSEST

k-SUBGRAPH. In MULTICOLORED DENSEST k-SUBGRAPH, we are given a graph G = (V, E) where the
vertex set V is partition in to k parts V1, . . . , Vk. The goal is to select k vertices v1 ∈ V1, v2 ∈ V2, . . . , vk ∈
Vk such that {v1, . . . , vk} induces as many edges as possible.

It is easy to see that the exact version of this problem is W[1]-hard, via a straightforward reduction
from k-CLIQUE. PIH postulates that even the approximate version of this problem is hard:

Hypothesis 1 (Parameterized Inapproximability Hypothesis (PIH) [47,48]). For some constant ε > 0,
there is no (1 + ε) factor FPT approximation algorithm for MULTICOLORED DENSEST k-SUBGRAPH.

There are two important remarks about PIH. First, the factor (1 + ε) is not important, and the
conjecture remains equivalent even if we state it for a factor C for any arbitrarily large constant C;
this is due to gap amplification via parallel repetition [42]. Second, PIH implies that k-CLIQUE is hard
to approximate to within any constant factor:

Lemma 1. Assuming PIH, there is no constant factor FPT approximation algorithm for k-CLIQUE.

The above result can be shown via a classic reduction of Feige, Goldwasser, Lovász, Safra and
Szegedy (henceforth FGLSS) [49], which was one of the first works connecting proof systems and
hardness of approximation. Specifically, the FGLSS reduction transforms G to another graph G′ by
viewing the edges of G as vertices of G′. Then, we connect {u1, v1} and {u2, v2} except when the
union {u1, v1} ∪ {u2, v2} contains two distinct vertices from the same partition. One can argue that
the size of the largest clique in G′ is exactly equal to the number of edges in the optimal solution of
MULTICOLORED DENSEST k-SUBGRAPH on G. As a result, PIH implies hardness of approximation of
the former. Interestingly, however, it is not known if the inverse is true and this remains an interesting
open question:

Open Question 7. Does PIH hold if we assume that k-CLIQUE is FPT inapproximable to within any
constant factor?

As demonstrated by the FGLSS reduction, once we have a gap, it is much easier to give a
reduction to another hardness of approximation result, because we do not have to create the initial
gap ourselves (as in the previous subsection) but only need to preserve or amplify the gap. Indeed,
PIH turns out to be a pretty robust hypothesis that gives FPT inapproximability for many problems,
including k-CLIQUE, DIRECTED ODD CYCLE TRAVERSAL [48] and STRONGLY CONNECTED STEINER

SUBGRAPH [50]. We remark that the current situation here is quite similar to that of the landscape
of the classic theory of hardness of approximation before the PCP Theorem [21,22] was proved.
There, Papadimitriou and Yannakakis introduced a complexity class MAX-SNP and show that many
optimization problems are hard (or complete) for this class [51]. Later, the PCP Theorem confirms that
these problems are NP-hard. In our case of FPT inapproximability, PIH seems to be a good analogy of
MAX-SNP for problems in W[1] and, as mentioned before, PIH has been used as a starting point of
many hardness of approximation results. However, there has not yet been many reverse reductions to
PIH, and this is one of the motivation behind Question 7 above.

Despite the aforementioned applications of PIH, there are still quite a few questions that seem out
of reach of PIH, such as whether there is an o(k) factor FPT approximation for k-CLIQUE or questions
related to running time lower bounds of approximation algorithms. On this front, another stronger
conjecture called the Gap Exponential Time Hypothesis (Gap-ETH) is often used instead:

212



Algorithms 2020, 13, 146

Hypothesis 2 (Gap Exponential Time Hypothesis (Gap-ETH) [52,53]). For some constants ε, δ > 0,
there is no O(2δn)-time algorithm that can, given a 3CNF formula, distinguish between the following two cases:

• (Completeness) the formula is satisfiable.
• (Soundness) any assignment violates more than ε fraction of the clauses.

Here n denotes the number of clauses [54].

Clearly, Gap-ETH is a strengthening of ETH, which can be thought of in the above form but
with ε = 1/n. Another interesting fact is that Gap-ETH is stronger than PIH. This can be shown
via the standard reduction from 3SAT to k-CLIQUE that establishes NΩ(k) lower bound for the latter.
The reduction, due to Chen et al. [55,56], proceed as follows. First, we partition the set of clauses C
into C1, . . . , Ck each of size n/k. For each Ci, we create a partition Vi in the new graph where each
vertex corresponds to all partial assignments (to variables that appear in at least one clause of Ck) that
satisfy all the clauses in Ck. Two vertices are connected if the corresponding partial assignments are
consistent, i.e., they do not assign a variable to different values.

If there is an assignment that satisfies all the clauses, then clearly the restrictions of this assignment
to each clause corresponds to k vertices from different partitions that form a clique. On the other hand,
it is also not hard to argue that, in the soundness case, the number of edges induced by any k vertices
from different partitions is at most 1−Θ(ε). Thus, Gap-ETH implies PIH as claimed.

Now that we have demonstrated that Gap-ETH is at least as strong as PIH, we may go further
and ask how much more can we achieve from Gap-ETH, compared to PIH. The obvious consequences
of Gap-ETH is that it can give explicit running time lower bounds for FPT hardness of approximation
results. Perhaps more surprising, however, is that it can be used to improve the inapproximability
ratio as well. The rest of this subsection is devoted to present some of these examples, together with
brief overviews of how the proofs of these results work.

3.2.1. Strong Inapproximability of k-Clique

Our first example is the k-CLIQUE problem. Obviously, we can approximate k-CLIQUE to within a
factor of k, by just outputting any single vertex. It had long been asked whether an o(k)-approximation
is achievable in FPT time. As we saw above, PIH implies that a constant factor FPT approximation
does not exist, but does not yet resolve this question. Nonetheless, assuming Gap-ETH, this question
can be resolved in the negative:

Theorem 5 ([39]). Assuming Gap-ETH, there is no o(k)-FPT-approximation for k-CLIQUE.

The reduction used in [39] to prove the above inapproximability is just a simple modification
of the above reduction [55,56] that we saw for k-CLIQUE. Suppose that we would like to rule out a
k
g -approximation, where g = g(k) is a function such that limk→∞ g(k) = ∞. The only change in the
reduction is that, instead of letting C1, . . . , Ck be the partition of the set of clauses C, we let each Ci be a
set of Dn

g clauses for some sufficiently large constant D > 0. The rest of the reduction works similar to
before: for each Ci, we create a vertex corresponding to each partial assignment that satisfies all the
clauses in Ci. Two vertices are joined by an edge if and only if they are consistent. This completes the
description of the reduction.

To see that the reduction yields Theorem 5, first note that, if there is an assignment that satisfies
the CNF formula, then we can again pick the restrictions on this formula onto C1, . . . , Ck; these gives k
vertices that induces a clique in the graph.

On the other hand, suppose that every assignment violates more than an ε fraction of clauses.
We will argue that there is no clique of size g in the constructed graph. The only property we need
from the subsets C1, . . . , Ck is that the union of any g such subsets contain at least (1− ε) fraction of
the clauses. It is not hard to show that this is true with high probability, when we choose D to be
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sufficiently large. Now, suppose for the sake of contradiction that there exists a clique of size g in the
graph. Since the vertices corresponding to the same subset Ci form an independent set, it must be
that these g vertices are from different subsets. Let us call these subsets Ci1 , · · · , Cig . Because these
vertices induce a clique, we can find a global assignment that is consistent with each vertex. This global
assignment satisfies all the clauses in Ci1 ∪ · · · ∪ Cig . However, Ci1 ∪ · · · ∪ Cig contains at least 1− ε

fraction of all clauses, which contradicts to our assumption that every assignment violates more than ε

fraction of the clauses.
Now, if we can o(k)-approximate k-CLIQUE in T(k) · NO(1) time. Then, we may run this algorithm

to distinguish the two cases in Gap-ETH in f (k) · (2Dn/g)O(1) = 2o(n) time, which violates Gap-ETH.
This concludes our proof sketch. We end by remarking that the reduction may also be viewed as an
instantiation of the randomized graph product [41,57,58], and it can also be derandomized. We omit
the details of the latter here. Interested readers may refer to [39] for more detail.

3.2.2. Strong Inapproximability of Multicolored Densest k-Subgraph and Label Cover

For our second example, we go back to the MULTICOLORED DENSEST k-SUBGRAPH once again.
Recall that PIH asserts that this problem is hard to approximate to some constant factor, and we have
seen above that Gap-ETH also implies this. On the approximation front, however, only the trivial
k-approximation algorithm is known: just pick a vertex that has edges to as many partitions as possible.
Then, output that vertex and one of its neighbors from each partition. It is hence a natural question to
ask whether it is possible to beat this approximation ratio. This question has been, up to lower order
terms, answered in the negative, assuming Gap-ETH:

Theorem 6 ([59]). Assuming Gap-ETH, there is no k1−o(1)-approximation for MULTICOLORED DENSEST

k-SUBGRAPH.

An interesting aspect of the above result is that, even in the NP-hardness regime, no NP-hardness
of factor kγ for some constant γ > 0 is known. In fact, the problem is closely related to (and is a special
case of) a well-known conjecture in the hardness of approximation community called the Sliding
Scale Conjecture (SSC) [60–62]. (See [59] for more discussion on the relation between the two.) Thus,
this is yet another instance where taking a parameterized complexity perspective helps us advance
knowledge even in the classical settings.

To prove Theorem 6, arguably the most natural reduction here is the above reduction for Clique!
Note that we now view the vertices corresponding to each subset Ci as forming a partition Vi.
The argument in the YES case is exactly the same as before: if the formula is satisfiable, then there is a
(multicolored) k-clique. However, as the readers might have noticed, the argument in the NO case
does not go through anymore. In particular, even when the graph is quite dense (e.g., having half of
the edges present), it may not contain any large clique at all and hence it is unclear how to recover
back an assignment that satisfies a large fraction of constraints.

This obstacle was overcomed in [59] by proving an agreement testing theorem (i.e., direct product
theorem), which is of the following form. Given k local functions f1, . . . , fk, where fi : Si → {0, 1}
is a boolean function whose domain Si is a subset of a universe U . If some (small) ζ fraction of the
pairs agree [63] with each other, then we can find (i.e., “decode”) a global function h : [n]→ {0, 1} that
“approximately agrees” with roughly ζ fraction of the local functions. The theorem in [59] works when
S1, . . . , Sk are sets of size Ω(n).

Due to the technical nature of the definitions, we will not fully formalize the notions in the
previous paragraph. Nonetheless, let us sketch how to apply the agreement testing theorem to
prove the NO case for our reduction. Suppose for the sake of contradiction that the formula is not
(1− δ)-satisfiable and that there exists a k-subgraph with density ζ ≥ 1

k1−o(1) . Recall that each selected
vertex is simply a partial assignment onto the subset of clauses Ci for some i; we may view this as a
function fi : Si → {0, 1} where Si denote the set of variables that appear in Ci. Here the universe U is
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the set of all variables. With this perspective, we can apply the agreement testing theorem to recover
a global function h : U → {0, 1} that “approximately agrees” with roughly ζk of the local functions.
Notice that, in this context, h is simply a global assignment for the CNF formula. Previously in the
proof for inapproximability of Clique, we had a global assignment that (perfectly) agrees with g local
functions, from which we can conclude that this assignment satisfies all but δ fraction of the clauses.
It turns out that relaxing “perfect agreement” to “approximate agreement” does not affect the proof
too much, and the latter still implies that h satisfies all but δ fraction of clauses as desired.

As for the proof of the agreement testing theorem itself, we will not delve too much into detail
here. However, we note that the proof is based on looking at different “agreement levels” and the graph
associated with them. It turns out that such a graph has a certain transitivity property, which allows one
to “decode” back the global function h. This general approach of looking at different agreement levels
and their transitivity properties is standard in the direct product/agreement testing literature [64–66].
The main challenge in [59] is to make the proof works for ζ as small as 1/k, which requires a new
notion of transitivity.

To end this subsection, we remark that the MULTICOLORED DENSEST k-SUBGRAPH is known as the
2-ary Constraint Satisfaction Problem (2-CSP) in the classical hardness of approximation community.
The problem, and in particular its special case called Label Cover, serves as the starting point of
almost all known NP-hardness of approximation (see e.g., [67–69]). The technique in [59] can also be
used to show inapproximability for Label Cover with strong running time lower bound of the form
f (k) · NΩ(k) [70]. Due to known reductions, this has numerous consequences. For example, it implies,
assuming Gap-ETH, that approximating k-EVEN SET to within any factor less than two cannot be done
in f (k) · No(k) time, considerably improving the lower bound mentioned in the previous subsection.

3.2.3. Inapproximability of k-Biclique and Densest k-Subgraph

While PIH (or equivalently the MULTICOLORED DENSEST k-SUBGRAPH problem) can serve as a
starting point for hardness of approximation of many problems, there are some problems for which
not even a constant factor hardness is known under PIH, but strong inapproximability results can be
obtained via Gap-ETH. We will see two examples of this here.

First is the k-BICLIQUE problem. Recall that in this problem, we are given a bipartite graph
and we would like to determine whether there is a complete bipartite subgraph of size k. As stated
earlier in the previous subsection, despite its close relationship to k-CLIQUE, k-BICLIQUE turned
out to be a much more challenging problem to prove intractibility and even its W[1]-hardness was
only shown recently [23]. This difficulty is corroborated by its approximability status in the classical
(non-parameterized) regime; while CLIQUE is long known to be NP-hard to approximate to within
N1−o(1) factor [71], BICLIQUE is not even known to be NP-hard to approximate to within say 1.01
factor [72–75]. With this in mind, it is perhaps not a surprise that k-BICLIQUE is not known to be
hard to approximate under PIH. Nonetheless, when we assume Gap-ETH, we can in fact prove a very
strong hardness of approximation for the problem:

Theorem 7 ([39]). Assuming Gap-ETH, there is no o(k)-FPT-approximation for k-BICLIQUE.

Note that, similar to k-CLIQUE, a k-approximation for BICLIQUE can be easily achieved by
outputting a single edge. Hence, in terms of the inapproximability ratio, the above result is tight.

Due to its technicality, we only sketch an outline of the proof of Theorem 7 here. Firstly,
the reduction starts by constructing a graph that is similar (but not the same) to that of k-Clique
that we describe above. The main properties of this graph is that (i) in the YES case where the formula
is satisfiable, the graph contains many copies of k-BICLIQUE, and (ii) in the NO case where the formula
is not even (1− δ)-satisfiable, the graph contains few copies of g-BICLIQUE. The construction and
these properties were in fact shown in [76]. In [39], it was observed that, if we subsample the graph by
keeping each vertex independently with probability p for an appropriate value of p, then (i) ensures
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that at least one of the k-BICLIQUE survives the subsampling , whereas (ii) ensures that no g-BICLIQUE

survives. This indeed gives the claimed result in the above theorem.
We remark that, while Theorem 7 seems to resolve the approximability of k-BICLIQUE, there is

still one aspect that is not yet completely understood: the running time lower bound. To demonstrate
this, recall that, for k-CLIQUE, the reduction that gives hardness of k-VS-g CLIQUE has size 2O(n/g);
this means that we have a running time lower bound of f (k) · NΩ(g) on the problem. This is of
course tight, because we can determine whether a graph has a g-clique in NO(g) time. However,
for k-BICLIQUE, the known reduction that gives hardness for k-VS-g BICLIQUE has size 2O(n/

√
g).

This results in a running time lower bound of only f (k) · NΩ(
√

g). Specifically, for the most basic setting
of constant factor approximation, Theorem 7 only rules out algorithms with running time f (k) · No(

√
k).

Hence, an immediate question here is:

Open Question 8. Is there an f (k) · No(k)-time algorithm that approximates k-BICLIQUE to within a
constant factor?

To put things into perspective, we note that, even for exact algorithms for k-BICLIQUE, the best
running time lower bound is still f (k) · NΩ(

√
k) [23] (under any reasonable complexity assumption).

This means that, to answer Question 8, one has to first settle the best known running time lower
bound for exact algorithms, which would already be a valuable contribution to the understanding of
the problem.

Let us now point out an interesting consequence of Theorem 7 for the DENEST k-SUBGRAPH

problem. This is the “uncolored” version of the MULTICOLORED DENSEST k-SUBGRAPH problem as
defined above, where there are no partitions V1, . . . , Vk and we can pick any k vertices in the input
graph G with the objective of maximizing the number of induced edges. The approximability status of
DENEST k-SUBGRAPH very much mirrors that of k-BICLIQUE. Namely, in the parameterized setting,
PIH is not known to imply hardness of approximation for DENSEST k-SUBGRAPH. Furthermore, in
the classic (non-parameterized) setting, DENSEST k-SUBGRAPH is not known [72,76–79] to be NP-hard
to approximate even to within a factor of say 1.01. Despite these, Gap-ETH does give a strong
inapproximability for DENSEST k-SUBGRAPH, as stated below:

Theorem 8 ([39]). Assuming Gap-ETH, there is no ko(1)-FPT-approximation for DENSEST k-SUBGRAPH.

In fact, the above result is a simple consequence of Theorem 7. To see this, recall the
following classic result in extremal graph theory commonly referred to as the Kővári-Sós-Turán
(KST) Theorem [80]: any k-vertex graph that does not contain a g-biclique as a subgraph has density at
most O(k−1/g). Now, the hardness for k-BICLIQUE from Theorem 7 tells us that there is no FPT time
algorithm that can distinguish between the graph containing k-biclique from one that does not contain
g-biclique for any g = ω(1). When the graph contains a k-biclique, we have a k-vertex subgraph with
density (at least) 1/2. On the other hand, when the graph does not even contain a g-biclique, the KST
Theorem ensures us that any k-vertex subgraph has density at most O(k1/g). This indeed gives a gap
of O(k1/g) in terms of approximation Densest k-Subgraph and finishes the proof sketch for Theorem 8.

Unfortunately, Theorem 8 does not yet resolve the FPT approximability of DENSEST k-SUBGRAPH.
In particular, while the hardness is only of the form ko(1), the best known algorithm (which is the same
as that of the multicolored version discussed above) only gives an approximation ratio of k. Hence,
we may ask whether this can be improved:

Open Question 9. Is there an o(k)-FPT-approximation algorithm for DENSEST k-SUBGRAPH?

This should be contrasted with Theorem 6, for which the FPT approximability of MULTICOLORED

DENSEST k-SUBGRAPH is essentially resolved (up to lower order terms).
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4. Algorithms

In this section we survey some of the developments on the algorithmic side in recent years.
The organization of this section is according to problem types. We begin with basic packing and
covering problems in Sections 4.1 and 4.2. We then move on to clustering in Section 4.3, network design
in Section 4.4, and cut problems in Section 4.5. In Section 4.6 we present width reduction problems.

The algorithms in the above mentioned subsections compute approximate solutions to problems
that are W[1]-hard. Therefore it is necessary to approximate, even when using parameterization.
However, one may also aim to obtain faster parameterized runtimes than the known FPT algorithms,
by sacrificing in the solution quality. We present some results of this type in Section 4.7.

4.1. Packing Problems

For a packing problem the task is to select as many combinatorial objects of some mathematical
structure (such as a graph or a set system) as possible under some constraint, which restricts some
objects to be picked if others are. A basic example is the INDEPENDENT SET problem, for which a
maximum sized set of vertices of a graph needs to be found, such that none of them are adjacent to
each other.

4.1.1. Independent Set

The INDEPENDENT SET problem is notoriously hard in general. Not only is there no polynomial
time n1−ε-approximation algorithm [81] for any constant ε > 0, unless P = NP, but also, under Gap-ETH,
no g(k)-approximation can be computed in f (k)nO(1) time [39] for any computable functions f and g,
where k is the solution size. On the other hand, for planar graphs a PTAS exists [82]. Hence a natural
question is how the problem behaves for graphs that are “close” to being planar.

One way to generalize planar graphs is to consider minor-free graphs, because planar graphs are
exactly those excluding K5 and K3,3 as minors. When parameterizing by the size of an excluded minor,
the INDEPENDENT SET problem is paraNP-hard, since the problem is NP-hard on planar graphs [83].
Nevertheless a PAS can be obtained for this parameter [84].

Theorem 9 ([84,85]). Let H be a fixed graph. For H-minor-free graphs, INDEPENDENT SET admits an
(1 + ε)-approximation algorithm that runs in f (H, ε)nO(1) time for some function f .

This result is part of the large framework of “bidimensionality theory” where any graph in an
appropriate minor-closed class has treewidth bounded above in terms of the problem’s solution value,
typically by the square root of that value. These properties lead to efficient, often subexponential,
fixed-parameter algorithms, as well as polynomial-time approximation schemes, for bidimensional
problems in many minor-closed graph classes. The bidimensionality theory is based on algorithmic
and combinatorial extensions to parts of the Robertson–Seymour Graph Minor Theory, in particular
initiating a parallel theory of graph contractions. The foundation of this work is the topological
theory of drawings of graphs on surfaces. We refer the reader to the survey of [86] and more recent
papers [85,87,88].

A different way to generalize planar graphs is to consider a planar deletion set, i.e., a set of vertices
in the input graph whose removal leaves a planar graph. Taking the size of such a set as a parameter,
INDEPENDENT SET is again paraNP-hard [83]. However, by first finding a minimum sized planar
deletion set, then guessing the intersection of this set with the optimum solution to INDEPENDENT SET,
and finally using the PTAS for planar graphs [82], a PAS can be obtained parameterized by the size of
a planar deletion set [8].

Theorem 10 ([8]). For the INDEPENDENT SET problem a (1+ ε)-approximation can be computed in 2knO(1/ε)

time for any ε > 0, where k is the size of a minimum planar deletion set.
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Ideas using linear programming allow us to generalize and handle larger noise at the expense
of worse dependence on ε. Bansal et al. [89] showed that given a graph obtained by adding
δn edges to some planar graph, one can compute a (1 + O(ε + δ))-approximate independent
set in time nO(1/ε4), which is faster than the 2knO(1/ε) running time of Theorem 10 for large
k = δn. Magen and Moharrami [90] showed that for every graph H and ε > 0, given a graph
G = (V, E) that can be made H-minor-free after at most δn deletions and additions of vertices or
edges, the size of the maximum independent set can be approximately computed within a factor
(1 + ε + O(δ|H|

√
log |H|)) in time n f (ε,H). Note that this algorithm does not find an independent set.

Recently, Demaine et al. [91] presented a general framework to obtain better approximation algorithms
for various problems including INDEPENDENT SET and CHROMATIC NUMBER, when the input graph
is close to well-structured graphs (e.g., bounded degeneracy, degree, or treewidth).

It is also worth noting here that INDEPENDENT SET problem can be generalized to the
d-SCATTERED SET problem where we are given an (edge-weighted) graph and are asked to select at
least k vertices, so that the distance between any pair is at least d [92]. Recently in [93] some lower and
upper bounds on the approximation of the d-SCATTERED SET problem have been provided.

A special case of INDEPENDENT SET is the INDEPENDENT SET OF RECTANGLES problem, where a
set of axis-parallel rectangles is given in the two-dimensional plane, and the task is to find a maximum
sized subset of non-intersecting rectangles. This is a special case, since pairwise intersections of
rectangles can be encoded by edges in a graph for which the vertices are the rectangles. Parameterized
by the solution size, the problem is W[1]-hard [94], and while a QPTAS is known [95], it is a challenging
open question whether a PTAS exists. It was shown [96] however that both a PAS and a PSAKS exist for
INDEPENDENT SET OF RECTANGLES parameterized by the solution size, even for the weighted version.

The runtime of this PAS is f (k, ε)ng(ε) for some functions f and g, where k is the solution size.
Note that the dependence on ε in the degree of the polynomial factor of this algorithm cannot be
removed, unless FPT=W[1], since any efficient PAS with runtime f (k, ε)nO(1) could be used to compute
the optimum solution in FPT time by setting ε to 1

k+1 in the W[1]-hard unweighted version of the
problem [94]. However, in the so-called shrinking model an efficient PAS can be obtained [97] for
INDEPENDENT SET OF RECTANGLES. The parameter in this case is a factor 0 < δ < 1 by which every
rectangle is shrunk before computing an approximate solution, which is compared to the optimum
solution without shrinking.

Theorem 11 ([96,97]). For the INDEPENDENT SET OF RECTANGLES problem a (1+ ε)-approximation can be
computed in kO(k/ε8)nO(1/ε8) time for any ε > 0, where k is the size of the optimum solution, or in f (δ, ε)nO(1)

time for some computable function f and any ε > 0 and 0 < δ < 1, where δ is the shrinking factor. Moreover, a
(1 + ε)-approximate kernel with kO(1/ε8) rectangles can be computed in polynomial time.

Another special case of INDEPENDENT SET is the INDEPENDENT SET ON UNIT DISK GRAPH

problem, where given set of n unit disks in the Euclidean plane, the task is to determine if there exists
a set of k non-intersecting disks. The problem is NP-hard [98] but admits a PTAS [99]. Marx [94]
showed that, when parameterized by the solution size, the problem is W[1]-hard; this also rules out
EPTAS (and even efficient PAS) for the problem, assuming FPT �= W[1]. On the other hand, in [100]
the authors give an FPT algorithm for a special case of INDEPENDENT SET ON UNIT DISK GRAPH when
there is a lower bound on the distance between any pair of centers.

4.1.2. Vertex Coloring

A problem related to INDEPENDENT SET is the VERTEX COLORING problem, for which the vertices
need to be colored with integer values, such that no two adjacent vertices have the same color (which
means that each color class forms an independent set in the graph). The task is to minimize the
number of used colors. For planar graphs the problem has a polynomial time 4/3-approximation
algorithm [8] via the celebrated Four Color Theorem, and a better approximation is not possible in
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polynomial time [101]. Using this algorithm, a 7/3-approximation can be computed in FPT time when
parameterizing by the size of a planar deletion set [8]. When generalizing planar graphs by excluding
any fixed minor, and taking its size as the parameter, a 2-approximation can be computed in FPT
time [102]. Due to the NP-hardness for planar graphs [101], neither of these two parameterizations
admits a PAS, unless P = NP.

Theorem 12 ([8,102]). For the VERTEX COLORING problem

• a 7/3-approximation can be computed in kknO(1) time, where k is the size of a minimum planar deletion
set, and

• a 2-approximation can be computed in f (k)nO(1) time for some function f , where k is the size of an
excluded minor of the input graph.

One way to generalize VERTEX COLORING is to see each color class as an induced graph of
degree 0. The DEFECTIVE COLORING problem [103] correspondingly asks for a coloring of the vertices,
such that each color class induces a graph of maximum degree Δ, for some given Δ. The aim again is
to minimize the number of used colors. In contrast to VERTEX COLORING, the DEFECTIVE COLORING

problem is W[1]-hard [104] parameterized by the treewidth. This parameter measures how “tree-like”
a graph is, and is defined as follows.

Definition 1. A tree decomposition of a graph G = (V, E) is a tree T for which every node is associated with a
bag X ⊆ V, such that the following properties hold:

1. the union of all bags is the vertex set V of G,
2. for every edge (u, v) of G, there is a node of T for which the associated bag contains u and v, and
3. for every vertex u of G, all nodes of T for which the associated bags contain u, induce a connected subtree

of T.

The width of a tree decomposition is the size of the largest bag minus 1 (which implies that a tree has a
decomposition of width 1 where each bag contains the endpoints of one edge). The treewidth of a graph is the
smallest width of any of its tree decompositions.

Treewidth is fundamental parameter of a graph and will be discussed more elaborately in
Section 4.6.1. However, it is worth mentioning here that VERTEX COLORING is in FPT when
parameterized by treewidth.

The strong polynomial-time approximation lower bound of n1−ε for VERTEX COLORING [81]
naturally carries over to the more general DEFECTIVE COLORING problem. A much improved
approximation factor of 2 is possible though in FPT time if the parameter is the treewidth [104].
It can be shown however, that a PAS is not possible in this case, as there is no (3/2− ε)-approximation
algorithm for any ε > 0 parameterized by the treewidth [104], unless FPT = W[1]. A natural question
is whether the bound Δ of DEFECTIVE COLORING can be approximated instead of the number of
colors. For this setting, a bicriteria PAS parameterized by the treewidth exists [104], which computes
a solution with the optimum number of colors where each color class induces a graph of maximum
degree at most (1 + ε)Δ.

Theorem 13 ([104]). For the DEFECTIVE COLORING problem, given a tree decomposition of width k of the
input graph,

• a solution with the optimum number of colors where each color class induces a graph of maximum degree
(1 + ε)Δ can be computed in (k/ε)O(k)nO(1) time for any ε > 0,

• a 2-approximation (of the optimum number of colors) can be computed in kO(k)nO(1) time, but
• no (3/2− ε)-approximation (of the optimum number of colors) can be computed in f (k)nO(1) time for

any ε > 0 and computable function f , unless FPT = W[1].
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The algorithms of the previous theorem build on the techniques of [105] using approximate
addition trees in combination with dynamic programs that yield XP algorithms for these problems.
This technique can be applied to various problems (cf. Section 4.2), including a different generalization
of VERTEX COLORING called EQUITABLE COLORING. Here the aim is to color the vertices of a graph
with as few colors as possible, such that every two adjacent vertices receive different colors, and all
color classes contain the same number of vertices. It is a generalization of VERTEX COLORING, since one
may add a sufficiently large independent set (i.e., a set of isolated vertices) to a graph such that the
number of colors needed for an optimum VERTEX COLORING solution is the same as for an optimum
EQUITABLE COLORING solution.

The EQUITABLE COLORING problem is W[1]-hard even when combining the number of colors
needed and the treewidth of the graph as parameters [106]. On the other hand, a PAS exists [105] if the
parameter is the cliquewidth of the input graph. This is a weaker parameter than treewidth, as the
cliquewidth of a graph is bounded as a function of its treewidth. However, while bounded treewidth
graphs are sparse, cliquewidth also allows for dense graphs (such as complete graphs). Formally,
a graph of cliquewidth � can be constructed using the following recursive operations using � labels on
the vertices:

1. Introduce(x): create a graph containing a singleton vertex labelled x ∈ {1, . . . , �}.
2. Union(G1, G2): return the disjoint union of two vertex-labelled graphs G1 and G2.
3. Join(G, x, y): add all edges connecting a vertex of label x with a vertex of label y to the

vertex-labelled graph G.
4. Rename(G, x, y): change the label of every vertex of G with label x to y ∈ {1, . . . , �}.

A cliquewidth expression with � labels is a recursion tree describing how to construct a graph
using the above four operations using only labels from the set {1, . . . , �}. Notice that the cliquewidth
of a complete graph is two and therefore we have graphs of bounded clique-width but unbounded
treewidth. As stated earlier the cliquewidth of a graph is bounded above exponentially in its treewidth
and this dependence is tight for some graph families [107].

The PAS for EQUITABLE COLORING will compute a coloring using at most k colors such that
the ratio between the sizes of any two color classes is at most 1 + ε. In this sense it is a bicriteria
approximation algorithm.

Theorem 14 ([105]). For the EQUITABLE COLORING problem, given a cliquewidth expression with � labels
for the input graph, a solution with optimum number of colors where the ratio between the sizes of any two
color classes is at most 1 + ε, can be computed in (k/ε)O(k�)nO(1) time [108,109] for any ε > 0, where k is the
optimum number of colors.

A variant of VERTEX COLORING is the MIN SUM COLORING problem, where, instead of
minimizing the number of colors, the aim is to minimize the sum of (integer) colors, where the
sum is taken over all vertices. This problem is FPT parameterized by the treewidth [110], but the
related MIN SUM EDGE COLORING problem is NP-hard [111] on graphs of treewidth 2 (while being
polynomial time solvable on trees [112]). For this problem the edges need to be colored with integer
values, so that no two edges sharing a vertex have the same color, and the aim again is to minimize
the total sum of colors. Despite being APX-hard [111] and also paraNP-hard for parameter treewidth,
MIN SUM EDGE COLORING admits a PAS for this parameter [113].

Theorem 15 ([113]). For the MIN SUM EDGE COLORING problem a (1 + ε)-approximation can be computed
in f (k, ε)n time for any ε > 0, where k is the treewidth of the input graph.

4.1.3. Subgraph Packing

A special family of packing problems can be obtained by subgraph packing. Let H be a fixed
“pattern” graph. The H-PACKING problem, given the “host” graph G, asks to find the maximum
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number of vertex-disjoint copies of H. One can also let H be a family of graphs and ask the analogous
problem. There is another choice whether each copy of H is required to be an induced subgraph or a
regular subgraph. We focus on the regular subgraph case here.

When H is a single graph with k vertices, a simple greedy algorithm that finds an arbitrary copy of
H and adds it to the packing, guarantees a k-approximation in time f (H, n) · n. Here f (H, n) denotes
the time to find a copy of H in an n-vertex graph. Following a general result for k-SET PACKING,
a (k+ 1+ ε)/3-approximation algorithm that runs in polynomial time for fixed k, ε exists [114]. When H
is 2-vertex-connected or a star graph, even for fixed k, it is NP-hard to approximate the problem
better than a factor Ω(k/polylog(k)) [115]. There is no known connected H that admits an FPT (or
even XP) algorithm achieving a k1−δ-approximation for some δ > 0; in particular, the parameterized
approximability of k-PATH PACKING is wide open. It is conceivable that k-PATH PACKING admits a
parameterized o(k)-approximation algorithm, given an O(log k)-approximation algorithm for k-PATH

DELETION [116] and an improved kernel for INDUCED P3 PACKING [117].
When H is the family of all cycles, the problem becomes the VERTEX CYCLE PACKING problem,

for which the largest number of vertex-disjoint cycles of a graph needs to be found. No polynomial time
O(log1/2−ε n)-approximation is possible for this problem [118] for any ε > 0, unless every problem
in NP can be solved in randomized quasi-polynomial time. Furthermore, despite being FPT [119]
parameterized by the solution size, VERTEX CYCLE PACKING does not admit any polynomial-sized
exact kernel for this parameter [120], unless NP⊆coNP/poly. Nevertheless, a PSAKS can be found [18].

Theorem 16 ([18]). For the VERTEX CYCLE PACKING problem, a (1 + ε)-approximate kernel of size
kO(1/(ε log ε)) can be computed in polynomial time, where k is the solution size.

4.1.4. Scheduling

Yet another packing problem on graphs, which, however, has applications in scheduling and
bandwidth allocation, is the UNSPLITTABLE FLOW ON A PATH problem. Here a path with edge
capacities is given together with a set of tasks, each of which specifies a start and an end vertex on
the path and a demand value. The goal is to find the largest number of tasks such that for each
edge on the path the total demand of selected tasks for which the edge lies between its start and
end vertex, does not exceed the capacity of the edge. This problem admits a QPTAS [121], but it
remains a challenging open question whether a PTAS exists. When parameterizing by the solution size,
UNSPLITTABLE FLOW ON A PATH is W[1]-hard [122]. However a PAS exists [122] for this parameter.

Theorem 17 ([122]). For the UNSPLITTABLE FLOW ON A PATH problem a (1 + ε)-approximation can be
computed in 2O(k log k)ng(ε) time for some computable function g and any ε > 0, where k is the solution size.

Another scheduling problem is FLOW TIME SCHEDULING, for which a set of jobs is given, each of
which is specified by a processing time, a release date, and a weight. The jobs need to be scheduled on
a given number of machines, such that no job is processed before its release date and a job only runs on
one machine at a time. Given a schedule, the flow time of a job is the weighted difference between its
completion time and release date, and the task for the FLOW TIME SCHEDULING problem is to minimize
the sum of all flow times. Two types of schedules are distinguished: in a preemtive schedule a job may
be interrupted on one machine and then resumed on another, while in a non-preemtive schedule every
job runs on one machine until its completion once it was started. If pre-emptive schedules are allowed,
FLOW TIME SCHEDULING has no polynomial time O(log1−ε p)-approximation algorithm [123], unless
P = NP, where p is the maximum processing time. For the more restrictive non-preemtive setting,
no O(n1/2−ε)-approximation can be computed in polynomial time [124], unless P = NP, where n is
the number of jobs. The latter lower bound is in fact even valid for only one machine, and thus
parameterizing FLOW TIME SCHEDULING by the number of machines will not yield any better
approximation ratio in this setting. A natural parameter for FLOW TIME SCHEDULING is the maximum
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over all processing times and weights of the given jobs. It is not known whether the problem is FPT or
W[1]-hard for this parameter. However, when combining this parameter with the number of machines,
a PAS can be obtained [125] despite the strong polynomial time approximation lower bounds.

Theorem 18 ([125]). For the FLOW TIME SCHEDULING problem a (1+ ε)-approximation can be computed in
(mk)O(mk3/ε)nO(1) time in the preemtive setting, and in (mk/ε)O(mk5)nO(1) time in the non-preemtive setting,
for any ε > 0, where m is the number of machines and k is an upper bound on every processing time and weight.

4.2. Covering Problems

For a covering problem the task is to select a set of k combinatorial objects in a mathematical
structure, such as a graph or set system (i.e., hypergraph), under some constraints that demands
certain other objects to be intersected/covered. A basic example is the SET COVER problem where we
are given a set system, which is simply a collection of subsets of a universe. The goal is to determine
whether there are k subsets whose union cover the whole universe.

There are two ways define optimization based on covering problems. First, we may view the
covering demands as strict constraints and aim to find a solution that minimize the constraint/cost
while covering all objects (i.e., relaxing the size-k constraint); this results in a minimization problem.
Second, we may view the size constraint as a strict constraint and aim to find a solution that covers as
many objects as possible; this results in a maximization problem. We divide our discussion mainly into
two parts, based on these two types of optimization problems. In Section 4.2.3, we discuss problems
related to covering that fall into neither category.

4.2.1. Minimization Variants

We start out discussion with the minimization variants. For brevity, we overload the problem
name and use the same name for the minimization variant (e.g., we use SET COVER instead of the more
cumbersome MIN SET COVER). Later on, we will use different names for the maximization versions;
hence, there will be no confusion.

Set Cover, Dominating Set and Vertex Cover. As discussed in detail in Section 3.1.2, SET COVER

and equivalently DOMINATING SET are very hard to approximate in the general case. Hence, special
cases where some constraints are placed on the set system are often considered. Arguably the most
well-studied special case of SET COVER is the VERTEX COVER problem, in which the set system is a
graph. That is, we would like to find the smallest set of vertices such that every edge has at least one
endpoint in the selected set (i.e., the edge is “covered”). VERTEX COVER is well known to be FPT [126]
and admit a linear-size kernel [127]. A generalization of VERTEX COVER on d-uniform hypergraph,
where the input is now a hypergraph and the goal is to find the smallest set of vertices such that every
hyperedge contain at least one vertex from the set, is also often referred to as d-HITTING SET in the
parameterized complexity community. However, we will mostly use the nomenclature VERTEX COVER

on d-uniform hypergraph because many algorithms generalizes well from VERTEX COVER in graphs
to hypergraphs. Indeed, branching algorithms for VERTEX COVER on graphs can be easily generalized
to hypergraphs, and hence the latter is also FPT. Polynomial-size kernels are also known for VERTEX

COVER on d-uniform hypergraphs [128].
While VERTEX COVER both on graphs and d-uniform hypergraphs are already tractable,

approximation can still help make algorithms even faster and kernels even smaller. We defer this
discussion to Section 4.7.

Connected Vertex Cover. A popular variant of VERTEX COVER that is the CONNECTED VERTEX

COVER problem, for which the computed solution is required to induce a connected subgraph of the
input. Just as VERTEX COVER, the problem is FPT [129]. However, unlike VERTEX COVER, CONNECTED

VERTEX COVER does not admit a polynomial-time kernel [130], unless NP⊆coNP/poly. In spite of
this, a PSAKS for CONNECTED VERTEX COVER exists:
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Theorem 19 ([18]). For any ε > 0, an (1 + ε)-approximate kernel with kO(1/ε) vertices can be computed in
polynomial time.

The ideas behind [18] is quite neat and we sketch it here. There are two reduction rules: (i) if there
exists a vertex with degree more than Δ := 1/ε just “select” the vertex and (ii) if we see a vertex with
more than k false twins, i.e., vertices with the same set of neighbors, then we simply remove it from
the graph. An important observation for (i) is that, since we have to either pick the vertex or all ≥ Δ
neighbors anyway, we might as well just select it even in the second case because it affects the size of
the solution by a factor of at most 1+Δ

Δ = 1 + ε. For (ii), it is not hard to see that we either select one of
the false twins or all of them; hence, if a vertex has more than k false twins, then it surely cannot be in
the optimal solution. Roughly speaking, these two observations show that this is an (1 + ε)-kernel.
Of course, in the actual proof, “selecting” a vertex needs to be defined more carefully, but we will
not do it here. Nonetheless, imagine the end step when we cannot apply these two reduction rules
anymore. Essentially speaking, we end up with a graph where some (less than (1 + ε)k) vertices are
marked as “selected” and the remaining vertices have degree at most Δ. Now, every vertex is either
inside the solution, or all of its neighbors must lie in the solution. There are only (at most) k vertices in
the first case. For the second case, note that these vertices have degree at most Δ and they have at most
k false twins, meaning that there are at most k1+Δ = k1+1/ε such vertices. In other words, the kernel is
of size kO(1/ε) as desired. This constitutes the main ideas in the proof; let us stress again that the actual
proof is of course more complicated than this since we did not define rule (i) formally.

Recently, Krithika et al. [131] considered the following structural parameters beyond the solution
size: split deletion set, clique cover and cluster deletion set. In each case, the authors provide a
PSAKS for the problem. We will not fully define these parameters here, but we note that the first
parameter (split deletion set) is always no larger than the size of the minimum vertex cover of the graph.
In another very recent work, Majumdar et al. [132] give a PSAKS for each of the following parameters,
each of which is always no larger than the solution size: the deletion distance of the input graph to the
class of cographs, the class of bounded treewidth graphs, and the class of all chordal graphs. Hence,
these results may be viewed as a generalization of the aforementioned PSAKS from [18].

Connected Dominating Set. Similar to CONNECTED VERTEX COVER, the CONNECTED DOMINATING

SET problem is the variant of DOMINATING SET for which the solution additionally needs to induce a
connected subgraph of the input graph. When placing no restriction on the input graph, the problem
is as hard to approximate as DOMINATING SET. However, for some special classes of graphs, PSAKS
or bi-PSAKS [133] are known; these include graphs with bounded expansion, nowhere dense graphs,
and d-biclique-free graphs [134].

Covering Problems parameterized by Graph Width Parameters. Several works in literature also
study the approximability of variants of VERTEX COVER and DOMINATING SET parameterized by
graph widths [105,135]. These variants include:

• POWER VERTEX COVER (PVC). Here, along with the input graph, each edge has an integer
demand and we have to assign (power) values to vertices, such that each edge has at least one
endpoint with a value at least its demand. The goal is to minimize the total assigned power.
Note that this is generalizes of VERTEX COVER, where edges have unit demands.

• CAPACITATED VERTEX COVER (CVC). The problem is similar to VERTEX COVER, except that each
vertex has a capacity which limits the number of edges that it can cover. Once again, VERTEX

COVER is a special case of CVC where each vertex’s capacity is ∞.
• CAPACITATED DOMINATING SET (CDS). Analogous to CVC, this is a generalization of

DOMINATING SET where each vertex has a capacity and it can only cover/dominate at most that
many other vertices.
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All problems above are FPT under standard parameter (i.e., the optimum) [135,136]. However,
when parameterizing by the treewidth [137], all three problems become W[1]-hard [135]. (This is in
contrast to VERTEX COVER and DOMINATING SET, both of which admit straightforward dynamic
programming FPT algorithms parameterized by treewidth.) Despite this, good FPT approximation
algorithms are known for the problem. In particular, a PAS is known for PVC [135]. For CVC and
CDS, a bicriteria PAS exists for the problem [105], which in this case computes a solution of size at
most the optimum, so that no vertex capacity is violated by more than a factor of 1 + ε.

The approximation algorithms for CVC and CDS are results of a more general approach
of Lampis [105]. The idea is to execute an “approximate” version of dynamic programming in
tree decomposition instead of the exact version; this helps reduce the running time from nO(w) to
(log n/ε)O(w), which is FPT. The approach is quite flexible: several approximation for graphs problems
including covering problems can be achieved via this method and it also applies to clique-width.
Please refer to [105] for more details.

Packing-Covering Duality and Erdős-Pósa Property. Given a set system (V, C) where V is the
universe and C = {C1, . . . , Cm} is a collection of subsets of V, HITTING SET is the problem of computing
the smallest S ⊆ V that intersects every Ci, and SET PACKING is the problem of computing the largest
subcollection C′ ⊆ C such that no two sets in C′ intersect. It can also be observed that the optimal value
for HITTING SET is at least the optimal value for SET PACKING, while the standard LP relaxations for
them (covering LP and packing LP) have the same optimal value by strong duality. Studying the
other direction of the inequality (often called the packing-covering duality) for natural families of
set systems has been a central theme in combinatorial optimization. The gap between the covering
optimum and packing optimum is large in general (e.g., DOMINATING SET/INDEPENDENT SET),
but can be small for some families of set systems (e.g., s-t CUT/s-t DISJOINT PATHS and VERTEX

COVER/MATCHING especially in bipartite graphs).
One notion that has been important for both parameterized and approximation algorithms is

the Erdős-Pósa property [138]. A family of set systems is said to have the Erdős-Pósa property when
there is a function f : N→ N such that for any set system in the family, if the packing optimum is k,
the covering optimum is at most f (k). This immediately implies that the multiplicative gap between
these two optima is at most f (k)/k, and constructive proofs for the property for various set systems
have led to ( f (k)/k)-approximation algorithms. Furthermore, for some problems including CYCLE

PACKING, the Erdős-Pósa property gives an immediate parameterized algorithm. We refer the reader
to a recent survey [139] and papers [119,140,141].

The original paper of Erdős and Pósa [138] proved the property for set systems (V, C) when there
is an underlying graph G = (V, E) and C is the set of cycles, which corresponds to the pair CYCLE

PACKING/FEEDBACK VERTEX SET; every graph either has at least k vertex-disjoint cycles or there is a
feedback vertex set of size at most O(k log k). Many subsequent papers also studied natural set systems
arising from graphs where V is the set of vertices or edges and C denotes a collection of subgraphs of
interest. For those set systems, Erdős-Pósa Properties are closely related to Set Packing introduced in
Section 4.1.3 and F -DELETION problems introduced in Section 4.6.

4.2.2. Maximization Variants

We now move on to the maximization variants of covering problems. To our knowledge,
these covering problems are much less studied in the context of parameterized approximability
compared to their minimization counterparts. In particular, we are only aware of works on
the maximization variants of SET COVER and VERTEX COVER, which are typically called MAX

k-COVERAGE and MAX k-VERTEX COVER respectively.

Max k-Coverage. Recall that here we are given a set system and the goal is to select k
subsets whose union is maximized. It is well known that the simple greedy algorithm yields an( e

e−1
)
-approximation [142]. Furthermore, Fiege shows, in his seminal work [29], show that this is
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tight:
( e

e−1 − ε
)
-approximation is NP-hard for any constant ε > 0. In fact, recently it has been shown

that this inapproximability applies also to the parameterized setting. Specifically, under Gap-ETH,( e
e−1 − ε

)
-approximation cannot be achieved in FPT time [143] or even f (k) · no(k) time [70]. In other

words, the trivial algorithm is tight in terms of running time, the greedy algorithm is tight in terms
of approximation ratio, and there is essentially no trade-off possible between these two extremes.
We remark here that this hardness of approximation is also the basis of hardness for k-MEDIAN and
k-MEANS [143] (see Section 4.3).

Due to the strong inapproximability result for the general case of MAX k-COVERAGE, different
parameters have to be considered in order to obtain a PAS for MAX k-COVERAGE. An interesting
positive result here is when the parameters are k and the VC dimension of the set system, for which a
PAS exists while the exact version of the problem is W[1]-hard [144].

Max k-Vertex Cover. Another special case of MAX k-COVERAGE is the restriction when each element
belongs to at most d subsets in the system. This corresponds exactly to the maximization variant of
the VERTEX COVER problem on d-uniform hypergraph, which will refer to as MAX k-VERTEX COVER.
Note here that, for such set systems, their VC-dimensions are also bounded by log d + 1 and hence
the aforementioned PAS of [144] applies here as well. Nonetheless, MAX k-VERTEX COVER admits
a much simpler PAS (and even PSAKS) compared to MAX k-COVERAGE parameterized by k and
VC-dimension, as we will discuss more below.

MAX k-VERTEX COVER was first studied in the context of parameterized complexity by
Guo et al. [145] who showed that the problem is W[1]-hard. Marx, in his survey on parameterized
approximation algorithms [8], gave a PAS for the problem with running time 2Õ(k3/ε). Later,
Lokshtanov et al. [18] shows that Marx’s approach can be used to give a PSAKS of size O(k5/ε2).
Both of these results mainly focus on graphs. Later, Skowron and Faliszewski [146–148] gave a more
general argument that both works generally for any d-uniform hypergraph and improves the running
time and kernel size:

Theorem 20 ([146]). For the MAX k-VERTEX COVER problem in d-uniform hypergraphs, a
(1 + ε)-approximation can be computed in O∗

(
(d/ε)k

)
time for any ε > 0. Moreover, an (1 + ε)-approximate

kernel with O(dk/ε) vertices can be computed in polynomial time.

The main idea of the above proof is simple and elegant, and hence we will include it here.
For convenience, we will only discuss the graph case, i.e., d = 2. It suffices to just give the O(k/ε)-vertex
kernel; the PAS immediately follows by running the brute force algorithm on the output instance from
the kernel. The kernel is as simple as it gets: just keep 2k/ε vertices with highest degrees and throw the
remaining vertices away! Note that there is a subtle point here, which is that we do not want to throw
away the edges linking from the kept vertices to the remaining vertices. If self-loops are allowed in a
graph, this is not an issue since we may just add a self-loop to each vertex for each edge adjacent to it
with the other endpoint being discarded. When self-loops are not allows, it is still possible to overcome
this issue but with slightly larger kernel; we refer the readers to Section 3.2 of [147] for more detail.

Having defined the kernel, let us briefly discuss the intuition as to why it works. Let V2k/ε denote
the set of 2k/ε highest-degree vertices. The main argument of the proof is that, if there is an optimal
solution S, then we may modify it to be entirely contained in V2k/ε while preserving the number of
covered edges to within (1 + ε) factor. The modification is simple: for every vertex that is outside of
V2k/ε, we replace it with a random vertex from V2k/ε. Notice here that we always replace a vertex with
a higher-degree vertex. Naturally, this should be good in terms of covering more edges, but there is a
subtle point here: it is possible that the high degree vertices are “double counted” if a particular edge
is covered by both endpoints. The size 2k/ε is selected exactly to combat this issue; since the set is
large enough, “double counting” is rare for random vertices. This finishes our outline for the intuition.
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We end by remarking that MAX k-VERTEX COVER on graphs is already APX-hard [149],
and hence the PASes mentioned above once again demonstrate additional power of FPT approximation
algorithms over polynomial-time approximation algorithms.

4.2.3. Other Related Problems

There are several other covering-related problems that do not fall into the two categories we
discussed so far. We discuss a couple such problems below.

Min k-Uncovered. The first is the MIN k-UNCOVERED problem, where the input is a set system
and we would like to select k sets as to minimize the number of uncovered elements. When we are
concerned with exact solutions, this is of course the SET COVER. However, the optimization version
becomes quite different from MAX k-COVERAGE. In particular, since it is hard to determine whether
we can find k subsets that cover the whole universe, the problem is not approximable at all in the
general case. However, if restrict ourselves to graphs and hypergraphs (for which we refer to the
problem as MIN k-VERTEX COVER), it is possible to get a (randomized) PAS for the problem [146]:

Theorem 21 ([146]). For the MIN k-VERTEX UNCOVERED problem in d-uniform hypergraphs,
a (1 + ε)-approximation can be computed in O∗

(
(d/ε)k

)
time for any ε > 0.

The algorithm is based on the following simple randomized branching: pick a random uncovered
element and branch on all possibilities of selecting a subset that contains it. Notice that since an element
belongs to only d subsets, the branching factor is at most d. The key intuition in the approximation
proof is that, when the number of elements we have covered so far is still much less than that in the
optimal solution, there is a relatively large probability (i.e., ε) that the random element is covered in the
optimal solution. If we always pick such a “good” element in most branching steps, then we would
end up with a solution close to the optimum. Skowron and Faliszewski [146] formalizes this intuition
by showing that the algorithm outputs an (1 + ε)-approximate solution with probability roughly εk.
Hence, by repeating the algorithm (1/ε)k time, one arrives at the claimed PAS. To the best of our
knowledge, it is unknown whether a PSAKS exists for the problem.

Min k-Coverage. Another variant of the SET COVER problem studied is MIN k-COVERAGE [150–152],
where we would like to select k subsets that minimizes the number of covered elements. We stress here
that this problem is not a relaxation of SET COVER but rather is much more closely related to graph
expansion problems (see [151]).

It is known that, when there is no restriction on the input set system, the problem is (up to a
polynomial factor) as hard to approximate as the DENEST k-SUBGRAPH problem [150]. Hence, by the
inapproximability of the latter discussed earlier in the survey (Theorem 8), we also have that there is
no ko(1)-approximation algorithm for the problem that runs in FPT time.

Once again, the special case that has been studied in literature is when the input set system is a
graph, in which case we refer to the problem as MIN k-VERTEX COVER. Gupta, Lee, and Li [153,154]
used the technique of Marx [8] to give a PAS for the problem with running time O∗((k/ε)O(k)).
The running time was later improved in [147] to O∗((1/ε)O(k)). The algorithm there is again based on
branching, but the rules are more delicate and we will not discuss them here. An interesting aspect to
note here is that, while both MAX k-VERTEX COVER and MIN k-VERTEX COVER have PSAKS of the
(asymptotically) same running time, the former admits a PSAKS whereas the latter does not (assuming
a variant of the Small Set Expansion Conjecture) [147].

To the best of our knowledge, MIN k-VERTEX COVER has not been explicitly studied on
d-uniform hypergraphs before, but we suspect that the above results should carry over from graphs to
hypergraphs as well.
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4.3. Clustering

Clustering is a representative task in unsupervised machine learning that has been studied in
many fields. In combinatorial optimization communities, it is often formulated as the following: Given
a set P of points and a set F of candidate centers (also known as facilities), and a metric on X ⊇ P ∪ F
given by the distance ρ : X × X → R+ ∪ {0}, choose k centers C ⊆ F to minimize some objective
function cost := cost(P, C). To fully specify the problem, the choices to make are the following.
Let ρ(C, p) := minc∈C ρ(c, p).

• Objective function: Three well-studied objective functions are

– k-MEDIAN (cost(P, C) := ∑p∈P ρ(C, p)).
– k-MEANS (cost(P, C) := ∑p∈P ρ(C, p)2).
– k-CENTER (cost(P, C) := maxp∈P ρ(C, p)).

• Metric space: The ambient metric space X can be

– A general metric space explicitly given by the distance ρ : X× X → R+ ∪ {0}.
– The Euclidean space Rd equipped with the �2 distance.
– Other structured metric spaces including metrics with bounded doubling dimension or

bounded highway dimension.

While many previous results on clustering focused on non-parameterized polynomial time,
there are at least three natural parameters one can parameterize: The number of clusters k,
the dimension d (if defined), and the approximation accuracy parameter ε. In general metric spaces,
parameterized approximation algorithms (mainly with parameter k) were considered very recently,
but in Euclidean spaces, many previous results already give parameterized approximation algorithms
with parameters k, d, and ε.

4.3.1. General Metric Space

We can assume X = P ∪ F without loss of generality. Let n := |X| and note that the distance
ρ : X × X → R+ ∪ {0} is explicitly specified by Θ(n2) numbers. A simple exact algorithm running
in time O(nk+1) can be achieved by enumerating all k centers c1, . . . , ck ∈ F and assign each point
p to the closest center. In this setting, the best approximation ratios achieved by polynomial time
algorithms are 2.611 + ε for k-MEDIAN [155], 9 + ε for k-MEANS [156], and 3 for k-CENTER [157,158].
From the hardness side, it is NP-hard to approximate k-MEDIAN within a factor 1 + 2/e− ε ≈ 1.73− ε,
k-MEDIAN within a factor 1 + 8/e− ε ≈ 3.94− ε, k-CENTER within a factor 3− ε [159].

While there are some gaps between the best algorithms and the best hardness results for k-MEDIAN

and k-MEANS, it is an interesting question to ask how parameterization by k changes the approximation
ratios for both problems. Cohen-Addad et al. [143] studied this question and gave exact answers.

Theorem 22 ([143]). For any ε > 0, there is an (1+ 2/e+ ε)-approximation algorithm for k-MEDIAN, and an
(1 + 8/e + ε)-approximation algorithm for k-MEANS, both running in time (O(k log k/ε2))knO(1).

There exists a function g : R+ → R+ such that assuming the Gap-ETH, for any ε > 0, any
(1 + 2/e− ε)-approximation algorithm for k-MEDIAN, and any (1 + 8/e − ε)-approximation algorithm
for k-MEANS, must run in time at least nkg(ε)

.

These results show that if we parameterize by k, 1+ 2/e (for k-MEDIAN) and 1+ 8/e (for k-MEANS)
are the exact limits of approximation for parameterized approximation algorithms. Similar reductions
also show that no parameterized approximation algorithm can achieve (3− ε)-approximation for
k-CENTER for any ε > 0 (only assuming W[2] �= FPT), so the power of parameterized approximation
is exactly revealed for all three objective functions.

227



Algorithms 2020, 13, 146

Algorithm for k-MEDIAN. We briefly describe ideas for the algorithm for k-MEDIAN in Theorem 22.
The main technical tool that the algorithm uses is a coreset, which will be also frequently used for
Euclidean subspaces in the next subsection.

When S is a set of points with weight functions w : S → R+, let us extend the definition of the
objective function cost(S, C) such that

cost(S, C) := ∑
p∈S

w(p) · ρ(C, s).

Given a clustering instance (P, F, ρ, k) and ε > 0, a subset S ⊆ P with weight functions w : S → R+

is called a (strong) corset if for any k centers C = {c1, . . . , ck} ⊆ F,

| cost(S, C)− cost(P, C)| ≤ ε · cost(P, C).

For a general metric space, Chen [160] gave a coreset of cardinality Õ(k2 log2 n/ε2). (In this
subsection, Õ(·) hides poly(log log n, log k, log(1/ε).) This was improved by Feldman and
Langeberg [161] to O(k log n/ε2). We introduce high-level ideas of [160] later.

Given the coreset, it remains to give a good parameterized approximation algorithm for the
problem for a much smaller (albeit weighted) point set |P| = O(poly(log n, k)). Note that |F| can be
still as large as n, so naively choosing k centers from F will take nk time and exhaustively partitioning
P into k sets will take k|P| = npoly(k) time. (Indeed, exactly solving this small case will give an EPAS,
which will contradict the Gap-ETH.)

Fix an optimal solution, and let C∗ = {c∗1, . . . , c∗k} are the optimal centers and P∗i ⊆ P is the
cluster assigned to c∗i . One information we can guess is, for each i ∈ [k], the point pi ∈ P∗i closest to
c∗i and (approximate) ρ(c∗i , pi). Since |P| = poly(k log n), guessing them only takes time (k log n)O(k),
which can be made FPT by separately considering the case (log n)k ≤ n and the case (log n)k ≥ n,
in which k = Ω(log n/ log log n) and (log n)k = (k log k)O(k).

Let Fi ⊆ F be the set of candidate centers that are at distance approximately ri from pi, so that
c∗i ∈ Fi for each i. The algorithm chooses k centers C ⊆ F such that |C ∩ Fi| ≥ 1 for each i ∈ [k].
Let ci ∈ C ∩ Fi. For any point p ∈ P (say p ∈ P∗j , though the algorithm doesn’t need to know j), then

ρ(C, p) ≤ ρ(cj, p) ≤ ρ(cj, pj) + ρ(pj, c∗j ) + ρ(c∗j , p) ≤ 3ρ(c∗j , p),

where ρ(cj, pj) ≈ ρ(pj, c∗j ) ≤ ρ(c∗j , p) by the choice of pj.
This immediately gives a 3-approximation algorithm in FPT time, which is worse than the best

polynomial time approximation algorithm. To get the optimal (1 + 2/e)-approximation algorithm,
we further reduce the job of finding ci ∈ Fi to maximizing a monotone submodular function
with a partition matroid constraint, which is known to admit an optimal (1− 1/e)-approximation
algorithm [162]. Then we can ensure that for (1− 1/e) fraction of points, the distance to the chosen
centers is shorter than in the optimal solution, and for the remaining 1/e fraction, the distance is at
most three times the distance in the optimal solution. We refer the reader to [143] for further details.

Constructing a coreset. As discussed above, a coreset is a fundamental building block for optimal
parameterized approximation algorithms for k-MEDIAN and k-MEANS for general metrics. We briefly
describe the construction of Chen [160] that gives a coreset of cardinality Õ(k2 log2 n/ε2) for k-MEDIAN.
Similar ideas can be also used to obtain an EPAS for Euclidean spaces parameterized by k, though
better specific constructions are known in Euclidean spaces.

We first partition P into P1, . . . P� such that � = O(k log n) and

�

∑
i=1
|Pi|diam(Pi) = O(OPT).

228



Algorithms 2020, 13, 146

Such a partition can be obtained by using a known (bicriteria) constant factor approximation
algorithm for k-MEDIAN. Next, let t = Õ(k log n), and for each i = 1, . . . , �, we let Si = {s1, . . . , st} be
a random subset of t points of Pi where each sj is an independent and uniform sample from Pi and is
given weight |Pi|/t. (If |Pi| ≤ t, we simply let Si = Pi with weights 1.) The final coreset S is the union
of all Si’s.

To prove that it works, we simply need to show that for any set of k centers C ⊆ F with |C| = k,

Pr[| cost(S, C)− cost(P, C)| > ε · cost(P, C)] ≤ o(1/nk),

so that the union bound over (n
k) choices of C works. Indeed, we show that for each i = 1, . . . , �,

Pr[| cost(Si, C)− cost(Pi, C)| > ε · |Pi|diam(Pi)] ≤ o(1/(� · nk)), (1)

so that we can also union bound and sum over i ∈ [�], using the fact that ∑i |Pi|diam(Pi) = O(OPT) ≤
O(cost(P, C)).

It is left to prove (1). Fix C and i (let Pi = {p1, . . . , p|Pi |}), and recall that

cost(Pi, C) =
|Pi |
∑
j=1

ρ(C, pj).

When |Pi| ≤ t, Si = Pi, so (1) holds. Otherwise, recall that Si = {s1, . . . , st} where each sj is an
independent and uniform sample from Pi with weight w := |Pi|/t. For j = 1, . . . , t, let Xj := w · ρ(C, sj).
Note that cost(Si, C) = ∑j Xj and cost(Pi, C) = t ·E[Xj] = E[cost(Si, C)]. A crucial observation is that
that |ρ(C, pj)− ρ(C, pj′)| ≤ diam(Pi) for any j, j′ ∈ [|Pi|], so that |Xj − Xj′ | ≤ w · diam(Pi) for any
j, j′ ∈ [t]. If we let Xmin := minj∈[|Pi |](wρ(C, pj)) and Yj := (Xj − Xmin)/(w · diam(Pi)), Yj’s are t i.i.d.
random variables that are supported in [0, 1]. The standard Chernoff–Hoeffding inequality gives

Pr
[
|∑

j
Xj − tE[Xj]| > ε|Pi|diam(Pi)

]
= Pr

[
|∑

j
Yj − tE[Yj]| > εt

]
≤ exp(O(ε2t)) ≤ o(1/(� · nk)),

proving (1) for t = Õ(k log n) and finishing the proof. A precise version of this argument was stated in
Haussler [163].

4.3.2. Euclidean Space

For Euclidean spaces, we assume that X = F = Rd for some d ∈ N, endowed with the
standard �2 metric. Let n = |P| in this subsection. Now we have k and d as natural structural
parameters of clustering tasks. Many previous approximation algorithms in EUCLIDEAN k-MEDIAN

and EUCLIDEAN k-MEANS in Euclidean spaces, without explicit mention to parameterized complexity,
are parameterized approximation algorithms parameterized by k or d (or both). The highlight of this
subsection is that for both EUCLIDEAN k-MEDIAN and EUCLIDEAN k-MEANS, an EPAS exists with
only one of k and d as a parameter. Without any parameterization, both EUCLIDEAN k-MEDIAN and
k-MEANS are known to be APX-hard [164,165]. We introduce these results in the chronological order,
highlighting important ideas.

EUCLIDEAN k-MEDIAN with parameter d. The first PTAS for EUCLIDEAN k-MEDIAN in Euclidean
spaces with fixed d appears in Arora et al. [166]. The techniques extend Arora’s previous PTAS for the
EUCLIDEAN TRAVELING SALESMAN problem in Euclidean spaces [167], first proving that there exists
a near-optimal solution that interacts with a quadtree (a geometric division of Rd into a hierarchy
of square regions) in a restricted sense, and finally finding such a tour using dynamic programming.
The running time is nO(1/ε) for d = 2 and n(log n/ε)d−2

for d > 2. Kolliopoulous and Rao [168] improved
the running time to 2O((log(1/ε)/ε)d−1)n logd+6 n, which is an EPAS with parameter d.
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EUCLIDEAN k-MEDIAN and EUCLIDEAN k-MEANS with parameter k.

An EPAS for EUCLIDEAN k-MEANS even with parameters both k and d took longer
to be discovered, and first appeared when Matoušek [169] gave an approximation scheme
that runs in time O(nε2k2d logk n). After this, several improvements on the running time
followed Bādoiu et al. [170], De La Vega et al. [171], Har-Peled and Mazumdar [172].

Kumar et al. [173,174] gave approximation schemes for both k-MEDIAN and k-MEANS, running in
time 2(k/ε)O(1)

dn. This shows that an EPAS can be obtained by using only k as a parameter.
Using this result and and improved coresets, more improvements followed [160,161,175]. The current
best runtime to get (1 + ε)-approximation is O(ndk + d · poly(k/ε) + 2Õ(k/ε)) for k-MEANS [175],
and O(ndk + 2poly(1/ε,k)) time for k-MEDIAN [161].

A crucial property of the Euclidean space that allows an EPAS with parameter k (which is ruled
out for general metrics by Theorem 22) is the sampling property, which says that for any set Q ⊆ Rd

as one cluster, there is an algorithm that is given only g(1/ε) samples from Q and outputs h(1/ε)

candidate centers such that one of them is ε-close to the optimal center for the entire cluster Q for
some functions g, h. (For example, for k-MEANS, the mean of O(1/ε) random samples ε-approximates
the actual mean with constant probability.) This idea leads to an (1 + ε)-approximation algorithm
running in time |P| f (ε,k). Together even with a general coreset construction of size poly(k, log n, 1/ε),
one already gets an EPAS with parameter k. Better coresets construction are also given in Euclidean
spaces. Recent developments [176–178] construct core-sets of size poly(k, 1/ε) (no dependence on n
or d), which is further extended to the shortest-path metric of an excluded-minor graph [179].

EUCLIDEAN k-MEANS with parameter d.

Cohen-Addad et al. [180] and Friggstad et al. [181] recently gave approximation schemes running
in time n f (d,ε) using local search techniques. These results were improved to an EPAS in [182], and also
extended to doubling metrics [183].

Other metrics and k-CENTER. For the k-CENTER problem an EPAS exists when parametrizing by
both k and the doubling dimension [184], and also for planar graphs there is an EPAS for parameter k,
which is implied by the EPTAS of Fox-Epstein et al. [185] (cf. [184]).

There are also parameterized approximation schemes for metric spaces with bounded highway
dimension [184,186,187] and various graph width parameters [108].

Capacitated clustering and other variants. Another example where the parameterization by k helps is
CAPACITATED k-MEDIAN, where each possible center c ∈ F has a capacity uc ∈ N and can be assigned
at most uc points. It is not known whether there exists a constant-factor approximation algorithm,
and known constant factor approximation algorithms either open (1 + ε)k centers [188] or violate
capacity constraints by an (1 + ε) factor [189]. Adamczyk et al. [190] gave a (7 + ε)-approximation
algorithm in f (k, ε)nO(1) time, showing that a constant factor parameterized approximation algorithm
is possible. The approximation ratio was soon improved to (3+ ε) [191]. For CAPACITATED EUCLIDEAN

k-MEANS, [192] also gave a (69 + ε)-approximation algorithm for in f (k, ε)nO(1) time.
While the capacitated versions of clustering look much harder than their uncapacitated

counterparts, there is no known theoretical separation between the capacitated version and the
uncapacitated version in any clustering task. Since the power of parameterized algorithms for
uncapacitated clustering is well understood, it is a natural question to understand the “capacitated VS
uncapacitated question” in the FPT setting.

Open Question 10. Does CAPACITATED k-MEDIAN admit an (1 + 2/e)-approximation algorithm in
FPT time with parameter k? Do CAPACITATED EUCLIDEAN k-MEANS/k-MEDIAN admit an EPAS with
parameter k or d?
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Since clustering is a universal task, like capacitated versions, many variants of clustering tasks
have been studied including k-MEDIAN/k-MEANS WITH OUTLIERS [193] and MATROID/KNAPSACK

MEDIAN [194]. While no variant is proved to harder than the basic versions, it would be interesting to
see whether they all have the same parameterized approximability with the basic versions.

4.4. Network Design

In network design, the task is to connect some set of vertices in a metric, which is often given by
the shortest-path metric of an edge-weighted graph. Two very prominent problems of this type are
the TRAVELLING SALESPERSON (TSP) and STEINER TREE problems. For TSP all vertices need to be
connected in a closed walk (called a route), and the length of the route needs to be minimized [195].
For STEINER TREE a subset of the vertices (called terminals) is given as part of the input, and the
objective is to connect all terminals by a tree of minimum weight in the metric (or graph). Both of these
are fundamental problems that have been widely studied in the past, both on undirected and directed
input graphs.

Undirected graphs. A well-studied parameter for STEINER TREE is the number of terminals,
for which the problem has been known to be FPT since the early 1970s due to the work of
Dreyfus and Wagner [196]. Their algorithm is based on dynamic programming and runs in 3knO(1)

time if k is the number of terminals. Faster algorithms based on the same ideas with runtime
(2 + δ)knO(1) for any constant δ > 0 exist [197] (here the degree of the polynomial depends on δ).
The unweighted STEINER TREE problem also admits a 2knO(1) time algorithm [198] using a different
technique based on subset convolution. Given any of these exact algorithms as a subroutine, a faster
PAS can also be found [20] (cf. Section 4.7). On the other hand, no exact polynomial-sized kernel
exists [130] for the STEINER TREE problem, unless NP⊆coNP/poly. Interestingly though, a PSAKS can
be obtained [18].

This kernel is based on a well-known fact proved by Borchers and Du [199], which is very useful
to obtain approximation algorithms for the STEINER TREE problem. It states that any Steiner tree
can be covered by smaller trees containing few terminals, such that these trees do not overlap much.
More formally, a full-component is a subtree of a Steiner tree, for which the leaves coincide with its
terminals. For the optimum Steiner tree T and any ε > 0, there exist full-components C1, . . . , C� of T
such that

1. each full-component Ci contains at most 2%1/ε& terminals (leaves),
2. the sum of the weights of the full-components is at most 1 + ε times the cost of T, and
3. taking any collection of Steiner trees T1, . . . , T�, such that each tree Ti connects the subset of

terminals that forms the leaves of full-component Ci, the union
⋃�

i=1 Ti is a feasible solution to
the input instance.

Not knowing the optimum Steiner tree, it is not possible to know the subsets of terminals of the
full-components corresponding to the optimum. However, it is possible to compute the optimum
Steiner tree for every subset of terminals of size at most 2%1/ε& using an FPT algorithm for STEINER

TREE. The time to compute all these solutions is kO(21/ε)nO(1), using for instance the Dreyfus and
Wagner [196] algorithm. Now the above three properties guarantee that the graph given by the union
of all the computed Steiner trees, contains a (1 + ε)-approximation for the input instance. In fact,
the best polynomial time approximation algorithm known to date [200] uses an iterative rounding
procedure to find a ln(4)-approximation of the optimum solution in the union of these Steiner trees.
To obtain a kernel, the union needs to be sparsified, since it may contain many Steiner vertices and
also the edge weights might be very large. However, Lokshtanov et al. [18] show that the number of
Steiner vertices can be reduced using standard techniques, while the edge weights can be encoded so
that their space requirement is bounded in the parameter and the cost of any solution is distorted by at
most a 1 + ε factor.
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Theorem 23 ([18,20]). For the STEINER TREE problem a (1 + ε)-approximation can be computed in
(2 + δ)(1−ε/2)nO(1) time for any constant δ > 0 (and in 2(1−ε/2)nO(1) time in the unweighted case) for
any ε > 0, where k is the number of terminals. Moreover, a (1 + ε)-approximate kernel of size (k/ε)O(21/ε) can
be computed in polynomial time.

A natural alternative to the number of terminals is to consider the vertices remaining in the
optimum tree after removing the terminals: a folklore result states that STEINER TREE is W[2]-hard
parameterized by the number of non-terminals (called Steiner vertices) in the optimum solution. At the
same time, unless P = NP there is no PTAS for the problem, as it is APX-hard [201]. However an
approximation scheme is obtainable when parametrizing by the number of Steiner vertices k in the
optimum, and also a PSAKS is obtainable under this parameterization.

To obtain both of these results, Dvořák et al. [202] devise a reduction rule that is based on the
following observation: if the optimum tree contains few Steiner vertices but many terminals, then the
tree must contain (1) a large component containing only terminals, or (2) a Steiner vertex that has many
terminal neighbours. Intuitively, in case (2) we would like to identify a large star with terminal leaves
and small cost in the current graph, while in case (1) we would like to find a cheap edge between two
terminals. Note that such a single edge also is a star with terminal leaves. The reduction rule will
therefore find the star with minimum weight per contained terminal, which can be done in polynomial
time. This rule is applied until the number of terminals, which decreases after each use, falls below a
threshold depending on the input parameter k and the desired approximation ratio 1 + ε. Once the
number of terminals is bounded by a function of k and ε, the Dreyfus and Wagner [196] algorithm can
be applied on the remaining instance, or a kernel can be computed using the PSAKS of Theorem 23.
It can be shown that the reduction rule does not distort the optimum solution by much as long as the
threshold is large enough, which implies the following theorem.

Theorem 24 ([202]). For the STEINER TREE problem a (1 + ε)-approximation can be computed in
2O(k2/ε4)nO(1) time for any ε > 0, where k is the number of non-terminals in the optimum solution. Moreover,
a (1 + ε)-approximate kernel of size (k/ε)2O(1/ε)

can be computed in polynomial time.

This theorem is also generalizable to the STEINER FOREST problem, where a list of terminal pairs
is given and the task is to find a minimum weight forest in the input graph connecting each pair. In this
case though, the parameter has to be combined with the number of connected components of the
optimum forest [202].

A variation of the STEINER FOREST problem is the SHALLOW-LIGHT STEINER NETWORK (SLSN)
problem. Here a graph with both edge costs and edge lengths is given, together with a set of terminal
pairs and a length threshold L. The task is to compute a minimum cost subgraph, which connects each
terminal pair with a path of length at most L. For this problem a dichotomy result was shown [203]
in terms of the pattern given by the terminal pairs. More precisely, the terminal pairs are interpreted
as edges in a graph for which the vertices are the terminals: if C is some class of graphs, then SLSNC
is the SHALLOW-LIGHT STEINER NETWORK problem restricted to sets of terminal pairs that span
some graph in C. Let C� denote the class of all stars, and Cλ the class of graphs with at most λ edges.
The SLSNC� problem is APX-hard [201], as it is a generalization of STEINER TREE (where L = ∞).
At the same time, both the SLSNC� and SLSNCλ

problems parameterized by the number of terminals
are paraNP-hard [204], since they are generalizations of the RESTRICTED SHORTEST PATH problem
(where there is exactly one terminal pair). A PAS can however be obtained for both of these problems
(whenever λ is a constant), but for no other class C of demand patterns [203].

Theorem 25 ([203]). For any constant λ > 0, there is an FPTAS for the SLSNCλ
problem. For the SLSNC�

problem a (1 + ε)-approximation can be computed in 4k(n/ε)O(1) time for any ε > 0, where k is the number
of terminal pairs. Moreover, under Gap-ETH no (5/3− ε)-approximation for SLSNC can be computed in

232



Algorithms 2020, 13, 146

f (k)nO(1) time for any ε > 0 and computable function f , whenever C is a recursively enumerable class for
which C �⊆ C� ∪ Cλ for every constant λ.

A notable special case is when all edge lengths are 1 but edge costs are arbitrary. Then SLSNCλ

is polynomial time solvable for any constant λ, while SLSNC� is FPT parameterized by the number
of terminals [203]. At the same time the parameterized approximation lower-bound of Theorem 25
is still valid for this case. It is not known however, whether constant approximation factors can be
obtained for SLSNC when C is a class different from Cλ and C�. More generally we may ask the
following question.

Open Question 11. Given some class of graphs C �⊆ C� ∪ Cλ, which approximation factor αC can be obtained
in FPT time for SLSNC parameterized by the number of terminals?

Turning to the TSP problem, a generalization of TSP introduces deadlines until which vertices
need to be visited by the computed tour. A natural parameterization in this setting is the number
of vertices that have deadlines. It can be shown [205] that no approximation better than 2 can be
computed when using this parameter. Nevertheless, a 2.5-approximation can be computed in FPT
time [205]. The algorithm will guess the order in which the vertices with deadlines are visited by the
optimum solution. It then computes a 3/2-approximation for the remaining vertices using Christofides
algorithm [3]. The approximation ratio follows, since the optimum tour can be thought of as two
tours, of which one visits only the deadline vertices, while the other contains all remaining vertices.
The approximation algorithm incurs a cost of OPT for the former, and a cost of 3

2 ·OPT for the latter
part of the optimum tour.

Theorem 26 ([205]). For the DLTSP problem a 2.5-approximation can be computed in O(k! · k) + nO(1) time,
if the number of vertices with deadlines is k. Moreover, no (2− ε)-approximation can be computed in f (k)nO(1)

time for any ε > 0 and computable function f , unless P = NP.

Low dimensional metrics. Just as for clustering problems, another well-studied parameter in network
design is the dimension of the underlying geometric space. A typical setting is when the input is
assumed to be a set of points in some k-dimensional �p-metric, where distances between points
x and y are given by a function dist(x, y) = (∑k

i=1 |xi − yi|p)1/p. Two prominent examples are
Euclidean metrics (where p = 2) and Manhattan metrics (where p = 1). The dimension k of the metric
space has been studied as a parameter from the parameterized approximation point-of-view avant
la lettre for quite a while. It was shown [206,207] that both STEINER TREE and TSP are paraNP-hard
for this parameter (since they are NP-hard even if k = 2), and that they are APX-hard in general
metrics [201,208]. However, a PAS for Euclidean metrics both for the STEINER TREE and the TSP
problems were shown to exist in the seminal work of Arora [167,209]. The techniques are similar to
those used for clustering, and we refer to Section 4.3.2 for an overview.

Theorem 27 ([167]). For the STEINER TREE and TSP problems a (1 + ε)-approximation can be computed in
kO(

√
k/ε)k−1

n2 time for any ε > 0, if the input consists of n points in k-dimensional Euclidean space.

This result also holds for the t-MST and t-TSP problems [167], where the cheapest tree or tour,
respectively, on at least t nodes needs to be found. In this case the runtime has to be multiplied
by t however.

A related setting is the parameterization by the doubling dimension of the underlying metric.
That is, when the parameter k is the smallest integer such that any ball in the metric can be covered by
2k balls of half the radius. Any point set in a k dimensional �p-metric has doubling dimension O(k),
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and thus the latter parameter generalizes the former. For the TSP problem the above theorem can be
generalized [210] to a PAS parameterized by the doubling dimension.

Theorem 28 ([210]). For the TSP problem a (1 + ε)-approximation can be computed in 2(k/ε)O(k2)
n log2 n

time for any ε > 0, if the input consists of n points with doubling dimension k.

Given that a PAS exists for STEINER TREE in the Euclidean case, it is only natural to ask whether
this is also possible for low doubling metrics. Only a QPTAS is known so far [211]. Moreover, a related
parameter is the highway dimension, which is used to model transportation networks. As shown by
Feldmann et al. [212] the techniques of Talwar [211] for low doubling metrics can be generalized to the
highway dimension to obtain a QPTAS as well. Again, it is quite plausible to assume that a PAS exists.

Open Question 12. Is there a PAS for STEINER TREE parameterized by the doubling dimension? Is there a
PAS for either STEINER TREE or TSP parameterized by the highway dimension?

Directed Graphs. When considering directed input graphs (asymmetric metrics), the DIRECTED

STEINER TREE problem takes as input a terminal set and a special terminal called the root. The task
is to compute a directed tree of minimum weight that contains a path from each terminal to the
root. In general no f (k)-approximation can be computed in FPT time for any computable function f ,
when the parameter k is the number of Steiner vertices in the optimum solution [202]. A notable special
case is the unweighted DIRECTED STEINER TREE problem, which for this parameter admits a PAS.
The techniques here are the same as those used to obtain Theorem 24 for the undirected case. However,
in contrast to the undirected case which admits a PSAKS, no polynomial-sized (2− ε)-approximate
kernelization exists for DIRECTED STEINER TREE [202], unless NP⊆coNP/poly. It is an intriguing
question whether a 2-approximate kernel exists.

Open Question 13. Is there a polynomial-sized 2-approximate kernel for the unweighted DIRECTED STEINER

TREE problem parameterized by the number of Steiner vertices in the optimum solution?

If the parameter is the number of terminals, the (weighted) DIRECTED STEINER TREE problem
is FPT, using the same algorithm as for the undirected version [196,197]. A different variant of
STEINER TREE in directed graphs is the STRONGLY CONNECTED STEINER SUBGRAPH problem, where
a terminal set needs to be strongly connected in the cheapest possible way. This problem is W[1]-hard
parameterized by the number of terminals [213], and no O(log2−ε n)-approximation can be computed
in polynomial time [214], unless NP ⊆ ZTIME(npolylog(n)). However, a 2-approximation can be
computed in FPT time [215].

The crucial observation for this algorithm is that in any strongly connected solution, fixing some
terminal as the root, every terminal can be reached from the root, while at the same time the root
can be reached from each terminal. Thus the optimum solution is the union of two directed trees,
of which one is directed towards the root and the other is directed away from the root, and the leaves
of both trees are terminals. Hence it suffices to compute two solutions to the DIRECTED STEINER TREE

problem, which can be done in FPT time, to obtain a 2-approximation for STRONGLY CONNECTED

STEINER SUBGRAPH. Interestingly, no better approximation is possible with this runtime [50].

Theorem 29 ([50,215]). For the STRONGLY CONNECTED STEINER SUBGRAPH problem a 2-approximation
can be computed in (2 + δ)knO(1) time for any constant δ > 0, where k is the number of terminals. Moreover,
under Gap-ETH no (2− ε)-approximation can be computed in f (k)nO(1) time for any ε > 0 and computable
function f .
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A generalization of both DIRECTED STEINER TREE and STRONGLY CONNECTED STEINER

SUBGRAPH is the DIRECTED STEINER NETWORK problem [216], for which an edge-weighted directed
graph is given together with a list of ordered terminal pairs. The aim is to compute the cheapest
subgraph that contains a path from s to t for every terminal pair (s, t). If k is the number of terminals,
then for this problem no k1/4−o(1)-approximation can be computed in f (k)nO(1) time [59] for any
computable function f , under Gap-ETH. Both a PAS and a PSAKS exist [50] for the special case when
the input graph is planar and bidirected, i.e., for every directed edge uv the reverse edge vu exists and
has the same cost.

Similar to the PSAKS for the STEINER TREE problem, these two algorithms are based on a
generalization of Borchers and Du [199]. That is, Chitnis et al. [50] show that a planar solution in a
bidirected graph can be covered by planar graphs with at most 2O(1/ε) terminals each, such that the
sum of their costs is at most 1 + ε times the cost of the solution. These covering graphs may need
to contain edges that are reverse to those in the solution, but are themselves not part of the solution.
For this the underlying graph needs to be bidirected. Analogous to STEINER TREE, to obtain a kernel it
then suffices to compute solutions for every possible list of ordered pairs of at most 2O(1/ε) terminals.
In contrast to STEINER TREE however, there is no FPT algorithm for this. Instead, an XP algorithm
with runtime 2O(k3/2 log k)nO(

√
k) needs to be used, which runs in polynomial time for k ≤ 2O(1/ε)

terminals with ε being a constant. After taking the union of all computed solutions, the number of
Steiner vertices and the encoding length of the edge weights can be reduced in a similar way as for the
STEINER TREE problem. To obtain a PAS, the algorithm will guess how the planar optimum can be
covered by solutions involving only small numbers of terminals. It will then compute solutions on
these subsets of at most 2O(1/ε) terminals using the same XP algorithm.

Theorem 30 ([50]). For the DIRECTED STEINER NETWORK problem on planar bidirected graphs a

(1 + ε)-approximation can be computed in max{2k2O(1/ε)

, n2O(1/ε)} time for any ε > 0, where k is the number of
terminals. Moreover, a (1 + ε)-approximate kernel of size (k/ε)2O(1/ε)

can be computed in polynomial time.

4.5. Cut Problems

Starting from Menger’s theorem and the corresponding algorithm for s-t CUT, graph cut problems
have always been at the heart of combinatorial optimization. While many natural generalizations of
s-t CUT are NP-hard, further study of these cut problems yielded beautiful techniques such as flow-cut
gaps and metric embeddings in approximation algorithms [217,218], and also important separators
and randomized contractions in parameterized algorithms [219–222].

4.5.1. Multicut

An instance of UNDIRECTED MULTICUT (resp. DIRECTED MULTICUT) is an undirected (resp.
directed) graph G = (V, E) with k pairs of vertices (s1, t1), . . . , (sk, tk). The goal is to remove the
minimum number of edges such that there is no path from si to ti for every i ∈ [k]. UNDIRECTED

MULTIWAY CUT (resp. DIRECTED MULTIWAY CUT) is a special case of UNDIRECTED MULTICUT (resp.
DIRECTED MULTIWAY CUT) where k vertices are given as terminals and the goal is to make sure there
is no path between any pair of terminals. They have been actively studied from both approximation
and parameterized algorithms perspectives. We survey parameterized approximation algorithms for
these problems with parameters k and the solution size OPT.

Undirected Multicut. UNDIRECTED MULTICUT admits an O(log k)-approximation algorithm [223]
in polynomial time, and is NP-hard to approximate within any constant factor assuming the
Unique Games Conjecture [224]. UNDIRECTED MULTIWAY CUT admits an 1.2965-approximation
algorithm [225] in polynomial time, and is NP-hard to approximate within a factor 1.20016 [226].
UNDIRECTED MULTICUT (and thus UNDIRECTED MULTIWAY CUT) admits an exact algorithm
parametrized by OPT [219,220].
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With k as a parameter, we cannot hope for an exact algorithm or an approximation scheme,
since even UNDIRECTED MULTIWAY CUT with 3 terminals is NP-hard to approximate within a factor
12/11− ε for any ε > 0 under the Unique Games Conjecture. However, for UNDIRECTED MULTICUT

with k pairs (s1, t1), . . . , (sk, tk), one can reduce it to kO(k) instances of UNDIRECTED MULTIWAY CUT

with at most 2k terminals, by guessing a partition of these s1, t1, . . . , sk, tk according to the connected
components containing them in the optimal solution (e.g., si and ti should be always in different
groups), merging the vertices in the same group into one vertex, and solving UNDIRECTED MULTIWAY

CUT with the merged vertices as terminals. This shows an 1.2965-approximation algorithm for
UNDIRECTED MULTICUT that runs in time kO(k)nO(1).

Some recent results improve or generalize this observation. For graphs with bounded genus g,
Cohen-Addad et al. [227] gave an EPAS running in time f (g, k, ε) · n log n. Chekuri and Madan [228]
considered the demand graph H, which is the graph formed by k edges (s1, t1), . . . , (sk, tk). When t
is the smallest integer such that H does not contain t disjoint edges as an induced subgraph,
they presented a 2-approximation algorithm that runs in time kO(t)nO(1).

Directed Multicut. Generally, DIRECTED MULTICUT is a much harder computational task than
UNDIRECTED MULTICUT in terms of both approximation and parameterized algorithms. DIRECTED

MULTICUT admits a min(k, Õ(n11/23))-approximation algorithm [229]. It is NP-hard to approximate
within a factor k− ε for any ε > 0 for fixed k [230] under the Unique Games Conjecture, or 2Ω(log1−ε n)

for any ε > 0 [231] for general k. DIRECTED MULTIWAY CUT admits an 2-approximation algorithm [232],
which is tight even when k = 2 [230]. Parameterizing by OPT, DIRECTED MULTICUT is FPT for k = 2,
but DIRECTED MULTICUT is W[1]-hard even when k = 4 [46]. DIRECTED MULTIWAY CUT on the other
hand is in FPT [221].

Since it is hard to improve the trivial k-approximation algorithm even for fixed k [230],
parameterizing by k does not yield a better approximation algorithm. Chitnis and Feldmann [233]
gave a k/2-approximation algorithm that runs in time 2O(OPT2)nO(1), and also proved that the problem
under the same parameterization is still hard to approximate within a factor 59/58 with k = 4.

Open Question 14. What is the best approximation ratio (as a function of k) achieved by a parameterized
algorithm (with parameter OPT)? Will it be close to O(1) or Ω(k)?

4.5.2. Minimum Bisection and Balanced Separator

Given a graph G = (V, E), MINIMUM EDGE BISECTION (resp. MINIMUM VERTEX BISECTION)
asks to remove the fewest number of edges such that the graph is partitioned into two parts A and B
with ||A| − |B|| ≤ 1. BALANCED EDGE SEPARATOR (resp. BALANCED VERTEX SEPARATOR) is a more
relaxed version of the problem where the goal is to bound the size of the largest component by αn
for some 1/2 < α < 1. It has been actively studied from approximation algorithms, culminating in
O(

√
log n)-approximation algorithms for both BALANCED EDGE SEPARATOR and BALANCED VERTEX

SEPARATOR [218,234], and an O(log n)-approximation algorithm for MINIMUM EDGE BISECTION [235].
If we parameterize by the size of optimal separator k, MINIMUM EDGE BISECTION admits

an exact parameterized algorithm [222]. While MINIMUM VERTEX BISECTION is W[1]-hard [219],
Feige and Mahdian [236] gave an algorithm that given 2/3 ≤ α < 1 and ε > 0, in time 2O(k)nO(1)

returns an (α + ε) separator of size at most k.

4.5.3. k-Cut

Given an undirected graph G = (V, E) and an integer k ∈ N, the k-CUT problem asks to
remove the smallest number of edges such that G is partitioned into at least k non-empty connected
components. The edge contraction algorithm by Karger and Stein [237] yields a randomized exact XP
algorithm running in time O(n2k), which was made deterministic by Thorup [238]. There were recent
improvements to the running time [154,239]. There is an exact parameterized algorithm with parameter
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OPT [221,240]. For general k, it admits a (2− 2/k)-approximation algorithm [241], and is NP-hard to
approximate within a factor (2− ε) for any ε > 0 under the Small Set Expansion Hypothesis [74].

A simple reduction shows that k-CUT captures (k− 1)-CLIQUE, so an exact FPT algorithm with
parameter k is unlikely to exist. Gupta et al. [153] gave an (2− δ)-approximation algorithm for a small
universal constant δ > 0 that runs in time f (k) · nO(1). The approximation ratio was improved to 1.81
in [154], and further to 1.66 [242]. Very recently, Lokshtanov et al. [243] gave a PAS that runs in time
(k/ε)O(k)nO(1), thereby (essentially) resolving the parameterized approximability of k-CUT.

4.6. F -DELETION Problems

Let F be a vertex-hereditary family of undirected graphs, which means that if G ∈ F and H is
a vertex-induced subgraph of G, then H ∈ F as well. F -DELETION is the problem where given a
graph G = (V, E), we are supposed to find S ⊆ V such that the subgraph induced by V \ S (denoted
by G \ S) belongs to F . The goal is to minimize |S|. The natural weighted version, where there is a
non-negative weight w(v) for each vertex v and the goal is to minimize the sum of the weights of the
vertices in S, is called WEIGHTED F -DELETION.

F -DELETION captures numerous combinatorial optimization problems, including VERTEX COVER

(when F includes all graphs with no edges), FEEDBACK VERTEX SET (when F is the set of all forests),
and ODD CYCLE TRANSVERSAL (when F is the set of all bipartite graphs). There are a lot more
interesting graph classes F studied in structural and algorithmic graph theory. Some famous examples
include planar graphs, perfect graphs, chordal graphs, and graphs with bounded treewidth.

In addition to beautiful structural results that give multiple equivalent characterizations,
these graph classes often admit very efficient algorithms for some tasks that are believed to be hard in
general graphs. Therefore, a systematic study of F -DELETION for more graph classes is not only an
interesting algorithmic task by itself, but also a way to obtain better algorithms for other optimization
problems when the given graph G is close to a nice class F (i.e., deleting few vertices from G makes it
belong to F .) Indeed, some algorithms for INDEPENDENT SET for noisy planar/minor-free graphs
discussed in Section 4.1 use an algorithm for F -DELETION as a subroutine [89].

For the maximization version where the goal is to maximize |V \ S|, a powerful but pessimistic
characterization is known. Lund and Yannakakis [244] showed that whenever F is vertex-hereditary
and nontrivial (i.e., there are infinitely many graphs in F and out of F ), the maximization version
is hard to approximate within a factor 2log1/2−ε n for any ε > 0. So no nontrivial F is likely to
admit even a polylogarithmic approximation algorithm. However, the situation is different for the
minimization problem, since VERTEX COVER admits a 2-approximation algorithm, while ODD CYCLE

TRANSVERSAL [245] and PERFECT DELETION [246] are NP-hard to approximate within any constant
factor approximation algorithm. (The first result assumes the Unique Games Conjecture.) It indicates
that a characterization of approximabilities for the minimization versions will be more complex
and challenging.

There are two (closely related) frameworks to capture large graph classes.

• Choose a graph width parameter (e.g., treewidth, pathwidth, cliquewidth, rankwidth, etc.) and
k ∈ N. Let F be the set of graphs G with the chosen width parameter at most k. The parameter of
F -DELETION is k.

• Choose a notion of subgraph (e.g., subgraph, induced subgraph, minor, etc.) and a finite family of
forbidden graphsH. Let F be the set of graphs G that do not have any graph inH as the chosen
notion of subgraph. The parameter of F -DELETION is |H| := ∑H∈H |V(H)|.

Many interesting classes are capture by the above frameworks. For example, to express FEEDBACK

VERTEX SET, we can take F to be the set of graphs with treewidth at most 1, or equivalently,
the set of graphs that does not have the triangle graph K3 as a minor. In the rest of the subsection,
we introduce known results of F -DELETION under the above two parameterization. Note that under
these two parameterizations, the need for approximation is inherent since the simplest problem in
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both frameworks, VERTEX COVER, already does not admit a polynomial-time (2− ε)-approximation
algorithm under the Unique Games Conjecture.

Finally, we mention that the parameterization by the size of the optimal solution has been studied
more actively from the parameterized complexity community, where many important problems are
shown to be in FPT [247–249].

4.6.1. Treewidth and Planar Minor Deletion

The treewidth of a graph (see Definition 1) is arguably the most well-studied graph width
parameter with numerous structural and algorithmic applications. It is one of the most important
concepts in the graph minor project of Robertson and Seymour. Algorithmically, Courcelle’s
theorem [250] states that every problem expressible in the monadic second-order logic of graphs can be
solved in FPT time parameterized by treewidth. We refer the reader to the survey of Bodlaender [251].
Computing treewidth is NP-hard in general [252], but if we parameterize by treewidth, it can be done
in FPT time [253], and there is a faster constant-factor parameterized approximation algorithm [254].

Let k ∈ N be the parameter. TREEWIDTH k-DELETION (also known as TREEWIDTH k-MODULATOR

in the literature) is a special case of F -DELETION where F is the set of all graphs with treewidth at
most k. Note the case k = 0 yields VERTEX COVER and k = 1 yields FEEDBACK VERTEX SET.

Fomin et al. [247] gave a randomized f (k)-approximation algorithm that runs in g(k) · nm for
some computable functions f and g. The approximation ratio was improved by Gupta et al. [255] that
gave a deterministic O(log k)-approximation algorithm that runs in f (k) · nO(1) some f .

This result has immediate applications to minor deletion problems. LetH be a finite set of graphs,
and consider H-MINOR DELETION, which is a special case of F -DELETION when F is the set of all
graphs that do not have any graph inH as a minor. Its parameterized and kernelization complexity
(with parameter OPT) for familyH has been actively studied [247,256,257].

WhenH contains a planar graph H (also known as PLANAR H-DELETION in the literature), by the
polynomial grid-minor theorem [258], any graph G ∈ F has treewidth at most k := poly(|V(H)|).
Therefore, in order to solveH-MINOR DELETION, one can first solve TREEWIDTH k-DELETION to reduce
the treewidth to k and then solve H-MINOR DELETION optimally using Courcelle’s theorem [250].
Combined with the above algorithm for TREEWIDTH k-DELETION [255], this strategy yields an
O(log k)-approximation algorithm that runs in f (|H|) · nO(1) time.

Beyond PLANAR H-DELETION, there are not many results known for H-MINOR DELETION.
The case H = {K5, K3,3} is called MINIMUM PLANARIZATION and was recently shown to admit an
O(logO(1) n)-approximation algorithm in nO(log n/ log log n) time [259].

While the unweighted versions of TREEWIDTH k-DELETION and PLANAR H-DELETION admit
an approximation algorithm whose approximation ratio only depends on k not n, such an algorithm
is not known for WEIGHTED TREEWIDTH k-DELETION or WEIGHTED PLANAR H-DELETION.
Agrawal et al. [260] gave a randomized O(log1.5 n)-approximation algorithm and a deterministic
O(log2 n)-approximation algorithm that run in polynomial time for fixed k, i.e., the degree of the
polynomial depends on k. Bansal et al. [89] gave an O(log n log log n)-approximation algorithm for
the edge deletion version. The only graphs H whose weighted minor deletion problem is known to
admit a constant factor approximation algorithm are single edge (WEIGHTED VERTEX COVER), triangle
(WEIGHTED FEEDBACK VERTEX SET), and diamond [261]. For the weighted versions, no hardness
beyond VERTEX COVER is known.

Open Question 15. Does WEIGHTED TREEWIDTH k-DELETION admit an f (k)-approximation algorithm
with parameter k for some function f ? Does TREEWIDTH k-DELETION admit a c-approximation algorithm
with parameter k for some universal constant c?
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Algorithms for TREEWIDTH k-DELETION. Here we present high-level ideals of [255,260] for
TREEWIDTH k-DELETION and WEIGHTED TREEWIDTH k-DELETION respectively. These two algorithms
share the following two important ingredients:

1. Graphs with bounded treewidth admit good separators.
2. There are good approximation algorithms to find such separators.

Given an undirected and vertex-weighted graph G = (V, E) and an integer k ∈ N, let (WEIGHTED)
k-VERTEX SEPARATOR be the problem whose goal is to remove the vertices of minimum total weight
so that each connected component has at most k vertices. An algorithm is called an α-bicriteria
approximation algorithm if it returns a solution whose total weight is at most α · OPT and each
connected component has at most 1.1k vertices [262]. The case k = 2n/3 is called BALANCED SEPRATOR

and has been actively studied in the approximation algorithms community, and the best approximation
algorithm achieves O(

√
log n)-bicriteria approximation [234]. When k is small, O(log k)-bicriteria

approximation is also possible [116].

WEIGHTED TREEWIDTH k-DELETION. Agrawal et al. [260] achieves an O(log1.5 n)-approximation
for WEIGHTED TREEWIDTH k-DELETION in time nO(k). It would be interesting to see whether the
running time can be made FPT with parameter k.

The main structure of their algorithm is top-down recursive. Deleting the optimal solution S∗

from G reduces the treewidth of G \ S∗ to k, so from the forest decomposition of G \ S∗, there exists
a set M∗ ⊆ G \ S∗ with at most k + 1 vertices such that each connected component of G \ (M∗ ∪ S∗)
has at most 2n/3 vertices. While we do not know S∗, we can exhaustively try every possible M ⊆ V
with |M| ≤ k + 1 and use the bicriteria approximation algorithm for BALANCED SEPRATOR to find
M and S such that (1) |M| ≤ k + 1, (2) w(S) ≤ O(

√
log n)OPT, and (3) G \ (M \ S) has at most

1.1 · (2n/3) ≤ 3n/4 vertices.
Let G1, . . . , Gt be the resulting connected components of G \ (S∩M). We solve each Gi recursively

to compute Si such that each Gi \ Si has treewidth at most k. The weight of S was already bounded
in terms of OPT, but the weight of M was not, so we finally need to consider the graph induced by
M ∪ V(G1) ∪ · · · ∪ V(Gt) and delete vertices of small weight to ensure small treewidth. However,
this task is easy since since the treewidth of each Gi is bounded by k and |M| ≤ k + 1, which bounds
the treewidth of the considered graph by 2k + 1. So we can fetch the algorithm for small treewidth
graphs to solve the problem optimally. Note that the total weight of removed vetices in this recursive
call is at most (O(

√
log n) + 1)OPT. Since ∑i OPT(Gi) ≤ OPT(G) and the recursion depth is at most

O(log n), the total approximation ratio is O(log1.5 n).

TREEWIDTH k-DELETION. Gupta et al. [255] give an O(log k)-approximation algorithm that runs in
time f (k) · nO(1) for the unweighted version of TREEWIDTH k-DELETION. The main structure of this
algorithm is bottom-up iterative refinement. The algorithm maintains a feasible solution S ⊆ V (we
can start with S = V), and iteratively uses S to obtain another feasible solution S′. If the new solution
is not smaller (i.e., |S′| ≥ |S|), then |S| ≤ O(log k) ·OPT.

Let us focus on one refinement step with the current feasible solution S. Let S∗ be the optimal
solution, so that G \ S∗ has treewidth at most k. We use the following simple lemma showing the
existence of a good separator of G in a finer scale than before.

Lemma 2 ([87,255]). Let H be a graph with treewidth at most k, T ⊆ V(H) be any subset of vertices, and ε > 0.
There exists R ⊆ V(H) such that (1) |R| ≤ ε|T| and (2) every connected component of H \ R has at most
O(k/ε) vertices from T.

Plugging H ← G \ S∗, T ← S in the above lemma and letting S′ = R ∪ S∗, we can conclude that
there exists S′ ⊆ V such that |S′| ≤ |R|+ |S∗| ≤ ε|S|+ OPT and each connected component of G \ S′

has at most O(k/ε) vertices from S.
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How can we find such a set S′ efficiently? Note that if S = V, then S′ is an O(k/ε)-vertex separator
of G. Lee [116] defined a generalization of k-VERTEX SEPARATOR called k-SUBSET VERTEX SEPARATOR,
where the input consists of G = (V, E), S ⊆ V, k ∈ N, and the goal is to remove the smallest number of
vertices so that each connected component has at most k vertices from S, and gave an O(log k)-bicriteria
approximation algorithm.

Since the above lemma guarantees that OPT for O(k/ε)-SUBSET VERTEX SEPARATOR is at most
OPT for TREEWIDTH k-DELETION plus ε|S|, applying this bicriteria approximation algorithm yields
S′ such that |S′| ≤ O(log k)(OPT + ε|S|) and each connected component of G \ S′ has at most O(k/ε)

vertices from S. Since S is a feasible solution, it implies that the treewidth of each connected component
is bounded by O(k/ε), so we can solve each component optimally in time f (k/ε) · nO(1). By setting
ε = 0.5, we can see the size of new solution is strictly decreased unless |S| = O(log k) ·OPT, finishing
the proof.

4.6.2. Subgraph Deletion

Let H be a fixed pattern graph with k vertices. Given a host graph G, deciding whether H is
a subgraph of G (in the usual sense) is known as SUBGRAPH ISOMORPHISM, whose parameterized
complexity with various parameters (e.g., k, tw(H), genus(G), etc.) was studied by Marx and
Pilipczuk [263].

Guruswami and Lee [115] studied the corresponding vertex deletion problem H-SUBGRAPH

DELETION (called H-TRANSVERSAL in the paper), which is a special case of F -DELETION where
F is the set of graphs that do not have H as a subgraph. Note that the problem admits a simple
k-approximation algorithm that runs in time O(n · f (n, H)), where f (n, H) denotes time to solve
SUBGRAPH ISOMORPHISM with the pattern graph H and a host graph with n vertices. Their main
hardness result states that assuming the Unique Games Conjecture, whenever H is 2-vertex connected,
for any ε > 0, no polynomial time algorithm (including algorithms running in time n f (k) for any f ) can
achieve a (k− ε)-approximation. (Without the UGC, they still ruled out a (k− 1− ε)-approximation.)

Among H that are not 2-vertex-connected, there is an O(log k)-approximation algorithm when H
is a star (in time nO(1)) or a path (in time f (k)nO(1)) [115,116,264]. The algorithm for k-path follows
from the result for TREEWIDTH k-DELETION, because any graph without a k-path has treewidth at
most k. Whenever H is a tree with k vertices, detecting a copy of H in G with n vertices can be
done in 2O(k)nO(1) time [265], and it is open whether there is an O(log k)-approximation algorithm for
H-SUBGRAPH DELETION in time f (k) · nO(1).

4.6.3. Other Deletion Problems

Chordal graphs. A graph is chordal if it does not have an induced cycle of length≥ 4. Chordal graphs
form a subclass of perfect graphs that have been actively studied. Initially motivated by efficient
kernels, approximation algorithms for CHORDAL DELETION have been developed recently. The current
best results are a poly(OPT)-approximation [140,266] and a O(log2 n)-approximation [260].

Edge versions. While this subsection focused on the vertex deletion problem, there are some results
on the edge deletion, edge addition, and edge modification versions. (Edge modification allows
both addition and deletion.) Cao and Sandeep [267] studied MINIMUM FILL-IN, whose goal is to
add the minimum number of edges to make a graph chordal. They gave new inapproximability
results implying improved time lower bounds for parameterized algorithms. Giannopoulou et al. [268]
gave O(1)-approximation algorithms for PLANAR H-IMMERSION DELETION parameterized by H.
Bliznets et al. [269] considered H-free edge modification for a forbidden induced subgraph H and give
an almost complete characterization on its approximability depending on H.

Directed graphs. There is also a large body of work on parameterized algorithms for vertex deletion
problems in directed graphs. While many of the known problems (including DIRECTED FEEDBACK
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VERTEX SET [270]) admit an exact FPT algorithm, Lokshtanov et al. [48] studied DIRECTED ODD

CYCLE TRANSVERSAL, and proved that it is W[1]-hard and is unlikely to admit an PAS under the
Parameterized Inapproximability Hypothesis (or Gap-ETH). They complemented the result by showing
a 2-approximation algorithm running in time f (OPT)nO(1).

4.7. Faster Algorithms and Smaller Kernels via Approximation

The focus of this section so far has been on problems for which its exact version is intractable
(i.e., W[1]/W[2]-hard) and the goal is to obtain good approximations in FPT time. In this subsection,
we shift our focus slightly by asking: does approximation allow us to find faster algorithms for
problems already known to be in FPT?

To illustrate this, let us consider VERTEX COVER. It is of course well-known that the exact version
of the problem can be solved in FPT time, with the current best running time being O∗(1.2738k) [271].
The question here would be: if we are allowed to output an (1− ε)-approximate solution, instead of
just an exact one, can we speed up the algorithm?

To the best of our knowledge, such a question was tackled for the first time by
Bourgeois et al. [272] and revisited quite a few times in the literature [20,273–276]. As one might
have suspected, the answer to this question is a YES, as stated below.

Theorem 31 ([20]). Let δ > 0 be such that there exists an O∗(δk)-time algorithm for VERTEX COVER

(e.g., δ = 1.2738). Then, for any ε > 0, there is an (1 + ε)-approximation for VERTEX COVER that runs in
O∗(δ(1−ε)k) time.

The main idea of the algorithm is inspired by the “local ratio” method in the approximation
algorithms literature (see e.g., [277]) and we sketch it here. The algorithm works in two stages. In
the first stage, we run the greedy algorithm: as long as we have picked less than 2εk vertices so far
and not all edges are covered, pick an uncovered edge and add both endpoints to our solution. In the
second stage, we run the exact algorithm on the remaining part of the graph to find a VERTEX COVER

of size (1− ε)k. Since the first stage runs in polynomial time, the running time of the entire algorithm
is dominated by the second stage, whose running time is O∗(δ(1−ε)k) as desired. The correctness of the
algorithm follows from the fact that, for each selected edge in the first step, the optimal solution still
needs to pick at least one endpoint. As a result, the optimal solution must pick at least εk vertices with
respect to the first stage (compared to 2εk picked by the algorithm). Thus, when the optimal solution is
of size at most k, there must be a solution in the second stage of size at most (1− ε)k, meaning that the
algorithm finds such a solution and outputs a vertex cover of size (1 + ε)k as claimed.

The above “approximate a small fraction and brute force the rest” approach of Fellows et al. [20]
generalizes naturally to problems beyond VERTEX COVER. Fellows et al. [20] formalized the
method in terms of α-fidelity kernelization and apply it to several problems, including CONNECTED

VERTEX COVER, d-HITTING SET and STEINER TREE. For these problems, the method gives
an (1 + ε)-approximation algorithm that runs in time O∗(δ(1−Ω(ε))k), where δ > 0 denotes a
constant for which a O∗(δk)-time algorithm is known for the exact version of the corresponding
problem. The approach, in some form or another, is also applicable both to other parameterized
problems [278,279] and to non-parameterized problems (e.g., [272]); since the latter is out-of-scope for
the survey, we will not discuss the specifics here.

An intriguing question related to this line of work is whether it must be the case that the
running time of (1 + ε)-approximation algorithms is of the form O∗(δ(1−Ω(ε))k). That is, can we
get a (1 + o(1))-approximation for these problems in time O∗(λk) where λ is a constant strictly smaller
than δ? More specifically, we may ask the following:
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Open Question 16. Let δ > 0 be the smallest (known) constant such that an O∗(δk)-time exact algorithm
exists for VERTEX COVER. Is there an algorithm that, for any ε > 0, runs in time f (1/ε) ·O∗(λk) for some
constant λ < δ?

Of course, the question applies not only for VERTEX COVER but other problems in the list as
well. The informal crux of this question is whether, in the regime of very good approximation factors
(i.e. 1 + o(1)), approximation can still be exploited in such a way that the algorithm works significantly
better than the approach “approximate a o(1) fraction and then brute force”.

Turning back once again to our running example of VERTEX COVER, it turns out that algorithms
faster than “approximate a small fraction and then brute force” are known [273,275,276] but only for the
regime of large approximation ratios. In particular, Brankovic and Fernau [273] give faster algorithms
than in Theorem 31 already for approximation ratios as small as 3/2. The algorithms in [275,276] focus
on the case of “barely non-trivial” (2− ρ)-approximation factors. (Recall the greedy algorithm yields a
2-approximation and, under the Unique Games Conjecture, the problem is NP-hard to approximate
to within any constant factor less than 2.) The algorithm in [275] has a running time of O∗(2k/2Ω(1/ρ)

),

which was later improved in [276] to O∗(2k/2Ω(1/ρ2)
). These running times should be contrasted with

that of “approximate a small fraction and then brute force” (i.e., applying Theorem 31 directly with
ε = 1 − ρ) which gives an algorithm with running time O∗(2kρ). In other words, Refs. [275,276]
improve the “saving factor” from 1/ρ to 2Ω(1/ρ) and 2Ω(1/ρ2) respectively. It should be noted however
that, since the known (2− o(1))-factor hardness of approximation is shown via the Unique Games
Conjecture and unique games admit subexponential time algorithms [280,281], it is still entirely
possible that this regime of approximating VERTEX COVER admits subexponential time algorithms as
well. This is perhaps the biggest open question in the “barely non-trivial” approximation range:

Open Question 17. Is there an algorithm that runs in 2o(k)nO(1) time and achieves an approximation ratio of
(2− ρ) for some absolute constant ρ > 0?

Let us now briefly discuss the techiques used in some of the aforementioned works.
The algorithms in [273,275] are based on branching in conjunction with certain approximation
techniques. (See also [282] where a similar technique is used for a related problem TOTAL VERTEX

COVER.) A key idea in [273,275] is that (i) if the (average or maximum) degree of the graph is small,
then good polynomial-time approximation algorithms are known [283] and (ii) if the degree is large,
then branching algorithms are naturally already fast. The second part of [273] involves a delicate
branching rule. However, for [275], it is quite simple: for some threshold d (to be specified), as long as
there exists a vertex with degree at least d, then (1) with some probability, simply add the vertex to
the vertex cover, or (2) branch on both possibilities of it being inside the cover and outside. After this
branching finishes and we are left with low-degree graphs, just run the known polynomial-time
approximation algorithms [283] on these graphs. The point here is that the “error” incurred if option (1)
is chosen will be absorbed by the approximation. By carefully selecting d and the probability, one can
arrive at the desired running time and approximation guarantee. This algorithm is randomized,
but can be derandomized using the sparsification lemma [284].

To the best of our knowledge, this “barely non-trivial approximation” regime has not been studied
beyond VERTEX COVER. In particular, while Bansal et al. [275] apply their techniques on several
problems, these are not parameterized problems and we are not aware of any other parameterized
study related to the regime discussed here.

Parallel to the running time questions we have discussed so far, one may ask an analogous
question in the kernelization regime: does approximation allow us to find smaller kernels for problems
that already admit polynomial-size kernels? As is the case with exact algorithms, parameterized
approximation algorithms go hand in hand with approximate kernels. Indeed, many algorithmic
improvements mentioned can also be viewed as improvements in terms of the size of the kernels.
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In particular, recall the proof sketch of Theorem 31 for VERTEX COVER. If we stop and do not proceed
with brute force in the second step, then we are left with an (1 + ε)-approximate kernel. It is also not
hard to argue that, by for instance applying the standard 2k-size kernelization at the end, we are left
with at most 2(1− ε)k vertices. This improves upon the best known 2k−Θ(log k) bound for the exact
kernel [285]. A similar improvement is known also for d-HITTING SET [20].

5. Future Directions

Although we have provided open questions along the way, we end this survey by zooming out
and discussing some general future directions or meta-questions, which we find to be interesting and
could be the basis for future work.

5.1. Approximation Factors

The quality of a polynomial-time approximation algorithm is mainly measured by the obtainable
approximation factor α: the smaller it is the more feasibly solvable the problem is. Therefore, a lot of
work has been invested into determining the smallest obtainable approximation factor α for all kinds of
computationally hard problems. In the non-parameterized (i.e., NP-hardness) world, a whole spectrum
of approximability has been discovered (cf. [3,4]): the most feasibly solvable NP-hard problems (e.g.,
the KNAPSACK problem) admit a so-called polynomial-time approximation scheme (PTAS), which is
an algorithm computing a (1 + ε)-approximation for any given constant ε > 0. Some problems can
be shown not to admit a PTAS (under reasonable complexity assumptions), but still allow constant
approximation factors (e.g., the STEINER TREE problem). Yet others can only be approximated within a
polylogarithmic factor (e.g., the SET COVER problem), while some are even harder than this, as the
best approximation factor obtainable is polynomial in the input size (e.g., the CLIQUE problem).

In contrast to polynomial-time approximation algorithms, a full spectrum of obtainable
approximation ratios is still missing when allowing parameterized runtimes. Instead, only some
scattered basic results are known. In particular, most of parameterized approximation problems
belongs to one of the following categories:

• A parameterized approximation scheme (PAS) exists, i.e., for any constant ε > 0 a
(1 + ε)-approximation can be computed in f (k)nO(1) time for some parameter k. These are
currently the most prevalent types of results in the literature. To just mention one example,
the STEINER TREE problem is APX-hard, but admits a PAS [202] when parameterized by the
number of non-terminals (so-called Steiner vertices) in the optimum solution (cf. Section 4.4).

• A lower bound excluding any non-trivial approximation factor exists. For example, under ETH
the DOMINATING SET problem has no g(k)-approximation in f (k)no(k) time [35] for any functions
g and f , where k is the size of the largest dominating set.

• A polynomial-time approximation algorithm can achieve a similar approximation ratio, i.e.,
the parameterization is not very helpful. For instance, for the k-CENTER problem [286] a
2-approximation can be computed in polynomial time [287], but even when parameterizing by k
no (2− ε)-approximation is possible [187] for any ε > 0, under standard complexity assumptions.
A similar situation holds for MAX k-COVERAGE, which we discussed in Section 4.2.2.

• Constant or logarithmic approximation ratios can be shown, and which beat any approximation
ratio obtainable in polynomial time. For instance, STRONGLY CONNECTED STEINER SUBGRAPH

problem : under standard complexity assumptions, for this problem no polynomial-time
O(log2−ε n)-approximation algorithm exists [214], and there is no FPT algorithm parameterized
by the number k of terminals [213]. However it is not hard to compute a 2-approximation in
2O(k)nO(1) time [215], and no (2− ε)-approximation algorithm with runtime f (k)nO(1) exists [50]
under Gap-ETH, for any function f and any ε > 0 (cf. Section 4.4).

For many problems discussed in this survey, including DENSEST k-SUBGRAPH, STEINER TREE

with bounded doubling/highway dimension, it has not been determined which category they belong.

243



Algorithms 2020, 13, 146

There are also a lot of problems in the final category for which asymptotically tight approximation
ratios have not been found, including DIRECTED MULTICUT, TREEWIDTH k-DELETION (both weighted
and unweighted). The parameterized approximability ofH-MINOR DELETION for non-planarH is
also widen open except MINIMUM PLANARIZATION (H = {K5, K3,3}) [259]. It is an immediate but still
interesting direction to prove tight parameterized approximation ratios for these (and more) problems.

Digressing, we remark that this survey does not include FPT-approximation of counting problems,
such as approximately counting number of k-paths in a graph. The best (1 + ε)-multiplicative factor
algorithm known [288,289] for counting number of k-paths runs in time 4k f (ε)poly(n) for some
subexponential function f (cf. [290]). So a natural question is: can we count k-paths approximately in
time ck, where c is as close to the base of running time of the algorithm of deciding existence of k-Path
in a graph (the best currently known c is roughly 1.657 [291,292])?

5.2. Parameterized Running Times

The quality of FPT algorithms is mainly measured in the obtainable runtime. Given a parameter k,
for some problems the optimum solution can be computed in f (k)ng(k) time, for some functions f
and g independent of the input size n (i.e., the degree of the polynomial also depends on the parameter).
If such an algorithm exists the problem is slice-wise polynomial (XP), and the algorithm is called an
XP algorithm. A typical example is if a solution of size k is to be found within a data set of size n,
in which case often an nO(k) time exhaustive search algorithm exists. However, an FPT algorithm with
runtime, say, O(2kn) is a lot more efficient than an XP algorithm with runtime nO(k), and therefore
the aim is usually to find FPT algorithms, while XP algorithms are counted as prohibitively slow.
The discovery of the W-hierarchy in complexity theory has paved the way to providing evidence when
an FPT algorithm is unlikely to exist. Assuming ETH, it is even possible to provide lower bounds on
the runtimes obtainable by any FPT or XP algorithm. Similar to approximation algorithms, this has
lead to the discovery of a spectrum of tractability (cf. [6]): starting from slightly sub-exponential
2O(

√
k)nO(1) time, through single exponential 2O(k)nO(1) time, to double exponential 22O(k)

nO(1) time
for FPT algorithms with matching asymptotic lower bounds under ETH (e.g., for the PLANAR VERTEX

COVER, VERTEX COVER, and EDGE CLIQUE COVER problems, respectively, each parameterized by the
solution size). For XP algorithms, asymptotically tight runtime bounds of the form nO(

√
k) and nO(k)

can be obtained under ETH (e.g., for the CLIQUE problem parameterized by the solution size, and the
PLANAR BIDIRECTED STEINER NETWORK problem parameterized by the number of terminals [50],
respectively). Finally, problems that are NP-hard when the given parameter is constant do not even
allow XP algorithms unless P = NP (e.g., the GRAPH COLOURING problem where the parameter is the
number of colours).

In terms of tight runtime bounds, existing results on parameterized approximation algorithms
are few and far between. In particular, most of them show that for a given parameter k one of the
following cases applies.

• An approximation is possible in f (k)nO(1) time for some function f . Most current results are only
concerned with the existence of an algorithm with this type of runtime, i.e., they do not provide
any evidence that the obtained runtime is best possible, or try to optimize it. The only lower
bounds known exclude certain types of approximation schemes when a hardness result for the
parameterization by the solution size exists. For instance, it is known that if some problem does
not admit a 2o(k)nO(1) time algorithm for this parameter k then it also does not admit an EPTAS
with runtime 2o(1/ε)nO(1) (cf. [5,8]).

• A certain approximation ratio cannot be obtained in f (k)nO(1) time for any function f .
For example, it is known that while a 2-approximation for the STRONGLY CONNECTED STEINER

SUBGRAPH problem can be computed in 2O(k)nO(1) time [215], where k is the number of
terminals, no (2− ε)-approximation can be computed in f (k)nO(1) time [50] for any function f ,
under Gap-ETH (cf. Section 4.4).
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Hence, matching lower bounds on the time needed to compute an approximation are missing.
For example, is the runtime of 2O(k)nO(1) best possible to compute a 2-approximation for the STRONGLY

CONNECTED STEINER SUBGRAPH problem? Could there be a 2O(
√

k)nO(1) time algorithm to compute a
2-approximation as well? For PASs the exact obtainable runtime is often elusive, even if certain types of
approximation schemes can be excluded. For instance, for the STEINER TREE problem parameterized
by the number of Steiner vertices in the optimum solution a (1 + ε)-approximation can be computed
in 2O(k2/ε4)nO(1) time [202]. Is the dependence on k and ε best possible? Could there be a 2O(k/ε4)nO(1)

or 2O(k2/ε)nO(1) time algorithm as well?
We remark that, for problems for which straightforward algorithms are known to be (essentially)

the best possible in FPT time, or for which an improvement over polynomial time approximation
is not possible, sometimes tight running time lower bounds are known in conjunction with tight
inapproximability ratios. This includes k-DOMINATING SET (Section 3.1.2), k-CLIQUE (Section 3.2.1)
and MAX k-COVERAGE (Section 4.2.2).

5.3. Kernel Sizes

The development of compositionality has lead to a theory from which lower bounds on the size of
the smallest possible kernel of a problem can be derived (under reasonable complexity assumptions).
The spectrum (cf. [6]) here reaches from polynomial-sized kernels (e.g., for any q ≥ 3 and ε > 0
the q-SAT problem parameterized by the number of variables n has no O(nq−ε)-sized kernel) to
exponential-sized kernels (e.g., the STEINER TREE problem parameterized by the number of terminals
does not admit any polynomial-sized kernel despite being FPT).

For approximate kernels, only a small number of publications exist, and the few known results
fall into two categories:

• A polynomial-sized approximate kernelization scheme (PSAKS) exists, i.e., for any ε > 0 there
is a (1 + ε)-approximate kernelization algorithm that computes a (1 + ε)-approximate kernel of
size polynomial in the parameter k. For example, the STEINER TREE problem admits a PSAKS for
both the parameterization in the number of terminals [18] and in the number of Steiner vertices
in the optimum [202], even though neither of these two parameters admits a polynomial-sized
(exact) kernel.

• A lower bound excluding any approximation factor for polynomial-sized kernels exists.
For example, the LONGEST PATH problem parameterized by the maximum path length has
no α-approximate polynomial-sized kernel for any α [18], despite being FPT for this parameter [6].

Hence again the intermediate cases, for which tight constant or logarithmic approximation
factors can be proved for polynomial-sized kernels, are missing. Studying approximate kernelization
algorithms however is of undeniable importance to the field of parameterized approximation
algorithms, as witnessed by the importance of exact kernelization to fixed-parameter tractability.

5.4. Completeness in Hardness of Approximation

A final direction we would like to highlight is to obtain more completeness in inapproximability
results. Most of the results so far for FPT hardness of approximation either (i) rely on gap hypothesis
or (ii) yield a hardness in terms of the W-hierarchy but the exact version of the problem is known to be
complete on an even higher level (e.g., DOMINATING SET is known to be W[1]-hard to approximate but
its exact version is W[2]-complete). We have discussed (i) extensively in Section 3.2 and some examples
of (ii) in Section 3.1. There are also some examples of (ii) that are not covered here; for instance,
Marx [293] showed W[t]-hardness for certain monotone/anti-monotone circuit satisfiability problems
and the exact versions of these problems are known to be complete for higher levels of the W-hierarchy.
The situation here is unlike that in the theory of NP-hardness of approximation; there the PCP
Theorem [21,22] implies NP-completeness of optimization problems [294].

245



Algorithms 2020, 13, 146

Thus, in the parameterized inapproximability arena, the main question here is whether we
can prove completeness results for hardness of approximation for the aforementioned problems.
The two important examples here are: is k-CLIQUE W[1]-hard to approximate, and is k-DOMINATING

SET W[2]-hard to approximate? As discussed in Section 3.2, the former is also closely related to
resolving PIH.

Finally, we note that, while completeness results are somewhat rare in FPT hardness of
approximation, some are known. We give two such examples here. First is the k-STEINER ORIENTATION

problem, discussed in Section 3.1.3; it is W[1]-complete to approximate [44]. Second is the MONOTONE

CIRCUIT SATISFIABILITY problem (without depth bound), which was proved to be W[P]-complete by
Marx [293]. However, it does not seem clear to us whether these techniques can be applied elsewhere,
e.g., for k-CLIQUE.
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Abstract: This Special Issue contains eleven articles—surveys and research papers—that represent
fresh and ambitious new directions in the area of Parameterized Complexity. They provide
ground-breaking research at the frontiers of knowledge, and they contribute to bridging the
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1. Introductory Remarks

Parameterized Complexity has developed strongly and there is a long way to go, as evidenced by
the directions of the papers in this Special Issue.

The high-quality research in the field has been recognized by funding agencies (ERC, NSF,
many national research councils), by research fellowships (EATCS, ACM, Marie Curie, Lise Meitner
and others), by memberships in Royal Societies, Academy Europaea, and Academy of Science in
various countries, and by prizes and awards (Humboldt Research Prize, Witold Lipski Prize, Krill Prize,
NSF Career and others). Foundational papers are evinced in a broad sweep of areas including AI,
Access Control, Business, Bioinformatics, Computational Geometry, Computational Social Choice,
Cognitive Science, Computational Medicine, Machine Learning, Phylogeny, Psychology, Operations
Research and Scheduling, with many Best Paper Awards. About 8% of papers in top theoretical
computer science conferences are related to Parameterized Complexity.

Since 2015, the annual Parameterized Algorithms and Computational Experiments Challenge (PACE)
has served to deepen the relationship between parameterized algorithms and practice, and help bridge
the divide between the theory of algorithm design and analysis, and the practice of algorithm engineering,
as well as inspire new theoretical developments.

Books in the field include Parameterized Complexity in the Polynomial Hierarchy: Extending
Parameterized Complexity Theory to Higher Levels of the Hierarchy (de Haan 2020). Two new books were
published in 2019: Cognition and Intractability: A Guide to Classical and Parameterized Complexity Analysis
(Iris van Rooij, et al. 2019), and Kernelization: Theory of Parameterized Preprocessing (Fomin et al. 2019).
Many open problems remain that were proposed in Parameterized Complexity, 1999 and Foundations
of Parameterized Complexity, 2013 (Downey and Fellows), Invitation to Fixed-Parameter Algorithms
(Niedermeier 2002), Parameterized Complexity Theory (Flum, Grohe 2006), and Parameterized Algorithms
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(Cygan et al. 2016). The wiki helps to keep the community informed, and archives the Parameterized
Complexity Newsletter (www.wikidot.com).

The articles in this Special Issue represent fresh and ambitious research, in new directions in
this area.

We would like to thank all the authors for the excellent surveys and papers in this Special Issue.
We thank all the reviewers. Experts take reviewing very seriously, and the detailed help in this is valued
by the authors. We thank Jones Zhang and the staff at the Algorithms Editorial Office, who worked
closely with us to make this Special Issue a smooth and enjoyable experience. As an Open Access journal,
the Algorithms Journal publishes quickly, which is a boon to the rapid dissemination of ground-breaking
research, which you will find in this Special Issue.

2. New Frontiers

Several frontiers in Parameterized Complexity, either new or with well-established roots, but still
in their infancy, are represented in this collection. All of these frontiers go “hand in hand” with the
overarching goal of increasing the scope and impact of Parameterized Complexity. To this end,
first and foremost, parameterized algorithms should be made practical.

This, of course, means that specific methods to enhance performance in practice are to be developed.
Novel approaches to do so, with an emphasis on treewidth, the most well-studied width measure
in the field, are given by Salvchev et al., and by Bannach and Brendt. Further, basic machinery
in Parameterized Complexity should be exported to work when the input is not a graph. Indeed,
most problems in practice are not about graphs, yet some of them can be modeled by graphs. For example,
Integer Linear Programming (ILP) is a ubiquitous language to formulate problems, which is used in
practice, and Ganian and Ordyniak survey how it can be modeled by parameterized graph problems.
Additionally, Lin et al. do so for the kidney exchange problem. Taking a broader perspective, Bulteau and
Weller survey new challenges for parameterized complexity in bioinformatics, where problems often
concern entities that are not “just” graphs or are not graphs at all.

To design practical parameterized algorithms, additional considerations are often required.
Specifically, in practice, it may not be clear how to determine what the “best" solution is. Therefore,
we might wish to compute several solutions. Creignou et al. present results for the enumeration of
solutions with FPT delay, and Baste et al. highlight diversity as a measure of the quality of a set
of solutions. In addition to uncertainty with respect to the best solution, the input itself might be
uncertain (in a different sense). This issue is discussed by Narayanaswamy and Vijayaragunathan.
Further, the paradigm of parameterized complexity by itself might not be enough, for example, when no
efficient fixed-parameter algorithm, or no fixed-parameter algorithm at all, is likely to exist for some
problems. In this regard, a research direction that has received growing attention in recent years is
that of parameterized approximation, surveyed by Feldmann et al., and a specific result is given by
Li. Another framework to handle this is offered by SAT-solvers, which are often employed in practice,
as surveyed by de Haan and Szeider.

Beyond Fixed-Parameter Tractability: New Paradigms. In recent years, the paradigm
of Prameterized Complexity has been “combined” with other algorithm design paradigms,
including approximation algorithms, streaming algorithms, dynamic algorithms and distributed
algorithms. The last three focus on the design of parameterized algorithms that can be used under
additional constraints/features of the input and the computation entities involved, such as a lack of space
or the necessity to efficiently deal with small changes in the input that occur over time. Approximation
algorithms, like Parameterized Complexity, is a framework to deal with computationally hard problems.
Here, we compromise the “quality” of the solution, but still demand that the algorithm run in polynomial
time. By compromising both quality and running time, we can compromise each of them by just a little bit
rather than one of them by a lot. For example, we can achieve a (1 + ε)-approximate solution in FPT time
for a problem that is unlikely to admit any constant-factor approximation algorithm in polynomial time
and which is W[1]-hard, and hence enjoy both. In this collection, Feldmann et al. survey both positive
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algorithmic and hardness results in Parameterized Approximation. Further, Li presents a result in the
context of circuits, showing negative results regarding the approximability of the Dominating Set by
para-AC0 circuits.

Another framework to deal with problems that are computationally hard even when FPT time
is allowed is to employ SAT solvers. In particular, SAT solvers are often used in practice, and are
very effective for this purpose. Set in the framework of Parameterized Complexity, this can mean that
the objective is to design FPT-time reductions in SAT. Of course, this makes sense only for problems
that are supposed not to be NP-complete, but belong to higher levels of the Polynomial Hierarchy.
In this way, we harness the power of both Parameterized Complexity and SAT solvers, aiming to
develop practical algorithms for very hard problems. In this collection, a comprehensive compendium
by de Haan and Szeider discusses this framework and presents a long list of relevant problems that
are known to be reducible in FPT time to SAT.

The “Best” Solution and the “Correct” Input. Motivated by both theoretical and practical
considerations, the study of enumeration and counting problems is of broad interest. Indeed, in many
scenarios that arise in practice, we might not be interested in computing a single solution, but we may
be interested in several—and possibly even all—solutions to a given problem, or just to count how
many solutions there are. For example, in many problems that arise in bioinformatics, it is not clear
what the “best” solution is, since different solutions can represent different biological explanations
(e.g., describe different evolutionary events), and it is not clear which is the correct one. In some
cases, but not all, after offering these solutions, further experiments can be used to further sieve them.
Therefore, perhaps the t “best” (or some t) solutions are sought. This yields different questions in
enumeration, where we wish to list all solutions, some t best solutions, or each of the solutions one
by one with modest delay. Clearly, the last option is the least restrictive if we enumerate the solution
from “best” to “worse”. The study of enumeration in the framework of Parameterized Complexity is
relatively young. Here, when interested in the last option, we want the delay time to be FPT. Problems
that admit enumeration algorithm with an FPT delay time are said to belong to the class DelayFPT.
Creignou et al. study this setting, and present corresponding algorithms for modification problems on
graphs and beyond.

When seeking some collection, say, of size t, of solutions, we may wish them to be “diverse”,
in some sense. Indeed, we may not have a reliable measure for what the t “best” solutions are,
or perhaps we want to represent the entire solution space. In both cases, we may want the t output
solutions to be, in some sense, as “diverse” as possible. There are various measures for the diversity of a
collection. In particular, the work of Baste et al. makes use of the sum of the “distances” between every
pair of output solutions. Specifically, they present parameterized algorithms to output a collection of t
solutions for the d-HITTING SET problem (which are hitting sets whose size is, at most, some input
parameter k), whose diversity measure is, at least, some input parameter p, where the distance between
two solutions is the size of their symmetric difference.

Besides being uncertain about which solution we seek, we might be uncertain about the input itself.
In particular, for a graph problem, we might be uncertain about which edges should exist—for example,
in protein–protein-interaction networks, where vertices represent proteins and edges represent
interactions between them, noisy and error-prone experiments to determine the interactions lead
to uncertainty. Narayanaswamy and Vijayaragunathan survey different models of uncertainty as well
as problems corresponding to them, some of which are motivated by biological and social networks.
In addition, they zoom into the problem of finding the maximal core of a graph under uncertainty in
two models, and present polynomial-time and FPT algorithms as well as a W[1]-hardness result.

Width Measures: New Perspectives. This collection also contains two articles that address
practical issues, both focused on treewidth and tree decompositions, but from two different
perspectives. One concerns the computation of treewidth itself, and the other concerns the solution
of graph problems parameterized by treewidth (where a corresponding tree decomposition is given
as input). Roughly speaking, treewidth is a measure of how close a graph is to a tree, where a tree
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decomposition is a structure that witnesses it, and this measure is among the most well-studied
structural parameters in Parameterized Complexity. Its computation was also posed several times
as a challenge in Parameterized Algorithms and Computational Experiments (PACE), an annual
competition to design the fastest (in practice) algorithms for the parameterized problems posed as
challenges in that year. On the one hand, the article by Slavchev, Masliankova and Kelk presents a new
approach based on Machine Learning to obtain a faster (in practice) algorithm for the computation
of the treewidth of a given graph. Specifically, it considers known algorithms to compute treewidth,
and presents an approach to automatically learn which input characteristics make which algorithm
among them better. On the other hand, the article by Bannach and Berndt considers algorithms based
on dynamic programming on tree decompositions. It is noteworthy that almost all existing algorithms
based on treewidth make use of dynamic programming, though this is sometimes coupled with other
modern techniques. Specifically, Bannach and Berndt focus on the practicality of these algorithms,
and also present a software for this purpose.

While many problems that need to be solved in practice do not concern graphs, some of them can
be represented by using graphs, and thereby give rise to the usage of structural graph parameters such
as treewidth. Ganian and Ordyniak present a survey that has this view with respect to Integer
Linear Programming (ILP), a well-known, very general problem that encompasses many basic
problems in computer science. Specifically, they consider a standard graphical representation from
the study of constraint satisfaction problems that describe the interactions between the variables and
constraints (namely, which variable is present, having a nonnegative coefficient, in which constraint).
They survey recent development in this regard, considering width parameters such as treewidth,
treedepth and cliquewidth.

Exporting Fixed-Parameter Tractability to Various Application Domains. Many computational
problems that arise in Bioinformatics are NP-hard and require dealing with inputs of a very large size which
are, nevertheless, structured, and hence naturally fit the framework of Parameterized Complexity. Indeed,
Bioinformatics has been a main application domain for this framework for two decades. The survey
by Bulteau and Weller presents an up-to-date survey of several topics in Bioinformatics from the
viewpoint of Parameterized Complexity, with an emphasis on problems solved in practice, and addressing
current questions, aiming, also, by providing concrete open problems, to advance further research in
this regard. The survey presents an overview on various central topics: genome comparison and completion,
genome assembly and sequence analysis, haplotyping and phylogenetics. For example, one direction for
research in the first topic concerns distances between genomes, particularly rearrangement distances. Here,
given two genomes, the objective is to decide whether one can be transformed to the other using, at most,
k operations of a specific kind, motivated by biological considerations. This aims to reflect the evolutionary
events that have occurred since their last common ancestor.

An article by Lin et al. considers a specific problem, called the Kidney Exchange problem, which aims
to effectively utilize living-donor kidneys. This is modelled as a (di)graph problem, where the objective
is to find a maximum weight packing of vertex-disjoint cycles and chains, where the length of cycles
is upper-bounded by a given constant. This represents, in some sense, barter exchange. For example,
when the cycle is of length 2, this corresponds to the scenario where a patient–donor pair can donate a
kidney to some other pair and receive a compatible kidney from that pair in exchange.
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