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Special Issue on Real-Time Diagnosis Algorithms in Biomedical
Applications and Decision Support Tools

Alfredo Rosado-Muñoz 1

Department of Electronics Engineering, University of Valencia, Burjassot, 46100 Valencia, Spain;
alfredo.rosado@uv.es

1. Introduction

The use of automatic support tools in daily clicnical practice is increasing continuously.
From family doctors to surgeons, specialists are using a wide range of devices and software,
increasing the level of accuracy in their diagnoses. Deep learning algorithms and data
analysis in general are providing new possibilities for doctors. Many doctors now use
user-friendly tools and devices in their daily practice which contain an impressive level of
research underneath. The algorithms and data processing required are hidden to doctors
in order to allow them to concentrate on their main task: taking care of patients. Still,
continuous research must be conducted in order to improve these algorithms.

Each of the ten papers published in this Special Issue is proof of such advances and
continuously evolving developments. Different proposals from various fields show how
new data analysis techniques can improve the daily tasks of doctors. This is especially im-
portant when those algorithms are included as part of the devices that doctors use, making
it possible to provide doctors with important information to validate their diagnostics. In
this sense, these algorithms must be not only be accurate, but they must also be able to be
executed in real-time. That was one of the main goals of this special issue.

As a second main goal, decision support tools are an issue when dealing with the
analysis of massive amounts of data from patients. These tools will help to provide relevant
information to doctors, showing trends and variations in the information.

In both cases, research in this area is essential in order to provide the best care to patients.

2. Real-Time Diagnosis Algorithms in Biomedical Applications

Five papers in this Special Issue mainly dealt with real-time issues:

• “Ventricular Fibrillation and Tachycardia Detection Using Features Derived from
Topological Data Analysis [1]” by Azeddine Mjahad, Jose V. Frances-Villora, Manuel
Bataller-Mompean, and Alfredo Rosado-Muñoz was published in July 2022 and dealt
with the detection of an important cardiac pathology which can cause death if not
adequately reverted in time.

• “Low-Cost, Compact, and Rapid Bio-Impedance Spectrometer with Real-Time Bode
and Nyquist Plots” [2] by Didik R. Santoso, Bella Pitaloka, Chomsin S. Widodo, and
Unggul P. Juswono, published in January 2020, presented a bio-impedance spectrome-
ter with many possibilities for daily use by specialists, in addition to being accurate
and compact.

• “Real-Time Localization of Epileptogenic Foci EEG Signals: An FPGA-Based Im-
plementation” [3] by Jose V. Frances-Villora, Manuel Bataller-Mompean, Azeddine
Mjahad, Alfredo Rosado-Muñoz, Antonio Gutierrez Martin, Vicent Teruel-Marti, Vi-
cente Villanueva, Kevin G. Hampel, and Juan F. Guerrero-Martinez was published in
2020 and covered interesting research on epilepsia and proposed a method able to
detect epileptic episodes in a short time, allowing the reversion of episodes as soon
as possible.

Appl. Sci. 2023, 13, 13308. https://doi.org/10.3390/app132413308 https://www.mdpi.com/journal/applsci1
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• “Optimization of Physical Activity Recognition for Real-Time Wearable Systems:
Effect of Window Length, Sampling Frequency and Number of Features” [4] by Ardo
Allik, Kristjan Pilt, Deniss Karai, Ivo Fridolin, Mairo Leier and Gert Jervan, published
in November 2019, provided important insight into wearable devices, commonly
used nowadays.

• “A Prototype of a Portable Gas Analyzer for Exhaled Acetone Detection” [5] by Jakub
Sorocki and Artur Rydosz in June 2019 described the use of a gas analyzer to detect ex-
haled acetone. Acetone is an important compound related to some diseases. This pro-
posal showed an interesting approach to using the device and measurement method.

3. Decision Support Tools in Biomedical Applications

The other five papers were more related to decision support tools:

• “A Machine-Learning Model Based on Morphogeometric Parameters for RETICS
Disease Classification and GUI Development” [6] by José M. Bolarín, F. Cavas, J.S.
Velázquez, and J.L. Alió, published in March 2020, described a graphical user interface
helping specialists to detect RETCS disease, assisted by artificial intelligence.

• “Wavelia Breast Imaging: The Optical Breast Contour Detection Subsystem” [7] by
Julio Daniel Gil Cano, Angie Fasoula, Luc Duchesne, and Jean-Gael Bernard was
published in February 2020 and described a tool to help specialists in analyzing
breast images to detect anomalies and better establish a relationship between disease
and deformities.

• “Analogy Study of Center-Of-Pressure and Acceleration Measurement for Evaluating
Human Body Balance via Segmentalized Principal Component Analysis” [8] by Tian-
Yau Wu and Ching-Ting Liou, published in Novemebr 2019, conducted an interesting
analysis of human body balance by means of several data analysis tools, showing the
results as an important parameter to evaluate certain human movement parameters
in patients.

• “Dynamic Handwriting Analysis for Neurodegenerative Disease Assessment: A
Literary Review” [9] by Gennaro Vessio, published in November 2019, proposed
an approach on detecting neurodegenerative processes by means of the analysis of
handwriting. These tests are very important to the specialist in order to achieve
early detection.

• “Automatic Detection of a Standard Line for Brain Magnetic Resonance Imaging
Using Deep Learning” [10] by Hiroyuki Sugimori and Masashi Kawakami appeared
in September 2019 and showed how to develop and estimate accurate parameters
from brain magnetic resonance as important markers for the specialist.

4. Conclusions

The goals of the Special Issue were fulfilled by the inclusion of research works related
to relevant research topics in biomedical engineering, such as improvement in health care,
therapy, and diagnosis. All of the contributions to this issue have a high social impact
which, in turn, is what science and research is made for: improving human lives.
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Azeddine Mjahad *, Jose V. Frances-Villora, Manuel Bataller-Mompean and Alfredo Rosado-Muñoz

Processing and Digital Design Group, Department of Electronic Engineering, University of Valencia,
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Featured Application: Automated External Defibrillation (AED) and Implantable Cardioverter

Defibrillators (ICD) require accurate algorithms to detect arrhythmias and discriminate among

them. This work proposes specific features for algorithms implemented in such devices.

Abstract: A rapid and accurate detection of ventricular arrhythmias is essential to take appropriate
therapeutic actions when cardiac arrhythmias occur. Furthermore, the accurate discrimination
between arrhythmias is also important, provided that the required shocking therapy would not be
the same. In this work, the main novelty is the use of the mathematical method known as Topological
Data Analysis (TDA) to generate new types of features which can contribute to the improvement of the
detection and classification performance of cardiac arrhythmias such as Ventricular Fibrillation (VF)
and Ventricular Tachycardia (VT). The electrocardiographic (ECG) signals used for this evaluation
were obtained from the standard MIT-BIH and AHA databases. Two input data to the classify are
evaluated: TDA features, and Persistence Diagram Image (PDI). Using the reduced TDA-obtained
features, a high average accuracy near 99% was observed when discriminating four types of rhythms
(98.68% to VF; 99.05% to VT; 98.76% to normal sinus; and 99.09% to Other rhythms) with specificity
values higher than 97.16% in all cases. In addition, a higher accuracy of 99.51% was obtained when
discriminating between shockable (VT/VF) and non-shockable rhythms (99.03% sensitivity and
99.67% specificity). These results show that the use of TDA-derived geometric features, combined in
this case this the k-Nearest Neighbor (kNN) classifier, raises the classification performance above
results in previous works. Considering that these results have been achieved without preselection of
ECG episodes, it can be concluded that these features may be successfully introduced in Automated
External Defibrillation (AED) and Implantable Cardioverter Defibrillation (ICD) therapies.

Keywords: electrocardiography analysis; ventricular arrhythmia detection; ventricular fibrillation
detection; ventricular tachycardia detection; ECG signal classification; Topological Data Analysis;
representation of point cloud; persistent diagram representation; landscape representation; silhouette
representation

1. Introduction

A rapid and accurate detection of ventricular arrhythmias is essential to taking appro-
priate therapeutic actions. These pathologies are very common, being considered one of the
main causes of death in developed countries, given that even weak episodes of Ventricular
Fibrillation (VF) eventually cause sudden death.

Although arrhythmias have different origins, they can be considered a consequence
of changes in cellular electrophysiology of the heart. Moreover, in most cases of sudden
cardiac death, arrhythmogenic cardiac disorders appear as the main causes of death without
showing evidence of pathological abnormalities of the heart.

To revert VF, the current protocol is the electrical defibrillation of the heart using an
Automatic External Defibrillator (AED) [1], which can be commonly found nowadays in

Appl. Sci. 2022, 12, 7248. https://doi.org/10.3390/app12147248 https://www.mdpi.com/journal/applsci4
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public places such as airports, shopping centers, sports arenas, etc. This process involves an
external application of a high-energy electrical shock through the chest wall of the patient
to allow the reinstatement of the normal rhythm. Some studies [2–4] have established that
defibrillation success is conversely proportional to the time interval between the start of
the Ventricular Fibrillation episode and the time when the electrical discharge is applied.

However, similar pathologies exist, like Ventricular Tachycardia (VT), requiring a
different treatment than VF. In these cases, the signal may share some characteristics (lack
of organization, irregularity, etc.) with VF, but the administration of an electrical shock to a
patient not suffering VF could result in serious injuries or even bring about VF itself. This
is why an accurate detection and classification of ventricular arrhythmias is so relevant.

The electrocardiogram (ECG) is an inexpensive and noninvasive tool used in the
diagnosis of cardiac conduction disorders. It enables the analysis of the heart rate and mor-
phology of different cardiac electrical waves, which, in turn, may permit the identification
of various types of heart diseases. Because of this, ECG signals are considered an important
and reliable source of information [5,6].

Many statistical methods have been applied to detect VF or VT using ECG data.
However, following these manual methods, it is difficult to make a feature extraction
capable of capturing the deep characteristics of ventricular arrhythmias. This is the reason
why machine learning techniques have been effectively applied for the recognition of
cardiac arrhythmias. In this sense, Orozco et al. [7] used the Wavelet method to detect ECG
arrhythmias with three types of episodes (Normal, VT, and VF). In [8], Pooyan et al. used an
SVM with Gaussian Kernel to detect ventricular abnormalities with morphological features.
Tripathy et al. [9] detected and classified shockable (VF/VT) arrhythmias using Variational
Mode Decomposition with Random Forest (RF) decision trees. In [10], Jekova et al. used
fixed thresholds to implement a real-time detection of shockable episodes (VF/VT). In
addition, in the same manner, other works harnessed other machine learning techniques
for the detection and recognition of ventricular arrhythmias, as in Mohanty et al. [11], who
used a C4.5 classifier; Jothiramalingam et al. [12], who employed a k-Nearest Neighbor
(kNN) classifier; Tang et al. [13], who used Bayesian decision; or Kuzilez et al. [14], who
employed Independent Component Analysis (ICA) and Decision Trees.

Over the last few years, there has been a general surge in the use of algebraic topology
to analyze statistical data. Using this method, complicated data shapes can be categorized.
Specifically, a commonly used topological method very used to extract features from a Point
Cloud (a set of data points in space) is the Topological Data Analysis (TDA). TDA employs
tools from algebraic and combinational topology to draw out properties that express data
shapes. It can be considered a key method in attempting to interpret and comprehend
characteristics that are otherwise unattainable through the use of other practices due to
noise, dimension, or incompletion. It is so unique in its nature that TDA bridges the way
between geometry and topology.

Successful and remarkable applications have been made in a varied selection of fields,
and the range of applications continues to expand. Some of these applications include
neuroscience [15], materials science [16], detection and quantification of periodic patterns
in data [17,18], analysis of turbulent flows [19], natural language processing [20], or even
detection and classification of breast cancers [21]. However, it has been used in image
processing [22], computer vision [23], or signal and time series analysis [24,25].

Specifically, over the past few years, researchers have also begun to use TDA along
with Machine Learning methods [26,27].

Within TDA, there is an important method called Persistence Homology that can be
considered the main tool of TDA. As well as being a modification of the representation of
homology using Point Cloud data, this method computes the homological characteristics
of datasets.

In addition, TDA uses Persistence Diagrams and Persistence Barcodes to represent
the abundant homological information about the shape of data. However, note that the
use of algorithms of Machine Learning along with Persistence Diagrams or Barcodes is
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an area of TDA under research, looking for a way to alter these diagrams to be adaptable
and congruous with Machine Learning methods. An alternative approach to these two
diagrams is Persistence Landscapes.

In this work, we hypothesized that using Topological Data Analysis (TDA), some
geometric features condensing relevant information about the ‘shape of data’ can be very
valuable for the detection and discrimination of VF and VT rhythms, even in noisy and
complex signals. Extracted features can then be applied to machine learning classifiers.

Thus, the goal of this work is to assess the improvement of the classification per-
formance to detect and discriminate VF and VT episodes, when incorporating a set of
TDA-derived geometric features in the feature extraction and selection stage. Note that
the main difference with previous works is that these kinds of features have been never
applied before in the analysis and classification of ventricular arrhythmias.

The main contributions of this work are

• The proposal of a novel classification procedure using features derived from Topologi-
cal Data Analysis (TDA).

• The application of the proposed classification procedure to the detection and discrimi-
nation of VF and VT. Specifically, an accuracy near 99% is obtained.

• The application of the proposed classification procedure to the detection of shockable
(VF/VT) and non-shockable rhythms. In this case, a 99.5% accuracy is obtained, the
highest in the bibliography.

• The evidence that features derived from Topological Data Analysis can overcome
conventional feature selection limitations by providing information about the ‘shape
of data’ to the classifier.

• The high performance obtained without preselection of episodes shows that geometric
features are good candidates to be incorporated into Automated External Defibrillator
(AED) and Implantable Cardioverter Defibrillation (ICD) devices.

The paper is organized as follows. Section 2 is dedicated to the description of funda-
mental TDA. Section 3 introduces the dataset, explains the proposed methodology and
details the used classification procedure. The results of the analysis and a discussion of
these are presented in Sections 4 and 5, respectively. Finally, Section 6 concludes the paper.

2. Fundamental Concepts of TDA

This section outlines a simplified description of the mathematics behind Homology
and Persistent Homology (PH). In TDA, cloud data are frequently seen as a simplicial
complex, which is a set of points, lines, segments, triangles, and its n-dimensional coun-
terparts. This allows one to use the methods from simplicial homology to quantify the
shape of the data in terms of connections [28] and enables us to make a topological feature
extraction. The process of topological feature extraction using PH can be summarized in
the following steps:

• Data Point Cloud χ ∈ R
n is employed as an input.

• For each data point (or vertex) vi ∈ χ, make B(vi) a ball of radius ε centered at each vi,
where ε ∈ R

+.
• Raise the value of ε.
• A simplicial complex is built for each ε using Vietoris Rips and filtration.
• Measure PH and take note of its appearance and disappearance.
• Plot the (εbirth, εdeath) appearance and disappearance coordinates for each PH on an

extended real plane R
2 ⋃ {±∞}. The Persistence Diagram comes as an output.

• Lastly, the topological features are extracted.

In terms of mathematics, the input to a PH are the Point Cloud data. In the case of
ECG, the input data are the time series. Taken’s Delay Embedding Theorem can be used in
the conversion of time series data to point cloud data without losing topological properties.
The approach consists of transforming a time series xt, where t ∈ {1, 2, . . . , T}, into its
phase space representation. A point cloud or a set of points is obtained according to the

6
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following equation where i = (1, 2, . . . , T + nτ) and τ is a delay parameter and n specifies
the dimension of the point cloud [29]:

vi = xi, xi+τ , . . . , xi+nτ (1)

Simplicial complexes are essential in the extraction of topological features from point
cloud data. A single data point may define 0-Simplex. A line between two points denotes
1-Simplex. A triangle is a 2-Simplex. Tetrahedra represent 3-simplices (see Figure 1).
Finally, a combination of simplices gives way to a Simplicial Complex called Vietoris Rips
Complex [30–32].

Figure 1. Gradual construction of various simplices (0-Simplex, 1-Simplex, 2-Simplex, . . .) eventually
gives way to a Simplicial Complex.

A simplicial complex can be taken from a dataset using the Vietoris − Rips construc-
tion. Being X = (x1, . . . , xn) a point cloud in an euclidean space Rn, for each distance
ε > 0, represented by VR(X; ε), there is a simplicial complex with vertex set in X where
x0, x1, . . . , xk spreads a k− simplex if the reciprocal distance between any pair of its varieties
is smaller than ε, where d(x, x) ≤ ε, for all 0 ≤ i, j ≤ k.

When building a Simplicial Complex with Point Cloud data, it is needed to follow a
set of rules. Firstly, a circle should be drawn with radius ε for each point in a point cloud.
Then, when two circles intersect with each other and the radius is increased, a line is drawn
to link the two points, which can be seen in Figure 2.

Figure 2. Diagram illustrating circular intersections and linked point clouds required to build a
Simplicial Complex.

As ε gets longer, the Vietoris-Rips complex of a Point Cloud does, too. This is a
filtration of simplicial complexes, i.e., a nested sequence of simplicial complexes, where
VR(X; ε), ε ≥ 0 satisfying VR(X; ε1) ⊆ VR(X; ε2) if ε1 ≤ ε2. To represent the distance
between them, balls are drawn around each point. If two balls with radius ε intersect with
each other, the two points are at a distance at most 2ε.

7
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The Persistence Diagram representation (PDR) is a standard way to represent PH [33,34].
K-dimensional features consist of persistence diagrams; 0-dimensional features represent
components that are connected, 1-dimensional features represent holes, 2-dimensional
features voids, etc. [35]. Concurrently, a PDR Wm is made of n features, Wmi = (bi, di),
with i = (1, 2, . . . , n). Each point corresponds to the lifespan of one topological feature,
where bi and di are its birth time and death time, respectively (birth time indicates when the
geometrical structure appears, while death time indicates when the geometrical structure
disappears). Points are entirely located in the half-plane above the diagonal [36] (Figure 3).

Figure 3. Representation of Point Cloud—RPC (left) on a Persistence Diagram representation—PDR
(right).

When it comes to machine learning and statistics, a Persistence Landscapes Repre-
sentation (LR) is more straightforward to work with than PDR and can be considered an
alternative representation [37]. The approach takes the topological information that was
previously encoded on a PDR and presents it as elements of a Hilbert space. Statistical
learning methods can then be applied directly. Additionally, Persistence Silhouette repre-
sentation (SR) [38] are constructed by mapping each point z = (d, b) of a PDR to a piecewise
linear function, namely the ‘triangle’ function Tz, which can be defined as follows:

Tz(y) = (y − b + d)l[b−d,b](y) + (b + d − y)l[b,b+d](y) (2)

where lA(x) is the standard indicator function: lA(x) = 1 if x ∈ A and lA(x) = 0, otherwise.
A triangle function binds the points of the diagram to the diagonal, with segments parallel
to the axes, and later they are rotated by 45 degrees. The triangles Tz can be merged
together in various manners, and if we take their kAmax, i.e., the kth largest value in the set
Tz(y), the kth persistence landscape λk = k − maxzgDTz(y), k ∈ N+ results. The Persistence
Landscape λD is the gathering of functions λk(y). Finally, the Power Weighted Silhouette
representation Ψp(t) (later named SR) is obtained by taking the weighted average of the
functions Tz(y), as the following equation shows.

SR = Ψp(t) =
∑zgD ωpTz(y)

∑zgD ωpZ
(3)

In Figure 4 we can see a representation of the PDR and the LR.
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Figure 4. A visual example of the transformation of a persistence diagram representation (PDR)
into a persistence landscape (PL). The horizontal axis represents birth time, while the vertical axis
represents death time on the persistence diagram (left). The horizontal axis is the average of the
homologies of the birth and death times, and the vertical axis is used for (d − b)/2 on the persistence
landscape (right).

Another means of persistence diagram transformation is Persistence Images (PI) [23].
This allows for representations to be simply vectorized. Persistence images can be infor-
mally considered as a type of heatmap coming from a Calculate Gaussian KDE [39], which
can be defined as follows:

f̂ (x) = ∑ αik(x − xi) (4)

where k is kernel function centered at the data points xi with i = (0, . . . , n), and αi are the
weighting coefficients.

3. Materials and Methods

To use the topological data features described above, the classification procedure
proposed in Figure 5 is used.

Figure 5. Schematic diagram illustrating the feature selection process proposed for the discrimination
of ventricular arrhythmias, normal sinus, and other types of rhythms.

To provide a clear and detailed explanation of data processing, this section has been
divided into different parts: Section 3.1 describes the used dataset; Section 3.2 details the
noise cancellation, baseline removal, and segmentation is done as preprocessing; Section 3.3
describes the feature extraction and selection, and Section 3.4 outlines the classification
procedure and parameters used to evaluate the performance of the classification.

3.1. Materials

Data records from two standard databases were used: MIT-BIH Malignant Arrhythmia
Database [40,41] and AHA (American Heart Association) 2000 series [42]. It is important to
note that no preselection of ECG episodes was done, i.e., all annotated segments from the
database were used. Thus, 24 patients were analyzed (i.e., 24 records), 22 of which were
from the MIT-BIH database and two additional patients from the AHA Database. Each
record contained half an hour of continuous ECG recordings. According to the database
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annotation, each segment was assigned to a class. Four classes of rhythms were established:
Ventricular Fibrillation (named VF), including Ventricular Fibrillation or Ventricular Flutter
episodes, Ventricular Tachycardia as VT class, sinus rhythms were assigned to the Normal
class, and lastly, any signal not labeled within the above classes (e.g., other non-ventricular
arrhythmias, noise, etc.) was assigned to class Others.

3.2. ECG Signal Preprocessing

The performance of machine learning algorithms can be brought down due to errors
that may appear due to noise interruption or other input data corruption leading to im-
proper feature values. Thus, a signal preprocessing is required to remove unwanted data
corruption of the ECG signals: breathing, skin interference, baseline wander, powerline in-
terference, motion artifact due to electrodes, muscle artifact, white Gaussian noise, etc. [43].
Since this work proposes the full data flow analysis from acquisition to classification as in a
real scenario, we add this data preprocessing step, too. The steps used in the preprocessing
stage to prepare signals for later processes are:

• Reduction of the baseline wandering, aiming to provide better quality and definition
of the temporal signal, which will later result in better feature extraction. This stage
involves the introduction of an 8th order infinite impulse response filter (IIR) with a
Butterworth bandpass type ranging from 1 Hz to 45 Hz [44,45]. Figure 6 shows the
effect of applying this bandpass filter, resulting in a reduction of the baseline.

Figure 6. Bandpass filter application to a data segment from the Normal ECG class, and resulting
baseline reduction.

• Later, a Window Reference Marks (WRM) and a time window (tw) are obtained. The
mark indicates the start of each time window from which the features will be extracted.
Consecutive time windows are obtained to analyze all ECG data. As the values
between 50 and 120 beats per minute (bpm) can be considered a normal heart rate
range [46], the minimum and maximum distance values between any two consecutive
WRMs were established in 0.5 s and 1.2 s, respectively. Next, an algorithm already
developed by the authors in [47] was used to obtain the calculation of WRM reference
marks. A time window tw of 1.2 s (150 samples) in length was obtained, starting at each
WRM reference mark, as the following equation shows, with {j = 1, 2, . . . , NLMC}
where NLMC is the number of local maxima LM marks existing in the ECG signal:

twi = [WRMj, WRMj + 1.2s] (5)
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• For each time window, the Taken’s Delay Embedding Theorem is applied to convert
the ECG data (a time series) to a Representation of Point Cloud data (RPC), a Persis-
tence Diagram Representation (PDR), a Persistence Landscape (LR) and a weighted
Silhouette Representation (SR).

3.3. Feature Extraction and Reduction

The feature extraction stage can be regarded as the most essential stage in the detec-
tion of ventricular arrhythmias. Within the methodology proposed, several discriminatory
features from TDA were extracted. The temporal signal in each window was first trans-
formed into Point Clouds using delay embedding. Then, topological representations were
extracted: Persistence Diagram (PDR), Persistence Landscape (LR), and Power Weighted
Silhouettes (SR) (Tables 1 and 2).

Table 1. Columns a1, a2, a3 and a4 correspond to the original ECG time signal windows; columns
b1, b2, b3, b4 and c1, c2, c3 and c4 show RPC and PDR, respectively. Each row, from top to bottom,
corresponds to Normal, Other, VT and VF classes, respectively.

Parameter Extraction Time Representation of Persistence Diagram
Representation (TR) Point Cloud (RPC) Representation (PDR)

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4
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Table 1 illustrates the data point clouds (Representation of Point Cloud - RPC) and the
persistence diagram (Persistence Diagram Representation - PDR) for each class (Normal,
Other, VT, and VF). As seen, those representations provide a clear difference among classes.
Regarding Normal class, the points in RPC have a focused distribution with respect to the
rest of the arrhythmias where the points are scattered. Moreover, the point distribution
differs between VT and VF as a very heterogeneous cloud is observed in VF, in contrast with
VT. In the case of PDR, more points are located in a high birth-death ratio for VF, showing
a clear difference with the rest of the rhythms. In Table 2, Persistence Diagrams (PDR)
are compared with Persistence Landscapes Representation (LR) and Weighted Silhouettes
Representation (SR). For each class, LR and SR show different shapes.

Table 2. From top to bottom, left to right: a1, a2, a3 and a4 illustrate Persistence Diagrams (PDR). b1,
b2, b3 and b4 show Persistence Landscapes representation (LR), while c1, c2, c3 and c4 detail Weighted
Silhouette representation (SR). These all correspond to the four classes Normal, Other, VT and VF,
respectively.

Persistence Diagram (PDR) Landscape (LR) Silhouette (SR)

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4
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From each representation, a number of parameters are calculated, which will become
the input features to the classifier. Initially, 79 parameters are evaluated, combining the
most commonly used features in the bibliography with the proposed topological features.
However, a feature reduction stage was performed. This stage allows the removal of any
potentially redundant features existing, as well as reducing the computational complexity
of the data analysis. In addition, we combined these features with other usual time-domain
features representing statistical characteristics, such as variance, skewness, and kurtosis.

The feature selection was achieved using the Sequential Forward Selection (SFS)
method, an iterative method that adds the best feature iteratively to the model until
new additions do not improve the performance of the model. This method enables the
selection of the most relevant features. Finally, a total of 27 features from all representations
(time domain, RPC, PDR, LR, and SR) were selected amongst the 79 initial features. The
extracted features are detailed in Table 3. This selection allows to improve the computational
efficiency and reduce the generalization error of the model by removing irrelevant features
or noise.

Table 3. List of extracted features using TDA and other time-domain parameters used as an input
vector to the classifier.

Representation or Domain Parameter

Time Domain Std (Standard deviation along the specified
axis) [48]
Permutation entropy [49]
Spectral entropy [50]
Singular Value decomposition entropy [51]
Aproximate entropy [52]
Sample entropy [53]
Lempel-Ziv complexity [54]
Shannon entropy [55]
Petrosian fractal dimension [56]
Katz fractal dimension [57]
Higuchi fractal dimension [58]
Detrended fluctuation analysis [59]

Representation of Point Cloud (RPC) Std (Standard deviation along the specified
axis) [53]
Tsem (trimmed standar error of the mean) [60]
Nanmean [61]
Tvar (Tail value at risk) [62]

Persistence Diagram Representation (PDR) Persistence Weighted Gaussian Kernel [63]
Approximate PWG kernel [63]
Persistence Scale SpaceKerne [64]
Approximate PSS kernel [64]
Sliced Wasserstien Distance [27]
Sliced Wasserstein Kernel [27]

Landscape Representation (LR) Tsem (Trimmed standard error of the mean) [60]
Tstd (Trimmed sample standard deviation) [53]
Wasserstien distance [65]
Heat kernel distance bottleneck [53]

Silhouette Representation (SR) RMS (Root Mean Square) [66]

In addition, another input feature set was obtained. In this case, the Calculate Gaussian
KDE was applied to the Persistence Diagram, and then an image-like was obtained (Table 3).
The obtained image will be used as a direct input to the classifier, in a similar form as in [47].
Table 4 shows the resulting Gaussian KDE from a PDR.
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Table 4. Persistence Diagrams (left) a1, a2, a3, a4 and representation of Calculate Gausssian KDE
(right) b1, b2, b3, b4 for classes Normal, Other, VT and VF, respectively. The representation of KDE is
used as input to the kNN classifier in the proposed PDI method.

Scatterplot from Persistence Diagram Calculate Gaussian KDE

a1 b1

a2 b2

a3 b3

a4 b4

3.4. Classification Procedure and Performance Evaluation

This work used supervised learning. The input to the classifier was formed by a
feature vector linking together all the selected features calculated from consecutive ECG
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time windows. The only classifier used in this work was the k-Nearest Neighbor (kNN)
algorithm, which is commonly used in the bibliography [12,67]. And the used distance is
the Euclidean distance. In addition, two different input sets are evaluated. The first input
set corresponds to the features described in Table 3, named the TDA method. The second
input set is based on the Gaussian KDE bidimensional representation, named Persistence
Diagram Image - PDI.

It has been used as a repeated random sub-sampling validation technique. Thus, for
each class, 67% of data was randomly selected for training and the remaining 33% for
testing. The kNN training process was done, and then the testing dataset was used to
evaluate the classification performance by measuring the Sensibility (Sen), Specificity (Spe),
and Accuracy (Acc). This cross-validation approach was repeated five times at random,
and the performance of the classifiers was evaluated overall by taking this five iterations
average. This number of iterations was chosen after some trials as it showed the lowest
generalization error.

Standard statistical parameters were followed to assess the performance in accurate
classification of the ECG signal into the VF, VT, Normal, or Others classes. These include
the Sensitivity (Sen), Specificity (Spe), and Accuracy (Acc), which are calculated using the
following equations where TP, TN, FP, and FN represent the number of true positives, true
negatives, false positives, and false negatives, respectively:

Sensitivity =
TP

TP + FN
× 100% (6)

Speci f icity =
TN

TN + FP
× 100% (7)

Accuracy =
TP + TN

TP + FP + TN + FN
× 100% (8)

4. Results

The experiments were carried out using signals from the MIT-BIH and AHA standard
databases, Section 3.1. They were divided into four classes, namely VF, VT, Normal and
Others. The preprocessing stage carries out an 8th order bandpass (1 Hz to 45 Hz) Butter-
worth IIR filter to denoise and reduce the baseline variation, Section 3.2, and calculates the
window reference marks (WRM) of the signal, marks indicating the beginning and end of
the 1.2 s time window from the temporal signals.

At the feature extraction, we have proposed two different topological techniques to ex-
tract the parameters feeding the classifier: Topological Data Analysis (TDA) and Persistence
Diagrams (PDI). In the case of the TDA method, each window of temporal signals were
converted first into a Point Clouds representation, using delay embedding, and then into
Persistence Diagrams, Persistence Landscapes, and Power Weighted Silhouettes. Finally,
some parameters were extracted from these diagrams, Section 3.3, and then combined to
create the features vector feeding the input of the classifier. Concerning the PDI method,
the gaussian KDE was applied to the Persistence Diagram and the whole resulting image
was used as a direct input to the classifier.

The k-Nearest Neighbor (kNN) classifier was the only classifier used for both proposals.
For each class, 67% of data was randomly selected for training and the remaining

33% for testing. The kNN training process was calculated and then the testing dataset
was used to evaluate the classification performance by measuring the Sensibility (Se),
Specificity (Sp), and Accuracy (Acc). This approach was repeated five times at random,
and the performance of the classifiers was evaluated overall by taking this five iterations
average. This number of iterations was chosen after some trials because it showed the
lowest generalization error.
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Table 5 shows the confusion matrix for one of these iterations. It shows a great
classification performance. Nevertheless, the values represented in the following tables
(Tables 6–9) indicate the average performance values obtained from the repeated random
validation used in this work.

Table 5. Confusion matrix for classification of VF, VT, Others, and Normal classes using the TDA
topological method.

Algorithms
TDA

VF VT Normal Other

VF 1701 36 12 3

VT 45 601 9 1

Normal 15 3 4957 28

Other 0 2 55 1940

Thus, Tables 6–9 show the testing classification results for TDA and PDI feature
selection methods. As it can be seen, the TDA method shows better classification results
than the PDI. On the one hand, the PDI method results in values of accuracy above 92%
for all classes, having better accuracy values for VT and Other classes (97.38% and 96.19%,
respectively), but curiously falling to 92.65% for the detection of Normal sinus rhythms. The
sensitivity widely varies depending on the case, ranging from 82.25% for VT to 93.09% for
the Normal classes, being more sensitive to Normal and Others classes (around 93%) than to
VT and VF (around 84%). Except for the Normal case, the global specificity (Spe) becomes
greater than sensitivity, reaching the value of 98.53% for the VT class.

On the other hand, the TDA method results in very high results of accuracy, around
99% for all classes, with little differences between them. The sensitivity remains above 97%
except for the VT class, falling to 92.72% and getting the maximum sensitivity value for the
Normal case (99.05%), with 97.07% for the VF class. Finally, the global specificity achieves
high values: near 99% for the Normal class and above 99% for the rest of the classes, hitting
a maximum of 99.53% for the VT class.

Table 6. Results obtained for VF class classification in testing.

Type VF

Algorithms
Sensitivity% Specificity% Accuracy%

VF Global VT Other N Total

TDA 97.07 99.25 93.78 99.90 99.68 98.68

PDI 84.34 96.77 89.70 99.14 96.68 94.26

Table 7. Results obtained for VT class classification in testing.

Type VT

Algorithms
Sensitivity% Specificity% Accuracy%

VT Global VF Other Normal Total

TDA 92.72 99.53 97.93 99.89 99.94 99.05

PDI 82.25 98.53 94.85 99.62 99.36 97.38
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Table 8. Results obtained for Normal class classification in testing.

Type Normal

Algorithms
Sensitivity% Specificity% Accuracy%

Normal Global VF VT Other Total

TDA 99.05 98.45 99.27 98.88 97.16 98.76

PDI 93.09 92.14 90.22 91.65 93.95 92.65

Table 9. Results obtained for Other class classification in testing.

Type Other

Algorithms
Sensitivity% Specificity% Accuracy%

Other Global VT Normal VF Total

TDA 97.43 99.54 99.88 99.40 99.82 99.09

PDI 92.86 97.15 99.02 96.76 97.72 96.19

5. Discussion

The same as with any other classification problem, the detection of ventricular arrhyth-
mias normally uses a feature extraction and selection stage to optimize the class separation
capabilities of the classifier. This feature selection stage aims at gathering the relevant
aspects of the ECG signal based on TDA. Among a wide set of features, a reduction stage is
done to lower the number of features used as input to the classifier.

In this work, we hypothesized that, by using Topological Data Analysis (TDA), some
geometric features containing information about the ‘shape of data’ could be extracted.
This method condenses the relevant information about the shape of the data, resulting in
very valuable for the detection and discrimination between shockable VF and VT rhythms,
even in noise and complex signals cases.

The obtained results (Tables 6–9) use the kNN classifier with the input features ob-
tained by using two topological methods (TDA and PDI). Results show that the TDA
features provide better results. For this reason, the TDA method is compared with other
works in the bibliography. We have used the kNN classifier, given that it is enough to prove
the improvement in classification results compared to other works. Nevertheless, using
other classifiers is an open topic, which may lead to reach even better classification results.

As it can be seen from Tables 6–9, the use of the proposed TDA method provides
an average accuracy of 98.9% for multiclass discrimination, which differentiates VF and
VT ventricular arrhythmias but also Normal and Other types of rhythms. On the other
hand, Table 10 shows a two-class classification approach to show that the proposed TDA
method provides an accuracy of 99.5% when used to discriminate shockable (VT or VF)
and non-shockable rhythms (rest of cardiac rhythms).

Thus, it can be established that the TDA method provides a very high classification
performance. Nevertheless, we show a comparison of results with other works in the
bibliography. Note, however, that this comparison is difficult due to the differences in the
source signals used by different works; or even in the type of discrimination, they carry out:
some works discriminate between ventricular arrhythmias and non-ventricular rhythms,
others between ventricular fibrillation rhythms and non-ventricular fibrillation, others
between shockable rhythms and non-shockable rhythms (considering as shockable both
VT and VF).

For this reason, we divide the comparison into two separate blocks: the first block
focuses on the comparison with works performing rhythm discrimination, while the second
focus on the comparison with those works performing shockable vs. non-shockable signal
discrimination.
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Table 11 shows a group of works distinguishing between VF and non-VF rhythms.
In this group, Roopaei et al. [68] obtained an accuracy of 88.60% using chaotic-based
reconstructed phase space features to detect VF episodes. Arafat et al. [69] achieved a high
value in the specificity of detecting VF episodes (Sp = 98.51%) using an improved version
of the Threshold Crossing Interval (TCI) algorithm, called TCSC, and the MIT-BIH and
CUDB databases. However, this detection was carried out with a sensitivity as low as
80.97%. Later, Alonso-Atienza et al. [70] obtained high values of specificity and accuracy
(Spe = 97.10% and Acc = 96.80%) for the discrimination of VF episodes, with their specific
feature selection and SVM classifiers. In their case, the sensitivity got a moderate value
of 91.90%. Further, Li and Rajagopalan [71] used a genetic algorithm to make the feature
selection for classifying VF episodes, achieving high-performance values: Sen = 98.40%,
Spe = 98.00%, and Acc = 96.30%. Next, Acharya et al. [72] obtained high-performance
values of specificity (Spe = 98.19%) and accuracy (Acc = 97.88%) using a Convolutional
Neural Network (CNN) for the detection of VF. However, they achieved an extremely low
value of sensitivity (Sen = 56.44%). Finally, in 2019 Ibtehaz et al. [73] got the highest results
in this group, using a scheme of incorporating Empirical Mode Decomposition (EMD) and
SVM classifiers (Sen = 99.99%, Spe = 98.40%, Acc = 99.19%) for the classification of VF and
non-VF episodes.

As it can be seen, the results of the TDA proposal in this work achieve one of the best
results (Sen = 97.07%, Spe = 99.25%, and Acc = 98.68%) compared with other works of
the VF-discriminating group, with the only exception of Ibtehaz [73], that obtained better
results. However, to establish a fair comparison, note that Ibtehaz obtained slightly higher
results (i.e., a difference of 0.51% in Accuracy) at the expense of preselecting and rejecting
the noise episodes, while in this work, there was not any preselection of ECG episodes.

Furthermore, another group of works in the bibliography can be compared, distin-
guishing between VT and VF rhythms (Table 11). In this group, Xie et al. [74] proposed
a fuzzy similarity-based approximate entropy approach, distinguishing between VT and
VF and obtaining high-performance ratios (Sen = 97.98% and Spe = 97.03% to VF and
Sen = 97.03% and Spe = 97.98% to VT). However, to establish a fair comparison, it must
be considered that Xie was selected as input data representative and clean episodes of
VF and VT, while our work was done without preselection of ECG episodes. This kind
of preselection is usual in the literature, as in Kaur and Singh [75], that used a selection
of VF and VT episodes from the MIT-BIH database, using Empirical Mode Decomposi-
tion (EMD) and Approximate Entropy. Kaur and Singh obtaining moderate values for
classification performance (Sen = 90.47%, Spe= 91.66%, and Acc = 91.17%). Later, Xia
et al. [76] obtained high performance values (Sen = 98.15% and Spe = 96.01% to VF, and
Sen = 96.01% and Spe = 96.01% and Spe = 98.15% to VT) using Lempel-Ziv and Empirical
Mode Decomposition (EMD). In this case, a selection of clean episodes of VT and VF was
made too. Finally, the authors of the present work achieved high values of classification
performance [47] feeding the complete time-frequency image as the input of different
classifiers (e.g., Sen = 92.8% and Spe = 97.0% to VF and Sen = 91.8% and Spe = 98.7% to VF,
using an Artificial Neural Network Classifier, ANNC).

In any case, the results of the TDA method in this work achieve the best results when
compared with the rest of the works in the bibliography aiming to discriminate between
VF and VT rhythms (despite the preselection of ECG episodes done by some works).

Table 10 shows a comparison focused on detecting VT/VF episodes, i.e., shockable
and non-shockable. This set of works usually targets its implementation on external
defibrillators (AED) and implantable cardioverter defibrillators (ICD). Thus, these works
distinguish between shockable and non-shockable rhythms (considering shockable both VT
and VF). In this group, Li et al. [71] achieved an Accuracy of Acc = 98.1% (Sen = 98.4% and
Spe = 98.0%) using a Genetic Algorithm (GA) for feature selection and a SVM classifier. The
same year, Alonso-Atienza et al. [70] also achieved high classification performance values
(Acc = 98.6, Sen = 95.0%, and Spe = 99.0%) using a selection of features and a Support Vector
Machine (SVM) classifier. This work obtained one of the highest accuracy and specificity
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values in this group. In 2016, Tripathy et al. [9] used the Variational Mode Decomposition
(VMD) and the Random Forest (RF) classifier to detect and classify shockable and non-
shockable ECG episodes, achieving high values of accuracy, sensitivity, and specificity of
97.23%, 96.54%, and 97.97%, respectively. Later, in 2018, Mohanty et al. [11] detected and
classified ventricular arrhythmias using cubic support vector machine (SVM) and C4.5
classifiers and achieving an Accuracy of Acc = 97.02% (Sen = 90.97% and Spe = 97.86%).
Acharya et al. [77] brought forward an eleven-layer Convolutional Neural Network (CNN)
for the classification of shockable and non-shockable arrhythmias. They obtained a 93.18%
accuracy (Sen = 91.04% and Spe = 95.32%). Finally, Mohanty et al. [11] detected and
classified ventricular arrhythmia using cubic support vector machine (SVM) and C4.5
classifiers, achieving high accuracy of Acc = 97.02% (Sen = 90.97% and Spe = 97.86%).

As it can be seen, the results of the TDA proposal in this work show the highest
performance values also in this group of works, achieving an accuracy of 99.51%, 99.03%
sensitivity, and 99.67% specificity.

Thus, the benefits of using the geometric features extracted from Topological Data
Analysis (TDA) in the classification procedure are clear. Then, we can state that TDA, and
the geometric features derived from it, can be successfully used both in the detection and
classification of ventricular arrhythmias and in the classification of shockable episodes.
It proves that the geometric features derived from Topological Data Analysis provides a
good description of the signal. Moreover, it also foresees a successful application of these
features in both Automated External Defibrillation (AED) and Implantable Cardioverter
Defibrillation (ICD) therapies.

Table 10. Performance results comparison with other works discriminating shockable and non-
shockable rhythms.

Types Shockable (VT+VF)
Data Base

Method: Sens% Spe% Accu%

This work, TDA 99.03 99.67 99.51 AHA, MITBIH

This work, PDI 89.63 96.96 95.12 AHA, MITBIH

[77] Convolutional neural network (CNN) (2018) 91.04 95.32 93.18 CUDB, MITBIH

[11] C4.5 classifier (2018) 90.97 97.86 97.02 CUDB, MITBIH

[78] Adaptive variational and boosted CART (2018) 97.32 98.95 98.29 CUDB, MITBIH

[71] SVM and bootstrap (2013) 98.40 98.00 98.10 AHA, CUDB, MITBIH

[9] VMD with Random Forest (2016) 96.54 97.97 97.23 CUDB, MITBIH

[70] FS and SVM (2013) 95.00 99.00 98.60 CUDB, MITBIH

AHA: American Heart Association ECG Database (200 series); MIBIH: MIT-BIH Malignant Ventricular Arrhythmia
Database; CCU: Registers from Coronary Care Unit (CCU) of the Royal Infirmary of Edinburgh; CUDB: MIT
’cudb’ (Creighton University Ventricular Tachyarrhythmia Database).

It should be taken into account that these good results occur even in the absence of
preselected ECG episodes. This work performs data classification in the same form as an
Automated External Defibrillator (AED) operating in an emergency situation, following
the AHA recommendations for Automated External Defibrillator (AED) algorithm per-
formance [79]. That is, data can be continuously analyzed in time windows as they are
received from the electrocardiograph.

To conclude, the success of using the TDA-derived geometric features suggests that
this method may overcome conventional feature selection limitations by better describing
the ‘shape of data’ and, thus, enabling us to build better performance arrhythmia detectors.
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6. Conclusions

The rapid and reliable detection of VT and VF is fundamental in patient monitoring,
but also in Automated External Defibrillation (AED) or Implantable Cardioverter Defibril-
lation (ICD) therapies. Any incorrect interpretation of a ventricular arrhythmia, or even the
confusion between VF and VT, can be dangerous for the life of the patient.

In this paper, we propose a feature extraction method based on Topological Data
Analysis (TDA) that provides near 99% accuracy in the discrimination of ventricular
arrhythmias, normal and other rhythms (98.68% to VF; 99.05% to VT; 99.09% to Other;
and 98.76% to Normal episodes). It also provides very high accuracy of 99.5% when
discriminating between shockable (VT/VF) and non-shockable rhythms.

The novelty of this work is the incorporation of geometric features proceeding from
Topological Data Analysis to the detection and classification of ventricular arrhythmias.
Note also that these powerful results were obtained without preselection of episodes.
Taking into consideration the obtained results, we can conclude that TDA, and the geometric
features derived from it, can be successfully used both in the detection and classification of
ventricular arrhythmias and in the classification of shockable rhythms. Moreover, it proves
that the geometric features derived from Topological Data Analysis (TDA) provide valuable
features easing the task of the classifier. Finally, we can conclude that TDA features can be
beneficial in other classification tasks.
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Abbreviations

The following abbreviations are used in this manuscript:

TDA Topological Data Analysis
PH Persistent Homology
VF Ventricular Fibrillation
VT Ventricular Tachycardia
AED Automated External Defibrillator
ICD Implantable Cardioverter Defibrillator
ECG Electrocardiogram
RF Random Forest
kNN k-Nearest Neighbor
ICA Independent Component Analysis
DT Decision Tree
PC Point Cloud
RPC Representation of Point Cloud
PD Persistence Diagram
PDI Persistence Diagram Image
KDE Kernel Density Estimation
PI Persistence Images
WRM Window Reference Mark
TR Time Representation
PDR Persistence Diagram Representation
SFS Sequential Forward Selection
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AHA American Heart Association
CUDB Creighton University Ventricular Tachyarrhythmia Database
CCU Coronary Care Unit
TCI Threshold Crossing Interval
CNN Convolutional Neural Network
EMD Empirical Mode Decomposition
VMD Variational mode decomposition
SVM Support Vector Machine
ANNC Artificial Neural Network Classifier
GA Genetic Algorithm
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Featured Application: This work presents a Graphics User Interface that applies two automated

learning models based on machine-procured independent variables to assist ophthalmology

professionals in keratoconus disease diagnosis and classification.

Abstract: This work pursues two objectives: defining a new concept of risk probability associated
with suffering early-stage keratoconus, classifying disease severity according to the RETICS (Thematic
Network for Co-Operative Research in Health) scale. It recruited 169 individuals, 62 healthy and
107 keratoconus diseased, grouped according to the RETICS classification: 44 grade I; 18 grade II;
15 grade III; 15 grade IV; 15 grade V. Different demographic, optical, pachymetric and eometrical
parameters were measured. The collected data were used for training two machine-learning models:
a multivariate logistic regression model for early keratoconus detection and an ordinal logistic
regression model for RETICS grade assessments. The early keratoconus detection model showed
very good sensitivity, specificity and area under ROC curve, with around 95% for training and 85%
for validation. The variables that made the most significant contributions were gender, coma-like,
central thickness, high-order aberrations and temporal thickness. The RETICS grade assessment also
showed high-performance figures, albeit lower, with a global accuracy of 0.698 and a 95% confidence
interval of 0.623–0.766. The most significant variables were CDVA, central thickness and temporal
thickness. The developed web application allows the fast, objective and quantitative assessment of
keratoconus in early diagnosis and RETICS grading terms.

Keywords: Scheimpflug; 3D cornea model; early keratoconus; Corrected Distance Visual Acuity
(CDVA)

1. Introduction

Corneal tomography is a validated technology for evaluating the changes occurring in the
corneal morphology of keratoconus (KC) disease [1], which allows for the control of the geometric
decompensation driven by the asymmetry present while this disease progresses [2,3]. However,
no agreement has been reached about the relative importance of the indices and technologies to be
used to detect which patients may suffer post-surgical corneal iatrogenic ectasia when evaluating
patients’ suitability for refractive surgery [4–10].

Some studies have evaluated the objective efficiency of different indices for early stages of
this disease in an individualized way. These studies are generally related to values of curvature,
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elevation and pachymetry [11], and to patterns based on the combination of indices that come from
the same [12–16] or different technologies [7,9,17–20]. The evaluation of these patterns is based on
subjective analysis [7,21], which is critical to gain a better discrimination capability according to clinical
experience. Nevertheless, there are still significant discrepancies in terms of the relative value of the
results obtained in their evaluation of the risk probability associated with disease development.

In KC, geometric decompensation occurs and causes disease progression [11], which means
increased high-order optical aberrations and high irregular astigmatism values [22], whose
main refractive sign is the impossible complete optical compensation of their ametropia by
spherical-cylindrical lenses. Consequently, corrected visual acuity will diminish compared to
individuals with no corneal pathology [23]. The scientific literature contains many classifications for the
degree of KC severity [24–31]. However in clinical practice, it is difficult to handle the many indices on
which these classifications are based for proper optical-geometrical evaluations of disease progression.
From an optical point of view, patients show a deteriorated spectacle-corrected visual acuity during
disease development, insofar as their visual performance worsens as the degree of KC severity
progresses. Following this criterion, a classification of disease stages has been developed [23,32]: the
so-called RETICS grading. This grading takes into account four geometrical parameters (Internal
Astigmatism, RMS Coma-Like, Q8mm and Pachimetry) and a functional one (Corrected Distance Visual
Acuity (CDVA)) to establish five KC degrees: I to V.

This study develops and validates a Graphics User Interface (GUI) that combines two automatic
learning models based on a set of independent variables with two aims: defining a new concept of
risk probability associated with the development of early-stage KC and classifying disease severity
according to the RETICS (Thematic Network for Co-Operative Research in Health) scale to assist
ophthalmology professionals in disease management.

2. Materials and Methods

2.1. Patients

This research work was conceived as an observational comparative study. It comprised 169 eyes
of 169 subjects divided into two groups. To avoid potential biases, those cases showing any other
ocular comorbidity that could affect the present study parameters, who had undergone any ocular
surgical procedure, or had worn contact lenses in the 4 weeks prior to the topographical evaluation,
were excluded from both groups.

The first group, called the “control” group, comprised 62 healthy eyes of 62 patients (48.4% males,
51.6% females) whose ages ranged from seven to 60. The cases included in the control group were
randomly selected from the refractive surgery candidates, and the data used for this study were
acquired during their pre-surgical appointments, always with the same experienced technician.

The second group was formed by 107 KC candidates (63.2% males, 36.8% females) aged from 15
to 98. They were classified into five subgroups in accordance with the RETICS grading system [32].

The procedure followed for KC group diagnosis and classification was based on state-of-the-art
clinical and topographical evaluations (Figure 1), including uncorrected distance visual acuity (UDVA),
CDVA, manifest refraction (sphere and cylinder), slit-lamp biomicroscopy, Goldmann tonometry,
fundus evaluation and ultrasonic pachymetry [33]. In all cases, pre-surgical evidence for KC was
assessed: asymmetric bowtie pattern with or without skewed axes, localized stromal thickness
reduction, conical protuberance at the apex, Fleischer ring, Vogt striae or anterior stromal scar.
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Figure 1. Methodology proposed for Keratoconus Score Calculator generation.

All the evaluations were made at Vissum Corporation Alicante (a centre affiliated with the Miguel
Hernández University of Elche, Elche, Spain), and now form part of the official “Iberia” database of KC
cases created for the National Network for Clinical Research in Ophthalmology RETICS-OFTARED.
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Patients were adequately informed about the study and agreed to freely participate in it. The study
was also ratified by the hospital’s Ethical Committee for Clinical Research according to the ethical
guidelines in the Declaration of Helsinki (7th revision, October 2013, Fortaleza, Brazil).

2.2. Methods

Each case selected to form part of this research was examined using a Sirius System® tomographer
(Costruzione Strumenti Oftalmici, Florence, Italy), following the specifications of a validated procedure
previously created by our research group, which is clearly explained in former research works [2,34].
This procedure is effective when used for both the diagnosis and characterization of KC [35,36], and
comprises two phases: 3D virtual modeling, followed by a morpho-geometric analysis.

The product of this procedure is a patient-specific 3D custom corneal model, which can be studied
to determine several morpho-geometric parameters that have already been described and used in a
previous study [37]. Of them all, anterior corneal surface area (anterior surface area), posterior corneal
surface area (posterior surface area) and total corneal volume (total volume) were selected to be used,
along with demographic, pachymetry and clinical parameters (Figure 1).

2.3. Statistical Analysis

The quantitative variables were summarized using mean±standard deviation (SD), median and
interquartile range (25th and 75th percentiles). The Shapiro–Wilk test was employed to assess if
the quantitative variables followed normal distribution. The Student’s t-test was run to compare
the normally distributed variables between two groups, while an ANOVA was used when there
were three groups or more. For the non-normally distributed variables, the Mann–Whitney test
and the Kruskal–Wallis test were, respectively, carried out. Differences in the qualitative variables
among independent groups where compared by the χ2 test. The predictive score model for early
KC detection was defined using multivariate logistic regression with the control and RETICS grade I
groups. Seventeen variables were included in the model: two demographic (age and gender), seven
optical (CDVA, coma-like, Q8mm, spherical-like, RMS total, high-order, astigmatism), five pachymetry
(central thickness, temporal, nasal, superior, inferior) and three morpho-geometric (total volume,
anterior surface area, posterior surface area). Model discriminative efficiency was evaluated by receiver
operating characteristic (ROC) curves, when area under curve (AUC), sensitivity and specificity were
taken as performance indicators. An internal cross-validation procedure was followed using bootstrap
aggregating (bagging) [38]. This procedure works as follows: it first generates a new dataset of equal
size by sampling with replacement from the original dataset. The model is then trained with these data.
Finally, this model is used to make predictions on those cases not used during training. This procedure
is repeated 100 times to obtain a set of quality parameters that can be averaged, and confidence intervals
that can be calculated. On average, 63.2% of the original data were used in all these 100 training steps.
The remaining 36.8% were used for validation. Ordinal multivariate logistic regression was utilized to
determine the RETICS grade with the same predictor variables. In this case, the confusion matrix was
employed to estimate model performance by means of sensitivity, specificity and balanced accuracy
per group. Data were evaluated by R Statistics v3.6.1 (R Foundation for Statistical Computing, Vienna,
Austria) [39].

Packages “tidyr”, “dplyr”, “dlookr” and “smbinning” were used for data loading, exploration and
transformation. Packages “corrplot”, “yarrr” and “FactoMiner” were employed for data visualization.
Packages “pROC”, “ROCR” and “Epi” were utilized for the ROC curve analysis and representation.
Logistic regression models were trained with the “glm” function from the base package. Ordered
logistic regression models were trained with the “polr” function from the MASS package. Confusion
matrices were analyzed by the “caret” package. Optimal sample size calculations were made by the
“rcompanion” and “pmsampsize” packages.

The statistical power analysis was conducted with simulation using the Wald test to estimate the
power for each covariate according to sample size, as described in the literature [40,41].
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A web application was developed using Shiny v1.3.2 (RStudio Inc., Boston, MA, USA) [42] and
the ShinyAuthr v0.0.99 authentication module (Paul Campbell, Paris, France) [43]. This application
was deployed in a private secure institutional network (because patients’ clinical data were used, and
the application was, therefore, accessible only from controlled computers to minimize the security
risks linked to using patients’ data).

Application landing page, shown in Figure 2, is a login form that adds a secured authentication
layer. No registering possibility was included, and new users can only be directly added by the
administrator. After logging in, users view a form with text boxes corresponding to all the model
predictors that are filled by default with sample values from a healthy individual. Users can type in
new values and, after pressing the “get score” button values, they are passed to trained models and
predictions are made (Figures 3–8), including the early detection KC score (known as “keratoscore”),
the RETICS grade prediction and a brief graphical description of the hypothetical cornea, with a
schema indicating the representation of the different parameters.

 

Figure 2. Application landing page showing the login form with a secured authentication layer.
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Figure 3. Screenshot of healthy individuals (Ctrl) with the typical 3D virtual corneal model
schematic representation.

 

Figure 4. Screenshot of keratoconus grade I individuals (RETICS) with the typical 3D virtual corneal
model schematic representation.
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Figure 5. Screenshot of keratoconus grade II individuals (RETICS) with the typical 3D virtual corneal
model schematic representation.

 

Figure 6. Screenshot of keratoconus grade III individuals (RETICS) with the typical 3D virtual corneal
model schematic representation.
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Figure 7. Screenshot of keratoconus grade IV individuals (RETICS) with the typical 3D virtual corneal
model schematic representation.

 

Figure 8. Screenshot of keratoconus grade V-Plus individuals (RETICS) with the typical 3D virtual
corneal model schematic representation.
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In summary, the GUI application was developed using a responsive design, which makes it
accessible from any network-connected device because it does not require any software or driver being
installed, apart from an up-to-date web browser.

3. Results

Sixty-two healthy eyes (36.7%) (control group, Ctrl) and 107 KC eyes (63.3%) (KC group, KC) were
herein considered. Several subgroups were established in the KC group depending on the disease
stage according to the RETICS grading system: grade I (44 eyes, 41.1%), grade II (18 eyes, 16.9%),
grade III (15 eyes, 14.0%), grade IV (15 eyes, 14.0%) and grade Plus-V (15 eyes, 14.0%). The main
demographic information in the control and KC subgroups are displayed and summarized in Table 1.
No significant differences were found in age and gender terms among all the groups.

Table 1. Demographic information for healthy individuals (Ctrl) and the RETICS-classified keratoconus
patients, graded between I and V.

Ctrl I II III IV V p

Number of cases 62 44 18 15 15 15
Age in years (mean ± SD) 37.5 ± 14.4 41.2 ± 16.6 47.4 ± 22.5 40.3 ± 12.6 34.0 ± 14.3 36.3 ± 18.0 0.161

Female/Male 32/30 12/32 6/12 7/8 6/9 4/11 0.146

Table 2 summarizes the descriptive analysis outcomes obtained for all the quantitative variable
analyses in the control vs. RETICS I and the control vs. KC groups. The descriptive analysis indicated
that most variables did not follow normal distribution. Statistically significant p-values were found
for all the variables between the control group (Ctrl) and the RETICS grade I group, except for age
(p = 0.665). When testing for differences within all the groups (Ctrl and RETICS grade I to V), every
p-value was significant, except for age (p = 0.344).

Table 2. Descriptive analysis for the quantitative variables and p-values for normality and differences
between RETICS groups. CDVA: Corrected Distance Visual Acuity; Q: asphericity; RMS, root
mean square

Variables Mean SD Median Range Normality
Ctrl vs.

RETICS I
Ctrl–RETICS
I–II–III–IV–V

Demographic

Age 39 16 38 7–98 <0.001 0.665 0.344

Optical

CDVA 0.77 0.32 0.96 0.05–1.20 <0.001 <0.001 <0.001
Coma-like 1.85 2.15 1.01 0.08–13.0 <0.001 <0.001 <0.001

Q8mm −0.63 0.70 −0.45 −2.80–2.82 < 0.001 0.025 <0.001
Spherical-like 0.70 0.93 0.44 0.15–7.20 <0.001 <0.001 <0.001

RMS total 3.22 3.09 2.38 0.33–15.6 <0.001 <0.001 <0.001
High-order 2.02 2.33 1.12 0.24–13.8 <0.001 <0.001 <0.001

Astigmatism 2.31 2.25 1.57 0.04–11.22 <0.001 <0.001 <0.001

Pachymetry

Central thickness 499 62 508 285–633 <0.001 <0.001 <0.001
Temporal 545 50 546 385–645 0.073 <0.001 <0.001

Nasal 579 48 579 451–692 0.835 <0.001 <0.001
Superior 591 50 590 408–695 0.062 <0.001 <0.001
Inferior 559 57 563 332–762 <0.001 <0.001 <0.001
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Table 2. Cont.

Variables Mean SD Median Range Normality
Ctrl vs.

RETICS I
Ctrl–RETICS
I–II–III–IV–V

Morpho-Geometric

Total volume 24.7 1.9 24.4 19.8–29.1 0.335 <0.001 <0.001
Anterior surface

area 43.35 0.59 43.24 42.49–47.44 <0.001 <0.001 <0.001

Posterior surface
area 44.70 0.93 44.53 43.53–51.14 <0.001 <0.001 <0.001

The multivariate logistic regression model results are summarized in Table 3 with the coefficients
for each variable. The variables that made a statistically significant contribution in the model are
shown below: gender, coma-like, central thickness, high-order and temporal.

Table 3. Summary of the multivariate logistic regression model for the Ctrl vs. RETICS I patients.
CDVA: Corrected Distance Visual Acuity; Q: asphericity; RMS, root mean square

Std. Z p 95% CI

Variables Coefficient Error Value Value OR Lower Upper

Demographic

Age 0.135 0.078 1.727 0.084 1.145 1.021 1.416
Gender 5.267 2.520 2.090 0.037 193.907 4.154 2.14 × 105

Clinical

CDVA −6.345 4.613 −1.376 0.169 0.002 0.001 1.821
Coma-like 4.072 1.917 2.124 0.034 58.687 3.615 1.16 × 104

Q8mm 6.027 4.618 1.305 0.192 414.459 0.070 3.02 × 107

Spherical-like 1.673 1.259 1.329 0.119 5.329 0.671 1.08 × 102

RMS total 2.482 1.591 1.560 0.119 11.969 1.071 8.65 × 102

High-order 5.534 2.484 2.227 0.026 253.143 5.830 3.12 × 105

Astigmatism −1.054 1.218 −0.866 0.387 0.348 0.014 2.963

Pachymetry

Central thickness -0.242 0.116 −2.083 0.037 0.785 0.577 0.941
Temporal 0.028 0.012 2.248 0.025 1.028 1.009 1.064

Nasal 0.007 0.011 0.641 0.522 1.007 0.987 1.034
Superior 0.092 0.058 1.587 0.113 1.096 0.995 1.263
Inferior −0.051 0.034 −1.479 0.139 0.951 0.870 0.995

Morpho-Geometric

Total volume 0.067 0.547 0.124 0.901 1.070 0.349 3.908
Anterior surface area −0.326 0.532 −0.614 0.539 0.722 0.218 2.105
Posterior surface area −1.189 0.779 −1.525 0.127 0.305 0.044 1.199

Constant 135.027 61.595 2.192 0.028 - - -

The ROC curve in Figure 9 shows an optimal cut-off point of 0.475 with a training AUC of 0.990, a
sensitivity of 0.977 and a specificity of 0.919, corresponding to 59 true negative cases, 41 true positive
cases, three false-positive cases and three false-negative cases. The bootstrapped validation values
corresponding to the 95% CI are 0.843 ± 0.058 for AUC, 0.844 ± 0.095 for sensitivity and 0.838 ± 0.081
for specificity.
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Figure 9. Logistic regression model ROC curve indicating the optimal cut-off point and the bootstrapped
validation parameters.

Figure 10 shows the distribution of the calculated scores in both groups, where the vast majority
of the control cases obtained a score between 0 and 0.1, and between 0.9 and 1 for RETICS I.

Figure 10. Distribution of the logistic regression scores between the Control and RETICS I patients,
and the optimal cut-off.

The parameters for the multivariate ordinal logistic regression model are summarized in Table 4.
In this case, the variables that made a statistically significant contribution to the model were: CDVA,
central thickness and temporal.

The confusion matrix for the training dataset is shown in Table 5, with an overall accuracy of 0.698
at a 95% CI between 0.623 and 0.766. Sensitivity, specificity and balanced accuracy are also shown for
each group.

Figure 11 depicts power according to the simulated sample size for both models, including only
the variables with maximum power over 0.9 at some point within the range, plus Age and Gender.
The remaining variables and their respective maxima for both the binary logistic regression and
ordinal logistic regression models were Coma-Like Deviation (0.61 and 0.62), Q8mm (0.55 and 0.57),
Spherical-Like Deviation (0.49 and 0.55), Nasal Thickness (0.81 and 0.83), Superior Thickness (0.88 and
0.89), Inferior Thickness (0.72 and 0.77), Volume (0.69 and 0.71), Anterior Surface (0.83 and 0.89) and
Posterior Surface (0.58 and 0.60). For both models, the variables of High-Order Aberration, CDVA,
Central Thickness, Total RMS and Temporal Thickness have power values over 0.80 for the sample
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sizes exceeding 150, and the powers for the ordinal logistic model at small sample sizes (below 100) are
somewhat lower than for the binary logistic regression models.

Table 4. Summary of the ordinal logistic regression model for the Ctrl and RETICS grade I-V patients.
CDVA: Corrected Distance Visual Acuity; Q: asphericity; RMS, root mean square

Std. t p 95% CI

Variables Coefficient Error Value Value OR Lower Upper

Demographic

Age 0.016 0.011 1.475 0.140 1.016 0.995 1.037
Gender −0.073 0.361 −0.203 0.839 0.929 0.458 1.885

Clinical

CDVA −5.495 0.865 −6.355 0.001 0.004 0.001 0.022
Coma-like 0.106 0.348 0.304 0.761 1.111 0.562 2.197

Q8mm 0.184 0.359 0.512 0.609 1.201 0.595 2.423
Spherical-like −0.063 0.250 −0.250 0.803 0.940 0.575 1.535

RMS total −0.422 0.298 1.416 0.157 1.526 0.850 2.737
High-order 0.621 0.345 1.797 0.072 1.860 0.945 3.660

Astigmatism −0.250 0.239 −1.046 0.296 0.779 0.488 1.244

Pachymetry

Central thickness −0.024 0.007 −3.298 0.001 0.977 0.963 0.991
Temporal 0.006 0.002 2.662 0.008 1.006 1.002 1.010

Nasal −0.002 0.003 −0.771 0.441 0.998 0.992 1.004
Superior 0.006 0.007 0.933 0.351 1.006 0.993 1.019
Inferior −0.002 0.005 −0.522 0.601 0.998 0.989 1.007

Morpho-Geometric

Volume 0.071 0.141 0.500 0.617 1.073 0.814 1.414
Anterior area −0.204 0.133 −1.533 0.125 0.816 0.623 1.058
Posterior area 0.046 0.129 0.361 0.718 1.048 0.814 1.348

Intercepts

Ctrl vs. RETICS I −16.769 0.017 −98.428 <0.001 - - -
RETICS I vs. II −13.926 0.396 −35.205 <0.001 - - -

RETICS II vs. III −12.270 0.522 −23.530 <0.001 - - -
RETICS III vs. IV −9.998 0.765 −13.072 <0.001 - - -

RETICS IV vs. V −6.691 1.057 −6.330 <0.001 - - -

Table 5. The ordinal logistic regression confusion matrix showing sensitivity, specificity and balanced
accuracy for each group. The total sum of cells by rows shows the total number of true cases present,
while each column represents how many cases the model classified in that category.

Predicted Value

True Value Ctrl I II III IV V

Ctrl 55 7 0 0 0 0
I 12 26 4 2 0 0
II 2 9 6 3 1 0
III 0 3 3 6 3 0
IV 0 1 0 1 12 1
V 0 0 0 1 1 13

Sensitivity 0.887 0.591 0.333 0.400 0.800 0.867
Specificity 0.869 0.840 0.954 0.955 0.968 0.994

Balanced accuracy 0.878 0.715 0.643 0.677 0.884 0.930
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Figure 11. Power analysis results for (a) the binary logistic regression model; (b) the ordinal logistic
regression model.

Graphics User Interface

Figure 3 is a screenshot corresponding to one healthy individual (Ctrl). It includes a 3D image of
a characteristic cornea showing a schematic representation of how different predictors are calculated
based on physical measurements.

Figures 4–8 are five screenshots corresponding to five representatives of the five RETICS grades
I–V. The score rapidly rises when passing from Ctrl to grade I and remains at 100% for the other grades,
which is consistent with the high sensitivity and specificity in the model. Each prediction includes a
3D image of a characteristic cornea from the corresponding RETICS group, along with a schematic
representation of how different predictors are calculated based on physical measurements.

The four examples in Figure 12 indicate the difficulty of detecting early-stage KC. Indeed, some
cases are wrongly classified. We must bear in mind that this early KC detection model was trained
using diagnostics made by ophthalmological professionals as a “gold standard”, and some inevitable
undetermined amount of subjective information was taken for granted. During the fitting process, the
model attempted to find some generalization to bind predictors and prediction with the best possible
performance, but some samples might not match any kind of generalization given by training data’s
subjective nature. Therefore, it is reasonable to expect some lack of accuracy, which does not necessarily
mean failure in the model’s fitting capability. Our model quantitatively confirmed the difficulty of
discerning both control and grade I groups as 17 of 106 cases (16%) and obtained a score between
0.1 and 0.9 which is, therefore, in the aforementioned “halfway” situation, and thus confirmed this
tool’s utility.
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Figure 12. Screenshots showing: (a) a correctly classified healthy individual (true negative); (b) an
incorrectly classified healthy individual (false-positive); (c) a correctly classified grade I KC individual
(true positive); (d) an incorrectly classified grade I KC individual (false-negative).

4. Discussion

The range of techniques that allow the characterization and evaluation of the degree of KC severity
vary, but the ultimate trends use machine-learning [44] and neural networks [45].

This study defines two automated learning models based on a set of independent variables
(demographic, optical, pachymetric, morpho-geometric) to characterize the optical-geometrical cornea
structure in different KC phases. More specifically, it considered a probability model of the risk
associated with suffering early-stage KC, as well as another model to classify the degree of KC severity
depending on patients’ visual limitation levels.

This approach offers some very useful advantages. First, it summarizes information that derives
from many parameters of different natures (qualitative or quantitative, measured in distinct units) in a
single number that can be easily read and understood, which minimizes the risk of some key pieces of
information going unnoticed. Otherwise, this risk is fairly high, as common analytical reports usually
contain many printed pages of different parameters, which often include no associated normality
range and must be read in a matter of seconds. Second, it evaluates the combined action of these
different parameters, which could imply a high value in a particular key parameter, clearly indicative
of disease being present, but might be less evident when the increase in many different key parameters
is slight. In this situation, a score can assist health professionals in their decision-making process as it
provides an objective and quantitative scale that takes into account the joint action of a set of diverse
parameters [3].

A multivariate logistic regression model was fitted using healthy (Ctrl) and RETICS grade I
individuals, which always made predictions ranging between 0 and 1 when applied to new data. This
prediction came closer to 0 when input data were similar to those that characterized healthy controls,
and close to 1 if they were similar to grade I KC patients. All those individuals with an intermediate
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score were considered to be more or less halfway between both groups, i.e., they showed some kind of
abnormality vs. healthy controls, which indicates KC-developing patients, but had not yet reached the
cut-off point to be diagnosed as diseased. Therefore, this multivariate logistic regression output could
be considered to be proportionally associated with the probability of suffering KC. A higher model
output indicated a stronger probability. Even though this relationship is not linear, such scores are
frequently used as predicting tools to assess patient status and prognosis in different fields [3,46–48].

For initial KC development, the analyzed model-based studies generally showed a good
discrimination between normal and early KC eyes. However, one of the main challenges faced
by ophthalmologists today is that no consensus has been reached by experts about the characterization
patterns of early corneal ectasia [7,49]. This is mainly the result of the diversity of designations used
to refer to subtler KC manifestations. It is also due to the fact that the wide variety of indices used
for detection are technology-specific, which does not make them easily interchangeable [19,49]. As it
is difficult to directly compare these studies, we resorted to using authors’ own writings to compare
them to our work.

Several studies have reported similar results to ours about models based on Scheimpflug
metrics [5–7,20]. Hwang et al. [7] proposed a first model based on the combination of five metrics (AUC:
0.86, Sensitivity: 83%, Specificity: 83%). Similar results have been obtained by other authors [5,6,20] in
the model development phase and based on the exclusive metrics of the same Scheimpflug technology.
In contrast, our study obtained higher performance values for model development (AUC: 0.95) and
similar ones in the validation phase (AUC: 0.85), and was composed of metrics that are not exclusive to
the same Scheimpflug technology.

Smadja et al. [50] used a machine-learning algorithm based on decision trees to analyze 55
parameters deriving from anterior and posterior corneal measurements. They found that the most
discriminant variables related to posterior surface asymmetry and thickness spatial distribution
achieved 93.6% sensitivity and 97.2% specificity when discriminating between normal and forme fruste
KC. However, some authors [51] considered that including eyes from patients who had already been
diagnosed with KC in one eye was inappropriate because it biases the sample if we contemplate that
the genetic determinants for KC appearing are already present in them.

In our study, the performance measurements of the early detection model in AUC, specificity
and sensitivity terms indicated very high performance with the training dataset, with all three values
reaching around 0.95, and very few false positives and false negatives. These figures are significantly
lower for the validation procedure, which dropped to about 0.85, but were well over 80% in all cases.
These findings indicate good model-validated performance, but also suggest the presence of some
overfitting. This is otherwise reasonable if we take into account the relatively few training cases
(62 healthy individuals and 44 RETICS grade I patients), which were significantly lower than the
training values.

Other authors have proposed using a multivariate system based on combining two different
technologies. Saad et al. [9] combined two technologies to propose a model based on 54 variables and
six discriminant functions, and reported 93% sensitivity and 92% specificity in the model development
phase. It was validated in a later study with 92% sensitivity and 96% specificity [52]. Other studies
have suggested combining several different technologies [53–55], but the authors defined a more
advanced form of KC when they included patients with manifest inferior steepening [49,56].

The only reference found in the scientific literature with a classification system that uses visual
acuity as a parameter is that by Wisse et al. [3], who established a scoring system that relied on five
parameters (age, quality of vision, uncorrected distance visual acuity, refraction difference, maximum
keratometry difference). However, this score did not classify disease grades, but disease progression.
Consequently, its aim was to determine if crosslinking treatment would be necessary or not.

Our work presents and validates a probability model of the risk associated with suffering KC. Our
research group is unaware of any previous study that combined demographic, optical, pachymetric
and morpho-geometric variables successfully and in real-time to detect early KC.
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Finally regarding the clinical KC development phase, experts’ criteria have converged to diagnose
this disease as the degree of severity of progressing KC [24]. Although there are several classifications
that characterize clinical KC, to the authors’ knowledge, there is no disease severity classifier based
on patients’ visual limitation. Our classifier is based on an ordinary logistic regression model that
combines 17 variables and presents an overall accuracy of 0.698; that is, our model correctly classifies
almost 70% of patients. The performance indicators for ordinal logistic regression are fairly lower,
particularly for the RETICS grade I, II and III patients, with balanced accuracies ranging between
0.623 and 0.766. Grade II patients present the worst accuracy, with nine in every 18 patients being
wrongly classified as grade I. Once again, a small sample size is the most probable explanation for
such behavior, along with its non-homogeneity (controls and grade I patients are much more abundant
that grade II–V patients). It could also indicate that these three groups are not clearly differentiated.
Therefore, all the conclusions drawn from the ordinal logistic regression model must be considered
very carefully. Even when the results are reasonably good, the training process should be repeated
with a bigger and more homogeneous sample. It would also be desirable to validate our results with
other ethnicities and populations.

Another limitation of our study is the proven dependence that clinical metrics has on the technology
employed to measure it [19], which means that our results are only valid for those eyes tested with a
Sirius tomographer (CSO, Florence, Italy).

5. Conclusions

A web application was developed and deployed that combines two machine-learning models to
support ophthalmologic professionals: a multivariate logistic regression model for early KC predictions
and an ordinal logistic regression model to assign diagnosis grades on the RETICS scale. This
application has a responsive design, and it allows any sort of device to be used (computer, tablet or
smartphone). It also incorporates security measurements (authentication layer and accession from
intranet only). The early KC prediction model shows high-performance indicators, even though
some overfitting appears, while the RETICS grading prediction model’s accuracy is remarkably lower,
particularly for grade I, II and III patients. In both cases, repeating the training process with a bigger
sample should be considered. This falls in line with recently published recommendations for sample
size calculations by multivariate prediction models [57] which, for this case, proposes an optimal sample
size of 374 individuals, with a minimum of 125. An optimal figure could not be reached, given our
biobank’s limited database size. Moreover, even though multivariate and ordinal logistic regressions
are state-of-the-art and widely used techniques for modeling biomedical research data, many other
powerful artificial intelligence techniques are available (particularly deep learning techniques), and
their use is strongly advised for improving the quality of results.
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Abstract: Wavelia is a low-power electromagnetic wave breast imaging device for breast cancer
diagnosis, which consists of two subsystems, both performing non-invasive examinations: the
Microwave Breast Imaging (MBI) subsystem and the Optical Breast Contour Detection (OBCD)
subsystem. The Wavelia OBCD subsystem is a 3D scanning device using an infrared 3D stereoscopic
camera, which performs an azimuthal scan to acquire 3D point clouds of the external surface of
the breast. The OBCD subsystem aims at reconstructing fully the external envelope of the breast,
with high precision, to provide the total volume of the breast and morphological data as a priori
information to the MBI subsystem. This paper presents a new shape-based calibration procedure
for turntable-based 3D scanning devices, a new 3D breast surface reconstruction method based on a
linear stretching function, as well as the breast volume computation method that have been developed
and integrated with the Wavelia OBCD subsystem, before its installation at the Clinical Research
Facility of Galway (CRFG), in Ireland, for first-in-human clinical testing. Indicative results of the
Wavelia OBCD subsystem both from scans of experimental breast phantoms and from patient scans
are thoroughly presented and discussed in the paper.

Keywords: breast surface reconstruction; 3D scanning system; turntable calibration; breast cancer
diagnosis; microwave imaging; medical radar; breast phantoms

1. Introduction

Wavelia is a prototype medical device which has recently been developed by MVG Industries.
The purpose of Wavelia is to offer an alternative and/or complementary imaging modality to X-ray
mammography for breast cancer diagnosis. As it involves microwave technology, so non-ionizing
radiation, it may allow for diagnosis and follow-up of rapidly evolving pathologies by making
it possible to safely schedule regular 3D scans of the breast as often as required [1,2]. Given the
incorporated radar detection technology [3], this novel imaging modality is also meant to provide the
clinicians with a useful tool for automated Computer-Aided Diagnosis (CAD). The hardware modules
integrated in Wavelia are partly inherited from the technical background and expertise of the company
in antenna measurement systems [4,5]. A detailed presentation of the actual R&D status of the system
has been reported in [3].

Wavelia is now installed at Galway University Hospital, Ireland, for a first-in-human clinical
investigation which started running in the last quarter of 2018. Prior to the initiation of the clinical
investigation, on-site validation [3] has been performed using breast phantoms [6]. The pilot study
holds full approval by the Local Ethics Committee, and the Health Products Regulatory Authority
(HPRA), in Dublin, Ireland. Details on the clinical protocol of the pilot study can be found in the
ClinicalTrials.gov repository to which the trial has been registered with identifier NCT03475992 [7].

Appl. Sci. 2020, 10, 1234; doi:10.3390/app10041234 www.mdpi.com/journal/applsci
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The Wavelia prototype medical device consists of two subsystems, both performing a non-invasive
examination: the Microwave Breast Imaging (MBI) subsystem, which is the main part of the
system and the Optical Breast Contour Detection (OBCD) subsystem, which plays an auxiliary
role. The MBI subsystem illuminates the breast with low-power electromagnetic waves in the
microwave frequency range, which penetrate the breast under examination. The subsystem collects
the scattered electromagnetic waves and recovers useful information on the breast tissue consistency,
given the dielectric contrast of these tissues; this information can be represented as 3D volumetric.

The OBCD subsystem performs an azimuthal scan of the breast using a 3D infrared stereoscopic
camera. The objective of the OBCD subsystem is triple [3]:

• compute the volume of the patient’s breast, thus indirectly deriving the required volume of
transition liquid such that the container of the MBI subsystem is optimally filled after immersion
of the breast;

• compute the distance (vertical extent) from the lowest point of the pendulous breast to the lower
plane of the examination table, in order to optimally define the vertical scan positions for the MBI
scan of each breast; the number of vertical scan positions and thus the time duration of the MBI
scan will vary accordingly to the size of each breast;

• reconstruct the external envelope of the breast, with millimetric precision; such information
will further serve to quantify the level of deformation of the breast due to immersion in the
transition liquid during the microwave imaging scan, as introduced in [8]; in the case of breasts
minimally deformed when immersed in the transition liquid (younger patients with breasts not
very large), the OBCD-reconstructed breast surface, after registration with the MBI scan, is also
meant to improve the localization of the abnormalities detected with MBI in the breast, by means
of revealing the exact orientation of the pendulous breast under scan, as well as details such as
the nipple location, which cannot be defined using the MBI-derived reconstruction of the breast
surface alone, due to its centimetric level of spatial resolution. With no access to such level of
detail, the annotation of the breast quadrant and clock-position at which an abnormality has
been detected with MBI cannot be very accurate, when using the MBI system stand-alone, thus
inhibiting the comparison and ultimate validation of the microwave breast imaging modality
against conventional reference breast imaging data (X-Ray mammography and Ultrasound breast
scan).

For the third purpose to be achieved at the maximal possible level with the actual prototype #1
implementation of the Wavelia system, which involves operation of the OBCD and MBI scans on two
separate identical examination tables, it is important that the patient lies in the same position for both
scans. A standardized position for the arms and the overall body posture of the patient has been
established and respected on both scanners during the ongoing first-in-human clinical investigation,
such that rigid registration of the two breast surface reconstructions (OBCD and MBI) of each patient’s
breast is feasible. Two indicative results of OBCD reconstructions of patient breast surfaces, after rigid
registration with the MBI scan, are presented in Section 3.4 of the paper.

The importance of retrieving the external breast envelope with high accuracy as a priori information
for efficient microwave breast imaging has been extensively highlighted by the microwave breast
imaging research community so far [8–12]. The significant added-value of the use of an auxiliary (laser)
system to further enhance the maximal achievable accuracy of the estimated breast envelope has been
analyzed in [13,14]. Such a laser system has been incorporated in the TSAR microwave breast imaging
system and has been clinically trialed on a small group of patients in Calgary, Canada [13,14]. For the
Wavelia system, an infrared 3D stereoscopic camera has been integrated, after appropriate selection
and configuration, to perform optimally in the interior of the Wavelia examination table and for the
case of the human skin texture. To the authors’ knowledge, this is the first time that such an optical
system is incorporated in the setting of clinical breast imaging.
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The relevant state-of-the-art methods from which the Wavelia OBCD design could have been
inspired are the existing 3D Surface Imaging methods, mainly designed for post-surgical and/or
aesthetic breast reconstruction. An overview of these methods, the set of commercial devices in which
they are used, as well the achievable accuracy of the volume computation can be found in [15–18].

Due to their application to aesthetic breast reconstruction, most of those systems and methods are
designed to image the patient’s torso, while at regular standing or sitting position. To the authors’
knowledge, other than the MRI and CT scanners, there are no well-known systems and methods
for surface reconstruction and volume computation of the pendulous breast (patient lying at prone
position).

Other particularities of the Wavelia OBCD system, which justify the need for a new, system-tailored
development, are:

• the requirement for integration of the OBCD system in a specific examination table, the layout
of which is driven by the architecture of the MBI subsystem; this is the main reason why
system-specific algorithms for denoising and extraction of the useful portion of the recorded 3D
point clouds are required to be designed;

• the need to operate in an obscure, closed environment, which justifies the specific choice of a
stereoscopic 3D camera to scan the breast. The procedure that led to the selection of the specific
3D camera is presented in Appendix A.

This paper will focus on the presentation of the Wavelia OBCD subsystem. An overview of
the Wavelia system architecture is presented in Section 2.1. Given that the full 3D reconstruction
of the breast is performed using multiple camera measurements taken along an azimuth scan of
the breast, the design of an accurate calibration algorithm, resulting in a high-quality alignment of
the multiple point clouds on a unique reference coordinate system is critically important for the
overall performance of the imaging system. The new calibration algorithm which has been designed
and integrated in the Wavelia breast imaging prototype device, in view of its first-in-human clinical
test, is presented in the Section 2.2 of this paper. The new method developed for 3D breast surface
reconstruction from 3D point clouds, as well as the breast volume computation method, are presented
in Section 2.3. The method used to validate the Wavelia OBCD subsystem in terms of achievable
accuracy of breast surface reconstruction using static breast phantoms is presented in Section 2.4.
Indicative performance results of the calibration algorithm, breast surface reconstruction results from
both phantom and patient scans, as well as some information concerning the envisioned evolutions
of the Wavelia OBCD subsystem towards a real-time support tool for the Wavelia MBI examination
and breast cancer diagnosis, are presented in Section 3 of the paper. The main conclusions that can be
drawn from this study can be found in Section 4. Some supplementary technical material has been
included in Appendix A.

2. Materials and Methods

2.1. Wavelia Breast Examination: OBCD Subsystem Architecture

As already mentioned in the introduction, the MBI and OBCD subsystems of the Wavelia
investigational medical device are housed in two separate examination tables. This is a temporary
technical limitation of the Wavelia prototype #1 system, which is planned to be resolved in the future
with integration of the two subsystems in the same examination table. Such an integration is not trivial
though, mainly due to two well-identified technical challenges:

• The circular array of microwave sensors moves along an opaque cylindrical container filled
with a creamy opaque transition liquid. These opaque materials have dielectric properties
appropriately selected to favor the penetration of the electromagnetic waves in the breast, while
being biocompatible and acceptable in the clinical setting. Their replacement by semi-transparent
counterparts with the desired properties is feasible, but not evident or straightforward;
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• An appropriate motorization system needs to be designed, such that the MBI and OBCD scans
can be performed sequentially, while the sensors (optical and microwave) are not in close vicinity
to each other during the respective scans.

Given the temporary technical constraint of housing the MBI and OBCD subsystems in two
separate examination tables and in order for the 3D data generated by the OBCD subsystem to be
useful a priori information for the MBI subsystem, the two examination tables have been manufactured
to be identical. In addition, they both use the same 3D reference system (Wavelia reference system),
located on each examination table plane and centered on the circular opening, as seen in Figure 1.

 

Figure 1. The Wavelia prototype medical device: the OBCD subsystem (on the Front) and the MBI
subsystem (on the Rear). The Wavelia reference coordinate system is also shown (red and green axes).

The examination procedure is divided into two steps. In the first step the patient is lying in prone
position on the examination table of the OBCD subsystem. The dedicated circular opening on the
examination table permits a 3D optical scan of the breast and then a priori information for the MBI
subsystem is computed. The opening is fitted with a plastic ring to protect the patient’s breast.

In the second step the patient is moved to the MBI subsystem and asked to lie in prone position
on the examination table. The breast is introduced in the dedicated circular opening and immersed
in a tube containing a specific liquid, which will serve as coupling (transition) medium between the
imaging system and the breast. A horizontal circular probe array located outside the tube, slides
vertically along the tube to reach a set of predefined vertical scan positions.

It is important that the patient is lying in the same prone position during both examinations.
The objective is to facilitate the registration between the 3D data generated by the OBCD subsystem
and the 3D data generated by the MBI subsystem.

For the examination on the OBCD subsystem, the patient is lying on the examination table, with
her breast under examination inserted in the circular opening of the examination table. For this
examination, the breast is hanging below the examination table; no coupling liquid is used. An infrared
3D stereoscopic camera is placed below the examination table, at a distance of several tens of
centimeters below the breast. A motorization system enables azimuthal motion of the camera in one
single horizontal plane with an angular step of 30◦ (see Figure 2). The azimuthal scan of the 3D camera
permits to acquire twelve 3D point clouds and then to reconstruct the external envelope of the breast
with sub-millimetric precision. The working environment inside the OBCD subsystem where the 3D
breast scan is performed is small, closed and with no light. The small closed environment is essentially
a multi-reflection environment, for which stereoscopic cameras are meant to be efficient. In addition,
the obscurity of the environment justifies the selection of an infrared camera. The procedure that has
been followed to select a specific 3D infrared stereoscopic camera, among other candidates, for the
Wavealia OBCD subsystem is reported in Appendix A.
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Figure 2. Internal schematic view of the OBCD subsystem.

2.2. Optical Breast Contour Detection (OBCD) Subsystem: The Calibration Procedure

The OBCD subsystem can be associated to a turntable-based 3D scanning system [19], however,
the only difference in our case is that the camera is the moving element and not the patient’s breast.
After the 3D data acquisitions are performed by the OBCD subsystem, several point clouds are obtained;
these point clouds need to be registered into the Wavelia reference coordinate system and ultimately
merged. In the case of turntable-based 3D scanning systems, two main approaches can be used to
perform the registration operation. The first one consists in using iterative methods like Iterative
Closest Point (ICP) to perform this registration on the acquired point clouds [20]. The second approach
consists in performing a preliminary calibration step of the turntable, by using a known reference
object [21]. The aim of the calibration operation is to compute the transformation matrix, in order to
pass from the camera coordinate system to the turntable reference coordinate system, for each angular
position of the turntable. Due to the closed and obscure environment of the OBCD subsystem and the
expected significant variability of shapes and sizes of the breasts to be scanned, we decided to use the
second approach. In this context, we developed a new calibration procedure with no iterative process,
based on the use of a cross-shaped calibration tool. The cross-shaped object was chosen because it is a
simple shape that can be easily defined as the intersection of two linear segments perpendicular to
each other, thus it is easy to associate a 3D reference system to this shape.

The first objective of this procedure is to compute the Tc transformation which allows the passage
of the point cloud acquired at 30◦ (azimuthal angular acquisition step) from the camera reference
system at 30◦ to the camera reference system at 0◦. Tc is further used to compute the cumulative
transformations to transform the point clouds acquired at the other azimuthal angular positions (60◦ to
330◦) to the camera reference system at 0◦, as follows:

Tc60 = Tc × Tc

Tc90 = Tc × Tc60

Tc120 = Tc × Tc90

Tc150 = Tc × Tc120

Tc180 = Tc × Tc150

Tc210 = Tc × Tc180

Tc240 = Tc × Tc210

Tc270 = Tc × Tc240

Tc300 = Tc × Tc270

Tc330 = Tc × Tc300

The second objective is to compute the Wavelia reference system, as defined in Figure 1.
The calibration procedure is divided into two steps: at the first step, a 3D scan of the lower

plane of the examination table is performed; at the second step a 3D scan of a cross-shaped object
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is performed. The point clouds acquired during both steps are used to compute Tc and the Wavelia
reference coordinate system, as defined in Sections 2.2.1 and 2.2.2.

2.2.1. The Calibration Procedure: Step A

At this step, the circular opening on the examination table is covered with a lid. Then, four
3D acquisitions are performed at 0◦, 90◦, 180◦ and 270◦. A bounding box referenced to the camera
reference system is used to define the volume of interest to extract the points corresponding to the
lower plane of the examination table from each acquired point cloud (see points inside the bounding
box in Figure 3). The dimensions and positions of the bounding box are defined manually by using the
software module that was developed to perform the full calibration procedure. The four extracted
point clouds are further named PcA0, PcA90, PcA180 and PcA270.

 

Figure 3. Selection of points corresponding to the lower plane of the examination table.

2.2.2. The Calibration Procedure: Step B

At this step a cross-shaped reference object is used. Its dimensions are slightly longer than 100 mm
vertically and horizontally (see Figure 4a). The cross is fixed to a square bar. The inclination angle of
the cross is the same as the inclination of the camera. The cross is centered and fixed to a cylinder that
will fit into the circular opening of the examination table (see Figure 4b), making it possible to move
the bar vertically or to make it rotate. The aim is to position the cross optimally, such that it can be seen
by the camera at 0◦, 30◦ and 330◦ (see Figure 4c).

   

(a) (b) (c) 

Figure 4. (a) The cross-shaped reference object; (b) Schematic visualization of the cross-shaped
reference object, as installed in the Wavelia examination table, for camera calibration; (c) The point
cloud corresponding to the cross-shaped reference object as seen by the camera at 0◦.

After the cross-shaped reference object is mounted, four 3D acquisitions are performed at 0◦, 30◦,
180◦ and 330◦. Then, the points corresponding to the cross-shaped object at 0◦, 30◦ and 330◦ and the
points corresponding to the vertical square bar at 180◦ are extracted. To ensure that the extracted points
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at 0◦, 30◦ and 330◦ correspond to the cross-shaped object, the best fitting plane to each extracted point
cloud is computed, by using a Least-Squares (LS) method and the points in the close vicinity to each
plane are selected. The final extracted point clouds are further named PcB0, PcB30, PcB180 and PcB330.
Figure 5 shows these point clouds in relation to the xy plane of the camera reference system and their
optimal orientations in relation to the x and y camera axes. These optimal orientations are the key of
our method to compute the axes of each cross-shaped object point cloud, as explained below.

Figure 5. Extracted point clouds at the four angular positions of the camera, during the calibration step
B. The red axis corresponds to the x camera axis and the green axis corresponds to the y camera axis.

To compute the transformation Tc, the 3D reference systems associated with the cross-shaped
object at 0◦, 30◦ and 330◦ need to be determined. To do this, each of the point clouds PcB0, PcB30, and
PcB330 is fitted to a plane (cross-shaped object plane) by using a LS method. The unitary cross-shaped
plane vector at each angular position is used as z unitary vector and is named v̂z0 (0◦), v̂z30 (30◦) and
v̂z330 (330◦). Then, four point-cloud sections corresponding to the vertical and horizontal axes are
extracted from PcB0, PcB30, and PcB330, according to the following conditions:

• upper section extraction conditions:

(pmx − sizex·UpperXMinFactor) < pxi < (pmx + sizex·UpperXMaxFactor)
(
pmy + sizey·UpperLowerYMinFactor

)
< pyi <

(
pmy + sizey·UpperLowerYMaxFactor

)

• lower section extraction conditions:

(pmx − sizex·LowerXMinFactor) < pxi < (pmx + sizex·LowerXMaxFactor)
(
pmy − sizey·UpperLowerYMaxFactor

)
< pyi <

(
pmy − sizey·UpperLowerYMinFactor

)

• left section extraction conditions:

(pmx + sizex·Le f tRightXMinFactor) < pxi < (pmx + sizex·Le f tRightXMaxFactor)
(
pmy − sizey·Le f tYMinFactor

)
< pyi <

(
pmy + sizey·Le f tYMaxFactor

)

• right section extraction conditions:

(pmx − sizex·Le f tRightXMaxFactor) < pxi < (pmx − sizex·Le f tRightXMinFactor)
(
pmy − sizey·RightYMinFactor

)
< pyi <

(
pmy + sizey·RightYMaxFactor

)

where pmx and pmy correspond to the x and y coordinates of the centroid of the point cloud, pxi and pyi
correspond to the x and y coordinates of each point on the point cloud and sizex, sizey correspond to the
size of the bounding box of the point cloud along the x and y camera axes respectively. The factor values
(e.g., UpperLowerYMaxFactor) are positives and lower than 0.5, they have been defined empirically for
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each angular position of the camera, considering several 3D scans of the cross-shaped object at 0◦, 30◦
and 330◦ degrees. Figure 6 shows the four extracted sections, at each angular position.

Figure 6. The cross-shaped object point clouds at three angular positions of the camera: the upper
and lower sections are highlighted with green color, the left and right sections are highlighted with
red color.

The extracted point cloud sections are used to compute the x and y axes for each angular position
of the camera, as depicted in Figure 7, by using a LS method. The unitary orientation vectors, v̂x0 and
v̂y0 for 0◦, v̂x30 and v̂y30 for 30◦ and v̂x330 and v̂y330 for 330◦, are used as x and y unitary vectors at each
camera position. The closest point between the x and y axes at each camera position (see Figure 7) is
further determined. This point is projected on the cross-shaped object plane. The resulting points on
the cross-shaped object planes, at each angular position, are named p0, p30 and p330.

 

Figure 7. The x and y axes of the cross-shaped object point cloud at 30◦ and the closest point between
these axes, highlighted with yellow color.

The 3D reference systems Re f0, Re f30 and Re f330 for each camera position respectively and the
transforms T0, T30 and T330 are computed as defined in Equations (1)–(6).

êz0 = v̂z0êy0 = êz0 × v̂x0êx0 = êy0 × êz0 (1)

Re f0 =
(
êx0, êy0, êz0, p0

)
êz30 = v̂z30êy30 = êz30 × v̂x30êx30 = êy30 × êz30 (2)

Re f30 =
(
êx30, êy30, êz30, p30

)
êz330 = v̂z330êy330 = êz330 × v̂x330êx330 = êy330 × êz330 (3)

Re f330 =
(
êx330, êy330, êz330, p330

)

T0 =

[
êx0 êy0 êz0 p0

0 0 0 1

]
(4)

T30 =

[
êx30 êy30 êz30 p30

0 0 0 1

]
(5)

52



Appl. Sci. 2020, 10, 1234

T330 =

[
êx330 êy330 êz330 p330

0 0 0 1

]
(6)

The transforms T30to0, T0to330 and Tmean are computed as defined in Equations (7)–(9).

T30to0 = T0 × T30
−1 (7)

T0to330 = T330 × T0
−1 (8)

Tmean =
T30to0 + T0to330

2
(9)

T30to0, T0to330 and Tmean allow to switch the 3D reference coordinate system of the camera from 30◦
to 0◦. Tc is further defined as the most accurate among these three estimated transforms. To evaluate
accuracy, a control point pctrl is used (see green sphere in Figure 8). It is referenced to the 3D coordinate
system at the camera angular position 0◦ (in theory the same coordinates at 360◦). Its position has
been manually defined at about 130 mm from the azimuth rotation axis and under the lower plane
of the examination table, then a cumulative transform to switch the 3D camera reference coordinate
system from 360◦ to 0◦ is computed as Tc360 = Tc × Tc330. This cumulative transform is applied to pctrl
to obtain p′ctrl. The Eucledian distance between pctrl and p′ctrl is used as a criterion to select the most
accurate transform among T30to0, T0to330 and Tmean and to define the calibration transform error.

 

Figure 8. Control point in green for the calibration transform error computation.

After the Tc transformation has been determined, the Wavelia reference system can be computed
at 0◦. To do this, the cumulative transformations Tc90, Tc180 and Tc270 (see Section 2.2) are respectively
applied to the point clouds PcA90, PcA180 and PcA270. The result is merged to the point cloud PcA0 (see
Figure 9).

 

Figure 9. Cumulative point cloud of the lower plane of the examination table.

The cumulative point cloud is fitted to a plane and the unitary plane vector is used as z unitary
vector of the lower plane of the examination table. The unitary plane vector is defined to point upwards,
and it is named ŵz. Then, the x and y unitary vectors are computed, according to the following
condition: the y unitary vector is defined to point towards the camera.
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The x, y and z unitary vectors of the Wavelia reference coordinate system are defined as: ŵx, ŵy

and ŵz, as shown in Equation (10).
êy = (0, 0,−1)

ŵx =
êy×ŵz

|êy×ŵz|
ŵy = ŵz×ŵx

|ŵz×ŵx |

(10)

To compute the center of the Wavelia reference coordinate system, Tc180 is applied to the point
cloud PcB180 (see Figure 5). The new point cloud is then fitted to a plane. The unitary plane vector is
defined to point towards the camera. It is named v̂. The mean point pmean of the new point cloud is
also computed. Then, an axis is generated by using ŵz and pmean. We determine the intersection point
pitr between this axis and the lower plane of the examination table, as computed previously. Then,
the origin pw of the Wavelia reference coordinate system is computed by using half of the side length
of the square bar Lbar, as follows: pw = pitr + 0.5·Lbar·v̂. The Wavelia reference system is defined by
Re fwavelia =

(
ŵx, ŵy, ŵz, pw

)
.

2.3. Optical Breast Contour Detection (OBCD) Subsystem: The 3D Breast Surface Reconstruction Procedure

When the 3D scan of the patient’s breast is finished, the calibration parameters are applied to the
acquired point clouds. The resulting cumulative point cloud is named PcAcc (see Figure 10).

Figure 10. Cumulative point clouds corresponding to three 3D breast scans with the Wavelia OBCD
subsystem: (a) cumulative point clouds corresponding to two human breasts: Patient 002 and Patient
004; (b) cumulative point cloud corresponding to a test breast phantom.

Figure 10 shows the point cloud of the breast when it is introduced into the circular opening,
the lower plane of the examination table and the lower section of the plastic ring used to protect
the patient’s breast. To perform the 3D reconstruction of the breast, we need to remove the points
corresponding to the ring and to extract a point cloud corresponding to the breast surface. The methods
for 3D surface reconstruction from point clouds generally comprise three main processing steps:
denoising, smoothing and mesh generation by triangulation, as presented in [19]. In most of the
state-of-the-art methods, the input point cloud is preserved during the processing, while in other
methods a deformation step is added before the standard processing [22]. Considering the shape of
the pendulous breast during examination at prone patient position (see Figure 10), a new method for
3D breast surface reconstruction has been developed. This new method includes a linear stretching
deformation step to transform the input point cloud into an elevation point cloud. Starting from
an elevation point cloud, it is easier to transform it into a rectangular grid, thus enabling the use of
2D image processing methods, instead of 3D point cloud processing, to perform the denoising and
smoothing steps. Moreover, this rectangular grid allows to define easier the topological connection
relationships between points, in the meshing step.

As said before, the points related to the ring shall be removed and a point cloud corresponding to
the breast surface has to be extracted from PcAcc to obtain the input point cloud PcB for the 3D breast
surface reconstruction method. The procedure to generate PcB is detailed in Appendix B.

The 3D breast surface reconstruction method for the OBCD subsystem consists in the following
processing steps:
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• linear stretching procedure;
• denoising procedure;
• smoothing procedure;
• meshing procedure.

Each of the above processing steps as well as the breast volume computation are specified in a
separate sub-section below.

2.3.1. Linear Stretching Procedure

The aim of this processing step is to transform the point cloud PcB, obtained after removal of the
ring as explained in the previous sub-section, into an elevation point cloud to ensure the generation of
a surface with no overlaps (see illustration in the right-hand images in Figure 11a–c). A surface with no
overlaps is defined as a surface where there is one single z coordinate for each coordinates pair (x, y).

 

(a) 

 

(b) 

 

(c) 

Figure 11. Linear stretching transformation: (a) example of stretching procedure applied to a surface
with overlaps, the result is a surface without overlaps; (b) stretching procedure applied to a breast
phantom point cloud; (c) stretching procedure applied to Patient 002 breast point cloud.

55



Appl. Sci. 2020, 10, 1234

Overlaps, as defined below, are naturally very common in the geometry of the pendulous breast,
especially in the case of elder patients. The stretching of the breast surface, such that it has no overlap,
is a processing step which enables the use of 2D image processing methods for de-noising of the point
cloud, before meshing. Obviously, the stretching operation is compensated before meshing, such that
the original breast shape is ultimately reconstructed.

To perform this transformation, a new origin point pstr needs to be defined. This point must be
located at the bottom of the breast (close to the chest wall) and the z axis starting from it must intersect
the non-stretched surface only once, to successfully stretch the x and y coordinates of the point cloud,
as illustrated graphically in Figure 12.

 

(a) 

 

(b) 

Figure 12. (a) Example of a bad choice of origin point (illustrated with yellow color): the resulting
surface after the stretching process was applied is shown on the right; (b) example of a good choice
of origin point (illustrated with yellow color): the resulting surface after the stretching process was
applied is shown on the right.

In the following, the procedure put in place to define a linear stretching function S f (z) and
compute the stretching factor for the x and y coordinates of each point as a function of the z coordinate
(see Figure 13b), is detailed. The function is defined in the Wavelia reference coordinate system (see
Figure 13a) and it is specified in Equation (11), where smax is the maximal stretching factor, zmin and zmax

are the minimum and maximum z coordinates of the bounding box of PcB, and z is the z coordinate of
the point to be stretched. zmax is equal to zero, as shown in Figure 13b.

S f (z) =
(smax − 1)

(zmax − zmin)
·z + smax (11)
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(a) (b) 

Figure 13. Linear stretching function S f (z): (a) the Wavelia reference coordinate system; (b) graphical
representation of the Sf(z) function.

The following processing steps are applied to compute smax:

1. the number of points of the point cloud is reduced by voxelization (Figure 14a).
2. the points associated to the chest wall are removed from the voxelized point cloud, by removing

the points where the z-coordinate is in range from 0 to zchest (white points in Figure 14b); zchest has
been empirically determined, considering a series of tests on both human and phantom breasts.
The aim of this step is to preserve the points corresponding to the pendulous breast.

3. the point cloud obtained in the previous step is divided in five vertical sections (red, blue, cyan,
magenta and yellow in Figure 14b).

4. the orientation axis of the breast is computed, by applying a LS method on the centroids of the
five vertical sections (see Figure 14c).

5. the θ angle between this axis and the z axis of the Wavelia reference coordinate system is computed
(see Figure 14d).

6. Finally, pstr is determined, by projecting the centroid of the middle section on the orientation axis
of the breast (cyan sphere in Figure 14e) and setting to 0 the z coordinate of the projected point.
The result corresponds to pstr (orange sphere in Figure 14e).
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(a) (b) 

   

(c) (d) (e) 

Figure 14. (a) Voxelized point cloud; (b) The five vertical sections of the breast, highlighted with
different colors; (c) Orientation axis of the breast and centroids (colored spheres) of the pre-defined
vertical sections; (d) The angle θ between the orientation axis of the breast (orange color) and the z axis
of the Wavelia reference coordinate system (blue color); (e) New origin point pstr (orange sphere).

Based on several tests performed both on human and phantom breasts, the minimum stretching
value sre f = 8.0 that can be applied to generate non-overlapping point clouds in all performed tests
was determined empirically. The maximum value of the angle θ for which the minimum stretching
value sre f is applied by default has been empirically defined from the same tests. The notation θre f
is used in the sequel of the paper to refer to this value. θre f is further used to compute the reference
value for the tilt of the breast b_tiltre f as defined in Equation (12).

b_tiltre f = 1 + tanθre f (12)

The specific sre f and b_tiltre f values can be used to compute the maximal stretching factor smax as
defined in Figure 15 and Equation (13), where b_tilt is the tilt of the breast which is computed by using
Equation (12) while θre f is replaced by θ.

smax =
b_tilt ·sre f

b_tiltre f
(13)

The full procedure to compute smax is presented in Figure 15 above. This procedure ensures that
smax is always superior than sre f .

Finally, the point cloud PcB is centered at the position pstr and the stretching function S f (z) is
applied (see Equation (11)). The stretched point cloud (right-hand images in Figure 11b,c) is named PcC.
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Figure 15. Procedure to compute smax.

2.3.2. Denoising Procedure

Until the previous step, the pendulous breast point cloud has been transformed into an elevation
point cloud PcC on the xy plane, while preserving the z coordinates. The aim of the denoising procedure
is to remove the artifacts and the ring remaining points and to fill the zones with no points. To do
this, the denoising procedure combines morphological information of the pendulous breast, and 2D
imaging processing.

At the beginning of this procedure PcC is used to generate a reference rectangular grid for denoising
which is then used to perform a first artifacts removal process on PcC. To perform this process, the
following parameters are used:

• xmin, xmax, ymin and ymax: these values correspond to the minimum and maximum x and y
coordinates of the bounding box of PcC;

• mesh resolution (Dxy): it corresponds to the desired resolution on the xy plane for the 3D
breast reconstructed mesh, before the linear stretching transformation (see definition also in
Appendix B.2);

• smax: this is the maximal stretching factor, as computed in the previous step (see Section 2.3.1);
• xsize and ysize: these are integer values. They correspond to the size of the rectangular grid

along the x and y axes after the linear stretching transformation. These values are computed
by using Equations (14) and (15), where Dxy·smax corresponds to the stretched mesh resolution,
after the stretching transformation. To preserve small parts like the nipple, after the stretching
transformation, it was decided to increase the stretched mesh resolution by a factor of 2, as
indicated in Equations (14) and (15).

xsize =

[
xmax − xmin

Dxy·smax·0.5

]
(14)

ysize =

[
ymax − ymin

Dxy·smax·0.5

]
(15)

By using xsize and ysize a rectangular grid on the xy plane is generated (see Figure 16b). Each of the
z values in the grid (green points in Figure 16a) is computed as the mean value of all the z coordinates of
the points located inside the associated small rectangular section (small blue rectangles in Figure 16a).
If there are no points inside the small section, the associated z value is set to 0. This ensures a single z
coordinate for each coordinates pair (x, y) on the grid.
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(a) (b) 

Figure 16. Procedure to generate a rectangular grid from a point cloud: (a) the rectangular grid
configuration; (b) example of rectangular grid generation from the stretched point cloud corresponding
to Patient 002.

The obtained rectangular grid can be considered as a 2D image, where the intensity at each
point (x,y) corresponds to the z-value (in mm) of the point (x,y,z) in a new stretched point cloud (see
Figure 17a). To reduce the noise, remove the larger artifacts and obtain a very smooth grid without
completely removing the nipple, a median filter is applied with a large kernel size (11 × 11) to the
rectangular grid. The result is the reference rectangular grid for denoising (see Figure 17b). The kernel size
(11 × 11) has been selected among various kernel sizes, after testing on a series of both human and
phantom breasts (test range from 9 × 9 to 17 × 17).

 

(a) 

 

(b) 

Figure 17. Procedure to generate the reference rectangular grid for denoising: (a) rectangular grid
considered as a 2D image: in the right-hand image the z coordinates of the grid points are mapped to
the color of the image; (b) reference rectangular grid for denoising obtained by using a median 11 × 11 filter.
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The signed vertical distance (along the z axis) to the reference rectangular grid for denoising is used as
a criterion for the removal of points (positive distance for points above the grid and negative distance
for points below the grid). The denoising is performed after splitting the breast into two vertical
sections. These are defined in PcC by using the z limit of the nipple section (see Figure 18).

 

(a) 

 

(b) 

Figure 18. Nipple section (magenta points) in the not stretched point cloud (left-hand images) and
in the stretched point cloud PcC (right-hand images): (a) point cloud corresponding to Patient 002;
(b) point cloud corresponding to Patient 004.

To apply the point removing criterion, the following parameters are defined:

• zmin and zmax: these values correspond to the minimum and maximum z coordinates of the
bounding box of PcC.

• znipple: this parameter concerns the z limit of the nipple section (see Figure 18). Its value is
computed by using Equation (16), where Dznipple is an empirically defined value within the range
0 to 1 based on tests performed on human and phantom breasts.

znipple = zmin + (zmax − zmin)·Dznipple (16)

• valid distance: this parameter is applied to the points outside the nipple section. It corresponds to
the maximal signed vertical distance to the reference rectangular grid for the denoising operation
to preserve points corresponding to the breast surface.

• valid distance for nipple section: this parameter is applied to the points inside the nipple section,
where the nipple points are above the breast surface. It corresponds to the maximal signed
vertical distance to the reference rectangular grid for the denoising operation to preserve points
corresponding to the nipple and areola vicinity on the breast surface.
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The removing criterion is applied to PcC by using znipple, valid distance for nipple section and valid
distance. The resulting point cloud, after denoising, is named PcD. Figure 19a,b illustrates the denoising
process applied to the data from two patient scans. In Figure 19, two sample zones (yellow delimited
zones) are highlighted before the denoising procedure (PcC) and after the denoising procedure (PcD).
Observing the impact of the denoising procedure on these zones permits to clearly illustrate the efficacy
of the denoising procedure to significantly reduce the noise.

 

(a) 

 

(b) 

 

 

Figure 19. Denoising step by using the reference rectangular grid for denoising. Two yellow delimited
zones are shown in PcC (before denoising) and PcD (after denoising): (a) point cloud corresponding to
Patient 002; (b) point cloud corresponding to Patient 004.

When the first artifacts removal process is finalized, PcD is transformed into a full filled
rectangular grid PcgA. This point could PcgA can be considered as a 2D image which allows
using 2D imaging processing.

To generate the full filled rectangular grid PcgA from PcD, the size of the rectangular grid is
defined in the x and y axes by using Equations (14) and (15). Then, a rectangular grid is generated on
the xy plane. To improve the robustness against the noise along the z axis, each of the z values of the
grid (green points in Figure 20a) is computed as the median value of all the z coordinates of the points
located inside the associated small rectangular section (small blue rectangles in Figure 20a). Some
points of the rectangular grid will remain with no defined z value. These points are named “empty
points”, and the sections of empty points are named “holes” (see red points in Figure 20b). The points
with a defined z value are named “valid points” (see green points in Figure 20b).
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(a) (b) 

 

Figure 20. Procedure to generate a rectangular grid from a point cloud by preserving the holes: (a) the
rectangular grid configuration; (b) example of rectangular grid generation by preserving the holes (red
point sections) from the stretched point cloud corresponding to Patient 002.

To define the z coordinate of the empty points in the rectangular grid (the process to fill the holes),
the parameter ring height defined in Appendix B.2 is required. By using this parameter, we divide the
valid points of the grid (green points in Figure 21) in two vertical sections: the first one concerns the
points the z coordinates of which are in range of 0 to ring height (bright green points in Figure 21),
and the second one concerns the points the z coordinates of which are outside the first interval (dark
green points in Figure 21). The left-hand image in Figure 21 shows the two sections on the equivalent
non-stretched point cloud for a better understanding.

 

Figure 21. Valid points (green points) of the rectangular grid divided into two sections (bright green
and dark green) by using the ring height parameter, in the non-stretched point cloud (left-hand image)
and in the stretched point cloud PcD (right-hand images). Illustration on Patient 002.

Three types of holes are further defined:

• Type-A hole: the holes bordered by valid points the z coordinates of which are located inside
the first interval (bright green points in Figure 22). This type of hole is composed of at least two
consecutive empty points along the x axis or along the y axis (see yellow delimited zones in
Figure 22). These holes correspond to the zones located between the internal vertical wall of the
ring and the border of the breast surface. The z coordinate value of these empty points is set to 0.

• Type-B hole: all the holes not completely bordered by valid points (see Figure 23). These holes
correspond to the zones located beyond the ring, where no section of the breast surface is present.
The z coordinate value of these empty points is set to 0.

• Type-C hole: the holes bordered by valid points the z coordinates of which are outside the first
interval (holes located inside the dark green section).
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Figure 22. Type-A hole. Illustration on Patient002.

 

Figure 23. Type-B hole. Illustration on Patient 002.

To fill the type-C holes and the other remaining empty points on the rectangular grid, a bi-linear
interpolation is performed by using the closest points for which the z coordinate is defined. Finally, a
smoothing procedure is performed by using two b-spline approximations [23]. The first approximation
is carried out along the x axis, and the second one is carried out along the y axis. The result is the mean
of the two approximations. The resulting point cloud is named PcgA and it can be considered as a full
filled rectangular grid.

At this stage it is possible to use 2D image processing to finalize the denoising procedure. Two 2D
processing are performed. The first one is based on erosion and dilation morphological operations
by using PcgA as input. The result is a binary mask, which is applied to PcgA by a multiplication
operation. Then the second one consists in the use of a median filter of several kernel sizes to remove
the last remaining artefacts. The final resulting point cloud is named PcgC. (see Appendix C).

2.3.3. Smoothing Step

The aim of this step is to smooth PcgC while preserving the breast surface details around the
nipple. To do this, PcgC is considered as a 2D image. PcgC is divided into four vertical sections by
using the procedure presented in Appendix C.2, and then a bi-lateral filter [24] is applied with variable
kernel size, as defined below:

• a (3 × 3) kernel size for the nipple section (this kernel size allows to smooth this section while
sufficiently preserving the breast surface details around the nipple);

• a (5 × 5) kernel size for the second breast section;
• a (7 × 7) kernel size for the third breast section;
• a (9 × 9) kernel size for the fourth breast section.

This, empirically defined, combination of kernel sizes allowed to preserve a good continuity along
the four breast sections in all the breast scans we have performed so far. The result is a point cloud we
name PcgD.
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2.3.4. Meshing Procedure

PcgD is a rectangular grid that can be easily presented as a 2D matrix of 3D points. A triangular
mesh is further generated, where the points of each triangle are connected in clockwise order,
as illustrated in Figure 24.

 

Figure 24. Generation of triangular mesh from a rectangular grid.

To perform the final meshing, we compute the inverse of the stretching function earlier presented
in Section 2.3.1, as defined in Equation (17). Then, we apply Equation (17) to the points of the grid, and
finally the point pstr is added, such that the original position of the breast is retrieved.

S f (z)−1 =
1

S f (z)
=

1
(smax−1)

(zmax−zmin)
·z + smax

(17)

Indicative results of the meshing procedure are presented in Figure 25.

 

(a) 

 

(b) 

Figure 25. Meshing procedure results: (a) 3D surface reconstructions corresponding to two human
breasts: Patient 002 and Patient 004; (b) 3D surface reconstructions corresponding to two test breast
phantoms: Test Breast phantom B1 and Test Breast phantom B2.

2.3.5. Breast Volume Computation

To compute the volume of the 3D triangular mesh of the patient’s breast (Final Mesh) generated
in the previous step we use as reference the cumulative method presented by Zhang and Chen [25]
but instead of using a tetrahedron as elementary calculation object, we use a truncated triangular
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prism [26], which is perpendicular to the xy plane (see Figure 26). This condition permits to reduce the
number of arithmetic operations.

Figure 26. 3D mesh volume computation by using a truncated triangular prism as elementary object.

The signed volume V of the elementary truncated triangular prism is computed for each triangle
( pa, pb, pc in Figure 26) by using Equation (18), where A is the area of the basis of the truncated
triangular prism and sign corresponds to the sign (1 or −1) of V. The value of sign is determined by the
inner product

→
nabc.êz, where êz is the unitary vector (0,0,1) defining the orientation of the z axis in the

Wavelia reference coordinate system (see Figure 26).

V =

(
A · (| z1|+ | z2|+ | z3|)

3

)
·sign (18)

where:

A =

∣∣∣∣∣∣
x1·(y2 − y3) + x2·(y3 − y1) + x3·(y1 − y2)

2

∣∣∣∣∣∣
To compute the total volume of Final Mesh we use Equation (19).

Vtotal =

∣∣∣∣∣
∑

Vi

∣∣∣∣∣ (19)

where: Vi =
(
Ai · (| zi1 |+| zi2 |+| zi3 |)

3

)
·signi, Ai =

∣∣∣∣ xi1·(yi2−yi3)+xi2·(yi3−yi1)+xi3·(yi1−yi2)
2

∣∣∣∣ and i stands for the index

of triangles of elementary truncated triangular prisms. (xi1, yi1, zi1), (xi2, yi2, zi2) and (xi3, yi3, zi3)

are the 3D coordinates of the vertices associated with the triangle i.

2.4. Description of the Method to Quantify the 3D Breast Surface Reconstruction Accuracy

2.4.1. Generation of 3D Breast Reference Surfaces

To assess the accuracy of the 3D breast surface reconstruction and the breast volume computation,
two MRI-based 3D printed breast phantoms named B1 and B2 have been used. The two
anthropomorphic breast phantoms, which have been also used all along the Wavelia prototype
medical device design, experimental testing and validation, are presented in Figure 27. As detailed
in [6], the geometry of the phantoms which have been manufactured in-house by MVG Industries for
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this purpose, originated from real MRI images of patients, publicly made available by the University
of Wisconsin (UWCEM database) [27].

 

(a) 

 

(b) 

Figure 27. MRI-based 3D printed breast phantoms and their 3D representations: (a) Test breast phantom
B1; (b) Test breast phantom B2.

Before starting the comparison procedure, a pre-processing step was performed on the 3D breast
phantom representations in order to extract the external surface of each breast phantom (see Figure 28).
To perform the pre-processing step, the MeshLab open source software has been used [28]. The resulting
reference breast phantom representations have been named Model_B1_Ref and Model_B2_Ref.
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(a) 

 

(b) 

Figure 28. 3D breast phantom representations (a) before, (b) after application of the surface
pre-processing step.

Model_B1_Ref and Model_B2_Ref have been further on used to assess the accuracy of the 3D
breast surface reconstruction, the estimation of the vertical extent of the breast and the estimation
of the volume of the breast, as performed by the Wavelia OBCD subsystem. Figure 29 shows two
indicative results of the Wavelia 3D reconstruction method (see Section 2.3).
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Figure 29. 3D breast reconstructions from point clouds using the Wavelia OBCD breast surface
reconstruction method.

2.4.2. Procedure to Quantify the Accuracy of the 3D Breast Surface Reconstruction

To quantify the accuracy of the 3D breast surface reconstruction method and the breast volume
computation, we first extract the part of the reconstructed surface that corresponds to the breast
surface (removal of the flat horizontal surface corresponding to the examination table). To perform this
operation, the Wavelia reference coordinate system is used, as presented in Section 2.1, to define the z
value of the cutting plane that will be used to extract the breast surfaces (see Figure 30).

 

Figure 30. Wavelia reference coordinate system and 3D reconstructions of the breast phantoms B1
and B2.

The extraction procedure of the breast surfaces has been performed using the Paraview
software [29]. After the breast surface has been extracted, a rigid registration is applied between this
surface and its breast reference model. The Wavelia reference coordinate system is used as the main
reference system for this operation. This procedure is performed by using the ICP (Iterative Closest
Point) method, which is integrated in the MeshLab software [28]. The ICP transformation is applied to
the breast reference model in order to obtain the registered breast reference model. The result of the
registration procedure is shown in Figure 31a, where the extracted breast surface appears in blue and
the registered breast reference model appears in semi-transparent grey. Then, the MeshLab software is
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used to compute the unsigned distance from each point of the extracted breast surface to the closest
point of the registered breast reference model (distance error). We used the distance error as point color
criterion to generate the breast distance color map of the extracted breast surface by using the MeshLab
software as well (Figure 31b). Based on the distance data of the extracted breast surfaces, we also
computed the following parameters to assess the accuracy of either 3D breast surface reconstruction:

• percentage of points with distance error less or equal to 0.5 mm;
• percentage of points with distance error less or equal to 1.0 mm;
• percentage of points with distance error less or equal to 1.5 mm;
• Root Mean Square (RMS) distance error in mm.

 

(a) 

 

(b) 

Figure 31. Breast phantom rigid registration: (a) example of results of the rigid registration of B1 and
B2 reconstructed breast surfaces with the corresponding breast reference models; (b) example of breast
distance color maps for the B1 and B2 extracted breast surfaces.

After the rigid registration has been performed, the breast reference surface is extracted from the
registered breast reference model by using a cutting plane coinciding with the lower surface of the
examination table. The breast reference surface is a closed surface.

Then, the vertical extent and the volume of the breast reference surface are computed by using
the MeshLab software [28]. These parameters have been named: reference breast height (Hre f ) and
reference breast volume (Vre f ). The following metrics are used to assess the accuracy of the vertical
extent (Hcomp) and the volume (Vcomp) of the breast, as computed by the Wavelia OBCD subsystem:

• Breast vertical extent error [mm]: this metric is defined as: Hcomp −Hre f .

• Breast volume error [mL]: this metric is defined as: Vcomp −Vre f .

• Breast volume error in percentage: this metric is defined as:
(

Vcomp−Vre f
Vre f

)
·100.
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3. Results and Discussion

3.1. Calibration Evaluation

Several tests of the calibration procedure have been performed with the Wavelia OBCD subsystem.
Indicative values of the calibration transform error, as evaluated during these tests, are presented in
Table 1.

Table 1. Performance results of calibration procedure tests.

Test ID Calibration Transform Error (mm)

1 1.40
2 0.58
3 0.70
4 0.97
5 0.88
6 0.80

Table 1 reports a value greater than 1 mm for the calibration transform error, in the case of Test
1. Such a relatively high value of the calibration transform error could be due to small movements
of the cross-shaped reference object during the azimuthal 3D scan of the camera. To prevent these
movements and to ensure sub-millimetric precision in the computation of the calibration transform, it
is very important to avoid any contact with the OBCD subsystem during the calibration azimuthal
scan of the camera.

Test 1 was one of the first tests of the calibration method with the Wavelia prototype, while it was
still at the factory. All the other reported tests (Test 2 to Test 6) have been performed after installation
of the Wavelia system at the Galway University Hospital, while carrying-out the calibration procedure
after repeated training. It is demonstrated that sub-millimetric precision of the method has been
consistently assured, after validation of the system for transfer to the clinical investigation site.

It is worthwhile noting that, this being a prototype version 1 of the Wavelia system, installed in the
hospital for a first-in-human clinical investigation, the calibration is meant to be performed by trained
technical staff during installation or maintenance of the system. It is not meant to be repeated by the
daily operator, during the clinical investigation. The calibration measurements are used to define once
the cumulative transformation operator, which is afterwards applied to align the multi-view camera
measurements of all breast scans. The required accuracy for the calibration measurement (controlled
environment) is higher than the effective accuracy of the breast scan measurements, such that the
cumulative transformation operator is optimally defined.

3.2. D Breast Surface Reconstruction: Quantitative Evaluation Results

A series of eight 3D breast reconstruction tests have been performed. Six of the tests were
performed on breast phantoms fully introduced into the opening of the examination table (four tests for
B1 phantom and two tests for B2 phantom). To simulate a smaller breast phantom, the two remaining
3D breast reconstructions were performed with the B2 breast phantom partially introduced into the
opening of the examination table. The results of the eight tests are shown in Figure 32 and Table 2.
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Figure 32. Breast distance color maps for B1 and B2 extracted breast surfaces: multiple scans used for
the evaluation of the surface reconstruction of either of the two test breast phantoms.
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Table 2. Summary of the accuracy results on eight 3D breast surface reconstruction tests involving the
B1 and B2 breast phantoms.

B1 Test 1 B1 Test 2 B1 Test 3 B1 Test 4 B2 Test 1 B2 Test 2 B2 Test 3 B2 Test 4

Total number of points on the
extracted breast surface 177,228 178,570 178,562 179,896 134,808 137,000 119,758 119,748

Percentage of points with
distance error <= 0.5 mm (%) 76.80 90.20 89.01 87.28 82.18 93.77 83.88 79.88

Percentage of points with
distance error <= 1.0 mm (%) 96.26 95.19 94.58 97.45 100 99.14 98.12 99.77

Percentage of points with
distance error <= 1.5 mm (%) 97.55 97.42 97.37 98.94 100 100 99.86 99.93

Percentage of points with
distance error >1.5 mm (%) 2.45 2.58 2.63 1.06 0.00 0.00 0.14 0.07

RMS distance error (mm) 0.74 0.65 0.69 0.50 0.40 0.30 0.44 0.42
Reference Vertical Extent of the
Breast (mm) 110.19 110.96 110.96 111.16 84.67 84.97 67.88 67.59

Computed Vertical Extent of the
Breast (mm) 109.36 109.55 109.60 109.85 84.71 84.79 67.73 67.50

Error in the Vertical Extent of the
Breast (mm) −0.83 −1.41 −1.36 −1.31 0.04 −0.19 −0.15 −0.09

Reference Volume of the Breast
(mL) 915.57 924.57 924.57 928.28 498.92 502.51 349.48 350.01

Computed Volume of the Breast
(mL) 909.81 921.25 921.25 921.97 494.27 502.21 349.51 347.48

Breast Volume Error (mL) −5.75 −3.31 −3.31 −6.31 −4.64 −0.31 0.03 −2.52
Breast Volume Error (%) −0.63 −0.36 −0.36 −0.68 −0.93 −0.06 0.01 −0.72

The breast distance maps shown in Figure 32 demonstrate the homogeneous spatial distribution
of the points with a distance inferior or equal to 1.0 mm. Figure 32 also confirms the limited extension
of the zones where the distance error is greater than 1.5 mm.

Table 2 shows that at least 76% of the extracted breast surface has a distance error inferior or equal
to 0.5 mm, that at least 94% of this surface has a distance error inferior or equal to 1.0 mm and at least
97% of this surface has a distance error inferior or very close to 1.0 mm (greater than 1.0 mm and less
or equal to 1.5 mm). It also shows that only approximately 3% of the extracted breast surface has a
distance error greater than 1.5 mm. Based on these results, we can affirm that globally the accuracy of
the extracted breast surface is sub-millimetric. This sub-millimetric accuracy may be also deduced
from the RMS distance error which is overall less than 0.75 mm.

Concerning the computation of the vertical extent of the pendulous breast, Table 2 shows that
the computed breast vertical extent is generally underestimated (breast vertical extent error is often
negative) and that the absolute breast vertical extent error is very close to 1.0 mm (worst-case error of
−1.41 mm for B1 test 2 in Table 2).

Table 2 also shows that the computed breast volume tends also to be underestimated (volume
error is often negative) and that the uncertainty in the breast volume computation is less than 1%.

3.3. D Breast Surface Reconstruction: Indicative Results from the First Ten Patient Scans

In Figures 33 and 34, the reconstructed breast surfaces using the Wavelia OBCD subsystem are
shown for the ten first patients enrolled in the on-going first in-human clinical investigation of the
Wavelia system, at Galway University Hospital. These are preliminary clinical results which serve to
demonstrate the efficacy of the presented calibration algorithm and 3D breast surface reconstruction
method on real clinical data. It is demonstrated that meaningful breast surfaces of good quality have
been achieved for all the ten patient scans.

In Figures 33 and 34, two views of the reconstructed surface of both breasts of each patient are
shown. The two selected views for this illustration are: (a) a side view of the two pendulous breasts:
looking at the patient from the front; (b) a supine-mimicking view of the two breasts: looking at
the patient from the bottom. This comparative presentation of the breast anatomy for this group of
ten patients, as captured during their Wavelia OBCD scans, highlights the expected variability in
the positioning of the patients. Even though the same positioning of the arms and alignment of the
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patient’s body with the bed is intended in all cases, unavoidable rotations of the breasts and/or twist of
the torso seem to happen in the case of some patients.

Figure 33. Breast Anatomy, as seen in the Wavelia OBCD scanner: Side view (Left), Supine position
mimicking view (Right) - the first five patient scans.
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Figure 34. Breast Anatomy, as seen in the Wavelia OBCD scanner: Side view (Left), Supine position
mimicking view (Right) - the second series of five patient scans.

While a quantitative evaluation of the reconstructed surfaces is not straightforward in the case of
the patient scans, the computation of the breast volume, as performed using the Wavelia OBCD scan
data, has been possible to be validated using as reference the X-ray mammography breast volume data,
being made available for the same patients.
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All the patients enrolled in the clinical study have had an X-ray mammogram performed no more
than 6 weeks ahead of their scan with the Wavelia prototype medical device. The mammograms have
been processed with the Volpara VDM (Volumetric Density Measurement) software package [30] and
the breast volume has been computed. The Volpara VDM breast volume and density computation
have been extensively validated, against MRI breast volume and density estimation [31–34] and can be
safely considered as a valid reference. In [33] breast volume estimates obtained from 186 FFDM (Full
Filed Digital Mammography) exams including mediolateral oblique (MLO) and cranial-caudal (CC)
views to objective reference standard measurements obtained from breast MRI have been presented.
The Pearson’s correlation coefficient between the two computations of the breast volume has been
found to be as high as 0.97. The Volpara commercial software was used to compute the breast volume
and volumetric breast density, based on FFDM data, in this study. In [34], the agreement of three
mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara) with
MRI for percent fibro-glandular tissue volume, absolute fibro-glandular tissue volume, and total breast
volume computation was assessed. In terms of breast volume computation, the squared Pearson’s
correlation coefficient was reported to be 0.91 between all the three mammographic techniques and
the MRI, while the achieved RMSE (Root Mean Squared Error) was found to be 108 mL, 109 mL and
121 mL for the three mammographic methods correspondingly, when compared to MRI. This study
involved data from 99 women. Both referenced studies have been used to validate volumetric breast
density and also breast volume computation using FFDM data, the validation being performed against
computation using 3D MRI data.

A similar approach has been adopted in our study to validate breast volume computation using
the Wavelia OBCD 3D data, against the computation performed by the already validated Volpara
software on the available FFDM data. Results on the 10 first patients that have participated in the
first-in-human clinical investigation of the Wavelia system are presented. In Figure 35, the volume of
both breasts of each of the ten patients is plotted, as computed from either:

• the Wavelia OBCD 3D scan data, or
• the 2D X-ray mammogram (Volpara software package, computation on ‘For processing’ DICOM

files of the two standard mammographic views – Cranio-Caudal and Medio-Lateral Oblique).

 

Figure 35. Comparative presentation of the breast volume, as computed by the Wavelia OBCD scanner
(pendulous breast) and the X-ray mammogram (compressed breast - averaging over Cranio-Caudal
and Medio-Lateral view captures).

Good level of correspondence between the breast volume computation, as performed by the
two distinct imaging modalities, is demonstrated, thus validating the Wavelia OBCD breast surface
reconstruction and volume computation. It is interesting to observe that the RMSE error computed
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between the Wavelia OBCD and FFDM (Volpara) breast volume computations based on this first small
dataset of patients is 154.6 mL, thus in the same order of magnitude as the RMSE reported in [34]
between FFDM and MRI.

Significant discrepancy between the X-ray mammography and the Wavelia OBCD breast volume
computation can be noticed only in the case of Patient 013 (P013). This has most probably been due
to the patient not being well positioned on the Wavelia scanner, resulting in part of her breasts not
being scanned. Patient 003 had very small breasts, potentially difficult to be fully inserted in-between
the X-ray mammography plates, resulting in under-estimation of the breast volume by the X-ray
mammography in this case. The ‘for processing’ DICOM files, which are required for processing the
mammograms with Volpara VDM, were not available in the case of Patient 010.

Finally, in order to evaluate the impact of potential movement of the patient’s breast during the
OBCD scan, a quality check has been developed and executed after each OBCD patient scan. For the
purpose of the quality check, two versions of the breast surface are reconstructed using two interlaced
and non-overlapping subsets of the full set of recorded azimuthal samples (Subset 1: camera at the
azimuthal positions {0:60:300}◦, Subset 2: camera at the azimuthal positions {30:60:330}◦). The OBCD
scan is validated, as long as the RMS distance between the two surfaces is inferior to 0.8 mm. The OBCD
scans of all the patients participating in the first clinical investigation so far have been validated with
this criterion, which indicates that if sub-millimetric precision has been demonstrated in the case of
static breast phantoms, the same level of precision can be maintained during the OBCD scan of a real
breast. Obviously, before the scan starts, the patient is instructed by the research assistant to stay still,
avoid heavy breathing and maintain a relaxed position during the total duration of the scan, which
lasts approximately 1 min.

3.4. Wavelia OBCD Breast Surface Reconstruction: Towards Development of a Real-Time Support Tool for the
Wavelia MBI Examination and Breast Cancer Diagnosis

As specified in the introduction, in the first prototype of the Wavelia breast imaging medical
device, the OBCD and MBI subsystems are integrated in two separate examination tables on which the
two scans are sequentially performed, while the patient positions herself in approximately the same
way during both examinations. The OBCD scan is performed while the breast is hanging in the air,
while the MBI scan is performed with the breast being immersed in a coupling (or transition) creamy
liquid, which is opaque.

Given this implementation, at this stage of development of the Wavelia system, the breast surface
reconstruction using the OBCD subsystem serves to define the amount of transition liquid to be used
for the MBI scan and also to define the length of the vertical scan of the pendulous breast with the
MBI system. In the context of the first-in-human clinical study of the Wavelia breast imaging medical
device, it has also served to verify the correspondence of the breast anatomy, as retrieved using two
distinct imaging modalities (Wavelia OBCD and MBI), tested for the first time on humans.

Rigid registration is performed to match the reconstructed breast surfaces, as computed during
the two scans (OBCD and MBI). The ultimate objective of this operation is to exploit the sub-millimetric
level of detail of the OBCD-derived breast surface, as a high-quality envelope for the MBI-derived
breast abnormality detections for breast cancer diagnosis. It is recalled that due to the physically limited
spatial resolution that can be achievable at the microwave frequency range, the exact orientation of the
pendulous breast under scan, as well as details such as the nipple location, cannot be defined using
the MBI-derived reconstruction of the breast surface alone. With no access to such level of detail, the
annotation of the breast quadrant and clock-position at which an abnormality has been detected with
MBI cannot be very accurate either, when using the MBI system stand-alone.

Given the potential deformation of the breast when submerged in the transition liquid,
the exploitation of the OBCD breast surface for refined localization of the detected breast abnormalities
with MBI is possible only in the case of minimally deformed breasts, in the actual implementation.
In Figure 36a, the example of a young patient (37 years old) with medium-sized breasts, which have not
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been significantly deformed when immersed in the transition liquid, is shown. For such a patient, the
registered OBCD contour can be safely used as envelope for the breast abnormalities, as detected with
MBI. In Figure 36b, the example of an elderly patient (68 years old) with large breasts, which have been
significantly deformed when immersed in the transition liquid, is shown. This second patient is a case
in which the simple rigid registration of the OBCD-derived breast surface is not usable as an envelope
for the breast abnormalities, as detected with MBI, in the actual implementation of the system.

 

(a)  

 

(b) 

Figure 36. Illustration of the expected level of breast deformation due to immersion in the transition
liquid of the Wavelia MBI scanner: (a) Patient 017: not significantly deformed breast, when immersed
in the transition liquid of the Wavelia MBI subsystem; (b) Patient 008: significantly deformed breast,
when immersed in the transition liquid of the Wavelia MBI subsystem.

In a future generation of the Wavelia breast imaging medical device prototype, it is planned to
integrate both the OBCD and MBI subsystems in the same examination table, such that both scans
are performed while the patient stays at the exact same position and the breast is in the exact same
ambient conditions. A semi-transparent transition liquid would then need to replace the actual creamy
and opaque transition liquid, such that the OBCD scan can be performed in the same conditions as the
MBI scan and the breast is identically deformed during both scans. With such a future version of the
Wavelia system, the OBCD-derived breast surface reconstruction is meant to enhance significantly the
potential of the Wavelia Microwave Breast Imaging system in terms accurate localization of the detected
breast abnormalities in the patient’s breast, no matter what the level of breast deformation due to
immersion in the transition liquid is. In addition, while being practically real-time available, the OBCD
breast surface reconstruction is meant to drive the operator during the positioning of the patient (e.g.,
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improve the centering of the breast in the system), such that the MBI scan can be performed in the best
possible conditions.

4. Conclusions

In this paper, a new calibration algorithm for turntable-based 3D scanning systems, a new method
for 3D surface reconstruction from point cloud based on a linear stretching function, and a breast
volume computation method, which have been designed for and integrated in the OBCD subsystem of
the Wavelia prototype breast imaging medical device, have been thoroughly presented. Indicative
experimental results with two test breast phantoms and preliminary results from ten patient scans have
demonstrated the efficacy of the system in reconstructing with high precision the external envelope of
a female patient’s breast hanging below the examination table, while the patient is in prone position.
This consists in very valuable input information for the second counterpart of the Wavelia medical
device, the MBI subsystem, which aims at detecting the presence of breast pathologies, based on the
contrast, in terms of dielectric properties, between healthy and malignant breast tissue.

The envelope of the breast being scanned with the microwave breast imaging system is essential to
be known for any detection in the microwave image to be meaningfully referenced in space. In addition,
specifically for microwave breast imaging, as the dielectric properties of the interior of the breast are
unknown, while the dielectric properties of the transition medium are known, the breast envelope
which is extracted at first also serves as boundary between the two electromagnetic wave propagating
media (dielectrically known exterior of the breast versus dielectrically unspecified interior of the
breast), which is very important a priori information for any microwave imaging algorithm, further
on. The spatial resolution of the OBCD (optical) subsystem is significantly finer than the one of the
MBI (microwave) subsystem, but the optical subsystem cannot penetrate the breast skin, while the
microwave subsystem can. The interest in fusing the optical and microwave data is exactly to profit
from a highly detailed breast envelope, as spatial reference for any abnormalities of the breast tissues
being detectable with microwaves.

The Wavelia prototype medical device has only recently been installed at the Galway University
Hospital, Ireland, for its first-in-human pilot clinical test. To this day, the system has been tested on
twenty patients in total (the aim being to test it on thirty patients by the end of this first-in-human
clinical investigation). The OBCD subsystem, which has been the main focus of this paper, has been
evaluated positively by the users, so far, and generated reliable data which are being efficiently
exploited in the ongoing off-line processing of the MBI subsystem datasets. A first encouraging patient
result, involving the detection of a palpable Invasive Ductal Carcinoma (IDC) of approximate size
15 mm in the breast of a 44-year old patient, using the Wavelia breast imaging medical device, has been
presented in [35]. More complete associated clinical data results will be included in future publications
on the Wavelia Microwave Breast Imaging system.

The proposed method for new 3D surface reconstruction from point clouds has been designed
based on the shape of the breast when the patient is in prone position on the examination table (Wavelia
MBI and OBCD subsystems). However, beyond this specific application, the method could be also
used to reconstruct objects other than the breast, as long as the object is representable with the shape of
a cone or a cylinder (e.g., the breast can be represented by a cone). The proposed calibration method
could be used to calibrate any turntable-based 3D scanning system, in general.

Author Contributions: J.D.G.C. conceived and developed the calibration and breast surface reconstruction
methods for the Wavelia OBCD subsystem, developed the piloting software for both Wavelia OBCD and MBI
subsystems, including Graphical User Interface (GUI) appropriate for the clinical setting, wrote the original draft
of the paper; A.F. designed the radar signal processing algorithms for microwave breast image formation and
tumor detection with the Wavelia MBI subsystem, reviewed and edited the draft paper; L.D. supervised the
hardware development of both Wavelia OBCD and MBI subsystems, designed the RF chain of the Wavelia MBI
subsystem, reviewed and edited the draft paper; J.-G.B. participated to the design of the electrical architecture of
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Appendix A. Selection Procedure for the 3D Camera to be Integrated in the Wavelia OBCD
Subsystem

For the development of the Wavelia OBCD subsystem, the 3D camera to be used needed to
be carefully selected, first of all. Two 3D cameras using different acquisition technologies. have
been tested and evaluated, before selection. For this purpose, 3D acquisitions were performed with
both cameras around breast phantoms by using an azimuthal rotating camera system inside a closed
environment with no light. The cameras were located at a distance of approximately 50 cm from the
breast phantoms. The first 3D camera that was tested was the model O3D302 from IFM [36], which
measures the distance between the sensor and the nearest point on the surface of the 3D object under
scan, based on the time-of-flight (ToF) principle. The second 3D camera that was tested was the model
Ensenso N10-804-18 from IDS [37], which works according to the “projected texture stereo vision”
principle. This 3D camera has two integrated CMOS sensors and an infrared projector that projects
high-contrast textures onto the object to be captured by using a pattern mask. Some technical data of
the tested cameras are presented in Table A1. The experimental setups which have been used to test
the two cameras are presented in Figure A1. A black curtain has been used to cover each setup, in
order to obtain a closed obscure environment.

Table A1. Main technical data of the two tested cameras.

IFM O3D302 Ensenso N10-804-18

Image resolution [pixels] 176 × 132 752 × 480
Max. reading rate [Hz] 25 30
Operating distance [mm] 300 . . . 8000 450 . . . 1600
View field size X at 500 mm [mm] 500 158.49
View field size Y at 500 mm [mm] 370 158.13
Z-Accuracy [mm] — 0.452
Baseline (Pupillary Distance) [mm] — 100
Illumination 850 nm, infrared 850 nm, infrared

  

(a) (b) 

Figure A1. Azimuthal rotating camera system: (a) Experimental test setup for IFM O3D302 camera;
(b) Experimental test setup for Ensenso N10-804-18 camera.
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As presented in Table A1, the resolution of the IFM camera is lower than the resolution of
the Ensenso camera. Therefore, in order to compare both cameras with similar volumes of points,
an azimuthal scan with an angular step of 10◦ has been performed with the IFM camera. This data has
been compared with the data from an azimuthal scan with an angular step of 30◦ performed with the
Ensenso camera. The two aforementioned 3D scans permitted to collect 36 point clouds with the first
camera and 12 point clouds with the second one.

Mechanical data, such as the vertical inclination of the camera, the distance from the camera to
the axis of azimuthal rotation, the 3D coordinates of the camera position and the azimuthal angle at
which each point cloud is collected (0◦ to 350◦ for IFM camera and 0◦ to 330◦ for Ensenso camera),
were used to approximatively align the acquired 3D point clouds. The results presented in Figure A2
correspond to the cumulated approximatively aligned 3D point clouds for both cameras.

  

(a) (b) 

Figure A2. Cumulated approximatively aligned 3D point cloud: (a) From IFM O3D302 camera scan;
(b) From Ensenso N10-804-18 camera scan.

By visually comparing the cumulative 3D point clouds from both cameras, it can be observed
that the number of artifacts (ghost points) is significantly higher for the IFM camera than for the
Ensenso camera.

To evaluate visually the accuracy of each cumulative 3D point cloud, a 3D reference surface of the
breast phantom has been manually registered with the point cloud. The ground truth surface of the
scanned breast phantom (red color) has been overlaid with the camera point clouds (white color) for
the purpose of this illustration, in Figure A3.

  

(a) (b) 

Figure A3. Cumulative approximately aligned 3D point cloud and registered 3D breast surface:
(a) From IFM O3D302 Camera scan; (b) From Ensenso N10-804-18 camera scan.

Figure A3 shows than the cumulative point cloud collected with the Ensenso camera is significantly
closer to the 3D breast reference surface than the cumulative point cloud collected with IFM camera is.

Based on these results, the 3D stereoscopic camera Ensenso N10-804-18 has been selected to be
integrated in the Wavelia OBCD subsystem.
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Appendix B. Generation of the Input Point Cloud for the 3D Breast Surface Reconstruction
Method

This procedure uses as input data the cumulative point cloud PcAcc presented in Section 2.3.
It consists in the following processing steps:

• extraction of the working point cloud;
• ring removal and verification.

Each of the above processing step are specified in a separate sub-section below.

Appendix B.1. Extraction of the Working Point Cloud

In order to extract the points of the working point cloud, the z value of the lower plane of the
examination table is required to be known. To compute this, a disk section points corresponding to this
plane has been selected from PcAcc (see illustration with the green point cloud in Figure A4). The mean
of the z coordinates of the points located in this section have been further computed. The computed
value is named zre f .

 

Figure A4. Disk section corresponding to the lower plane of the examination table.

To extract the working point cloud, the points where the z coordinate is lower than zre f are first
selected from PcAcc.

The working point cloud is further extracted, by selecting the points that lie within an ellipsoid
centered at the (0,0,0) position of the Wavelia reference coordinate system. The lengths of the semi-axes
of the ellipsoid, a for the x and y axes and b for the z axis, have been selected such that all the points
corresponding to the largest possible breast under scan lie, with sufficient margin, within the outer

contour of this ellipsoid. To select the points inside the ellipsoid, the condition px
2

a2 +
py

2

a2 +
pz

2

b2 ≤1
is applied.

After the ellipsoidal point selection, an additional operation step is applied to remove remaining
outlier points, if any, lying far from the breast surface. An illustration of this operation is provided in
Figure A5 below.
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(a) (b) 

Figure A5. Example of outlier removal, after ellipsoidal point selection: (a) before, (b) after outlier
removal: extracted point cloud for the test breast phantom B2.

Finally, the point (0,0, zre f ) is set as the origin of the extracted working point cloud.

Appendix B.2. Ring Removal and Verification

As mentioned in the introduction, the opening of the examination table of the Wavelia OBCD
subsystem is fitted with a plastic ring. The ring removal procedure consists in identifying the points of
the working point cloud corresponding to the ring and setting to zero their z coordinate values. To do
this, a disk section of points corresponding to the flat surface of the ring is selected, then those points
are fitted to a plane. The signed distance to this plane is used as a criterion for the removal of points
(positive distance for points above the plane and negative distance for points below the plane). To
apply the point removing criterion, a parameter is defined:

• inner radius (InRad): this parameter is defined as the physical radius of the ring minus an estimate
of the expected variation due to reflections on the vertical wall of the ring during the OBCD scan
of the breast.

The removing criterion is applied to the points with Euclidean distance to the xy plane greater
than InRad (see inner radius in Figure A6a). The complete ring removal procedure, as applied to a test
breast phantom, is shown in Figure A6b.

The new point cloud, as obtained after ring removal, is named PcB.
Some points corresponding to the ring may still remain. To verify this, the following parameters

are used:

• ring height: it is the physical height of the ring, including an estimate of the noise along the z axis
on the flat ring section (see Figure A6b) during the OBCD scan;

• mesh resolution (Dxy): it corresponds to the desired resolution on the xy plane for the 3D breast
reconstructed mesh;

• remaining reference factor: it is a factor in the range [0–1], defining whether processing to remove
remaining ring points is required, or not. This factor has been determined empirically, based on
observations from a series of available scan data, involving both human and phantom breasts.
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(a) 

 

(b) 

Figure A6. Ring removing procedure: (a) point removing criterion; (b) full ring removal procedure, as
applied to the Test breast phantom B1.

The points are selected with an absolute z coordinate value lower than ring height. A rectangular
flat grid is generated with a resolution corresponding to Dxy by using the minimum and maximum
values for the x and y coordinates of the selected points. The z coordinate values of this flat grid
are zero. Then a disk section is defined on that grid between radii InRad and InRad - 2·Dxy. Then,
the selected points on the flat grid are projected, and the points of the grid which correspond to the
disk section where at least one projected point is present are set to 1. The other points, which do not
correspond to the disk section, are set to 0 (see illustration in Figure A7).

 

Figure A7. Verification procedure after ring removal. The white points on the flat grid (the right-hand
images) correspond to the remaining ring points.

The remaining ring factor is computed by dividing the number of points equal to 1 present within
the disk section on the flat grid (white points in the right-hand images in Figure A7) by the maximal
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number of points which may be present in the disk section. If this ratio is greater than remaining
reference factor, a specific process to remove remaining ring points will be necessary to be applied.
Otherwise, the regular process for artifact removal will be sufficient. Both processes are defined in
Appendix C.1.

Appendix C. Final Denoising

This procedure performs 2D image processing steps to finalize the denoising process (see
Section 2.3.2). It consists in the following processing steps:

• removal of the artifacts and/or removal of ring residuals;
• removal of remaining artifacts.

Each of the above processing steps is specified in a separate sub-section below.

Appendix C.1. Removal of the Artifacts And/or Removal of Ring Residuals

In this step, PcgA (see Section 2.3.2) is processed as a 2D image to perform the artifact removal
processing and/or the ring residuals removal processing. The selection of one of these processes has
been described in Appendix B.2.

The removal procedures are based on morphological operations, so a binary image needs to be
generated from PcgA, first of all. Then, erosion and dilation operations are performed, the result being
a binary mask, which is applied to PcgA by a multiplication operation. The resulting point cloud
is named PcgB; this point cloud is further considered clean from any significant artifacts related to
ring residuals.

The number of iterations and the structuring elements used in the erosion and dilation operations
were empirically determined, based on the so far cumulated experience on both human and phantom
breast scans.

Figure A8 shows the procedure to remove ring residuals in the case of Patient 004.

Figure A8. Illustration of the erosion-dilation procedure, which is applied to remove ring residuals.
Illustration on Patient 004.

Appendix C.2. Removal of Remaining Artifacts

At this stage, residual artifacts from the previous steps may remain. The aim of this procedure
is to further reduce the remaining artifacts along the z axis in PcgB, while preserving the details in
the vicinity of the nipple. To do this, PcgB is processed as a 2D image. PcgB is divided in four vertical
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sections (cyan, magenta, blue and red in Figure A9). Median filtering using distinct kernel sizes for the
four vertical sections of the breast is further applied.

 

Figure A9. Illustration of the division of the stretched breast into four sections along the z axis.
Illustration on Patient 002.

To divide PcgB in four vertical sections Equation (16) is applied, with the first section corresponding
to the nipple, the fourth section corresponding to the zone of the scanned breast the closest to the chest
wall, while the second and third are middle sections of the scanned breast.

At this stage, the median filter is applied with a variable kernel size, which is defined as follows:

• a (1 × 1) kernel size for the nipple section (this kernel size allows to best preserve the breast surface
details around the nipple);

• a (5 × 5) kernel size for the second breast section;
• a (7 × 7) kernel size for the third breast section;
• a (9 × 9) kernel size for the fourth breast section;

The specific combination of kernel sizes has been empirically defined and allowed to preserve a
good continuity between the four sections of the reconstructed breast surfaces (see Figure A9), in the
case of all the experimental and patient scans performed with the Wavelia OBCD subsystem, so far.
The result of the median filter with variable kernel sizes is a point cloud named PcgC, as illustrated in
Figure A10 for Patient 002.

 
Figure A10. Result of the median filter with variable kernel size (the intensity of the images corresponds
to the z coordinate of the corresponding pixels). Illustration for Patient002.
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Abstract: Bioelectric impedance spectroscopy (BIS) has been widely used to study the electrical
properties of biological tissue based on the characteristics of the complex electrical impedance
dispersions. One of the problems in using the BIS method is the length of time required for the data
acquisition process and possibly data analysis as well. In this research, a compact and work rapidly
BIS instrumentation system has been developed at a low cost. It is designed to work in the frequency
range of 100 Hz to 100 kHz, which is generally used in the fields of biophysics and medical physics.
The BIS instrumentation system is built using several integrated modules. The modules are an AC
current source to produce a selectable injection current; a data acquisition system to measure voltage,
current, and phase difference rapidly and simultaneously; and software to calculate and display
measurement results in the form of Bode and Nyquist plots in real time. The developed BIS system
has been validated using a simple RC circuit as the sample being tested. The average time needed in
the process of data acquisition and analysis until the formation of impedance dispersion curves in
the form of Bode and Nyquist plots, for 54 sample frequencies, is less than one minute. The system
is able to identify R and C values of the sample with a maximum error of 1.5%. In addition, some
simple application examples are also presented in this paper.

Keywords: BIS-instrumentation; biological-tissue; gain-phase detector; Bode plot; Nyquist plot

1. Introduction

Bioelectrical impedance spectroscopy (BIS) has been currently used in broad fields of studies,
such as biophysics, medical physics, agriculture, and other fields of life-sciences. BIS is a non-invasive
method for characterizing biological materials based on their electrical properties, which is expressed
in terms of complex electrical impedance dispersion curves over a certain frequency range [1,2]. In here,
there are three regions of bioelectrical impedance dispersion, α, β, and γ. The α-dispersion (10 Hz to
10 kHz) is related to the phenomena of ionic diffusion of the cell membrane and the counterion effects,
the β-dispersion (10 kHz to 100 MHz) is related to the polarization phenomenon of cell membranes,
and the γ-dispersion (in GHz order) is related to the polarization of water molecules [3]. Properties of
electrical impedance have been reported to understand the nature and behavior of cell [4–8], bacteria
detection and identification [9,10], identification of beverages and food ingredients [11–16], and so
on. In the medical field, BIS is used to characterizations of serum and blood [17–19], identification of
body composition and disease [20–22], and to assist the process of diagnosis and functional electrical
stimulation of the body [23–25]. Research on BIS, as mentioned, mostly covers α and β dispersion,
and is carried out using a frequency of 10 Hz to 1 MHz.

In principle, identification of the electrical impedance of biological tissue performed by injecting
alternating current, I, into the sample through a pair of current electrodes, and measuring the voltage,

Appl. Sci. 2020, 10, 878; doi:10.3390/app10030878 www.mdpi.com/journal/applsci

89



Appl. Sci. 2020, 10, 878

V , which arises through a pair of voltage electrodes. Then, the impedance, Z, is calculated by using
formula Z = V/I. It should be noted that V , I, and Z is complex variables, therefore a BIS instrumentation
system must not only be able to measure the magnitudes of current and voltage, but must also be able
to measure their phase difference. Therefore, a BIS instrumentation system is at least having three
functional units. First is an AC current source, which must be stable within working frequency range;
second is a data acquisition system to record voltage, current, and their phase difference; and third is
software for computing and displaying the impedance dispersion curves, which is commonly in the
Bode plot or Nyquist plot.

Furthermore, in an effort to provide a BIS instrumentation system in good performance, some
researchers have offered the new design. Starting from precision AC current sources [26], the high
accuracy data acquisition system [27,28], even the whole system device [29–33]. Commonly, the offered
BIS instrumentation system is arranged in modular and work separately. It has weaknesses in
compactness and synchronization of the hardware system. Besides that, most of the offered BIS
instrumentation cannot perform automatically frequency scans. The measurement process is carried
out manually starting from the lowest to the highest frequency, then the measurement results are
plotted using MS-Excel or others data processing software by entering the recorded measuring data.
These methods will require a long time, so it is inefficient to produce an impedance dispersion curve.

In this research, we propose a low-cost, rapid, and compact BIS instrumentation system with
Bode and Nyquist plot in real-time. There are several new things we offer:

• The system contains three main modules in an integrated (compact) ones, so synchronization
among modules can be maintained/controlled by PC, and it can work automatically.

• The system uses programmable AC current source, so that the value of the current to be injected
into biological samples can be selected/regulated through software via PC.

• The data acquisition system is built based on gain phase detector (GPD-AD8302), so that the value
of V , I, and phase difference can be identified rapidly.

• We developed computational software (in Delphi) to calculate the complex impedance values
of the samples, and also software to draw Bode and Nyquist plots. We do not need another
application program (e.g., MS-Excel) to do the calculations separately. Therefore, the time needed
for computation and data analysis to be reduced very significantly.

2. Materials and Methods

A block diagram of BIS instrumentation system which is proposed in this research is given in
Figure 1. It is built in several integrated modules, and can be grouping into three main units, i.e., AC
current source, data acquisition, and software. The unit of AC current source is a stable current source
with selectable frequency within a certain frequency range.

Figure 1. Block diagram of the developed BIS instrumentation system.

In the implementation, an AC current source with a certain frequency is injected into the sample
through a reference resistor (R-Ref). Function of R-Ref is to guarantee that the current which is recorded
by the data acquisition system is the actual current received by the sample. In this case, the actual
current value is the voltage value read by IA1 divided by R-Ref, while the sample voltage arising
due to injection current is read by IA2. Next, the outputs of IA1 and IA2 are forwarded to the gain
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phase detector module (GPD-AD8302). GPD performs an internal process to produce the gain in dB of
(V/I) and the phase difference, the both in form of the equivalent voltages. These two signals are then
converted into digital data by the ADC contained in the ATmega microcontroller, before being sent
to the computer (PC). On the PC, the data is calculated to produce an impedance value, and plotted
directly as single point on the Bode and Nyquist charts. This process is repeated for other frequencies
until one full frequency cycle is completed.

Here, the software is developed and installed on the microcontrollers and PC, used for three
purposes. The first is to control the working function of the hardware as a whole, specifically the
selection of the current value and the desired working frequency range. The second is to calculate the
complex impedance of the sample based on data from GPD, and the third is to present the complex
impedance dispersion of the sample in the form of Bode and Nyquist plots in real time.

2.1. Unit of AC Current Source

The BIS instrumentation system requires a pure sine current signal with a selectable frequency
and amplitude. For this purpose, the unit of AC current source is developed using two modules, i.e.,
the voltage generator and the voltage to current (V/I) converter. The voltage generator is serving to
produce a sine voltage in the frequency range of 10 Hz to 10 MHz, while the V/I converter functions to
change the voltage source into current source at the related frequency, with selectable current amplitude
of the 1 μA, 10 μA, 100 μA, and 1 mA.

2.1.1. Voltage Generator

The AC voltage generator is built based on the AD9850 module, as shown in Figure 2b. The module
is widely available in the commercial market with price around $12. The AD9850 is a highly integrated
device that uses advanced DDS technology, digitally programmable frequency synthesizer, and clock
generator function. It has capabilities to produce sine and square waves signals 1-volt peak to peak
(Vpp) in amplitude and frequency range from DC to 40 MHz. The frequency tuning, control, and phase
modulation words are loaded into the AD9850 via a parallel byte or serial loading format. The parallel
load format consists of five iterative loads of an 8-bit control word, while serial loading is accomplished
via a 40-bit serial data stream on a single pin [34].

 
Figure 2. AD9850-based voltage generator module with frequency range of 10 Hz to 10 MHz.
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In this project, the AD9850 module is used to generate sine-wave voltage signals. The determining
frequency value is controlled by software that installed on the microcontroller ATMega823 via serial
loading format. Figure 2a shows pins connectivity between the AD9850 and the ATMega823. W_CLK
is a clock signal for 40-bits serial data streaming, FQ_UD is frequency update signal for new data
streaming, D7-Data is 5-bytes data streaming, and RESET is signal to reset the AD9850 to the original
state. In here, simple op-amp circuit as shown in Figure 2c is perform a band pass filter (BPF), is used
to conditioning the output of AD9850 in ‘pure’ sine wave signal within frequency range of 10 Hz to
10 MHz and amplitude of 0.5 volt.

2.1.2. Voltage to Current (V/I) Converter

As explained above, in this project we use a current source (not a voltage source) to be injected
into biological samples. Therefore, the voltage that has been generated by the voltage generator must
be converted to an equivalent current. For this purpose, we use a voltage to current (V/I) converter.
There are several types of V/I converter, one of the most popular is Howland current source (HCS).
The HCS is a voltage controlled current source (VCCS) with loads connected to the ground. The HCS
has advantages in the stability, grounded mode, and simple application method. In this project HCS
with buffered feedback path is used, as given in Figure 3. The use of buffered feedback path can
provide advantages in high impedance measurements.

From BPF 
(V-Gen.)
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Figure 3. Howland current source with buffered feedback.

Considering the op-amp role and Kirchhoff law, the output voltage at the point of the circuit in
Figure 3 can be obtained
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For R1 = R2 = R3 = R4 = R, then
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)(2R
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)
= VG + VB (4)
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=

VG
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(5)

Current injected to the material load ZL is IZ. According to Kirchhoff’s Current Law (KCL),

IZ = IS − IA2 (6)
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IA2 is current entering the A2 op-amp, and for high input impedance op-amp, IA2 ≈ 0, so that

IZ = IS =
VG

RS
(7)

Based on Equation (7), and with VG set constant at 0.5 volts, then the current value is only
determined by RS. By selecting RS of 500 kΩ, 50 kΩ, 5 kΩ, and 500 Ω, an IZ current value of 1 μA,
10 μA, 100 μA, and 1 mA will be obtained, respectively. In addition, in this research we use LF357 for
op-amp A1 and LF351 for op-amp A2. The LF357 has GBW 20 MHz and input impedance in order
TΩ, while the LF351 has GBW of 4 MHz and input impedance in order of TΩ. Both are low-cost JFET
input op-amp. In addition, to provide current selector is used an analog multiplexer CD4051, and it is
controlled by the microcontroller.

2.2. Unit of Data Acquisition System

Unit of the data acquisition system is tasked to read and record data of current, voltage and
phase difference along measuring process. Figure 4 provides a technical illustration of how the data is
recorded. RRef is reference resistor, use to ensure that the current measured by the data acquisition
system is the actual current that is injected into the sample. The value of the actual current Iz is the
voltage on the reference resistor divided by the value of the reference resistor, RRef.

 
Figure 4. Data acquisition system: signal conditioning (SC) and gain-phase detector (GPD).

There are two parts in data acquisition system device, i.e., signal conditioning circuit (SC) and
gain phase detector (GPD). The SC part perform high impedance buffering, filtering, and amplifying,
as required by the GPD. The buffer is an isolation circuit, it serves to ensure that the current and voltage
signals are not affected by the circuit afterwards. Each buffer circuit is performed by LF353 op-amp.
The RC circuit after buffer forms a high pass filter (HPF). Each HPF is set at 10 Hz cut-off frequency,
is to eliminate dc-offset voltage that might arise. Finally, the AD620 instrumentation amplifier (IA) is
used in two functions, first is to convert the differential signal to single ended, and second is to amplify
the signals (G1 and G2), if needed. To provide voltage gain control through RG selection, is used an
analog multiplexer CD4051, and it is controlled by the microcontroller. In addition, the AD620 is
low-cost IA with working frequency up to 1 MHz. However, it should be noted that a greater gain will
cause the maximum working frequency will also decrease.

Based on the explanation, then the complex impedance values of the measured sample can be
calculated as

ZL = |ZL|∠θL =
VL

IL
=
|VL|∠θVL

|IL|∠θIL
; where |ZL| = |VL|/|IL| and θL = (θVL − θIL) (8)
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VZ =
VL

G2
=
|VL|∠θL

G2
= |VZ|∠θL; where |VZ| = |VL|

G2
(9)

IZ =
VR

G1 ∗RRef
=
|VR|∠θR

G1 ∗RRef
= |IZ|∠θR; where |IZ| = |VR|

G1 ∗RRef
(10)

so that,
ZL = |ZL|∠θL; where |ZL| = |VL|/|IL| and θL = (θVL − θIL) (11)

Furthermore, in the development of a BIS instrumentation system that can work quickly, the use
of GPD devices such as AD8302 as part of a data acquisition system is the right choice. The AD8302
has a very good ability in terms of identifying the gain and phase difference between two signals, from
low frequencies up to 2700 MHz [35]. Common configuration the use of AD8302 for gain and phase
difference measurement, especially for low frequency operation is shown if Figure 4 above. In the
figure, two CC capacitors connected to the OFSA and OFSB pins are the useful components to set high
pass corner frequency (f CH) of the measured signals. According to the application note of the AD8302
at low frequency operation [36], formula to calculate f CH is given by

fCH(kHz) = 2/CC (μF) (12)

Working principle of the AD8302 is compares the two input voltage signals i.e., VINPA and VINPB,
and generates two output voltage signals i.e., VMAG and VPHS. Where the VMAG is output voltage
proportional to the decibel ratio of voltage signals applied to INPA and INPB, while the VPHS is output
voltage proportional to the phase difference between INPA and INPB. Relationship between input
signals (VINPA and VINPB) and output signals (VMAG and VPHS) is as shown in Figure 5. The AD8302
has magnitude measurement range from −30 dB to +30 dB with a sensitivity of 30 mV/dB, and phase
measurement range from (−180 to 0) degrees with a sensitivity of 10 mV/degree or (0 to +180) degrees
with a sensitivity of −10 mV/degree.

V V

V V

θ θ 

Figure 5. Relationship between magnitude (dB) to the VMAG, and between phase difference (deg.) to
the VPHS.

Based on the graphs in Figure 5, then the formulas for calculating VMAG and VPHS are

VMAG = (30 mV/dB) ∗ (log(VINPA/VINPB)) + 900 mV (13)

VPHS = (10 mV/degree) ∗ ((θINPA − θINPB) − 90◦) + 900 mV (14)

From Equations (13) and (14), the magnitude (dB) and phase angle (degree) can be written as,

mag (dB) = log
(

VINPA

VINPB

)
=

VMAG − 900mV
30mV

(15)

θ (degree) = [θINPA − θINPB] =
1800 mV−VPHS

10 mV
(16)
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Then, the real and imaginary parts of complex impedance can be written as,

|ZL| = 10
mag
20 ∗RRef

ZRe = |ZL| cos θ
ZIm = |ZL| sin θ

(17)

2.3. Software

The software was developed in Delphi, and is used for two purposes. First is for controlling the
hardware system, and second is for data analysis and display.

Software for controlling the hardware system is responsible to:

• Determine the value of the current used (1 μA, 10 μA, 100 μA, or 1 mA). This is related to the
selection of the RS value that stated in Equation (7).

• Determine low frequency and high frequency limits, and the number of data samples. This is
related to the DDS-AD9850 voltage generator programming.

• Determine the voltage gain value of the reference signal and sample signal. This is related to the
selection of the RG value to produce G1 and G2 that stated in Equation (10).

Whereas, software for data analysis and display is responsible to:

• Calculation of values of the current, voltage, phase angle, and impedance (using Equations (15)
and (16))

• Calculation of real and imaginary parts of impedance (using Equation (17))
• Plot the impedance value in the Bode (magnitude and phase as a function of frequency)
• Plot the impedance value in Nyquist (real part vs. imaginary parts)

3. Results and Discussion

3.1. Prototype of the BIS Instrumentation System

The prototype of the developed BIS instrumentation system is given in Figure 6, where Figure 6a
is photo of the hardware system and Figure 6b is main display of the software system. The main
unit of the hardware system is current source and data acquisition system. The hardware system is
equipped with connectors for biological samples and a connector to the PC as the main control device
and data processing and display unit. To inject the current from the BIS device into the biological
sample, two types of connectors can be chosen—i.e., female USB and BNC. The female USB connector
is used for interdigitated electrodes (IDT), while BNC connectors is used for parallel plates or needle
electrodes. In the software section, it provides several pre-acquisition menus such as selecting low
and high frequency limits as well as determining the frequency samples, selecting the current value,
and selecting the voltage amplification value. At the time of data acquisition, the measurement results
are displayed in the form of Bode plots (magnitude and phase-angle), Nyquist plots, and also in
MS-Excel table data for further purposes. In addition, the software system also displays the results of
calculating the resistance and capacitance values of the samples that are carried out automatically by
the program.
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Figure 6. Prototype of developed BIS instrumentation system: (a) hardware, and (b) software.

Furthermore, it is important to state the validation results on the BIS instrumentation system that
has been made, specifically the performance of the current source and the data acquisition system.
Figure 7a shows the characteristics of the voltage generator, that stated in Figure 2, from frequencies of
1 Hz to 10 MHz obtained from the test results. As we can see, the signal has a good and perfect sine
wave shape at frequencies of 1 kHz, 1 MHz, and 10 MHz. At low frequencies up to 2 MHz, the signal
has an almost constant amplitude of 0.5 volts. However, starting at 2 MHz, the signal amplitude starts
to decrease with increasing frequency. So that the voltage generator module can work well in low
frequencies up to 2 MHz.

Figure 7. Current-source characteristics: (a) frequency response of voltage generator, and (b) frequency
response of several current values of V/I converter output due to related load.

In the design of a BIS instrumentation system, it is very important to measure the actual current
value that is injected into the sample, which can change due to environment such as temperature.
In this case, by using a reference resistor (RRef), the actual current value injected into the sample can
always be monitored precisely. In terms of impedance measurement, voltage and current characteristics
are also greatly influenced by the load connected to them. Figure 7b is characteristic of the current
source due to impedance loads within frequency range of 10 Hz to 10 MHz, for current setting of
1 μA, 10 μA, and 100 μA. We can see, although the voltage source to be changed has a flat shape at
frequencies up to 2 MHz, but the current will decrease at high frequencies, along with the greater load.
In here, the choice of a smaller current will provide benefits in terms of high frequency operations.
However, keep in mind that biological tissue commonly has a small impedance value, so the use of a
small current will also produce very small voltage. This is where a voltage amplifier device is needed.
In addition, with regard to the operating frequency, the BIS system has effective performance in the
frequency operation of 100 Hz to 100 kHz. Although the frequency range of 10 Hz to 1 MHz still can be
achieved, but it will provide relatively large error, especially in the lower and upper frequency borders.
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Moreover, it is important to mention here how to make Bode and Nyquist plots in the BIS system
that was developed. In here, Bode and Nyquist plots is carried out per single frequency, and repeated
until full frequency cycle has been reached. The procedure for measuring impedance using the
developed BIS system including the estimated length of time required is described as below.

(a) The first step is preparing for pre-acquisition; such as determining the current value, the frequency
limit, number of sampling frequencies, and voltage gain.

(b) Initialization and generation of sine-voltage at one frequency by the AD9850. The time required,
including providing a delay time so that the signal is stable is around 200 ms.

(c) The microcontroller takes 50 pieces of VMAG and VPHS from AD8302 for single-frequency operation
and directly sent to the PC. On the PC the data is averaged to get the best data. The time required
is around 600 ms.

(d) Calculation the value of ‘mag (dB)’ using Equation (15) and the value of ‘θ (degree)’ using
Equation (16). Calculation the value of complex impedance magnitude, real part and imaginary
part of complex impedance using Equation (17). Next, plotting the results on the Bode and
Nyquist graphs provided. The time required is around 200 ms.

(e) Return (looping) to point (b), until all frequencies stated in point (a) have been completed.

For example, in our experiments we used the frequency range from 100 Hz to 100 kHz, and
the sample frequencies were: 100 Hz, 150 Hz, 200 Hz, . . . , 1 kHz, 1.5 kHz, 2 kHz, . . . , 10 kHz,
15 kHz, 20 kHz, . . . 100 kHz (there are 54 sample frequencies). The time needed to measure complex
impedances at a single frequency is around 1000 ms (1 s). Thus, the time needed to get the experimental
data measured in one full frequency cycle is 54 s (less than 1 min).

3.2. Application Examples

In order to verify the reliability of the developed BIS system, we carry out two kinds experiments
with different samples. First experiment used a parallel RC circuit, and the second experiment used
liquid solution—i.e., mixed water and milk with different concentration.

3.2.1. Parallel RC Circuit

A parallel RC circuit is the simplest equivalent electrical model of biological tissue. In this
experiment, four RC circuit configurations were used, with the R value being fixed at 5.6 kΩ and the
C values set different at values of 1 nF, 10 nF, 33 nF, and 47 nF. These values are those listed on the
components body. Measurement by using Precision LCR meters ST2830, the following values are
obtained R fix is 5.45 kΩ, and C are 0.93 nF, 9.41 nF, 34.15 nF, and 51.46 nF simultaneously.

In the experiment, measurements were made using a BNC connector, with both components
soldered directly to the ends of the connector. We use 10 μA current value and several choices voltage
amplification. Result of the experiment for each configuration is displayed at the Bode plot, Nyquist
plot, and Excel’s data format in real-time. Cumulative results is given in Figure 8 as Bode plot, both
in magnitude (ohm) and phase difference (degree). Based on the data in Figure 8, the calculation of
component values performed by the program gets the values as shown in Table 1. The comparison of
the ‘true values’ and measured values of components give maximum error of 1.5%.
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(a) (b) 

Figure 8. Bode plot of RC experiments: (a) impedance magnitude (ohm), and (b) phase (degree).

Table 1. Measurement result and error calculation

Prec. RLC Meter Dev. BIS Error (%)

R (kΩ) C (nF) R (kΩ) C (nF) C (%) R (%)

5.45 0.93 5.472 0.938 0.40 0.86
5.45 9.41 5.489 9.341 0.72 0.73
5.45 34.15 5.377 34.653 0.64 1.47
5.45 51.46 5.415 52.602 1.34 1.17

Average Error (%) 0.78 1.06

3.2.2. Mixed Water and “Yakult” with Different Concentration

In this experiment we use interdegitated electrode (IDT). The IDT electrode is very suitable for
the measurement of impedance of small amounts of liquid material. More about the use of IDT
electrodes can be seen in several references, and not discussed in this paper. The liquid sample used in
this experiment is a mixture of mineral water and milk (“Yakult”) in several types of concentrations.
The experiment results are given in Figure 9.

(a) (b) 

Figure 9. Impedance values of Yakult solution: (a) in Bode plot, and (b) in Nyquist plot.

Figure 9a presents impedance values of samples in magnitude Bode plot, and Figure 9b is in
Nyquist plot. It appears that the electrical impedance of mineral water without Yakult addition has the
highest value, this is because water is a material with weak electrolyte properties so the impedance
value is relatively high. The addition of Yakult material of 0.4 mL, 0.8 mL, 1.2 mL, 1.6 mL, and 2.0 mL
to the water causes the electrical impedance of the mixture liquids to decrease. In here, the greater the
volume of Yakult added to the water, the greater the decrease in impedance that occurs. This is because
Yakult is an electrolyte solution, so the conductivity of the sample will increase, which means the total
resistance or impedance will decrease. Furthermore, using the Nyquist plot given in Figure 9b, we can
study the phenomenon of ion transport and bulk electrolyte resistance, which is very important in
material characterization by using electrical impedance spectroscopy method.
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4. Conclusions

In this research, a low-cost, concise, and fast bioelectrical impedance spectrometer (BIS) system
has been successfully developed. This system works with current sources that can be selected through
software, with values of 1 μA, 10 μA, 100 μA, and 1 mA. Working frequency that can be achieved is
from 10 Hz to 1 MHz, and is optimal in the frequency range of 100 Hz to 100 kHz. This is related to
the working ability of GPD-AD8302 at low frequencies, and also the limitations of op-amps in high
frequency operations. The results of measurement of complex impedance dispersion of the measured
material are displayed in real-time in the form of Bode and Nyquist plots. The use of automatic
frequency scanning techniques, the AD8302 GPD device, and the calculation of complex impedance
values carried out automatically by software, is the key to this equipment being able to work quickly.
To measure the full cycle in a certain frequency range, including displaying the results in the Bode
and Nyquist plots, it only takes no more than one minute. The developed BIS system has been tested
to measure the complex impedance of an RC circuit, and is able to detect component values with a
maximum error of 1.5%. It has also been used to measure the impedance distribution of a solution in
different concentrations, and is able to distinguish its concentration very well.
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Abstract: The epileptogenic focus is a brain area that may be surgically removed to control of epileptic
seizures. Locating it is an essential and crucial step prior to the surgical treatment. However, given
the difficulty of determining the localization of this brain region responsible of the initial seizure
discharge, many works have proposed machine learning methods for the automatic classification of
focal and non-focal electroencephalographic (EEG) signals. These works use automatic classification
as an analysis tool for helping neurosurgeons to identify focal areas off-line, out of surgery, during
the processing of the huge amount of information collected during several days of patient monitoring.
In turn, this paper proposes an automatic classification procedure capable of assisting neurosurgeons
online, during the resective epilepsy surgery, to refine the localization of the epileptogenic area
to be resected, if they have doubts. This goal requires a real-time implementation with as low a
computational cost as possible. For that reason, this work proposes both a feature set and a classifier
model that minimizes the computational load while preserving the classification accuracy at 95.5%,
a level similar to previous works. In addition, the classification procedure has been implemented on
a FPGA device to determine its resource needs and throughput. Thus, it can be concluded that such a
device can embed the whole classification process, from accepting raw signals to the delivery of the
classification results in a cost-effective Xilinx Spartan-6 FPGA device. This real-time implementation
begins providing results after a 5 s latency, and later, can deliver floating-point classification results at
3.5 Hz rate, using overlapped time-windows.

Keywords: electroencephalogram; epileptic EEG signal classification; epilepsy; epileptogenic focus;
real-time implementation; FPGA

1. Introduction

Epilepsy is a common neurological disorder usually described by seizures which are recurrent in
nature. This disorder can be produced by different brain disorders, such as brain tumors, intracranial
hemorrhages and brain malformations [1], and depending on the affected area, a disorder may generate,
apart from epileptic seizures, malfunctions in motion and patient perception [2].

An epileptic seizure is a period of time where the patient experiences a set of symptoms with
different levels of severity: uncontrolled shaking movements of the body with loss of consciousness
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(generalized tonic-clonic seizure), shaking movements of a specific part of the body with different levels
of consciousness (focal seizure), or short moments of focal seizures with impairment of awareness
(absence seizure). Epileptic seizures can be originated by abnormal, synchronous, or even excessive
brain neural activity, causing a temporary disruption to the way that the brain normally works.
Anyway, what happens to someone during a seizure depends on the affected part of the brain and
how far the seizure activity disseminates in the brain.

Epilepsy can be classified primarily into two types: generalized and partial (or focal) epilepsy [3].
Generalized onset seizures affect, at the same time, both sides of the brain or groups of cells on both
sides of the brain. On the other hand, focal onset seizures (the term focal is used instead of partial to
be more accurate when talking about where seizures begin) usually start in one area or group of cells
on one side of the brain.

The activity of the brain is usually registered using either electroencephalography (EEG) or
functional magnetic resonance imaging (fMRI). Although fMRI has better spatial resolution, the use of
the multidimensional time series generated from electroencephalogram EEG is more popular, as it
allows high precision time measurements, is functionally fast and is relatively cheap.

The EEG epileptogenic source’s localization has been studied for decades [4,5]; however,
the methods were not implemented in clinical practices until recently. Nowadays, the EEG is considered
a noninvasive and useful test to assess whether a pharmacoresistant patient can benefit from the
resective epilepsy surgery [6]. As the resective surgery aims to remove surgically the brain sections
involved in the focal onset epilepsy, it is important to distinguish precisely between “focal signals,”
those recorded in brain areas where first ictal signals are detected, and “non-focal signals,” those
registered from brain areas not related to the seizure onset [7]. Many patients with epilepsy may
require EEG signals to be recorded from deep structures of the brain using intracranial electrodes.

Usually, the focus localization is essentially made using registers acquired monitoring the patient
24 h a day, during a stay of several days in an epilepsy monitoring unit (EMU). In these kind of units,
apart from scalp EEG (and intracranial electrodes to record signals from deep structures of the brain,
in many patients), the epilepsy patients are recorded on video, along with their speech and movements.
Thus, all data are collected targeting the evaluation of its seizure disorder, seeking to gather data before
a seizure starts, during one and during recovery. The evaluation of this information can be used to
locate candidate areas for the epileptogenic focus, although in some cases it is not enough to locate the
epileptogenic focus precisely prior to the surgery.

The visual analysis of the EEG recordings of seizures with intracranial electrodes can help in
locating the seizure. However, visual inspection is a hard and time consuming process that can be
affected by the clinician subjectivity. In addition, it is not easy to determine the seizure source by a
direct visual inspection of the EEG signal recordings.

To select candidate areas from EEG signals could be helpful a computerized analysis of the
EEG [8,9]. As with other pathologies [10–12], machine learning has been applied in epilepsy
at many works [13–15] to classify EEG signals as normal versus epileptic or seizure versus
inter-ictal. However, the most challenging classification problem is focal (F) versus non-focal (NF).
The classification of seizure from normal and seizure-free signals has achieved a 100% classification
accuracy. However, this goal has not been achieved to date for the classification of focal and
non-focal EEG signals. Neurosurgeons have difficulties determining the brain region responsible of
the initial seizure discharge, so this kind of classification may serve as a tool to help epileptologists
to resect the epileptogenic area. Compared with signals of the epileptogenic areas, the signals from
non-epileptogenic areas are more nonlinear, less random and more nonstationary.

Many machine learning systems have been developed to classify and detect the epileptogenic
source signals. Sharma et al. [13] used entropies derived from the coefficients of the wavelet transform
of the EEG signals to feed a least squares-support vector machine (LS-SVM) model to distinguish
focal and non-focal EEG signals. In [16], Sharma et al. also used the LS-SVM classifier to feed the
entropies derived from some subbands decomposed using tunable-Q wavelet transform (TQWT).
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In [17], Sharma et al. utilized empirical mode decomposition (EMD) and entropy for the classification
of focal and non-focal EEG signals. In this work, intrinsic mode functions (IMFs) from focal and
non-focal EEG signals were extracted using EMD, and then the entropies were fed the input of a
LS-SVM classifier. Das et al. [18] also used entropy-based features from the EMD, DWT (discrete
wavelet transform) and EMD-DWT domains, along with a k-nearest neighbor (k-NN) classifier model.
In turn, Zeng et al. [19] used features derived from euclidean measures obtained from the phase space
reconstruction (PSR) of several IMFs, obtained using EMD as well. Bhattacharyya et al. [20] proposed
the decomposition of the EEG signal into rhythms using the empirical wavelet transform (EWT),
and then used some area measures from them as input for a LS-SVM classifier model, to recognize
focal and non-focal EEG signals. Another work of Bhattacharyya et al. [15] also used multivariate
subband entropy measures from TQWT along with multivariate fuzzy entropy in combination with a
LS-SVM classifier model. Chatterjee et al. [21] also used SVM and k-NN classifiers fed by multifractal,
detrended fluctuation analysis (MFDFA) based feature sets. Singh et al. [22] used features derived
from DFT-based rhythms of the EEG to fed the LS-SVM classifier. Taran et al. [23] proposed the use
of spectral moment based features extracted from the modes of the clustering VMD (CVMD) and
extreme learning machine (ELM) classifiers. Deivasigamani et al. [24] utilized features extracted from
the dual tree complex wavelet transform (DT-CWT) to fed an adaptive neurons fuzzy interference
system (ANFIS).

However, these works tend to require a considerable computational load, especially the most
recent ones. As an example, San-Segundo et al. [25] proposed a deep neural network (DNN) made up of
two convolutional layers for feature extraction and three fully connected layers for classification. In this
work, authors increased the classification accuracy a little at the expense of increasing, considerably,
its computational needs. In turn, Daoud et al. [26] used both a deep convolutional autoencoder
and an unsupervised learning scheme merging a deep convolutional variational autoencoder and a
K-means algorithm.

This progressive increase of the computational demand could impede the jump of using the
epileptogenic source localization during surgery. This application needs a real-time implementation,
and could be used as a help-decision tool by neurosurgeons to refine the localization of an epileptogenic
area during resective epilepsy surgery. Note that the recent technology is mature enough to implement
machine learning processes in real-time [27,28].

Thus, the goals of this work were to assess the possibility of locating the epileptogenic focus in
real-time, and study the simplification of the classification process to reduce its computational needs
as much as possible while maintaining similar classification accuracy to previous works. We also
studied the resource usage and performance of the real-time application on a recent Xilinx FPGA
reconfigurable device.

The main contributions of this work are:

• The proposal of an automatic classification procedure optimized to classify in real-time the
location of the epileptogenic focus from EEG inter-ictal signals. It is conceived to be used in a
portable device as a decision-assisting tool by neurosurgeons during surgery.

• The proposed feature set and the classifier model have been selected to minimize both the number
of features and the computational cost, while preserving the classification accuracy at a level
similar to that in previous works.

• The classification procedure has been implemented using a reconfigurable logic FPGA device.
This hardware implementation computes the whole procedure, accepts the EEG raw input signal
and delivers the classification result. Two designs have been implemented, using single and
double floating point precision following the IEEE 754 standard for floating-point arithmetic.

• The analysis of the resource usage of this kind of implementation, its accuracy with respect a
Matlab implementation and how fast the device can deliver results (maximum frequency of
operation).
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The rest of the paper is organized as follows. Section 2 introduces the dataset, and the analyzed
features and classifier models. The details of the hardware implementation and the proposed
computational method are described in Section 3. Results of the analysis and discussion are presented
in Sections 4 and 5, respectively. Finally, Section 6 concludes the paper.

2. Methodology, Materials and Methods

This section presents an overview of the dataset utilized, and introduces the analyzed features
and classifier models.

2.1. Dataset

In this work, the publicly available Bern-Barcelona database [7] was used. This is an open source
EEG dataset that has been used for a large number of epilepsy studies [16–20]. This dataset collects
intracranial EEG recordings from five pharmacoresistant epilepsy patients, including two classes of
EEG signals: focals and non-focals. Focal signals (F) are those captured from an epileptogenic area
(acquired from those channels that detected ictal EEG signal changes first, as decided by at least two
neurologists via visual inspection) and non-focal signals (NF) are captured in channels out of this area.
Each class contains 3750 pairs of simultaneously acquired signals "x" and "y," all of them randomly
selected, and consisting of 20 s windows of simultaneous recording, sampled at 512 Hz. Each focal pair
consists of one of the focal EEG channels for the x signal, and one of this channel’s neighboring focal
channels for the y signal, both simultaneously acquired from the same patient. The non-focal pairs
were selected from nonfocal EEG channels in the same way [7,29]. All EEG signal were band-pass
filtered by an fourth order Butterworth (0.5 Hz–150 Hz). In addition, before being included into the
database, signal pairs were visually inspected to discard prominent measurement artifacts.

Note that all recordings of seizure activity, and three hours after the last seizure, were excluded.
Thus, this database contains neither ictal nor postictal stage activity.

2.2. Preprocessing

The 50 Hz of the EEG signals was filtered using a moving average of order 5. In addition, EEG
signals were filtered using a Butterworth low pass IIR filter with f = 80 Hz and order N = 6.

2.3. Feature Extraction

This is one of the most important steps in classification problems. Table 1 lists the 39 features
considered in this work for each segment of the signal dataset. All these have been used succesfully as
features in previous EEG seizure detection works [14,30–37].

The features considered are from different domains, such as time, frequency, information theory
and entropy. But note that all of them are univariate and imply low or medium computational load to
extract them.

Statistical parameters such as mean, variance, skewness and kurtossis have been used to extract
information on changes in the distribution and amplitude of the EEG data. Those parameters have
been considered on the first and second derivative too. Frequency parameters have been calculated by
means of the DFT transform, as spectral power or relative energy between different bands. In addition,
some nonlinear features have been calculated, such as fractal dimension, used to compare rhythms
in the self-similarity present in the signals; entropy of the signal; and spectral entropy, to depict
randomness of the EEG in the frequency domain.

However, note than other features having greater computational complexity were not considered,
even if these had been used successfully in other works. The reason is obvious; this work aimed to
select the set of features having the lowest computational load while providing similar classification
accuracy to other works in the bibliography. Thus, the more computationally complex features were
discarded from the beginning, such as the calculation of certain entropy measures from IMF signals
calculated using EMD, wavelet transform or other time-frequency domain features.
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Table 1. List of extracted features.

EEG Feature Description

Log energy entropy (LogEn) [30] Non-normalized energy based entropy
Median frequency (MDF) [31] Division of the EEG power spectrum into two regions
Mean frequency (MNF) [31] Mean normalized frequency of the power spectrum
Katz fractal dimension (KFD) [31] Index characterizing the fractal pattern complexity
Lower quartile 1 (Q1) [31] 25% of the EEG signal
Upper quartile 3 (Q3) [31] 75% of the EEG signal
Inter quartile range (IQR) [31] Difference between Q3 and Q1
Semi inter quartile deviation (SID) [31] Measure of spread
Skewness (Sk) [32] Measure of the degree of symmetry
Kurtosis (Kr) [32] Measure of tailedness of the probability distribution
Root mean square (RMS) [33] Root mean square of the EEG signal
Band power (PB) [33] Average power of the EEG signal (0 to fs/2)
Zero crossing (ZC) [33] Number of times that the signal changes of sign
Complexity (Comp) [33] Hjorth parameter
Mobility (Mob) [33] Hjorth parameter
Activity (Act) [33] Hjorth parameter
Spurious free dynamic range (SFDR) [34] Length along a EEG signal
Curve length (CL) [34] Length along a EEG signal
Teager energy (TE) [34] Non linear energy
Variance (Var) [34] Variance of the EEG signal
Standard deviation (Std) [34] Standard deviation of the signal
Mean (Mean) [34] Mean of the EEG signal
1st derivative variance (Var1) [34] Variance of the first derivative
1st derivative standard deviation (Std1) [34] Standard deviation of the first derivative
1st derivative mean (Mean1) [34] Mean of the first derivative
2nd derivative variance (Var2) [34] Variance of the second derivative
2nd derivative standard deviation (Std2) [34] Standard deviation of the second derivative
2nd derivative mean (Mean2) [34] Mean of the second derivative
Derivative variance ratio (RatioVar) [36] Ratio of derivative respect absolute of derivative variances
Power (P) [35] Power of the signal window
1st difference (1d) [35] Feature extraction and selection for emotion recognition from eeg
Normalized 1st difference (N1d) [35] Normalization of 1st difference
2nd difference (2d) [35] Feature extraction and selection for emotion recognition from eeg
Normalized 2nd difference (N2d) [35] Normalization of 2nd difference
Normalized Length Density (NLD) [35] Quantifies self-similarities
Higher order crossings (HOC) [38] Describes the oscillatory pattern of a signal
Band power (Pu) [35] Spectral power in certain spectral band
Recursive Efective Efficiency (REE) [35] Energy ratio of spectral bands
Relative Energy Ratio (rE) [37] Relative energy between bands

2.4. Feature Reduction

Feature reduction reduces the computational complexity of the classifier and also avoids the
possibility of redundancy. In this study, we obtained several discriminatory features for the two class
classification process (Section 4.1). The number of features was reduced using the RelieF feature
selection technique [39], as is explained in Subsection 4.1.

2.4.1. Log Energy Entropy

Entropy is a concept handling predictability and randomness, with higher values of entropy
always being related to a lesser system order and more randomness. The entropy of an EEG channel is
a measure of uncertainty, where the EEG signals are considered a random variable. The log energy
entropy of a x EEG signal is defined as [40]:

HLogEn(x) = −
N−1

∑
i=0

(log2(pi(x)))2, (1)
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p(x) being the probability density function. With this entropy calculated regarding the signal power
spectrum as a probability distribution, the log energy spectral entropy is obtained.

2.4.2. Skewness

It is a higher-order statistical attribute of a time series. Skewness is a measure of the asymmetry
of the probability distribution (pdf) of a real-valued random variable around its mean.

Skew[x] = E[(
x − μ

σ
)3] =

E[x3]− 3μσ2 − μ3

σ3 . (2)

2.4.3. Root Mean Square

Is the square root of the mean square, the arithmetic mean of the squares of a set of numbers, also
known as the quadratic mean:

RMS =

√√√√ 1
N

N

∑
i=1

x2
i . (3)

2.4.4. Derivative Variance Ratio

This is the quotient between the variance of the derivative of the signal and the variance of the
absolute value of said derivative. It is a derivative variance ratio (called RatioVar) [36]:

Ratiovar =
E[ dx2

dt ]− E[ dx
dt ]

2

E[ d|x|2
dt ]− E[ d|x|

dt ]2
. (4)

2.4.5. Relative Energy Ratio

It is used to observe the changes in EEG frequency bands due to the stressors. When stress occurs,
the energy of Alpha band, HF, will reduce. Meanwhile, energy of lower bands will increase [37]:

rE =
Total Energy In HF
Total Energy In LF

. (5)

2.5. Classifier Models

Several classifiers have been used in this analysis (Section 4.1), each one having its own specific
strengths and weaknesses. All them are briefly outlined below.

2.5.1. Support Vector Machine (SVM)

It is a supervised classification technique that constructs a separating hyperplane maximizing the
margin between the input data classes that are viewed in an n-dimensional space (n is the number
of features used as inputs). Essentially, this involves orienting the separating hyperplane to be
perpendicular to the shortest line separating the convex hulls of the training data for each class,
and locating it midway along this line.

In addition to performing linear classification, SVMs can efficiently perform a non-linear
classification using what is called the kernel trick, implicitly mapping their inputs into
high-dimensional feature spaces.
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2.5.2. K-Nearest Neighbor (KNN)

KNN is a supervised learning technique where a new instance is classified based on the closest
training samples present in the feature space. It does not use any model to fit, and is only based on
memory. When a test data is entered, it is assigned to the class that is most common amongst its k
nearest neighbors.

2.5.3. Decision Tree

It is a method that creates a model that enables one to predict the target value of an item
(represented in leaves) based on several input variables (represented as branches). In the case of using
a classification tree analysis, the predicted outcome is the class (discrete) to which the data belongs.

2.5.4. Logistic Regression

It is a classification algorithm used to assign observations to a discrete set of classes. Unlike
linear regression, which outputs continuous values, the logistic regression transform its output using
the logistic sigmoid function, to return a probability value that can be mapped to two or more
discrete classes.

2.5.5. Discriminant Analysis

Linear and quadratic discriminant analysis were used. Linear discriminant analysis (LDA)
is a generalization of the Fisher’s linear discriminant that finds a linear combination of features
characterizing or separating two or more classes. In turn, quadratic discriminant analysis separates
input features into two or more classes of objects by a quadratic surface, becoming a general version of
the linear version.

2.5.6. Ensembles

Ensemble classification improves results by combining several models. It can be used with any
learning method. Thus, this approach allows for better predictive performance compared to single
models. The number of classifier components has a great impact on the classification accuracy. In this
work, trees, discriminant and k-NN classifier components were used.

2.5.7. Neural Network Classifier (NN)

A neural network consists of a series of units (neurons) arranged in layers. This arrangement
converts an input vector into some output. To do so, each neuron takes its inputs and calculates the
output by applying a usually nonlinear function (the activation function), to later pass the output to
the next layer. Generally, neural networks are defined as feed-forward: a unit feeds its output to all the
units on the next layer, but there is no feedback to the previous layer. Signals are weighted when fed
the input of a unit neuron. The weights are tuned in the training phase of the classifier.

Neural networks are considered to be good classifiers due to their inherent features, such as
adaptive learning, robustness, self-organization and generalization capability.

2.6. Performance Analysis

In order to evaluate the performance of the proposed method, the performance of the classifiers
are expressed in terms of classification accuracy (Acc), defined as follows [41]:

Accuracy(%) =
TP + TN

TP + FN + TN + FP
× 100 (6)

where TP, TN, FP and FN denote true positives, true negatives, false positives and false negatives,
respectively.
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3. Hardware Implementation and Computational Method

This section discusses the implementation details. We will leave for Section 4 the reasons for
and how this computational procedure was chosen. At this point, all that matters to know that the
classifier model used was a perceptron with 25 neurons in the single hidden layer, 5 neurons in the
input layer and 2 neurons in the output layer (Algorithm 2). The 5 extracted features (Table 2) were
computed following Algorithm 1. Details about feature selection and classifier model selection are left
for Section 4.

The proposed hardware implementation was conceived as an intellectual property (IP) core using
Xilinx Vivado HLS and the Xilinx Vivado Design Suite 2016.2 [42]. It provides a signal interface
definition that enables it as a standalone module, being able to also be used as a peripheral of a
more complex system on chip (SoC), embedded microprocessor, etc. Further, this approach offers the
capability of customization for specific needs in many different hardware applications.

3.1. Working Modes

The IP core perform two different working modes:

- Initialization mode. The initialization of the IP core consists of the load of the matrices
xnmax, xnmin, Wh, bh, Wo, bo, xdmax, xdmin, ymin, and ymax, using the external signal interface.
These matrices are essentially weights and bias of the neural network, along with normalization
and denormalization values and vectors. All together, these matrices allow the IP core to perform
a proper classification. Note that the calculation of these matrices is achieved out of this IP core,
and the results are transferred to it during this initialization process. Once the initialization is
complete, the core can change to another working mode, never before.

- Run mode or on-line mode. In this mode, the input data x is fed into the IP core. Then, several
features are extracted, and in turn, fed into the neural network system. The output is computed
according to the initialized network topology. The IP core, when running in this mode, computes
and serves the corresponding output before accepting a new input.

3.2. IP Core Signal Interface

In Xilinx FPGAs, external core signal interfaces are used to follow proprietary protocol
specifications, such as AXI4 [43,44], AXI4-Lite or AXI4-Stream [44,45]. In this work the AXI4 protocol
was selected to permit specifying arrays as arguments. However, note that the protocol interface has
almost no influence on performance when the core is running in the on-line mode. The reason is that
the reported performance refers to the complete epileptic focus classification task, while the load of
one input vector by iteration implies a negligible overhead. Therefore, for replication purposes, it can
be expected to achieve similar results, for the running mode, regardless of the protocol specification
implemented for the core signal interface (e.g., AXI4-Lite, AXI4 or AXI4-Stream).

Figure 1 outlines the external signal interface of the IP core, where signal lines are represented by
thin black arrows and buses, and bunches of signals are represented by white thick arrows.

Signal START indicates when the core can start processing data, the READY signal indicates when
the core is ready to accept new inputs, the IDLE signal indicates when the core is idle and the DONE
signal indicates when the core operation has been completed. Altogether, these signals constitute the
block-level interface, controlling the core independently of the port-level I/O protocol.

On the other hand, the input and output data ports implement a handshake data flow protocol.
Lines A_TVALID, A_TREADY and the bus A_TDATA integrate the input data port, while B_TVALID,
B_TREADY and the bus B_TDATA integrate the output data port. The TDATA bus is the payload,
while TVALID and TREADY lines signal when the information pass across the interface. These
signals integrate a two-way flow control mechanism that enable master and slave to control the data
transmission rate rate across the interface.
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Finally, the MODE signal is used as application-signaling. It requests the entering on initialization
mode or on-line mode.

CLK

nRESET

A_TDATA

START

A_TVALID

B_TREADY

RT-EPI    

IP Core

DONE

IDLE

READY

B_TDATA

B_TVALID

A_TREADY

MODE

Figure 1. Interface signals used by the RT-EPI IP core. White arrows represents buses.

3.3. System Parameterization

The definition of the SLFN neural network topology was conceived parametrically to achieve a
flexible design with minimal code modifications. The main parameters are:

− L: Is the length, in samples, of the input signal window.
− IN: Is the number of neurons in the input layer.
− Ñ: Is the number of neurons in the hidden layer.
− ON: Is the number of neurons in the output layer.
− FT: Boolean determining the type of IEEE 754 floating-point arithmetic precision: single or double.

3.4. Computation of the RT-EPI Algorithm

The proposed IP hardware core implements a real-time epileptogenic focus classification of a
different EEG input window signal each iteration.

3.4.1. Algorithm Description

Algorithm 1 shows the steps in which perform the feature computation. This computational
procedure follows the expressions described in Table 2 to extract features from the input signal,
and then, to compose the input data pattern to be used as input to the neural network.

Algorithm 2 shows the computational procedure implementing the classification. Note that
it is mandatory to the previous IP core so that the implementation may be fully functional and
begin accepting any input data. The initialized structures are the normalization and denormalization
parameters (xnmax, xnmin, xdmax, xdmin, ymin, ymax), plus the weights and biases of the hidden and output
layers (Wh, bh, Wo, bo). Further, the first step of the algorithm is the normalization of the data input
pattern. Then, the outputs of the hidden and output layers are calculated. Although the hyperbolic
tangent sigmoid function has been used as an activation function, the proposed algorithm allows
the use of a wide range of activation functions (including piece-wise linear activation functions).
The results of the output layer are then denormalized to obtain the final output.

The pseudocode in Algorithms 1 and 2 show all the matrices and vectors involved in each step of
the computation, with their respective dimensions.

The computational procedure was implemented using a sequential architecture. This architecture
minimizes both the usage of memory and arithmetic slices. And, although the throughput results can
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be improved using a parallel architecture, the use of a sequential architecture enabled us to establish a
standard machine to be used as a reference in subsequent works.

Algorithm 1 Feature extraction pseudocode.

Input: x
(1×L) → Input signal.

Output: x′
(1×5) → Output features vector.

1: x̄
(1×1)

= 1
L

L

∑
i=1

xi.

2: x
(1×L)

= x − x̄.

3: x
(1×L)

= 50Hz_removal(x).

4: x
(1×L)

= low_pass_ f iltering(x) (∗).

5: x̄
(1×1)

= 1
L

L

∑
i=1

xi.

6: x
(1×L)

= x − x̄.

7: RMS
(1×1)

=

√
1
L

L

∑
i=1

xi
2.

8: skew
(1×1)

=

1
L

L

∑
i=1

(xi − x̄)3

1
L

L

∑
i=1

(xi − x̄)2)

3
2

.

9: d
(1×L−1)

| di−1 = xi − xi−1 f or i = {2, ..., L}.

10: a
(1×L−1)

| ai = |di| f or i = {1, ..., L − 1}.

11: RatioVar
(1×1)

=
σd

σa
.

12: tmp
(1×L)

= |FFT(x)|.
13: p

(1×1+L/2)
| pi = k · tmpi, k = 2 f or i = {2, ..., L/2} and k = 1 f or i = {1, 1 + L/2}.

14: rE
(1×1)

=

321

∑
i=49

pi

48

∑
j=5

pj

(
pi ⊂ [12Hz, 80Hz], pj ⊂ [1Hz, 12Hz]

)
.

15: LogEn
(1×1)

= ∑
i

log2(p2
i ).

16: x′
(1×5) =

[
rE LogEn σ RatioVAr

]
.

(*) Filter coefficients: B[0] = 0.0001; B[1] = 0.0006; B[2] = 0.0014; B[3] = 0.0019; B[4] = 0.0014; B[5] = 0.0006; B[6] = 0.0001; A[0] =
1.0000; A[1] = -4.1069; A[2] = 7.2450; A[3] = -6.9795; A[4] = 3.8569; A[5] = -1.1558; A[6] = 0.1464.
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Algorithm 2 Classification of an input pattern. pseudocode

Input: x′
(1×IN)

→ Input data pattern.

xnmax
(1×IN)

, xnmin
(1×IN)

→ Input normalization vectors.

ymin
(1×1)

, ymax
(1×1)

→ Range normalizing input.

Wh
(IN×Ñ)

→ Hidden layer weights matrix.

bh
(1×Ñ)

→ Hidden layer bias.

Wo
(Ñ×ON)

→ Output weights matrix.

bo
(1×ON)

→ Output layer bias.

xdmax
(1×ON)

, xdmin
(1×ON)

→ Output denormalization vectors.

Output: y
(1×ON)

.

1: xnorm
(1×IN)

=
(ymax − ymin) · (x′ − xnmin)

xnmax)− xnmin
+ ymin.

2: tmp1
(1×Ñ)

= Tansig( xnorm · Wh + bh ).

3: tmp2
(1×ON)

= Tansig( tmp1 · Wo + bo ).

4: y
(1×ON)

=
(tmp1 − ymin) · (xdmax − xdmin)

ymax − ynmin
+ xdmin.

(Ñ: number of hidden neurons, IN: number of input neurons, ON: number of output neurons.)

3.4.2. Design Considerations

The proposed design allows the definition of IEEE 754 floating point units using single or double
data type precision. This selection together with the parametric definition of the SLFN neural network
permits one to test the design in different conditions with few code modifications.

The activation function implemented in this design was the hyperbolic tangent sigmoid.
On the other hand, the proposed design uses pipelining. The main reasons for that is that

pipelining alleviates the great latency involving the use of floating point operations, and the suitability
of the algorithm for its use, since most of the steps of Algorithms 1 and 2 can be implemented with for
loops or nested for loops.

The pipelining technique helps to optimize the initiation interval, defined as the number of
clock cycles that must occur before a new input can be applied. Thus, the initiation interval becomes
the parameter to optimize, and the effort must focus on approximating it to one as much closely as
possible. To carry this out, we used the PIPELINE optimization pragma directive in each step of
the computational procedure implemented using for loops. This generates a pipeline design with
an initiation interval as low as possible, which dramatically reduces the total latency of the loop
implementation.

In addition, the clock period target was set to 4 ns. This forces the compiler to obtain the fastest
hardware implementation.

Take into account that both the above design considerations and the computational procedure
described in Algorithms 1 and 2 must be followed to replicate the implementation results in this work.

4. Results

The analysis described in this work was carried out using the Bern-Barcelona dataset (Section 2.1).
The first 50 focal and non-focal register pairs of the dataset were used. As all considered features are
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univariate, and 40 s of EEG signals are available in each register pair (20 s × 2), a total of 4000 s of EEG
signals were considered in this study.

In order to better compare our results with the results provided by previous works, we used
five-fold cross validation in our experimental procedure. In this approach, the EEG signals are divided
randomly into five equal portions. Four out five portions were considered for training and the rest,
half for validation and half for testing.

All the feature extraction algorithms and classification models were implemented using Matlab
R2018a and the "Statistics and Machine Learning Toolbox."

The first goal was to find the classification procedure with the lowest computing cost, because
of the real-time implementation aim. Thus, we had to be find (1) a set of features with the minimum
number of features and minimum computing cost, using (2) the simplest classifier model, and (3) the
optimum segment length. A minimum classification accuracy of 95% was required, a value above the
average of related works in the bibliography.

To do so, all considered features, Table 1, were ranked by discrimination capacity and by
computational cost. Then, different classification procedures were checked in a loop. At each iteration
of the loop, a combination of features were selected (taking into account the ranks); then, fed to 24
classification models, Table 3; and finally the classification accuracies for different segment lengths
were calculated. The loop finished when the smallest set of features reached 95% of classification
accuracy on at least one of the classification models.

Once the classification procedure was defined, it was coded in C using Xilinx Vivado HLS and the
Xilinx Vivado Design Suite 2016.2 [42]. These tools were also used to carry out synthesis, simulations
and cosimulations. The Xilinx Virtex-7 XC7VX1140T FPGA device was selected for synthesis and
implementation, because it is a biggest Virtex-7 device that permits implement the application without
resource restrictions.

The coded design is parameterizable, and follows a pipelined and sequential architecture that
computes (Algorithms 1 and 2) all the classification procedure from accepting the raw signal to the
delivery of the classifier output.

The reported analyses were conducted using two different arithmetic precisions: a 32-bit
floating-point algorithm ("single" design), and 64-bit floating-point algorithm ("double" design). Both
implementation designs used the IEEE 754 standard.

4.1. Set of Features and Classification Model

The RelieF algorithm was used as feature extraction algorithm. RelieF returns a rank of features
and its weights to represent the discrimination capacity of these features. These ranks and weights
were used to select the relevant set of features, along with the computational cost criteria, optimizing
the real-time implementation of the application. The number of selected features was defined as the
minimum set of features that allowed us to obtain a minimum threshold of 95% classification accuracy
on at least one of the classification models (Table 3).

To determine the best classification model, 24 classification models were tested. Table 3 lists all
these models along with their prediction speed and memory usage characteristics. Note that only
those classification models with low or medium speed and memory usage were chosen, due to the
importance of minimizing these parameters in the real-time implementation.

All classification models were trained with several sets of features, seeking to determine the
feature set and classification model at the same time. However, the evaluation of the classification
models depends on a third parameter: the window length. Figure 2 shows the accuracy results
for the selected sets of features (Table 2), for all the classification models and the variations of the
window length from 1 to 10 s. Note that this figure only shows the best score for the neural network
classification model. Figure 3 details the classification accuracy obtained using different numbers of
neurons for the hidden layer.
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Thus, five features were finally selected, those in Table 2, to be used with a neural network as the
classification model. As it can be seen, the computational cost of the five selected features is low (case
of features derived from the temporal domain) or medium (in the case of frequency domain features,
where it is necessary to compute the Fourier transform).

This minimum set of features achieves a classification accuracy of 95% using a Neural Network
and five seconds of segment length. In addition, the optimum number of neurons in the hidden layer
of the neural network is 25, as it can be shown in the analysis of Figure 3.

Thus, from that point we will assume that the implementation is done by a neural network of
type perceptron with just one hidden layer of 25 hidden neurons and two output neurons in the output
layer (provided the two classes of this classification problem). In addition, the neural network will
have five input neurons, because five is the dimensionality of the selected number of features, which,
in turn, would be computed from window lengths of 5fiveseconds of the input signal.

Table 2. Set of selected features.

Features

Root Mean Square RMSx =
√

1
N ∑N

i=1 x2
i

Skewness s = E(x − μ)3

(E(x − μ)2)
3
2

Derivative Variance Ratio RatioVar = σΔ
σ|Δ| with Δ(i)=x(i)−x(i−1)

Relative Energy Ratio rE = ∑12−80Hz P(x)
∑1−12Hz P(x) with P(x) the Spectral Power

Log Energy Spectral Entropy LogEn = ∑ log2(P(x)2)

Table 3. Acronyms, prediction speed and memory usage characteristics of all the classification models
used in this work.

Acronym Classifier Prediction Speed Memory Usage

[TreeCoarse] Decision Tree (Coarse Tree) Fast Small
[TreeMedium] Decision Tree (Medium Tree) Fast Small
[TreeFine] Decision Tree (Fine Tree) Fast Small

[DiscrLin] Discriminat Analysis (Linear Discriminant) Fast Small
[DiscrQuad] Discriminat Analysis (Quadratic Discriminant) Fast Large

[RegrLog] Logistic Regresion Fast Medium

[SVMLin] Support Vector Machine (Linear SVM) Fast1 Medium
[SVMQuad] Support Vector Machine (Quadratic SVM) Fast2 Medium3

[SVMCubic] Support Vector Machine (Cubic SVM) Fast2 Medium3

[SVMFineGaus] Support Vector Machine (Fine Gaussian SVM) Fast2 Medium3

[SVMMedGaus] Support Vector Machine (Medium Gaussian SVM) Fast2 Medium3

[SVMCoarseGaus] Support Vector Machine (Coarse Gaussian SVM) Fast2 Medium3

[KNNFine] Nearest Neighbor (Fine KNN) Medium Medium
[KNNMedium] Nearest Neighbor (Medium KNN) Medium Medium
[KNNCoarse] Nearest Neighbor (Coarse KNN) Medium Medium
[KNNCosine] Nearest Neighbor (Cosine KNN) Medium Medium
[KNNCubic] Nearest Neighbor (Cubic KNN) Slow Medium
[KNNWeighted] Nearest Neighbor (Weighted KNN) Medium Medium

[BoostTrees] Ensemble (Boosted Trees) Fast Low
[BaggTrees] Ensemble (Bagged Trees) Medium High
[SubspaceDiscr] Ensemble (Subspace Discriminant) Medium Low
[SubspaceKNN] Ensemble (Subspace KNN) Medium Medium
[RUSBoostTrees] Ensemble (RUSBoost Trees) Fast Low

[NeuralNetwork] Neural Network (3-Layer Perceptron) Fast6 Low6

Fast for binary classification, medium for multiclass classification. Fast for binary classification, slow for
multiclass classification. Medium for binary classification, high for multiclass classification. Slow for
high-dimensional data. Medium for high-dimensional data. When a moderate number of neurons are used.
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Figure 3. Classification accuracy of the neural network as a function of the number of hidden neurons
in the hidden layer.

4.2. Hardware Resources Analysis

Table 4 gathers all the resource analysis results. It also shows resource usage as a percentage of
occupation of the Xilinx XC7VX1140T FPGA, intending to provide an idea of the design occupancy in
current FPGAs.

It can be seen that the design demands near the same DSP48E slices for both designs, 133 for
single precision and 137 for double precision. Obviously, this slight variation has been achieved thanks
to the pipelined design.

Table 4. Resource usage, performance and precision of the FPGA implementation as a function of the
data type (“float” is for 32-bit floating-point arithmetic precision, and "double" for 64 bit floating-point
arithmetic precision). Resource usage is indicated by the number of required slices and the percentage
of occupation of a Xilinx XC7VX1140T FPGA.

Data Type

Resources Double Float

DSP48E 137 133

BRAM 185 95

FF 45,240 39,921

LUT 52,571 46,302

DSP48E 4.0% 4.1%

BRAM 4.9% 2.5%

FF 3.2% 2.8%

LUT 7.4% 6.5%

Clock Period (ns) 5.35 ± 0.5 5.21 ± 0.5

Max. Clock Frequency (MHz) 186.9 191.9

Clock cycles 73,999,901 53,996,354

Max. Classification Frequency (Hz) 2.53 3.55

Accuracy (MAE) 3.9428 ×10−15 1.0005 ×10−6
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The required number of flip-flops (FF) and look up tables (LUT) were not high, presenting only
small variations between designs.

On the other hand, as is natural, the amount of block RAM doubled for double arithmetic precision
with respect to single arithmetic precision. That is due to the use of 64-bit representation of double
precision and 32-bit of single precision. Then, block RAM requirement halves according the amount of
memory needed for its representation.

4.3. Hardware Performance and Accuracy

Mean absolute error (MAE) was used to measure the accuracy of the results of each design with
respect to the Matlab implementation. MAE measures the average magnitude of the errors without
considering the direction of its deviation, taking into account the absolute differences between them.

The accuracy shown in Table 4 is the maximum of the accuracy obtained for the results of each
output neuron. As it can be seen, the accuracy for the single design is very low, but the accuracy
for the double design is so low that, in practice, it indicates that results in this case are similar to the
results obtained in its Matlab implementation. It is natural, because both implementations use double
precision data types.

In turn, the number of clock cycles shows a strong dependency of the data type (Table 4), and the
numbers of minimum allowable cycles reported for both designs were similar.

The maximum frequency of operation is obtained from the minimum clock period and the
required number of clock cycles. It is represented in Table 4 for both data type designs. As it can be
seen, the computation of all the classification procedure, from accepting raw signals to the delivery of
the classification output can be done at a rhythm of 2.53 Hz for the "double" design and 3.55 Hz for the
"single" designs (3.55 classification outputs by second).

5. Discussion

The analysis described in this paper was carried out using the Bern-Barcelona dataset. Thus,
all related works in the bibliography, selected for the sake of comparison, use the same database.
That provides a more comparable framework, given that the use of works using other datasets may
expose significant differences when performing the same classification method. As an example,
San-Segundo et al. [25] shows that the focal-nonfocal (F-NF) classification accuracy may differ more
than 20% when the same methods applies to the Bern-Barcelona dataset [7] and the Epileptic Seizure
Recognition dataset [46]. In this example, the nature of the signals in the dataset, mainly the difference
between signal lengths (only 1s for the latter), makes the difference. Thus, note that the Bern-Barcelona
dataset is the logical selection when facing just the F-NF problem, provided its longer signal length
(20 s) and its specialization in inter-ictal signals (recordings of seizure activity and three hours after the
last seizure activity are excluded).

Table 5 compares our results with previous works for the task of classifying the focal and
non-focal signals using the Bern-Barcelona EEG dataset. It details the obtained classification accuracy,
summarizes the extracted features, and indicates the type of classifier used in each work.

Note that the purpose of this work was not to beat the accuracy results of previous works in the
bibliography; our goal was to obtain, at the same time, the best classification procedure having the
lowest possible computational load (for feature extraction and classification), aiming at its real-time
implementation. Despite this, we obtained pretty good accuracy results. The 95.5% classification
accuracy obtained in this work surpasses many other related works [13,15–18,20–22,47], while some
other works [19,23,24,48] surpasses this result by a maximum of 1.5% classification accuracy ( [19]
achieved 97% classification accuracy). Thus, when not considering [25], the comparison with the other
related works can be considered pretty good in light of the great simplification achieved for the feature
extraction process. In turn, San-Segundo et al. [25] obtained to 98.6% classification accuracy (3.1%
more than this work), but at the expense of using a computationally intensive tool, a deep neural
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network, which is far away from the simplicity sought in this work; that is the reason to exclude this
work from comparison from this point forward.

Table 5. Comparison of focal and non-focal classification results with previous works.

Authors Classifier Type Extracted Feature Accuracy

Sharma et al. (2015) [17] LS-SVM EMD with IMFs 87.0%
Das et al. (2016) [18] k-NN EMD-DWT, log-energy entropy 89.4%
Chatterjee et al. (2017) [21] SVM, k-NN MFDFA 92.2%
Singh et al. (2017) [22] LS-SVM DFT based filter bank 89.7%
Sharma et al. (2017) [16] LS-SVM TQWT1 95.0%
Sharma et al. (2017) [13] LS-SVM Wavelet based entropies 94.3%
Bhattacharyya et al. (2017) [15] LS-SVM Fuzzy entropy of TQWT 84.7%
Bhattacharyya et al. (2018) [20] LS-SVM Rhythm separation from EWT 90.0%
Taran et al. (2018) [23] ELM Clustering VMD 96.0%
Deivasigamani et al. (2018) [24] ANFIS Extracted from CWT 96.0%
Zeng et al. (2019) [19] RBF-NN EMD and PSR 97.0%
San-Segundo et al. (2019) [25] DNN Fourier transform 95.5%
San-Segundo et al. (2019) [25] DNN Wavelet transform 97.4%
San-Segundo et al. (2019) [25] DNN Raw data 98.6%
San-Segundo et al. (2019) [25] DNN 6 IMFs from EMD 98.9%
Rahman et al. (2019) [47] Stacked SVM VMD, DWT , and others2 95.2%
Sharma et al. (2019) [48] SVM LSDA from bispectrum 96.2%
This work Neural Network 5 low computational complexity 95.5%

features extracted in real-time
1 With different kernel function. 2 Other features: refined composite multiscale dispersion entropy (RCMDE),
refined composite multiscale fuzzy entropy (RCMFE) and autoregresive model coefficients (AR).

As it can be seen in Table 5, extracted features were used to proceed from computationally
intensive processes, such as the decomposition of EEG signals using empirical mode decomposition
(EMD) to extract intrinsic mode functions (IMFs). Thus, Sharma et al. [17] obtained 87.0% classification
accuracy using five entropy features extracted from IMFs; Das et al. [18] also used entropy-based
features from the EMD, DWT (discrete wavelet transform) and EMD-DWT domains, achieving 89.4%
classification accuracy; and Zeng et al. [19] arrived to a 97% classification accuracy using features
derived from Euclidean measures obtained from the phase space reconstructions (PSRs) of several
IMFs obtained using EMD.

The wavelet transform has been also a computationally intensive process used in related works
as the basis of the feature extraction process. Thus, Sharma et al. [16] obtained several entropy
features from the tunable-Q wavelet transform (TQWT), reporting a 95.0% classification accuracy;
Bhattacharyya et al. [20] obtained 90.0% classification accuracy using as features, projections of the
reconstructed phase space (RPS) from the rhythm separation achieved using the empirical wavelet
transform (EWT); Sharma et al. [13] obtained 94.25% classification accuracy from various wavelet
based entropies; Bhattacharyya et al. [15] obtained 84.67% classification accuracy using TQWT based
multivariate sub-band fuzzy entropy with LS-SVM classifiers; and Deivasigamani et al. [24] obtained
96.0% classification accuracy based on a set of features extracted from the dual tree complex wavelet
transform (DT-CWT) and using an adaptive neuron fuzzy interference system (ANFIS).

Other works use variational mode decomposition as the basis of feature extraction, such as
Rahman et al. [47], who obtained a 95.2% classification accuracy using features such as refined
composite multi scale dispersion entropy (RCMSDE), refined composite multiscale fuzzy entropy
(RCMSFE) and autoregressive model (AR) coefficients extracted from variational mode decomposition
(VMD), DWT and VMD-DWT domains; or Taran et al. [23], who obtained 96.0% classification accuracy
using spectral moment based features extracted from the modes of the clustering VMD (CVMD) and
extreme learning machine classifiers.
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Note that the computational cost of the feature extraction process in previous works is greater
than the computational cost of the feature set proposed in our work. The only work in the bibliography
having a computational cost comparable to that of our work is Singh et al. [22], that obtained a 89.7%
of classification accuracy deriving features from DFT-based rhythms of the EEG. In the same way,
we have to compute the DFT too. Nevertheless, we obtain a better classification accuracy (5.8% more).

Thus, despite its simplicity, a classification procedure that performs better than most of related
works, or, in the worst case, got surpassed by a maximum of 1.5% of classification accuracy (not
considering [25]) was achieved.

However, this work does not propose just an optimum feature set, but an optimum classification
procedure, as a whole. Thus, the proposed feature set, Table 2, can be combined optimally with
a neural network classifier model when five seconds of segment length are used (Section 4.1).
Our analysis indicates that this, altogether, guarantees the best accuracy performance with a minimum
computational cost. The proposed neural network is of perceptron type, with just one hidden layer of
25 hidden neurons, five input neurons (the dimensionality of the proposed feature set) and two output
neurons in the output layer.

On the other hand, the FPGA real-time implementation of the classification procedure, following
Algorithms 1 and 2, has been done using a sequential architecture. The benefits of using this architecture
are the minimization of the memory usage and the number of arithmetic hardware blocks. Anyway,
to improve the throughput results this computation can be easily parallelized.

The proposed hardware design allows the definition of floating point arithmetic units of single or
double data type precision (following the IEEE 754 standard for floating-point arithmetic). As it was
expected, both designs offer a great MAE accuracy. “Double” design achieves an accuracy similar to
the Matlab environment implementation: 3.94×10−15, while the “float” design offers a great accuracy:
1.00 ×10−6. MAE accuracy was measured using the Matlab implementation as a reference.

The analysis demonstrates that the proposed hardware implementation does not uses many
resources. Both designs need no more than 137 DSP slices, while BRAM usage is 95 MB for the “single”
design (doubling to 185 MB the requirements for the “double” design, provided that, obviously,
the 64-bit double precision data types doubles the memory needs of the single 32-bit data type).

Note that the computational needs of the implementation in a Virtex 7 Xilinx FPGA device requires
a reduced portion of its total resources; see Table 4. In fact, this application can be executed even on a
small and cost-effective Xilinx XC6SLX100 Spartan-6 FPGA, assuring a low-cost of implementation.

Regarding the performance, it has been shown that the proposed implementation can perform all
computation tasks at a maximum of 3.55 Hz when using the single data types, or 2.53 Hz when using
double data types. That means that the single design can deliver outputs at a rhythm of 3.55 times
by second.

However, note that this 3.55 Hz of classification frequency (2.53 Hz for double design) is only
effective after the first 5 s of acquisition time due to the 5 s segmentation. This implies a minimum
latency time to achieve the first result from the beginning of an acquisition without artifacts of the
EEG signal. From this 5 s latency, the proposed implementation is capable of handling overlapped
time windows, delivering results at the maximum classification frequency. Thus, for the single design,
a result will be provided each 1/3.55 = 0.28 seconds after the first 5 s window length.

Thus, we have shown that an adequate selection of the set of features, classifier model and length
of the window segment, allows one to obtain good classification accuracy results (above the average
of previous related works) while maintaining a low computational load for the whole classification
procedure. It enables us to move the classification procedure to the real-time field, embedded in a
logic-reconfigurable FPGA.

The proposed implementation can be carried out on a small portable device embedding a fast
classification engine of epileptogenic focus. This device can serve as a help decision tool to assist
neurosurgeons to refine the localization of the epileptogenic area during the resective epilepsy surgery
in those cases where greater precision or confirmation were needed.
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6. Conclusions

The locating of the epileptogenic focus using interictal EEG signals is generally a computerized
analysis carried out off-line by neurosurgeons and epileptologists to determine the brain regions
responsible for the initial seizure discharge. However, previous works tend to propose more
computationally costly procedures the more recent they are.

This work shows that an adequate selection of the set of features, classifier model and length of
the window segment, allows one to obtain good classification accuracy results (above the average)
while maintaining a low computational load. It enables the real-time implementation of the whole
classification procedure, on an FPGA reconfigurable device, from accepting the raw EEG signals to the
delivery of the classification outputs at a rhythm of up to 3.55 Hz. It opens the door to the use of the
automatic classification as a decision-assisting tool during surgery, enabling neurosurgeons to refine
the localization of the epileptogenic area during the resective epilepsy surgery.

Concluding, it has been shown that the proposed hardware implementation of the epileptogenic
foci locator can be embedded on a small portable device, embedding, thus, a fast classification engine
of epileptogenic signals in epilepsy.
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IMF Intrinsic mode function
DWT Discrete wavelet transform
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DFT Discrete Fourier transform
TQWT Tuneable-Q wavelet transform
EWT Empirical wavelet transform
ELM Extreme learning machine
VMD Variational mode decomposition
ANFIS Adaptive neuro fuzzy interference system
RBF-NN Radial basis function neural network
PSR Phase state reconstruction
DNN Deep neural network
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Abstract: The aim of this study was to develop an optimized physical activity classifier for real-time
wearable systems with the focus on reducing the requirements on device power consumption and
memory buffer. Classification parameters evaluated in this study were the sampling frequency of the
acceleration signal, window length of the classification fragment, and the number of classification
features, found with different feature selection methods. For parameter evaluation, a decision tree
classifier was created based on the acceleration signals recorded during tests, where 25 healthy test
subjects performed various physical activities. Overall average F1-score achieved in this study was
about 0.90. Similar F1-scores were achieved with the evaluated window lengths of 5 s (0.92 ± 0.02)
and 3 s (0.91 ± 0.02), while classification performance with 1 s were lower (0.87 ± 0.02). Tested
sampling frequencies of 50 Hz, 25 Hz, and 13 Hz had similar results with most classified activity types,
with an exception of outdoor cycling, where differences were significant. Using forward sequential
feature selection enabled the decreasing of the number of features from initial 110 features to about
12 features without lowering the classification performance. The results of this study have been used
for developing more efficient real-time physical activity classifiers.

Keywords: accelerometer; activity classification; activity trackers; machine learning; wearable systems

1. Introduction

It is important to propagate active lifestyle, since routine physical activity has been found to have
multiple benefits, such as preventing chronic diseases and increasing psychological well-being [1,2],
while prolonged inactivity has been shown to lead to an increase of chronic diseases and obesity [1,3].
Advancement of technology has brought a surge of popularity for many activity trackers in the form
of mobile phone apps or wearable systems. With these devices, users are able to keep track of their
training schedule, exercises and lost calories [4]. Since this makes training more interactive and allows
users to have better overview of their progress, then it often motivates the users to have a more active
lifestyle and lose weight over sustained periods [5–7].

Wearable systems are used to conveniently measure, collect and analyze the user’s psychological
data. This requires wearables to be small and unobtrusive, which in turn puts significant demand on
reducing power consumption of the system [8]. This is also significant for real-time physical activity
classification, which can be used in wearables for online activity recognition by allowing automatic
recognition of the activities the user is performing [9,10]. Real-time activity recognition provides
valuable information for improving online feedback of the activity trackers or for providing extra
safety by monitoring the status of the users working in high-risk environments [11].
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Power consumption required for physical activity classification is determined by multiple different
components. Some of these components are based on the processing of the acceleration values, such as
sampling rate of the signal and filtering [12]. Other elements are based on classification mechanics,
such as classification window length, feature calculation, and the used machine learning algorithm.
While studies have explored classification mechanics such as training times of different physical activity
classification algorithms [13,14], they do not provide valuable information for real-time classification,
since classifier training can be done previously on a desktop computer and later implemented into the
wearable system. For classification systems working in real time, it is important to focus on processing
time of the calculations the system has to do online [13,15].

In an earlier study, our group explored how different accelerometer sampling frequencies,
classification window lengths, and the number of correlating features affect the classifier
performance [16]. Few studies before have evaluated how different window lengths (commonly chosen
between 1.5 s [17] and 5 s [13]) affect physical activity classification performance [15,18], but the lack of
gold standard in physical activity classification makes it difficult to compare these results [19]. It has
been stated that frequencies above 20 Hz cannot be expected to arise from voluntary movement [20],
but comparable performance has been reported while using lower sampling frequencies [12,21].
Various methods have been used for feature selection, such as the ReliefF algorithm [22], principal
component analysis [13], or information gain [15], but not in connection with window length and
sampling frequency.

The aim of this study was to create an optimized physical activity classifier that would be
suitable for implementation on real-time wearable systems. The focus was on testing various sampling
frequencies, window lengths and number of features in order to reduce the power consumption, and
to decrease the required memory buffer without compromising classification performance. Other
classification elements were chosen based on the results of other studies with emphasis on high
classification performance and low power consumption.

2. Materials and Methods

Physical activity classification often uses machine learning methods, where the classification is
usually based on acceleration signals. Overview of the steps taken to create and evaluate the classifier
used in this study are shown in Figure 1.

 

Figure 1. A summary of methods used in the study.

2.1. Instrumentation

Acceleration signals were measured with Shimmer3 (from here on Shimmer) sensor platform
(Shimmer Research, Dublin, Ireland). While sensor fusion between accelerometers and gyroscopes
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has shown to increase classification performance in some studies [23], then others have found that
gyroscope information does not contribute to activity recognition performance [22]. Due to the
emphasis on designing physical activity classifier with low power consumption, gyroscope data were
disregarded in this study.

The Shimmer sensor system has two built-in triaxial accelerometers: low noise accelerometer
with the dynamic range of ±2 g and a wide range accelerometer with the dynamic range switchable
between ±2 g to ±16 g (where 1 g equals to about 9.81 m/s2). Since acceleration values during human
motion surpass ±2 g [24], the data from wide range accelerometer was used with the dynamic range
set to ±16 g. The wide range accelerometer uses STMicroelectronics LSM303AHTR sensor (Geneva,
Switzerland), which has a numeric resolution of 16-bit. Acceleration was measured with a sampling
rate of 512 Hz.

2.2. Study Group

The study was approved by the Tallinn Medical Research Ethics Committee. The main study
group consisted of 25 healthy 21–45 year old test subjects (with an exception of one 57-year-old male), of
whom 13 were male and 12 female. Average age was 32.0 ± 8.8 years (median 30.0) for the whole group,
32.8 ± 10.0 years (median 30.0) for males, and 31.0 ± 7.7 years (median 30.0) for females. A separate
study group was used to measure the signals of outdoor cycling. This group consisted of 5 males with
an average age of 38.4 ± 5.3 years (median 37.0).

2.3. Test Overview and Recorded Signals

Test subjects performed various physical activities during which acceleration signals were
measured and recorded using the Shimmer sensor system. The sensor was located on the left wrist for
feasibility of implementing the results in an activity tracker worn on the wrist. Even though using
multiple sensors has been shown to increase the classification performance [25,26], having a wearable
system with only one sensor is more comfortable and convenient for the user.

Each test subject conducted activities based on a precise schedule, where each activity was carried
out for a fixed amount of time, shown in Table 1. For classification, these activities were grouped into
different activity types, shown in Table 2. Indoor activities were divided into three different parts,
during which each activity was performed for 3 min, with the exception of lying down, which lasted
4 min. There were short pauses between each activity, which were later discarded from the signals.

Table 1. Conducted activities and their duration in minutes.

Indoor Test 1 Indoor Test 2
Indoor Test 3

(% Shows Angle)
Outdoor Test

Walking (3) Sitting on chair (3) Walking (3 km/h) (3) Cycling (14)
Running (3) Lying on bed (4) Walking (5 km/h) (3) Cycling uphill (4)

Walking upstairs (3) Typing on computer (3) Walking (3 km/h, 10%) (3) Cycling downhill (1)
Walking downstairs (3) Folding clothes (3) Walking (5 km/h, 10%) (3)

Cleaning surface (3) Running (6 km/h) (3)
Running (10 km/h) (3)
Running (12 km/h) (3)

Running (6 km/h, 10%) (3)
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Table 2. Classified activity types.

Activity Type Activities Concluded

Static Lying, sitting, standing
Low Intensity Typing on computer

Moderate Intensity Folding clothes
Rhythmical Intensity Cleaning a surface with a towel

Walking Walking in a corridor, walking on a treadmill,
walking upstairs, walking downstairs

Running Running in a corridor, running on a treadmill
Outdoor Cycling Cycling outdoors on different terrains

In the first part, test subjects walked in a corridor, ran in the corridor, walked upstairs, and walked
downstairs. Altogether, a total of 12 min of acceleration signals were used from this part.

The second part consisted of sitting on a chair, lying on a bed, typing on a computer while sitting,
standing, folding clothes while standing, and cleaning a surface while standing. A total of 19 min of
signals were used from the second part.

The third indoor part consisted of walking on a treadmill at different speeds and angles (3 km/h,
5 km/h, 3 km/h with uphill angle 10%, 5 km/h with uphill angle 10%) and running on treadmill at
different speeds and angles (6 km/h, 10 km/h, 12 km/h, 6 km/h with 10% uphill angle). A total of 24 min
of signals were used from this part.

Outdoor cycling signals were recorded separately with a different study group. These signals
consist of 14 min of cycling on a plain road, 4 min of cycling uphill, and 1 min of cycling downhill.

2.4. Resampling and Sampling Frequency

As an aim of this study, it was tested how different sampling frequencies affect the classification
results. Lowering the sampling frequency, fs, decreases the number of samples in the classification
fragment, sf, which is calculated as follows:

sf = fs·wf, (1)

where wf is the window length of a fragment given in seconds.
To test different sampling frequencies, the signals that were initially recorded with a sampling

frequency of 512 Hz were later resampled using a MATLAB function resample (R2016b, MathWorks,
Natick, MA, USA). This function applies interpolation and decimation in order to achieve the desired
sampling rate. In case of interpolation, the function inserts points with 0-values between each of the
original samples of the signal, after which the signal is low-pass filtered at half of the desired sampling
rate. To obtain the final result, decimation is applied by selecting samples from the filtered output [27].
The sampling frequencies of 50 Hz, 25 Hz, and 13 Hz were chosen for evaluating the effects of different
sampling frequencies on classifier performance.

2.5. Filtering

Following resampling, filtering was applied to separate the recorded acceleration signals into static
and dynamic components for physical activity classification. The static component in the acceleration
signal is mostly affected by gravity and captures the posture information, while the dynamic component
is based on motion and captures the human movement information.

In this study, the static component was found using a third order low-pass Butterworth infinite
impulse response (IIR) filter. The passband and stopband edge frequencies and ripples were 0.1 Hz
and 0.5 Hz, and 1 dB and 20 dB, respectively. The dynamic component was found by subtracting the
static component from the original signal by taking into account the group delay of the low pass filter.
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2.6. Fragmentation and Window Length

For classifier training, acceleration signals were fragmented into shorter consecutive fragments.
Before fragmentation, the short pauses in the signals between different conducted activities were
removed and only signals recorded during activities listed in Table 2 were kept. While some studies opt
for an overlap between windows to increase the classification performance, in this study, no overlap
was used to keep the computational power minimal.

In a system with a physical activity classifier working in real time, the window length determines
the delay of the system, since each classification is done after signals have been collected for a whole
window. The number of samples in the fragment is determined by both the sampling frequency and
the window length according to Equation (1).

To evaluate how different window lengths affect the classifier performance, the window lengths of
5 s, 3 s, and 1 s were chosen, which are near the values usually used for physical activity classification
in previous studies [13,17].

2.7. Feature Extraction

When using machine learning methods for physical activity classification, the classifier training
is done based on features that are extracted from signal fragments. The feature set has to capture
specific and diverse information of posture and human motion to allow precise activity classification.
The initial set of 110 features used in this study were mostly adopted from previous studies by other
researchers: (1) 60 various time-domain features from [28]; (2) 10 body posture related, 6 motion shape
related features and 6 motion periodicity related features from [15]; (3) 24 various time-domain features
from [22]; and (4) 9 separately added additional features.

Only time-domain features were chosen in this study in order to keep computing power minimal.
While activity recognition studies have also used frequency-domain and wavelet transform features,
the transforms needed to calculate these features would require extra resources. Additionally, it has
been found that time-domain features give comparable results to other feature types [29].

2.8. Feature Selection

Another major aim of this study was to analyze how different number of features affects physical
activity classification and what is the minimal number of features to use without compromising
classification performance. For that, two different feature selection schemes were used to optimize the
feature set.

One scheme was based on various methods that were used successively (Figure 2). This scheme
used the features extracted with sampling frequency of 50 Hz and window length of 3 s and the
achieved optimized feature set was later used with other frequency and window length combinations.

First, correlating features were removed based on a large correlation matrix that showed each
feature’s correlation coefficient with other features. From feature pairs or groups with a very high
correlation (correlation coefficient larger than 0.9 or lower than −0.9), only the simpler features in terms
of computational power requirements and complexity were kept. By using this method, 67 features
were removed from the initial set, and a new subset of 43 features was formed. This method and the
results have also been described in the previous study done by the authors [28].

Further feature optimization was done with one-way analysis of variance (ANOVA). The purpose
of one-way ANOVA is to determine whether data from several groups of a factor have a common
mean. ANOVA was used in this work to find out which features did not differentiate between any
of the activities and thus did not provide any useful information for activity classification. Based on
ANOVA results, 15 features were removed that were found not to affect classifier performance, and a
new subset of 28 features was formed.

Finally, a sequential backward selection (SBS) procedure was repeated, where each feature was
again removed one-by-one (those calculated similarly over all axes were removed together), and the
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feature that decreased the classifier performance the least was removed. After removing features this
way, the classifier performance was still persistent with 13 features used. Further removal of features
showed a decrease in activity classification sensitivities.

 

Figure 2. First feature selection scheme using correlation analysis, ANOVA, and backwards sequential
feature selection with the number of features removed in each step.

The second feature selection scheme used in this study was a sequential forward selection (SFS)
method similar to the last steps used in the first scheme (Figure 3). In this method, features were added
one-by-one by conducting physical activity classification with each feature and, for every iteration, the
best feature was kept. Features were added until the overall average classification sensitivity did not
improve by more than 0.001. This method was completed for every sampling frequency and window
length combination, and was used to compare the results of the first method.

 

Figure 3. Forward sequential feature selection (SFS) method used in the second feature selection scheme.
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2.9. Classifier Training

A machine learning based decision tree classification algorithm was chosen, which has been
previously used in real-time physical activity classification and proposed as the most suitable in terms
of performance and computational power needed for real-time classification [15,30]. The classifier
was trained based on training data using MATLAB’s function fitctree, which returns a fitted binary
classification decision tree based on the input variables.

2.10. Classifier Evaluation

The classifier performance was evaluated using a leave-one-out cross-validation scheme where
each test subject’s signals were classified with a classifier that was trained using the signals from all
the other test subjects. This method has been previously used in other physical activity classification
studies to reduce overfitting errors [29,31].

Sensitivity (also called recall or true positive rate) was chosen as a statistical measure to evaluate
classification performance during feature selection. Sensitivity shows the proportion of true positives
classified (True_positives) in relation to correct or real ones (Real_positives), i.e., true positives that are
correctly identified [32], and it is calculated as follows:

Sensitivity = True_positives/Real_positives =
True_positives/(True_positives + False_Negatives).

(2)

Classification results were evaluated using F1-score (also called F-score or F-measure), which is
calculated as harmonic mean of precision and sensitivity [27], using the following formulas:

Precision = True_positives/Predicted_positives =
True_positives/(True_positives + False_positives),

(3)

F1-score = (2·Sensitivity·Precision)/(Sensitivity + Precision). (4)

While evaluating the results with different window lengths, sampling frequencies and number of
features, F1-scores were calculated separately for each activity type. Additionally, an average F1-score
for different parameter combinations was found as a means of the activity type F1-scores.

A paired t-test (p < 0.05) was used to find statistical differences between the classification F1-scores
of different activity types and averages while using different window lengths and sampling frequencies.

3. Results

3.1. Classifier Performance with Different Window Lengths

An overall average classification F1-score of about 0.90 was achieved for the physical activity
classifier in this study, depending on the used window length, sampling frequency, feature set, and
classified activity type. To evaluate how each of these parameters affected the classifier individually,
classifier F1-scores were averaged over other parameters.

Figure 4 shows the classification F1-score of activity types for the different window lengths when
averaged over different sampling frequencies (50 Hz, 25 Hz, 13 Hz) and feature sets (110 features,
43 features, 28 features, 13 features, and SFS feature set). The classifier had better performance with the
average F1-score over 0.9 classifying static, walking and running activity types. Window lengths of 5 s
and 3 s had similar results with the average F1-scores of 0.92 ± 0.02 and 0.91 ± 0.02, while the result
with 1 s was 0.87 ± 0.02.
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Figure 4. F1-scores of different activity types (mean ± SD (Standard deviation)) averaged over sampling
frequencies and feature sets using different window lengths. Asterisks show significant statistical
difference between different values of the window length (p < 0.05).

Statistically significant differences (marked with an asterisk in Figure 4) were found in moderate
intensity and rhythmical intensity activity types between window lengths of 5 s and 3 s. Window
length of 1 s had a statistical difference classifying every activity type other than running compared to
both 5 s and 3 s window length.

3.2. Classifier Performance with Different Sampling Frequencies

To compare the results with different sampling frequencies, F1-scores were averaged over different
window lengths and feature sets (Figure 5). Overall, the classifier had similar average F1-score
with 50 Hz (0.92 ± 0.02) and 25 Hz (0.91 ± 0.02), while the average F1-score with 13 Hz was lower
(0.87 ± 0.02).

Figure 5. F1-score of different activity types (mean ± SD) averaged over window lengths and feature
sets using different sampling frequencies. Asterisks show a significant statistical difference between
different values of the sampling frequency (p < 0.05).

Statistically significant differences between different sampling frequencies (marked with an
asterisk in Figure 5) were found for most activity types with the exceptions of moderate intensity
and running.

Very large differences in classification performance were noted while classifying outdoor cycling,
where the F1-score was 0.93 ± 0.04 with 50 Hz, 0.90 ± 0.07 with 25 Hz and 0.79 ± 0.06 with 13 Hz.

3.3. Classifier Performance with Different Feature Sets

To evaluate how the feature selection methods and the number of features used for classification
affect the classifier performance, the results were averaged over different sampling frequencies and
window lengths while using different feature sets (Figure 6). The feature sets of 110 features, 43 features,
28 features and 13 features, achieved with the first feature selection scheme, had similar average
F1-scores between 0.89 and 0.90. The SFS feature set had a slightly higher average F1-score of 0.92 ± 0.03.
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The SFS feature set had a major increase in performance compared to other feature sets classifying
outdoor cycling (0.94 ± 0.04 compared to an average of 0.86 ± 0.09 with other sets) and a slight increase
in classifying low intensity activity type (0.90 ± 0.04 compared to an average of 0.86 ± 0.04).

Figure 6. F1-scores of different activity types (mean ± SD) averaged over window lengths and sampling
frequencies using different feature sets.

Since both classification window length and sampling frequency of the acceleration signal affect
the number of samples in classification fragments, it is important to evaluate their combined effect on
classification performance. Figure 7 shows the average classification F1-scores with different feature
sets using different combinations of sampling frequencies and window lengths. The SD values were
large, since the results were averaged over different activity types with different F1-scores.

Figure 7. F1-scores (mean ± SD) averaged over all activities using different feature sets, window lengths
and sampling frequencies.

The average F1-scores of all the combinations of sampling frequencies and window lengths were
similar to all of the feature sets of the first feature selection scheme. The classification performance was
better with combinations that had more samples per classification fragment, with the highest average
of 0.93 ± 0.05 achieved with the combination of 50 Hz and 5 s. The results with the combinations
that had either 1 s window length or sampling frequency of 13 Hz were lower compared to other
combinations with most feature sets.

Compared to the feature sets of the first feature selection scheme, the SFS method used in the second
scheme had higher performance with most window length and sampling frequency combinations.
This difference was very noticeable with 13 Hz sampling frequency. The number of features used in
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SFS feature sets was between 9 and 14 (Table 3), being remarkably lower than the number of features
in most of the feature sets achieved with the first feature selection scheme.

Table 3. Number of features in sequential feature selection (SFS) feature sets with different sampling
frequencies and window lengths.

Sampling Frequency and Window Length Combination Number of Features in the SFS Feature Set

50 Hz, 5 s 12
50 Hz, 3 s 12
50 Hz, 1 s 9
25 Hz, 5 s 11
25 Hz, 3 s 12
25 Hz, 1 s 12
13 Hz, 5 s 11
13 Hz, 3 s 11
13 Hz, 1 s 14

3.4. Best Parameter Combination for Different Activity Types

While the results of this study generalized the effect of different sampling frequencies, window
lengths, and number of features over various activity types, then it might also be useful to know
the best combination for each activity type separately. Table 4 shows the parameter combination the
highest F1 score for each classified activity type. The values are shown separately for both feature
reduction schemes in order to compare the differences.

Table 4. Parameter combination with highest F1-score for different activity types and the average for
both feature reduction schemes.

Activity Type
Window Length

(s)
Sampling

Frequency (Hz)
Number of

Features
F1 Score

Static
5 25 110 0.97
3 50 12 (SFS) 0.98

Low Intensity 5 13 110 0.93
3 50 12 (SFS) 0.97

Moderate Intensity 5 50 110 0.90
5 13 11 (SFS) 0.91

Rhythmical
intensity

5 50 13 0.90
5 25 12 (SFS) 0.89

Walking 3 50 43 0.98
3 50 12 (SFS) 0.98

Running 3 25 13 0.99
3 50 12 (SFS) 0.99

Outdoor Cycling 5 50 43 0.97
3 50 12 (SFS) 0.98

Average 5 50 28 0.94
3 50 12 (SFS) 0.95

4. Discussion

In this study it was analyzed for the first time how different window length, sampling frequency,
and feature set combinations affect the performance of physical recognition based on decision tree
classifiers in order to optimize the classifier for real-time wearable systems. The results of this
study have been implemented into a smart work-wear prototype [11]. The main findings were: (1)
classification F1-scores with window lengths of 5 s and 3 s were similar, while results with 1 s were
lower; (2) all sampling frequencies performed similarly for most activity types, with an exception of
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outdoor cycling; (3) similar or better results were achieved with the feature sets with 9 to 14 features,
achieved with either feature reduction scheme, compared to the initial full feature set of 110 features.

The window lengths of 5 s, 3 s and 1 s were used in this study to analyze how different window
lengths affect the performance of physical activity classifier. F1-scores of walking, running and low
intensity activity types were similar to all window lengths, while the differences with moderate
intensity, rhythmical intensity, and outdoor cycling were larger. Even though window lengths between
3 s and 1 s have been found to be suitable for other studies (2.56 s in [22], 2 s in [26], 1.5 s in [17],
1 s in [18]), in this study, the classifier performance had a larger drop when decreasing the classifier
window down to 1 s, while window lengths of 5 s and 3 s had similar results. The window length of
1 s had statistically significant differences with both 3 s and 5 s window lengths while classifying static,
moderate intensity rhythmical intensity and outdoor cycling activity types. This could be caused by
1 s window length not being long enough to capture the movement of the body during activities where
one period of movement exceeds the window length.

Different sampling frequencies of 50 Hz, 25 Hz, and 13 Hz were used to investigate how sampling
frequency affects classification performance. For most classified activity types, no statistical differences
were found between tested sampling frequencies, but there were large differences while classifying
outdoor cycling. Previously, it had been found that frequencies above 20 Hz cannot be expected to
arise from voluntary human movement, where the accelerometer is not in contact with vibrating
external sources [20]. It is likely that the 13 Hz sampling frequency was not high enough to capture the
vibration during outdoor cycling.

A total of 110 features were extracted from acceleration signals for physical activity classification.
To reduce and optimize the number of features, two different feature selection schemes were used in
this study. While the first scheme used different consecutive methods to reduce the number of features,
the second scheme used forward SFS where features were added one-by-one. The first feature selection
scheme enabled the reduction of the feature set from 110 features to 13 features without decreasing the
classifier performance. It is possible that the feature set with 13 features was overfit for the conditions
used in this study and would perform worse in other conditions.

Compared to the feature sets of the first feature selection scheme, the SFS method used in the second
scheme had higher performance with most window length and sampling frequency combinations. This
difference was very noticeable when using the sampling frequency of 13 Hz. The number of features
used in SFS feature sets were between 9 and 14 (Table 3). The large differences in average F1-scores
shown in Figure 7 between SFS feature set and other feature sets while using sampling rates of 25 Hz
and 13 Hz were mostly affected by outdoor cycling. Unlike other feature sets, the SFS feature set had
a high F1-score while classifying outdoor cycling with all sampling frequency and window length
combinations. The highest average classification F1 score was achieved with a parameter combination
with SFS feature set (3 s window length, 50 Hz sampling frequency, 12 features), which also had the
best performance while classifying static, low intensity, walking and outdoor cycling activity types
(Table 4).

It was predictable that the SFS method would provide better results, since the SFS method
chose the best features to maximize the classification sensitivity separately for each window length
and sampling frequency combination, while, with the first scheme, features were selected based on
one sampling frequency and window length combination. The SFS method proved to be a simple
comparison method for more comprehensive feature selection and showed that the effect of features
depends on different classifier parameters, of which sampling frequency and window length were
tested in this study.

Despite the recent advances in deep learning based activity recognition, which reduces the
dependency on hand-crafted feature sets and thus could outperform more traditional machine learning
methods, it is still far from being used in online mobile systems due to excessive computational power
it requires [33]. Thus, the methods and results of this study provide useful information to other
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researchers for designing and implementing state-of-the-art physical activity recognition for real-time
wearable systems.

5. Conclusions

This study evaluates the effects of sampling frequency of the acceleration signal, window length
of the classification fragment, and number of features on classifier performance. The methods were
chosen in order to reduce the requirements on computational power and available memory and are
suitable for implementing physical activity classification in real-time systems.

We acknowledge some limitations in our approach that could be improved on in the future
studies. First, sampling frequency and window length values evaluated in this study were chosen as a
representative of the values used in other studies (low value, mid-range value, high value), but the
optimum value could be somewhere between or even out of the explored range. It would be possible
to classify larger numbers of different activity types and the acceleration signals should be measured
under normal daily living conditions, which would allow for better physical activity classification
during everyday life. The results could be evaluated with other machine learning algorithms that
are used for physical activity classification, such as support-vector machines, Bayesian networks,
and k-nearest neighbor algorithms, in order to see if there are any differences in the effects of the
explored parameters.

Author Contributions: Conceptualization, A.A., K.P., and I.F.; formal analysis, A.A. and K.P.; methodology,
A.A., K.P., and I.F.; investigation, A.A., K.P., D.K., and M.L.; data curation, D.K. and M.L.; writing—original
draft preparation, A.A.; writing—review and editing, K.P., I.F., and G.J.; visualization, A.A.; validation, M.L.;
supervision, I.F. and G.J.

Funding: The research was funded partly by the Estonian Ministry of Education and Research under institutional
research financing IUTs 19-1 and 19-2, and by Estonian Centre of Excellence in IT (EXCITE) funded by European
Regional Development Fund.

Acknowledgments: The authors wish to thank Siiri Mägi and Karl Erlenheim for assistance during the experiments,
medical doctors Mari Meren and Ave Nagelmann from the Department of Pulmonology, North Estonia Medical
Centre Foundations, Tallinn, Estonia for providing the environment for the study, and also those subjects who so
kindly participated in the experiments.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyzes, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Dunstan, D.W.; Howard, B.; Healy, G.N.; Owen, N. Too much sitting—A health hazard. Diabetes Res. Clin.
Pract. 2012, 97, 368–376. [CrossRef] [PubMed]

2. World Health Organization (WHO). Obesity: Preventing and Managing the Global Epidemic; WHO Technical
Report Series 894; World Health Organization (WHO): Geneva, Switzerland, 2000.

3. Warburton, D.E.R.; Nicol, C.W.; Bredin, S.S.D. Health benefits of physical activity: The evidence. Can. Med.
Assoc. J. 2014, 174, 801–809. [CrossRef] [PubMed]

4. Evenson, K.R.; Goto, M.M.; Furberg, R.D. Systematic review of the validity and reliability of
consumer-wearable activity trackers. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 1–22. [CrossRef] [PubMed]

5. Coughlin, S.; Stewart, J. Use of Consumer Wearable Devices to Promote Physical Activity: A Review of
Health Intervention Studies. J. Environ. Health Sci. 2016, 2, 1–6. [CrossRef] [PubMed]

6. Maher, C.; Ryan, J.; Ambrosi, C.; Edney, S. Users’ experiences of wearable activity trackers: A cross-sectional
study. BMC Public Health 2017, 17, 880. [CrossRef] [PubMed]

7. Middelweerd, A.; Mollee, J.S.; Wal, C.N.; Brug, J.; Velde, S.J. Apps to promote physical activity among adults:
A review and content analysis. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 1–9. [CrossRef] [PubMed]

8. Senevirante, S.; Hu, Y.; Nguyen, T.; Lan, G.; Khalifa, S.; Thilakarathna, K.; Hassan, M.; Senevirante, A. A
Survey of Wearable Devices and Challenges. IEEE Commun. Surv. Tut. 2017, 4, 2573–2620. [CrossRef]

9. Lee, K.; Kwan, M.P. Physical activity classification in free-living conditions using smartphone accelerometer
data and exploration of predicted results. Comput. Environ. Urban Syst. 2018, 67, 124–131. [CrossRef]

134



Appl. Sci. 2019, 9, 4833

10. Wannenburg, J.; Malekian, R. Physical Activity Recognition from Smartphone Accelerometer Data for User
Context Awareness Sensing. IEEE Trans. Syst. Man. Cybern. Syst. 2017, 47, 3142–3149. [CrossRef]

11. Leier, M.; Pilt, K.; Allik, A.; Karai, D.; Jervan, G.; Fridolin, I. Fall detection and activity recognition system for
usage in smart work-wear. In Proceedings of the 16th Biennial Baltic Electronics Conference, Tallinn, Estonia,
8–10 October 2018.

12. Yan, Z.; Subbaraju, V.; Chakraborty, D.; Misra, A.; Aberer, K. Energy-Efficient Continuous Activity Recognition
on Mobile Phones: An Activity-Adaptive Approach. In Proceedings of the 16th International Symposium on
Wearable Computers, Newcastle, UK, 18–22 June 2012; pp. 17–24.

13. Altun, K.; Barshan, B.; Tuncel, O. Comparative study on classifying human activities with miniature inertial
and magnetic sensors. Pattern Recognit. 2010, 43, 3605–3620. [CrossRef]

14. Feng, Z.; Mo, L.; Li, M. A Random Forest-based ensemble method for activity recognition. In Proceedings of
the 37th Annual International Conference of the IEEE-EMBC, Milan, Italy, 25–29 August 2015; pp. 5074–5077.

15. Tapia, E.M. Using Machine Learning for Real-time Activity Recognition and Estimation of Energy Expenditure.
Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, June 2008.

16. Allik, A.; Pilt, K.; Karai, D.; Fridolin, I.; Leier, M.; Jervan, G. Activity classification for real-time wearable
systems: Effect of window length, sampling frequency and number of features on classifier performance.
In Proceedings of the IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala
Lumpur, Malaysia, 4–8 December 2016; pp. 460–464.

17. Aktaruzzaman, M.; Scarabottolo, N.; Sassi, R. Parametric estimation of sample entropy for physical activity
recognition. In Proceedings of the 37th Annual International Conference of the IEEE-EMBC, Milan, Italy,
25–29 August 2015; pp. 470–473.

18. Bulling, A.; Blanke, U.; Schiele, B. A Tutorial on Human Activity Recognition Using Body-Worn Inertial
Sensors. ACM Comput. Surv. 2014, 46, 33. [CrossRef]

19. Awais, M.; Mellone, S.; Chiari, L. Physical activity classification meets daily life: Review on existing
methodologies and open challenges. In Proceedings of the 37th Annual International Conference of the
IEEE-EMBC, Milan, Italy, 25–29 August 2015; pp. 5050–5053.

20. Bouten, C.V.C.; Koekkoek, K.; Verduin, M.; Kodde, R.; Janssen, J.D. A triaxial accelerometer and portable
data processing unit for the assessment of daily physical activity. IEEE Trans. Biomed. Eng. 1997, 44, 136–147.
[CrossRef] [PubMed]

21. Lee, J.; Kim, J. Energy-Efficient Real-Time Human Activity Recognition on Smart Mobile Devices. Mob. Inf.
Syst. 2016, 2016, 2316757. [CrossRef]

22. Moncada-Torres, A.; Leuenberger, K.; Gonzenbach, R.; Luft, A.; Gassert, R. Activity classification based on
inertial and barometric pressure sensors at different anatomical locations. Physiol. Meas. 2014, 35, 1245–1263.
[CrossRef] [PubMed]

23. Wang, Z.; Yang, Z.; Dong, T. A Review of Wearable Technologies for Elderly Care that Can Accurately Track
Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time. Sensors 2017, 17, 341.
[CrossRef] [PubMed]

24. Chuang, F.C.; Yang, Y.T.C.; Wang, J.S. Accelerometer-based Energy Expenditure Estimation Methods and
Performance Comparison. In Proceedings of the 2nd International Conference on Advances in Computer
Science and Engineering (CSE 2013), Los Angeles, CA, USA, 1–2 July 2013; pp. 99–103.

25. Chowdhury, A.K.; Tjondronegoro, D.; Chandran, V.; Trost, S.G. Physical Activity Recognition Using
Posterior-Adapted Class-Based Fusion of Multiaccelerometer Data. IEEE J. Biomed. Health Inform. 2018, 22,
678–685. [CrossRef] [PubMed]

26. Loh, D.; Lee, T.J.; Zihajehzadeh, S.; Hoskinson, R.; Park, E.J. Fitness activity classification by using multiclass
support vector machines on head-worn sensors. In Proceedings of the 37th Annual International Conference
of the IEEE-EMBC, Milan, Italy, 25–29 August 2015; pp. 502–505.

27. Rajamani, K.; Lai, Y.-S.; Furrow, C.W. An efficient algorithm for sample rate conversion from CD to DAT.
IEEE Signal Process. Lett. 2000, 7, 288–290. [CrossRef]

28. Liu, S.; Gao, R.X.; Freedson, P.S. Computational methods for estimating energy expenditure in human
physical activities. Med. Sci. Sports Exerc. 2012, 44, 2138–2146. [CrossRef] [PubMed]

29. Preece, S.J.; Goulermas, J.Y.; Kenney, L.P.J.; Howard, D. A comparison of feature extraction methods for the
classification of dynamic activities from accelerometer data. IEEE Trans. Biomed. Eng. 2009, 56, 871–879.
[CrossRef] [PubMed]

135



Appl. Sci. 2019, 9, 4833

30. Altini, M.; Penders, J.; Amft, O. Energy Expenditure Estimation Using Wearable Sensors: A New Methodology
for Activity-Specific Models. In Proceedings of the Wireless Health, San Diego, CA, USA, 23–25 October 2012.

31. Bao, L.; Intille, S.S. Activity Recognition from User-Annotated Acceleration Data. Pervasive Comput. 2004,
3001, 1–17.

32. Powers, D.M.W. Evaluation: From precision, recall and F-factor to ROC, informedness, markedness and
correlation. J. Mach. Learn. Tech. 2011, 2, 37–63.

33. Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey.
Pattern Recognit. Lett. 2019, 119, 3–11. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

136



applied  
sciences

Article

Analogy Study of Center-Of-Pressure and
Acceleration Measurement for Evaluating
Human Body Balance via Segmentalized
Principal Component Analysis

Tian-Yau Wu 1,* and Ching-Ting Liou 2

1 Department of Mechanical Engineering, National Chung Hsing University National,
Taichung City 402, Taiwan

2 Teco Electric and Machinery Corporation Limited, Taoyuan City 320, Taiwan; aloveasure@gmail.com
* Correspondence: tianyauwu@dragon.nchu.edu.tw

Received: 6 October 2019; Accepted: 5 November 2019; Published: 8 November 2019

Abstract: The purpose of this research is to investigate the feasibility of evaluating the human’s
balancing ability by means of the human body’s swaying acceleration measurements instead of the
traditional center-of-pressure (COP) measurement. The COP measurement has been used broadly
for assessing the balance ability of patients in hospitals. However, the force plate system which
is employed to measure the COP signals of the human body is generally restrictive due to the
very high cost as well as the bulky portability. In this study, the balancing ability of the human
body was evaluated through the measurements of a capacitive accelerometer. The segmentalized
principal components analysis (sPCA) was employed to reduce the influence of the gravity component
in acceleration measurement projected onto the horizontal components while the accelerometer
inevitably tilts. The signal relationship between the COP and the acceleration was derived, so that
the swaying acceleration measurements of human body can be utilized to evaluate the human body’s
balancing ability.

Keywords: balance; center of pressure (COP); segmentalized principal component analysis (sPCA);
equilibrium score (EQs); empirical mode decomposition (EMD); linear regression; decision support

1. Introduction

The aging trend of the social population has been a problem in all the developed countries,
and hence, healthcare for the elderly has become an essential issue. The decline of balancing ability
is one of the important indicators of the aging process of the human body. In addition to being an
important indicator of human aging, the balancing ability is also an index for assessing a person’s
physical health in medical fields.

The balance of the human body is a sophisticated mechanism. The system that receives the
balance-related information consists of three parts: the vision, somatosensory and vestibular system.
The vision part provides us with the identification of spatial position, the role of somatosensory is the
perception of stimuli on the limbs for the postures and positions and the vestibular system allows us to
feel the existence of acceleration in movements. When the human body lacks the balancing ability,
the most serious problem is the fall. Therefore, a simple system that can evaluate the balance condition
of the human body is definitely beneficial to the balancing ability training and treatment (preventing
step) as well as the falling detection (post-mortem remedy step).

The center-of-pressure (COP) has been broadly utilized to evaluate the balancing ability of patients
in the fields of clinical medicine and biomedical engineering. The measurements of COP are normally
implemented by using the force plate. However, the force-plate-based COP measurement systems
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are generally highly restrictive due to the very high cost (normally more than 10,000 US dollars)
as well as the bulky portability. Therefore, a cheap carry-on device that can be used to estimate
the balancing ability of the human body is definitely a merit for the healthcare of the elderly. It is
apparent that the swaying dynamics of the human body is related to the balancing ability of the
human body. The human body’s sway can be detected in terms of the acceleration, which is able
to be measured by the accelerometers. As compared with the force-plate-based COP measurement
systems, the accelerometers usually have the advantage of much lower price and convenient portability.
The price of a capacitive micro-electro-mechanical system (MEMS) accelerometer may be as low
as ten US dollars, and thus the MEMS accelerometers can be integrated inside the cellphones as
portable devices.

The studies of utilizing the accelerometers for the swaying measurement have been conducted to
assess the balancing ability of the human body. Moe-Nilssen [1] applied the accelerometer to estimate
the human body’s balance and extracted the statistical features for discriminating the difference
among balance conditions. Furthermore, different experimental cases were set up for the acceleration
measurements of balance control [2]. In addition to the accelerometers, the audio-biofeedback (ABF)
approach was also utilized to evaluate the sonic influence of different bandwidth for the human body’s
balance [3]. Ghasemzadeh et al. [4] investigated the identification of the balance situation through the
integration of signals of accelerometer and electromyography (EMG). Their study validated the high
correlation between the EMG signal and balance condition of the human body. The acceleration signals
were processed by using the wavelet analysis as well as the principal component analysis (PCA) for
evaluating the balancing ability of human bodies among the frail, pre-frail and healthy groups [5].
The sample entropy values were utilized to quantify the regularity of COP fluctuations [6]. Their study
indicated that the COP fluctuations are more regular for standing than sitting, representing different
balance conditions. Huang et al. [7] developed a center-of-pressure and complexity monitoring system
(CPCMS) to assess the improvement of human body balance. Their study demonstrated that the
CPCMS can achieve similar results to the commercial product. Halicka et al. [8] proposed to examine
the effectiveness of visual biofeedback (VBF) signals and accelerometer sensors for improving human
balance. They showed that the location of VBF signals had a significant effect on each postural
parameter of COP and trunk segments. The approximate entropy values were computed to reflect the
amount of irregularity hiding in the COP [9]. The data analysis demonstrated that this method enables
us to quantify the postural stability. A point of application (POA) approach was used to determine the
accuracy, precision and reliability of COP measurement in a low-cost force plate, called the balance
tracking system, and showed an excellent agreement between the POAs and measured COP [10].
In 2018, Adamova et al. [11] used the three-axis accelerometer to quantify the postural stability of
patients with cerebellar disorder. Their study demonstrated that the pathological balance control can
be identified through the three-dimensional (3D) postural analysis.

Although the COP-based quantification of balancing ability has been employed by medical doctors
for decades and is still the major means for evaluating the balance condition of patients, the studies
of replacing the COP measurements for balance evaluation have been explored and the feasibility
has also been verified. Based on the state-of-art of balance measurement of the human body, a solid
and consistent transformation between the COP and acceleration measurements is the crucial step
for accurately estimating the balancing ability of the human body. On the other hand, the swaying
frequencies of the human body mainly concentrate around the very low-frequency band, as compared
to the frequency range of mechanical structural vibration. As for considering the volume, weight, cost
and measured bandwidth of the accelerometer, the capacitive accelerometer would be an appropriate
one to be bound with the human body and then utilized to measure the swaying acceleration at
extremely low frequencies. However, the capacitive accelerometer inherently contains the gravity
component on the vertical axis and the gravitation may be projected onto the measurements on the
three axes with a time-varying manner, while the bind-in accelerometer tilts along with the human
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body’s swaying. It is definitely an obstacle and there is difficulty deriving the correlation between the
COP signal and acceleration measurement.

Based on the problem statements, the objective of this research is to investigate the feasibility
of deriving the transformation from the acceleration measurement to the COP signal, so that the
COP-based evaluation of the human body’s balancing ability can be estimated in terms of the swaying
acceleration measurements. The empirical mode decomposition (EMD) method [12] was employed to
separate the non-stationary acceleration signals and then extract the swaying-related components at
the very low-frequency range. With the EMD process, the traditional filtering process in which the
central frequency and bandwidth must be first decided would not be needed. The segmentalized PCA
(sPCA) was proposed to alleviate the influence of the time-varying gravitation projection onto the
acceleration measurements on the three axes. The equilibrium score (EQs) was also estimated through
the measured acceleration signals in this research. The results show that high correlation coefficients of
more than 0.7 can be obtained between the processed acceleration signals and the COP measurements.
The estimated EQs values have mean average percentage error (MAPE) of 4.89 with respect to the EQs
values that were calculated by the commercial computer-aid balance testing apparatus.

2. Experiment Design for Relationship Derivation between Acceleration and the
Center-of-Pressure (COP)

The sensory organization test (SOT) has been broadly employed to evaluate the balancing ability
of the human body in the fields of clinical medicine and biomedical engineering. Among all the
external factors that influence the balancing ability of the human body, the majority contains the visual
conditions. Based on the SOT, the experimental design in this research contained different visual
conditions on a fixed referenced support surface for investigating the effects of the human body’s static
balancing ability. The examinees were asked to stand on the force plate associated with five visual
conditions, including (1) eyes opening, (2) eyes closing, (3) blank reference swaying, (4) static giddy
reference and (5) giddy reference swaying, as tabulated in Table 1. The visual conditions of C1 and C2
(eyes opening and closing) mainly assess the balancing ability of the human body with and without
the reference. In order to produce the visual perturbation as well as the brain fatigue, three conditions
(C3–C5) were conducted in this experiment to investigate the influence of different references upon the
balancing ability of the human body. As shown in Figure 1, the referenced wall in the experiment can
sway accordingly to simulate the visual conditions C3 to C5. Moreover, the dazzling graph, as shown
in Figure 2, was stuck on the referenced wall to produce the factors of visual conditions C4 and C5.

Table 1. Visual conditions in the experiment design.

Visual Condition Expression

C1 Eyes open (no reference)
C2 Eyes closed
C3 Blank reference sway
C4 Static reference with giddy graph
C5 Swayed reference with giddy graph
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Figure 1. The facilities in the experiment design: (1) force plate, (2) referenced wall.

 
Figure 2. The dazzling graph of the referenced wall (ref: http://richrock.com/illusion.html).

The force plate that the examinee stood on was used to measure the COP locus of the examinee.
The force plate measurement system consists of four identical load cells (LDB-30, Jihsense Industril
LTD.) and a signal acquisition device (eStrain 4B4V, Chief SI Company). In this experiment, the COP
signals were recorded with the sampling rate of 100 Hz. Simultaneously, the capacitive accelerometer
(CXL04GP3-R-AL, MEMSIC Inc.) was bound on the waist of the examinee (around the mass center
of the human body) to measure the acceleration of human body swaying in the three directions.
The acceleration signals were recorded by the data acquisition device (NI 9234) with the same sampling
rate as the COP signals. Both the COP loci and acceleration signals of each examinee were measured
synchronously for all designated visual conditions with data length of twenty seconds. With the
synchronized measurements, the analogy between the COP loci and the acceleration signals of the
human body was derived.

3. Processing and Analysis of Measurements

3.1. Signal Separation and Spectrum Analysis

The major difference between the COP and acceleration measurements is the dimension
representation. The COP signals, which are recorded through the force plate, consist of the two
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independent components (in X and Y directions) that are perpendicular to the gravitational direction.
According to the SOT, the COP signal in X-direction is defined as the medial-lateral (ML) component
and the Y-component is defined as the anterior-posterior (AP) direction. The acceleration signals
that are measured by the tri-axial accelerometer consist of the three components in the typical X-Y-Z
directions of the Cartesian coordinate system. Since the accelerometer is bound on the human body’s
waist and may tilt with human body swaying, the X-Y-Z directions of the tri-axial accelerometer are
not fixed in the measurement process.

Through observing the ways that the examinees adjust their posture for balance purposes, both
the COP and the acceleration signals have obvious non-stationarity characteristics. The EMD approach
that was proposed by Huang et al. [12] is an adaptive data analysis method and can be utilized to
separate the non-stationary signals. The EMD process can be simply expressed as:

x(t) =
m∑

k=1

ck(t) + rm(t) (1)

where, x(t) represents any complicated non-stationary signal, ck(t) is the k-th intrinsic mode function
(IMF) of the signal x(t) and rm(t) is the final residue which can be a constant or the signal mean trend.
Based on the concept of EMD, each IMF component satisfies the following conditions [12]: (1) The
number of extrema and the number of zero-crossings must be either equal or differ at most by one in
the whole data set, and (2) At any point, the mean value of the envelope defined by the local maxima
and the envelope defined by the local minima is zeros.

The measurements of COP and acceleration were first decomposed into the IMFs by the EMD
method. With the EMD method, the non-stationary COP and acceleration signals can be separated into
the independent signal components of different frequency bands. In the experimental process, on the
other hand, the external noises or disturbances that are mixed in the measurements may inevitably
interfere with the analysis of the COP and the acceleration signals; therefore, it is crucial to remove
the uncorrelated signal components from the measurements of COP and acceleration, and reserve the
signal components that contain the information correlated to the balancing ability of the human body.

By taking the Hilbert transform of the signal components (IMFs), the analytical signal of ck(t) can
be formed as:

zk(t) = ck(t) + jH
{
ck(t)
}
= ck(t) + jĉk(t) = Ak(t)ejφk(t) (2)

where, H
{
ck(t)
}

represents the Hilbert transform of ck(t). The time-dependent amplitude, Ak(t),
time-dependent phase, φk(t), and instantaneous frequency, ωk(t), of ck(t) can be formulated as:

Ak(t) =
√

ck(t)
2 + ĉk(t)

2

φk(t) = tan−1 ĉk(t)
ck(t)

ωk(t) ==
dφk(t)

dt

(3)

Therefore, the time-frequency-amplitude distributions of the non-stationary COP and acceleration
signals can be expressed as:

H(ω, t) =
∑

Ak(t) cos(
∫
ωk(t)dt) (4)

In order to clearly observe the energy distributions of measurements in the frequency domain,
the marginal spectrum of the COP and acceleration signals can be formulated as:

S(ω) =
∑

k

∫ T

0
Hk(ω, t) dt (5)

where, Hk(ω,t) represents the time-frequency distribution of the k-th IMF. The signal compositions and
characteristics can then be observed and analyzed within the different frequency scales.
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Figures 3 and 4 show the marginal spectra of the COP and acceleration resultants with different
experimental visual conditions (as tabulated in Table 1). The marginal spectra of COP and acceleration
resultants apparently show that the signal energy concentrates at the low-frequency range. It is
intuitive and coincident with the observation that the signal information correlated to the human
body’s swaying for balance is found in the signal components of low frequencies. Based on the
inference, the signal analysis of COP and acceleration in this research was focused on the IMFs whose
bandwidths are within 0–5 Hz.

Figure 3. Marginal spectrum of center-of-pressure (COP) resultants.

Figure 4. Marginal spectrum of acceleration resultants.
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3.2. Segmentalized Principal Component Analysis (sPCA) for Acceleration Signal

As mentioned before, the frequency characteristics of the human body’s sway mainly focuses on
the very low-frequency range, the capacitive accelerometer has satisfactory measurement performance
within the bandwidth of very low frequencies, and thus, was utilized to detect the acceleration of the
examinee’s body sway in the experiment. However, the bind-in accelerometer inevitably tilted along
with the examinee’s body sway and hence, the X-Y-Z directions of the acceleration measurements
were time-varying with respect to the fixed reference frame. Furthermore, the measurement of the
capacitive accelerometer also includes the constant gravitation (g = 9.81 m/s2) in the vertical direction
and thus, the acceleration measurements in the three directions may contain the gravitation projection
components while the accelerometer was tilted along with the examinee’s body sway. To the contrary,
the COP signal components in ML and AP directions were obtained in the horizontal plane and were
independent of the gravitation in the vertical direction. Therefore, it is definitely beneficial for deriving
the correlation between the COP and acceleration measurements if the gravitation projection onto the
three directions of acceleration signals can be removed.

The concept of PCA that was proposed by Pearson [13] is to convert the measurements in which
the variables may be correlated with each other into another sets of variables which are uncorrelated.
The sets of variables in the other space are called principal components. The mathematical procedure of
PCA is to transform the data sets of measurement into another coordinate system, where the principal
components are located through an orthogonal matrix. In this coordinate system, the first principal
component has the highest variance, and the subsequent components in turn have as high variance as
possible. Therefore, the principal components in the new space are uncorrelated with each other or
even orthogonal to each other.

In order to resolve the stated problem of the axial directions variation as well as the gravitation
projection issue, and to thereafter derive the relationship between the COP measurement and the
acceleration signal, the PCA was employed to process the acceleration signals in this research.
The acceleration measurements in X-, Y- and Z-directions were first transformed into another coordinate
system where the principal components were located. The principal components in the new coordinate
system are theoretically orthogonal to each other, and thus the operation of PCA can reflect the
transformed signals in the way of most possible variability in the data [14,15]. In this research, therefore,
the variability of acceleration measurements along the three directions was first analyzed.

Simply consider that the accelerometer is bound at the point A of the examinee’s waist and sways
in the AP direction, as shown in Figure 5. As the examinee sways to maintain the body’s balance status,
the accelerometer moves from A to A’, as shown in Figure 5. The acceleration measurements consist of
the components perpendicular to the Z-direction as well as the component parallel to the Z-direction.
Since the two acceleration components in Y- and Z-direction are proportional to the distance a and d
respectively, it can be briefly proven that the acceleration has larger variance in Y-direction than in
Z-direction if a is always greater than d. First, assume d > a contradictorily. The distance a in Y-direction

can be determined from the geometric relationship, a =

√
h2 − (h− d)2, and hence, d >

√
h2 − (h− d)2.

It is easy to derive the contradiction that the condition for d > a implies d > h. Similarly, the same
inference can be applied in the X-direction instead of the Y-direction. Therefore, it is reasonable to infer
that the acceleration variance in Z-direction is smaller than those in X- and Y-directions.
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Figure 5. Schematic plot of acceleration variance in Y- and Z-directions.

Figures 6 and 7 illustrate the COP measurements of the five visual conditions (Conditions 1 to 5,
as shown in Table 1) in the SOT of this research. It is found in the figures that the examinee generally
has more sway variance in the AP direction than in the ML direction. A similar phenomenon can also
be observed in most of the other COP measurements. The inference is reasonable because the structure
of legs and ankles has more capability against the perturbation in the ML direction than in the AP
direction while the examinee stands in the normal posture. Therefore, it is assumed in this study that
the acceleration measurement in AP direction dominates the balancing characteristics as the examinee
sways for most tests.

Figure 6. COP measurements in medial-lateral (ML) and anterior-posterior (AP) direction under
Conditions 1–3.
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Figure 7. COP measurements in ML and AP direction under Conditions 4–5.

Based on the concept of PCA, the first principal component corresponds to the COP signal
component in the AP direction. The second principal component corresponds to the COP signal
component in the ML direction. The third principal component is attributed to the gravitation of the
vertical component. This inference was drawn from the fact that the acceleration measurement had less
variance in the direction parallel to the gravitation than the directions perpendicular to the gravitation.

Although the PCA is capable of transforming the acceleration signals into the three principal
components corresponding to the AP, ML and vertical directions conceptually, it is, however, apparently
unable to reflect the instantaneous variation in the projection of gravitation onto the three measured
components in case of the time-varying tilting accelerometer if the PCA is employed to process the
signal throughout the whole data length (20 s). In order to address this concern and to deal with the
time-varying problem of directivity variation on the oblique accelerometer, the segmentalized PCA
(sPCA) was proposed in this research to accurately extract the time-varying components corresponding
to the acceleration components that are perpendicular to the gravity at the different instants during the
human body’s sway.

As illustrated in Figure 8a, the acceleration measurements in X-, Y- and Z-directions were divided
into four segments and then the PCA was applied for each segment to determine the three principal
components (PC-1, PC-2 and PC-3), as shown in Figure 8b. With the connected principal components of
each segment, Figure 9a shows the comparison between the COP measurement in the Y-axis (AP) and
the first principal component (PC-1) of acceleration signals. It is noted that the PC-1 of the acceleration
measurements has similar variation trend with the COP measurement in the AP direction and the
correlation coefficient between the two sets of series was calculated as 0.841. As compared with the
PC-2 and PC-3 of the acceleration signals, their variation trends are very different from the COP
measurement in the AP direction (as shown in Figure 9b), and thus, they have correlation coefficients
of −0.512 and −0.089, respectively. The high correlation coefficient between the COP measurement in
the AP direction and the PC-1 of the acceleration measurements demonstrates that it is sufficient to
accurately predict the COP measurement in the AP direction. Therefore, it is feasible to utilize the
processed acceleration measurement to represent the COP signal for evaluating the human body’s
balancing ability.
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(a) 

(b) 

Figure 8. (a) Segments of acceleration measurements, (b) Principal components in each
segmentalized part.

(a) 

Figure 9. Cont.
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(b) 

Figure 9. (a) Comparison between COP in the Y-axis and first principal component of acceleration
signals, (b) Comparison between COP in the Y-axis, second and third principal components of
acceleration signals.

4. Equilibrium Score (EQs) Estimation

A high correlation between the COP in the Y-axis and the first principal component of acceleration
signals has been validated in the previous section, and thus it is feasible to use the acceleration
measurements representing the COP-based evaluation for human balancing ability. Furthermore, in the
field of clinical medicine, the balancing ability of patients is generally assessed through the commercial
computer-aid balance testing apparatus in SOT and is broadly quantified in terms of the equilibrium
score (EQs). The EQs of patients’ balancing ability is mainly computed through the measurement of
COP. The EQs is defined from zero to one hundred. The EQs value of one hundred means an ideal
stability while the EQs value of zero represents a tumble. In order to verify the accuracy of analogy
between the acceleration measurements and the COP-based EQs evaluation at the balance testing
apparatus, the datasets that include the synchronous measurements of body swaying acceleration
and COP as well as the EQs evaluation were collected from the Department of Physical Therapy
and Assistive Technology in National Yang-Ming University, in which the commercial computer-aid
balance testing apparatus was utilized to assess the balancing ability of patients in the five visual
conditions. The collected data consisted of 85 sets of acceleration signals and COP measurements that
were recorded in the SOT of different examinees. The examinees that had normal balancing abilities in
a majority were evaluated through some of C1 to C5 of SOT. All the data were available as the format
of digits in text which can be processed and analyzed in MATLAB software.

Before the EQs estimation was investigated, all the collected data was first processed through
the correlation analysis to obtain the statistical result of correlation coefficients between the COP
measurements and the acceleration signals. Figure 10 shows the results of correlation coefficients
between the COP measurements in the AP direction and the three data sets that are the PC-1 of
acceleration measurements through the sPCA (with segment length of 1.0 second), the PC-1 of
acceleration measurements by using the PCA for the whole signal length, and the original acceleration
measurements in the Y-direction, respectively. As shown in the figure, the COP signals in the AP
direction have higher overall correlation with the PC-1 of the acceleration measurements with the
sPCA process (mean correlation coefficient around 0.78) than the PC-1 through the pure PCA for the
whole signal length (mean correlation coefficient around 0.41), as well as the original acceleration
measurements in the Y-direction (mean correlation coefficient around 0.40). The correlation analysis
apparently shows that the acceleration measurements can be utilized to accurately predict the COP
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signal in the AP direction through the sPCA, and hence, it is feasible to use the cheap bind-in
accelerometer for estimating the human being’s balancing ability instead of the expensive bulky COP
measurement system.

Figure 10. Correlation coefficient: COP-AP signal versus acceleration signal in the Y-axis (black ♦);
COP-AP signal versus PC-1 of acceleration signals with principal component analysis (PCA) for the
whole data length (blue ×); COP-AP signal versus PC-1 of acceleration signals via segmentalized PCA
(sPCA) (red *); mean value of ♦ (black —); mean value of × (blue ...); mean value of * (red -.-.-).

Since the transformation from the COP measurement to the EQs is unavailable in this study,
the statistical computation can be used to simply derive the relationship between the COP signals
and the EQs. Define the swaying level to be (100 EQs). The root-mean-square (RMS) values of COP
measurement resultants and the corresponding (100 EQs) values are shown in Figure 11. It is apparent
that the transformation between the RMS values of COP measurement resultants and corresponding
(100 EQs) values can be derived through the regression analysis. Similar results were also obtained by
linear regression to derive the relationship between the RMS values of COP measurements in the AP
direction and the corresponding swaying levels, as shown in Figure 12. As shown in these two figures,
it is noted that the EQs values can be accurately derived through the linear regression process only
using COP measurements in the AP direction.

Figure 11. Regression analysis for root-mean-square values of COP measurement resultants and the
swaying level (100 equilibrium score (EQs)).
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Figure 12. Regression analysis for RMS values of COP measurement in the AP direction and the
swaying level (100 EQs).

As mentioned previously, the analysis shows that the COP measurements in the AP direction have
high correlation with the first principal component of the acceleration measurements. Therefore, it is
feasible to estimate the EQs values through the analysis of the swaying acceleration signals that are
measured by the tri-axis capacitive accelerometer. Figure 13 shows the flow chart of signal processing
in estimating the EQs values in terms of the acceleration measurements. The human body swaying
accelerations were measured by the bind-in tri-axis capacitive accelerometer that is capable of effectively
capturing the signals at very low frequencies of human body swaying. The acceleration signals were
then processed by using the proposed sPCA to extract the first principal component (PC-1). The signal
of PC-1 was separated by the EMD method and the IMFs within the frequency range of 0–5 Hz were
synthesized for the further procedure. The RMS value of the synthesized filtered PC-1 signal was
calculated and then transformed to estimate the RMS value of COP signal in AP-direction by means of
the a priori correlation analysis. Through the a priori linear regression analysis between (100 EQs) and
the COP-AP RMS, the EQs values can be estimated. It is noted that the correlation analysis and the
linear regression method were utilized as the decision support tools for data transformations among
the acceleration signals, COP measurements and (100 EQs) values. The EQs values that were obtained
by the commercial computer-aid balance testing apparatus were also utilized to compare with the ones
that were estimated from the acceleration measurements. Figures 14–18 show the EQs values which
were estimated through the acceleration measurements and the EQs values which were obtained by the
commercial computer-aid balance testing apparatus in C1 to C5 of SOT. These figures demonstrate that
most of the estimated EQs values are close to the EQs values that were obtained by the balance testing
apparatus. Table 2 shows the mean absolute percentage error (MAPE) of the estimated EQs values in
each visual condition of SOT compared with the EQs values that were displayed in the balance testing
apparatus, which is defined as:

MAPE =

∣∣∣EQsest − EQsapp
∣∣∣

EQsapp
× 100% (6)

where, EQsest represents the estimated EQs value and EQsapp represents the EQs value displayed in the
balance testing apparatus. As shown in Table 2, high accurate EQs estimation can be obtained through
the swaying acceleration measurement of the human body as well as the proposed signal processing
steps in most of the SOT cases except for some of the cases in C5. The overall accuracy of the estimated
EQS values was 95.11%.
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Figure 13. Flow chart of acceleration signal processing in estimating the EQs values.

 
Figure 14. Estimated EQs values compared with EQs values of commercial computer-aid balance
testing apparatus in C1.
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Figure 15. Estimated EQs values compared with EQs values of commercial computer-aid balance
testing apparatus in C2.

Figure 16. Estimated EQs values compared with EQs values of commercial computer-aid balance
testing apparatus in C3.

Figure 17. Estimated EQs values compared with EQs values of commercial computer-aid balance
testing apparatus in C4.
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Figure 18. Estimated EQs values compared with EQs values of commercial computer-aid balance
testing apparatus in C5.

Table 2. Mean absolute percentage error (MAPE) of the estimated EQs values in each visual condition
of the sensory organization test (SOT).

C1 C2 C3 C4 C5

MAPE 1.95% 2.56% 4.16% 4.17% 11.63%

5. Conclusions

In this research, the proposed sPCA method was employed to reduce the influence of the
measured gravitation component projected onto the horizontal components while the bind-in capacitive
accelerometer was utilized to measure the human body’s sway and tilt inevitably. A high correlation
between the acceleration measurements and the COP signals of the human body’s sway can thus
be derived. Therefore, the acceleration measurements of the human body’s sway can be utilized to
represent the human balancing ability with lower hardware expense. Furthermore, the RMS values of
COP can be estimated to quantify the EQs values of the human body’s balancing ability in the SOT.
The analysis results show that the estimation MAPE of 4.89% can be obtained through the collected
SOT data.
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Abstract: Studying the effects of neurodegeneration on handwriting has emerged as an interdisciplinary
research topic and has attracted considerable interest from psychologists to neuroscientists and from
physicians to computer scientists. The complexity of handwriting, in fact, appears to be sensitive to
age-related impairments in cognitive functioning; thus, analyzing handwriting in elderly people may
facilitate the diagnosis and monitoring of these impairments. A large body of knowledge has been
collected in the last thirty years thanks to the advent of new technologies which allow researchers to
investigate not only the static characteristics of handwriting but also especially the dynamic aspects
of the handwriting process. The present paper aims at providing an overview of the most relevant
literature investigating the application of dynamic handwriting analysis in neurodegenerative disease
assessment. The focus, in particular, is on Parkinon’s disease (PD) and Alzheimer’s disease (AD),
as the two most widespread neurodegenerative disorders. More specifically, the studies taken into
account are grouped in accordance with three main research questions: disease insight, disease
monitoring, and disease diagnosis. The net result is that dynamic handwriting analysis is a powerful,
noninvasive, and low-cost tool for real-time diagnosis and follow-up of PD and AD. In conclusion of
the paper, open issues still demanding further research are highlighted.

Keywords: neurodegenerative diseases; handwriting analysis; survey

1. Introduction

1.1. Motivations and Purposes

Neurodegenerative diseases, such as Parkinson’s disease (PD) and Alzheimer’s disease (AD),
affect the structure and functions of brain regions resulting in a progressive cognitive, functional,
and behavioural decline. PD is caused by the degeneration of the dopaminergic nigrostriatal neurons of
the basal ganglia, resulting primarily in motor deficits: akinesia, bradykinesia, rigidity, and tremor are
typically observed [1]. AD, on the other hand, is characterized by short-term memory loss in its early
stages, followed by a progressive decline in other cognitive and behavioral functions as the disease
advances: therefore, the dominant feature of AD is mainly of cognitive nature [2]. Unfortunately, in
the case of signs of brain degeneration, there is no cure and the gradual decline of the patient can only
be somehow managed during disease progression. However, an early diagnosis of neurodegeneration
would be crucial in the perspective of proper medical treatment to be administered and for improving
the quality of life of the patient. In addition, the assessment of signs and manifestations of a specific
disease is useful for its diagnostic differentiation with respect to similar disorders and for monitoring
and tracking its progression as the disease advances. To this end, a special attention is devoted to mild
cognitive impairment (MCI) signs, as an individual with MCI is at a high risk of developing dementia,
especially of the Alzheimer’s type [3].
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The evaluation of the patient’s clinical status and their responsiveness to medication is typically
achieved via a clinical workup including a thorough medical history, a neuropsychological test battery,
and rating scales. Mini Mental State Examination (MMSE) [4], for example, is used extensively to
assess cognitive impairment. However, there is still no one certain test to determine if someone is
affected by a neurodegenerative disorder and a precise diagnosis is possible only postmortem. Getting
a reliable diagnosis can require months, and symptoms need to be constantly monitored. In addition,
the traditional evaluations depend to some extent on the experience of the clinician performing the
assessment, and this makes the determination of the exact type of disease as well as its degree of
severity difficult. For these reasons, identifying accurate biomarkers for early and differential diagnosis,
prognosis, and response to therapy is a primary goal of the research on neurodegenerative disorders
today (e.g., References [5,6]).

Changes in the brain caused by neurodegeneration—brain atrophy, neuronal loss, synaptic
dysfunction, etc.—particularly result in a dysfunction of the motor system as well as in impairments
of the performance of previously learned motor skills. Therefore, a key role in the context of
neurodegenerative diseases assessment can be assumed by handwriting. Handwriting, in fact,
is a complex activity entailing motor as well as cognitive components [7], of which the changes are
promising as a biomarker for disease assessment. First, handwriting exercises are already part of
neuropsichological test batteries. For instance, the Clock Drawing Test (CDT), which is part of the
Mini-Cog test, requires the patient to draw a clock from memory and to put the hands at a given
time: the goal is to evaluate executive functions [8]. Second, it is worth noting that, in several studies,
researchers examined handwriting difficulties by using writing tests: their results showed that these
difficulties are well correlated to the disease severity as well as the concomitant cognitive impairment.
For example, in the seminal paper by McLennan et al. [9], it was pointed out how micrographia,
which is an abnormally small writing typically associated with PD, can be easily detected by simple
pen-and-paper exercises. Other studies, e.g., References [10,11], used analogous tasks and found that
agraphia, which encompasses a progressive disorganization of the various components of handwriting,
is an early symptom of AD.

Although several advancements have been so far obtained through the analysis of static
characteristics of handwriting, i.e., the ones that can be analyzed after the writing process has
already occurred, with the advent of new technologies, novel, dynamic features of handwriting
have been available to the research community. These features concern the dynamic characteristics of
handwriting that can be acquired while the writing process still occurs. Typical acquisition tools are
inexpensive commercially available digitizing tablets and/or electronic pens. Through these devices,
one can measure not only temporal and spatial variables of handwriting but also the pressure exerted
over the writing surface and measures of pen inclination and pen orientation. Moreover, these devices
can capture pen movement not only while the pen is in contact with the writing surface but also when
the pen is in close proximity of the surface, i.e., “in-air”.

In the context of neurodegenerative diseases assessment, dynamic handwriting analysis has
been employed for studying several issues and has attracted considerable research interest from
psychologists to neuroscientists and from physicians to computer scientists. A large part of the
literature on this topic investigated fine motor control in healthy and unhealthy people. Examining
changes in the handwriting of impaired patients, in fact, facilitates the understanding of the brain–body
functional relationships and can lead to identifiable patterns of the sensorimotor dysfunction associated
with PD or AD. Several other studies focused on the effects of medication on handwriting: these
changes can provide a useful tool for monitoring and tracking disease progression. More recently,
an increasing research effort has been made towards the development of an automatic tool for the
discrimination between impaired subjects and healthy controls on the basis of dynamic handwriting
features. The goal is to provide a complementary approach to the pathology evaluation performed by
expert clinicians that is quantitative, noninvasive, and very low-cost.
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This paper aims at providing an overview of the most relevant literature investigating the
application of dynamic handwriting analysis to the assessment of neurodegenerative disorders.
In particular, PD and AD, as the two most widespread and most extensively investigated disorders,
are taken into account.

1.2. Related Surveys

It is worth remarking that surveys on this topic have already been provided in References [12–15].
Neils-Strunjas et al. [12] discussed papers focusing only on the static characteristics of handwriting
in AD. Letanneux et al. [13] considered papers that focused both on static and dynamic features for
PD assessment. In particular, the authors proposed to extend the concept of “dysgraphia” also to PD,
as it encompasses all deficit characteristics of Parkinsonian handwriting. De Stefano et al. [14] and
Impedovo and Pirlo [15] recently proposed surveys focusing both on PD and AD. In Reference [14],
De Stefano et al. made a categorization of works into statistical and classification studies, based
on the methodological approach followed by the reviewed experiments. However, while the paper
extensively reviews works on AD and MCI as well, at the time of writing, less research was done on
classification of PD, thus forcing the authors to exclude several findings that are currently available.
In particular, only one classification study on PD is reviewed in the paper. Conversely, in Reference [15],
the authors considered the problem at hand only from a pattern recognition perspective. For this
reason, they did not consider a body of previous literature not using the established machine learning
experimental workflow. This paper is intended to provide a more comprehensive overview of the topic,
providing the reader with a broad and organized view covering a wider spectrum of methodological
approaches and analyses. In particular, the present survey aims at covering papers using either
statistical or classification approaches, starting from the earlier papers, which reports the first attempts
to investigating dynamic handwriting analysis for neurodegenerative diseases assessment, to the very
recent works. The topic received an exploding attention in the last few years; thus, this papers aims at
covering also the very recent advancements achieved.

1.3. Structure of the Survey

The present survey is intended to provide the reader not only with a historic, state-of-the-art,
and future perspective on the topic but also with some guidelines. These guidelines may be useful to
the reader to enter this line of research or to easily compare their findings with the existing literature.
For this reason, the literary review provided in this paper is divided in two parts. The first part,
which is reported in the next section, describes the experimental design typically adopted: the process
of dynamic handwriting analysis is sketched, and the main issues arising from its application to
health care are pointed out. Almost all surveyed studies, in fact, share a common experimental
design including data acquisition, feature extraction, and data analysis. In particular, different studies
reported the results of the application of different techniques, depending on the research question to be
investigated. The second part, which is reported in Section 3, discusses the main research questions
that have been addressed. As previously mentioned, the literature on this topic mainly followed three
research directions: providing insights into the motor control mechanisms of handwriting; monitoring
and tracking disease progression and the responsiveness of patients to therapies; and providing novel
instruments for the (possibly early) real-time disease diagnosis. The last section concludes the paper
and provides some considerations about directions for further research on the topic.

2. Typical Experimental Design

The studies investigating the application of dynamic handwriting analysis in neurodegenerative
diseases assessment typically follow a common experimental setup including data acquisition,
feature extraction, and data analysis (Figure 1). These issues are discussed separately in the
following subsections.
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Figure 1. Typical workflow of dynamic handwriting analysis (t stands for timestamp, p stands for
pressure, and bs stands for button status).

2.1. Data Acquisition

At this step, issues arising concern participant recruiting, apparatus choice, and acquisition
protocol definition. The currently available datasets are also described.

2.1.1. Participant Recruiting

In recruiting study participants, three aspects should be taken care of. The first important issue
is to have the groups under study balanced under some criteria. Besides their cardinality, the study
groups should be balanced at least in terms of age; otherwise, handwriting changes may be attributed
to age differences instead of underlying pathological conditions. A balanced education (typically
expressed in years) should also be considered, as there is evidence that education can influence the
dynamics of handwriting despite the presence of cognitive decline [16].

The second aspect, instead, is whether the patient is on/offmedication. For example, some studies
on PD dealt with patients under treatment of antiparkinson medication (e.g., References [17,18]).
These studies showed how handwriting significantly changes depending on the level of medical
treatment administered.

Finally, the third aspect concerns the disease severity, in accordance with some standard clinical
score. The unified Parkinson’s disease rating scale—UPDRS (part V) score, corresponding to the
Modified Hoehn and Yahr Scale [19], is a commonly used rating scale for describing how PD symptoms
evolve during time. Conversely, standard assessments of probable AD include cognitive and functional
tests such as the already mentioned MMSE or the Trail Making Test [20]. MMSE, in particular,
is a 30-point questionnaire which includes questions and problems in many areas: from orientation
to time and place, and attention and calculation, etc. Having data of patients at different degrees of
disease severity can better support the early disease diagnosis or the multi-class classification problem.

It is also important to pay attention to individuals who suffered injuries that could have significantly
affected their handwriting: these participants should be excluded.

2.1.2. Apparatus

Current technology makes available a multitude of devices for data acquisition, some of them
providing immediate visual feedback to the writer. The dynamic handwriting data are generally
acquired by using digitizing tablets and/or electronic pens. The dominant attributes acquired are the x-
and y-coordinates of the pen position and their time stamps. Moreover, pen tablets usually capture
more information than the pen trajectory, namely pen orientation (azimuth and altitude) and pen
pressure. In addition, pen tablets also detect the pen trajectory while the tip is not in contact with
the pad surface, allowing trajectory acquisition pen-ups. One measure, in fact, is the so-called button
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status, which is a binary variable evaluating 0 for pen-ups (in-air movement) and 1 for pen-downs
(on-surface movement).

It is worth remarking that elderly people may be unfamiliar with technological tools: to make
writing conditions as close as possible to the usual ones, writing with an inking pen on a sheet of paper
fixed to the tablet is an effective option (e.g., Reference [21]).

Electronic pens (also called “smart pens”) have been also adopted in alternative to tablets.
For example, in References [22,23] a Biometric Smart Pen (BiSP) biometric smart pen was used.
The BiSP pen is a multi-sensor pen system which is capable of capturing position, acceleration, and tilt
angle of the pen, as well as the pressure and vibration generated in the refill during writing and the
grip pressure of the fingers holding the pen.

Contrary to other diagnostic methods, such as medical imaging, data acquisition through these
devices can be carried out even in the patient’s home; moreover, the task performance is quite simple
and natural and does not require timing or exhaustive repetitions.

2.1.3. Acquisition Protocol

A crucial step in designing a computerized tool based on handwriting concerns the choice of the
most appropriate handwriting tasks to be administered for data acquisition. Some tasks, in fact, may be
redundant with other ones; others may even introduce noise in the data. Some recent works [24–26], in
fact, employed ensembles of classifiers, each built on the feature space of every single task, emphasizing
how a performance-driven selection of a subset of tasks can improve classification performance against
the use of all tasks simultaneously. Generally speaking, handwriting tasks can be classified into simple
drawing, simple writing, and complex tasks: they are described in the following paragraphs. It is
worth noting that, in order to allow participants to familiarize with the equipment, some preliminary
trials are typically required before the effective experimental session is carried out.

Drawing Tasks

Spirals, as well as meanders and circles, have been frequently used for the evaluation of motor
performance. Spiral drawing on a digitizing tablet, in particular, was pioneered by Pullman [27] for
assessing tremor. In fact, it is particularly suited to study motor control deficits in PD patients. The task
is very easy to perform and is usually well tolerated. In general, simple drawings have been used for
trajectory, tremor, dimension, and velocity evaluations, e.g., References [23,28,29]. Fine motor control
problems may be caused by a reduced capability to coordinate the fingers and wrist and by a reduced
control of wrist flexion. In Reference [28], for example, MCI and AD patients produced less automated,
accurate, and regular movement compared to controls when drawing a spiral with the dominant
hand. Differentiation between MCI and controls increased when subjects were requested to press
a device, with the nondominant hand, while drawing the spiral. In Reference [30], excellent sensitivity
in discriminating AD and MCI patients from controls with in-air movement was observed: the task
consisted in copying a simple 3-D house with two windows, a door, and a chimney. Drawing a simple
figure is very easy to perform and is usually well tolerated by all subjects. Complexity increases in the
intersecting pentagon copying task, which is part of the MMSE test. Patients, in fact, typically exhibit
constructional apraxia: drawing may contain fewer angles, spatial alterations, lack of perspective,
and simplifications [31]. Patients can be unable to perform the task even if they understand what they
should do. In particular, they typically show different drawing strategies: some trace the contours of
the figure to be copied, others put points first and then connect them with segments, and so on. These
issues can be reflected in the dynamic features of handwriting [31,32].

Writing Tasks

No-sense words composed by one or more character repetitions, for example lll and lele, can be
used, e.g., References [22,33–36]. These characters are easy to write in a recursive and continuous
fashion. One of the most typical evidence of PD is rigidity and tremor; thus, in contrast to controls,
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which show an automated handwriting, PD may produce slower and more irregular movements.
In addition, PD patients may write letters in a more segmented fashion and show micrographia over
time within the task [35]. The difficulty to anticipate the upcoming letter, in particular, may be the
expression of a general difficulty in producing simultaneous actions. For this reason, this task can
be discriminant also in the case of AD [34]. Writing words/sentences is suited to assess agraphia.
A sentence requires a high degree of simultaneous processing and may have a higher neuromotor
programming load than a sequence of the same characters, since it also involves linguistic skills,
attention, and memory (for example, in the case where the sentence must be remembered). It also
provides the possibility to evaluate the motor-planning activity between a word and the following one
(in general, a hesitation between two words could highlight the necessity to replan the writing activity,
while fluid writing can reveal the presence of an anticipated motor plan). A sentence allows one to
capture a large number of in-air movements between words; by contrast, a word could be written
without leaving the pen from the tablet surface [37,38]. Some works, e.g., Reference [39], also consider
handwritten signatures. A signature represents an automatic gesture rather than a programmed one,
as it is repeated very frequently during the lifespan. Since it requires only a minimal consciousness,
a signature can remain preserved even when the subject is no longer able to write. Therefore, signatures
may be weak predictors of cognitive impairment. Nevertheless, a signature carries a huge amount of
information about the person who signs. Indeed, features of handwritten signatures emphasizing subtle
deterioration of signature apposition have been successfully used to differentiate among groups [39].

Complex Tasks

Finally, the handwriting task can be part of a more complex task also involving cognitive
and functional issues. For example, handwriting has been examined together with a simultaneous
hearing and tone counting or has been part of a functional task (e.g., copying a bank cheque [40]).
In Reference [40], participants with MCI and AD showed a significantly longer in-air time than
controls. Moreover, they exerted more pressure on the surface: mean pressure, indeed, provided the
best information for classification. The well-known Clock Drawing Test involves not only executive
functions but also numerical knowledge, visual memory, planning, reconstruction, and visuospatial
abilities. When drawing the clock, people with better cognitive-functional level generally divide the
circle into different quadrants, placing the numbers 12, 3, 6, and 9 first and then the others. Conversely,
patients with dementia start writing from 1 or 12 (sometimes from 11), filling the whole space with the
following numbers; often, the clock is filled leaving out either the first or last number. The hands are
indicated with a simple segment, and this is not a sign of cognitive decline. Instead, missing the position
of the hands is a typical sign of cognitive or neurological deficit. In Reference [30], excellent sensitivity
and good specificity in discriminating MCI patients from controls were obtained with in-air time.
Finally, Trail Making Test and Attentional Matrices explore cognitive abilities and executive functions,
in particular attentional skills, visuomotor planning and problem solving. The examiner is interested
in evaluating the time of completion and the number of errors. In the Trail Making Test, the test taker is
asked to connect a sequence of numeric or alphanumeric targets. Recently, Reference [41] showed that
features related to timing (including times between and inside circles and rates between and inside
circles) and features related to mobility (including pauses, lifts, pressure, and size) provide additional
information not captured by the traditional paper-based Trail Making Test. The Attentional Matrice
test, instead, is a cancellation test in which the subject is asked to mark target digits assigned among
several distractors. In Reference [42], it was shown how the perceptual decision while scanning, easily
captured by in-air movement analysis, is impaired in cognitively deteriorated subjects.
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2.1.4. Datasets

Unfortunately, very few datasets are currently available to the research community. A schematic
description of each of them is provided in Table 1.

Table 1. Datasets (PD = Parkinson’s disease; AD = Alzheimer’s disease; EC = elderly controls).

Dataset Groups Apparatus Tasks Reference

PaHaW 37 PD, 38 EC Wacom Intuos 4M Spiral drawing, repetition of characters,
words, and sentence writing Drotár et al. [38]

NewHandPD 31 PD, 35 EC Biometric Smart Pen Spiral and meander drawing Pereira et al. [23]
ParkinsonHW 62 PD, 15 EC Wacom Cintiq 12WX Spiral drawing and stability test Isenkul et al. [43]
ISUNIBA 29 AD, 12 EC Wacom Intuos Touch 5 Repetition of a single word Impedovo et al. [44]

The Parkinson’s Disease Handwriting Database (PaHaW) consists of multiple handwriting
samples from 37 Parkinsonian patients and 38 age- and gender-matched controls. Subjects were
requested to complete eight handwriting tasks in accordance with a prefilled template: drawing
an Archimedes spiral; writing in cursive the letter l, the bigram le, and the trigram les; writing in
cursive the word lektorka (“female teacher” in Czech), porovnat (“to compare”), and nepopadnout (“to
not catch”); and writing in cursive the sentence Tramvaj dnes už nepojede (“The tram won’t go today”).

The original HandPD dataset comprises handwritten exams from healthy and PD people; thus, it
was primarily intended for static analysis. However, the dataset was further extended for dynamic
analysis purposes, comprising data from 66 individuals (35 healthy controls and 31 PD patients).
The extended version is called NewHandPD. Each individual was asked to draw 12 exams, with 4 of
them related to spirals, 4 related to meanders, 2 circled movements (one circle in the air and another on
the paper), and left- and right-handed diadochokinesis. During the exam, the handwritten dynamics
was captured by using the BiSP smart pen.

The ParkinsonHW database collects 62 PD patients and 15 healthy individuals. From all subjects,
three types of handwriting recordings, namely Static Spiral Test (SST), Dynamic Spiral Test (DST),
and Stability Test on Certain Point (STCP), were considered. The images of the spirals drawn by
patients are also provided. In the SST test, three Archimedes spirals appeared on the graphic tablet and
patients were asked to retrace them. Unlike SST, in the DST test, the Archimedes spiral just appeared
and disappeared at certain time stamps. This forced the patient to keep the pattern in mind and to
continue to draw. In the STCP test, there was a certain red point in the screen and the subjects were
asked to hold the digital pen on that point without touching the surface. The purpose of this test was
to determine the patient’s hand stability or hand tremor level.

Finally, the ISUNIBA dataset collected the data of 29 probable AD patients and 12 healthy controls,
who were requested to write the word mamma (“mother” in Italian) over different writing sessions.
This is one of the first words learned and one of the last words used before dying.

At the time of writing, Castrillón et al. [45] are developing a large set of Parkinsonian
handwritten patterns, including samples from adult and young healthy individuals. Concerning AD,
the Handwriting Analysis against Neuromuscular Disease (HAND) project, among its goals, intended
to release a large dataset of a battery of handwriting tasks performed by elderly controls and by people
suffering from MCI and neurodegenerative dementia [32,46].

2.2. Feature Extraction

The horizontal and vertical components of handwriting, as recorded by the tablet, are typically
segmented into on-surface and in-air strokes in accordance with the button status. A stroke corresponds
to a single trait of the handwritten pattern which is connected and continuous, i.e., between two
consecutive pen-lifts. By using the Cartesian coordinates of the sampled points and their time stamps,
several features can then be calculated for both on-surface and in-air strokes.

Kinematic features include number of strokes; tangential, horizontal, and vertical displacement,
velocity, acceleration, and jerk; number of changes of velocity/acceleration (NCV/NCA); and NCA
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and NCV relative to writing duration. Displacement corresponds to the straight-line distance
between two consecutive sampled points: it provides a good approximation of the pen trajectory.
From displacement, velocity, acceleration, and jerk can be straightforwardly calculated as the first,
second, and third derivatives of displacement, respectively. Analogously, displacement, velocity,
acceleration, and jerk can be calculated with respect to both the horizontal and vertical directions. NCV
and NCA are the mean number of local extrema of tangential velocity and acceleration, respectively.

Spatiotemporal features include stroke size and duration; speed and stroke speed; stroke height
and width; on-surface and in-air time; total time; normalized on-surface and in-air time; and
in-air/on-surface ratio.

In order to make use of the pressure signal, the following dynamic handwriting measures are also
typically calculated: mean pressure; number of changes of pressure (NCP); and relative NCP. NCP was
proposed in Reference [38], and its meaning is analogous to the concept of NCV/NCA, explained above.

In order to capture the randomness and irregularity of fine movements, which are difficult to
analyze using only the abovementioned features, the following features can also be computed for
both the on-surface and in-air horizontal and vertical components of handwriting [37]: Shannon and
Rényi entropy; signal-to-noise ratio (SNR); and empirical mode decomposition (EMD). EMD iteratively
decomposes the signal into so-called intrinsic mode functions (IMFs), which are functions that satisfy
two requirements: (1) the number of extrema and the number of zero crossings are either equal or
differ at most by one, and (2) the mean of their upper and lower envelopes equals zero.

It is worth noting that, to obtain complete statistical representations of the available features,
statistical functions of the feature vector are also computed. They include means, percentiles, moments,
and other statistical functions (range, median, mode, standard deviation, etc.). In addition, note that
features are generally normalized before classification so as to have zero mean and unit variance.

An alternative approach to modeling the handwritten patterns is to use the Kinematic Theory of
Rapid Human Movements [47,48] and, in particular, the so-called sigma-lognormal (ΣΛ) model [49].
This model has been used with successful results in many practical applications, for example, for
developing an online signature verification system [50] and for analyzing graphomotor performance in
kindergarten children [51]. The main advantage of this approach is that it is based on a physiological
model of the human movement production which can lead to an improved characterization of the
hidden specificity of the writers.

Finally, due to their increasing popularity, a robust alternative to more classic “hand-crafted”
features is to use features automatically learned by deep learning models. Some works, in particular,
used (possibly pretrained) convolutional neural networks for automatically extracting features from
static images obtained by exploiting dynamic information of the handwriting, e.g., Reference [52].

A schematic overview of the features most commonly used in the different studies is provided in
Table 2. Some features provide different perspectives on the same aspect of handwriting, e.g., kinematic
and spatiotemporal features are able to capture the fluency and (ir)regularities of handwriting
movements, leading to similar results. Some others, in particular those automatically learned by deep
learning models, are difficult to correlate with the other ones; however, they may provide novel and
nonoverlapping information. In general, almost all features, either directly measured by the digitizing
tablet or derived from them, have been used with promising results in every single study. Only the
pen angle information is typically discarded: its applicability appears to be not useful, even if a very
recent work applied it and reported encouraging results [53].
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Table 2. Most commonly used features: they are typically intended both on-surface and in-air.

Feature Description Observation

Direct

Position (x, y)-coordinates of the sampled points They are used to derive the geometrical pattern
of handwriting

Time stamp Temporal information of the
sampled points

It is used to derive the temporal duration of the
hand movement

Pressure Pressure exerted over the writing surface In patients, pressure takes on erratic values due
to cognitive and muscular difficulties

Tilt-x Angle between the pen and the
surface plane

Their use is typically ignored and their usefulness
is controversial

Tilt-y Angle between the pen and the plane
vertical to the surface

Button status Boolean variable of whether the pen is
on-surface or in-air

It enables the separation between on-surface and
in-air movements. It has been shown how the
two handwriting modalities carry on
nonredundant information

Kinematic

Displacement Trajectory during handwriting It is generally used to derive other
kinematic features

Velocity Rate of change of displacement with
respect to time

Patients suffering from neurodegenerative
diseases do not write with the same constancy of
healthy subjects but are affected by a lower
writing speed, with continuous
acceleration peaks

Acceleration Rate of change of velocity with respect
to time

Jerk Rate of change of acceleration with
respect to time

NCV/NCA Number of local extrema of
velocity/acceleration

These measures are tailored to capture the fluency
of the handwriting movement. Highly automated
movements are characterized by bell-shaped and
smooth velocity and acceleration profiles

Spatio-temporal

Stroke size Strokes’ path length Patients suffering from PD can
exhibit micrographiaStroke height/width Height/width of strokes

Stroke duration Movement time per stroke The average writing duration of a patient affected
by a neurodegenerative disease is typically
longer than in a healthy subject

Time Time spent on-surface/in-air
during writing

Entropy and energy

Entropy Entropy-based features These measures are tailored to capture the
randomness and irregularities of fine movements

SNR Signal-to-noise ratio
EMD Empirical mode decomposition

Model-based

ΣΛ-based Parameters of the ΣΛ reconstruction of
the handwritten pattern

The ΣΛ model can help investigate the dynamics
of handwriting during the generation of the
action plan

Automatically learned

Deep-learning based Features automatically learned by deep
learning models trained on static
representations of the
handwriting dynamics

Their meaning is typically hard to interpret: they
can express subtle between-group differences not
captured by traditional hand-crafted features

2.3. Data Analysis

The goal of this final step is to uncover useful patterns able to support decision making. Mostly,
the literature investigating handwriting changes due to aging and relies on statistical analyses to
perform this step. For example, the classic analysis of variance (ANOVA) is typically used to test group
differences across different measures of handwriting.

In the last years, the studies focusing on the development of computer aided diagnosis systems
have made use of machine learning and statistical pattern recognition strategies to discriminate between
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unhealthy and healthy subjects [54]. In a series of experiments, for instance, Drotár et al. found that
support vector machines, fed with kinematic and spatiotemporal features, provide better prediction
accuracy than other classic approaches, such as Naïve Bayes, e.g., Reference [37].

More recently, due to their increasing popularity in a plethora of recognition tasks, some works
investigated the usefulness of deep learning approaches [25,55]. The features automatically extracted
by a convolutional neural network can be used to feed a fully connected layer stacked on top of the
convolutional base or a more classic statistical classifier.

It is worth noting that, since the data at disposal are typically small, several resampling methods
are usually adopted to achieve more reliable evaluations of the classification performance, such as
cross-validation and leave-one-out [56].

A simple analysis, based on the visual inspection of the performed task and the velocity and
pressure profiles of handwriting is sketched in Figure 2.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Clock drawing test (CDT) performed by a healthy control, a PD patient, and an mild
cognitive impairment (MCI) subject: From top to bottom are the rendered task (the on-surface
movement is in blue color; the in-air movement is in red), the velocity profile, and the pressure
profile. It is recognizable how the PD patient tends to alter the figure dimensions, while the MCI
subject missed the correct time. The velocity and pressure profile show more peaks, highlighting
a movement which is characterized by less fluency and more changes of direction than the healthy
handwriting. (Data have been acquired within the Handwriting Analysis against Neuromuscular
Disease project—http://hand-project.di.uniba.it/). (a) Healthy CDT, (b) PD CDT, (c) MCI CDT, (d) healthy
velocity, (e) PD velocity, (f) MCI velocity, (g) healthy pressure, (h) PD pressure, and (i) MCI pressure.
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3. Research Directions

The studies involving dynamic handwriting analysis for neurodegenerative diseases assessment
can be broadly classified in accordance with the disease taken into account: Parkinson’s and Alzheimer’s
disease. For each of them, different lines of investigation can be identified: they are discussed in
the following.

3.1. Parkinson’s Disease

The papers focusing on Parkinsonian handwriting can be further classified depending on three
main research directions:

• Disease insight: the first category (including the oldest papers) have been devoted to providing
an insight into the fine motor control of handwriting and its relationship with the concomitant
impairment. The main goal is to better understand the involved mechanisms underlying PD;

• Disease monitoring: other papers studied the effects of medication on handwriting with the aim to
evaluate the effectiveness of handwriting analysis on monitoring disease progression;

• Disease diagnosis: the third category (including the most recent works) investigated the use of
handwriting as an inexpensive objective tool for automatic disease diagnosis.

This section is structured in accordance with this classification. A schematic overview is provided
in Table 3.

Table 3. Summary of studies on PD (EC = elderly controls; YC = young controls; and SZ = schizophrenia patients).

Reference Groups Tasks Main Features Main Findings

Disease insight

Phillips et al., 1991 7 PD, 7 EC, 7 YC Meander writing Kinematic and spatiotemporal Dynamic analysis can be useful to
characterize PD handwriting

Teulings and Stelmach,
1991 6 PD, 6 EC No-sense word and

a sentence Kinematic and spatiotemporal
PD patients experience problems with the
production and regulation of
force amplitude

Fucetola and Smith, 1997 20 PD, 20 EC Figure drawing Kinematic and spatiotemporal
PD patients have difficulties in adjusting
the size of their drawing to compensate for
distortions in visual feedback

Oliveira et al., 1997 11 PD, 14 EC No-sense word Kinematic and spatiotemporal PD patients write with a normal amplitude
when given external cues

Teulings et al., 1997 17 PD, 12 EC Lines, circles,
and no-sense words Kinematic

PD fine motor control problems may be
caused by a reduced capability to
coordinate the fingers and wrist and by
a reduced control of wrist flexion

Van Gemmert et al., 1998 9 PD, 9 EC, 9 YC Sentence writing Kinematic and spatiotemporal PD patients are vulnerable to a moderate
level of secondary task load

Van Gemmert et al., 1999 13 PD, 15 EC Lines, circles,
and no-sense words Spatiotemporal PD patients may have trouble in

maintaining a constant force amplitude

Swinnen et al., 2000 13 PD, 13 EC Triangle drawing Kinematic PD patients benefit from practice to
alleviate their basic motor deficits

Van Gemmert et al., 2001 7 PD, 7 EC No-sense word and
sentence writing Kinematic and spatiotemporal PD patients show micrographia when

cuncurrent processing load increases

Teulings et al., 2002 11 PD, 16 EC, 10 YC No-sense word Spatiotemporal PD patients rely on previous or ongoing
feedback to program subsequent strokes

Van Gemmert et al., 2003 13 PD, 13 EC No-sense words Spatiotemporal PD patients produce inadequate stroke
sizes when the size equals or exceeds 1.5 cm

Caligiuri et al., 2006 13 PD, 10 SZ, 12 EC “hello hello” Kinematic PD patients exhibit impaired movement
velocity and velocity scaling

Ponsen et al., 2008 13 PD, 13 EC Sentence writing Kinematic and spatiotemporal
Impairments in performing tasks involving
complex uni-manual upper limb
movements are an early sign of PD

Broderick et al., 2009 16 PD, 16 EC, 16 YC Shape drawing Kinematic PD patients show smaller-than-required
movement amplitude

Dounskaia et al., 2009 9 PD, 9 EC Line and circle
drawing Kinematic PD causes deficits in coordination patterns

between wrist and finger motions

Gangadhar et al., 2009 34 PD, 25 EC No-sense word Spatiotemporal
PD handwriting exhibits smaller size and
larger velocity fluctuations than
normal handwriting

Bidet-Ildei et al., 2011 7 PD, 7 EC No-sense words Kinematic and spatiotemporal PD handwriting does not show signs of
motor anticipation

Ma et al., 2013 15 PD, 15 EC A Chinese character Spatiotemporal Micrographia is not evident in
vertical writing
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Table 3. Cont.

Reference Groups Tasks Main Features Main Findings

Broeder et al., 2014 18 PD, 11 EC Loops while counting Kinematic and spatiotemporal PD patients exhibit deficits in handwriting
under dual-task conditions

Smits et al., 2014 10 PD, 10 EC
Circle, star, and spiral
drawing, a no-sense
word and a sentence

Kinematic and spatiotemporal
Handwriting can provide objective
measures for bradykinesia, micrographia,
and tremor

Senatore and Marcelli,
2019 30 PD, 30 EC, 30 YC Loop shapes Kinematic Parkinsonian handwriting is similar to that

produced by beginner writers

Disease monitoring

Eichhorn et al., 1996 29 PD, 40 EC Circle drawing Kinematic Dynamic handwriting analysis is useful for
quantifying dopamimetic effects

Contreras-Vidal et al.
and Poluha et al., 1998 10 PD No-sense words Spatiotemporal Handwriting measures show significant

trends across the levedopa cycle

Siebner et al., 1999 12 PD Lines, circles,
and a no-sense word Spatiotemporal subthalamic nucleus stimulation improves

handwriting performance in PD patients
Cobbah and Fairhurst,
2000 6 PD No-sense words Kinematic Dynamic handwriting measures are

indicative of positive response to dopamine

Boylan et al., 2001 10 PD Spiral drawing Temporal
repetitive transcranial magnetic stimulation
provides beneficial effects on
PD movements

Lange et al., 2006 12 PD, 12 EC Sentence writing Kinematic

Participants with an altered dopaminergic
neurotransmission shifted from
an automatic to a controlled processing of
movement execution

Tucha et al., 2006 27 PD, 27 EC Sentence writing Kinematic
Dopaminergic medication results in
improved dynamics of
movement execution

Randhawa et al., 2013 10 PD No-sense word Kinematic and spatiotemporal Fine motor performance benefit from
rTMS stimulation

Smits et al., 2015 14 PD Graphical tasks Spatiotemporal Graphical tasks are useful to assess upper
limb functioning

Danna et al., 2018 20 PD, 20 EC Spiral drawing Kinematic and spatiotemporal PD handwriting performance may not be
impacted by handedness

Disease diagnosis

Ünlü et al., 2006 28 PD, 28 EC
Meanders, sentence,
words, and no-sense
word writing

Pressure Pressure features can distinguish between
PD patients and controls

Drotár et al., 2013a PaHaW Kinematic and spatiotemporal Good accuracy is obtained by using only
on-surface features

Drotár et al., 2013b; 2014 Kinematic and spatiotemporal Accuracy improved with in-air features
Drotár et al., 2015a;
2015b

Kinematic, spatiotemporal,
entropy, and energy

Accuracy improved using entropy and
energy-based features

Drotár et al., 2016 Kinematic, spatiotemporal,
and pressure Pressure features can be profitably used

Rosenblum et al., 2013 20 PD, 20 EC Functional tasks Kinematic and spatiotemporal
Patients write smaller letters, applying less
pressure and requiring more performance
time than controls

Pereira et al., 2016; 2018;
Afonso et al., 2018 NewHandPD Deep learning-based The deep learning approach is promising

for the recognition problem at hand

San Luciano et al., 2016 138 PD, 150 EC Spiral drawing Kinematic and spatiotemporal Spiral analysis is a promising quantitative
biomarker for the early diagnosis

Kotsavasiloglou et al.,
2017 24 PD, 20 EC Line drawing Kinematic High predictive accuracy can be obtained

even using very simple tasks

Zham et al., 2017 27 PD, 28 EC Spiral drawing Kinematic and pressure
Spiral drawing can be partly used to
differentiate among degrees of
disease severity

Impedovo et al., 2018 PaHaW Kinematic, spatiotemporal,
entropy, energy, and pressure

Accuracy decreased in distinguishing
between controls and patients only at the
early stage of disease

Gallicchio et al., 2018 ParkinsonHW Deep learning-based Recurrent neural networks are
profitably used

Mucha et al., 2018 PaHaW Fractional derivative-based Promising results are obtained with
fractional derivative-based features

Impedovo, 2019 PaHaW Velocity-based New velocity-based features are proposed

Jerkovic et al., 2019 33 PD, 10 EC Sentence writing Kinematic The best results are obtained when
combining in-air to on-surface features

Loconsole et al., 2019 4 PD, 7 EC Word and no-sense
word writing Kinematic Gyroscope-based features are used with

promising results

Rios-Urrego et al., 2019 39 PD, 39 EC, 40 YC Spiral drawing and
sentence writing

Kinematic, geometrical,
and nonlinear features

Irregularities of handwriting increase
with aging

Diaz et al., 2019 PaHaW Deep learning-based A new dynamically enhanced static
representation of handwriting is proposed

Ribeiro et al., 2019 NewHandPD Deep learning-based
Recurrent neural networks can be fruitfully
used to capture tremor in time-dependent
handwriting signals

Ammour et al., 2020 28 PD, 28 EC Text copying Kinematic, pressure, and pen
inclination

A new semi-supervised approach is
proposed to discriminate among groups
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3.1.1. Disease Insight

Phillips et al. [57] and Teulings and Stelmach [58] were among the first to use digitizing tablets
to assess Parkinsonian handwriting. The work of Phillips et al. was the first showing how dynamic
handwriting features (in particular in the velocity domain) can successfully differentiate between
patients and healthy controls. Teulings and Stelmach (1991), instead, asked participants to alter their
usual handwriting in an attempt to study the extent to which the patients’ motor system can adjust size,
force, and speed parameters. Results showed that Parkinsonians, as well as controls, were generally
able to modify stroke size, peak accelerations, and stroke duration as they wrote the required patterns.
However, a signal-to-noise analysis suggested that the movement deficits were primarily due to
an impaired force-amplitude component rather than an impaired stroke-duration component.

Contreras-Vidal and Stelmach [59] were the first to integrate previous experimental data on the
anatomy of the basal ganglia to the motor impairments in PD; the aim was to develop a neural model
of the basal ganglia useful to explain normal and Parkinsonian movements. The model consists of
a model of basal ganglia, in which each nucleus is represented by a single unit, combined with a model
capable of learning and generating simple handwriting movements. This model was able to reproduce
many aspects of the normal and PD movement control including hypometria, bradykinesia, akinesia,
impairments in the coordination of multiple joints, micrographia, effects of levodopa on movement
size and speed, and pallidotomy. The simulation data of this model, in fact, were confirmed by the
experimental data obtained in some other studies, e.g., References [33,60].

Since proprioceptive, kinaesthetic, and visual feedback are essential for the completion of many
movements, impaired utilization of sensory feedback may retard the effective learning of motor
programs. Based on this hypothesis, Fucetola and Smith [61] investigated the effects of a distorted
visual feedback on the drawing performance of Parkinsonian patients. They observed that patients
were less able than controls to adjust the size of their drawing to compensate for distortions in visual
feedback. The effect was particularly pronounced when patients were required to draw smaller than
normal. Nevertheless, with practice, PD patients showed a similar degree of improvement in size as
controls, although they did not match the control group’s level of performance.

Oliveira et al. [62] investigated whether micrographia in individuals with PD is lessened either
by giving visual targets or by continually reminding them that they should write in a normal way.
In a first trial of free writing, patients showed micrographia, as they reduced their letter size over
time within the trial. However, the letter size increased significantly when they were given either
visual targets or constant auditory reminders. This improvement persisted when, shortly afterwards,
the patients were requested to write freely without external cues.

Teulings et al. [33] investigated whether Parkinsonism reduces coordination of fingers, wrist,
and arm in fine motor control. These movement problems contribute to an increase in jerk levels, as
jerk represents the rate of change of acceleration over time. In the PD group, back-and-forth strokes
involving coordination of fingers and wrist showed larger normalized jerk than strokes performed
using either the wrist or the fingers alone. Moreover, wrist flexion showed greater normalized jerk
in comparison to wrist extension. The elderly control subjects showed no such effects as a function
of coordination complexity. Thus, the authors hypothesized that fine motor control problems in PD
patients may be caused by a reduced capability to coordinate the fingers and wrist and by a reduced
control of wrist flexion.

Van Gemmert et al. [63] tested the hypothesis that PD patients are more vulnerable to a moderate
level of secondary task load than elderly or young controls due to a heightened variability in the
motor system. Patients and the two control groups were requested to write a sentence under four load
conditions: start writing after they heard the recorded word “start”; ignore auditory presented digits
while writing; repeat orally the presented digits; and subtract the number 2 from each presented digit
and pronounce the outcome aloud. The results obtained showed that, in contrast to young and elderly
controls, PD patients tended to increase movement time and normalized jerk when the secondary task
consisted primarily of motor load. Furthermore, it was shown that PD patients did not reduce writing
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size because of a high level of mental load: this suggested that writing in an automated fashion does
not cause micrographia.

Van Gemmert et al. [60] investigated whether PD patients can have difficulty in increasing stroke
size, decreasing stroke duration, or both during the execution of noncomplex handwriting tasks. To this
end, they designed an experiment comprising simple writing patterns, such as straight lines and circles,
requesting participants to vary writing size and speed. Although the different handwriting patterns
affected movement time and writing size significantly, patients did not show increasing difficulty in
maintaining writing size and/or stroke duration because of a decrease of pattern complexity: thus, it
was argued that the complexity of a pattern is likely to not be a relevant factor in handwriting.

In Reference [64], Swinnen et al. addressed the problem of determining whether practice modifies
the temporal and spatial features of handwriting in PD patients. The findings obtained showed that
PD patients can change their performance thanks to practice, suggesting that practice may help them
to partly overcome bradykinesia. Nevertheless, they never reached the performance level obtained by
the elderly control group.

Van Gemmert et al. [65] hypothesized that the cause of micrographia in PD patients can be
associated with the concurrent processing demands that result from the coordination and control of
fingers, wrist, and arm during writing and processing of future words. In their experiments, patients
and controls were requested to write four different phrases of various word counts. All phrases started
with an llll pattern, and this pattern was repeated later in the phrase. PD patients reduced stroke
size when the number of words increased in the phrase, i.e., when the processing demand increased.
This finding suggested that the motor system of PD patients anticipates increased processing demands
by reducing stroke size rather than increasing stroke duration.

Teulings et al. [66] compared PD patients to elderly people and young adults with respect to their
ability to use visual feedback to control handwriting size. Participants wrote sequences of cursive
l-shaped loops on a digitizer display, which enabled the authors to distort the visual feedback without
the participant’s knowledge by altering the vertical dimension of handwriting. The results showed that
controls gradually corrected loop size by enlarging (or reducing) the size of the entire loop sequence.
Conversely, PD patients showed an entirely different response: instead of correcting for the distortions,
they progressively amplified its effect. This suggested that PD patients do not adapt their visuomotor
map in response to the distorted visual feedback of handwriting. Instead, they seem to rely constantly
on the visible trace feedback during the ongoing movement. The authors thus hypothesized that they
either plan their writing based on the visual feedback of their previous strokes or that they attempt to
track the ongoing, distorted handwritten trace.

Van Gemmert et al. [67] evaluated the ability of PD patients to increase stroke size independently
of stroke duration for different sizes. Patients and controls were requested to write cursive patterns at
different sizes (1, 1.5, 2, 3, and 5 cm). Each target pattern was displayed at its required size on the tablet
but disappeared as soon as the pen touched the surface of the screen. In contrast to controls, patients
with PD undershot the target size of 2 cm and, when required to write as fast as possible, they even
undershot the 1.5 cm target size. These findings support the hypothesis that the range in which stroke
size can be manipulated without significant changes in stroke duration is smaller in Parkinsonian
handwriting than in the healthy handwriting.

Caligiuri et al. [68] examined the handwriting dynamics of patients with idiopathic PD,
schizophrenia, and drug-induced Parkinsonism (SZ) and of healthy control. Participants were
instructed to write the word hello twice at three vertical height scales. The (in)ability to scale movement
velocity with increasing movement distance was quantified. Four observations were drawn: (1) both
SZ patients with drug-induced Parkinsonism and PD patients exhibited impaired movement velocities
and velocity scaling; (2) performance on the velocity scaling measure can distinguish drug-induced
Parkinsonism from controls with 90% accuracy; (3) SZ, but not PD, participants displayed abnormalities
in movement smoothness; and (4) there was a positive correlation between age and magnitude of the
velocity scaling deficit in PD participants.
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Ponsen et al. [69] were among the first to analyze handwriting in newly diagnosed, untreated PD
patients. The results of the study showed that newly diagnosed patients are impaired in performing
complex uni-manual upper limb motor tasks in comparison to healthy subjects. They appeared to be
particularly impaired in their handwriting, exhibiting reduced sentence length and writing velocity
and a decrease in letter height during writing. Therefore, the authors concluded that impairments in
performing tasks involving complex uni-manual upper limb movements are an early characteristic of
PD; thus, they could be used for the early disease diagnosis.

Broderick et al. [70] considered a drawing task instead of handwriting ones to address the
hypothesis that PD patients exhibit deficits in controlling acceleration when the task involves an increase
in inertial load, specifically under the requirement to increase movement amplitude and/or speed,
and in the weight of the pen. Patients showed significantly lower mean velocity, lower acceleration,
higher constant error of stroke length, and higher normalized jerk scores than controls. Nevertheless,
these effects were not worsened by adding weight to the pen. The observed smaller-than-required
movement amplitude suggested a relationship between hypometria and bradykinesia in drawing
and/or handwriting.

In Reference [71], Dounskaia et al. tested the hypothesis that PD affects differently handwriting
movements depending on the coordination pattern of wrist and finger motions. To investigate this
hypothesis, the groups under study were requested to perform three types of cyclic wrist and finger
movements: drawing two lines and a circle. Although both groups deformed the circle during fast
movements, the deformation was more pronounced in patients than in controls. A possible reason for
this is that PD patients may be unable to properly regulate the influence of biomechanical factors on
wrist and finger motion.

In the model of PD handwriting proposed in Reference [59], basal ganglia nuclei is modeled as
lumped units, with activity levels represented by rate codes. Basal ganglia dynamics is described in
terms of fixed-point behavior; thus, only magnitude-related aspects of handwriting—faster/slower,
larger/smaller, etc.—can be captured. Gangadhar et al. [72] presented an alternative model of
Parkinsonian handwriting, which produces a stable rhythm in a network of oscillators and resolves the
stroke output in a Fourier-style. In the paper, the model predictions were compared to handwriting
data obtained by patients and controls. PD handwriting statistically exhibited smaller size and
larger velocity fluctuation compared to normal handwriting. These findings were reflected in both
experimental data and network predictions.

Bidet-Ildei et al. [35] hypothesized that, if it is true that PD patients produce sequential movements
in a more segmented fashion, then they should have difficulties in anticipating the forthcoming letter.
Their experimental findings revealed that handwriting in PD patients did not exhibit any sign of motor
anticipation: although they could write three letters without pauses, PD patients tended to produce
each letter in a more independent manner. In order to explain this, the authors suggested that the
difficulty in anticipating the upcoming letters may be the expression of a general difficulty in producing
simultaneous actions.

Ma et al. [73] noticed that all the published studies investigating micrographia in PD examined
handwriting only in the horizontal direction, as the handwritten samples analyzed were primarily in
Western languages. However, several other languages, as those from Eastern Asia, can be written not
only horizontally but also vertically, from top to bottom. Since different directions require different joint
coordination patterns and writing horizontally requires more wrist extension than writing vertically,
the micrographia reported in horizontal writing may not be generalized to characters written vertically.
To investigate on this problem, the authors asked patients and controls to write Chinese character
Zheng. The main finding was that the PD group had a linear decrease in overall character size and
horizontal strokes along the writing sequence in the horizontal direction but not in the vertical direction.
This observation confirms that micrographia in PD may be associated with wrist extension.
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Broeder et al. [74] obtained results in line with the abovementioned study by Van Gemmert et al. [63]:
they observed that PD patients experience more dual-task interference during writing than controls
when performing a cognitive tone-counting task and a writing task simultaneously. Dual-task
interference refers to the decreased performance experienced during dual tasking, i.e., when two motor
tasks with different goals are combined. More specifically, the secondary task consisted in counting
high and low tones during writing. The results obtained showed that dual-task performance was
affected in PD patients. In particular, they suggested that the control of writing at small amplitudes
requires more compensation brain-processing resources in PD than controls.

Smits et al. [36] investigated handwriting tasks that may be helpful to provide a quantitative
method to differentiate between PD patients and healthy controls: circle, star, and spiral drawing;
elel; and writing a sentence. The drawing and writing tasks were analyzed to evaluate the speed
of movement to assess bradykinesia and the size of writing to assess micrographia. In addition,
a frequency analysis was carried out to assess rest tremor. The results showed that Parkinson patients
tend to be slower than healthy control participants. PD patients also wrote smaller than controls.
Furthermore, rest tremor was detected in the group of patients who were clinically assessed as having
rest tremor.

In a very recent work [75], Senatore and Marcelli proposed a novel paradigm aimed at emulating
the early stage of handwriting learning in proficient writers by asking them to produce a familiar
l-shape with a novel, unfamiliar motor plan. In other words, participants were asked to produce the
sequence of strokes by using a motor plan different from the one an individual is used to. The authors
involved young and elderly healthy participants comparing them with the data of the pathological
group of the PaHaW dataset. The authors found that Parkinsonian writing during a familiar movement
is characterized by lack of fluency, slowness, and abrupt changes of direction, as the handwriting
produced by beginner writers. These results support the hypothesis that the fine tuning of the motor
plan parameters involved during the production of handwriting is deteriorated by PD.

3.1.2. Disease Monitoring

Papers falling in this category mainly investigated two kinds of treatment: antiparkinson
medication and neurostimulation. Concerning the former, in particular, PD treatment often involves
the administration of levedopa to reduce the associated rigidity and bradykinesia. During this
treatment, a conversion process occurs in the brain so that levedopa becomes dopamine and the
reduced level of the body own’s dopamine is compensated.

Eichhorn et al. [17] used a computational analysis of open-loop handwriting movements to
monitor the effect of levodopa and apomorphine in three groups of Parkinson patients: those with
untreated probable Parkinson’s disease, those with fluctuating PD, and some other patients with known
levedopa unresponsive Parkinsonism. Subjects were instructed to draw fluently concentric circles.
After apomorphine injection, the group with untreated probable PD and the group with long-standing
PD showed significant improvement of kinematic features. The patients with levedopa unresponsive
Parkinsonism did not change significantly in any of the parameters under study. In conclusion of
the paper, the authors observed that the improvement of handwriting kinematics by dopamimetic
stimulation may be helpful to predict responsiveness to levodopa treatment in Parkinsonian syndromes.

Levedopa levels decay over several hours; thus, every few hours, another dose of levedopa
should be taken. In light of this, Contreras-Vidal et al. [76] and Poluha et al. [77] hypothesized that
Parkinsonian handwriting would change across the levedopa cycle. The most remarkable finding of
these studies was that handwriting up-stroke duration varied significantly across the medication cycle.

In Reference [78], Siebner et al. investigated the effect on handwriting of high-frequency
stimulation of the subthalamic nucleus (STN), which is a therapeutic approach in patients with
severely disabling PD. During high-frequency STN stimulation, handwriting movements became faster
and smoother, indicating a partial restoration of the open-loop automatic performance. In addition,
a stimulation-related reduction in micrographia was observed.
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Cobbah and Fairhurst [79] investigated the dynamic changes evident in ordinary handwriting
under strict dopamimetic challenge test conditions. Patients with Parkinsonism were requested to
write handwriting patterns before medication and once again at peak motor performance, after doses
of apomorphine or levodopa were administered. The results obtained suggested that a differentiation
between on and off states in dopamimetic tests is possible by using ordinary handwritten samples.
The effects reflected on kinematic features of handwriting, in fact, suggested improvements in movement
efficiency in the on state.

Boylan et al. [80] studied the therapeutic potential of repetitive transcranial magnetic stimulation
(rTMS) for PD by delivering stimulation at high intensity and frequency over time. rTMS is a noninvasive
technique that allows the cortical excitability to be altered; thus, it can induce a dopamine release
in the stratum of people with PD. Among some other tests, assessment included spiral drawing as
handwriting task. The major finding of the study was the worsening of motor performance on spiral
drawing with active rTMS to the supplementary motor area (SMA) of patients.

Lange et al. [81] carried out a battery of experiments to study the role of dopamine in movement
execution during handwriting. The findings of the experiments showed that alterations of the
dopamine system adversely affect movement execution during handwriting. All experiments showed
that the number of inversions of the direction of velocity is increased in participants with an altered
dopaminergic neurotransmission.

A study analogous to the one reported in Reference [81], with the same apparatus and procedure,
allowed the authors to reach some other conclusions on the dopaminergic effects on handwriting
movements [18]. The main finding was that dopamine medication results in a partial restoration
of automatic movement execution: although dopaminergic treatment in PD patients resulted in
marked improvements in the handwriting dynamics, patients never reached an undisturbed level
of performance.

Analogously to Reference [80], Randhawa et al. [82] investigated whether the delivery of rTMS
impacts handwriting performance. The authors found that 5-Hz rTMS over SMA increased the global
size of handwriting. Moreover, the stimulation led to a decrease in the amount of pen pressure. These
findings suggested that 5-Hz rTMS over SMA can influence key aspects of handwriting including
vertical size and axial pressure, at least in the short term.

In Reference [83], Smits et al. evaluated the validity of a battery of graphical tasks useful to assess
upper limb functions in individuals with probable PD. The Purdue Pegboard Test (PPT), in which metal
pins have to be placed within holes, was used as a reference test. Only PD patients, who were on and
offmedication, performed the tasks. Moderate correlations between performance on graphical tasks
and the PPT test were obtained, suggesting that the set of graphical tasks is a valid tool to assess and
monitor upper limb functions in PD. In addition, the study showed that this set can be used to detect
subtle changes in performance after medication that are barely visible by only observing the patient.

Considering that handwriting involves linguistic processes that can be influenced by cognitive
impairments and sociocultural factors, Danna et al. [84] focused only on drawing tasks, particularly
spiral drawing, which have the advantage to involve exclusively motor mechanisms. Different analyses
were carried out to evaluate the effectiveness of digitized spiral drawing in distinguishing patients
with and without medical treatment. The results obtained confirmed this hypothesis. Surprisingly,
the general performance of PD patients was not impacted by handedness, suggesting that the
side-dominance of PD symptoms can prevail over handedness.

3.1.3. Disease Diagnosis

In Reference [22], Ünlü et al. focused on approaches for PD diagnosis based on the pressure
information provided by the electronic biosensor BiSP pen. It turned out that the most discriminating
feature, which achieved an Area Under the ROC Curve (AUC) equal to 0.933, was based on the
difference between the controlled writing pressure in the x-y direction and the tilt tremor of the pen. It
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was observed, in fact, that, for PD patients, the tremor control is better achieved during movements
(like handwriting) instead of constant pressure (pen tilt).

A remarkable contribution to the application of machine learning algorithms to the automatic
discrimination of PD was provided by Drotár et al. All their studies were carried out on a same
dataset, i.e., PaHaW, which the authors made freely available. In Reference [85], by comparing the
predictive potential of models built on every task individually and models trained merging all tasks,
the authors found that the best classification performance was reached by the combination of all
tasks. In Reference [86], the authors investigated the extent to which classification performance can be
improved considering not only on-surface but also in-air movement, since the two modalities appear
to carry on nonredundant information. They found that in-air features outperform on-surface features.
These findings were further improved in Reference [87], where different feature selection strategies
were employed. In addition to conventional kinematic handwriting measures, Drotár et al. [37] also
computed novel measures based on entropy, signal energy, and empirical mode decomposition of
the handwriting signals. These features provided more insight and better understanding of the data.
It is worth noting that, in this study, only on-surface movement was considered. In Reference [88],
instead, the authors employed these novel features also considering in-air movement. In Reference [38],
the authors introduced additional features based on the pressure exerted over the writing surface.
The fundamental pressure features were the value of pressure as captured by the tablet during the
particular task and the rate at which pressure changes with respect to time. Then, they introduced
correlation coefficients to capture the relationship between pressure and kinematic features.

It is worth remarking that, in all of the studies by Drotár et al., the spiral task was undertaken with
no significant impact on classification. This may have been due to the use of measures only tailored to
handwriting; instead, visual features, for example, those provided by deep learning algorithms [25,89],
seem to overcome this issue.

Rosenblum et al. [21] assessed whether simple characteristics of handwriting can provide
quantitative measures to accurately differentiate between PD patients and controls. Study participants
were requested to write their name and to copy an address. Significant group effects were observed:
compared to controls, patients wrote smaller letters, applying less pressure and requiring more
performance time. A discriminant function was found for the effective group classification of all
participants. Furthermore, the authors highlighted the importance to analyze handwriting not only
on-paper but also in-air, as significant differences were observed between these two writing conditions.
In fact, as the authors wrote, in-air time is a manifestation of “planning the next movement”, which
can reflect cognitive ability and supply information about the writer.

In Reference [23], Pereira et al. proposed NewHandPD, a dataset of signals extracted from the
BiSP smart pen comprising spiral and meander drawings. Each sensor of the device outputs the
whole signal acquired during the handwriting tasks; thus, it can be subsequently represented as a time
series. The authors used CNNs and meta-heuristic-based optimization techniques to fine-tune the
network hyper-parameters due to their ability to learn without human intervention. Hence, the main
contribution of the work was the application of a deep learning-oriented approach to aid PD diagnosis
as well as the design of a signal-based dataset.

The abovementioned work was extended by the authors in References [52,90]. In Reference [90],
CNNs were used to learn features directly from time-series-based images. The main hypothesis was
that texture-oriented features are able to encode the tremors during handwriting. In Reference [52],
the recurrence plot technique was used to map the pen signals into the image domain;
then, these images were used to instruct a CNN on how to learn discriminating features.
A recurrence plot enables to visualize repeated events of higher dimensions through projections
onto low-dimensional representations.

San Luciano et al. [29] assessed the validity of the digitized Archimedes spiral drawing as
a biomarker for the early diagnosis of PD. Spatial and temporal variables of handwriting were,
in general, significantly different between PD subjects and controls. A model using all features
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showed high discriminating validity. Therefore, the authors claimed spiral analysis to be a promising
quantitative biomarker for the early disease diagnosis.

Kotsavasiloglou et al. [91] asked patients and healthy subjects to draw a horizontal line on the
tablet’s surface, keeping the pen’s velocity as constant as possible. The choice of this simple task was
made with the expectation that one should be able to detect differences between the groups even in very
simple tasks, as the impairment manifests independently of the complexity of the task. Indeed, good
accuracy performance were obtained with a Bayesian classifier. It is worth noting that, as an additional
contribution, the authors introduced a new metric, termed normalized velocity variability, which
quantifies the variability of the pen’s horizontal speed as the line is drawn.

The majority of the studies focused on the binary discrimination healthy vs unhealthy,
independently of the degree of disease severity. In other words, the Parkinsonian group is typically
considered as a single cluster in which all subjects share the same degree of disease severity.
In Reference [92], Zham et al. addressed this issue by investigating the correlation between the
speed and pen pressure while sketching a spiral and the severity of disease symptoms. The strongest
correlation was found with a combination of these two parameters, which turned out to be useful for
the automatic differentiation between the low and high degree of severity. However, this measure
was not able to differentiate between low and middle and between middle and high disease severity.
In Reference [93], classification accuracy was refined by focusing on angular features and the count of
direction inversion during the sketching of the spiral.

In Reference [24], Impedovo et al. also addressed this problem by performing a classification
study on only a subset of the PaHaW dataset, focusing on the earlier and mild degree of disease severity.
They found that classification performance significantly drops when considering this subset, instead of
taking into account the entire dataset including the more severe cases. In this work, the authors also
showed how a multi-expert approach based on ensembling the different tasks at disposal can provide
better results than combining the features coming from each task into a unique high dimensional
feature vector.

Gallicchio et al. [94] further explored the application of deep learning techniques to aid PD
diagnosis through handwriting by exploiting recurrent neural networks. These networks were used to
obtain automatically significant features without human intervention from the time series data of the
ParkinsonHW dataset [43].

Mucha et al. proposed a new methodology for the kinematic feature analysis of PD handwriting
based on fractional derivatives of arbitrary order. Promising results using this techniques have been
reported in Reference [95].

In Reference [96], the author improved the results obtained on the PaHaW dataset [37] by
combining more classic features to new velocity-based features. The extended set of features include
parameters obtained from the application of the sigma-lognormal model, the Maxwell–Boltzmann
distribution, and the Discrete Fourier Transform to the velocity profile of handwriting.

Confirming the findings reported in Reference [21,87], Jerkovic et al. [97] found that in-air
and on-surface movement on the tablet tend to be statistically independent and to carry on
nonredundant information. The highest prediction accuracy in discriminating patients with PD
and atypical Parkinsonism from controls, in fact, resulted from the combination of both in-air and
on-surface parameters.

In Reference [98], Loconsole et al. were among the first to use features based on the gyroscope
signal obtained by the tablet. Unfortunately, their classification study was based on a very small
sample of participants.

Rios-Urrego et al. [99], in addition to using kinematic features, proposed to use geometrical
and nonlinear dynamic features. The latter, in particular, was meant to capture the distortions and
irregularities of handwriting, which are assumed to increase as the disease advances.

Diaz et al. [25] recently proposed a “dynamically enhanced” handwriting representation which
consists of synthetically generated images obtained by exploiting simultaneously static and dynamic
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properties of handwriting. Specifically, they proposed a static representation that embeds dynamic
information based on drawing the points of the samples, instead of linking them, so as to retain
temporal/velocity information, and that adds pen-ups in the same way. The new handwriting
representation was able to outperform the results obtained by using static and dynamic handwriting
separately on the PaHaW dataset.

Ribeiro et al. [55] focused on the analysis of tremor, being one of the most distinctive characteristics
of PD. In particular, they proposed to learn temporal information from time-dependent signals collected
from handwriting exams by exploiting bidirectional gated recurrent units along with an attention
mechanism. These units are a gated mechanism in recurrent neural network architectures. In addition,
the authors also introduced the concept of “bag of samplings” as a compact representation of the signals.
Experimental results on the NewHandPD dataset compared favorably with the previous literature.

In Reference [53], Ammour et al. proposed to use a clustering method to analyze several factors (i.e.,
age, intellectual level, frequency of writing per week, etc.), which can intervene in the characterization
of the groups under study. Then, by using a semi-supervised approach, the authors developed a model
for distinguishing the aspects of handwriting pertaining those factors from those related to pathological
conditions. A balanced cohort of healthy subjects and PD patients were involved, and they were
asked to copy a given Arabic text. Interestingly, among the features used, the authors also considered
measures of pen inclination based on the azimuth and altitude information provided by the tablet.
During data analysis, three clusters were observed: one where the pathological factor appeared to
be the only discriminating element of the corresponding subpopulation; another cluster with mostly
healthy people; and one characterized by a mixture of elderly controls (ECs) with medium intellectual
level and PD patients with high intellectual level and writing frequency. This finding corroborates the
hypothesis that education level may act as a resilience mechanism against the deterioration caused by
neurodegeneration [16].

3.2. Alzheimer’s Disease

Similarly to the classification of studies on PD made in the previous subsection, papers focusing
on handwriting in AD can be grouped in accordance with two main research questions:

• Disease insight: a group of papers examined changes in handwriting of AD and MCI patients to
identify patterns of sensorimotor dysfunction associated with the disease;

• Disease diagnosis: another group of works applied dynamic handwriting analysis for the purpose
to develop a computer-aided diagnosis system.

A schematic overview is provided in Table 4.
It is worth noting that, in contrast to studies focusing on PD, less research effort has been made

towards the investigation of AD; moreover, the literature still lacks studies involving the application of
dynamic handwriting analysis to support monitoring of disease progression. This is largely due to the
absence of effective cures that slow down disease symptoms. However, as MCI patients are at high
risk to develop in AD, handwriting changes found in this condition may be used not only for the early
disease diagnosis but also to monitor disease progression.
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Table 4. Summary of studies on AD (EC = elderly controls; YC = young controls; DEP = depressed
patients).

Reference Groups Tasks Main Features Main Findings

Disease insight

Slavin et al., 1999 16 AD, 16 EC No-sense word Kinematic and spatiotemporal AD patients exhibit less consistent
movement than controls

Schröter et al., 2003 35 AD, 39 MCI, 39 DEP,
40 EC

Circle drawing Kinematic AD and MCI patients differ from
healthy subjects in automation
parameters and regularity of
movement sequence

Yan et al., 2008 9 AD, 9 MCI, 10 EC Handwriting patterns
requiring the
coordination of finger
and/or wrist

Kinematic and spatiotemporal Patients show slow and
uncoordinated movements

Impedovo et al., 2013 ISUNIBA Kinematic Handwriting in impaired subjects
presents strongly irregular
velocity profiles

Faundez-Zanuy et al.,
2014

Not specified House drawing Kinematic and pressure Group differences are reflected by
cognitive impairments than motor
ones

Yu and Chang, 2016 20 AD, 12 MCI, 16 EC Line and circle drawing Kinematic The degree of motor impairment
may help identify those at risk
for AD

Disease diagnosis

Werner et al., 2006 22 AD, 31 MCI, 41 EC Functional tasks Kinematic and spatiotemporal Handwriting measures, especially
those related to in-air movements,
are promising for the automatic
discrimination

Pirlo et al., 2015 29 AD, 30 EC Signature Sigma-lognormal-based Signature deterioration can be
a disease predictor

Garre-Olmo et al., 2017 23 AD, 12 MCI, 17 EC Sentence copying and
writing, figure copying,
and CDT

Kinematic and pressure Higher specificity in
distinguishing between normal
and impaired condition and
higher sensitivity in
distinguishing between AD
and MCI

Kawa et al., 2017 37 MCI, 37 EC Single letter and
sentence writing

Spatiotemporal MCI writing is significantly
slower than the normal one

Müller et al., 2017a;
2017b

20 AD, 30 MCI, 20 EC House drawing and CDT Spatiotemporal In-air time is a good predictor for
disease diagnosis

El-Yacoubi et al., 2018 Different aging
conditions

Word and sentence
writing

Kinematic and spatiotemporal Classification based on temporal
representations improves

Ghaderyan et al., 2018 15 AD, 13 MCI, 15 EC Spiral drawing and word
writing

Kinematic and spatiotemporal Individual variability of
handwriting can be mitigated by
noise-robust methods such as
singular value decomposition

Angelillo et al., 2019 36 MCI, 29 EC Attentional matrices Kinematic and entropy Digitized attentional tasks are
promising for discriminating
cognitively impaired individuals
from controls

Impedovo et al., 2019 71 MCI, 34 EC Standard and
nonstandard writing and
drawing tasks

Kinematic An integrated protocol for disease
diagnosis based on handwriting
is proposed

Ishikawa et al., 2019 10 AD, 25 MCI, 36 EC Standard writing and
drawing tasks

Kinematic The usefulness of digitizing
neuropsychological tests on the
tablet is supported

Disease Insight

Slavin et al. [34] were among the first to assess handwriting dynamics in patients with dementia
of Alzheimer’s type by making use of a digitizing tablet. Irrespective of medication or disease severity,
patients wrote strokes of significantly less consistent length than controls and were disproportionately
impaired by a reduction of visual feedback. Moreover, patients’ strokes had a significantly less
consistent duration and a significantly less consistent peak velocity than controls. The authors
suggested that the more variable performance of patients indicates a degradation of the base motor
program and resembles that of Huntington’s disease rather than PD. It may indeed reflect frontal
rather than basal ganglia dysfunction; thus, it seems that relative movement duration may be useful to
differentiate between subcortical dementias (like PD) and cortical dementias (like AD).

In Reference [28], Schröter et al. adopted dynamic handwriting analysis to quantify differences in
fine hand motor function in patients with probable AD and MCI compared to depressed patients and
controls. All participants were instructed to perform two tasks. The first one consisted in drawing
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concentric superimposed circles as fast and fluently as possible with the dominant hand; the second
task was identical to the first one but, in addition, participants were requested to simultaneously
perform a distraction task (pressing a counting device as often as possible) with the nondominant
hand. The results obtained showed that kinematic handwriting parameters were effectively related
to cognitive status in elderly patients. Patients with MCI and probable AD exhibited a loss of fine
motor performance: especially when compared to control subjects, movements of AD patients were
significantly less automated, accurate, and regular.

Yan et al. [100] investigated whether the decline in fine motor control and coordination characterizes
sensorimotor deficiencies of cognitively impaired patients with AD or MCI. Their findings supported
this hypothesis. Specifically, when performing handwriting tasks, movement slowing was associated
to MCI and AD. When performing fine movements, the AD patients also showed more jerky movement
than the other groups.

In Reference [44], Impedovo et al. investigated the relationship between the delta-lognormal and
the sigma-lognormal models [49] and the early signs and symptoms of AD. The previously mentioned
dataset ISUNIBA was collected and used to perform the analysis. By looking at the speed profile along
the writing process, it was observed that the maximum speed value was almost always regular in
healthy subjects; instead, this regularity was strongly reduced for the patients at the beginning of the
disease and completely lost in the patients at advanced stages of the disease.

Faundez-Zanuy et al. [101] compared dynamic characteristics of drawing tasks performed by
patients with probable AD and controls. Although some pathological drawings looked “normal”
if only considering on-surface movements, in-air patterns and pressure appeared quite entangled.
Interestingly, pressure and in-air information were significantly different between the groups even
when controls were requested to perform the tasks with the nondominant hand. This suggested that
the differences between the groups may not reflect physical problems but cognitive ones.

Yu and Chang [102] explored the motor impairments of individuals with probable AD and
amnestic MCI through handwriting analysis. The results showed that slowness and irregularity
of movement of AD and MCI patients were not present in all the proposed tasks. For example,
impairments were not found when drawing straight lines and cursive-connected loops. Instead, AD
and MCI participants had more difficulty than the control group when drawing circles. The study
mainly provided evidence that MCI is characterized also by motor dysfunction.

3.3. Disease Diagnosis

The study by Werner et al. [40] was aimed at examining kinematically the handwriting process
of individuals with MCI compared with those with mild Alzheimer’s disease and healthy controls;
assessing the importance of the kinematic measures for the differentiation of the groups; and assessing
characteristics of the handwriting process across different functional tasks. Participants were requested
to perform five functional writing tasks, such as copying a phone number and a grocery list. Two
underlying assumptions guided the selection of these tasks: they are functional tasks related to the
performance of daily activities; moreover, they reflect an increase in difficulty, as they are long and
involve cognitive effort. An ANOVA test was used to test group differences across measures (both
on-surface and in-air) for each writing task. Furthermore, a discriminant analysis was carried out
to determine which features would be the best predictors for classification. The results of the work
showed significant differences between the three groups under study in almost all measures, with the
MCI group assuming, as expected by the authors, a position between the other two groups. Temporal
measures (especially in-air time) were higher in the more cognitively deteriorated groups, while the
mean pressure was lower. The results also showed that kinematic measures of the handwriting process,
together with cognitive status measures, provide an efficient way to differentiate between the groups,
although the classification of MCI was relatively poor. Finally, the writing characteristics of participants
in all groups showed that, although measures of velocity and pressure remained stable across the
different tasks, the temporal and spatial measures increased as the difficulty of the task increased.
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Although this finding might be obvious, it is interesting that the increase was reflected mainly in the
in-air movements.

In Reference [39], Pirlo et al. investigated the extent to which the analysis of dynamic features
extracted from handwritten signatures can be fruitfully used for the binary classification healthy vs.
AD. A signature, in fact, is well-known to convey a huge amount of information related not only to
the representation of the name and surname of the signer but also to the writing system (hand, arm,
etc.) as well as the psychophysical state. The feature extraction phase was accomplished in accordance
with the sigma-lognormal model of the Kinematic Theory of Rapid Human Movements. The best
classification performance was obtained by using a Bagging CART (classification and regression tree)
classifier. It is worth noting that some contrasting result was obtained by Renier et al. [103], who found
no significant correlation between signature deterioration and level of cognitive decline.

Garre-Olmo et al. [31] compared the dynamic characteristics of handwriting and drawing between
patients with probable AD and MCI and healthy controls. Participants were asked to copy one sentence,
to write a dictated sentence and an own sentence, to copy two and-three dimensions drawings, and to
execute the Clock Drawing Test. By means of discriminant analyses, the authors explored the value
of several kinematic features in order to classify participants depending on their degree of cognitive
functioning. The degree of correct classification was dependent on the nature of the groups to be
classified and the specific task. Classification performance showed higher specificity values when
distinguishing between normal and impaired cognition (MCI and AD) and higher sensitivity when
distinguishing between impaired cognition levels (MCI and AD). Interestingly, the results obtained
showed that, for the same task, the discriminant parameters differed depending on the type of group
to be discriminated, suggesting that they are not the dimensional features of the parameters but rather
the qualitative combination of these parameters that are relevant for group discrimination.

Kawa et al. [104] evaluated the usefulness of handwriting features obtained with an electronic
pen to distinguish MCI patients from controls. Subjects with confirmed MCI needed more time to
complete two out of three writing tasks, as their writing was significantly slower. These results were
associated with a longer time to complete a single stroke of written text. The written text was also
noticeably larger in the MCI group in all three tasks.

Müller et al. [30] investigated movement kinematics between patients with early dementia due to
probable AD, patients with amnestic MCI, and cognitively healthy control individuals while copying
a three-dimensional house using a digitizing tablet. Receiver operating characteristic (ROC) curves and
logistic regression analyses were conducted to explore whether alterations in movement kinematics
could be used to discriminate patients with MCI and AD from controls. In-air time differed significantly
between the three groups, showing an excellent sensitivity and a moderate specificity to discriminate
MCI subjects from normal elderly and an excellent sensitivity and specificity to discriminate patients
affected by mild AD from healthy individuals. On-surface time differed only between controls and
patients with AD but not between controls and patients with MCI. Furthermore, the total time (i.e.,
in-air plus on-surface time) did not differ between patients with MCI and early dementia due to AD.

In Reference [105], Müller et al. reported the results of an experiment analogous to the previous
one, employing the same apparatus and the same participants. What differed from the previous study
was the task the participants were requested to perform, which consisted in a digitized version of the
classic Clock Drawing Test. While the traditional CDT revealed only poor sensitivity but excellent
specificity in discriminating MCI patients from healthy individuals, excellent sensitivity and a good
specificity were obtained in discriminating these groups when considering the digital version of the test.
In Reference [106], this research was extended by comparing the digital Clock Drawing Test with the
traditional Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) neuropsychological
test score. Digital Clock Drawing Test (dCDT) provided a slightly better diagnostic accuracy for the
discrimination of amnestic MCI from controls than using the CERAD score. Instead, in differentiating
patients with mild AD from controls, both tests provided excellent accuracy.
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El-Yacoubi et al. [107] proposed a novel paradigm for studying handwriting changes due to
cognitive decline (or aging) by addressing the major limitations of the state-of-the-art solutions. The first
one is the assumption of a unique behavioural trend for each cognitive profile. This restriction was
relaxed by allowing, for each profile, the emergence of a multi-modal behavioural pattern reflecting
the diversity of behaviours within a given healthy condition. The authors achieved this by using
unsupervised or semi-supervised learning algorithms to uncover homogeneous groups of subjects and
byanalyzing how much information these clusters carry on about the cognitive profiles. The second
main limitation is the encoding of handwriting spatiotemporal dynamics only by using global or
semi-global parameters, assumed implicitly to be discriminant. The proposed method is based on
a representation learning approach which is suitable for treating sequential data from which temporal
feature representations can be uncovered. A key advantage of this temporal representation learning is
that it is fully explainable, as it can be visualized and easily understood. The main finding of the work,
from a diagnostic perspective, is that MCI individuals tend to form clusters either with controls or AD
patients, revealing that MCI individuals have fine motor skills with characteristics from both the two
extreme groups.

An approach similar to the previous one was followed by the authors in Reference [108].
In particular, they modeled the velocity trajectory of loop-like movements through a temporal
clustering based on dynamic time warping as a dissimilarity measure. For classification, the authors
used a Bayesian framework, which aggregates the contributions of the clusters by combining the
discriminating power of each oh them probabilistically.

In Reference [109], Ghaderyan et al. pointed out how shape and writing style differences among
individuals are sources of undesired variability in the handwriting signals which may affect the
recognition performance. In order to mitigate this effect, the authors proposed a noise-robust method
based on the singular value decomposition and a sparse nonnegative least-square classifier to make
the handwritten patterns less dependent on small individual variations.

In Reference [42], Angelillo et al. proposed a digitized version of the Attentional Matrices Test for
selective attention assessment: it is based on three matrices of increasing difficulty, and the subject
is asked to the mark target digits assigned. The authors observed how, although a pathological
matrix may look “normal” if considering only the on-surface pattern, the information provided by
in-air movements reveal a completely deteriorated search strategy of the targets to be marked among
the distractors. An ensemble built over three different classifiers trained on the matrices separately
provided the best classification performance.

In Reference [32], Impedovo et al. proposed a handwriting-based protocol for screening and
follow-up of dementia based on a digitized version of standardized cognitive and functional tests (such
as Mini-Cog and MMSE), together with handwriting and drawing tasks currently under investigation
by researchers. The proposed protocol achieved good specificity in distinguishing MCI patients and
controls. A similar work has been recently presented in Reference [110], where Ishikawa et al. proposed
to use a digitized version of neuropsychological tests developed on a digitizing tablet to learn to
distinguish between AD, MCI, and EC subjects.

4. Conclusions and Future Directions

The body of evidence on computerized handwriting analysis supports the hypothesis that
physical, cognitive, and psychological characteristics of individuals can be captured by handwriting
measures. In particular, changes in handwriting seem to be a prominent biomarker for the evaluation of
neurodegenerative diseases. Several works, in fact, provided evidence that the automatic discrimination
between unhealthy and healthy people can be accomplished on the basis of features obtained through
simple and easy-to-perform handwriting tasks. In this view, as the number of devices for data capturing
and processing is increasing all over the world, the use of handwriting to detect and monitor health
conditions is becoming more and more attractive. In particular, the advent of digitizing tablets and
electronic pens allow researchers to investigate not only the static characteristics of handwriting
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available only after the writing process has occurred but also dynamic characteristics collected when
the handwriting task is still in progress. Based on dynamic analyses, several works provided evidence
that certain aspects of the handwriting process are more vulnerable than others and may therefore
present diagnostic signs.

A handwriting-based decision support system has the potential to assist clinicians at the point of
care, providing a novel diagnostic tool while reducing the expenditure of public health care. Moreover,
it can be used to quantify aspects of the motor system and its disorders in order to better understand
the involved underlying mechanisms, e.g., the difficulties in coordinating the components of a motor
sequence movement. Finally, it can help study the effects of medication on handwriting with the aim
to monitor the responsiveness of the patient to therapy. More in general, handwriting can provide
a simple, user-friendly, and easy-to-use instrument to support the daily clinical trials. Artificial
intelligence and machine learning, in fact, are changing the way we think of health care from many
perspectives, and the use of computer aided tools within medical practice is continuously increasing.
The best perspective of this line of research is the integration of new medical tools which can increase
the level of diagnostic accuracy. Doctors can be provided with user-friendly tools in their daily practice,
even though they are not necessarily skilled in high-level algorithms. In this sense, a handwriting-based
tool is attractive since it not only provides the user with an automatic response within few seconds but
also allows the doctor to store useful metadata, e.g., the patient’s information and diagnosis, for later
use. Of course, handwriting-based intelligent systems are not expected to replace standard techniques
or even doctors but rather to provide additional evidence to further support the clinical assessment.
Intelligent systems technology is proving beneficial in a number of health domains, also including
neuroimaging [111] and cardiovascular risk assessment [112].

The present paper has been devoted to provide a comprehensive overview of the literature dealing
with the application of dynamic handwriting analysis to the assessment of Parkinson’s disease and
Alzheimer’s disease. Three well-defined research trends have been identified, ranging from studies
aimed at understanding the facets of fine motor control related to the disease to works investigating
the application of dynamic handwriting features to disease monitoring and diagnosis. Handwriting
features in PD and AD patients can overlap; in particular, handwriting is typically slower, less regular,
and less consistent in patients if compared to the healthy counterpart. However, the two diseases also
show distinctive characteristics. PD patients tend to exhibit rigidity of movements and unwanted
muscle contractions, while preserving, in most cases, their cognitive faculties. AD and MCI patients,
on the other hand, tend to exhibit a more pronounced alteration of their visuospatial abilities and
executive functions, while preserving their fine motor control. These features can be reflected on the
production of handwritten patterns, especially in more complex handwriting tasks.

Encouraging results have been so far obtained; however, there still remain open issues demanding
further research. First, interoperability is still a problem, since data are typically obtained from
different devices and different handwriting tasks. Some works, e.g., References [29,32,87], provided
the community with tentative hand-drawing/handwriting protocols for the assessment of PD and AD.
An integrated protocol, as the one proposed in Reference [32], may be useful to the research community
to collect different handwritten traits; at the same time, it may be of real use for doctors to support
their daily activities.

Another important problem is related to the collection of a statistically significant large amount
of samples. The research community still lacks a large benchmark dataset so that different tools,
algorithms, and techniques can be effectively evaluated and compared. The few datasets currently
available are composed by very few subjects and do not always consider other factors such as the stage
of disease, the medical treatment, and so on. Unfortunately, collecting a large benchmark database is
a time-consuming and expensive process. Furthermore, as neurodegeneration evolves during time,
such a dataset should longitudinally follow a same group over several years.

Senatore et al., in Reference [113], recently raised another important issue: the acceptance of
artificial intelligence-based diagnosis systems by physicians may be hampered by the black-box
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approach implemented by most state-of-art systems. To address this problem, the authors proposed
an evolutionary approach based on Cartesian Genetic Programming which allows for the automatic
detection of the presence of disease and, simultaneously, provides the explicit classification rules used
by the system. This approach can allow physicians to derive guidelines that may be used to define
novel testing protocols and intervention strategies. Also classic decision trees, which are capable of
providing the decision criteria in terms of both the most relevant features and how their values are
used to reach the final decision, can be used for the purpose [114]. Explainable AI can be therefore
a prominent research direction within this context.

The lessons learned from the mentioned body of evidence can be profitably used for other
health and psychological domains. For example, in Reference [115], handwriting was employed
with successful results to the problem of recognizing malingering in health care, i.e., the false
information given by patients about their health. Preliminary results suggested that a computerized
tool based on handwriting can help detect deception. A similar tool was used in Reference [116] for
capturing cognitive load implications during complex figure drawing. The work was then extended
in Reference [117], where the contribution of handwriting to classifying cognitive mental workload
was assessed. Also, handwriting-based measures recently showed promising results in investigating
emotional states, such as stress, depression, and anxiety [118].

It is worth noting that tablet technology enables the implementation of a multi-modal interaction
system in which not only the input provided by the electronic pen but also tactile, speech, or visual
input can be acquired. Promising results on noninvasive methods based on speech and handwriting
analysis for neurological disorder assessment have been obtained, e.g., Reference [119]. Moreover,
thanks to such a multimodal interface, the development of a mobile conversational agent appears to
be feasible. An example of a mobile conversational agent successfully used in the context of AD has
been recently reported in Reference [120]. A purely automatic diagnostic tool paws the way of a quick
instrument which enables mass screening of the population or even home training for improving
cognitive abilities.

Finally, another open issue is a technological one and is related to the realization of an all-in-one
solution specifically devised for the automatic differential diagnosis.

Some other aspects are related specifically to AD assessment. The most obvious observation that
can be drawn from the present survey is that less research effort has been done for AD; thus, additional
effort is necessary for advancing this line of research. Concerning disease insight, investigating
the neural process that underlies handwriting may provide further criteria for selecting the most
representative features associated to a writer, i.e., those containing more information about the message
the handwriting measures represent and the way to examine them profitably. This goal may be
achieved through a multidisciplinary approach, which involves both the analysis/comparison of
handwritten data provided by healthy subjects and patients affected by AD, and through the analysis
of the behavior of a neural network model that emulates the neural mechanisms occurring in the brain
areas involved in handwriting generation and learning. Understanding the neural process involved
in learning complex motor behaviors could also provide a meaningful help to the development of
devices and important insights in developing more effective treatments for the motor deficits affecting
AD patients.

In the context of AD diagnosis, the challenge appears to be to separate from healthy people the mild
cognitive impairment subjects, which are likely to evolve in AD. MCI is characterized by slight problems
with memory loss, language, or other mental functions; thus, finding deterministic patterns useful to
discriminate the impairment from a non-pathological condition is very difficult: this is well-known to
the research community working on neuroimaging. Some works, for example, References [40,104],
clearly indicated that such difficulty is also reflected on dynamic handwriting analysis.
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Abstract: Recently, deep learning technology has been applied to medical images. This study aimed
to create a detector able to automatically detect an anatomical structure presented in a brain magnetic
resonance imaging (MRI) scan to draw a standard line. A total of 1200 brain sagittal MRI scans
were used for training and validation. Two sizes of regions of interest (ROIs) were drawn on each
anatomical structure measuring 64 × 64 pixels and 32 × 32 pixels, respectively. Data augmentation
was applied to these ROIs. The faster region-based convolutional neural network was used as
the network model for training. The detectors created were validated to evaluate the precision of
detection. Anatomical structures detected by the model created were processed to draw the standard
line. The average precision of anatomical detection, detection rate of the standard line, and accuracy
rate of achieving a correct drawing were evaluated. For the 64 × 64-pixel ROI, the mean average
precision achieved a result of 0.76 ± 0.04, which was higher than the outcome achieved with the
32 × 32-pixel ROI. Moreover, the detection and accuracy rates of the angle of difference at 10 degrees
for the orbitomeatal line were 93.3 ± 5.2 and 76.7 ± 11.0, respectively. The automatic detection of a
reference line for brain MRI can help technologists improve this examination.

Keywords: object detection; standard line for brain; faster R-CNN; medical image analysis; magnetic
resonance imaging

1. Introduction

The convolutional neural network (CNN) [1] can be trained to extract image features via multiple
layers. There are so many types of CNN models [2–4] to choose from and new methods being
published and discussed. The object detection technique with CNN [5–8] can detect the locations of
regions of interest by distinguishing them from the background, although the image classification
with CNN can be classified to specific categories as the whole of an image. Recently, deep learning
technology has been adopted in many areas, including image classification [2–4], object detection [5–8],
and image segmentation [9]. These deep learning technologies have also been applied to medical
images. Examples include computed tomography image classification [10,11], feature extraction [12,13]
and automatic detection of lung tumors [14,15], and automatic detection of breast tumors on X-ray
images [16,17]. These machine-aided diagnostic techniques have supported the efforts of radiologists
to achieve more accurate diagnoses and tumor detection. However, no medical image acquisition
technique incorporating deep learning is currently available at this time. Magnetic resonance imaging
(MRI) of the brain is one of the most common image acquisitions performed in the hospital. The
acquisition of brain MRI scans involves obtaining an arbitrary cross section without radiation exposure.
However, determining the ideal angle of the sections is necessary to be able to acquire an arbitrary
cross section easily. Currently, some standard lines for brain MRI exist, such as the orbitomeatal line
(OM-line) [18] and the anterior commissure–posterior commissure line (AC-PC line) [19]. The use
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of these standard lines facilitates the location of specific anatomical structures by the technologists
manually. The model-based detection [20] for the AC and PC have been reported to dealing with
detections of anatomies. However, the anatomies for the OM line could not be supported in this
technique. Therefore, the automatic detection of the standard line using a deep learning technique
would be useful for technologists seeking to acquire brain MRI scans. The purpose of the present study
was to detect standard lines automatically for brain MRI using a deep learning technique.

2. Materials and Methods

2.1. Subjects and MRI Scans

The study included 1200 patients (585 males and 615 females, mean age ± standard deviation
(SD): 55.8 ± 20.1 years) who were subjected to an MRI examination of the brain between September
and November 2016 at Hokkaido University Hospital. All MRI images were obtained using two
1.5-tesla (T) MRI scanners (the Achieva A-series from Philips Healthcare, Best, the Netherlands, or the
MAGNETOM Avanto from Siemens Healthcare, Erlangen, Germany) and three 3-T MRI scanners (the
GE Discovery MR 750 w from GE Healthcare, Chicago, IL, USA, the TRILLIUM OVAL from Hitachi,
Tokyo, Japan, or the Achieva TX from Philips Healthcare, Best, the Netherlands). The direction of
the slice in this study incorporated the median sagittal plane. This study was approved by the ethics
committee of Hokkaido University Hospital.

2.2. Datasets and Preprocessing of Images

The MRI scans were retrieved from the picture archiving and communication system. To convert
the images for use by the training database, they were converted from the Digital Imaging and
Communications in Medicine (DICOM) format to the Joint Photographic Experts Group (JPEG) format
using a dedicated DICOM software (XTREK view, J-MAC SYSTEM Inc., Sapporo, Japan). The window
width and level of the DICOM images were used to preset values in the DICOM tag. The DICOM
images were converted to JPEG images with a size of 512 × 512 pixels. The size of the image was
unified for inputting as the same size in the software because the middle sagittal images in this study
were obtained by several different MRI scanners. JPEG files were loaded into the in-house MATLAB
software program (The MathWorks, Inc., Natick, MA, USA). The software was used to draw regions of
interest (ROIs) with sizes of 64 × 64 pixels and 32 × 32 pixels at the center of specific structures. The
ROIs were drawn according to the anatomies of the root of the nose (Nose), inferior border of the pons
(Pons), the AC, and the PC (Figure 1). The ROI data were outputted as a text file, which included the
object name, coordinates, and size of each ROI. The dataset was divided into six subsets to complete
the six-fold cross-validation. Two hundred images were included in each subset, with a total of five
subsets (1000 images) used for training and the other five subsets used for validation (Figure 2). Data
augmentation [21,22] was performed involving 1000 images for the improvement of the training. The
training images were applied as a data augmentation dataset to the image rotation, which involved
angles from −30 to 30 degrees in 3-degree steps (Figure 3).
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Figure 1. The software for training outlined ROIs over the noteworthy anatomical characteristics. The
red circle is the center of the target anatomy, the yellow bounding boxes are the ROIs measuring 64 ×
64 pixels, and the green bounding boxes are the ROIs measuring 32 × 32 pixels.

Figure 2. A total of 1200 images were divided into six subsets to complete the six-fold cross-validation.
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Figure 3. The procedure for data augmentation of the training datasets. The original images and
supervised bounding boxes were rotated from −30 to 30 degrees in 3-degree steps.

2.3. Training of the Images for Model Creation

The software for the deep learning technique was developed via in-house MATLAB software,
and a deep learning–optimized machine with a Nvidia GeForce GTX 1080 Ti graphics card (Nvidia
Corporation, Santa Clara, CA, USA), with 11.34 tera floating point operations per second (TFLOPS) of
single-precision performance, 484 GB/s of memory bandwidth, and 11 GB of memory per board was
used. The image training was performed using the faster region-based convolutional neural network
(R-CNN) [8] with the Computer Vision System Toolbox on the MATLAB software. Training was
divided into four steps inside the MATLAB software. During the first two steps, the region proposal
and detection networks were created, while the latter two steps were performed together to train the
networks for detection. The hyper-parameters of the training models were as follows: Maximum
training epochs, 10; initial learning rates, 0.00001 (first two steps) and 0.000001 (latter two steps); and
mini batch size, 1. The stochastic gradient descent with momentum (SGDM) was used for optimization
with an initial learning rate. The momentum set to 0.9 and L2 regulation set to 0.0001. Image training
was performed six times according to the training datasets in Figure 2.

2.4. Evaluation of the Created Models and a Standard Line for Brain MRI

The predicted bounding boxes were incorporated into the MATLAB software to show only one
box representing the area with the highest confidence for each anatomy. The detection of different
anatomies was evaluated using the average precision (AP) and the mean average precision (mAP) [23].
The ROIs measuring 64 × 64 pixels and 32 × 32 pixels, respectively, were evaluated separately. The
higher mAP among the two ROI sizes was selected to evaluate for comparison with the standard
lines of the brain imaging, that is, the OM-line and the AC-PC line. The delineation of a standard
line for brain MRI was calculated using the MATLAB software (Figure 4). The standard lines were
calculated by using the central coordinate of the predicted bounding boxes. If there was no detection
of the bounding boxes, which is a necessary requirement to draw the standard line, the line was not
represented in the software. The software also had a function of calculating the angle of the predicted
line that was formed at an angle relative to the horizontal direction of the image. The number of
the predicted lines was calculated as a line-detection rate. The accuracy rates of the delineation for
the standard line were calculated to obtain the difference between the original and prediction angles
among the detected lines. The processing speeds by calculating the computation time per image were
also measured. The angles were evaluated from 0.5 to 10.0 degrees of the absolute value of the angles.
All the results were represented as means and SDs according to the number of six-fold datasets.
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Figure 4. The detection software based on the created model and the delineation of the standard line for
brain magnetic resonance imaging (MRI). The yellow bounding boxes represent automatically detected
anatomy, the red line is the calculated orbitomeatal (OM)-line, and the blue line is the calculated anterior
commissure–posterior commissure (AC-PC) line.

3. Results

3.1. The Detection of Anatomies

Tables 1 and 2 show the AP and mAP for the ROI sizes of 64 × 64 pixels and 32 × 32 pixels,
respectively. The mAP for the ROIs measuring 64 × 64 pixels was 0.76 ± 0.04, which was higher than
those for the ROIs measuring 32 × 32 pixels. Separately, for the ROIs measuring 64 × 64 pixels, the AP
of the Nose (0.85 ± 0.07), Pons (0.78 ± 0.11), PC (0.74 ± 0.05), and AC (0.68 ± 0.04) were calculated in the
higher order. There was no AP value over 0.5 for the ROIs measuring 32 × 32 pixels in each anatomy.

Table 1. Average precision (AP) and mean average precision (mAP) for the ROIs measuring
64 × 64 pixels.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Mean ± SD

Nose 0.80 0.88 0.87 0.76 0.80 0.96 0.85 ± 0.07
Pons 0.78 0.82 0.79 0.80 0.59 0.92 0.78 ± 0.11
AC 0.71 0.67 0.64 0.70 0.71 0.62 0.68 ± 0.04
PC 0.80 0.77 0.75 0.67 0.72 0.74 0.74 ± 0.05

mAP 0.77 0.79 0.76 0.73 0.71 0.81 0.76 ± 0.04

Table 2. AP and mAP for the ROIs measuring 32 × 32 pixels.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Mean ± SD

Nose 0.33 0.46 0.62 0.43 0.47 0.54 0.48 ± 0.10
Pons 0.01 0.03 0.27 0.70 0.39 0.19 0.27 ± 0.26
AC 0.32 0.28 0.26 0.03 0.44 0.22 0.26 ± 0.14
PC 0.11 0.27 0.26 0.55 0.53 0.15 0.31 ± 0.19

mAP 0.19 0.26 0.35 0.43 0.46 0.28 0.33 ± 0.10
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3.2. Line-Detection Rates and Accuracies

Table 3 shows the line-detection rates for the brain MRI scans. The detection rate of the OM-line
was higher than the AC-PC line. Figure 5 shows the accuracy rates of the delineation for the standard
line. The angles of difference at 3, 5, and 10 degrees for the OM-line between the original and
predicted lines were 57.5 ± 10.9, 69.8 ± 11.2, and 76.7 ± 11.0, respectively. Additionally, the angles of
differences at 3, 5, and 10 degrees for the AC-PC line between the original and predicted lines were
21.7 ± 4.6, 31.6 ± 4.3, and 47.1 ± 5.0, respectively. Table 4 shows the processing speeds by calculating
the computation time per image. The computation time per images was 0.11 ± 0.01 s.

Table 3. Detection rates of the standard line for brain MRI.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Mean ± SD

OM line 99.5 86.5 89.0 94.5 98.5 92.0 93.3 ± 5.2
AC–PC line 89.5 95.0 80.5 88.5 86.5 86.5 87.8 ± 4.7

Figure 5. The accuracy rates of delineation for the standard line. The blue asterisks indicate the mean
accuracy rates of the OM-line. The red circles show the mean accuracy rates of the AC-PC line. The
error bars show the standard deviation.

Table 4. The processing speeds of calculating the standard line.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Mean ± SD

Computation time
per image [sec] 0.12 0.12 0.10 0.11 0.11 0.10 0.11 ± 0.01

4. Discussion

This research was performed to attain detection of the specific anatomy for the delineation of
two standard MRI brain lines. With regard to detecting the brain anatomies, the ROI size of 64 × 64
pixels showed a higher accuracy of detection than the 32 × 32 pixels did. This result indicates that the
region including peripheral anatomies was effective for training to improve the accuracy of detection
because most medical images represent the anatomy as a slice section rather than a volume. Moreover,
it is not necessary to extract the anatomical structures because human anatomies are essentially all
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the same when no malformations are present. Since the object detection ability in self-driving cars
need the ability to detect both cars and pedestrians from all directions, the required image features
needed to be trained while involving the object itself, rather than the object plus its surroundings. With
regard to the delineation of the standard lines for brain MRI, there were some discrepancies between
the detection and accuracy rates. The delineation of the standard line was defined by two pairs of
points of the Nose and Pons or the AC and PC, respectively (Appendix A). For this reason, the accuracy
rates of the standard line were worse than the detection rates because the AP was different for each
anatomical part. The difference of angles between the OM-line and the AC-PC line was reported as
12.6 degrees in another report [24]. In comparison, the accuracy rate of the standard line of our results
showing less than 12 degrees was suggested to be adequate for the detection of the standard line for
brain MRI. Since the angles of difference at 10 degrees on the OM-line and the AC-PC line between the
original and predicted lines were 76.7 ± 11.0 and 47.1 ± 5.0, the delineation of the OM-line presented
higher reliability for detection. The cause of the reduced accuracy rate of the AC-PC line was the lower
detection accuracy on the AC because the anatomy of the AC was described as a tiny point on the
sagittal image.

The limitations of the present study are as follows. First, image training was performed only
using the faster R-CNN in this study. Many kinds of network models exist for object detection using
deep learning. The faster R-CNN was shown to have higher mAP in several papers [6,25], which
suggested that the mAP was one of the key indicators for the comparison of models. Though the
weak point of the R-CNN was shown as the response speed of detections [25], the speed of response
was less important during the acquisition of brain MRI. This study was not conducted to detect
the dynamics of the anatomy. Second, the present study was only focusing on the deep learning
technique. Though the model-based detection [20] was also one of the techniques for the detection
of anatomies, the processing time of deep learning techniques has been improving [6–8]. We could
present the processing time for the detection and delineation of the standard line within one second.
However, the comparison of both techniques under the same condition should be taken into account
in future research because model-based detection is also one of the robust techniques. Third, the
number of training images in this study was 1200, including the images used for validation of the
training. Another study [11] showed that the number of training images affected the accuracy of deep
learning. Therefore, a larger number of images would improve the detection rates of the anatomy and
the accuracy rates of the standard line. In this study, we focused on the detection of specific anatomical
points for the delineation of the standard line of brain MRI. These results can be applied to other
regions of the body and to detect tumors. The methods and results of this study will be useful for
the improvement of the accuracy and will contribute to the improvement of medical image analysis,
although this study focused specifically on the acquisition of brain MRI. Automatic detection for a
standard line for brain MRI can help technologists improve brain MRI scans.

5. Conclusions

This study achieved the automatic detection of a standard line for brain MRI using a deep learning
technique. It was found that the delineation of the standard line for brain MRI achieved a high accuracy
rate on the OM-line. The use of the technique in this study can help technologists improve brain
MRI examinations.
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Appendix A

Figure A1 shows an example of the real time detection of the standard line for brain MRI. The
software created a model for the detection of anatomies. The standard line for brain MRI was calculated
in real time. This software can be also incorporated into MRI scanner consoles.

Figure A1. Example of the real time detection of the standard line for brain MRI. The red and green
dotted lines indicate the OM-line and the AC-PC line, respectively.
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Featured Application: Exhaled breath analysis with special emphasis on diabetes. Patients with

diabetes (mostly type-1) tend to have higher acetone levels in their breath than healthy people,

therefore, the exhaled acetone is considered to be one of the biomarkers of this disease.

Abstract: The paper presents the development of a portable gas analyzer prototype for exhaled
acetone detection, employing an application-suited gas sensor array and 3D printing technology. The
device provides the functionality to monitor exhaled acetone levels, which could be used as a potential
tool for non-invasive diabetes monitoring. The relationship between exhaled acetone concentrations
and glucose in blood is confirmed in the literature, including research carried out by the authors. The
design process is presented including a general consideration for the sensor array construction, which
is the core for sensing gases, as well as requirements for the measurement chamber it is to be placed
in. Moreover, the mechanical design of the 3D-printed housing is discussed to ensure the ergonomics
of use as a hand-held device while keeping the hardware integrity. Also, the processing hardware is
discussed to provide sufficient computing power to handle the stand-alone operation while being
energy efficient, enabling long battery-powered operation. Finally, calibration and measurement, as
well as the analyzer operation, are shown, validating the proposed class of exhaled acetone-detection
capable meters.

Keywords: gas sensors; exhaled acetone detection; diabetes; portable breath analyzer

1. Introduction

Exhaled human breath consists of several different compounds, including volatile organic
compounds (VOCs), which are continuously generated in the human body and are partially emitted
via exhaled breath, through the skin, and by urine and feces [1–3]. VOCs are mainly in the ppm–ppt
(part per million to part per trillion) range, thus, laboratory methods are used for their detection
in breath, such as GC-MS (gas chromatography–mass spectrometry) [4,5], PTR-MS (proton transfer
reaction–mass spectrometry) [6,7], IMS-MS (ion-mobility spectrometry–mass spectrometry) [8,9], and
SIFT-MS (selected ion flow tube–mass spectrometry) [10,11]. Over the last 40 years, almost 3500 different
VOCs have been detected in the human breath [12], and a single breath consists of around 500 various
VOCs [13]. The biomarkers present in the exhaled breath are used to indicate several diseases, including
lung cancer [14,15], asthma [16,17], chronic obstructive pulmonary disease [18,19], breast cancer [20,21],
diabetes [22,23], etc. The total number of diseases that can be detected or controlled by exhaled breath
analysis is still unknown [24]. Exhaled human breath analysis has been developing for many years with
the utilization of several different methods and techniques, for example, exhaled nitric oxide (FeNO) is
currently used in clinical practice. However, it took 12 years from when the first report [25] about an
increased level of NO in bronchial asthma was published until the first medical use of FeNO analysis
in routine clinical practice. Another example is exhaled breath condensate (EBC) measurements. EBC
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is a promising source of biomarkers of lung disease; however, it is not a biomarker, but rather a matrix
in which biomarkers may be identified [26]. The first papers concerning possible medical applications
for EBC were published in early 1980, but a publication boom started in 2006, and the number of
papers has increased in each subsequent year. After the American Thoracic Society (ATS) and the
European Respiratory Society (ERS) developed guidelines for EBC collection and measurement, such
measurements started to be commonly applied in asthma and COPD (Chronic obstructive pulmonary
disease) diagnoses. One of the global diseases that is the cause of millions of deaths per year is diabetes.
This is a chronic disease that occurs either when the pancreas does not produce enough insulin or
when the body cannot effectively use the insulin it produces. Insulin is a hormone that regulates blood
sugar. Hyperglycemia, or raised blood sugar, is a common effect of uncontrolled diabetes and, over
time, leads to serious damage to many of the body’s systems, especially the nerves and blood vessels.
Based on actual data provided by the World Health Organization (WHO), 422 million adults have
diabetes, and it is projected that diabetes will be the seventh leading cause of death by 2030 [27]. The
conventional method for glucose monitoring is based on blood glucose measurements, and it has been
used in clinical practice for at least 50 years. Moreover, it has been observed that patients with diabetes
tend to have higher acetone levels in their breath than non-diabetics [28]. Due to its increased levels,
acetone can be regarded as a biomarker of this disease. The number of people with diabetes increases
every year. The exhaled acetone is usually within the range of 0.2–0.9 ppm for non-diabetics, and in the
range of 1.25–2.5 ppm for people with diabetes [29]. Some references show that the acetone level can
increase up to 25 ppm for type-1 diabetes [30]. The development of gas sensors technology has enabled
the possibility to fabricate acetone sensors with sensitivities in the ppm range. The latest achievements
in this field are reviewed and discussed in [31–33].

In this paper, we present for the first time, to the best of our knowledge, a prototype of a portable
gas analyzer for exhaled acetone detection. By taking advantage of gas sensor technology on one hand
and the design freedom offered by the 3D printing technology on the other, a dedicated device with
the potential for non-invasive continuous glucose level monitoring is developed. In contrast to the
commercially available devices [34–36], the proposed device is highly-selective and highly-sensitive
due to its multi-sensor setup and processing. The presented design process includes a general proposal
for the sensor array construction, the properties for the gas-sensing layer, and the requirements for the
dedicated measurement chamber the gas-sensing layer is to be placed in. Moreover, the mechanical
design of the 3D-printed housing is discussed to ensure the ergonomics of its use as a hand-held device
while maintaining hardware integrity. Additionally, the processing hardware is discussed to provide
sufficient computing power to handle the stand-alone operation while being energy efficient, thus
enabling long battery-powered operation. Finally, calibration and measurement techniques as well as
the analyzer operation are shown, validating the proposed exhaled acetone-detection meter.

2. Development of the Portable Gas Analyzer

This section presents and discusses the development and construction of the portable breath
analyzer. The device is constructed upon an electrochemical gas sensor array placed in a dedicated
measurement chamber. When the array is exposed to the exhaled breath sample, the resistance of each
sensor is dependent upon three factors: gas concentration, humidity, and temperature. In addition to
acetone, which is the most important biomarker, other gases, including ethanol, can also be found
in exhaled breath. The use of many sensors with different sensitivities to gases in the exhaled air
provides excessive information that, after some processing, enables the system to precisely determine
the concentration of acetone despite other gases being present. The prototype analyzer was assembled
using a custom 3D-printed housing and dedicated PCBs (printed circuit boards) with control electronics.
Detailed descriptions of the individual components are presented in the following subsections.
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2.1. Gas Sensor Array

The prototype is currently patent pending in the European Patent Office as well as specified within
a non-disclosure agreement between the designers and investors; therefore, the presented description
gives a general overview. The proposed gas sensor array was realized in an arrangement where a
sensor that is highly sensitive to acetone is accompanied by a set of sensors sensitive to other exhaled
breath constituents with little to no sensitivity to acetone. In the presented study, the gas sensor
array is based on four various sensors named S1–S4. Such a configuration allows for the reduction of
uncertainty and for an improvement in the selectivity of the exhaled acetone detection. In the presence
of a detectable gas, the conductivity of each of the sensors increases depending on the concentration of
gas in the air, thus, the sensor acts as a resistor of variable resistance. A simple electrical circuit can
translate the change in conductivity into an output signal that corresponds to the gas concentration.
The sensor requires two voltage inputs: heater voltage VH and circuit voltage VCC. The heater voltage
is applied to the integrated heater in order to maintain the sensing element at a specific temperature
that is optimal for sensing. Circuit voltage is applied to allow measurement of voltage VRL across a
load resistor RL, which is connected in series with the sensor; this creates a voltage divider, and the
voltage can be adapted to the signal processing circuit. The voltage VRL increases when the resistance
of the sensor RS decreases in proportion to the gas concentration. The resistance RS can be calculated
from the formula:

RS = RL

(VCC
VRL

− 1
)

(1)

It should be noted that the above relation leads to uneven measurement resolution as VRL is
measured in quantized increments of VLSB (Analog Digital Converter Least Significant Bit in terms
of voltage) while the calculated sensor resistance is an inverse function. Therefore, special care must
be taken when selecting RL to yield a maximum measurement resolution that is centered around the
desired range of detectable concentrations.

Sensors used to construct the sensing array have four main unfavorable properties that should be
taken into account: First, sensors require a relatively long pre-heating time using the built-in heater,
extending the required time before the first measurement from 1 h to 7 days to burn out any pollution
and stabilize the working temperature. Secondly, the sensors‘ responses are relatively slow, and
an appropriate time between measurements is required for sensors to return to their original state.
Thirdly, sensors are sensitive to changes in the temperature and humidity of the gas volume being
tested, for example, a slight blast of cold air causes a change in temperature and humidity, and thus
a change in the resistance RS. Lastly, like most of these types of sensors, the main sensor is not only
selective for acetone but also for other gases, including ethanol, which means that the measurement of
acetone content in the exhaled air is influenced by activities such as, for example, drinking alcohol.
The influence of these phenomena can be minimized by means of appropriate heating and calibration
of the system to ensure appropriate measurement conditions, in other words, isolating of the sensor
from undesirable gases as well as correcting the measurements with respect to the humidity and
temperature of the gas volume being tested.

2.2. Gas Chamber Design

Operation of the device is based on the measurement of a sample of exhaled breath blown into
the measurement chamber of the device through a removable mouthpiece. To achieve an accurate
reading of the gas concentration in the exhaled air, the sensor needs time to set and reach the maximum
value. This means that the sensor must be exposed to the gas sample to be tested in an isolated
environment for a given time. The mechanical construction of such a chamber should, therefore, meet
several requirements.

First of all, it is good if the mouthpiece is equipped with a one-way valve that does not allow the
air volume to escape, ensures tightness, minimizes the presence of other gases with which the sensor
could react, and ensures that the air blown in will have relatively constant pressure.
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Secondly, the sensors array should not be located in the direct path of the air blown through the
mouthpiece as it could lead to overloading of the sensors and would require a long recovery time.
However, the mouthpiece should be at a slightly tilted angle from the perpendicular position to direct
the gas stream through reflection from the back wall to the sensor array area.

Thirdly, the tightness of the chamber during the measurement is important, but after the
measurement is completed and before proceeding to the next measurement, the chamber must be
easily ventilated. This is required so the sensor can return to its original state, and the previously tested
volume of air does not affect the next measurement.

Finally, breath is relatively warm and humid, which affects the sensors‘ response and may lead to
a false measurement of gas concentrations. Therefore, a hygro-thermometer is needed to correct for
that. To obtain a relatively accurate measurement of the humidity and temperature of the exhaled air
sample, a free flow of air must be ensured. Moreover, the meter should not be located too close to
the sensors as the integrated heaters heat and dry the air around sensors‘ housings nor should it be
located in a direct path of the air blown through the mouthpiece as the increased pressure may alter
the readout.

The gas chamber in the developed analyzer was designed by taking into account the above
requirements. The gas chamber is a dedicated compartment in the device housing. The intake is
designed in a way that accepts a disposable breathalyzer mouthpiece featuring a one-way valve
for blowing the exhaled breath. On the other hand, a small grate opening located perpendicularly
to the direct sample path is introduced to expose the chamber to ambient air. Such construction
allows the sensing array to be exposed to the breath sample long enough for sensors to produce a
stable response while enabling the chamber to be ventilated slowly through convection; blowing in
the sample increases pressure in the chamber while the sample is slowly dried and heated due to
heaters within the sensor structure. An opening forces pressure equalization to the ambient pressure,
thus leading to the sample being vented out. In this way, sensor array can return to its initial state.
All of the TGS sensors are attached to a dedicated PCB that connects to the motherboard through
an opening in the divider. Moreover, the PCB hosts a daughterboard with a digital humidity and
temperature sensor, Sensirion SHT21 in a DFN (Dual Flat No Leads) package, that provides calibrated,
linearized signals in digital, I2C format with the accuracy of ±2% RH and ±0.3 ◦C with minimal power
consumption. A drawing of the chamber is provided in Figure 1. The total volume of the chamber
equals 48.4 mm × 30 mm × 20.4 mm (29.6 mL).

(a) (b) 

Figure 1. Drawing of the designed gas chamber as a dedicated compartment in the device housing
(in salmon). View of the mouthpiece (in light gray) and ventilation grate (in beige) (a). The SHT21
is soldered to a raised daughter board (in dark gray) allowing for indirect airflow as well as thermal
separation from the gas sensor array (in violet) printed circuit boards (PCB) (b).

2.3. 3D Printable Housing Design

The housing of the device was designed in a way to accommodate the gas chamber described in
Section 2.2 as well as the motherboard PCB described in Section 2.4. As the developed analyzer is a
portable device, its size and ergonomics are of great importance. Therefore, a 3D printing technology
was employed offering a high degree of design freedom. The design was an iterative process. The first
iteration was evaluated in terms of ergonomics of use, in other words, the legibility of the display, the
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positioning of the buttons with regard to the possibility of one-hand operation, and the grip in the hand.
When the design met the above requirements, the second iteration was carried out to position I/O ports
(including openings in the housing), ensuring the convenience of use and avoiding interference when
the analyzer is held. The final design is shown in Figure 2. The housing is comprised of two parts:
front and back pieces. The front piece has the user interface panel and the back piece has two separated
compartments: the gas chamber and the electronics compartment. To close the housing, a set of latches
on the back panels snap into indents in the front piece allowing for easy and tool-free access. In the
electronics compartment, a shallow indentation the size of the display was added for ease of alignment
and mounting along with properly spaced mounting posts for the motherboard PCB. The housing size
was designed so that there is sufficient space for the electronics and sensors while providing a compact
body of the device. The overall external dimensions of the device are 95.2 mm × 23.7 mm × 51.6 mm.

(a) (b) (c) (d) (e) (f)

Figure 2. 3D view and projections of the developed housing for the portable gas analyzer designed
using CAD software. The housing is comprised of two parts: a front piece with user interface elements
(a), mouthpice port (b), USB port and μSD card slots and back panels (c,d) allowing easy assembly
(clips and slots) and access inside the device (e,f). Total dimensions are 95.2 mm × 23.7 mm × 51.6 mm.

2.4. Hardware Design

The designed device provides three main functionalities: signals measurement; data analysis; and
communication and interaction with the user and data presentation. Control electronics were designed
accordingly to provide appropriate hardware resources. As discussed earlier, the device’s housing
needed to be divided into two compartments: one is the gas chamber and the other accommodates
the control electronics. Therefore, two separate PCBs were designed, the layout of both are shown
in Figure 3. The sensor array PCB located in the gas chamber hosts all the sensors for which heater
supply, circuit supply, and signal outputs are routed via a pin header connector to the motherboard
PCB located in the second compartment, which contains the control electronics of the analyzer. The
header pinout is described in Table 1.

 

Figure 3. The layout of the motherboard and daughterboard PCBs. Dimensions in mm. Sensing array’s
layout visibility is limited due to the patent pending.

200



Appl. Sci. 2019, 9, 2605

Table 1. List of the signals routed through the mother–daughter board the pin-header connector.
Sensor signals are arranged to provide shielding from the digital bus by putting the power supply
lines in-between.

J1

Heaters +5 VDC supply 1 2 GND

Sensor 2 signal output 3 4 Sensor 1 signal output

Sensor 3 signal output 5 6 Sensor 3 signal output

SHT +3.3 VDC supp 7 8 GND

I2C bus SCL 9 10 I2C bus SCA

The main module on the motherboard PCB is the Adafruit Feather M0 Bluefruit LE development
board as it is an excellent compromise between computing power, number, type of peripherals, size,
and price. The board is powerful enough to handle the stand-alone operation of the analyzer, including
the future implementation of a neural network (raw measurement, pre-processing, feature extraction,
pattern recognition, classification, and decision making). Importantly, due to compatibility with
Arduino Zero, the firmware can be written in C++ using the Arduino Development Environment
which includes a wide range of libraries. The heart of the Feather M0 board is a 32-bit ATSAMD21G18
microcontroller with an ARM Cortex M0 core, clocked at 48 MHz, supporting logic in the 3.3 V standard.
The chip has 256K FLASH memory and 32K RAM. It is equipped with built-in USB support giving it
the ability to program and debug USB-to-serial without the need for an additional chip. The board is
equipped with a dedicated connector for 3.7 V lithium-polymer batteries and a built-in battery charging
system via a micro USB connector and available battery voltage monitoring functionality. In addition,
it is possible to power it directly through the micro USB connector. The board has an automatic selector
of the power source depending on whether it is powered by a battery or via the USB connector. In
addition, the board is equipped with a Bluetooth Low Energy communication module. The user
interface hardware is comprised of a 1.5‘ monochrome OLED display (SSD1305 driver) with a resolution
of 128 × 64 pixels, a buzzer, and three tack-switches: up, OK, and down. Alternatively, a command-line
interface is available. Analog signals from the sensor array are measured as a voltage drop across
a 0.1% tolerant load resistor RLx located on the motherboard using a 12-bit microcontroller built-in
ADC (VCC = VADCref = +3.3 VDC). To ensure a stable heater supply VH to sensors, a high-efficiency
step-up DC-DC converter was used providing +5 VDC and up to 250 mADC from either the Li-Po
battery or the USB line. It is also possible to disable the converter and thus implement the sleep mode.
In addition, there is a μSD card slot on the board that allows local acquisition of measurement data, a
USB interface for data acquisition from the PC level, and a BLE (Bluetooth Low Energy) modem for
wireless acquisition.

Each of the components was chosen to take into account its power consumption as the analyzer
is to be battery powered. Total power drawn by the device was estimated to be ~400 mA at 3.3 VDC
where the majority of the power is consumed by the sensors‘ heaters (~380 mA). Therefore, a mid-size
Li-po battery having 1500 mAh capacity would allow more than 3.5 h of operation. However, the
array can be pre-heated overnight using a wall adapter and then using appropriate sensor-stabilization
cycles, a full day of operation is possible.

2.5. Prototype Manufacturing and Assembly

Designed printed circuit boards were made by an external company offering production services
of prototype series. The housing was printed in the in-house workshop using a Prusa Research Prusa
i3 MK3 3D printer out of PET-G filament (Polyethylene terephthalate glycol-modifies). The printer
uses a FFF (fused filament fabrication) process which in combination with the used filament leads to
low-cost prototyping while providing satisfactory print resolution and mechanical strength. Finally, the
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components were assembled and the prototype of the device was tested for correctness. Photographs
of the manufactured analyzer are shown in Figure 4.

    
(a) (b) (c) (d) (e) 

Figure 4. A photograph of the manufactured analyzer. Front panel (a), bottom view with connectors (b),
side panel with a disposable mouthpiece (c), the gas chamber (d) and the electronics compartment (e).

3. Results and Discussion

In this section, calibration and measurements using the developed portable gas analyzer for
exhaled acetone detection are presented and discussed. The calibration procedure is shown allowing
for the determination of the reference (normalization) resistance R0x for each of the sensors in the
array. Moreover, the influence of temperature and humidity of the gas sample on the response of the
sensor is considered and appropriate corrections are proposed. Finally, the procedure to determine gas
concentration based on the measured and corrected sensor’s response is presented.

3.1. Sensors Reference Resistance Calibration

Before proceeding with actual measurements, it is necessary to calibrate the sensors, in other
words, determine the value of the reference resistance R0x. The procedure is described for an example
of the main sensor, but it also applies for the other sensors used. The main sensor datasheet provides its
typical sensitivity characteristics, in other words, the change of its resistance RS for different gas types
in the measurable range of concentrations. The characteristic, however, is normalized to a reference
resistance R0 being the sensor resistance in 300 ppm ethanol at 20 ◦C and 65% RH Knowing this value,
it is possible to calculate the dependence between sensor resistance and the gas concentration for
all other gas concentrations. Further, in the datasheet, it is stated that R0 is in the range of 1–10 kΩ,
which is a relatively wide range, therefore, it is impossible to take a specific value from this range
as R0. On the other hand, calibration using a reference gas sample having a proper concentration
in a specific temperature and humidity would require a laboratory and reference measuring device.
Such a calibration method is hardly possible to implement and very expensive for a portable analyzer.
Therefore, it was important to find an alternative calibration technique.

The proposed approach relies on the fact that the sensor’s resistance ratio R0/RS is constant over
the measurable concentration range when exposed to air. Reference resistance can be calculated as:

R0 =
RSair
cr0

(2)

where cr0 is a constant coefficient estimated based on the data provided in the datasheet while RSair is
the sensor resistance in air corrected for temperature and humidity (see Section 3.2). The remaining
sensors in the array can be calibrated in the same way. Such calibration is easy to implement and
convenient from the user’s perspective. The disadvantage is higher measurement error when related
to one using a dedicated calibration gas sample, however, it is sufficient for non-clinical applications.
The measurement error associated with the described technique has three main sources: estimation of
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the cr0 coefficient based on graphical data and the sensor’s manufacturing tolerance; cleanness of the
air when measured: and temperature and humidity of the calibration gas. The first source can hardly
be minimized and is considered as a systematic error. The impact of the former two can be minimized
when sensors are placed in an enclosed environment and pre-heated using embedded heaters before
measurements to allow the sensor to stabilize its response and to stabilize temperature and humidity
in the gas chamber. In addition, any possible impurities or debris on the sensing element surface can
be burned-out or evaporated at each sensor.

3.2. Correction for Temperature and Humidity

Having calibrated the system, the actual measurements can be carried out. However, since the
response of the sensor is not only a function of a detectable gas concentration but also temperature
and humidity, it is necessary to correct the measured resistance RS for the last two parameters. This
dependence exists regardless of the gas being measured and its concentration. Unfortunately, the
required data is presented in datasheets only in a graphical form, which hinders analysis and is a
source of systematic error. To allow for calculating the correction, a linear polynomial regression of two
variables was used to model the temperature–humidity dependence out of the collected data points. A
linear function describes accurately enough the relation while being very computationally inexpensive.
The general formula is:

corr(t, h) = c00 + c10h + c01t (3)

where t and h are the measured temperatures in ◦C and humidity in % at the time the sensor’s resistance
is measured while cxx are constant coefficients estimated for a given sensor.

3.3. Gas Concentration Calculation

Having measured the raw sensor array response on the gas sample and corrected it for humidity
and temperature, the gas concentration can be established. In order to determine the analytical
relationship between the resistance ratio RS/R0 and the concentration of a given gas in the tested air
volume, the sensitivity characteristics presented by the manufacturer in the datasheet expressed in
log-log scale was analyzed. Therefore, the following variable is is introduced to simplify calculations:

r = log10

(
RS
R0
·corr(t, h)

)
(4)

Unfortunately, the required data is presented only in a graphical form, which hinders analysis
and is a source of systematic error. Moreover, those relations are provided under the assumption that
the sensor is exposed only to one particular gas. Square polynomial regression was used to derive the
relation out of the collected data points. A quadratic function describes accurately enough the relation
while being fairly computationally inexpensive. The general formula is:

gas(r) = p0 + p1r + p2 r2[ppm] (5)

where px are constant coefficients estimated based on the data provided in the datasheet. The
polynomial relation coefficients are established based on data for a give a measurable range of gas
concentrations, therefore, outside that range, it may not hold. However, since it is a continuous function
and the relation appears to be monotonic, Equation (5) can be used to estimate the concentration
outside the above-specified range.

3.4. Portable Analyzer Operation and Measurements

The developed portable analyzer allows for breath acetone detection. The information from the
main sensor is calculated to the acetone concentration while the information from the accompanying
sensors is taken to check the validity of the measurement, in other words, to determine if other gases
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are deviating the response or not. The use of the device is intuitive and easy. The user menu and
available functionalities presented on the screen (see Figure 5) are directly related to the state in which
the device currently is as the firmware was written using a finite-state machine. When the device boots,
the welcome screen appears briefly showing the information on the hardware and firmware version
that is currently used/loaded into the device. The device then automatically changes to the main
screen. The user can select either to go directly to measurements or to preheat the sensor array. At the
moment of entering the measurement state, the device self-calibrates the array (measures each sensor‘
resistance in air and calculates the reference resistance). If preheating is selected, the user can define
the preheating time or the device can preheat for as long as the sensor array response determines, the
end of which in each case is signaled by the buzzer. When in the measure state, the array is sampled
continuously to monitor its stability. To perform measurement of the exhaled breath, the user needs to
blow constantly through the mouthpiece for a given time, the end of which is signaled by the buzzer.
Then the readouts are processed and the acetone concentration is displayed along with the information
if the concentration is within or outside sensor’s range as well as if it is valid and the maximum
concentration measured. Before proceeding to the next measurement, the gas chamber needs to be
properly ventilated and the sensor array needs to return to its default state. When the analyzer is ready,
appropriate information is displayed and the device can be used again.

(a) (b)

(c)    (d)   (e) 
( ) 

Figure 5. User interface screens of the developed portable gas analyzer. Splash screen (a), main menu
(b), preheat setting (c), and executing (d) measurement screen presenting the acetone concentration
and the raw data from each sensor (e). Alternatively, the analyzer can be controlled through a serial
interface (f).

3.5. Gas-Sensing Setup Characterization

The developed sensing setup composed of a set of four different sensors located in the gas chamber
of the device was characterized by conducting a series of measurements under exposure to diabetes
biomarkers such as acetone and ethanol. Figure 6 shows the gas-sensing characteristics under exposure
to various acetone concentration (20–200 ppm) of each of the gas sensor S1–S4 within the array. For a
better perspective, all curves are shown on the same scale. As can be observed, the sensors exhibit
a response to acetone, however, with a largely differentiated sensitivity as expected. Moreover, the
relatively short recovery time is to be dealt with in the devices firmware. The sharp lines are the
artifacts related to measurement conditions that switched the effect of the gas-dosing system.
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Figure 6. The gas-sensing characteristics of each particular gas sensor in the gas-sensing chamber
under exposure to acetone in the 20–200 ppm range. Optimal operating temperature (given by the
manufacturer) was ensured and 50% relative humidity was stabilized.

Despite the S1 sensor being the one dedicated for acetone sensing due to its high sensitivity, there
were others acting in a similar fashion. Figure 7 shows the gas-sensing responses of sensor S3, which
was non-dedicated to acetone detection, however, as can be observed under exposure to acetone, it
reacted with resistance changes. This cross-sensitivity effect is a disadvantage of metal-oxide based
sensors and has to be taken into account within the firmware.

Figure 7. The resistance changes of sensor S3 (non-dedicated to acetone detection) in a gas sensor array
under exposure to 2–20 ppm of acetone. Optimal operating temperature (given by the manufacturer)
was ensured and 50% relative humidity was stabilized.

Finally, Figure 8 shows the calibration curves of all four sensors in the gas sensor array in the
2–20 ppm range of acetone. The sensors S1–S3 reacted with acetone in the measurement range and
their response can be fitted using an exponential function with high R2 values of 0.91, 0.95, and 0.95,
respectively. On the other hand, Sensor S4 exhibited a constant response (~5.5), which was related to
the humidity level. Sensors S1 and S2 are dedicated to acetone measurement while S3 and S4 are not.
Despite that, sensor S3 exhibits a cross-sensitivity issue.
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Figure 8. The calibration curves of all four sensors (S1–S4) in the gas sensor array under exposure to
2–20 ppm of acetone. Optimal operating temperature (given by the manufacturer) was ensured and
50% relative humidity was stabilized.

It is important to note, however, that for the purpose of measurements the developed sensing
array is to be considered as a whole, in other words, its multi-dimensional response characteristics
can be characterized and calibrated into the firmware. Further processing blocks such as a neural
network are to be trained beforehand and fed in with the measurement data. The key point is to select
sensors in such a way that they exhibit variable (including high) sensitivity on the diabetes markers as
well as on other breath constituents. Such a combination along with proper signal processing enables
measurements of low acetone concentrations with a high level of confidence.

4. Conclusions and Further Perspectives

We developed a portable gas analyzer prototype for exhaled acetone detection employing an
application-suited gas sensor array. The device was shown to be capable of serving as a tool for
non-invasive diabetes monitoring with the additional advantage of having a hand-held form factor and
battery powered operation. The prototype is currently patent pending in the European Patent Office
and is specified within a non-disclosure agreement between the designers and investors, therefore,
the presented description gives only a general overview of the system. However, all components
have been widely discused, including the gas sensor array, gas chamber design, 3D printable housing
design, hardware and software design, and correction for temperature and humidity. Finally, the
calibration and measurement technique as well as the analyzer operation was shown, validating the
proposed type of exhaled acetone-detection meters. After the certification process, the prototype will
be validated in clinical tests in the University Hospital in Krakow, Poland.
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