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Field Implementation of Precision Livestock Farming: Selected
Proceedings from the 2nd U.S. Precision Livestock
Farming Conference

Yang Zhao 1,*, Brett C. Ramirez 2, Janice M. Siegford 3, Hao Gan 4, Lingjuan Wang-Li 5,

Daniel Berckmans 4 and Robert T. Burns 4

1 Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
2 Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA
3 Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA; siegford@msu.edu
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5 Department of Biological and Agricultural Engineering, North Carolina State University,
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Precision Livestock Farming (PLF) involves the real-time monitoring of images,
sounds, and other biological, physiological, and environmental parameters to assess and
improve animal health and welfare within intensive and extensive production systems.
Precision Livestock Farming systems have the potential to empower farmers to make better
management decisions, based upon objective measures, during an animal production cycle.
The potential benefits from PLF systems can only be realized if these systems are adopted
in practice by livestock and poultry producers. The advancement of research in digital
agriculture, and, more specifically, PLF technologies, over the past decade has been very
impressive; however, the field implementation of PLF technology has not occurred at the
same rate as research advancements.

The United States land grant university system is well equipped to interface between
PLF research and on-farm adoption by disseminating research to farmers through the
Extension Service component of the system. The on-farm implementation of PLF systems
in the United States has the potential to provide increased animal production efficiency
with improved animal health and welfare and human working conditions, while also
increasing the economic, environmental, and social sustainability of animal production
systems. Significant improvements in the production efficiency of all food animal sectors
will be required in order to meet the anticipated growth in demand for animal proteins by
a vaster worldwide population over the next 30 years. The commercial adoption of PLF
systems is integral to achieving the increases in production efficiency needed from our
livestock sectors and to providing needed data to animal production stakeholders.

For this reason, the theme of the 2nd U.S. Precision Livestock Farming conference
(USPLF2023) was “Field Implementation of PLF”. This emphasizes the significance of
implementing technology in food animal production to meet the rising demand for animal
products in the future. The USPLF2023 conference was held from 21 to 24 May 2023 at
The University of Tennessee Conference Center in Knoxville, TN. The conference was
organized by The University of Tennessee, University of Nebraska-Lincoln, and Tennessee
State University.

The goal of the USPLF2023 conference was to help better equip researchers, Extension
practitioners, technology providers, and livestock and poultry producers to adopt PLF
systems on working farms across the United States and abroad. The USPLF2023 confer-
ence provided a timely and essential platform for industry professionals and academia to
share knowledge, network, and collaborate on all aspects of animal management using

Animals 2024, 14, 1128. https://doi.org/10.3390/ani14071128 https://www.mdpi.com/journal/animals1
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innovative technology. The conference also made scholarships available for participation
from farmers, minority-serving institutions educators, researchers, and Extension spe-
cialists, thus providing opportunities to a diverse group of attendees to benefit from the
conference’s valuable insights and discussions. In addition, the event hosted two other
important meetings, namely the United States Department of Agriculture (USDA) National
Institute of Food and Agriculture (NIFA) Inter-Disciplinary Engagement in Animal Systems
Project Director meeting, and the meeting of the NC1211 Multi-state project (Precision
Management of Animals for Improved Care, Health, and Welfare of Livestock and Poultry).

The USPLF2023 conference featured four primary research topics: Sensors and Sensing
in PLF [1–5], Data Management and Algorithm Development [6–8], Measuring, Modeling,
and Managing of Dynamic Responses [9–14], and Societal Impacts of PLF [15,16]. A total of
126 submissions were received for these topics from individuals representing universities,
research institutions, and PLF companies from 13 different countries across Africa, Asia,
Australia, Europe, North America, and South America. The submissions underwent
two rounds of rigorous review by ad hoc reviewers to assess their relevance, originality,
readability, and formatting. Out of these submissions, 114 were accepted for presentations
at the conference, either orally or as poster presentations.

From the accepted submissions, the conference proceedings committee carefully se-
lected the highest-ranked papers to be included in this Special Issue with the full endorse-
ment of the Conference Proceeding Committee. Additionally, several voluntarily submitted
proceedings were also considered and incorporated into this Special Issue. Each paper
within this collection represents a significant contribution, showcasing the advancements
made and the future potential of implementing PLF in the field.

This Special Issue is expected to be of immense value to individuals working in
the interdisciplinary fields of animal science, agricultural engineering, computer science,
electrical engineering, and veterinary science. It represents valuable resources for educators,
researchers, Extension specialists, animal producers, and industry leaders who share
a commitment to advancing the livestock and poultry industry in an innovative and
sustainable manner.

Author Contributions: Conference organization, R.T.B., Y.Z. and D.B.; Conference Proceedings
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Model Adaptation and Validation for Estimating Methane and
Ammonia Emissions from Fattening Pig Houses: Effect of
Manure Management System

Paria Sefeedpari *, Seyyed Hassan Pishgar-Komleh and Andre J. A. Aarnink

Wageningen Livestock Research, Wageningen University and Research, P.O. Box 135, 6700 AC Wageningen,
The Netherlands; hassan.pishgarkomleh@wur.nl (S.H.P.-K.); andre.aarnink@wur.nl (A.J.A.A.)
* Correspondence: paria.sefeedpari@wur.nl

Simple Summary: Predicting emissions from livestock housing is crucial for helping farmers un-
derstand how various factors impact emissions at the pig house level. This knowledge empowers
decision-makers and the farmers to make informed choices that encourage emission reduction and
improve air quality in pig houses. To create innovative, low-emission pig housing systems, the
development of a prediction model appears to be a straightforward solution. This paper introduces
such a model for predicting methane and ammonia emissions from two commercial pig houses
with two manure management systems: one with long storage in deep pits and the other with short
storage, through daily flushing of a shallow pit with sloped walls (a reduced emitting surface) and
partial manure dilution. This simulation model, which considers factors like animal weight, age, feed,
and pen dimensions as input data, calculates manure quantity and quality, as well as methane and
ammonia emissions over the growing period. In this model, the calculation of ammonia emission
involves aggregating emissions from various sources identifiable within pig houses. These sources
include manure channels, slatted floors, and solid floors, encompassing fouled areas, pigs, and pen
partitions. This model successfully predicts the development of methane and ammonia emissions
based on animal and farm characteristics.

Abstract: This paper describes a model for the prediction of methane and ammonia emissions from
fattening pig houses. This model was validated with continuous and discrete measurements using a
reference method from two manure management systems (MMS): long storage (LS) in deep pits and
short storage (SS) by daily flushing of a shallow pit with sloped walls and partial manure dilution.
The average calculated methane and ammonia emissions corresponded well with the measured
values. Based on the calculated and measured results, the average calculated CH4 emission (18.5 and
4.3 kg yr−1 per pig place) was in between the means from the continuous data from sensors (15.9 and
5.6 kg yr−1 per pig place) and the means from the discrete measurements using the reference method
(22.0 and 3.1 kg yr−1 per pig place) for the LS and SS systems, respectively. The average calculated
NH3 emission (2.6 and 1.4 kg yr−1 per pig place) corresponded well with the continuous data
(2.6 and 1.2 kg yr−1 per pig place) and the discrete measurements using the reference method (2.7 and
1.0 kg yr−1 per pig place) from LS and SS, respectively. This model was able to predict the reduction
potential for methane and ammonia emissions by the application of mitigation options. Furthermore,
this model can be utilized as a predictive tool, enabling timely actions to be taken based on the
emission prediction. The upgraded model with robust calculation rules, extensive validations, and a
simplified interface can be a useful tool to assess the current situation and the impact of mitigation
measures at the farm level.

Keywords: methane emission; ammonia emission; modelling; manure; pig house
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1. Introduction

Emissions of methane (CH4) and ammonia (NH3) from agriculture have profound
effects on climate change, air quality, and ecosystem health [1–3]. CH4 is the second-most
abundant anthropogenic greenhouse gas [4], arising preliminarily from animal digestion
and manure storages [5]. In the Netherlands, livestock farming contributes to 75% of the
CH4 emission. In pig farming, most of the CH4 (more than 80%) comes from the stored
slurry (i.e., faeces and urine) in the pig houses. This is mainly caused by the long storage
of slurry underneath the floor in the barns and from outside manure storage places [6].
An additional portion is emitted through the digestive system of pigs, particularly in
the hindgut, contributing to enteric methane formation [7]. Therefore, reducing methane
emission is crucial for livestock farming to meet the climate goals.

High NH3 concentration is detrimental for a healthy indoor climate; its emission
contributes to secondary particulate matter formation and leads to excessive nitrogen
deposition in nature areas [2,8,9]. Worldwide, the primary source of NH3 emission in
agriculture originates from livestock housing, specifically the excretion of urine by livestock
(Aarnink, 1993 [10–12]). Waste streams of the livestock sector contribute to 39% of the
global NH3 emission [13]. In Europe, around 80% of NH3 production is attributed to
livestock facilities [9], with pig production contributing to about 15% of the total. In the
Netherlands, agriculture is responsible for 88% of NH3 emission released into the air [6,14],
with pig farming contributing to 20% of the NH3 emission. The Dutch agricultural sector
has marked a two-thirds reduction in NH3 emission since 1990 due to various mitigating
measures, including a ban on the application of manure to the land between September and
February, the use of low-emission housing, covering outside manure stores, and diets with
reduced protein [15]. This illustrates the ongoing importance of implementing additional
measures to further minimize ammonia emission from pig production facilities.

The intensification of pig farming and the transition to indoor liquid manure stor-
age have underscored the importance of precisely estimating CH4 and NH3 emissions
influenced by the manure management system (MMS). This is essential for effectively ad-
dressing environmental challenges [16]. In recent years, efforts have been made to reduce
CH4 and NH3 emissions from pig houses, leading to the development of low-emission
housing systems [5]. One effective approach to reducing these emissions is frequent daily
removal of manure by flushing the pit beneath the slatted floor [17–21]. This measure can
be implemented in various forms and at different levels on farms.

In livestock production systems, the primary origin of NH3 is the rapid hydrolyzation
of urea in urine facilitated by the faecal enzyme urease and the breakdown of undigested
proteins in manure [3,22]. The latter is a minor source of ammonia emission. This hy-
drolyzation process results in the formation of ammonium in an aqueous medium, in
which the total ammoniacal N exists in equilibrium between the ionized NH4+ and the
unionized NH3 forms [23]. This equilibrium is affected by temperature and pH, and higher
levels cause an increased concentration of the unionized NH3 form [24]. When the pH is
below 7, nearly all ammoniacal N exists in its ionized form, while pH values above 7 lead
to a significant rise in the unionized fraction [3].

The accurate quantification and understanding of methane and ammonia emissions
from the livestock sector are crucial for assessing environmental impacts, developing
sustainable farming practices, and addressing air and water quality concerns; however,
evaluating the impact of numerous variants on emissions is a resource-intensive endeavour,
both in terms of time and cost. Direct measurements at the housing level are time- and
cost-consuming; these measured methods do not readily reflect emissions from various
sources [19,25]. Models and algorithms with different levels of complexity have been
developed for predicting CH4 and NH3 emissions [11,26–28]. In contrast, many other
models tend to be static and empirical [29,30], often neglecting crucial aspects of animal
metabolism, such as growth composition [31]. Moreover, empirical models have not been
evaluated against experimental data [32]. To mitigate these challenges, a cost-effective
alternative to direct measurements is to employ predictive models that allow the assessment
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of various interventions at the farm level while considering the factors affecting emissions
release. A mathematical static model (MESPRO model) was developed to quantify the
effect of practical measures (feed intake, diet composition, manure storage time, ambient
and slurry temperature) on the characteristics and amount of slurry exertion from fattening
pigs [31]. Subsequently, this model was developed into a dynamic model (ANIPRO model)
to simulate the effect of ammonia volatilization in pig houses with partially slatted floors
for fattening pigs [33]. Their model integrated aspects such as animal metabolism, diet
composition, and the quantity and quality of urine and faeces, as well as the physical,
chemical, and biological processes occurring in the urine pools on the floor and in the
manure pit to predict ammonia emission. While the models were initially tested for
fattening pigs with measured levels of ammonia emission, in 2018, they were extended to
include other pig categories and were validated for the effect of various feeding measures
on ammonia emission from fattening pigs, weaned piglets, and dry and pregnant sows [34].
However, these models were not previously tested for predicting CH4 and NH3 emissions
affected by emission reduction measures related to manure management. Furthermore,
it was observed that dynamically predicting methane emission influenced by frequent
manure removal from indoor slurry pits in pig houses holds considerable potential for
emission reduction. Therefore, the objectives of this study were to enhance the existing
models by incorporating a dynamic methane prediction module and validate the model
for the effect of pen design and manure management on methane and ammonia emissions
from fattening pig houses.

2. Materials and Methods

2.1. Global Description of the Model

This existing model approach follows a mechanistic framework, striving to capture
underlying processes as accurately as possible. The prediction model consists of three
primary calculation modules: (1) the excretion model (MESPRO), (2) the ammonia emission
model (ANIPRO), and (3) the methane emission model developed as part of this study.
The model was developed and executed using MATLAB (R2018a). The model retrieves
input data from Excel files. Within the main script, specific calculation rules are established
to extract the respective data of each target scenario (for instance the pig housing types)
separately, as delineated in the input data files. The simulations are conducted with daily
time resolution over the course of a growing period (GP). Model calculations can be used for
various pig categories, housing systems, and manure pit designs. The key calculation rules
and the additions to the existing model are summarized here, while detailed descriptions
can be found in the Supplementary Materials (SM) file.

The input variables of the model are length of production period, initial and final
weight of pigs, total feed and water intake, feed composition, water use, weather data (tem-
perature and relative humidity), climate set-up, building specifications, and storage time.
The outputs, among others, are animal performance (animal weight, feed, and drinking
water intake of each day), manure quantity and composition, and methane and ammonia
emissions. The pH of slurry bulk was predicted based on measured data as a function of
slurry total ammoniacal nitrogen, total inorganic carbon, and acetic acid concentrations
(Aarnink et al., 2018 [34]). Furthermore, for a subset of parameters, calibration was exe-
cuted using measurement data, i.e., the value of a parameter (e.g., a regression coefficient)
was estimated based on the best fit on the measured data. This applies to three of the
four parameters to estimate the Gompertz curves for animal weight and the cumulative
feed and water intake (Section 2.2 of this study), the regression coefficient to calculate
the evaporation coefficient for the floor and manure pit, calculation of NH4-N from the
total N-urinary excretion, surface temperature, air velocity of the top layer of manure and
of the urine puddle on the floor, and the surface pH using regression lines based on lab
measurements. The calculation rules have been extensively described in previous studies
by [31,34]. A schematic representation of the model is shown in Figure 1.
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Figure 1. Schematic representation of the model concept for predicting ammonia and methane
emissions (adopted from [31,34]).

2.2. MESPRO Module

As depicted in Figure 1, the model calculates both the quantity and composition of the
slurry at the time of excretion and throughout the storage period within the pig house. To
determine the emission on a daily basis and over the entire production period, calculation
rules were established initially, focusing on estimating pig growth, feed consumption, and
water intake. The patterns of growth, feed, and drinking water intake are described by
the so-called Gompertz curve. Gompertz curve is a mathematical model used to describe
the growth curves of animals including pigs [35,36]. This function is characterized by an
initial exponential increase in weight, followed by a gradually decreasing rate of growth,
eventually stabilizing at the final adult weight. The Gompertz curve is typically represented
as an S-shaped curve (Equation (1)).

Wt = A + Wm. exp {−exp[−B(t − t∗)]}/1000 (1)

where Wt represents the weight of the animal at time t (kg), A is a constant that represents
a specific weight (kg), Wm is the final adult weight of the animal (kg), B is a parameter
that influences the shape of the growth curve and determines the speed of reaching the
final weight (day−1), t is the age of the animal (day), t* represents the time when growth is
maximal (day), 1000 is a conversion factor to convert from grams to kilograms.

The same Gompertz curve was employedto characterize the trajectory of both feed
and drinking water intake over the growing period of the pigs. Parameters of the model
(A, B and t*) were determined using a regression analysis on the measured data. The
fourth parameter (Wm in Equation (1), and its substitutes FIm (total feed intake) and
DWIm (total drinking water intake) in feed and water intake curves, respectively) were
calculated based on the measured values of the start and end weight and the total feed
and water intakes during the growth period. The estimated final weight of the adult pigs
was found to be a rough approximation; therefore, this parameter was assigned as variable
in our calculation tool, while the other values were fixed at the values shown in Table 1.
By making one parameter variable, it was possible to fit the curve to the achieved final
weight, which is an input in our model. Incorporating these curves into the calculation tool
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and using the final weight, total feed intake, and water intake as input data enabled the
estimation of parameters associated with the asymptotic values of these variables in the
calculation model.

Table 1. Estimated parameters of the Gompertz curve (see Equation (1)), by regression on measured
data, for calculating weight, feed, and drinking water intake of fattening pigs. The standard deviations
are shown in brackets.

Parameter 1 Weight Feed Intake Drinking Water Intake

A 0 2 −41.9 (13.1) −149 (108)
Wm/FIm/DWIm

3, 4 164.2 (3.9) 608 (48.3) 1432 (115.1)
B 0.0146 (0.0010) 0.0111 (0.0017) 0.0103 (0.0042)
t* 5 110.4 (4.3) 154.7 (10.8) 147.4 (23.9)

1 For an explanation of the variables, see Equation (1). 2 The constant was set to zero, because including it in the
regression formula did not provide a better fit. 3 FIm and DWIm are the parameters for feed and drinking water
intake, comparable to Wm for the growth curve. 4 These values are fitted in the model to the input data (the initial
and final weight of the pigs corresponding to Wm, and the total feed and water intakes corresponding to FIm and
DWIm, respectively). 5 t* is the time when growth is maximal (day).

The daily feed and water intake over the entire production period was used to de-
termine the quantity and composition of excreted manure. Furthermore, considering the
production stage of the pigs, the uptake of metabolizable energy, and the (calculated)
growth curve, the nutrient retention in the animals was determined. Utilizing the digestion
coefficients of the feed (particularly protein) and the retention of nutrients, the quantity
and quality of manure was calculated. Additionally, employing a water balance, the
concentration of the nutrients was calculated [31,34].

To determine the volume of slurry discharged into the manure pit, the calculation
process was initiated by estimating the combined excretion of slurry and water. The total
slurry production was determined based on the excretion of dry matter (DMexc), after
accounting for the gas produced from the hydrolysis of organic matter (biogas) and the
CO2 formed by the hydrolysis of urea (UreaCO2). The total dry matter was estimated by
combining the undigested organic matter (ash) with the organic matter (OMexc) excreted
through urine and the difference between inorganic matter (ash) intake and ash excretion.

2.3. ANIPRO Module

Within this model, ammonia emission is calculated by summing up the ammonia
emission from different sources that can be distinguished within a pig pen, including ma-
nure channels, slatted floors, solid floors (which account for fouled pigs and pen partitions),
and other relevant sources. The model incorporates physical attributes and indoor climate
conditions of pig houses (Equation (2)). The ammonia emission from the different sources
(floor and manure pit) in pig houses is calculated using the following formula [33]:

ENH3 =
kNH3 ·A · f ·[NH4N]

H
(2)

where ENH3 is the ammonia emission (mol/s); k is the mass transfer coefficient, which is
related to the air velocity and temperature of the emitting surface (m/s); f is the fraction of
unionized ammonia in the solution, which is influenced by pH and temperature (T) and is
a dimensionless value; [NH4N] is the total ammoniacal nitrogen concentration (mol/m3);
H is Henry’s constant, which is also temperature-dependent and a dimensionless constant.
By multiplying the calculated source strengths (emission per square meter) by the emissive
surface (A), which can represent either the floor (urine puddles) or the manure pit (m2), the
ammonia emission from each source and the total ammonia emission of the entire pig house
are determined. The emitting pit surface is calculated based on the shape and dimension of
the manure pit or the floor. The emitting surface of the manure pit with straight walls is
equal to the dimensions of the manure pit (length × width). In a manure pit with sloping
walls, the emitting surface is influenced by the height of the manure. This height can be
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calculated from the manure production of the pigs and the shape of the manure pit. In this
model, a distinction is made between soiling of the solid floor, soiling of the concrete slatted
floor (at the front of the pen), and soiling of the metal, triangular slatted floor (at the back of
the pen). By multiplying the calculated source strengths (emission per square meter) by the
respective surface areas, both the total ammonia emission and the ammonia emission from
each emitting surface can be determined individually [34]. Additional information for the
estimation of the parameters of Equation (2) are listed in the SM file (Equations (S1)–(S9)).

2.4. Extended MESPRO Module

The MESPRO module constitutes calculation rules for the prediction of biogas produc-
tion as a result of anaerobic conditions in manure pits. Methane formation is influenced by
various factors, including manure temperature, storage duration, organic matter content of
the manure, and the residual aged manure in the storage acting as an inoculum [28]. In
this module, CH4 emission from liquid manure is calculated using an algorithm proposed
by [29]. This model is based on the Arrhenius equation and uses the residual volatile solids
(VS) and a temperature response function for methanogenesis (Equation (3)).

Ft = (VSd + 0.01VSnd) e(lnA− Ea
R T ) (3)

where Ft is specific methane production rate (g CH4 kg VS−1 h−1), VSd and VSnd represent
the fast and slowly degradable fractions of volatile solids (VS) (kg kg−1 VS), A is the
Arrhenius parameter (g CH4 kg VS−1 h−1), Ea is the activation energy (kJ mol−1), R is the
gas constant (kJ mol−1 K−1), and T is temperature (K). The algorithms used to calculate
the production of VS in manure and the corrected methane emission rate for the in situ
temperature are presented in the SM file (Equations (S10)–(S14)). The model parameters
(Ea, lnA, VSd) utilized in this study are presented in Table 2.

Table 2. Key parameters of the methane estimation model, based on previous studies (Ea and lnA)
and this study (VSd).

Parameter Petersen et al. (2016) [32] This Study

VSd (kg kg−1 VS) 0.51 0.83
Ea (kJ mol−1) 81.0 * 81.0 *
lnA (g CH4 kg−1 vs. h−1) 31.3 31.3 **

* adopted from [37]; ** adopted from [32]; VSd: degradable volatile solids; Ea: Apparent activation energy
(kJ mol−1); A: the Arrhenius parameter.

In order to predict the CH4 emission per day of the growing period, the model uses
the amount of residual manure in proportion to the amount of discharge from the inside
pit to an outside destination. On a daily time step, the loading of actual manure level inside
the pig house is simulated according to the initial height of manure at the beginning of the
growing period, removal rate, and the last day of emptying the pit (day of the growing
period). In other words, the model first estimates the composition of the remaining manure
in the pit and subsequently simulates the methane production rates per day of storage in
the manure pit underneath the slatted floor. Thus, the model assumes a linear relationship
between the volume of manure and CH4 emissions.

2.5. Model Application

To show the capacity of the model to predict NH3 and CH4 emissions from commercial
pig houses, we compared model simulations to measured data. Experiments were carried
out in two commercial fattening pig facilities over one year, from October 2020 to October
2021, including four growing periods, each lasting around 90 days. These experiments
were conducted in two separate rooms, each representing a distinct manure management
system (MMS). The first experimental room represented a conventional MMS with long-
term storage (LS system) of manure in deep pit underneath the (partly) slatted floor.
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The second experimental room was equipped with an adapted slurry pit for short-term
storage (SS system) of manure by daily flushing from the pit underneath the (partly) slatted
floor, dilution of the front channel, and reduced manure-emitting surface (Figure 2). These
two systems were examined for the mitigation potential of methane and ammonia emissions
affected by the manure removal frequency, pen design, and dilution of manure with water.

(a) 

(b) 

Figure 2. Schematic representation of the fattening pig houses (a) long-term storage (LS) and
(b) short-term storage (SS) of manure inside the pig house. In the LS system, both front and back
channels were filled with manure, while in the SS system, the back and front channels were filled
with manure and manure diluted with water (cleaning water and spoiled drinking water).

The measured data comprised continuous readings of NH3 and CH4 concentrations
(using sensors), ventilation rates, and temperature. Discrete measurements included ma-
nure production, manure composition, pen fouling (with urine), the percentage of the solid
floor and the sloping walls that is moistened with urine, manure temperature, and height
in the pit. Measurements for determining the emission of methane and ammonia gases
were conducted using a reference method [38,39] at specific times (two randomly selected
days per growing period) over one year (October 2020–2021) [40]. The characteristics of the
farms and a schematic representation of the housing systems are presented in Table 3 and
Figure 2.
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Table 3. Overview of the experimental pig rooms with two different manure management systems.

Characteristics LS 1 SS 2

No. of animal places 54 78
Growth range (kg) 23.6–115.6 22.6–114.0
Room length (m) × width (m) 11.28 × 5.90 15.55 × 6.00
No. of pens 6 6
Pen length (m) × width (m) 5.10 × 1.88 5.22 × 2.59
Depth of manure pit 1.20 0.50
Area per animal (m2 pig−1) 1.00 1.00
Material slatted floor
(back-front slatted floor) Metal triangular—Concrete Metal triangular—Concrete

Material solid floor Concrete Concrete
Slatted floor/Solid floor (%) 60/40 38/62
Slope of manure pit wall (◦) 90 45
Manure removal interval (d) 45 3 1
Feeding/Drinking system Dry feeder/Nipple Dry feeder/Nipple

1 LS: long term storage of manure; 2 SS: Short term storage; 3 Mean of emptying interval.

The ammonia concentration of the outgoing air was measured continuously using a
Dräger Polytron C300 sensor (Dräger, Lübeck, Germany). The data could be read remotely.
The methane and carbon dioxide concentrations in the ventilation air of the departments
were continuously measured by means of an ABB monitor (ABB-Uras26, ABB, Frankfurt,
Germany). The outgoing concentrations were measured hourly for both LS and SS systems.
The data was then written to a data-logging system (CR1000X; Campbell Scientific Inc.,
Logan, UT, USA), which could be read remotely.

The pig houses were mechanically ventilated by means of an automatically controlled
climate computer. The actual ventilation flow was then measured with a measuring fan in
the ventilation shaft with the same diameter as the fan. Each revolution of the measuring
fan gave a number of pulses, and this number was continuously logged by the climate
computer of the pig farm. Temperature (◦C) and relative humidity (%) were measured in
each department near the ventilation shafts by means of a sensor (Vaisala HMP60; Vaisala
GmbH, Hamburg, Germany). These data were stored on a data-logging system (CR1000X;
Campbell Scientific Inc., Logan, UT, USA).

2.6. Data Analysis

The CH4 and NH3 emissions were calculated from the measured concentration and
ventilation rate according to a reference method [38,39]. For both pig rooms (j = 1, 2),
the emission, Eij (kg yr−1 per pig place), was calculated per measurement day using
the concentration of CH4 and NH3 in the outgoing air (Coutij) and the incoming air Cinij,
(both in mg m−3), the average ventilation flow Vij (m3 h−1 per pig place), and the density
of the gas (ρ) to convert the concentration (ppm) to mg m−3 (0.667 and 0.71 kg m−3 for
CH4 and NH3). This was then multiplied by 24 and 365 and divided by 106 to calculate
the kg of methane and ammonia emissions per pig place per year (Equation (4)). For the
reference measurement method, a vacancy factor of 3% was used to calculate the annual
emission associated with the production cycles) [41].

Eij =
(

Couttij − Cinij

)
· ρ · Vij ·24 ·365/106 (4)

2.7. Model Validation

To assess the agreement between predicted and measured values and the accuracy of
the model, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were cal-
culated. Additionally, Y = X graphs were constructed, and the coefficient of determination
(R2) was provided. Lower values of MAE and RMSE imply higher agreement between the
predicted and measured values. However, higher values of R2 show a stronger correlation
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between predicted and measured values. The MAE, RMSE; and R2 were calculated using
the following equations (Equations (5)–(7)).

MAE =
∑n

1
∣∣V − V̂

∣∣
n

(5)

RMSE =

√
∑n

1
(
V − V̂

)2

n
(6)

R2 = 1 − ∑n
1
(
V − V̂

)2

∑n
1
(
V − V

)2 (7)

where MAE is the mean absolute error, RMSE is the root mean square error (both in unit
of the parameter), V is the measured value, V̂ is the predicted value, n is the number of
values, R2 is the coefficient of determination, and V is the mean of the measured values.

3. Results and Discussion

3.1. Indoor Climate Parameters

A summary of the calculated and measured room temperature, manure temperature,
and relative humidity for the LS and SS systems are presented in Table 4. The trend of
the calculated and continuous-measured values of these parameters over one year are
visualised in Figure S1 in the SM file. Based on the obtained results, the average predicted
temperature was comparable with the calculated values for the two examined systems
(MAE of 1.5 and 1.1 ◦C, RMSE of 4.0 and 3.8 ◦C, and R2 of 0.8 and 0.92 for the LS and SS
systems, respectively). The mean predicted room temperatures were 22.3 ◦C for LS and
21.4 ◦C for SS, corresponding with measured values of 23.0 ◦C and 21.0 ◦C, respectively. The
average temperature of the manure was measured as 24.5 ◦C and 22.3 ◦C, respectively. The
lower temperature ranges for the SS system can be explained by the short storage courses
and daily removal of manure in this system. The manure temperature was underestimated
by the model (MAE of 6.7 and 6.8 ◦C, RMSE of 6.5 and 7.5 ◦C, and an extremely low R2

(<1) for the LS and SS systems, respectively). The manure temperature was calculated by
using empirical relationships with the measured outgoing air temperature. This significant
difference in manure temperatures suggests the need to consider temperature variation
at inside storage facilities in countries such as the Netherlands, where long-term manure
storage inside the pig houses is a common practice. Furthermore, the high variation
between the measured and predicted temperature of manure can be due to issues such as
limited data availability and measurement errors. In this study, manure temperature was
measured manually in a limited number of observations (six times over one year). The
calculated relative humidity was relatively underestimated by the model compared to the
continuous measured data (MAE and RMSE > 10% and R2 of 0.57 and 0.63 in both systems).

Table 4. Average calculated and measured room temperature, manure temperature, and relative
humidity for two manure management systems (MMS) in fattening pig rooms. Standard deviations
are given between parentheses.

Variable MMS
Calculated

(Model)
Measured

(Continuous)
Measured

(Discrete) 3 MAE 4 RMSE 5 R2

Room temperature
(◦C)

LS 1 22.3 (1.6) 23.0 (1.8) - 1.5 4.0 0.80
SS 2 21.4 (2.7) 21.0 (2.6) - 1.1 3.8 0.92

Manure temperature
(◦C)

LS 19.5 (1.3) - 24.5 (1.7) 6.7 6.5 <1
SS 18.7 (2.2) - 22.3 (2.4) 6.8 7.5 <1

Relative humidity
(%)

LS 59.7 (4.1) 67.6 (4.4) - 9.4 13.1 0.57
SS 56.1 (5.3) 67.9 (5.0) - 13.1 15.5 0.63

1 LS: long storage system; 2 SS: Short storage system; 3 Reference method [40]; 4 Mean absolute error; 5 Root mean
square error between calculated and measured values based on daily differences.
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3.2. Methane Emission

A summary of the calculated and measured volatile solids (VS) and methane (CH4)
emission from the LS and SS systems are presented in Table 5. The calculated vs. content of
the manure was lower than the measured value (ca. 10% with MAE of around 2.6 g kg−1

RMSE in the range of 11.2–12 g kg−1 and average R2 of 0.20 for both systems). The average
calculated CH4 emission (18.5 and 4.3 kg yr−1 per pig place) was in between the means
from the continuous data (15.9 and 5.6 kg yr−1 per pig place) and the means from the
discrete measurements using the reference method (22.0 and 3.1 kg yr−1 per pig place)
for LS and SS, respectively. The largest RMSE was observed between the predicted and
continuous measurements, with a value of 4.6 kg yr−1 per pig place.

Table 5. Average calculated and measured volatile solids and methane emission for two manure man-
agement systems (MMS) in fattening pig rooms. Standard deviations are given between parentheses.

Variable MMS
Calculated

(Model)
Measured

(Continuous)
Measured

(Discrete) 3 MAE 4 RMSE 5 R2

Volatile solids-manure
(g kg−1)

LS 1 68.5 (5.9) - 76.2 (11.5) 2.6 12.5 0.16
SS 2 68.0 (7.3) - 77.4 (9.0) 2.8 11.2 0.21

CH4 emission(kg yr−1 per pig place)
LS 18.5 (5.3) 15.9 (7.9) 22.0 (5.0) 3.1 4.6/2.8 0.64
SS 4.3 (2.4) 5.6 (3.7) 3.1 (1.3) 1.9 3.3/3.0 0.13

1 LS: long storage system; 2 SS: Short storage system; 3 Reference method [40]; 4 Mean absolute error; 5 Root mean
square error between calculated and measured (continuous/discrete) values based on daily differences.

The development of calculated and measured methane emission and the height of
manure in the pit representing the manure volume are presented in Figure 3a,b. Based on
this graph, the predicted volume of the stored manure and the corresponding methane
emission fitted well with the measurements. The breaks seen in this graph are due to the
partial emptying of the pit on certain days during each growing period. No continuous
measurement data were available for the first growing period (GP1) due to unreliable sensor
calibrations. Based on the results of the in vivo measurements (the reference method) for
SS, a reduction potential for methane emission of 86.0% (±5.6%) compared with LS can
be expected.

Comparing the measured CH4 emission (continuous and point measurements) with
the calculated values implies that the model predictions fitted quite well with the measure-
ments. The mean of the measured (reference method) and calculated methane emission
of the LS system were 22.0 ± 5.0 and 18.5 ± 5.3 kg yr−1 per pig place, respectively. Those
for the SS system were 3.1 ± 1.3 and 4.3 ± 2.4 kg yr−1 per pig place, respectively. The
variation observed between continuous CH4 emission measurements obtained from the
sensors and discrete measurements using the reference method can be attributed to several
factors. The primary factor to note is that the sensors utilized in our experiment were new
and had been calibrated by the manufacturer, without specific calibration for our study.
Hence, it is reasonable to attribute any discrepancies to potential errors in calibration. The
secondary factor: the main objective of sensor measurements was to monitor emission
patterns with a lesser focus on measuring absolute emissions. Furthermore, ensuring the
proper functioning of the sensors is imperative and requires ongoing monitoring.

During the growing period, methane emission was mainly influenced by the level of
manure stored in the pit, featuring lower emission rates after each (partial or full) emptying
of the manure pit (Figure 3b). For SS, the manure pit was emptied every day, while the
water channel was emptied once per growing period. This partially explains the increasing
pattern of methane emission in the SS system (blue lines), besides the expected increase
in methane production from enteric fermentation. In the third growing period (GP3), it is
likely that the water channel of the SS system was emptied more frequently, in line with
farm practices implemented on the commercial farm, though these data have not been
registered and therefore have not been accounted for in the model inputs. Consequently,
this change may have contributed to the observed reduction in CH4 emission, as detected

13



Animals 2024, 14, 964

by both the sensor and the reference method, in contrast to the predictions generated by
the model.

(a) 

 
(b) 

Figure 3. Calculated (line) and measured (point) methane emission (kg yr−1 per pig place) (a) and
height of the manure accumulated in the pit (b) per growing period (GP) for two manure management
systems (MMS) in fattening pig rooms. LS: long storage in pit with straight walls (the red symbols
and line) and SS: short storage in pit with sloped walls (the blue symbols and line). All data represents
the mean daily values converted to annual levels. The ‘Cont.Meas’ category indicates the continuous
measurements using sensors. The ‘in vivo’ data indicates the discrete reference measurements. In
growing period 1, no sensor measurements were recorded. The start and end dates of the growing
periods were: GP1: 8 October 2020–12 January 2021; GP2: 21 January 2021–20 April 2021; GP3:
27 April 2021–21 July 2021; GP4: 27 July 2021–21 October 2021.

For a better prediction level, detailed farm records of the removal volume, its frequency,
and the residual manure in the pit are necessary inputs to the model. In this study, the
height of manure in the deep pit and the level of the water channel were not regularly
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measured and observed. The model, therefore, assumes a linear correlation between the
estimated volume of the manure, estimated by the height and area of the manure pit, and
the CH4 emission. In SS, it is expected that, with a more frequent emptying system in the
water channel and thorough cleaning of the channels after flushing, CH4 emission can be
reduced to even a larger extent. Due to the daily and (almost) complete removal of the
manure, the anaerobic conversion of the organic matter in the manure to methane and
carbon dioxide barely occurs [42]. By limiting the growth and activity of methanogenic
communities and by reducing the amount of organic matter by the more frequent removal
of manure to outside storage, lower methane emission rates can be expected [43]. Another
study has recently shown that methane emission is highly dependent on the frequency of
manure removal and less dependent on temperature of the manure in pig house storage
with increased manure removal frequencies [20]. Therefore, the present findings indicate
that daily manure removal can significantly diminish methane emission, to the extent that
the only source of CH4 is the enteric methane from the pigs. The enteric methane from pigs
was reported as approx. 1.5 kg pig−1 year−1 produced by pigs themselves [44]. Thus, it is
to be expected that, with SS, most methane emission from manure could be prevented.

Another general observation is that, in addition to manure management practices,
CH4 emission in the LS system was influenced by seasonal effects (Figure 3a). Specifically,
the average methane emission during the summer months (GP3 and GP4, encompassing
June and July) exceeded that of the other two growing periods occurring in the autumn and
winter seasons. The current model predicts the manure temperature based on the room
temperature, and the room temperature is calculated according to the outside temperature.
We stress, therefore, the importance of accurately predicting the manure temperature in
relation to the manure volume in the storage for accurate prediction of CH4 emission.

The linear relationships between the continuous-measured and calculated methane
emission are shown in Figure 4. The results show that the model has a better prediction
for LS than SS (R2 of ca. 64% and 13%). This difference in prediction can be explained by
the higher number of assumptions about the LS system (for example, the cleaning level
of the manure pit, as well as the emptying intervals of the water channel, which may
not be fully aligned with the practical situation of the examined farm). By removing the
predicted values of the third growing period (GP3), the R2 increases (by a factor of 2).
Overall, improving the inputs of the model with accurate activity data from farm practices
can increase the accuracy of the prediction.

(a) (b) 

 

Figure 4. The continuous-measured (Y) and calculated (X) methane emission (kg yr−1 per pig place)
in (a) LS: long storage in pit with straight walls; (b) SS: short storage in pit with sloped walls. The
solid black line represents the 1:1 line. The points represent the measured data points and the blue
line is the regression line between (X) and (Y) showing the best-fit line throughout the data points.
All data represents the mean daily values converted to annual emission.
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3.3. Ammonia Emission

A summary of the calculated and measured ammonia emission per source (manure
pit and soiled floor surface) for one year are presented in Table 6. The average values of
most of the measured parameters were comparable with the calculated values. The mean
calculated ammonia emission for LS and SS were 2.6 (±1.0) and 1.4 (±0.8) kg yr−1 per
pig place, respectively. The calculated and measured parameters were in good agreement,
confirming the accuracy of the model predictions. The MAE of NH3 emission was 0.8 and
0.5 kg yr−1 per pig place. Additionally, the RMSE was 1 and 0.5 kg yr−1 per pig place with
an R2 of 0.45 and 0.67 for the LS and SS systems, respectively. From these results, it is also
evident that the NH3 emission emitted from the manure pit is higher than from the floor
(on average, 80% for LS and 70% for SS were released from the manure pit). This highlights
the impact of mitigation measures on reducing NH3 emission from the inside storage pits
compared to the floor. Measures controlling the indoor climate of the pig houses and
management factors affect ammonia formation on the floor surface. For example, in pig
houses, the risk of soiling becomes greater as the areaof solid floor increases. This risk can
be limited by a good pen design and by maintaining a good indoor climate (e.g., by air or
floor cooling in the summer) [34]. Many studies have shown that lower ammonia emission
can be achieved with partly slatted floors, provided that the solid part of the floor remains
clean [45–47].

Table 6. Average calculated and measured ammonia emission sources for two manure management
systems (MMS) in fattening pig rooms. Standard deviations are given between parentheses.

Variable MMS
Calculated-

Model
Measured -
Continuous

Measured -
Discrete 3 MAE 4 RMSE 5 R2

NH3 emission—Floor
(kg yr−1 per pig place)

LS 1 0.5 (0.3) - - - - -
SS 2 0.5 (0.3) - - - - -

NH3 emission—Manure pit
(kg yr−1 per pig place)

LS 2.2 (0.9) - - - - -
SS 0.9 (0.6) - - - - -

Total NH3 emission
(kg yr−1 per pig place)

LS 2.6 (1.0) 2.6 (0.9) 2.71 (0.4) 0.8 1.2/1.1 0.45
SS 1.4 (0.7) 1.2 (0.9) 1.01 (0.2) 0.5 0.8/0.3 0.67

1 LS: long storage system; 2 SS: Short storage system; 3 Reference method [40]; 4 Mean absolute error; 5 Root mean
square error between calculated and measured (continuous/discrete) values based on daily differences.

The total ammonia emission obtained from the model predictions (lines) in comparison
with the sensor measurements (triangular points) and the reference method (in square and
circle) are represented in Figure 5. This graph also demonstrates the reduction potential in
ammonia emission from the manure pit affected by the manure management system and
pen design (the red line and points for LS and the blue ones for SS). The average ammonia
emission reduction measured by the reference method corresponds to 62.7% (±7.4%), with
an average emission rate of 2.63 and 1.0 kg yr−1 per pig place (Booijen et al., 2023) [41]. The
discrepancy observed between continuous NH3 emission measurements obtained from the
sensors and discrete measurements using the reference method can be attributed to several
factors, as mentioned above. The new sensors, utilized in this study at the commercial
farm, were not calibrated within this study. Additionally, potential inaccuracies in the
NH3 sensors, particularly in measuring very low (<2 ppm) and very high concentrations,
may contribute to the variation. During the last two growing periods (GP3 and GP4), the
predicted NH3 emission surpassed both the continuously measured data and reference
measurements. This disparity could be linked to the predicted ambient and manure surface
temperatures during the warm season.

From the results, it can be concluded that the prediction of ammonia emission was
well-aligned and reasonably accurate for both systems when compared with the reference
points. Overall, the reduction measures in the SS system, including reduction of the
slurry pit surface with sloped pit walls, frequent manure removal, and dilution with water,
demonstrated relatively the good reduction potential of NH3 emission compared to the
reference system.
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Figure 5. Calculated (line) and measured (point) ammonia emission (kg yr−1 per pig place) for two
manure management systems (MMS); LS: long storage in pit with straight walls (the red symbols
and line); SS: short storage in pit with sloped walls (the blue symbols and line). Category ‘Cont.Meas’
indicates the continuous measurements using sensors. Category ‘in vivo’ indicates the discrete
reference measurements. Breaks are due to problems with the sensor or outlier detection. The start
and end dates of the growing periods were: GP1: 8 October 2020–12 January 2021; GP2: 21 January
2021–20 April 2021; GP3: 27 April 2021–21 July 2021; GP4: 27 July 2021–21 October 2021.

The linear relationships between the daily measured and calculated ammonia emission
per MMS are shown in Figure 6. The slopes of the linear regression line and R2 were
around 0.63 and 0.45 for LS and 0.83 and 0.67 for SS. This relationship also suggests that
as emission rates increase, the variability in emission becomes higher, leading to lower
prediction accuracy.

(a) (b) 

  

Figure 6. The measured (Y) and calculated (X) ammonia emission (kg yr−1 per pig place) of
two MMS (a) LS: long storage in pit with straight walls; (b) SS: short storage in pit with sloped
walls. The solid black line represents the 1:1 line. The points represent the measured data points and
the blue line is the regression line between (X) and (Y) showing the best-fit line throughout the data
points. Data represents the average daily values converted to annual level.

3.4. Model Parameters and Implications for the Predicted Emission

A model approach in estimating the influence of mitigation measures has been intro-
duced in this study. The most critical component in these predictions is water excretion,
due to the error caused by the incorrect estimation of water evaporation from manure and
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fouled floors with urine, which is affected by the air velocity and temperature at the surface.
Within the model, the air velocity above the evaporation surface is assumed to be constant.

Model predictions can be improved by better prediction of the pH of the manure.
The current model lacks an adequate prediction of manure pH, which is a crucial factor
influencing NH3 emission. This is partly due to the fact that a large number of factors are
affecting the pH; in particular, the carbonate content of urine and manure is hard to predict.
As an intermediate solution, the pH of the urine and manure was measured and used as
an input for the model. The pH of the top layer of the manure was determined from the
pH of the bulk of the manure based on a lab-scale analysis at the University of Southern
Denmark in Odense [34]. Further development of the model should focus on the accurate
estimation of the pH by using a measurement set-up to measure the surface pH of the top
0.1 mm of manure, comparable to a practical situation, or using the measured pH of the
bulk manure as an input for the emission model.

Another important point for improvement of the model is the assumption about the
emitting surface. In this current version of the model, the ammonia emission per m2 of
contaminated concrete slatted floor was assumed to be the same as that of the concrete solid
floor. This current model could be further improved by developing a dynamic urination
model for determining the variation in ammonia emission over time (on an hourly basis),
as suggested by [33].

Temperature and air velocity above the emitting surface were estimated from the
measured temperature and ventilation quantity at the exhaust, which, although currently
easily measured, can be nevertheless improved by air flow models to better estimate the
temperature and air velocity above different emitting surfaces. Extra effort is required to
incorporate and apply these features into this model in a simple way. Further development
of the methane emission model should be focused on temperature variation by the depth
at inside storages and degradability of the organic matter over the storage period. Further-
more, the accuracy of the model is heavily reliant on precise and adequate input data. In
this work, the regular recording of the manure level height in the storage was lacking. It is
anticipated that with a larger dataset, the predicted methane emission will be improved.

It should be pointed out that the model currently uses the temperature-related equation
for the estimation of methane emission. This relationship is dependent on the lnA value [32].
The lnA value used in this study was obtained from the study by [32,37]. Therefore,
for a better estimation of methane emission using the approach used in this study, it
is recommended to parameterize the model by the determination of lnA for country-
specific and system-specific (linked to various manure management systems) pig farms in
the Netherlands.

4. Conclusions

This paper discussed the prediction of CH4 and NH3 emissions through a model-based
approach. The study compared the results obtained by integrating two comprehensive
models (ANIPRO + MESPRO) with values derived from continuous data measurements
and a discrete reference method. The model approach was applied to two fattening pig
houses implementing emission reduction measures and compared with a conventional
housing system for pigs in the Netherlands. The main conclusions drawn from this study
are as follows:

1. The average calculated CH4 and NH3 emissions on an annual basis correspond well
with measured values for the examined measures.

2. The measurements confirmed the reduction potential of the studied measures for CH4
and NH3 emissions from pig houses. The model could predict these effects with an
acceptable degree of accuracy.

3. The obtained results suggest that improving the calculation rules of the model for bet-
ter estimation of variables affecting ammonia emission, such as the pH, temperature,
and air velocity, will lead to a better prediction of emissions.
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4. The model attributes provide valuable means for assessing the impact of mitigation
measures on CH4 and NH3 emissions. This provides a robust basis for assessing the
impact of management and housing strategies on CH4 and NH3 emissions from pig
houses, which, in turn, helps support more sustainable practices in pig farming.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/ani14060964/s1. The supporting material is published online alongside
this paper, including ädditional equations and a figure of the result section (Figure S1 Calculated
(line) and continuous-measured (point) values of indoor temperature (◦C), relative humidity (%) and
ventilation rate (m3 h−1 per pig place). The red lines and points represent the reference department
and those in blue represent the trial department. Each segment indicate one growing period (GP);
8 October 2020–12 January 2021; GP2: 21 January 2021–20 April 2021; GP3: 27 April 2021–21 July
2021; GP4: 27 July 2021–21 October 2021.) [32–34,48–52].
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Simple Summary: Shoulder lesions present a significant welfare concern, particularly among breed-
ing sows. They are frequently linked to decreased mobility and loss of body condition during
lactation. This research explores using RGB cameras and the potential of different computer vision
methods for detecting and estimating their size. Findings indicate that these techniques hold promise
in effectively identifying and quantifying lesion size. This could empower producers to proactively
monitor sow welfare, facilitating timely detection and intervention for these lesions.

Abstract: Shoulder sores predominantly arise in breeding sows and often result in untimely culling.
Reported prevalence rates vary significantly, spanning between 5% and 50% depending upon the type
of crate flooring inside a farm, the animal’s body condition, or an existing injury that causes lameness.
These lesions represent not only a welfare concern but also have an economic impact due to the labor
needed for treatment and medication. The objective of this study was to evaluate the use of computer
vision techniques in detecting and determining the size of shoulder lesions. A Microsoft Kinect V2
camera captured the top-down depth and RGB images of sows in farrowing crates. The RGB images
were collected at a resolution of 1920 × 1080. To ensure the best view of the lesions, images were
selected with sows lying on their right and left sides with all legs extended. A total of 824 RGB images
from 70 sows with lesions at various stages of development were identified and annotated. Three
deep learning-based object detection models, YOLOv5, YOLOv8, and Faster-RCNN, pre-trained with
the COCO and ImageNet datasets, were implemented to localize the lesion area. YOLOv5 was the
best predictor as it was able to detect lesions with an mAP@0.5 of 0.92. To estimate the lesion area,
lesion pixel segmentation was carried out on the localized region using traditional image processing
techniques like Otsu’s binarization and adaptive thresholding alongside DL-based segmentation
models based on U-Net architecture. In conclusion, this study demonstrates the potential of computer
vision techniques in effectively detecting and assessing the size of shoulder lesions in breeding sows,
providing a promising avenue for improving sow welfare and reducing economic losses.

Keywords: shoulder lesions; ulcers; sows; deep learning; YOLO; U-Net

1. Introduction

Shoulder lesions, amongst lactating sows, are commonly seen in the swine industry.
Lesions commonly develop during the first two weeks of farrowing [1]. These are formed
due to the deficiency of oxygen to the underlying shoulder tissue caused by pressure
incited from the flooring. The tissues lose blood supply and die similar to human pressure
ulcers [2]. The anatomy of a sow’s scapula bone has a large ridge known as the scapular
spine. When the differences in the structure of the scapula in sows were analyzed, sows with
a prominent scapula spine were found to be at a higher risk of lesion formation [3]. When a
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sow lies on its side, extra pressure is exerted on the tissue surrounding the spine making
it vulnerable to ulcer formation [4]. Though the lesions are described as shoulder sores,
they develop near the dorsal aspects of the spine of the scapula, not at the scapulohumeral
joint [5]. The dorsal aspect of the spine is a common location of ulcer development, but
lesions may develop over any bony prominence such as the tarsus or cubital joint. The
severity of lesions can vary from mild lesions to bone-deep ulcers if left untreated. They
are associated with poor animal welfare because of the pain and increased infection risk
that can lead to euthanizing the animal. In addition to the welfare-associated problem,
shoulder lesions increase production costs due to the treatment and increased culling
rate [6]. Bone-deep ulcers often negatively affect the sow’s carcass value as they lead to
failure of the final quality check. Therefore, treating these ulcers early to reduce welfare
and economic concerns becomes highly important. Early lesion detection will result in
timely veterinary treatments, such as the application of zinc oxide to the affected area.
Most research regarding shoulder lesions has primarily concentrated on potential causes,
associated effects, and strategies to prevent or manage ulcerations. Implementing automatic
monitoring technology for shoulder lesions has the potential to alleviate the workload of
farm workers and facilitate prompt treatment. In recent times, innovative animal husbandry
solutions have emerged, which enable continuous and automated tracking of individual
animals’ well-being through the utilization of diverse sensors and cameras [7]. However,
limited research has been conducted on the monitoring of these lesions. One previous
study [8] investigated the use of thermal cameras to measure the related temperature
increase caused by an inflammatory response. This approach allowed for the early detection
of lesions up to 7 days before visual signs appeared. These advancements not only enhance
farm productivity but also enable the early detection of emerging health concerns.

While thermal imaging may be able to detect the beginning of a lesion, RGB cameras
have a cost advantage. Potentially, RGB images, in combination with machine learning
techniques, may be able to detect lesions shortly after they become visible and could
potentially track their progression. Machine vision techniques like deep learning-based
models have become increasingly effective in solving various problems. For example,
convolutional neural networks (CNNs) like Resnet101, Xception, and MobileNet have
already been successfully implemented to classify different postures in swine [9,10]. YOLO
(You Only Look Once) has been used for the early detection of estrus behavior in cattle by
modifying the spatial pyramid pooling (SPP) module in the architecture [11]. Although
there has not been much work conducted in lesion detection in animals using RGB cameras,
studies have been performed using deep learning models to detect and localize ulcers
from the images of diabetic human feet [12]. Recently, image segmentation based on deep
learning has become one of the main image segmentation methods. Different variations
of U-Net architecture have been commonly used for detecting various kinds of lesions
like skin [13,14], lungs [15], brain [16], etc. Another study presented a two-stage deep
learning method for accurately segmenting skin lesions from dermoscopic images based on
YOLO–DeepLab networks [17]. However, the images these studies used for model training
had a significantly larger lesion-to-background area ratio alongside uniform illumination
without much noise.

With shoulder lesions in sows, it is likely the lesion portion of the image could only
be a few pixels as cameras are mounted at a height to avoid interference with day-to-
day activities. In addition, for training any deep learning model from scratch, one needs
to have large amounts of supervised data; for example, the pictures of sows manually
annotated with bounded boxes around the lesion region to make the model understand
the difference between lesion and all other objects in an image. To make these algorithms
better at generalizing, focus should not only be on the dataset size but also on the data
quality so that the model can extract different patterns and features from the data during
the training phase.

Many applications with livestock species have the limitation of a small, annotated
dataset. To tackle the limitations of a small-sized dataset, transfer learning has been used
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to minimize this gap. It is a machine learning technique which reuses a model trained for
one task by applying it to another, related task. It uses the weights or features of a model
that has been trained on much bigger datasets like MS COCO or ImageNet and feeds them
into the target network. Then, modifications are performed in the initial and final layers
to accommodate predictions on the custom dataset. The middle layers of any CNN learn
general features of objects like specific edges, color patches, etc. and are applicable across
many datasets and tasks. The target model freezes its middle layers, uses the mid-layer
features from the base model, and retrains its initial and last layers to learn specific features
related to the custom dataset. Jensen and Pedersen used transfer learning to localize and
count pigs in slaughterhouses [18].

Therefore, the objectives of this study were to

• Compare the performance of deep learning models, including two versions of YOLO
(5s, 5m and 8s, 8m) and two versions of FRCNN (R50 Backbone and X-101 Backbone)
in the localization of shoulder lesions in various stages of development.

• Compare two traditional imaging segmentation methods (Adapting thresholding
and Otsu’s method thresholding) and two deep learning-based U-Net architectures
(Vanilla and Attention U-net) to segment lesion pixels and estimate size.

The paper is structured as follows: Section 1, “Introduction”, outlines previous work;
Section 2, “Materials and Methods”, includes details on the data collection (Section 2.1),
lesion localization (Section 2.2), and segmentation processes (Section 2.3), along with size
referencing techniques (Section 2.4); Section 3, “Results”, presents the findings on lesion
localization (Section 3.1) and segmentation (Section 3.2) and addresses the challenges
encountered (Section 3.3); Section 4 compares the findings with other studies under “Dis-
cussion” and the paper concludes in Section 5, “Conclusions”, which summarizes the key
findings and insights.

2. Materials and Methods

2.1. Data Collection

The experiment was conducted at the U.S. Meat Animal Research Centre (USMARC)
located outside Clay Center, NE, USA. All animal husbandry protocols were performed in
compliance with federal and institutional regulations regarding proper animal care prac-
tices and were approved by the USMARC Institutional Animal Care and Use Committee
(2015–2021). The facility at USMARC is a farrow to finish swine production unit. This
study utilized 360 sows of a Yorkshire–Landrace cross breed. This dataset was from a
study designed to test behavioural and production characteristics of sows housed in three
different crate sizes [19]. The images were captured in one of the two farrowing facilities.
The farrowing facility housed three farrowing rooms, with each room containing twenty
farrowing crates, totaling sixty crates per farrowing cycle. The facility was well lit, with
the lights being on for 12 h a day, from 5:30 a.m. until 5:30 p.m. An aluminium theatre
triangle truss, 21.6 m in length, was placed above each row of crates. The bottom end of
the truss was at an approximate height of 2.6 m above the ground. A time-of-flight depth
sensor with an integrated digital camera (Kinect V2™, Microsoft, Redmond, WA, USA)
was centred above each crate and mounted on the truss’s bottom at a height of 2.55 m
from the floor. Sensors were enclosed within a waterproof housing to protect the cameras
during pressure washing and disinfecting. Digital and depth images were collected every
5 s. Only the RGB images (resolution 1920 × 1080) were used for the experiment. The
setup can be seen in Figure 1. One mini-PC with Windows 10 Home Edition (Windows
10 Home, Microsoft, Redmond, WA, USA) was connected to a single camera. A total of
20 mini-PCs were connected to an external disk station (DS1517+, Synology Inc., Bellevue,
WA, USA), each having five 10 TB hard disk drives (ST10000VN0004, Seagate Technology
LLC, Cupertino, CA, USA). Only images collected during the lights-on period of the day
were used. The room was illuminated with 20 T-8 fluorescent bulbs.

24



Animals 2024, 14, 131

 

Figure 1. Image collection system utlizing a Kinect V2™ mounted on an aluminum truss.

An image capturing program was developed in MATLAB (R2017a, The Math-Works,
Inc., Natick, MA, USA). This program was designed to capture and store one digital image
approximately every 5 s, providing a view of lesion development across the four-week
period of sow confinement in crates. Out of all the sows, 70 animals developed lesions.
Within this timeframe, a total of 824 images were filtered, each depicting the progression of
shoulder lesions in 70 sows. The dataset was split in the 80:20 train to test ratio.

Table 1 offers insight into the distribution of images across different weeks of lactation.
Notably, data from the first week, where lesions are typically not visually evident, was also
included as part of the dataset to enhance the model’s capability to handle false positives.
This increase in data size aimed to enhance the model’s capability to handle false positives.

Table 1. Distribution of images by week in the dataset.

Week Number of Images

1 93
2 293
3 269
4 169

Throughout this study, the progression of lesions became apparent, with most lesions
manifesting visual signs during the 1–2-week phase. These initial stages are characterized
by minor wounds limited to the outer layer (epidermis) marked by reddening of the affected
area. As time progressed to week 3, more severe lesions emerged, causing abrasions and
reaching the lower skin layer (dermis) while growing in diameter and forming granulated
tissue. By the fourth week, the most severe cases exhibited signs of deep bone lesions.
Figure 2 shows the lesion progression of a severe lesion. It is important to highlight that
not all the sows followed the same timeline for lesion development. Benign cases might
undergo healing during later stages, often after forming scabs within the initial 2 weeks.

25



Animals 2024, 14, 131

Figure 2. Lesion progression over the farrowing cycle. (a) Lesion in the first week—minimal visible
signs. (b) Lesion in the second week—top layer affected. (c) Lesion in the third week—scab formed.
(d) Lesion in the fourth week—increased lesion diameter with possible dermis damage.

2.2. Lesion Localization

Figure 3 shows a sample image. To minimize computation for training and inference,
cropping was applied because the cameras’ positions were fixed, and the animals were
confined to the center of the crate. Precise identification of lesion boundaries was crucial for
size determination. This was achieved using deep learning-based object detection models,
which could detect lesions from sow images for localization and output bounding box
coordinates of the lesion within the frame.

 
(a) (b) 

Figure 3. (a) Sample RGB images collected. (b) Cropped RGB image.

Two object detection architectures were tested, named YOLO (You Only Look Once)
and Faster R-CNN (Region-based Convolutional Neural Network).

• YOLO (You Only Look Once) approaches object detection as a regression problem.
These models are renowned for their exceptional balance between speed and accuracy,
making them ideal for real-time applications. This is crucial in a production setting
where rapid and reliable detection of shoulder lesions is essential. The availability of
various model sizes (small and medium) allowed for the tailoring of the model to the
computational resources available and the optimization of either speed or accuracy. It
processes entire images in one step, providing direct predictions for bounding boxes
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and class probabilities. This study explored two different versions of YOLO developed
by Ultralytics [20] as seen in Figure 4, namely v5 and v8, with varying architecture
sizes (small “s” and medium “m”).

• Faster-RCNN is a two-stage detector, which uses a Region Proposal Network (RPN)
instead of using a selective search algorithm to output object proposals. Region-of-
Interest (ROI) pooling is applied to make all proposals the same size. Then, processed
proposals are passed to a fully connected layer that classifies the objects in the bound-
ing boxes. Two different backbone models, ResNet-50 and ResNet-101, pre-trained
on ImageNet classification tasks were implemented to leverage their deep residual
learning framework. This is particularly advantageous for capturing complex features
of shoulder lesions, which might be missed by shallower networks like YOLO.

 

Figure 4. Ultralytics YOLO base architecture used for lesion localization.

Due to limitations in the dataset size, transfer learning was employed. This method
fine-tuned a pre-trained detector with COCO or ImageNet weights to adapt it to a custom
dataset. Both the YOLO and FRCNN models utilized the PyTorch framework (Version 1.9).
Data preparation was conducted using OpenCV (Version 4.6.0), NumPy (Version 1.23),
and Pandas (Version 1.5.0). Matplotlib (Version 3.6.0) was employed for data visualiza-
tion. All models were trained for 300 epochs, with early stopping set to 50 consecutive
iterations without performance improvement to prevent overfitting. The hyperparameters
for FRCNN included a batch size of 8, a learning rate of 0.00025, and ReLU activation.
For FRCNN, the default image size range of (800, 1333) pixels was used. For YOLOv5
and YOLOv8, default hyperparameters from [21] were used and the input images were
resized to 1280 by 720. Object detection performance was measured by using mean average
precision (mAP), which takes classification and localization into account while evaluating.
The predicted bounding boxes are compared with the ground truth coordinate boxes and
if the overlap between them is more than the threshold value of Intersection-over-Union
(IoU), then it is considered a True Positive (TP) otherwise it gets classified as a False Positive
(FP). If the model fails to detect anything when the object is there, it is a False Negative (FN).
After this, precision and recall of a model are calculated. Then, the mean of all the average
precision values ranging across different IoU thresholds from 0.50 to 0.95 in increments of
0.05 was calculated as shown in Equation (1); for this research, n = 1, as the model had to
detect a single class.
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mAP =
1
n

n

∑
i=0

APi (1)

where: n = number of classes.

2.3. Lesion Pixel Segmentation

Following the localization of shoulder lesions within the frames using object detection,
the next crucial step involved segmenting the lesion pixels within the cropped bounding
boxes. Accurate pixel-level segmentation was essential for precisely quantifying the size
and extent of shoulder lesions. To obtain the segmented lesion pixels, both traditional and
DL-based techniques were tested on the detected regions.

Image-processing-based binarization techniques were first used to separate out the
lesion pixels from the sow’s body, as lesions were darker in color when compared to the
rest of the body. Python’s OpenCV module was used to implement two automatic image
thresholding techniques, namely Otsu’s method and Gaussian adaptive thresholding.
Otsu’s method returns a single intensity threshold that divides pixels into two classes:
foreground and background. The base value is calculated by maximizing or minimizing
the intensity variance between both classes. In adaptive thresholding, different thresholds
are calculated for different parts of the image for segregating all the pixels. This can handle
variations in lighting due to shadows from the crate bars and multiple lesion clusters,
ensuring robust pixel segmentation across the entire dataset.

Traditional image binarization might not work consistently when there is a lot of
shadow noise from crate bars in the image [20] or when the variation in the lesion and
the sow’s skin pixels is insufficient for it to differentiate between them, especially in
earlier stages of development. Deep learning-based techniques successfully addressed
these challenges where traditional image processing falls short. U-Net [22] is one such
architecture that has been extensively implemented in the biomedical field for pixel-level
segmentation. It is based on an encoder–decoder architecture. The vanilla U-Net alongside
a variation proposed in [23] were implemented, where attention gates were introduced
within the CNN architecture to make the network focus on the target object, suppressing
irrelevant information within the region. Both models were initialized using ImageNet
weights with frozen VGG16 backbone. ReLU was used as the activation function, with a
batch size of 8, binary cross entropy as the loss function, a learning rate of 0.001, and an
Adam optimizer. Both models were trained for 100 epochs.

The Dice coefficient was used for evaluating the performance of all the pixel segmen-
tation approaches. It assesses how well a predicted binary mask aligns with a ground truth
binary mask. The Dice coefficient produces a value between 0 and 1, where 0 indicates no
overlap and 1 indicates a perfect match. ImageJ was used to manually annotate the lesion
pixels and obtain the corresponding binary masks.

Dice Coe f f icient =
2·|TP|

2·|TP|+ |FP|+ |FN| (2)

where

• TP represents the number of true positive pixels, i.e., pixels that are correctly classified
as lesions in both the ground truth and predicted masks.

• FP represents the number of false positive pixels, i.e., pixels that are classified as
lesions in the predicted mask but not in the ground truth.

• FN represents the number of false negative pixels, i.e., pixels that are lesions in the
ground truth but not in the predicted mask.

2.4. Size Referencing

To estimate the area covered by lesions in measurable units, a calibration was con-
ducted using the crate’s anti-crush bar, which was positioned at the same level as the lying
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sow and at a similar shoulder height, serving as a reference object, as shown in Figure 5.
The bar had a diameter of 25.4 mm and was 15 pixels wide. These values were utilized to
calculate the area of one pixel in millimeters, which amounted to 2.87 mm2. By applying
Equation (3), the lesion’s area was converted from pixels to mm2.

Lesion Area (mm2) = Number o f lesion pixels × 2.87
mm2

pixel
(3)

 

Figure 5. Example image to determine lesion size, the anti-crush bar was used for size referencing.
The anti-crush bar was 25.4 mm in diameter equating to 15 pixels in these images.

The entire pipeline for lesion size estimation is shown in Figure 6, starting with image
cropping to lesion localization, passing the cropped bounding box to binarization models,
and then performing size referencing to estimated size.

Figure 6. The entire pipeline showing different steps of sow shoulder lesions from image capturing
to area estimation.

3. Results

3.1. Lesion Localization

The models were trained using a 32 GB NVIDIA Tesla V100 GPU. The main goal
of this research was to identify shoulder lesions and determine their size. To achieve
this, various CNN-based models for lesion localization and pixel segmentation employing
image processing techniques were used. For lesion localization, Faster R-CNN (FRCNN)
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was trained with two different ImageNet backbones and two YOLO versions: YOLOv5
and YOLOv8, each with varying architectures. YOLO models outperformed FRCNN, as
indicated in Table 2.

Table 2. Comparison of performance metrics for YOLOv5, YOLOv8, and Faster R-CNN (FRCNN)
object detection models. The table presents mean average precision (mAP) metrics at two different
scales: mAP at a threshold of 0.5, and mAP at a threshold of 0.5:0.95, representing the average mAP
calculated at IoU thresholds from 0.5 to 0.95 in steps of 0.05.

Architecture mAP@0.5 mAP@0.5:0.95::0.05

YOLOv5s 0.91 0.46
YOLOv5m 0.92 0.48
YOLOv8s 0.84 0.31
YOLOv8m 0.81 0.35

FRCNN–R50 Backbone 0.26 0.12
FRCNN–X-101 Backbone 0.56 0.14

YOLOv5 models excelled in lesion localization, exhibiting fewer false positives, and
detecting lesions in early stages of development compared to FRCNN and YOLOv8. As a
result, YOLOv5m, with an mAP@0.5 of 0.92 and mAP@0.5:0.95::0.05 of 0.48, was selected for
the localization task. This performance difference may be attributed, in part, to dataset size.
FRCNN’s two-stage nature might require a larger dataset for optimal learning, whereas
YOLO’s single-stage architecture yielded promising results even with smaller datasets, in
line with [24]. After using a Python script to crop the detected lesion regions, segmentation
techniques were applied to calculate the lesion area in terms of pixels.

3.2. Lesion Segmentation

Binarization techniques were employed to isolate lesion pixels within the cropped
bounding boxes. Regarding traditional image binarization techniques, Otsu’s method
exhibited better performance than Adaptive thresholding. The subpar performance of
adaptive thresholding can be attributed to its sensitivity to local lighting conditions, result-
ing in multiple clustered segmented regions within a single cropped frame, impacted by
non-uniform lighting in the crates.

During the second week of lesion progression, deep learning-based methods out-
performed traditional image processing techniques. The vanilla U-Net achieved a Dice
coefficient of 0.71, followed closely by its attention gates-based counterpart at 0.68, both
surpassing Otsu’s method at 0.65 as shown in Table 3.

Table 3. Dice coefficients for segmentation techniques across various weeks of lesion progression.

Segmentation Method
Dice Coefficient

2nd Week 3rd Week 4th Week

Adaptive Thresholding 0.38 0.20 0.16
Otsu’s Method 0.66 0.83 0.82
Vanilla U-Net 0.72 0.63 0.61

Attention U-Net 0.68 0.63 0.62

However, as lesions became more pronounced, and the distinction between fore-
ground and background pixels became clearer, Otsu’s method outperformed all other
techniques. It achieved Dice coefficients of 0.83 and 0.81 for lesions in the third and fourth
weeks of development, respectively, significantly surpassing the performance of DL-based
segmentation models.

The U-Net-based models showed superior performance in the early stages of the
analysis. However, they encountered difficulties as the analysis progressed, as seen in
Figure 7. The issue arose because these models were proficient at identifying pixels with
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lighter intensities as part of the lesions. Yet, as the lesions advanced, the pixels within them
became darker. Despite this change, the U-Net models continued to identify the lighter skin
pixels as lesions, which ultimately limited their effectiveness compared to Otsu’s method.

Figure 7. Comparing Otsu’s Method and the U-Net segmentation method with ground truth data
over three weeks of lactation.

3.3. Challenges

Non-uniform crate lighting and sow movement were two big challenges faced in size
estimation. Lesions were only apparent when the sow was lying on its sides. The sows’
movement impacted how the lesion area was viewed by the camera, as seen in Figure 8. The
lesion pixel’s color intensity was impacted by the movement which can highly influence
the segmentation process leading to variation in estimated lesion pixel count.

 

Figure 8. Frames captured five seconds apart where the sow changed its posture impacting the lesion
appearance. Both images are sized 905 by 458 pixels.
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In addition to the sow’s movement, the bars of the crate caused occlusion, which
at times made it challenging to accurately localize the lesion as it could become hidden
behind these bars. Furthermore, shadows cast by these bars affected the binarization
process as shown in Figure 9a. Deep learning-based methods proved more effective at
segmenting pixels that included shadows, while traditional binarization techniques like
Otsu’s struggled because they sometimes misclassified lesion pixels as shadows, mainly
due to the limited difference in pixel intensity between the two (Figure 9b).

(a) 

 

(b) 

Figure 9. Shoulder lesion detection as impacted by (a) the shadow cast by the crate bar causing
issues in binarization. (b) Comparing Otsu’s method and U-Net when the crate bar is present in the
cropped region.

The binarization techniques performed poorly when the captured image had a sow
being treated for lesions using a topical solution like zinc oxide. The zinc oxide ointment
was the same color intensity (deep yellow) as a lesion. Algorithms mistake the applied
solution for lesion pixels outputting a larger lesion area. Lesions in this study are notably
relatively minor and continued to resolve not progress throughout the imaging period.
This is in part due to the installation of new crates in the facility. These crates provided a
large sow space for the animals. Also, all animals in this study were fourth parity or less,
leading to smaller a body structure of the animals. Both factors contributed to provide
appropriate comfort and improved the ability of the sows to rise, likely minimizing lesions.
The floor slats were galvanized metal. The galvanization process leaves a slightly abrasive
surface. This abrasiveness disappears with subsequent use but was present at the time of
this study and was a contributing factor in the ethology and development of these lesions.

4. Discussion

This work proposed a method that advances the detection and segmentation of shoul-
der lesions in sows. While thermal imaging surpasses RGB in early detection, its high cost
limits practicality in farm settings [8,25]. The combination of deep learning and image pro-
cessing techniques offers a cost-effective alternative. Specifically, YOLOv5 models excelled
in localizing lesions within frames, with the YOLOv5m model performing the best with an
mAP@0.5 of 0.92 and mAP@0.5:0.95::0.05 of 0.48. It strikes a balance between speed and
accuracy, making it suitable for real-time applications where both these factors are crucial,
as seen in [26–28].

Deep learning-based segmentation models exhibited superior noise handling capa-
bilities, effectively addressing issues like inconsistent illumination and shadows. But,
U-Net models were unable to segment pixels well in the later stages, which is in contrast
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with [13,29,30]. It is worth noting that these studies implementing U-Net for skin lesion
segmentation used microscopic images collected under uniform lighting and consistent
physical conditions, unlike the conditions in a sow barn. Extending the dataset to include
more images from the latter stages of lesion progression may improve the binary mask ac-
curacy, provided there are no hardware constraints. Otsu-based binarization demonstrated
strong performance in the later stages of lesion detection with Dice coefficients of 0.83 and
0.82 in the third and fourth week, respectively, where DL-based U-Net models initially
performed better.

Otsu’s method had speed advantages and did not require expensive hardware imple-
mentation compared to deep learning architectures as also mentioned in [31]. To enhance
its performance in the early stages, pre-binarization steps, such as increasing image contrast
through histogram equalization, could further improve segmentation, which was also seen
in [32]. While this may result in some information loss of lesion pixels, it can define clearer
boundaries for the lesion area, ultimately improving binarization performance.

5. Conclusions

In summary, this study used RGB images collected on 360 lactating sows housed
in typical farrowing crates. This study aimed to determine if images could be used to
monitor shoulder lesion formation. This study first compared the performance of two
different deep-learning models in the localization of sow shoulder lesions in various stages
of development. It was determined that the YOLOv5s and YOLOv5m performed the
best with a mAP@0.5 of 0.91 and 0.92, respectively. YOLOv8s and YOLOv8m models
performed the second best with a mAP@0.5 of 0.84 and 0.82, respectively. Neither the
FRCNN–R50 backbone nor the FRCNN–X-101 Backbone performed well with a mAP@0.5
of 0.26 and 0.56, respectively. It was hypothesized that the dataset was too small for the
FRCNN models.

After identifying the lesions, this study tested traditional image processing and deep
learning-based binarization techniques to estimate lesion size. The shoulder lesions ob-
served in this study changed color as the lesions progressed. This color change resulted in
changes in model performance over time. Early in lesion development, the deep-learning
algorithms performed slightly better. Overall, Otsu’s method performed the best, although
this model had overestimated lesion size in the early developing lesions.

This research highlights the effectiveness of using RGB images for detecting and
monitoring sow shoulder lesions. However, more work needs to be completed to make
this a viable Precision Livestock Farming management technique. In addition, the cost of
cameras and computers may not make this approach cost-effective on its own; however,
if cameras were added to the farrowing system, this technique could be one of a suite of
parameters that could be monitored.
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Simple Summary: Monitoring the weight of farm pigs is crucial for their well-being. Implementing
Cameras and Machine Vision Systems shows promise for automating this process. Traditionally,
studies have focused on RGB and depth images for weight prediction, using measurements like
volume and body area. However, these methods prove less robust in fluctuating environmental
conditions, especially lighting. This study reveals that PointNet, a 3D deep learning architecture
trained on point cloud data (3D points), outperforms the conventional approach, and demonstrates
stability in varying light conditions due to its ability to learn on spatial information. This finding
underscores the potential for PointNet to significantly improve the accuracy and reliability of weight
monitoring in farm settings.

Abstract: The selection of animals to be marketed is largely completed by their visual assessment,
solely relying on the skill level of the animal caretaker. Real-time monitoring of the weight of farm
animals would provide important information for not only marketing, but also for the assessment
of health and well-being issues. The objective of this study was to develop and evaluate a method
based on 3D Convolutional Neural Network to predict weight from point clouds. Intel Real Sense
D435 stereo depth camera placed at 2.7 m height was used to capture the 3D videos of a single
finishing pig freely walking in a holding pen ranging in weight between 20–120 kg. The animal
weight and 3D videos were collected from 249 Landrace × Large White pigs in farm facilities of the
FZEA-USP (Faculty of Animal Science and Food Engineering, University of Sao Paulo) between 5
August and 9 November 2021. Point clouds were manually extracted from the recorded 3D video
and applied for modeling. A total of 1186 point clouds were used for model training and validating
using PointNet framework in Python with a 9:1 split and 112 randomly selected point clouds were
reserved for testing. The volume between the body surface points and a constant plane resembling
the ground was calculated and correlated with weight to make a comparison with results from the
PointNet method. The coefficient of determination (R2 = 0.94) was achieved with PointNet regression
model on test point clouds compared to the coefficient of determination (R2 = 0.76) achieved from
the volume of the same animal. The validation RMSE of the model was 6.79 kg with a test RMSE of
6.88 kg. Further, to analyze model performance based on weight range the pigs were divided into
three different weight ranges: below 55 kg, between 55 and 90 kg, and above 90 kg. For different
weight groups, pigs weighing below 55 kg were best predicted with the model. The results clearly
showed that 3D deep learning on point sets has a good potential for accurate weight prediction even
with a limited training dataset. Therefore, this study confirms the usability of 3D deep learning on
point sets for farm animals’ weight prediction, while a larger data set needs to be used to ensure the
most accurate predictions.

Keywords: 3D deep learning; PointNet; weight estimation
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1. Introduction

Live weight measurement is an important factor in the management of farm pigs [1,2].
Body weight provides important information regarding the animal’s health and well-
being [3]. It is noteworthy that in commercial production environments, obtaining accurate
records of individual animal weights often encounters challenges [4]. Nevertheless, the sys-
tematic capture of individual weights plays a pivotal role in decisions pertaining to swine
marketing [5]. Furthermore, continuous weight monitoring can provide the opportunity to
promptly identify individuals potentially experiencing digestive and health issues [6].

Automatic weight prediction based on computer vision has been investigated for
predicting animal weight in production systems in a non-invasive and economical way [7,8].
Digital image processing is the most widely used vision-based weight prediction method.
In digital image processing, images of pigs’ bodies are analyzed, and animal dimensions
such as area, body length, width, and chest depth are calculated and correlated to animals’
weight [9–13]. In the mid-nineties, Brandl et al. [14] analyzed pigs’ body areas from digital
images to estimate their weights, and were able to predict with less than 6% deviation [14].
Although digital image processing has shown great results, it comes with challenges, such
as pigs needing to be under the camera at a somewhat predetermined position, color
patterns or dirt on the animals, and lighting conditions needing to be consistent [6,15].

To overcome the challenge faced by digital image analysis, depth images have been
used to extract features of pigs’ bodies [16,17]. Depth images extract three-dimensional
(3D) features of an animal’s body such as height, volume, and curvature [18]. Pezzulo
et al. [19] used Microsoft Kinect to measure heart girth, length, and height, and used linear
and nonlinear models to get the coefficient of determination (R2 > 0.95). Manual feature
extraction is insufficient for a precise prediction as a limited number of parameters can be
extracted and a small change in posture alters all of the parameters [17]. Okayama et al. [17]
tried extracting information about spinal cord bends to make their model stable even with
the change in posture. Although their work has shown an improvement in prediction,
this approach is strictly restricted to implementation in the predefined close space. Deep
learning approaches are presented as a solution to make vision-based weight estimation
reliable even with slight changes in the postures of animals.

Artificial Neural Network (ANN) and deep learning have been implemented on digital
RGB images of animals to estimate their weights [15,20]. Hidden fully connected or 2D
convolution layers have been used to extract the features from the image with an additional
regression layer at the end to estimate weight. Jun et al. [21] tried to address the problem of
posture and lighting by introducing curvature and deviation, but they could only achieve
a coefficient of determination of (R2 < 0.79). In some approaches, depth images were
colorized based on the height of the animal before presenting it to ANN [22]. The benefit
from the colorization is very minimal and becomes similar to that of using RGB images.

Furthermore, all these approaches are common in using predefined lab setups to
collect pigs’ RGB or depth images. While studies have shown a correlation up to (R2 = 0.99)
with RSME below 1 kg, their constrained experimental design makes their implementation
in natural farms impossible [16,22]. There is thus a strong need for a method that can
effectively predict animal weight in natural farm settings and conditions. In recent days
3D deep learning methods have been studied for precision livestock farming such as
identification [23], posture classification [24], and weight prediction [25,26] as they are
robust even with changes in posture and lighting conditions. However, these methods
have yet to be tested in commercial farms.

The objectives of this study were to: (1) develop and implement a 3D deep learning
method to predict individual pig weight from the point cloud collected with free movement
as a typical pen environment without controlled illumination; (2) compare the use of deep
learning modeling with a most-studied method of weight prediction using machine vision
(in other words, linear regression model between pig weight and volume); and (3) analyze
how well these methods perform for different weight groups.
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2. Materials and Methods

The animal care and handling techniques were approved by the Animal Use Ethics
Committee of the Faculty of Animal Science and Food Engineering at the University of
São Paulo (FZEA-USP), under protocol 6526160720. The animals were housed in covered
outdoor pens; therefore the lighting was not controlled and varied throughout the day
(Figure 1). These natural lighting conditions mimic some commercial conditions in certain
parts of the world.

Figure 1. Experimental Setup and collected data; (a) pig within the holding pen area while data
collection is occurring, (b) view of the major axis of data collection holding pen, (c–e) representative
data of pigs in different positions and standing posture within the holding pen area.

A total of 249 unrestrained grow-finish pigs (20–120 kg) were used in an experiment
to estimate body weight. This experiment included walking pigs through an individual
holding pen and capturing point clouds of these animals. The data was used to estimate
the weights of these individual animals. Details of the experiment including the experi-
mental setup, data collection, extraction, and preprocessing of 3D images (point clouds) are
included below. In addition, specific methodology employed for volume calculation and
the implementation of PointNet are described.

2.1. Data Collection

The collection of 3D videos and weighing of pigs was carried out in experimental
farms at FZEA-USP. A total of 249 grow-finish pigs (7 to 20 weeks old) were housed in
ten pens, with 25 animals per pen (20–120 kg). The animals had ad libitum access to food
and water. On an individual basis, the weights of pigs were collected and 3D videos were
capture on five different dates (5 August, 28 October, 4 November, and 9 November).

The 3D video data acquisition was completed using a portable station composed of a
3D camera (Intel Real Sense D435 Stereo Depth Camera© (Intel Corporation, Santa Clara,
CA, USA) and a computer. These top-down videos were recorded when pigs were freely
moving in a holding pen after the weight was taken. A total of 249 videos of individual
pigs were collected (each with a duration of 3–5 s), with the intention of extracting seven
point clouds of each animal.

2.2. Experimental Setup

Figure 1 provides a detailed depiction of the experimental setup, focusing on its side
view. The camera used in the experiment was positioned at a height of 2.7 m from the floor,
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and was connected to a computer positioned laterally in the experimental setup via a USB
3.0 cable with a 5 m active extender. Manual triggering was employed for video acquisition
utilizing Intel® RealSense™ Viewer software version 2.47.

Camera parameter calibration was autonomously performed on-site using the Intel®

Depth Quality Tool software v2.50.0, incorporating plane fit, on-chip self-calibration,
and tare calibration methodologies. Video captures of each specimen were conducted
at 30 frames per second (fps), employing auto-exposure mode for both the color image
sensor (color sensor) and the infrared sensor (depth sensor). The field of view for the color
image was 69.4 × 42.5 (H × V) with a resolution of 640 × 480, while the field of view for
the depth image was 86 × 57 (H × V) with a resolution of 848 × 480.

The holding pen in which the pigs were observed boasted dimensions with a major
axis extending to 2.9 m and a minor axis measuring 1.5 m. Throughout the data collection
period, each individual pig was allowed unrestricted movement within the holding pen.
The camera captured their dynamic motions within this confined space. The varying
positions and standing posture of the pigs within the pen influenced the visibility of
different parts of their bodies to the camera as showcased in Figure 1b–e, creating variability
in the projected volume of the animal.

2.3. Image Extraction and Preprocessing

The first step of data processing consisted of extracting 3D images (point clouds) from
the collected 3D videos. For this, the Intel Realsense Viewer© (Intel Corporation, Santa
Clara, CA, USA) application was used (the same application that was used to collect the
3D videos). At this stage, collected 3D videos were locally stored, and five to ten 3D images
were manually extracted. The number of extracted images was dependent on the quality of
the video.

The entire set of filters and functions developed allowed the 3D images to be read,
aligned, filtered, converted, and stored (Figure 2). Points whose values on the z-axis were
below or above pre-defined limits were removed according to the minimum and maximum
average depth found in the 3D images of the pigs. In this way, the points referring to the
floor and the side walls were removed. Points referring to structures that are outside the
area of interest (that is, any point that is not referring to the swine) were also extracted
through “xy” points that were outside of a pre-defined polygon. Further extraction was
performed by removing points whose color was different and did not belong to the swine.
The color threshold was found automatically by the Otsu method. It should also be noted
that the collected data also included point clouds with some unknown noise pattern as
demonstrated in Figure 3.

 

Figure 2. Basic steps for RGB-D image processing to identify and select the animal in the scene
(swine): (a) image selection; (b) thresholding (empty points removal represented by red color);
(c) color threshold filtering; (d) final statistical filtering.
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Figure 3. Three representative point cloud data with different quality issues, some unknown wavy
pattern, and point clouds with missing large amounts of points.

Finally, the point clouds were randomly subsampled to 1500 points, and removal
of outliers took place to obtain the final extracted point cloud of the pig. The weights of
the experimented pigs ranged from 20–120 kg. The range was further divided into three
different groups: below 55 kg, 55–90 kg, and above 90 kg, in order to analyze whether
weight has an effect on correlation as observed in other manuscripts [14]. Correlations
were then calculated within each weight range to determine which range could best be
explained by volume. The processed data is composed of a total of 1298 point clouds, out
of which 644 weigh below 55 kg, 322 are between 55 and 90 kg, and 332 are above 90 kg.

2.4. Volume Calculation

The literature has shown that the volume of the pig’s body directly correlates to its
mass [16]. The volume was calculated as a projected volume between the pig’s top view
(Figure 2d) and the pen floor, considered a constant 2.7 m from the camera. The volume
was calculated using CloudCompare v2.11.3 software’s 2.5D volume function. The grid
with step size 0.01 was projected in the ‘Z’ direction. The maximum height on the body
from constant plane ‘L’ was considered as the height of the point when multiple points fall
inside a cell.

The pigs in the study had the freedom to move in any direction within the holding area,
including moving their heads up and down. When the pigs lowered their heads, it resulted
in limited or no contribution to the overall volume of the pig’s body. Conversely, a flat head
posture significantly increased the volume, and different ear postures also caused changes
in volume. To address the variance in volume caused by head movement, the head of the
pigs was manually removed by cropping out any portion above the neck region in all of the
point clouds. The postural variations depicted in Figure 1 posed challenges for automating
head and neck removal. To ensure consistency across all selected images, a visual inspection
was conducted to identify the narrowest width of the neck area. Subsequently, any portions
above this defined narrow width were cropped out.

2.5. PointNet

PointNet is a recently proposed algorithm that directly takes points for training [27,28].
PointNet has shown great potential in 3D classification and segmentation [29,30], but it
has never been explored for livestock weight prediction. A significant advantage is that it
directly takes a set of points as input and extracts features of the point clouds. The PointNet
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architecture takes a point cloud with n points as input and utilizes input transformation
to extract features (Figure 4). The max pooling layer was used to aggregate the point
features and finally K-score classes for classification. The input transformation layer is a
mini-PointNet network that transforms point clouds into another coordinate system with
the same dimension. T-Net is specifically designed to address the challenge of transforming
the input point cloud to a canonical or normalized form. It achieves this by learning an
optimal linear transformation matrix. This matrix is applied to the local features obtained
from the shared MLP, effectively aligning and normalizing the point cloud. Learning
and applying these transformations makes the network more robust, ensuring that it can
recognize and understand 3D shapes regardless of their orientation or position in space.

Figure 4. PointNet architecture implemented for weight prediction from a point cloud [15].

Successive multilayered perceptron layers (MLP) were shared by each point on the
cloud. The max pooling layer was used to aggregate the global point features vectors.
Finally, the global point features were then passed through another MLP with a regression
layer on top to output regress weight. The feature transformation layer in between suc-
cessive shared MLP was removed for computational simplicity. The top layer for K-score
classification was replaced with a fully connected dense layer with a RELU activation
function that outputs weight. After preprocessing and selection of the point clouds, the
PointNet architecture was trained. The PointNet algorithm was implemented on Google
Colab GPU Python version 3.7.15 platform with Keras package (Version 2.9.0) using Tensor-
Flow (version 2.9.2) as the backend. Open3d (version 0.16.0) package was used to visualize
and read point clouds corresponding to weight levels. PointNet implementation on Ten-
sorFlow Keras by David Griffiths was taken as a reference for algorithm implementation.
Adam optimizer with a learning rate of 0.01 was used. Root Mean Square Error (RMSE)
was used as accuracy metrics and Mean Square Error (MSE) was used as the loss function.

The model was trained for 1000 epochs with early stopping callback with patience of
10. In order to create more variation in the training dataset, data augmentation was used.
The points were jittered between −0.005 and +0.005 to introduce variability in the training
data while keeping the labels the same. The dataset was split into 9:1 for training and
validation. A testing dataset containing 112 different point clouds was randomly selected
from the same 249 pigs and was not used for training or validation. The performance of
the models was evaluated by comparing the measured values of the target attributes with
their respective predicted values based on the determination coefficient (R2) and RMSE.
The iterative fine-tuning process employed in the training phase of the models allowed
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for the definition of optimal values for the hyperparameters of each supervised learning
algorithm. This training and evaluation method ensured the generation of models with the
ability to generalize to data not belonging to the database used for training the models.

3. Results and Discussion

A total of 1298 point clouds from 249 pigs were collected for this study. Of these,
644 corresponded to weights less than 55 kg, 323 ranged between 55 and 90 kg, and
333 were above 90 kg. A total of 112 point clouds were manually selected for volume
correction. To achieve the highest possible correlation between the volume of animals and
the weight-adjusted volume (calculated by removing the head and neck), an additional
112 point clouds from the total of 1298 were reserved specifically for PointNet testing. The
remaining 1186 point clouds were then divided into a 9:1 ratio for training and validation.
The predicted weight of animals from PointNet was subsequently correlated with the
scale weight. The best prediction was achieved with Pointnet, exhibiting a coefficient of
determination of 0.94. Following this, the results were further investigated by segmenting
the point cloud into three different weight groups.

3.1. Volume to Weight Correlation

Given the quality of data, a subset of point cloud was created for volume correlation.
In order to select point clouds for volume correlation, all 1298 point clouds were checked
manually and those with minimal quality issues were selected. Out of 246 pigs, 112 best-
point clouds, which do not have wavy patterns or missing big chunks of points (Figure 3),
were selected for volume correlation. The selected pigs had a uniform weight distribution
in the 20–120 kg weight range.

Initially, the correlation between volume and weight was investigated. It was found
that an R2 value of 0.74 was obtained when the complete volume of the pig (including the
head) was correlated to the weight (Figure 5). To minimize the effect of free movement,
the head of the pigs was removed and volume was calculated. The correlation improved
to R2 = 0.76, as shown in Figure 6. This correlation did not come close to that which was
reported by Condotta et al. [16] (R2 = 0.99) and Brandl and Jørgensen [14] (R2 = 0.98) in their
experiment. It is evident that the point clouds under investigation were taken at different
positions and standing postures (Figure 1), with some taken directly under the camera
and some towards the edge of the holding barn, which led to variation in the volume of
pigs compared to the stationary experiment approach followed in most of the literature.
Although the weight seemed to be varying with volume, the changes in the volume itself
with the movement of pigs within the barn led to less efficient prediction compared to the
previously mentioned studies.

Figure 5. Correlation between the weight of the pig and calculated volume using CloudCompare soft-
ware’s 2.5D function. Blue dots indicate individual pigs, and the middle red line indicates optimal fitting.
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Figure 6. Correlation between adjusted volume as calculated by volume estimation from point cloud
after digitally removing head and the neck. Blue dots indicate individual pigs, and the middle red
line indicates optimal fitting.

Looking at different weight classes, the weight class below 55 kg was found to be best
explained by the volume, with R2 = 0.77, whereas for higher weight classes the correlation
was found to be decaying. The correlation between weight and volume for the 55–90 kg
weight class was found to be R2 = 0.26, and for weight class above 90 kg, the weight could
not be explained by pigs’ body volume as the correlation was only R2 = 0.01.

One likely reason for this declining correlation could be attributed to errors occurring
during the measurement of scale weight. The larger the animals, the more challenging it
was to contain their motion within the scale for accurate weight measurement. Another
potential factor contributing to the declining results could be the distribution of data. In
weight classes below 55 kg, the average weight of animals was 41.17 kg. For the weight
range of 55–90 kg, the average weight of animals was 67.74 kg, and for weight classes above
90 kg, the average weight of animals was 99.31 kg. This indicates that a higher number of
animals were concentrated towards the lower range of classes 55–90 kg and above 90 kg,
leading to a higher prediction error.

3.2. PointNet for Estimating Weight

One hundred and twelve point clouds were set aside for testing, and the remaining
were split into 9:1 for training and validation. Changes in RMSE was recorded throughout
the training period, and Figure 7 shows the learning curve of the change in RSME. The
minimum RMSE of 6.03 kg was obtained at the 28th epoch of the training. Figure 8 shows
point clouds along with true labels and predicted labels. Some of the point clouds as shown
in Figure 3 were missing large quantities of points from the body area because of some
unknown problem in the experimental setup. Those point clouds were considered good
and included in training and testing. While point clouds with prominent noise pattern
were not included for the volume correlation, the data set still might have smaller noise
leading to poor correlation; however, the deep learning model is strong enough to predict
the weight even with such points.

One hundred and twelve random different point clouds were used for the testing. The
trained model was presented with the reserved test data for prediction. Figure 9 shows
correlation between scale weight and the predicted weight. It achieved an overall R2 of
0.94 with an RMSE of 6.87 kg. However, although the prediction was better compared to
the volume correlation, the performance could have been better with bigger datasets.

43



Animals 2024, 14, 31

Figure 7. Training history of PointNet architecture over the complete training period.

Figure 8. Point clouds, actual and predicted weight values from three different pigs.

Figure 9. Correlation between predicted weight and scale weight using PointNet model. Blue dots
indicate individual pigs, and the middle red line indicates the optimal fitting.
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For the weight group below 55 kg, the model achieved an RMSE of 4.50 kg and an
R2 of 0.81. The performance of predictions for the weight class 55–90 kg had an RMSE of
8.20 kg and an R2 of 0.71. For the weight class above 90 kg, the model achieved an R2 of
0.44 and an RMSE of 9.95 kg. The trend was similar to the volume correlation, where the
correlation worsened with an increase in weight. As mentioned, the training dataset for the
below 55 kg class was almost twice as large as the other classes, which likely resulted in
significantly better performance. However, for the two remaining classes with a similar
number of training data, the lower weight class (between 55–90 kg) performed better
than the above 90 kg weight class. This indicates that even with PointNet, the prediction
declined with larger pigs.

3.3. Comparison between Deep Learning and Volume-Based Regreesion

The PointNet architecture outperformed volume correlation in each class. Table 1
presents the results for all three classes along with overall correlation. It was observed that
weight prediction becomes more difficult as the pigs grow larger. It was observed that
difficulties in handling animals (constraining their movement during weight measurement
leading to errors on ground truth data) might have contributed to higher errors on larger
animals. Along with the difficulties in weight measurement, the low accuracy of prediction
on large animals can be tied to the nonlinearity of the relationship between the weight and
volume of large pigs as suggested by [16].

Table 1. Coefficient of determination and root mean square error (RMSE) of prediction for both the
models in each class.

Volume Correlation Deep Learning

Weight Class Correlation (R2) RMSE (kg) Correlation (R2) RMSE (kg)

Below 55 kg 0.77 9.16 0.81 4.50

55–90 kg 0.26 13.44 0.0.71 8.20

90–120 kg 0.01 17.03 0.44 9.95

Overall 0.76 12.25 0.94 6.87

As discussed in the Section 2, the variability in position within the pen area and
variability in standing posture might have been the major cause of poor performance of
weight prediction using volume. This variability in positioning affected the projected
volume of the pigs’ bodies, as highlighted in Figure 1c–e. Looking at Figure 1c, in this
instance, one side of the pig’s surface was more prominently visible than the other. This
observation emphasizes the influence of the pig’s spatial orientation within the pen on the
visual representation of its anatomy.

The positioning within the pen area is a crucial factor affecting the projected volume
of the pig. This is a critical component of this experiment, shedding light on the dynamic
nature of their appearances as captured by the camera.

Furthermore, beyond the impact of body visibility to the camera, the variation in
the standing posture of the pigs introduces an additional layer of nonuniformity to the
perceived volume. Figure 1c–e distinctly illustrates three distinct standing body postures.
Notably, these postural variations have a direct and discernible effect on the volume
captured by the depth sensor [31].

Examining Figure 1b–d, it becomes evident that changes in posture significantly in-
fluence the volume discernible to the depth sensor. The dynamic nature of these postural
adjustments presents a challenge when employing computer vision for weight estimation,
particularly in scenarios where the pigs are not constrained. The complexity introduced by
the interplay of body visibility and postural changes underscores the intricacies involved
in accurately estimating the weight of freely moving pigs through computer vision method-
ologies. This complexity might have led to most experimental setup designs where pigs
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are confined within a small area. Additionally, it should be noted that in the experimental
setup resembling a commercial barn with numerous non-constrained pigs, segmenting
individual animals, and calculating the volume of the animal becomes difficult, resulting in
inaccurate predictions.

The PointNet approach employed in this study has proven to be effective in addressing
the challenges encountered by volume correlation methods. Unlike traditional approaches,
PointNet excels in learning features directly from raw, unordered point cloud data. This
unique capability enables the model to capture intricate patterns and relationships within
the data without the need for predefined structures or order making this method more
robust to variation in animals’ body projection to the camera.

The PointNet predictions for the worst-performing weight class (above 90 kg) had an
RMSE of 9.95 kg. In contrast, the volume-based prediction had a similar RMSE of 9.16 kg
in the best-performing weight class (below 55 kg). The results clearly demonstrate that
implementing PointNet and other 3D deep learning architectures lead to more accurate
weight predictions. Furthermore, it should be noted that the PointNet architecture was
trained with only 1186 point clouds, each consisting of only 1500 body surface points.
Adding more point clouds for training will certainly improve the prediction accuracy.

Furthermore, it is important to note that the data for this study was collected with
only one pig inside the holding pen. However, in farm settings, many pigs are typically
housed together in a single pen. Therefore, further studies should be designed to capture
and predict the weights of multiple pigs simultaneously. This can be achieved by placing a
camera over the drinker or feeder of the pens and segmenting individual pigs in each frame.
This approach will allow the algorithm to predict the weights of multiple pigs at once.

The performance of the deep learning algorithm ultimately relies on the size and
balance of the database. Therefore, for future studies, it is recommended to collect a higher
number of point cloud data. This will ensure a larger and more diverse dataset, leading to
improved accuracy and generalizability of the weight prediction model.

4. Conclusions

Weight prediction of individual free roaming pigs from weight to volume correlation
was compared to a PointNet-based 3D deep learning model. The point cloud data of
individual free roaming pigs in the holding pen was preprocessed to remove the back-
ground scene, and then input into the deep learning architecture for training and testing.
The adjusted and unadjusted volumes of the same animals were correlated with scale
weight. Despite the training data containing noisy point clouds, the deep learning model
outperformed the volume correlation. Tested on unseen point clouds, the model achieved
a root mean square error of 6.87 kg with a determination coefficient of 0.9421, whereas the
best determination coefficient between volume and weight of pigs was found to be 0.7392.
Looking at the different weight classes, both methods performed best for pigs weighing
below 55 kg. However, the volume correlation was found to rapidly decline for weight
prediction as pigs weight grew, while the deep learning method was found to be stable
even for bigger pigs. The results show that 3D deep learning can extract features from
the point cloud of pigs in general housing conditions to predict weight, despite adverse
conditions with the animal in free movement evidenced by the median correlation between
animal weight and volume.

In addition, the findings underscore key aspects for enhancing prediction models
through the proposed technique. It is noteworthy that the PointNet architecture underwent
training with a limited dataset of 1186 point clouds, each comprised of merely 1500 points
on the body surface. Augmenting the training set with a greater number of point clouds
is poised to significantly enhance prediction accuracy. The efficacy of the deep learning
algorithm is ultimately contingent on the scale and equilibrium of the database. Therefore,
for prospective investigations, it is advisable to amass a more extensive dataset of point
clouds. This approach ensures a broader and more varied dataset, thereby fostering
heightened accuracy and generalization within the weight prediction model.
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Simple Summary: As precision livestock technology continues to become viable for extensive range-
land systems. it is important to determine which technology has the potential to positively impact
grazing management. Utilizing precision weighing systems on rangeland beef cattle provides new
and novel insight into individual animal performance throughout grazing periods, which are directly
linked to stocking rates (cattle/ha/time), to ensure adequate forage dry matter intake for cattle
while avoiding negative environmental impacts. Refining stocking rate estimates using precision
body weight measurements and precision system modeling is critical as this management decision is
fundamental to rangeland management and livestock productivity across the United States.

Abstract: An essential component required for calculating stocking rates for livestock grazing exten-
sive rangeland is dry matter intake (DMI). Animal unit months are used to simplify this calculation
for rangeland systems to determine the rate of forage consumption and the cattle grazing duration.
However, there is an opportunity to leverage precision technology deployed on rangeland systems to
account for the individual animal variation of DMI and subsequent impacts on herd-level decisions
regarding stocking rate. Therefore, the objectives of this study were, first, to build a precision system
model (PSM) to predict total DMI (kg) and required pasture area (ha) using precision body weight
(BW), and second, to evaluate differences in PSM-predicted stocking rates compared to the traditional
herd-level method using initial or estimated mid-season BW. A deterministic model was constructed
in both Vensim (version 10.1.2) and Program R (version 4.2.3) to incorporate individual precision BW
data into a commonly used rangeland equation using %BW to estimate individual DMI, daily herd
DMI, and area (ha) required to meet animal DMI requirements throughout specific grazing periods.
Using the PSM, differences in outputs were evaluated using three scenarios: (1) initial BW (business
as usual); (2) average mid-season BW; and (3) individual precision BW using data from two precision
rangeland experiments conducted at the South Dakota State University Cottonwood Field Station.
The data from the two experiments were used to develop PSM case studies. The trial data were
collected using precision weight data (SmartScale™) collected from replacement heifers (Case study
1, n = 60) and steers (Case study 2, n = 254) grazing native rangeland. In Case study 1 (heifers),
Scenario 1 versus Scenario 3 resulted in an additional 73.41 ha required. Results from Case study
2 indicated an average additional 4.4 ha required per pasture when comparing Scenario 3 versus
Scenario 1. Sensitivity analyses resulted in a difference between maximum and minimum simulated
values of 27,995 and 4265 kg forage consumed, and 122 and 8.9 pasture ha required for Case studies 1
and 2, respectively. Thus, results from the scenarios indicate an opportunity to identify both under-
and over-stocking situations using precision DMI estimates, which helps to identify high-leverage
precision tools that have practical applications for enhancing animal and plant productivity and
environmental sustainability on extensive rangelands.

Keywords: precision weighing; beef cattle; precision technology; precision system models
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1. Introduction

Measuring the dry matter intake (DMI) of grazing beef cattle is a significant challenge
from basic and applied research and production aspects. For estimating forage utilization
and the amount of land area required for cattle grazing extensive rangelands, it is essential
to determine the animal unit months (AUMs). For AUMs, the amount of forage needed per
animal unit (AU) is defined as a 454 kg cow consuming 2.6% of BW on a dry matter basis,
thus equating to 354 kg forage being consumed over one month (1 AUM) [1]. The DMI is
required to determine stocking rates and supplementation requirements. The variation
in estimated DMI of grazing cattle introduces error at the herd level since estimated DMI
is based on full BW multiplied by a percentage of BW. The percentage of BW varies
depending on animal class, production phase (e.g., lactating vs. dry), and forage quality [2].
For example, a lactating cow eating low-quality forage (<52% total digestible nutrients)
consumes approximately 2.2% of BW on a dry matter basis, whereas a lactating cow eating
high-quality forage (>59% total digestible nutrients) consumes 2.7% of BW on a dry matter
basis [2,3]. Differences in DMI and BW can also significantly affect stocking rates. For
example, a 227 kg heifer consuming 2.5% of BW on rangeland with 700 kg ha−1 available
for consumption (i.e., 25% of total forage; 2800 kg ha−1) would require 0.24 ha AUM−1,
whereas a 381 kg heifer consuming 2.5% of BW would require 0.42 ha AUM−1.

Traditionally, stocking rate estimates have been based on knowledge of rangeland
stocking capacity from land manager experience, initial animal BW (if known), peak
biomass (kg ha−1), and forage utilization measurements. Frequently, initial herd level
average BW is used to calculate AUMs and, subsequently, stocking rate; however, herd
level averages may not adequately account for the variability in initial individual animal
BW, changes over time due to daily cattle growth (BW + Δ kg d−1 (daily gain)), differences
in % BW of DMI, or changes in BW due to environmental conditions. Not accounting for
this individual animal variability can have a proportional scaling effect from individual
livestock operations to landscape scale estimates of AUMs required. The exclusion of
individual animal BW data can result in potentially overgrazing forage resources and
subsequently have negative impacts on natural resources and animal production.

Range and animal scientists have envisioned in-pasture weighing systems since the
1960s [4,5]. However, the advent of modern precision livestock technology has made in
-pen and pasture weighing systems a viable option for research and production [6,7]. The
advent of precision data collection for rangeland cattle, including the imminent devel-
opment of camera-based weighing systems [7], has made it possible to weigh cattle on
pasture in real time and provides new insight into individual animal weights through-
out the grazing season [8,9]. These data provide the potential to match more closely the
stocking rate and carrying capacity of rangeland for economically and environmentally
sustainable grazing livestock production. As the role of precision technology grows in
extensive rangeland systems, a critical question is how previously unattainable data can be
leveraged in precision system models (PSM) [10]. A PSM model is specifically designed
to incorporate precision livestock data to help inform management. Using PSMs will
help evaluate complex tradeoffs relative to ranch management objectives such as animal
efficiency, managing variability in forage resources (surplus and shortfall), environmental
impact, and mental models. Deploying a PSM to estimate individual DMI using precision
weighing technology may help to identify performance gaps in stocking rates, maximize
forage utilization, and prevent overgrazing. Therefore, the objectives of this study were
to (1) build a PSM to predict forage DMI and stocking rate in extensively managed cattle
using precision BW; and (2) conduct two case studies to compare stocking rate predictions
between PSM and traditional methodologies.
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2. Materials and Methods

2.1. Study Site

The SDSU Institutional Animal Care and Use Committee approved all procedures
involving animals (Approval #2109-054E and #2104-021E). Both case study projects were
conducted at the South Dakota State University (SDSU) Cottonwood Field Station (CFS;
Cottonwood, SD, USA, GIS cords: 43.989107 N, −101.857228 E), located in the Northern
Great Plains and consisting of mixed grass prairie, where dominant forage species included
western wheatgrass (Pascopyrum smithii (Rydb.) A. Love), crested wheatgrass (Agropyron
cristatum (L.) Gaertn.), green needlegrass (Nassella viridula Trin.), and needle-and-thread
(Hesperostipa Comata Trin. and Rupr), with the inclusion of sedges (Carex spp.), buffalograss
(Bouteloua dactyloides (Nutt.) J.T.Columbus), and blue grama (Bouteloua gracilis (Willd. Ex
Kunth.) Lag. Ex Griffiths) [11]. There are also recent introductions of non-native grasses,
such as Kentucky bluegrass (Poa pratensis Boivin and Love) and Japanese brome (Bromus
japonicus Thunb.). Elevation at the CFS ranges from 710–784 m, and the climate is an
arid cold steppe [12]. The long-term average annual precipitation for the area is 468 mm
(1992–2022) [13].

2.2. Precision System Model Development

Mathematical models are becoming increasingly critical for the application of preci-
sion livestock technology as they allow the users to ask “what if” questions, such as the
question in the current study of how individual BW across grazing periods impacts DMI
estimates [14,15]. As the granularity of data increases, it is essential that models are used
not only to generate results but that the results are meaningful, providing insight that trans-
lates into management interventions [16]. A critical step in fully leveraging mathematical
models is to start with a simple modeling approach which ensures that the model achieves
its intended purpose. In the current study, we use a simple deterministic model (in terms
of mathematical complexity and number of parameters and equations) to assess differences
in DMI, grazing area required (ha), and forage consumed (kg), setting the foundation for
more complex integration of grassland dynamics [17]. Thus, as the amount of livestock,
forage, soil, and climate data (amongst many other sources) become available through
precision technology, the most successful models will likely be the ones that are based
on a clear understanding of the production system. This understanding will enable the
development of meaningful and scalable decision support tools that are based on a clear
(i.e., simple) foundation of science such as the basic principles of rangeland management
for grazing livestock.

A PSM model evaluating forage consumption (AUM) was constructed in Vensim
DSS™, a dynamic visually based modeling software, utilizing equations described in the
online SDSU Grazing Calculator [3]. A “precision data” AUM model (AUMPSM) component
was built in Vensim DSS to integrate daily individual BW data. The model was also re-
constructed in Program R [18] to facilitate open-source PSM development and use. Model
results matched both programs [Vensim DSS (version 10.1.2) and Program R (version 4.2.3)].
A 3D smoothing function was applied to raw weight data to minimize variation due to
rumen-fill. The AUMPSM included a discrete (daily time step, delta time = 1) first-order
differential equation to aggregate the daily estimated DMI and hectares needed for each
animal into monthly herd level values. Thus, the model output was total hectares needed
per month to meet cattle nutrient requirements and total forage consumed at a herd level.
Fixed parameters for the model can be found in Tables 1 and 2. Animal BW data were used
from two grazing studies. Case Study 1 utilized data collected from a replacement heifer
development study managed on dormant forage. Case Study 2 utilized data collected from
summer grazed yearling steers.
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Table 1. Model parameters used in the three scenarios for the heifer and steer stocking rate cal-
culations based on the “take-half-leave-half” method suggested by the USDA Natural Resources
Conservation Service (NRCS). The “take-half” consists of 50% of forage being taken (25% is consumed;
25% is trampled, urinated, and defecated on), while the “leave-half” leaves 50% of total biomass
behind to regenerate plant growth.

Model Parameters Heifer Steer 1 Steer 2 Unit

Harvest Efficiency 0.25 0.25 0.25 Dimensionless
Days per Month 30 30 30 Day

Number of Cattle 60 127 135 Head
Percent BW 2.5 2.5 2.5 %

Table 2. Average initial forage biomass of winter heifer pasture and estimated peak forage biomass
within each summer steer pasture (kg per ha−1).

Case Study Pasture 2021 2022

Case Study 1:
Replacement heifers – – 917.78

Case Study 2:
Steers 1 971.78 712.86

2 935.91 1032.30
3 1113.00 1305.79
4 958.33 631.04
5 1568.07 1064.81
6 1713.78 1217.24

2.3. Case Study 1

Replacement Angus heifers (n = 60; initial BW = 237.6 ± 15.5 kg) grazed dormant
native pastures (n = 2; 115.1 ha and 93.4 ha) from November 2021 to May 2022, as part
of a broader project to integrate precision feeding technology to precisely manage heifer
development [19] (Figure 1). Individual animals were tagged with a radio frequency
identification device (RFID; Allflex Inc., Dallas, TX, USA) to pair weight measurements to
each animal. Both treatment groups were supplemented with 2.27 kg hd−1 d−1 of pelleted
dried distiller’s grains with solubles (DDGs). The supplement was delivered to the control
group via a traditional bunk fed method, and the precision group supplement was offered
via a Super Smartfeed ProducerTM (C-Lock Inc., Rapid City, SD, USA). Individual BWs
were calculated daily from partial BWs measured using a front-end scale (Smartscale™,
C-Lock Inc. Rapid City, SD, USA; Figure 1) positioned at the water source. Forage samples
were collected at the beginning and end of the trial using a grid sampling technique for
each pasture (n = 10 per pasture; 0.25 m2 quadrat) to provide initial available forage values
(kg dry matter ha−1). In Case study 1, only the initial forage value was used to estimate
stocking rate.

 

Figure 1. Dormant winter pasture and heifers (left) and steers using the SmartScale™ (right).
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2.4. Case Study 2

Steers were managed on native pastures as part of a long-term (>80 year) grazing
study evaluating the effects of stocking density on plant communities and animal perfor-
mance. The current project’s broader objectives are to evaluate opportunities for precision
livestock technology to improve animal performance, monitor energy expenditure, and
mitigate environmental impacts in extensively grazed cattle. More detailed methods are
described by Vandermark [20]; briefly, crossbred Angus steers (n = 254) were managed
on native pastures from June to August of 2021 and 2022, respectively. Each steer was
weighed, fitted with an RFID tag, and allocated to one of six pastures equipped with
a precision scale system (SmartScale™, C-Lock Inc., Rapid City, SD USA) positioned at
the water source. Each pasture was assigned either a rotational (RG) or continuous (CG)
grazing strategy and one of three stocking rates—low (pasture area = ~70.31 ha), medium
(pasture area = ~53.15 ha), and high (pasture area = ~30.77 ha); 0.3, 0.42, and 0.7 AUM’s,
respectively—in a 2 × 3 factorial design. The pasture sizes and stocking rates (above) were
not used in the PSMAUM simulations; rather, only the precision BW and initial forage values
were utilized. The purpose of describing the differences in stocking rates is to emphasize
that we utilized diverse sources of BW data compared to only a single stocking rate, as
different stocking rates have been shown to impact rates of BW gain [11]. Forage samples
were collected using random clippings (n = 5, 0.25 m2 quadrat) in each pasture at bi-weekly
intervals for both grazing trials (2021 and 2022) to determine peak biomass.

2.5. Precision System Model Application

Individual animal BW data for both case studies were downloaded through an Auto-
mated Programming Interface (API, C-Lock Inc.) into Program R [18]. Weight data were
assigned to individual animal records using the data.table package [21], filtered for spurious
weight data points utilizing robust regression [22], and organized into longitudinal data
frames. Static values (i.e., the same BW for each animal each day) were used to compare
the AUM model outputs and the SDSU Grazing Calculator outputs to ensure mathemat-
ical accuracy and that double-accounting was avoided. It is important to note that the
size or nutritional value of individual pastures for Case study 1 (n = 2) and Case study
2 (n = 6 per year) were not used in the PSMAUM; rather, only the initial (Case study 1) or
estimated peak standing forage (Case study 2) and individual precision BW were used to esti-
mate total grazing area needed and the total forage consumed for each of the three scenarios.
Using initial dormant forage or estimated peak forage production are commonly employed
by rangeland managers for setting stocking rates before turning livestock out to graze.

Three scenarios (described below) were simulated to determine differences in calcu-
lated total hectares of pasture needed over each grazing period. The first two scenarios
were designed to represent typical calculations used to determine stocking rate, while the
third utilized precision BW data. All simulations were based on the DMI estimation method
using %BW described above. Model parameters were the same in each scenario (Table 1).
Scenario 1 applied traditional rangeland AUM estimation methods based on average initial
BW (Table 3) at the beginning of each grazing period. Scenario 2 consisted of calculating a
mid-season average BW for the heifers and the steers. Case study 1 was calculated using
the desired BW weight at time of breeding in May of 381 kg minus the initial average
herd BW (Table 3). Unlike the heifers, the steers in Case study 2 did not have a specific
desired end BW, as one of the full experiment’s goals was to assess differences in BW across
stocking rates, not necessarily to maximize performance [20]. Thus, the steer mid-season
BW was calculated using an average of the average initial herd BW (day 1) and ending herd
BW (day 60) (Table 3). The impetus behind this scenario was to account for changing BW
at a herd level at mid-season in an attempt to capture the same expected variation in BW
throughout the grazing period. Finally, Scenario 3 utilized daily BW measurements from
the precision scales for each animal over the total length of the grazing period (Table 3)
with the AUMPSM.
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Table 3. Scenario parameters for body weight (BW).

Scenario

Study Pasture
1: Average Initial BW,

kg hd−1 2: Mid-Season BW, kg hd−1 3: Individual Precision BW,
kg hd−1 d−1

Case Study 1:
Replacement heifers – 243.45 301.53 Individual weights

Case Study 2:
Steers 2021 2022 2021 2022 2021 2022

1 352.33 273.66 375.71 300.89 – –
2 338.92 274.82 360.82 299.28 – –
3 345.80 271.23 366.92 302.58 – –
4 348.89 270.50 363.75 298.65 – –
5 352.91 271.68 378.12 300.47 – –
6 341.20 271.54 367.06 298.41 – –

Finally, we conducted a Monte Carlo analysis (10,000 runs) to determine the percentiles
of potential variation from %BW on AUMPSM calculations on a daily basis impacting total
hectares required and total forage used for each grazing period. The BW parameters ranged
from 1.8 to 2.7% using a univariate normal distribution.

3. Results

3.1. Case Study 1

The initial BW of replacement heifers was 243.45 kg, with a mid-season BW of 301.53 kg
per head. It had a 175 d grazing period; 8 d were removed due to missing BW due to system
malfunction, resulting in a 167 d period used for this analysis. The greatest difference in
total area needed was 73.41 ha between Scenarios 1 and 3; however, using an estimated
mid-season average (Scenario 2) only resulted in 10.03 ha less than the precision estimate
(Scenario 3; Table 4; Figure 2). Simulations were deterministic and did not have a probability
distribution. The sensitivity analysis results of forage consumption from variation in %BW
ranged from 56,019 to 84,014 kg on day 167, increasing as the grazing trial progressed
(Figure 3). Like estimated forage consumption, the sensitivity analysis of total hectares
required, from variation in %BW, ranged from 244 to 366 ha on day 167 and increased as the
trial progressed (Figure 3).

Table 4. Total hectares required for each case study (replacement heifers and grazing steers) esti-
mated according to total forage production (initial or peak), and intake estimated as a function of
BW measured according to each of the three scenarios, initial BW, estimated mid-season BW, and
individual precision BW.

Scenario

Study Pasture
1: Average Initial BW,

Hectares
2: Mid-Season BW,

Hectares
3: Individual Precision BW,

Hectares

Case Study 1:
Replacement heifers – 265.77 329.17 334.07

Case Study 2:
Steers 2021 2022 2021 2022 2021 2022

1 52.21 44.60 50.85 49.04 50.85 44.43
2 52.73 48.78 56.14 48.78 52.89 41.74
3 53.80 44.21 57.08 49.32 54.60 54.80
4 51.70 42.08 53.89 48.97 48.55 42.02
5 54.90 44.28 58.83 48.97 46.58 34.91
6 55.61 46.27 59.83 50.85 56.33 42.96
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Figure 2. Simulated area (ha) to graze 60 heifers for 167 d based on body weight (BW) dry matter
intake estimation in Scenario 1 (initial herd BW), Scenario 2 (herd mid-season BW), and Scenario 3
(precision BW).

Figure 3. The percentiles of potential variation of daily total forage consumed (kg DM basis) from
changes to % body weight (BW) (left panel) and required pasture size (right panel) over a 167 d
period for replacement heifers. Initial animal unit equivalents were 0.54 based on average herd BW.

3.2. Case Study 2

Average initial and mid-season BW are reported in Table 3, with an average initial BW
of 293 ± 49.6 and 369 ± 37.1 kg across six pastures for the year 2021 and 2022, respectively.
Study length was 68 and 76 d for trial year 1 and 2, respectively; however, due to equipment
failures and poor visitation rates, 8 and 16 d were removed from the end of each trial period
to obtain a 60 d period for the analysis of each. The average difference was 4.4 ha per
pasture between Scenarios 3 and 1; however, using estimated mid-season BW only resulted
in a 0.9 ha difference between Scenarios 3 and 2 (Figure 4; Table 4). Sensitivity of average
DMI due to variation in %BW ranged from 8530 to 12,795 and 7182 to 10,774 kg per pasture
on trial day 60 for steer trials 1 and 2, respectively. This directly resulted in the range of
total required ha per pasture of 17.6 to 26.3 and 17.7 to 26.6 ha on day 60 (Figure 5) for steer
trials 1 and 2, respectively.
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Figure 4. Simulated area (ha) to graze steers (average of 2021 and 2022 BWs; n = 254) in a typical
pasture containing ~20 steers) for 60 d based on body weight (BW) dry matter intake estimation
in Scenario 1 (initial herd BW), Scenario 2 (herd mid-season BW), and Scenario 3 (precision BW).
Overall required grazing ha were calculated for each individual animal (~20) within each group
(n = 6) per year (2021, 2022), and all groups (n = 12, i.e., six per year) were averaged to represent the
total variation captured by individual steers within both trials (n = 254).

Figure 5. The percentiles of potential variation of daily total forage consumed (kg DM basis) from
changes to % body weight (BW) (left panel) and required pasture size (right panel) over a 60 d period
for steers. The sensitivity analysis represents the total number of steers (n = 254), similar to Figure 4
above. Initial animal unit equivalents ranged from 0.59 to 0.78 based on average herd initial BW of
each pasture group (n = 6) of steers per each year (2021 and 2022; n = 2).

3.3. Considerations for Range Beef Cattle

As expected, considerable differences existed between the traditional AUM method
and the precision-informed AUMPSM method, caused by individual animal BW. Differences
between Scenarios 1 and 3 were amplified over time as BW became increasingly influential
to AUM estimates. This indicates that obtaining initial BW before turn-out for grazing
is a critical management factor and that precision weighing can aid both traditional and
precision AUM estimates [23]. A mid-season average (Scenario 2) captured similar results
as the precision-informed AUM estimate (e.g., ~3% difference for heifers). However, this
agreement was found using expected daily gain based on a well-developed nutrition plan
(grazing and supplement) and from a sample population that was culled to represent a
similar weight range. It is unlikely that such cattle uniformity exists for the typical rancher;
therefore, we would expect more variability. Thus, an opportunity exists to evaluate
how many ranchers use initial or mid-season BW and the different qualities of BW data
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available. It is essential to evaluate the usefulness of tools like precision weighing for
effective adoption and avoidance of technologies that do not yield returns.

Precision system modeling focuses on identifying high-leverage precision measure-
ment or management tools to minimize a performance gap [5]. Grazing models like APEX
use growth functions based on mean animal weights [24]. Although models, like APEX,
can incorporate probabilistic functions, the variation applied is random for each animal at
any given time-point, which does not reflect grazing behavior or environmental responses
affecting performance, while precision BW data is representative of such variations. Thus,
the next step in PSM is to identify feedback mechanisms that more adequately repre-
sent individual BW variation. These mechanisms will likely include other data streams
(e.g., climate data effects on heat/cold stress) to model this individual variation. Thus, PSM
will help to further separate rangeland animals into different groups of efficiency/quality.
For example, the variation of total forage consumed, and hectares needed caused by the
sensitivity analysis of %BW for each heifer or steer (Figures 3 and 5) indicates that individ-
ual animal consumption rates (kg dry matter d−1) are impactful. As more information is
collected about feed-efficient grazing cattle, there is the potential to select animals with
similar efficiency levels to minimize this variation.

Applying precision data and derived model coefficients provides more precise DMI
estimates and shows the advantages and disadvantages of herd level estimates, especially
in the context of changing cattle demands and forage nutrient composition and availability
throughout the grazing season. For instance, unlike the data used in the current study,
where forage availability was a fixed resource (i.e., dormant forage), most livestock grazing
capitalizes on seasonal changes in forage availability and quality [25]. Thus, the next step
is to account for seasonal changes of biomass availability and nutrient composition of the
heifer and steer case studies instead of only using initial dormant forage availability or peak
biomass estimates. Evaluating precision informed stocking rates for continuous versus
rotational grazing is another opportunity for further research using a more complex version
of the PSMAUM. Precision BW estimates can help producers fine-tune stocking rates for
future pastures (dynamic pasture adjustment using AUMPSM). Further, virtual fencing
has made these potential AUMPSM informed rotations feasible because physical labor and
infrastructure (e.g., water) requirements are minimized [5].

Grazing livestock research and production are focused on the “margins” like perfor-
mance and costs, with the aim to maximize rangeland resources [11]. It has been estimated
that 20–40% of US grasslands are overgrazed [26]. Heavy grazing has been shown to
be equally as profitable as more lightly grazed systems in years with average precipita-
tion; however, limitations in forage productivity and water infiltration are extreme during
drought within this type of grazing management system. Precision system models help
to answer complex questions regarding the impact of precision livestock technologies on
marginal increases in animal productivity at a local and supply chain level [27]. While a
comparison of Scenarios 1 and 3 indicates local ranch-level benefits, especially for extensive
systems (Figures 2 and 4), viewing supply chain impacts supports efforts for marginal
improvements at the local level (e.g., climate-smart commodities). For example, the current
number of heifers in South Dakota (US) is 375,000 [28]. We extrapolated our results to a
state level using the following Equation (1):

Hectares Overgrazed =
Hei f ers
Hei f erl

∗ Di f f erence in Hectares, (1)

where hectares overgrazed is the number of additional hectares required for a specific
grazing period, Heiferss is the current number of heifers in the state, Heifersl is the number
of Angus heifers used in the current study (n = 60), and the difference in hectares (Δ ha) is
the difference between the modeled results of Scenarios 1 and 3 (Table 5).
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Table 5. Extrapolation of Scenarios 1 and 3 to estimate hectares required for a 167 d period at a state
level based on January 2023 state heifer numbers.

Scenario ha Δ ha State ha Required Area Overgrazed ha

1 265.55 - 1,659,687 -
3 338.96 73.41 2,118,500 458,812

It is important to note that the estimates provided in Table 5 are based on a specific
grazing management system of “take-half-leave-half”, which is designed to avoid over-
grazing and promote plant regrowth. The current modeled example (Equation (1); Table 5)
is based off static values and does not account for potential forage regrowth after dormancy
during the spring. Therefore, the overgrazing of 458,812 acres is relative to the “take-
half-leave-half” grazing strategy and should not be applied as an indication of potential
rangeland degradation from overgrazing for other production settings without accounting
for grazing management and potential plant regrowth details. Rather, this estimate of
overgrazed areas is only to highlight potential differences that may occur at scale, and
which may potentially be improved through the use of precision-derived stocking rate
coefficients for different classes of grazing beef livestock.

4. Conclusions

Using technologies like SmartScales™ to provide precision informed stocking rate
coefficients is likely to provide a high-leverage management opportunity for rangeland man-
agers. As data increase for animal classes and grazing periods (e.g., winter, summer), more
precise stocking estimates can be obtained to maximize pasture use relative to production
goals (harvest efficiency) [29]. However, research derived precision AUM coefficients may
be sufficient for ranch managers as the implementation of scale-based precision technology
is limited by cost and infrastructure within extensive systems (i.e., precision weighing is a
means to an end). More investigation is needed for non-growing animal classes such as
mature cows that are likely to have much less variation in DMI over the grazing season.
Practical steps are needed to evaluate how precision data can be integrated into PSM to
guide precision data collection efforts [30]. The next step is using precision-informed forage
nutrient composition data from forecast or remote sensing (e.g., near real-time forage
production and nutrient composition estimates) and DMI equations that include net energy
for maintenance [2]. For example, in some years, grass may come out of dormancy before
May, depending on the climate, plant root storage, and soil moisture conditions, which
could alter available biomass and its nutrient composition [31] (e.g., increased protein and
lower fiber, which was not the case for our heifer case study). Additionally, using PSM to
evaluate local-ranch- and supply-chain-level impacts will provide quantitative justification
for specific precision livestock tool use or future development.

Author Contributions: Conceptualization, writing, and analysis H.M.M.III; writing and data curation
J.R.B.; writing, editing and conceptualization K.A.E.; writing, editing, and analysis I.L.P. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was made possible with an equipment grant from C-Lock Inc. (Rapid City,
SD, USA), a donation of DDGS pellets from POET Nutrition (Sioux Falls, SD, USA), USDA Hatch
grant (#SD00H724-21; SD00H729-21), and the Inter-Disciplinary Engagement in Animal Systems
(IDEAS) program (2022-69014-36670) from the USDA National Institute of Food and Agriculture
(NIFA) and the SDSU Agriculture Experimental Station.

Institutional Review Board Statement: The SDSU Institutional Animal Care and Use Committee
approved all procedures involving animals approval #2109-054E and #2104-021E, approved on
7 October 2021 and 15 April 2021).

Informed Consent Statement: Not applicable.

58



Animals 2023, 13, 3844

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to thank Logan Vandermark, Lily McFadden, and Anna
Dagel for their assistance in data collection and Roger N. Gates for evaluating the initial concept.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Smart, A.; Walker, J.; Gates, R.N. Setting the Stocking Rate. In South Dakota State University Extension Beef ; Smart, A., Walker, J.,
Eds.; South Dakota State University Extension: Brookings, SD, USA, 2020; pp. 1–6.

2. Galyean, M.L.; Beauchemin, K.A.; Caton, J.; Eisemann, J.H.; Engle, T.; Erickson, G.E.; Krehbiel, C.R.; Lemenager, R.P.;
Tedeschi, L.O. Nutrient Requirements of Beef Cattle, 8th ed.; The National Academies Press: Washington, DC, USA, 2016;
pp. 171–186.

3. South Dakota State University Extension: Grazing Calculator. Available online: https://extension.sdstate.edu/grazing-calculator
(accessed on 24 October 2022).

4. Martin, S.C.; Barnes, K.K.; Bashford, L. A step toward automatic weighing of range cattle. J. Range Manag. 1967, 20, 4. [CrossRef]
5. Adams, D.C.; Currie, P.O.; Knapp, B.W.; Mauney, T.; Richardson, D. An automated range-animal data acquisition system. J. Range

Manag. 1987, 40, 256. [CrossRef]
6. MacNeil, M.D.; Berry, D.P.; Clark, S.A.; Crowley, J.J.; Scholtz, M.M. Evaluation of partial body weight for predicting body weight

and average daily gain in growing beef cattle. Trans. Anim. Sci. 2021, 5, txab126. [CrossRef] [PubMed]
7. Wells, R.S.; Interrante, S.M.; Sakkuma, S.S.; Walker, R.S.; Butler, T.J. Accuracy of the VYTELLE SENSE in-pen weighing positions.

Appl. Animal Sci. 2021, 37, 626–634. [CrossRef]
8. Xiong, Y.; Condotta, I.C.; Musgrave, J.A.; Brown-Brandl, T.M.; Mulliniks, J.T. Estimating body weight and body condition score of

mature beef cows using depth images. Transl. Anim. Sci. 2023, 7, txad085. [CrossRef] [PubMed]
9. Currie, P.O.; Volesky, J.D.; Adams, D.C.; Knapp, B.W. Growth patterns of yearling steers determined from daily live weights.

J. Range Manag. 1989, 42, 393–396. [CrossRef]
10. Menendez, H.M., III; Brennan, J.R.; Gaillard, C.; Ehlert, K.; Quintana, J.; Neethirajan, S.; Remus, A.; Jacobs, M.; Teixeira, I.A.M.A.;

Turner, B.L.; et al. ASAS–NANP symposium: Mathematical modeling in animal nutrition: Opportunities and challenges of
confined and extensive precision livestock production. J. Anim. Sci. 2022, 100, skac160. [CrossRef] [PubMed]

11. Dunn, B.H.; Smart, A.J.; Gates, R.N.; Johnson, P.S.; Beutler, M.K.; Diersen, M.A.; Janssen, L.L. Long-term production and
profitability from grazing cattle in the northern mixed grass prairie. Rangel. Ecol. Manag. 2010, 63, 233–242. [CrossRef]

12. Beck, H.; Zimmermann, N.; McVicar, T.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate
classification maps at 1-km resolution. Sci Data 2018, 5, 180214. [CrossRef] [PubMed]

13. NOAA. National Oceanic and Atmospheric Administration National Centers for Environmental Information. 2023. Available
online: https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/divisional/time-series/3905/pcp/all/10/1992-
2022normals (accessed on 15 November 2023).

14. Tedeschi, L.O.; Fox, D.G. The Ruminant Nutrition System: Volume I—An Applied Model for Predicting Nutrient Requirements and Feed
Utilization in Ruminants, 3rd ed.; XanEdu: Ann Arbor, MI, USA, 2020; pp. 1–7.

15. Ford, A. Modeling the Environment: An Introduction to System Dynamics Models of Environmental Systems, 2nd ed.; Island Press:
Washington, DC, USA, 2010; pp. 3–17.

16. Sterman, J.D. Business Dynamics: Systems Thinking and Modeling for a Complex World; Irwin McGraw-Hill: New York, NY, USA,
2000; pp. 1–134.

17. Thornley, J.H.M. Grassland Dynamics: An Ecosystem Simulation Model; CAB International: Cambridge, MA, USA, 2001;
pp. 1–9, 65–70.

18. R Core Team. R: A Language and Environment for Statistical Computing. In R Foundation for Statistical Computing; R Core Team:
Vienna, Austria, 2023; Available online: https://www.r-project.org/ (accessed on 7 July 2023).

19. Dagel, A. Evaluating Precision Supplementation Technology and Mathematical Nutrition Models for the Development of Heifers
Grazing Dormant Rangeland in Western South Dakota. Master’s Thesis, South Dakota State University, Brookings, SD, USA,
21 July 2023.

20. Vandermark, L.R. Impact of Virtual Fence Technology on Yearling Steer Behavior, Performance, and Energetic Expenditure.
Master’s Thesis, South Dakota State University, Brookings, SD, USA, 5 May 2023.

21. Data.Table: Extension of ‘Data.Frame’. Available online: https://cran.r-project.org/web/packages/data.table/index.html
(accessed on 1 August 2023).

22. Parsons, I.L.; Norman, D.A.; Karisch, B.B.; Webb, S.L.; Stone, A.E.; Proctor, M.D.; Street, G.M. Automated walk-over-weigh system
to track daily body mass and growth in grazing steers. Comput. Electron. Agric. 2023, 212, 108113. [CrossRef]

23. González-García, E.; Golini, P.D.O.; Hassoun, P.; Bocquier, F.; Hazard, D.; González, L.A.; Ingham, A.B.; Bishop-Hurley, G.J.;
Greenwood, P.L. An assessment of walkover-weighing to estimate short-term individual forage intake in sheep. Animal 2018, 12,
1174–1181. [CrossRef] [PubMed]

59



Animals 2023, 13, 3844

24. Fang, Q.X.; Harmel, R.D.; Ma, L.; Bartling, P.N.S.; Derner, J.D.; Jeong, J.; Williams, J.R.; Boone, R.B. Evaluating the APEX model
for alternative cow-calf grazing management strategies in Central Texas. Agric. Syst. 2022, 195, 103287. [CrossRef]

25. Jansen, V.S.; Kolden, C.A.; Schmalz, H.J.; Karl, J.W.; Taylor, R.V. Using satellite based vegetation data for short-term grazing
monitoring to inform adaptive management. Rangel. Ecol. Manag. 2021, 76, 30–42. [CrossRef]

26. Piipponen, J.; Jalava, M.; Leeuw, J.; Rizayeva, A.; Godde, C.; Cramer, G.; Herrero, M.; Kummu, M. Global trends in grassland
carrying capacity and relative stocking density of livestock. Glob. Change Biol. 2022, 28, 3902–3919. [CrossRef]

27. Menendez, H.M.; Tedeschi, L.O. The characterization of the cow-calf, stocker and feedlot cattle industry water footprint to assess
the impact of livestock water use sustainability. J. Agric. Sci. 2020, 158, 416–430. [CrossRef]

28. United States Department of Agriculture National Agricultural Statistical Service: South Dakota Heifer Inventory. Available
online: https://quickstats.nass.usda.gov/results/BCFA9CC3-C24C-34D7-BC34-541D1275C3EA (accessed on 1 December 2022).

29. Smart, A.J.; Derner, J.D.; Hendrickson, J.R.; Gillen, R.L.; Dunn, B.H.; Mousel, E.M.; Johnson, P.S.; Gates, R.N.; Sedivec, K.K.;
Harmoney, K.R.; et al. Effects of grazing pressure on efficiency of grazing on North American Great Plains rangelands. Rangel.
Ecol. Manag. 2010, 63, 397–406. [CrossRef]

30. Brennan, J.R.; Menendez, H.M., III; Ehlert, K.; Tedeschi, L.O. ASAS-NANP symposium: Mathematical modeling in animal
nutrition—Making sense of big data and machine learning: How open-source code can advance training of animal scientists.
J. Anim. Sci. 2023, 101, 1–11. [CrossRef] [PubMed]

31. Díaz-Solís, H.; Grant, W.E.; Kothmann, M.M.; Teague, W.R.; Díaz-García, J.A. Adaptive management of stocking rates to reduce
effects of drought on cow-calf production systems in semi-arid rangelands. Agric. Syst. 2009, 100, 43–50.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

60



Citation: Van Steenkiste, G.; Van Den

Brulle, I.; Piepers, S.; De Vliegher, S.

In-Line Detection of Clinical Mastitis

by Identifying Clots in Milk Using

Images and a Neural Network

Approach. Animals 2023, 13, 3783.

https://doi.org/10.3390/ani13243783

Academic Editors: Brett Ramirez,

Janice Siegford, Hao Gan, Yang Zhao,

Daniel Berckmans, Robert T. Burns

and Lingjuan Wang-Li

Received: 24 October 2023

Revised: 30 November 2023

Accepted: 6 December 2023

Published: 8 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

animals

Communication

In-Line Detection of Clinical Mastitis by Identifying Clots in
Milk Using Images and a Neural Network Approach

Glenn Van Steenkiste *, Igor Van Den Brulle, Sofie Piepers and Sarne De Vliegher

Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine,
Ghent University, 9820 Merelbeke, Belgium; sofie.piepers@ugent.be (S.P.); sarne.devliegher@ugent.be (S.D.V.)
* Correspondence: glenn.vansteenkiste@ugent.be

Simple Summary: The study focused on improving the detection of clinical bovine mastitis, the
inflammation of the udder in cows as a response to intramammary infection, which can be identified
by the presence of clots in the milk. Currently, automated milking systems do not detect this
important disease very accurately. To address this, we developed a clots detection program using
a neural network. This neural network was trained to recognize clots in milk samples from dairy
cows by using a large number of pictures of milk filter socks, some with and some without clots.
These pictures were divided into different sets for training, validating, and testing the program,
respectively. The settings of the neural network were optimized using a genetic algorithm. The
program’s interpretations were explained using a method called integrated gradients. The program
was found to be 100% accurate in identifying clots in the test pictures. This suggests that the method
could be very useful for automatically checking for clinical mastitis on dairy farms, although further
field validation through integration into the existing systems is needed.

Abstract: Automated milking systems (AMSs) already incorporate a variety of milk monitoring and
sensing equipment, but the sensitivity, specificity, and positive predictive value of clinical mastitis
(CM) detection remain low. A typical symptom of CM is the presence of clots in the milk during
fore-stripping. The objective of this study was the development and evaluation of a deep learning
model with image recognition capabilities, specifically a convolutional neural network (NN), capable
of detecting such clots on pictures of the milk filter socks of the milking system, after the phase in
which the first streams of milk have been discarded. In total, 696 pictures were taken with clots and
586 pictures without. These were randomly divided into 60/20/20 training, validation, and testing
datasets, respectively, for the training and validation of the NN. A convolutional NN with residual
connections was trained, and the hyperparameters were optimized based on the validation dataset
using a genetic algorithm. The integrated gradients were calculated to explain the interpretation
of the NN. The accuracy of the NN on the testing dataset was 100%. The integrated gradients
showed that the NN identified the clots. Further field validation through integration into AMS is
necessary, but the proposed deep learning method is very promising for the inline detection of CM
on AMS farms.

Keywords: deep learning; clinical mastitis; automated milking systems; image recognition; clots
in milk

1. Introduction

From an economic viewpoint, mastitis is one of the most important diseases in dairy
cows [1–5], due to its effects on animal health and the subsequent losses in milk production,
as well as the need to discard abnormal milk or milk from diseased cows (European Union
Directive EC/853/2004 and US Food and Drug Administration Grade A pasteurized milk
ordinance). Depending on the study, the cost of each clinical mastitis (CM) varies between
USD65 and 930 [2–4]. The early detection of CM can reduce both the economic impact and
the long-term impact on cow health and welfare [6,7].
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Many dairy farms are transitioning to automated milking systems (AMSs), with
around 38,000 units installed worldwide in 2017 [8]. When using AMSs, there are fewer
opportunities for the farmer to detect CM in individual animals. The current AMS incorpo-
rates a variety of milk monitoring and sensing equipment, but the sensitivity and specificity
of its CM detection capabilities remain relatively low, with most systems having a sensi-
tivity between 47 and 90% and a specificity between 56 and 99% [9,10]. For reference, the
International Standards Organization (ISO) describes a standard target of 90% sensitivity
and 99% specificity for the detection of abnormal milk (ISO/FDIS (Final Draft Interna-
tional Standard) 20966 [11]), Annex C (Automatic Milking Installations—Requirements
and Testing). Most of these sensor systems try to detect mastitis by measuring and an-
alyzing indirect parameters, such as (but not limited to) electrical conductivity, somatic
cell count, milk flow rate, changes in milk color, milk yield per hour or quarter, and cow
activity [7,10,12–15].

A typical symptom of CM is the presence of clots in the milk during pre-milking,
which has been proposed as the gold standard for the detection of CM [16,17]. Therefore,
we propose to use an in-line camera to detect such clots in the filter after the pre-milking
phase. A similar sensor has been proposed in the past but was limited in its capabilities
of detecting the clots on the filter, as it was developed to score the quality of the milk
and needed to be adapted for instances of different detriments occurring in the milk [18].
Another study proposed to measure clot density in quarter milk samples, which could be
useful in monitoring milk quality and clinical mastitis [19]. The researchers used in-line
filters to collect quarter milk samples and visually scored the clot density, based on the
coverage of the filter area. They showed that high scores clustered within certain cows and
periods, suggesting a potential threshold for detecting abnormal milk. The objective of the
present study was the development and evaluation of a neural network (NN) capable of
detecting such clots on pictures of the filters of the milking system after the pre- and/or
milking phase at the cow level.

2. Materials and Methods

2.1. Experimental Data

The data for this study were generated by adding debris (including straw, hay, manure,
bedding material, mud, teat sealer, calcium, and/or flies) and/or clots from used milk
filters of AMSs to milk, before passing this milk through a circular milk filter (Universal
Hygia Favorit filters, Universal dairy equipment) mounted in a PVC tube. Debris and clots
were collected from 40 filters, half of which had clots and half of which did not. These
samples were gathered from multiple AMSs and various cows. A vacuum pump provided
suction for pulling the milk through the filter. The filters were painted blue for better
visualization of the clots. An iPhone 6s was mounted in the PVC pipe to take a photo with
the flashlight after each pass of milk. In total, 696 pictures were taken from filters with clots,
and 586 pictures from filters without clots.

2.2. Image Analysis

For the training dataset, the images without clots were randomly resampled using the
built-in python random.uniform function to obtain an even number of images with and
without clots for balancing the NN weights. In total, 1676 images were used for training,
validating, and testing. During the training of the NN, the images were augmented by
random rotations, flipping, rescaling, zooming, and shearing (Table 1), using the Keras
ImageDataGenerator function.
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Table 1. Image augmentation parameters used by the Keras ImageDataGenerator function during
training of the neural network.

Augmentation Type Value

Random rotation 60◦
Random shift in width 10%
Random shift in height 10%

Random zoom 100–130%
Horizontal flip probability 50%

Vertical flip probability 50%
Shear range 20◦

Fill mode nearest

To avoid the NN learning features from outside of the filter, e.g., milk spatters on the
PVC pipe, the PVC pipe was removed from the picture using OpenCV v4.1. The image
was then rescaled to 500 × 500 pixels as the NN input (Figure 1).

 

Figure 1. Image pre-processing steps on filter image after the passage of milk with clots. Panel
(A): original image taken with a resolution of 4032 × 3034 pixels. Panel (B): image after applying
a black mask on the region of the PVC pipe. Panel (C): resulting image used for the neural
network after rescaling to 500 × 500 pixels.

A genetic algorithm was used to optimize the hyperparameters of the NN (Figure 2)
based on the validation dataset. A non-dominated sorting genetic algorithm II (NSGA-II)
was used, with a population size of 20 and 10 optimization generations, using the accuracy
as the fitness value [20]. The training of each child NN of the algorithm was ended after
50 epochs or when the training stopped improving for three epochs. Optimization was used
for the following hyperparameters: the number of filters, the width of convolution and
subsampling for each convolutional layer, the number of neurons for each fully connected
layer, L2 regularization, and the dropout used for training (Table 2).

For training, the SoftMax cross entropy was used to calculate the loss with the Adam
optimizer and with the default parameters at a learning rate of 0.0001 for updating the
weights of the network [21]. The network was trained using parameters optimized by the
genetic algorithm, with each epoch evaluated using a validation dataset. This process was
repeated for 100 epochs, selecting the best network weights based on validation results,
to avoid overfitting the training dataset. The testing dataset was employed for statistical
analysis. The network was built in Keras with a TensorFlow v2.0.1 backend [22]. The batch
size was set to 16. Afterwards, the integrated gradients of the NN were calculated and
compared to a completely black baseline image to obtain an insight into the input–output
behavior of the neural network. The attribution of the input pixels to the output labels was
projected as a mask over the input image using the OpenCV toolbox (Figure 3).
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Table 2. Hyperparameters selected by the genetic algorithm after 10 optimization generations. For the
convolutional layers, the first number indicates the residual block and the second number indicates
the convolutional layer within the block. Abbreviations: Conv: convolutional layer.

Layer Hyper Parameter Value

All Dropout 0.2
Conv 1.1 Filters 8

Kernel size 4
Subsampling 2

Conv 1.2 Filters 8
Kernel size 1

Subsampling 1
Conv 2.1 Filters 16

Kernel size 4
Subsampling 1

Conv 2.2 Filters 16
Kernel size 1

Subsampling 1
Conv 3.1 Filters 24

Kernel size 4
Subsampling 1

Conv 3.2 Filters 24
Kernel size 1

Subsampling 1
Conv 4.1 Filters 32

Kernel size 4
Subsampling 1

Conv 4.2 Filters 32
Kernel size 1

Subsampling 1
Conv 5.1 Filters 40

Kernel size 4
Subsampling 1

Conv 5.2 Filters 40
Kernel size 1

Subsampling 1
Conv 6.1 Filters 48

Kernel size 4
Subsampling 1

Conv 6.2 Filters 48
Kernel size 1

Subsampling 1
Conv 7.1 Filters 48

Kernel size 4
Subsampling 2

Conv 7.2 Filters 48
Kernel size 1

Subsampling 1
Conv 8.1 Filters 48

Kernel size 4
Subsampling 1

Conv 8.2 Filters 48
Kernel size 1

Subsampling 1
Dense 1 Number of neurons 64

L2 regularization 0.1
Dense 2 Number of neurons 32

L2 regularization 0.01
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Figure 2. High-level architecture of the neural network. CONV: convolutional block; BN: batch
normalization; RELU: rectified linear activation unit; Max Pool 2D: Max pooling operation; Dense:
fully connected layer; Softmax: Softmax activation block with the two different output classes.

 

Figure 3. Visualization of the integrated gradients by an attribution mask over the original input
image. Yellow indicates a high attribution of the indicated pixels to the output label of the neural
network (NN). Panel (A) shows the integrated gradients of the currently used NN. Here the pixels
(around) the clots attribute the most to the output label. Panel (B) shows the integrated gradients
of a NN which was trained on images where the PVC pipe was not removed from the image. This
‘cheating’ NN used the milk spats on the PVC pipe to identify if this was an image with clots.
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2.3. Statistical Analysis

The dataset was randomly divided into a training subset containing 60% of the data, a
validation dataset containing 20%, and a holdout subset containing 20%, which was not
used for tuning the model; this resulted in 1006 training, 335 validation, and 335 holdout
images. The following metrics were calculated on the holdout dataset: accuracy, positive
and negative predictive values, specificity, and sensitivity.

3. Results

The accuracy, specificity, positive and negative predictive values, and sensitivity re-
sults of the NN on the testing dataset were 100% (Table 3). The integrated gradients
showed that the NN identified the clots and accurately distinguished the clots from
other materials including straw, hay, manure, bedding material, mud, teat sealer, calcium,
and flies.

Table 3. Coherence matrix of results.

Predicted Negative Predicted Positive

True negative 182 0

True positive 0 153

4. Discussion

The accuracy, positive- and negative predictive value, specificity, and sensitivity of the
NN on the holdout dataset are a clear improvement, in comparison with other milk-based
CM detection methods. Since the proposed method can reliably detect clots in foremilk, this
method could be a feasible approach to detect CM in AMSs. Since clots during foremilking
are considered the gold standard for detecting CM, the current approach has the potential
to be a more reliable CM detection implementation for AMSs, in comparison with current
CM detection sensors, which try to detect CM with other parameters, including electrical
conductivity, L-lactate dehydrogenase, milk color, and somatic cell counting [9,16]. Many
different sensors and algorithms have been proposed for the detection of CM, but, thus
far, none of the published CM detection methods achieved the ISO target of at least 80%
sensitivity and 99% specificity [23].

One of the main benefits of the current approach is the extremely high accuracy. The
main frustration of dairy farmers is the current high number of false alarms made by the
available CM detection sensors in AMSs [24]. Due to the low prevalence of (severe) CM,
the majority of alerts will indeed be false positives, leading to a potential underreporting of
CM cases, as farmers may stop investigating all alerts [23–25]. With the proposed sensor,
the detection and management of severe mastitis on AMS farms could be significantly
improved, reducing the number of false-positives and ensuring that all cases of severe
CM are accurately identified and treated and that milk is separated. Even if the practical
implementation of the current sensor would not have an accuracy/precision of 100%, a
NN, as we have proposed, can be adapted in order to maximize the accuracy, by penalizing
false positive results during the training process or by calculating the receiver operating
characteristic curve and setting a manual threshold for the minimal required specificity [26].
An additional benefit of using a NN is their robustness for the presence of a variety of
detriments (such as straw, manure, udder or tail hair, sawdust, sand, and the remainders
of internal teat sealants) on the image, without the need to retrain the algorithm for every
possible detriment. This is in contrast with the previous proposed work, in which the
fuzzy logic algorithm had to be adapted to recognize the different detriments [18]. If
environmental changes (e.g., change in filter type) would overwhelm the robustness of the
NN, the weights of the NN could be updated on-site using transfer learning to adapt to the
new environment [27]. If the farmer receives multiple false positive results from the sensor,
he could initiate an update of the algorithm remotely based on the incorrectly classified
images without the need to re-engineer the algorithm. In addition, the proposed NN
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approach could also use an optional reference image to differentiate and track animals with
varying mastitis cases. The algorithm identifies changes in clots by comparing new images
with the reference image, which would not be possible with the fuzzy logic algorithm.

If a 3D representation of the filter could be created, e.g., by adding a second camera
for 3D stereovision, the NN could also be adapted to calculate the volume of the clots.
Calculation of the animal’s clot volume allows us to monitor diseased animals with CM over
time and to estimate the severity of the disease and clinical recovery, and, hypothetically,
even the likelihood of a bacteriological cure. For example, if the clot volume of a diseased
animal is decreasing between consecutive milkings, the animal is likely to be recovering.
If few clots are present, increasing milking frequency may suffice as treatment, reducing
antibiotic use. On the other hand, treatment can be necessary when many clots in milk are
detected. Monitoring the dynamics, as well as the gradual increase in the densities, of the
clots on the filter over a period of time could also be a valuable tool to identify cows with
chronic mastitis [19].

The integrated gradients showed that the NN identified the region of the clots as an
input feature (Figure 3). Neural networks are notorious for having a “black box” approach.
It is difficult to attribute the prediction of an NN to its input features and, thus, to know
why an NN tells us which pixels of an image are responsible for picking a certain label [28].
The aim of explainable artificial intelligence (AI) is to understand the input–output behavior
of NNs. One such explainable AI method is the integrated gradients approach, in which
the attribution of each pixel is calculated by summing the gradients (a partial derivative
of each variable, while all others are held constant) of the network on different points at
the path between a baseline image (e.g., a black image) to the actual input image (e.g., the
image of the filter with clots). If the PVC pipe had not been removed from the input images,
the integrated gradients would have clearly shown that the NN had learned to recognize
the different milk spatter patterns instead of recognizing the clots.

The current study encountered limitations due to the relatively small dataset, which
lacked diversity. Although image augmentation techniques were applied to introduce
variability, such approaches do not compare to the larger, more complex datasets typically
utilized in deep learning studies [29]. Furthermore, the consistency of the recording setup
throughout the study, i.e., exclusively using an iPhone’s flash for illumination, has left the
model’s robustness to alternate lighting conditions untested; this is a notable concern since,
in field conditions, lighting can be inconsistent and obstructed. Consequently, the findings
presented here should be interpreted as preliminary, serving as an exploratory investigation
into the application of deep learning for mastitis detection. It is recommended that future
research be conducted with more extensive datasets gathered from field conditions in
AMSs, to thoroughly evaluate the model’s performance and practicality.

While our proposed milk sensor can greatly enhance the detection and management of
severe mastitis on AMS farms, it is important to remember that, due to the sudden onset of
severe CM, sensor information based solely on changes in milk and measurements collected
during milking may not be sufficient for all cases [23]. Cows with severe CM may not visit
the AMS. Therefore, a combination of several sensor-based (including activity sensors) and
AMS-based indicators may have to be incorporated to meet the necessary demands. It
is worth noting that other proposed methods already work at the quarter level [10], and
by incorporating additional filters and cameras into the AMS at the quarter, we could
potentially enhance the performance of our proposed detection system to also achieve
this level of monitoring. The performance of a sensor-based detection system may also
be enhanced by the combination of sensor-based or automatic milking-based monitoring
systems with additional monitoring strategies, such as visual observations. Therefore,
while our sensor offers significant advancements, it should be used in conjunction with
other tools and strategies for optimal results.

67



Animals 2023, 13, 3783

5. Conclusions

The current paper proposed an inline CM detection sensor for AMSs. Further valida-
tion and integration on farms with AMSs are necessary, but the proposed method appears
to be very promising for the accurate inline detection of CM on AMS farms.
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Simple Summary: The study explores the use of virtual fencing technology for managing livestock
distribution, focusing on nursing Brangus cows. The study investigates how these animals learn to
avoid restricted areas and increase their reliance on auditory cues over time. The findings support
the effectiveness of virtual fencing in controlling cow spatial behavior and highlight their ability to
adapt to virtual boundaries rapidly. The research also presents a safe and efficient training protocol
for implementing virtual fence systems.

Abstract: Virtual fencing systems have emerged as a promising technology for managing the distribu-
tion of livestock in extensive grazing environments. This study provides comprehensive documenta-
tion of the learning process involving two conditional behavioral mechanisms and the documentation
of efficient, effective, and safe animal training for virtual fence applications on nursing Brangus cows.
Two hypotheses were examined: (1) animals would learn to avoid restricted zones by increasing
their use of containment zones within a virtual fence polygon, and (2) animals would progressively
receive fewer audio-electric cues over time and increasingly rely on auditory cues for behavioral
modification. Data from GPS coordinates, behavioral metrics derived from the collar data, and cueing
events were analyzed to evaluate these hypotheses. The results supported hypothesis 1, revealing that
virtual fence activation significantly increased the time spent in containment zones and reduced time
in restricted zones compared to when the virtual fence was deactivated. Concurrently, behavioral
metrics mirrored these findings, with cows adjusting their daily travel distances, exploration area,
and cumulative activity counts in response to the allocation of areas with different virtual fence
configurations. Hypothesis 2 was also supported by the results, with a decrease in cueing events over
time and increased reliance with animals on audio cueing to avert receiving the mild electric pulse.
These outcomes underscore the rapid learning capabilities of groups of nursing cows in responding
to virtual fence boundaries.

Keywords: virtual fence; conditional behavior; animal tracking; precision livestock farming; GPS
location; accelerometer and activity
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1. Introduction

Virtual fencing has emerged as a promising commercialized solution for efficiently
managing livestock distribution, introducing an innovative paradigm for controlling their
movements [1,2]. This method employs collars equipped with auditory-electric cues,
designed to deter animals from crossing predetermined virtual fence boundaries [3,4].
These smart collars, integrated with online embedded micro-controllers, calculate the
animal’s GPS position, travel direction, and speed in relation to the virtual fence-designated
polygon boundary. As an animal approaches this boundary, the collar triggers a gradually
intensifying audio pitch that indicates proximity to the virtual boundary (https://www.
nofence.no/en/, accessed on 20 February 2022). If the animal stops moving or changes
direction, the audio signal ceases, and no electric pulse is administered. Conversely, if the
animal persists toward the virtual fence boundary, the audio tone is succeeded by a mild
electric pulse to deter further encroachment [3–5].

One of the key advantages of virtual fencing technology is its flexibility in defin-
ing land and forage resource allocations using customizable polygons in terms of shape,
size, and duration. This flexibility empowers land managers with unprecedented control
over grazing practices, addressing the challenge of managing heterogeneous resources
across both space and time [6–8]. The potential applications of virtual fencing are ex-
pansive, encompassing immediate benefits such as the prevention of unwanted access in
ecologically sensitive areas, including riparian zones, while concurrently reducing labor
requirements [1,4].

Although concerns about animal welfare have arisen regarding virtual fence applica-
tions, many of these worries can be attributed to a lack of understanding of the technology’s
operational principles. Notably, the core similarity between electric fencing and virtual
fencing lies in their use of visual (electric fence) or acoustic (virtual fence) cues to signal the
deterrent electric pulse [9,10]. In addition, animals readily adapt to these cues, mitigating
potential negative effects on their comfort, well-being, and overall welfare [9,11,12].

Successful implementation of virtual fencing technology hinges on a suitable train-
ing phase [4,13–15] for the animals to anticipate and move away from the virtual fence
boundaries to avoid the electric cue that acts as a physical deterrent. This learning process
involves two conditional behavioral mechanisms. The first mechanism, known as the
skin defense system, enables animals to steer clear of landscape locations associated with
prior exposure to an electric pulse [12,16]. The second mechanism involves associative
learning, where animals associate an audio tone with signaling an impending mild electric
pulse [8,17,18]. Consistent timing of the device’s delivery of an electric pulse following the
audio tone is critical to providing the animal with the necessary predictability to alter for-
aging trajectories. The gradually intensifying audio pitch as the collar progresses towards
the virtual fence boundary serves as a cue for animals to anticipate the onset of the electric
pulse. This associative learning also enables animals to adapt to periodic changes in virtual
fence boundaries.

Despite prior research efforts, the scientific literature highlights significant knowledge
gaps in the development of efficient, effective, and safe animal training protocols for
virtual fence applications. Moreover, establishing standard training protocols can serve as
benchmarks for future research on virtual fencing, facilitating cross-study comparisons and
enabling validation of the application across varying equipment and animal physiological
and behavioral differences.

The primary aim of this study was to investigate the virtual fence application, with
an emphasis on the learning process associated with the two conditional behavioral mech-
anisms in a group of nursing Brangus cows (n = 28). These cows were equipped with
commercial Nofence virtual fence collars (https://www.nofence.no/en/, accessed on 20
February 2022) and utilized an existing ranch infrastructure. In addition, the research
outlines a detailed training protocol for the implementation of a virtual fence system.

Initially, our investigation focused on hypothesis 1, which postulated that animals
would acquire the ability to avoid restricted zones located outside the virtual fence-
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designated polygon area by increasing their utilization of the containment zones within
the virtual fence-designated polygon area. To explore this hypothesis, we analyzed the
GPS coordinates collected using the collars to assess how the animals utilized the spatial
dimensions of the arena. Furthermore, we utilized behavioral metrics derived from the
collar data to validate the animal’s responses (daily travel distances, exploration of areas,
and activity levels) to changes in the allocated area with the virtual fence application.

Subsequently, hypothesis 2 was examined to determine if animals received progres-
sively fewer audio-electric cues over time (Period) and increasingly relied on auditory cues
to modify their behavior, in accordance with the associative learning mechanism. This facet
of the study involved the evaluation of the number of audio and electric cues received by
the animals. Two computations were used to evaluate the relationship between these cues:
(1) the ratio of electric to audio cueing and (2) the percentage of electric cues relative to
the total number of cues emitted by the collar. Also, the duration of audio cues emitted by
the collars was examined to gauge the total length of the audio tone played and to track
variations in the length of the emitted audio tone per cue.

2. Materials and Methods

2.1. Animal and Virtual Fence Collars

All procedures were approved by the New Mexico State University Institutional
Animal Care and Use Committee (Protocol 2021–010). Cows with calves over 1.5 months
of age were used in the training phase to mitigate challenges associated with younger
calves, as recommended by Nyamuryekung’e et al. [19]. Two groups of cows were used
in the training phase (n = 11 and 17, respectively). These groups were organized based
on the calving dates (ranging from 21/2 to 11 April 2022 for Group 1 and from 14/3 to
20 May 2022 for Group 2) to ensure the average initial calf age was approximately 2 months
(1.96 vs. 2.25 months for Groups 1 and 2, respectively) at the beginning of the deployment
(11 May 2022 and 6 July 2022 for Groups 1 and 2, respectively).

Within their respective groups, nursing Brangus cows that were naïve to the virtual
fence technology were selected. These cows had approximate mean weights of 490 kg
in Group 1 and 402 kg in Group 2. Cows were equipped with C2 Nofence virtual fence
collars (Batnfjordsøra, Norway), each weighing 1.45 kg (https://www.nofence.no/en/,
accessed on 20 February 2022) two weeks before the virtual fence training. Collars operated
on solar and battery energy, using LTE Cat-M1 or 2G network (cellular) to register virtual
fence polygons and communicate real-time animal positions and activity at 15 and 30 min
intervals, respectively, with reliable cellular coverage and in near real-time when cellular
coverage was suboptimal. During this two-week period of acclimatization, the cows
wore the collars while grazing freely alongside their uncollared offspring in pastures
near the New Mexico State University’s Chihuahuan Desert Rangeland Research Center
headquarters (32◦31′53.2′ ′ N 106◦48′15.6′ ′ W). It is important to note that no virtual fence
cueing was initiated during this two-week adaptation Period, and electric fence lines were
not employed.

The virtual fence polygons generated using the Nofence device delineated three
distinct spatial areas:

• Containment Zones: these areas resided within the virtual fence polygon, granting
collared animals the freedom to move without restrictions;

• Cueing Zone: Positioned approximately 5–10 m wide from the containment zone’s
edge or virtual fence boundary, this area progressively subjected collared animals
to three pairings of audio-electric cueing. Following each cue, an alert was sent to
the manager;

• Restricted Zone: Also referred to as the escape zone, these areas were located out-
side the virtual fence polygon. While collars continued to record data in this zone,
no cueing was initiated. In cases of breaches, escape notifications were dispatched
to the manager.
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Within the cueing zone, the pitch of the audio signal increased progressively, cul-
minating in the highest pitch signal at 82 dB. The complete audio ramp cycle lasted
between 5 and 20 s, signaling the administration of the electric pulse upon cycle comple-
tion. The actual duration of the audio cueing cycle varied depending on the speed of the
animal’s movement as it approached the virtual fence boundary.

Virtual fence boundaries, unlike fixed physical fence lines, exhibit variability due to
inherent GPS position errors. The Nofence collars exclusively accept GPS positions with
an accuracy of 3.5 m or better for cue initiation. The collars were deactivated safely in
case of failure or after emitting three electric pulses in close proximity. Additionally, the
Nofence collars featured directional cueing, meaning that animals received cues only when
leaving the virtual fence containment zone. Hence, animals were permitted to re-enter the
virtual fence polygon without encountering any cues. However, once inside, the collars
were reactivated to deter any further attempts to exit the containment zone.

2.2. Training Deployment Design

At the onset of the training phase, the first group of virtual fence-collared cows (n = 11)
with uncollared calves (11 May 2022) were moved to a holding pen situated at the New
Mexico State University’s Chihuahuan Desert Rangeland Research Center headquarters.
The pen (0.2 hectares and devoid of vegetation) contained three permanent feeding stations
spaced evenly within each third of the area. Baled, beardless wheat hay (approximately
590 kg) was provided ad libitum. Additionally, a single water trough was placed on one side
of the pen (Figure 1). Throughout the deployment, to facilitate replenishing of the feeding
stations when near depletion, the animals were temporarily moved to the southwestern
pen area, and access to the arena was restricted for approximately one hour.

 

Figure 1. Top left: Training arena (0.2 ha) devoid of vegetation, with three permanent feeding stations
spaced along the major axis (white line, 65.80 m), with a single water trough location. The yellow
dashed line indicates the virtual fence boundary encapsulating the southern portion of the training
arena, delineating it into a containment zone (amber area, southern portion of the training arena,
0.12 ha) and a restricted zone (vermilion area, northern portion of the training arena, 0.08 ha). Heat
maps, generated using the kernel density tool with 7 quantile classification categories, depict the
spatial distribution (ranging from green as low to red as high) derived from GPS locations of Brangus
cows from both groups (n = 11 and 17) within the training arena wearing virtual fence-deactivated
(middle: VF-Off) or virtual fence-activated (right: VF-On) collars. Bottom right: training deployment
design across the two Periods.
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Collared cows were initially allowed to feed freely at the three feeding stations for
three consecutive days while wearing virtual fence-deactivated collars (VF-Off). On the
fourth day, all collars were configured with a virtual fence polygon drawn to restrict
the collared cows from accessing the farthest 40% of the pen area, designating it as the
restricted zone (0.08 hectares), while allowing access to the two remaining feeding stations
and the water trough location, defined as the containment zone (0.12 hectares). This virtual
fence configuration was maintained for three consecutive days (VF-On). The activation or
deactivation of the virtual fence configuration occurred at approximately 07:00 am during
the initiation of the 3-day interval when all animals were situated within the containment
zones. This sequence of three days with virtual fence-deactivated collars (VF-Off), followed
by three days with virtual fence-activated collar (VF-On) configuration, was repeated for a
second 6-day Period (total duration of the training phase = 12 days) (Figure 1). The same
pens and training protocol described above were replicated with a second group of naïve
collared cows (n = 17) with uncollared calves (6/7/2022).

2.3. Data Processing

At the end of the deployment (24 May 2022 for Group 1 and 19 July 2022 for Group 2),
data from the Nofence collars were retrieved as CSV files using an online portal from the
Nofence website service. The data included time stamps for variables processed by each
collar registering the animal positions (latitude, longitude, horizontal accuracy, horizontal
dilution of precision, and number of satellites), accelerometer-based activity count, ambient
environmental condition (humidity, pressure, and temperature), communication variables
(global system for mobile communication operator and communication strength), and
collar status (battery voltage, solar charge, VF status, and polygon ID). In addition, the
collars registered a time stamp and position for each cueing event, either audio (including
duration of the signal) or electric pulse, and escape notifications.

Data were screened for duplicates and filtered to include only data from the training
phase for both groups, which occurred from 11 May 2022 to 24 May 2022 for Group 1 and
from 6 July 2022 to 19 July 2022 for Group 2. Furthermore, data collected an hour before and
after the virtual fence configuration status changed (06:00 am–08:00 am) and from when
the animals were temporarily relocated to an adjacent pen area (~one hour) for feeding
station refill were excluded from the analysis.

To facilitate the analysis, a virtual fence status column (VF-On or VF-Off) was created,
categorizing the data into segments representing the three consecutive days. The virtual
fence polygon used during the VF-On status and the position data collected from the collars
were imported and projected to the NAD 1983 UTM Zone 13N coordinate system using
ArcGIS software (ESRI 2018, ArcMap Desktop v. 10.6). Position data from each collar
were overlaid onto the virtual fence polygon layer to extract precise location information
pertaining to either being on the containment or restricted zones. Data from each collar
were processed by day to include the percentage of time (%Time) GPS location data were
within the containment and restricted zones during both virtual fence deactivated (VF-Off)
and virtual fence activated (VF-On) status.

Furthermore, from projected GPS coordinate data, the daily distance traveled per
collar (Dist) was calculated using the Pythagoras theorem applied to sequential GPS co-
ordinates within a day. To assess the daily area explored by each collared animal (Area),
the Minimum Bounding Geometry tool (ESRI 2018, ArcMap Desktop v. 10.6) was em-
ployed, which generated a polygon encompassing the minimum area containing all GPS
coordinates recorded within a given day [19,20]. In addition, accelerometer-based activity
data from the Nofence CSV files, represented as a count of motion intensity using internal
threshold values within 30 min intervals, were aggregated into a cumulative count within
a day (#Activity).
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Variables related to collar cueing events were processed to include the daily count of au-
dio (#Audio) and electric pulses (#Electric). Additionally, two derived variables were com-
puted: one representing the ratio of electric to audio cueing per day (Electric/Audio), and
the other indicating the percentage of electric cues relative to the total number of cues emit-
ted by the collar per day (%Electric/Cue; equates to (#Electric/(#Electric + #Audio)) × 100).
As for the duration of the audio signal, two daily variables were generated, including the
sum of the total daily audio signal length (Sum_DurAudio) and the average length of a
single audio cue (Avg_DurAudio). Notably, both variables related to the duration of the
audio signal were computed exclusively when a registered audio warning was present.

2.4. Data Analysis

To prepare the data for statistical analysis, all daily variables related to spatial analysis
(%Time, Dist, and Area) and activity (#Activity) of the animals, as well as variables related
to cueing events (#Audio, #Electric, Electric/Audio, %Electric/Cue, Sum_DurAudio, and
Avg_DurAudio), were averaged for each cow over three-day Periods, aligning with the
concurrent virtual fence status (VF-On or VF-Off). This approach not only helped smooth
the dataset by mitigating the daily variability inherent in biosensing data but also addressed
the issue of an unequal number of sampling days [20]. This disparity was particularly
evident in the case of cueing event data, for which there were instances of VF-On status
within a day when several animals did not interact with the virtual fence boundary. For
instance, when analyzing data on a daily scale, the percentage of days with no cueing events
was 66.2% (59.1% in Period 1 and 73.6% in Period 2). However, with Period averaging, the
percentage of data points with no cueing events decreased to 25.5%, with 21.4% in Period 1
and 29.6% in Period 2.

The averaged daily variables related to spatial analysis (%Time, Dist, and Area) and
activity (#Activity) were subjected to statistical analysis using SAS 9.3 software (SAS
Institute, Cary, NC, USA). The PROC MIXED procedure, along with a “covtest” statement,
was employed for the analysis. Analysis of Variance with the Kenward–Roger degrees of
freedom statement was used to model the effects of virtual fence status (VF-On vs. VF-Off),
the Period (1 vs. 2), and their interaction on the averaged daily variables related to spatial
analysis (%Time, Dist, and Area) and activity (#Activity) of the animals. Random effects
were considered for Groups (1 and 2) and CollarID (n = 11 and n = 17 for Groups 1 and 2,
respectively) to account for variations associated with these factors. Least squares means
were calculated for the main effects of the virtual fence status and Period individually,
with the “pdiff” statement used for pairwise comparisons. Furthermore, using the least
squares means computation for the interaction effect, the virtual fence status effect (VF-On
vs. VF-Off) within the Period was examined using the “slice” statement.

Descriptive analysis was initially conducted on the raw cueing event data, which
included #Audio and #Electric from the collar dataset. Similarly, the averaged daily
variables related to cueing events (#Audio, #Electric, Electric/Audio, %Electric/Cue,
Sum_DurAudio, and Avg_DurAudio) were analyzed using SAS 9.3 software (SAS In-
stitute, Cary, NC, USA). However, this analysis focused exclusively on the dataset that
considered virtual fence-activated status (VF-On). Employing the PROC MIXED procedure
with a “covtest” statement, Analysis of Variance was carried out with the Kenward–Roger
degrees of freedom statement, focusing on the effects of the Period (1 vs. 2) on the aver-
aged daily variables associated with cueing events. Random effects were incorporated
for Groups (1 and 2) and CollarID (n = 11 and n = 17 for Groups 1 and 2, respectively).
The main effect of the Period was assessed via computing least squares means, and pair-
wise comparisons were conducted using the “pdiff” statement. In all analyses, statistical
significance was declared at p < 0.05.
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3. Results

The percentage of time collared animals spent within the containment and restricted
zones was significantly influenced by their main effects, namely the virtual fence status
(p < 0.01) and Period (p < 0.01), with no significant interaction effect (p = 0.10). When consid-
ering the main effect of virtual fence status, VF-On increased the percentage of time collared
animals spent within the containment zones (98.0 vs. 70.7 ± 1.2% Time; p < 0.01) while
reducing the percentage of time within the restricted zones (12.0 vs. 29.3 ± 1.2% Time;
p < 0.01) compared to VF-Off status (Figure 2). In terms of the main effect of the Period,
which encompassed 6 concurrent days (3 days of VF-Off followed by 3 days of VF-On),
Period 2 resulted in a higher percentage of time collared animals spent within the contain-
ment zones (86.5 vs. 82.2 ± 1.2% Time; p < 0.01) and a lower percentage of time within the
restricted zones (13.5 vs. 17.8 ± 1.2% Time; p < 0.01) compared to Period 1 (Figure 2).

 
Figure 2. Analysis of the percentage of time spent by virtual-fence-collared nursing Brangus cows
within the containment (amber bars) and restricted (vermilion bars) zones across the two different
Periods under varying VF-Status (virtual fence deactivated (VF-Off) vs. virtual fence activated
(VF-On)). The figure also includes an overall comparison of VF-Status (VF-Off vs. VF-On) as the main
effect (represented by the two bars on the right, VF-Status). Significance testing indicates that all
pairwise comparisons of VF-Status (VF-Off vs. VF-On) were statistically significant for the percentage
of time allocation within either the containment or restricted zones.

Similar trends were observed for the remaining variables related to spatial analysis
(Dist, Area) and activity (#Activity) of the animals, where significant main effects were
detected for the virtual fence status (Dist; p < 0.01, Area; p < 0.01, and #Activity; p < 0.01)
and Period (Dist; p < 0.01 and #Activity; p < 0.01), except for Area (p = 0.31). The interaction
effect was not significant for these variables (Dist; p = 0.15, Area; p = 0.06, and #Activity;
p = 0.19) (Table 1). For the main effect of virtual fence status, VF-On resulted in a decrease
in the daily distance traveled (648.0 vs. 883.8 ± 82.7 m; p < 0.01), area explored within the
arena (1193.8 vs. 1982.1 ± 121.4 m2; p < 0.01), and the cumulative activity count of the
animal (14,988 vs. 17,300 ± 1335.5; p < 0.01) compared to the VF-Off status. Regarding
the main effects of the Period, Period 2 exhibited lower values for the daily distance
traveled (719.0 vs. 812.7 ± 82.7 m; p < 0.01) and the cumulative activity count of the animal
(15,330 vs. 16,958 ± 1335.5; p < 0.01) when compared to Period 1.
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Table 1. Least square means estimates and their standard errors (SE) for the interaction term (virtual
fence status (VF-Status) × Period) illustrating daily travel distances, area exploration, and activity
levels in virtual-fence-collared nursing Brangus cows. The p-values indicate the significance of the
main effects of VF-Status (virtual fence deactivated collar status (VF-Off) vs. virtual fence activated
collar status (VF-On)), Period (representing two 6-day Periods with each composed of 3 days of
VF-Off followed by 3 days of VF-On), and the interaction effect.

Period 1 Period 2 SE p-Value

VF-Off VF-On VF-Off VF-On VF-Status Period Interaction

Dist (m) 946.28 679.19 821.31 616.75 84.06 <0.01 <0.01 0.14
Area (m2) 1956.87 1277.30 2007.40 1110.25 128.01 <0.01 0.31 0.06
Activity 18,406 15,510 16,194 14,465 1371.71 <0.01 <0.01 0.19

The cueing events during the training deployment included 305 audio tones (153 for
Group 1 and 152 for Group 2) and 101 electric pulses (54 for Group 1 and 47 for Group 2)
in the two groups of nursing Brangus cows (Figure 3). The total number of cueing events
per collared cow within the two groups ranged from 8 to 26 for Group 1 and 1 to 30 for
Group 2 (Figure 3).

 

Figure 3. Ranking of total auditory (green) and electrical pulses (orange) emitted per cow during the
training phase for naïve nursing Brangus cows from two groups (n = 11 and 17).

The daily number of emitted audio and electric pulses was significantly influenced
by the Period (#Audio; p < 0.01 and #Electric; p < 0.01). During Period 1, when the virtual
fence was first activated, individual cows experienced a higher frequency of auditory
(1.9 vs. 0.6 ± 0.4; p < 0.01) and electrical cues (0.7 vs. 0.2 ± 0.2; p < 0.01) compared to Period
2. In terms of variables representing the animals’ reliance on audio warnings, the ratio of
electric to audio cues per cow (Electric/Audio) was not significant for the Period (p = 0.10).
However, the percentage of electric cues relative to the total number of cues emitted by the
collar differed between Periods (%Electric/Cue; p = 0.04). During Period 1, exposure to
the virtual fence activated status resulted in a higher percentage of electric cues relative
to the total cues per cow (23.0 vs. 13.3 ± 3.8%; p = 0.04) compared to Period 2. Lastly,
regarding the duration of the audio signal, the length of the sum of the total daily audio
signals (Sum_DurAudio) differed between Periods (p = 0.02), while the average length of a
single audio cue (Avg_DurAudio) did not differ between Periods (p = 0.91). Animals in
Period 1 were exposed to longer durations within the day with collars emitting the audio
warning (58.2 vs. 26.7 ± 8.7 sec; p = 0.02) compared to Period 2 (Table 2).
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Table 2. Least square means estimates with standard errors (SE) for Period, illustrating the daily count
of audio and electric pulses, the ratio of electric to audio cueing (Electric/Audio), the percentage of
electric cues relative to the total number of cues (%Electric/Cue), the sum of the total daily audio
signal length (Sum_DurAudio), and the average length of a single audio cue (Avg_DurAudio) emitted
per virtual fence-collared nursing Brangus cows. The p-values denote the significance across Periods,
representing 3 days of virtual fence-activated status.

Period SE p-Value

1 2

#Audio 1.88 0.64 0.45 <0.01
#Electric 0.70 0.17 0.17 <0.01

Electric/Audio 0.36 0.22 0.08 0.10
%Electric/Cue 23.02 13.31 3.76 0.04

Sum_DurAudio (sec.) 58.16 26.70 8.74 0.02
Avg_DurAudio (sec/audio.) 11.87 11.66 1.38 0.91

4. Discussion

In this study, we set out to investigate hypothesis 1, that animals would develop
the ability to avoid restricted zones outside the virtual fence-designated polygon area by
increasing their use of the containment zones (skin defense mechanism). Our findings
support this hypothesis. Virtual fence activation significantly reduced the percentage of
time animals spent within the restricted zones while increasing the time spent within
the containment zones. In essence, during the training phase, virtual fence activation
successfully contained the cows within their designated zones approximately 98.0% of the
time, consistent with other findings [9–13,21]. Additionally, the significant main effect of the
Period further suggests an ongoing learning process among the cows regarding the virtual
fence polygon’s configuration. Notably, with regard to the escape notifications derived
from collar data, which indicated instances when animals breached the containment zone,
we observed 10 such notifications, all occurring in Period 1, involving three animals in
Group 1 and a single animal in Group 2, while Period 2 had no recorded escape events.

Furthermore, our study leveraged behavioral metrics derived from collar data, specifi-
cally focusing on daily travel distance, area exploration, and accelerometer-based activity
levels. These metrics provided valuable insights into how the animals responded to changes
in the allocated area imposed by the virtual fence application. Activation of the virtual
fence led to a reduction in all these behavioral metrics, as the animals were confined to
60% of their initial designated pen area (0.12 hectares out of 0.2 hectares). However, the
reduction in the activity variable during virtual fence-activated status may also suggest
some level of adjustments in the animal’s time budget, as observed in other studies [9,21,22].
This aspect of the result warrants further investigation.

In addition, the behavior metrics displayed Period-dependent effects, with the second
Period showing lower values compared to the initial Period. This adjustment can be
attributed to the following rationale: as the second Period began with VF-Off status for
three days, the animals displayed a delayed response from the previous three days of VF-On
status in the first Period. This delayed response of the animals when exploring previously
restricted zones might be associated with animals taking time to become familiar with the
arena area or waiting for their peers to venture into the restricted zones before following
suit [23]. However, during the VF-On status of the second Period, the animals drew upon
their prior learning experiences from the first period to correctly adjust their behavior,
resulting in lower behavior metrics compared to the VF-On status of the first Period.

The real-time data collected from sensors integrated into virtual fencing devices hold
great promise for economical and effective animal monitoring [1,2,24,25]. These data can be
tailored to address questions related to spatial use (animal position) [20,26], activity patterns
(motion sensors) [27,28], and even ambient environmental conditions (humidity, pressure,
and temperature). This enables a detailed and accurate analysis of the animals’ operational
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status. The integration of such information, harnessed from virtual fence sensor data,
provides invaluable support for the surveillance and monitoring of animals, enhancing data-
driven decision-making processes for land managers in the context of precision livestock
farming within rangeland management [24,25]. The sensitivity of the behavioral metrics
derived from our dataset further underscores the potential of virtual fence collar data for
animal surveillance and monitoring within precision livestock farming applications.

Our study provides empirical support for Hypothesis 2, which proposed that animals
would gradually receive fewer audio-electric cues over time and would increasingly de-
pend on auditory cues to modify their behavior through associative learning. We indeed
observed a clear reduction in the frequency of audio-electric cues over time, corroborating
this hypothesis. Specifically, during Period 2, when the virtual fence was activated, cows
received notably fewer auditory and electrical cues compared to Period 1. This observed
reduction is consistent with findings reported in previous studies on virtual fence appli-
cations [10–12,21,29]. The reduction during Period 2, as quantified using the equation
((1 − (Period 2/Period 1)) × 100), was 66% for auditory and 76% for electric cues. Addi-
tionally, the observed numerical difference in the reduction rates during Period 2 lends
support to the notion that animals increasingly rely on auditory over electric cues as they
become more familiar with the virtual fence system.

In parallel with the cueing results, the variables assessing animals’ reliance on audio
warnings, specifically the ratio of electric to audio cueing per cow, were not significant
for Period. This is in contrast to Lomax et al. [11], who reported a decrease in the ratio
of electric to audio cueing. However, a significant reduction in the percentage of electric
cues relative to the total number of cues was evident, with animals receiving a smaller
proportion of electric cues relative to the total in the second Period. The inconsistency
between the results of these two variables could be attributed to their differing sensitivity
levels as well as the averaging of the variables across Periods before statistical analysis.
Lomax et al. [11] reported differences in the ratio of electric to audio cueing on a daily scale,
with statistical differences only present on the first day of animals encountering the virtual
fence configuration.

Lastly, regarding the duration of the audio signal, animals in Period 1 experienced
longer durations during the day when collars emitted audio warnings compared to Period 2.
This finding corroborates the total number of audio warnings emitted across the two
Periods. However, the lack of significance in the average length of a single audio warning
was unexpected. The collars were programmed to deliver audio warnings progressively
with varying pitches, ultimately reaching the highest pitch signal at 82 dB, designed to
help animals learn when the electric pulse would be emitted. However, our results suggest
that this progressive pitch strategy might not have had the expected impact. This finding
suggests the need for further investigation in future research to decipher the most suitable
audio signal or whether animals respond consistently as long as there is an audio cue.

The individual variation among animals in total cueing events, as revealed in the
descriptive analysis, presents an intriguing opportunity for further investigation of virtual
fence applications through individual herd selection to address animal welfare concerns.
However, breed and within-breed individual differences related to both social- and asocial-
learning mechanisms could potentially influence an individual’s ability to adapt to the
technology [11,13,14,21,29].

The concept of selectively using virtual fence collars on specific individuals has
sparked interest in its potential applications for large herds. However, empirical sup-
port for this idea has been limited, with only a single study conducted on sheep suggesting
that virtual fence collaring the entire herd, or 66% of it, would yield comparable results [22].
In our study, we employed mother–offspring pairings during the training phase, with
only the cows wearing the virtual fence collars. While the recommended approach for
effective virtual fencing is to collar all individuals within a herd continuously, regardless
of their social rank, as advised by Keshavarzi et al. [13], our research demonstrates the
effective containment and learning capabilities of the dams, regardless of the behavior of
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their offspring. Informal observations revealed that, on occasion, some calves ventured into
the restricted zones during virtual fence-activated status. However, this behavior was not
systematically monitored, presenting an opportunity for further research investigations.

Cattle are gregarious in nature; hence, learning about novel situations can be facilitated
through their conspecifics [13]. In the group deployment, this response was noted through
the anecdotical observation of the reaction of a neighbor cow to the cues emitted from
a peer’s collar and was also corroborated by the other literature [29]. In addition, the
gregarious nature of cows may encourage cued individuals to respond appropriately
during training by re-joining herd members inside the containment zone when challenged
with the tactile stimulus, imitating a predatory response (skin defense mechanism). As
a precaution to the cued individuals’ reactions during the training phases, adjacent non-
collared cows outside the training arena at the headquarters pen location were restricted to
areas behind the containment zone. This training approach extends to pasture deployment,
as cautioned by Verdon et al. [23], who recommended avoiding the use of virtual fence
applications for managing cattle with close visual contact with other herds.

However, to facilitate proper animal training for the virtual fence application, it is
advised that all collared individuals receive at least a single cueing event [14]. Our training
deployment design could facilitate this by incorporating additional Periods within the
deployment with the alternative virtual fence-deactivated (VF-Off) status configuration
followed by the virtual fence-activated (VF-On) status configuration. Moreover, our choice
of a 3-day sequence for the virtual fence configuration demonstrated effectiveness in our
training deployment. However, factors such as animal density (n = 11 and n = 17 for Groups
1 and 2, respectively) within the containment zone (0.12 ha) and the ratio of the virtual fence
boundary (23.87 m) to the physical fence boundary (139.45 m) within the containment zone
perimeter are noteworthy variables that should be thoroughly investigated to determine
the optimal duration for the sequencing of virtual fence configurations.

The deactivation status of the virtual fence plays a crucial role in establishing a
baseline for the virtual fence application. The initial period, commencing with virtual fence
deactivated status (VF-Off), serves as a control to assess the effectiveness of the virtual
fence application. In our training phase setup, with three feed stations providing baled hay
evenly distributed across each third of the arena area, the animals spent approximately
67.6% of their time in the containment zone, which was roughly 60% (0.12 ha) of the area,
and 32.4% of their time in the restricted zone, equivalent to the remaining 40% (0.08 ha)
of the arena area. The assessment of the selectivity of the containment versus restricted
zone using Ivlev’s electivity index (E = ((r − p)/(r + p)), where r is the proportion of time
allocated within a zone and p is the proportion of the zone area within the arena, yielded
a value of 0.06 for the containment zone and −0.10 for the restricted zone [20,30]. This
indicates that, at the start of the training phase, due to the elective index being closer to 0,
animals had indifferent selectivity for the containment and restricted zones, substantiating
the effectiveness of the virtual fence application. Furthermore, establishing this baseline
can provide insights into variations in cueing rates across different virtual fence studies
by defining the preference for the restricted area before application, hypothesizing that a
higher preference may result in more cueing. Additionally, the second period, commencing
with VF-Off status, serves as a control to ensure that animals do not associate spatial
location with cueing but rather the presence of the audio cue as a warning of an impending
mild electric pulse. The inclusion of a single water trough location within the containment
zone further enhanced training success, as animals that ventured beyond the containment
zones could be recaptured with the system when prompted by thirst. Consequently, the
training protocol presented here offers an efficient, effective, and safe approach to animal
training for virtual fence applications.
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5. Conclusions

Our results indicate that groups of cows learn rapidly to respond to VF boundaries by
reducing time spent within the restricted areas and minimizing the frequency of cueing
events to alter behavior. Assuming animals complete the training phase successfully,
adverse effects are minimized as animals learn to respond to the audio and avoid the mild
electric cue, which minimizes adverse effects on animal comfort, well-being, and welfare.
In addition, the associative learning process enables animals to adjust readily and respond
to periodic changes in virtual fence boundaries, providing managers with the flexibility to
allocate land and forage resources with polygons of configurable shape, size, and duration.
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Simple Summary: Automated monitoring can help farmers care during the farrowing of sows and
piglets. Five sows were monitored in two field studies. A sound camera with small microphones
showing sounds as coloured spots and a security camera was used to record the farrowing of sows
and piglets. First, sound spots were compared with audible sounds, analysing video data. This gave
many false positives, including visible sound spots but no audible sounds. Of piglet births, 23 of
50 piglet births were visible, but none were audible. The sow’s behaviour changed when farrowing
started. One piglet was silently crushed. Secondly, data were analysed at a slower speed, and sound
spots were compared with sounds and behaviour separately. This resulted in better results, but again,
many sound spots showed without audible sound. When adding up audible sounds and visible sow
behaviour and comparing sound spots with the combination of sound and behaviour, results were
much improved, with an accuracy of 91.2%, an error of 8.8%, a sensitivity of 99.6%, and a specificity of
69.7%. We conclude that sound cameras are promising tools, detecting sounds more accurately than
humans. The most promising application for the sound camera is detecting the onset of farrowing.

Abstract: Precision Livestock Farming systems can help pig farmers prevent health and welfare
issues around farrowing. Five sows were monitored in two field studies. A Sorama L642V sound
camera, visualising sound sources as coloured spots using a 64-microphone array, and a Bascom
XD10-4 security camera with a built-in microphone were used in a farrowing unit. Firstly, sound
spots were compared with audible sounds, using the Observer XT (Noldus Information Technology),
analysing video data at normal speed. This gave many false positives, including visible sound spots
without audible sounds. In total, 23 of 50 piglet births were visible, but none were audible. The
sow’s behaviour changed when farrowing started. One piglet was silently crushed. Secondly, data
were analysed at a 10-fold slower speed when comparing sound spots with audible sounds and
sow behaviour. This improved results, but accuracy and specificity were still low. When combining
audible sound with visible sow behaviour and comparing sound spots with combined sound and
behaviour, the accuracy was 91.2%, the error was 8.8%, the sensitivity was 99.6%, and the specificity
was 69.7%. We conclude that sound cameras are promising tools, detecting sound more accurately
than the human ear. There is potential to use sound cameras to detect the onset of farrowing, but
more research is needed to detect piglet births or crushing.

Keywords: pigs; animal welfare; sound camera; behaviour; piglet crushing

1. Introduction

It is estimated that by 2050, the human world population could reach >9 billion,
consuming 50–60% more food than at present. The majority of people still prefer animal
proteins over plant-based food, and the demand for livestock products continues to grow,
as does global food insecurity [1]. Sustainable intensification is one of the solutions [2].
With the intensification of food production and the industrialisation of animal production
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systems comes the fear of decreased animal welfare [3]. While meat production increases,
society expects that animals used for meat are treated humanely and individually. Precision
Livestock Farming (PLF) can improve or monitor animal welfare on farms if properly im-
plemented [4,5]. PLF can be defined as managing livestock production using the principles
of process engineering. Smart sensors are used to measure and monitor animal health
and welfare [6–10]. Several sensors have been developed for the livestock sector. For pigs,
the main focus is on the health and productivity of pigs, with sensors such as cameras,
microphones, thermometers, and accelerometers being developed and applied [1,11–14].
A new development is the application of a sound camera, providing sound source local-
isation through an array of 64 microphones and visualising sound sources as coloured
spots. Sound cameras are presently used for crowd control under outdoor conditions [15]
and have been introduced in ecology [16] and agriculture, specifically in poultry and
pigs [17–19]. Potentially, these cameras can be of use in monitoring welfare in pig farms
since automated behaviour monitoring via sound and vision could help farmers to prevent
health and welfare issues [20–24].

The farrowing phase in pig production and breeding is a crucial moment that has a
great impact on the economics of the farm but also on the welfare of the sow and piglets.
Piglet mortality is a big problem in modern sow farming [25]. For sow farms, relevant
welfare issues around farrowing are a prolonged birthing process, possibly resulting in
stillborn piglets and the crushing of piglets after farrowing [26–28]. Globally, approximately
one piglet per litter is stillborn [29]. More stillbirths occur in sows that are confined in a crate
during farrowing than in sows in open pens [30]. Stillbirths are often due to asphyxiation
during the farrowing process. Piglets born later in the farrowing process have a higher
chance of asphyxiation [29]. Asphyxiation is related to dystocia in sows due to prolonged
farrowing or weak uterine contractions. This requires the stockman to assist the sow during
farrowing. Improved farrowing management and human supervision during farrowing
might decrease piglet mortality [25]. The automated monitoring of sows and alerting
the farmer when the farrowing process stagnates can aid the farmer in optimising the
health and welfare of his animals [8]. Therefore, in this study, we focus on the automatic
monitoring of the farrowing process. Sows show specific behaviours and behavioural
patterns before, during, and after farrowing. If we can monitor these behaviours, we
might detect the onset of farrowing and follow the process of farrowing. Before farrowing,
sows show a natural pattern of nest-building behaviour, such as foraging, rooting, and
pawing, which are motivated by the desire to build a shelter to protect their offspring
against predators and cold weather. Domestic sows, when given nest-building materials,
still perform nest-building behaviours [31]. In farming systems with farrowing crates,
nest-building behaviour is reflected in ‘playing’ with the available material, which can be
a jute sack or a handful of straw. During farrowing, sows show pain-related behaviour
such as tail flicks, straining, and pushing the back leg forward [30]. Approximately 50%
of postnatal deaths in piglets are caused by the crushing of the sow [28]. Piglet crushing
happens mostly within the first four days after farrowing. There is a large individual
variation in piglet crushing between sows; sows show a more protective mothering style
and crush fewer piglets. Especially during posture changes of the sows, the young piglets
are at risk. Piglets vocalise during trapping events but also during other stress-related
events. However, detecting these sounds might be used in a monitoring device [32].

In this study, we have used a sound camera together with a security camera to monitor
sounds, vision, and sound location around farrowing as the first step in developing a
sound-based early warning system for a stagnating birthing process and the prevention of
piglet crushing.

2. Materials and Methods

2.1. Sound Camera

The L642V is a camera with an array of 64 microphones. The device uses delay-and-
sum beamforming to localise different sound sources and visualises these on an acoustic
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map. Delay-and-sum beamforming signal processing can be divided into four steps. Since
the sound of each source travels to every microphone along a different path (Step 1), the
signals captured by the microphones are similar in wave form but differ in their delay
and phase. Delay and phase are proportional to the travelled distances. The delays can
be determined from the sound speed, the distance between the microphones, and the
sound sources (Step 2). The Beamformer targets the point of one of the sound sources,
shifting the signal of each microphone via the difference in runtime depending on the focus
point. Therefore, the signal components of this one sound source are in phase, and of the
other sound sources are out of phase (Step 3). Finally, the signals of the microphones are
summed together and normalised by the number of microphones (Step 4). If a certain target
point does not contain a source, the signals partly cancel each other out due to destructive
interference. At target points with a source, the signals align, and add up due to positive
interference. The maximum amplitude is calculated from the time signal and the sound
source is visualised on the acoustic map. Due to the positive interference, target points
with a source have a higher magnitude than those that do not, and thus, source locations
can be found. In this study, we denoised sound by selecting a frequency band for which
the sounds were visualised. In a pilot study, we tested different frequency bands and
found that in a range from 39,000 to 49,000 Hz, the sounds of the sow and her environment
were best visible, with the lowest influence of background noise. In the present study,
each camera was manually tuned to a specific optimal frequency band of 2000 Hz within
these limits, according to the noise in the farrowing unit in that period. The camera has a
built-in spatial filter, which means it only shows sound sources within the selected area,
which, in our study, was the farrowing pen for each sow. Finally, the camera also denoised
automatically by not visualising a sound when no clear source could be found.

2.2. Study Design

The study was performed at a commercial pig farm with two farrowing units for
64 sows each. Sows were housed in farrowing crates within a farrowing pen, with access
to a jute sack in the pen but no straw and a solid concrete floor. Sows were monitored
around farrowing, staying in a farrowing pen of 2.80 × 1.75 m with a farrowing crate of
2.1 × 1.0 m. Two Bascom XD10-4 security cameras that showed sound and vision were
placed above the pens to record audible sounds and the behaviour of the sow and piglets,
with each camera viewing two pens. Three Sorama L642V sound cameras were placed
directly above three farrowing pens, with each camera viewing one pen (Figure 1).

Figure 1. Experimental set-up for three sows with two Bascom XD10-4 security cameras and three
L642V sound cameras.

Data from the cameras could not directly be recorded due to the safety settings. We,
therefore, streamed the data to three laptops in the office of the farm. The screen of the
laptops showed the image of the security camera and the sound camera side by side, as well
as a clock, to synchronise the images if necessary (Figure 2). We recorded data using the
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screen recorder software Open Broadcast Software version 27.2.1 (OBS-studio), resulting in
video files in the mp3 format. Laptops were remotely controlled using TeamViewer.

 
Figure 2. The screen capture that was used for the analysis of behaviour and sound in the farrow-
ing pen.

Approximately 45 min of video data from each of the four sows were analysed after the
first field study. Birthing events and crushing events were recorded from the video footage
using the Observer XT (Noldus Information Technology). Four hours before farrowing
and during farrowing, sow behaviours were recorded that were possibly associated with
the birthing process. We used a simplified ethogram with three behavioural categories:
lying (inactive), playing with the jute sack/rooting (snout on the concrete floor), and
sitting/standing (inactive). Audible sounds were recorded from the recorded video of the
security camera. Visible sounds were recorded from the sound camera. When a sound
spot was visible at roughly the right location within ±1 s from the audible sound, the spot
was considered correct and positive. Audible sounds with no corresponding sound spot
were considered false negatives. Sound spots with no audible sounds were considered
false positives. Finally, when no sound was visible or audible for 2 s, this was considered
correct negative. In Table 1, the connected audible and visible sounds and sound locations
are shown.

Table 1. Sound spots and corresponding audible sounds that were considered correct for field study 1.

Sound Spot Audible Sound

Head of the sow Sow in crate
Rump of the sow Sow in crate

Fence Metal fence
Head of the sow Trough

Trough Trough
Outside pen Neighbour sow

Cloud of spots Neighbour sow

In Table 2, the connected audible and visible sounds and behaviours are shown.
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Table 2. Sound spots and corresponding audible sounds and corresponding behaviours that were
considered correct for field study 2.

Sound Spot Audible Sound Sound Spot Behaviour

Head of the sow
Rump of the sow

Fence
Head of the sow

Trough
Outside pen

Cloud of spots

Front of the pen
Metal fence
Metal fence

Trough
Trough

Neighbour sow
Neighbour sow

Head of the sow
Head of the sow

Trough
Rump of the sow

Fence
Fence

Outside pen
Cloud of spots

None

Playing with sack
Eating
Eating

Standing
Standing

Moving leg lying
None
None

Lying down

Data from three sows were analysed after the second field study. From the security
cameras, sow behaviours, and audible sounds were recorded using the Observer XT, and
from the sound camera, sound spots were recorded for a short period during farrowing.
When a sound spot was visible at roughly the right location within ±1 s from the audible
sound, the spot was considered correct and positive (CP). Audible sounds with no corre-
sponding sound spot were considered false negatives (FN). Sound spots with no audible
sounds were considered false positives (FP). Finally, when no sound was visible or audible
for 2 s, this was considered correct negative (CN). For validation purposes, accuracy, error%,
sensitivity and specificity were calculated as follows:

accuracy =

(
(CP + CN)

total

)
× 100%

error % =

(
(FP + FN)

total

)
× 100%

sensitivity =

(
CP

FN + CP

)
× 100%

speci f icity =

(
CN

(FN + CP)

)
× 100%

3. Results

Data from five sows in two field studies were gathered and analysed for visible sounds
(sound spots) and audible sounds, and, in field test 2, visible sow behaviour as well. There
was a minor time lag in the recording of the visible sounds of approximately 1.5 s, which
was corrected by adding 1.5 s to the recorded times of the sound spots. We adjusted the
frequency settings for each camera per sow manually by testing which frequency band
showed the best visualising of sound sources with the least noise at that time and place.
This resulted in frequency bands of 39,570–41,570 Hz (camera 1), 46,060–48,060 Hz (camera
2) and 41,730–43,730 Hz (camera 3) in the first study and an adjustment to 45,630–47,630 Hz
for camera 1 in the second study.

3.1. Field Study 1

In the first field study, we compared the audible and visible sounds of the sows before
farrowing and recorded 13,351 sound spots and 981 audible sounds in 177 min of video
data. We found a low agreement between the sound and vision data (Table 3).
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Table 3. Results of visible and audible sounds before farrowing in the first field study (N = 4 sows,
177 min); sound spots without audible sound are false positives (FP), sound spots with audible sound
are correct positive (CP); audible sounds without sound spot are false negative (FN) and 2 s of no
audible sound and no sound spot indicates a correct negative (CN). If a sound spot was in the wrong
location but at the correct time for an audible sound, it was considered either as a false negative (1st
column) or as a correct positive (2nd column).

Wrong Location Considered False
Negative

Wrong Location Considered Correct
Positive

FP 10,751 10,751
FN 1823 76
CP 1509 3256
CN 1582 1582

Accuracy 19.7 30.9
Error% 80.3 69.1

Sensitivity 45.3 97.7
Specificity 12.8 12.8

3.2. Field Study 2

In the second field study, we analysed 6 min (360 s) of video from two sows during
farrowing. Video data were analysed at a 10-fold slower speed, and audible sounds,
sow behaviour, and sound spots were recorded. This resulted in a somewhat higher
but still unsatisfactory agreement between the sound and vision data when sound spots
were compared to either audible sounds or visible behaviour (Table 4). However, when
comparing sound spots with the combination of audible sounds and visible behaviour,
results were much improved, with an accuracy of 91.2, an error% of 8.8, and a specificity of
69.7 (Table 4). In this analysis, we added up sounds and behaviours to compare with sound
spots, considering an event as a correct positive if either sound or behaviour (or both) were
shown at the same time and location as the sound spot.

Table 4. Sound spots compared with audible sound, visible behaviour, or sound and behaviour
combined.

Sound Behaviour Sound and Behaviour

# Sows 4 2 2

Accuracy 50.6 71.4 91.2
Error% 49.4 28.6 8.8

% Correct positive 35.4 57.5 71.3
Precision 41.8 66.8 89.2

Sensitivity 99.7 99.9 99.6
Specificity 23.6 32.7 69.7

3.3. Birthing Events and Piglet Crushing

For the detection of birthing events, data from four sows were used. A total of
50 piglets were born from these sows. For 23 of 50 piglet births, a sound spot was visible
at the correct time; piglet births were usually not audible, but most were visible on the
safety camera. This resulted in an accuracy of 71.4%. Sound spots were visible in the area
behind the sow for some time after the piglet was born, but the movement of the piglets
was not audible.

One piglet was crushed shortly after birth, but no sound was heard, and no sound
spots were visible for this event, which was only visible on the video footage of the
Bascom camera.

When we analysed behaviours around parturition, we found that the sows showed
specific behaviours at specific times: playing with the jute sack in the farrowing pen was
seen more before parturition and especially during the last hours before the piglets were
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born. Once farrowing started, this behaviour stopped almost completely (Table 5). During
farrowing, typical movements of the legs of the sows were seen, seemingly associated with
the birthing events.

Table 5. Behaviour of sows (N = 4) four hours before farrowing, during farrowing and four hours
after farrowing: percentage of time inactive, either lying or sitting/standing, or being active, playing
with the jute sack or rooting on the floor.

Behaviours Before Farrowing During Farrowing After Farrowing

Lying 71.7% 93.5% 100.0%
Sitting/standing 3.3% 6.2% 0%

Jute sack/rooting floor 25% 0.3% 0%

4. Discussion

For this study, we used data from five sows to study the application of a sound camera
in pig farming. Further research is needed using more sows and more repetitions to validate
these findings. However, in this study, we were able to optimise the methods for analysing
the results of sound spots, sound, and behaviour, and we found promising results for the
application of the sound camera to monitor farrowing sows.

In this study, the human observer was the gold standard for audible sound. When
comparing manual to automated scoring, there were some problems with finding the
gold standard. Clinical research has shown that manual scores are usually qualitative
or semiquantitative and subjective, even when conducted by a seasoned observer, while
automated image analysis is quantitative, reproducible, and objective. Manual image
analysis has some drawbacks [33] that can easily be extrapolated to manual sound analysis.
The sources of bias include the illusion of size (size being influenced by the context),
distinguishing colours, and lateral inhibition (increased response to edges). For sound
analysis, these can translate into an illusion of loudness (being influenced by the loudness of
other sounds), a distinguishing pitch (depending on the pitch of surrounding sounds), and
an increased response to short and sharply defined sounds. General sources of bias include
inattentional blindness (i.e., not paying attention) and confirmation bias (i.e., hearing what
you expect or want to hear). Labelling audible sounds from videos recorded with a safety
camera probably resulted in many false negatives for audible sounds and inaccuracies
in labelling since the human observer either hears the sound and reacts too late or does
not hear the sound at all, while the sound camera does receive the sound. Furthermore,
the labelling of the sound spots was probably not accurate enough since we labelled at
a normal speed. This resulted in many ‘cloud of sound spots’ events, with a cluster of
sound spots occurring at once. Playing the videos at a 10-fold slower speed showed that
the sound spot clouds were actually a series of sound spots that started with one spot in the
correct place, followed by a cluster of spots in the area. Therefore, we adjusted the analysis
for the second field study.

Most sows farrowed at night, with low visibility on the cameras, which increased
the number of false positives (i.e., sounds visible in a different spot than audible) due to
human error. In all tests, we counted many more sound spots than visible behaviours
or audible sounds. This may very well be due to human error. A reliability analysis for
labelling sound spots between the observers showed an agreement of 82%, but a Kappa
value of 0.17 (indicating slight agreement) was obtained. The high number of sound spots
and almost no silent periods lead to a high agreement by a chance of 0.78. This lowered
the Kappa value [34,35]. In addition, the manual labelling of data as the gold standard is a
point of discussion.

In the second field study, adding visible behaviour gave much better results, correctly
classifying sound spots for visible but inaudible behaviours. Furthermore, we recorded
sound from the Bascon camera and listened to the recordings, which is an indirect way
of working with data and probably lowered the audibility for human observers. It seems
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that the sound camera is much more accurate and precise at detecting sounds than we,
as human observers, are. Therefore, we advise combining audible sounds and visible
behaviours when validating sound location sensors such as the sound camera we used.

We detected less than half of the piglet birth events with the sound camera. These
sounds were low-pitched and soft. Filtering the noise from the sound camera and using
the high-frequency bands to visualise sounds might have increased the number of false
negatives. One piglet was crushed during the study without an audible sound or a sound
spot from the sound camera. We expected to capture high-pitched sounds that accompanied
crushing events, but if it happened fast, the piglet had no time to scream. From only one
crushing event, we could not validate whether the sound camera could detect piglet
crushing. In a study where sound was used to detect piglet distress, it was found that many
more piglet stress calls were associated with other stress-related events than associated
with trapping events. Although adding context-based event filters increased the results,
sound might not be the preferred method for detecting crushing events [32]. Crushing
events are mostly associated with posture changes in the sow, such as rolling over during
resting. Sows that crush fewer piglets show fewer posture changes [28]. If these posture
changes could be detected with a sound camera, this might be used to prevent the crushing
of piglets.

The automatic monitoring of sow behaviours can be performed using cameras or
activity meters [20,36–38]. To investigate whether the sound camera can be used to detect
specific behaviours associated with the onset of farrowing, behaviours were recorded
around farrowing. We found that playing with the jute sack and rooting was seen almost
only before farrowing. This behaviour is associated with nest-building behaviour [31].
Typical leg movements were seen predominantly during farrowing and seemed to be
associated with birthing events. These behaviours resembled the leg behaviours that were
reported in previous research, which were classified as pain-related behaviours during
farrowing [30,39]. Nest building behaviour was only seen before farrowing, and leg
movements during farrowing; after farrowing, these behaviours stopped completely. These
behaviours were associated with sound spots in the corresponding, typical locations as
follows: playing with the jute sack or rooting on the floor was seen as sound spots near the
head of the sow, and leg movements were seen as sound spots near the front or hind legs,
detected with the sound camera. This is interesting because the cross-over from showing
nest-building behaviour (playing with the jute sack and rooting on the floor) to lying down
and showing only some typical leg movements seems to mark the onset of farrowing. If so,
we could use the detection of these behaviours with the camera as a signal for the farmer
that farrowing has started. Furthermore, the absence of both these behaviours, with sows
lying down and being fully inactive, marks the end of the farrowing process. This could be
combined with the fact that sound spots behind the sow showed the movement of piglets
that were just being born. As long as new spots appeared behind the sow, the farrowing
process was still in progress. The combination of these findings could be used to monitor
the farrowing process and its duration. However, more research is needed to validate
these assumptions.

5. Conclusions

Sound cameras are potentially interesting to apply in pig farming since they can detect
sounds and sound locations better than the human observer. The behaviour of the sow
and the movement of piglets in the pen could be reliably detected. However, we could not
reliably detect piglet births and crushing events in this study. When analysing sound and
visual data, it is important that a slower speed must be used to record the order of events
and sound spots and that sound data are connected not only to audible sounds but also
to behaviours that are inaudible to the human ear. The most interesting application for
sound cameras seems to be detecting the onset of farrowing by recording sounds from the
prepartum sow as she is preparing for the farrowing process and monitoring the farrowing
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process by detecting sounds of newly born piglets in the area behind the sow. Further
research is needed to test this application, using more sows and more repetitions.
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Simple Summary: The emergence of precision livestock farming (PLF) raises important issues for
many different social groups, including farmers, consumers, regulators, and the food industry. This
paper explores how those who develop PLF systems can communicate more effectively with different
groups about the technologies that they are creating. We suggest that developers reflect on four issues:
(1) the different kinds of information that various groups might want to know; (2) the audiences that
might care about these different kinds of information; (3) the major difficulties involved in providing
the information; and (4) potential strategies for overcoming those difficulties.

Abstract: As precision livestock farming (PLF) technologies emerge, it is important to consider their
social and ethical dimensions. Reviews of PLF have highlighted the importance of considering ethical
issues related to privacy, security, and welfare. However, little attention has been paid to ethical issues
related to transparency regarding these technologies. This paper proposes a framework for developing
responsible transparency in the context of PLF. It examines the kinds of information that could be
ethically important to disclose about these technologies, the different audiences that might care about
this information, the challenges involved in achieving transparency for these audiences, and some
promising strategies for addressing these challenges. For example, with respect to the information
to be disclosed, efforts to foster transparency could focus on: (1) information about the goals and
priorities of those developing PLF systems; (2) details about how the systems operate; (3) information
about implicit values that could be embedded in the systems; and/or (4) characteristics of the machine
learning algorithms often incorporated into these systems. In many cases, this information is likely to
be difficult to obtain or communicate meaningfully to relevant audiences (e.g., farmers, consumers,
industry, and/or regulators). Some of the potential steps for addressing these challenges include
fostering collaborations between the developers and users of PLF systems, developing techniques
for identifying and disclosing important forms of information, and pursuing forms of PLF that
can be responsibly employed with less transparency. Given the complexity of transparency and its
ethical and practical importance, a framework for developing and evaluating transparency will be an
important element of ongoing PLF research.

Keywords: precision livestock farming; transparency; philosophy of science; responsible innovation;
open science; community epistemic capacity; stakeholder engagement; epistemic justice

1. Background

Precision livestock farming (PLF) is an important developing suite of technologies [1–4].
The goal of PLF is “to manage individual animals through continuous real-time monitoring
of health, welfare, production/reproduction, and environmental impact” [2]. It involves
collecting information about the well-being of livestock through a range of sensors and analytic
tools that can generate data through images, sounds, heart rate monitors, accelerometers,
chemical analysis of waste, and a range of other tools. Some of these tools are currently in
use, others are being used on a small scale as proof-of-concept, and many others are only in
development [5–7]. The data from these systems are typically analyzed using algorithms that
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turn the low-level data into meaningful information that can guide the decision-making of
farmers. PLF also has the potential to be operated via “closed loop” systems, whereby systems
can self-correct based on the collected data without depending on human guidance [8–10],
though these systems lead to concerns that will be discussed in a later section of this paper.
These closed-loop systems can be facilitated by machine learning applied to large datasets of
instrument data and outcomes, which can generate both insights into connections between
variables that human farmers would not look for or notice as well as faster and more accurate
predictions of outcomes for animals based on limited information [11,12].

PLF has the potential to generate a number of benefits for farmers, consumers, and
farmed animals. Nevertheless, PLF also generates or exacerbates preexisting ethical and
social issues that need to be addressed if it is to be implemented in a socially responsible
fashion. While a fully comprehensive review of potential benefits and concerns is beyond
the scope of this paper, some examples will be helpful for our later discussion of how to reap
the benefits while mitigating some of the concerns. For example, an example of potential
benefits is that as the number of animals on farms increases, it can be more difficult to
ensure their welfare, but PLF can help farmers keep closer track of their livestock [1,13]. For
animals who experience stress in the presence of humans, PLF could also ease their stress by
allowing them to be monitored with less direct human interaction [14]. PLF could also ease
the workload on farmers by creating automated systems that address potential problems
without requiring human intervention [8–10]. PLF can also promote sustainability [15,16],
such as by enabling farmers to feed their animals with more precision, thereby avoiding
waste [17,18], thus increasing both environmental and economic sustainability for the farm.
PLF can even benefit consumers by facilitating more careful tracking of animals through
the supply chain, thereby providing greater transparency for consumers who want to know
where animals have been and how they have been treated [3].

As an example of potential concerns, PLF could contribute to the general trend toward
consolidating smaller farms into larger ones, thereby altering rural communities and
eliminating agricultural jobs [14]. One might also worry that PLF could be used as a “cover”
to argue that agricultural intensification is compatible with protecting animal welfare,
whereas critics might contend that farm animals would actually be better off on smaller,
more traditional farms [6]. Privacy is another important ethical issue raised by PLF [3].
Given all the data collected through these systems, it will be essential to develop policies
governing the sharing of this data with outside parties. Finally, one might worry about
the ways that PLF could change the relationships between farmers and their livestock by
eliminating the direct connections that farmers currently have as they assess the well-being
of their animals [14,19].

2. Transparency and PLF

Many ethical issues have begun to be discussed in the scholarly literature on PLF;
however, the issue of transparency about PLF has received relatively little attention thus far.
There has been some discussion about the potential for PLF, in conjunction with technolo-
gies like blockchain (the decentralized transaction and data management technology most
known for its use in cryptocurrency [20]), to provide transparency for consumers about the
paths that animals have taken through the production process [3], but this literature does
not focus on the need for transparency about the nature of PLF technologies themselves.
Although a few authors have begun to call for this kind of broader transparency about
the values embedded in PLF systems [6], there has been little discussion about how best
to achieve this form of transparency or about the particular challenges that arise in doing
so. This is an important gap because transparency will be crucial for pursuing PLF in a
responsible fashion. The open science movement has recently highlighted the important
role that transparency plays in promoting reproducible science, accelerating advances,
and fostering public engagement with scientific research [21–23]. In the context of PLF,
transparency is especially important because there are a number of values at play in this
area of research (e.g., animal welfare, profit, sustainability, rural development, and so on).
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These values can come into conflict, and they can be interpreted in different ways [14], so
transparency is important to enable farmers and consumers to decide what kinds of PLF
systems actually help them to achieve their goals.

While it seems clear that transparency is important in this context, transparency is
not a simple concept. As one of the authors (Elliott) has put it: “In a very basic sense,
something is transparent when one can see through it. Thus, transparency is used as
a metaphor in fields like politics and science to express the notion that information or
processes have been ‘made visible’” [24]. However, he goes on to point out that this basic
idea of making information visible can involve a great deal of complexity in practice. He
proposes a taxonomy that distinguishes different forms of transparency in terms of their
purposes, the audience for the information being provided, the content of the information
being provided, and the timeframe, actors, mechanisms, and venues through which the
information is provided [25]. He also notes that there are dangers associated with pursuing
transparency, and those dangers have to be weighed against the benefits.

Although it is not necessary for our purposes to go into all these dimensions, it is
helpful to keep in mind some of the major reasons for pursuing transparency and concerns
about doing so. One possible reason for pursuing transparency is the notion that it is either
inherently good or that an essential feature of scientific practice is to be open about one’s
work [26]. But even if one rejects this “intrinsic” argument for transparency, there are a
wide variety of instrumental reasons for pursuing it. As intimated above, these include:
(1) promoting higher-quality science by facilitating external scrutiny of it; (2) promoting
faster innovation; (3) fostering trust; (4) fostering greater diversity and inclusion in the
scientific community; and (5) equipping the recipients of information to make better
decisions for themselves. These benefits need to be weighed against a variety of potential
concerns: (1) using up limited resources, including time, in an effort to provide information;
(2) generating confusion on the part of those receiving information; (3) revealing private
information or confidential business information; (4) assisting “bad actors” who aim to use
the information inappropriately; and (5) creating rigid requirements that detract from the
diversity of the scientific community’s methods or practices [27]. Elliott emphasizes that
one can typically address these concerns without abandoning the pursuit of transparency
altogether [25]. One of the benefits of thinking about transparency in terms of a taxonomy
with multiple dimensions is that one can explore different forms of transparency that are
not as susceptible to concerns. For example, even if it would violate research participants’
privacy to provide detailed information about them, it might still be possible to provide
some transparency in the form of more limited or de-identified information about the
participants. Similarly, if it would threaten confidential business information to provide all
the data underlying a study, it might still be possible to provide some transparency in the
form of information about the methods and principles used to analyze the data.

This paper draws on these insights in order to propose a framework for pursuing
transparency about PLF. Building on the more general taxonomy of transparency developed
by Elliott [25], the framework consists of four parts: audience, content, challenges, and
strategies (see Figure 1; Table 1). According to this framework, those seeking to promote
transparency about PLF should first consider, in specific contexts, the audiences toward
which they are striving to provide information. Building on this consideration of audiences,
they can consider the specific content that is most relevant to disclose. In order to commu-
nicate this content in a meaningful way, it is important to recognize the challenges that
can make it difficult to achieve. Finally, drawing on the other elements of the framework,
strategies can be developed for achieving meaningful forms of transparency. The following
section employs philosophical methods of analysis (especially conceptual clarification)
to elaborate on each of the four elements of the figure in the context of PLF. It provides
examples of major audiences, content, challenges, and strategies that could be important to
consider in a PLF transparency initiative, with the understanding that further empirical
investigation of each element would help provide additional guidance for those seeking to
implement the framework. Although this framework has been developed specifically for
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application to PLF, many of its features could also be applicable to other areas of agriculture
and biotechnology in general.

Figure 1. Representation of a framework for achieving transparency in the context of PLF.

Table 1. A sample of major audiences, content, challenges, and strategies to be considered as part of
transparency efforts.

Audience Content Challenges Strategies

• Other scientists
and engineers

• Farmers
• Consumers
• Industry groups
• Regulators

• Basic operation,
strengths, and
weaknesses of
PLF system

• Data generated
by the system

• Basic goals of
the designers

• Implicit values
of the system

• Operation and
nature of
underlying ML
algorithms

• Difficulty
identifying and
communicating
with relevant
audiences

• Not knowing
the information
to be disclosed

• Lack of trust
• Problematic

motivations of
the developers
or
communicators

• Opaqueness of
ML algorithms

• Collaborations
with end users

• Design to
minimize
transparency
needs

•
Acknowledgment
of major guiding
values

• Independent
verification

• Community
epistemic
capacities

• Explainable AI

3. A Framework for Transparency

3.1. Audience

In order to provide appropriate transparency, it is important to consider the audience
toward which information is being directed because different audiences have different
informational needs and different ways of obtaining information. For example, the open
science movement has generally focused on communicating information in ways that serve
other scientists and technologists. While some elements of the open science movement can
be helpful to non-specialists (e.g., publishing articles in open access formats), most features
of the open science movement (e.g., making raw data available in publicly accessible
databases) are geared primarily toward the scientific community. To meet the needs of
non-specialists, it is often insufficient merely to make information available; the information
generally needs to be interpreted in ways that are meaningful to them [21]. In the context
of PLF, we suggest at least five different audiences that could have unique informational
needs: scientists and engineers, farmers, consumers, industry groups, and regulators.

Scientists and engineers are likely to be interested in fairly traditional elements of open
science, such as open data and open access to research materials [28]. In contrast, farmers
are less likely to want this technical information and are more likely to want the “take-
home” lessons about what these systems can do, how they work, and what their limitations
are [5,29]. Consumers would probably not even care about the working of the systems,
but at least some consumers might be interested in the “implicit values” associated with
the systems (e.g., whether animal products from farms that employ PLF systems promote
particular values concerning animal welfare or sustainability) [30]. Various industry groups,
such as meat-packing companies, distributors, wholesalers, grocery stores, and restaurants,
are likely to have a mixture of informational needs that could vary depending on how
closely they work with farmers, regulators, or consumers. Finally, regulators are likely to
be interested in the extent to which PLF systems can be designed to ensure compliance
with regulations, whether they could inadvertently violate them, and whether compliance
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with regulations would become more or less difficult to verify when using the systems. Of
course, these five categories do not include all the audiences that could be considered. For
example, PLF system designers are often called on to consider “society” or the “public” [5].
However, we contend that this is such a large group with so many different informational
needs that it cannot be usefully analyzed as a single audience in this model. Instead,
it would need to be broken down into different interest groups. We also acknowledge
that we have characterized audiences in terms of their likely informational needs, but it
would be important to actually interact with these audiences in order to determine their
informational needs in more concrete detail.

3.2. Content

The second component of our framework for transparency about PLF is the content to
be disclosed. We have already seen that different audiences are likely to care about different
kinds of information. Without providing an exhaustive discussion of all the kinds of
content that could be discussed, this section probes more deeply into five major categories
of information about PLF that could be disclosed as part of a transparency initiative. The
first category of information concerns the basic workings of a PLF system, including its
major strengths and limitations. For example, people might want to know what features
of the animals the system measures, what outputs the system strives to maintain, the
basic features of how the system functions, the conditions under which the system was
developed and tested, and the safeguards that are in place to prevent the system from
malfunctioning. When new PLF systems are being implemented, audiences will want to
know enough about them to feel comfortable that they will work successfully. They may
also want to have this information in comparison to other existing or possible alternative
PLF systems.

A second category of information focuses not so much on how PLF systems work but
on the data generated by them. For example, consumers and regulators might want to
receive information about how often animals experience disease or other forms of stress.
They might also want to know how often closed-loop PLF systems need to make particular
sorts of adjustments and what those adjustments are. In addition, they might want to use
the information generated by PLF systems to track the movements of animals through
the agricultural system or to ensure that the animals meet criteria for particular kinds of
certification (e.g., organic or cage-free). All the groups mentioned in the previous section
may well also be interested in comparing data from one operation to others (though in this
case some of those groups, most notably farmers and industry groups, would both want
that information and possibly want to keep private information about their own operation).

In addition to the basic information about how a PLF system works and the data
generated by it, a third major form of content concerns the goals that the system was
designed to promote. For example, one might wonder whether the developers were
particularly focused on efficiency, animal welfare, or environmental sustainability and how
they prioritized those values when they came into conflict. One might also wonder how
they defined those concepts, such as what elements of animal welfare or environmental
sustainability they focused on. Research has shown that farmers, to pick one audience as
an example, often have a few values they prioritize and want to actively maximize, but at
the same time see other values as constraints on that maximization rather than something
they are also trying to maximize [31].

A fourth category of content about PLF systems concerns the implicit values embedded
in them. This is a more difficult form of information to disclose because it is not always
obvious to those developing and working with the systems. Implicit values arise when
developers make particular choices when designing systems (e.g., measuring particular
things, analyzing the data in particular ways), and those choices end up serving some
values rather than others (e.g., promoting animal welfare over profit, or vice versa) [32].
This form of content can be very significant because even if the users of PLF systems feel
comfortable that their values are generally aligned with those of the system designers (e.g.,
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desiring to promote some particular definition of animal welfare), they might still worry
that the system could inadvertently reflect implicit values that they disagree with. For
example, when testing the system, the developers might have regarded a 95% success
rate at identifying injuries to the animals as adequate. However, some users might have
higher standards and would have wanted something like a 99% success rate in order to
feel comfortable relying on the PLF system. Along the same lines, developers might be
concerned with the overall rate of injuries, while some users might be more concerned
about the injuries to mothers, the young, the weak, etc. Developers of a PLF system have to
make numerous decisions about how accurate all their sensors need to be, what endpoints
they need to measure, and how to handle tradeoffs between optimizing different features
of the system. All of these choices can make the system as a whole more prone to various
sorts of errors, and the users of the system might not agree with the developers’ implicit
values about what kinds of errors are most important to avoid and what frequency of errors
is acceptable.

A fifth form of content about PLF systems is even more fraught with difficulties.
This content concerns the operation of the machine learning algorithms associated with
some PLF systems. Because the working of machine learning algorithms is typically
not comprehensible to human beings, it raises particularly important issues related to
transparency [33–35]. Some users of PLF systems might want to know, for example, how
confident they should be that the algorithms will generate reliable conclusions in the context
of their farms. They might also want to know whether the concerns about implicit values
discussed in the previous paragraph might apply to the machine learning algorithms. For
example, although most farmers probably would not be interested in the details about
how these algorithms were developed and how they operate, they might have the general
worry that the algorithms might not be prioritizing exactly the same features of animal
welfare as the farmers. For instance, the algorithms might be designed to promote the
animals’ growth or freedom from disease, whereas some farmers might be more concerned
about the animals’ activities or subjective experiences. Users might also be concerned with
the likelihood that the algorithms are finding specious connections between inputs and
outcomes that a human would correctly judge as an artifact of limited or incorrect data.
Without receiving more information about the nature of these machine learning algorithms,
many users might feel uncomfortable making use of them in their farming operations [33].

3.3. Challenges

The next component of our proposed framework consists of the challenges associated
with pursuing transparency. Many of these challenges have already emerged from our
discussion of different audiences and content. For example, one challenge is that those
developing PLF systems might not have a clear understanding of the different audiences
they need to consider and the kinds of content they want to know. Even if they could
identify the relevant audiences, they might have difficulty, in some cases, explaining the
technical details of how their systems work. Especially in the case of closed-loop systems
that gather information about the animals and make automatic corrections in response to
the available information, the systems might be too complex to explain easily to those who
might want to know how they operate.

But even if the developers could find a way to disclose all the detailed information that
some audiences might want, another challenge is that the developers themselves might be
ignorant of some relevant information. As discussed above, some audiences might want
to know how PLF systems implicitly promote some values (e.g., particular conceptions of
animal welfare) over others. However, when developing new technological innovations, it
is often unclear—even to the developers—how they promote particular values or interests
over others. One might think that this is not specifically a problem related to transparency;
rather, it might seem to be merely a function of the complexity of PLF systems and the
limited perspective associated with particular disciplinary approaches. However, it is
important to keep in mind the full breadth of the conception of transparency associated
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with Elliott’s taxonomy [25] and the framework that we are developing here. In Elliott’s
view, the audiences for transparency can include not only external stakeholders but also the
scientists and engineers who are working on a project. Important values and assumptions
associated with the project may not be clear to them, and one of the goals of a transparency
initiative could be to help them develop a richer understanding of these project features so
that they can in turn be more transparent with others outside the project.

Another challenge to successful communication is trust between developers and
potential users. If those trying to communicate the information do not trust the receivers,
it is possible that they will try to manipulate them to obtain a desired outcome or to
protect themselves. The communicators might also simplify the information they are
communicating to the point that it becomes unhelpful, misleading, or even incorrect. If
the receivers do not trust the communicators, they may not be able to take up any of the
information they are being provided, even if it is in their own interest to do so. While some
trust issues have to do with presentation style and other tools of rhetoric, and some trust
issues have to do with the creation and maintenance of relationships between the various
groups, it is also the case that previous harmful incidents can lead to justifiably low trust in
ways that are quite difficult to overcome [36].

A separate but related challenge to achieving transparency involves the motivations
and interests of those offering or receiving the information. For example, those promoting
PLF systems might prefer not to acknowledge some of the systems’ weaknesses or the
ways the systems prioritize some values over others. In addition, those using the systems
might not want to disclose certain kinds of data generated by the systems (e.g., about
rates of disease or injuries or other animal welfare concerns). Although this reticence
to share information might sometimes be narrow-minded and self-serving, it could also
reflect the legitimate concern that those receiving the information could misinterpret it and
draw illegitimate conclusions. It could also reflect companies’ concerns about protecting
their intellectual property and safeguarding confidential business information. These
IP and related concerns might differ between different countries’ IP regimes, making
communication across national boundaries more difficult. For farmers, the fear of providing
detailed information about their operations might even motivate some of them not to adopt
PLF systems at all.

Finally, the use of machine learning algorithms in PLF systems raises special challenges.
In some cases, the challenge might just be that the recipients of information about the
algorithms do not have the background knowledge to understand them. Although this
might not initially seem to be a failure of transparency (because information about the
algorithms is available), we would classify it as a failure of transparency because the
available information is not understandable or usable for the intended audience. An
additional challenge is that in the case of machine learning algorithms, even the developers
might not know what factors are responsible for the algorithms’ outputs. As a result, the
developers might be unable to provide a number of other relevant pieces of information.
For example, they might not be able to identify the precise conditions under which the
systems could become unreliable. They also might be unable to identify important biases,
limitations, or “blind spots” that affect the systems. These limitations could be caused
by biases in the training data used to develop the system, or they could be a function of
the particular phenomena that the algorithms focus on. Without understanding how the
algorithms work, it could be very difficult to provide detailed information about their
strengths and weaknesses and the implicit values associated with them. This is particularly
the case for the subset of machine learning commonly referred to as “deep learning”
algorithms, in which programmers do not set which aspects of the environment the system
is tracking.

3.4. Strategies

The final component of our transparency framework is to explore strategies for provid-
ing relevant content to audiences in a manner that overcomes major challenges. Although
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different situations and challenges are likely to call for different strategies, some general
ones could prove helpful under a variety of circumstances. For example, one important
kind of strategy is for the developers of PLF systems to collaborate with end users dur-
ing the development process. One benefit of this co-creation process is that it helps the
end users understand the major features of PLF systems, and thus it provides a form of
transparency that would be difficult to provide otherwise. In addition, when users and
developers collaborate, they are more likely to identify ways in which implicit values
could be embedded in the operation of the systems. Thus, this process of collaboration
“early and often” [37] can be especially helpful for uncovering features of PLF systems that
could be important to disclose but that would not have even been recognized otherwise.
(See Thompson et al.’s discussion of an “ethical matrix” for a useful framework for these
stakeholders to express their ethical concerns [6]).

Another, and somewhat less ambitious, kind of strategy to address transparency
challenges is to design PLF systems in ways that require less transparency. One way to
perform this is to make systems less complex. For example, whereas a closed-loop system
might leave farmers “in the dark” about why particular changes are being made by the
system, an open-loop system might give the farmers more control and understanding
of what is happening. For instance, in an open-loop system, farmers might be notified
that something is wrong or sub-optimal. The farmers could then investigate and decide
whether there is indeed a problem and how they want to address it. Because the PLF
system would not be making as many decisions on their behalf, farmers would not need to
demand as much transparency from it. Similarly, if a PLF system were designed so that the
farmers could control more features of how it operated, that could also obviate some of
the need for transparency. For example, if farmers could choose what temperatures they
wanted the system to maintain, what amount of food to provide, what levels of activity they
expected from the animals, and so on, they would be in control over more variables and
thus less dependent on receiving assurances that the system would handle these variables
in accordance with their preferences. This is a tradeoff with the kinds of efficiencies and
emergent animal management practices sometimes promised by PLF but might be worth
that loss for those with less trust in the technologies, at least initially.

Another general strategy for addressing transparency challenges is to provide acknowl-
edgements of the major values that guided the development of particular PLF systems. This
strategy is an alternative to providing numerous details that could become overwhelming
and impractical to disclose. For example, rather than providing extensive details about all
the input and output variables associated with a PLF system and the ways those values
were analyzed, the developers of a system could focus on the main features of the system
(e.g., animal welfare or economic efficiency) that the system was designed to maximize.
In order to avoid being misleading, it would also typically be important to clarify how
those features were defined or conceptualized (e.g., how animal welfare was measured)
and how trade-offs are handled (e.g., what the system does when it would cost more to
maximize particular features of animal welfare). Along these lines, the developers could
also provide general information about how carefully their systems had been developed
and under what range of conditions they had been implemented, which could serve as a
proxy for more detailed information about the reliability of the systems. As mentioned
above, it is sometimes the case that people might not be aware of the implicit values they
hold or are expressing in their work. In such cases, going through guided processes of
dialogue to draw these out could be an important step before acknowledging them [6,38].

To address issues of trust and motivated communication, several strategies can be
employed. For example, third-party experts who have higher trust from multiple parties
and who have different interests can verify claims. This could include regulators, activist
watchdogs, the media, or engineers and designers working for a non-profit institution such
as a university. Alternately, increasing the community epistemic capacities of both potential
users and developers of a PLF system so that they can verify claims, formulate better
questions, and communicate their values more clearly can mitigate a lack of trust [39].
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Finally, although machine learning algorithms create significant complications for
achieving transparency, there are some steps that can be taken to address these challenges.
For example, the field of “explainable AI” (XAI) explores ways to clarify some of the
features of machine learning algorithms even if they cannot be fully understood [34], such
as by running “sensitivity analyses” to determine which input variables make the most
difference to the predictions that a system provides. Sometimes uncertainty estimates can
also be provided so that the users of a machine learning system have a sense of its reliability.
Thus, the use of machine learning algorithms in PLF systems is not a barrier to providing
at least some forms of transparency. Additionally, in keeping with the strategy discussed
previously of making PLF less complex, machine learning could be added only in a gradual
fashion so that its predictions could initially be compared to human judgment in open-loop
processes. This comparison could provide its own form of transparency, as users could see
the ways in which machine learning complemented, recapitulated, or differed from their
own judgment.

4. Conclusions

Transparency is an important tool for promoting public engagement with emerging
technologies and navigating ethical disagreements or concerns between various stake-
holders. However, the subject matter of PLF technologies—animals and food—makes
transparency even more important in this context than in many other scientific and techno-
logical contexts. People have a (literally) visceral reaction to the food they eat, which makes
them wary of novelty. Moreover, PLF is wading into the complex relationship our food
system has with non-human animals raised to be food; we acknowledge that they have
welfare concerns that we must respect, but we eventually take their lives for the benefit
of humans. In addition, producers, distributors, regulators, and all the other actors in the
food system must balance desires for adaptation and innovation with a need to preserve
the current system’s ability to function. The fraught discourse around genetically modified
organisms and other forms of agricultural biotechnology provides a good example of how
a lack of meaningful transparency early in research and development can contribute to
catastrophic loss of trust; it is an example that PLF developers would do well to learn from
and avoid.
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Simple Summary: Monitoring drinking behavior allows producers to assess the health and well-
being of their beef cattle. Changes in regular drinking behavior can serve as an indicator of potential
health issues. Detecting these issues early on enables the application of timely interventions, miti-
gating the likelihood of severe complications and enhancing the prospects for prompt and efficient
treatments. In the current study, we used computer vision techniques to study and analyze the
drinking behavior of beef cattle. Two different camera positions were used to identify the drinking
behavior. Our proposed method was able to successfully identify both the drinking behavior and
drinking time of beef cattle.

Abstract: Monitoring the drinking behavior of animals can provide important information for
livestock farming, including the health and well-being of the animals. Measuring drinking time is
labor-demanding and, thus, it is still a challenge in most livestock production systems. Computer
vision technology using a low-cost camera system can be useful in overcoming this issue. The aim of
this research was to develop a computer vision system for monitoring beef cattle drinking behavior.
A data acquisition system, including an RGB camera and an ultrasonic sensor, was developed to
record beef cattle drinking actions. We developed an algorithm for tracking the beef cattle’s key body
parts, such as head–ear–neck position, using a state-of-the-art deep learning architecture DeepLabCut.
The extracted key points were analyzed using a long short-term memory (LSTM) model to classify
drinking and non-drinking periods. A total of 70 videos were used to train and test the model and
8 videos were used for validation purposes. During the testing, the model achieved 97.35% accuracy.
The results of this study will guide us to meet immediate needs and expand farmers’ capability in
monitoring animal health and well-being by identifying drinking behavior.

Keywords: animal behavior; beef cattle; drinking time; computer vision; precision livestock farming

1. Introduction

The US is the world leader in annual beef production value, and maintains the third-
largest cattle herd and the largest cattle industry globally; it produced USD 86.1 billion
in gross income in 2022 [1,2]. In the US, heat stress is one of the major challenges in beef
cattle production and management. Due to heat stress, cattle experience health problems as
well as decreases in feed intake and animal growth, which result in great economic losses
to cattle farmers [3]. Based on previous studies, heat stress may also affect daily activity,
including drinking and feeding [4]. Early detection of a disease is crucial because it allows
for timely interventions and care based on the clinical signs and symptoms associated
with that specific disease. Automatic disease detection, using advanced technologies
such as artificial intelligence and machine learning, holds promise in facilitating early
detection. Conventionally, direct contact (i.e., attaching sensors to animals’ bodies) has
been the primary method of monitoring animal behavior [5–7]. However, this method faces
problems such as a limited sampling frequency, low accuracy, and inconsistent readings
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from multiple units [8]. To help with those issues, computer vision techniques can be
used to identify and classify specific animal behaviors [9,10]. Therefore, in recent years,
vision-based analysis has been examined to monitor the animal behavior and health of beef
cattle [8,11].

Different deep learning techniques have been developed to automate animal behavior
detection methods using computer vision and video analysis technologies. Tsai et al. [12]
investigated dairy cow heat stress by monitoring drinking behavior using a convolutional
neural network (CNN) with an imaging system and found that drinking behavior reflects
the effects of heat stress on dairy cows. Wu et al. [13] investigated a method that was pro-
posed to detect the breathing frequency of standing resting dairy cows by using computer
vision and video analysis. A Deeplab V3+ semantic segmentation model was developed
using the framework of ResNet-101. Li et al. [10] studied basic motion behaviors based
on cow skeletons and a hybrid convolution algorithm. The multi-resolution module was
used to extract cow skeletons. The skeleton is a visual representation of a pose formed by
connecting key points with lines or curves. In previous attempts, various hybrid deep learn-
ing tools were used to investigate animal behaviors. Optimizing hybrid approaches may
involve fine-tuning hyperparameters to strike the ideal equilibrium between computational
efficiency and model accuracy. Determining the right combination of convolution strategies
can be time-consuming and resource-intensive. To simplify the tuning of hyperparameters,
the pose estimation technique using different pre-trained models might be a solution. Pose
estimation is a basic computer vision technique that identifies the location of a series of key
body parts. In 2014, Toshev and Szegedy [14] first applied a 2D human pose estimation tech-
nique using a deep learning method. Over time, researchers developed many updated pose
estimation methods such as YOLO, DeepLabCut, LEAP, and DeepPoseKit [15]. Among
them, DeepLabCut is the first tool for animal pose estimation, which uses ResNet’s transfer
learning to reduce the training times [16,17]. In this study, the DeepLabCut pose estimation
technique was used to train and validate the model for tracking cattle body parts.

Recently, in identifying and classifying livestock activity, different artificial neural
networks have been used to improve the performance of recognition tasks. Chen et al. [18]
investigated pig drinking and drinker-playing behavior recognition based on ResNet50
and long short-term memory (LSTM), and the classification accuracy for the body and
head regions was found to be 87% and 93%, respectively. Wu et al. [19] used a fusion
of convolutional neural networks and LSTM to recognize the basic behaviors (drinking,
ruminating, walking, standing, and lying) of a single cow. Nasiri et al. [20] proposed a
technique to identify pose-estimation-based lameness recognition for broilers using the
CNN-LSTM model. Du et al. [21] used the Resnet50-LSTM model to investigate broodstock
breeding behavior, and the investigated method achieved an average accuracy of 97.32%
for five types of breeding behavior recognition.

Deep learning and vision analysis play significant roles in the automated recognition
of livestock behavior, as highlighted in the previously mentioned works [13]. Although re-
searchers have identified different behaviors for various purposes, no effective method has
been reported for recognizing beef cattle and/or cow drinking behavior. Identifying this
behavior is crucial for detecting heat stress [22]. Consequently, as an alternative to previous
behavior recognition methods, this project intended to evaluate beef cattle drinking behav-
ior by considering skeleton-based body parts using a CNN-based model (DeepLabCut)
and a time-series network (LSTM). Therefore, the specific objective of this research was to
develop a computer vision system for monitoring beef cattle water drinking behavior.

2. Materials and Methods

2.1. Ethical Considerations

The University of Tennessee (UT) Animal Care and Use Committee (IACUC) approved
the experiment on the use of cattle subjects under the following protocol title: Computer
vision characterization of respiration as an indicator of cattle health; Protocol #: 2932-0922.
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2.2. Experimental Site

The experiment was conducted at the University of Tennessee, Middle Tennessee
AgResearch and Education Center (MTREC), between 5 October 2022 and 12 October 2022.
The experiment involved four purebred black Angus cattle, all of which were 1 year old at
the time. The cattle were kept in a barn equipped with a roof and automatic fans that acti-
vated when the temperature reached predefined conditions, ensuring they were protected
from direct sunlight, rain, wind, and muddy conditions when needed. An open space
was connected to the barn, offering plenty of room for the animals to move about without
restraint. Surrounding both the open space and the barn were wooden fences, ensuring
that the animals remained within their designated boundaries. MTREC staff diligently
supervised the well-being and health of all animals during the experiment, adhering to the
farm’s standard operating procedures and following veterinary recommendations.

The waterer was placed in the open space to provide free access to drinking water.
The vision system was installed over the top of the waterer. The vision system consisted
of a mainframe, a ball waterer, and a sensing camera unit (Figure 1). The sensing camera
unit included a Raspberry Pi 4 microprocessor, a Raspberry Pi camera (8MP IMX219,
Arducam Technology Co. Limited, Kowloon, Hong Kong, China), and two ultrasonic
sensors. System power was provided using Power over Ethernet (PoE). To optimize power
usage, an ultrasonic sensor (Figure 1C) was used to trigger camera recording when an
animal was in the field of view of the vision system. The camera was positioned at a height
of 1.8 m above the ground. Another ultrasonic sensor was used to monitor the drinking
behavior of the animal. This ultrasonic sensor was mounted on the side of the waterer
at a height that was just above the ball of the waterer. The operating principle was that
when the animal was pushing the ball to drink water, the ultrasonic sensor would detect
the animal’s head, thus confirming drinking behavior.

Figure 1. Structure of the vision system: (A) mainframe, (B) camera unit, (C) first ultrasonic sen-
sor (trigger the camera), (D) second ultrasonic sensor (for ground truth), and (E) animal entering
the waterer.

2.3. Data Collection and Annotation

In this study, animal drinking behavior was recorded from two camera positions.
This was to ensure that our algorithm was not sensitive to a specific camera position and
could potentially handle flexible camera mounting options. A total of 78 videos, including
39 videos of each position, were recorded. The videos were recorded as H264 files. After
that, the MP4 (RGB) and Hierarchical Data Format (HDF) files were extracted from each
H264 file. The MP4 (RBG) files were used to track the key body points. A total of five key
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points were used to observe the pose skeleton (Figure 2). Each skeleton line that connects
two key body points represents the relationship between the two points. The skeleton lines
were defined in the training dataset to help with model accuracy. An open-source ‘VGG
Image Annotator’ online annotator tool was used to label the drinking time for the recorded
video as ground-truth data [23]. The second ultrasonic sensor (Figure 1D) was also used to
collect the ground-truth drinking time for each animal. The two types of ground-truth data
were compared to ensure the accuracy of the labeled data.

Figure 2. The annotated key points and beef cattle pose skeleton: (A) head, (B) upper neck, (C) lower
neck, (D) left ear, and (E) right ear.

2.4. CNN-Based Pose Recognition

Based on the literature review, key body points and pose were identified using the
DeepLabCut CNN-based pose estimation tool [16]. DeepLabCut has two ResNet (50 and
101) architectures to choose from, and ResNets facilitate the substitution of deconvolutional
layers with dense layers to enhance the process of feature extraction [24]. The network
has the capability to learn labeled key body points, which allows greater probabilities
of recognition and reduced likelihoods of misidentifying other points. In the last stage,
the trained model analyzed the videos and estimated the pose for the whole dataset. In
this study, the pre-trained ResNet50 architecture was utilized as the transfer learning
approach for pose estimation. Figure 3 demonstrates the diagram that outlines the pose
estimation workflow.

Figure 3. The diagram outlines the pose estimation workflow: (A) input, (B) pre-trained model
(ResNet50), (C) deconvolutional layers, and (D) output with pose skeleton.

2.5. LSTM-Based Drinking Behavior Estimation

The LSTM-based model was used to classify drinking and non-drinking behavior. This
model used the output from the previous DeepLabCut model, which were the coordinates
of the key body parts, as the input, and produced either drinking or non-drinking classes
as the output. The input included coordinates from 30 consecutive frames (1 s of video).
In this study, 30-frame sequences were constantly sampled and predicted, and a 30-frame
step size was set to make sure that the video sequence was repetitive each time. Therefore,
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after setting the fixed window size to 30 and sliding the window with a step size of
30, the proposed LSTM algorithm was used to detect the drinking behavior from small
video segments obtained from the sequence. Figure 4 shows the schematic diagram of the
sliding-window video sequence sampling technique in this study.

Figure 4. The schematic diagram of the sliding-window sampling technique.

In deep learning studies, the augmentation of data is a very useful method to enhance
the efficiency of the model training process by reducing over-sampling and augmenting
random transformations [20]. Therefore, before starting the LSTM training, a convolutional
autoencoder (AE) was applied to augment the training dataset. Figure 5 shows the archi-
tecture of the proposed AE and LSTM models. For the AE, the entire training dataset was
randomly split into two sets (train and test) at a proportion of 8:2. The selected AE model
was trained for 300 epochs. The mean absolute error loss function and Adam optimizer
were used for the AE model. After applying the augmentation process, the proposed
LSTM model was trained for 1000 epochs, including a cross-entropy loss function and
Adam optimizer. The learning rate and learning rate decay were used to train the LSTM
model, set at 1 × 10−5 and 1 × 10−7, respectively. The input dimension of the LSTM was
30 × 10, which represented 30 frames × 5 key points in each frame × 2 coordinates (x and
y) per point.

Figure 5. The architecture of the proposed AE (left) and LSTM models (right).

Evaluation indices including accuracy, precision, recall, specificity, F1 score, and AUC
were used to validate the proposed algorithm. The evaluation indices were calculated as
shown in Equations (1)–(5) [20]:
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Accuracy =
TP + TN

FP + FN + TP + TN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

F1 score = 2 × Precision × Recall
Precision + Recall

(5)

where TP = true positive, TN = true negative, FP = false positive, and FN = false negative.

3. Results and Discussion

3.1. Pose Estimation

Figure 6 shows the loss values of the DeepLabCut-based model for identifying key
points. The training procedure took nearly five days for each model, and the selected
weights of the DeepLabCut were attained at 1,030,000 iterations along with loss values of
0.0033 and 0.0023 at the learning rate of 0.001 for camera positions 1 and 2, respectively.

Figure 6. The loss values throughout the DeepLabCut model training for two camera positions.

3.2. Evaluating the AE and LSTM Model Performance

Figure 7 (left) indicates the AE model loss values. The loss values for the best model
were 17.90 and 11.77 for training and testing, respectively. There was a decreasing trend
in the loss values with increasing epoch numbers. After epoch 150, the training and
testing loss curves were stabilized, which indicates that the proposed AE model has gained
sufficient convergence. Figure 7 (right) shows the performance of the proposed LSTM
model. After 200 epochs, the accuracy increased, and the loss decreased simultaneously.
The accuracy values for the best LSTM model were achieved at 97.35% and 97.37% for
training and testing, respectively.

Eight 1-minute-long individual videos were used for validation of the proposed LSTM
model. The videos were collected from both camera positions. Table 1 shows the validation
results of the proposed LSTM algorithm. Our evaluation includes a range of metrics,
including efficiency, precision, recall, specificity, F1 score, AUC, and confusion matrices (as
shown in Supplementary Materials, Figures S1–S8), to comprehensively assess the model’s
performance. The highest accuracy was obtained at 98% for video numbers 1, 4, 5, 6, and 7.
The lowest accuracy was obtained at 95% for video number 2. In addition, this proposed
algorithm was able to calculate the drinking and non-drinking times.
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Figure 7. The changes in loss values during the AE model (left), and loss and accuracy values during
the LSTM model (right).

Table 1. Validation results of the proposed LSTM algorithm.

Video
Number

Accuracy
(%)

Precision
(%)

Recall
(%)

Specificity
(%)

F1 Score
(%)

AUC
(%)

Drinking
Time (s)

Non-Drinking
Time (s)

1 98.25 100.00 95.24 100.00 97.56 97.62 20 37

2 96.49 97.50 97.50 94.12 97.50 95.81 40 17

3 94.74 100.00 90.32 100.00 94.92 95.16 28 29

4 98.25 100.00 97.62 100.00 98.80 98.81 42 15

5 98.28 100.00 97.30 100.00 98.63 98.65 36 22

6 98.28 100.00 94.44 100.00 97.14 97.22 17 41

7 98.28 100.00 92.86 100.00 96.30 96.43 13 45

8 96.56 95.12 100.00 89.48 97.50 94.74 41 17

Video numbers 1 to 4 were recorded at camera position 1, and 5 to 8 were recorded at camera position 2.

3.3. Comparison of Different Related Studies

Efforts to develop automated dairy cattle drinking behavior models have been un-
derway by various research groups. Most researchers were mainly focused on automatic
basic behavior recognition methods including for drinking, ruminating, walking, standing,
and lying. Among them, Tsai et al. [12] developed an imaging system for monitoring
and analyzing drinking behavior. When a dairy cow head was detected in the drinking
area, the drinking status and the duration of drinking were recorded until the dairy cow
left the drinking area. A YOLOv3 model was used to detect the head movements and
a recognition accuracy of 90% was achieved. Wu et al.’s [19] CNN-LSTM network was
proposed to recognize the basic behaviors of a single cow. The developed algorithm mainly
included two parts. The VGG16 framework was first used as the network skeleton to extract
the feature sequence corresponding to each video. The second part was basic behavior
recognition using the designed LSTM model. The combination of the two parts formed
the final output to realize the recognition of basic behaviors. Shu et al. [25] developed a
video system for monitoring different behaviors (drinking, eating, lying, and standing).
YOLOv5 architectures were trained using the transfer learning method. The results showed
that the recognition accuracy of drinking behavior was 97.50%. Zhang et al. [26] proposed
a SlowFast-based cow behavior recognition algorithm to identify cow behaviors such as
standing, lying down, walking, drinking, and eating. The SlowFast algorithm was designed
to address the challenges of recognizing actions and events in videos. The key idea behind
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the SlowFast architecture was to tackle the temporal resolution trade-off problem in video
action recognition. In videos, actions can occur at different speeds, and capturing both fast
and slow temporal dynamics is essential for accurate recognition. The accuracy of drinking
estimation was found to be 92.60%.

Table 2 summarizes the outcomes of the computer vision models for cattle drinking
behavior recognition from previous research. Currently, there has been limited research on
cattle drinking behavior recognition. Most studies to date have applied computer vision
models to recognize some basic behaviors by training the image for a particular action.
Detecting drinking needs recognition of different actions including the motion of the head
and the initial movement of drinking. Some of the previous research did not focus on
specifically drinking actions. Due to those limitations, the previous methods of drinking
recognition accuracy were lower than for the other behaviors. In the current study, we used
a combination of a video annotator (head movement) and an ultrasonic sensor (drinking
status) to produce the ground-truth model.

Table 2. Comparison of computer vision model outcomes for cattle drinking behavior from previous
research and the current study.

Dataset Model Recognition Accuracy (%) Reference

Dairy cow image YOLOv3 90.00 [12]

Dairy cow video VGG16 and LSTM 95.00 [19]

Dairy cow video YOLOv5 97.50 [25]

Dairy cow video Slowfast 92.60 [26]

Beef cattle video DeepLabCut and LSTM 98.25 Current study

In contrast to the previous research, the proposed method in this study was a rapid
and non-invasive technique. The DeepLabCut pose-estimation-based model accurately
categorized the drinking behavior and could analyze drinking time tracked through videos
with different lengths. Addressing the continuous detection and tracking of key points on
constantly moving cattle, without the need for expert pre-marking, is an essential challenge.
In this study, the focus was on tracking the key points of interest in the head area. DeepLab-
Cut has the capability to effectively acquire body part information, even when faced with
challenges such as a complex and changing background, uneven lighting conditions, or
distortions caused by the camera. DeepLabCut also offers several key benefits, including
cost reduction in manual behavior analysis, achieving high accuracy with a minimal num-
ber of training images, and eliminating the necessity of placing visible markers on specific
locations of interest [16]. Creating a DeepLabCut model entails a potentially intricate and
resource-intensive procedure. It necessitates a robust GPU, and the training phase may
consume a substantial amount of time, particularly when dealing with large datasets. This
can create challenges for individuals who have restricted computational capabilities.

4. Conclusions

This study proposed a skeleton-based computer vision method for beef cattle drinking
behavior recognition. It used cameras from different positions and orientations for beef
cattle pose estimation using DeepLabCut with a ResNet50 backbone. A dataset containing
70 videos was evaluated using the model to create the sequential key body points data.
After that, an LSTM model was used to classify the drinking and non-drinking behaviors.
The accuracy of the model was 98.25%, which was higher than the previous studies using
other computer vision methods. We are currently conducting a preliminary study focused
on addressing a significant and practical challenge within the field of livestock farming.
This research has the potential to be applied to various livestock species, including but not
limited to beef cattle, sheep, horses, and more. By employing the same vision system and
pose estimation techniques, we can additionally quantify the respiration rates of animals.
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Currently, our group is collecting more video data from different farms using different
camera positions. More collected data will further increase the accuracy of the LSTM model
as well as different classification models. They will also help prepare the vision system as a
practical tool for beef farms worldwide.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani13182984/s1, Figure S1: Confusion matrix for video number 2;
Figure S2: Confusion matrix for video number 2; Figure S3: Confusion matrix for video number 3;
Figure S4: Confusion matrix for video number 4; Figure S5: Confusion matrix for video number 5;
Figure S6: Confusion matrix for video number 6; Figure S7: Confusion matrix for video number 7;
Figure S8: Confusion matrix for video number 8.
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Simple Summary: Water scarcity is an increasing problem facing the global agricultural industry,
particularly livestock production. The poultry industry is actively seeking opportunities to reduce
the use of water for cooling broiler houses during hot summer months. We investigated a sprinkler
system combined with a cool cell system and a cool-cell only system for cooling heavy broiler
chickens for two summer flocks. We found the sprinkler/cool cell combination exhibited a higher
house temperature, lower relative humidity, and a 64% reduction in average cooling water use. Litter
moisture also tended to be lower in the combination system. Findings are similar to previous reported
research and offer additional confirmation that sprinklers in conjunction with cool cells maintain
litter conditions while reducing cooling water use, thus lessening the threat to the economic and
environmental sustainability of the poultry industry and improving its water efficiency efforts.

Abstract: Climate change is a serious challenge to food production around the world. Sustainability
and water efficiency are critical to a poultry industry faced with global production concerns including
increased demands for high-quality, affordable animal protein and greater environmental pressures
resulting from rising global temperatures, flock heat stress, and limits on water availability. To
address these concerns, a commercial sprinkler system used in combination with a cool cell system
was evaluated against a cool cell system alone for two summer flocks of heavy broilers at Mississippi
State University to determine effects of sprinkler technology on cooling water usage, litter moisture,
and in-house environments. Environmental data were calculated and recorded throughout the flocks.
The combination house exhibited a 2.2 ◦C (4 ◦F) increase in daily maximum temperature, lower
coincident relative humidity, and a 64% (62,039 L/flock) reduction in average cooling water usage
over the cool cell-only house. Litter moisture for the combination house tended to be numerically
lower but showed no significant difference at several time points between and across flocks. A
combined sprinkler/cool cell system reduced cooling water use by 64% over two flocks compared to
a cool cell alone system and decreased in-house relative humidity levels.

Keywords: broiler cooling; climate change; sprinkler; sustainability; water efficiency

1. Introduction

Poultry meat represented almost 40 percent of global meat production in 2020 [1].
Poultry is one of the main sources of animal protein due to its universal acceptability, high
nutritional value, and health benefits [2]. The growth in global population has pressured the
poultry industry to increase its production capacity [3–5]. Global meat production doubled
from 1980 to 2004 and is projected to double again from 2000 to 2050 [6]. This rapid growth
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in global meat production puts pressure on water resources because livestock production
is a very water-intensive agricultural activity, i.e., about one-third of the total water that
is utilized in global agricultural production is assigned to animal production [2]. Broiler
chickens are one of the most efficient animals in terms of growth rate and feed conversion
ratio [7]. Broiler chicken meat is considered to have a relatively low carbon footprint among
all farmed meat products [8]. According to previous research, feed is the largest contributor
to climate change impact associated with broiler production [9–16]. However, water scarcity,
always a concern in developing countries, is rapidly emerging as a global concern [17,18].
Estimates are that by 2025, half the world’s population will be living in countries facing
considerable water stress or scarcity issues [19–21]. A changing environment threatens
water security and can affect the future of poultry production, making water conservation
efforts critical to the sustainability of the poultry industry. Climate change is creating new
challenges such as increasing the earth’s temperature by 0.2 ◦C per decade with significant
fluctuation in the amount and distribution of rainfall, resulting in longer and more intense
heat waves and increasing global water scarcity concerns [2].

Commercial broiler chickens are raised in specially designed houses capable of main-
taining an environment that allows for optimum performance even during long periods of
high environmental challenges. These houses are the result of decades worth of research
to determine the correct combination of cooling and ventilation [22–24]. In recent years,
consumers and the poultry industry have placed increasing emphasis on raising chickens
in a more sustainable manner. Water conservation is a major emphasis for the poultry
industry today, as sustainability and global food security issues challenge the industry to
meet consumers’ demands for safe high quality affordable meat protein and lessen the
industry’s overall environmental footprint [16].

Climate change and heat stress are additional challenges to sustainable poultry pro-
duction. Water is crucial in poultry production not only in bird consumption but also in
alleviating heat stress during cooling periods [25,26]. Evaporative cooling pad systems,
while effective at reducing the temperature of the air entering the poultry house, often
result in excessive relative humidity levels of 80% or higher in the house, require large
volumes of water [27], and negatively affect the ability for broilers to dissipate heat through
evaporative respiration during periods of high environmental temperatures [28–32]. Under
normal conditions, broilers typically achieve heat dissipation primarily through respira-
tory evaporation [33,34], which is severely hindered by high in-house humidity levels.
High in-house humidity level is a known factor that negatively affects litter quality and
thereby, animal welfare [35–39]. High environmental temperatures combined with high
in-house humidity levels can create life-threatening conditions to broiler chickens as they
near targeted market weight and age.

Animals dissipate body heat through two mechanisms, i.e., sensible heat dissipation
and evaporation (latent heat dissipation). The temperature gradient between the animal
and its surroundings governs the sensible heat dissipation. Evaporative cooling pad sys-
tems employed in modern tunnel-ventilation poultry houses aim to lower temperature of
the surroundings, hence increase the sensible portion of the heat dissipation. In comparison,
evaporative heat dissipation from birds is governed by the vapor pressure gradient rather
than by temperature differences. As the ambient temperature comes close to the body tem-
perature, evaporative heat flux becomes the only pathway for an animal to dissipate heat
to maintain a constant body temperature. Chickens do not have sweat glands but lose heat
mainly through panting, with some heat also lost by skin surface evaporation [40]. Directly
applying controlled amounts of water onto poultry using sprinkler systems partially wets
the birds, allowing direct evaporation of water from the birds’ surface. Water evaporation
absorbs heat directly from the body of the birds and the surrounding air, similar to water
evaporation from evaporative cooling pads at the tunnel-ventilation air inlet. For water to
evaporate from the chicken surface efficiently, it is crucial to maintain a large vapor pressure
gradient by keeping the humidity of the surrounding air low. In contrast, evaporative
cooling pads, along with high-pressure or low-pressure fogging systems would increase the
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humidity inside the poultry house and be less able to reduce the effective environmental
temperature.

Research has reported efficacy of surface wetting and its effect on body temperature of
laying hens [41,42] and broilers [30] under controlled thermal conditions, and commercial
production conditions [43–46]. Sprinkler systems offer water conservation advantages
without sacrificing flock performance [31,45–47]. However, it is a challenge to incorporate
sprinkler systems into the existing evaporative cooling systems which have been in use for
more than two decades in the southern United States. As mentioned earlier, surface wetting
by sprinklers requires low in-house humidity to function properly. It is necessary to develop
a management strategy such as a set point and application schedule in a sprinkler and cool
cell combined system to achieve not only cooling water savings, but also satisfactory air
and litter quality.

The objective of this study was to develop and evaluate a management strategy under
a combined sprinkler and cool cell technology on cooling water conservation, in-house
environments, and litter moisture conditions when raising heavy broilers on a commercial
broiler farm.

2. Materials and Methods

2.1. Broiler Houses

The study was conducted at two commercial broiler houses on the Mississippi State
University poultry research farm for two summer flocks from May through October of 2020.
For the May-placed flock, each house received 13,700 straight run Ross × Ross 708 broiler
chicks on day of hatch. For the August-placed flock, each house received 14,700 straight
run Ross × Ross 708 broiler chicks on day of hatch. Both flocks were heavy broilers with a
final target body weight of 4.42 kg. The two houses were each 13 m × 122 m (42 ft × 400 ft)
and equipped with three lines of pan type feeders and four lines of nipple-type drinkers.
Both houses were drop ceiling houses and neither house contained ceiling baffles.

Each house contained 15 m (50 ft) of 1.5 m × 15 cm × 0.30 m (5 ft × 6 in × 1 ft) cool
cell on each side of the house. Ten 122 cm (48-in) diameter tunnel ventilation fans (Acme
Engineering and Manufacturing Corp., Muskogee, OK, USA) were at the opposite end from
the cool cells in each house. Each house was also equipped with two lines of commercial
sprinklers (Weeden Environments, Woodstock, ON, Canada ) mounted to the ceiling and
located 3 m (10 ft) from each sidewall above the two outside feed lines. The sprinkler
lines consisted of 19 mm (3/4 in) PVC pipe running the length of the house with 275 kPa
pressure regulators. Sprinkler spinner heads with flexible droppers of nominal flow rate of
1.3 L/min were located every 6 m (20 ft) down each line and were directly across from one
another (e.g., not staggered). There were 20 spinner heads on each line; a total of 40 per
house located 2.1 m (7 ft) above the litter.

The evaporative cooling system remained intact in each house. The cool cell sys-
tem was controlled by a Chore-Tronics 3 (Chore-Time, Milford, IN, USA) poultry house
controller. An integrator-developed cooling program using their set point temperatures
and run times was followed in the cool cell only house. For the two summer flocks, one
house was cooled by the evaporative cooling system only. For this house, the set point
temperature on the cool cell pads was 28 ◦C (82 ◦F). The tunnel set point temperature was
always 3.3 ◦C (6 ◦F) above the house set point temperature for any given day.

The sprinkler system was operated in combination with the cool cell system and not
as a stand-alone cooling system, although previous research has demonstrated successful
sprinkler use in a stand-alone setting [46]. The combination-cooling house was cooled by
the sprinkler system as the first stage of cooling with assistance from the cool cell system
once house temperature reached 32 ◦C (90 ◦F). This was accomplished by modifying the
operational settings on the cool cell set point in the poultry house controller program. The
cool cell set point temperature was raised to run water over the pads for 15–20 s, but only
when the house temperature reached 32 ◦C. The goal of the cool cell in the combination-
cooling house was not to cool the house temperature and increase the humidity as in the
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cool cell only house, but to prevent the house temperature from going any higher than
32 ◦C. The two houses were switched between the two flocks to remove any house effect
(e.g., the cool cell house on the first flock became the sprinkler/cool cell combination house
on the second flock and vice versa). The sprinkler system and the evaporative cool cells
were allowed to operate from 9:00 am to 9:00 pm.

2.2. Sprinkler System

Both houses were equipped with a low-pressure commercial sprinkler system (Weeden
Environments, Woodstock, ON, Canada) capable of three levels of cooling intensity that is
explained below. The sprinkler controller was mounted in the control room of each house
where the main house controller was located. However, there was no communication
between the two controllers. The sprinkler system consisted of two zones, with 20 spinner
heads in each zone and one temperature sensor (at bird height) located approximately in
the center of each zone near the north side feed line. The brood half of the house containing
the cool cells was one zone, and the non-brood half containing the tunnel fans was the
second zone. Each zone was operated independently by activating an electronic solenoid
valve assigned to that zone depending on the temperature in that zone. As a result, the two
zones might run on different schedules and be in different intensity levels at a given time.

Sprinklers in the combination-cooling house and cool cells in the cool cell only house
were allowed to operate from d 37 until harvest (d 61) for the first summer flock (Table 1).
Cool cells in the combination house were allowed to operate from d 53 until harvest (d 61).
During the second summer flock, sprinklers and cool cells in the combination house and
cool cells in the cool cell only house were all allowed to operate from d 27 until harvest
(d 60).

Table 1. Summary of days during grow-outs when the cooling systems were used.

Flock # Harvest Date Cooling Allowed in Combination House Cooling Allowed in Cool Cell
Only HouseSprinkler Cool Cell

1 20 July 2020 37–61 d 53–61 d 37–61 d

2 5 October 2020 27–61 d 27–61 d 27–61 d

The three levels of cooling programmed into the sprinkler controller served different
functions. The levels recommended by the manufacturer were as follows: Level 1 begins at
1.1 ◦C above the tunnel set point temperature (TT) and operates for 10 sec every 30 min
(Table 2). When sprinkled, birds stand up and release trapped heat between and under the
birds. Additionally, upon standing, numerous birds were observed to move to the feeder
and drinker lines to eat and drink. Level 2 activates at 2.8 ◦C above the TT and operates for
20 s every 15 min. It combines getting the birds up to release trapped heat with increased
wind chill on the birds from additional tunnel fans operating and increased amount of
sprinkler droplets on the heads and feathers of the birds. Level 3 activates at 4.4 ◦C above
TT and operates for 20 s every 5–7 min, depending on conditions, and creates bird surface
wetting that allows maximum wind chill because of the nearly constant evaporative cooling
of water droplets off the birds and a steady wind speed above 2.5 m/s (500 ft/min). For
this study, 8 tunnel fans were running during Level 1, 9 fans during Level 2, and 10 fans
during Level 3. Even though the tunnel fan set points were staged 0.56 ◦C apart, fans 9 and
10 were withheld until the sprinkler system reached levels 2 and 3, respectively. Table 2 lists
temperature and run time settings suggested by the manufacturer. Table 3 lists sprinkler
and cool cell settings used in the study.
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Table 2. Temperature and run time settings suggested by sprinkler manufacturer.

Level Degrees Offset above TT + Run Time (s) Idle Time (min)

1 1.1 ◦C (2 ◦F) 10 30
2 2.8 ◦C (5 ◦F) 20 15
3 4.4 ◦C (8 ◦F) 20 5–7

+ TT = tunnel temperature set point.

Table 3. Set point temperatures (T) of the sprinkler system (SS)/cool cell (CC) used in this study.

Flock Day Set-Point T (ST) Tunnel T (TT) SS Level 1 SS Level 2 SS Level 3 CC-ON T †

27–61
Temperature, ◦C

23.7–15.6 ST + 3.3 TT + 2.2 TT + 3.9 TT + 5.6 TT + 12.2 (ST + 15.6)

Example
56 16.7 20 25.6 27.2 28.9 32.2

† Cool cell is allowed to be wetted for a short duration of 20 s at a time when CC setpoint temperature is reached
in order to prevent substantial decrease of indoor temperature.

We operated the sprinklers under similar idle times of each cooling level but at
temperature settings slightly higher than recommended by the manufacturer (Table 3). In
the combination house, the cool cell (CC) was allowed to be wetted for a short duration
of 15–20 s at a time when CC setpoint temperature of 32 ◦C (90 ◦F) was reached in order
to prevent substantial decrease of indoor temperature. The goal is to allow the sprinklers
to do as much cooling as possible and use the cool cells only in extreme situations. It is
critical to not run the cool cell system too soon, too often, or too long when sprinklers
are used. Doing so tends to keep the house too cool and too humid for the sprinklers
to be most effective. Ideally, cool cells should not operate before a house temperature of
31 ◦C is reached for the sprinklers to be most efficient. While this higher temperature may
seem frightening to some, it comes with a lower humidity level that is beneficial to house
environment, allowing birds to utilize evaporative respiration more efficiently.

2.3. Measurements

In-house temperature and relative humidity data were monitored and recorded by
an Intelia data collection system (Intelia Technologies Inc., Quebec, QC, Canada) in each
house with collection interval of 15 min. Cooling water use by sprinkler and evaporative
cooling systems were monitored using water meters containing an electrical pulse output
(1 pulse = 3.8 L (1 gal)).

Initial bedding material was kiln-dried pine shavings. However, at the time of the
study, the two broiler houses had not received a total litter clean out in over 10 years. Every
two years, approximately one half of the litter material was removed from each house to
re-establish a litter depth of four to six inches and the remaining litter was evenly spread
back out and was used to grow additional flocks. No topdressing of litter was performed
between flocks. Chicks were placed directly on old litter material after caked litter was
removed and the litter re-leveled. Down time between flocks was 22 d for the first flock and
17 d for the second flock. Litter moisture content was measured by sampling litter at the
end of weeks 7 and 9 during both flocks. Litter was collected separately from 16 locations
in the cool cell and fan ends of the houses. The eight subsamples from each end (16 total
subsamples) were collected from the top 1–2 cm of the litter surface using a round point
shovel and thoroughly mixed in a 19 L (5-gal) bucket. From this mixed sample, a 946 mL
composite subsample was placed in a plastic bag and transported to the Mississippi State
University Chemical Laboratory for moisture content analysis [48]. Production data such
as feed conversion ratio (FCR), body weight, mortality, and paw quality data were collected
by processor at harvest. However, there were no significant differences in production data;
therefore, production data are not discussed in the current paper.
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2.4. Statistical Analysis

Maximum indoor temperatures of each day (collected every 15-min) for the time
period 9:00 am to 9:00 pm (when water cooling systems were operational) were collected
and averaged as daily averaged maximum temperature from each house. Coincident
relative humidity (RH) values when the maximum indoor temperatures occurred were
collected and averaged for this duration. The temperature and RH values from two cooling
regimes were analyzed using one-way ANOVA using SAS 9.4 with significance indicated
by p ≤ 0.05. Litter moisture contents of the two flocks from either cool cell half or the tunnel
fan half for weeks 7 and 9 were analyzed separately. Although low replication was an issue
in this study, as is always the case with whole-house treatments on commercial poultry
farms, results are similar to those reported previously [31,47,49].

3. Results

3.1. Relative Humidity and Temperature

Maintaining cool cell set point temperature in the combination-cooling house at
32 ◦C (90 ◦F) resulted in limited use of cool cells in the combination house. As a result,
the daily averaged maximum temperature in the combination house was 2.2 ◦C higher
(p < 0.0001) in the combination house than in the cool cell only house (Figure 1a). However,
the higher temperature was offset by a 12.2% lower coincident humidity (p < 0.0001) in
the combination house (Figure 1b). The effect of sprinklers on the in-house environment
showed the trend of lower relative humidity and higher temperature in the combination
house than those in the cool cell only house during day-time cooling period, consistent
with previous studies [31,50].

Figure 1. Thermal environment when cooling was in effect to raise heavy broilers during May–Oct
2020. (a) Average daily maximum house temperature, and (b) average of coincident relative humidity
as maximum temperature occurred. SEM: Pooled standard error of mean. Letters A or B showing
significant difference.

Even though maximum house temperatures in the combination house were higher
(Figure 1a), this should not be equated with actual bird comfort temperature. The direct
cooling effect of the sprinklers on the birds, indicated by the lower surface temperature
(Figure 2a,b), was effective in facilitating heat release from birds and compensating for
higher environmental ambient temperature [30–34,45,51]. High ambient temperatures
resulted in use of evaporative cooling pads in the cool cell house and sprinklers in the
sprinkler/cool cell combination house.
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(a) (b) 

Figure 2. Thermal images showing surface temperature of birds in a combination-cooling house at
58 d before sprinkling (a) and after sprinkling (b). The wetted surface due to sprinkler operation
lowered body surface temperature overall (blue color (b)) with most of chickens’ feet and head/neck
shown as warm red color.

3.2. Water Used for Cooling

Water is essential for a variety of physiological functions and the productive perfor-
mance of chickens. However, with recent uncertainties exacerbated by climate change,
plentiful water availability is no longer a certainty in many locations and water scarcity
is becoming a major global concern. Several factors affect the daily water requirement
for poultry: e.g., housing conditions (temperature, lighting program and intensity, etc.),
performance level, and feeding-related factors (type and ingredients) [2]. A major benefit
associated with the sprinkler system is the potential cooling water savings compared to
a cool cell only system. Daily cooling water use for each house is reported per flock in
Figure 3. Cumulative cooling water for each flock is reported in Table 4. Water usage in the
sprinkler/cool cell combination house demonstrated water savings that averaged 64% over
the two summer flocks in comparison to the cool cell only house. These savings are in close
agreement with [31] where savings of 67% were reported and [50] where savings of 58%
were reported. The greatest water savings were observed on days when only sprinklers
were in use in the combination house while evaporative cooling pads were being used in
the cool cell house.
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Figure 3. Daily cooling water use of sprinklers and cool cells for two flocks in two houses from May
to October 2020. House 1 cool cell (Hs 1 cc), House 1 sprinkler (Hs 1 sprink), House 2 cool cell (Hs
2 cc), and House 2 sprinkler (Hs 2 sprink).

Table 4. Cumulative cooling water used in the cool cell (CC) only house and the combination house
when raising heavy broilers during May–October 2020.

Flock #
Water Used in CC-Only

House (L)
Water Used in

Combination House (L)
Portion of Water Used by

Sprinklers (L)
Water Saved in

Combination House

1 † 147,465 50,266 20,138 66%
2 ‡ 44,342 17,459 8877 61%

† 30 d > 30 ◦C, including 6 d > 35 ◦C (daily maximum ambient temperatures). ‡ 13 d > 30 ◦C (daily maximum
ambient temperatures).

3.3. Litter Moisture

We saw no significant effect of sprinklers on litter moisture contents in either the fan
half (Figure 4a) or cool cell half (Figure 4b) of the house at either week 7 or week 9 of the
flocks. This is in agreement with findings from [31] who reported no significant effect by
sprinklers on litter moisture content. However, it does not agree with research by [50] who
found moisture content differed with a two-way interaction between growout × sprinklers
(p = 0.002), with slightly drier litter in the sprinkler house. A weaker relationship was also
found by [50] when sprinklers were considered as a main effect (p = 0.046), where litter
moisture was slightly lower in the sprinkler houses. In the current study, we did see slightly
drier litter in the sprinkler/cool cell combination house. Litter moisture content is a result
of excreted moisture, normal drinker spillage, leaking drinkers, and water evaporation
into the air [39,51]. The potential lower relative humidity and higher temperature in the
sprinkler/cool cell combination house, hence higher water vapor deficit [51], may have
encouraged higher evaporation from the litter.

121



Animals 2023, 13, 2939

24.7%
31.3%

0
5

10
15
20
25
30
35
40

Lit
te

r M
oi

st
ur

e 
(%

)

Sprinkler                    Cool Cell System
Cool Cell System

Litter Moisture (Fan half, wk 7)
SEM = 7.5307  P=0.5995

a

26.9%

28.9%

23
24
25
26
27
28
29
30
31

Lit
te

r M
oi

st
ur

e 
(%

)

Sprinkler                 Cool Cell System
Cool Cell System

Litter Moisture (CC half, wk 9)
SEM = 0.247   P=0.1077

b

Figure 4. Average litter moisture contents over two flocks. (a) fan half of houses in week 7; (b) cool
cell half of houses in week 9. SEM: Pooled standard error of mean.

4. Discussion

4.1. Understanding Sprinkler Cooling

Understanding a sprinkler-type surface-wetting system requires a complete rethinking
of how to cool chickens and overcoming the initial fear of a slightly elevated house tem-
perature. Sprinkler cooling attempts to cool individual chickens, unlike cool cell systems
that attempt to cool the environment where the chickens live. Sprinkler cooling requires a
slightly warmer house temperature and an associated lower house humidity other than
a standard cool cell system usually provides. This warmer, drier environment does two
things: (1) it creates a situation where the bird can more effectively and efficiently cool itself
through evaporative respiration, and (2) it creates an auxiliary heat release mechanism,
replacing the loss of sensible heat dissipation due to hot weather [31,50,52].

It may surprise some that the sprinkler system did not have a more obvious effect on
litter moisture, as one might think applying water directly to the birds would increase litter
moisture content. However, the quantity of water reaching the litter from the sprinklers
is generally much less than the amount of water that the birds add to the litter in the
manure [53]. The quantity of water added to the floor (including onto the birds) by the
sprinklers (median 0.07 L/m2/day, maximum 1.04 L/m2/day) is less than the amount
of water the birds add to the litter in their excreta (estimated to be 1.6 L/m2/day to
3.3 L/m2/day) [51].

In addition, even though the sprinkler system applied greater amounts of water on
hotter days, the house was operating in tunnel ventilation mode on these hotter days with
maximum air speed from all tunnel fans in operation. These conditions were favorable
for rapidly evaporating the water applied to the birds by the sprinklers before it had the
opportunity to reach the litter (while also ensuring a maximum evaporative cooling effect).
A key feature is to maintain an interval between sprinkler operations that is sufficient to
allow the water applied during one sprinkler application to be evaporated just before the
next sprinkler application. It is important to allow the birds to dry off between sprinkler
applications.

The phase change from liquid to water vapor taking place at the birds’ surfaces is
much more efficient at dissipating heat than convective heat transfer between chicken
bodies and the warm surroundings [48]. Furthermore, as birds age and more completely
fill the house, only a small portion of the water applied by the sprinklers actually reaches
the litter due to water droplets landing only on the birds that now cover all the floor area.
We did observe a tendency for litter moisture to be slightly drier in the sprinkler/cool cell
combination house compared to the cool cell only house. In general, litter moisture content
is influenced by multiple factors [39], such as those associated with drinkers, ventilation
rate, bird health, and litter properties which were beyond control within the scope of
this study.
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4.2. Sprinkler Advantages

The reason the combination cooling achieved a large amount of cooling water saving
lies in the way water is employed. The quantity of water used by a cool cell system is largely
determined by the psychrometric process and is a function of the outside temperature and
humidity conditions, the amount of heat released by birds, and the amount of ventilation
air exchange through the house. High cooling water usage from a cool cell system is a
consequence of the high ventilation rate at approximately one air exchange per minute
to exhaust humidified air. The quantity of water required to cool birds through surface
wetting followed by evaporation is governed by the heat production demand of the birds
and the temperature surrounding the birds. Birds’ surface acted as a local evaporative
device, hence high efficiency with relatively small and controlled amount of water in
achieving birds’ cooling. Even though houses experience the same amount of air exchange
under tunnel ventilation, the exhaust air in the combination house was minimally altered
and remained similar to the psychrometric condition as the outside air.

Sustainability has become a key focus for the poultry industry in recent years. In
addition, water scarcity is a serious concern that can no longer be ignored. Sprinkler
cooling of broilers offers considerable water savings without sacrificing flock performance.
As the poultry industry seeks opportunities to lessen its environmental footprint and
become more sustainable, sprinkler cooling should be considered an important tool to
address water scarcity, improve water conservation efforts, and help the industry reach its
sustainability goals.

5. Conclusions

The combination cooling of heavy broilers used the sprinklers as the first line of
cooling defense, with cool cells used only to prevent extreme warm conditions, to best
achieve the full potential of sprinkler cooling. The management employed in this study
allowed 64% of cooling water saving compared to cool cells alone. The houses with
combination cooling were warmer during the daytime period when supplemental cooling
by water is necessary, with an average daily maximum temperature of 2.2 ◦C above that
in a house typically operated under a cool cell system. The relative humidity remained
lower in the combination houses than in typical cool cell houses. This study indicated
that an intermittently operated surface wetting method in tunnel ventilated houses can
be effective to compensate for indoor house temperature up to 31.6 ◦C (89 ◦F) in cooling
floor-raised broiler chickens up to 4.42 kg. Operating the house slightly warmer and drier
by delaying the cool cell system is critical in maintaining similar litter quality under the two
cooling regimes.
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Simple Summary: Understanding the views and concerns of precision livestock farming (PLF)
held by the key players in the US swine industry is particularly important for its widespread
acceptability. Using a Q-methodology approach following initial individual in-depth interviews
6 months earlier, we found that while most stakeholders view PLF as good and beneficial to pigs
and humans, some expressed concerns about its limitations and pitfalls. Specifically, stakeholders
who are optimistic about PLF think it should augment but not replace effective management. They
also think it will improve pig health, welfare, and make pig keepers’ jobs simpler, safer, and better.
However, stakeholders who are concerned about PLF view it as a poor proxy for farmers to keep an
eye on the herd, see issues, and resolve them. They also believe PLF does little to lessen the negative
effects of swine farming on the environment. We contend that competing perceived benefits and
concerns about PLF may hinder widespread adoption.

Abstract: This study used the Q-methodology approach to analyze perceptions of precision livestock
farming (PLF) technology held by stakeholders directly or indirectly involved in the US swine
industry. To see if stakeholders’ perceptions of PLF changed over time as PLF is a rapidly evolving
field, we deliberately followed up with stakeholders we had interviewed 6 months earlier. We
identified three distinct points of view: PLF improves farm management, animal welfare, and laborer
work conditions; PLF does not solve swine industry problems; PLF has limitations and could lead to
data ownership conflict. Stakeholders with in-depth knowledge of PLF technology demonstrated
elevated levels of optimism about it, whereas those with a basic understanding were skeptical of PLF
claims. Despite holding different PLF views, all stakeholders agreed on the significance of training
to enhance PLF usefulness and its eventual adoption. In conclusion, we believe this study’s results
hold promise for helping US swine industry stakeholders make better-informed decisions about PLF
technology implementation.

Keywords: precision livestock farming; Q-methodology; stakeholder; pork industry

1. Introduction

Global meat consumption has increased significantly over the past few decades, with
pork and poultry showing the most substantial growth in consumption rates [1]. In fact,
the number of animals kept on the farm has grown substantially, while the number of
farmers has dwindled [2]. As a result, each farmer has considerably larger herds, which
makes it challenging for them to consistently monitor every animal in such large groupings
in a way that assures each animal’s welfare while minimizing environmental impact.
Specifically in the swine industry, the low-profit, high-risk [3] nature of pork production
further exacerbates this situation.
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Precision Livestock Farming (PLF) is a management system that involves using tech-
nology to continuously collect and process data from individual animals [2]. This is
significantly different from other approaches that monitor animal welfare by human ex-
perts scoring animal-based indicators on an infrequent basis. The application of PLF
technology has recently been proposed as one of the ways to help address public concerns
transparently and objectively [4]. According to the proponents of PLF, these technologies
can assist with many issues, including farmer profitability, environmental concerns, and
animal welfare, and might even be able to improve all these issues at once [5].

Although PLF holds many promises, it also raises many concerns. As PLF evolves,
further farm consolidation is possible since only those with the financial wherewithal
to invest in PLF may benefit from it [6,7]. The loss and “de-skilling” of agricultural
employment is another issue associated with the use of PLF in animal agriculture [8]. As
livestock monitoring and care become more automated, PLF will need less labor and those
jobs will not require many of the skills that are currently needed [7].

According to Werkheiser [5], there are other broader societal implications of PLF.
Firstly, there is a worry that resources are being allocated to develop technology that could
be used for monitoring humans as well [5]. Secondly, there is a risk that this technology
becomes normalized, which could decrease resistance to its use, both in terms of legal
regulations and public perception [5].

Hitherto, very few studies have investigated stakeholders’ perceptions of PLF—exceptions
are Giersberg and Meijboom [9], Klerkx and colleagues [10], and Pfeiffer and colleagues [11].
Specifically, there is no empirical study on the suitability of PLF technologies for different
stakeholders within the US swine industry, and the perspectives of various stakeholders
on the implementation of these technologies and the utilization of PLF data are not yet
known [10]. Moreover, there is a paucity of information on the benefits PLF offers, as well
as the concerns and limitations associated with its implementation [9]. Consequently, there
is a significant knowledge gap that must be addressed to fully comprehend the broader
implications and viability of PLF technologies within the US swine industry.

This study examined US swine industry stakeholders’ perceptions of and needs for
PLF across the pig production system ranging from areas of genetic improvement to welfare
certification. We adopted Q-methodology to quantify swine stakeholders’ perceptions of
PLF technology. The growing recognition that the opinions of stakeholders involved in the
development and usage of technology must be considered for decisions to be recognized
as legitimate is a major factor in Q-methodology’s rising popularity in technology-related
studies [12–14].

2. Materials and Methods

The Q-methodology approach combines quantitative and qualitative techniques to
examine people’s subjective beliefs scientifically and enables researchers to statistically
identify and categorize opinions on a given topic [15]. In a Q-study, an individual is
presented with a set of statements about a given topic and then asked to rank-order the
statements. In our study, participants ranked statements from “Most Like What I Think”
to “Least Like What I Think “ using the Q-grid in Figure 1. This operation is referred to
as Q-sorting.
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Figure 1. Q-sort grid.

The Q-methodology procedure shown in Figure 2 is briefly described here. The
first step in the Q-method entailed defining and building a concourse. The concourse
refers to the collection of subjective statements (from the Latin concursus, meaning “a
running together” as when ideas run together in thought) [16]. Concourses are statements
describing the subjective views, opinions, and arguments put forward by individuals,
stakeholders, professionals, and scientists about a particular topic (in this study, PLF).
Meanings attributed to the concourse are inherently social and contextual; hence, it is
assumed that stakeholders would inevitably draw from the ongoing PLF social discourse
in constructing and articulating their experiences and perceptions of PLF [16].

Figure 2. Q-methodology procedure.

The second step was the development of the Q-set, which was a subset of statements
drawn from the larger concourse, and it was this set of statements that was presented to
participants in the form of a Q-sort. The Q-set for this study was developed from in-depth
interviews reported by Akinyemi and colleagues [17]. The Q-set comprised subjective
statements on PLF made by 12 individuals. These individuals were purposefully chosen
to reflect the diversity of PLF perspectives across the swine industry ranging from pig
producers to pork consumers. The stakeholders were domain experts in swine welfare,
swine veterinary medicine, animal welfare auditing, animal health regulation, technology
development, agricultural engineering, animal care, and compliance, animal breeding and
genetics, and consumer advocacy. The demographic characteristics of the participants are
shown in Table 1.
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Table 1. Participants’ demographics.

Experience (Years) Organizational Role Position Relationship with PLF

P1 26–30 Veterinary services Owner PLF technology developer
Technology development
Farming
Academic/research
Welfare certification/auditing

P2 1–10 Welfare certification and regulation Director animal care
compliance Potential off-farm PLF user

Regulation
P3 31 or more Food retailing Executive Potential off-farm PLF user

Welfare certification/auditing
Regulation
Education

P4 1–10 Welfare certification and compliance Consumer services
manager Potential off-farm PLF user

P5 11–15 Large-scale swine farming Chief technology
officer

PLF technology developer
and farmer

Technology development
P6 16–20 Veterinary services Director PLF technology developer

Technology development
Pharmaceutical

P7 31 or more Technology development Director PLF technology developer
and farmer

P8 16–20 Swine veterinarians association Director Potential off-farm PLF user
P9 31 or more Government regulation Leader Potential off-farm PLF user
P10 11–15 Academic/research institution Senior researcher PLF technology developer

Technology development
P11 31 or more Academic/research institution Professor PLF technology developer

Technology development

The 30 Q-set statements that were chosen for the Q-sorting exercise were derived from
55 subjective statements on PLF that were obtained from the 12 interviews. Ten main themes
emerged from the 55 statements after careful analysis and categorization. These themes
were not a strict categorization; rather, they represent coverage of the most relevant topics
related to stakeholders’ views on PLF. After several rounds of discussion among authors,
redundant statements were either rephrased clearly, closely similar themes were merged,
and vague statements were deleted. At the end of the process, the initial 55 statements
were refined into a more comprehensive Q-sample composed of 30 statements. We also felt
these 30 statements would reduce the cognitive burden of ranking 55 statements in 30 min
on the participants. We ensured that the Q-samples were composed of statements that were
“natural” in the language of stakeholders and “comprehensive” in their PLF views [18] to
provide them with the opportunity to best express their personal views of PLF [19].

Gender and level of education were omitted to preserve participants’ anonymity. The
third step in this process entailed choosing the Q-participants which are referred to as
the ‘P-set’. In our case, the selection of the P-set was not performed at random; rather,
these participants were 11 of the 12 original stakeholders who informed the Q-set and had
been chosen to reflect diverse PLF perspectives across the US swine industry. This sample
size is considered appropriate for this type of study [20–23] since P-set is expected to be
composed of individuals who are theoretically relevant to the research question [24,25].
We deliberately made the decision to use the same group of stakeholders to develop the
concourse underlying the Q-set and to participate in ranking the Q-set statements for
two reasons. First, we wished to see how US swine industry stakeholders would view
their own statements as well as statements from others in the group to examine how the
stakeholders as a whole were similar to or different from one another. Furthermore, we
wanted to examine whether their individual perspectives about PLF, which is a rapidly
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changing landscape, had changed in the 6 months between their original interviews and
the Q-sort exercise.

The actual Q-sorting was conducted in step four. During Q-sorting, each participant
ranked the 30 Q-statements into a Q-grid (see Figure 1). The Q-grid created a forced quasi-
normal distribution using a pre-determined pattern grid with a scale labeled “More Like
What I Think”, “Neutral”, and “Least Like What I Think”. The Q-sort was concurrently
administered to a group of 9 persons in a conference room while 2 joined online via Zoom.
The instructions (see Appendix B) for the Q-sort exercise were read and explained to
all the participants who were also given the chance to ask clarifying questions. The Q-
sorting lasted for approximately 30 min. During the Q-sorting, participants were given
a set of 30 index cards (9 persons in the room were given printed index cards while the
2 participants on Zoom were given electronic index cards). Each index card had one of
the 30 Q-set statements written on it and randomly numbered. They were given the Q-
sort grid with the instructions, and they were first asked to sort the cards into three piles
of “More Like What I Think”, “Least Like What I Think”, and “Neutral (statements for
which participants had no opinion)”, based on their opinion of PLF. Next, they ranked
the 30 statements on the 30-item forced normal distribution ranging from +5 (More Like
What I Think) to −5 (Least Like What I Think). Participants began by taking the statements
they grouped as “More Like What I Think” and chose the one statement that was “most
like what I think” to place on the worksheet in the “+5” column on the far right. They
were then asked to place the next two statements “More Like What I Think” into the “+4”
column (in no particular order) until all statements from their “More Like What I Think”
pile were placed on the Q-sort grid. The process was repeated with “Least Like What I
Think” statements, starting with a statement in the “−5” column. When the participants
were satisfied with how they had arranged the concourse statements on the Q-sort grid,
they wrote the number on the statement card inside the corresponding squares in the
Q-sort grid. A completed Q-sort grid is shown in Appendices E.1–E.3. Finally, participants
provided basic demographic information (Table 1). The entire process lasted for about
30 min.

In step five, the 11 completed Q-sorts were analyzed using a by-person correlation and
factor analysis approach using PQMethod free online software [26]. Factor analysis is the
practice of condensing many variables into just a few so that research data are easier to work
with. The idea is to identify and work with deeper factors driving the underlying concepts
within data and then uncover and work with these rather than the lower-level variables that
flow from them. Factor analysis is also sometimes called “dimension reduction analysis”.
With factor analysis, data “dimensions” can be reduced into one or more “super-variables”,
also known as unobserved variables or latent variables. For more information on factor
analysis, please see Mulaik [27].

In this study, factor analysis was used to identify correlations (see Table 2) between
the 11 Q-sorts and to reduce the many ‘viewpoints’ of PLF expressed through the sorting
pattern down to 3 factors. These 3 factors represent unique ways of thinking about PLF
among the 11 participants who shared the same factor. These factors are then interpreted as
perspectives. In Q-methodology, ‘viewpoints’ are defined as a common set of perceptions
profiles from participants that form a cluster of correlations [24]. By default, the analysis
produced eight unrotated factors, which accounted for 95% of the total variance in the
Q-sorts. Second, a varimax rotation was used to identify a small number of factors with
significant factor loadings.
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Table 2. By-person correlation matrix.

P6 P4 P8 P3 P7 P9 P1 P10 P11 P2 P5

P6 1 −0.29 0.75 −0.38 0.73 0.28 0.58 0.64 0.24 0.50 0.60
P4 1 −0.21 0.59 −0.54 0.5 −0.46 −0.7 −0.3 −0.4 −0.50
P8 1 −0.25 0.46 0.43 0.58 0.64 0.34 0.50 0.52
P3 1 −0.62 0.17 −0.46 −0.18 −0.17 −0.17 −0.54
P7 1 0.17 0.55 0.62 0.14 0.24 0.68
P9 1 0.25 0.48 0.43 0.32 0.9
P1 1 0.49 0.25 0.50 0.56
P10 1 0.31 0.62 0.58
P11 1 0.28 0.4
P2 1 0.38
P5 1

Before factors were extracted, we had to decide the number of factors to be extracted
and retained as being significant via the PQMethod software. Following Brown’s [25]
guidelines on factor stability, distinctness, clarity, and simplicity, we determined the number
of factors to rotate based on (1) the eigenvalue being equal to or greater than one and (2) each
factor should have at least two significant factor loadings in the unrotated factor matrix.
Two of the eight factors met both criteria (see Table 2). The third factor was included in
the rotation because its eigenvalue was close to one (0.94) and satisfied Humphrey’s Rule,
which states that a factor is significant if the absolute value of “the cross-product of the
two highest loadings exceeds the standard error” [19]. After rotating the three factors (see
Table 2), we found that at least two participants were loaded on each factor, the eigenvalue
of the three factors was higher than one, and the three factors accounted for 73% of the
total variance.

In the last step, we focused the interpretations of the factor analysis on the rotated
solution factor Q-sort values. The unrotated factor solution is presented in Appendix F. For
each factor, we considered the statements with the highest and the lowest Q-sort values
(see Table 3). The highest-ranking statements (i.e., Q-sort values that are between +3 and
+5) indicate what participants who loaded on the factor of interest think of PLF and least
like what participants think of PLF for the lowest-ranking statements. We also paid close
attention to the distinguishing statements (see Appendix D) which are the statements
that were found to be significantly different among factors. The consensus statements
(Appendix D) were also found to be helpful in identifying the PLF-related issues that all
participants could agree on even though they loaded on varied factors.

Table 3. More and least like what participants think of PLF.

Scores Perspective 1 Perspective 2 Perspective 3

5 PLF should be a supplement to good
management and not replace good
management

PLF technology can disconnect
caretakers from pigs and make them
less caring about pigs

PLF usage is limited by poor
internet connection on most
swine farms

4 PLF will improve pig health PLF technology is a poor proxy of a
farmer looking over the herd,
detecting problems, and
addressing them

PLF usage can lead to data
privacy and data ownership
conflicts

4 PLF makes the pig caretaker’s job
easier, safer, and better

PLF technology does not minimize
the environmental impact of swine
farming

PLF’s data often cannot be used
within existing
management practices
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Table 3. Cont.

Scores Perspective 1 Perspective 2 Perspective 3

3 PLF will improve pig welfare PLF technology may digitize swine
production and make it look less
natural and more artificial

PLF is cost-prohibitive to use
across the entire livestock system

3 PLF will help in controlling disease
outbreaks through traceability

PLF technology should be a
supplement to good management
and not replace good management

PLF requires a significant effort to
change processes within an
existing production system

−3 PLF is displacing labor and reducing
job opportunities in the swine
industry

PLF technology will make it possible
for consumers to verify welfare
certification claims

PLF is displacing labor and
reducing job opportunities in the
swine industry

−3 PLF often generates data that conflict
with farmer expert opinions thus
making PLF data less useful

PLF technology will address public
concerns and increase consumer trust
in pork production

PLF will address labor shortages
in the swine industry

−4 PLF can be used without any form
of training

PLF can be used without any form
of training

PLF is a poor proxy of a farmer
looking over the herd, detecting
problems, and addressing them

−4 PLF can disconnect caretakers from
pigs and make them less caring
about pigs

PLF will improve pig health PLF technology will address
public concerns and increase
consumer trust in pork
production

−5 PLF’s data often cannot be used
within existing management practices

PLF will improve pig welfare PLF technology can be used
without any form of training

3. Results and Discussions

The by-person correlation matrix in Table 2 shows the correlation between the 11 par-
ticipants who participated in this study. A perfect positive and negative correlation (r)
corresponds to +1, and −1, respectively. As a rule of thumb, correlations are generally
considered to be statistically significant if they are 2 to 2.5 times the standard error (i.e.,
between 0.44 and 0.56 irrespective of sign but the correlation coefficients considered signifi-
cant in this study are r = 56 and above) [16]. Hence, participant P6 in the first row/column
was statistically significantly and positively correlated with P8 (r = 75), P7 (r = 73), P10
(r = 64), and P5 (r = 60), but weakly and negatively correlated with P3 (r = −38) and P4
(r = −29). In addition, P6 moderately positively correlated with P1 (r = 58) and P2 (r = 50);
however, its positive correlation with P11 (r = 24) was not substantial. Moreover, partic-
ipants P5 and P7, P8 and P10, and P2 and P10 were strongly positively correlated with
each other with the correlation coefficients of r = 68, r = 64, and r = 62, respectively. It
is worth noting that the statistics associated with Q are not intended as a substitute for
the apparent fact that the correlation is suffused with subjectivity, each Q-sort being a
transformation of a person’s opinion, and the coefficients merely indicate the degree of
similarity or dissimilarity in perspective.

Presented in Table 4 are the factor loadings from the PCA. In essence, PCA uses the
correlation matrix shown in Table 2 to determine how many fundamentally distinct Q-sorts
are present. Q-sorts that are highly correlated with one another may be considered to have
a family resemblance, with members within one family being strongly correlated with
one another but not with those of other families. The number of various families (factors)
is revealed via PCA. Therefore, the number of factors is entirely reliant on the actual
performance of the Q-sorters and is simply empirical. In this study, the factors represent
different perspectives of PLF, with those individuals sharing a common perspective defining
the same factor. As previously noted, each factor represents different perspectives or
conceptualizations of PLF. Factor 1 perspective of PLF is shared by seven participants,
namely P1, P2, P5, P6, P7, P8, and P10. Factor 2, however, is a manifestation of a strong
bipolarity between P3 and P4 on the positive side of the pole and P1, P5, and P7 on
the negative side of the pole. Factor 3 represents a single perspective of PLF shared by
participants P9 and P11. A sort is significantly associated with a factor at p < 0.01 statistical
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significance if the absolute value of the factor loading is greater than 2.58 ÷ √
(the number

of statements used in the Q-sort)), which is equal to 0.47 in this study [25]. Based on the
Q-sort association with each factor, P1, P2, P5, P6, P7, P8, and P10 are correlated with Factor
1. However, P3 and P4 are correlated with Factor 2 whereas P9 and P11 are correlated with
Factor 3.

Table 4. Rotated solutions of participants’ Q-sorts.

Participants/Q-Sorts Factor 1 Factor 2 Factor 3

P1 0.57 * −0.51 0.2
P2 0.73 * 0.02 0.19
P3 −0.1 0.87 * −0.03
P4 −0.01 0.86 * −0.01
P5 0.62 * −0.59 −0.17
P6 0.79 * −0.37 0.08
P7 0.55 * −0.68 −0.02
P8 0.76 * −0.21 0.28
P9 0.46 0.22 0.63 *
P10 0.88 * −0.08 0.17
P11 0.11 −0.13 0.91 *
% Eigenvalue 3.75 2.82 1.45
% Explained Variance 34 26 13

Factor loadings with an asterisk (*) are significantly associated with each factor. A sort was significantly associated
with a factor at p < 0.01 statistical significance if the absolute value of the factor loading was greater than 0.47 [25].

Based on the results in Table 3 and Appendices C–E, three perspectives were identified.
Factor 1 represents Perspective 1: “PLF improves management, animal welfare, and laborer
work conditions”; Factor 2 represents Perspective 2: “PLF does not solve the problems”; and
Factor 3 represents Perspective 3: “PLF has limitations and could lead to data ownership
conflict”. Table 3 shows the bipolar ranked factor score of five statements of “more like what
I think” of PLF (corresponding to the positive factor scores) and “least like what I think” of
PLF (corresponding to the negative factor scores). The higher positive factor scores imply
strong agreement with the statement whereas higher negative factor scores mean strong
rejection of the statement. For example, the statement “PLF should be a supplement to
good management and not replace good management” with the highest factor score of
+5 indicates what participants sharing Perspective 1 strongly think of PLF.

The two statements “PLF will improve pig health” and “PLF makes the pig caretaker’s
job easier, safer, and better” with factor score +4 also reflect what Perspective 1 participants
think of PLF. This group strongly rejects the following statements: “PLF’s data often cannot
be used within existing management practices” (−5), “PLF can disconnect caretakers from
pigs and make them less caring about pigs” (−4), and “PLF can be used without any form
of training” (−4).

Conversely, Perspective 2 participants strongly think “PLF can disconnect caretakers
from pigs and make them less caring about pigs” (+5), “PLF is a poor proxy of a farmer
looking over the herd, detecting problems and addressing them” (+4), and “PLF technology
does not minimize the environmental impact of swine farming” (+4). They rejected the
notion that “PLF will improve pig welfare “(−5), “PLF will improve pig health (−4), and
“PLF can be used without any form of training” (−4).

Participants sharing Perspective 3 strongly think “PLF usage is limited by poor internet
connection on most swine farms” (+5). They share the concern that” PLF usage can lead to
data privacy and data ownership conflicts” (+4), and that “PLF often generates data that
cannot be used within existing management practices” (+4). They strongly rejected the idea
that “PLF technology can be used without any form of training” (−5). They also disagreed
with the notion that “PLF technology will address public concerns and increase consumer
trust in pork production” (−4), and that “PLF is a poor proxy of a farmer looking over the
herd, detecting problems, and addressing them” (−4).
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The 30 Q-set statements and the sources of each statement are shown in Appendix G.
As expected, all stakeholders tend to agree with their own statements as well as statements
from other stakeholders sharing similar roles or relationships with PLF. The PLF technology
developers and large-scale farmers generally agreed with each other but disagreed sharply
with statements from potential off-farm PLF users. Their Q-sorting was consistent with the
views of PLF they expressed earlier during the interview conducted six months before the
Q-sort exercise.

For example, the statements “PLF will improve pig health” and “PLF will improve
pig welfare” were made by technology developers and large-scale farmers during their
individual interviews six months earlier and were later ranked highly with factor scores of
(+4) and (+3) (Table 4), respectively, indicating these statements were more like what this
group thinks of PLF. However, they rejected the statements “PLF can be used without any
form of training” (−4) and “PLF can disconnect caretakers from pigs and make them less
caring about pigs” (−4), which were statements made by potential off-farm users during
individual interviews six months earlier.

Likewise, the potential off-farm PLF user group held on to the views of PLF previously
shared during the individual interview six months earlier and ranked the statements “PLF
technology can disconnect caretakers from pigs and make them less caring about pigs”
(+5) and “PLF technology is a poor proxy of a farmer looking over the herd, detecting
problems, and addressing them” (+4) highly. They rejected the two statements from the
PLF technology developer and farmer’s group that “PLF will improve pig health” (−4)
and “PLF will improve pig welfare” (−5) and ranked them very low.

Perspective 1: PLF improves management, animal welfare, and labor work conditions.

Seven stakeholders (P1, P2, P5, P6, P7, P8, and P10) shared Perspective 1. They
included three technology developers, two swine veterinarians, a swine farmer, and an
animal care and compliance specialist. This group is distinctly different from those with
Perspectives 2 and 3 in that participants who shared this view were optimistic and enthu-
siastic about PLF and were less worried about its limitations and concerns. This group
emphasized PLF benefits such as improvements to swine farm management, pig health,
and animal welfare.

For this group, it was important that PLF should supplement good animal husbandry
and not replace caregivers. According to [28,29], existing swine production management
practices require skilled workers to work long hours in a challenging environment in ways
that can both harm the workers’ mental and physical health as well as increase the animals’
biosecurity risks. Therefore, PLF can improve laborers’ work conditions through automated
non-invasive monitoring and management [30,31] that allows targeted, problem-solving
work rather than repetitive manual labor. In addition, in view of the anticipated labor
shortage in the swine industry in the near future [32], PLF technology that improves laborer
work conditions might serve as an incentive for retaining and attracting farm workers.

Perspective 1 shares the findings of Benjamin and Yik [33] that PLF will help in
controlling diseases by closely monitoring animals which allows farmers, veterinarians,
and others to ensure pigs’ welfare. Further potential to track animals may assist with the
traceability of pork products through the production and distribution value chain. This
is particularly important in view of the low-profit margins in swine production and the
increasing pressures related to the responsible sourcing of pork. These pressures may create
a compelling need and impetus for swine farmers to adopt cost-efficient technologies that
can monitor the actual state of pigs to provide transparency, traceability, and evidence of
improved welfare needed to meet consumer demands.

Most of the Perspective 1 stakeholders had practical knowledge of PLF which may
have informed their beliefs about its value and potential and explained their high optimism
about PLF’s benefits to the swine industry. It is noteworthy that this group shared the views
of Perspective 2 because they do not see PLF as disconnecting caretakers from pigs and
making them less caring, or that PLF data are not usable within existing farm management
practices, and as displacing labor and reducing job opportunities in the swine industry.
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Perspective 2: PLF does not solve the problems.

Two stakeholders (P3 and P4) share Perspective 2. These stakeholders had no prior
direct knowledge of PLF. This perspective is dissimilar to the first perspective in that it is
less optimistic about PLF technology. These respondents thought PLF would not fix the
problems facing the swine industry. This group was worried about the ways PLF could
change the relationships between farmers and their livestock by eliminating the bond
between farmers and their animals that develops as they spend time directly assessing
their well-being [34]. They were particularly concerned that animal caretakers may become
under- or over-reliant on PLF technology and spend less (quality) time with their pigs
which could cause a loss of animal-oriented husbandry skills.

Moreover, Perspective 2 disagreed with Tullo and colleagues [35] and Lovarelli and
colleagues’ [36] claims that PLF can promote sustainability by enabling farmers to feed
their animals with more precision, thereby avoiding waste [37], thus increasing both
environmental and economic sustainability for the farm. On the contrary, they thought
PLF technology does not reduce the negative externalities of swine farming but digitizes
the swine industry, giving it a more artificial and unnatural outlook. Stakeholders in the
Perspective 2 group felt that PLF technology should be used with effective management,
not as a replacement. Finally, respondents favoring Perspective 2 were pessimistic about
the claims that PLF could improve pig welfare and pig health. There was also skepticism
among this group that PLF will allay public concerns, boost consumer confidence in pork
production, and enable consumers to independently verify welfare certification claims.
However, they agreed with Perspectives 1 and 3 that PLF technology cannot be used
without training.

Perspective 3: PLF limitation and data ownership conflict.

Two stakeholders (P9 and P11) shared Perspective 3. This group was concerned about
limitations, data ownership, and conflict issues associated with PLF usage. Echoing previ-
ous studies [38–41], this group considered poor internet connection a major problem on
most swine farms in Australia, Europe, and the USA. Although internet connectivity is be-
coming widespread on farms across the world, the connection is sometimes still unreliable
and too slow to carry large amounts of data. Hence, implementing PLF technologies on
commercial farms poses challenges because transferring data to the cloud might not be
optimal or even feasible in all circumstances. Edge computing, which enables data to be
processed at the farm level rather than being sent over the internet, is one potential solution
to these challenges [42].

Another issue associated with PLF emphasized by the Perspective 1 and 3 groups
was data privacy and data ownership conflicts. A previous study by Neethirajan and
Kemp [43] emphasized the need to ensure data privacy and security in precision livestock
farming. According to Wolfert and colleagues [44], data collection on or from farms
is currently limited because farmers prioritize privacy. To address this, new advances
in machine learning are being developed that utilize privacy-preserving data exchange
systems. Successful commercialization of PLF technologies has been hampered by a lack
of open access to and proprietary control in data ownership held by a few commercial
companies [30].

In contrast to the Perspective 1 group, the Perspective 3 group believed PLF data
cannot be utilized within current management practices and that it would take substan-
tial modification to adapt current production system processes to fully utilize PLF data.
Stakeholders with Perspective 3 concurred with Morrone and colleagues [4] that PLF tech-
nologies are too expensive and may reduce the profitability of farming operations. In line
with Perspectives 1 and 2, Perspective 3 stakeholders saw the need for training to effectively
utilize PLF technology, echoing [38]. They rejected the claim that PLF technology would
allay public worries and boost consumer confidence in pork production. They neither saw
PLF technology as a solution to labor problems nor as displacing labor and reducing job
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availabilities in the swine industry. Likewise, they did not see PLF technology as a poor
proxy for a farmer detecting problems and addressing them.

4. Conclusions

This study investigated how persons with varied involvement in the swine industry
saw precision livestock farming technology. Three distinct viewpoints were identified
by this study using Q-methodology: PLF improves farm management, animal welfare,
and labor work conditions; PLF does not solve swine industry problems; and PLF has
limitations and could lead to data ownership conflicts. The results uncovered the diversity
of perspectives held by swine stakeholders about PLF technology and provided common
descriptions of viewpoints.

We noticed dissimilarities in the opinions of stakeholders with direct and indirect PLF
knowledge. Stakeholders with direct and advanced knowledge of PLF (i.e., technology
developers and large-scale farmers) consistently displayed high optimism about PLF tech-
nology over a six-month period whereas stakeholders with indirect and limited knowledge
(i.e., potential off-farm PLF users) tended to be skeptical of PLF claims over the same
period. Nevertheless, these perspectives were also influenced by their employment role, as
those most familiar with PLF were more actively involved in its development. This study
emphasized the significance of training to enhance perceptions of PLF’s usefulness and its
eventual implementation.

5. Limitations of This Study

Although the 11 individuals that constituted the P-set for this study meet Brouwer’s [45]
recommendation of 10 to 40 people and these individuals perform different roles across the
swine industry, there was some imbalance in the perspectives represented. Veterinarians,
technology developers, and large-scale farmers dominated the study population, while
government officials and consumers were least represented, whereas smallholder farmers,
nutritionists, NGOs, and extension agents were not represented at all. These limitations
should be taken into consideration when interpreting findings from this study. Future
studies confirming the three dominant perspectives in underrepresented populations are
needed. In addition, given that the current study focused on the US swine industry,
generalizing findings from this study to other regions of the world should be carried out
with caution. Nevertheless, future research may benefit from implementing similar studies
in other regions of the world.
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Appendix A. 30 Statements for Q-Set

No Statements

1 PLF technology is a poor proxy of a farmer looking over the herd and detecting problems and addressing them

2 PLF technologies cannot manage individual pigs on commercial farms

3 PLF technologies can be used without any form of training

4 PLF technology will improve pig health

5 PLF technology will improve pig welfare

6 PLF technology will help in controlling disease outbreaks through traceability

7 PLF technologies can lower the cost of pork production

8 PLF technologies are cost-prohibitive to use across the entire livestock system

9 PLF technology will increase swine producers’ profit margin

10 PLF technology may digitize swine production and make it look less natural and more artificial

11 PLF technology usage can lead to data privacy and data ownership conflicts

12 PLF technology can disconnect caretakers from pigs and make them less caring about pigs

13 PLF technology will make it possible for consumers to verify welfare certification claims

14 PLF technology may discourage pork consumption because it is probably profitable on large farms which some

15 PLF technology will ensure producers are transparently accountable to consumers

16 PLF technology does not minimize the environmental impact of swine farming

17 PLF technologies are not as precise as technology development companies claim them to be

18 PLF technology usage is limited by poor internet connection on most swine farms

19 PLF technologies’ data often cannot be used within existing management practices

20 PLF technologies require a significant effort to change processes within an existing production system

21 PLF technologies make the pig caretaker’s job easier, safer, and better

22 PLF technologies are displacing labor and reducing job opportunities in the swine industry

23 PLF technology will address labor shortages in the swine industry

24 PLF technology should be a supplement to good management and not replace good management

25 PLF technology is an environmentally friendly production system

26 PLF technology will address public concerns and increase consumer trust in pork production

27 PLF technology will enable producers to accurately plan their feed conversion ratio (FCR) upfront

28
PLF technologies on a farm are made by different vendors and often don’t speak to one another thus making
integration and management difficult

29 PLF technology is not necessarily useful to small-scale farmers operating outdoor mixed housing system

30 PLF technology often generates data that conflict with farmer expert opinions thus making PLF data less useful
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Appendix B. Q-Sort Condition of Instruction

Box A1. Conditions of Instructions for Plf 30 Statements Q Sorting.

A Study on Precision Livestock Farming
In this study, we are interested in your opinion about Precision Livestock Farming (PLF). You will be asked to order 30 cards that
contain statements based on what PLF means to you. Rank and order the statements according to least or most like what you think
of PLF. We are only interested in your opinions, so there are no right or wrong answers.

Instructions

1. There are 30 cards numbered from 1 to 30. As you read the statement on each card, sort them into three piles:

• most like what I think;
• least like what I think; and
• neutral (statements of which you have no opinion)

2. From the “most like what I think” pile, select one card which you think is the most important and place the card in the box
under column +5.

3. From the remaining cards in the “most like what I think” pile, select two cards that you think are the next most important and
arrange them in the boxes (in no particular order) under column +4.

4. From the remaining cards in the “most like what I think” pile, select three cards that you think are the next most important and
arrange them in the boxes (in no particular order) under column +3.

5. From the remaining cards in the “most like what I think” pile, select three cards that you think are the next most important and
arrange them in the boxes (in no particular order) under column +2.

6. From the remaining cards in the “most like what I think” pile, select four cards that you think are the next most important and
arrange them in the boxes (in no particular order) under column +1.

You may find that you do not have enough cards to completely fill these columns. In that case, pick cards from the neutral pile
to fill in the columns. In the event that you have too many cards, place the extras in the neutral pile.

7. Now from the “least like what I think” pile, select one card which you think is the most important and place the card in the box
under column −5.

8. From the remaining cards in the “least like what I think” pile, select two cards that you think are the next most important and
arrange them in the boxes (in no particular order) under column −4.

9. From the remaining cards in the “least like what I think” pile, select three cards that you think are the next most important and
arrange them in the boxes (in no particular order) under column −3.

10. From the remaining cards in the “least like what I think” pile, select three cards that you think are the next most important and
arrange them in the boxes (in no particular order) under column −2.

11. From the remaining cards in the “least like what I think” pile, select four cards that you think are the next most important and
arrange them in the boxes (in no particular order) under column −1.

You may find that you do not have enough cards to completely fill these columns. In that case, pick cards from the neutral pile
to fill in the columns. In the event that you have too many cards, place the extras in the neutral pile.

Finally, arrange the cards in the neutral pile in the boxes (in no particular order) under column 0. When you are finished, you should
have no cards left and no blank spaces on the grid. If you wish to change the position of certain cards, you may do this at any time
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Appendix C. Factor Arrays

Factors

No. Statement 1 2 3

1
PLF technology is a poor proxy of a farmer looking over the herd and detecting problems and
addressing them

−3 4 −4

2 PLF technologies cannot manage individual pigs on commercial farms −2 1 0

3 PLF technologies can be used without any form of training −4 −4 −5

4 PLF technology will improve pig health 4 −4 0

5 PLF technology will improve pig welfare 3 −5 2

6 PLF technology will help in controlling disease outbreaks through traceability 3 −2 −1

7 PLF technologies can lower the cost of pork production 2 −3 −1

8 PLF technologies are cost-prohibitive to use across the entire livestock system −1 1 3

9 PLF technology will increase swine producers’ profit margin 1 0 0

10 PLF technology may digitize swine production and make it look less natural and more artificial −2 3 −2

11 PLF technology usage can lead to data privacy and data ownership conflicts −1 0 4

12 PLF technology can disconnect caretakers from pigs and make them less caring about pigs −4 5 −2

13 PLF technology will make it possible for consumers to verify welfare certification claims 2 −3 2

14
PLF technology may discourage pork consumption because it is probably profitable on large
farms which some

0 2 −1

15 PLF technology will ensure producers are transparently accountable to consumers 1 −2 0

16 PLF technology does not minimize the environmental impact of swine farming −2 4 −3

17 PLF technologies are not as precise as technology development companies claim them to be 0 0 2

18 PLF technology usage is limited by poor internet connection on most swine farms 2 2 5

19 PLF technologies’ data often cannot be used within existing management practices −5 0 4

20
PLF technologies require a significant effort to change processes within an existing
production system

−1 1 3

21 PLF technologies make the pig caretaker’s job easier, safer, and better 4 −1 3

22 PLF technologies are displacing labor and reducing job opportunities in the swine industry −3 1 −3

23 PLF technology will address labor shortages in the swine industry 1 −1 −3

24 PLF technology should be a supplement to good management and not replace good management 5 3 1

25 PLF technology is an environmentally friendly production system 1 −2 −2

26 PLF technology will address public concerns and increase consumer trust in pork production −1 −3 −4

27 PLF technology will enable producers to accurately plan their feed conversion ratio (FCR) upfront 0 −1 1

28
PLF technologies on a farm are made by different vendors and often don’t speak to one another
thus making

3 −1 1

29
PLF technology is not necessarily useful to small-scale farmers operating outdoor mixed
housing system

0 3 −1

30
PLF technology often generates data that conflict with farmer expert opinions thus making PLF
data less useful

−3 2 1

139



Animals 2023, 13, 2930

Appendix D. Distinguishing and Consensus Statements

No. Statements Factor 1 Factor 2 Factor 3

Distinguishing statements

1
PLF technology is a poor proxy of a farmer looking over the herd and detecting
problems and addressing them

�(4)

4 PLF technology will improve pig health �(4) �(−4) �(0)

5 PLF technology will improve pig welfare �(−5)

6 PLF technology will help in controlling disease outbreaks through traceability �(3)

7 PLF technologies can lower the cost of pork production �(2) �(−3) �(−1)

8 PLF technologies are cost-prohibitive to use across the entire livestock system �(−1)

10
PLF technology may digitize swine production and make it look less natural and
more artificial

�(3)

11 PLF technology usage can lead to data privacy and data ownership conflicts �(4)

12
PLF technology can disconnect caretakers from pigs and make them less caring
about pigs

�(5)

13
PLF technology will make it possible for consumers to verify welfare
certification claims

�(−3)

14
PLF technology may discourage pork consumption because it is probably
profitable on large farms which some

�(2)

16 PLF technology does not minimize the environmental impact of swine farming �(4)

18 PLF technology usage is limited by poor internet connection on most swine farms �(5)

19 PLF technologies’ data often cannot be used within existing management practices �(−5) �(0) �(4)

21 PLF technologies make the pig caretaker’s job easier, safer, and better �(−1)

22
PLF technologies are displacing labor and reducing job opportunities in the
swine industry

�(1)

24
PLF technology should be a supplement to good management and not replace
good management

�(5)

25 PLF technology is an environmentally friendly production system �(1)

29
PLF technology is not necessarily useful to small-scale farmers operating outdoor
mixed housing system

�(3)

30
PLF technology often generates data that conflict with farmer expert opinions thus
making PLF data less useful

�(−3)

Consensus statements

3 PLF technologies can be used without any form of training (−4) (−4) (−5)

9 PLF technology will increase swine producers’ profit margin (1) (0) (0)

17
PLF technologies are not as precise as technology development companies claim
them to be

(0) (0) (2)

27
PLF technology will enable producers to accurately plan their feed conversion ratio
(FCR) upfront

(0) (−1) (1)

Note that only statements whose Z-score value is statistically significant at 5%. �indicates that
the statement distinguishes the factor. The value in parentheses () is the Q-sort value.
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Appendix E.

Appendix E.1. Perspective 1: PLF Improves Management, Animal Welfare, and Labor Conditions

Least like what I think Neutral More like what I think.

−5 −4 −3 −2 −1 0 1 2 3 4 5

19 3 1 2 8 14 9 7 5 4 24

12 22 10 11 17 15 13 6 21

30 16 20 27 23 18 28

26 29 25

Note: Numbers 1–30 are the numbers randomly assigned to the Q-set statements in Appendix A.
The Factor Arrays values in Appendix D were used to sort the 30 random numbers

into the grid.

Appendix E.2. Perspective 2: PLF Does Not Solve Swine Industry Problems

Least like what I think Neutral More like what I think.

−5 −4 −3 −2 −1 0 1 2 3 4 5

5 3 7 6 21 9 2 14 20 1 12

4 13 15 23 11 8 18 24 16

26 25 27 17 20 30 29

28 19 22

Note: Numbers 1–30 are the numbers randomly assigned to the Q-set statements in Appendix A
The Factor Arrays values in Appendix D were used to sort the 30 random numbers

into the grid.

Appendix E.3. Perspective 3: PLF Has Limitations and Could Lead to Data Ownership Conflict

Least like what I think Neutral More like what I think.

−5 −4 −3 −2 −1 0 1 2 3 4 5

3 1 16 10 6 2 24 5 8 11 18

26 22 12 7 4 27 13 20 19

23 25 14 9 28 17 21

29 15 30

Note: Numbers 1–30 are the numbers randomly assigned to the Q-set statements in Appendix A.
The Factor Arrays values in Appendix D were used to sort the 30 random numbers

into the grid.

Appendix F. Unrotated Factor Solutions

Participants/Q-Sorts Factor 1 Factor 2 Factor 3

P1 0.85 0.06 −0.17
P2 −0.49 0.64 −0.30
P3 0.79 0.27 −0.06
P4 −0.57 0.61 −0.28
P5 0.81 −0.32 −0.04
P6 0.39 0.68 0.22
P7 0.78 −0.07 0.08
P8 0.79 0.36 −0.24
P9 0.37 0.43 0.73
P10 0.62 0.39 −0.20
P11 0.78 −0.30 −0.23
% Eigenvalue 5.10 1.97 0.95
% Explained Variance 46 18 9
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Simple Summary: Understanding the relationship between supplementation and animal production
requires a systems approach to understand all variables affecting this relationship. Many publications
regarding the utilization of consumed supplements have been published, as have studies focused on
cattle production response. Supplementation costs strongly influence farm profitability, yet many
supplementation strategies aim to supply nutrients to the average of the group, though inter-animal
variation within groups can differ vastly meaning both over- and under-supplementation is occurring,
potentially decreasing production. Measuring real-time cattle intake is historically labor intensive
and typically focuses on total intake instead of individual supplement intake. New precision feeding
technologies such as the C-Lock SuperSmart Feeder (SSF, C-Lock Inc., Rapid City, SD, USA) allow
for real-time supplement intake data collection in field settings but require adaptation periods to
facilitate the usage of these technologies by cattle. New technologies, such as the SSF, offer insight
into behavioral information relating to cattle adaptation rates, feeding patterns, and the relationship
between supplementation and animal production. The objective of this research was to assess
the training and adoption rates of three different groups of cattle (suckling calves, weaned steers,
replacement heifers) to the SSF.

Abstract: Supplementation of beef cattle can be used to meet both nutrient requirements and produc-
tion goals; however, supplementation costs influence farm profitability. Common supplementation
delivery strategies are generally designed to provide nutrients to the mean of the group instead of an
individual. Precision individual supplementation technologies, such as the Super SmartFeed (SSF,
C-Lock Inc., Rapid City, SD, USA), are available but are generally cost prohibitive to producers. These
systems require adaptation or training periods for cattle to utilize this technology. The objective of
this research was to assess the training and adoption rates of three different groups of cattle (suckling
calves, weaned steers, replacement heifers) to the SSF. Successful adaptation was determined if
an individual’s supplement intake was above the group average of total allotted feed consumed
throughout the training period. Suckling calves (n = 31) underwent a 12 d training period on pasture;
45% of suckling calves adapted to the SSF and average daily intake differed (p < 0.0001) by day of
training. Weaned steers (n = 79) were trained in drylot for 13 d. Of the weaned steers, 62% were
trained to the SSF, and average daily intake differed (p < 0.0001) by day of training. Replacement
heifers (n = 63) grazed tall fescue pastures and had access to SSF for 22 d of training. The success rate
of replacement heifers was 73%. For replacement heifers, the daily intake did not differ (p < 0.0001)
by day of training. Results indicate production stage may influence cattle adaptation to precision
technologies.

Keywords: precision supplementation; technology adaptation; beef cattle
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1. Introduction

The supplementation of beef cattle can be used to reach nutrient requirements not met
by forage alone or to increase animal production to achieve desired production goals [1].
Supplementation strategies influence farm profitability, and due to the recent cost increase
in many commonly used supplement sources, precision supplementation is of major im-
portance [2]. Precision livestock feeding, specifically through the use of sensor-based
technologies, can be utilized to match nutrient supply to the individual’s requirement
in real time [3]. By increasing the precision of beef cattle supplementation, nutrient re-
quirements can be met more precisely and excess nutrient use can be avoided [4]. Farm
profitability improves when overall supplementation costs can be minimized, and animal
performance can be optimized by avoiding excess nutrient consumption. Many supple-
mentation strategies are designed to provide nutrients to the mean of the group rather than
to an individual animal [5]. Measuring individual intake in production settings is difficult
at best, but precision supplementation technologies allow this information to be gathered
primarily in research settings [6,7]. The information gathered in research settings may then
be disseminated to producers for application in production settings.

Understanding the relationship between feeding behavior and nutrient utilization is
crucial to improving precision supplementation and total feeding strategies. A variety of
precision feeding technologies have been developed to help understand feeding behaviors
and collect real-time intake measurements [8]. Many of the precision feeding technologies
are better utilized for total intake data collection and are relatively stationary, requiring
a permanent connection to electricity or consistent access to networks for data collection.
Older technologies such as Calan Gates (American Calan Inc., Northwood, NH, USA) re-
quire daily manual refilling and data collection. More recent technologies such as GrowSafe
(GrowSafe Systems Ltd., Airdrie, AB, Canada) or SmartFeed (C-Lock Inc., Rapid City, SD,
USA) offer automated intake data collection, but still require frequent refilling. In contrast,
the Super Smart Feeder (SSF, C-Lock Inc., Rapid City, SD, USA), is a more mobile precision
feeding technology that focuses more on supplementation; allows controlled feed allotment,
in-field data collection, and in-field supplement delivery; and requires less manual refilling.

Cattle often require adaptation or training periods to acclimate and utilize precision
feeding technologies, much like training to utilize conventional feed bunks [9]. Despite
being crucial for accurate data collection, little information is available defining specific
training or adaptation methods and the success of these methods. Both supplement
intake and foraging behavior have been shown to be influenced by the age of cattle,
leading to further questions regarding feeding behavior when utilizing precision feeding
technologies [10]. The objective of this research was to assess the training and adaptation of
beef cattle in three different production stages (suckling calves, weaned steers, replacement
heifers) to the SSF.

2. Material and Methods

2.1. Experimental Site

Three experiments were conducted at the Piedmont Research and Extension Center,
Pendleton, SC, USA, to evaluate the adaptation of beef cattle in various production stages
to precision feeding technologies. All animal experimental procedures were reviewed
and approved by the Clemson University Institutional Animal Care and Use Committee
(AUP2021-0138, AUP2021-0044, and AUP2020-0041).

2.2. Super SmartFeeder (SSF)

The SSF is a solar-powered, automated, mobile precision feeder consisting of a four-
chambered feed bin capable of dispensing up to four supplement types into four separate,
individual feeding stalls (Figure 1). The presence of radio frequency identification tags
assigned to each individual animal triggers feed dispersal as described by [11]. The
SSF utilizes a cloud-based interface to collect and store data to allow users to determine
individual animal supplement intake, the number of animal visits to the feeder, and the
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timing of animal visits. The SSF technology also allows researchers to limit individual
animal supplement intake by assigning individual supplement allotments as well as exclude
individuals from accessing the SSF.

Figure 1. Steers training to C-Lock SuperSmart Feeder. Image Credit: J. Luke Jacobs, Clemson
University.

Proper set-up of the SSF unit is imperative to ensure accuracy. The SSF was calibrated
prior to use per manufacturer recommendations. The SSF feeder was set to dispense small
amounts of supplement (<0.1 kg) for each drop when the animal accessed the feeder. The
weight of the supplement is recorded for each drop while the animals continue to access
the SSF. The animals can only consume a maximum intake for each day as defined in the
system software by the experimenter. The SSF solar panel was oriented to face south to
ensure adequate charging. Additionally, each time the SSF unit was refilled or moved
following initial calibration, the unit was leveled and feed drops of each feeding stall were
manually calibrated per manufacturer recommendations on an independent scale to ensure
accuracy within the SSF system.

The success of training for all experiments was defined as the total individual intake
greater than or equal to the average percentage intake of total supplement offered to the
respective group. Meeting this parameter helps identify individuals within their respective
groups that are more likely to consistently utilize the SSF. Failure to train was defined as
the total individual intake less than the average percentage intake of the total supplement
offered to the respective group.

2.2.1. Experiment 1

Suckling calves (n = 31, age = 86 ± 13 d, BW = 133.5 ± 15.6 kg) were allowed access to
all four SSF stalls for a 12 d training period in a 4.1-ha tall fescue pasture. The SSF stall gates
remained down for the duration of training to prevent dams from accessing supplement
and ensure individual access to the SSF. Suckling calves received 0.45 kg of a commodity
mixed feed (J & D-Lancaster Inc., Lancaster, SC, USA) from d 0 through d 3, and were then
transitioned to 0.45 kg of steam-rolled corn (Godfrey’s Feed, Madison, GA; 87.4% DM, 7.3%
CP, 83.8% TDN) on d 4 where they remained throughout the remainder of the training
period. The commodity mixed feed was offered as a palatable starting feed to encourage
suckling calf consumption from the SSF, since the suckling calves used for this experiment
had no previous supplement exposure.

2.2.2. Experiment 2

Angus-crossed steers (n = 79, age = 188 ± 23 d, BW = 227.5 ± 35.8 kg) were weaned and
placed into a 1.0-ha drylot with access to all four SSF stalls for a 13 d training period. Steers
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were allotted 2.27 kg of a commodity mixed feed (J & D-Lancaster Inc., Lancaster, SC, USA;
89.3% DM, 18.0% CP, 75.1% TDN) from the SSF daily. Additionally, steers were allotted
2.27 kg of the commodity mixed feed in concrete feed bunks at 1400 h daily throughout
the training period and had ad libitum access to bermudagrass hay (86% DM, 15.6% CP,
58.9% TDN) and water. From d 0 through d 3, SSF stall gates were raised, and on d 4 gates
were lowered to ensure individual access to the SSF. The SSF stall gates remained down
throughout the remainder of the training period. Steers used for this experiment had no
exposure to supplementation prior to the start of training.

2.2.3. Experiment 3

Replacement heifers (n = 63, age = 255 ± 20 d, BW = 267 ± 31.7 kg) were allowed
access to the SSF for a 22 d training period in a 4.1-ha tall fescue pasture. Heifers were
allotted 3.64 kg of a commodity mixed feed daily (J & D-Lancaster Inc., Lancaster, SC, USA;
90.0% DM, 16.3% CP, 68.7% TDN). Replacement heifers had no other access to supplements.
From d 0 through d 5, SSF stall gates were raised, and on d 6 gates were lowered to ensure
individual access to the SSF. The SSF stall gates remained down throughout the remainder
of the training period. Heifers used in this experiment had previous supplementation
exposure throughout the weaning period, prior to the initiation of training to the SSF.

2.3. Statistical Analysis

A chi-squared test was performed using the FREQ procedure of SAS Version 9.4 (SAS
Inst. Inc., Cary, NC, USA) to determine differences in the frequency of training success
and failure. Success was defined as a total individual intake greater than or equal to the
average percentage intake of total supplement offered to the respective group. Non-feeders
were included in all statistical analyses. The percent of maximum allotted supplement
cattle consumed was analyzed using the GLM procedure of SAS with training outcome in
the model. Individual daily intake was analyzed using the GLM procedure of SAS with
day of training in the model. Least square means were generated and separated using the
PDIFF option of SAS. Significance was determined at (p < 0.05). Individual animals were
the experimental unit for all studies.

3. Results and Discussion

No statistical difference (p = 0.590) was observed for the frequency of training success
or failure in suckling calves. An adaptation rate of 45% was observed for suckling calves.
Their individual average percentage intake of total supplement offered relative to the group
average of 41.84% is depicted in Figure 2A. An average intake of 66.04% ± 3.41% and
21.92% ± 3.10% of total offered supplement was observed for adapted and non-adapted
calves, respectively (p < 0.001). Figure 2B depicts individual calf intake by day of training
relative to the average daily intake of the group. Suckling calves had an overall average
daily intake of 0.30 kg. Average daily intake differed by day (p < 0.001) for the sucking calf
training period (Figure 2B). Average daily intake was lowest on d 1 and increased daily
until d 3. On d 4, average daily intake decreased sharply, likely due to the change in feed
offered by the SSF. However, consumption increased on d 5, peaking on d 6 and did not
differ from the remainder of the training period. The literature discussing suckling calf
adaptation or utilization of in-field precision supplementation technologies, such as the
SSF, was unavailable. Collecting data on cattle in this production stage is difficult due to
calf reliance on the dam. Suckling calf movement throughout paddocks is likely dictated
by the dam as well. To help facilitate suckling calf interaction with the SSF, the cattle were
placed in smaller 4.1-ha paddocks to increase the proximity of calves and dams to the SSF.
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Figure 2. (A) Total percent of offered supplement consumed (kg) by individual suckling calves
throughout training period relative to the group average of 41.84% (depicted by the bar). Individual
dots above the line represent calves that successfully trained to the Super SmartFeeder. (B) Daily
individual calf intake over the course of the training period. Individual calves are depicted as dots
and the group average by day of training is depicted as a bar.

A greater (p = 0.033) number of successful training outcomes was observed compared
to the failure-to-train outcomes for weaned steers in Experiment 2. Weaned steers exhibited
an adaptation rate of 62%. Their individual average percentage intake of the total supple-
ment offered relative to the group average of 49.78% is depicted in Figure 3A. An average
intake of 70.18% ± 1.99% and 16.46% ± 2.54% of total offered supplement was observed
for adapted and non-adapted calves, respectively (p < 0.001). Figure 3B depicts individual
steer intake by day of training relative to the average daily intake of the group. Weaned
steers had an overall average daily intake of 1.59 kg from the SSF. Average daily intake
differed by day (p < 0.001) for steers and is illustrated in Figure 3B. Average daily intake
was lowest on d 1. Steers reached their maximum average daily intake on d 10; however,
there were no statistical differences from d 9 through d 11. A decrease in average intake
occurred on d 12 of training but rebounded on d 13. The decrease was likely due to the SSF
being refilled.

Figure 3. (A) Total percent of offered supplement consumed (kg) by individual weaned steer through-
out training period relative to the group average of 49.78% (depicted by the bar). Individual dots
above the line represent steers that successfully trained to the Super SmartFeeder. (B) Daily individual
steer intake over the course of the training period. Individual steers are depicted as dots and the
group average by day of training is depicted as a bar.

The frequency of successful training outcomes observed for replacement heifers was
greater (p < 0.001) than the frequency of failure to training outcomes. Replacement heifers
exhibited an adaptation rate of 73%. Their individual average percentage intake of total
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supplement offered relative to the group average of 70.64% is depicted in Figure 4A. An
average intake of 90.02% ± 3.37% and 18.95% ± 2.05% of total offered supplement was
observed for adapted and non-adapted heifers, respectively (p < 0.001). Figure 4B depicts
individual heifer intake by day of training relative to the average daily intake of the group.
The average daily intake of the training period was 3.23 kg. Replacement heifer average
daily intake did not differ statistically by day (p = 0.075) throughout the training period.
Numerical differences were observed and are depicted in Figure 4B. Replacement heifers
had the lowest average daily intake on d 1 of training, and average daily intake increased
numerically on d 2 and peaked on d 10. A sharp numerical decrease in average daily intake
was observed on d 12 and decreased until d 13. This is likely due to the SSF being refilled.
However, average daily intake appeared to increase to levels similar to what was observed
prior to the numerical decrease on d 12.

Figure 4. (A) Total percent of offered supplement consumed (kg) by individual replacement heifer
throughout training period relative to the group average of 70.64% (depicted by the bar). Individual
dots above the line represent heifers that successfully trained to the Super SmartFeeder. (B) Daily
individual heifer intake over the course of the training period. Individual heifers are depicted as dots
and the group average by day of training is depicted as a bar.

Although several studies regarding the utilization of precision feeding technologies
have been published, little literature is available regarding training success and failure rates
for beef cattle of any production stage with SSF units. Several reports describe training
procedures. A study by Husz et al. [11] utilizing preconditioned beef steers (n = 418,
8–10 months of age) reported a 7 d training and adaptation period for steers in each year
of a two-year study. Success was defined as a steer consuming 0.5 kg of supplement for a
3 d period. Unlike the current studies, steers were exposed to the SSF in groups of 40 to
45 animals to limit competition. Husz et al. [11] immediately removed trained steers from
the group to further limit competition at the feeder. Steers not achieving the criteria within
7 d were considered ‘non-feeders’. Throughout the study, Husz et al. [11] reported 31%
of steers did not voluntarily use the SSF following the training period but did not report
non-feeder numbers through the training period. Limiting initial competition of precision
supplementation technologies like the SSF may improve the success of adaptation periods
by allowing more opportunities to feed.

Similar to the weaned steer study, a study by Valliere et al. [12] reported a 24 d
acclimation period for post-weaning lambs (n = 179) on pasture. Lambs were offered
0.23 kg of supplement daily from an SSF in a pasture setting. From d 0 through d 10,
lambs had access to 0.45 kg of supplement in standard troughs, decreasing to 0.15 kg of
supplement. From d 0 through d 5, Valliere et al. [12] reported 30 and 80 percent of lambs
visited the SSF. However, lamb SSF visits varied between 64 and 78% after d 6. From d 6 to
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d 24, 72% of lambs visited the SSF daily. The success rate of post-weaning lambs reported
by Valliere et al. [12] is greater than that observed in weaned steers in Experiment 2. Both
the current studies and the study reported by Valliere et al. [12] suggest longer acclimation
periods may prove helpful in improving the utilization of precision feeding technologies.

A study by Williams et al. [13] reported a 35 d training period to allow steers (n = 40,
BW = 243 ± 23 kg) to acclimate to a similar automated feeder, SmartFeed (C-Lock Inc., Rapid
City, SD), by offering 0.91 kg of supplement three times per week to encourage use of the
feeding system. Williams et al. [13] reported a 12.5% non-feeder rate throughout the follow-
ing study (n = 16) but did not report training results. A similar study by McCarthy et al. [14]
reported a 14 d training period to a SmartFeed system utilizing yearling heifers (n = 126,
BW = 400.4 ± 6.2 kg), and stated that non-training heifers were then utilized as control
animals in the study following training. Another study by Stewart et al. [15] reported a
10 d acclimation period to allow mature ewes (n = 78) to acclimate the SSF. There was no
mention of adaptation success or failure rates in these studies. These studies reported using
older animals; however, the absence of training success and failure in the reports makes it
difficult to compare the results of the current study using replacement heifers.

The age or production stage of cattle appears to influence adaptation time. In the
current studies, replacement heifers that had been previously exposed to supplementation
responded with a rapid increase in average daily supplement intake, reaching daily intakes
greater than 90% of allotted supplement as early as d 2 of exposure to the SSF. Suckling
calves and weaned steers naive to supplementation had slower increases in average daily
supplement intake. Cattle that have never been exposed to supplementation of any kind not
only have to adapt to the SSF but also the supplement itself, which may explain the increase
in average daily supplement intake being less than that observed in the replacement
heifer study.

4. Conclusions

Prior to data collection from precision feeding technologies such as the SSF, cattle must
be allowed to train and adapt to utilizing such technologies to ensure the data collected are
accurate. Adaptation rates of cattle appear to differ based on the production stage. Cattle
previously exposed to supplementation (replacement heifers) appear to adapt quicker than
cattle naive to supplementation (suckling calves and weaned steers). Suckling and weaned
calves naive to supplementation may require training periods of 7 d or more, while older
cattle with previous supplement exposure may be able to train in less than 7 d. However,
allowing additional time during training may help identify animals that will utilize the
SSF more consistently throughout the subsequent study. Introducing cattle to the SSF
with the stall gates raised may hasten adaptation. However, in situations like the suckling
calf study, this was not an option; therefore, longer training periods may be required.
Animal proximity to SSF units may also help increase the success of adaptation. If possible,
training or adaptation periods should be performed in smaller paddocks or drylots to
increase animal interactions with the SSF. Placing SSF units on animal travel routes, i.e.,
between loafing, grazing, and watering areas, may help increase cattle interactions with
the SSF. Further advancement and use of precision feeding technologies will enhance
nutritional management and encourage more efficient nutrient utilization by ruminant
animals. These advances will help improve supplementation recommendations, minimize
wastage of expensive feedstuffs, enhance individual animal performance, and increase
research opportunities utilizing precision supplementation technologies. More research
regarding animal behavior and adaptation to precision feeding technologies is needed to
better utilize these technologies and further understand the relationship between feeding
behavior and nutrient utilization of ruminant animals.
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Simple Summary: Tracking the movements of chickens is important for understanding their well-
being. Traditional methods for measuring chicken mobility are time-consuming and cannot provide
real-time information. In this study, we, the researchers, used a combination of artificial intelligence
methods and computer algorithms to track individual chickens. Using these methods, it was possible
to detect and track individual chickens in two pens. We analyzed the data to see how far and how fast
each chicken moved every hour and every day. Compared to manual measurements, the combined
model provided more accurate measurements of the mobility of each chicken and the entire group,
even when some chickens were hidden, or the detection was not perfect. This study may serve to
effectively track indicators critical for broiler production performance and welfare.

Abstract: Mobility is a vital welfare indicator that may influence broilers’ daily activities. Classical
broiler mobility assessment methods are laborious and cannot provide timely insights into their
conditions. Here, we proposed a semi-supervised Deep Learning (DL) model, YOLOv5 (You Only
Look Once version 5), combined with a deep sort algorithm conjoined with our newly proposed
algorithm, neo-deep sort, for individual broiler mobility tracking. Initially, 1650 labeled images from
five days were employed to train the YOLOv5 model. Through semi-supervised learning (SSL),
this narrowly trained model was then used for pseudo-labeling 2160 images, of which 2153 were
successfully labeled. Thereafter, the YOLOv5 model was fine-tuned on the newly labeled images.
Lastly, the trained YOLOv5 and the neo-deep sort algorithm were applied to detect and track
28 broilers in two pens and categorize them in terms of hourly and daily travel distances and speeds.
SSL helped in increasing the YOLOv5 model’s mean average precision (mAP) in detecting birds from
81% to 98%. Compared with the manually measured covered distances of broilers, the combined
model provided individual broilers’ hourly moved distances with a validation accuracy of about 80%.
Eventually, individual and flock-level mobilities were quantified while overcoming the occlusion,
false, and miss-detection issues.

Keywords: broiler; welfare; mobility; YOLOv5; semi-supervised learning; neo-deep sort

1. Introduction

The poultry industry growth continues skyrocketing globally, concurrent with the
world population surge and the resultant overwhelming demands for ample, nutritious,
and affordable protein sources. Meanwhile, this industry is struggling to create an ecosys-
tem that would ensure sustainability and growth by reducing poultry production losses
due to health and welfare issues, creating feasible livestock environments through precision
technologies, and alleviating labor shortages in giant poultry markets, such as the USA [1].

Welfare plays a commendable role in rendering qualitatively healthy and quantita-
tively superior poultry productions [2]. Fundamentally, it is a multifaceted phenomenon
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that demonstrates chickens’ physical conditions, living habitat feasibility, and mental situa-
tions. Birds require spacious environments to move with ease, access free feed and water
sources, and socialize, while inhibiting infections, lameness, and stress throughout the
rearing period. In this context, mobility tremendously affects individual birds’ welfare
levels [3]. Impaired or zero locomotion in birds may indicate issues such as insufficient nu-
trient consumption needed for growth, possible existing pain or stress, lameness, housing
constraints, and even mortality. Hence, impaired locomotion has been highly identified in
about 15–28% of birds in poultry farms [4]. Hence, mobility or locomotion studies play an
important role in shedding light on the conditions that are effective factors for determining
individual and flock-level welfare in birds.

The traditional Gait Scoring (GS) and Kinematics (GK) methods have been widely ap-
plied to assess locomotion status in individual chickens [5]. While the former method needs
to be carried out by an expert tasked to observe and determine gait level one chicken at a
time, the latter method utilizes statistical and algorithmic approaches to extract locomotion
features, like walking ability, sitting, and standing postures, and correlates them with the
predefined GS levels. As in the works of Aydin, Periera et al., and Doornweerd et al. [6–8],
such features of individual birds are studied and correlated with their predetermined
GS levels. Their results are influential in determining major lameness and locomotion
problems in individual broilers. Due to welfare management urgency, it is more effective to
provide timely, conclusive, subjective, and economical insights into the overall activities of
individuals and flocks day in and day out.

On the other hand, several alternative artificial intelligence (AI) and/or Deep Learning
(DL) methods have been proposed to tackle the locomotion problem and provide further
information on other activities of chickens. The authors Nasiri et al., Fang et al., and de
Alencar Nääs et al. [9–11] have developed very effective pose estimation and speed-based
lameness and behavior detection methodologies using DL models. They have achieved
high accuracies in correlating lameness GS levels and behavior classifications with broilers’
skeletal positions and visual analysis, but we still need highly generalizable and practical
methods in labs and commercial poultry farms; for instance, cameras used here capture
lateral images of flocks, which greatly reduces the analyzability of individual chickens.
Lin et al. and Fang et al. [12,13] have applied a Convolutional Neural Network (CNN)-based
DL model to detect individual chickens in a shallow setup; consequently, their movements
were calculated manually matching consecutive frames. In the work of Neethirajan [14],
a CNN-based YOLOv5 model along with a deep sort algorithm were applied to track
individual birds’ trajectories and provide periodical movements. Although the study
provided flock-level movement orientations, a detailed approach is more helpful in solving
the occlusion problem and the consequent individual bird movement and identification
issues. These studies are hardly generalizable to broiler farms where constant occlusions
happen. Continuously tracking individual bird trajectories and flock-level commotions
are thoroughly complicated. The utilization of large hierarchical datasets that would
encompass different broiler growth phases and render a less biased DL model would
also be crucial in such applications. Additionally, DL has been mostly applied in image
classification tasks, as depicted in the previous works. The efficacy of DL models in image
segmentation and object detection tasks is yet to be discovered.

Generally, the inadequacies in the quantity of data for developing DL models and the
persistence of the occlusion-related identification problems greatly inhibit clear calculations
of the individual birds’ trajectories. On the other hand, to achieve economically beneficial
and effective applications, one needs to consider the processing time, human resource
requirement, and the inherent objectivity of the results. Henceforth, we aimed to tackle
the mobility estimation of broilers while handling the occlusion instances, developing
a more generalizable and robust model, i.e., the YOLOv5 deep sort model, and a new
algorithm for large poultry farms while utilizing large datasets for DL model development.
YOLOv5 is a vastly applied object detection DL model for computer vision. It is one of the
most advanced versions of the YOLO family, surpassing older YOLO versions in terms
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of object detection precision. The YOLO models are primarily designed to perform object
localization and classification in a single-stage regression process, thus outperforming
counterpart CNN-based models, such as faster region-based or mask CNN, in terms of
inference speed and memory efficiency, as well as provide comparable precision levels.
Therefore, it is deemed one of the most effective models for real-time applications [15].
Meanwhile, the deep sort algorithm has been widely applied for the continuous tracking of
detected objects. It is a robust algorithm that is convenient for real-time applications thanks
to its fast run time speed of 20-30 frames per second (FPS) [16]. Overall, the objectives of
this study were to utilize SSL for bringing more data into DL model development, add a
new algorithm on top of the deep sort algorithm for solving the trajectory estimation and
activity levels of individual broilers, and estimate flock level mobility.

2. Materials and Methods

The experiment was carried out in the Animal Science Department labs located in
the Johnson Animal Research and Teaching Unit (JARTU), the University of Tennessee
Knoxville, USA. It consisted of 28 chickens (Cobb 700, with a 1:1 male–female ratio) that
were reared for a period of 54 days between October 18 and December 10, 2021. Day-old
chicks were divided into 2 pens with 12 and 16 birds, respectively. We used birds at two
growth rates: slow growing (<50 g/day) and standard (>65 g/day). Both groups of birds
were reared under typical stocking densities, i.e., 24 kg/m2 for slow growing and 32 kg/m2

for standard, which translated to 12 birds/pen for slow-growing and 16 birds/pen for
standard birds.

Each pen had a 100 cm × 150 cm pen with a standard camera (Amcrest UltraHD 5MP
Outdoor POE Camera 2592 × 1944p) mounted at a 3 m height overlooking the pen, as
depicted in Figure 1. The cameras recorded broiler movements continuously for 15 min per
hour for 24 h. The 15 min period, i.e., the first quarter of every hour, was deemed statistically
significant to represent the total mobility level of birds in an hour [17]. Additionally, it
helped in effectively using computer storage while acquiring ample data for DL model
development and mobility analysis. This setup collected data for 54 days continuously,
encompassing the total life span of the broilers before they were moved to slaughterhouses
at around 3 kg in weight. The video recordings were stored in standard hard drives for
future analysis.

 
Figure 1. Pen dimensions, broilers, feeders, and camera positions.
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2.1. Semi-Supervised Learning

With time and human resource constraints, semi-supervised learning (SSL) is an
influential method in tackling big datasets for DL model development. It lies between
the supervised and unsupervised learning counterparts, benefiting from their respective
strengths. SSL utilizes the guided learning procedure, i.e., learning from labeled datasets,
the former method, and the unguided methodology, i.e., predicting and learning simulta-
neously from unlabeled datasets in the latter one [18,19].

In this study, firstly, to develop the initial YOLOv5 model, we employed a dataset with
1650 labeled images extracted from the recordings of 5 random days. The video recordings
when the broilers were 7, 17, 26, 36, and 41 days of age have been used to build this dataset.
Consequently, with a ratio of 1 frame per minute, images were extracted from them; this
ratio was chosen so that we obtained images that were temporally further away from one
another to reflect different possible positions of the broilers in the pens.

This dataset helped in providing a CNN model with a descent accuracy level, between
50 and 80%; later, it was applied to the next batch of 2160 unlabeled images extracted from the
recordings and corresponded to broilers being 4, 18, 30, 44, and 47 days of age. Collectively, in
these two steps, the dates were selected highly dispersed throughout the experimental period
to utilize recordings that provided unique and less correlated information about broilers in
their different rearing phases. They rendered a final trained model with high generalizability
and lesser bias in recognizing broiler mobility. Eventually, the new successfully predicted
images were fetched to the partially developed YOLOv5 model and made it learn further and
increase its accuracy. Henceforth, we expected that it would help in creating a more robust
and highly accurate model with minimal time and labor mobilization.

2.2. YOLOv5 DL Model

The novelty of the YOLOv5 model lies in its architecture. It comprises backbone, neck,
and head sections. The backbone section focuses on distinguishing the receptive or feature
fields in an image and tries to reduce the number of model parameters to achieve agility
and lower memory requirement [20]. Meanwhile, the neck section classifies important
image features, which improve the localization success rate. The head section combines
low- and high-level features to increase precision rates and provides the final losses of the
model [21].

We used three YOLOv5 model performance metrics, namely mean average precision
(mAP), precision, and the regression coefficient of determination (R2), as depicted in
Equations (1)–(3), respectively [22]. The mAP metric demonstrates the effectivity of the DL
model by taking the mean of the average precision for each class under scrutiny. In this
study, however, there was only one class, i.e., broiler, so the class number (Q) is equal to
1. Meanwhile, the precision metric is a measure of object detection and classification by
the model, true positive is the successful detection of an object, and false positive shows
misleading detections by the model. On the other hand, the R2 value shows how efficiently
the model predicts (ŷi) instances of actual data (yi) [21].

mAP = ∑Q
q=1

AP(q)/
Q (1)

Precision =
True Positive

True Positive + False Positive
(2)

R2 = 1 − ∑(yi − ŷi)

∑ (y i − ŷ)
(3)

2.3. Deep Sort Algorithm

It is comprised of the Hungarian algorithm, the Kalman filter and the utilization of
a bounding box, confidence, and deep features from frames detected by the CNN model.
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The Hungarian algorithm and the Kalman filter are applied for position and velocity
parameter tracking and predict and update their future status accordingly. The integration
of deep features extracted from the detected frames increases the likelihood of tracking
objects effectively, even when they are located very near or are occluded [23,24]. As a
result of consecutive frame association, motion prediction, and deep features, the tracking
algorithm can attach identification (ID) numbers to each detected object and track them if
it can differentiate them effectively. One problem arises during dense occlusion instances
where this algorithm would not be able to associate objects in newer frames. Hence, it
counts them as new objects and assigns new IDs. Here, we developed and applied a
new algorithm integrated with the deep sort algorithm (neo-deep sort) that resolved or
mitigated this problem.

2.4. Neo-Deep Sort Algorithm

The problem of occlusion or lost detection instances poses a major hindrance to
calculating overall individual broiler mobilities. The YOLOv5 deep sort algorithm would
resolve this issue for the most part. However, as the broiler mobility and stocking density
increase, it becomes a monumental task to overcome this issue. Hence, we tested the
following algorithm to correlate new and old IDs assigned on detected objects by the deep
sort algorithm. Essentially, the algorithm would detect when a previously detected ID
is lost and, consequently, it tries to identify when one/more new IDs appear in the deep
sort algorithm results. It then processes several steps to correlate the new ID with the lost
ID or delete those instances that are falsely detected; the algorithm flowchart is shown in
Figure 2, and it was implemented using Python. The algorithm utilized the position of
these lost and new objects to correlate them. If they were located at a distance smaller than
the threshold distance, then the two IDs would be considered the same. This limit would
be selected based on a trial-and-error process [25]. We validated this approach with manual
ID correlation and/or deletion and the neo-deep sort results.

 

Figure 2. Neo-deep sort algorithm flowchart.

2.5. Final Model

The final model consists of the YOLOv5 model for object detection, the deep sort
tracking algorithm, and the new algorithm to correlate and/or delete ID instances for
solving the occlusion problem. We obtained the results after these 3 steps, and then
the flock level and individual broiler’s displacements and their respective speeds were
extracted and categorized accordingly.

The results of the final model consisted of individual broiler’s position in consecutive
frames of a video. The model detected and tracked frames at an interval of about 1/100 s.
Hence, even minuscule positional displacements of broilers were recorded. This can be
an advantage of DL models and render challenging calculation burdens. Afterward, the
coordinates of all the detected chickens in each frame were provided by the model in terms
of maximum (x,y) values with the corresponding frame width and height. These values
were used to assign a centroid coordinate (xc,yc) for each detected frame by Equation (4).
The centroid values for consecutive frames were used to obtain a displacement value by
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the respective broiler. Eventually, the incremental displacement values would be added
to obtain total displacements or moved distance of a broiler, as well as the flock mobility
levels.

Broiler mobility determination was not a straightforward summation of displacements.
We anticipated that small perturbations in body movements would result in the model
reading the frames as a potential displacement. Therefore, we would try to validate the
model’s results with respect to baseline manual measurements as well. This might lead us
to some degree of calibration of the model that would eradicate the misleading results.

(
xc, yc

)
=

(
x +

xwidth/
2 , y +

yheight
/

2

)
(4)

3. Results and Discussion

3.1. Broiler Pens and Data Collection

The broilers’ mobility was recorded for 15 min per hour daily for 54 days, rendering
a total of 1268 recordings. These data were utilized for the training and development of
the YOLOv5 model through the SSL approach. Eventually, broiler mobility analysis was
carried out with the proposed YOLOv5 neo-deep sort model.

3.2. Semi-Supervised YOLOv5 Training
3.2.1. Primary YOLOv5 Model Training

The initial training of the model with the manually labeled images resulted in the
validation mAP, precision, and R2 levels, as shown in Figure 3. The graphs demonstrate
a considerable increase in the success rates of the three metrics; though mAP, with an
81% success rate, may have more room for improvement. In other words, the precision
and R2 values might be high since the model predicts only one class of object, i.e., chicken,
while the mAP may require more training data to achieve a success rate above 90% with
higher confidence levels. Overall, the primary trained YOLOv5 model could be considered
effective enough to be employed on the unlabeled dataset to achieve one of our objectives.

 

Figure 3. Training results of the primary YOLOv5 model.
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3.2.2. Labeling Images with the Primary YOLOv5 Model

The primary trained YOLOv5 model was used to predict labels for these images,
which successfully predicted broilers in 2153 of them. A sample of detected images and the
corresponding labels are depicted in Figure 4. It can be deduced that while SSL provides
highly reliable results by pseudo-labeling images, it introduces some level of error to the
model as well. But it is safe to say that the advantage of this method far outweighs its
misleading results. Additionally, manual labeling of the first dataset took days to complete,
while the pseudo-labeling of the images took less than an hour to complete. The SSL
method was truly effective in providing ample labeled training data to further enhance the
object detection success rate of the DL model.

(a) (b) 

 

 

Figure 4. (a) A manually labeled image. (b) An image labeled by the YOLOv5 model.

3.2.3. Final YOLOv5 Model Training

Finally, the model-labeled dataset was used to further train the existing trained
YOLOv5 model. The newly labeled 2153 images were split into 80:20 sets for training
and testing purposes, respectively. As a result of the second training, the YOLOv5 model’s
predictive capabilities enhanced, as shown in Figure 5. It can be clearly seen that the
mAP level has increased to 98% from the previous value of 81%. Henceforth, the trained
YOLOv5 model has higher detection accuracy compared with the trained models in similar
studies by Fang et al. [13] and Neethirajan [14]. Hence, it was now ready to be applied
along with the neo-deep sort algorithm to analyze broiler hourly mobility levels.
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Figure 5. Second training results of the YOLOv5 model.

3.3. Final Model: YOLOv5 Neo-Deep Sort Application

The final model was applied to the video recordings of the broilers from two separate
cameras overlooking respective Pen #1 (twelve broilers) and Pen #2 (sixteen broilers). As
discussed earlier, the data under study consist of recordings of when broilers were 11, 18,
24, 30, 36, 41, and 47 days old. Therefore, we were able to see the broiler mobility levels
at different ages throughout the rearing process. It is worth mentioning that the model
was trained by the data from Pen #2, and the resultant trained model was applied to one
familiar environment, Pen #2, and a completely new environment, Pen #1. This would
show the ability of the trained model to generalize and perform a completely new dataset.

3.3.1. Broiler Detection Levels

The final model was able to detect broilers at different stages of their lifetime with
reasonably high success rates. The general performance of our model is depicted in the
distribution and boxplot graphs in Figure 6a–c. Overall, the number of broilers successfully
detected in a frame shows a little skewed normal distribution with varying means of 9 and
14 for Pens 1 and 2, respectively. On average, the model was proportionate, 9/12 and 14/16,
and was almost equally successful in detecting the number of broilers in both pens. But,
in general, it performed better in Pen #2 over the course of 7 weeks. As seen in Figure 6c,
the boxplots in the model were consistently performing better in detecting broilers in Pen
#2 compared to Pen #1. Although they do not provide a higher success rate in the first batch
of data from Pen #2, i.e., when the birds were 11 days old. They rendered better results in
the consequent datapoints. On the other hand, in Pen #1, where the broiler stocking density
is lower and the environment is newer to the model, the performance is comparatively less
successful but still consistent and has reasonably high success rates.
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(a) (b) 

 
(c) 

 

Figure 6. Broiler detection results by the final model. (a) Pen #1 frame success rate distribution.
(b) Pen #2 frame success rate distribution. (c) Broiler success rate variation over different age periods.

3.3.2. Broiler Tracking Performance

After the broiler detection process, the tracking step, i.e., the deep sort algorithm,
tried to extract the movement coordinates of the broilers from consequent frames. In some
instances, the tracking sequence of a particular broiler might be lost for a short time due to
occlusions, broilers gliding over, or mixing closely with each other. After reappearing, the
model would start tracking those birds again but would deem them as new birds and hence
assign a new ID. Here, the final model’s continuous tracking ability of a broiler before
losing it is shown in Figure 7a. On average, the model has tracked birds in different pens
with varying success rates; it has tracked the birds better in Pen #2 compared to the results
in Pen #1. In general, the model has tracked the broilers increasingly better as their ages
grew. In other words, as broilers’ weight and volume increased, it was relatively easier for
the model to continuously track them. On average, the broilers were tracked at least 3 min
(20% of the 15 min) into the monitoring period. This may provide enough information on
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the speed, displacement, and mobility levels of a particular broiler, even if we do not try to
associate different IDs of a particular broiler.

(a) 

(b) 

 

Figure 7. Cont.
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(c) 

Figure 7. (a) Average broiler tracking level per hour. (b) Daily average displacement levels.
(c) Average weight change in broilers as they grew.

3.3.3. Broiler Flock Mobility Level

The final model was utilized to track birds using the displacements between consecu-
tive frames from video recordings separated by 1 s. This period was selected to decrease
computation complexity by ignoring broiler perturbations that might have happened in less
than a second. Consequently, the broilers’ total mobility, including moved distances and
speed, was calculated. On the other hand, our proposed algorithm was used to associate
different broiler IDs, as discussed in the previous sections. Henceforth, we were able to
categorize broilers’ mobility comparatively efficiently at each hour of the day. This crucial
result paved the way for continuous insights, enabling timely and effective interventions
on birds with low or no mobility.

Total Displacement of Broilers at the Flock Level

The average daily covered distance by all the broilers and the corresponding average
broiler weights in each pen are demonstrated in Figure 7b,c. As the broilers grew, their
weights increased constantly until the saturation point at the end of the second month.
But, the total displacement level had a different trend in both pens. The average daily
displacements are highest when broilers are aged 18 d. Comparatively, Pen #2 has had
a higher displacement level compared to Pen #1. It can be safely pointed out that higher
stocking densities, such as in Pen #2, cause higher levels of mobility, as going from one point
to another may require more walking and cause disturbance to the surrounding broilers.
Additionally, the daily average covered distance trends give a better understanding of flock
movements than in methods followed by similar works, such as Neethirajan’s [14], which
have avoided providing a quantitative result for this level of movements.

Flock Speed Levels

The average daily broiler speed levels show a similar distribution as the displacements
explained in the previous subsection. As indicated in Figure 8a., broilers in both pens have
shown very similar speed levels, although the mean speed in Pen #2 (with 16 broilers) is
higher than Pen #1 (with 12 broilers). The lowest average speed happened when broilers
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were 24 to 25 days of age in both pens. Meanwhile, the highest broiler speeds were recorded
when the broilers were very young, around the age of 18 d. In both pens, the speed levels
have increased steadily from the age of 25 d to the age of 45 d. On the other hand, the
average speed changes compared to the increase in the weights of the birds demonstrate a
similar trend. The average speed in both pens decreases to a minimum, with birds having
an average weight of 1200 g–1400 g. As weight continues to increase, so does the speed of
the birds as they reach 3000 g in weight. Pen #1 birds seemed to move slower while the
other pen’s birds continued moving faster.

(a) 

 
(b) 

 

Figure 8. (a) Average speed change vs. broiler age. (b) Average speed change vs. weight.
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New Algorithm Application

The proposed algorithm was applied to associate different IDs that were assigned
to the same broiler during the tracking. Figure 9a shows a sample hourly displacement
tracking of the birds on a specific day; for example, at 6:00 a.m., as per the preliminary
results, most of the broilers have moved moderately but birds 12, 14, and 16 have shown
no or very low mobility. But, after the algorithm was applied, it was able to associate
different broiler instances to give a final picture of the mobility of the birds. In this hour,
in Figure 9a, IDs 6, 9, 10, 12, 14, and 16 were associated with IDs 126, 118, 108, 87, 115,
and 146, respectively. The deep sort tracking algorithm had tracked the broilers with the
former IDs and had lost their track due to occlusion instances. After resuming the tracking
when the respective birds had reappeared, the new IDs, in the former list, were attributed
to these broilers. Hence, with the proposed algorithm, we associated these lost instances.
As a result, the final mobility level of the broilers is calculated by adding the individual
displacements of the associated IDs. As seen in Figure 9b, the above-mentioned birds’
final displacement levels have changed after this process. For example, bird #6 had a
displacement of about 10 cm, which increased to about 20 cm after ID association. As in
the case of bird #14, even after ID association, the resultant mobility level and tracking
appearance percentage still fell below 100%. Hence, we can conclude that even after the
ID association process, we might not obtain a very high percentage of some broiler’s
appearances. But, even a 50% appearance level can give us a statistically sound indication
of how much a broiler is mobile. Additionally, we can further investigate the sequential
videos of that day and obtain a bigger picture of that broiler. On the other hand, the final
hourly speed and covered distance by individual broilers provide a more detailed insight
into their mobility levels with higher accuracies compared with similar works, such as
Neethirajan [14], Nasiri et al. [9], and Fang et al. [13]. This may help farm managers have
more control over their resources and day-to-day interventions.

(a) 

 
Figure 9. Cont.
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(b) 

 

Figure 9. (a) Broilers’ ID association process and the respective changes in displacement and % ap-
pearance. (b) Individual broilers with their hourly mobility levels.

4. Conclusions

Broilers’ daily mobility levels significantly impact their daily behaviors, which could be
detrimental to rendering high-quality meat to the market. In this study, we have utilized the
semi-supervised YOLOv5 DL model alongside the deep sort algorithm for object detection
and tracking, respectively. Additionally, we proposed a new algorithm that tackled deep
sort tracking losses due to bird occlusion instances. A total of 7 days of hourly videos,
corresponding to seven consecutive weeks, were studied. The SSL method paved the way
to train the YOLOv5 model with considerably fewer human and time resources. It helped
in increasing the YOLOv5 detection accuracy from 81% to 98%. The final YOLOv5 deep sort
model was influential in tracking broilers continuously, at least around 20% of the time, but
it had limitations in doing so during occlusion periods. Our proposed algorithm lessened
this problem to some extent but was incapable of fully solving the tracking lost instances
problem. Henceforth, in general, individual broiler and flock level displacements and
speeds were computed throughout their growth period. This helped in understanding their
mobility trends and categorizing them accordingly. This vision-based study of mobility
indicators could be further developed by incorporating more effective algorithms to solve
the lost information problem due to occlusions.
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Simple Summary: Global positioning system (GPS) coordinates are often used to calculate distance
traveled, a useful metric for research and decision-making processes in livestock management. The
study aimed to determine the accuracy of using LoRa-WAN sensors to measure the walking distances
of grazing cattle in real time. The study compared the accuracy of distance computation using real-
time LoRa-WAN sensed GPS alone or in combination with motion data from triaxial accelerometers.
The analysis showed that the fusion of GPS and accelerometer data was more suitable for calculating
walking distance in detecting animal welfare implications associated with immobility.

Abstract: Animal welfare monitoring relies on sensor accuracy for detecting changes in animal
well-being. We compared the distance calculations based on global positioning system (GPS) data
alone or combined with motion data from triaxial accelerometers. The assessment involved static
trackers placed outdoors or indoors vs. trackers mounted on cows grazing on pasture. Trackers
communicated motion data at 1 min intervals and GPS positions at 15 min intervals for seven days.
Daily distance walked was determined using the following: (1) raw GPS data (RawDist), (2) data with
erroneous GPS locations removed (CorrectedDist), or (3) data with erroneous GPS locations removed,
combined with the exclusion of GPS data associated with no motion reading (CorrectedDist_Act).
Distances were analyzed via one-way ANOVA to compare the effects of tracker placement (Indoor,
Outdoor, or Animal). No difference was detected between the tracker placement for RawDist. The
computation of CorrectedDist differed between the tracker placements. However, due to the random
error of GPS measurements, CorrectedDist for Indoor static trackers differed from zero. The walking
distance calculated by CorrectedDist_Act differed between the tracker placements, with distances
for static trackers not differing from zero. The fusion of GPS and accelerometer data better detected
animal welfare implications related to immobility in grazing cattle.

Keywords: precision livestock farming; precision livestock ranching; internet of things; long range
wide area network
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1. Introduction

Store-on-board telemetry devices, including Global Positioning System (GPS) loggers
and accelerometer sensors, have gained traction in the last two decades for studying
livestock and wildlife grazing behavior. Integrating these unobtrusive telemetry devices
has enabled the scientific community to gain insights into the behaviors of different animals
in their natural settings [1–4]. For instance, studies performed on cattle grazing on extensive
rangelands using GPS loggers have documented animal movement in correlation with
foraging activities influenced by resource distribution, in their search for thermal comfort,
to avoid predator presence in their environment or other essential activities [3,5–7]. Hence,
the mobility of animals within their environment is crucial for their survival, as they
respond to various biotic and abiotic stimuli.

Developments in communication technology have facilitated real-time data trans-
mission from telemetry devices, helping advance Precision Livestock Farming/Ranching
(PLF/R) applications. One such technology is the Long Range Wide Area Network (LoRa
WAN), a wireless low-power data transmission system with bidirectional capabilities, en-
abling data packet transmission and configuration commands to be sent remotely [8–11].
These networks exhibit far-reaching coverage (up to 10 km) with a stronger signal strength
compared to Wi-Fi and Bluetooth, penetrating insulated objects, and requiring minimal
maintenance with a longer lifespan [11,12]. As a result, LoRa WAN offers an affordable
and effective solution for implementing PLF/R on extensive rangelands with limited
connectivity [11–13].

The Internet of Things (IoT) is at the heart of these applications, with sensory devices
that process unique measurements of physiological and behavioral parameters on animals,
gateways that enable data transmissions from sensors to the internet, cloud services that
provide data storage and analysis, with an output application layering tailoring the data
into usable information for a particular end-user [10,14–16].

Integrating PLF/R could facilitate the transition of traditional livestock production
systems that place emphasis on maximizing animal output to aspirational management
systems that optimize production efficiency by increasing animal welfare and whole-farm
sustainability [17–19]. In addition, consumer pressure exerted through purchasing power in
most developed countries has demanded livestock producers increase animal welfare trans-
parency via enhanced traceability [16,20,21]. Also, the continuous monitoring application
of the PLF/R technology in animal production would enable real-time management of the
smallest manageable unit (sensor-based animal-specific attention) on the production front,
enhancing management flexibility and minimizing environmental impacts with alleviation
of intensive labor requirements [20,22,23].

Animal welfare is a multidimensional concept related to the repertoire of behaviors per-
formed by an animal in its natural state that promote ‘normal’ biological functions [20,24].
Therefore, the success of the PLF/R application to address animal welfare will depend
on the accuracy of sensors to detect changes associated with a deteriorating animal
state [5,18,25]. For instance, using frequently acquired GPS data to compute daily dis-
tance traveled can have direct management implications in addressing animal welfare on
extensive cattle production [17,26,27]. However, control of data quality and improvements
in analytical procedures (algorithms for calculating daily distance traveled metrics) are
paramount in facilitating the implementation of PLF/R applications to address issues
stated previously.

For instance, the precision of GPS measurements is affected by several factors, includ-
ing the type of device with internal limitations, the sensor environment placement, and
the timing of data acquisition in relation to the orbiting satellites. Precision ranges for GPS
sensors used in animal tracking have been reported to not exceed 30 m, provided that the
units have a relatively unobstructed view of the sky [28,29]. However, the precision error
varies among devices and can be further affected by obstructions in the communication
pathways with orbiting satellites [29–32]. Therefore, flagging erroneous GPS locations is
vital when incorporating the data into a computation informing a PLF/R application.
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This study aimed to assess the effectiveness of real-time sensors using Long Range
Wide Area Network (LoRa-WAN) communication for monitoring animal welfare through
daily distance travel metrics. To achieve this, we evaluated the accuracy of calculating the
daily distance travel metric using global position system (GPS) data alone or in combination
with motion data derived from triaxial accelerometers. Three algorithms were tested to
detect any differences between the static sensors placed outdoors (Outdoor, n = 6) or
indoors with an obstructed view of satellites (Indoor, n = 5), vs. trackers mounted on
grazing cows (Animal, n = 6). We hypothesized that the daily distance traveled by the
animal tracker would be greater than the static trackers, with no significant difference
between outdoor and indoor means. We also predicted that the daily distance traveled by
the static trackers would be negligible and not differ from zero, as an animal welfare alert
system would require immobility detection.

2. Materials and Methods

2.1. Experimental Site and LoRa Trackers Configuration

The study was conducted at the New Mexico State University’s Clayton Livestock
Research Center (NMSU CLRC), which is located 7 miles east of Clayton, New Mexico,
USA, and covers a total area of 1.39 km2 (320 acres). The research site consists of flat terrain,
with a section of 0.79 km2 (195 acres) of fenced land configured with a center pivot winter
wheat (Triticum aestivum L.) irrigated pasture and a feedlot facility housed with hydraulic
chutes for animal handling south of the section (Figure 1).

 

Figure 1. Top left: Reference map of the Southwest United States showing the research site marked
with a star (Clayton, New Mexico). Right: Map of New Mexico State University’s Clayton Livestock
Research Center (CLRC) displaying GPS locations of static trackers and non-static trackers, along
with other important landmarks on the research site.
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Long Range Wide Area Network (LoRa WAN) was chosen as the mode of com-
munication between an antenna and the trackers (widgets) [8,9,15]. The PLF/R sys-
tem at the NMSU (CLRC) consisted of a single Kerlink® LoRa-WAN 915 MHz gateway
(https://www.kerlink.com/, accessed on 15 October 2020) with an external high gain
antenna mounted on the feed mill tower using a 30 m coaxial cable (Figure 1). The gate-
way was purchased with a licensed software platform (Thingpark) developed by Actility®

(https://www.actility.com/, accessed on 15 October 2020), allowing data traffic monitoring
and gateway functionality.

LoRa WAN-enabled Abeeway® (https://www.abeeway.com/, accessed on 10 October 2020)
Industrial Trackers US915 were configured to communicate with a single gateway at the
NMSU (CLRC) site. The trackers weigh 240 g, are housed in a waterproof casing, and
operate using an internal Lithium-thionyl Chloride Type D battery (14 Ah/3.6 V). The
trackers were equipped with position, motion, and temperature sensors, and a LoRa-WAN
communication chip embedded in their motherboard. The trackers were then contained
within a Pelican® R20 Ruck case strapped on an adjustable nylon collar belt to reinforce
structural integrity and waterproofing capabilities [11].

The industrial trackers had a licensed software platform (Abeeway Device Manager
2.13.0) for the data surveillance (Map, Performance Monitor, and Uplinks data log) and
tracker configuration under an annual subscription [11]. We opted for the “Activity track-
ing” configuration, with activity reporting as the “main operational” mode and periodic
position message as a “side operation.” The data collection interval was set at 1 min for
motion detection using the tri-axial accelerometer sensors and 15 min intervals for position
acquisition using the GPS-only option.

The process of GPS acquisition demands significant power, leading to a dilemma
between prioritizing high-frequency, short-duration experiments, or low-frequency data
collection for longer-duration studies [4]. According to the guidelines for LoRa WAN-
enabled Abeeway® Industrial Tracker, the estimated device duration is 20 months when
acquiring 24 positions per day (at an hourly frequency of GPS data collection). The selected
motion and position acquisition scheduling for the study was hypothesized to provide a
battery duration of approximately 5 months, making these trackers suitable for deployment
on a working ranch with minimal livestock interaction.

2.2. Study Deployment, Animals

From 24 October to 17 November 2020, 6 randomly selected trackers (Outdoor)
were positioned in fixed locations at incremental distances from the LoRa WAN gate-
way (Figure 1). Using adjustable belts, the trackers were secured on an existing fence line,
approximately ~1 m above the ground and facing the antenna. In addition, five trackers
were housed inside the feed mill office (Indoor), adjacent to the LoRa WAN gateway, to
simulate obstructed GPS communication with orbiting satellites (Figure 1). The deployment
lasted 24 days, but no data was collected for 15 days due to gateway software maintenance
during the middle of deployment (27 October to 11 November 2020).

A follow-up deployment from 22 December to 31 December 2020, utilized the trackers
mounted on mature cattle (Animal) with a subset of only six trackers out of the eleven
randomly selected for the static phase utilized for analysis. Trackers were safely secured on
the necks of the animals using adjustable nylon belts. The collared animals grazed on native
grasslands with access to a portion of an irrigated winter wheat pasture, with ad libitum
access to water and a mineral salt tub (Figure 1). Animal use was approved by the New Mex-
ico State University Institutional Animal Care and Use Committee (protocol # 2019-008).

2.3. Data Processing

All the trackers’ payloads were routed from the Thingpark server that populated
the Abeeway Device Manager to a local New Mexico State University server for data
retrieval and analysis. The data from the static phase were trimmed, with the initiation and
termination dates excluded from the analysis. In addition, the dates when the gateway was
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under maintenance (27 October to 11 November 2020) were also excluded. A total of 7 days
of deployment from the static trackers (Indoor, n = 5 and Outdoor, n = 6) were analyzed. In
the follow-up phase with the trackers mounted on mature cattle (Animal, n = 6), animals
were allowed three days to acclimate to collars and the new environment, followed by a
7-day data collection period (25 December to 31 December 2020).

GPS coordinates were projected to NAD 1983 UTM coordinate system (Zone 13 N)
using ArcGIS software (ESRI 2018, ArcMap Desktop v. 10.6). Erroneous GPS locations were
filtered using a z-score outlier detection analysis for the northing and easting coordinates
separately, as described by Nyamuryekung’e et al. [33]. The z-score outlier detection
analysis followed the conversion of daily projected coordinate values for an individual
tracker into a normalized z-score, highlighting extreme score values with low probability
under assumptions for a normal distribution of data points (z > |4.5|) [33]. Motion
data were reported as counts (Motion Index, MI) of shock within the interval of data
acquisition across the triaxial accelerometer using internal default threshold values and
were represented as cumulative counts between successful GPS data (Figure 2).

 

Figure 2. Data flow diagram illustrating input data from the LoRaWAN trackers and various
dataset processing steps prior to calculating daily distance traveled using three algorithms: RawDist,
CorrectedDist, and CorrectedDist_Act.

The three algorithms for daily distance traveled included using (1) raw GPS data with
associated erroneous locations (RawDist), (2) GPS data with erroneous locations removed
using z-score > |4.5| analysis (CorrectedDist), or (3) GPS data with erroneous locations
removed combined with the exclusion of GPS data associated with no motion (MI = 0)
from the triaxial accelerometer reading (CorrectedDist_Act) (Figure 2). Using projected
GPS positions for the Static (Indoor and Outdoor) and non-Static (Animal) trackers, we
calculated daily distances traveled (m) using three algorithms by summing the consecutive
GPS distances calculated using the Pythagorean Theorem within a day, as described by
Nyamuryekung’e et al. [34].

The daily distance traveled calculations followed the steps below with their mathe-
matical equations:
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1. Let consecutive GPS position be represented as (x1, y1), (x2, y2), (x3, y3), . . ., (xn, yn)
where n is the total number of daily GPS positions.

2. Pythagorean Theorem for calculating the distance between two consecutive GPS
positions (xi, yi) and (x(i+1), y(i+1)):

Distance =

(√(
xi − x(i+1)

)2
+

(
yi − y(i+1)

)2
)

3. The daily distance traveled within a day was calculated by summing the distance
between all consecutive GPS positions within a day:

Daily distance =

(√
(x1 − x2)

2 + (y1 − y2)
2
)
+

(√
(x2 − x3)

2 + (y2 − y3)
2
)
+

. . . +

(√(
x(n−1) − xn

)2
+

(
y(n−1) − yn

)2
)

Caution GPS coordinates must be projected to provide the daily distance traveled by
the tracker in meters.

2.4. Data Analysis

An analysis based on descriptive statistics on each daily distance measurement
(RawDist, CorrectedDist, and CorrectedDist_Act) was computed using the MEANS proce-
dure in SAS 9.3 (SAS Institute, Cary, NC, USA). The data were grouped according to tracker
placement (Indoor, Outdoor, or Animal) and the calendar date of the deployment. Mean,
standard error, sample size, and minimum and maximum values for each daily distance
measurement (RawDist, CorrectedDist, and CorrectedDist_Act) were computed for each
unique combination of categorical grouping (Placement × Date).

The daily distance measurements (RawDist, CorrectedDist, and CorrectedDist_Act)
were estimated using SAS 9.3 (SAS Institute, Cary, NC, USA). The MIXED procedure
with a ‘covtest’ statement was used to analyze distances via one-way ANOVA com-
paring treatments of trackers’ placement either inside a building (Indoor), on the field
(Outdoor), or mounted on mature cows (Animal) grazing pastures at the research site
(Ho: μIndoor = μOutdoor = μAnimal). The tracker’s ID (n = 11), a categorical classification
for each tracker ID and placement combination (n = 17), in addition to the dates (n = 14) of
deployment, were modeled as random variables. Means were computed and compared via
LSMEANS statement for each daily distance measurement (RawDist, CorrectedDist, and
CorrectedDist_Act) between the treatments of tracker placement (Indoor, Outdoor, or Ani-
mal), with a ‘pdiff’ statement for pairwise comparison. In addition, t-tests were conducted
within each model to determine if the daily distance metrics (RawDist, CorrectedDist, and
CorrectedDist_Act) calculated for each tracker placement (Indoor, Outdoor, or Animal)
differed from zero (Ho: μ = 0). Lastly, using the estimate statement, a comparison of the
means between the static state (Indoor and Outdoor) and non-static trackers (Animal)
was computed (Ho: μStatic = μnon-Static). For all procedures, differences were declared
statistically detectable at p ≤ 0.05.

3. Results

The descriptive analysis revealed variability in the accuracy of each daily distance
measurement (RawDist, CorrectedDist, and CorrectedDist_Act) in combination with the
treatment of the tracker’s placement (Indoor, Outdoor, or Animal). Overall, the RawDist
measurement computed using the indoor trackers had the highest means and standard error.
In contrast, the daily distance calculated using CorrectedDist_Act for the outdoor trackers
had the lowest means and standard error. However, animal trackers exhibited the least
variability in the means when compared between the three daily distance measurements
(RawDist, CorrectedDist, and CorrectedDist_Act) (Figure 3).
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Figure 3. Mean daily distance with standard error bars calculated using three algorithms (RawDist,
CorrectedDist, and CorrectedDist_Act), categorized by tracker placement (Animal, Indoor, or Out-
door) and the calendar date of deployment.

The results from our analysis indicated no significant relationship between RawDist
measurement and the treatment of tracker placement (p = 0.23) when the assumption of
normal distribution was violated (outliers detected) (Table 1). Due to the low precision,
the means of the treatments (Indoor, Outdoor, or Animal) were not different from zero.
In addition, there was no effect on the estimate comparison between static and non-static
groupings of the means.

Table 1. Least square means ± standard errors for a daily distance calculated using three algo-
rithms: (RawDist, CorrectedDist, and CorrectedDist_Act). Statistical analysis involved compar-
ing distance computations across tracker placements (letters) for non-static vs. static trackers
(μ non-static = μ static), and assessing the differences of means from zero (μ = 0).

Distance (m) State Placement
LSmeans p-Value
±Std Err μ Non-Static = μ Static μ = 0

RawDist * non-Static Animal 2724 ± 63,475 a 0.33 0.97
Static Indoor 150,644 ± 69,534 a 0.03
Static Outdoor 11,364 ± 66,543 a 0.86

CorrectedDist non-Static Animal 2695 ± 193 a <0.01 <0.01
Static Indoor 1725 ± 211 b <0.01
Static Outdoor 385 ± 202 c 0.06

CorrectedDist_Act non-Static Animal 2574 ± 186 a <0.01 <0.01
Static Indoor 42 ± 203 b 0.84
Static Outdoor 170 ± 193 b 0.38

* Violation of statistical model assumptions associated with outlier presence.

The CorrectedDist measurement revealed a significance of treatment (p < 0.01), with
animal trackers covering a greater daily distance than either indoor or outdoor placement
(Table 1). However, indoor and outdoor means were different from each other (p < 0.01). In
addition, indoor and animal placement trackers differed statistically from zero (Ho: μ = 0;
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p Indoor < 0.01, p Outdoor = 0.06, p Animal < 0.01). However, the estimate statement indicated
a significant difference (p < 0.01) between the static and non-static groupings of the means.

With the last method of calculating the distance, the CorrectedDist_Act measurement
was also affected by tracker placement (p < 0.01). Animal trackers covered a greater
daily distance compared to either indoor or outdoor placement. In addition, indoor and
outdoor means were not different from each other (p < 0.62). Only the animal trackers were
significantly different from zero (Ho μ = 0; p Indoor = 0.84; p Outdoor = 0.38; p Animal < 0.01)
(Table 1). The estimate statement also indicated a significant difference (p < 0.01) in the
means grouping of Static vs. non-Static trackers.

4. Discussion

To achieve user-friendly PLF/R systems, data flow must be near real time for a
farmer or rancher to monitor an individual animal’s health, welfare, and yields [17,20].
However, it is worth noting that the development of the PLF/R platform depends on the
advancement of precision and accuracy within sensors used in the IoT ecosystem. This is
because the PLF/R system is data-driven, emphasizing the need for high-quality data [35].
While the future of PLF/R lies in data-driven techniques like machine learning (ML) and
deep learning (DL) to identify data patterns, it is equally important not to overlook the
value of mechanistic modeling approaches based on the conceptual understanding of
system dynamics (hypothesis-centered) [18,36]. While robust data-driven approaches
(ML and DL) often lack transparency in their predictions, mechanistic models use animal
performance parameters for prediction. Therefore, a hybridized approach that integrates
both data-driven and mechanistic modeling methodologies is warranted for enhanced
PLF/R outcomes [18,36].

The distance traveled is a standard metric calculated from GPS coordinates with
significant applications in research and management decision-making processes [3,4,26].
The objectives of this study were to test the reliability of the daily distance traveled metric
calculation using three algorithms (GPS data alone or in combination with motion data)
for detecting the differences between static trackers placed either outdoors or indoors
with an obstructed view of orbiting satellites vs. trackers mounted on cows grazing on
pasture. We hypothesized that the daily distance traveled metrics would be higher for the
animal-mounted trackers than the static trackers and that there would be no difference
between the two types of static trackers (Outdoor = Indoor), and that the daily distance
traveled by the static trackers (Outdoor or Indoor) would not differ from zero.

4.1. GPS Accuracy Measurement on Static Trackers

An analysis of GPS data accuracy in this study showed that there were infrequent
erroneous GPS locations that worsened the distance computational means output (RawDist)
when they were integrated into the model. A related study that utilized GPS data from
static indoor and outdoor trackers found that outdoor trackers had greater accuracy in
remote sensing of GPS locations. This is because indoor trackers experience increased
communication interference in acquiring satellite signals. The study’s findings indicated
that 95% of GPS data points fell within a radius of 15 and 40 m for outdoor and indoor
trackers, respectively [33]. The study concluded that these trackers showed comparable
accuracy to other devices available in the market, with a position bias calculated by ex-
cluding erroneous GPS positions using the Euclidean distance between the tracker’s actual
location (Stationary) and the projected GPS points averaging 5.20 and 17.76 m for outdoor
and indoor trackers, respectively [33].

In pasturelands with a canopy cover, obstructed GPS data acquisition is common. For
instance, previous studies collaring goats herded on rugged terrain, and those that calcu-
lated horizontal accuracy between trackers placed in the open field and under canopy cover
both reported low accuracy for trackers with obstructed views of orbiting satellites [29,31].
Therefore, it is essential to include a pre-processing phase to detect outliers in GPS data
before any further analysis [33,37].

175



Animals 2023, 13, 2641

4.2. Daily Distance Traveled Calculated Using RawDist

The computation of distance traveled using raw GPS data (RawDist) did not support
our first hypothesis, as there was no detectable difference between the tracker placements.
Additionally, statistical model assumptions associated with outliers were violated, so
caution is necessary when interpreting these results. This underscores the need for internal
algorithms to filter out extreme GPS outliers. RawDist had the highest numerical value
compared to the other two computations (CorrectedDist and CorrectedDist_Act) used to
calculate the distance traveled. McGavin et al. [27] also found that including GPS data with
low accuracy increased the calculated distance. Furthermore, the RawDist measurement
failed to support our second hypothesis, as the indoor trackers differed from zero, and
there was no difference in the comparison between the static and non-static trackers. This
failure of RawDist measurement suggests that this algorithm has low accuracy in detecting
animal welfare implications associated with immobility.

4.3. Daily Distance Traveled Calculated Using CorrectedDist

The corresponding analysis for screening erroneous GPS positions using the z-score,
as proposed by Nyamuryekung’e et al. [33], improved the normal distribution of the daily
distance metric (CorrectedDist), leading to partial support for our first hypothesis, which
predicted that the Animal tracker would cover a greater daily distance than the indoor
and outdoor trackers. However, indoor and outdoor trackers differed from each other.
CorrectedDist also failed our second hypothesis, as the distance means of the static trackers
differed from zero. Due to the random errors in GPS positioning equipment, the static
trackers registered a significant daily distance measurement that was different from zero,
making the analysis sensitive to inflated error distance measurements in situations with
a high temporal frequency of GPS acquisition and low GPS location accuracy. Ganskopp
and Johnson [32] and McGavin et al. [27] also found a correlation between short GPS
sampling intervals and overestimated distance calculation. However, CorrectedDist was
able to detect differences between static and non-static trackers. Therefore, CorrectedDist
has some utility for use in animal welfare metrics to detect differences between static and
non-static states, but it might fail to statistically detect a zero daily distance measurement
on static trackers.

4.4. Daily Distance Traveled Calculated Using CorrectedDist_Act

The final model, which excluded GPS data with erroneous locations and GPS data
associated with no motion from the accelerometer reading (CorrectedDist_Act), supported
our first hypothesis, showing that the Animal tracker covered a greater daily distance
than both indoor and outdoor trackers, which did not differ from each other. Moreover,
CorrectedDist_Act also supported our second hypothesis, with the daily distance covered
by static trackers not differing from zero. As the static trackers were mostly stationary,
activity data was almost non-existent, with only three trackers contributing to the daily
distance (Indoor n = 1 and Outdoor n = 2). CorrectedDist_Act also detected the difference
between static and non-static trackers. Therefore, CorrectedDist_Act is the recommended
metric for daily distance measurement, with acceptable accuracy in detecting animal
welfare implications associated with immobility.

4.5. Limitations of the Daily Distance Traveled Calculations

The selection of the GPS frequency acquisition has significant implications for calcu-
lating the distance traveled by animals. A high GPS frequency acquisition can lead to an
overestimation of the distance traveled due to the inclusion of GPS positions with inherent
position bias, as well as increased battery drainage of the trackers [4,32]. On the other
hand, low GPS frequency acquisition may result in underestimating the distance traveled,
as it may miss the sinuosity of the actual path taken by the animals [38]. Achieving a
balance in selecting the GPS frequency acquisition is crucial to avoid both overestima-
tion and underestimation of the true distance, and it is essential to consider the spatial

176



Animals 2023, 13, 2641

extent to which the animals are operating. The chosen interval for GPS frequency acquisi-
tion in this study is believed to adequately represent the distance traveled by animals in
extension operations [3].

Improvements in CorrectedDist_Act can be achieved by calibrating the triaxial ac-
celerometer data to represent the animal’s time budget, thus improving the accuracy
of distance traveled estimation from GPS data by excluding a resting activity from the
analysis [32]. Studies have shown that including resting and inactive GPS positions when
calculating the distance traveled can artificially increase it by approximately 15.2% [32].
However, it is important to note that the purpose of this experiment did not involve
time-budget calibration of the accelerometer data. The 1 min interval motion intensity
measurements in this study revealed clear diurnal patterns consistent with grazing ani-
mals’ behavior [33]. For example, intense grazing events are typically observed around
dusk, which was evident from the accelerometer data with a peak of intensity around
1800 h [33]. Future analysis will explore decoding the activity messages into time budgets
for the animals [39,40]. Additionally, accurate classification of the activity data can further
enhance the filtering of erroneous GPS data, as suggested by Muminov et al. [37], who used
maximum animal movement likelihood criteria based on activity classification to filter out
erroneous GPS data.

5. Conclusions

The user interface or dashboard application is arguably the most valuable component
in the Internet of Things (IoT) ecosystem, particularly in a Precision Livestock Farming
and Ranching (PLF/R) platform. This is because the data collected by the sensory devices
are transformed into information tailored to a specific end-user through the user interface
platform. In a PLF/R system, the dashboard application assists ranchers in decision-making
processes. Hence, the metrics presented in the dashboard application must possess both
high accuracy and precision. These findings emphasize the necessary sensitivity required
to develop bio-sensing algorithms that can alert managers of animal welfare concerns.
Similarly, the CorrectedDist_Act model emphasizes the importance of combining GPS and
accelerometer data when calculating the walking distance of grazing cattle. Furthermore,
the results highlight the value of integrating multiple sources of independent sensor data
for an improved interpretation of data derived from PLF/R tools.
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Simple Summary: Using automated approaches to investigate feeding behavior in broilers provides
accurate, non-invasive, and large-scale data collection, real-time monitoring capabilities, and oppor-
tunities for advanced data analysis that would not be possible with manual observations. These
benefits contribute to a better understanding of broilers’ behavior for improving production efficiency
and animal welfare, optimizing management practices, and promoting the profitability of poultry
production. Hence, this study aimed to estimate the feeding time of individual broilers through an
automated approach. First, the proposed algorithm detected the broilers’ heads. Then, a Euclidean
distance-based tracking algorithm tracked the detected heads. The developed algorithm can estimate
the broiler’s feeding time by identifying whether its head is inside the feeder area. The overall
accuracy of each broiler’s feeding time per visit to the feeding pan was 87.3%.

Abstract: Feeding behavior is one of the critical welfare indicators of broilers. Hence, understanding
feeding behavior can provide important information regarding the usage of poultry resources and
insights into farm management. Monitoring poultry behaviors is typically performed based on visual
human observation. Despite the successful applications of this method, its implementation in large
poultry farms takes time and effort. Thus, there is a need for automated approaches to overcome these
challenges. Consequently, this study aimed to evaluate the feeding time of individual broilers by a
convolutional neural network-based model. To achieve the goal of this research, 1500 images collected
from a poultry farm were labeled for training the You Only Look Once (YOLO) model to detect the
broilers’ heads. A Euclidean distance-based tracking algorithm was developed to track the detected
heads, as well. The developed algorithm estimated the broiler’s feeding time by recognizing whether
its head is inside the feeder. Three 1-min labeled videos were applied to evaluate the proposed
algorithm’s performance. The algorithm achieved an overall feeding time estimation accuracy of
each broiler per visit to the feeding pan of 87.3%. In addition, the obtained results prove that the
proposed algorithm can be used as a real-time tool in poultry farms.

Keywords: broiler; feeding time; YOLO; image processing

1. Introduction

Monitoring broiler behaviors such as feeding, drinking, and perching is a crucial
aspect of precision livestock farming to reflect their health status and provide early disease
warning. In this regard, the feeding behavior of broilers plays a critical function in the
breeding process. Deviation from the daily food consumption pattern is the early disease
symptom. Thus, understanding poultry feeding behavior helps evaluate their use of feed
resources, improve their health status, and provide vital economic and welfare implications
for poultry production. As a result, new techniques are needed to extract the feeding
behavior of broilers that are useful in warning about their health status and improving the
breeding process.
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Several studies have been conducted to investigate the feeding behavior of poultry
under the influence of various environmental stimuli, management practices, and breed-
ing systems. These studies often monitor poultry behaviors by manual observation or
remotely [1]. Manual observation is an accurate and simple method to analyze the behav-
ior of small samples and limited behavioral responses. However, manual observation is
time-consuming and laborious, especially for large farms or monitoring multiple behaviors
simultaneously. Therefore, it is necessary to develop automated methods to handle large
sample sizes and multiple behaviors.

Broilers’ behavior on the experimental or commercial farm can be examined by ap-
plying automated techniques (e.g., audio analysis, radio-frequency identification (RFID)
devices, and image processing) to analyze the health and welfare of the poultry. For ex-
ample, audio analysis can be applied as a poultry behavior-based early warning system,
detecting growth rates and predicting health conditions. Collecting and analyzing the
individual chickens’ sounds can distinguish them from each other. In this respect, detect-
ing which broiler makes the sound, collecting individual sounds on a farm, and ambient
noise are significant challenges [2]. Wireless wearable sensors such as accelerometers and
RFID microchips are primarily used to track people’s location and activity remotely. The
performance of the RFID system depends on the number of broilers and installed antennas.
Due to the large number of broilers on commercial farms and the sensor cost in relation
to the value of the individual bird, attaching an RFID device to every broiler is currently
unrealistic. In addition, RFID systems can be employed for a limited number of broilers
due to the time-consuming tasks of installing and recycling tags [2].

The image processing technique is an efficient, non-invasive, and cost-effective method
for analyzing animal behavior. This technology includes image-capturing systems and
various algorithms to recognize the behavior. Kashiha et al. [3] investigated real-time
broiler distribution indicators using image-processing methods. These authors reported
unusual feeding and drinking behaviors in broilers with 95% accuracy. Also, Nasiri et al. [4]
proposed a computer vision-based system to recognize lameness in broilers. Despite using
image processing techniques to analyze particular poultry behaviors, there needs to be
more research on their application in investigating broiler feeding behaviors.

As a specialized version of image processing, video monitoring is a low-cost and
straightforward method to detect feeding behavior. In this regard, effectively extracting
information from surveillance videos is a fundamental problem. For each frame, the first
step is to distinguish the broilers from the background. Segmentation thresholding based
on histogram analysis, Otsu segmentation, the maximum entropy segmentation method,
and multi-level threshold segmentation are among the methods applied to detect objects
from the background [3,5,6]. Their performance depends on the differentiation between
broilers from various background conditions and varying light conditions. Furthermore, it
is difficult to distinguish them individually when broilers are huddled together. Each broiler
can be detected in the video sequence by creating specific marks on every broiler and using
pattern recognition techniques. Therefore, the automatic recognition of broilers through
video footages is a fundamental issue, and selecting the appropriate feature is crucial.

The performance of image processing technology can be improved using machine
learning methods. Valletta et al. [7] utilized PCA to extract pheasant egg characteristics
and k-means clustering to identify individual pheasant eggs. Kasinathan et al. [8] used
shape features extracted from various categories of insect images and machine learning
algorithms, including artificial neural networks, support vector machine, k-nearest neigh-
bors, naive Bayes, and convolutional neural networks, to classify the insect classes. Another
study proposed an image processing and machine learning framework for leaf disease
detection. In this framework, the k-means and principal component analysis approaches
were applied to segment and extract the features from leaf images to evaluate the disease.
Then, images were classified using RBF-SVM, SVM, random forest, and ID3 techniques [9].
Bai et al. [10] introduced a vision-based algorithm for picking point localization of toma-
toes. The proposed algorithm extracted the shape, texture, and color features and applied
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the SVM classifier to recognize tomatoes. In this regard, deep learning algorithms, as
a type of machine learning method, have been used to identify and classify objects in
many applications, including animal identification and behavior recognition. For example,
Chen et al. [11] proposed a method to define the sex of pigeons by enhancing images using
image processing techniques combined with YOLO-v5. In another study, the YOLO-v5
structure-based method was developed to monitor cage-free hens’ spatial distribution,
including the number of birds in the perching, feeding, drinking, and nesting zones [12].
Li et al. [13] developed a Faster R-CNN-based algorithm to detect and track birds walking
around the feeder as a feeding behavior indication. Guo et al. [14] evaluated the perfor-
mance of different deep learning models such as ResNet, EfficientNet, and DenseNet to
identify four broiler behaviors: (1) resting, (2) standing, (3) feeding, and (4) drinking. In
their study, the accuracy of the best network for broiler behavior classification was 97%.

Monitoring broilers’ feeding behaviors can help ensure an appropriate diet to support
their growth. Additionally, observing feeding behaviors can provide insights into the health
and welfare of broilers. For instance, any changes in appetite may reflect underlying health
issues. As a result, the feeding assessment of individual broilers assists in implementing
proper nutritional management strategies. Hence, monitoring the feeding behaviors of
individual broilers is crucial for precision livestock farming, intending to ensure optimal
growth and maintain health and welfare. Accordingly, the objective of the study was to
develop an algorithm based on image processing techniques and a deep learning model
with the aim of recognizing the individual feeding times of broilers. To the extent of
the authors’ knowledge, the present study was one of the first efforts to investigate the
individual broilers’ feeding time on a commercial farm. The performance of the developed
algorithm was validated by comparing the achieved results with the manual observations
in the labeled videos.

2. Materials and Methods

2.1. Acquisition of Broilers’ Video

Data were collected at a commercial-scale broiler research farm (Tyson Foods, Inc.,
Huntsville, AR, USA) with 20,000 birds and a stocking density of 12.2 birds/m2. A total of
12 surveillance cameras (Dahua Technology USA Inc., Irvine, CA, USA) were installed on
the ceiling of the farm (approximately 3 m above ground) to collect RGB videos with a set
speed of 15 frames per second (fps). The cameras were fixed and distributed uniformly
along the two drinker lines on the farm. In addition, four feeder pans were also in the
cameras’ field of view. Videos were collected 24/7 for the entire cycle of several flocks
in 2022.

2.2. Head Detection Model and Data Collection

Animals’ feeding behavior can be chewing, biting, or putting the head in the feeder
(named a feeding visit). Since it is difficult to tell whether broilers are chewing or biting,
a feeding visit can be commonly decided by checking whether the broiler’s head is in
the feeder. Accordingly, this study defines broiler feeding behavior as broilers placing
their heads in the feeder area. In this process, the feeder occupation time by the broiler’s
head is calculated as feeding time. Therefore, for each frame, it is obligatory to detect the
broiler’s head as a factor closely related to the detection of feeding behavior. In this study,
a regression-based algorithm was used to address the broilers’ head detection issue.

You Only Look Once (YOLO), proposed in 2016, formulates the object detection
problem as a regression problem [15]. Compared to two-stage detectors, YOLO is speedy.
YOLO calculates the region of interest and image classes in one algorithm implementation.
First, a neural network is processed on the whole image. Then, the image is divided into
different cells, and the objects in each cell are projected [16,17]. YOLO divides the input
image into a grid and predicts bounding boxes and class probabilities directly from the grid
cells. This approach makes YOLO faster and more efficient. Each cell predicts objects that
have their centers within that cell. On the other hand, YOLO predicts multiple bounding
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boxes for each grid cell using a set of anchor boxes. In recent years, researchers have been
utilizing YOLO to identify individual animals and their behavioral patterns, which can
result in a better investigation of animals’ behavioral mechanisms [18–22].

The database used in this study was created by selecting sample frames from surveil-
lance video sequences to train and test the network. A more diverse database can be
achieved by selecting frames with different postures of broilers (e.g., standing, lying, sitting,
and with different lighting conditions). A total of 1500 images were selected for manual
labeling. Figure 1 demonstrates an example of the labeled image. Then, the head of each
broiler was labeled in the text format expected for training the YOLO-v3 model. In this
study, the transfer learning method was adopted to solve the problem of the insufficient
number of samples during the training process. For training the pre-trained YOLO on the
COCO dataset, the dataset images were randomly divided into training and validation
subsets with a ratio of 9:1.

 

Figure 1. An instance of the labeling process for training the YOLO; (a) original image and
(b) labeled image.

2.3. Broiler’s Head Tracking Algorithm

YOLO object detection does not treat objects in every video frame the same. In other
words, each broiler detected in the video frames is assigned a unique tag/identifier. Thus,
it is necessary to use the tracking algorithm to assign a constant identifier for each detected
broiler and for it to have high efficiency in the later stages. In each frame, the broiler tracking
algorithm calculates the central point of the bounding box around the broiler’s head marked
by the trained YOLO model. Then, the algorithm delivers the central point along with the
specific identifier to an array that stores the characteristics of the detected broilers in the last
10 frames. In the next step, the Euclidean distance between the coordinates of the central
point of the broiler’s head identified in the current frame is measured with the coordinates
of the center points of the previous frame. The broiler receives its last stored identifier if
the calculated distance is less than 20 pixels. If the distance exceeds 20 pixels, the algorithm
identifies a new broiler that will receive a new identifier. This process is carried out for all
the identified chicks in the current frame. Also, the maximum number of missed detections
before the algorithm removes a tracking label is set to 10 frames.

2.4. Algorithm for Estimation of the Feeding Time

The feeding behavior of broiler chickens is related to a particular area where the
broiler’s head is placed inside the feeder. In this study, there is a need to define the feeding
area in the monitoring scene to investigate broilers’ feeding time. This area was manually
determined in each video. In Figure 2, the blue circle represents the feeding area. The
trained YOLO recognizes and marks the broiler head with a bounding box. Furthermore,
the tracking algorithm tracks detected heads as long as they are inside the red area (Figure 2).
When the center point of the head-labeled bounding box intersects and enters the feeding
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area (blue circle), feeding behavior may occur. The following index was used to determine
whether a specific object covered a location (Equation (1)).

Index f eed =
Area o f head ∩ Feeding area

Feeding area
(1)

 

Figure 2. Samples of the developed algorithm’s result. Broilers’ heads with blue dots: feeding
behavior; broilers’ heads with red dots: non-feeding behavior.

An Indexfeed greater than 0 shows that the broiler has the head in the feeder. The
feeding time of each broiler can be estimated by counting the number of frames that the
broiler’s head is inside the feeding area. Accordingly, the feeding behavior can be detected
along with the feeding time. Figures 3 and 4 show the workflow and pseudocode of the
developed algorithm for feeding time estimation.

 

Figure 3. The workflow of the developed algorithm for feeding time estimation.
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Figure 4. Pseudocode of the developed algorithm for feeding time estimation. “#” shows the comments.

The Python language was applied to write the algorithm used in the present research
under the TensorFlow deep learning framework. Also, practical training was conducted
using a computer with 32-core processors, 64 GB of RAM, and Nvidia Quadro RTX5000
16 GB graphics card.
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3. Results

3.1. Head Detection

In the training step, 192,000 iterations were performed, and after every 100 iterations,
the model weights were saved. Figure 5 illustrates the values of mean average preci-
sion (mAP) and loss function for model training. The error was very high in the first
200 iterations, fluctuated significantly, then decreased. This model did not have any signif-
icant performance increase after about 100,000 iterations. The highest performance was
attained at iteration 132,996, in which the mAP and loss function values were 0.9320 and
0.0303, respectively. The trained model can recognize the broiler’s head when the image
is captured. The detection result is determined by a bounding box that has a label and a
number indicating the likelihood of belonging to this label. Figure 2 presents samples of
the detection results.

Figure 5. (a) Mean average precision (mAP) and (b) loss function for each iteration of the training process.

3.2. Evaluating the Developed Algorithm

The developed algorithm can continuously judge feeding behavior occurrence in
every frame. The algorithm was evaluated by selecting 3 1-min videos from 3 different
days (consisting of 2280 frames), which were annotated manually and accurately. The
labeling process consisted of two steps: (1) counting the number of broilers’ heads inside
the feeding area (red area in Figure 2), to evaluate the algorithm’s performance in detecting
and tracking heads, and (2) counting the number of frames in which each broiler pecks the
feeding pan, to determine the actual value of the feeding time. The number of frames each
broiler spends feeding can be obtained by applying the proposed algorithm to each video
frame. Finally, by dividing the obtained number by the fps value, the feeder occupation
time by the broiler’s head was calculated as feeding time.

Figure 6 presents the results of the diagnosis of feeding behavior for each video. For
the first video, the number of detected heads was two more than the actual number. The
same error can be seen in the other videos. This issue occurred due to an error in the
detection model or tracking algorithm. It means that either the detection model failed to
distinguish a specific head or the tracking algorithm assigned more than one identifier
to one head. The developed algorithm achieved an overall head detection accuracy of
82.8%. The overall accuracy of the feeding time estimation and feeding time of each broiler
per visit to the feeding pan was 97.9% and 87.3%, respectively. The developed algorithm
demonstrated that each broiler spends a feeding time of 18.46 s per visit to the feeding
pan. Some broilers occasionally spend a short feeding time. It is essential to mention that
when the head of a specific broiler is inside the feeder, the feeding behavior may not occur,
considered during the manual annotation of these videos. Distinguishing the exact feeding
time when the broiler’s head is inside the feeder is a challenging image processing task. The
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mentioned point can explain the reason for less than 90% accuracy in estimating feeding
time per broiler. The obtained results prove that the developed algorithm, as an automatic
and non-invasive tool for feeding time estimation, can be utilized in commercial poultry
farms for effective management.

Figure 6. Results of evaluating the developed algorithm for three different 1-min videos.

4. Discussion

The study achieved an accuracy of 82.8% for broiler head detection and high accuracies
of 97.9% and 87.3% for overall feeding time estimation and feeding time of each broiler
per visit to the pan, respectively. Several studies have been conducted to investigate
automated monitoring of animals’ feeding behavior. Li, Zhao, Purswell, Du, Chesser Jr,
and Lowe [1] investigated group-reared broilers’ feeding and drinking behaviors with the
image processing technique by determining the number of birds at the feeder and drinkers.
The results demonstrated an 89–93% accuracy in determining the number of birds at the
feeder. The limitation of this study was the inability of the proposed method to estimate
the feeding time of individual broilers. Aydin and Berckmans [23] described a monitoring
system to estimate the feeding behavior of broilers at the group level using pecking sound
processing. They recorded the pecking sounds of 10 broilers with a microphone attached
to the feeder. In their study, R2 = 0.965 was reported for meal size estimation. In spite of
significant results, analyzing individual broilers’ sounds and feeding behavior was not
performed in this study. In another effort, the Faster R-CNN model was employed to
identify the feeding behavior of group-housed pigs [24]. In this study, the feeding behavior
of four pigs on the experimental farm was investigated and the precision rate of 0.996 was
obtained for feeding behavior recognition. Li et al. [25] monitored the feeding and drinking
behaviors of broilers using an ultra-high-RFID-based system. The applied system included
tags, antennas, a reader, and a data acquisition system. They investigated the feeding
and drinking behaviors of 60 tagged broilers and achieved accuracies of 99.0% and 93.7%
for determining time spent at the feeder and drinker, respectively. Despite satisfactory
results, this system can monitor a limited number of broilers, and besides the sensor cost,
installing the tags can result in stress and welfare issues. The Faster R-CNN model was
also applied to recognize the number of pullets at each drinker and estimate the time spent
at the drinker [26].

Table 1 summarizes some studies reporting automated monitoring of animals’ behav-
ior. The data collected from a research farm or specific tools such as an ultra-high-RFID
system, a compartment, a tag installed on broilers, or each nipple drinker were commonly
utilized in these studies. In addition, they have researched group-housed poultry behaviors.
In comparison, the highlights of this study include that (1) the proposed algorithm in this
study was performed on a commercial farm; (2) the algorithm estimated the feeding time
of each broiler per visit to the feeding pan without disrupting the regular farm operations.
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Table 1. Comparison of animals’ behavior monitoring accuracy of different studies and the
present study.

Study Equipment Dataset Class
Main Processing

Method
Accuracy (%)

Li, Zhao, Purswell,
Du, Chesser Jr, and

Lowe [1]
RGB camera Experimental farm Group broilers

Image
processing/Linear

model
89–93

Aydin and
Berckmans [23] Microphone Experimental farm Group broilers Sound analysis/Linear

model 0.965

Yang, Xiao, and Lin
[24] RGB camera Experimental farm Individual pigs

Image
processing/Machine

learning
0.996

Li, Zhao, Hailey,
Zhang, Liang, and

Purswell [25]
Ultra-high-RFID Experimental farm Group broilers Statistical analysis 93.7 and 99.0

Current study RGB camera Commercial farm Individual broilers
Image

processing/Machine
learning

87.3 and 97.9

However, it is worth mentioning that there are several limitations of this study and
potential improvements that can be made in future studies. First, video data from this
study were collected from only one commercial farm setting. Although the farm setting
and the feeder pan are widely adopted among US broiler farms, more diverse data need
to be used in order to conclude that our model is accurate for general commercial uses.
In addition, training YOLO with a large image dataset collected from different farms can
assist the model in generalizing well. Second, feeding area, defined as an area within a
blue circle in Figure 2, was manually determined in this study. To make this algorithm
fully automated, a simple feeder pan detection algorithm should be developed. Third, our
algorithm considered a broiler as feeding when its head was in the feeding area. It is fine
to define “feeding” behavior in this way; however, the method may not be accurate in
estimating feed intake. In order to estimate true feed intake, the actual pecking behavior
should be detected. Additional sensors, such as a microphone and pressure sensor, may
be helpful for this purpose. Nevertheless, our study was one of the first efforts towards
individual broiler feeding behavior analysis under commercial farm settings as mentioned
in the highlights. We believe this study will be valuable as we continue moving towards
individual broiler monitoring for precision management on commercial farms.

5. Conclusions

Understanding poultry feeding behavior is crucial for ensuring optimal growth, main-
taining health and welfare, improving feed efficiency, managing economic implications,
implementing appropriate nutritional management, and reducing the environmental im-
pact of broiler production. Therefore, this study proposed an algorithm based on image
processing techniques and a deep learning model to estimate broiler feeding time. Detection
and tracking of the broiler’s head are essential in judging daily behaviors such as feeding
behavior. Hence, the developed algorithm applied the YOLO-v3 model and Euclidean
distance-based tracking algorithm to determine whether feeding behavior occurs for each
surveillance video frame. Achieving state-of-the-art accuracy in the feeding time estima-
tion of individual broilers can assist in developing efficient equipment for monitoring the
broilers’ feeding behavior and providing valuable data for farm management. Our group
continuously collects more data from various commercial farms to improve the accuracy of
the developed algorithm and prepare the system for commercial farms globally.
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Simple Summary: Swine nursery mortality is highly impacted by the pre-weaning performance of
the piglets. Even though the importance of the pre-weaning phase on the downstream post-weaning
performance is acknowledged, predictive modeling has yet to be described in the swine industry to
predict the downstream nursery performance of groups of pigs based on their previous pre-weaning
phase. One obstacle to building such predictive models is that pieces of information concerning the
factors impacting swine mortality are collected with separate record-keeping programs and stored in
unconnected databases, creating multiple unutilized data stream clusters. Thus, in this study, we
described the process of building a data-wrangling pipeline that automatically integrates diverse and
dispersed data streams collected from one swine production company, creating then a master table
that was utilized to predict the mortality of groups of pigs during the nursery phase.

Abstract: The performance of five forecasting models was investigated for predicting nursery mor-
tality using the master table built for 3242 groups of pigs (~13 million animals) and 42 variables,
which concerned the pre-weaning phase of production and conditions at placement in growing
sites. After training and testing each model’s performance through cross-validation, the model with
the best overall prediction results was the Support Vector Machine model in terms of Root Mean
Squared Error (RMSE = 0.406), Mean Absolute Error (MAE = 0.284), and Coefficient of Determination
(R2 = 0.731). Subsequently, the forecasting performance of the SVM model was tested on a new dataset
containing 72 new groups, simulating ongoing and near real-time forecasting analysis. Despite a
decrease in R2 values on the new dataset (R2 = 0.554), the model demonstrated high accuracy (77.78%)
for predicting groups with high (>5%) or low (<5%) nursery mortality. This study demonstrated the
capability of forecasting models to predict the nursery mortality of commercial groups of pigs using
pre-weaning information and stocking condition variables collected post-placement in nursery sites.

Keywords: swine; mortality; data-wrangling; forecasting; machine-learning

1. Introduction

The abundance of diverse and large-scale data streams often challenges the imple-
mentation of precision animal agriculture in livestock, which requires a multifaceted
data-wrangling approach to investigate this complex livestock “big data” [1]. Using data
management techniques and machine-learning models on these data can overcome its
complexity for analytical purposes, such as forecasting. Although forecasting analysis in
the livestock realm is acknowledged [2,3], this application has not yet been reported in
the swine industry for mortality rate. Swine post-weaning mortality is a key performance
indicator (KPI) utilized to measure the sustainability of swine production systems [4,5],

Animals 2023, 13, 2412. https://doi.org/10.3390/ani13152412 https://www.mdpi.com/journal/animals191



Animals 2023, 13, 2412

divided into nursery and finisher mortality. Swine nursery mortality refers to the mortality
of pigs in the first 5–8 weeks of the overall post-weaning phase (approximately 5.5 months),
accounting for a large portion of the overall post-weaning mortality [6].

Information concerning the risk factors for swine mortality is routinely collected,
such as health, environment, productivity, and infrastructure. However, integrating and
merging these data streams is necessary for its collective utilization for targeting prediction
or risk factor analyses. The development of means for data integration and analysis under
field conditions allows the implementation of such data analysis approaches, as reported
in previous studies [7–10]. Therefore, the objective of this study was to develop a data-
wrangling pipeline within one swine production system to integrate and manage multiple
data streams, enabling automated and near real-time data consolidation. Furthermore, the
performance of multiple forecasting models was assessed on historical data, and the best
model was tested on new data to predict the nursery mortality of prospective closeouts.

2. Materials and Methods

2.1. Overview and Study Design

This study utilized field data from a large U.S. swine production system in the Mid-
western region. A total of six different and disconnected data streams related to 3242 groups
of marketed pigs (over 13 million animals) slaughtered over three years, here referred to as
closeouts, were collected for the analyses. The retrospective performance of both the pre-
and post-weaning phases of production were imported and integrated into the respective
closeouts’ information, constructing a dataset (also known as the master table) contain-
ing breeding-to-market historical information for each closeout. The pre-weaning phase
variables and stocking conditions data in this master table were utilized as predictors to
forecast the downstream post-weaning mortality of each closeout on their initial 60 days in
the post-weaning phase (nursery mortality), as demonstrated in Figure 1.

Closeouts were defined as the groups of pigs originating from the company’s breeding
herds. The pigs remained in the breeding herd until weaning at approximately 21 days
of age. Following weaning, pigs were placed on feed at growing sites where the groups
remained for around 5.5 months. The groups were managed all-in-all-out, meaning another
group of pigs could only start once all the pigs from the previous groups had been marketed.
The mortality of each closeout during the nursery phase was defined as the outcome
variable of analysis in this study and was calculated as the following: (number of pigs at
placement − number of pigs 60 days post placement) ÷ number of pigs at placement.

Closeouts originating from a single sow farm would have information concerning the
performance of that breeding herd on the designated week. The productivity parameters
assigned to the downstream weaned group represent the retrospective performance of that
batch of pigs from farrow-to-wean, while the pre-farrow information (e.g., abortion rate)
represents the reproductive performance on that farm on the week of the weaning event.

When a group of pigs originated from multiple sow farms (e.g., 2000 pigs placed in
a growing site may have received 1000 pigs from two different sow farms), the variables
concerning the pre-weaning phase for that specific group would be calculated by using a
weighted average for the continuous independent variables, and the mixed classification
was used for the whole group for disease classification statuses.

SAS® Version 9.4 (SAS Institute, Inc., Cary, NC, USA) was utilized to build data-
wrangling pipeline algorithms, thus automating the processes of importing, managing,
cleaning, and integrating the data streams. The integration of the six data streams resulted in
a final master table for the 3242 closeouts that were utilized for comparing the performance
of five different regression and machine-learning models for forecasting swine nursery
mortality. After this step, the model with the best forecasting performance was utilized on
a new dataset to validate the forecasting capability on prospective data, simulating ongoing
near real-time forecasting.
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Figure 1. Flow chart explaining the process of integrating different data streams into a single master
table to be used on the forecasting analyses. A data-wrangling pipeline was built to integrate
information concerning the performance of groups of weaned pigs transferred to growing sites and
their conditions at placement into a single master table. This table was utilized to train forecasting
models on predicting the mortality of the weaned groups throughout the initial 60 days in the post-
weaning phase. The model with the best performance was then applied to forecast the mortality of
prospective new groups of weaned pigs.

2.2. Data-Wrangling Pipeline

The six different data streams available for the development of the master table were:
(1) pre-weaning phase (i.e., breeding herd) productivity and health data; (2) post-weaning
phase (i.e., growing phase) productivity data; (3) closeouts’ health status reports; (4) pig
transportation records; (5) stocking conditions reports; and (6) management procedure
records. The SAS algorithms developed in this study used a similar methodology to that
described by Magalhaes et al. (2022) [10], where the processes of matching and merging
different data streams were conducted based on an identifier (time and location of events)
and through the development of PROC Statements algorithms (PROC MERGE, PROC SET,
PROC SQL, PROC SORT, PROC UNIVARIATE, and PROC FREQ). The swine production
system provided access to the aforementioned data, where a data workflow was developed
using Microsoft Power Automate (Microsoft Corporation, Redmond, WA, USA) and SAS
to automate the data-wrangling processes in this study. Once the master table was built,
the dataset contained information for 3242 closeouts of pigs, originating from 42 breeding
herd sources and weaned into 529 different growing sites. The information from each of
the six data streams was matched and merged to each respective closeout of pigs marketed
in this study period (i.e., each closeout’s historical data from breeding-to-market).

2.3. Comparing Forecasting Models Based on Training Data

The initial step after completing the master table was to select the breeding herd
variables from the pre-weaning phase of production and parameters that represent the
stocking conditions of the weaned groups into growing sites (i.e., characteristics at place-
ment). Among all variables in the master table, 42 parameters were utilized as predictors
in the forecasting analyses (Table 1). The nursery mortality was log-transformed after veri-
fying that its distribution was not normal, thus, utilizing the log-mortality as the response
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variable. The classes of each categorical variable included in the model are described in
Table 2.

Table 1. Variables selected from the master table for the forecasting analyses.

Data Streams Variable Type ‡ Variables

(1) Breeding Herd Productivity and Health *

Rate

Service repeat rate; Abortion rate; Services per
inventory; Proportion of gilts bred; Last week

weaned sows bred rate; Proportion of sows pregnant
at 105 days; Farrowing rate; Stillborn rate; Mummies

rate; Pre-weaning mortality; Pre-natal losses; Sow
death rate; Sow culls rate

Count Number of services; Number of farrows;
Sows inventory

Average

Wean-to-service interval; Total born; Born alive;
Parity at the farrow; Gestation length; Interval

between farrows; Pigs weaned/sow; Piglet wean
age; Non-productive days; Productive sow days;

Litter/female/year; Mated inventory;
Pigs/weaned/female/year

(2) Growing Phase Productivity † Rate Nursery mortality (mortality on the initial 60 days
post placement in a growing site)

(3) Closeouts Health Status * Category

Group status for porcine reproductive and
respiratory syndrome (PRRS) at placement; Group

status for Mycoplasma hyopneumoniae (MhP)
at placement

(4) Pig Transportation *
Time Weaning movement year; Weaning movement week

Count Number of animals transported

(5) Stocking Conditions *
Category Type of flow; Type of ventilation;

Count Number of origins; Time to fill the site; Breeding
herd origins

(6) Management Procedure * Category
Type of PRRS vaccine; Type of piglet medication at

weaning; Breeding herd type of mass
medication protocol

(1)–(6) Data streams utilized; † Outcome variable; * Predictor Variables. ‡ Type of variables. Variable type classified
as “Average” refers to the average number of count events occurring for the batch of groups weaned. For example,
“Total Born” variable represents the average number of total piglets born per farrow over a total number of
farrowing events in a week. More details about the classes of the categorical variables are described in Table 2.

The 42 variables included in the forecasting analysis were selected based on their
potential as factors related to the quality of weaned pigs (i.e., health status and productivity
performance) and the overall conditions at placement in growing sites (i.e., infrastructural
and management factors). Also, only variables that were provided in the master table at
the moment when weaned pigs were placed into growing sites were included in the model.

To forecast the log-mortality, five models were investigated: multiple linear regression
model (MLR), LASSO regression, support vector machine (SVM), neural network (NNet),
and random forest (RF). The evaluation criteria for each forecasting model included Root
Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination
(R2). Using the R package ‘caret’ [11], and specifically the ‘train’ function, the optimal
parameters of LASSO regression, SVM, and NNet were selected based on the smallest
RMSE by doing three repetitions of 5-fold cross-validation, and the optimal parameters of
RF were selected based on the smallest out-of-bag (OOB) error.

In order to evaluate the prediction performance of each forecasting model, a leave-
one-out cross-validation was performed, where, for each record, the training set was the
dataset excluding that record. The trained model was then used to predict the log-mortality
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of the excluded record. The best model was selected based on higher R2 and lowest RMSE
and MAE values.

Table 2. Description of the categorical variables included in the forecasting model.

Data Type Variable † A * B * C * D * E * F *

Breeding herd health
PRRS status Epidemic Endemic Mixed Negative - -

MhP status Epidemic Endemic Mixed Negative - -

Stocking conditions *
Type of flow 3 DS-M DS-S Y S - -

Type of ventilation Tunnel Barn Curtain Barn - - - -

Management
procedure *

PRRS vaccine Vaccine A Vaccine B - - - -

Piglet medication 1 Enrofloxacin Tulathromycin Ceftiofur Florfenicol Mixed None

Sow medication 2 CTC 4 Lincomycin Tilmicosin Mixed None -

* Categories of each variable; 1 Type of medication treatment in piglets; 2 Type of medication treatment in sows;
3 DS-M: Double stock moved; DS-R: Double stock remained; Y: Nursery-to-finisher flows; S: Single stock flows;
4 CTC: Chlortetracycline; † Categorical variables from Table 1.

2.4. Performance of the Selected Model on Independent Validation Data

After comparing the performance of the different forecasting models on the retrospec-
tive dataset of 3242 groups, which refers to groups stocked into nursery sites between
week 29 of 2019 through week 5 of 2022 (i.e., marketed between January 2020 to August
2022), a new dataset containing 72 new closeouts weaned into nursery sites between weeks
6 and 12 of 2022 (i.e., marketed between August and September of 2022) was obtained
through the data-wrangling pipeline. The forecasting model was then utilized on this
naïve data to predict the nursery mortality of the groups, and the forecasting performance
of the selected model was measured using the same metric of the same step (R2, RMSE,
and MAE). Also, the predicted vs. actual nursery mortality values were classified into
relatively “high nursery mortality” (>5%) or “low nursery mortality” (<5%) groups, as the
company providing the data used the same classification as their target mortality values.
The performance of the SVM model on accurately predicting closeouts with high or low
nursery mortality was assessed in terms of accuracy (Ac), sensitivity (Se), Specificity (Sp),
positive predicted value (PPV), and negative predicted value (NPV), calculated based on
the difference between the predicted vs. actual mortality of the 72 groups.

3. Results

3.1. Data-Wrangling Pipeline

When assessing data completeness for the 3242 groups, a total of 93 closeouts (2.87%)
were excluded due to a lack of information for all the characteristics included in the master
table, resulting in a final dataset composed of 3149 closeouts and 42 explanatory variables
to be used in the forecasting analyses.

3.2. Comparing Forecasting Models

The overall performance for all forecasting models is reported in Table 2. Notably,
the machine learning models performed better than the regression models, where the RF
and SVM models demonstrated the best overall prediction performance, similar to other
livestock-related studies comparing the performance of multiple forecasting models [3,12,13].
Furthermore, the SVM outperformed the other models (Table 3) measured in terms of
R2 (0.731) and lower errors measured by RMSE (0.406) and MAE (0.284).
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Table 3. Performance of the forecasting models on predicting swine nursery mortality.

Model 1
Parameters 2

R2 RMSE MAE

MLR 0.385 0.614 0.475
LASSO 0.392 0.611 0.471

RF 0.725 0.421 0.313
SVM 0.731 0.406 0.284
NNet 0.533 0.566 0.393

1 MLR: Multiple Linear Regression; LASSO: LASSO regression; RF: Random Forest; SVM: Support Vector Machine;
NNet: Neural Network. 2 RMSE: Root Mean Square Error; MAE: Mean Absolute Error; R2: r-square.

Thereafter, the predicted values for each closeout using the SVM model were averaged
by week for the data collected in this study (Figure 2), where it was observed that the SVM
predicted values were underestimated compared to the actual nursery mortality values
of the closeouts. Despite this, both the average weekly predicted and actual mortalities
followed similar seasonal trends over time, which can be explained by the seasonal activity
of major diseases impacting the swine industry [14,15].

 

Figure 2. Average predicted nursery mortality versus actual mortality over season-year for Support
Vector Machine (SVM) forecasting model using the results of the cross-validation step (3149 closeouts).
Season-Year corresponds to the time during the study period when the pigs were weaned.

3.3. Performance of the Selected Model

Identified as the superior model, SVM was prospectively applied to new data consist-
ing of 72 closeouts (Figure 3), representing one month of closeouts, to predict the nursery
mortality of the new groups. The overall forecasting performance of the SVM model
was lower than the training database’s performance on the cross-validation procedure
(R2 = 0.554 and 0.731, respectively). However, even though the prediction of mortality in
new groups was already simulated in the training database during the cross-validation
procedure, the prediction performance was inferior when applying the same model to a
smaller sample of a prospective dataset. It is important to note that the training step was
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conducted in a much larger dataset, while the testing of the SVM model was conducted in
a smaller dataset.

 

Figure 3. Correlation plot between the observed and predicted nursery mortality using the SVM
model on 72 new closeouts. True Negative (TN): Predicted as Low mortality (<5%) and actual was
Low (<5%); False Negative (FN): Predicted as Low mortality (<5%) and actual was High (>5%); True
Positive (TP): Predicted as High mortality (>5%) and actual was High (>5%); False Positive (FP):
Predicted as High mortality (>5%) and actual was Low (<5%).

Despite the SVM’s decreased performance on naïve data when categorizing both
predicted and actual nursery mortality of the 72 closeouts into high (>5%) or low (<5%)
nursery mortality, a high accuracy value (77.78%) was observed for the SVM on correctly
predicting the closeouts as high or low nursery mortality. Also, we observed that most of
the groups are located in the positive diagonal axis of the chart, which is the desired area in
terms of prediction (Figure 3).

The values for sensitivity (62.16%), specificity (94.29%), positive predicted value
(92.00%), and negative predicted value (70.21%) also demonstrated an acceptable prediction
performance, especially for precisely predicting groups with “high nursery mortality” rates
(i.e., at high risk). Overall, the SVM model accurately predicted 62.16% of the closeouts with
relatively “high nursery mortality” and 94.29% with relatively low mortality. In other words,
even though the SVM model did not predict all groups that had “high nursery mortality” as
high (false negatives), the model had a high positive predicted value, indicating that 92.00%
of the closeouts predicted as “high nursery mortality” were observed as actually high.

For the categorical variables (n = 7) included in the forecasting model, when comparing
the frequency distribution between the number of closeouts with high and low mortality
groups compared to their respective predicted values (Figure 4), the forecasting model
overestimated the number of groups with low predicted mortality (i.e., right-side trans-
parent bars are longer than the right-side solid bars). On the other hand, the forecasting
model underestimated the actual number of closeouts with “high nursery mortality” for
all classes of the categorical variables illustrated (i.e., left-side transparent bars are shorter
than the left-side solid bars).
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Figure 4. Frequency distribution of the categorical variables included in the forecasting model. Left
and right solid bars refers to the number of closeouts with actual high or low nursery mortality (>5%),
respectively. Left and right transparent bars refer to the number of closeouts predicted as high or low
nursery mortality (<5%), respectively.

Notably, for specific classes within the categorical variables (e.g., “Pig med.—Tulathromycin”
or “PRRS Status—Epidemic”), the proportion of groups predicted as “high nursery mortal-
ity” were higher than the number of groups predicted as “low nursery mortality”. This
hypothesis is supported by the common knowledge that PRRS infections in breeding herds
generate downstream PRRS-epidemic weaned pigs [10,16–20], which are expected to be
more challenged throughout the post-weaning phase. Also, the use of tulathromycin to
treat piglets in breeding herds indicates that health-challenged pigs were weaned, as this
is a frequently prescribed antibiotic in swine due to its ability to modulate the immune
system, as well as an effective treatment against key respiratory diseases [21].

On the other hand, for some factors such as “MhP—Negative” or “Pig med.—None”,
the largest proportion of the groups of pigs were predicted as low nursery mortality
groups, which can be explained by the fact that M. hyopneumoniae infection in weaned pigs
can increase growing pig mortality [22], thus, negative pigs are expected to have higher
survivability. Also, the presence of groups of weaned pigs that were not treated with
medication during the lactation can indicate groups with higher quality that did not need
this procedure.

Altogether, the results demonstrated in Figure 4 indicate the influence of specific
factors on the overall prediction. However, this study was not designed to investigate the
influence of these specific factors on nursery mortality, as this type of approach requires a
causal inference analysis [23,24], which was not the scope of this study.

4. Discussion

The algorithms developed in this study for the data-wrangling pipeline allowed the
integration of information previously stored independently and underutilized for analysis
purposes, combining the dispersed predictors in multiple data streams into a single master
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table. This approach of combining multiple data streams to investigate post-weaning
performance was previously described in other studies [7,8,25–27].

Multiple machine learning and regression algorithms were applied to the master table
to compare their forecasting performance in predicting swine nursery mortality. Also, other
studies in the livestock realm demonstrated the application of similar models for predicting
important KPIs of productivity [2,3,28–33].

Assuming that the swine production system maintains the format of the data streams
utilized to build the master table over time, the algorithms can be utilized to integrate
and prepare new incoming information for prospective analyses, including forecasting
and causal inference, as it is seen that incompatibility of data streams is one of the major
challenges in data integration [34].

The results of both the data-wrangling pipeline procedure and the forecasting models’
comparison allowed the training of the best model on retrospective data and further testing
on new data, simulating the ongoing application of forecasting models on future data, in
other words, utilizing the pre-weaning phase and stocking condition variables to predict
the future mortality of closeouts.

The algorithms developed in this study can support swine practitioners in their
decision-making process to strategically allocate resources (or not) for groups with pre-
dicted high nursery mortality. Notably, the predictive performance of the models refers
specifically to the dataset collected in this study and to the time analyzed. In other words,
the performance may change over time within this company as swine nursery mortality
is impacted by multifactorial components that are dynamically interacting over time and
period [4,5,10], limiting the external validity of this study to other field conditions.

Although there is an opportunity for improving the prediction of the exact values
of nursery mortality (i.e., continuous outcome), there is a trade-off between prediction
error and the utility of the predicted value when using binary vs. continuous outcome.
For example, more relevance was given by the production system in this study to identify
relatively high nursery mortality groups instead of predicting their exact mortality values.

The lower sensitivity results of this study can be explained by limiting the inclusion of
predictor variables related only to the pre-weaning phase and conditions of weaned pigs at
placement in growing sites (stocking conditions variables), as post-weaning infectious and
non-infectious factors are likely to increase swine mortality as well [5]. However, as the
goal of this study was to forecast nursery mortality at the beginning of the post-weaning
phase (at placement), a trade-off of losing accuracy in terms of prediction but allowing
early intervention is expected.

On the other hand, the model demonstrated a high performance when predicting
groups that would have high nursery mortality (high positive predicted value), thus indicat-
ing that sow farm variables related to the quality of the piglets at weaning can drive their
mortality throughout the post-weaning phase as demonstrated by other authors [35–38].

5. Conclusions

Forecasting swine nursery mortality can support decision-makers in allocating re-
sources or interventions toward precision swine health and productivity management.
This study demonstrated the capability of building system-specific algorithms that allows
the development of an automated data-wrangling pipeline, which enables ongoing and
near real-time forecasting. Also, this study demonstrated the ability to utilize breeding
herd characteristics and data concerning the stocking conditions of weaned pigs placed
in nursery sites as predictors for forecasting nursery mortality. Despite the overall ac-
ceptable performance for predicting groups at high nursery mortality risk, there is an
opportunity for improving the model’s performance by including more predictors and
other machine-learning models.
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