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Computational Medical Image Analysis: A Preface

Anando Sen

John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle
University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK;
anando.sen@newcastle.ac.uk

There has been immense progress in medical image analysis over the past decade.
Methodologies have transitioned from analytical to implementation-based to machine-
learning-based techniques. This Special Issue was introduced to showcase the latest inno-
vations in medical image analysis. The focus was on computational applications of medical
images. The scope was not limited by the imaging modalities or applications presented. I
envisaged a combination of modalities such as planar imaging (e.g., X-ray, planar nuclear
imaging), anatomical imaging (e.g., computed tomography [CT], magnetic resonance [MR]
imaging), nuclear medicine (e.g., positron emission tomography [PET]), bimodal or multi-
modal imaging (e.g., PET-CT), as well as pathology. While some applications were listed as
examples in the invitation, there were no restrictions on the presented applications as long
as they were clinically relevant.

This Special Issue received enthusiastic responses from the academic community. With
12 successful submissions and the interest these generated, we were motivated to work
on a second edition, which is already open for submissions. Among the articles, 10 are
research articles while two are review articles. Further, of the 12 articles, 10 (including
both the review articles) dealt with machine-learning- and deep-learning-based methods,
highlighting the transition towards these methods in the past decade. I was also glad to see
the geographic diversity of the published articles. The first authors of the 12 papers were
based in 11 different countries and four continents.

This Special Issue contains some very important and innovative applications. A sum-
mary of the papers along with the tackled applications is provided in Table 1.

Table 1. Summary of the 12 papers published in the Special Issue ‘Computational Medical Image
Analysis.

First Author/Reference Type Description

Santos et al [1] Research A computer-aided diagnosis method for eye
melanoma detection using Lorenz’s attractor

Haider et al. [2] Research A compressed sensing-based based method for
sparse reconstruction of MR images

Joshi et al. [3] Research
A method for detecting breast cancer in

histopathology images using convolutional neural
networks (CNNs)

Rashed et al. [4] Research
Evaluate various machine-learning and

deep-learning techniques for classifying chest X-ray
and dermoscopy images into normal and abnormal

Aguirre-Arango et al. [5] Research Technique for feet segmentation in thermal images
that can be used for pain relief during pregnancy

Chauhan et al. [6] Research

Evaluate several classifiers on
electroencephalography (EEG) data to classify

Attention Deficit Hyperactive Disorder (ADHD)
patients and healthy controls

Computation 2024, 12, 109. https://doi.org/10.3390/computation12060109 https://www.mdpi.com/journal/computation1
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Table 1. Cont.

First Author/Reference Type Description

Supriyanto et al. [7] Research

Use a geometric augmentation and generative
adversarial networks (GANs) to classify clinical

(white-light) images of skin lesions into cancerous
and non-cancerous

Kolli et al. [8] Research Predict the time to wound healing based on digital
images of the wound

Lipinski [9] Research

Development of simulated dynamic susceptibility
contrast MR images of the brain that can be used to

evaluate quality assessment methods for
disease diagnosis

Alnsaif [10] Research

Development of a classifier to differentiate between
COVID-19 and non-COVID-19 chest CT scans using

features extracted from pre-trained deep-learning
models

Petrikova et al. [11] Review
Provide an overview of deep-learning-based

histopathology classification tasks covering a variety
of applications and organs

Martins et al. [12] Review
Investigate recent progress in machine-learning

methods for the diagnosis of oral diseases using oral
X-ray images

I would like to thank the MDPI team for their smooth processing of the submitted
articles. The editorial team and Academic Editors ensured each article received adequate
consideration. The Editorial Board was called upon a few times to provide the final decision
when reviewer opinions diverged. Finally, a big thank you to all reviewers who provided
scientific expertise for this Special Issue despite their busy schedules. I look forward to
working with all of them for the second edition and invite all authors and readers to
consider this Special Issue for the submission of their research outputs.
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Secure Medical Image Transmission Scheme Using Lorenz’s
Attractor Applied in Computer Aided Diagnosis for the
Detection of Eye Melanoma

Daniel Fernando Santos and Helbert Eduardo Espitia *

Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia
* Correspondence: heespitiac@udistrital.edu.co

Abstract: Early detection of diseases is vital for patient recovery. This article explains the design
and technical matters of a computer-supported diagnostic system for eye melanoma detection
implementing a security approach using chaotic-based encryption to guarantee communication
security. The system is intended to provide a diagnosis; it can be applied in a cooperative environment
for hospitals or telemedicine and can be extended to detect other types of eye diseases. The introduced
method has been tested to assess the secret key, sensitivity, histogram, correlation, Number of
Pixel Change Rate (NPCR), Unified Averaged Changed Intensity (UACI), and information entropy
analysis. The main contribution is to offer a proposal for a diagnostic aid system for uveal melanoma.
Considering the average values for 145 processed images, the results show that near-maximum
NPCR values of 0.996 are obtained along with near-safe UACI values of 0.296 and high entropy of
7.954 for the ciphered images. The presented design demonstrates an encryption technique based
on chaotic attractors for image transfer through the network. In this article, important theoretical
considerations for implementing this system are provided, the requirements and architecture of the
system are explained, and the stages in which the diagnosis is carries out are described. Finally, the
encryption process is explained and the results and conclusions are presented.

Keywords: chaotic attractors; computer vision; disease diagnosis; encryption; computer-assisted
diagnosis; convolutional neural networks

1. Introduction

Computer assistance in providing disease diagnoses has a broad range of applications,
and the development of tools that help to reach this end is of paramount significance.
Computer-Assisted Diagnosis (CAD) has been applied in many different contexts, includ-
ing Digital Imaging and Communications in Medicine (DICOM); in this regard, a web
application for disease diagnosis through a browser is shown in [1]. Other examples of
medical images transmission can be found in [2,3]. In [4], the authors evaluated a fuzzy
clustering algorithm for breast cancer detection, while [5] illustrates developments in the
detection of diabetic retinopathy involving computer-aided diagnostic systems.

In Colombia, as well as in other parts of the world, access to an ophthalmologist
entails several appointments and procedures, which usually lead to long waits. For this
reason, it is essential to create tools to aid in timely diagnosis in order to provide adequate
treatment. In [6], the authors proposed a telemedicine system to diagnose stomach diseases.
Issues with developing computer-aided diagnosis systems (CADS) have been studied
in [7], where the authors explained a new model along with several fundamental CADS
techniques. Cloud Computing (CC), TensorFlow (TF), and Django are used as support for
the construction of such systems. CC supports the storage and access of information of
interest for different parties, while TF (created by Google under an open-source Apache 2.0
license [8]) provides an interface for building and running machine learning algorithms to
use and run eye disease prediction models.

Computation 2022, 10, 158. https://doi.org/10.3390/computation10090158 https://www.mdpi.com/journal/computation4
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Regarding computer-assisted diagnosis, reference [9] presents a diagnostic system for
schizophrenia using effective connectivity of resting-state electroencephalogram (EEG) data,
while [10] studies the practicality of deep learning algorithms applied to chest X-ray images
for COVID-19 detection. In [11], the authors presented a COVID-19 prediction applying
supervised machine learning algorithms using the Waikato Environment for Knowledge
Analysis (WEKA), which is an open-source software developed at the University of Waikato
in New Zealand. Lastly, reference [12] proposed a system for detection of cancer cells using
commercially automated microscope-based screeners. Employing supervised machine
learning, the authors developed software capable of classifying Feulgen-stained nuclei
within eight diagnostically important types.

Regarding eye image processing (classification), in [13], the authors described the
implementation of a framework for healthy and diabetic retinopathy retinal image recogni-
tion. In [14], the authors presented a framework for eye tracking calibration where features
extracted from the synthetic eyes dataset are used in a fully connected network to isolate the
effect of a specific user’s features. Their work was oriented towards the design of low-cost
eye-tracking systems. In [15], the authors performed an Image Quality Assessment (IQA)
of eye fundus images in the context of digital fundoscopy with Topological Data Analysis
(TDA) and machine learning methods. IQA is a fundamental step in digital fundoscopy
for clinical applications, and is considered one of the first steps in the preprocessing stages
of Computer-Aided Diagnosis (CAD) systems using eye fundus images. Their research
employed cubical complexes to represent the images; the grayscale version was then used
to calculate a homology illustrated with persistence diagrams and thirty vectorized topo-
logical descriptors were calculated from each image for use as input to a classification
algorithm. Finally, Diabetic Retinopathy (DR) is a disease that is one of the main causes
of blindness around the world. Therefore, reference [16] employed retinal fundus images
as diagnostic tools to screen abnormalities associated with eye diseases. In this regard,
article [16] proposed an algorithm to segment and detect hemorrhages in retinal fundus
images. The method they described performs preprocessing on retinal fundus images by
utilizing a windowing-based adaptive threshold to segment hemorrhages. In this way,
conventional features are extracted for each candidate and classified using a support vector
machine.

In regards to research related to image encryption based on chaos, developed ap-
proaches include specially fractional-order chaotic systems, which exhibit more complex
dynamics than integer-order chaotic systems. In [17], a fractional-order memristor was
developed, analyzed, and electronically implemented. In this order, a three-dimensional
(3D) fractional-order memristive chaotic system with a single unstable equilibrium point
was proposed for use in an encryption system applied to grayscale images. Other related
research was presented in [18], where the authors proposed using a chaotic oscillator
without linear terms as a random number generator for application in biomedical image
encryption. They demonstrated the physical realization of the oscillator and carried out
a security and performance analysis. In [19], an oscillator with chaotic dynamics was
presented and various properties of the oscillator, such as bifurcations, equilibria, and
Lyapunov exponents, were studied in order to show the existence of chaotic dynamics (as
the oscillator has a chaotic attractor). Using the features of the chaotic oscillator, a method
for generating pseudo-random numbers was presented in the context of designing secure
substitution boxes applied to an image cryptosystem. In this same orientation, in [20] the
authors developed, analyzed, tested, and electronically implemented a 4D fractional-order
memcapacitor that observed the nonlinear dynamic properties of a hyperchaotic system.
On this basis, they proposed an encryption algorithm for color encryption based on the
system’s chaotic behavior in which every pixel value of the original image is incorporated
into the secret key to strengthen the encryption algorithm. A related work was presented
in [21] involving a hyperchaotic 4D fractional discrete Hopfield neural network system.
The chaotic dynamics features were analyzed and the chaotic system was used as a pseudo-
random number generator for an image encryption scheme based on a fractal-like model
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scrambling method. This approach was able to enhance the complexity and security of the
encryption algorithm. Finally, in [22], a chaotic oscillator was presented in which the chaotic
dynamics were pre-located around manifolds. After analyzing the complex dynamics of
the oscillator, this approach was employed in the design of an image cryptosystem, and the
results of the cryptosystem were tested while considering different metrics.

The present study proposes a system for computer-aided diagnosis, detection, and
classification of eye diseases using chaotic-based encryption for image transmission. The
proposal is based on the previous works in [23,24] for image encryption and [25,26] for
image diagnostics.

Regarding differences with other related works, references [9–12] display various
applications in computer-assisted diagnosis that are not applicable to eye image diagnosis;
while [13–16] are focused specifically on eye image processing and classification. Regarding
image encryption methods based on chaotic attractors, references [17–22] each describe sev-
eral different developments, while [18] considers the encryption of medical images and [22]
is concerned with Internet of Things (IoT) applications for remote diagnosis. The novelty
of the present work is in its integration of an identification system for Uveal melanoma
with an encryption mechanism in order to obtain a computer-assisted diagnosis system
that can help professionals in improving the diagnostic process. As such, a computer-aided
diagnosis system is presented here that integrates an image processing (classification)
system based on a convolutional neural network and a mechanism for image transmission
using an encryption method based on a chaotic attractor.

The rest of this paper is constructed as follows. Section 2 displays the design of
the proposed system. Section 3 specifies the encryption framework and reviews the
chaotic Lorenz attractor and its relevant properties for encryption. Section 4 presents
the implementation results for the encryption system. Finally, Sections 5 and 6 respectively
present the discussion and conclusions.

2. Proposed Diagnosis and Encryption System

This section presents the system architecture and the process used to diagnose the
graphic user interface, then explains the system operation employing Convolutional Neural
Network (CNN).

The structure of the application is similar to the one proposed in [27] divided into
three layers: presentation, domain logic, and data access. The presentation layer comprises
the patient and doctor user interfaces and all actions that a user can carry out. The domain
logic contains the business module and the process of transferring and ciphering images
over the network; this frame uses the data access layer, which stores the data the systems
need to operate. Figure 1 shows a graphic of the doctor user interface (presentation
layer), providing an example of a result after diagnosis. The specialist interface provides
a diagnostic from all the eye images received. Contiguous to each eye, there is a textbox
where the specialist can formulate the diagnostic; additionally, it offers options to run the
automatic CNN diagnostic model. A button to send the diagnostic is provided. When
clicking on the image of the eye, the specialist performs the operations described in Table 1.
This interface has a responsive design, allowing it to be used from a smartphone.

The system allows different operations to be executed on the eye; these are shown in
Table 1. These operations are aimed at modifying eye the image according to user needs,
for instance, zooming in on a particular region or removing noise.

6
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Figure 1. Specialist’s interface with different diagnostic options.

Table 1. Operations that the specialist carries out on the images. These operations allow the doctor to
perform a more reliable diagnostic.

Operation Description

Grayscale transformation Conversion of the I[x, y, z] color image to grayscale O1[x, y]
to reduce noise and improve the performance of the follow-
ing stages. The conversion of a color image to a grayscale
image consists of converting RGB values (24 bits) to gray-
scale values (8 bits).

Apply median filter This process is performed to apply smoothing, which is
achieved by sliding a window over the image, thus sup-
pressing the higher frequencies. It can be seen as a change
of the brightness of the input image.

Apply thresholding For the present project, this utilizes mean adaptive thresh-
olding and Gaussian adaptive thresholding to clearly define
the borders. The main objective of this step is to provide
better definition of the edges.

Dilate the image By applying a morphological operation to reduce noise, di-
lation allows objects to be expanded, thus potentially filling
small holes, in this case reducing pepper noise.

Rotation The image is rotated at a predefined or random angle. In the
case of the iris, 360 different rotations can be performed.

Zooming This technique creates new versions of an image with dif-
ferent zoom views, in many cases focusing on the region
of interest. The resulting images are enlarged or reduced
according to a predefined range.

The user takes a picture of the eye and sends it using the application; this image is
saved in the server through a request, then the specialist receives this photo and writes
a diagnosis. This process can be seen in Figure 2. Before transmitting over the network,
images are ciphered using chaotic encryption to maintain privacy. The Diffie–Hellman
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algorithm shares the initialization conditions for ciphering and deciphering the server and
the client.

Figure 2. Model explaining communication between the patient and specialist. The patient can send
images through their cellphone or computer.

Diagnostic Using Deep Convolutional Neural Network

For implementing the layer corresponding to the diagnostic, preliminary tests were
conducted recognizing fuzzy systems neural networks and neuro-fuzzy systems as shown
in [25,26]. However, better results are attained utilizing convolutional neural networks.
Thus, the diagnostic system employs a famous pre-trained model, Resnet18, which recog-
nizes abnormalities with an accuracy of 99%. Figure 3 presents the Resnet18 architecture.

In order to train the CNN, a data augmentation process was employed obtaining
a dataset of 2048 figures, consisting of 1024 healthy and 1024 unhealthy. The original
database is taken from [28], consisting of images of 150 healthy and 33 unhealthy patients.
Additional details related to the design and training of the CNN can be found in [29].
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Figure 3. Resnet18 architecture.

The model trained with the Resnet18 architecture receives an image (iris image) and
produces a value corresponding to the classification; in addition, there is a second model
that produces a bounding box with the location of the detected abnormality. The model
is used when the specialist clicks the “Use AI to Diagnose” button. In [29], different
convolutional neural networks (CNNs) were used to detect ocular abnormalities with an
illustrative case of uveal melanoma (UM), a type of ocular cancer. Thus, this work is a
complement to that research, seeking to implement a CAD.

Resnet is a well-known convolutional neural network architecture that allows the
training of hundreds or thousands of layers and achieves excellent performance. The
biggest advantage of Resnet is its ability to reduce the vanishing gradient problem [30].
Before Resnet, a deep network was hard to train, as the gradients need to back-propagate
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through an enormous number of layers in a deep network, which makes the gradient
infinitely small. Resnet has solved this problem, as it can skip the backwards connections
between layers and create identity shortcuts in the gradients’ path, that allows the gradients
to flow faster to the initial layer [31].

The model was trained with a cross-entropy loss function to minimize the distance
between predicted and ground-truth probabilities. This is defined in Equation (1), where pi
and qi are the ground-truth and predicted probability, respectively. The loss function was
minimized utilizing the Adam optimization algorithm, as it is computationally efficient
and works well with noisy or sparse gradient problems.

L = −
N

∑
i=1

pi log(qi) (1)

3. Security Techniques

This section reviews the chaotic Lorenz attractor and its relevant properties for encryp-
tion, and describes notable security techniques.

Privacy is essential for systems that hold patient information, and is indispensable in
speeding up the diagnostic process. Various techniques have been introduced, including
data encryption standard (DES), Rivest–Shamir–Adleman (RSA), and chaos, among others.
Chaos provides high sensitivity to initial conditions and unpredictability. For instance, ref-
erence [32] used chaotic Arnold Maps (AM) to randomize the original position of the pixels,
causing the image to become noisy. In [33,34], the authors proposed a system for encrypting
color using the advantage of chaotic maps. The idea behind these maps is to distribute the
pixels with a transformation such that the correlation of adjacent pixels can be reduced.
Using compression and security features, this scheme can be applied in public networks.
In [35], a feasible system for image encryption was presented using techniques applicable
for real-time image transmission and encryption. However, applications in medical image
transfer are relatively scarce; one of the few that has been found is the use of Arnold maps
for the diffusion stage in a system that allows the encoding of pixels of biometric data [36].
This system uses a chaotic Chen system to change the statistical properties and resist attacks
of the same type, achieving a robust system capable of resisting brute force attacks and
thus demonstrating that this system is applicable for the transmission of biometric data
over open and shared networks. However, AM is not sufficient to protect against statistical
attacks. This is why a second phase of encryption is needed using Lorenz’ system, as used
in different works such as [37,38]. The Lorenz system is a model of thermally induced fluid
convection in the atmosphere, which has properties that make it ideal for ciphering images.
It is defined by the following set of equations:

x1 = a(x2 − x1) (2)

x2 = cx1 + x2 − x1x3 − x4 (3)

x3 = x1x2 − bx3 (4)

x4 = kx2x3 (5)

Figure 4 shows the Lorenz system for x1, x2, and x3, with initial conditions x1 = 2.7,
x2 = 1.3, x3 = −1.7, and x4 = −5.

Equations (2)–(5) correspond to the 4D hyperchaotic Lorenz system, where a, b, c, k > 0
are the control parameters. Using suitable values can obtain the desired chaotic behavior.
In this work, we employ the encryption scheme presented in [23] that utilizes this Lorenz
model. In addition, we consider [24], where the 3D Lorenz classical model is used for iris
image encryption.
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Figure 4. Lorenz system with initial conditions x1 = 2.7, x2 = 1.3, x3 = −1.7, and x4 = −5. Plot of
x1, x2, and x3.

Encryption Process

The introduced encryption algorithm uses RGB images of the eye and bases its oper-
ation on two means, permutation and diffusion; the first is performed through Arnold’s
chaotic map, while the second is accomplished through the numerical solutions 4th of
Lorenz’s system generated by Runge Kutta. In the permutation phase, each pixel is re-
positioned with one-to-one correspondence, i.e., all pixels composing the permuted image
correspond to the group of pixels of the original image, making it possible to recover the
actual image without any distortion. Different techniques can be applied in this situation;
Arnold’s Chaotic Map provides easy and efficient implementation and shows consistent
results in terms of the metric used to establish how much the pixels have moved from the
original position [39].

To describe the encryption process, the width w and height of the image h are obtained,
and three arrays arrr, arrg, and arrb of cardinality w × h + δ are generated with values
obtained from the Lorenz map using R4. The value δ is a natural number representing the
amount of iterations required for the values of x1, x2, x3, and x4 to enter the chaotic system.

Figure 5 illustrates the image ciphering process and Figure 6 is a subset of images
of the CASIA dataset used to perform statistical analysis. First, the image histogram is
observed without carrying out the encryption process. Later, the respective encryption
allows for observation of cases in which image transmission is susceptible to a “digital
attack”. In this context, a “digital attack” attempts to reconstruct the transmitted image
without authorization.

Figure 5. Image with an abnormality in the bottom right part of the iris (image used for testing).

10
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Figure 6. Subset of images from the CASIA Iris dataset used to perform statistical analysis of the
proposed ciphering scheme.

The more uniform the histograms are, the more secure the ciphering is against statisti-
cal attacks; the histograms of the real image can be seen in Figure 7a–c. If permutation is
not carried out, it is feasible that an attacker could gain insights into the original image.

An example of a process of ciphering without using permutation is presented in
Figure 8. it can be seen that the ciphering process without a permutation procedure causes
the circular structure of the iris to be somewhat recognizable.
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Figure 7. Histograms for RGB channels of the original image (Figure 5): (a) red image histogram,
(b) green image histogram, (c) blue image histogram.

Figure 8. Ciphering process without a permutation process causes the circular structure of the iris to
be recognizable.
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The patterns displayed in the images permuted with Arnold’s map are based on the
number of iterations. For instance, Figure 9 shows the images in Figure 6, and with these
results Figure 10 displays the diffused images with Lorenz.

Figure 9. Nine of the ciphered images after Arnold’s map.

Figure 10. Nine ciphered images with Lorenz’ attractor and Arnold’s map.

4. Results

A simulated example of a diagnosis carried out over two eyes of the test dataset can
be seen in Figure 1. The top image shows a healthy picture corresponding to the diagnosis
“Your eye is healthy” and at the bottom, the image contains a potential abnormality, an
unhealthy eye. In this case, the option “Use AI to diagnose” was used to produce the
results, which triggers the CNN network and produces a number with a probability, which
in this case is “Doctor, there is a 98.6% probability” that the eye has Uveal Melanoma. Next,
considering Figure 5 to illustrate the process of image ciphering, the module receives an eye
image which is permuted using Arnold’s Map to produce Figure 11a. Finally, this image is
diffused using Lorenz’ attractor, generating Figure 11b, which can then be transmitted over
the network. The original database used here is taken from [28].
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(a) (b)

Figure 11. Results of the permutation and diffusion processes. The input of the diffusion process
is the result of the permutation stage. As can be seen, the shape of the iris is no longer presented.
(a) Image permuted with seven iterations using Arnold’s map. (b) Image permuted ciphered using
Lorenz’ attractor.

As explained in [40], there are different kinds of correlation attacks. Correlation
analysis techniques include the Mean Difference Method (MDM) and Pearson Correlation
Coefficient Method (PCCM); producing lower values of correlation makes the system
more robust against these attacks. Hence, it is a crucial statistical analysis tool based on
the frequency distribution of the encrypted pixels illustrated in the histograms (visual
representation of such distribution, plotting the number of pixels at each level). After
performing the proposed scheme, the results of the correlation can be seen in Table 2,
exposing small correlation values for the transmitted images. In addition, the histograms
can be seen in Figure 12a–c, showing that the ciphered images have a uniform distribution
in the intensity of each color component, which in plain sight would result in an inconsistent
or meaningless image. Thus, the possibility of an attacker obtaining the actual image is
noticeably low, as the pixels of each color component of the encrypted image are distributed
without providing any indication to use in statistical analysis to obtain a possible image.

Table 2. Correlation values for Red, Green, and Blue channels for different images in the encryp-
tion process.

Image Red Green Blue

Figure 5 (Image without ciphering) 0.996 0.996 0.995

Figure 11a (Image after Arnold’s map) 0.314 0.276 0.274

Figure 11b (Image after Arnold’s map and Lorenz’ attractor) 0.002 0.001 0.002
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Figure 12. Histograms of RGB channels for a given ciphered image: (a) histogram red channel,
(b) histogram green channel., (c) histogram blue channel.

4.1. Sensibility in the Key

As mentioned above, in a chaotic system the initial conditions significantly affect the
performance of the Chen system. A security system must be sensitive to a wrong key
to ensure that data cannot be obtained without the proper key. To provide an example,
the following are the initial conditions: [x1 = 2.7, x2 = 1.3, x3 = −1.7, x4 = −5], and to

13



Computation 2022, 10, 158

measure to sensitivity, these values are slightly changed to [x′1 = 2.71, x′2 = 1.3, x′3 = −1.71,
x′4 = −5.08]. This slight alteration produces large changes, confirming the high sensitivity
present in the Lorenz system. In order to observe the sensibility of the initial conditions,
Figure 13 shows the values for x1, x2, x3 and x4. The values of (x1, x2, x3) are used to
cipher each of the RGB pixels. Therefore, a small alteration in any of the initial conditions
produces remarkably different results.

Sensitivity to initial conditions is one of the requirements defined by Shannon [41] for
confusion and diffusion in cryptography; the problem with these systems is that they can
be broken due to their small key space [42,43], as the most important part of any encryption
algorithm is the key that defines whether the system is sufficiently strong against attacks.
However, as shown in [44], the Lorenz system can be used to generate keys that successfully
pass the National Institute of Standards and Technology (NIST) statistical test suite.
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Figure 13. Values generated with initial conditions for x1, x2, x3, and x4.

4.2. Metrics

According to [45], the NPCR and UACI statistical tests are employed when dealing
with base chaos encryption; for example, references [46,47] employed these metrics. The
Number of Pixel Change Rate (NPCR), which computes the pixel difference ratio between
ciphered and original images, is calculated with Equation (6); in this equation, D(i, j)
corresponds to Equation (7):

NCPR =
1

M × N

M

∑
i=1

N

∑
j=1

D(i, j)× 100% (6)

D(i, j) =

{
0, if A(i, j) = B(i, j)
1, if otherwise

(7)
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where A(ij) is the pixel value of the original image, B(i, j) is the pixel value of the encrypted
image, and (M, N) corresponds to image dimensions. A higher NPCR displays better
algorithm performance. The range of NPCR values is [0, 1].

Meanwhile, UACI computes the difference between the ciphered image and the
original image, allowing the strength of the encryption algorithm to be observed. UACI
measures the average change in a pixel’s values between the ciphered and original images
by employing Equation (8):

UACI =
1

M × N

M

∑
i=1

N

∑
j=1

|A(i, j)− B(i, j)|
255

× 100%. (8)

A high UACI indicate that the systems is resistant against different attacks. The state
of the art shows that a UACI of 0.33 is a secure value [24].

The entropy metric relies on the probability of pixel values and computes the degree
of randomness; this metric is calculated using Equation (9), where P(i) is the probability of
pixel value i and is computed by Equation (10):

E =
255

∑
i=0

(
P(i) log2

(
1

P(i)

))
, (9)

P(i) =
Frequency of the pixel value i
Total number of image pixels

. (10)

The efficiency of the encrypted image is superior if the entropy value is greater. The
maximum entropy value is 8.

In this work, the results of these metrics for RGB images are shown in Table 3, in which
it can be seen that the NPCR, UACI, and Entropy in the ciphered images have high values
of security acceptable for use in image transmission.

Table 3. Results of NPCR, UACI, and Entropy tests for a RGB image after permutation and diffusion.

Measure Red Green Blue

NPCR 0.996 0.996 0.996

UACI 0.310 0.328 0.334

Entropy 7.996 7.996 7.995

In order to ensure that the obtained result was not an outlier, we used the Chinese
Academy of Sciences—Institute of Automation (CASIA) database, taking several iris images
in grayscale to obtain a dataset that allows a statistical analysis to be performed. For iris
recognition research, CASIA contains a free access database; the images were captured
using a uniform illumination to obtain an adequate iris image. This database of free access
images can be found in [48].

Example images and the results of the iterations are shown in Figures 6, 9 and 10,
while the metrics obtained after this process are shown in Table 4 for 145 images. These
results show that near-maximum values of NPCR are obtained, as are near-safe values of
UACI and high entropy in the different channels for the ciphered images. These values
are sufficiently high for encrypted images, and therefore can be considered to have strong
resistance to differential attacks.
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Table 4. Metrics: median, standard deviation, minimum and maximum of 145 images for NPCR,
UACI, and Entropy using CASIA dataset.

Measure Median Standard Deviation Min Max

NPCR 0.996 0.0004 0.994 0.997

UACI 0.296 0.0196 0.266 0.357

Entropy 7.954 0.0022 7.949 7.961

5. Discussion

Although this article describes a system for medical diagnosis, the main results aim to
showing the various aspects of the encryption process; consequently, a user test is outside
the scope of this work. This is due to the difficulty of establishing a group of professionals
to carry out such tests. Additionally, the details of the convolutional neural networks used
for the classification system can be consulted in [29].

As mentioned, there are several different works related to the proposal made in this
document, included those on computer-aided diagnosis systems, image classification, and
encryption systems. Several references cited in the introduction section were considered
here, as follows:

• Computer Aided Diagnosis [9–12];
• Eye Image Classification [13–16];
• Chaotic Encryption [17–22].

It should be noted that [18] considered the encryption of medical images and [22] con-
sidered internet of things applications which included the possibility of remote diagnosis.

As observed, a comparison with related works can be made considering different
approaches. In this respect, a comparison consists of the process of image encryption taking
similar works as reference. Then, considering the average values for the implementations
made in other related works, Table 5 displays the NPCR, UACI, and entropy values.

Although all cited works present better values in the metrics considered, the results
obtained are close to those reported in [17–22], taking into account that the best values of
the indicators are close to 1 for NPCR, around 0.33 for UACI, and 8 for entropy. In addition,
in this comparison it should be considered that different numbers of figures with several
sizes and features were used to carry out the tests. As displayed in Table 5, in this work
145 figures were used to validate the encryption process, which is more than in the other
works. Therefore, to make a uniform comparison, in future works a benchmark must be
defined considering standard figures according to the application in consideration.

Table 5. Performance comparison with other related works.

Research Images Used NPCR UACI Entropy

This work 145 0.9960 0.2960 7.9540

Reference [17] 1 0.9987 0.4996 7.9951

Reference [18] 3 - - 7.9957

Reference [19] 4 0.9961 0.3347 7.9027–7.9999

Reference [20] 1 0.9981 0.3362 7.9996

Reference [21] 3–10 0.9961 0.3344 7.9983

Reference [22] 4 0.9962 0.3345 7.9993
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6. Conclusions

In this paper, we have presented a system for medical image diagnosis using chaotic-
base encryption with a particular case for Uveal Melanoma diagnosis. This cipher scheme
was assessed using several statistical tests, including entropy test analysis, key sensitivity
test, correlation properties, and randomization tests using UACI and NPCR. Although the
encryption confirms that the original and encrypted images have no visual correspondence,
statistical analysis through histograms reveals uniform distributions. Nonetheless, the
correlation coefficients of adjacent pixels are low enough to guarantee that the original
image cannot be easily recovered from the image resulting from the encryption process
without knowledge of the initial conditions.

It should be noted that the Arnold maps with the Lorenz system are an encryption
scheme with suitable results for the transmission of images over public networks, which
requires the confidentiality, integrity, and privacy of the message.

The results display adequate performance of the encryption system, with high values
obtained for NPCR (0.994 to 0.997), near-safe values for UACI (0.266 to 0.357), and high
entropy of 7.949 to 7.961 for the ciphered images.

Considering the results in Table 4 for the 145 images, NPCR describes the lowest
variation (standard deviation) of 0.0004 for the tests performed, followed by entropy with
0.0022, and finally UACI at 0.0196. This shows that the experiments carried out do not
present greater variation when encrypting the largest number of processed figures in the
same way.

In subsequent work, we intend to carry out user tests in order to improve the computer-
aided diagnosis system.
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38. Celİk, K.; Kurt, E. A new image encryption algorithm based on lorenz system. In Proceedings of the 2016 8th International
Conference on Electronics, Computers and Artificial Intelligence (ECAI), Ploiesti, Romania, 30 June–2 July 2016; pp. 1–6.
[CrossRef]

39. Abd-El-Hafiz, S.K.; AbdElHaleem, S.H.; Radwan, A.G. Permutation techniques based on discrete chaos and their utilization in
image encryption. In Proceedings of the 2016 13th International Conference on Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology (ECTI-CON), Chiang Mai, Thailand, 28 June–1 July 2016. [CrossRef]

40. Fei, H.; Daheng, G. Two kinds of correlation analysis method attack on implementations of Advanced Encryption Standard
software running inside STC89C52 microprocessor. In Proceedings of the 2016 2nd IEEE International Conference on Computer
and Communications (ICCC), Chengdu, China, 14–17 October 2016; pp. 1265–1269. [CrossRef]

41. Patidar, V.; Pareek, N.; Purohit, G.; Sud, K. A robust and secure chaotic standard map based pseudorandom permutation-
substitution scheme for image encryption. Opt. Commun. 2011, 284, 4331–4339. [CrossRef]

42. Ye, R.; Guo, W. An Image Encryption Scheme Based on Chaotic Systems with Changeable Parameters. Int. J. Comput. Netw. Inf.
Secur. 2014, 6, 37–45. [CrossRef]

43. Guo, W.; Wang, X.; He, D.; Cao, Y. Cryptanalysis on a parallel keyed hash function based on chaotic maps. Phys. Lett. A 2009,
373, 3201–3206. [CrossRef]
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Abstract: In the Compressed Sensing (CS) framework, the underdetermined system of linear equation
(USLE) can have infinitely many possible solutions. However, we intend to find the sparsest possible
solution, which is l0-norm minimization. However, finding an l0 norm solution out of infinitely many
possible solutions is NP-hard problem that becomes non-convex optimization problem. It has been a
practically proven fact that l0 norm penalty can be adequately estimated by l1 norm, which recasts a
non-convex minimization problem to a convex problem. However, l1 norm non-differentiable and
gradient-based minimization algorithms are not applicable, due to this very reason there is a need
to approximate l1 norm by its smooth approximation. Iterative shrinkage algorithms provide an
efficient method to numerically minimize l1-regularized least square optimization problem. These
algorithms are required to induce sparsity in their solutions to meet the CS recovery requirement.
In this research article, we have developed a novel recovery method that uses hyperbolic tangent
function to recover undersampled signal/images in CS framework. In our work, l1 norm and soft
thresholding are both approximated with the hyperbolic tangent functions. We have also proposed
the criteria to tune optimization parameters to get optimal results. The error bounds for the proposed
l1 norm approximation are evaluated. To evaluate performance of our proposed method, we have
utilized a dataset comprised of 1-D sparse signal, compressively sampled MR image and cardiac cine
MRI. The MRI is an important imaging modality for assessing cardiac vascular function. It provides
the ejection fraction and cardiac output of the heart. However, this advantage comes at the cost of a
slow acquisition process. Hence, it is essential to speed up the acquisition process to take the full
benefits of cardiac cine MRI. Numerical results based on performance metrics, such as Structural
Similarity (SSIM), Peak Signal to Noise Ratio (PSNR) and Root Mean Square Error (RMSE) show that
the proposed tangent hyperbolic based CS recovery offers a much better performance as compared to
the traditional Iterative Soft Thresholding (IST) recovery methods.

Keywords: compressed sensing; holography cardiac cine MRI; l1-norm smooth approximations;
hyperbolic tangent function; soft thresholding

1. Introduction

Compressed Sensing (CS) exploits the sparsity of signals in a certain domain to
find a near-optimal solution to the underdetermined system of linear equations. In CS,
the sampling of signals depends on the information rate rather than its bandwidth. CS
technique facilitates simultaneous acquisition and compression of compressible or sparse
signals that potentially reduce the acquisition time. The CS is a data acquisition method
that allows for the reconstruction of a signal from very few measurements if the signal is
transformed in a sparsifying domain, and these measurements are highly incoherent with
respect to its sparsifying transform. Unfortunately, most of the reconstruction techniques
of compressively sampled signals are computationally expensive and non-linear [1–3].
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CS has recently been used to reconstruct under-sampled biomedical images by ex-
ploiting the sparsity of biomedical images in the sparsifying domain. The Fourier-encoded
nature of the MR image scanning process and the existence of suitable sparsifying trans-
form domains, i.e., Wavelets, Contourlets, total variation, etc., make the MRI a potentially
suitable application of CS [4]. Incoherent sampling, which is another important require-
ment of CS, can be accomplished with the variable density k-space sampling method to
introduce noise-like random aliasing artefacts during the MR image recovery. Variable
density k-space under-sampling pattern samples with high density from the center of the
k-space that contains maximum energy of the MR images and undersamples the outer
k-space region with lower density to efficiently reduce the MR image scanning time [5].

Cardiac cine magnetic resonance imaging (MRI) is an emerging medical imaging
modality to evaluate the growth of Cardiac-Vascular Disease (CVD). It is useful in evalu-
ating the cardiac wall thickness and motion in CVD patients [6–8]. Further, cardiac cine
MRI aids in performing the quantitative study of ejection fraction and cardiac output of the
heart. The ejection fraction is the percentage of blood that is ejected out of the ventricles
with each contraction. This amount is used to determine heart failures and other types
of heart diseases [9]. Cardiac output measures the amount of blood pumped by the heart
per minute. However, these advantages are limited by the lengthy acquisition process of
cardiac cine MRI that requires multiple breaths-holds of the patient and extended patient
engagement in MRI scanner. Therefore, it is essential to accelerate the image acquisition in
cardiac cine MRI by using fast pulse sequences and/or by reducing the number of samples
taken during data acquisition [10,11]. As the former approach is inherently limited by
different constraints, much research interest is moved to the latter approach. CS can be
applied successfully to the cardiac cine MRI, where sparsity is exploited in the temporal
dimension [4,12]. However, improving speed and efficiency of CS recovery methods is
an active area of interest for researchers working in medical imaging especially MRI. The
key conditions for the CS framework to work are sparsity, non-linear reconstruction and
incoherent undersampling.

In MR imaging, sparsity can be accomplished by transforming the image in its sparse
representation. To fulfil the condition of incoherent sampling in MR imaging, various
undersampling patterns can be utilized, such as radial lines sampling and variable density
sampling [4]. Non-linear reconstruction numerical techniques involve l1-norm regulariza-
tion in order to find sparse solutions to the least-squares optimization problem. l2-norm
based regularization provides the linear and simplest solution to under-determined system
problem. However, it minimizes the energy of the error and distributes it over all solution
set that results in non-sparse solution that does not fits in CS framework. Similarly lp-norm
(1 < p < ∞) based regularization, as value of p starts growing it tends to penalize only the
largest parameter, such as max function, and some bad parameters may hide under the
largest parameters, which results in less-sparse solution. For this very reason l1-norm is the
preferred regularization, as it promotes sparsity that perfectly fits in CS framework [1–3].
However, l1-norm penalty is non-differentiable, so applying efficient optimization methods
that involve derivative are not feasible. Therefore, various methods have been proposed
to resolve the l1-norm regularization problem. The IST based recovery methods have
successfully been utilized to efficiently reconstruct images from under-sampled data in the
CS framework [5,13]. An iterative hard thresholding-based recovery method is proposed
for the compressed sensing problem [14]. However, this algorithm has limited performance
as compared to the soft thresholding-based methods. Random filters for compressive
sampling [15], Bregman iterative algorithms for compressed sensing [16], and a weighted l1
minimization recovery algorithm [17] are proposed to solve the compressed sensing recov-
ery problem. Lately, smooth l1-norm penalty based sparse signal reconstruction method
was evolved for approximation of l1-norm that uses a hyperbolic tangent function [18]. The
research shows that this technique can be used for the reconstruction of undersampled MR
images from fewer acquired samples, which allows fast imaging without compromising
spatial resolution. Jawad et al. proposed that the wavelet thresholding can be implemented
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using hyperbolic tangent function. It was explained that the differentiable hyperbolic
function provides a much more accurate recovery than IST techniques [19–21]. It was
experimentally shown that the hyperbolic tangent function performs a much improved
signal recovery as compared to the hard threshold, soft threshold and Garrote threshold
functions [22,23].

In this paper, CS technique is applied to reduce MRI scanning time, CS exploits the
sparsity of MRI in Fourier domain that enables us to take fewer samples without compro-
mising on the quality of image recovered from undersampled MRI. We propose a novel
and more efficient CS recovery algorithm based on the hyperbolic tangent function for
approximating l1-norm and shrinkage operation for accurate recovery of compressively
sampled sparse signals, MR images and the cardiac cine MRI. We introduce smooth ap-
proximation of l1-norm, the hyperbolic tangent function, where steepest descent algorithm
is applicable for minimization of objective function. The error bounds for the proposed
l1-norm penalty are presented in this paper. We have used the soft thresholding technique
based on the hyperbolic tangent function that is inspired by the maximum a posteriori
(MAP) noise estimator. In this work, we also recommend the efficient criteria for the tuning
parameters. Performance analysis of the proposed method is shown using simulations; to
recover random 1-D sparse signal, 2-D MR image and clinical cardiac cine MRI. Several
quantitative performance measures are used apart from qualitative depiction, i.e., Mean
Square Error (MSE), Root Mean Squared Error (RMSE), Signal to Noise Ratio (SNR), Peak
Signal to Noise Ratio (PSNR), Improved Signal to Noise Ratio (ISNR), correlation, fitness,
and Structural Similarity (SSIM) in order to prove the supremacy of proposed method over
existing recovery techniques.

2. Materials and Methods

Reconstruction of undersampled signal through CS is an optimization problem, which
promotes sparsity in our solution by minimizing the l1–norm.

2.1. Proposed Method

Let zεRn be the signal in a vector form and yεCm be the undersampled measurements.
Then, the CS recovery function is written as:

f (z) =
1
2
‖y − ΦΨHz‖2

2 + λ‖z‖1 (1)

where Φ is the sampling domain of the signal z, whereas Ψ represents sparsifying transform.
The tuning parameter λ in Equation (1) provides an important trade-off parameter between
fidelity and sparsity. The performance of our algorithm is dependent on proper threshold
level selection. We have employed the fixed value expression, depending on the signal
dimensions and its noise variance [13].

λ = σv

√
2 ln(n) (2)

where σv is the noise standard variance and n is the length of the sparse signal.
Since the hyperbolic tangent function has properties, such as non-convex, odd, smooth

analytical bounded function that is monotonically increasing, the slope of the function at
the origin can be tuned to any desired value [21]. So, our proposed approximation for the
l1 norm in Equation (1) is defined as:

‖z‖1
∼=

n

∑
i=1

zitanh(γzi) (3)

Since the hyperbolic tangent function is used as a smooth and differentiable approxi-
mation to l1-norm. Therefore, the value of γ is taken quite high to make it closer to l1-norm,
as shown in Figure 1. It is also providing the benefits of the smoothness and differentiability.
Equation (1) can now be written as:
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f (z) =
1
2
‖y − ΦΨHz‖2

2 + λ ∑n
i=1 zitanh(γzi) (4)

γ
γ
γ
γ

Figure 1. l1 norm approximation using the hyperbolic tangent function for different values of
γ = (1, 4, 6, and 10). As the value of gamma continues to increase and the approximation is closer
to the actual l1 norm, however, it is less smooth. The proposed technique gives us the flexibility to
choose between the level of smoothness and accuracy.

For steepest descent algorithm, vector differentiation can not be used. Hence, it can be
rewritten as Equation (4) in element form to find the partial derivative. Let A = ΦΨH , then
the element-wise equation is defined as:

f (z) =
1
2 ∑

i
(Az − y)i(Az − y)i + λzitanh(γzi) (5)

Let A = φΨH , then partial derivative of Equation (4) in element form is formulated as:

∂ f (z)
∂zl

= ∑
ij

AijAilzj − ∑
i

yiAil + λ
(

tanh(γzl) + zlγ
(

1 − tanh2(γzl)
))

(6)

Hence, the steepest descent algorithm for lth update is:

(Δz)l = −η
∂ f (z)

∂zl
(7)

Equation (7) is used to find a solution using the steepest descent algorithm.

2.2. Error Bounds for Proposed Smooth l1-Norm

The error bounds for the proposed smooth l1 norm approximation defined by Equation (2)
are derived in this section [24]. The l1 norm approximation is proposed based on the fol-
lowing two principles.

1. |z| = (z)+ + (−z)+, where (z)+ = max{z, 0} is the plus function;
2. This plus function can be smoothly approximated as:

(z)+ ≈ p(z, γ) =
1
2
[z + z.tanh(γz)] (8)
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From Equation (8), we can write a smooth approximation of l1 norm:

‖z‖1 = (z)+ + (−z)+ ≈ p(z, γ) + p(−z, γ)
= z

2 [1 + tanh(γz)]− z
2 [1 + tanh(−γz)]

= z
2 tanh(γz) + z

2 tanh(γz)
= z tanh(γz)
= ‖z‖γ

(9)

Equation (9) represents the γ approximation of the l1 norm, as shown in Figure 1.
Unlike the l1 norm, we can apply the unconstraint optimization techniques, where gradient

needs to be calculated and the proposed approximation is twice differentiable and the 1st and
2nd order gradients of the proposed l1 norm are shown in Equations (10) and (11), respectively.

∇(‖z‖) ≈ tanh(γz)− γz
(

tanh(γz)2 − 1
)

(10)

∇2(‖z‖) ≈ 2γ(γz tanh(γz)− 1)
(

tanh(γz)2 − 1
)

(11)

As the value of γ approaches infinity the error between ‖z‖1 and ‖z‖γ approaches
zero. We here propose the simple lemma to determine the error bounds for ‖z‖ and ‖z‖γ.

Lemma 1. The proposed smooth function of l1 norm f (z) = z tanh(γz) fulfils the suffi-
cient and necessary convexity condition in the interval z ∈ [−1, 1] as its derivative f ′(z) de-
fined by Equation (9) is monotonically non-decreasing and its second derivative f ′′(z) defined by
Equation (10) is nonnegative for 0 < γ ≤ 1;

Lemma 2. l1 norm approximation error bounds for any z ∈ R andγ > 0.

∣∣∣‖z‖1 − ‖z‖γ

∣∣∣ ≤ 1
2γ

(12)

Proof. Let us consider two cases, first case for z > 0,

p(z, γ)− (z)+ = z
2 (1 + tanh(γz))− z

= z
2 (1 + tanh(γz))− z

= z
2 (tanh(γz)− 1)

(13)

Now, we can find the maximum value of tanh(γz) to find the upper bound for
Equation (13). As we know that the maximum value of tanh(γx) is 1, so we can write:

maxima
z

tanh(γz) =
eγz − e−γz

eγz + e−γz = 1 (14)

Using Equation (14), the relationship between γ and z can be easily derived as:

z =
1

2γ
(15)

By inserting the value of z from Equation (15) in Equation (14)

p(z, γ)− (z)+ ≤ 1
4γ

(16)

�

Figure 2 shows the proposed method obeys error bounds define by Equation (16).
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Figure 2. l1 norm approximation error bounds for z > 0, the green line shows the upper bound
proved mathematically in Equation (16), whereas the dotted red line shows the actual error between
the proposed l1 norm smooth approximation and actual non-differentiable l1 norm. The error is
maximum at approximately zero and approaches zero as γ → ∞ .

Figure 3 shows graphically that our proposed approximation function obeys the
bounds defined by Equation (19).

For z ≤ 0,
0 ≤ p(z, γ)− (z)+ = p(z, γ) ≤ p(0, γ)

= z
2 (tanh(γz)− 1) ≤ 0

= 1
4γ

(17)

As p is the monotonically increasing function. Hence, from Equations (17) and (18),
p(z, γ) will dominate (z)+, so

|p(z, γ)− (z)+| ≤ 1
4γ

(18)

From Equation (8), we can insert ‖z‖ = (z)+ + (−z)+∣∣∣‖z‖1 − ‖z‖γ

∣∣∣ =
∣∣p(z, γ) + p(−z, γ)− (

(z)+ + (−z)+
)∣∣

≤ |p(z, γ)− (z)+|+
∣∣p(−z, γ)− (−z)+

∣∣
≤ 1

4γ + 1
4γ = 1

2γ

(19)

Figure 3 shows the error bounds versus error in the smooth approximation.
Let us define ‖z‖(1,γ) as a smooth approximation to the l1 norm function ‖z‖1 for a

vector z ∈ Rn as:

‖z‖(1,γ) = ∑n
i ‖zi‖γ∣∣∣‖z‖(1,γ) − ‖z‖1

∣∣∣ ≤ 2n 1
4γ = n

2γ

(20)

Hence, we can conclude that:
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lim
γ→∞

‖z‖(1,γ) = ‖z‖1 ∀z ∈ R
n (21)

Let L : Rn → R by any continuous cost function and defined by f (z) = L(z) + ‖z‖1

and fγ(z) = L(z) + ‖z‖(1,γ). If we define z =
argmin

z
f (z) and zγ =

argmin
z

fγ(z). By

definition of f and fγ and from Equation (20), it can be concluded that

lim
γ→∞

fγ(z) = f (z) ∀z ∈ R
n (22)

Figure 3. l1 norm approximation error bounds for z < 0, the green line shows the upper bound proved
mathematically in Equation (19), whereas the dotted red line shows the actual error between proposed
l1 norm smooth approximation and actual non-differentiable l1 norm. The error is maximum at
approximately zero and approaches zero as γ → ∞ .

In addition, it is a known fact that f (z) ≤ f (z)∀z. In particular f (z) ≤ f (zγ), then:

f (z) ≤ f (zγ) = L(zγ) + ‖zγ‖1
= L(zγ) + ‖zγ‖1 + ‖zγ‖(1,γ) − ‖zγ‖(1,γ)

=
(

L(zγ) + ‖zγ‖(1,γ)

)
+

(
‖zγ‖1 − ‖zγ‖(1,γ)

)
= fγ(zγ) +

(
‖zγ‖1 − ‖zγ‖(1,γ)

) (23)

This implies that f (z)− fγ(zγ) ≥ − n
2γ from Equation (21), similarly (z)− fγ(zγ) ≤ n

2γ ,
hence proved that lim

γ→∞
fγ(z) = f (z).

It can be further stated that:
| f (zγ)− f (z)| = | f (zγ)− f (z)− fγ(zγ) + fγ(zγ)|

≤ | f (zγ)− fγ(zγ)|+ | fγ(zγ)− f (z)| (24)

Hence, it proved that lim
γ→∞

f (zγ) = f (z). Moreover, if L is strictly convex, it can be

easily proven that: lim
γ→∞

zγ = z.
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3. The Map Estimator and Proposed Thresholding Mechanism

Conventionally l1-norm minimization has inherent soft thresholding [13]. However,
when we approximate the l1-norm by the hyperbolic tangent function, thresholding is not
done implicitly. The hard thresholding operator proposed in [14] can be defined by the
following equation.

Sβ(z) =
{

z |z| > β
0 otherwise

(25)

We have used a new thresholding function based on the tangent hyperbolic function.
Therefore, β is an important parameter in controlling the under-sampling noise, which
has Gaussian distribution [21]. To obtain the optimum value of β, the thresholding de-
pends upon the undersampling noise. Therefore, the following data-driven thresholding
parameter β is used [13,25].

β =
σ2

v
σz

(26)

With σz is the standard deviation of sparse signal and σv the standard deviation of Gaussian-
like noise produced due to under-sampling.

To enhance the performance under different scenarios, different mathematical thresh-
olding operators could be found in the literature [26–28]. The main idea in this approach is
mapping the values nearer to the origin to zero and those that are further away from the
origin are shrunk towards zero.

The basic denoising technique aims to find the estimate of original image or signal
from its perturbed set of observations, as shown in Equation (27).

y = z + v (27)

where y ∈ Rn is the noisy image, z ∈ Rn is the original signal and v is the zero-mean
Gaussian noise with probability distribution function (pdf) given by:

pv(θ) =
1√

2πσ2
v

exp

(
‖θ‖2

2
2σ2

v

)
(28)

By taking the Wavelet transform of Equation (27), we get:

q = s + v (29)

where q = Ψy and s = Ψz represent the sparsifying domain for noisy image and the
original image, respectively. As Wavelet transform is the linear operator, therefore the
zero-mean Gaussian noise v after transformation will not change. The MAP estimation of
random vector s is given by:

ŝ = max
s∈Rn

p(s|q) (30)

By using Bayes’ rule, one can ignore p(q) as it is independent of s, MAP estimator can
be written as:

ŝ = max
s∈Rn

p(q|s)ps(s) (31)

The problem defined in Equation (31) can be further simplified by taking p(q|s) = pv(q− s) :

ŝ = max
s

[pv(q − s)]ps(s)

= max
s

[lnpv(q − s) + lnps(s)]

= max
s

[
ln
{

1√
2πσ2

v
exp

(
−‖q−s‖2

2
2σ2

v

)}
+ lnps(s)

]

= max
s

[
ln
{(

1√
2πσ2

v

)n
exp

(
−‖q−s‖2

2
2σ2

v

)}
+ lnps(s)

]

= max
s

[
−‖q−s‖2

2
2σ2

v
+ f (s)

]
(32)
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where f (s) = ln ps(s). By differentiating the argument of Equation (32) w.r.t. s and
equating the result to zero, we can calculate the MAP estimator for Wavelet coefficients of
the noise-free image as:

(qi − ŝi)

σ2
v

+ f ′(ŝi) = 0, 1 ≤ i ≤ n (33)

The pdf of biomedical images are more peaked at the center than Gaussian, so Lapla-
cian can better estimate the distribution of Wavelet domain coefficients, i.e.,

ps(si) =
1√
2σv

exp

(√
2

σv
|si|

)
(34)

gives f ′(ŝi) = −
√

2
σ sig(ŝi). Solving Equation (33) will result in

qi = ŝi +
√

2 sig(ŝi) (35)

Let β =
√

2σ2
v and solve Equation (35) for ŝi to formulate the nonlinear shrinkage:

ŝi = Sβ(q) = max{|q| − β, 0}.sig(q) (36)

Equation (36) can be further elaborated as:

Sβ(q) ∼=
{

sgn(q)(|q| − β) |q| > β
0 otherwise

(37)

In this paper, novel thresholding approach has been proposed, which is used on
the hyperbolic tangent, as the hyperbolic tangent function slope can be adjusted from
the origin and it is a bounded function that makes it an suitable surrogate function for
soft thresholding. Hence, hyperbolic tangent based soft thresholding can be described
mathematically by following equation:

Sβ(q) ∼=
{

cz{tanh(α(|q| − β))} |q| > β
0 otherwise

(38)

where β is a thresholding parameter and parameter α is used to control the shape of the
hyperbolic tangent function. If α is closer to zero, Equation (38) approximately changes
into the soft thresholding function. When α approaches ∞, Equation (38) changes to the
hard thresholding function, as shown in Figure 4. Our proposed Algorithm 1 starts as a
soft thresholding function and smoothly changes to a hard threshold at higher iterations.
The proposed approximation of this soft thresholding results in a better reconstruction as
compared to the conventional soft thresholding method [21] as illustrated in Figure 4.

Algorithm 1. Proposed Algorithms.

Inputs:

Sensing matrix Fu, measurement vector yεCm, parameters γ, λ and β,
Output:

A k-sparse vector x̂ ∈ Rn

Initialization: Initialize x0, Index i = 0
Step-1 (Sparse Representation): zi = Ψxi
Step-1 (Gradient Computation): Find ∇ f (zi) using Equation (5)
Step-2 (Solution Update): Compute the update using Equations (6) and (7).
Step-3 (Shrinkage): Estimate Solution using Equation (38), i.e., ẑi+1 = Sβ(zi+1)

Step-4 (Repeat): If stopping criterion is not met, i = i + 1 & go to step 1
Output: x̂ = ΨH ẑi
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Figure 4. Hyperbolic tangent function based thresholding for alpha α = (2, 4, 8, 16), the value of α

determines the slope of soft thresholding. The proposed method gives us the flexibility to shape the
curves using α depending upon its application.

4. Results and Discussions

In order to gauge the performance of proposed algorithm, we have applied our
algorithm to 1-D sparse signal, Compressively sampled MR image and Cine Cardiac MRI.
MRXCAT simulator is used to evaluate the proficiency of recovery algorithms in the field of
Cardiac MRI. We have evaluated the performance of our proposed technique quantitatively
and qualitatively. The performance measures that are used in this research article are:
pictorial depiction of under-sampling artefacts, Structural Similarity (SSIM), Peak Signal to
Noise Ratio (PSNR) and Root Mean Square Error (RMSE).

4.1. 1-D Sparse Signal Recovery

The proposed algorithm is applied for the recovery of the 1-D sparse signal recovery,
where the random sparse signal of length n = 512 is created in MATLAB and the support
for the sparse signal was generated randomly with K = 85 non-zero elements. The random
sparse signal is compressively sampled using a random measurement matrix A ∈ R256×512

with only m = 256 measurements.
Figure 5 shows the fitness achieved by the proposed algorithm and soft-thresholding

method. The proposed method achieved faster convergence as compared to soft threshold-
ing. Figure 6 shows sparsity effect on successful recovery achieved by the soft thresholding
and proposed algorithm. The proposed algorithm performs much better even with a
higher sparsity level as compared to the soft thresholding technique. Similarly, in Figure 7,
the proposed method recovered the sparse signal with great accuracy, whereas the soft
thresholding technique failed to accurately recover the sparse signal. The accuracy of the
proposed technique was also measured against performance measures, such as SNR, MSE
and correlation, as shown in Table 1. The proposed algorithm performed much better than
the soft thresholding method against all these performance measures. The time comparison
for proposed algorithm is 1.57 s as compared to 1.34 s by conventional soft thresholding.
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Figure 5. Fitness achieved by the soft thresholding and proposed algorithm. The proposed algorithm
converges rapidly as compared to the soft thresholding technique.

Figure 6. Sparsity effect on successful recovery achieved by the soft thresholding and proposed
algorithm. The proposed algorithm performs much better even with higher sparsity level as compared
to the soft thresholding technique.
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Figure 7. (a) The recovered sparse signal from the proposed algorithm; (b) The recovered sparse
signal from soft thresholding.

Table 1. Performance comparison of different sparsity transforms using mean squared error in the
transform domain. Temporal FFT performs better in cardiac cine MRI.

Performance Metrics Soft Thresholding Proposed Algorithm

MSE 1.00 × 10−2 1.61 × 10−4

Fitness 0.8664 0.0224
SNR 12.6712 30.6259

Correlation 0.9787 0.9995

4.2. 2-D Compressively Sampled MR Image Recovery

The random sampling at the CS image acquisition produces incoherent and noise-like
artefacts in its sparsifying domain. In case of MR imaging or similar Fourier domain
encoded biomedical imaging, where the MR image is in the spatial domain, the linear
reconstruction (where, missing Fourier data points are replaced by zero and the resultant
image inverse Fourier transform is taken) produces artifacts similar to additive Gaus-
sian noise. The type of noise produced by subsampling is governed by undersampling
patterns [29]. In order to recover an image, the compressed sensing recovery essentially
becomes an image denoising problem. Using this analogy of CS encoding and noisy image,
the first step in recovering the original image is to estimate a noise, this is achieved by
maximum a posteriori (MAP) estimator. The proposed algorithm is also implemented to
recover a 2-D Compressively sampled real human brain MR image of size 256 × 256. The
human brain MR image is a fully sampled scanned image by a 1.5 Tesla GE-HDxt-MRI
scanner with Gradient Echo (GE) sequence and 8 channels head coils with the specifications,
i.e., TE = 10 msec, flip angle = 90◦, bandwidth = 31.25 KHz, slice thickness=3 mm, TR = 55,
and image dimensions = 256 × 256, at St. Mary’s Hospital, London, UK. This MR image is
compressively sampled by taking only 25% samples in k-space.

Figure 8 shows the performance of the proposed method with respect to Structural
Similarity (SSIM). The proposed method achieved much better SSIM as compared to
soft thresholding. The Peak Signal to Noise Ratio (PSNR) accomplished by proposed
method is shown in Figure 9. Figure 10 shows the (a) Original 2D Brain MR Image,
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(b) Conventional Soft Thresholding based recovered 2D MRI, (c) 2D Brain MR Image
recovered from undersampled image, (d) Difference of original and soft thresholding image,
(e) Difference of proposed recovery method image with original image. The Difference is
scaled up by 1000 in order to enhance its visibility. Table 2 shows the proposed method
has outperformed soft thresholding method in terms of PSNR and SSIM. Table 3 shows
the performance of proposed algorithm and soft thresholding in terms of Mean Square
Error (MSE), Improved Signal to Noise Ratio (ISNR), Correlation, SSIM, SNR, PSNR after
the 15 iterations of soft thresholding and the proposed algorithm. The results show that
proposed method achieved much better results in as compared to soft thresholding.

 
Figure 8. Structural Similarity of proposed and soft thresholding algorithm for recovery of compres-
sively sampled MR image against each iteration.

Figure 9. Correlation of proposed and soft thresholding algorithm of recovered compressively sample
MR image.
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Figure 10. (a) Original 2D Brain MR Image, (b) Conventional Soft Thresholding based recovered 2D
MRI, (c) 2D Brain MR Image recovered from undersampled image, (d) Difference of original and soft
thresholding image, (e) Difference of proposed recovery method image with original image. The
Difference is scaled up by the factor of 1000 in order to enhance its visibility.

Table 2. Performance comparison of conventional soft thresholding and proposed method with
different compression levels, i.e., 5% to 50% of subsampling of the original 2-D MR image. These
results show that the proposed method achieves better results in terms of SSIM and PSNR at varying
compression ratios.

Compression Ratio
Soft Thresholding Proposed Algorithm

SSIM PSNR SSIM PSNR

5 % 0.6843 75.9056 0.7048 76.1609
10% 0.7786 78.9320 0.8175 79.6580
20% 0.8994 82.0316 0.8472 83.7628
30% 0.9407 87.3535 0.9790 91.1620
40% 0.9724 91.2540 0.9920 96.1281
50% 0.9884 95.4245 0.9955 99.5496

Table 3. Performance comparison of different sparsity transforms using mean squared error in the
transform domain. Temporal FFT performs better in cardiac Cine MRI.

Performance Metrics Soft Thresholding Proposed Algorithm

MSE 1.38 × 10−4 0.73 × 10−4

PSNR 86.7195 89.4497
ISNR 28.3832 31.1135
SSIM 0.9346 0.9711
SNR 26.0298 28.7491

Correlation 0.9980 0.9989

4.3. Cardiac Cine Magnetic Resonance Imaging Recovery

The proposed algorithm is applied to MRXCAT, which produces breath-held under-
sampled cardiac cine MR image data. For MRXCAT, the following parameters were set:
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recovery matrix size: 256 × 256 with 24 cardiac phases, with an image resolution set as
1 × 1 × 1 mm3, TR = 3 ms, TE = 1.5 ms. Five different acceleration rates R = (2, 4, 8,
12, 20) were used to assess the performance of the proposed method. For in vivo data,
the following parameters were used: reconstruction matrix size: 256 × 256, 25 cardiac
phases, with FOV of 375 mm. TE = 1 ms, TR = 3 ms and flip angle = 600. Five acceleration
rates are R = (2, 4, 8, 12, 20) are used to evaluate the performance of the proposed
method. The reconstructed images are matched with the fully sampled original generated
cardiac cine MRI as shown in Figure 11. All images are recovered in MATLAB by the
proposed algorithm.

 
(a) (b) (c) 

Figure 11. (a) Short axis cardiac cine MRI with completely sampled diastolic frame. (b) Sparsifying
transform of cine cardiac MRI diastolic frame with temporal Fourier transform (Ψ), which results in
sparse representation, (c) Another sparse representation of cardiac cine MR image (diastolic frame)
using total variation transform (Ψ).

To gauge the efficiency of proposed algorithm, we use MRXCAT simulator software. It
is designed for the analysis of reconstruction algorithms performance in the area of cardiac
cine MRI. MRXCAT simulator is used to evaluate the proficiency of recovery algorithms in
the field of Cardiac MRI. We have evaluated the performance of our proposed technique
quantitatively and qualitatively. The performance measures that are used in this research
article are: pictorial depiction of under-sampling artefacts, Structural Similarity (SSIM),
Peak Signal to Noise Ratio (PSNR) and Root Mean Square Error (RMSE).

To evaluate the performance of proposed recovery technique qualitatively, we have
experimentally depicted the recovered diastolic and systolic frames using acceleration rates
of (R = 2, 4, 8, 12, 20). The quantitative assessment of the proposed algorithm is done using
RMSE, PSNR and SSIM. Comparison between proposed algorithm and traditional soft
thresholding technique is also performed. Figure 11 depicts the proficiency of the proposed
algorithm at various acceleration rates while comparing with the soft thresholding. The first
column shows the diastolic frame at different acceleration rates of cine cardiac MR image
and the second column represents the systolic frame of cine MRI. The top row depicts the
results of traditional IST algorithm, while the bottom row depicts proposed method results.

Table 4 shows the performance comparison of different sparsity transform using mean
squared error in the transform domain. It measures the average of the error squares between
the reconstructed and the acquired coefficients in the sparse domain. The proposed tangent
hyperbolic based approximation performs well in temporal FFT as compared to the other
sparse transforms. In particular, at higher acceleration rates, the tangent hyperbolic tangent
based proposed technique shows much improved recovery of CS images.
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Table 4. Performance comparison of different sparsity transforms using mean squared error in the
transform domain. Temporal FFT performs better in cardiac cine MRI.

Acceleration Rates Spatial Domain Total Variation Temporal FFT

2 0.1096 0.1123 0.0728
4 0.2321 0.1849 0.0848
8 0.2810 0.2438 0.0948
12 0.3533 0.2684 0.1043
20 0.4756 0.2982 0.1150

Figure 12 shows simulated data where (a) compares proposed method at bottom row
with IST at top row with acceleration rate of 2. The arrow in (a) depicts the very minute
presence of artefacts, while (b) depicts the performance of proposed method at acceleration
rate equal to 4. The arrow in (b) depicts the presence of artefacts (c) shows the results of
both algorithms with acceleration rate set at 8. The artefacts due to subsampling become
gradually more visible in IST results as highlighted by arrow mark (d) depicts the results
when acceleration rate is set at 12. Both techniques depicts the artefacts, however these
artefacts are visible in the IST as mentioned by the white arrow in the figure (e) shows very
much degraded image quality of IST, while comparing it with the proposed method. The
subsampling artefacts dominate the traditional IST result when acceleration rate R is set
at 20.

 

Figure 12. Simulated data (a) Compares proposed method at bottom row with IST at top row with
acceleration rate of 2. The arrow in (a) depicts the very minute presence of artifacts. Here (b) depicts
the performance of proposed method at acceleration rate equal to 4. The arrow in (b) depicts the
presence of artefacts (c) shows the results of both algorithms with acceleration rate set at 8. (d) depicts
the results when acceleration rate is set at 12. These artefacts are visible in the IST as mentioned by
the white arrow in the figure (e) shows very much degraded image quality of IST, while comparing it
with the proposed method.
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To evaluate the recovered images quantitatively, we have used SSIM to compare the
proposed technique with the IST technique. Figure 13 depicts the SSIM of our proposed
algorithm, iterative soft thresholding (IST) and undersampled images. The quality of
undersampled images is visibly quite poor. The efficiency of our proposed technique and
IST technique is almost similar at low acceleration rates. However, the visible quality of the
soft thresholding based recovered images decreases as acceleration rates are increased, as
compared to the proposed method.

Figure 13. This figure depicts the efficiency of proposed algorithm by means of SSIM index. As
acceleration rate increases, the SSIM of proposed algorithm degrades slowly while comparing it with
IST algorithm.

Figure 14 shows the requisite iterations for the image reconstruction in both the
methods. The proposed method solves the problem in six iterations, while the IST recov-
ery technique takes ten iterations to reach the optimal solution. In this result, the data
consistency is used to show the performance of proposed method.

Figure 14. Comparison of cardiac cine MRI recovery at number of iterations; it can be seen from
results that proposed method converges to an optimal solution in lesser iterations as compared to
traditional thresholding.

To evaluate the efficiency of our recovered algorithm quantitatively, the results are
shown the reconstruction results using PSNR at various acceleration rates (R = 2, 4, 8, 12, 20).
We have compared our method with the traditional iterative soft thresholding technique.
Figure 14 depicts the efficiency of our proposed technique at various acceleration rates
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as compared to IST algorithm. Red line shows the results of our method at the different
acceleration rates. Figure 15 shows the PSNR of soft thresholding method and under-
sampled data are shown with the green and blue lines, respectively.

Figure 15. The performance using the peak signal-to-noise ratio (PSNR). PSNR of our method is
better at all acceleration rates as compared to the soft thresholding method.

Table 5 elaborates the comparison of performance using root mean squared error
(RMSE). It measures the error squares average between the recovered samples and the
actual samples. The proposed method performance is much superior as compared to
the IST technique. In particular, while operating at higher acceleration rates, the tangent
hyperbolic method performs much better in recovering the images. However, the efficiency
of traditional IST algorithm degrades at higher acceleration rates.

Table 5. Comparison of proposed method with conventional IST algorithm with RMSE. Proposed
method performance is much better as acceleration rates are increased.

Acceleration
Rates

Undersampled
Image

Iterative Soft
Thresholding

Proposed
Method

Simulated Data

2 0.081 0.0365 0.0353
4 0.1218 0.0472 0.0372
8 0.1498 0.0702 0.0419

12 0.1583 0.0775 0.0485
20 0.1782 0.0941 0.0606

In vivo Data

2 0.085 0.0099 0.0056
4 0.106 0.0241 0.0172
8 0.1170 0.0495 0.0206

12 0.120 0.0567 0.0338
20 0.1398 0.0585 0.0551

To evaluate the performance of reconstructed images qualitatively, using in vivo data,
we have shown a comparison between the proposed method and the soft thresholding
method in Figure 16. We have used five acceleration rates R = (2, 4, 8, 12, and 20) to show
the comparison between the proposed method and the soft thresholding method. In this
figure, the performance of the proposed technique and IST algorithm is similar at lower
acceleration rates. However, the blurring artefacts in IST based recovered images are more
prominent at higher acceleration rates as compared to the proposed algorithm as indicated
by the white arrows.
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Figure 16. In real vivo data (a) Compares proposed method at bottom row with IST at top row with
acceleration rate of 2. The arrow in (a) shows very minute artifacts. (b) depicts the performance
of proposed method at acceleration rate equal to 4. The arrow in (b) depicts the presence of arte-
facts (c) shows the results of both algorithms with acceleration rate set at 8. The artefacts due to
subsampling become gradually more visible in IST results as highlighted by arrow mark (d) depicts
the results when acceleration rate is set at 12. Both techniques depicts the artefacts, however these
artefacts are visible in the IST as mentioned by the white arrow in the figure (e) show very much
degraded image quality of IST, while comparing it with the proposed method. The subsampling
artefacts dominate the traditional IST result when acceleration rate R is set at 20.

5. Conclusions

In this paper, the novel CS recovery algorithm is proposed for compressively sampled
sparse signals and biomedical images. The proposed method is applied in the 1-D sparse
signal, 2-D real human brain MRI and cardiac cine MRI. In our proposed algorithm, we
have introduced a hyperbolic tangent smooth approximation of non-differentiable l1-norm
and shrinkage. The experimental results quantitative analysis based on SSIM, PSNR,
RMSE of recovered sparse signal and MR images have outperformed the conventional IST
algorithm. The qualitative observations show significant improvement in the proposed
method, especially at higher acceleration rates on Cine Cardiac MR images. In future, this
research work can be further enhanced to incorporate machine learning techniques using
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large compressively sampled MRI datasets to restore accurate images, and the proposed
method can be implemented on CS MRI scanners to reduce patient anxiety.
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Abstract: Early detection and timely breast cancer treatment improve survival rates and patients’
quality of life. Hence, many computer-assisted techniques based on artificial intelligence are being
introduced into the traditional diagnostic workflow. This inclusion of automatic diagnostic systems
speeds up diagnosis and helps medical professionals by relieving their work pressure. This study
proposes a breast cancer detection framework based on a deep convolutional neural network. To mine
useful information about breast cancer through breast histopathology images of the 40× magnification
factor that are publicly available, the BreakHis dataset and IDC(Invasive ductal carcinoma) dataset
are used. Pre-trained convolutional neural network (CNN) models EfficientNetB0, ResNet50, and
Xception are tested for this study. The top layers of these architectures are replaced by custom
layers to make the whole architecture specific to the breast cancer detection task. It is seen that the
customized Xception model outperformed other frameworks. It gave an accuracy of 93.33% for the
40× zoom images of the BreakHis dataset. The networks are trained using 70% data consisting of
BreakHis 40× histopathological images as training data and validated on 30% of the total 40× images
as unseen testing and validation data. The histopathology image set is augmented by performing
various image transforms. Dropout and batch normalization are used as regularization techniques.
Further, the proposed model with enhanced pre-trained Xception CNN is fine-tuned and tested
on a part of the IDC dataset. For the IDC dataset training, validation, and testing percentages are
kept as 60%, 20%, and 20%, respectively. It obtained an accuracy of 88.08% for the IDC dataset for
recognizing invasive ductal carcinoma from H&E-stained histopathological tissue samples of breast
tissues. Weights learned during training on the BreakHis dataset are kept the same while training the
model on IDC dataset. Thus, this study enhances and customizes functionality of pre-trained model
as per the task of classification on the BreakHis and IDC datasets. This study also tries to apply the
transfer learning approach for the designed model to another similar classification task.

Keywords: breast cancer detection; magnification dependent; histopathology; BreakHis; IDC; Xcep-
tion model; ResNet50 model; EfficientNetB0; 40×

1. Introduction

Breast cancer is one of the most predominant types of malignancy seen in the world-
wide population of woman. Early diagnosis, prognosis, and correct treatment of breast
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cancer can improve patients’ life expectancy. According to a fact sheet by World Health
Organization (WHO), in 2020 around 2.3 million women were diagnosed with breast cancer,
and there were approximately 685,000 deaths globally due to this disease. Breast cancer is
one of the most prevalent kinds of cancer, causing around 10.7% of deaths among all major
cancer types in 2020 [1].

Due to digitalization, there has been a tremendous advancement in the types of modali-
ties used for screening of breast cancer. The most common modalities used for breast cancer
screening are mammography, magnetic resonance imaging, breast ultrasound, positron
emission tomography, and histopathological analysis of breast tissue [2]. Mammography
is X-ray imaging of human breasts and is usually prescribed when a suspicious mass in
the breast is suspected as a result of a physical examination of breasts. Breast ultrasound
is a non-invasive method for breast screening. It is usually helpful in the case of dense
breast tissues. Breast magnetic resonance imaging also takes several images and usually is
prescribed along with other diagnostic tests such as mammography or ultrasound. Breast
cancer is also detected by positron emission tomography (PET) examination. PET is an
imaging test that uses radio-active substance for the detection and localization of cancer-
ous growth of cells. It is seen that the initial screening method, as mammography helps
to find breast cancer at an early stage [3,4]. Magnetic resonance imaging is also one of
the important screening modalities for breast cancer early detection. Magnetic resonance
imaging (MRI) screening shows higher sensitivity for breast cancer with genetics [5].

Even though mammography is the most common technique for the initial screening
of breast cancer, it has certain drawbacks such as low sensitivity in the case of dense breast
analysis and low specificity [6]. Hence, morphological analysis of hematoxylin and eosin-
stained (H&E-stained) breast tissue is the gold standard for breast malignancy detection
with a very high confidence level [2]. Breast cancer arises due to the uncontrollable growth
of breast cells. It starts when ductal–lobular cells inside the breast glands grow abnormally.
There are two basic types of breast cancers: ductal carcinoma in situ (DCIS) and invasive
carcinoma. When the cancerous growth is confined within the ductal–lobular structure
of the breast, it is called ductal carcinoma in situ (DCIS). When these cells of DCIS break
through the ductal–lobular system and invade the rest of the breast parenchyma, then it is
called invasive breast cancer.

Machine learning-based computer-aided diagnosis is becoming popular in breast
cancer screening as these techniques promise new knowledge insights with near-human
performance. Pure machine learning-based systems involving traditional classifiers used for
diagnostic applications comprise various stages such as data preprocessing, image enhance-
ments, segmentation, feature engineering, and then classification. With the tremendous
research and advancements in deep learning and computer vision, neural network-based
systems are predominantly designed for diagnostic workflows. The tedious task of feature
engineering is automatically performed by neural network architecture in a deep learning
model. In deep learning, a more advanced trend called transfer learning dominates the
field of artificial intelligence (AI) research. The pre-trained architectures of deep learning
models are used in the transfer learning method to save the training time and cost of
design. Breast cancer biopsy images consist of many essential features which are used as
a basis for disease diagnosis by expert histopathologists. These features include nuclear
pleomorphism, i.e., how distinctively different the shapes and sizes of nuclei are in tubule
formation and metastasis information. In supervised machine learning, a labeled dataset
is shown to the machine learning model during training. The machine learning model’s
learning algorithm then adjusts the model’s parameters such that it learns from the dataset.
Once training is completed, completely unknown testing data is shown to the model to
classify the unseen information correctly. Artificial intelligence-based studies aimed to help
in breast cancer diagnostic workflows, and not only comprise malignancy detection but
also of the detection of breast cancer grade, intrinsic molecular subtype, lymph node status,
and metastasis occurrence. Breast cancer consists of various subtypes according to the
origin of occurrence. The grade of breast cancer depicts aggressiveness of the disease. The
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intrinsic molecular subtype depends on the presence of hormones or proteins on the cancer
cell surface. Intrinsic molecular subtype identification is a crucial prognostic evaluator in
cancer treatment [7].

This work is focused on comparing the performances of deep convolutional neural
network models which use the backbone of pre-trained architectures. Binary classification
is conducted on histopathological images having a magnification factor of 40×. These
biopsy images are taken from the publicly available BreakHis breast cancer dataset and
IDC (Invasive ductal carcinoma) dataset. The best model with good evaluation parameters
is chosen as the final classification model. Comparative analysis between the three classi-
fication models is also presented. Pre-trained models trained on the ImageNet challenge
dataset are used for this study as the backbone of a deep convolutional neural network.
Custom layers are added to pre-trained models. The backbone network finds important
lower-order features in the histopathology images, while the custom layers are responsible
for finding higher-order abstract features leading to the task of binary classification. As
these histopathology images are rotation and scale invariant; data augmentation is used
to increase the size of the dataset. Two different datasets, namely BreakHis and IDC are
considered for this work. The flowchart of the proposed work is given in Figure 1. As
evident from the flowchart, the BreakHis 40× image dataset is first augmented using
several image transforms such as rotation, flipping, and scaling. The enhanced models are
trained, validated, and tested on the BreakHis dataset. Depending on the best accuracy,
the enhanced customized pre-trained Xception model is finalized for the classification task.
The weights learned during BreakHis learning are stored for the Xception model. The same
enhanced Xception model with BreakHis weights is used for tuning on the IDC dataset.

40X Subset of BreakHis
Histopathology  dataset 

Resizing images to
224 × 224 pixels and

Image Data
augmentation

Training Enhanced pre-
trained models 

Evaluation based on
performance metrics 

Testing on BreakHis 40X
dataset 

Saving Weights of best
model(Enhanced
Xception model)

Subset of IDC dataset
for invasive carcinoma

detection

Resizing images to
224 × 224 pixels and

Image Data
augmentation

Training on IDC dataset Testing on IDC dataset 

Use enhanced Xception
model with weights

obtained while training
on BreakHis 

Evaluation based on
performance metrics 

Transfer Learning

Figure 1. Flowchart of the proposed work.

The contributions of this study are summarized below.

• Rescaling and augmentation of the BreakHis 40× dataset using Keras functionality.
• Customization of pre-trained models, namely EfficientNetB0, ResNet50, and Xception,

by removing the last fully connected layers and appending series of convolution as
well as max pooling layers along with flattening and dense connections.

• Experimenting on the BreakHis 40× dataset by using enhanced pre-trained models
for binary classification task of cancer detection.
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• Using previously trained weights during tuning on the BreakHis dataset of the best
model (customized Xception) to train, test, and validate a subset of the IDC dataset.
Thus, this validates the potential of the Xception model trained on the BreakHis dataset
to perform another similar task of invasive carcinoma detection.

• Importing of weights also exhibits ability of enhanced Xception model to transfer
learn from the BreakHis dataset to IDC dataset

The rest of the article is arranged as follows. Section 2 describes similar work per-
formed in breast cancer diagnosis using publicly available datasets. The methodology
of the convolutional deep learning technique used for this binary classification problem
is discussed in Section 3. In Section 4, experiments, results, and analyses are presented.
Finally, the paper is concluded in Section 5.

2. Related Work

Deep learning systems ease the diagnostic classification task as deep neural networks
automatically find features and patterns in the given dataset. Along with the availability
of good hardware processing architectures such as graphics processing units (GPU) and
tensor processing units (TPU), different open-source programming frameworks such as
Tensorflow-enabled Keras and PyTorch are also responsible for the trend in using deep
learning for classification problems. In addition to these programming frameworks, pre-
trained architectures of deep neural nets such as visual geometry group (VGG), AlexNet,
inception, ResNet, Xception, and several other models are also available for use in a deep
computer vision model.

A recurrent, residual neural network was used for semantic segmentation of medical
images [8]. In one of the studies, an improved version of U-Net-based architecture called
IRU-Net was used to segment images of patients’ tissue slides. This IRU-Net method,
which was designed to detect the presence of bacteria and immune cells in tissue images,
used several scaled layers of residual blocks, inception blocks, and skipped connections [9].
A multilevel semantic adaptation method was used for diverse modalities for a few-shot
segmentation on cardiac image sequences. The method proved effective even under limited
labels for the dataset [10].

MRI and near infrared spectral tomography-related wearable system was designed
and developed in one of the research studies [11]. In dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI) imaging, various features were extracted using different
machine learning methods in some of the research studies [12].

In 2016, Spanhol constructed a benchmark dataset of hematoxylin and eosin (H&E)-
stained histopathological images for breast cancer which were extracted using fine needle
aspiration cytology (FNAC) procedure. Various feature extractors such as local phase quan-
tization (LPQ), local binary pattern (LBP), and completed local binary pattern (CLBP) were
used to obtain textural and morphometric features from H&E-stained images. Performance
comparison of various classifiers was made for this task [13]. Classification of H&E-stained
histopathological images was performed with features extracted from the graph run length
matrix (GRLM) and gray level co-occurrence matrix (GLCM). A predictive breast cancer
diagnostic model based on a modified weight assignment technique was developed [14].
Contrast limited adaptive histogram equalization method was used for contrast improve-
ment along with several classifiers on the BreakHis dataset [15]. DNA repair deficiency
(DRD) status was found from histopathology images by one of the researchers by making
use of deep learning [16]. One of the researchers used several pre-trained architectures of
convolutional neural networks in parallel and aggregated the results for detecting breast
cancer using histopathology images with Vahadane transform for stain normalization [17].
In one magnification-dependent breast cancer binary classification study, the researcher
used the transfer learning model using AlexNet [18]. An anomaly detection mechanism
using a generative adversarial network is performed to find mislabeled patches of the
BreakHis dataset. DenseNet121 is used for binary classification after that [19]. A deep
convolutional neural network(CNN) model is used in [20–22] to classify histopathology
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images. Color normalization and data augmentation techniques are applied to H&E-stained
histopathology slides in order to perform breast cancer classification. Fully trained and fine-
tuned versions of VGG architectures were used for the task [23]. Tumor and healthy regions
are segmented in one of the research studies, which used CNN for area-based annotation
procedure on histopathology images [24]. The deep convolutional neural network was also
designed for finding the status of cancer metastasis in lymph nodes [25,26]. Breast cancer is
detected using dual-modality images such as ultrasound and histopathology in one of the
studies [27]. Using transfer learned multi-head self-attention, one of the studies performed
multi-class classification on the BreakHis dataset [28]. Breast cancer histopathology images
are classified into four classes as normal, begin, in situ carcinoma, and invasive carcinoma
in one research study using parallel combination of convolutional neural network(CNN)
and recurrent neural network(RNN) [29]. GoogleNet-based hybrid CNN module was used
with bagging strategy to classify breast cancer [30]. DenseNet-161 and ResNet-50 models
were used for invasive carcinoma detection in IDC (invasive ductal carcinoma) dataset
along with validation on the BreakHis dataset [31]. Deep learning architecture named
DKS-DoubleU-Net was used to segment tubules in the breast tissue in H&E-stained images
on BRACS dataset [32]. In one more research work, binary and multiclass classification
on BreakHis dataset is performed using customized pre-trained models of DenseNet and
ResNet networks. In this study, the researchers are able to attend maximum accuracy of 100
percent for binary classification task on 40X magnification factor [33]. In the proposed re-
search work accuracy obtained is 93.33% on BreakHis 40× dataset. However, the proposed
model is again trained on a new dataset called IDC. The IDC dataset consists of altogether
different information from BreakHis dataset as IDC focuses on invasive ductal carcinoma
cases. The model is again fine tuned on IDC dataset by just keeping the weights obtained
during BreakHis training constant. Instead of using random weights or ImageNet weights,
we have used previously trained weights (BreakHis weights). Thus, the proposed model is
also able to learn new patterns in different dataset. Thus, this study tries to apply transfer
learning concept. This transfer learning approach improves training and testing timing
requirements and ensure generalization and robustness of the CNN model.

Deep CNN using the ResNet model was used for the binary classification of breast
histopathology images. This method also used Wavelets of packet decomposition and
histogram of oriented gradients [34]. Several multiple instance learning algorithms with the
deep convolutional neural network experimented on the BreakHis dataset [35]. Fusion of
different deep learning models has been tested on the BreakHis and ICIAR 2018 datasets in
one of the research studies [36]. A fully automated pipeline using deep learning architecture
for breast cancer analysis is presented in one of the research studies [37]. Transfer learning-
based deep neural network was used for the breast cancer classification task in one more
research study [38]. Spatial features are extracted using CapsuleNet for the breast cancer
classification task in some research studies [39,40]. Color deconvolution and transformer
architecture are used for histopathological image analysis in one of the research studies [41].
A pure transformer is used as a backbone to extract global features for histopathological
image classification [42].

Apart from the binary or multi-class classification of breast cancer according to its
subtypes, deep learning techniques are also used in grade detection and intrinsic subtype
classification of breast cancer. In one of the recent studies, a deep learning model named
DeepGrade was used to find grades of breast cancer from whole slide images. The prog-
nostic evaluation of patients depending on their histology grades was also carried out [43].
In one more study, faster region convolutional neural network and deep convolutional
neural network were used for mitotic activity detection [44]. Intrinsic molecular subtypes
of breast cancer are leading diagnostic factors for precision therapy. Depending on whether
breast cancer cells show the presence of estrogen hormone, progesterone hormone, or
HER2(Human Epidermal Growth factor Receptor2) protein, there are various subtypes
of breast cancer. These are called intrinsic or molecular subtypes of breast cancer. The
hormonal status of histopathology images is found by one study which utilizes deep
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learning techniques on different datasets [45]. A generative adversarial network for stain
normalization and deep learning framework for intrinsic molecular subtyping of breast
tissue was used in one more research study [46]. One group of researchers used deep CNN
and region of interest-based annotations on whole slide images to predict HER2 positivity
in breast cancer tissue [47]. Deep learning was used in one of the works to find the status
of various genomic bookmarks [48]. A deep learning image-based classifier was developed
to predict intrinsic subtypes of breast cancer, and survival analysis was also conducted [49].
Even though there is much research in breast cancer detection, there is a need to conduct
more studies on multi-centric data. This multi-centric data from different institutions or
using different datasets can guarantee the generalization of underlying architectures and
the possibility of real-life use for improving clinical outcomes. Hence, this research study
tries to use network models on two different datasets for a similar type of breast cancer
classification task.

3. Materials and Methods: For Breast Cancer Detection

The proposed classification algorithm uses the Keras library on top of the TensorFlow
environment. The Tensor processing unit with extended RAM facilities is used from the
Google Colab PRO environment. In the proposed work, the Xception model, which is
already pre-trained on the ImageNet dataset, is used for low-level, deep feature extraction
on H&E-stained breast histopathology images with a magnification factor of 40×. The
other two pre-trained models were used for performance comparison. The output of the
backbone Xception network is connected to custom CNN layers. These custom layers are
responsible for higher-level feature abstraction and classification. The motivation behind
using pre-trained models as a backbone is that they had shown successful outputs for the
ImageNet challenge. Pre-trained models of the ImageNet challenge are already trained on
millions of images. Furthermore, hence, they have weights already trained for one of the
image-related computer vision application problems. The bottom layers of the pre-trained
network are used as they are. The top layers are changed. The last fully connected layers of
pre-trained CNN, which are specific to the ImageNet classification task, are removed, and
custom CNN layers are appended to the pre-trained model.

3.1. Datasets

Two different datasets, namely the BreakHis and IDC (invasive ductal carcinoma) were
used for experimental analysis in this study. The final network trained on the BreakHis
dataset with 40× zoom images also exhibited transfer learning capabilities, wherein the
same model was used for fine-tuning and testing on a different IDC dataset. In a real-life
scenario, for histopathologists analyzing H&E-stained slides on the computer screen, the
magnification option proves beneficial as they can zoom in or out of the digitized slides to
make inferences about the disease. However, for neural networks, we can provide slides of
the same magnification factor as micro-level features can easily be extracted by controlling
kernel sizes in the convolution process.

3.1.1. BreakHis Histopathological Image Dataset

BreakHis dataset consists of a total of 7909 breast histopathology images. These are
images of patches extracted from whole slide tissue images. The dataset consists of tissue
images of four different magnification factors, which are 40X, 100X, 200X, and 400X. In this
study, 40X zoom images are considered for evaluating CNN architecture. Besides labeling
images as benign or malignant, the dataset also gives information about other histological
subtypes of breast cancer. The class imbalance problem is seen in the BreakHis dataset,
where one class sample outnumbers others. For the 40X magnification factor, there are
652 benign and 1370 malignant samples in the BreakHis dataset [13].
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3.1.2. IDC Breast Histopathological Image Dataset

The invasive ductal carcinoma (IDC) dataset has breast cancer histopathology images
in the form of patches of dimension 50 × 50 pixels. These patches contain two categories,
namely IDC positive images and IDC negative images. There are a total of 277,524 images,
out of which 78,786 images are IDC +ve, and 198,738 images are IDC −ve. All these patches
are of 40X magnification factor. A subset of the IDC dataset is taken in this study. As this a
huge dataset exhibiting class imbalance, 10,000 samples of each category are considered in
the proposed work [50].

3.2. Image Rescaling and Augmentation

The original image size of histopathology images in the BreakHis dataset is
700 × 460 pixels. All images with the 40X magnification are resized to 224 × 224 pix-
els. Most of the medical datasets consisting of histopathology images suffer due to limited
number of training samples. To strengthen the dataset, more images are added to the 40X
BreakHis dataset using various image transforms. Histopathology images being tissue
images, are rotation invariant and shift invariant. The image transform operations include
horizontal and vertical flips of the image, rotation of the image, zooming operation, etc.
Augmented images are generated on the fly during training time. Hence, no separate mem-
ory storage is required for augmented images, resulting in better memory management.
Different image transforms for the data augmentation method are shown in Figure 2.

(a) (b) (c)
Figure 2. Rotation and flipping of H&E-stained tissue images. (a) Original H&E-stained tissue image.
(b) Rotated tissue image. (c) Flipped tissue image.

3.3. Architecture of Proposed CNN Model

In this work, experimentation is carried out with three different pre-trained deep
models as the backbone. Out of EfficientNetB0, ResNet50, and Xception, the Xception
model gave the best accuracy. To increase the model’s accuracy and extract higher-level
features in histopathological images, custom layers in the form of three convolutional and
three max-pooling layers are added to the pre-trained framework. The Xception model’s
weights are initialized to the ImageNet weights. Custom convolutional layers have a
uniform kernel size of 3 × 3 with ReLu activation function blocks. ReLu activation function
is chosen as it provides constant gradient which minimizes the vanishing gradient problem.
The flattening operation converts the obtained feature map into a single-dimensional vector.
Dropout is used to help reduction in overfitting, and batch normalization is used as a
regularization technique. The final sigmoid activation function gives output in terms of
class probability in the range from 0 to 1. Then, the whole CNN architecture consisting of a
pre-trained model(except the top fully connected layers) and custom layers is trained on an
augmented BreakHis dataset with the 40X magnification factor. Thus, custom CNN model
layers are added on the top of the backbone Xception model. The backbone Xception model
works as a potential feature extractor here. The proposed architecture is given in Figure 3.

Loss objective function used in this case is binary cross-entropy loss. During the
backward pass or backpropagation pass of the neural network derivative of loss with
respect to different weights is found using the chain rule. Trainable parameters of the
network, meaning the weights and the biases, are updated during backpropagation.
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Convolution 2D layer, 3 × 3 kernel, ReLu activation

Pre-trained Xception CNN model as a backbone

Convolution 2D layer, 3 × 3 kernel, ReLu activation

MaxPooling 2D layer, 2 × 2  pool size

Convolution 2D layer, 3 × 3 kernel, ReLu activation

MaxPooling 2D layer, 2 × 2  pool size

Flattening layer

MaxPooling 2D layer, 2 × 2  pool size

Dense layer with sigmoid activation function for
Malignancy detection

Dropout(20 %) and Batch normalization

Figure 3. Architecture of proposed CNN network.

In CNNs an optimizer is also used for the optimization of trainable parameters of the
network to minimize the cost objective function. In this study, the optimizer used is Adam
optimizer as it gave better accuracy than other counterparts such as Stochastic gradient
descent, RMSProp, AdaDelta, etc. The learning rate decides the convergence time for the
model. Two learning rates were tried for this algorithm as 0.001 and 0.0001. The best suited
learning rate is kept at 0.0001. The loss function used is binary cross_entropy. The cost
function of binary cross_entropy has two main terms, which consist of actual labels and
network predictions. This loss calculation is performed over a minibatch of a dataset.

3.4. Enhanced Pre-Trained Models

EfficientNet models are depth, width, and resolution scaled networks. This scaling
is performed to obtain more detailed feature extraction. All these dimensions are scaled
up with a uniform ratio. The baseline EfficientNet model is EfficientNet B0. EfficientNet
is a family of models ranging from baseline models to several scaled-up versions. Thus,
EfficientNet provides multiple scaling for improving accuracy [51]. ResNet50 or Residual
Network 50 is the model which is also validated on the ImageNet large-scale visual recog-
nition challenge dataset. For ease of optimization and better performance, the residual
building blocks are included in ResNet models [52]. ResNet50 architecture consists of 50
such residual blocks. EfficientNet, ResNet, and Xception models are convolutional neural
networks with many properties such as parameter or weight sharing, location invariance,
etc., making them efficient for computer vision applications. Depth-wise separable convo-
lution is the prominent feature used in Xception architectures. It is an updated version of
inception architectures. In inception architecture, the convolutions are performed spatially
and over the input depth of the image. To reduce dimensions, in Xception architecture,
1 × 1 convolution blocks are run across the depth. In the standard practice of convolution

48



Computation 2023, 11, 59

operation, the application of filters across all input channels corresponding to colors and a
combination of these values is performed in a single execution step. Depth-wise separable
convolution divides this complete process into two parts depth-wise or channel-wise con-
volution and point-wise convolution. In-depth wise process, a convolution filter is applied
to a single input channel at a time. All output values of these separate kernels, which work
on a single channel, are stacked together, and then point-wise convolution is performed on
channel-wise outputs of filters [53].

3.5. Classifier Details

The proposed classifier used in this work for the breast cancer classification task
is enhanced pre-trained Xception CNN. The Xception CNN model trained on the Ima-
geNet dataset is used by excluding its final fully connected layers. Weight initialization
is performed based on ImageNet weights only. After removing the last layers, additional
convolutional and max pooling layers are added to the network, along with flattening and
dense layers. Since pre-trained models are generally trained on larger and generalized
datasets, adding custom layers help the modified models to adapt to specific tasks. Adding
custom layers also helps to train the models faster. Image sizes are rescaled to 224 × 224
pixels. For an enhanced pre-trained Xception model, drop-out and batch normalization are
used as regularization techniques. Batch normalization scales output feature values to the
next layer into a standard uniform scale. Batch normalization reduces internal covariance
shift to a significant extent and also helps weights to converge faster.

3.6. Training and Testing of Model

The time required for training the enhanced Xception model on the IDC dataset is 1 h
50 min, while the time taken for testing on the IDC dataset is 67 s.

The CNN architecture consisting of a pre-trained model stacked with custom CNN lay-
ers is trained on the 40X zoom images of the BreakHis dataset. A training, validation, and
testing split ratio of 70%, 15%, and 15% is maintained. The model is trained for 50 epochs.
Augmented images obtained from image transforms are used for training purpose. Itera-
tions are performed for a batch size of 16 images. Overfitting or high variance problems can
easily creep in for such deep architectures. Generally, neural nets trained on small datasets
tend to overfit. Techniques to address the problem of overfitting or underfitting neural
networks are called regularization techniques. To mitigate this overfitting issue, dropout
can be inserted after any hidden layer with a different dropout factor. A dropout ratio of
0.2 is used in this work. This dropout of 20% is used after the flatten layer. Adding a
dropout increases the performance of the neural network. Dropout makes some of the
activation outputs of hidden neurons in hidden layers as zero. The random deactivation of
neuron connections happens for every training cycle. However, the percentage of drop-
ping remains the same. Dropout ensures minimized biasing and help to prohibit neurons
from learning minute redundant details in training samples and thus eventually enhance
generalization capability.

To speed up the training process and to increase its performance and stability, regu-
larization in terms of batch normalization is used. The batch normalization process also
stabilizes the weight parameters of the network. In this process, the normalized output of
the previous layer is fed to the next layer. It is called batch normalization because, during
the training process, the layer’s inputs are normalized by using the current batch’s variance
and mean values. A batch normalization layer is added before the final dense layer.

Once the network is trained on the BreakHis dataset with an enhanced pre-trained
Xception model, the same model is used to for fine-tuning on another dataset called IDC. A
subset of the IDC dataset is used for this comparative analysis. The network is tuned and
tested for IDC with weights borrowed while training on the BreakHis dataset. This new
dataset considers ten thousand samples of IDC positive class and 10,000 samples of IDC
negative class.
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4. Experiments and Results

Among all the architectures, the Xception pre-trained model stacked with custom
CNN layers exhibited the highest accuracy of 93.33% on the augmented BreakHis dataset
for the 40X magnification factor. The same Xception pre-trained model stacked with custom
CNN layers gave an accuracy of 88.08% on the IDC dataset.

The deep CNN models are frequently evaluated based on the parameters such as
accuracy, recall, precision, and f1-score. The confusion matrix gives us parameters such as
true positive values (TP), true negative values (TN), false positive values (FP), and false
negative values (FN). True positives (TP) are the output values that are predicted by the
classifier as positive outputs and are originally positive. In breast cancer classification, this
corresponds to correctly diagnosed patients with breast cancer. These patients have breast
cancer and are also correctly diagnosed as cancer-positive patients. False positives (FP)
are the output values predicted by the classifier as positive outputs but are originally
negative. In the context of breast cancer diagnosis, these are the patients wrongly classified
as cancer-positive, whereas, in reality, these are cancer-free patients. True negatives (TN)
are output values classified by the deep learning framework as negative and originally
negative. These are correctly diagnosed cancer-free patients. False negatives (FN) are
output values classified by the network as negatives but are positives in reality. For breast
cancer diagnosis, this parameter is very sensitive because the patient having breast cancer
but diagnosed as breast cancer negative is represented by a false negative. The choice of
deep neural network architecture largely depends on a network providing a minimum
value of false negatives.

Accuracy is a critical performance evaluator. It is the ratio of correctly predicted
outputs of a deep neural network by a total number of samples. For symmetric datasets,
accuracy can provide a good measure for analyzing the performance of deep CNN. The
accuracy of deep CNN is given in Equation (1).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Equation (2) represents precision which is a ratio of the correct positive predictions of
the network to the total positive predictions of the network.

Precision =
TP

TP + FP
(2)

The recall parameter for the evaluation is given in Equation (3). In deep learning-
assisted diagnostic tools, recall is a very sensitive evaluation measure as recall increases
with a decrease in the number of false negative cases.

Recall =
TP

TP + FN
(3)

The f1-score is given in Equation (4). F1-score, the harmonic mean of recall and
precision, gives a measure of the goodness of deep CNN model for the given dataset.

F1 − Score =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(4)

The comparative results of performance parameters for different models are presented
in Table 1.

The classification output is in terms of 0 or 1 for benign and malignant patches of
BreakHis 40× dataset. For IDC dataset, the classification result is in terms of IDC or
non-IDC patch. The result of classification on BreakHis dataset is shown in Figure 4.
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Table 1. Custom CNN model evaluation parameters.

Backbone Pre-Trained
Model with Custom Layers

Accuracy on
Testing Data

Precision Recall f1-Score

EfficientNetB0 with custom
CNN layers 89.67% 88.61% 89.32% 88.94%

ResNet50 with custom
CNN layers 90.66% 89.33% 88.87% 89.09%

Xception with custom
CNN layers 93.33% 92.20% 91.63% 91.91%

(a) (b)
Figure 4. Classification result on patches of BreakHis40× test dataset. (a) Classified as benign patch.
(b) Classified as malignant patch.

4.1. Confusion Matrices

The confusion matrix presentation shows an evaluation of the performance of the
machine learning classification model. It represents a number of actual predicted output
values against corresponding class labels. The heat-map representations of the confusion
matrices are shown in Figure 5. As it is evident from confusion matrices, the maximum
true positive value is given by CNN with Xception pre-trained model. The model with
the minimum number of false negative cases in cancer diagnostics is considered more
satisfactory. The false negative numbers are the number of patients who have breast cancer
but are diagnosed as cancer-free. This false negative value is minimum for the Xception-
based CNN model. Thus, CNN model with Xception as a backbone network performs
better in the context of cancer diagnostics.

Confusion Matrix for Evaluation on IDC Dataset

The enhanced pre-trained Xception model was also trained and tested on a sub-part of
the IDC (invasive ductal carcinoma) dataset. It consisted of 10,000 samples of each category,
namely benign and malignant. The confusion matrix of CNN with Xception as a backbone
for the IDC dataset is given in Figure 6.
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(a) (b)

(c)
Figure 5. Parameters of confusion matrix for BreakHis40× dataset. (a) Confusion matrix for CNN
with EfficientNetB0 as backbone. (b) Confusion matrix for CNN with ResNet50 as backbone.
(c) Confusion matrix for CNN with Xception as backbone.

Figure 6. Parameters of confusion matrix for IDC dataset.

4.2. Receiver Operating Characteristics

The performance of the classification model can be evaluated by using the area under
the receiver operating characteristics curve (AUC-ROC). There is a false positive rate on
the X-axis of this curve, and on the Y-axis, there is a true positive rate. Using the AUC-ROC
curve, the model’s performance can be evaluated on all possible threshold values. The
AUC-ROC curve for CNN using Xception as the pre-trained model is depicted in Figure 7.
It is seen that the curve occupies a large area and is inclined toward the true positive rate
parameter. The AUC value obtained for the proposed model is 0.9211.
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Figure 7. AUC-ROC curve for CNN using Xception model for BreakHis dataset

The AUC-ROC curve is also plotted for the IDC dataset in Figure 8. Again, CNN using
the Xception model as a backbone is considered for classification on the IDC dataset. The
AUC value obtained in this case is 88.07949.

Figure 8. AUC-ROC curve for CNN using Xception model for IDC dataset.

4.3. Comparison with Other State of the Art Techniques

Other established methods are compared in Table 2 based on accuracy obtained on
40X magnification factor images of the BreakHis dataset. The study proposed in this article
is magnification-dependent breast cancer detection, which applies to a zoom factor of 40X
for breast histopathological images. Hence, comparative analysis involves comparing with
other studies based on their accuracy obtained on the 40X magnification factor.

Table 2. Comparison with other state of the art methods for binary classification of BreakHis 40×.

Strategy Used for Binary Classification Accuracy in Percentage

Multiple compact CNNs [54] 87.70%
Convolutional Neural network [55] 90.40%
Residual learning based CNN [56] 91.40%

Cubic SVM [57] 92.03%
Proposed Method of Xception with custom CNN layers 93.33%
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4.4. Discussion

All the hyperparameters of the models are tweaked manually based on the accuracy
criterion. The numbers of kernels in three custom convolutional layers are kept as 16, 32,
and 64, respectively, with a filter size of 3 × 3. All convolutional custom layers use the Relu
activation function. For all three CNN models, 50 epochs are used to fit the model with 50
steps per epoch on augmented training data. Adam is used as an optimizer with a learning
rate of 0.0001. The image batch size is kept at 16. The three enhanced pre-trained models
are compared based on accuracy for malignancy classification on the BreakHis dataset. The
enhanced Xception pre-trained model obtained the highest accuracy of 93.33% as compared
to the rest of the two models on the BreakHis classification task of malignancy detection.
Further, the same model with BreakHis weights is used for binary classification on the IDC
dataset. It achieved an accuracy of 88.08%.

5. Conclusions

In this study, an optimized CNN architectural framework for breast cancer histopathol-
ogy slide binary classification is evaluated. The significant contribution of this work is the
design, training, and testing of a custom CNN model, which uses the Xception pre-trained
model as a backbone. The proposed model is used for the binary classification of breast
malignancy. This deep learning approach consisting of stacking Xception architecture and
custom CNN layers provided satisfactory accuracy of 93.33% for the BreakHis dataset of
the 40× magnification factor. The data augmentation procedure is used to increase dataset
size and ensure faithful training. The other two deep CNNs, one with EfficientNetB0 as the
backbone and the other with ResNet50 as the backbone, were also evaluated for comparison
of performances. Skipped connections in the form of drop-out layers are used to enhance
the network’s generalization capability. Batch normalization is used to improve and stabi-
lize the overall training process. Another dataset called IDC was used to detect the presence
of invasive carcinoma using an enhanced Xception model. By keeping weights, the same as
tuned on the BreakHis dataset, the customized Xception CNN model is again fine-tuned
for the IDC dataset. Furthermore, binary classification of IDC vs. non-IDC is achieved. This
task achieved an accuracy of 88.08%. The use of a new dataset thus verifies the enhanced
pre-trained model’s generalization capability and transfer learning ability. Thus, such kind
of work can help histopathologists in the primary diagnosis of breast cancer. Deep learning
mechanisms developed for histopathological analysis work on patch-level data primarily.
This is because of the huge size of whole slide images, which makes them unsuitable for
deep convolutional neural networks. In the future, more sophisticated algorithms should
be developed to obtain a proper diagnosis on the patient level and whole slide image (WSI)
level histopathological image analysis.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
WHO World Health Organization
AI Artificial Intelligence
GPU Graphics Processing Unit
ICIAR International Conference on Image Analysis and Recognition
BMI Body Mass Index
VGG Visual Geometry Group
RAM Random Access Memory
PCA Principal Component Analysis
AUC Area under the curve
ROC Receiver Operating Characteristics
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Abstract: Today, medical image-based diagnosis has advanced significantly in the world. The
number of studies being conducted in this field is enormous, and they are producing findings with
a significant impact on humanity. The number of databases created in this field is skyrocketing.
Examining these data is crucial to find important underlying patterns. Classification is an effective
method for identifying these patterns. This work proposes a deep investigation and analysis to
evaluate and diagnose medical image data using various classification methods and to critically
evaluate these methods’ effectiveness. The classification methods utilized include machine-learning
(ML) algorithms like artificial neural networks (ANN), support vector machine (SVM), k-nearest
neighbor (KNN), decision tree (DT), random forest (RF), Naïve Bayes (NB), logistic regression (LR),
random subspace (RS), fuzzy logic and a convolution neural network (CNN) model of deep learning
(DL). We applied these methods to two types of datasets: chest X-ray datasets to classify lung images
into normal and abnormal, and melanoma skin cancer dermoscopy datasets to classify skin lesions
into benign and malignant. This work aims to present a model that aids in investigating and assessing
the effectiveness of ML approaches and DL using CNN in classifying the medical databases and
comparing these methods to identify the most robust ones that produce the best performance in
diagnosis. Our results have shown that the used classification algorithms have good results in terms
of performance measures.

Keywords: medical image dataset analysis; diagnosis; machine learning; deep learning

1. Introduction

The world is changing at such a rapid pace that the pressure on healthcare is increasing;
adverse changes in climate, environment, and human lifestyle raise the degree of danger,
as well as diseases in individuals. This work is focused on analyzing lung diseases and
melanoma skin cancer, conditions which, if detected early, can be properly treated. One of
the most seriously injured organs is the lung; people can develop a wide variety of lung
diseases [1]. Skin cancer is a common type of cancer that affects people with fair skin,
and melanoma is a particularly dangerous type of skin cancer; it may quickly transition
between different body parts, and has the greatest fatality rate. However, if it is recognized
and treated early, the chances of it being cured are higher, necessitating early detection [2].

The traditional methods of diagnosis are costly and time-consuming due to the in-
volvement of trained experts, as well as the requirement of a well-equipped environment.
Recent advances in computerized solutions for diagnosis are quite promising, showing
increased accuracy and efficiency [3]. By applying medical image-processing techniques
to chest X-ray and melanoma skin cancer dermoscopy images, we can assist in detecting
diseases earlier and more accurately, which can save many humans. Lung and melanoma
skin cancer are two diseases that can be detected earlier and more accurately thanks to the
development of technology and computers [4].
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Machine-learning and deep-learning techniques have recently attained impressive
results in the image-processing field along with medical science. Several areas of healthcare
have successfully used machine-learning algorithms [5]. In recent years, various researchers
have suggested various artificial intelligence (AI)-based treatments for various medical
issues. The DL using the CNN method has enabled researchers to achieve successful
outcomes in a variety of medical applications, such as skin cancer classification from skin
images and disease prediction from X-ray images. Due to this development, numerous
studies have been conducted to determine how DL and ML may affect the healthcare field
and medical-imaging diagnostics [6].

ML is the process of teaching a computer to use its prior expertise to solve a problem [7].
Because of the current availability of cheaper processing power and inexpensive memory,
the concept of applying ML in several fields to resolve problems more quickly than humans
has attracted substantial interest. This allows for the processing and analysis of vast
amounts of data to identify insights and correlations within the data that would not be
obvious to the human eye. Its intelligent behaviors are based on many algorithms that allow
the computer to deliver salient conclusions [8]. In contrast, DL is a branch of ML offering a
more advanced approach which allows computers to automatically extract, analyze, and
interpret relevant information from raw data by mimicking how people learn and think.
DL is a set of neural data-driven approaches based on autonomous feature engineering
processes; its accuracy and performance are due to its automatic learning of features
from inputs. CNN is regarded as one of the finest image-recognition and -classification
models in DL [9].

In this work, we analyze medical images for two sets of medical databases: the first
group is chest X-ray images to detect lung diseases and the second group is skin dermoscopy
images to detect melanoma skin cancer. We focus on the use of the most common machine-
learning techniques and convolutional neural networks for deep learning to classify the
lungs in the first medical dataset into normal and abnormal, and skin lesions in the second
medical dataset into malignant and benign to prove the efficiency and effectiveness of these
methods in classification and medical diagnosis.

The major goal of this work is to investigate and assess the effectiveness of ML
approaches and CNN for the classification of medical databases and compare these methods
to identify the methods that have the best performance in diagnosis. We applied these
methods to two different types of medical databases to diagnose two different diseases that
are considered among the most dangerous, which threaten human life and can be treated if
diagnosed early.

The paper is organized as follows: Section 2 presents the current advances in this
research field, emphasizing our research in this context. Section 3 explains the components
of the proposed system to diagnose lung diseases and melanoma skin cancer. Section 4
presents the chest X-ray and melanoma skin cancer dermoscopy image analysis in detail,
as well as the databases resources. Here, the analysis methods are discussed, preprocessing
and segmentation methods are presented, and the extraction-of-features methods are intro-
duced, emphasizing the classification techniques employed for lung illness and melanoma
skin cancer diagnosis and performance metrics. Section 5 introduces the performance of
the results and the comparison between the two datasets. Section 6 provides the most
important work contributions. Section 7 discusses the work results and future works. The
paper concludes by drawing some conclusions.

2. Related Work

In recent years, several studies have been conducted on performance research for
medical image evaluation and diagnosis using ML and DL techniques. In this research field,
we did not find any research that incorporates most of the machine-learning methods (as
we used) and makes a parallel comparison when using more than one medical database (we
used two databases) to assess the effectiveness of ML and DL methods. The authors of [10]
evaluated the SVM and RF machine-learning techniques, as well as CNN for detecting
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breast cancer in thermographic images; the images were preprocessed to improve them and
then isolate the region of interest (ROI). The object-oriented image-segmentation method
was used, which eliminated the salt-and-pepper noise from the image and increased its
precision using spectral signatures. The forms of the items’ border, thickness, and color of
images were extracted as features. Classification algorithms were utilized and evaluated
using a variety of metrics, such as validation accuracy, elapsed time, training error, and
training precision. In terms of accuracy, precision, and the amount of data needed, CNN
outperformed the SVM and RF approaches.

In [11], the effectiveness of deep learning and machine learning was assessed using
skin cancer datasets. The proposed method used Laplacian and average filters to eliminate
noise from images and dull-razor techniques to remove hair. For image segmentation,
the region-growth method was used. Three techniques were utilized to extract hybrid
features: GLCM, discrete wavelet transform (DWT), and local binary pattern (LBP). These
features were then combined into a feature vector and categorized utilizing ANN and
feed-forward neural network (FFNN) classifiers of machine-learning methods and CNN
models (ResNet-50 and AlexNet). The approaches were evaluated using statistical mea-
sures (accuracy, precision, sensitivity, specificity, and AUC), where the FFNN and ANN
classifiers outperformed the CNN models. The authors of [12] developed a system for
predicting lung diseases such as pneumonia and COVID-19 from patients’ chest X-ray
images; they used median filtering and histogram equalization to improve the image
quality. They developed a modified region-growing technique for extracting the ROI of
the chest areas. They extracted a set of features represented by texture, shape, visual, and
intensity features followed by normalization. ANN, SVM, KNN, ensemble classifiers, and
deep-learning classifiers were utilized for classification. Deep-learning architecture based
on recurrent neural networks (RNN) with long short-term memory was suggested for the
accurate identification of lung illnesses (LSTM). The approaches were evaluated using
metric measures (accuracy, specificity, precision, recall, and F-measure). The F-RNN-LSTM
approach had the highest accuracy.

In [13], the findings and analysis of the UCI Heart Disease dataset were compared
using various machine-learning and deep-learning methodologies. The dataset contained
14 major attributes which were used in the study. Several promising results were achieved
and validated using accuracy, sensitivity, and specificity. Isolation forest was used to
address certain uninteresting aspects of the dataset. Deep learning achieved higher accuracy
compared with the ML methods that were used in the work. The authors of [14] created
a model that aided in the diagnosis of chest X-ray medical images and classified the
images into healthy and sick by employing six machine-learning techniques (DT, RF, KNN,
AdaBoost, Gradient Boost, XGBboost) and a CNN model to improve efficiency and accuracy.
The approach begins by reducing the size of chest X-ray images before identifying and
classifying them using the conventional neural network framework, which extracts and
classifies information from the images. The model’s performance was estimated utilizing
classification accuracy and cross-validation. Deep learning had the highest accuracy. The
decision tree classifier, on the other hand, had the lowest performance.

The authors of [15] investigated the efficiency of various ML and DL algorithms for
detecting Plasmodium on digital microscopy cell pictures. They used a publicly available
dataset that included equal numbers of parasitized and uninfected cells. They used color
constancy and spatially resampled all images to a specific size based on the classification
architecture used, and they presented a swift CNN architecture. Additionally, they investi-
gated and evaluated the effectiveness of transfer-learning algorithms built on well-known
network topologies such as AlexNet, ResNet, VGG-16, and DenseNet. They also studied
how well the bag-of-features model performed when used with an SVM for classification.
Based on the average probabilities provided by all the developed CNN architectures, the
probability of a cell image containing Plasmodium was calculated. All deep-learning-
and transfer-learning-based techniques outperformed the bag-of-features and SVM-based
classification models.
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In comparison with previous studies, we noticed the following:

• The proposed system in this work dealt with two different types of databases for
evaluating two different diseases and determining the performance of DL and ML
methods, while all previous studies dealt with one database for diagnosing one type
of disease for evaluating the performance of DL and ML methods. A continuous
comparison between the application of the methods on both datasets has been made,
emphasizing the fact that the type of evaluated disease matters.

• In comparison with [11], we note that the authors used a dull-razor tool to remove hair
from skin images, while we suggested in our work an accurate algorithm to remove
hair from skin images while preserving the shape of the lesion and the quality of
the image.

• We noticed that most of the previous studies [10–12] used the object-oriented image
method in the segmentation stage to extract the ROI from the images. In our study,
we proposed methods for extracting the ROI (lung and skin lesions) that depend
on the threshold techniques, binarization, negation, and morphological operations
to segment the colored and gray level images. In addition to this, ref. [14] does not
mention any image-segmentation method.

• Compared with previous studies, our study focused on extracting hybrid features
from images, which included most types of features (texture, color, shape, geometry,
and intensity), and different methods for extracting features were addressed.

• In the classification stage, we noticed that our study dealt with most of the methods of
machine learning (nine methods) for an advanced comparison, while the rest of the
studies dealt with a limited number of machine-learning methods, and may be limited
to one [15], two [10,11], or three methods [12].

We concluded from the comparison that our work was more comprehensive and more
in-depth in evaluating the performance of machine-learning and deep-learning methods in
diagnosing diseases, and it provided good results in addition to offering a better overview
of the ML methods. In this way, our work can be considered a good start for any researcher
that has to choose an appropriate technique.

3. Workflow Design

This section describes the proposed framework, which is divided into three phases:
the first phase is responsible for acquiring medical datasets to be analyzed in the next
phase; the second phase is responsible for analyzing the input medical dataset that includes
preprocessing medical images to improve them, extracting the region of interest (ROI), and
then extracting significant features that help in classification. The third phase is responsible
for the diagnosis and evaluation, where selected classification methods are applied to the
selected datasets, and then these methods are evaluated. All the algorithms and processes
of the proposed work were implemented using Matlab 2021. Figure 1 shows the whole
workflow for the proposed framework.
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Figure 1. The workflow of the proposed framework.
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4. Methods

This section is divided into three parts. The first part deals with the medical datasets
used in this work. The second part deals with the analysis of the medical datasets, which
involves the stages of preprocessing, segmentation, and feature extraction. The third part
deals with the diagnosis and evaluation phase, which involves applying classification
algorithms on the selected medical datasets and then evaluating these algorithms.

4.1. Medical Datasets

In this work, we used two sets of medical databases; the first group included images
of chest X-rays, and the second group included dermoscopy images for melanoma skin
cancer. These databases were divided into 70% for the training and 30% for the testing.

4.1.1. The Chest X-ray Dataset

The chest X-ray samples of normal and abnormal lung cases were obtained from
Kaggle [16]. A dataset containing 612 images was used for the proposed methodology;
among the total 612 images of lungs that were certified in this work, 288 images showed
healthy lungs and 324 were images of lungs affected by different types of lung diseases like
atelectasis, pneumonia, emphysema, fibrosis, lung opacity, COVID-19, and bacterial and
viral diseases. Images were captured in the JPG format, with various resolution sizes; the
sizes were standardized to 256 × 256 pixels. Figure 2 illustrates normal and abnormal lung
images from the chest X-ray database.

 
(a)                                        (b) 

Figure 2. Samples of chest X-ray dataset: (a) Normal lung images; (b) Abnormal lung images.

4.1.2. The Dermoscopy Melanoma Skin Cancer Dataset

The dermoscopy samples of melanoma skin cancer were obtained from The Lloyd
Dermatology and Laser Center [17], and the Dermatology Online Atlas [18]. A dataset
containing 300 images was used to evaluate the proposed methodology; among the total of
300 images of melanoma skin cancer which were used in this work, 145 images represented
benign conditions and 155 represented malignant ones, which include several types of
malignant melanoma-like superficial spreading, nodular, lentigo, and acral malignant
melanoma. The images were captured in the JPG format, as in the previous case, and the
sizes were standardized to 256 × 256 pixels to extract accurate features that distinguish
between benign and malignant melanoma skin cancer images. Figure 3 illustrates benign
and malignant images from the melanoma skin cancer dermoscopy database.
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(a)                                           (b) 

Figure 3. Samples of melanoma skin cancer dermoscopy dataset: (a) Benign lesion images;
(b) Malignant lesion images.

4.2. Datasets Analysis

In this section, we discuss the data analysis phase according to the suggested model
(shown in Figure 1) employed in the study. This phase contains three stages: preprocessing,
segmentation, and feature extraction.

4.2.1. Image Preprocessing

Preprocessing aims to enhance images and remove undesirable effects. Because the
quality of the first medical dataset, which contains chest X-ray images, is low and contains
noise, the suppression of lung regions affected by congestion or fluids may occur, and the
X-ray scan also generates noise in the image. The suggested model for preprocessing the
chest X-ray images involves applying three main processes: image cropping, noise removal,
and contrast enhancement.

4.2.1.1. Image Cropping

Cropping is applied to the input original chest X-ray images to accentuate the ROI
(lung) and remove all undesired artifacts. Image cropping is required to accelerate image
processing. Manual cropping is used in this work, where the image is cropped into a square
form consisting of the lung, as shown in Figure 4b.

4.2.1.2. Noise Removal

In the case of X-ray datasets, median filtering outperforms adaptive bilateral filtering,
average filtering, and Wiener filtering [19]. Median filtering is a simple approach widely
utilized in many image-processing applications because it is more successful in noise reduc-
tion and edge preservation and eliminates any additional noise present in the image [12].
In the proposed model, we used median filtering, which works by traversing across the
image pixel by pixel and replacing every value with the median value of the adjacent pixel.
The design of the neighbor is determined by the size of the window; a window size of a
3 × 3 neighborhood was utilized in this work. Figure 4c demonstrates the application of
median filtering in a chest X-ray image.

4.2.1.3. Contrast Enhancement

In this process, we utilized the adaptive intensity values adjustment, which concen-
trates on adjusting the image intensity values for low-contrast X-ray images. In this way,
the contrast is improved. Then, we applied histogram equalization for increased contrast
to make the ROI clear. The histogram represents the distribution of image pixels; it is calcu-

64



Computation 2023, 11, 63

lated by counting the number of times each pixel value appears, and is then mapped against
the grayscale image’s intensity [20]. Enhancing the contrast of an image can sharpen its
border and increase segmentation accuracy because it creates a contrast between the object
and the background. The applied contrast-enhancement process is shown in Figure 4d,e.

The result after applying the main processes of image preprocessing on an example of
a chest X-ray image is shown in Figure 4.

     
(a) (b) (c) (d) (e) 

Figure 4. The main preprocessing process for chest X-ray images: (a) Original image; (b) Image cropping;
(c) Applying median filter; (d) Applying contrast adjustment; (e) Applying histogram equalization.

Image preprocessing for the second group, which contains melanoma skin cancer
dermoscopy images, involves presenting an algorithm for hair detection and removal. Some
of the images of skin may contain hair, and this hair offers an inaccurate classification; as a
result, it is preferable to remove the hair before moving on to the next stages. The proposed
algorithm creates a clean dermoscopy image while maintaining the dermoscopy appearance
by replacing the portions of the image containing hair structures with the neighboring
pixels. The original RGB (red, green, blue) dermoscopy image is first transformed into a
grayscale image, and then the resulting grayscale image is subjected to a morphological
filter known as black top-hat [21,22].

The top-hat morphological filter fills in the image’s minute gaps while preserving the
original area sizes; thus, all background areas are removed for the pixel values that act
as structuring elements. A thresholding technique is applied to the output of the used
top-hat morphological filter to create a binary mask of the undesirable structures present
on the dermoscopy image. After the creation of the binary mask of the hair structures, we
replace the mask’s pixels to remove undesired pixels while retaining the image’s shape and
extracting and restoring the clean skin lesion image [23]. The following four steps describe
the hair-removal algorithm:

• The color image is converted into a grayscale image;
• Black top-hat transformation is utilized for the detection of dark and thick hairs and is

represented as the following equation:

Tw(Cn) = Cn• b − Cn

where • denotes the closing operation, Cn is the local contrasted image, and b is a
grayscale structuring element.

• By filling the regions in the image that the mask specifies, we can use region fill to
remove items from the image or to replace invalid pixel values with their neighbors.
The mask’s nonzero pixels specify the image pixels to be filled.

• The result is a fully preprocessed image maintained throughout the subsequent phases.

Figure 5 shows an example of applying steps of a hair-removal algorithm on a
melanoma skin cancer image.
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 5. Example of the proposed hair-removal algorithm: (a) The original RGB image; (b) Convert-
ing to grayscale; (c) Black top-hat filter applied; (d) Thresholding applied; (e) Hair removal of a gray
image; (f) Hair removal of a color image.

4.2.2. Image Segmentation

Image segmentation is the process of separating an object from an image according to
criteria like the gray level of a pixel and the gray level of its nearby pixels. One approach for
segmenting is the thresholding method, which divides the grayscale image into segments
based on many classes according to the gray level [20]. In this work, image segmentation
for the first group containing chest X-ray images involves applying thresholding and
morphological operations to the preprocessed image to separate the ROI (lung) from the
image. Here, global thresholding was utilized because the intensity distribution between
the background and foreground of the image was considerably different. After that, we
applied morphological operations, which are a large set of image-processing operations
that process medical images according to shapes and facilitate object segmentation from
images [24]. In the proposed algorithm, the fill operation was used, which smooths the
contour and closes small holes as the inner lining of the shapes fills inward; the restoring
fill skips the closed holes, thus making this operation effective for closing holes. Thus,
morphological operation helps smooth and simplify the borders of objects without changing
their size and improves the specific region for accurate segmentation. Figure 6 shows the
steps of the suggested segmentation algorithm for chest X-ray images.

Image segmentation for the second group, which contains melanoma skin cancer der-
moscopy images, involves applying Otsu thresholding, binarization, and image negation
to the preprocessed image to separate the object (skin lesion) from the image. Here, Otsu
thresholding was utilized, which is a thresholding approach that automatically finds the
threshold point that splits the gray-level image histogram into two distinct sections. The
image’s gray level is expressed as I to L, where I is 0 pixels and L is 255 pixels. The Otsu
approach was utilized to automatically determine the threshold according to the input
images [20]. Following that, the processes of binarization and image negation were carried
out. Binarization via thresholding is the process of converting a grayscale image to a binary
image; here, every pixel in the improved image’s gray-level value was computed, and if
the value was larger than the global threshold, the pixel value was set to one; otherwise,
was is set to zero [25]. During the image negation, an image with white pixels is replaced
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with black pixels. Meanwhile, white pixels replace dark pixels [20]. After applying the
binary mask, the mask is then multiplied by the three color channels (red, green, and blue)
to extract the region of interest. Figure 7 shows the steps of the suggested segmentation
algorithm for melanoma skin cancer images.

Figure 6. Flowchart of the proposed segmentation algorithm for chest X-ray images.
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Figure 7. Flowchart of the proposed segmentation algorithm for melanoma skin cancer images.

4.2.3. Feature Extraction

In the feature-extraction stage, we extracted a set of features from images that represent
meaningful information fundamental for classification and diagnosis. Several methods are
utilized for extracting features such as texture, shape, color, etc. In this work, the color,
texture, shape, and geometry features were extracted. To detect normal and abnormal
lungs for the first medical dataset (chest X-ray), we combined two types of features, the
texture and shape features. The texture features were extracted from the lung in a gray-
level image and represented by computing contrast, correlation, energy, and homogeneity
from the Gray-Level Co-Occurrence Matrix (GLCM) in four directions (0, 45, 90, and 135),
in addition to computing Short-Run Emphasis (SRE), Long-Run Emphasis (LRE), Run
Percentage (RP), Low Gray-level Run Emphasis (LGRE) from the Gray-Level Run-Length
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Matrix (GLRLM) in four directions (0, 45, 90, and 135), and the shape features represented by
seven features for moment invariants (MI). Thus, we obtained 16 features from the GLCM
method, 16 features from the GLRLM method for texture features, and 7 features from the
MI method for shape features. These features were been combined to create a single feature
descriptor with 39 features to achieve an accurate output for good classification. Figure 8
shows the extracted features from the lung images in the first medical database.

 

Figure 8. Diagram for the features extracted from lung images.

A. Texture features set

To extract texture features from lung images in the gray level, two suitable methods
were used:

1. Gray-Level Co-occurrence Matrix (GLCM)

GLCM is a well-known statistical method for obtaining texture information from gray-
level images [26]. It is the representation of the spatial distribution and the interdependence
of the gray levels within a local area. The location of a very gray-level pixel can be found
by the GLCM method [27].

Let Ng be the total number of gray levels, g(i,j) be the entry (i,j) in the GLCM, μ be the
mean of the GLCM, and σ2 be the variance of the GLCM. Table 1 shows the GLCM features
with descriptions and equations.

2. Gray-Level Run-Length Matrix (GLRLM)

GLRLM is a type of two-dimensional (2D) histogram-like matrix that records the
occurrence of all conceivable gray-level values and gray-level run combinations in an ROI
for a given direction. Gray-level values and runs are generally denoted as row and column
keys in the matrix; hence, the (i,j)-th entry in the matrix identifies the number of pairings
whose gray-level value is i and whose run length is j [28,29].

Let P denote a GLRLM, then, Pij is the (i, j)-th entry of the GLRLM, Nr denotes the set
of various run lengths, Ng is the set of various gray levels, Np is the number of voxels in
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the image, and lastly, N represents the number of total pixels. Table 2 shows the GLRLM
features with descriptions and equations.

Table 1. GLCM features with descriptions and equations.

GLCM Feature Description Equation

Contrast It measures the extreme difference in grayscale between
adjacent pixels.

Ng−1
∑

i=0

Ng−1
∑

j=0
(i − j)2·g2(i − j)

Correlation It examines the linear dependency between the gray
levels of adjacent pixels.

Ng−1
∑

i=0

Ng−1
∑

j=0
(i − μ)· (j − μ)·g(i, j)/σ2

Energy It measures texture uniformity or pixel-pair repetitions.
√

Ng−1
∑

i=0

Ng−1
∑

j=0
g2(i, j)

Homogeneity It measures the homogeneity of the image and the
degree of local uniformity that is present in the image.

Ng−1
∑

i=0

Ng−1
∑

j=0

1
1+(i−j)2 · g(i, j)

Table 2. GLRLM features with descriptions and equations.

GLRLM Feature Description Equation

SRE
It measures the distribution of small run lengths,

with a higher value indicating shorter run
lengths and finer textures.

∑
Ng
i=1 ∑Nr

j=1
P(i,j|θ)

j2

Nr(θ)

LRE
It measures the distribution of lengthy run

lengths, with higher values indicating longer run
lengths and coarser structural textures.

∑
Ng
i=1 ∑Nr

j=1 P(i,j|θ)j2

Nr(θ)

RP
It measures the coarseness of the texture by

comparing the number of runs to the number of
voxels in the ROI.

Nr(θ)
Np

LGRE
It measures the distribution of low grayscale

values in an image, with a larger value denoting
a higher concentration of low grayscale values.

∑
Ng
i=1 ∑Nr

j=1
P(i,j|θ)

i2

Nr(θ)

B. Shape features set

MI is characteristic of connected regions in binary images which are invariant to
translation, rotation, and scaling. The moments can be used to illustrate the shape of objects.
Invariance recognizes the multidimensional moment-invariant-features space. The seven
shape attributes are derived from the central moments and are not affected by the object
scale, orientation, or translation. The translation of invariant moments at the origins of the
central moments is calculated using the center of gravity [30].

The moments are represented by the image of the i j plane with nonzero elements. For
a 2D ROI image, the moment invariance of order (p, q) is calculated as [12]:

mpq =
m

∑
i=1

n

∑
j=1

ip jq I3(i, j)

Lower-order geometric moments have intuitive meaning: m00 is the ROI’s “mass,”
and m10/m00 and m01/m00 determine the ROI image’s centroid. In the case of moments
invariance, we have central moments of order (p, q) [31]:

μpq =
m

∑
i=1

n

∑
j=1

(
i − i

)q I3(i, j)
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where i = m10/m00 and j = m01/m00 are the coordinates of the object centroid. In this
way, we calculated seven moments as outlined in Table 3; this table shows the MI features
with equations.

Table 3. MI features with equations.

MI Feature Equation

I1 m00 =
m
∑

i=1

n
∑

j=1
I3(i, j)

I2 m10 =
m
∑

i=1

n
∑

j=1
iI3(i, j)

I3 m01 =
m
∑

i=1

n
∑

j=1
jI3(i, j)

I4 μ11 =
m
∑

i=1

n
∑

j=1

(
i − i

)(
j − j

)
I3(i, j)

I5 μ12 =
m
∑

i=1

n
∑

j=1

(
i − i

)(
j − j

)2 I3(i, j)

I6 μ21 =
m
∑

i=1

n
∑

j=1

(
i − i

)2(j − j
)

I3(i, j)

I7 μ30 =
m
∑

i=1

n
∑

j=1

((
i − i

))2((j − j
))2 I3(i, j)

To detect benign and malignant skin lesions in melanoma skin cancer images for the
second medical dataset (melanoma skin cancer dermoscopy), we combined three kinds of
features: color, texture, and geometry features.

The color features were extracted from the skin lesion in color images in the HSV (hue,
saturation, value) system, represented by computing the mean, the standard deviation
(STD), and skewness for each H, S, and V channel by applying the color-moments (CM)
method. The texture features were extracted from the skin lesion in a gray-level image
and represented by computing coarseness, contrast, and directionality by applying the
Tamura method. The geometry features were extracted from the skin lesion in binary
images, represented by computing area, perimeter, diameter, and eccentricity. Thus, we
obtained nine features from the CM method for color features, three features from the
Tamura method for texture features, and four shape features. These features were combined
to create a single feature descriptor with 16 features to achieve an accurate output for good
classification. Figure 9 shows the extracted features from the skin lesion for the second
medical database images.

1. Color features set

CMs are one of the simplest and most active features compared with other color
features; the features of common moments are mean, standard deviation, and skewness [32].

Let fij be the color value of the i-th color component of the j-th image pixel and N
be the image’s total number of pixels. μi,σi, γi (i = 1,2,3) represent the mean, standard
deviation, and skewness of every channel of an image, respectively. Table 4 shows the CM
features with equations.

2. Texture features set

Tamura is a method for devising texture features based on human visual perception.
It identified six textural features (coarseness, contrast, directionality, regularity, roughness,
and line-likeness). The first three are very effective outcomes [33,34]. Let n denote the image
size, k be the value that maximizes the differences in the moving averages, μ4 represent the
fourth moment of the image, σ represent the image standard deviation, HD denote the local
direction histogram, np be the peak number of HD, ∅p be the p-th peak position of HD, wp
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be the p-th peak range between valleys, r be a normalizing factor, and ∅ be the quantized
direction code. Table 5 shows the Tamura features with descriptions and equations.

Figure 9. Diagram for the features extracted from skin lesion images.

Table 4. CM features with equations.

CM Feature Equation

Mean μi =
1
N

N
∑

j=1
fij

STD
σi =

(
1
N

N
∑

J=1

(
fij − μi

)2
) 1

2

Skewness
Yi =

(
1
N

N
∑

J=1

(
fij − μi

)3
) 1

3

3. Geometry features set

The geometry features extracted from a skin lesion in binary images are represented
by computing the lesion area, lesion perimeter, eccentricity, and diameter of the lesion.
Variable “A” is the lesion area and is a segmented image of x rows and y columns, (x1),
(x1, y1 ), and (x2, y2) are endpoints on the major axis, z1, . . . ., zn is a boundary list, and di
is the distance [35]. Table 6 shows the geometry features with descriptions and equations.
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Table 5. Tamura features with description and equations.

Tamura Features Description Equation

Coarseness

It represents the size and
number of textures primitives.
It seeks to find the maximum
size at which a texture exists.

1
n2

n
∑
i

n
∑
j

2k p(i, j)

Contrast
It indicates the difference in

intensity between
adjacent pixels.

σ(
μ4
σ4

) 1
4

Directionality

It is used to calculate
directionality. The frequency
distribution of oriented local

edges against their directional
angles is used to calculate an

image’s directionality.

1 − r·np·
np

∑
p

∑
∅εwp

(
∅−∅p

)2·HD(∅)

Table 6. Geometry features with descriptions and equations.

Geometry Feature Description Equation

Area (A)

It is the real number of pixels in the
region which is returned as a scalar. The

lesion area can be represented by the
region of the lesion containing the total

number of pixels.

A = ∑n
x=1 . ∑m

y=1 B(x, y)

Perimeter (P)

It is a distance around the boundary of a
region which is returned as a scalar by
computing the distance between every
contiguous pair of pixels around the

border of the region.

P =
N−1
∑

i=1
di =

N−1
∑

i=1
|zi − zi+1|

Eccentricity (Ecc)

It is the ratio of the length of the short
(minor) axis to the length of an object’s

long (major) axis; it is defined as the
proportion of eigenvalues of the

covariance matrix that matches a binary
image of the shape.

Ecc = axislengthshort
axislengthlong

Diameter (D)

The diameter is identified by calculating
the distance between every pair of points

in a binary image and taking the
maximum of these distances.

D =
√
(x1 − x2)

2 + (y1 − y2)
2

4.3. Diagnosis and Evaluation

In this section, we discuss the diagnosis and evaluation phase according to the sug-
gested model (shown in Figure 1) employed in the study.

4.3.1. Classification

Classification is the most significant part of the diagnosis of the medical databases.
In this work, we used most of the known ML algorithms such as ANN, SVM, KNN, DT,
RF, NB, LR, RS, and fuzzy logic to classify the lungs as normal or abnormal in the first
database and the skin lesions as benign or malignant in the second database. Most of
these algorithms performed well. In contrast, CNN is regarded as one of the finest image-
recognition and classification models in DL [36]. As a result, we used the CNN model
to classify the chest X-ray and melanoma skin cancer dermoscopy medical datasets. The
primary distinction between ML and DL is the method utilized to extract the features on
which the classifier operates. DL extracts the features from numerous nonlinear hidden
layers, while ML classification relies on extracting features manually [37].
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In this section, we describe the classification methods used in this work, in addi-
tion to making a comparison among the methods used in terms of the advantages and
disadvantages of each one.

1. Artificial Neural Network (ANN) Classifier

ANN is a data-processing system made up of many simple, interconnected processing
components called neurons that are interconnected so that each neuron’s output functions
as one or more other neurons’ input. The neurons are organized into layers in a parallel
architecture inspired by the cerebral cortex of the brain, which has a superior ability to
interpret and analyze complicated data and create clear and explanatory patterns to solve
complicated issues [11]. There are two main kinds of layers: hidden and output layers;
the data are fed into the hidden layer and then processed and delivered to the output-
layer neurons, where they are compared to the required output, and the network error
is calculated [38]. In our work, we utilized a backpropagation artificial neural network
to classify the medical images according to the computed features for distinguishing the
normal and abnormal lungs in the first medical dataset and the benign and malignant
skin lesions in the second medical dataset. The neural network performance relies on the
network architecture [39]. Figure 10 shows the network structure for training the first and
the second medical datasets. The network input layer has 39 inputs for the first dataset and
16 inputs for the second dataset, two hidden layers, and two output layers.

 
                       (a) 

 
                       (b) 

Figure 10. The structure of a neural network model: (a) ANN for the first medical dataset (chest
X-ray); (b) ANN for the second medical dataset (dermoscopy melanoma skin cancer).

To construct, train, and test the neural network for disease (skin cancer and lung disease)
diagnostics, the ANN architecture mentioned above and the feed-forward backpropagation-
learning algorithm were utilized. Datasets were divided into two sets, training and testing.
The important parameters were determined, the learning rate was set to 1, the maximum
number of epochs was set to 1000, the training time was infinity, the data-division function
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was used (divide rand), the transfer function of the i-th layer hyperbolic tangent sigmoid
transfer function was utilized (tansig), the activation function was chosen for the output
layer (softmax) which is considered a good function to assign the input image’s probability
distribution to each of the classes in which the network was trained, the performance
function was set to (mse) to minimize the error between actual and predicted probabilities,
and the training function was a backpropagation function; weights were created randomly.

2. K Nearest Neighbor (K-NN) Classifier

K-NN is a one-of-a-kind instance-based prediction model; the testing sample’s class
label was decided by the bigger part class of its k-nearest neighbors according to their
Euclidean distance [40]. For the K-NN algorithm, a data sample was compared to other
data samples using a distance metric [41]. There were two phases to the algorithm: the
training phase and the testing phase.

Training phase: The classifier fed the patterns of features and class labels of normal
and abnormal images for lung images and of benign and malignant skin lesion images
using the feature characteristics that were extracted during feature extraction.

Testing phase: An unidentified test pattern was provided and, using the knowledge
learned through the training phase, the unidentified pattern was classified and plotted
once more in the feature space, each sample image and its properties were represented as a
point in an n-dimensional space known as a feature space, and the number of features that
were employed to characterize the patterns determined their dimension [42].

3. Support Vector Machine (SVM) Classifier

SVM is a popular algorithm that is widely utilized in disease diagnosis. The main
idea of SVM is to utilize hyperplanes to discriminate between different groups. This
classifier tries to identify the hyperplane (decision boundaries) that aids in building the
effective separation of classes according to statistical-learning theory [43]. The fundamental
algorithm is based on the idea of “margin,” or either side of a hyperplane that divides
two classes of data. The fundamental goal of the SVM classification system is to find an
overview that differentiates positive from negative data with the least amount of error [44].

4. Naïve Bayes (NB) Classifier

NB is a statistical classifier that utilizes the Bayes theorem as an underlying concept.
A supervised learning-based Bayesian approach contains two phases: the learning phase
and the testing phase. During the learning phase, an estimation is created based on the
applied attributes, which keeps track of these attributes and categorizes their features; in
the testing phase, predictions are produced based on the learning phase, and the likelihood
of the desired outcome is calculated when new test data are tested. These characteristics
offer a self-sufficient benefit in the development of the result [45].

5. Decision Tree (DT) Classifier

DT is a tree-structured classifier that has two nodes: decision node and leaf node.
Decision nodes make decisions and have numerous branches, whereas leaf nodes display
the outcomes of those decisions and do not have any additional branches. The features of
the given dataset are used to perform the test or make the decision. It is called a decision
tree because, like a tree, it starts with the root node and then extends to form more branches
and a tree-like structure [46]. The most extensive DT algorithm for classification is C4.5.
The C4.5 algorithm was employed in this work to classify lung images and melanoma skin
cancer images.

6. Random Forest (RF) Classifier

RF is a supervised machine-learning technique that utilizes several decision trees
on different subsets of a given dataset and takes the average to enhance the expected
accuracy of that dataset. Rather than relying on a single decision tree, RF accumulates
forecasts from each tree and estimates the ultimate output according to the majority vote of
the predictions [47]. Each decision tree is constructed using randomly sampled training
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data and splitting nodes with subsets of features. The input is provided at the top of a
decision tree, and as it passes down, the data are bucketed into smaller and smaller sets.
RF is generated in two stages: the first is the combining of N decision trees to generate
the random forest, and the second is making predictions for each tree produced in the
first stage [48].

7. Random Subspace (RS) Classifier

The RS approach is a methodology for ensemble learning. The idea is to promote
variety among ensemble members by limiting classifiers to working on distinct random
subsets of the complete feature space. Every classifier learns with a subset of size n drawn
at random from the entire collection of size N [49]. Because it uses subspaces of the real data
size, this method is extremely advantageous because smaller parts can be better trained.
Researchers are interested in this method because it reduces overlearning, introduces
a broad model, requires less training time, and has an easier-to-understand and more
straightforward structure than other classical models [50].

8. Logistic Regression (LR) Classifier

LR is a machine-learning method utilized to process classification problems. An LR
model is built on a probabilistic foundation, with projected values ranging from 0 to 1.
There are three kinds of LR: binary logistic regression, multinomial logistic regression, and
ordinal logistic regression, and the most popular utilized case is binary logistic regression,
where the result is binary (yes or no). LR employs the cost function, sometimes known as
the sigmoid function. Each real number between 0 and 1 is transformed by the sigmoid
function. LR can be used in the medical field to determine whether the ROI is normal or
abnormal and whether a tumor is either benign or malignant [51,52].

9. Fuzzy logic Classifier

Fuzzy logic is a mathematical approach to computing and inference that uses the
concept of a fuzzy set to generalize classical logic and set theory. Fuzzy inference involves all
the components outlined in membership functions, logical processes, and if–then rules. FIS
(Fuzzy Inference System) is a system that maps inputs (features) to outputs (classes) using
fuzzy set theory [53]. To build an FIS, first, we chose the input numerical variables, which
should be precise, and determined their ranges for each term. The correspondence between
the input values and each fuzzy set were then defined during the fuzzification stage; this
was accomplished through the use of membership functions, which reflect the degree to
which a parameter value belongs to each class. The set of fuzzy rules that characterize FIS
rules using logical operators, as well as the method for merging fuzzy outputs from each
rule, were then described, finally extracting the output distribution from a mixture of fuzzy
rules, followed by defuzzification to obtain the crisp classification result [54].

10. CNN of DL Classifier

CNNs are the best type of deep-learning model for image analysis. CNN is made up
of numerous layers that use convolution filters to convert the input. The performance of
CNN relies on the network architecture [55]. CNN is made up of a series of layers that form
its architecture, in addition to the input layer, which is commonly an image with width and
height. There are three primary layers: (1) The convolutional layer: this layer is made up
of several filters (kernels) that can be learned via training. The kernels are tiny matrices
with real values that can be interpreted as weights. (2) The pooling layer: this layer is
employed after a convolution layer to minimize the spatial size of the generated convolution
matrices; as a result, this strategy decreases the number of parameters to be learned in
the network, which contributes to overfitting control. (3) The fully connected layer: this
layer connects each element of the convolution output matrices to an input neuron. The
output of the convolutional and pooling layers represents the features extracted from the
input image [56,57].

In this work, we suggested and assessed a deep convolutional neural network structure
for diagnosing lung diseases and melanoma skin cancer. We performed an ablation analysis
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of the proposed structure and tested other topologies to compare their results with the
results of the proposed CNN structure. We also manually tested extracted features in this
work on the proposed CNN structure and compared the results.

The proposed CNN architecture used to resolve our classification problem is shown
in Figure 11. The model contains three convolution layers, three max-pooling layers,
three batch-normalization layers, and a fully connected layer. When the image was input
into the CNN structure, the image was represented as image height × image width. The
image size was standardized in the system to obtain robust outcomes. After the image
passed through the convolutional layers, the feature map included the feature depth,
represented as image height × image width × image depth. Filter size, stride, and padding
zero were the most important parameters of the convolutional layers that impacted the
performance of the convolutional layers. Convolutional layers wrapped with the filter size
(in this case, we used a 3 × 3 matrix to achieve more precision when traversing the matrix
containing the images) around the image, learned the weights through the training phase,
processed the input, and passed it to the next layer. Zero padding was the process of filling
neurons with zeros to maintain the size of the resulting neurons. When zero padding was
one, the neurons were padded with a row and a column around the edges. Rectified linear
unit (ReLU) layers were also utilized after convolutional layers for image processing. The
objective of ReLU was to pass the positive output and repress the negative output. The
dimensions were decreased by the pooling layer, as the dimensions of the image were
decreased by grouping numerous neurons and representing them in one neuron based on
the maximum or average method, which is named the max-pooling layer. The maximum
value of the groups of neurons was chosen utilizing the maximum method, and the average
value of the neurons was selected utilizing the average method. In the fully connected
layers, the last layer of the convolutional neural networks, each neuron was connected
to all neurons. Feature maps were transformed into flat representations (unidirectional).
Softmax is the activation function utilized in the last phase of the convolutional neural
network model; it is nonlinear and is utilized in multiple classes.

Figure 12 describes the number of layers, the size of each filter, and the parameter of
the CNN structure that was used in diagnosing the two medical datasets (chest X-ray and
melanoma skin cancer).

Figure 13 illustrates the results of the datasets (lung X-ray and melanoma skin cancer
dermoscopy) classification by the proposed CNN structure.

As can be seen from the confusion matrices for the first and second medical image
datasets in Figure 14, for the lung dataset, we used 612 samples that were classified as
288 normal and 324 abnormal. The samples were divided by CNN into 70% for training
and 30% for testing. The number of samples for training was 429 (227 samples for abnormal
and 202 for normal). The number of samples for testing was 183 (97 for abnormal and 86 for
normal), and for the skin cancer dataset, we used 300 samples that have been classified
(145 benign and 155 malignant). The samples were divided by CNN into 70% for training
and 30% for testing. The number of samples for training was 211 (102 samples for benign
and 109 for malignant). The number of samples for testing was 89 (43 for benign and 46 for
malignant); the accuracy of the classification for the first medical dataset was 95% in the
last epoch at 25 epochs, 75 iterations, and the learning rate was equal to 0.01; the accuracy
of the classification for the second medical dataset is 93% in the last epoch at 25 epochs,
25 iterations, with a learning rate equal to 0.01.

Ablation analyses of the proposed CNN: Some ablation tests were conducted through
the three crucial parameters: the number of layers, the kernel size, and the network
parameter. The number of layers is the first critical network parameter, and it is directly
proportional to the network’s description capabilities. Nevertheless, having more layers
means having more variables to optimize, which necessitates even more training data,
without which overfitting occurs. Given the restricted amount of samples available and
the insignificant impact of additional layers (up to 25 were evaluated), we determined that
three convolution layers, three max-pooling layers, three batch-normalization layers, and
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a fully linked layer were sufficient for our architecture to obtain good results, but when
trying to remove any layer from the suggested architecture, the result started to deteriorate.
Table 7 shows the results of the ablation test for the first parameter (the number of layers)
for the two medical datasets.

(a) 

(b) 

Figure 11. The architecture of the employed CNN model: (a) CNN for the first medical dataset (chest
X-ray); (b) CNN for the second medical dataset (dermoscopy melanoma skin cancer).
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Figure 12. The detailed structure of the proposed CNN model.

 
(a) 

Figure 13. Cont.
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(b) 

Figure 13. Result of the dataset classification by the proposed CNN structure (a) The first dataset
(lung X-ray); (b) The second dataset (melanoma skin cancer dermoscopy).

  
(a) (b) 

Figure 14. CNN confusion matrices: (a) CNN confusion matrices for the first dataset; (b) CNN
confusion matrices for the second dataset.
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Table 7. The results of the ablation test for the first parameter (number of layers) for the two medi-
cal datasets.

Test No. Number of Layers
Result

Lung Dataset Skin Cancer Dataset

1
Two convolution layers, two

max-pooling layers, two
batch-normalization layers

81.5% 80.6%

2
One convolution layer, one

max-pooling layer, one
batch-normalization layer

73.5% 71.5%

As far as the kernel size is concerned, experiments were conducted from 1 × 1 up to
9 × 9 pixels. The 3 × 3 size in each convolutional layer had a strong positive impact, which,
nevertheless, did not increase with a larger spatial radius; regardless, with the size of 3 × 3,
we achieved an accuracy of more than 90% for the two sets of selected medical databases.
Figure 15 shows the relative results of ablation test for the second parameter (kernel size)
for the two medical datasets.

 

Figure 15. The relative results of the ablation test for the second parameter (kernel size) for the two
medical datasets.

As far as the crucial network parameters, we conducted experiments on the most
important network information:

Learning rate (LR): The network’s learning rate is inversely proportional to convergence
speed. We experimented with a large spectrum of values; however, their effect on overall
performance was insignificant and the model did not exhibit pathological behavior. The
training of the proposed CNN network was realized with a learning rate of 1 × 10−2.
Epochs: We selected 25 epochs for training the network because training over many epochs
is common in applications and often results in greater potential for overfitting, 25 epochs
were enough to train the datasets and obtain good accuracy.
Activation function: We conducted several experiments on choosing the activation func-
tions and changing the function in each experiment (we used several activation functions
commonly used like the sigmoid function, and the hyperbolic tangent tanh(x)), but we did
not obtain satisfactory results for the proposed network except in the case of activation
functions for the ReLU and softmax, because it is considered the most effective activation
function. In comparison to sigmoid and tanh, ReLU is more trustworthy and speeds up
convergence by six times.
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Through experiments with regard to these main parameters in the network, it is not
possible to remove any one of them because removing them from the network architecture
may lead to a deterioration in the result, or it may not work.

Test different topologies: Some advanced CNNs have more complicated topologies and
network architecture for different tasks, for example, GoogLeNet, ResNet, AlexNet, VGGNet,
and inception modules. In this work, we tested the ResNet18 model to compare the result with
the proposed CNN structure result. The ResNet model’s architecture is shown in Figure 16.

Figure 16. Representing original ResNet-18 architecture [58].

ResNet18 has 18 layers, the first of which is a 7 × 7 kernel. It has four identical layers
of ConvNets. Each layer is made up of two residual blocks. Each block is made up of
two weight layers connected by a skip connection to the output of the second weight layer
through a ReLU. If the result equals the ConvNet layer’s input, the identity connection
is used. If the input and output are not similar, convolutional pooling is performed on
the skip connection. The ResNet18 input size is (224, 224, 3), which is achieved through
preprocessing augmentation with the AugStatic package. In (224, 224, 3), 224 denotes the
width and height. The RBG channel is number three. The result is an FC layer that feeds
data to the sequential layer [59,60]. We tested the two selected medical databases in this
work on the ResNet18 model and changed the size to 224 × 224 × 3 to fit with the network
input to compare the result of the network ResNet18 with the proposed CNN network. The
table shows the comparison results for the two medical datasets.

Figure 17 describes the detailed structure of the part of the ResNet18 model (the
number of layers, the size of each filter, and the parameter of the ResNet18 model).

 

Figure 17. The detailed structure of the ResNet18 model.
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Figure 18 illustrates the results of the dataset (lung X-ray and melanoma skin cancer
dermoscopy) classification by the ResNet18 model.

 
(a) 

 
(b) 

Figure 18. Result of the dataset classification by the ResNet18 model: (a) The first dataset (lung
X-ray); (b) The second dataset (melanoma skin cancer dermoscopy).

As can be seen from the confusion matrices for the first and second medical image
datasets in Figure 19, the accuracy of the classification for the first medical dataset is 94%,
and 91% for the second medical dataset.
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(a) (b) 

Figure 19. ResNet18 confusion matrices: (a) Confusion matrices for the first dataset; (b) Confusion
matrices for the second dataset.

From Table 8, it can be seen that the proposed CNN structure outperformed ResNet18.
It has been noticed that as the number of added layers increases, training neural net-
works becomes more difficult, and in some cases, accuracy reduces. Through experiments,
we found that the proposed CNN structure is sufficient to classify the selected medical
databases and obtain good results. In addition, the proposed network takes less time
to train, and this is one of the important advantages that made us adopt the proposed
structure in the diagnosis of the selected medical databases.

Table 8. The results of the performance of ResNet18 and the proposed CNN structure for the
two medical datasets.

The Type of Architecture
Accuracy

Lung Dataset Skin Cancer Dataset

The proposed CNN 95.1% 93.3%

ResNet18 94% 91%

Additionally, we tested the performance of the proposed CNN structure in the case of
the inputs of extracted features for the other ML methods concatenated to the final layer.
As can be seen from the confusion matrices for the first and second medical image datasets
in Figure 20, the accuracy of the classification for the first medical dataset is 83.1%, and
87.6% for the second medical dataset, in the case of training the network using the extracted
features manually. Therefore, the performance of the network using the features extracted
manually is less efficient; we noticed through experiments that the features extracted from
the network are more robust and effective, and suit the performance of the network and
provide better results. Therefore, the proposed CNN network structure was adopted in the
diagnosis of the selected medical dataset in this work because it achieved high accuracy
in diagnosis.
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(a) (b) 

Figure 20. CNN confusion matrices: (a) Confusion matrices for the first dataset; (b) Confusion
matrices for the second dataset.

Table 9 shows a comparison of the classification methods used in this work in terms of
the most important advantages and disadvantages of each one.

Table 9. Comparison of the classification methods used in this work.

Method Advantage Disadvantage

1. ANN Advanced predictive ability
Parallel processing ability

Computationally costly
Long time to process massive amounts of data

2. SVM
The ability to handle structured and semistructured data
Appropriate for nonlinear problems and those with little
samples and high dimensions

Decreased performance with large amounts
of data
Imperfect work with noisy data

3. KNN Flexibility
Easy to implement

Sensitive to k-value selection
Requires well-classified training data

4. DT Ease and speed in implementation
The ability to generate rules easily

Difficulty controlling tree size
Can suffer from overfitting

5. NB Speed in predicting the dataset category
Simplicity in implementation

Accuracy decreases with a small amount of data
Necessitates a vast number of records

6. LR Speed in training
Ease in implementation and application

Not suited for predicting the value of a binary
variable, only accepts Boolean values
Unable to solve nonlinear problems

7. RF
Flexibility
There is no need to normalize data because it employs a
rule-based approach

Takes a long time to train
Takes a lot of resources and computational effort
to build multiple trees and integrate
their outputs

8. RS
Precise and reliable predictions
Implements a random subset of features to a combined
group of foundation classifiers

Takes a long time to train
Risk of overfitting

9. Fuzzy Logic Flexibility
Active system for nonlinear problems

Necessitates a large amount of data
Rules need to be updated frequently

10. CNN Effective with large amounts of data
Extremely good at image identification and classification

Requires sufficient data and time for training
High computational cost
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4.3.2. Model Evaluation and Validation

This stage is the primary metric for assessing the performance of the classification
models. Lung diseases and melanoma skin cancer can be classified as true positive (TP)
or true negative (TN) if correctly diagnosed, or false positive (FP) or false negative (FN) if
incorrectly diagnosed. Accuracy, sensitivity, specificity, precision, recall, F-measure, and
AUC (area under curve) are the most popular assessment metrics used for lung diseases
and melanoma skin cancer classification. We describe these metrics briefly below [11,41]:

Accuracy (Acc): This metric measures the number of correctly classified cases; it can
be represented utilizing the following equation:

Acc =
(TP + TN)

(TP + TN + FN + FP)

Sensitivity (Sn): This metric reveals the number of correctly estimated total positive
cases; it can be represented utilizing the following equation:

Sn =
TP

(TP + FN)

Specificity (Sp): This metric reveals the number of correctly estimated total negative
cases; it can be represented by the equation:

Sp =
TN

(TN + FP)

Precision (Pr): This metric indicates how accurate the overall positive forecasts are; it
can be represented by the equation:

Pr =
TP

(TP + FP)

Recall: This metric reveals how well the total number of positive instances is predicted;
it can be represented by the equation:

Recall =
TP

(TP + FN)

F-Measure: This metric is a way of checking how accurately the model operates by
distinguishing the right true positives from the expected ones; the following equation can
be used to express it:

F1 Score =
(2TP)

(2TP + FN + FP)

AUC: This metric is one of the most important evaluation metrics for measuring the
performance of any classification model and is used to summarize the ROC curve, which
represents the area under the ROC curve. The greater the AUC, the better the model
distinguishes between positive and negative classifications, and it can be represented by
the equation [58]:

AUC =
TPR − FPR + 1

2

5. Results and Comparison

This section introduces the outcomes of all the methods utilized in the classification,
which were implemented using Matlab 2021, as well as a comparison of the results.

The results of the feature extraction for some samples of the first medical dataset (chest
X-ray dataset) and the second medical dataset (melanoma skin cancer dermoscopy dataset)
for the feature extraction methods used in this work are introduced in Appendix A.
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The results of various classification algorithms are described in Tables 10 and 11, where
the performance metrics for all ML algorithms and deep-learning CNN that were applied
to the chest X-ray dataset and melanoma skin cancer dermoscopy dataset are described.

Table 10. Results of classification of lung disease dataset.

Algorithm Acc% Sn% Sp% Pr Recall F-Measure AUC

ANN 91.1 94.7 88.4 0.916 0.911 0.912 0.945

SVM 84.4 84.2 84.6 0.846 0.844 0.845 0.844

KNN 86.6 84.2 88.4 0.867 0.867 0.867 0.800

DT 74.4 73.6 75.5 0.747 0.747 0.747 0.743

NB 81.1 76.3 84.6 0.811 0.811 0.811 0.887

LR 92 92.3 91.6 0.920 0.920 0.920 0.947

RF 93.3 94.7 92.3 0.935 0.933 0.934 0.992

RS 84.4 92.1 78.8 0.860 0.844 0.845 0.948

Fuzzy Logic 81.1 71 88.4 0.821 0.811 0.809 0.798

CNN 95.1 94 96.3 0.969 0.94 0.954 0.994

Table 11. Results of classification of melanoma skin cancer dataset.

Algorithm Acc% Sn% Sp% Pr Recall F-Measure AUC

ANN 96.6 95.4 97.8 0.967 0.967 0.967 0.974

SVM 84.4 97.7 71.7 0.871 0.844 0.842 0.847

KNN 95.5 95.4 95.6 0.956 0.956 0.956 0.930

DT 84.4 100 69.5 0.882 0.844 0.841 0.848

NB 80 84 76 0.803 0.800 0.800 0.874

LR 87.7 93.1 82.6 0.883 0.878 0.878 0.949

RF 94.6 94.8 94.4 0.947 0.947 0.947 0.984

RS 93.3 94.8 91.6 0.934 0.933 0.933 0.986

Fuzzy Logic 90 100 80.4 0.917 0.900 0.899 0.902

CNN 93.3 95.1 91.6 0.906 0.915 0.928 0.919

From Table 10, it can be noted that classification based on a random forest (RF)
algorithm performs better than other machine-learning techniques applied to lung datasets
in terms of performance metrics, and CNN for deep-learning classification provides better
outcomes than all other algorithms when applied to X-ray lung diseases. LR, ANN, KNN,
SVM, and RS are also effective algorithms for classification issues, and they perform well
in the issue at hand.

From Table 11, it can be seen that classification based on the ANN algorithm outper-
forms all the other ML algorithms that were applied to melanoma skin cancer datasets in
terms of performance metrics. Other algorithms such as KNN, RF, RS, Fuzzy Logic, and
CNN are also effective algorithms for classification issues, and they perform well in the
issue at hand.

Table 12 shows the comparison of the test accuracy of the classification algorithms
applied to the two medical image datasets used in our work.
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Table 12. Comparison of the accuracy of classification algorithms for the two medical datasets.

Algorithm
Accuracy in the First Database

(Chest X-ray)

Accuracy in the Second Database
(Melanoma Skin Cancer

Dermoscopy)

ANN 91.1% 96.6%

SVM 84.4% 84.4%

KNN 86.6% 95.5%

DT 74.4% 84.4%

NB 81.1% 80%

LR 92% 87.7%

RF 93.3% 94.6%

RS 84.4% 93.3%

Fuzzy Logic 81.1% 90%

CNN 95.1% 93.3%

From Table 12, we notice that CNN and ANN were the highest-performing classifiers
for the lung disease and skin cancer disease classification, respectively. This is due to the
characteristics of the CNN network (the number of layers and the number of filters that
were utilized in addition to the efficiency of the activation functions) and the superior
ability of DL networks in classification tasks, especially CNNs, which are considered to
be the state-of-the-art systems for image classification, especially in the classification of
medical databases.

For an ANN network, the classification accuracy was high if the extracted features
were strong and good for classification, the network structure was good, and the number of
layers was large (we used many layers and 150 complex neurons for each hidden layer), in
addition to the efficiency of the activation functions utilized in the network (the activation
function was chosen for the output layer (softmax) which is considered a good function to
assign the input images’ probability distribution to each of the classes in which the network
was trained).

To check the accuracy of the final optimized model, a new set of 100 images from the
medical datasets used in this work was used for validation. Table 13 shows the results of
the validation accuracy of the classification algorithms applied to the two medical image
datasets used in our work. We note that the results of the validation are very close to
the test results of the classification algorithms applied to the two medical image datasets,
shown in Table 12.

Table 13. The results of the validation accuracy of classification algorithms for the two medi-
cal datasets.

Algorithm
Accuracy in the First Database

(Chest X-ray)

Accuracy in the Second Database
(Melanoma Skin Cancer

Dermoscopy)

ANN 92.% 95.2%
SVM 88.8% 84.5%
KNN 86.2% 95.8%

DT 75% 83.8%
NB 80.9% 80.4%
LR 92.8% 88.3%
RF 92.9% 93.7%
RS 85.7% 94.8%

Fuzzy Logic 80.9% 90.6%
CNN 95.08% 92.1%
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Figure 21 shows the comparison of the accuracy of the classification algorithms for the
lung dataset.

 

Figure 21. Comparison of the accuracy of classification algorithms for the lung dataset.

Figure 22 shows the comparison of the accuracy of the classification algorithms for the
melanoma skin cancer dataset.

 

Figure 22. Comparison of the accuracy of classification algorithms for the skin dataset.

As seen in Figure 21, the highest accuracy was 95% for the CNN algorithm. For the
machine-learning algorithms, the highest accuracy was 93% for the RF algorithm, followed
by the LR and ANN algorithms with an accuracy of 92% and 91%, respectively. On the
other hand, the DT classifier attained the lowest performance of 74%.
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As seen in Figure 22, the highest accuracy was 96% for ANN, followed by the KNN, RF,
and RS algorithms, with an accuracy of 95%, 94%, and 93%, respectively, for ML algorithms.
Additionally, the CNN algorithm attained a high accuracy of 93%. On the other hand, the
NB classifier attained the lowest performance of 80%.

Figures 23 and 24 show the graphical representation of the performance measures
for the algorithms applied to the lung dataset and the melanoma skin cancer dataset,
which shows a comparison of the performance measures in terms of accuracy, sensitivity,
specificity, precision, recall, F-measure, and AUC.

 

Figure 23. Graphical representation of the classifier performance-evaluation comparison for the
lung dataset.

 

Figure 24. Graphical representation of the classifier performance-evaluation comparison for the
melanoma skin cancer dataset.

Figures 25 and 26 illustrate the receiver operating characteristic (ROC), which is a
system performance curve used in medical testing for diagnosing medical datasets. A ROC
curve is constructed by plotting the true-positive rate (TPR) against the false-positive rate
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(FPR). The true-positive rate is the fraction of all positive observations that were correctly
expected to be positive. The false-positive rate is the proportion of negative observations
that were wrongly anticipated to be positive. Each figure represents an assessment curve
for ten methods for each database.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 25. ROC curves of the classifier performance evaluation for the lung dataset: (a) ANN;
(b) SVM; (c) KNN; (d) DT; (e) NB; (f) LR; (g) RF; (h) RS; (i) Fuzzy; (j) CNN.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 26. ROC curves of the classifier performance evaluation for the melanoma skin cancer dataset:
(a) ANN; (b) SVM; (c) KNN; (d) DT; (e) NB; (f) LR; (g) RF; (h) RS; (i) Fuzzy; (j) CNN.
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6. Contributions

The essential contributions of this work are summarized as follows:

• We exploited ML and DL to find the most precise techniques for diagnosis to provide
directions for future research.

• We analyzed more than one medical image database to evaluate more than one disease
using the proposed system.

• By improving the raw images, finding the ROI (lung and lesion), extracting ROI-
specific features, and applying ML and DL algorithms for automatic classification,
we present an integrated framework for identifying lung disease utilizing chest X-ray
scans and melanoma skin cancer using skin dermoscopy.

• We suggest an algorithm for image preprocessing, where the raw X-ray images were
processed and their quality was improved. Additionally, an algorithm was proposed
to remove hair from dermoscopy skin images to enhance them and obtain a precise
diagnosis. The proposed preprocessing algorithms provided good results in the work.

• We suggest an algorithm for image segmentation to separate the ROI from the image to
extract only lung regions from chest X-ray images and lesion regions from dermoscopy
skin images. The proposed segmentation algorithms achieved good results in the work.

• We extracted a robust collection of features from ROI (lung and skin lesion) images,
including color, texture, shape, and geometry features to help us achieve satisfactory
results in the classification.

• Good results were obtained for the proposed system, utilizing two scalable datasets
and an appropriate training-to-testing ratio of 70% to 30%. The CNN model and
machine-learning techniques such as SVM, KNN, ANN, NB, LR, RF, RS, and fuzzy
logic were trained for assessment. In the end, the results of the suggested model
methods were compared.

7. Concluded Discussion and Future Directions

In this section, we discuss the techniques utilized in this work, and the medical dataset
utilized to diagnose diseases through discussion and future directions.

7.1. Discussion

In this work, chest X-ray and melanoma skin cancer dermoscopy datasets were used
for classification purposes. The data were divided into 70% for training and 30% for testing.
The data were analyzed by applying the main analysis processes, where the medical data
images were preprocessed to remove noise and improve contrast. Some filters were applied
to improve the images; the chest X-ray images were preprocessed using the median filter
and applying the contrast adjustment with the histogram equalization enhancement to
improve the images and remove noise. Hair was removed from the melanoma skin cancer
images using the algorithm proposed in the work to improve the images and prepare them
well for the next stage of the analysis, which was to separate the object of interest from the
rest of the image.

The suggested segmentation algorithms were applied to separate the lung the from
chest X-ray images by using thresholding and morphological operations, and to separate
the lesion from skin cancer images using Otsu thresholding with binarization and negation
processes. The proposed segmentation algorithms provided excellent results in separating
the object from the image to move to the other stage, which is the extraction of features.
Here, the best methods were applied to obtain the most relevant features from the images
such as texture and shape, extracting features from lung images and lesion images, such
as color, texture, and some geometry features, and to move to the most important stage,
which is the classification.

At this point, we applied a set of the most important and best common classification
methods based on machine learning such as ANN, SVM, KNN, DT, NB, LR, RF, RS, and
fuzzy logic in addition to CNN for deep learning to identify the performance of these
algorithms and the accuracy of their classification. All these were realized by training the
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selected databases and obtaining results, where most of the methods proved effective in
diagnosing lung diseases and melanoma skin cancer and showed good results.

The model was evaluated using accuracy, sensitivity, specificity, precision, recall, and
F-measure. However, the analysis of the results indicates that there is enough space to
improve the performance obtained for some methods by applying other techniques that
may be hybrid or improved methods to increase the speed of performance and reduce
the time, cost, and effort in diagnosing diseases. The comparison in the application of
diagnostic and evaluation methods to both sets of medical image datasets revealed that the
accuracy and performance of the algorithm depend on the type of the medical dataset, the
amount of data, the type of disease, and the performance of the methods applied in the
preprocessing, segmentation, and feature-extraction stages.

In particular, the results of the applied classification methods are generalizable to the
diagnosis of the selected databases, even if this work focused on classifying melanoma skin
cancer and lung diseases.

In general, the results of the classification algorithms utilized in this work can be
generalized to all medical data if appropriate preprocessing methods are applied to treat
databases because each database differs in its processing according to the conditions of
taking pictures and the noise in the images. However, through what we have seen in this
work, the step of extracting the most relevant features from the images differs depending on
the type of dataset. For this reason, we conducted our experiments and tested two different
specific types of medical databases to diagnose two different diseases and, in this way,
create a model that shows its capacity for generalization.

7.2. Future Directions

In future work, we suggest the following:

• Increase the number of diseases that are diagnosed and employ other classifiers.
• We also plan to work with more sophisticated medical image data.
• Employ new sets of features for more medical images, to improve performance.
• Although good findings were produced in this work, more research should be con-

ducted by merging the algorithms employed in classification or by adding optimiza-
tion tools.

• There is a need to develop or create a new classification system for the diagnosis of
diseases based on medical image databases.

• Further extensive studies or experiments with vast datasets and hybrid or optimized
classification approaches are necessary.

In the future, we plan to work on a new classification model architecture by building
a hybrid classifier by merging two or more of the classification methods that we used in
this work or by improving one of the classifiers used by adding tools for improvement
to increase the speed of performance and reduce the time, cost, and effort in diagnosing
diseases, and applying the new system to more than one database that includes types of
diseases, to prove its effectiveness and increase the percentage of generalizing the system
on the most diseases that pose a threat to human life and detect them early so that we can
treat them.

8. Conclusions

This work examines the effectiveness of several machine-learning- and deep-learning-
based classification algorithms for medical data diagnosis, and describes a machine-
learning- and deep-learning-based diagnosis system for two of the world’s most serious
diseases. Experiments were performed on two different medical datasets (chest X-ray
dataset and dermoscopy melanoma skin cancer dataset). The following conclusions can be
drawn based on the experimental results:

• Most of the classification algorithms based on machine learning that were applied to
the two selected databases provided good results in terms of various classification per-
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formance metrics such as accuracy, sensitivity, specificity, precision, recall, F-measure,
and AUC.

• The deep-learning-based convolutional neural network algorithm outperformed in
others when applied to the two selected medical databases, as it provided high classifi-
cation accuracy, reaching 95% in classifying the lung dataset into normal and abnormal,
and 93% in classifying the melanoma skin cancer dataset into benign and malignant.

• Additionally, the outcomes varied from one dataset to another, according to the type
of medical dataset, the type of medical imaging, and the efficiency of the methods
applied in the preprocessing, segmentation, and feature extraction to classify the
medical dataset; whenever the methods that were applied to a dataset to train the
model were accurate and worked well, the performance of the classification model
was better.

• The work provides some crucial insights into modern ML/DL methodologies in the
medical field that are applied in disease research nowadays.

• Better outcomes are anticipated with the usage of hybrid algorithms and combined
ML and DL techniques. Even minor adjustments can sometimes yield good results.
We found that training data quality is an important consideration when creating ML-
and DL-based systems.

As an outline of what we have achieved in this work, we analyzed two medical
datasets (chest X-ray and melanoma skin cancer dermoscopy) by applying the main analy-
sis processes, where preprocessing of the medical data images was conducted to remove
noise and improve contrast. Hair was removed from the melanoma skin cancer images
using the algorithm proposed in the work to improve the images. The suggested segmenta-
tion algorithms were applied to separate the lung from the chest X-ray images by using
thresholding and morphological operations, and to separate the lesion from skin cancer im-
ages using Otsu thresholding with binarization and negation processes. Relevant features
were extracted from the images for use in the classification such as color, texture, shape, and
geometry features. In the classification stage, we applied a set of the most important and
best common classification methods based on machine learning such as ANN, SVM, KNN,
DT, NB, LR, RF, RS, and fuzzy logic in addition to CNN for deep learning to investigate
the performance of these algorithms and the accuracy of their classification. The model
was evaluated utilizing accuracy, sensitivity, specificity, precision, recall, F-measure, and
AUC. Most of the methods proved effective in diagnosing lung diseases and melanoma
skin cancer and provided good results.
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Appendix A

This section introduces the results of the feature extraction for some samples of the
first medical dataset (chest X-ray dataset) and the second medical dataset (melanoma skin
cancer dermoscopy dataset) for the feature-extraction methods used in this work.

Tables A1 and A2 show the results of different random samples of the normal and
abnormal lungs for the first medical dataset (chest X-ray dataset) using the GLCM texture-
features method.

Table A1. Results of normal sample lungs using GLCM features.

Samples

GLCM Features

Contrast Correlation Energy Homogeneity

0◦ 45◦ 90◦ 135◦ 0◦ 45◦ 90◦ 135◦ 0◦ 45◦ 90◦ 135◦ 0◦ 45◦ 90◦ 135◦

Image 1 0.23 0.31 0.15 0.28 0.931 0.933 0.96 0.951 0.294 0.241 0.25 0.23 0.68 0.65 0.69 0.61

Image 22 0.18 0.34 0.23 0.18 0.933 0.924 0.94 0.942 0.259 0.243 0.24 0.24 0.69 0.66 0.67 0.62

Image 69 0.25 0.23 0.17 0.27 0.94 0.931 0.95 0.953 0.281 0.252 0.23 0.22 0.66 0.64 0.63 0.65

Image 80 0.26 0.33 0.21 0.19 0.921 0.913 0.961 0.939 0.278 0.251 0.25 0.24 0.62 0.63 0.68 0.64

Image 187 0.14 0.208 0.15 0.24 0.924 0.915 0.952 0.941 0.284 0.247 0.24 0.23 0.67 0.62 0.69 0.66

Table A2. Results of abnormal sample lungs using GLCM features.

Samples

GLCM Features

Contrast Correlation Energy Homogeneity

0◦ 45◦ 90◦ 135◦ 0◦ 45◦ 90◦ 135◦ 0◦ 45◦ 90◦ 135◦ 0◦ 45◦ 90◦ 135◦

Image 1 0.504 0.61 0.37 0.54 0.809 0.87 0.82 0.86 0.196 0.168 0.15 0.14 0.77 0.701 0.75 0.701

Image 22 0.47 0.53 0.35 0.48 0.806 0.89 0.83 0.85 0.201 0.147 0.14 0.16 0.76 0.703 0.76 0.702

Image 69 0.44 0.49 0.38 0.55 0.807 0.84 0.86 0.88 0.188 0.156 0.12 0.15 0.74 0.702 0.73 0.703

Image 80 0.43 0.63 0.31 0.49 0.804 0.86 0.84 0.87 0.202 0.138 0.13 0.13 0.72 0.711 0.72 0.711

Image 187 0.502 0.54 0.43 0.51 0.803 0.88 0.81 0.89 0.191 0.127 0.16 0.14 0.71 0.712 0.76 0.721

Tables A3 and A4 show the results of different random samples of the normal and
abnormal lungs for the first medical dataset (chest X-ray dataset) using the GLRLM texture
features method.

Table A3. Results of normal sample lungs using GLRLM features.

Samples

GLRLM Features

SRE LRE RP LGRE

0◦ 45◦ 90◦ 135◦ 0◦ 45◦ 90◦ 135◦ 0◦ 45◦ 90◦ 135◦ 0◦ 45◦ 90◦ 135◦

Image 1 0.17 0.33 0.31 0.32 221.9 191.2 313.2 173.2 0.15 0.105 0.12 0.104 91.4 86.9 85.2 88.1

Image 22 0.23 0.28 0.28 0.36 189.2 188.6 298.3 177.3 0.13 0.104 0.14 0.112 87.6 86.5 85.6 77.8

Image 69 0.28 0.31 0.26 0.29 196.9 196.5 322.5 191.5 0.17 0.106 0.16 0.115 79.1 88.5 77.8 76.9

Image 80 0.15 0.27 0.33 0.38 203.7 189.6 389.7 188.4 0.14 0.103 0.13 0.108 94.1 79.8 79.3 85.8

Image 187 0.29 0.25 0.32 0.28 206.9 186.9 299.5 169.9 0.11 0.102 0.11 0.103 89.5 83.8 83.9 79.2
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Table A4. Results of abnormal sample lungs using GLRLM features.

Samples

GLRLM Features

SRE LRE RP LGRE

0◦ 45◦ 90◦ 135◦ 0◦ 45◦ 90◦ 135◦ 0◦ 45◦ 90◦ 135◦ 0◦ 45◦ 90◦ 135◦

Image 1 0.48 0.51 0.501 0.51 396.3 288.5 675.7 357.1 0.25 0.216 0.21 0.214 60.8 65.8 53.4 59.1

Image 22 0.52 0.48 0.46 0.46 323.8 292.5 586.8 287.5 0.23 0.218 0.19 0.215 59.8 58.7 58.8 57.2

Image 69 0.46 0.46 0.45 0.54 391.5 253.7 564.9 267.6 0.24 0.215 0.23 0.206 61.8 44.8 61.1 61.2

Image 80 0.39 0.45 0.44 0.48 378.6 304.5 621.3 311.5 0.27 0.211 0.201 0.209 58.8 49.7 59.4 49.8

Image 187 0.45 0.52 0.503 0.52 369.4 312.2 584.7 312.4 0.21 0.214 0.212 0.211 60.8 52.1 66.3 55.8

Table A5 shows the results of different random samples of the normal and abnormal
lungs for the first medical dataset (chest X-ray dataset) using the MI shape features method.

Table A5. Results of normal and abnormal samples of the lungs using MI features.

Samples

MI Features

Normal Abnormal

I1 I2 I3 I4 I5 I6 I7 I1 I2 I3 I4 I5 I6 I7

Image 1 2.08 7.02 9.08 8.56 −15.78 −13.65 18.11 2.74 4.5 7.6 9.9 −18.5 −9.9 15.4

Image 22 2.04 7.01 8.99 8.44 −16.65 −12.88 18.15 2.66 4.9 6.9 10.1 −18.6 −10.9 14.8

Image 69 1.81 6.98 9.06 7.64 −14.12 −13.81 17.8 2.82 5.9 7.4 9.8 −19.1 −10.2 14.9

Image 80 1.99 6.44 8.87 8.88 −16.76 −12.76 17.5 2.65 4.8 6.8 10.07 −18.7 −9.7 15.2

Image 187 1.92 7.04 9.11 7.89 −16.82 −13.32 18.2 2.52 5.8 7.1 9.08 −19.3 −11.1 13.9

Table A6 shows the results of different random samples of the benign and malignant
skin lesions for the second medical dataset (melanoma skin cancer dermoscopy dataset)
using the CM color features method.

Table A6. Results of benign and malignant samples of skin lesions using CM features.
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Table A7 shows the results of different random samples of the benign and malignant
skin lesions for the second medical dataset (melanoma skin cancer dermoscopy dataset)
using the Tamura texture features method.

Table A7. Results of benign and malignant samples of skin lesions using Tamura features.

Samples

Tamura Features

Benign Malignant

Coarseness Contrast Directionality Coarseness Contrast Directionality

Image 1 14.1 14.2 0.06 23.2 31.8 0.02

Image 33 12.2 10.9 0.05 22.6 25.1 0.01

Image 88 12.8 16.8 0.05 21.8 32.8 0.03

Image 101 13.5 11.5 0.04 24.4 27.3 0.02

Image 203 11.9 12.1 0.06 20.5 30.9 0.03

Table A8 shows the results of different random samples of the benign and malignant
skin lesions for the second medical dataset (melanoma skin cancer dermoscopy dataset)
using the geometry features method.

Table A8. Results of benign and malignant samples of skin lesions using geometry features.

Sample

Geometry Features

Benign Malignant

Area Perimeter Eccentricity Diameter Area Perimeter Eccentricity Diameter

Image 1 421 166.09 0.51 28.8 842 289.2 0.82 49.8

Image 33 511 107.7 0.46 33.6 721 301.1 0.71 44.9

Image 88 399 133.09 0.43 22.9 711 302.5 0.85 48.6

Image 101 451 196.02 0.54 30.5 802 299.4 0.79 56.1

Image 203 411 145.02 0.49 34.1 741 284.2 0.74 53.08
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Abstract: Regional neuraxial analgesia for pain relief during labor is a universally accepted, safe,
and effective procedure involving administering medication into the epidural. Still, an adequate
assessment requires continuous patient monitoring after catheter placement. This research introduces
a cutting-edge semantic thermal image segmentation method emphasizing superior interpretability
for regional neuraxial analgesia monitoring. Namely, we propose a novel Convolutional Random
Fourier Features-based approach, termed CRFFg, and custom-designed layer-wise weighted class-
activation maps created explicitly for foot segmentation. Our method aims to enhance three well-
known semantic segmentation (FCN, UNet, and ResUNet). We have rigorously evaluated our
methodology on a challenging dataset of foot thermal images from pregnant women who underwent
epidural anesthesia. Its limited size and significant variability distinguish this dataset. Furthermore,
our validation results indicate that our proposed methodology not only delivers competitive results
in foot segmentation but also significantly improves the explainability of the process.

Keywords: infrared thermal segmentation; regional neuraxial analgesia; deep learning; random
fourier features; class activation maps

1. Introduction

The use of regional neuraxial analgesia for pain relief during labor is widely acknowl-
edged as a safe method [1]. It involves the administration of medication into the epidural or
subarachnoid space in the lower back. This procedure blocks pain signals from the uterus
and cervix to the brain. This method is considered safe and effective for most women
and is associated with lower rates of complications than other forms of pain relief [1,2].
Electrophysiological testing measures nerve fiber reactions to painful stimuli with elec-
tromyography, excitatory or inhibitory reflexes, evoked potentials, electroencephalography,
and magnetoencephalography [3]. In addition, imaging techniques objectively measure
relevant bodily function patterns (such as blood flow, oxygen use, and sugar metabolism)
using positron emission tomography (PET), single-photon emission computed tomography
(SPECT), and functional magnetic resonance imaging (fMRI) [4].

Nonetheless, imaging techniques can be costly and are generally prohibited in obstetric
patients, limiting their use. A cost-effective alternative approach is utilizing thermographic
skin images to measure body temperature and predict the distribution and efficacy of
epidural anesthesia [5]. This approach is achieved by identifying areas of cold sensation [5].
The use of thermal imaging provides an objective and non-invasive solution to assess
warm modifications resulting from blood flow redistribution after catheter placement [6].
However, an adequate assessment requires temperature measurements from the patient’s
foot soles at various times after catheter placement to accurately characterize early thermal
modifications [7,8]. Regarding this, semantic segmentation of feet in infrared thermal
images in obstetric environments is challenging due to various factors. Firstly, thermal
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images possess inherent characteristics such as low contrast, blurred edges, and uneven
intensity distribution, making it difficult to identify objects accurately [9,10]. The second
challenge is the high variability of foot position in clinical settings. Additionally, the
specialized equipment required for collecting these images and the limited willingness of
mothers to participate in research studies resulted in a need for more available samples
and the challenge of acquiring annotated data, which is crucial for developing effective
segmentation techniques.

Semantic segmentation is crucial in medical image analysis, with deep learning widely
used. Fully Convolutional Networks (FCN) [11] is a popular approach that uses Convo-
lutional layers for pixel-wise classification but produces coarse Region of Interest (ROI)
and poor boundary definitions for medical images [12]. Likewise, U-Net [13] consists of
encoders and decoders that handle objects of varying scales but have difficulty dealing with
opaque or unclear goal masks [14]. U-Net++ [15] extends U-Net with nested skip connec-
tions for highly accurate segmentation but with increased complexity and overfitting risk.
Besides, SegNet [16] is an encoder–decoder architecture that handles objects of different
scales but cannot handle fine details. Mask R-CNN [17] extends Faster R-CNN [18] for
instance segmentation with high accuracy but requires a large amount of training data and
has high computational complexity. On the other hand, PSPNet uses a pyramid pooling
module for multi-scale contextual information and increased accuracy but with high com-
putational complexity and a tendency to produce fragmented segmentation maps for small
objects [19].

Specifically for semantic segmentation of feet from infrared thermal images, most
works were developed in the context of diabetic foot disorders. In [20], the authors combine
RGB, infrared, and depth images to perform plantar foot segmentation based on a U-Net
architecture together with RANdom SAmple Consensus (RANSAC) [21], which relies too
much on depth information. The authors in [22] use a similar approach to integrating
thermal and RGB images to be fed into a U-Net model. Their experiments show that
RGB images help in more complex cases. In [23], the authors compare multiple models
on thermal images, including U-Net, Segnet, FCN, and prior shape active contour-based
methodology, proving Segnet outperforms them all. Similarily, in [24], the authors com-
pare multiple infrared thermographic feet segmentation models using transfer learning
and removal algorithms based on morphological operations on U-Net, FCN, and Segnet,
showing that Segnet outperforms the rest of the models but with high computational cost.

On the other hand, Visual Transformers (VIT) [25] have revolutionized self-attention
mechanisms to identify long-range image dependencies. Several recent works have lever-
aged VIT capabilities to enhance global image representation. For instance, in [26], a U-Net
architecture fused with a VIT-based transformer significantly improves model performance.
However, this approach requires a pre-trained model and many iterations. Similarly, in [27],
a pure U-Net-like transformer is proposed to capture long-range dependencies. Another
recent work [28] suggests parallel branches, one based on transformers to capture long-
range dependencies and the other on CNN to conserve high resolution. The authors of [29]
propose a squeeze-and-expansion transformer that combines local and global information
to handle diverse representations effectively. This method has unlimited practical receptive
fields, even at high feature resolutions. However, it relies on a large dataset and has higher
computational costs than conventional methods. To address the data-hungry nature of
transformer-based models, the work in [30] proposes a semi-supervised cross-teaching
approach between CNN and Transformers. The most recent work in this field, Meta Seg-
ment Anything [31], relies on an extensive natural database (around 1B images) for general
segmentation. However, medical and natural images have noticeable differences, including
color and blurriness. It is also pertinent to note that accepting ambiguity can incorporate
regions that may not be part of the regions of interest. Specifically, while transformers excel
at capturing long-range dependencies, they still face challenges in scenarios where data is
scarce [32].
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Likewise, transfer learning-based strategies in medical image segmentation is a pow-
erful technique that utilizes pre-trained models to enhance performance, minimize data
requirements, and optimize computational resources [33]. Nevertheless, choosing an ap-
propriate and representative pre-trained model is crucial to avoid suboptimal results and
potential bias [34,35]. Nevertheless, in our study, we aim to assess the effectiveness of our
proposal independently, thus excluding the use of transfer learning.

Here, we present a cutting-edge Convolutional Random Fourier Features (CRFFg)
technique for foot segmentation in thermal images, leveraging layer-wise weighted class
activation maps. Our proposed data-driven method is twofold. First, it integrates Random
Fourier Features within a convolutional framework, enabling weight updates through
gradient descent. To assess the efficacy of our approach, we benchmark it against three
widely-used architectures: U-Net [13], FCN [11], and ResUNet [36]. We enhance these
architectures by incorporating CRFFg at the skip connections, bolsters representation,
and facilitate the fusion of low-level semantics from the decoder to the encoder. Second,
we introduce a layer-wise strategy for quantitatively analyzing Class Activation Maps
(CAMs) for semantic segmentation tasks [37]. Our experimental findings showcase the
competitive performance of our models and the accurate quantitative assessment of CAMs.
The proposed CRFFg method offers a promising solution for foot segmentation in thermal
images, tailored explicitly for regional analgesia monitoring. Additionally, layer-wise
weighted class activation maps contribute to a more comprehensive understanding of
feature representations within neural networks.

The paper is organized as follows: Section 2 describes the materials and methods used
in the study. Sections 3 and 4 present the experimental setup and results, respectively,
followed by Section 5, which provides the concluding remarks.

2. Material and Methods

2.1. Deep Learning for Semantic Segmentation

Provided an image set, {In∈RH×W̃×C :n∈N} , we will call a label mask the correspond-
ing matrix Mn that encodes the membership of each n-th image pixel to a particular class,
where H is height, W̃ is width, and C holds the color channels of the image set. For sim-
plicity, C = 1 is assumed. As regards the semantic segmentation task under consideration,
each mask is binary, M∈{0, 1}H×W̃ , representing either the background or the foreground.

An estimate for matrix mask M̂ ∈ [0, 1]H×W̃ can be obtained through deep learning
models for semantic segmentation, stacking convolutional layers as follows:

M̂ = (ϕL ◦· · · ◦ ϕL)(I) (1)

where ϕl :RHl−1×W̃l−1×Dl−1 → RHl×W̃l×Dl denotes a function composition for the l-th layer
(l ∈ L), which comprises learnable parameters represented by Wl ∈ Rk̃l×k̃l×Dl−1×Dl

and bl ∈ RDl (k̃l holds the l-th convolutional kernel size). Of note, the feature map
Fl = ϕl

(
Fl−1

)
= ςl(Wl ⊗ Fl−1 + bl) ∈ RHl×W̃l×Dl , is comprised of Dl distinct features ex-

tracted, ςl(·) is a nonlinear activiation function, and ⊗ stands for image-based convolution.
Essentially, the function composition in Equation (1) transforms the input feature map from
the previous layer, (l − 1), into the output feature map for the current layer, l, by employing
the learnable parameters Wl and bl . The resulting Fl captures the salient information within
the l-th network layer.

The parameter set Θ={Wl , bl : l ∈ L} is estimated within the following optimizing
framework [38]:

Θ∗ = arg min
Θ

E
{L{Mn, M̂n|Θ} : ∀n ∈ N

}
, (2)

where L : {0, 1}H×W̃ × [0, 1]H×W̃ → R in Equation (2) is a given loss function and notation
E{·} stands for the expectation operator.
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2.2. Convolutional Random Fourier Features Gradient—CRFFg

Random Fourier Features establish a finite-dimensional, explicit mapping that ap-
proximates shift-invariant kernels k(·) as described in Rahimi et al. (2009) [39]. This
explicit mapping, denoted by z : RQ̃ → RQ, serves to transform the input space into a
finite-dimensional space H ⊂ RQ, where the inner product can be obtained as:

k(x − x′) = 〈φ(x), φ(x′)〉H ≈ z(x)�z(x′). (3)

The mapping z in Equation (3) is defined through Bochner’s theorem [40]:

k(x − x′) =
∫
RQ̃

p(ω) exp(iω�(x − x′))dω = Eω
{

exp(iω�(x − x′))
}

, (4)

where x, x′ ∈ RQ̃, p(w) is the probability density function of w ∈ RQ̃ that defines the
type of kernel. Specifically, the Gaussian kernel, favored for its universal approximating
properties and mathematical tractability [41], is achieved from Equation (4) by setting
p(w) = N (0, σ2 Î); σ ∈ R+ is a length-scale and Î is an identity matrix of proper size.

As both the kernel and the probability are real values, the imaginary component can
be disregarded by employing the Euler equation. This leads to the use of a cosine function
rather than an exponential, ensuring the following relationship:

z(x) =

√
2
Q
[

cos(ω�
1 x + b1), . . . , cos(ω�

Q x + bQ)
]�, (5)

where ωq ∈ RQ̃, bq ∈ R, and q ∈ Q.
We aim to extend the kernel-based mapping depicted in Equation (5) for application

to spatial data, such as images, by utilizing the power of convolutional operations. These
operations have garnered significant attention for their efficacy in processing grid data [42].
Convolutional operations exhibit two crucial properties—translation equivariance and
locality—that render them particularly suitable for handling spatial data [42]. In order
to integrate these properties into the Random Fourier Features framework, we adapt
the z mapping to operate within local regions of the grid input space. This results in
the computation of the feature map Fl ∈ RHl×W̃l×Ql , where the mapping is defined as
z : RHl−1×W̃l−1×Dl−1 → RHl×W̃l×Ql , yielding:

Fl = z(Fl−1) = cos
(

Wl
Δl

⊗ Fl−1 + bl

)
, (6)

where Δl ∈ R+ is a scale parameter. The parameters Wl ∈ Rk̃l×k̃l×Dl−1×Ql and bl ∈ RQl

are initialized as in Equations (4) and (5), and updated through gradient descent under a
back-propagation-based optimization of Equation (2) [38]. Consequently, we refer to the
layers in Equation (6) as Convolutional Random Fourier Features Gradient (CRFFg).

The conceptual depiction of the proposed CRFFg layer is shown in Figure 1. Using this
approach, we aim to integrate the advantageous attributes of kernel methods into a deep
learning-based feature representation enhancement. In addition, using convolutions for
local and equivariant representation of spatial data provides a robust and efficient strategy
for image processing.
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Figure 1. The Convolutional Random Fourier Features Gradient (CRFFg) mapping, grounded in
kernel methods, is employed for image-based data examination within deep learning frameworks.

2.3. Layer-Wise Weighted Class Activation Maps for Semantic Segmentation

Class Activation Maps (CAMs) are a powerful tool to enhance the interpretability of
outcomes derived from deep learning models. They achieve this by emphasizing the critical
image regions in determining the model’s predicted output. To evaluate the contribution
of these regions to a specific class r ∈ {0, 1}, a linear combination of feature maps from
a designated convolutional neural network layer l can be employed [37]. Here, given an
input image I and a target class r, the salient input spatial information coded by the l-th
layer into a trained deep learning semantic segmentation model with parameter set Θ∗, as
in Equation (2), is gathered through the Layer-CAM algorithm, yielding [43]:

Sr
l = (Λ ◦ ReLU)

(
∑

d∈Dl

αrd
l � Frd

l

)
(7)

where Sr
l ∈ R

H×W̃ holds the Layer-CAM for class r at layer l, Λ : RHl×W̃l → RH×W̃ is the
up-sampling operator, ReLU(x) = max(0, x) is the Rectified Linear activation function,
and � stands for Hadamard product. Besides, Frd

l ∈RHl×W̃l collects the d-th feature map
and αrd

l ∈RHl×W̃l is a weighting matrix holding elements:

αrd
l [i, j] = ReLU

(
∂yr/∂Frd

l [i, j]
)

, (8)

with αrd
l [i, j] ∈ αrd

l and Frd
l [i, j] ∈ Frd

l . yr is the score for class r that is computed using the
approach in [44] adopted for the semantic segmentation tasks, as follows:

yr = E
{

F̃L[i, j] : ∀i, j|M[i, j] = r
}

(9)

where F̃L[i, j] ∈ F̃L holds the feature map elements for layer L in Equation (1) fixing a linear
activation function.

As previously mentioned, the use of CAM-based representations enhances the explain-
ability of deep learning models for segmentation tasks. To evaluate the interpretability
of CAMs for a given model, we propose the following semantic segmentation measures,
where higher scores indicate better interpretability:

– CAM-based Cumulative Relevance (ρr) : It involves computing the cumulative contri-
bution from each CAM representation to detect class r within the segmented region
of interest. This can be expressed as follows:

ρr = El

{
En

{
1�(M̃r

n � Sr
nl)1

1�Sr
nl1

: ∀n ∈ N

}
∀l ∈ L

}
, ρr ∈ [0, 1], (10)
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where M̃r
n∈{0, 1}H×W̃ collects a binary mask that identifies the pixel locations associ-

ated with the class r, and Sr
nl holds the Layer-CAM for image n with respect to layer l

(see Equation (7)).
– Mask-based Cumulative Relevance (�r): It assesses the relevance averaged across the

class pixel set related to the target mask of interest. Then, each class-based cumulative
relevance is computed as follows:

�r = El

{
En

{
1�(M̃r

n � Sr
nl)1

1�M̃r
n1

: ∀n ∈ N

}
∀l ∈ L

}
, �r ∈ R

+. (11)

The normalized Mask-based Cumulative Relevance can be computed as:

ρ
′
r =

ρ′r
max

r′∈{0,1}
ρr′

, ρ
′
r ∈ [0, 1]. (12)

– CAM-Dice (D
′
): A version of the Dice measure that quantifies mask thickness and

how the extracted CAM is densely filled:

D
′
r = El

{
En

{
2

1�
(

M̃r
n � Sr

nl
)
1

1�M̃r
n1 + 1�Sr

nl1
: ∀n ∈ N

}
: ∀l ∈ L

}
, D

′
r ∈ [0, 1]. (13)

The proposed measures enable the weighting of each layer’s contribution to a given
class across the model by adjusting the normalization term related to the target mask,
the estimated CAM, or both pixel-based salient activations. Figure 2 depicts a graphical
representation of the proposed measures. The green circle represents the CAM generated
for a specific region, as indicated by the white circle. These measures are designed to
capture the relationship between the CAMs and the regions of interest. Furthermore,
Figure 3 presents some exemplary scenarios. For instance, the ρ measure is associated with
the proportion of the CAM inside the region of interest. On the other hand, ρ is based on
the proportion of CAMs that, on average, belong to each pixel of the region of interest while
maintaining the relationship between the classes (in this case, green for the foreground and
red for the background). Additionally, D′

r follows a similar concept as the Dice coefficient
used in segmentation, assessing the homogeneity of the intersection of the regions. In this
case, we want to determine if the CAM is uniformly distributed.

(a) ρr (b) �r (c) D′
r

Figure 2. Graphic depiction of the proposed relevance measures for Layer-Wise Class Activation
Maps used in semantic segmentation tasks.
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(a) ρc (b) �c (c) D′
c.

Figure 3. Illustrative scenarios regarding our novel Layer-Wise Class Activation Maps for semantic
segmentation.

2.4. Feet Segmentation Pipeline from Thermal Images

In a nutshell, the proposed methodology is evaluated using the pipeline shown in
Figure 4, including the following testing stages:

(i) Foot Infrared Thermal Data Acquisition and Preprocessing.
(ii) Architecture Set-Up of tested Deep models for foot segmentation. Three DL architec-

tures are contrasted using our CRFFg: U-Net, Fully Convolutional Network (FCN),
and ResUNet.

(iii) Assessment of semantic segmentation accuracy. In this study, we examine how data
augmentation affects the performance of tested deep learning algorithms.

(iv) Relevance-maps extraction from our Layer-Wise weighted CAMs to provide inter-
pretability.

Training

Performance
Evaluation

CAM-based
Relevance
Analysis

With and without Data
Augmentation

Split

Train set

Test Set
ThermalFeet

Database

Models (Enhanced
representation through

CRFFg)

Extensive Evaluation

Figure 4. Foot segmentation from thermal images using our CRFFg-based deep learning enhancement
holding layer-wise weighted CAM interpretability.

3. Experimental Set-Up

The proposed deep learning model for semantic segmentation enhances foot thermal
images’ interpretability, achieving competitive segmentation performance. To this end,
we evaluate the impact of incorporating a convolutional representation of CRFFg and
layer-wise weighted CAM into three well-known deep-learning architectures.

3.1. Protocol for Infrared Thermal Data Acquisition: ThermalFeet Dataset

The protocol for data acquisition was designed by the physician staff at “SES Hospital
Universitario de Caldas” to standardize the data collection of infrared thermal images
acquired from pregnant women who underwent epidural anesthesia during labor. This pro-
tocol is in accordance with the occupational risks associated with assisting local anesthetics
via epidural neuraxial as specified by the hospital’s administration, following previously
implemented protocols [8,45–48].
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Patient monitoring includes the necessary equipment for taking vital signs and a metal
stretcher with foam cushion and plastic exterior covered only with a white sheet. The
continuous monitoring device is placed 1.5 m from the stretcher in the same room, as shown
in Figure 5. Before the epidural procedure, anesthesiologists assess each patient clinically
and provide written and verbal information about the trial before obtaining her written
consent. The patient’s body temperature, heart rate, oxygen saturation, and non-invasive
blood pressure are monitored every five minutes. Skin temperature values are recorded
during the procedure. Sensitivity responses are evaluated using superficial touch and cold
tests with cotton wool soaked in water applied to the previously determined dermatomes.
The temperature test records the verbal response as Yes or No for superficial touch and
Cold or No Cold.

1.5m

Control Capture
(catheter placement)

Final Capture
(end of the procedure)

Figure 5. Regional analgesia monitoring protocol using local anesthetics via epidural neuraxial and
thermal images.

The protocol timeline for acquiring infrared thermal images is as follows: Initially, the
woman is asked to be in a supine position before the first thermal image (T0) is captured
once the first dose of the analgesic mixture is administered. A single thermal picture
is taken at the placement of the operated catheter (0.45 mm; Perifix, Braun®, Kronberg,
Germany) positioned within the space selected for injecting epidural anesthesia in the
cervical region (at L2 to L3 or L3 to L4), measuring a few millimeters.

Within the next 25 min, one thermographic recording of the lower extremity is taken
every five minutes (T1–T5). The catheter remains in the epidural space taped to the skin so
that one image is captured every five minutes until six pictures have been collected. Though
the clinical protocol demands images of both feet taken in a fixed corporal position, this
condition is barely achievable due to the difficulty of labor procedures and contractions.

The data was collected under two different hardware specifications: (i) A set of
196 images captured from 22 pregnant women during labour using a FLIR A320 in-
frared camera with a resolution of 640 × 480 and a spectral range within 7.5 to 13 μm.
(ii) A set of 128 images with improved sensitivity and flexibility taken using a FLIR
E95 thermal camera, having a resolution of 640 × 480 and spectral range within 7.5
to 14 μm. In this study, 166 thermal images are selected from both sets as fulfilling
the quality criteria of validation, as detailed in [24]. An anesthesiologist manually seg-
mented the region of interest. The dataset is publicly available at https://gcpds-image-
segmentation.readthedocs.io/en/latest/notebooks/02-datasets.html (accessed on 5 April
2023).
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3.2. Set-Up of Compared Deep Learning Architectures

The following deep learning architectures are contrasted and enhanced using our
CRFFg approach:

– Fully Convolutional Network (FCN) [11]: This architecture is based on the VGG
(Very Deep Convolutional Network) [49] model to recognize large-scale images. By
using only convolutional layers, FCN models can deliver a segmentation map with
pixel-level accuracy while reducing the computational burden.

– U-Net [13]: This architecture unfolds into two parts: The encoder consists of convo-
lutional layers to reduce the spatial image dimensions. The decoder holds layers to
upsample the encoded features back to the original image size.

– ResUNet [36]: This model extends the U-Net architecture by incorporating residual
connections to improve performance. Deep learning training is improved by residual
connections, which allow gradients to flow directly through the network.

Figure 6 presents the mentioned architectures, illustrating their unique layers, blocks,
and the dimensions and filters associated. Different colors represent the different blocks
or layers, and the spatial dimension of each level is also indicated. We estimate the
effectiveness of incorporating the CRFFg layer for comparison purposes in FCN, U-Net,
and ResUNet architectures. However, each evaluated CRFFg layer arrangement differs
from another in the semantic segmentation features that feed the decoder, as detailed
in [50–52]. Then, the CRFFg layer is placed at skip connections to enhance the feature
fusion between encoders and decoders.
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Figure 6. Tested semantic segmentation architectures. Our CRFFg approach aims to enhance the data
representation (see red dots).

To evaluate the performance difference with the proposed CRFFg-layer strategy, we
utilize a standard convolutional layer featuring an equal number of filters and a ReLU
activation function at the same position within the architecture. In particular, we analyze
the influence of the CRFFg layer dimension on segmentation performance, testing two
multiplication values (one and three). Besides, to study the impact of CRFFg, we set the
hyperparameters of all models variation from FCN, U-Net, and ResUNet architectures the
same. The number of epochs is 200, and the batch size is 16. Additionally, the scale value
of the CRFFg, Δ, is set as described in the standard RFF’s Tensorflow implementation for
simplicity. Regarding the weights, they are trained using gradient descent with backpropa-
gation. The selected optimizer is Adam due to its faster convergence, adaptive learning
rate, reduced sensitivity to hyperparameters, and combining benefits of convex optimiza-
tion [53]. The learning rate is initialized as 1e − 3, and a dice-based loss is employed in
Equation (2), as follows:

LDice(Mn, M̂n) = 2
1�(Mn � M̂n)1 + ε

1�Mn1 + 1�M̂n1 + ε
, (14)

where ε = 1 avoids numerical instability. All experiments are carried out in Python 3.8,
with the Tensorflow 2.4.1 API, on a Google Colaboratory environment (code repository:
https://github.com/aguirrejuan/Foot-segmentation-CRFFg, accessed on 25 April 2023).

3.3. Training Details and Quantitative Assessment

With the aim to prevent overfitting and improve the generalization of trained models,
the data augmentation procedure is performed on each image with horizontal flip enabled
since feet are mostly symmetrical on the horizontal axis, specifically left-right and right-left
on each foot. Hence, vertical overturn is disabled to prevent unrealistic upside-down foot
representations. In the augmentation procedure, the images are rotated seven times within
a range of −15 to 15 degrees, translated by 10% right to left, and zoomed in and out by
15%, as described in [20].

Moreover, the following metrics are used to measure segmentation performance [54]:

D =
2|M ∩ M̂|
|M|+ |M̂| =

2TP
2TP + FP + FN

(15a)

J =
|M ∩ M̂|
|M ∪ M̂| =

TP
FN + FP + TP

(15b)

Se =
TP

TP + FN
(15c)

Sp =
TN

TN + FP
(15d)
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where TP, FN , and FP represent the true positive, false negative, and false positive pre-
dictions, respectively, for comparing the actual and estimated label masks Mn and M̂n
for a given input image In. In addition, the introduced layer-wise, weighted CAM-based
interpretability measures are computed for CAM-Dice, CAM-based Cumulative Relevance,
and Mask-based Cumulative Relevance (see Equations (12) and (13)).

As for the validation strategy, we selected the hold-out cross-validation strategy with
the following partitions: 80% of the samples for training, 10% for validation, and 10% for
testing.

4. Results and Discussion

4.1. Visual Inspection Results

Figure 7 shows results obtained from thermalFeet database without data augmentation,
where each row represents a different architecture: FCN in the first row, U-Net in the second
row, and ResUNet in the third row. As expected, the performance of the models under a
small-size dataset is poor. The regions of faster change in temperature, which characterize
the dataset, are where the models struggle more. At first glance, we observe that the FCN
architecture is the one that struggles the most, having high false positives regions in regions
that exhibit low-high temperatures.

Figure 8 shows results obtained incorporating data augmentation. The positive impact
of the data augmentation on the resulting segmentation of all the models is visible. More-
over, FCN architectures produce smoother borders and fewer false positives than other
architectures. This can be explained due to the high receptive field that possesses the FCN
architecture, allowing it to capture complex and heterogeneous regions (the variability of
the temperatures) that compose the feet.

Notably, when comparing FCN models with a multiplication factor of 1 (M1), the
model with our CRFFg (blue) generally outperforms in terms of pixel membership predic-
tion (sensitivity). However, this trend only holds when the multiplication factor is increased
to 3 (M3), probably because the large model is a propensity to overfit, making the prediction
less confident in new data points. On the other hand, U-Net models blunder with regions
that exhibit fast temperature changes. The same characteristic the FCN possesses can
explain this, but the U-Net does not have a high receptive field that allows it to characterize
high heterogeneous feet. As a result, among the U-Net approaches, U-Net CRFFg S-M1
performs satisfactorily with low false positives and high false negatives. At the same time,
its direct competitor, U-Net S-M1, shows the opposite trend. Similarly, using CRFFg in
the other U-Net alternatives reduces the number of false positives. Finally, the ResUNet
architecture has the same behavior as the U-Net but with smoother borders, which can be
explained due to the multiple stack layers at the ResBlock, which increase multiple steps of
representation, allowing to capture of helpful representation. The ResUNet S-M1 works
better on average; adding layers at the skip connections appears to reduce performance,
creating false positives and false negatives. The latter can be explained due to the small
size of the dataset. Specifically, using CRFFg with ResUNet does not result in noteworthy
improvements.
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Figure 7. Visual inspection of the results on thermalFeet database without data augmentation.
Our CRFFg-based enhancements are also presented. The first row shows the results for the FCN
architecture, the second row for U-Net, and the third row for ResUNet. A unique color differentiates
each model within an architecture. M1 and M3 represent CRFFg’s dimension as a multiplication
factor of the enhanced layer’s size.

Figure 8. Visual inspection of the results on thermalFeet database with data augmentation. Our
CRFFg-based enhancements are also presented. The first row shows the results for the FCN architec-
ture, the second row for U-Net, and the third row for ResUNet. A unique color differentiates each
model within an architecture. M1 and M3 represent CRFFg’s dimension as a multiplication factor of
the enhanced layer’s size.

4.2. Method Comparison Results of Semantic Segmentation Performance

Figure 9 illustrates the learning curves, e.g., training loss vs. epochs, of the compared
models. Upon visual inspection, notable differences between the curves with and without
data augmentation can be observed. When data augmentation is not applied, the algorithms
exhibit higher validation loss in the initial 40 epochs. Regardless, they subsequently
demonstrate a downward trend in validation loss. It is essential to mention that the
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learning curves exhibit increased noise, likely due to the limited size of the dataset. The
limited dataset challenges the models to capture generalized features early in training.
Moreover, in the validation partition without data augmentation, some models display
a phenomenon known as double descent [55], where layers at different locations in the
networks may learn at different rates [56]. In contrast, the training and validation losses
consistently decrease in the data augmentation scenario, albeit with minor noise in the
validation partition.

(a) FCN

(b) ResUNet

(c) U-Net
Figure 9. Training neural network loss vs. epochs corresponding to the various models examined are
presented. M1 and M3 signify the dimensions of the CRFFg layer, expressed as multiplication factors
of the enhanced layer’s size.
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It is worth noting that both the FCN CRFFg S-M3 and, to a lesser extent, the FCN
CRFFg S-M1 tend to exhibit faster decreases in validation loss during early iterations.
This conduct can be attributed to the generalization capabilities of the RFF from kernel
methods. On the other hand, in the ResUNet architectures, although it needs to be clarified,
the ResUNet S-M3 tends to experience an early decline, even though it also reaches its
minimum early, which is not the minimum among the approaches. Conversely, no apparent
differences are observed within the U-Net architectures. Notably, the models in the data
augmentation scenario are similar.

In turn, Figure 10a displays the values of semantic segmentation performance for
thermalFeet dataset achieved by each compared deep learning architecture: FCN (colored
in blue), ResNet (red), U-Net (green). For interpretation purposes, the results are presented
for the evaluation measures separately. As seen, the specificity estimates are very close to
the maximal value and show the lowest variability. This result can be explained by the
relatively small feet sizes compared with the background, making their correct detection
and segmentation more difficult. On the contrary, sensitivity assessments are of less value
and have much more variability, accounting for the diversity in the regions of interest (i.e.,
size, shape, and location). Due to the changing behavior of thermal patterns and the limited
datasets available, learners have difficulty obtaining an accurate model.

(a)

Figure 10. Cont.
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(b)

Figure 10. Results of the comparison between methods. The segmentation performance of Ther-
malFeet is evaluated using baseline models FCN, UNet, and ResUNet, and compared to our proposal
that incorporates CRFFg-based enhancements. M1 and M3 represent CRFFg’s dimension as a multi-
plication factor of the enhanced layer’s size. Aug stands for data augmentation. (a) Segmentation
performance results on ThermalFeet database. The three types of architecture used in this study (FCN,
U-Net, ResUNet) are differentiated by color. The type of variation in the architecture is indicated
by the marker used; (b) The improvement of each strategy, normalized with respect to the baseline
performance of each architecture.

Regarding overlapping between estimated thermal masks, the Dice value is acceptable
but with higher variance values for FCN, implying that other tested models segment
complex shapes more accurately. As expected, the Jaccard index mean values resemble
the Dice assessments, although with increased variance, which highlights the mismatch
between the ground truth and the predicted mask even more.

A comparison between the segmentation metric value achieved by the baseline archi-
tecture (without any modifications) and the value estimated for every evaluated semantic
segmentation strategy is presented in Figure 10b. Note that specificity is removed because
its estimates are obtained with minimal variations.

As seen, the performance improvement depends on the learner model size (also called
algorithm complexity). Namely, the baseline architecture of FCN holds 1,197,375 param-
eters, baseline ResUnet— 643,549, and baseline Unet—494,093. Thus, the FCN model
contains the largest tuning parameter set and achieves the poorest performance, but it
benefits the most from the evaluated architectures. As data augmentation is also applied,
this finding becomes more evident. It may be pointed out that adding new data decreases
model overfitting inherent to massive model sizes. Likewise, the following ResUnet model
takes advantage of the enhanced architecture strategy using our CRFFg and improves
performance. It increases more by generating new data points, however, to a lesser extent.
Lastly, the learner with the lowest parameter set gets almost no benefits or is negatively
affected by the strategies considered for architecture enhancement. Still, the strategies taken
into account combined with expanded training data sizes can be improved, though very
modestly. See Table A1, Appendix A, for the detailed segmentation performance results
concerning the studied approaches.

4.3. Results of Assessing the Proposed CAM-Based Relevance Analysis Measures

We aim to evaluate the tested deep learning models for assessing the contribution
of CAM-based representations to interpretability. To this end, we plot the pairwise rela-
tionship between the essential explanation elements (background and foreground) and
the above-proposed measure for assessing the CAM-based relevance of performed image
segmentation masks. Figure 11 displays the scatter plots obtained by each segmentation
learner. CAMs extracted by the learner contribute more to the interpretability of regions of
interest if the measure value tends toward the top-right corner. Moreover, we focus on the
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contribution of CAM representations to segmenting between background and foreground,
utilizing the patient’s feet as critical identification features.
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Figure 11. Results of Interpretability Measures on ThermalFeet. The three types of architecture
used in this study (FCN, U-Net, ResUNet) are differentiated by color. The type of variation in
the architecture is indicated by the marker used. M1 and M3 represent CRFFg’s dimension as a
multiplication factor of the enhanced layer’s size.

The findings from the modified CAM-Dice results can be split into two groups (refer
to the left plot in Figure 11). One group involves ResUnet and UNet architectures, and the
other showcases the better performance, featuring FCN architectures. It is also important
to mention that the data augmentation strategy does not significantly boost interpretability
as much as it enhances segmentation performance measures. Looking at the CAM-based
Cumulative Relevance (refer to the middle plot in Figure 11), it is apparent that models with
refined representations at skip connections surpass the baseline models. Even though there
is no substantial difference between models with these enhancements, most models are
situated in the top-right corner. This position suggests that the primary relevance is focused
on the area of interest. Significantly, relevance seems to accumulate more in the background
than in the foreground, which is logical, considering the relative sizes of both areas. In
Figure 11, the Mask-based Cumulative Relevance plot on the right side demonstrates that
most models tend to exhibit high-foreground-low-background relevance. This pattern leads
to a bias favoring the foreground class, as reflected in the more robust activation of CAMs
for the foreground class. However, it is interesting that models employing CRFFg perform
better in separating classes situated towards the top-right corner, suggesting superior
capabilities in differentiating foreground and background classes.

Figure 12 displays examples of CAMs extracted by the best models per architecture
under the Mask-based Cumulative Relevance for feet (colored in green) and background
(red color), respectively. As seen, the higher weight is located at the last part of the decoder,
where the higher values of semantic information are found. Besides, the weights for the
background class are also less than for the foreground class, showing that the models
emphasize the latter while preserving the relevance weights for the former.

In particular, FCN CRFFg S-M3 is the best FCN model, as shown in Figure 12a, and
extracts most of the weights in three layers (i.e., l3, l4, and l5), meaning that other layers do
not contribute to the class foreground. On the other hand, this architecture leads to CAMs
with lower values for background class (see examples on the right). This behavior can be
explained because the FCN architecture holds an extensive receptive field. Hence, the FCN
CRFFg S-M3 model enables capturing more global information crucial for segmentation
and concentrating weights in a few layers.

In the case of ResUNet, ResUNet CRFFg S-M3 performs the most efficiently, as shown
in Figure 12b. Since the receptive field decreases, the ResUNet architecture distributes the
contribution more evenly among the extracted CAM representations. However, the more
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significant values remain in the l3, l4, and l5 layers. There is also activation of weights for
the background class that can be explained, firstly, since the CRFFg configuration helps
capture complex non-linear dependencies. Secondly, the local receptive field allows class
separation.
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(a) FCN CRFFg S-M3 without data Augmentation
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Figure 12. Salient relevance analysis results. Best models concerning the Mask-based Cumulative
Relevance, �r measure, are presented for FCN, UNet, and ResUNet with our CRFFg-based enhancement.
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Lastly, the CRFFg S-M3 model is the most effective for the U-Net architecture, with a
performance similar to the outperforming ResUNet architecture, as shown in Figure 12c.
However, several differences in the Fusion CAMs extracted by U-Net CRFFg S-M3 show
high activation within the feet, suggesting that this model is not only sensitive to the
foreground class. In addition, it captures more global features from feet.

5. Concluding Remarks

We introduce an innovative semantic segmentation approach that enhances interpretabil-
ity by incorporating Convolutional Random Fourier Features and layer-wise weighted class
activation maps. Our approach has been tested on a unique dataset of thermal foot images
from pregnant women who have received epidural anesthesia, which is small but exhibits
considerable variability. Besides, our strategy is two-pronged. Firstly, we introduce a novel
Random Fourier Features layer, CRFFg, for handling image data, aiming to enhance three
renowned architectures - FCN, UNet, and ResUNet. Secondly, we introduce three new
quantitative measures to assess the interpretability of any deep learning model used for
segmentation tasks. Our validation results indicate that the proposed approach boosts
explainability and maintains competitive foot segmentation performance. In addition, the
dataset used is tailored explicitly for epidural insertion during childbirth, reinforcing the
practical relevance of our methodology.

There are, however, several observations worth mentioning:
Data acquisition tailored for Epidural. Epidural anesthesia involves the delivery of

medicines that numb body parts to relieve pain, and the acquisition of data is usually
performed under uncontrolled conditions with strong maternal artifacts. Moreover, it is
impossible to fix a timeline for data collection. In addition, a timeline for gathering data
cannot be set correctly. To the extent of our knowledge, this is the first time a protocol
has been presented to regulate the data collection of infrared thermal images acquired
from pregnant women who underwent epidural anesthesia during labor. As a result, data
were assembled under real-world conditions that contained 196 thermal images fulfilling
validation quality criteria.

Deep learning models for image semantic segmentation. Combined with machine
learning, thermal imaging has proven helpful for performing semantic segmentation as
a powerful method of dense prediction to adverse lighting conditions, providing better
performance compared to their traditional counterparts. State-of-the-art medical image
segmentation models include variants of U-Net models. A major reason for their success is
that they employ skip connections, combining deep, semantic, and coarse-grained feature
maps from the decoder subnetwork with shallow, low-level, fine-grained feature maps
from the encoder subnetwork. They recover fine-grained details of target objects despite
complex backgrounds [57]. Nevertheless, the collected image data from epidural anesthesia
is insufficient for training the most commonly-known deep learners, which may result
in overfitness to the training set. We address this issue by employing data augmentation
addresses that artificially increase training data inputs to feed three tested architectures
of deep learning models (FCN, U-Net, ResUNet), thus improving segmentation accuracy
results. As seen in Figure 10b, the segmentation accuracy gain depends on the learner model
complexity used: The fewer parameters the learner holds, the more the effectivity of data
augmentation. Thus, the UNet learner with the lowest parameter set gets almost no benefit.

Strategies for enhancing the performance of deep learning-based segmentation. Three
deep-learning architectures are explored to increase the interpretability of semantic seg-
mentation results at competitive accuracy, ranked in decreased order of computational
complexity as follows: FCN, ResUNet, and U-Net. Regarding the accuracy of semantic
models, the data augmentation yields a sensibility metric value dependent on the model
complexity: the more parameters the architecture holds, the higher the segmentation accu-
racy improvement. Thus, FCN benefits more from artificial data than ResUNet and U-Net.
In the same way, both overlapping metrics (Jaccard and Dice) depend on the complexity
of models. By contrast, the specificity reaches very high values regardless of trained deep
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learning because the background texture’s homogeneity saturates most captured thermal
images. Nonetheless, the proposed modifications to architectures are not a solid argument
for influencing their performed accuracy of semantic segmentation. In terms of enhancing
explainability, the weak influence of data augmentation is the first finding to be drawn,
as seen in the scatterplots of Figure 11. All tested models produce more significant CAM
activations from layers with a wider receptive field. Moreover, the CRFFg layer also im-
proves the representation of the foreground and background. It is also important to note
the metrics developed for assessing the explainability of CAM representations, allowing
scalability to larger image sets without visual inspection.

In terms of future research, the authors intend to integrate Vision Transformers and
attention mechanisms for semantic segmentation into the CRFFg-based representation [58].
Besides, we propose to include variational autoencoders and transfer learning strategies
within our framework to prevent overfitting and enhance data interpretability [33,59].
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Appendix A. Method Comparison from Absolute Semantic Segmentation Performances

Table A1 presents the absolute semantic segmentation results acquired from ther-
malFeet database. For clarity, the rank position of each method is also included. As can
be seen, our enhancement based on CRFFg boosts the segmentation performance. No-
tably, ResUNet CRFFg S-M1 outperforms the tested approaches concerning the measured
quantitative assessments.
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Table A1. Absolute Semantic Segmentation Results on thermalFeet database. WODA: Without Data
Augmentation, WDA: With Data Augmentation. The average ± standard deviation performance is
displayed regarding the test partitions. M1 and M3 stand for CRFFg’s dimension as a multiplication
factor of the enhanced layer’s size.

Approach Measure WODA Rank WDA Rank

FCN

Dice 0.9527 ± 0.0238 3.0 0.8646 ± 0.0624 10.0
Jaccard 0.9106 ± 0.0424 3.0 0.7668 ± 0.0969 10.0
Sensitivity 0.9352 ± 0.0482 4.0 0.8260 ± 0.1098 6.0
Specificity 0.9857 ± 0.0105 7.0 0.9697 ± 0.0186 13.0

FCN CRFFg S-M1

Dice 0.9530 ± 0.0257 2.0 0.8510 ± 0.0623 12.0
Jaccard 0.9113 ± 0.0456 2.0 0.7456 ± 0.0913 12.0
Sensitivity 0.9424 ± 0.0526 3.0 0.8016 ± 0.0999 13.0
Specificity 0.9810 ± 0.0158 12.0 0.9697 ± 0.0233 14.0

FCN CRFFg S-M3

Dice 0.9480 ± 0.0224 5.0 0.8346 ± 0.0916 15.0
Jaccard 0.9021 ± 0.0403 5.0 0.7262 ± 0.1284 15.0
Sensitivity 0.9340 ± 0.0423 6.0 0.7771 ± 0.1325 15.0
Specificity 0.9804 ± 0.0168 13.0 0.9714 ± 0.0246 10.0

FCN S-M1

Dice 0.9469 ± 0.0273 6.0 0.8421 ± 0.0870 14.0
Jaccard 0.9003 ± 0.0486 6.0 0.7367 ± 0.1254 14.0
Sensitivity 0.9286 ± 0.0518 7.0 0.7867 ± 0.1422 14.0
Specificity 0.9843 ± 0.0109 9.0 0.9714 ± 0.0207 9.0

FCN S-M3

Dice 0.9519 ± 0.0281 4.0 0.8470 ± 0.0737 13.0
Jaccard 0.9096 ± 0.0499 4.0 0.7414 ± 0.1070 13.0
Sensitivity 0.9341 ± 0.0543 5.0 0.8160 ± 0.1152 9.0
Specificity 0.9865 ± 0.0107 6.0 0.9604 ± 0.0300 15.0

ResUNet

Dice 0.9348 ± 0.0502 11.0 0.8569 ± 0.0779 11.0
Jaccard 0.8816 ± 0.0868 11.0 0.7575 ± 0.1152 11.0
Sensitivity 0.9029 ± 0.0825 12.0 0.8152 ± 0.1316 11.0
Specificity 0.9896 ± 0.0067 2.0 0.9712 ± 0.0180 12.0

ResUNet CRFFg S-M1

Dice 0.9456 ± 0.0317 7.0 0.8851 ± 0.0449 4.0
Jaccard 0.8984 ± 0.0560 7.0 0.7968 ± 0.0709 4.0
Sensitivity 0.9472 ± 0.0540 1.0 0.8283 ± 0.0853 5.0
Specificity 0.9725 ± 0.0230 14.0 0.9841 ± 0.0123 3.0

ResUNet CRFFg S-M3

Dice 0.9111 ± 0.0602 15.0 0.8969 ± 0.0444 1.0
Jaccard 0.8420 ± 0.0951 15.0 0.8160 ± 0.0737 1.0
Sensitivity 0.9075 ± 0.0607 11.0 0.8675 ± 0.0803 1.0
Specificity 0.9663 ± 0.0346 15.0 0.9712 ± 0.0244 11.0

ResUNet S-M1

Dice 0.9558 ± 0.0279 1.0 0.8865 ± 0.0676 3.0
Jaccard 0.9167 ± 0.0498 1.0 0.8026 ± 0.1061 3.0
Sensitivity 0.9459 ± 0.0482 2.0 0.8403 ± 0.1123 2.0
Specificity 0.9831 ± 0.0152 10.0 0.9750 ± 0.0287 8.0

ResUNet S-M3

Dice 0.9237 ± 0.0411 14.0 0.8677 ± 0.0894 9.0
Jaccard 0.8610 ± 0.0713 14.0 0.7763 ± 0.1281 9.0
Sensitivity 0.8875 ± 0.0756 14.0 0.8179 ± 0.1333 8.0
Specificity 0.9846 ± 0.0128 8.0 0.9755 ± 0.0217 7.0

U-Net

Dice 0.9371 ± 0.0312 10.0 0.8713 ± 0.0756 8.0
Jaccard 0.8832 ± 0.0551 10.0 0.7796 ± 0.1145 8.0
Sensitivity 0.9120 ± 0.0571 10.0 0.8107 ± 0.1248 12.0
Specificity 0.9811 ± 0.0199 11.0 0.9847 ± 0.0130 2.0

U-Net CRFFg S-M1

Dice 0.9448 ± 0.0297 8.0 0.8827 ± 0.0617 5.0
Jaccard 0.8969 ± 0.0528 8.0 0.7954 ± 0.0965 5.0
Sensitivity 0.9160 ± 0.0561 9.0 0.8383 ± 0.1062 4.0
Specificity 0.9902 ± 0.0057 1.0 0.9780 ± 0.0124 5.0
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Table A1. Cont.

Approach Measure WODA Rank WDA Rank

U-Net CRFFg S-M3

Dice 0.9252 ± 0.0404 13.0 0.8821 ± 0.0645 6.0
Jaccard 0.8634 ± 0.0694 13.0 0.7948 ± 0.1004 6.0
Sensitivity 0.8831 ± 0.0730 15.0 0.8231 ± 0.1110 7.0
Specificity 0.9893 ± 0.0066 3.0 0.9873 ± 0.0088 1.0

U-Net S-M1

Dice 0.9400 ± 0.0364 9.0 0.8898 ± 0.0536 2.0
Jaccard 0.8890 ± 0.0635 9.0 0.8056 ± 0.0861 2.0
Sensitivity 0.9162 ± 0.0619 8.0 0.8384 ± 0.0904 3.0
Specificity 0.9866 ± 0.0086 5.0 0.9777 ± 0.0208 6.0

U-Net S-M3

Dice 0.9293 ± 0.0419 12.0 0.8767 ± 0.0772 7.0
Jaccard 0.8707 ± 0.0728 12.0 0.7883 ± 0.1152 7.0
Sensitivity 0.8934 ± 0.0792 13.0 0.8152 ± 0.1181 10.0
Specificity 0.9878 ± 0.0098 4.0 0.9805 ± 0.0189 4.0
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Abstract: Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental con-
dition in children and is characterized by challenges in maintaining attention, hyperactivity, and
impulsive behaviors. Despite ongoing research, we still do not fully understand what causes ADHD.
Electroencephalography (EEG) has emerged as a valuable tool for investigating ADHD-related neural
patterns due to its high temporal resolution and non-invasiveness. This study aims to contribute to
diagnostic accuracy by leveraging EEG data to classify children with ADHD and healthy controls.
We used a dataset containing EEG recordings from 60 children with ADHD and 60 healthy controls.
The EEG data were captured during cognitive tasks and comprised signals from 19 channels across
the scalp. Our primary objective was to develop a machine learning model capable of distinguishing
ADHD subjects from controls using EEG data as discriminatory features. We employed several
well-known classifiers, including a support vector machine, random forest, decision tree, AdaBoost,
Naive Bayes, and linear discriminant analysis, to discern distinctive EEG patterns. To further enhance
classification accuracy, we explored the impact of regional data on the classification outcomes. We
arranged the EEG data according to the brain regions from which they were derived (namely frontal,
temporal, central, parietal, and occipital) and examined their collective effects on the accuracy of
our classifications. Notably, we considered combinations of three regions at a time and found that
certain combinations led to enhanced accuracy. Our findings underscore the potential of EEG-based
classification in distinguishing children with ADHD from healthy controls. The Naive Bayes classifier
yielded the highest accuracy (84%) when applied to specific region combinations. Moreover, we
evaluated the classification performance based on hemisphere-specific EEG data and found promising
results, particularly when using the right hemisphere region channels.

Keywords: electrophysiological (EEG) signals; support vector machine; random forest; decision
tree; AdaBoost; Naive Bayes; linear discriminant analysis (LDA); machine learning; attention deficit
hyperactivity disorder (ADHD)

1. Introduction

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental condition
prevalent in children that often persists into adulthood [1,2]. Global studies indicate a
prevalence of approximately 5–12% among school-going children, with a higher preva-
lence observed in males [3]. This disorder encompasses three subtypes (predominantly
inattentive, predominantly hyperactive–impulsive, and combined) and is characterized by
primary symptoms such as inattention, impulsivity, and hyperactivity [4]. Early detection
and intervention can greatly benefit children with ADHD, their parents, and their com-
munities. Presently, clinical interviews, observations, and ratings from various sources,
including parents and teachers, are employed for diagnosis [5]. Traditional clinical proce-
dures are time-consuming and prone to ambiguity, underscoring the need for objective
diagnostic methods based on biological signals that reflect ADHD behaviors.
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Electroencephalography (EEG) has emerged as a valuable tool for investigating ADHD-
related neural patterns due to its non-invasiveness and high temporal resolution [6]. EEG
signals have been utilized in the diagnosis of various neurological disorders by extracting
distinctive features and employing different classifiers in automated detection systems.
EEG signals have been employed for the automatic detection of neurophysiological con-
ditions such as alcoholism [7], dementia [8], epilepsy [9], schizophrenia [10], Parkinson’s
disease [11], and depressive disorders [12]. The EEG patterns of children with ADHD
display differences in complexity, randomness, amplitude, and frequency compared with
those of typically developing children. Researchers have applied diverse feature extraction
techniques and classifiers to utilize EEG signals for ADHD identification [13–15].

EEG is widely recognized as a functional imaging technique that measures the electri-
cal activity of the brain. It offers valuable insights into neural processes, cognitive functions,
and neurological disorders through the recording of voltage fluctuations produced by neu-
ronal activity. This functional imaging modality provides real-time information on brain
dynamics, making it an essential tool in neuroscience research [16]. EEG is increasingly
acknowledged as a functional imaging modality, and researchers have capitalized on its
exceptional temporal resolution to reveal swift alterations in neural dynamics [17]. Its
versatility is evident in its wide-ranging applications, which include obtaining real-time
neurofeedback for anesthesia optimization [18] and investigating spatiotemporal dynamics
in functional connectivity [19]. Notably, ongoing discussions surround the classification
of EEG as a functional imaging technique because of its unique temporal capabilities that
enhance our understanding of neural processes and complement other imaging methods.
This article aims to contribute to this ongoing discourse by offering a comprehensive
investigation that employs EEG in the domain of ADHD classification.

The accessibility of machine learning models has spurred interest in their application to
psychiatric disorder research. Machine learning models, which are mathematical constructs
capable of learning intricate patterns within existing datasets, have the potential to predict
outcomes in new datasets and emphasize key variables in such predictions [16]. For
instance, in [20], SVM was utilized to classify ADHD based on EEG signals, and this yielded
promising results in distinguishing between ADHD and healthy controls. Our proposed
method builds upon this foundation by not only employing SVM but also integrating a
comprehensive feature-selection strategy based on distinct brain regions. This enables our
model to capture intricate neural patterns that could be missed using a single algorithm.
Similarly, [21] employed RF and DT algorithms to identify ADHD in children using event-
related potentials (ERPs), highlighting the potential of these classifiers to capture distinctive
neural patterns linked to the disorder. We extend this approach by incorporating both
RF and DT classifiers within a unified framework and thereby enhancing the robustness
of our classification model. Neural networks were used to diagnose ADHD from EEG
data in [22]. In contrast, our method offers interpretable insights by considering specific
brain regions, thus making it more transparent and clinically applicable. A systematic
review in [23] emphasized the application of SVM, RF, and DT in the EEG-signal-based
analysis of mental tasks, further reinforcing their relevance in ADHD classification studies.
Notably, the integration of electrodermal activity (EDA) features in classification models has
shown potential [24]; SVMs have been employed in a multiclass brain–computer interface
classification study, underscoring their ability to enhance ADHD classification accuracy.
Our approach, however, surpasses this by focusing solely on EEG data, which are more
directly relevant to the neural patterns associated with ADHD.

In this paper, we focus on exploring the significance and contribution of different brain
regions in classifying children with ADHD and healthy controls. Various brain regions
exhibit distinct electrical activity levels, influenced by EEG acquisition conditions and
inter-regional connectivity. The frontal region is essential for attention and concentration,
reasoning, and judgment. The parietal and central regions process senses and motor
movements, the temporal region is responsible for memory and language understanding,
and the occipital lobe governs vision and object recognition. Additionally, the brain’s two
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hemispheres, left and right, control different functions. Individuals with ADHD often
exhibit information-processing deficits in the right hemisphere, leading to self-reported
inattention symptoms. Our research intends to investigate the impact of particular brain
regions, interhemispheric regions, or combinations of these regions on obtaining significant
accuracy rates in distinguishing ADHD patients from healthy controls.

Using EEG data from both ADHD patients and a healthy control group, we employ
various machine learning models, including support vector machine (SVM), random forest
(RF), decision tree (DT), AdaBoost, Naive Bayes, and linear discriminant analysis (LDA).
Our investigation explores distinctive EEG patterns linked to ADHD, investigating the
impact of individual brain regions and their combinations on achieving high classification
accuracy. By investigating regional differences in EEG activity between patients with
ADHD and healthy controls, this study aims to enhance our understanding of this disorder.

2. Materials and Methods

Figure 1 illustrates the framework for the machine learning-based classification of
ADHD. To conduct a comparative analysis, various machine learning algorithms were
applied to state-of-the-art ADHD datasets. The experimentation was performed using
the Python language, utilizing the Scikit-learn library for implementing machine learning
models. Specifically, six ML algorithms, namely SVM [25], RF [26], DT [27], AdaBoost [28],
Naive Bayes [29], and LDA [30] were employed to the ADHD dataset. Extensive experi-
mentation was carried out to achieve two main objectives:

1. Our goal is to highlight brain regions or combinations that are crucial for accurately
classifying ADHD and healthy controls;

2. We aim to identify the optimal machine learning algorithm that effectively utilizes
regional combinations of EEG data for enhanced ADHD classification accuracy.

 

Figure 1. Classification Framework for ADHD and healthy controls.

2.1. Dataset

In this study, we utilized a publicly available EEG dataset accessed on 8 August 2023,
from the following source: https://ieee-dataport.org/open-access/eegdata-adhd-control-
children) [31].

This dataset comprises EEG recordings from two groups: 61 children diagnosed with
ADHD (48 boys and 13 girls, average age of 9.61 ± 1.75 years) and 60 healthy children
(50 boys and 10 girls, average age of 9.85 ± 1.77 years). ADHD diagnoses were made by an
experienced child and adolescent psychiatrist based on DSM-IV criteria [32]. Healthy chil-
dren from elementary schools were recruited, excluding those with a history of significant
neurological conditions, brain injuries, major medical ailments, learning or speech difficul-
ties, other psychiatric disorders, or use of benzodiazepine or barbiturate medications.
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During data collection, EEG recordings were taken at a sampling frequency of 128 Hz.
Given the challenge of visual attention deficits in ADHD children, EEG data were captured
during visual attention tasks. The children were presented with a series of cartoon character
images and asked to count the characters. Each image contained a random assortment of
characters ranging from 0 to 16, and the images were designed to be sufficiently large for
easy viewing and counting. Images were rapidly displayed following the child’s response,
ensuring a consistent stimulus presentation. Consequently, the duration of EEG recordings
varied based on each child’s performance in this cognitive visual task, specifically their
response speed.

The EEG data were acquired using an SD-C24 machine with 19 channels, following
the 10–20 electrode placement system. Figure 2 illustrates the 10–20 standard electrode
positions for EEG recording [33]. The 10–20 standard system is a widely employed method-
ology for the consistent placement of electrodes during electroencephalography (EEG)
recordings. This system involves dividing the scalp into specific regions and designating
unique labels to key points based on a standardized percentage of distances between
prominent anatomical landmarks, such as the nasion and inion. Electrodes are positioned
precisely at these predetermined locations, ensuring uniform and reproducible EEG signal
collection from diverse brain regions. The nomenclature “10–20” denotes the standard-
ized distances of either 10% or 20% between electrode placements, creating a systematic
grid that fosters consistent electrode positioning across different subjects and research
settings. This approach not only guarantees methodological rigor in data acquisition but
also facilitates meaningful cross-subject and cross-study comparisons, making it an integral
tool in the field of EEG-based research. The topoplot (topographic map of a scalp) was
generated using the MNE-python software package [34]. Different color shades depict the
five brain regions: frontal, central, occipital, temporal, and parietal, each corresponding to
specific channels.

Figure 2. EEG electrode positions according to the 10–20 standard system. Different shades indicate
distinct regions and their corresponding channels. The figure displays the left and right hemispheres
along with the channels included within each hemisphere.
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2.2. Data Preprocessing

EEG signals are prone to the presence of numerous artifacts and sources of noise, ne-
cessitating their thorough preprocessing before they can be reliably utilized in analyses. The
datasets employed in this study were preprocessed in advance to mitigate such concerns.
A comprehensive breakdown of the preprocessing procedures is provided below [35].

The dataset owners used a modified iteration of Makoto’s preprocessing pipeline,
adjusted for use with EEGLab functions (version 14.1.1; Delorme & Makeig, 2004, San
Diego, CA, USA) and executed using MATLAB 2018a. Initially, artifacts stemming from eye
movements and muscle activity were carefully removed through manual visual inspection.
Channels containing erroneous or inaccurately captured data were excluded, and interpo-
lation using neighboring channel signals was employed to restore the missing information.
To eliminate artifacts, a band-pass finite impulse response (FIR) filter spanning from 0.5 Hz
to 48 Hz was administered to the continuous EEG data. Subsequently, the CleanLine plugin
was applied to further suppress line noise. To enhance artifact rejection, the EEG data
underwent decomposition using independent component analysis (ICA). Independent
components (ICs) associated with eye blinks and muscle artifacts were identified based
on their spectral properties, scalp maps, and temporal characteristics. These components
were manually excluded. Following a thorough cleaning, the time series were filtered
across classical EEG frequency bands [delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta
(13–30 Hz), and lower gamma (30–45 Hz)] using a zero-phase shift FIR filter that maintains
phase coherence. Throughout the filtering stages, a zero-phase Hamming-windowed filter
was incorporated through the first plugin from EEGLab, featuring a −6 dB cutoff frequency.

For each subject, the time series were segmented into 1024 sample (8 s) segments, albeit
with variable counts due to task-specific timings. The minimum task duration was 50 s for a
participant from the control group, while the maximum duration reached 285 s for a subject
with ADHD. The mean segment count stood at 13.18 (standard deviation = 3.15) for the
control group and 16.14 segments (standard deviation = 6.42) for the ADHD group.

2.3. Feature Selection

The EEG data collected from 19 channels (listed in Table 1) were utilized as input
features for the classifiers. These features were used in various combinations to train the
classifiers. The entire feature set was partitioned into different combinations of frontal (F),
central (C), parietal (P), temporal (T), and occipital (O) regions. Detailed information about
these regions and their corresponding channels is provided in Table 1.

Table 1. Brain regions and their corresponding channels.

Regions Combined Channels

F (frontal) Fz, FP1, FP2, F3, F4, F7, F8
C (central) Cz, C3, C4
P (parietal) Pz, P3, P4

T (temporal) T3, T4, T5, T6
O (occipital) O1, O2

Right hemisphere FP2, F4, F8, C4, T4, P4, T6, O2
Left hemisphere C3, T3, FP1, F3, F7, P3, T5, O1

2.4. Classification

After obtaining the various combinations of feature channels, the features were set as
inputs to six different machine learning algorithms: SVM, RF, DT, AdaBoost, Naive Bayes,
and LDA. Here is a detailed explanation of how each of these algorithms works:

2.4.1. Support Vector Machine (SVM)

SVM is a robust supervised learning algorithm employed for both classification and
regression tasks. Its fundamental principle involves identifying an optimal hyperplane
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that effectively separates data points belonging to different classes. In the context of binary
classification, SVM endeavors to determine the hyperplane that maximizes the margin or
distance between classes. The data points nearest to the hyperplane are known as support
vectors and significantly influence the delineation of the decision boundary. SVM efficiently
manages high-dimensional feature spaces and excels in handling non-linearly separable
data through the use of kernel functions.

2.4.2. Decision Tree (DT)

A decision Tree is a versatile machine learning algorithm used primarily for classi-
fication and regression tasks. It operates by recursively partitioning the data based on
feature values to create a hierarchical structure resembling a tree. At every node of the
tree, a decision is made to determine which feature it will use for splitting, with the goal of
minimizing uncertainty within each branch. The leaves of the tree correspond to the final
class predictions. DTs can efficiently handle both numerical and categorical features, and
their intuitive structure makes them interpretable and useful for feature selection.

2.4.3. Random Forest (RF)

RF is an ensemble learning technique that combines multiple decision trees to pro-duce
robust predictions. Each tree is individually constructed using a subset of the data and a
random assortment of features. During the training process, each tree recursively partitions
the data into subsets by considering the selected features. The final prediction is derived by
combining the predictions from each individual tree. RF effectively counteracts overfitting
concerns and adeptly manages high-dimensional data. Its proficiency lies in its accuracy
and capacity to capture intricate relationships within the data.

2.4.4. AdaBoost (Adaptive Boosting)

AdaBoost is a type of ensemble learning that uses multiple weak learners to build a
strong classifier. It assigns higher weights to misclassified data points in each iteration,
with a focus on challenging-to-classify samples. In subsequent iterations, it allocates more
attention to misclassified instances, thereby refining the model’s predictive performance.
Through an iterative process of adjusting sample weights, AdaBoost develops a potent
classifier capable of accurate classification. Its adaptability to varying complexities of data
and potential for boosting model accuracy are notable attributes.

2.4.5. Naive Bayes

Naive Bayes is a probabilistic classification algorithm based on Bayes’ theorem. It as-
sumes that features are conditionally independent when you know the class label, which is
why it is called “naive”. Naive Bayes computes the probability of a data point belonging to
a certain class based on its feature values and prior class probabilities. Despite its simplistic
assumptions, Naive Bayes often performs remarkably well, particularly when the indepen-
dence assumption is not drastically violated. It is computationally efficient, requires relatively
small amounts of training data, and is particularly useful for text classification tasks.

2.4.6. Linear Discriminant Analysis (LDA)

LDA is a dimensionality reduction technique often used in the context of classification.
It seeks to find the linear combinations of features that best separate different classes while
minimizing the variance within each class. LDA essentially projects data onto a lower-
dimensional space, maximizing class separability. It is particularly useful when classes
have distinct distributions, and it is known for its effectiveness in reducing overfitting in
high-dimensional data.

2.5. Performance Analysis

The comparative analysis involved assessing performance metrics across different
combinations of features, regions, and classifiers. The primary objective was to identify
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the optimal combinations of channels/features and classifiers that demonstrated supe-
rior results in terms of two key performance metrics: accuracy and the area under the
curve (AUC).

Accuracy performance, commonly utilized in classification tasks, is determined by
the ratio of correctly predicted instances (both true positives and true negatives) to the
total number of instances in the dataset. This can be mathematically formulated using the
following Equation (1) [36]:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Here, TP: True positive, TN: True negative, FP: False positive, and FN: False negative.
The AUC score is a widely used metric for evaluating the performance of binary

classification models. It measures the classifier’s capacity to differentiate between positive
and negative instances by plotting the True Positive Rate (TPR) against the False Positive
Rate (FPR) across various discrimination thresholds. A higher AUC value signifies superior
classification performance. The AUC score can be computed using Equation (2) as provided
below [36]:

AUC =
∫ 1

0
TPR

(
FPR−1 (x)

)
dx (2)

Here, TPR and FPR can be measured using Equations (3) and (4):

TPR =
TP

TP + FN
(3)

FPR =
FP

FP + TN
(4)

In the next section, we will present a detailed overview of the experimental results
and provide a thorough analysis.

3. Results and Discussion

In this study, we assessed how effectively different classifiers performed with various
combinations of brain regions, as shown in Table 2. Among all of the classifiers examined,
SVM displayed interesting accuracy in several combinations, particularly the highest accu-
racy of 76% attained for the brain region combination F+C+P. RF displayed competitive
accuracy, reaching 72% accuracy in the F+C+O and F+P+O combinations. DT exhibited
varying accuracy, with the highest value of 64% in the F+C+P configuration. AdaBoost
demonstrated its effectiveness with the F+C+T combination, yielding 72% accuracy. Sur-
prisingly, Naïve Bayes displayed relatively lower accuracy across the board, indicating
limitations in capturing the non-linear relationships present in the data. Furthermore, it is
noteworthy that the Naïve Bayes classifier, despite demonstrating lower accuracy in some
configurations, showcased a remarkable accuracy of 84% in the F+T+O combination. LDA
consistently exhibited moderate accuracy, with its highest value of 56% obtained in the
P+T+O combination. Overall, the classifiers’ performances were influenced by the specific
combination of brain regions, highlighting the importance of tailored feature selection in
optimizing classification accuracy.

Figure 3 shows a graph that summarizes how accurate different classifiers were
with different combinations of three brain regions. The values depicted in the graph
correspond to the accuracy scores presented in Table 1. Notably, the Naïve Bayes classifier
demonstrates a sufficient accuracy of 84% in both the F+T+O and F+P+T combinations due
to its ability to effectively capture and model complex relationships within these specific
combinations of brain regions. The amalgamation of these brain region combinations
likely encompasses unique neural patterns that are indicative of ADHD-related activity.
Additionally, the Naïve Bayes classifier’s proficiency in modeling probabilistic relationships
between features and classes makes it well-suited for capturing the nuanced distinctions
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present in these particular combinations of brain regions. This graph provides an intuitive
representation of the performance trends of different classifiers across distinct regional sets,
offering insights into their varying strengths in capturing relevant features and interactions
within the EEG data.

Table 2. Classification accuracy using a set of 3 regional combinations.

Combination of
Brain Regions

(Set of 3)

Classifiers (Accuracy)

SVM RF DT AdaBoost Naïve Bayes LDA

F+C+P 76 56 64 64 32 44
F+C+T 68 64 60 72 60 36
F+C+O 68 72 68 64 28 40
F+P+T 64 60 52 56 84 32
F+P+O 72 72 60 56 56 40
F+T+O 68 64 48 56 84 52
C+P+T 64 60 40 48 44 40
C+P+O 56 52 44 44 24 16
C+T+O 60 60 40 60 60 52
P+T+O 56 72 64 56 72 56

Figure 3. Accuracy of different classifiers across three brain region combinations.

As shown in Table 3, among the various combinations of brain regions and classifiers
evaluated in the study, the combination “F+C+T” stands out as having achieved the highest
AUC performance. This combination demonstrates the ability to effectively distinguish
between ADHD and healthy control subjects with remarkable AUC scores, which is shown
in Figure 4. Specifically, the classifiers RF and AdaBoost exhibit notable AUC values of
75.9% and 67.5%, respectively, when employed with this brain region combination. These
elevated AUC scores indicate the classifiers’ proficiency in capturing the distinctive patterns
and features associated with ADHD and healthy control subjects within the selected brain
regions. The significant performance of “F+C+T” in terms of AUC underscores its potential
as a discriminative feature set, showcasing the effectiveness of RF and AdaBoost classifiers
in this context. This finding serves as valuable insight into the optimal feature combination
and classifier choice for accurate classification between the two subject groups.
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Table 3. AUC performance of different brain region combinations and classifiers.

Combination of
Brain Regions

(Set of 3)

Classifiers (AUC)

SVM RF DT AdaBoost Naïve Bayes LDA

F+C+P 31.1 62.3 63.9 63.6 38.9 35.7
F+C+T 77.2 75.9 61.3 67.5 59.7 36.6
F+C+O 29.2 71.4 70.4 71.4 38.9 31.1
F+P+T 72 73.3 54.2 66.8 80.5 34.4
F+P+O 37.6 69.4 61.3 64.9 69.4 32.4
F+T+O 77.9 79.2 49.6 66.2 80.5 56.4
C+P+T 66.2 62.2 38.6 48.7 38.9 37.1
C+P+O 44.8 58.1 46.1 38.9 2.5 12.9
C+T+O 66.8 67.2 42.5 62.3 45.4 58.4
P+T+O 63.6 74 63.9 59.7 68.1 55.19

Figure 4. AUC performance of classifiers based on different brain region combinations.

Table 4 presents the accuracy performance of various classifiers across different brain
region combinations, focusing on the right hemisphere, left hemisphere, and the fusion of
both hemispheres. Notably, the analysis highlights the highest accuracy achieved by any
classifier within each dataset, providing valuable insights into their efficacy in detecting
ADHD-related patterns in region-specific EEG data. In the right hemisphere dataset, the
Naïve Bayes classifier exhibited the highest accuracy of 84%, underscoring its ability to
discern distinctive neural patterns associated with ADHD. For the left hemisphere dataset,
the RF classifier achieved the highest accuracy of 64%, whereas the Naïve Bayes classifier
demonstrated an accuracy of 28%. Remarkably, in the combined hemisphere dataset,
the RF classifier attained the highest accuracy of 68% along with SVM, reaffirming the
proficiency of these classifiers in capturing intricate relationships across neural regions.
These outcomes underscore the variability in accuracy across classifiers and brain regions,
providing valuable insights into their performance in classifying ADHD patterns based
on hemisphere-specific neural activity. The accuracy plot depicting the performance of all
classifiers based on hemisphere-specific regions is illustrated in Figure 5.
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Table 4. Classification accuracy is based on specific regions.

Brain Region
Classifiers (Accuracy)

SVM RF DT AdaBoost Naïve Bayes LDA

Right hemisphere 72 60 44 48 84 40
Left hemisphere 44 64 48 44 28 36

Combined hemisphere 68 68 44 64 32 40

Figure 5. Accuracy plot for classifier performance based on hemisphere-specific regions.

Furthermore, the AUC values for the different hemisphere regions were meticulously
evaluated, as illustrated in Table 5. In the “Right hemisphere”, the highest AUC score of
86.3% was achieved with the SVM, closely trailed by Naïve Bayes at 85.7%. Intermediate
AUC results were demonstrated with RF (59.4%) and AdaBoost (50.3%), while DT (42.2%)
and LDA (34.4%) exhibited relatively lower AUC values. Shifting to the “Left hemisphere”,
RF excelled with an AUC of 63.3%, outperforming the other classifiers that registered
comparatively lower AUC scores. Notably, when examining the “Combined hemisphere”
scenario, RF continued its prominent performance by achieving the highest AUC of 72.7%,
closely pursued by AdaBoost at 63.6%. In this consolidated context, SVM, Naïve Bayes,
and DT showcased relatively lower AUC values. Collectively, these AUC findings offer
insightful comparisons of the classifiers’ capabilities in discerning EEG patterns across
distinct brain hemisphere regions, with RF and AdaBoost emerging as top performers,
particularly in the combined setting. Figure 6 displays a plot of AUC scores, which
illustrates how all the classifiers performed when considering hemisphere-specific regions.

Table 5. AUC score based on hemispheres-specific regions.

Brain Region
Classifiers (AUC)

SVM RF DT AdaBoost Naïve Bayes LDA

Right hemisphere 86.3 59.4 42.2 50.3 85.7 34.4
Left hemisphere 49.3 63.3 46.7 39.6 27.9 22.72

Combined hemisphere 28.5 72.7 44.1 63.6 48 28.5
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Figure 6. AUC score plot for classifier performance across hemisphere-specific regions.

The comprehensive analysis of classification performance across different brain re-
gion combinations, focusing on the right hemisphere, left hemisphere, and the combined
hemisphere, has provided valuable insights into the discriminatory capabilities of various
classifiers for ADHD-related patterns. In terms of accuracy, we observed an interesting
variation based on distinct features obtained from different hemisphere regions. Notably,
the right hemisphere dataset exhibited remarkable accuracy performance by the Naïve
Bayes classifier, achieving the highest accuracy of 84%. This can be attributed to Naïve
Bayes’ probabilistic nature, which assumes feature independence given the class label. In
cases where the underlying patterns are well-approximated by the independence assump-
tion, Naïve Bayes excels, as seen in the distinctive neural patterns associated with ADHD
discerned in the right hemisphere. On the other hand, in the left hemisphere, the RF classi-
fier achieved the highest accuracy of 64%. RF’s capacity to capture complex relationships
among features played a significant role. Interestingly, in the combined hemisphere dataset,
both the RF classifier and SVM achieved the highest accuracy of 68%. This underlines the
proficiency of RF in capturing intricate relationships across neural regions, complemented
by SVM’s ability to define an optimal hyperplane for class separation. The AUC results
further substantiate these findings. Notably, in the right hemisphere, Naïve Bayes and SVM
achieved the highest AUC scores, capitalizing on the probabilistic and hyperplane-based
approaches, respectively. RF’s excellence in capturing complex patterns enabled it to attain
the highest AUC in the left hemisphere. Remarkably, in the combined hemisphere, the RF
classifier continued its prominent performance, emphasizing its adaptability to amalgamate
neural region information. These findings collectively underscore the strengths of specific
classifiers in discerning ADHD-related patterns, driven by their inherent characteristics
and adaptability to distinct data distributions.

The varying performance of the Naive Bayes classifier across different brain region
combinations can be attributed to its underlying assumption of feature independence. In
cases where the features within a specific combination of brain regions are indeed condi-
tionally independent given the class label, the Naive Bayes classifier excels by effectively
capturing the underlying patterns; however, its performance diminishes when faced with
brain region combinations characterized by intricate inter-feature relationships and non-
linear interactions. In such scenarios, the assumption of feature independence becomes
less valid, leading to suboptimal classification accuracy. This disparity underscores the
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significance of tailored feature selection and highlights that the Naive Bayes classifier’s
effectiveness is contingent upon the specific nature of the data it encounters.

The computational complexity of the study can be categorized as moderate to high
because we implemented and evaluated several machine learning models, such as SVM,
RF, DT, AdaBoost, Naive Bayes, and LDA. The investigation into various combinations
of brain regions and hemispheres, coupled with feature selection, further contributes to
the complexity. Additionally, hyperparameter tuning, potential cross-validation, ensemble
methods, feature scaling, and multiple evaluation metrics amplify the computational
workload. For experimentation, Python 3.8.5 was employed on a Samsung PC with an Intel
Core i5-8400 CPU @ 2.80GHz, 8GB RAM and a GeForce GTX 1070 Ti 8GB GPU to facilitate
these computations. The study strikes a balance between computational complexity and
the research’s significance in yielding valuable insights from the obtained results.

There are several limitations in this study that need to be acknowledged. We em-
ployed EEG data derived from different brain region combinations to conduct ADHD
classification against healthy control subjects using various machine learning techniques.
Unlike several prior works, we deliberately refrained from employing external feature
extraction techniques or feature engineering approaches to manipulate the classification
features. While such comparisons could provide valuable insights, it is important to note
that conducting direct performance comparisons with other studies may not yield fair
or reliable results due to variations in datasets, preprocessing pipelines, features, and
classifiers employed in each study. Additionally, the absence of deep learning techniques
in our methodology is another limitation. Deep learning has shown promising results in
various classification tasks, including medical image analysis, and its exploration could
offer further improvements in the accuracy and robustness of the classification model. It
is our intention to address these limitations in a future work, where we plan to include
comparative analyses and explore the integration of deep learning methods to enhance the
classification performance.

4. Conclusions

In this paper, we explore the application of EEG data for the classification of ADHD
subjects and healthy controls. Leveraging machine learning techniques, we aimed to en-
hance the accuracy of ADHD diagnosis by exploiting distinctive neural patterns captured
through EEG recordings. Our study uncovered several key findings that shed light on the
potential of EEG-based classification in ADHD research. Through comprehensive analysis,
we demonstrated the effectiveness of various classifiers, including SVM, RF, DT, AdaBoost,
Naive Bayes, and LDA, in distinguishing between ADHD and healthy control groups. No-
tably, the Naive Bayes classifier achieved a sufficient e accuracy of 84% when considering
specific combinations of brain regions. This highlights the discriminatory power of EEG
data in revealing patterns associated with ADHD. Furthermore, our investigation into
regional contributions revealed the significant impact of hemisphere-specific EEG data
on classification performance. We observed higher AUC values in the right hemisphere,
particularly with the SVM and Naive Bayes classifiers. This supports the notion that EEG
data from specific brain regions can provide valuable insights into ADHD-related neural
activity. The exploration of combined hemisphere data highlighted the potential of the
RF classifier, which achieved a promising AUC of 72.7%. This finding underscores the
importance of selecting appropriate classifiers and brain regions to maximize classification
accuracy. While these classifiers have shown promising performance in previous studies
and are well-suited for capturing complex relationships within the data, we acknowledge
that neural networks, especially deep learning models, have gained significant attention
in recent years for their capacity to learn intricate patterns in large and complex datasets.
However, due to the relatively smaller size of our dataset and the interpretability offered
by traditional classifiers, we opted to focus on them for our current investigation. In
summary, this research advances our understanding of EEG-based ADHD classification
by demonstrating the efficacy of distinct classifiers and brain region combinations. Nu-
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merous intriguing directions remain open for future explorations. Firstly, the integration
of advanced machine learning techniques, such as deep learning models like convolu-
tional neural networks (CNNs) and recurrent neural networks (RNNs), could potentially
yield even more accurate and robust classification results. Additionally, the incorporation
of multi-modal data, combining EEG with other physiological or behavioral measures,
could provide a more comprehensive understanding of ADHD-related neural patterns.
Furthermore, exploring the generalizability of our findings to larger and more diverse
populations could enhance the clinical applicability of our approach. These approaches
show potential for improving ADHD diagnosis methods and enhancing our knowledge of
neurodevelopmental disorders.
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Abstract: This research paper presents a deep-learning approach to early detection of skin cancer
using image augmentation techniques. We introduce a two-stage image augmentation process
utilizing geometric augmentation and a generative adversarial network (GAN) to differentiate skin
cancer categories. The public HAM10000 dataset was used to test how well the proposed model
worked. Various pre-trained convolutional neural network (CNN) models, including Xception,
Inceptionv3, Resnet152v2, EfficientnetB7, InceptionresnetV2, and VGG19, were employed. Our
approach demonstrates an accuracy of 96.90%, precision of 97.07%, recall of 96.87%, and F1-score of
96.97%, surpassing the performance of other state-of-the-art methods. The paper also discusses the
use of Shapley Additive Explanations (SHAP), an interpretable technique for skin cancer diagnosis,
which can help clinicians understand the reasoning behind the diagnosis and improve trust in the
system. Overall, the proposed method presents a promising approach to automated skin cancer
detection that could improve patient outcomes and reduce healthcare costs.

Keywords: deep learning; skin cancer; image augmentation; GAN; geometric augmentation; image
classification; interpretable technique

1. Introduction

Skin cancer is one of the most prevalent and potentially life-threatening forms of
cancer worldwide. For more effective therapy and better patient recovery, early detection
and diagnosis are essential [1,2]. In recent years, the study of medical image analysis
has been completely transformed by convolutional neural networks (CNNs) compared to
other advanced machine learning models, supervised or unsupervised, such as k-nearest
neighbor (KNN) and support vector machine (SVM), offering a promising approach for
the automated detection of skin cancer [3]. CNNs have shown to be extremely effective
at extracting complicated patterns and characteristics from medical images, making them
an ideal tool for automating the process of skin cancer detection. This technology has the
potential to assist dermatologists and healthcare professionals in identifying skin lesions
and distinguishing between benign and malignant tumors.

HAM10000 and the International Skin Imaging Collaboration (ISIC) are two datasets
that are widely utilized in skin cancer detection studies. HAM10000 is a comprehensive
dataset containing diverse dermoscopic images of pigmented skin lesions, a common
category of skin cancer [4]. An advantage of the HAM10000 dataset lies in its relatively
smaller size compared to the expansive ISIC dataset. This may be beneficial for researchers
facing limited computational resources or who want to focus on a specific subset of skin
lesions. However, the ISIC dataset has unique advantages, including a larger scale and the
inclusion of additional metadata such as lesion location and patient age. The ISIC datasets

Computation 2023, 11, 246. https://doi.org/10.3390/computation11120246 https://www.mdpi.com/journal/computation138



Computation 2023, 11, 246

have been used for segmentation tasks, but the availability of delineated segmentation
masks is limited compared to the classification tasks [5]. The choice of dataset often depends
on the specific research investigation and the resources available for the study.

The issue with skin cancer detection datasets is the imbalance in the number of data
samples across different classes. This imbalance is observed in both the HAM10000 and ISIC
2017–2020 datasets. In the HAM10000 dataset, which includes a total of 10,015 images, the
highest number of data samples can be seen in the melanoma category, with 6705 images,
while the lowest number of samples is present in the dermatofibroma category, consisting of
115 images [6]. Meanwhile, in the ISIC 2020 dataset, encompassing a total of 33,126 images,
the most abundant data samples are found within the unknown (benign) category, which
comprises 27,126 images, whereas the solar lentigo category contains the fewest data
samples, with only 7 images [7]. Data imbalance can lead to biased results in classification
because the model may be more likely to predict the overrepresented class.

Several approaches can be employed to address imbalances in the amount of data,
such as geometric-transformation-based augmentation, feature-space augmentation, and
GAN-based augmentation [8]. Geometric data augmentation is a technique employed in
the areas of machine learning and computer vision to enhance the variability of a dataset
by doing geometric modifications on the original data. The technique transforms the
geometric configuration of images by moving the positions of individual pixels without
modifying the values of those pixels. These transformations involve altering the position,
orientation, or scale of the data while preserving their inherent characteristics. Geometric
data augmentation is particularly useful for image data and is often applied to improve the
performance of deep learning models. Some common geometric augmentations include
rotation, scaling, translation, shearing, flipping, cropping, and zooming.

In feature-space data augmentation, there are two approaches: namely, the under-
sampling and oversampling approaches. In the undersampling approach, the number of
samples from the majority class is reduced to create a more balanced distribution between
the classes. By reducing the number of majority class samples, undersampling can help
prevent the model from being biased towards the majority class and can improve its ability
to recognize the minority class. However, undersampling may result in a loss of potentially
valuable information, so it should be applied carefully. In the oversampling approach, addi-
tional samples from the minority class are generated to create a more balanced distribution
between the classes. The goal is to increase the representation of the minority class to match
the number of samples in the majority class, making the dataset more balanced. There are
several oversampling methods, with one of the most commonly used techniques being
SMOTE (Synthetic Minority Over-sampling Technique). In order to generate synthetic sam-
ples for the minority class, SMOTE [9] interpolates between existing data points. This helps
to improve the model’s ability to learn from the minority class and can lead to better classi-
fication results. However, it is important to be cautious with oversampling, as generating
too many synthetic samples can lead to overfitting and reduced model generalization.

The concept of GAN-based augmentation refers to the use of generative adversarial
networks (GANs) for the purpose of producing synthetic data samples that can be used to
augment an existing dataset [10]. This technique is particularly useful in cases where the
original dataset is small or imbalanced, as it can help to increase the size of the dataset and
balance the class distribution. Augmentation by GAN has been implemented effectively
in numerous domains, including medical imaging, natural language processing, and
computer vision. Some examples of GAN augmentation in medical imaging include the
generation of synthetic CT scans, MRI images, and X-ray images to aid in disease diagnosis
and treatment.

In general, resampling approaches can be divided into two categories: namely, input-
space data augmentation and feature-space data augmentation. Input-space resampling
involves manipulating the original data instances themselves before any feature extraction.
Meanwhile, feature-space resampling is applied after feature extraction. Geometric transfor-
mations and GAN-based augmentations are categorized as input-space data augmentation,
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whereas SMOTE is classified as feature-space data augmentation. The benefit of input-space
data augmentation is its independence from the feature extraction method, providing greater
flexibility in choosing feature extraction methods. Therefore, in this study, we propose a two-
step augmentation, including geometric and GAN-based augmentation, for early detection of
skin cancer. The main contributions of this research article are:

• The integration of geometric and GAN-based augmentation for skin cancer detection;
• In this study, we provide an explainable AI using SHAP to explain how the model

makes decisions or predictions.

2. Related Works

The related studies in this research are categorized into three groups: studies us-
ing feature-space augmentation, geometric augmentation, and GAN-based augmentation.
Augmentation or oversampling is employed to address the issues of limited data and
imbalanced data. Both of these problems contribute to the reduced accuracy of the de-
tection model. This is also observed in skin cancer detection. Several studies have been
conducted regarding the use of augmentation or oversampling in skin cancer detection.
Abayomi et al. [11] proposed a data augmentation strategy that entails creating a new skin
melanoma dataset using dermoscopic images from the publicly available PH2 dataset. The
study adopted SMOTE-conv [12], which is a variant of SMOTE. SMOTE-conv utilizes a
covariance matrix to detect relationships among attributes and generate synthetic instances.
The SqueezeNet deep learning network was then trained using these modified images.
In the binary classification scenario, it resulted in an accuracy of 92.18%, while in the
multiclass classification scenario, it achieved an accuracy of 89.2%.

SMOTE is an oversampling method used to balance the number of samples between
the majority and minority classes in a dataset. SMOTE randomly selects samples from
the minority class and creates new synthetic samples by combining them with those of
their nearest neighbors. This helps improve the classification performance on imbalanced
datasets. However, SMOTE tends to introduce noise and affect classification performance.
Therefore, K-means-SMOTE [13] was developed to address SMOTE’s limitations. It does
this by using k-means clustering to group samples and generate synthetic samples only
within clusters with fewer minority class instances. Chang et al. [14] adopted Kmeans-
SMOTE to address class imbalance in the ISIC 2018 and ISIC 2019 datasets. Five pre-
trained models—namely, VGG16, MELA-CNN, InceptionResNetV2, Inception V3, and the
dermatologist handcrafted method—were used to extract features. The minority class data
are oversampled using Kmeans-SMOTE and then classified using the Extreme Gradient
Boosting (XGB) classifier. The research yielded an accuracy of 96.5%, precision of 97.4%,
recall of 87.8%, AUC (Area Under the Curve) of 98.1%, and F1-score of 90.5%.

A study on a deep-learning-based skin cancer classification network (DSCC_Net) was
proposed by Tahir et al. [15]; the study proposes the development of a deep learning model
with multi-classification capabilities for the purpose of identifying skin cancer through the
analysis of dermoscopic pictures. The model was trained and evaluated on three public
datasets (HAM10000, ISIC2020, and DermIS), and the results showed that DSCC_Net
outperformed other state-of-the-art models in terms of accuracy, sensitivity, specificity, and
F1-score. The SMOTE Tomek [16] technique is used to balance the dataset by generating
synthetic samples for the minority class and removing noisy and borderline examples from
both the minority and majority classes. The DSCC_Net model demonstrates a notable level
of performance, achieving an accuracy rate of 94.17%, a recall rate of 93.76%, an F1-score of
93.93%, a precision rate of 94.28%, and an AUC of 99.42%.

An alternative approach is demonstrated by Alam et al. [17], who proposed geometric
augmentation in skin cancer detection. Data augmentation involved cropping the images
to 256 × 256, horizontal flipping, and rotation at various angles. The study utilized the
HAM10000 dataset, which initially consisted of 10,015 samples but which was increased to
over 30,000 images through data augmentation. Feature extraction was performed using
AlexNet, InceptionV3, and RegNetY-320. The proposed method achieved accuracy, F1, and
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ROC values of 91%, 88.1%, and 0.95, respectively. A similar approach was also carried
out by Sae Lim et al. [18], who proposed geometric augmentation techniques, including
rotation, zooming, shifting, and flipping. Experiments were performed using MobileNet
on the HAM10000 dataset, leading to performance metrics of accuracy 83.23%, specificity
87%, sensitivity 85%, and an F1-score of 82%.

Alsaidi et al. [19] demonstrated various augmentation techniques in skin cancer
detection. Their research proposed the use of GAN to address imbalanced data. Several pre-
trained models, including EfficientNet-B0, ResNet50, ViT, and ConvNeXT, were employed.
The utilization of GAN as augmentation and EfficientNet-B0 on the HAM1000 dataset
yielded an accuracy rate of 96.8%, precision rate of 96.8%, recall rate of 96.9%, and F1-score
of 96.8%. The development of GAN models for data augmentation was conducted by
Qin et al. [20], who proposed style-based GANs. This method was tested on the ISIC 2018
dataset and achieved an accuracy of 95.2%. Using the same dataset, Ali et al. [21] proposed
progressive generative adversarial networks (PGANs) and achieved an accuracy of 70.1%.

3. Materials and Methods

3.1. Dataset

HAM10000 (https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/
DVN/DBW86T, accessed on 2 July 2023) is a dataset containing clinical images of various
pigmented skin lesions, including both malignant (cancerous) and benign cases. The dataset
consists of 10,015 dermatoscopic images of various skin lesions. These images vary in their
types and characteristics. The data are categorized into seven categories based on the type
of skin lesion. These categories include melanocytic nevi (nv), melanoma (mel), benign-
keratosis-like lesions (bkl), basal cell carcinoma (bcc), actinic keratoses and intraepithelial
carcinoma (akiec), vascular lesions (vasc), and dermatofibroma (df ). Figures 1 and 2 show
the number and image samples of each category, respectively. Every image in the collection
is accompanied by clinical metadata that includes information such as patient age and
gender and the location of the skin lesion. Dermatology experts have provided annotations
and diagnoses for each image in this dataset. These annotations include information
about the type of lesion (whether it is malignant or benign) and its characteristics. The
images in the HAM10000 dataset are of high resolution and good quality, making them
suitable for in-depth analysis and diagnosis. HAM10000 is widely used by researchers
and machine learning practitioners to develop and evaluate algorithms for skin cancer
diagnosis. These data have played a crucial role in advancing the field of computer-aided
skin cancer diagnosis. HAM10000 is a publicly available dataset, allowing researchers and
developers to access and use it for non-commercial purposes.

Figure 1. Category distribution of HAM10000 dataset.
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Figure 2. Example image of each class in HAM10000 dataset. From top to bottom: akiec, bcc, bkl, df,
nv, mel, and vasc.

3.2. The Proposed Skin Cancer Detection Method

Transfer learning is especially beneficial when there is minimal data for the new task or
when building a deep model from scratch would be computationally expensive and time-
consuming. In this study, skin cancer classification employs six pre-trained CNN models,
which include Xception, Inceptionv3, Resnet152v2, EfficientnetB7, InceptionresnetV2, and
VGG19. In order to build a robust model, we apply augmentation techniques to categories
that have a limited number of images. Two-stage input-space augmentations—namely,
geometric and GAN augmentations—are proposed. Figure 3 shows the flow of skin cancer
detection with the proposed augmentation.

Geometric augmentation is one of the data augmentation techniques used in computer
image processing, particularly in the context of deep learning and pattern recognition. The
goal of geometric augmentation is to enhance the diversity of training data by altering the
geometry of the original image without changing the associated labels or class information
related to that image. In this way, machine learning models can learn more general patterns
and are not overly dependent on specific poses, orientations, or geometric transformations.

Some commonly used geometric augmentation techniques in deep learning include:
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1. Rotation: images can be rotated by a certain angle, either clockwise or counterclock-
wise.

2. Translation: images can be shifted in various directions, both horizontally and verti-
cally.

3. Scaling: images can be resized to become larger or smaller.
4. Shearing: images can undergo linear distortions, such as changing the angles.
5. Flipping: images can be flipped horizontally or vertically.
6. Cropping: parts of the image can be cut out to create variations.
7. Perspective Distortion: images can undergo perspective distortions to change the

viewpoint.

By applying these geometric augmentation techniques, training data can be enriched
with geometric variations, which helps machine learning models become more robust
to variations in real-world images. This allows the model to perform better in pattern
recognition tasks, such as object classification, object detection, or image segmentation,
even when objects appear in different orientations or poses.

Figure 3. The proposed skin cancer detection method.

GAN [22] augmentation refers to the use of generative adversarial networks (GANs)
as one of the data augmentation techniques in the context of machine learning, especially
in image processing. GAN is an artificial neural network architecture consisting of two
models, the generator and the discriminator, that compete in a game to improve their capa-
bilities [23]. In the context of data augmentation, GAN augmentation involves using the
GAN generator to create additional data that are similar to the existing training data. The
GAN generator tries to create images that appear authentic, while the GAN discriminator
attempts to distinguish between images generated by the generator and real images.
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By combining the images generated by the GAN generator with the training data, the
dataset can be enhanced with image variations that appear realistic. GAN augmentation
has been proven effective at improving the performance of machine learning models,
especially in image recognition tasks such as object classification, object detection, or image
segmentation, as it can create more diverse and relevant image variations.

3.3. Design of Experiments

In the experiment, 20% of the 10,015 images, which are 2003 images, are utilized for
testing, while the remaining 8012 images are split into 90% (7210) for training and 10%
(802) for validation. Three methods are used to oversample the data: geometric, GAN,
and geometric+GAN augmentations. Experiments are carried out using Python 3.11.5 and
were run on an Nvidia DGX Station A100 with a 40 GB GPU, a 64-core CPU, and 512 GB of
DDR4 RAM.

Several experimental schemes are established to achieve the best performance. In
the first scheme, skin cancer detection is conducted using the original data (without aug-
mentation). In the second, third, and fourth schemes, the original data are augmented
using geometric augmentation, GAN augmentation, and geometric+GAN augmentation,
respectively. This study uses rotation, shift, shear, zoom, flip, and brightness for geometric
augmentation, with detailed parameter values shown in Table 1. During GAN-based
augmentation, a total of 1000 epochs are run with a batch size of 64. Table 2 shows the
structure of discriminator and generator networks of GAN-based augmentation. In the dis-
criminator, we employ the Adam optimizer with a learning rate of 0.0002 along with binary
cross-entropy as the loss function. LeakyReLU with α = 0.2 is applied as the activation
function for all layers except the last one, where a sigmoid activation function is utilized. A
discriminator dropout with a probability of 0.2 is applied. Also in the generator network,
each layer utilizes LeakyReLU with α = 0.2 except for the final layer, which employs Tanh
as the activation function. The parameter values of the training model, such as optimizer,
learning rate, and epoch, are shown in Table 3. In this experiment, we also conduct trials
with a custom FC layer configuration as shown in Table 4, consisting of a dense layer with
64 neurons, a dense layer with 32 neurons, and a dense layer with 7 neurons [24].

Table 1. Summary of geometric augmentation parameters.

Parameter Value

rotation_range 20
width_shift_range 0.2
height_shift_range 0.2
shear_range 0.2
zoom_range 0.2
horizontal_flip True
brightness_range (0.8, 1.2)

This study also uses SHAP to explain skin cancer detection, which is a technique or
approach that utilizes the concept of Shapley values to explain the contribution of each
pixel or feature in an image to the model’s predictions. CNNs are frequently referred to as
black boxes due to the difficulty in deciphering their decision-making processes. For the
purpose of understanding model behavior and building trust, SHAP assists in improving
the transparency and interpretability of the CNN’s decision-making. In SHAP, the concept
of Shapley values is applied to measure and understand the influence of each pixel in the
image on the model’s output or prediction. This technique is valuable for interpreting
machine learning models, including the convolutional neural network (CNN) models
frequently used for image-based tasks. Positive SHAP values signify that the presence of a
pixel had a positive impact on the prediction (red pixel), whereas negative values indicate
the contrary (blue pixel) [25].
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Table 2. Summary of GAN-based augmentation parameters.

Layer Activation

Discriminator

Conv2D LeakyReLU
Conv2D LeakyReLU
Conv2D LeakyReLU
Conv2D LeakyReLU
Flatten
Dropout
Dense Sigmoid

Generator

Dense LeakyReLU
Conv2DTranspose LeakyReLU
Conv2DTranspose LeakyReLU
Conv2DTranspose LeakyReLU
Conv2D Tanh

Table 3. Parameters of training model.

Parameter Value

Optimizer Adam
Learning rate 0.0001
Optimizer parameters beta_1 = 0.9, beta_2 = 0.999
Epochs 100 (with early stopping)

Table 4. Summary of custom FC layers.

Layer Output Shape Activation

Dense (None, 64) Relu
Dense (None, 32) Relu
Dense (None, 7) Softmax

3.4. Performance Metrics

The evaluation of performance was conducted using seven metrics: accuracy (Acc),
precision (Prec), recall (Rec), F1-score, SpecificityAtSensitivity, SensitivityAtSpecificity, and
G-mean. Accuracy assesses the proportion of true positives and true negatives among
all the images. Precision is a metric that quantifies the accuracy of a model’s positive
predictions. It is calculated by dividing the number of accurate positive predictions by the
total number of positive predictions. Recall, also known as sensitivity, measures the ratio
of true positives to all relevant elements, i.e., the true positives in the dataset. Specificity
is a metric that assesses the model’s capability to accurately recognize instances that are
actually not part of the positive class in a classification scenario. The F1-score represents the
harmonic mean of recall and precision, providing an indication of classification accuracy
in imbalanced datasets. Equations (1)–(6) define these seven metrics. G-mean, short for
geometric mean, is utilized to assess the effectiveness of classification models, particularly
in situations where imbalanced datasets exist.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall = Sensitivity =
TP

TP + FN
(3)

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)
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Speci f icity =
TN

TN + FP
(5)

G-mean =
√

sensitivity × speci f icity (6)

4. Results and Discussion

Before the prediction process, data augmentation is performed on the training, vali-
dation, and testing data in the HAM10000 dataset using geometric augmentation, GAN
augmentation, and geometric+GAN augmentation. The limited number of images in the
skin cancer class is augmented to bring it closer to the number of images in the class with
the highest number of images (nv class). The number of images in each class before and
after augmentation is shown in Table 5.

Table 6 shows the performance comparison of several pre-trained models with the
proposed augmentation method. Using the original data, Resnet152v2 performed the best
based on accuracy (84.12%), precision (84.77%), recall (83.67%), and F1-score (84.22%). How-
ever, when considering sensitivity, specificity, and G-mean, EfficientnetB7 achieved the best
metric values with 99.49%, 94.91%, and 97.17%, respectively. Through the augmentation
scheme we proposed, the accuracy of skin cancer detection can be enhanced, reaching a
range of 96% to 97.95%. Overall, geometric augmentation produced the best performance
based on accuracy, precision, and F1-score metrics, while geometric+GAN yielded the
best metrics in terms of sensitivity, specificity, and G-mean values. SensitivityAtSpecificity,
SpecificityAtSensitivity, and G-mean all approach 100% when employing geometric+GAN
on a tested pre-trained model. It is clear from Table 7 that changing the FC layer makes the
accuracy go up to 98.07% when EfficientnetB7 and geometric augmentation are used.

Table 5. Distribution of each skin cancer category for each augmentation scheme.

Original Geometric Aug. GAN Geometric Aug.+GAN

Category Train Test Val Train Test Val Train Test Val Train Test Val

vasc 110 26 6 4801 1350 554 4843 1359 503 4805 1371 529
nv 4822 1347 536 4826 1316 563 4854 1302 549 4856 1300 549
mel 792 222 99 4877 1303 525 4858 1319 528 4836 1361 508
df 83 25 7 4775 1423 507 4831 1325 549 4831 1340 534
bkl 785 224 90 4887 1316 502 4813 1329 563 4831 1337 537
bcc 370 101 43 4783 1360 562 4792 1387 526 4798 1394 513
akiec 248 58 21 4844 1319 542 4802 1366 537 4836 1284 585

Num. images 7210 2003 802 33,793 9387 3755 33,793 9387 3755 33,793 9387 3755

Total images 10,015 46,935 46,935 46,935

Figure 4 shows sample accuracy results from the training and validation of Efficient-
netB7 on the original dataset and the proposed augmentation. The training and validation
accuracies appear to overfit the original dataset (Figure 4a). Validation accuracy is im-
proved by geometric augmentation (Figure 4b), thereby reducing overfitting. Training
accuracy is enhanced through the use of GAN and geometric+GAN (Figure 4c,d).

The sample confusion matrices generated from the original dataset and the best-
proposed model are shown in Figures 5 and 6, respectively. Both of these confusion
matrices were generated using EfficientnetB7. In Figure 5, many classes are still predicted
inaccurately due to imbalanced data. In Figure 6, skin cancer images in the df and vasc
classes can be accurately classified with no classification errors. Only 3 images out of
1319 images in the akiec class were misclassified as bcc. Six mispredictions were observed
among bcc samples out of 1360. Fifty-two instances of bkl samples were inaccurately
predicted out of a comprehensive pool of 1316 samples. Out of the overall 1303 samples,
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70 samples belonging to the mel class were predicted incorrectly. Similarly, for nv cases,
50 mistakes were found in 1316 samples.

Table 6. Performance of the proposed augmentation method on several pre-trained models.

Augmentation
Method

Pre-Trained
Model

Acc Prec Rec F1
Sensitivity

AtSpecificity
Specificity

AtSensitivity
G-Mean Epoch

Original Data

Xception 79.93 80.70 79.53 80.11 99.16 91.71 95.36 12
Inceptionv3 78.88 79.51 78.48 78.99 99.31 92.31 95.75 11
Resnet152v2 84.12 84.77 83.67 84.22 99.33 93.56 96.40 18
EfficientnetB7 78.03 79.63 77.28 78.44 99.49 94.91 97.17 11
InceptionresnetV2 79.63 80.20 78.68 79.44 99.28 91.76 95.45 19
VGG19 81.73 81.83 81.63 81.73 99.12 91.26 95.11 28

Geometric

Xception 97.05 97.06 97.01 97.03 99.87 99.12 99.49 19
Inceptionv3 97.38 97.48 97.35 97.41 99.90 99.20 99.55 31
Resnet152v2 96.90 96.95 96.86 96.90 99.85 98.93 99.39 28
EfficientnetB7 97.95 98.00 97.90 97.95 99.91 99.41 99.66 19
InceptionresnetV2 97.40 97.46 97.36 97.41 99.89 99.20 99.55 28
VGG19 97.22 97.24 97.20 97.22 99.83 98.84 99.33 32

GAN

Xception 96.08 96.35 95.96 96.16 99.86 98.70 99.28 10
Inceptionv3 96.50 96.62 96.45 96.53 99.86 98.64 99.25 16
Resnet152v2 96.30 96.47 96.23 96.35 99.79 98.37 99.08 20
EfficientnetB7 96.48 96.59 96.44 96.51 99.79 98.25 99.02 20
InceptionresnetV2 96.22 96.32 96.20 96.26 99.82 98.44 99.13 18
VGG19 96.22 96.26 96.20 96.23 99.70 100.00 99.85 38

Geometric
+ GAN

Xception 96.21 96.51 96.04 96.27 99.94 99.22 99.58 9
Inceptionv3 96.45 96.56 96.39 96.48 99.86 98.56 99.21 20
Resnet152v2 96.59 96.75 96.45 96.60 99.86 98.87 99.36 14
EfficientnetB7 96.50 96.61 96.43 96.52 99.89 98.92 99.40 14
InceptionresnetV2 96.71 96.82 96.67 96.74 99.85 98.62 99.23 21
VGG19 95.39 97.36 93.89 95.59 100.00 99.93 99.96 17

Table 7. Performance of the proposed augmentation method on the custom FC layer (three dense
layers with 64 neurons, 32 neurons, and 7 neurons, respectively).

Augmentation
Method

Pre-Trained
Model

Acc Prec Rec F1
Sensitivity

AtSpecificity
Specificity

AtSensitivity
G-Mean Epoch

Geometric EfficientnetB7 98.07 98.10 98.06 98.08 99.92 99.46 99.69 20
GAN Inceptionv3 96.48 96.63 96.44 96.53 99.83 98.54 99.18 17
Geometric
+ GAN InceptionresnetV2 96.90 97.07 96.87 96.97 99.86 98.90 99.38 22

We performed a comparative analysis to evaluate the performance of our model by
comparing it to the outcomes of earlier research that utilized the use of the HAM10000
dataset, as shown in Table 8. Our proposed approach outperforms earlier findings in
a number of metrics. Our limitation is mainly in terms of accuracy when compared to
Gomathi et al. [4]. The accuracy rate still needs improvement, and we plan to explore
other deep-learning architectures to enhance skin cancer detection. However, in terms of
recall, precision, and F1, our approach outperforms the previous research. The standard
deviations of accuracy, precision, and recall in our proposed methods also indicate low
values, suggesting that our proposed approach demonstrates consistent performance across
all three metrics. Figure 7 shows the SHAP explanations of akiec, bcc, bkl, df, mel, nv, and
vasc samples. The explanations are displayed on a clear grey background, with the testing
images on the left.
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(a) Original dataset (b) Geometric augmentation

(c) GAN Augmentation (d) Geometric+GAN Augmentation

Figure 4. The samples of training and validation accuracy on EfficientnetB7.

Figure 5. Confusion matrix of EfficientnetB7 on original dataset.

Figure 6. Confusion matrix of the best performance model (EfficientnetB7+Custom FC using geomet-
ric augmentation).
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Figure 7. The results of SHAP explanation on InceptionResnetV2 using Geometric+GAN augmenta-
tion. The sample images are correctly classified as akiec, bcc, bkl, df, mel, nv, and vasc since the high
concentrations of red pixels are located in the second, third, fourth, fifth, sixth, seventh, and eighth
explanation column images, respectively.

Table 8. A comparative analysis of performance with the latest models.

Ref. Method Acc Prec Rec F1 Stdev

Alam et al. [17] AlexNet, InceptionV3, and RegNetY-320 91 - - 88.1 -
Kalpana et al. [2] ESVMKRF-HEAO 97.4 96.3 95.9 97.4 0.7767
Shan et al. [26] AttDenseNet-121 98 91.8 85.4 85.6 6.3003
Gomathi et al. [4] DODL net 98.76 96.02 95.37 94.32 1.7992
Alwakid et al. [27] InceptionResnet-V2 91.26 91 91 91 0.1501
Sae-Lim et al. [18] Modified MobileNet 83.23 - 85 82 -
Ameri [28] AlexNet 84 - - - -
Chaturvedi et al. [6] ResNeXt101 93.2 88 88 - 3.0022
Shahin Ali et al. [29] DCNN 91.43 96.57 93.66 95.09 2.5775
Sevli et al. [30] Custom CNN architecture 91.51 - - - -
Fraiwan et al. [31] DenseNet201 82.9 78.5 73.6 74.4 4.6522
Balambigai et al. [32] Grid search ensemble 77.17 - - - -
Shaheen et al. [33] PSOCNN 97.82 - - 98 -
This study Geometric+EfficientnetB7+Custom FC 98.07 98.10 98.06 98.08 0.0002

GAN+InceptionV3 96.50 96.62 96.45 96.53 0.0009
Geometric+GAN+InceptionresnetV2+Custom FC 96.90 97.07 96.87 96.97 0.0011

5. Conclusions

This study provides valuable insights into a deep-learning approach for the early
detection of skin cancer using image augmentation techniques. The proposed two-stage
image augmentation technique, involving both geometric augmentation and GAN aug-
mentation, demonstrated high performance. The proposed model achieves an accuracy of
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96.90%, precision of 97.07%, recall of 96.87%, and F1-score of 96.97%. The other metrics,
such as sensitivity, specificity, and G-mean, of the proposed augmentation method also
achieve better performance compared to the results from the original dataset. The use
of an interpretable technique for skin cancer diagnosis is also a significant contribution
to the field, as it can help clinicians understand the reasoning behind the diagnosis and
improve trust in the system. Overall, this research paper presents a promising approach to
automated skin cancer detection that could have a significant impact on patient outcomes
and healthcare costs. For future research, we will include another dataset, namely ISIC
2020, to validate the results of the next experiments.
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Simple Summary: In this work, we explored computational methods for analyzing a color digital
image of a wound and predicting (from the analyzed image) the number of days it will take for the
wound to fully heal. We used a hybrid computational approach combining deep neural networks
and decision trees, and within this hybrid approach, we explored (and compared the accuracies of)
different types of models for predicting the time to heal. More specifically, we explored different
models for finding the outline of the wound within the wound image and we proposed a model for
computing the proportions of different types of tissues within the wound bed (e.g., fibrin slough,
granulation, or necrotic tissue). Our work clarifies what type of model should be used for the
computational prediction of wound time-to-healing and establishes that, in order to predict time-to-
healing accurately, it is important to incorporate (into the model) data on the proportions of different
types in the wound bed.

Abstract: Despite the societal burden of chronic wounds and despite advances in image processing,
automated image-based prediction of wound prognosis is not yet in routine clinical practice. While
specific tissue types are known to be positive or negative prognostic indicators, image-based wound
healing prediction systems that have been demonstrated to date do not (1) use information about
the proportions of tissue types within the wound and (2) predict time-to-healing (most predict
categorical clinical labels). In this work, we analyzed a unique dataset of time-series images of healing
wounds from a controlled study in dogs, as well as human wound images that are annotated for the
tissue type composition. In the context of a hybrid-learning approach (neural network segmentation
and decision tree regression) for the image-based prediction of time-to-healing, we tested whether
explicitly incorporating tissue type-derived features into the model would improve the accuracy for
time-to-healing prediction versus not including such features. We tested four deep convolutional
encoder–decoder neural network models for wound image segmentation and identified, in the
context of both original wound images and an augmented wound image-set, that a SegNet-type
network trained on an augmented image set has best segmentation performance. Furthermore, using
three different regression algorithms, we evaluated models for predicting wound time-to-healing
using features extracted from the four best-performing segmentation models. We found that XGBoost
regression using features that are (i) extracted from a SegNet-type network and (ii) reduced using
principal components analysis performed the best for time-to-healing prediction. We demonstrated
that a neural network model can classify the regions of a wound image as one of four tissue types, and
demonstrated that adding features derived from the superpixel classifier improves the performance
for healing-time prediction.

Keywords: wound monitoring; computer vision; hybrid learning; image segmentation; superpixel;
regression

Computation 2024, 12, 42. https://doi.org/10.3390/computation12030042 https://www.mdpi.com/journal/computation152



Computation 2024, 12, 42

1. Introduction

1.1. Motivation

Chronic wounds affect 6.5 million Americans [1,2], reduce quality of life, and lead
to USD 25 billion per year in healthcare costs in the United States [3]. Proper care and
the clinical monitoring of the wound are critical to improving outcomes [4]. Clinicians
are trained to recognize the prognostically useful visual characteristics of the wound,
such as red granulation tissue, yellow fibrin slough, and black necrosis [5]. However, the
cost and distance limit the frequency with which patients can visit a clinic for wound
examination, necessitating self-monitoring and wound care in the home setting [6]. Many
patients lack the knowledge and tools to do so effectively, which increases the likelihood
of (1) delayed healing and (2) poor clinical outcomes [6]. Given the well-recognized
need for improved home wound monitoring [1], recent advances in informatics have
stimulated interest in developing smart in-home monitoring solutions that would analyze
a patient’s self-acquired image of the wound [7–9]. With the increasing availability of
the public-domain sets of wound images with useful metadata [10] as well as image
augmentation methods [11], the use of deep learning methods has become feasible for
developing computational systems for image-based wound assessment [12]. A critical
consideration in the development of wound image analysis methods is that the predicted
variable should be clinically useful. In the context of wound care, one of the key prediction
tasks that an image-based machine learning model (i.e., a computer vision model) can be
reasonably trained for is the regression problem of predicting the number of days it will take
for a wound to heal [13]. Conducting well-controlled studies of healing of standardized,
surgically induced wounds is very difficult in humans due to ethical challenges, difficulties
in obtaining cohorts with standardized and comparable wounds, and due to the varied
conditions that necessitate surgical intervention [14]. Dogs have therefore been used on
many occasions as an animal model for the controlled studies of wound healing (see
Ref. [15] and references therein).

1.2. Previous Efforts
1.2.1. Traditional Computer Vision Methods Using Wound Images

Prior to the extensive use of deep neural networks for semantic pixel-wise
segmentation—assigning a label to each pixel in an image [16]—traditional computer
vision methods utilized manually engineered image features. Notably, Gupta et al. [17]
used depth information for object boundary detection and hierarchical grouping for cate-
gory segmentation, and Silberman et al. [18] combined color- and depth-based cues. For
the specific application of machine-learning for image-based wound assessment, previous
advances include the following Song and Sacan [19], who (1) extracted features using
edge-detection, thresholding, and region growing, and (2) used a multilayer perceptron
neural network; Hettiarachchi et al. [20], who used active contour models for identify-
ing wound borders irrespective of coloration and shape; and Fauzi et al. [21], who used
a four-dimensional color probability map to guide the segmentation process, enabling
the handling of different tissue types observed in a wound. While the Fauzi et al. study
introduced tissue-type-specific segmentation in the context of image-based wound assess-
ment, the relatively simple region-growing segmentation method that was used limited the
resulting tissue-type classification accuracy to approximately 75%.

1.2.2. Deep Learning Models Using Wound Images

The application of deep convolutional neural networks (CNNs) in computer vision
has led to significant advances in the area of semantic segmentation. By learning to decode
low-resolution image representations to pixel-wise predictions, CNNs eliminate the need
for manually engineered features and integrate feature extraction and decision making. For
example, Cui et al. [22] developed a CNN-based method for wound region segmentation
that outperformed traditional segmentation methods [21]. Fully convolutional networks
(FCNs) [23] are another example, allowing for arbitrary input sizes and preserving spatial
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information. Several FCN-based methods have been proposed for wound segmentation:
Wang et al. [7] used an FCN to estimate wound areas and predict the wound healing
progress using Gaussian process regression (GPR); Yuan et al. [24] used a deep convo-
lutional encoder–decoder neural network for skin lesion segmentation without relying
on prior data knowledge; Milletari et al. [25] proposed the “V-Net” model for 3D med-
ical image segmentation; Goyal et al. [26] applied a two-tier transfer learning approach
based on the FCN-16 architecture to segment wound images; Liu et al. [27] presented a
modified FCN model replacing the classic FCN decoder with a skip-layer concatenation
upsampled with bilinear interpolation; Wang et al. [28] proposed an efficient framework
based on MobileNetsV2 [29] to automatically segment wound regions; and, in a key foun-
dation for this paper (see Section 2.2.1), Blanco et al. [9] pioneered the use of the multiclass
superpixel [30] classification to map different tissue types within the wound bed. In sum-
mary, deep learning and CNNs have shown promising results in the field of semantic
segmentation, outperforming traditional methods and paving the way for applications in
wound monitoring.

1.3. Our Approach

In this study, using both unlabeled and time-series-labeled images from both hu-
mans and dogs (the dog data are from a controlled study with wound images taken every
48 h [31]), we investigated the utility of a hybrid model—using both deep artificial neu-
ral networks for feature extraction and using decision trees or Gaussian processes for
regression—for predicting how long it will take for a wound to fully heal based on a color
digital image of the wound. In the context of regression using features extracted from a deep
neural encoder–decoder network segmentation model, we investigated the performance
of three regression algorithms (Gaussian process regression (GPR) [32], random forest
regression (RFR) [33], and XGBoost regression [34]); two different types of segmentation
network architectures (SegNet [35] and U-Net [36]); and two different image sets (original
images and a geometrically augmented image-set). Furthermore, we investigated whether
the performance of the best such hybrid model could be improved by adding the features
derived from a multilayer network trained to categorize the sub-regions as one of four
tissue types relevant to wound healing (not wound, necrotic, granulation, or fibrin, a tissue
type classification originally proposed by Blanco et al. [9]). From these studies, we obtained
the best performance using a feature-set combining two different types of features, which
we call Phase 1 and Phase 2 features, as described below.

Principal Contribution of this Work

Our main aim in this work was to improve the prediction of time-to-healing from a
color image of the wound. Our work’s key contribution to the field of computer vision for
wound assessment and monitoring is that it demonstrates that (1) the decomposition of the
wound image into tissue type sub-regions (Section 2.1.2) provides features that substantially
improve the prediction of the wound time-to-healing; and (2) XGBoost regression provides
a superior performance for this regression task over alternative regression models. Our
work further clarifies the relative contributions of tissue sub-region proportion data (versus
image segmentation-derived features) and of the image augmentation and segmentation
model type to performance in predicting wound time-to-healing.

2. Materials and Methods

2.1. Overview of Our Computational Approach
2.1.1. Our Approach for Obtaining Phase 1 Features

In Phase 1 of our approach (Figure 1, bottom), we (1) segment the high-resolution wound
image at the pixel level (into “wound” and “not wound”); (2) extract high-dimensional feature
information from an inner layer of the encoder–decoder segmentation neural network. This
phase has two steps:
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Step 1: In this step, we use an encoder–decoder neural network model to carry out a
pixel-level binary segmentation (classifying pixels as inside or outside the wound bed) to
extract the inner layer’s states as a feature encoding of the wound image. Furthermore, we
use the segmentation model to extract the wound area and wound percentage area, which
are included as features in the regression model (and which are also used in computing
the dependent variable for the ground-truth-labeled image-set for the regression task; see
Section 2.9). For the neural network model for segmentation, we used deep convolutional
network approaches. Specifically, in this work, we evaluated the segmentation performance
of two network architectures each for two architecture classes, SegNet and U-Net, using the
pixel-level overlap between predicted and ground-truth-segmented images. For each of the
four network architectures (two SegNet and two U-Net architectures), we evaluated the
performance when the model is trained using original images and when it is trained using
an augmented image-set. From the eight models, we used independent labeled images (not
used in training and tuning) to select the four best-performing segmentation models and
used those to extract features to use in regression.

Step 2: In this step, for two of the network architectures whose inner layers were
high-dimensional, we used principal component analysis (PCA) to reduce the dimension
of the inner layer-level image encoding, to obtain suitable feature vectors for regression.

Figure 1. Overview of the two-phase approach that we developed for computationally predicting the
time-to-healing from a wound image. (In the Phase 1 section, the inset wound images are the courtesy
of Dr. Bryden J. Stanley (see Acknowledgements). In the Phase 2 section, the inset wound images
are reprinted from the Blanco et al. study [9], © 2020 with permission from Elsevier (Amsterdam,
The Netherlands)).

2.1.2. Approach for Obtaining Phase 2 Features

In this phase (Figure 1, top), our approach classifies the sub-regions of the wound
image into the four tissue-type categories (Section 1.3). To do this, we use a multilayer
perceptron (MLP) model (Section 2.4) that we trained on labeled 70 × 70 pixel (px) wound
sub-images (“superpixels”) from a public dataset [9]. Our approach splits the image into
superpixels and then generates a prediction score for each of the four classes, for each
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superpixel. Four features are then extracted from the superpixel predictions by summing
class-specific scores across all superpixels of the image.

2.1.3. Regression

In our approach, we use a regression model to predict, based on features extracted
from a wound image in Phase 1 and Phase 2, the number of days it will take for a wound to
heal. For the training image set, we used time-series wound images from a study of wound
healing in dogs [31]; these images were labeled for the number of days until the wound was
fully healed (Section 2.9). We explored the performance of the ensemble decision tree and
GPR models to predict wound the time-to-healing, first using the features derived from
segmentation alone (Phase 1) and then using the features derived from both the superpixel
classifier and from the segmentation model (i.e., Phase 1 and Phase 2 features combined).

For this work, we ran all analyses in Python version 3.5.5 under Ubuntu 16.04 on a Dell
XPS 8700 computer (x86_64 architecture) equipped with an NVIDIA Titan RTX GPU (24 GiB
GDDR6 memory). We implemented the classification (superpixel and segmentation) and
regression model pipelines, including cross-validation and performance evaluation, using
the Python software packages Tensorflow (ver. 2.9.1) and scikit-learn (ver. 1.0.2).

2.2. Wound Image Datasets
2.2.1. Ulcer Wound Superpixel Data Set

In Phase 2 of our approach (see Figure 1, top), in order to train a neural network
model that can classify the 70 × 70 “superpixel” sub-images of wound images into four
tissue types (not-wound, fibrin, granulation, and necrotic), we used the publicly available
ULCER_SET images from the Blanco et al. study [9] (see Data Availability Statement). This
set comprises 44,893 expert-labeled 70 × 70 px color (red-green-blue) superpixels derived
from 40 human lower-limb ulcerous wound images (82.8% not-wound, 8.9% fibrin, 7.3%
granulation, and 1.0% necrotic).

2.2.2. Dog Wound Healing Image Set

To train the regression model that predicts the time-to-healing from a digital wound
image, we used a previously published [31] set of 136 color images (4000 × 6000 px;
acquired every other day over 32 days and labeled by date) of ten 2 × 2 cm2 dog cutaneous
surgical wounds (full-thickness surgical wounds in the trunk; see Ref. [31] for details).
The ten dogs were male adult beagles (13–18 weeks of age). The wound images included
standard rulers which enabled conversion of mm2 to px2 (Section 2.9). Given the size of the
segmentation models (Sections 2.6 and 2.7), to fit a reasonably sized batch of training images
into the GPU memory, we resized and cropped the raw wound images to 224 × 224 px,
to prepare them for feature extraction using the previously trained binary segmentation
models. We augmented the 224 × 224 px wound-bed images as described in Section 2.3.1.
To enable the use of the dog wound images for training the segmentation model, we
manually segmented the images as described in Section 2.3.2 (Figure 2).
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Figure 2. Example wound images (top row) and corresponding human-segmented images (bottom

row) from the dog wound image dataset [31] used for training the healing-time model. Top-
row images are cropped from original images that were provided courtesy of Dr. B. Stanley
(see acknowledgments).

2.3. Image Augmentation and Annotation
2.3.1. Augmentor

To geometrically augment (e.g., rotate or flip) the sets of wound images used in this
study, we used the Augmentor [11] tool as described in the Supplementary Materials
Table S1, yielding four augmented images for each dog wound image. In this study,
we compared the performances of different wound segmentation algorithms trained on
original images (without augmentation) as well as algorithms trained on augmented image
sets (see Section 3.2).

2.3.2. Pixel Annotation

To binary-segment wound images at the pixel level as “in-wound” our “not in wound”
with human guidance, we used the PixelAnnotationTool software tool (ver. 0.14.0), which
uses the marker-based variant of the watershed segmentation algorithm [37] from the
OpenCV software library [38]. The manually annotated wound image masks were used as
labeled data for training the segmentation algorithms (Section 2.11.2).

2.4. Superpixel Classifier Model Architecture

To classify the wound image superpixels by tissue type (not wound, fibrin, granulation,
and necrotic), we implemented a six-layer perceptron [39] with rectified linear unit (ReLU)
activation in each intermediate hidden layer and softmax activation with four classes in the
output layer. For each of the four classes, we measured the model’s prediction performance
by computing the area under the receiver-operating characteristic (AUROC) curve for the
class’s prediction scores using the one vs. rest strategy [40] for comparison.

2.5. Segmentation

In our two-classe segmentation model architectures, SegNet (Section 2.6) and U-
Net (Section 2.7), we do not use recurrent edges, whose use in segmentation has been
advocated [41] in applications requiring multiscale object recognition (which is not an
issue in our application). The two main classes of segmentation model architectures are
described in the following two subsections.

2.6. SegNet Model Architecture

Of the two classes of neural network architectures that we used for image segmentation,
the first is SegNet [35], a ten-layer convolutional network. SegNet is built on the FCN [23]
architecture, which consists of an encoder network that computes a set of compact feature
maps on high-resolution images, a decoder network that upsamples the feature maps,
and a pixel-wise classification layer that outputs the full-size segmentation masks. The
main difference separating a SegNet model from a common FCN model is that the decoder
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layers of a SegNet model directly use the pooling indices computed in the corresponding
encoder layers’ max-pooling step. In this way, when a decoder layer performs the nonlinear
upsampling of its lower-resolution input feature map from the previous layer, there is no
need to learn the weights of the decoder part to upsample again. The advantages of reusing
max-pooling indices include drastically reducing the number of parameters needed in the
training process, improved on boundary delineation, and minimal modification required to
implement upsampling. The encoder network is constructed by stacking basic computation
blocks like convolution, nonlinear transformation using ReLU activation function, spatial
pooling, and local response normalization [42]. To produce probability maps, a softmax
layer is appended to the end of the network. To mitigate the downscaling effects of the
convolution and pooling layers, the decoder network of the SegNet model is constructed by
a stack of layers with upsampling operations. From the pixel-level probabilities, a threshold
of 0.5 is used to produce the segmentation mask.

2.7. U-Net Model Architecture

The second class of the segmentation network architecture that we evaluated is U-
Net [36], a U-shaped, 23-layer FCN. To localize, high-resolution features from the con-
tracting path are combined with the upsampled output; a successive convolution layer
can then learn to assemble a more precise output based on this more detailed information.
U-Net has many feature channels in the upsampling part, which allow the network to
propagate context information to higher resolution layers. U-Net does not have any fully
connected layers and only uses the valid part of each convolution, allowing the segmenta-
tion of arbitrarily large images by an overlap-tile strategy (which also enables training on
high-resolution images). For border region prediction, the missing context is extrapolated
by mirroring the input image. At each downsampling step, the number of feature filters
is doubled. The contracting path has repeated two 3 × 3 convolution layers (unpadded
convolutions), each followed by a ReLU activation layer and a 2 × 2 max pooling operation
with stride 2 for downsampling. The expanding path has an upsampling of the feature
map followed by a 2 × 2 convolution layer (“up-convolution”) that halves the number of
feature filters, a concatenation with the correspondingly cropped feature map from the
contracting path, and two 3 × 3 convolutions, each followed by a ReLU activation layer.
A 1 × 1 convolution is used to map each 64-component feature vector (each component
is a feature filter) to the desired number of classes at the final layer. The U-Net has been
reported to work well for segmentation applications with small training sets [28].

2.8. Feature Engineering and Extraction

We extracted features from both the Phase 2 (superpixel tissue-type classifier) model
and from the Phase 1, Step 1 (pixel-level binary segmentation) models, as described below.

2.8.1. Feature Extraction from a Superpixel Model

For each of the four wound-tissue types (Section 2.2.1), we estimated the proportion
of the wound image of that type adding up the prediction value for that type’s softmax
class output across all superpixels. This procedure generated four features per image.

2.8.2. Feature Extraction from Segmentation Models

We extracted features from the segmentation models (Sections 2.6 and 2.7) in
two ways—using the network’s inner layer states as a vector encoding of the image,
and by calculating summary statistics on the pixel-level binary segmentation (which
were appended to the encoding vector).

Inner Layer Encoding

For the SegNet architecture (Section 2.6), we used the output of the intermediate layer
“Conv5” as a feature vector. For the SegNet-1 network, the “Conv5” layer’s dimension is
6272, and thus, we reduced it using PCA (see Section 2.8.3) to 404 principal components.
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For the SegNet-2 network, the “Conv5” layer’s dimension is 1568 and we directly used that
layer’s values as the feature vector. For the U-Net architecture in Section 2.7, we used the
output of intermediate layer “Conv5” as a feature vector. For the U-Net-1 network, the
“Conv5” layer’s dimension is 50,176, and thus, we reduced it using PCA to 342 principal
components. From the U-Net-2 network, the “Conv5” layer’s dimension is 3136 and we
used that layer’s values directly as the feature vector.

Wound Area Calculation

For each segmented wound image, from the pixel-level segmentation mask, we com-
puted two summary-level features, the overall pixel wound area (see also Section 2.9), and
the percentage of pixels of the image that are in the wound area. These two features were
added to the “Conv5”-derived features to generate the complete Phase 1 feature-set for use
in the regression.

2.8.3. PCA Reduction in Segmentation Feature Vectors

We carried out PCA using the function “PCA” from the sklearn.decomposition pack-
age, with parameter svd_solver set to “full” and parameter n_components set to 0.95 (which
selects the number of principal components so that it explains at least 95% of the variance
in the feature vector).

2.9. How We Obtained the Dependent Variable for Regression Training

Using the output from the segmentation models (Section 2.8.2), we first determined
the length scale “ratio” of each image by calculating the pixel length of 1 cm space on
the ruler in the image (manually counted by visual image inspection). We obtained the
predicted wound area by counting the pixel area on the segmentation mask annotations
and converted it to area in cm2 using the empirically determined linear pixel density per cm
of each image. With the predicted wound area for each image, we obtained the remaining
proportion of wound area as a feature for each image by dividing the predicted wound
area of the current day with the predicted wound area of day zero. In the healing status
prediction task, we did not use the number of days post-injury as a feature; this is because
we used the image date to determine the dependent variable (i.e., the number of days to
full healing) for the regression.

2.10. Regression Model Training

We evaluated three general-purpose regression algorithms (which are well described in
the literature and highly versatile) that are well suited to our problem from the standpoints
of sample-size of our labeled image-set, the high dimensionality of the feature-space,
and the fact that the features are continuous: random forest regression, Gaussian process
regression, and XGBoost.

2.11. Model Training, Tuning, and Evaluation

We implemented cross-validation using RandomizedSearchCV and GridSearchCV
from the package sklearn.model_selection, as described below. For all prediction evaluation
metrics, we used functions from the sklearn.metrics package as described below.

2.11.1. Superpixel Classifier

For the Phase 2 classifier (Sections 2.1.2 and 2.4), we used stratified ten-fold cross-
validation (25 epochs) to obtain performance measurements (sample-averaged categorical
cross-entropy loss) on the training-set images for hyperparameter tuning. We calculated
the sample-averaged categorical cross-entropy loss as follows:

L = − 1
N ∑

i,j
yij log ŷij,
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where j ranges over the four possible class labels, i ranges over the N samples, yij is the
ground-truth (one-hot encoded) class label for class label j for sample i, and ŷij is the
prediction score for the class label j for sample i. We ultimately trained the model with a
batch size of 1024 and for 25 epochs to using stochastic gradient descent [43] with a learning
rate of 0.005, to minimize the categorical cross-entropy loss. For measuring AUROC on the
test set of superpixels, we used the function “roc_auc_score” with the parameter “average”
set to “weighted”.

2.11.2. Binary Pixel-Level Segmentation

For the image segmentation models (Sections 2.6 and 2.7), we used five-fold cross-
validation to obtain unbiased performance measures (precision, recall, and Dice overlap)
on the training images for hyperparameter tuning. The hyperparameters were the number
of epochs, batch size, and learning rate. We ultimately trained both SegNet models and
both U-Net models with a batch size of two and for 2000 epochs (with early stopping) using
stochastic gradient descent with a learning rate of 10−4 to minimize cross-entropy loss.

2.11.3. Regression Using Decision Trees or Gaussian Process

For Gaussian process regression, we used the class GaussianProcessRegressor from
the package sklearn.gaussian_process; for random forest regression, we used the class
RandomForestRegressor from the sklearn.ensemble package; and for XGBoost regression,
we used the class XGBoostRegressor from the same package. For Random Forest and
XGBoost, we first tuned model hyperparameters using RandomizedSearchCV using a
larger set and range of hyperparameters (six for random forest, and four for XGBoost); for
the Gaussian process model, we did not use the random-search hyperparameter tuning.
Then, for all three models, we carried out exhaustive grid search hyperparameter tuning
using the GridSearchCV function from sklearn.model_selection (four hyperparameters
for Gaussian process, six for random forest, and four for XGBoost); for both, we used
five-fold cross-validation (see Ref. [42] for details). For XGBoost regression model with
the Phase 2 features only, to avoid overfitting, the hyperparameter grid-search space was
reduced as follows: max_depth ∈ {1, 2, 3}, learning_rate ∈ {0.0005, 0.001, 0.005, 0.01, 0.05},
and n_estimators ∈ {10, 20, 30}.

2.11.4. Regression Using a Deep Neural Network

Using the Phase 1 (Section 2.1.1) and Phase 2 (Section 2.1.2) features as inputs and
days until healing as the dependent variable (Section 2.9), we trained a five-layer fully
connected deep neural network with ReLU activation functions and with the following
numbers of neurons at each layer: 256, 128, 64, 32, and 1.

2.11.5. Confidence Interval Estimation

For the regression task, we estimated ±1 σ confidence intervals for the test-set coeffi-
cient of variation (R2) using bootstrap resampling [44] with 1000 iterations.

3. Results

3.1. Superpixel Tissue-Type Classification Performance

Under the premise that for predicting time-to-healing, the utility of features ex-
tracted from a tissue-type multiclass superpixel classifier depends on the classifier’s per-
formance, we investigated (Section 2.4) the MLP model’s performance for annotating
non-overlapping 70 × 70 px wound image superpixels. For this analysis, we used the
ULCER_SET (44,893 superpixels; see Section 2.2.1) in which each superpixel was expert-
labeled with one of four tissue types [42].

We randomly separated the superpixels into training/validation and test sets (80%
and 20%, respectively), tuned the classifier hyperparameters as described in Section 2.11.1,
and obtained categorical cross-entropy loss on both the training/validate and test sets of
superpixels and AUROC model performance (each class against all others) on the test set of
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superpixels. The prediction error on the test set was comparable to the training set (Figure 3),
indicating that the model was not overfitted. The single-class-versus-others AUROC
prediction performance exceeded 0.8 for all classes except class 3 (necrotic) (Figure 4);
performance was best for discriminating class 2 (granulation) superpixels from the other
superpixel classes (AUROC 0.94). The overall accuracy of the model for superpixel type
prediction was 86.4% (which is comparable to the MLP results in Blanco et al. [9]).

Having measured the accuracy of the wound image superpixel classifier, we calculated,
for each image, four summary features representing the total sum (across all superpixels of
the image) of the class-specific prediction scores (Section 2.1.2); these four features are the
“Phase 2” features, whose relative utility for the healing-time prediction regression task we
evaluate in Section 3.4.

Figure 3. Average categorical cross-entropy loss of the MLP model for each of 25 training epochs,
evaluated on the train/validate superpixels and on the test-set superpixels.

Figure 4. Test-set performance for classifying superpixels as class 0 (not-wound), class 1 (fibrin),
class 2 (granulation), or class 3 (necrotic). Each receiver operating characteristic (ROC) curve rep-
resents the test-set performance on the binary task of predicting whether a superpixel is of the
indicated class or not. The class sample counts as follows: Class 0, 7437 samples; Class 1, 794 samples;
Class 2, 656 samples; and Class 3, 89 samples. “Area” denotes AUROC. Each ROC curve shows a
relationship between sensitivity (the vertical axis) and the false positive error rate (the horizontal
axis), for correctly recognizing superpixels that are members of one class versus mis-predictions of
the other three class types. Each ROC curve rises steeply as easy cases are discriminated and then
saturates as more borderline cases require increasingly permissive thresholds for making a positive
prediction.
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3.2. Binary Segmentation (Phase 1, Step 2) Model Performance to Find the Best Four Models

Under the premise that, for predicting wound time-to-healing, the utility of features
derived from the pixel-level segmentation model will depend on the segmentation model’s
performance, we investigated (Sections 2.6 and 2.7) the performance of four neural network
architectures (SegNet-1, SegNet-2, U-Net-1, and U-Net-2) for binary pixel-level segmenta-
tion. For this model-selection task, used a set of 136 high-resolution dog wound images [31]
that had been pixel-wise labeled (Section 2.2.2) by human annotators as “within wound”
or “outside wound”. Of the 136 dog wound images, we set aside 26 images (images from
two wounds every 48 h) as a test-set of labeled images for evaluating the performance of
the trained regression models (Section 3.3); we used the other 110 images for both segmen-
tation model selection and for training the regression models. Given previous reports that
image-set geometric augmentation improves the learning performance in some computer-
vision tasks [45] and does not improve performance in others [46], we investigated the
performance of the four network architectures using the original dog wound image set
(“OIS”: 74 images) and using an augmented (Section 2.3.1) image set (“AIS”: 945 images).

We randomly partitioned the 110 images into 74 “OIS” images (images from five
wounds) for training/validation and 36 images (images from three wounds) for model
testing; we augmented 945 “AIS” images from 74 “OIS” images for training/validation and
the same 36 original (unaugmented) images for testing. Using the training/validation set,
we tuned the hyperparameters as described in Section 2.11.2. Then, for each of the eight
combinations of the network architecture and image set (“AIS” or “OIS”), we trained on
the 74 images of “OIS” and 945 images of “AIS” and measured the average performance
on the test image-set by precision, recall, and Dice overlap. SegNet-1/AIS has the highest
recall (0.953) and Dice coefficient (0.921) values (Table 1), whereas U-Net-1/AIS had the
highest average precision (0.962).

Table 1. Test-set performance (averaged over 36 images) of each of eight combinations of network
architecture and training-set performance (original, i.e., OIS; or augmented, i.e., AIS) on the segmen-
tation task of classifying the wound image pixels as “within wound” or “not within wound”. OIS:
original image set (without augmentation); AIS: augmented image set.

Architecture Set Precision Recall Dice

SegNet-1 AIS 0.955 0.953 0.921
SegNet-1 OIS 0.962 0.710 0.773
SegNet-2 AIS 0.933 0.906 0.887
SegNet-2 OIS 0.740 0.920 0.787
U-Net-1 AIS 0.962 0.950 0.916
U-Net-1 OIS 0.946 0.883 0.878
U-Net-2 AIS 0.930 0.937 0.890
U-Net-2 OIS 0.952 0.948 0.919

For all architectures except U-Net-2, the performance was higher when trained on AIS
than when trained on OIS; on average, augmentation improved performance by 7.7%. We
selected the best model within each architecture type, to take forward to use for extracting
segmentation-based features for time-to-healing prediction: SegNet-1/AIS, SegNet-2/OIS,
U-Net-1/AIS, and U-Net-2/OIS. We then extracted image-level features from each of
the four models using intermediate-layer neuron values (Section 2.8); due to the high
dimensionality of these layers in SegNet-1 and U-Net-1, we reduced the dimensions for
the SegNet-1 (Section 2.6) and U-Net-1 (Section 2.7) derived features using PCA. We
combined the segmentation-derived features with the superpixel classification-derived
features (Section 2.1.2)

3.3. Time-to-Healing Prediction Performance without Phase 2 Features

Next, we turned to the regression task of predicting, from features extracted from
the wound image segmentation (i.e., not including the superpixel-based features), the
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number of days remaining for the wound to heal. We used the features extracted from one
of the four binary segmentation models in Phase 1, Step 2 (with PCA used to reduce the
dimension of the segmentation vectors extracted from SegNet-1 and U-Net-1, as described
in Section 3.2), yielding a total of 404 features per image for SegNet-1 and 342 features
per image for U-Net-1. We then added two summary-level features derived from the
segmentation, consisting of the wound area and wound percentage area (see Section 2.8.2).
Next, for the labeled training examples, we used a collection of 544 augmented time-series
images of ten dog wounds (Section 2.2.2) from a controlled study of wound healing [31],
for which we estimated (Section 2.8) the time-until-complete-healing (i.e., the dependent
variable for the regression) for each of the images. We sought to evaluate three different
regression algorithms, (Gaussian process regression, random forest regression, and XG-
Boost regression) separately against the feature-sets from the four different segmentation
models for a set of 12 models. Using the set of 440 augmented (110 unaugmented images)
dog images (images of eight different wounds), we tuned (Section 2.11.3) the regression
algorithms’ hyperparameters and then trained each of the 12 models. Using either the
104 augmented (or 26 original) dog images (from two wounds) that were withheld as a
test set, we obtained the average coefficient of variation (R2) performance measurements,
for each of the 12 models. The combination of XGBoost with the SegNet-1/AIS-derived
features had the best regression performance, with R2 = 0.839 (Table 2) (SegNet-1/AIS also
yielded the best segmentation performance; Table 1).

Table 2. Average prediction performance of three regression models—each with input features
from one of four different segmentation models—on a test set of 104 images (26 original images of
two dog wounds; four-fold augmented as described in Section 2.3.1), as measured by R2 coefficient
of variation. The models shown here were trained with Phase 1 features only; they did not include
any superpixel-derived (i.e., Phase 2) features. Column abbreviations as follows: Arch., segmentation
network architecture; PCA, indicates whether or not that segmentation model’s image encoding was
PCA-reduced; CV R2, cross-validation average R2 on the set of 440 images used for training the
regression model; Test R2, average R2 on the test set of images; L.C.I., lower confidence interval (1 σ)
on the test R2; U.C.I., upper confidence interval (1 σ) on test R2.

Model Arch. PCA? Feat. CV R2 Test R2 L.C.I. U.C.I.

GPR U-Net-1 Yes 344 0.916 0.773 0.751 0.799
GPR U-Net-2 No 3138 0.791 0.762 0.739 0.781
GPR SegNet-1 Yes 406 0.904 0.778 0.749 0.797

XGBoost U-Net-1 Yes 344 0.919 0.766 0.749 0.775
XGBoost U-Net-2 No 3138 0.867 0.795 0.774 0.821
XGBoost SegNet-1 Yes 406 0.922 0.839 0.825 0.852
XGBoost SegNet-2 no 1570 0.890 0.811 0.799 0.826

RFR U-Net-1 yes 344 0.914 0.770 0.765 0.785
RFR U-Net-2 no 3138 0.848 0.782 0.769 0.803
RFR SegNet-1 yes 406 0.916 0.831 0.817 0.851
RFR SegNet-2 no 1570 0.893 0.797 0.781 0.818

While the SegNet-1/AIS/XGBoost performance is only slightly better (0.839 vs. 0.831)
than SegNet-1/AIS/Random-Forest, XGBoost trained faster than Random Forest (63 min
vs. 118 min) than the RFR model when using the SegNet-1-PCA feature vector. Overall,
across the four feature sets, XGBoost regression models had a 3.8% better performance than
GPR models and 1.1% better than the random forest.

3.4. Time-to-Healing Prediction Performance Including Phase 2 Features

Having established (Section 3.3) that the combination of using the SegNet-1 model
(Section 2.6) for segmentation (trained with image augmentation) and using XGBoost for
regression has the best performance among models tested for predicting wound time-to-
healing, we next investigated whether adding four features derived (Section 2.8.1) from
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the superpixel tissue-type classifier (Section 2.4; i.e., Phase 2 of our method, as shown
in Figure 1), which would improve the performance for the time-to-healing prediction.
On the same train/validation and test sets of images as used for the regression model
using only the segmentation (Phase 1) features (Section 3.3), we measured the average R2

performance on the training/validation and test image sets, for two XGBoost regression
models: a “Phase 1 model” trained with only the 406 SegNet-1 segmentation-derived
features, and a “Phase 1 + 2 model” trained with all of those features plus four superpixel
tissue type classifier-derived features (for a total of 410 features). We found that the test-set
performance was higher for the “Phase 1 + 2 model” (0.863) than for the “Phase 1” model
(0.839) (Table 3).

Finally, to compare the performance of the hybrid approach (consisting of deep
learning-derived features and decision tree-based regression, as shown in Figure 1) with a
fully neural network approach, we implemented an alternative fully neural-network-based
approach in which the same Phase 1 and Phase 2 features were used as inputs to a deep
neural network regression model (see Section 2.11.4 for details). The fully neural network
approach’s R2 performance (0.823 on CV, and 0.813 on the test set) was significantly lower
than with the XGBoost-based hybrid approach (0.966 on CV, and 0.863 on the test set).

Table 3. Average prediction performance of XGBoost regression on a test set of 104 images (images
from two different dog wounds; 4× augmented from 26 original wound images), as measured
by R2 coefficient of variation, for models trained with 406 features (from SegNet-1 segmentation
only) and/or with the four superpixel-derived tissue classification features (Section 2.8.1). Column
abbreviations are as follows: Arch., segmentation network architecture; Phase, indicates which
feature-sets were included; CV R2, cross-validation average R2 on the augmented set of 440 images
used for regression training; Test R2, average R2 on the test set of images; L.C.I., lower-confidence
interval (1 σ) on test R2; U.C.I., upper-confidence interval (1 σ) on test R2. Performance on the Phase 2
only feature-set was sufficiently low that no C.I. permutation analysis was performed.

Model Arch. Phase Feat. CV R2 Test R2 L.C.I. U.C.I.

XGBoost SegNet-1 1 and 2 410 0.966 0.863 0.851 0.875
XGBoost SegNet-1 1 406 0.922 0.839 0.825 0.852
XGBoost SegNet-1 2 4 0.603 0.042

4. Discussion

Our the first point of discussion concerns the biological rationale for including image-
wide tissue type (superpixel)-derived features in the regression model. The results of
Section 3.1 indicate that the MLP model can accurately predict wound image superpixels’
tissue types among four classes (Section 2.2.1). Biologically, at the hemostasis (blood
clotting) stage, platelets in the blood adhere to the injured site [47]. Platelet activation
leads to the activation of fibrin, which autopolymerizes and further promotes platelet
aggregation. Thus, a high proportion of “fibrin”-labeled tissue in the wound would be
expected to indicate the healing process is in the early stage. Similarly, at the proliferative
stage, granulation tissue can be noted from the healthy wound buds that protrude from the
wound base [5]; thus, the proportion of “granulation”-labeled tissue would be expected
to correlate with the healthy healing process, whereas the proportion of “necrosis”—(i.e.,
tissue death)-labeled tissue would be expected to be anti-correlated with time-to-healing.
The size of superpixels represents a balance between the potential resolution for mapping
tissue types in the wound-bed and accuracy for detecting tissue types based on color and
texture patterns within the superpixel; in our case, in the dataset of labeled superpixels
that we had access to, the superpixel size was chosen to be 70 × 70 px to balance those
two priorities.

A second point of discussion concerns the (currently manual) step of counting pix-
els per cm in order to assess the wound area (which was necessary in order to estimate
the days until healing, as explained in Section 2.9). Approaches toward automating this
step could include (1) using the Hough transform [48] for detecting the ruler line; (2) us-
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ing a separate neural network specifically for ruler detection and length calculation; or
(3) using image metadata regarding image distance and field size to calculate the field’s
physical dimensions.

While the results of Table 3 represent a significant new finding in terms of the types
of features that are useful for predicting the wound time-to-healing, the context of the
dataset is relevant to interpreting the model’s absolute performance. The ground-truth
set of labeled images used for the regression model in this work are from a series of
controlled images (acquired with a single digital camera at fixed distance) from a controlled
study [31] of surgical wounds. Thus, we would expect that attaining equivalent absolute
predictive performance on wound images from uncontrolled data acquisition settings and
from a broader array of wound conditions (e.g., burns, ulcers, etc.) would likely require
retraining the regression model with a substantially larger and more diverse set of images.
However, the key findings from this work (Tables 1–3) are based on the relative regression
performance on a feature set including superpixel tissue-derived features vs. without
them. Although the superpixel tissue-derived features (Phase 2 features) by themselves
have relatively poor performance on the regression task (see Table 3), when combined
with the segmentation-derived features (Phase 1 features) they significantly improve the
regression performance.

As far as we are aware, this work represents the first effort to leverage wound images
from a controlled study of surgical wound healing for the purpose of regression model
selection and feature-set selection for computationally predicting wound time-to-healing.
Our long-term goal is to apply these results to develop models for predicting healing time
in humans. Furthermore, a natural progression of the work would be to integrate wound
images with other measurements such as C-reactive protein (CRP) [49] and immunoglob-
ulin G [50], as well as relevant clinical comorbidities and demographic/anthropometric
parameters (e.g., diabetes, nutritional status, age, body mass index, and smoking status) [13]
to accurately predict the time-to-healing in human clinical settings and to flag wounds re-
quiring intervention. While these types of demographic, anthropometric, and comorbidity
data were not needed for the specific questions that we focused on in this controlled study
of canine wound healing (i.e., Can a tissue type-augmented hybrid approach improve
time-to-healing prediction? and Which regression model leveraging a hybrid tissue-type
and segmentation-derived feature-set gives best performance for time-to-healing predic-
tion?), it is expected that such data would be required in order to maximize accuracy in
clinical settings.

5. Conclusions

For three of the four image segmentation models, using the augmented wound image
set led to a better image segmentation performance than the models learned using original
images without augmentation. Among the four segmentation models, the SegNet-1-PCA
model using augmented images had the highest test-set Dice performance (0.921). Using
the segmentation-derived features, out of the three different regression models that we
studied, XGBoost regression outperformed both Gaussian process regression and random
forest regression, reaching a test-set R2 of 0.839 (95% confidence range of 0.825–0.852). We
further found that, given the high-resolution wound images without tissue type labels,
the SegNet-PCA model is a powerful tool for extracting low-dimensional feature vectors
while generating reasonable wound segmentation masks; this yields a mask that retains
the wound area information and features that retain biological patterns that enable the
improved image-based prediction of wound time-to-healing. Finally, we demonstrated
that incorporating tissue-type superpixel-derived features into the regression model signifi-
cantly improves the prediction of wound time-to-healing, versus using features derived
only from the image segmentation model.
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The following abbreviations are used in this manuscript:
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px pixel
R2 coefficient of determination
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Citation: Lipiński, S. Creation of a

Simulated Sequence of Dynamic

Susceptibility Contrast—Magnetic

Resonance Imaging Brain Scans as a

Tool to Verify the Quality of Methods

for Diagnosing Diseases Affecting

Brain Tissue Perfusion. Computation

2024, 12, 54. https://doi.org/

10.3390/computation12030054

Academic Editor: Anando Sen

Received: 25 January 2024

Revised: 5 March 2024

Accepted: 6 March 2024

Published: 8 March 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Creation of a Simulated Sequence of Dynamic Susceptibility
Contrast—Magnetic Resonance Imaging Brain Scans as a Tool
to Verify the Quality of Methods for Diagnosing Diseases
Affecting Brain Tissue Perfusion

Seweryn Lipiński
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Abstract: DSC-MRI examination is one of the best methods of diagnosis for brain diseases. For this
purpose, the so-called perfusion parameters are defined, of which the most used are CBF, CBV, and
MTT. There are many approaches to determining these parameters, but regardless of the approach,
there is a problem with the quality assessment of methods. To solve this problem, this article proposes
virtual DSC-MRI brain examination, which consists of two steps. The first step is to create curves that
are typical for DSC-MRI studies and characteristic of different brain regions, i.e., the gray and white
matter, and blood vessels. Using perfusion descriptors, the curves are classified into three sets, which
give us the model curves for each of the three regions. The curves corresponding to the perfusion
of different regions of the brain in a suitable arrangement (consistent with human anatomy) form a
model of the DSC-MRI examination. In the created model, one knows in advance the values of the
complex perfusion parameters, as well as basic perfusion descriptors. The shown model study can be
disturbed in a controlled manner—not only by adding noise, but also by determining the location of
disturbances that are characteristic of specific brain diseases.

Keywords: virtual DSC-MRI examination; perfusion descriptors; tracer concentration curves; brain
model; pathology simulation

1. Introduction

DSC-MRI (Dynamic Susceptibility Contrast—Magnetic Resonance Imaging) is one of
the most modern brain diagnostic methods. It allows for imaging perfusion, i.e., assessing
the degree of blood supply and blood flow through tissues. As the perfusion changes in
pathological lesions, DSC-MRI brain imaging allows for early diagnosis and the indication
of the location of brain tissues that put patients at risk of pathologies such as cancerous tu-
mors, damage resulting from a stroke, epilepsy, migraine headaches, dementia, Moyamoya
disease, and many more [1–5].

In a DSC-MRI study, the response of the examined brain area is observed over time
in the form of a sequence of MRI scans [6–9], after prior injection of a paramagnetic tracer
(e.g., gadolinium-based chelates) into the bloodstream [8,9]. A tracer passes successively
from the injection site, through the circulatory system and cerebral artery, and to the
examined area (Region of Interest—ROI). Tracer flow causes changes in the measured MRI
signal [8–10]. From the temporal sequence of MRI scans obtained during the examination,
a temporal course of changes in the MRI signal is created for each pixel of the examined
brain cross-section [10]. Its shape corresponds to changes in tracer concentration in the ROI.
On this basis, the so-called perfusion parameters, containing diagnostic information, are
calculated [11,12].

The most frequently used perfusion parameters are Cerebral Blood Volume (CBV),
Cerebral Blood Flow (CBF), and Mean Transit Time (MTT). CBV can be calculated by assess-
ing the area under the concentration–time curve. The most used approach to obtaining CBF
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is to utilize singular value decomposition (SVD) to estimate CBF through deconvolution of
the arterial input function (AIF, i.e., the function that is an excitation for the ROI), while
MTT is calculated by dividing CBV by CBF [2,9,11,12]. The basis of the diagnosis are
so-called parametric images, which are maps of the values of perfusion parameters in the
examined brain cross-section [13,14].

There are many approaches to determining perfusion parameters [12,13,15–17]. The
most frequently used is the non-parametric approach, in which no internal structure of
the system under study is assumed, and a specific regression function is fitted to the
measurement data [12,16]. In the case of the parametric approach, a hypothesis is put
forward regarding the functioning of the system under study, in the form of its model,
which allows the parameters of such a model to be given a physical interpretation [17,18].
However, regardless of the approach used, there is a problem with assessing its quality
and its comparison with others. This problem results from the small number of available
measurement samples and the low quality of DSC-MRI data [19,20]. For this reason,
tracer concentration curves are often simulated using various regression functions (e.g.,
gamma variate). Tracer concentration patterns in blood are usually created by selecting
the parameters of the regression curve so that the perfusion parameters calculated on
its basis agree with the literature values [16,21]. Consequently, the choice of a specific
regression function affects the subsequent simulation results, favoring those methods in
which perfusion parameters are estimated based on the same regression function.

Generally, in simulation-based DSC-MRI studies, a statistically significant set of curves
is created, and then, affected in a specific way [19,21]. In most studies, complex perfusion
parameters are determined, i.e., the above-mentioned CBF, CBV, and MTT. Meanwhile, in
many cases, also related to the fact that DSC-MRI is used in an increasing range of brain
diseases [1–7], it turns out that the basic perfusion descriptors may become more diag-
nostically useful [22,23]. The basic perfusion descriptors are those that can be determined
directly from the tracer concentration curve, i.e., BAT (Bolus Arrival Time—the time of
appearance of the tracer in the ROI), MPC (Maximum Peak Concentration—the maximum
amplitude of the tracer concentration in the ROI), TTP (Time to Peak—the time taken to
reach the maximum amplitude), and FWHM (Full Width at Half Maximum—the width
of the tracer concentration curve at the height of half the maximum of the curve) [16,22].
This is significant because, especially in relation to time descriptors (BAT and TTP), the
diagnosis depends not only on the descriptor value itself, but also on the connection of the
measurement value with the location in the brain cross-section [24].

For brain tissue, there are two basic shapes of tracer concentration curves, i.e., for
white and gray brain matter. In addition to signals from both tissues, signals from blood
vessels are measured [11,13,14]. So, the aim of the first part of the article is to obtain three
DSC-MRI curves characteristic of different brain regions, created not using the standard
approach of simulating characteristic curves in the form of arbitrarily chosen regression
functions, but from a set of measurement data from a clinical DSC-MRI study. The obtained
characteristic curves will be then used to create a virtual DSC-MRI brain examination.

It will be possible to introduce known disturbances into the obtained model brain study
(e.g., in the form of signals typical for pathologies such as tumor, stroke, etc.), and then,
examine the effectiveness of their identification for various methods and computational
algorithms. This will enable research to be conducted for various dimensions and shapes
of pathological disorders and for various amounts of measurement disturbances.

To create such a virtual sequence of DSC-MRI scans covering the entire cross-section
of the brain, model tracer concentration curves with a shape corresponding to perfusion
in various brain regions, after conversion into a DSC-MRI measurement signal, must be
appropriately arranged (corresponding to the anatomy of a specific brain cross-section).

The key motivation for creating a virtual DSC-MRI study in this form is the fact that,
unlike the above-mentioned approach, in which we only simulate curves and not the
entire sequence of images, in the proposed approach, we will know in advance the values
of both complex perfusion parameters, as well as simple perfusion descriptors. Thanks
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to the possibility of introducing curves with a shape characteristic for various types of
pathological lesions in a known place, their detectability can be evaluated. The model
examination can be disturbed in a controlled way—noise with assumed characteristics
can be introduced into the MRI signals [14,16,21]. The advantage of creating a sequence
covering the entire cross-section of the brain is that we can also influence the entire sequence
by disrupting the images created, not just the signals that form them. It is also possible
to test the reliability of the methods when introducing pathologies of different diameters
and profiles into the examination, which is impossible in the case of the classical approach,
while the size of the detected pathology often implies the method of treatment (including
the decision on surgical intervention), e.g., allows for the distinction between reversible
and irreversible ischemia [23,25].

2. Materials

To maintain the uniformity of the input data, all clinical DSC-MRI measurements used
for the creation of the virtual brain DSC-MRI examination were performed on a GE scanner
with the following parameters of the sequence of scans: B = 1.5T, SE-EPI, 12 layers of size
(slice thickness) 5–10 mm, 60 measurement points, TR (Repetition Time) = 1250–1610 ms,
TE (Time Echo Delay) = 32–53 ms, Ts (sampling interval) = 1.43 s.

Gadopentetic acid (Gd-DTPA) was used as a paramagnetic contrast agent.
To maintain the anonymity of the subjects, 24 DSC-MRI sequences from adults as-

sumed to be healthy (age 23–68) of both sexes were randomly selected from the available
ones, which gave 1200 MRI images for analysis.

It should be noted that TR values, although varying, were considered appropriate for
the model study, which results from the fact that since a short TR was below 700 ms, while
a long TR was above 2000 ms [26], the range of 1250–1610 ms could be considered without
deviations on either side.

3. Basic Perfusion Descriptors

Figure 1 shows the typical shape of the tracer concentration curve in the ROI [16,18].

 
Figure 1. Tracer concentration curve with selected basic perfusion descriptors.

Figure 1 also shows the basic perfusion descriptors that can be determined directly
from this curve [14,16,18]:

• The time of appearance of the tracer in the ROI—BAT (Bolus Arrival Time);
• The maximum amplitude of the tracer concentration in the ROI—MPC (Maximum

Peak Concentration);
• The time taken to reach the maximum amplitude by the curve—TTP (Time to Peak);
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• The width of the tracer concentration curve at the height of half the maximum of the
curve—FWHM (Full Width at Half Maximum).

The values of the descriptors characterizing the tracer concentration curve are different
in different areas of the brain. Based on the literature study, the following were selected for
further consideration: TTP, MPC, and FWHM [18,27]. The analysis of the values of these
descriptors for the entire cross-section of the brain allows us to distinguish three subsets
corresponding to three distinguished brain areas.

The following relationships exist between individual perfusion descriptors [16,28–30]:

• MPCA > MPCGM > MPCWM;
• TTPWM > TTPGM > TTPA;
• FWHMWM > FWHMGM > FWHMA.

In the above relationships, WM represents white matter, GM gray matter, and
A arteries.

The literature [29–31] presents classification methods using, among others, the above
relationships to also assign each pixel of the brain slice to one of the three sets (WM, GM, or
A). The research presented in this paper has a different goal, which is to obtain characteristic
tracer concentration curves for three distinguished areas. Curves with a shape deviating
from the characteristic shape (as shown in Figure 1) were identified as anomalous due to
inappropriate perfusion parameters or due to excessive noise and were not included as
components of the characteristic curves.

4. Method of Calculating Selected Perfusion Descriptors

In the three-compartment model of the process of the tracer passing through the
circulatory system to the examined area in the brain, presented, e.g., in [17,18], AIF mea-
surements, as well as measurements made in the ROI, basic regression functions were fitted,
two- and three-exponential, respectively:

fregrAIF(t) = p1 · e−p2·t + p3 · e−p4·t, (1)

fregrROI(t) = p5 · e−p6·t + p7 · e−p8·t + p9 · e−p10·t, (2)

where p1 ÷ p10 are simply the parameters of the above regression functions. These re-
gression function parameters were estimated based on DSC-MRI measurements. The AIF
parameters, i.e., p1 ÷ p4, were the same for the whole sequence, while the parameters
p5 ÷ p10 were calculated for each ROI separately, i.e., in accordance with the contrast agent
concentration in a particular ROI.

The basic features of the parametric approach to calculating the most diagnostically
important perfusion parameters (i.e., CBF, CBV, and MTT) are the avoidance of numerical
deconvolution and the possibility of using stochastic filtering to improve the noise proper-
ties of the analyzed data. Both features are unique to the parametric approach [17,18,32].
Moreover, in the case of calculating the perfusion descriptors from Figure 1 using regression
functions (1) and (2), these descriptors can be calculated directly using estimates of the
parameters of the regression function.

The subject of interest in this work are the signals in the ROI (i.e., not the arterial input
function). Therefore, a regression function in the form of Equation (2) was used, and the
parameters were estimated. The regression function was fitted to first-pass samples, i.e.,
those corresponding to the first passage of the marker through the ROI [17,32]. For this
purpose, the LS method and the Marquardt–Levenberg (M-L) algorithm were used.

After determining the estimates of the parameters of the regression function (3) for
each considered curve, the perfusion descriptors were calculated as follows:

TTP and MPC
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TTP, as the time in which the concentration curve reaches its maximum, is calculated
by solving the following equation:

d fregROI(t)
dt

= 0, (3)

so, using Equation (2) as fregrROI(t), we obtain

(
p5 · e−p6·t + p7 · e−p8·t + p9 · e−p10·t)′ = 0, (4)

−p5 · p6 · e−p6·t − p7 · p8 · e−p8·t − p9 · p10 · e−p10·t = 0. (5)

The solution to Equation (5) is tMPC = TTP. According to Figure 1, the TTP descriptor
clearly indicates the maximum MPC, and therefore,

MPC = fregrROI(tMPC). (6)

FWHM
The FWHM descriptor value is calculated using the previously obtained MPC and

TTP values. The value of the FWHM descriptor is defined as

FWHM = t2 − t1, (7)

where t1 and t2 are determined from the two following relationships:

fregrROI(t1) =
fregrROI(tMPC)

2
, t < tMPC, (8)

fregrROI(t2) =
fregrROI(tMPC)

2
, t > tMPC. (9)

In other words, we calculate the time taken for the regression function to reach half of
its maximum before reaching it (t1), as well as the time taken for the value of this function
to fall back to half of its maximum after reaching it (t2). According to the definition of
FWHM, the difference in these times gives us the exact value of this descriptor.

5. Creation and Verification of Model Curves

In the next step, each measurement curve was assigned a vector of previously se-
lected descriptors characterizing it, related to the brain area based on previously shown
relationships existing between individual perfusion descriptors, as given in [16,28–30]:
Dn = [MPCn, TTPn, FWHMn], n = 1, 2, . . . , N, where N is the number of all curves.

These vectors were assigned to appropriate sets, in this case, four. Three of them
correspond to three brain areas, while the fourth is intended for non-standard curves that
do not correspond to any of the three brain sets. The curves in the fourth set were too noisy,
or they came from areas affected by the disease. Curves from this set were not components
of characteristic signals—they were rejected, as they could influence the quality of the
resulting model DSC-MRI study.

The unsupervised clustering method was used to divide the set of all curves. Generally,
clustering is the task of dividing a multidimensional set of data (in this case, N vectors)
characterized by a feature vector (in this case, a Dn vector of descriptors) into subsets in
such a way that the elements of each subset are similar to each other while being as different
as possible from elements belonging to other groups. For this purpose, this work uses the
k-means algorithm, in which the data set is initially divided into a predetermined number
of classes (in this case, equal to 4). Then, the obtained division is iteratively improved in
such a way that some elements are transferred to other classes until the minimum variance
within the obtained classes is obtained [33,34].
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An unsupervised clustering algorithm was chosen so that the resulting sets of curves
would not be subject to any arbitrarily selected thresholds or other factors that could
influence the selection and, consequently, mismatch of the model curves to the brain region
they are supposed to represent.

After clustering, characteristic curves were created by averaging each of the three
obtained sets. Figure 2 shows the average curves from the first three sets, i.e., those
containing measurements from the white and gray matter of the brain, and from blood
vessels (arteries). These are the tracer concentration curves characteristic of particular
brain regions.

Figure 2. Contrast agent concentration curves characteristic of three brain regions. On these curves,
we can identify baseline (0–24 s), first-pass of contrast agent (24–40 s), and contract agent recirculation
(40–60 s).

Visual assessment of the averaged curves from Figure 2 allows us to initially conclude
that the selected classification method works properly. The differences between them
correspond to those known from the literature [11,13,14,28,29].

Better verification of the quality of the obtained curves can be achieved by comparing
the CBV parameter values calculated for each of the obtained characteristic curves with
the values known from the literature. The choice of the CBV for this purpose was dictated
by the fact that of the three complex perfusion parameters (i.e., CBF, CBV, and MTT), this
one is the most computationally explicit and, in some cases, it is possible to use a regional
relative description of CBV without knowing the arterial input function [35]. CBV is, by
definition, given as [11,13,14,36]

CBV =

∫ ∞
0 CROI(t)dt∫ ∞
0 CAIF(t)dt

, (10)

where CROI(t)dt and CAIF(t)dt are the tracer concentration curves for the ROI and for the
AIF, respectively.

As follows from Equation (10), the absolute value of CBV depends on the arterial
input function. The value of the denominator (i.e., integral of the arterial input function) is
the same for each pixel of the brain cross-section, so to verify the quality of the obtained
characteristic curves, the CBV ratios for the three individual brain regions can be used.
This will make the obtained results independent of the possible impact of the arterial input
function on their quality.
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So, CBVA/CBVGM and CBVGM/CBVWM were calculated, and the obtained results
were compared with values obtained from six different clinical studies [29,31,36–39]. The
results are shown in Table 1.

Table 1. Comparison of results obtained based on curves characteristic of three brain regions obtained
in this study with published parameter values obtained from clinical studies.

CBVA/CBVGM CBVGM/CBVWM

Based on the Model Curves
Presented in This Work 1.97 2.19

Artzi et al. [29] 1.60–2.10 2–2.4

Bjornerud and Emblem [31] (not investigated) 1.60–1.98 or 1.74–2.18
(depending on the calculation method)

Ibaraki et al. [36] (not investigated) 1.60–2.40 or 2.30–2.50
(depending on the ROI)

Schreiber et al. [37] (not investigated) 1.90–2.30
Wenz et al. [38] (not investigated) 1.60–2.60
Fuss et al. [39] (not investigated) 1.50–2.80

The results presented in Table 1 show that the proposed approach enables very good
compliance of the perfusion parameters with those published in the literature. This means
that the curves shown in Figure 2 can be used as tracer concentration curves specific to the
white and gray matter of the brain and to blood vessels. It is worth noting that only the
authors of [29] present the CBVA/CBVGM ratio. In the same paper, Artzi et al. [29] point
out that it is impossible to compare the result obtained by them with the literature values, as
such values are not published; however, a comparison of the highest curve in Figure 2 with
the curves obtained in arteries and presented, for example, in the works [11,13,14,28,29]
shows very good compliance between the shapes of these curves. The lack of other CBVA
values in the literature can probably be explained by the fact that, in general, determining
the position of arteries in a cross-section of the brain is a difficult task, and in fact, it is most
often only used to determine curves that can be candidates for AIF [18,27].

However, the obtained value of the CBVGM/CBVWM ratio is consistent with five of
the six clinical trial results shown. The result from [31] differs from others, which may
be due to the use of a different calculation method or the fact that in many studies, the
ROI selection is performed manually. This may lead to the over- or under-estimation of
values due to the inaccurate marking of gray- and white-matter regions, or by incorrectly
including measurements from vessels in these regions.

The tracer concentration curves shown in Figure 2 can be used to evaluate and compare
methods for calculating complex perfusion parameters. Their main advantage is the fact
that they were obtained based on an actual DSC-MRI examination of the brain, and not
using the standard approach of simulating regression curves. However, this is not their
only possible application. The next part of this article will show other possibilities of using
the obtained characteristic curves, i.e., creating a simulated DSC-MRI brain examination.

6. Creation of DSC-MRI Measurement Curves and a Brain Anatomy Model

From the c(t) tracer concentration curve in the blood, the DSC-MRI measurement
signal S(t) is obtained from the following relationship [40]:

S(t) = S0 · e−κ·c(t)·TE (11)

where S0 is the amplitude of the measurement signal before contrast administration, and κ is
the proportionality coefficient (depending on the properties of the tissue and measurement
conditions resulting from the device used).

Figure 3 shows model DSC-MRI signals calculated using Equation (11) and based on
the previously obtained model tracer concentration curves for individual brain regions.
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The DSC-MRI measurements used to create the model curves consisted of 50 scans, so this
was the resolution of the model study.

Figure 3. DSC-MRI signals derived from model contrast agent concentration curves for each of three
brain regions: gray matter, white matter, and arteries.

To create the model study, a physiological base was needed, i.e., the arrangement of
individual tissues in a cross-section of the brain. The BrainWeb database was used for
this purpose [41–44]. This database provides, among others, 20 virtual static brain MRI
images [43]. The MRI simulator described in [44] includes blood vessels, which, combined
with the model DSC-MRI measurement signals from Figure 3, makes it possible to use it to
create a model series of dynamic brain images including blood vessels, without the need to
obtain an anatomical base from the segmentation of brain areas from other imaging studies.

It should be noted that at this stage, changes in the brain resulting from aging (like the
WM/GM ratio) or sex differences should be considered if necessary [45–47].

Figure 4 shows where the gray (b) and white (c) matter of the brain and blood vessels
(d) are located in two selected brain cross-sections (a). The maps shown in Figure 4b–d
allow for the appropriate location of the model DSC-MRI signals, and thus, the creation of a
simulation of a DSC-MRI study, consisting of a sequence of scans with the same parameters
as the actual studies constituting the basis for obtaining the model DSC-MRI signals.

L 

 
P 

    

    
 a b c d 

Figure 4. Brain cross-sections serving as bases of two models of DSC-MRI examinations, (a) and
localization of gray matter (b), white matter (c), and arteries (d) on these cross-sections.
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7. Results—Exemplary DSC-MRI Study Models

Figure 5 shows five selected exemplary scans from a model DSC-MRI study created
based on cross-section P of Figure 4: one scan from before the tracer appeared (t1), one
when the tracer reached its maximum value (t3), two adjacent to it (t2 and t4), and one after
tracer passing, i.e., during the recirculation (t5). One study (row a) contains no noise, and
two others (rows b and c) are artificially noised. The DSC-MRI signals were distorted using
Gaussian white noise at levels of SNR of 25 dB (b) and 20 dB (c).

a 

     

b 

     

c 

     
 t1 t2 t3 t4 t5 

  

 

 

Figure 5. Representative scans from exemplary model DSC-MRI examination: sequence of scans for
healthy brain (a) and the same sequence with low (b) and high (c) noise content.

DSC-MRI examination is used for the diagnosis of an increasing range of brain dis-
eases. Each disease (as well as its stage) has more or less specific characteristics and, in a
peculiar way, affects simple and complex perfusion parameters [1,14,15,22,48]. Therefore,
the introduction of a pathology with a specific diameter and profile into a model sequence
can show how effective each approach to calculating perfusion parameters is in terms of
detecting a specific pathology. Figure 6 shows the location of two pathologies with different
dimensions introduced into the model DSC-MRI examination.
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a b 

Figure 6. Shapes (a) and localizations (b) of the pathologies introduced into the model research.

A pathology with the shape shown in Figure 6 was introduced into a model study
based on the brain cross-section from row L of Figure 4. The model DSC-MRI signals
were modified based on the thresholds imposed on the perfusion descriptors proposed
by Grandin et al. [23] to detect ischemic cerebral infarction. The DSC-MRI examination
created in this way is shown in Figure 7. The scans were selected analogously to those from
Figure 5. The first sequence (a) does not contain noise or a pathology, the second one (b)
has a pathology introduced as described above, and the third one (c) contains a pathology
and is also disturbed by noise at an SNR level of 25 dB.

a 

     

b 

     

c 

     
 t1 t2 t3 t4 t5 

Figure 7. Representative scans from different exemplary model DSC-MRI examinations: healthy
brain (a), brain with inserted pathologies (b), and brain with two pathologies and noise content (c).

Figure 8 shows maps of the three most important perfusion parameters, i.e., CBV, CBF,
and MTT, calculated based on the sequence shown in Figure 7c.
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CBV CBF MTT 

Figure 8. CBV, CBF, and MTT perfusion maps obtained based on the model sequence shown in
Figure 7c.

As can be seen in Figure 8, the introduced pathologies in the parametric images are
clearly observable and consistent with the shape of the pathologies shown in Figure 6. In
the case shown, both pathologies are relatively obvious, and they also have a large diameter;
therefore, for a diagnostician, it would be hard not to notice the impact of the disease on the
parameter map. However, the pathological changes appearing in the brain cross-section
may have a completely different shape (irregular) and a much smaller diameter, and their
impact on the tracer concentration curve may also be much more subtle. In such cases, it is
extremely desirable that the perfusion parameter map assessed by the doctor is as reliable as
possible. The proposed virtual study can be used as a tool for this purpose. With its help, it
is possible to objectively compare different approaches to calculating perfusion parameters
by checking how the obtained parametric maps correlate with a known pathological change
introduced in a specific location.

8. Discussion and Conclusions

This article proposes the creation of a simulated DSC-MRI examination. Curves
corresponding to the perfusion of various brain regions in an appropriate arrangement
(corresponding to the anatomy of a specific brain cross-section) create model DSC-MRI
studies. Using sequences created in this way, we know in advance the values of both
complex perfusion parameters and their simple descriptors. We can disrupt the model
study in a controlled way—not only by introducing disturbances of the assumed size and
characteristics to the DSC-MRI signals, but also by influencing their location (and distribu-
tion) in the brain cross-section(s). Other types of interference that can be introduced into
such sequences, typical for image data, are blurring, geometric shifts between subsequent
images in the sequence, etc. Assessment of the resistance of the methods for determining
perfusion parameters to this type of interference is impossible when the interference is
introduced only to DSC-MRI signals, i.e., as in the approach classically proposed in the
literature. The described research model will allow us to reliably and objectively, while
considering the type of brain tissue (white and gray matter), assess the quality of various
approaches to calculating perfusion parameters.

Additionally, disturbed signals characteristic of specific pathologies can be introduced
into such a sequence. Then, an additional criterion for assessing the approach to determin-
ing perfusion parameters is to check the threshold (this threshold may be, for example, the
diameter of the introduced disorder) for detecting perfusion disorders in the presence of
various types of disturbances, either automatically or indirectly, through the assessment of
the diagnosing doctor based on a map of specific parameters.

The one limitation of the proposed approach is the fact that reliable data are needed
on the impact of each specific disease on the flow of the tracer through the brain tissue, so
that the disorders introduced into the virtual study reflect reality.
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Another limitation of the proposed approach is the fact that if an analogous model
study for long or short TR was to be created, a different set of DSC-MRI studies must be
used for the creation of model curves.

It is also worth emphasizing that this study focuses on a method that can be considered
invasive, as it involves tracer injection, while in recent years, non-invasive methods of brain
perfusion imaging have been gaining popularity, with particular emphasis on Arterial Spin
Labeling (ASL) perfusion MRI [49–51]. Since the use of this method is based on a different
principle, the described approach cannot be used to create an analogous research model.
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Abstract: This study investigates techniques for medical image classification, specifically focusing on
COVID-19 scans obtained through computer tomography (CT). Firstly, handcrafted methods based
on feature engineering are explored due to their suitability for training traditional machine learning
(TML) classifiers (e.g., Support Vector Machine (SVM)) when faced with limited medical image
datasets. In this context, I comprehensively evaluate and compare 27 descriptor sets. More recently,
deep learning (DL) models have successfully analyzed and classified natural and medical images.
However, the scarcity of well-annotated medical images, particularly those related to COVID-19,
presents challenges for training DL models from scratch. Consequently, I leverage deep features
extracted from 12 pre-trained DL models for classification tasks. This work presents a comprehensive
comparative analysis between TML and DL approaches in COVID-19 image classification.

Keywords: machine learning; deep learning; convolutional neural networks; deep features; COVID-19;
classification; CT scan

1. Introduction

Coronavirus disease 2019 (COVID-19) poses a significant global health threat due to
its highly contagious nature, primarily transmitted through respiratory droplets expelled
during coughing, sneezing, or speaking [1,2]. This respiratory illness represents one of
the most lethal infectious diseases of our time [3], often leading to a substantial decline in
the quality of life for afflicted individuals [4]. While the standard diagnostic tool, reverse
transcriptase-polymerase chain reaction (RT-PCR), is widely employed, its limitations
include a non-negligible rate of false negative results [5]. Therefore, developing and
exploring alternative methodologies for accurate COVID-19 diagnosis is crucial.

Chest computed tomography (CT) [6] has emerged as a valuable adjunct to RT-PCR
testing in the context of COVID-19 screening and diagnosis. Studies such as those by
Fang et al. [7] and Ai et al. [8] have demonstrated the efficacy of CT scans in identifying
COVID-19 patients with high sensitivity, even in cases where initial RT-PCR results were
negative. This suggests the potential benefit of utilizing CT scans, particularly for patients
exhibiting suggestive clinical symptoms despite negative RT-PCR findings [7].

Manual analysis of COVID-19 chest CT scans by radiologists presents a time-consuming
burden, especially in emergency settings with high patient volumes. This necessitates the
development of robust computer-aided diagnosis (CAD) systems capable of leveraging the
rich information embedded within digital CT scans. Machine learning (ML) frameworks,
in conjunction with image processing techniques, offer promising avenues for the construc-
tion of such CAD systems [9]. Given their potential to expedite and improve COVID-19
identification, ultimately facilitating timely and appropriate treatment interventions, CAD
systems hold significant clinical value. Existing approaches for COVID-19 classification
from CT scans can be broadly classified based on the type of feature descriptors extracted:
traditional ML and deep learning (DL) techniques [10,11].

Conventional ML approaches for COVID-19 identification rely on meticulously crafted
feature descriptors [12,13]. Conversely, DL models, specifically convolutional neural
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networks (CNNs), offer the unique capability of end-to-end training [14,15]. However,
their data-intensive nature necessitates substantial labeled data samples for training from
scratch [16]. To circumvent this limitation, pre-trained CNN models can be fine-tuned and
deployed as feature extractors, effectively capturing the salient information within medical
images like CT scans [17].

Accurate and timely COVID-19 diagnosis presents a significant challenge in clinical
settings. Robust automated detection methods can significantly aid medical professionals
in making treatment decisions upon confirmation of the disease. This study, therefore,
investigates a comprehensive range of feature descriptors for the classification of COVID-19
chest CT images. The primary objective is to identify a robust and efficient set of descriptors
that accurately classify COVID-19 versus non-COVID-19 cases.

In the following, I provide a literature review of classification techniques for chest
CT scans of patients afflicted with COVID-19 and outline this work’s contributions.

2. Related Work

The automatic classification of COVID-19 CT images has garnered significant attention
in recent research, as evidenced by a plethora of contributions documented in the litera-
ture [18–20]. In this section, I provide a review of these computer-aided system techniques,
categorizing them into two distinct paradigms: traditional machine learning (TML) and
deep learning (DL)-based approaches.

2.1. Traditional ML-Based Techniques

TML approaches for COVID-19 image classification typically adopt a pipelined struc-
ture. This workflow encompasses three key stages: (1) feature extraction, where relevant
image characteristics (e.g., shape, color, texture) are isolated; (2) feature selection, which
involves choosing a subset of informative features; and (3) classification model construction,
where a model is trained to distinguish between COVID-19 and non-COVID-19 images.
The ultimate goal is to achieve a robust classifier with minimal classification error. For in-
stance, Hussain et al. [21] employed texture and morphological features to train various
supervised classifiers for COVID-19 classification. Similarly, Chen et al. [22] utilized texture
features derived from the Gray-Level Co-Occurrence Matrix (GLCM) to train a support
vector machine (SVM) classifier within a 10-fold cross-validation (CV) framework.

Other studies have explored the utility of statistical moments for differentiating
COVID-19 from non-COVID-19 images. Elaziz et al. [12] proposed the extraction of Frac-
tional Multichannel Exponent Moments (FEMs) as features for classifier training. Their
approach was evaluated on two independent datasets, achieving accuracies of 96.09%
and 98.09%, respectively.

Ismael and Şengür [13] explored the efficacy of various multiresolution analysis
techniques, namely wavelet, shearlet, and contourlet transforms, for COVID-19 detection
in X-ray images. Following image decomposition, they extracted entropy and normalized
entropy as features from the resulting subbands. These feature vectors were subsequently
employed to train extreme learning machines (ELMs) for classification. The study utilized
an imbalanced dataset comprising 200 healthy control samples and 361 COVID-19 X-ray
images. The authors compared their proposed traditional method with the performance of
DL-derived features. Interestingly, they concluded that traditional methods retain relevance
and do not necessarily yield inferior results compared to DL approaches. This observation is
supported by their finding that shearlet-based descriptors achieved an accuracy of 99.28%.

In a similar tendency to previous TML works, this research proposes to delve into a
comprehensive exploration of hand-engineered descriptors. To mitigate the introduction of
extraneous biases, the training and testing protocols will be held constant, while leveraging
the identical COVID-19 dataset employed throughout the study.
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2.2. DL-Based Techniques

In contrast to TML approaches, DL models offer the capability of end-to-end training
directly on raw COVID-19 image data. The efficacy of DL architectures stems from their
inherent capacity to autonomously acquire and unveil multi-tiered representations from
data. Initial strata within the network typically concentrate on the extraction of fundamen-
tal characteristics, such as chromatic properties and boundaries [23]. Subsequently, higher
strata progressively abstract these features, culminating in the formation of semantically sig-
nificant representations of the input data. As an example, Ismael and Şengür [24] explored
both fine-tuning pre-trained CNNs and training a CNN from scratch for COVID-19 detec-
tion in chest X-ray images. The utilized dataset comprised 180 COVID-19 and 200 healthy
control X-ray images. The study evaluated various pre-trained models, including ResNet50,
ResNet101, VGG16, and VGG19. Extracted deep features from these models were subse-
quently fed to an SVM for classification. The authors reported accuracies of 94.7%, 92.6%,
and 91.6% for utilizing unsupervised deep features extraction, fine-tuning pre-trained
models, and training from scratch, respectively.

Mirroring the approach of Ismael and Şengür [24], Haque et al. [25] investigated
the utility of DL for COVID-19 detection in chest X-ray images. They explored both a
custom-designed CNN model and fine-tuned pre-trained models (ResNet50, VGG-16, and
VGG-19). Their proposed CNN architecture achieved an accuracy of 98.3% and a precision
of 96.72%.

Furthermore, Jain et al. [26] investigated the use of X-ray images for COVID-19 detec-
tion through a DL model trained with data augmentation techniques. While their model
was validated using a 5-fold CV scheme, it achieved an accuracy of 98.93%.

Saiz and Barandiaran [27] proposed an object detection DL architecture, which was
trained and tested using publicly available datasets of 1500 images of normal and abnormal
COVID-19 patients. The authors’ primary goal was to classify the patients as infected or
non-infected with COVID-19. The reported sensitivity and specificity were 94.92% and
92%, respectively.

Sahin et al. [28] investigated the application of DL methodologies for COVID-19
diagnosis utilizing CT imagery. Their approach leveraged Faster R-CNN and Mask R-CNN
architectures for the classification of patients with COVID-19 and pneumonia. The study
conducted a comparative analysis employing VGG-16 as the backbone for the Faster R-CNN
model, while ResNet-50 and ResNet-101 backbones were utilized for the Mask R-CNN
model. The implemented Faster R-CNN model achieved an accuracy of 93.86%. The Mask
R-CNN model, employing ResNet-50 and ResNet-101 backbones, yielded mean average
precision (mAP) values of 97.72% and 95.65%, respectively.

Avola et al. [29] investigated the effectiveness of twelve pre-trained DL models to
differentiate between chest X-ray images from healthy individuals, those exhibiting signs
of viral pneumonia (encompassing both generic and SARS-CoV-2 strains), and those with
bacterial pneumonia. The experiment employed a dataset consisting of 6330 images,
subdivided into training, validation, and testing sets. Standard classification metrics, such
as precision and F1 scores, were computed for all models. The findings revealed that
many of the implemented architectures achieved an average F1 score of up to 84.46% when
distinguishing between the four designated classes.

Kathamuthu et al. [30] explored the efficacy of various deep transfer learning-based
CNN architectures for the detection of COVID-19 in chest CT imagery. The investigation
leverages pre-trained models including VGG16, VGG19, Densenet121, InceptionV3, Xcep-
tion, and Resnet50 as foundational elements. The results demonstrate that the VGG16
model achieves superior performance within this study, attaining an accuracy of 98.00%.

Analogous to prior investigations documented within the literature, this study lever-
ages established DL models; however, these models are employed solely for unsupervised
feature extraction, eschewing fine-tuning. My approach focuses on utilizing the terminal
layer within the network hierarchy, situated immediately before the classification layer. This
selection is predicated on the assumption that these deep features encapsulate a semantic
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representation of the input data. Notably, Nanni et al. [31] proposed a system that exploits
features learned by CNNs across multiple levels. Their system advocates for the fusion of
these learned features, subsequently leveraging them for various image classification tasks.

2.3. Contribution

Many computational techniques have been developed for the identification of COVID-19
using traditional and DL approaches. Many of these techniques lack standardized train-
ing and testing approaches. The importance of this research can be comprehended by
answering the following questions:

• Why COVID-19 Detection is Still Important?

– Long-Term Effects: COVID-19 can cause lingering health problems even after
recovery. Thus, early detection potentially helps in managing these effectively.

– Variants and Future Outbreaks: New variants can emerge, and having robust
detection systems is indispensable for future outbreaks.

– Improved Healthcare Systems: Coherent detection tools can minimize unneces-
sary hospitalizations and allocate resources better.

• Why a Comparative Study for COVID-19 is important?

– Benchmarking Progress: Contrasting different techniques allows us to identify
the well-performing models and track advancements in the field.

– Understanding Best-Performing Methods: Knowing best-performing methods
guides future development to generalize and adapt for other classification tasks
in biomedicine.

– Focus on Improving Techniques: Even if the overall trend of COVID-19 is de-
creasing, a comparative analysis of various techniques could potentially identify
and improve robust techniques for COVID-19 detection.

Thus, I compute the performances while utilizing 27 descriptors on one popular
COVID-19 dataset with the same experimental setting. Moreover, I compare the results
achieved by handcrafted features with the results obtained by the state-of-the-art deep
features. As such, a comparative experimental study was conducted on how well-advanced
deep CNNs trained on ImageNet. To this end, I experimented with 12 deep networks
that have different architectural designs and varying depths. These models are utilized as
unsupervised feature extractors. As an advantage of using CNNs as unsupervised feature
extractors, I avoid training and fine-tuning the models, and thus, fewer computational
resources are needed. I also evaluate the robustness of both hand-crafted and deep features
with an SVM, which is trained in the context of a 5-fold nested CV.

3. Methods

First and foremost, the progress and improvement in developing techniques related
to the classification of COVID-19 chest CT scans are due to the public availability of such
datasets. For instance, Angelov and Soares [32] is a highly cited paper that collected
2482 images of COVID-19 samples that I use in my investigation to evaluate and compare
traditional and deep features techniques.

Machine learning [33] refers to the field of computer science where algorithms are
trained to learn and solve problems from examples rather than being explicitly programmed.
In the context of medical image analysis, particularly COVID-19, this involves building
mathematical models based on datasets to achieve the task of differentiating between
healthy vs diseased patients. These data-driven algorithms are constantly optimized
through various optimization algorithms [34] to achieve high accuracy and efficiency in
their performance. Ultimately, the goal is to develop a generalizable ML model that can
accurately predict outcomes even for unseen data, meaning new medical images that are
not included in the training dataset.

The construction of robust classifiers within a TML paradigm for COVID-19 image
analysis hinges on the extraction of informative features from the data. Commonly utilized
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features, as documented in the literature, include morphological descriptors, textural
descriptors, and those derived from spectral methods. These extracted feature vectors
subsequently serve as input to the classification model. As an alternative, DL approaches
offer the distinct advantage of directly learning features from the raw medical images in an
end-to-end manner, avoiding the feature extraction step. However, a notable limitation of
DL techniques lies in their data-intensive nature, often requiring substantial labeled data
samples for effective training from scratch.

A review of both traditional and DL-based techniques applied to COVID-19 patient
datasets, as presented in the prior section, highlights their capability to achieve impressive
classification performance. This suggests the potential of ML as a pre-screening tool
to support radiologists in clinical settings. Notably, the literature indicates the efficacy
of spectral methods, such as shearlet [35] and contourlet [36], coupled with statistical
analysis for image analysis. The multiresolution and multi-scale nature of sub-bands
obtained through image decomposition facilitates in-depth exploration. Notably, Ismael
and Şengür [13] extracted shearlet coefficients and utilized entropy and normalized entropy
as features, demonstrating the continued relevance of traditional methods.

My study addresses the challenge of limited medical data samples by evaluating and
comparing various methods capable of mitigating this issue. I explore the performance of
twenty-seven traditionally hand-crafted features. While DL methods have demonstrated
promising classification results on diverse datasets, including those pertaining to COVID-19,
they generally require substantial training data. To circumvent this limitation, a common
practice in DL, particularly with scarce image samples, is to fine-tune a pre-trained model
alongside data augmentation techniques to achieve optimal classification performance
and avoid overfitting. In contrast, my approach investigates the use of DL models trained
on non-medical image datasets (i.e., ImageNet [37]) as unsupervised feature extractors.
My technique is implemented using MATLAB® 2021b. The experimental platform consisted
of a computer system equipped with an Intel Core i7-9700 central processing unit (CPU)
operating at a clock speed of 3.00 GHz. Additionally, the system was outfitted with an
NVIDIA GeForce RTX 2080 graphics processing unit (GPU) possessing 8 GB of dedicated
video memory.

3.1. Handcrafted Descriptors for COVID-19 Image Classification

Many conventional feature extraction methods aspire to detect a region of interest in
images by computing geometric and appearance features [38], subsequently, these features
are utilized to train traditional ML algorithms. Geometric features are computed based on
the shape, locality of features, and salient points [39]. On the other hand, appearance-based
attributes are based on texture information. In this study, I examine a set of 27 descriptors
(MATLAB ToolboxDESC contains the implementation of 27 sets of descriptors that can be
accessed via https://github.com/cigdemturan/ToolboxDESC, accessed on 1 January 2024)
(as shown in Table 1). The same descriptors are utilized by Turan and Lam [38] to study
facial expression recognition, but I examine these features to classify COVID-19 images.

Table 1. Details about the feature vector length of utilized hand-crafted features.

ID Method Abbreviation Dimension

1 Binary Pattern of Phase Congruency [40] BPPC 1062
2 Gradient Directional Pattern [41] GDP 256
3 Gradient Direction Pattern [42] GDP2 8
4 Gradient Local Ternary Pattern [43] GLTeP 512
5 Improved Weber Binary Coding [44] IWBC 2048
6 Local Arc Pattern [45] LAP 272
7 Local Binary Pattern [46] LBP 59
8 Local Directional Pattern [47] LDiP 56
9 Local Directional Pattern Variance [48] LDiPv 56
10 Local Directional Number Pattern [49] LDN 56
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Table 1. Cont.

ID Method Abbreviation Dimension

11 Local Directional Texture Pattern [50] LDTP 72
12 Local Frequency Descriptor [51] LFD 512
13 Local Gabor Binary Pattern Histogram Sequence [52] LGBPHS 256
14 Local Gabor Directional Pattern [53] LGDiP 280
15 Local Gradient Increasing Pattern [54] LGIP 37
16 Local Gradient Pattern [55] LGP 7
17 Local Gabor Transitional Pattern [56] LGTrP 256
18 Local Monotonic Pattern [57] LMP 256
19 Local Phase Quantization [58] LPQ 256
20 Local Ternary Pattern [59] LTeP 512
21 Local Transitional Pattern [60] LTrP 256
22 Monogenic Binary Coding [61] MBC 3072
23 Median Binary Pattern [59] MBP 256
24 Median Robust Extended Local Binary Pattern [62] MRELBP 800
25 Median Ternary Pattern [59] MTP 512
26 Pyramid of Histogram of Oriented Gradients [63] PHOG 168
27 Weber Local Descriptor [64] WLD 32

3.2. Deep Models for COVID-19 Images

Rather than training from scratch, I leverage pre-trained models capable of extracting
meaningful features, i.e., these models are trained on vast datasets of non-medical images
like ImageNet. These pre-trained models act as powerful but unsupervised feature extrac-
tors, generating deep features for COVID-19 image classification. Subsequently, I compare
the performance of an SVM model trained and tested solely on these extracted features
under a 5-fold nested CV scheme.

This study evaluates the capability of different CNN architectures to capture valu-
able information from COVID-19 images. I investigate both lightweight models like
SqueezeNet 1.1 [65] and MobileNet v2 [66] for their efficiency, and larger models like
ResNet-18 [67] and DenseNet-201 [68] for their potential in capturing richer details. Partic-
ularly, SqueezeNet utilizes diverse filter sizes to potentially extract both fine-grained and
broader features from the images. MobileNet v2 boasts superior speed compared to other
efficient models like ShuffleNet [69] and NASNet [70]. Notably, DenseNet-201 leverages
feature reuse, where previously learned features are incorporated into subsequent layers,
potentially enriching the information available for processing. In contrast, ResNet-18 em-
ploys element-wise addition to combine feature maps, offering a different approach to
information flow.

My investigation encompassed the exploration of alternative DL models with compa-
rable structures. Notably, Inception [71] exhibits similarities to DenseNet in its utilization
of skip connections for depth-wise feature map concatenation. However, Inception’s wider
building block, constructed using diverse kernel sizes, resulted in subpar performance for
COVID-19 image classification compared to DenseNet. Conversely, older models devoid of
skip connections, such as VGG architectures [72], are susceptible to vanishing gradients and
potentially slower training times. Nonetheless, My experimentation revealed promising
results when applying these models to COVID-19 image classification.

A brief description of the CNN models that are used in this study is as follows.

• GoogLeNet (Inception) [73]: architecture relies on LeNet and AlexNet CNN models,
but with the modification of depth and width of the layers. This model consists
of 22 layers. It employs a parallel structure to significantly lessen the training time.
As such, the model is designed to avoid patch-alignment problems by applying filter
sizes of 1 × 1, 3 × 3, and 5 × 5.

• Inception-ResNet-v2 [74]: model consists of 164 layers. This model relies on the family
of Inception, but instead comprises residual connections. As such, this model replaces
the filter concatenation step of the Inception CNN model.
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• Inception-v3 [71]: comprising 48 layers, tackles the challenge of positional variance
in salient image features by employing a multi-branch architecture. This architecture
allows the network to incorporate diverse kernel types at the same level (sizes of 1 × 1,
3 × 3, and pooling layers), effectively expanding the network’s receptive field. These
Inception modules enable the concurrent execution of numerous kernels, fostering
greater feature extraction diversity. This core concept was introduced in the initial
Inception-v1 model. Building upon its predecessor, Inception-v3 addresses the rep-
resentational bottleneck issue through enhanced strategies. Notably, it incorporates
kernel factorization and batch normalization within its auxiliary classifiers, leading to
improved performance.

• VGG-16 and VGG-19 [72]: developed by the Visual Geometry Group (VGG) at the Uni-
versity of Oxford, VGG models represent a family of CNNs known for their simplicity
and performance. Notably, VGG-16 and VGG-19, with 16 and 19 convolutional layers
respectively, gained recognition at the ILSVRC 2014 competition as runners-up. These
architectures feature relatively large numbers of parameters, with VGG-16 reaching
approximately 138 million parameters. Additionally, both models incorporate fully
connected layers containing 4096 hidden units each.

• SqueezeNet v1.1 [65]: network commences with a convolutional layer (conv1), fol-
lowed by a sequence of eight blocks, each containing 2–9 fire modules. Each fire
module employs a squeeze convolution layer with a filter size of 1 × 1, followed by
two expand layers. One of these expand layers utilizes a filter size of 1 × 1, while the
other utilizes a filter size of 3 × 3. The resulting feature maps from both expand layers
are subsequently concatenated to form the input for the subsequent squeeze layer,
which then feeds into the next fire module within the block.

• DenseNet-201 [68]: architecture leverages the concept of residual learning, introduced
in ResNet, for network optimization. While ResNet employs element-wise addition
of previous feature maps to the output, DenseNet utilizes depth concatenation of
both the current and preceding outputs. This architecture comprises 32 dense blocks,
each containing two distinct convolutional layers with kernel sizes of 1 × 1 and 3 × 3,
respectively. Notably, these convolutional layers are preceded by batch normalization
for improved convergence and training stability.

• ResNet-18 [67]: architecture leverages a series of eight basic building blocks, each
containing a sequence of two convolutional layers. These convolutional layers utilize
a fixed filter size of 3× 3, ensuring consistent spatial feature extraction. Critically, each
convolutional layer is followed by batch normalization, a technique that facilitates
faster convergence and improved training stability. Notably, a key mechanism of
ResNet-18 lies in the residual connection. This involves the element-wise addition
of the current block’s output to the output of the preceding block, allowing the
information flow to propagate efficiently through the network.

• ResNet-50 and ResNet-101 [67]: architectures comprise variations of the ResNet-18
model, differentiating themselves through their respective depths of 50 and 101 layers.
Both architectures leverage the bottleneck residual module, which processes the in-
put signal through two distinct branches: (1) Convolutional Processing Branch: This
branch applies a series of convolutions with varying kernel sizes (1 × 1 and 3 × 3)
interspersed with batch normalization and ReLU activation functions; (2) Skip Con-
nection Branch: This branch directly transmits the input signal unaltered, preserving
crucial low-level feature information.

• Xception [75]: model stands out for its exclusive reliance on depthwise separable
convolution layers. This architectural decision fosters computational efficiency while
maintaining representational power. The network encompasses 36 convolutional
layers, organized into 14 individual blocks. Only the first and final blocks deviate
from the standard structure by lacking residual connections. In contrast, all remaining
blocks incorporate linear residual connections. This strategic use of residual con-
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nections facilitates gradient flow throughout the network, enhancing training and
promoting optimal performance.

• MobileNet-v2 [66]: architecture incorporates two primary types of building blocks:
(1) Linear Bottleneck Operations: These modules aim to achieve feature compression
while maintaining representational power. (2) Skip Connections: These direct connec-
tions facilitate the flow of gradients and information across the network, mitigating
the vanishing gradient problem that can occur in deep architectures. Both block types
share fundamental operations, including convolution, batch normalization, and mod-
ified rectified linear unit (i.e., min (max (x, 0), 6)). The network comprises a total of
16 of these blocks, strategically arranged to achieve efficient feature extraction and
classification performance.

CNN as Feature Extractor

The pre-trained CNN architectures, as detailed in Section 3.2, are utilized as unsu-
pervised feature extractors. In this context, the deepest layer’s output (directly preceding
the classification layer) of each pre-trained model is flattened, generating a feature vector
for each image. Fine-tuning of the pre-trained models is not conducted. Subsequently, a
standard SVM classifier is trained and evaluated to assess the efficacy of these extracted
deep features in classifying COVID-19 images. Table 2 presents a comprehensive overview
of the feature vector lengths derived from each CNN model, thereby summarizing the
salient features captured for each COVID-19 image.

Table 2. Details about the feature vector length of utilized CNN models as feature extractors.

Model’s Name Layer Length

GoogLeNet pool5-7x7_s1 1024
Inception-ResNet-v2 avg_pool 1536

Inception-v3 avg_pool 2048
VGG-16 fc6 4096
VGG-19 fc6 4096

ResNet-50 avg_pool 2048
ResNet-101 pool5 2048

SqueezeNet v1.1 pool10 1000
DenseNet-201 avg_pool 1920

ResNet-18 pool5 512
Xception avg_pool 2048

MobileNet-v2 global_average_pooling2d_1 1280

4. Experiments and Results

This section provides a summary of the experiments conducted to evaluate and
compare a wide range of hand-crafted and deep features for detecting COVID-19 infection
from CT scan images. First, a description of the dataset utilized for the experimental studies
is given at the beginning of this section. Then, a description of the nested cross-validation
used to test my classification models and a list of utilized evaluation measures to assess the
efficiency of the studied techniques. Followed by a brief highlight of the well-performing
methods for the classification of COVID-19 CT images. Finally, I present a comprehensive
review of the state-of-the-art methods with their corresponding performance utilizing the
same benchmark dataset.

4.1. Dataset

For the purposes of this research investigation, I leverage the pre-processed COVID-19
dataset, SARS-CoV-2, as originally proposed by Angelov and Soares [32] and made publicly
available on Kaggle (www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset, accessed
on 1 January 204). This dataset contains a total of 2482 chest CT-scans images that belong
either to COVID-19 (i.e., 1252 images) or non-COVID-19 (i.e., 1230 images). The CT scans
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exhibit heterogeneity in their spatial dimensions, ranging from 104 × 119 to 416 × 512
pixels. Notably, all scans are grayscale and stored in the Portable Network Graphics (PNG)
format. Angelov and Soares have classified the images based on the outcome of the RT-PCR
tests. As such, patients with confirmed positive or negative RT-PCR tests for COVID-19
infection are included in the datasets.

4.2. Nested Cross-Validation (CV)

This work employs a five-fold nested CV strategy for hyperparameter optimization.
The dataset is partitioned into five equally sized subsets. Within each outer fold, an
inner loop utilizes four subsets for training and hyperparameter tuning via a classifier.
The remaining subset in the inner loop serves as the validation set for hyperparameter
selection. The geometric mean of the classifier performance serves as the objective function
for hyperparameter optimization within the inner loop. Upon convergence, the optimized
classifier is evaluated on the test set of the outer fold, utilizing a range of performance
metrics including accuracy, sensitivity, specificity, F-measure, area under the receiver
operating characteristic curve, positive predictive value, negative predictive value, and the
geometric mean. This process is repeated for each of the five outer folds, ensuring a robust
estimation of the classifier’s generalizability.

Following the five-fold nested CV protocol outlined previously, I reiterate the entire
procedure five times. Subsequently, across these five iterations, the average of the following
classification metrics [16] is reported:

• Accuracy ACC = (TP + TN)/(TP + TN + FP + FN), where TP, TN, FP, and FN
indicate the number of true positives, true negatives, false positives, and false nega-
tives, respectively.

• Sensitivity SN = TP/(TP + FN).
• Specificity SP = TN/(TN + FP).
• F-Measure FM = (2 × TP)/(2 × TP + FP + FN)
• The area under the curve (AUC) encapsulates the relationship between the true

positive rate (sensitivity) and the false positive rate (1 − specificity)
• Positive Predictive Value (PPV) = TP/(TP + FP).
• Negative Predictive Value (NPV) = TN/(TN + FN).
• Geometric mean (GM) is the square root of the product of sensitivity and specificity,

or GM =
√

SN × SP.

4.3. Results and Analysis

This section explores the classification results for COVID-19 detection. Initially,
I present the performance of the SVM classifier utilizing hand-crafted descriptors. Sub-
sequently, I report the SVM’s performance when trained on diverse unsupervised deep
features extracted from various CNN architectures. All built classification models in this
study undergo training and validation within a nested CV framework.

4.3.1. Classification Results Using Handcrafted Descriptors

This section investigates the classification performance of hand-crafted features ex-
tracted from the SARS-CoV-2 dataset for COVID-19 detection. Each sample undergoes
summarization via 27 distinct techniques, with their corresponding feature vector lengths
outlined in Table 1. Subsequently, the resulting feature matrix, where each row represents
an image’s feature vector and its associated label, is fed into an SVM classifier. As detailed
in the nested CV section, a 5-fold nested CV scheme is employed to evaluate the classifier’s
performance, with the optimal model selected based on the geometric mean score (See
Figure 1). Table 3 presents the classification results achieved by the SVM models utilizing
various hand-engineered descriptors. Notably, the Pyramid of Histogram of Oriented
Gradients (PHOG) exhibits the highest performance. Both Gradient Local Ternary Pattern
(GLTeP) and Local Ternary Pattern (LTeP) achieve comparable results; however, PHOG
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presents a distinct advantage due to its significantly lower feature vector dimensionality
(168 compared to 512 for GLTeP and LTeP).

Figure 1. Achieved geometric mean by each hand-crafted method when used for training an SVM
model in a 5-fold nested cross-validation fashion. Sorted from left to right.

Table 3. Average SVM performance trained using hand-engineered features for COVID-19 image
classification. This table presents the mean values ± standard deviation.

ID Method ACC SN SP FM AUC PPV NPV GM

1 BPPC 0.9175 ± 0.0104 0.9180 ± 0.0130 0.9171 ± 0.0202 0.9169 ± 0.0101 0.9175 ± 0.0103 0.9160 ± 0.0185 0.9194 ± 0.0113 0.9174 ± 0.0103
2 GDP 0.9045 ± 0.0245 0.8975 ± 0.0264 0.9114 ± 0.0251 0.9030 ± 0.0250 0.9045 ± 0.0245 0.9087 ± 0.0257 0.9007 ± 0.0251 0.9044 ± 0.0245
3 GDP2 0.8033 ± 0.0137 0.7990 ± 0.0173 0.8076 ± 0.0176 0.8010 ± 0.0137 0.8033 ± 0.0137 0.8031 ± 0.0152 0.8038 ± 0.0153 0.8032 ± 0.0137
4 GLTeP 0.9549 ± 0.0174 0.9508 ± 0.0123 0.9589 ± 0.0271 0.9544 ± 0.0171 0.9549 ± 0.0174 0.9583 ± 0.0263 0.9520 ± 0.0120 0.9548 ± 0.0174
5 IWBC 0.9301 ± 0.0235 0.9319 ± 0.0240 0.9284 ± 0.0231 0.9296 ± 0.0237 0.9301 ± 0.0235 0.9274 ± 0.0235 0.9329 ± 0.0236 0.9301 ± 0.0235
6 LAP 0.9456 ± 0.0192 0.9311 ± 0.0247 0.9598 ± 0.0180 0.9442 ± 0.0199 0.9454 ± 0.0192 0.9578 ± 0.0190 0.9344 ± 0.0228 0.9453 ± 0.0193
7 LBP 0.9155 ± 0.0228 0.9114 ± 0.0275 0.9195 ± 0.0188 0.9143 ± 0.0236 0.9155 ± 0.0229 0.9173 ± 0.0201 0.9138 ± 0.0258 0.9154 ± 0.0229
8 LDiP 0.8968 ± 0.0274 0.8868 ± 0.0229 0.9066 ± 0.0355 0.8950 ± 0.0270 0.8967 ± 0.0274 0.9036 ± 0.0344 0.8907 ± 0.0230 0.8966 ± 0.0273
9 LDiPv 0.9122 ± 0.0216 0.9212 ± 0.0202 0.9034 ± 0.0279 0.9123 ± 0.0211 0.9123 ± 0.0215 0.9038 ± 0.0259 0.9212 ± 0.0201 0.9122 ± 0.0216

10 LDN 0.9195 ± 0.0101 0.9033 ± 0.0181 0.9355 ± 0.0137 0.9175 ± 0.0096 0.9194 ± 0.0095 0.9323 ± 0.0136 0.9077 ± 0.0202 0.9192 ± 0.0095
11 LDTP 0.9439 ± 0.0143 0.9280 ± 0.0112 0.9594 ± 0.0192 0.9427 ± 0.0129 0.9437 ± 0.0141 0.9579 ± 0.0174 0.9308 ± 0.0157 0.9436 ± 0.0140
12 LFD 0.8826 ± 0.0180 0.8782 ± 0.0188 0.8872 ± 0.0247 0.8805 ± 0.0226 0.8827 ± 0.0181 0.8831 ± 0.0331 0.8816 ± 0.0145 0.8827 ± 0.0180
13 LGBPHS 0.8639 ± 0.0320 0.8496 ± 0.0395 0.8780 ± 0.0285 0.8602 ± 0.0359 0.8638 ± 0.0322 0.8713 ± 0.0367 0.8565 ± 0.0359 0.8636 ± 0.0322
14 LGDiP 0.8281 ± 0.0136 0.8323 ± 0.0123 0.8232 ± 0.0288 0.8273 ± 0.0148 0.8277 ± 0.0143 0.8225 ± 0.0229 0.8332 ± 0.0138 0.8276 ± 0.0145
15 LGIP 0.9313 ± 0.0136 0.9243 ± 0.0228 0.9389 ± 0.0115 0.9303 ± 0.0130 0.9316 ± 0.0135 0.9366 ± 0.0137 0.9258 ± 0.0259 0.9315 ± 0.0136
16 LGP 0.8639 ± 0.0151 0.8587 ± 0.0152 0.8690 ± 0.0181 0.8623 ± 0.0091 0.8638 ± 0.0150 0.8660 ± 0.0098 0.8611 ± 0.0270 0.8638 ± 0.0150
17 LGTrP 0.6477 ± 0.0303 0.5957 ± 0.0422 0.6987 ± 0.0205 0.6256 ± 0.0372 0.6472 ± 0.0302 0.6592 ± 0.0363 0.6379 ± 0.0408 0.6450 ± 0.0311
18 LMP 0.9455 ± 0.0151 0.9397 ± 0.0166 0.9515 ± 0.0162 0.9442 ± 0.0180 0.9456 ± 0.0154 0.9488 ± 0.0217 0.9420 ± 0.0123 0.9455 ± 0.0154
19 LPQ 0.9378 ± 0.0121 0.9249 ± 0.0173 0.9504 ± 0.0122 0.9359 ± 0.0154 0.9377 ± 0.0127 0.9474 ± 0.0172 0.9286 ± 0.0117 0.9376 ± 0.0128
20 LTeP 0.9529 ± 0.0160 0.9450 ± 0.0155 0.9606 ± 0.0176 0.9521 ± 0.0162 0.9528 ± 0.0160 0.9593 ± 0.0181 0.9468 ± 0.0150 0.9528 ± 0.0160
21 LTrP 0.8984 ± 0.0101 0.9026 ± 0.0154 0.8951 ± 0.0147 0.8976 ± 0.0131 0.8988 ± 0.0098 0.8931 ± 0.0227 0.9032 ± 0.0187 0.8988 ± 0.0098
22 MBC 0.9260 ± 0.0087 0.9102 ± 0.0151 0.9416 ± 0.0127 0.9237 ± 0.0129 0.9259 ± 0.0096 0.9378 ± 0.0179 0.9148 ± 0.0097 0.9257 ± 0.0096
23 MBP 0.9403 ± 0.0062 0.9374 ± 0.0142 0.9428 ± 0.0106 0.9394 ± 0.0077 0.9401 ± 0.0062 0.9415 ± 0.0111 0.9391 ± 0.0124 0.9400 ± 0.0063
24 MRELBP 0.9496 ± 0.0092 0.9124 ± 0.0229 0.9854 ± 0.0081 0.9468 ± 0.0121 0.9489 ± 0.0104 0.9842 ± 0.0084 0.9207 ± 0.0153 0.9481 ± 0.0108
25 MTP 0.9252 ± 0.0049 0.9077 ± 0.0115 0.9418 ± 0.0113 0.9230 ± 0.0075 0.9247 ± 0.0053 0.9389 ± 0.0097 0.9126 ± 0.0049 0.9245 ± 0.0053
26 PHOG 0.9581 ± 0.0049 0.9490 ± 0.0129 0.9670 ± 0.0098 0.9572 ± 0.0063 0.9580 ± 0.0053 0.9658 ± 0.0094 0.9510 ± 0.0111 0.9579 ± 0.0054
27 WLD 0.9228 ± 0.0106 0.9139 ± 0.0064 0.9317 ± 0.0160 0.9213 ± 0.0116 0.9228 ± 0.0105 0.9289 ± 0.0193 0.9165 ± 0.0115 0.9228 ± 0.0104

Top-3 best-performing hand-crafted methods are highlighted.

An unpaired t-test was conducted to investigate the statistical distinction between
PHOG and GLTeP in their performance on the SARS-CoV-2 classification task. The test
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revealed that there is no statistically significant difference (p < 0.05), with a two-tailed
p-value of 0.7135 and a t-value of 0.3805.

4.3.2. Classification Results Using Deep Features

This section leverages the SARS-CoV-2 dataset for my investigation. Each image within
the dataset is processed through various pre-trained CNN models. Table 2 summarizes
the feature vector lengths extracted from each of these CNN architectures. Subsequently,
the resulting feature matrix, where each row represents an image’s feature vector and its
corresponding label, is fed into an SVM classifier. The performance of my classifier is
evaluated using a 5-fold nested CV scheme, following the hyperparameter optimization
strategy outlined in the nested CV section. The optimal model is chosen based on the
geometric mean score (See Figure 2). As presented in Table 4, the deep features extracted
from DenseNet-201 yield the highest classification performance. Notably, VGG-16 achieves
comparable results to DenseNet-201.

Figure 2. Achieved geometric mean by each CNN model’s deep features when used for training an
SVM model in a 5-fold nested cross-validation fashion.

Table 4. Average SVM performance trained using deep features for COVID-19 image classification.
This table presents the mean values ± standard deviation.

Model’s Name ACC SN SP FM AUC PPV NPV GM

GoogLeNet 0.9533 ± 0.0069 0.9475 ± 0.0090 0.9589 ± 0.0128 0.9526 ± 0.0069 0.9532 ± 0.0069 0.9579 ± 0.0126 0.9491 ± 0.0080 0.9491 ± 0.0080
Inception-ResNet-v2 0.9679 ± 0.0062 0.9672 ± 0.0127 0.9686 ± 0.0105 0.9676 ± 0.0063 0.9679 ± 0.0062 0.9681 ± 0.0100 0.9680 ± 0.0118 0.9680 ± 0.0118

Inception-v3 0.9614 ± 0.0092 0.9622 ± 0.0163 0.9606 ± 0.0164 0.9611 ± 0.0094 0.9614 ± 0.0092 0.9602 ± 0.0157 0.9632 ± 0.0152 0.9613 ± 0.0092
VGG-16 0.9833 ± 0.0048 0.9787 ± 0.0089 0.9879 ± 0.0090 0.9831 ± 0.0050 0.9833 ± 0.0049 0.9877 ± 0.0090 0.9793 ± 0.0084 0.9833 ± 0.0049
VGG-19 0.9821 ± 0.0049 0.9787 ± 0.0111 0.9855 ± 0.0105 0.9819 ± 0.0050 0.9821 ± 0.0049 0.9853 ± 0.0105 0.9793 ± 0.0103 0.9793 ± 0.0103

ResNet-50 0.9809 ± 0.0045 0.9770 ± 0.0074 0.9847 ± 0.0112 0.9807 ± 0.0044 0.9809 ± 0.0044 0.9844 ± 0.0111 0.9777 ± 0.0069 0.9777 ± 0.0069
ResNet-101 0.9768 ± 0.0018 0.9729 ± 0.0147 0.9807 ± 0.0138 0.9765 ± 0.0020 0.9768 ± 0.0018 0.9805 ± 0.0134 0.9739 ± 0.0137 0.9739 ± 0.0137

SqueezeNet v1.1 0.9712 ± 0.0098 0.9655 ± 0.0085 0.9767 ± 0.0149 0.9707 ± 0.0099 0.9711 ± 0.0097 0.9761 ± 0.0151 0.9666 ± 0.0081 0.9711 ± 0.0097
DenseNet-201 0.9858 ± 0.0029 0.9819 ± 0.0085 0.9895 ± 0.0073 0.9856 ± 0.0029 0.9857 ± 0.0029 0.9893 ± 0.0073 0.9825 ± 0.0080 0.9857 ± 0.0029

ResNet-18 0.9703 ± 0.0118 0.9655 ± 0.0160 0.9750 ± 0.0164 0.9699 ± 0.0119 0.9703 ± 0.0118 0.9745 ± 0.0164 0.9667 ± 0.0151 0.9702 ± 0.0118
Xception 0.9638 ± 0.0062 0.9664 ± 0.0034 0.9614 ± 0.0147 0.9636 ± 0.0059 0.9639 ± 0.0061 0.9611 ± 0.0143 0.9668 ± 0.0029 0.9638 ± 0.0061

MobileNet-v2 0.9630 ± 0.0075 0.9590 ± 0.0157 0.9670 ± 0.0112 0.9625 ± 0.0077 0.9630 ± 0.0075 0.9663 ± 0.0108 0.9603 ± 0.0144 0.9629 ± 0.0076

Top-2 best-performing set of deep features are highlighted.

To assess the statistical difference between DenseNet-201 and VGG-16 on the SARS-
CoV-2 classification task, I performed an unpaired t-test. The results yielded no statistically
significant difference (p < 0.05), with a two-tailed p-value equal to 0.3735 and a t-statistic
of 0.9425.

4.4. Discussion

The landscape of COVID-19 classification using publicly available datasets, such as
the SARS-CoV-2 dataset [32], is rapidly evolving. Researchers have proposed diverse
conventional and DL techniques for classifying COVID-19 from CT-scan images. How-
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ever, objective comparison across studies remains challenging due to several key factors
impacting framework performance. These factors include: (1) Heterogeneity in CT-scan
selection: Variations in acquisition protocols, scanners, and patient populations across
datasets can significantly impact feature extraction and model generalization. (2) Varied
image pre-processing techniques: Different pre-processing approaches, such as noise reduc-
tion, normalization, and segmentation, can significantly influence the extracted features
and subsequent classification performance. (3) Divergence in training/testing protocols:
Variations in data splitting (e.g., k-fold cross-validation, train/test ratio), evaluation met-
rics, and hyperparameter tuning strategies can hinder direct performance comparisons.
Acknowledging these influencing factors is crucial for interpreting and comparing the
results of COVID-19 classification studies.

A case study conducted by Maguolo and Nanni [76] examined various testing proto-
cols while using COVID-19 X-ray 2D images. The authors showed that similar classification
performance can be achieved while training a neural network using X-ray images that do
not contain most of the lungs. Maguolo and Nanni removed the lungs from the images by
inserting a black box into the center of the X-ray image. Then, these new images were used
for training their classifiers only on the outer part of the images. The authors concluded
that many of the testing protocols of published studies in the literature are not fair and
the classifiers of neural networks were not learning patterns related to COVID-19. Hence,
rigorous testing protocols should be established while training a DL model. As a result,
one can conclude that assessing and comparing the performance of a method objectively is
difficult because it is not clear which part of the technique (e.g., feature extraction/selection,
pre-processing, or classification models) led to a tangible enhancement. Thus, my aim
in my study is to learn from available published studies and to avoid potential mistakes
(e.g., learning from the recommendation of Maguolo and Nanni to test with unbiased
testing protocols).

Subsequently, I objectively planned to minimize the bias of the dataset by selecting
SARS-CoV-2 dataset and this dataset is divided in the context of 5-fold nested cross-
validation to rigorously evaluate wide range of hand-crafted descriptors and deep features
from different number of CNN architectures, as shown in Tables 3 and 4. There are a
large number of studies that utilized the SARS-CoV-2 dataset from which ten studies are
summarized indicating their methodology essence, their training/testing protocol, and
reported classification performance. Noteworthy, there is a vast number of studies that
used the same dataset [30,77–98], but of similar nature, and thus, these studies are not
summarized. Here is the summary of the ten studies:

• Halder and Datta [99] investigated the efficacy of transfer learning employing pre-
trained CNN models, namely DenseNet201, VGG16, ResNet50V2, and MobileNet.
Each model was independently trained and tested with a ratio of 8:2 on both un-
modified and augmented datasets. Notably, DenseNet201 exhibited exceptional per-
formance, achieving an AUC of 1.00 and 0.99 for the unaugmented and augmented
datasets, respectively. Moreover, training DenseNet201 with the augmented data
yielded a test set accuracy of 97%, surpassing ResNet50V2 (96%), MobileNet (95%),
and VGG16 (94%).

• Alshazly et al. [100] investigated the application of transfer learning to various pre-
trained CNN architectures, including SqueezeNet, Inception, ResNet, ResNeXt, Xcep-
tion, ShuffleNet, and DenseNet. Five-fold cross-validation was utilized to evaluate
the efficacy of their approach. Their ResNet101 model demonstrated remarkable per-
formance, achieving average accuracy, precision, sensitivity, specificity, and F1-score
values of 99.4%, 99.6%, 99.1%, 99.6%, and 99.4%, respectively.

• Ragab et al. [101] proposed a multi-modal fusion architecture for COVID-19 image clas-
sification. Their system leverages the pre-trained CNNs, namely AlexNet, GoogleNet,
ShuffleNet, and ResNet-18, alongside hand-crafted features derived from statisti-
cal analysis, discrete wavelet transform, and grey-level co-occurrence matrix. They
employed five-fold cross-validation to evaluate the efficacy of their approach. This
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hybrid methodology achieved performance, attaining an average accuracy, sensitivity,
specificity, and precision of approximately 99% across all evaluation metrics.

• Shaik and Cherukuri [102] presented an ensemble learning approach for COVID-19
image classification that leverages the combined prediction of diverse pre-trained
CNN architectures. They employ a collection of eight models, including VGG16,
VGG19, InceptionV3, ResNet50, ResNet50V2, InceptionResNetV2, Xception, and
MobileNet. Each model is fine-tuned using an 80/20 data split for training and
validation, respectively. This ensemble approach achieved an accuracy of 98.99%,
precision of 98.98%, recall of 99.00%, and F-measure of 98.99%.

• Gaur et al. [103] presented a method that leverages the spectral information within
each image channel (red, green, and blue) by applying a 2D-empirical wavelet trans-
form. This decomposition generates five frequency sub-bands, which are subsequently
augmented to enhance data variability. These augmented sub-bands then serve as the
input for training a DenseNet121 classification model. To ensure a statistically robust
evaluation, the dataset was randomly split into 1000 training, 100 validation, and
152 testing images prior to data augmentation. This strategy yielded a performance of
accuracy of 85.50%, F-measure of 85.28%, and AUC of 96.6%.

• Canayaz et al. [104] explores the efficacy of Bayesian optimization in enhancing the
performance of various machine learning algorithms for COVID-19 image classifica-
tion. The authors propose and evaluate the application of this optimization technique
to MobilNetv2, ResNet-50, SVM, and k-nearest neighbor (kNN) models. The proposed
method consists of three steps: (1) train and optimize the deep learning models, (2) uti-
lize trained models as feature extractors, and (3) train a machine learning algorithm.
Notably, the ResNet-50 architecture, when optimized via Bayesian optimization and
employed as a feature extractor for kNN (trained on 1968 COVID-19 images and
tested on 492), yielded an accuracy of 99.37%, accompanied by a precision of 99.38%,
recall of 99.36%, and F-score of 99.37%.

• Attallah and Samir [105] presented a two-stage framework for COVID-19 image clas-
sification that leverages spectral-temporal and spatial information. In the first stage,
their method employs discrete wavelet decomposition (DWT) to extract frequency-
domain features from the images, represented as heatmaps. These features are subse-
quently used to train a ResNet CNN model. Simultaneously, the original images are
utilized to train a separate ResNet CNN model, capturing spatial information. Subse-
quently, both pipelines converge in a feature fusion stage, where spectral-temporal
features are integrated with spatial features extracted from the second ResNet. To ad-
dress dimensionality, the combined feature set is subjected to dimensionality reduction
before being fed into support vector machine (SVM) classifiers. This strategy achieved
a classification accuracy of 99.7% under a 5-fold cross-validation scheme.

• Kundu et al. [106] explored an ensemble learning approach by leveraging transfer
learning. Their method, employing bootstrap aggregating (bagging) of three pre-
trained architectures Inception v3, ResNet34, and DenseNet201 were examined under
a 5-fold cross-validation scheme. The ensemble model achieved an accuracy of 97.81%,
precision of 97.77%, sensitivity (recall) of 97.81%, and specificity of 97.77%.

• Islam and Nahiduzzaman [107] proposed employing a custom CNN architecture for
extracting deep features. These features are subsequently fed into traditional machine
learning algorithms, encompassing Gaussian Naive Bayes, Support Vector Machine,
Decision Tree, Logistic Regression, and Random Forest. The output of these five
learning algorithms is ensembled to find the final prediction. The proposed model
undergoes training on 2109 COVID-19 images and evaluation on a separate set of
373 images. The model achieved an accuracy of 99.73%, an F1-score of 99.73%, a recall
of 100%, and a precision of 99.46%.

• Choudhary et al. [108] introduced an approach for COVID-19 detection on resource-
constrained devices, focusing on “important weights-only” transfer learning. This
method optimizes pre-trained deep learning models for deployment on point-of-care
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devices by selectively pruning less essential weight parameters. Their experiments
were conducted on VGG16 and ResNet34 architectures. The proposed method was
evaluated while using 1,687 samples for training, 420 samples for validation, and
375 samples for testing. The pruned ResNet34 model achieved an accuracy of 95.47%,
a sensitivity of 0.9216, an F1-score of 0.9567, and a specificity of 0.9942 while exhibiting
reductions in computational requirements: 41.96% fewer floating-point operations
and 20.64% fewer weight parameters compared to the unpruned model.

It is noteworthy that the application of DL techniques has become predominant in
SARS-CoV-2 research. Researchers often leverage various CNN architectures, opting for
fine-tuning with or without data augmentation to address the inherent scarcity of medical
datasets. While impressive results have been reported, inconsistencies in training and
validation strategies across studies pose challenges for objective comparison. In contrast,
my approach utilizes unsupervised deep features, minimizing computational demands.
Furthermore, I employ a rigorous 5-fold nested CV scheme to evaluate the performance of
my SVM classification models.

5. Conclusions and Future Studies

The main goal of this work is to compare and evaluate a wide range of conventional
and DL-based techniques to identify effective and efficient approaches for classifying
COVID-19 disease from CT scans. To achieve this goal, twenty-seven conventional tech-
niques and 12 CNN architectures are examined. Thereafter each set of descriptors is fed as
input to an SVM model, which is tested in the context of a 5-fold cross-validation scheme.
The performance of the proposed methodologies is evaluated on the SARS-CoV-2 dataset.
The empirical findings gleaned from this investigation posit that the proposed method
holds promise for adoption as a pre-screening tool for COVID-19 cases, exhibiting competi-
tive performance in comparison to established state-of-the-art methodologies. Additionally,
the establishment of my framework requires minimal computational resources for con-
ventional techniques, and particularly, for DL-based techniques as I avoid fine-tuning and
data augmentation.

In the future, I plan to test my approach using other datasets with a similar nature of
complexity, for example, the COVID-CT (COVID-CT benchmark can be accessed via https:
//www.kaggle.com/datasets/hgunraj/covidxct, accessed on 1 January 2024) dataset [109]
and COVID multiclass dataset (The COVID-19 multicalss dataset can be accessed via https:
//www.kaggle.com/datasets/plameneduardo/a-covid-multiclass-dataset-of-ct-scans, ac-
cessed on 1 January 2024). Furthermore, I plan to combine both hand-crafted and deep
features [110] in an attempt to deliver more robust classification models.
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104. Canayaz, M.; Şehribanoğlu, S.; Özdağ, R.; Demir, M. COVID-19 diagnosis on CT images with Bayes optimization-based deep
neural networks and machine learning algorithms. Neural Comput. Appl. 2022, 34, 5349–5365. [CrossRef] [PubMed]

105. Attallah, O.; Samir, A. A wavelet-based deep learning pipeline for efficient COVID-19 diagnosis via CT slices. Appl. Soft Comput.
2022, 128, 109401. [CrossRef]

106. Kundu, R.; Singh, P.K.; Ferrara, M.; Ahmadian, A.; Sarkar, R. ET-NET: An ensemble of transfer learning models for prediction of
COVID-19 infection through chest CT-scan images. Multimed. Tools Appl. 2022, 81, 31–50. [CrossRef] [PubMed]

107. Islam, M.R.; Nahiduzzaman, M. Complex features extraction with deep learning model for the detection of COVID19 from CT
scan images using ensemble based machine learning approach. Expert Syst. Appl. 2022, 195, 116554. [CrossRef] [PubMed]

108. Choudhary, T.; Gujar, S.; Goswami, A.; Mishra, V.; Badal, T. Deep learning-based important weights-only transfer learning
approach for COVID-19 CT-scan classification. Appl. Intell. 2023, 53, 7201–7215. [CrossRef]

200



Computation 2024, 12, 66

109. Gunraj, H.; Wang, L.; Wong, A. Covidnet-ct: A tailored deep convolutional neural network design for detection of covid-19 cases
from chest ct images. Front. Med. 2020, 7, 608525. [CrossRef] [PubMed]

110. Alinsaif, S.; Lang, J. 3D shearlet-based descriptors combined with deep features for the classification of Alzheimer’s disease
based on MRI data. Comput. Biol. Med. 2021, 138, 104879. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

201



Citation: Petríková, D.; Cimrák, I.

Survey of Recent Deep Neural

Networks with Strong Annotated

Supervision in Histopathology.

Computation 2023, 11, 81.

https://doi.org/10.3390/

computation11040081

Academic Editor: Anando Sen

Received: 7 March 2023

Revised: 10 April 2023

Accepted: 11 April 2023

Published: 14 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Review

Survey of Recent Deep Neural Networks with Strong
Annotated Supervision in Histopathology

Dominika Petríková 1,2,* and Ivan Cimrák 1,2

1 Cell-in-Fluid Biomedical Modelling & Computations Group, Faculty of Management Science and Informatics,
University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia

2 Research Centre, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
* Correspondence: dominika.petrikova@fri.uniza.sk

Abstract: Deep learning (DL) and convolutional neural networks (CNNs) have achieved state-
of-the-art performance in many medical image analysis tasks. Histopathological images contain
valuable information that can be used to diagnose diseases and create treatment plans. Therefore,
the application of DL for the classification of histological images is a rapidly expanding field of
research. The popularity of CNNs has led to a rapid growth in the number of works related to
CNNs in histopathology. This paper aims to provide a clear overview for better navigation. In this
paper, recent DL-based classification studies in histopathology using strongly annotated data have
been reviewed. All the works have been categorized from two points of view. First, the studies
have been categorized into three groups according to the training approach and model construction:
1. fine-tuning of pre-trained networks for one-stage classification, 2. training networks from scratch
for one-stage classification, and 3. multi-stage classification. Second, the papers summarized in this
study cover a wide range of applications (e.g., breast, lung, colon, brain, kidney). To help navigate
through the studies, the classification of reviewed works into tissue classification, tissue grading, and
biomarker identification was used.

Keywords: classification; convolutional neural networks; deep learning; digital pathology; histology
image analysis

1. Introduction

Traditionally, pathology diagnosis has been performed by a human pathologist ob-
serving stained specimens from tumors on glass slides using a microscope to diagnose
cancer. In recent years, deep learning has rapidly developed, and more and more entire
tissue slides are being captured digitally by scanners and saved as whole slide images
(WSIs) [1]. Since a large amount of WSIs are being digitized, it is only natural that many
attempts have been made to explore the potential of deep learning on histopathological
image analysis. Histological images and tasks have unique characteristics, and specific
processing techniques are often required [2]. The authors in [3] carried out an extensive
and comprehensive overview of deep neural network models developed in the context
of computational histopathology image analysis. Their survey covers the period up to
December 2019. Since the volume of research in this domain is rapidly growing, the aim of
this review is to complement their overview with papers published since 2020. In contrast
to their survey, the focus of this review is on a specific area of supervised learning only,
namely classification using strongly annotated data.

The rest of this paper is organized as follows. In Section 2, a basic overview of neural
networks used in the context of computational histopathology is presented. Section 3 dis-
cusses in detail supervised deep learning models and approaches used in digital pathology
for classification tasks. These approaches have been grouped into three main categories:
one-stage classification using fine-tuning, one-stage classification training models from
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scratch, and the multi-stage classification approach. In Section 4, we discuss the histopatho-
logical point of view by classifying the methods according to their area of application. In
Section 5, we conclude the paper.

2. Materials and Methods—Convolutional Neural Network

For this survey, only papers that performed classification of histological images with
common convolutional neural network models and used strongly annotated datasets were
selected. Other articles that used more complex deep learning models or weak annotations
were not included in this review. The review was carried out by searching mostly through
PubMed and also arXiv for articles containing deep learning (DL) keywords such as
“convolutional neural networks”, “classification”, “deep learning”, and histology keywords
such as “hematoxylin and eosin”, “H&E”, and “histopathology” in the title or abstract.
To narrow down the selection, combinations of deep learning keywords with histology
keywords were used, for example, “CNN hematoxylin and eosin”. The combination “deep
learning histopathology” was omitted since both words are too general. Moreover, only
articles published since 2020 have been searched. The subsequent filtering process can be
described in four steps. The first two steps were designed to quickly filter out articles that
were obviously irrelevant to the topic of this review and thus reduce as much as possible
the number of articles that needed to be analyzed in more detail in the remaining two
steps. In the first step, articles were filtered based on the title. Papers that were obviously
not related to CNN’s application for histological image data classification were excluded.
This resulted in approximately 700 papers. Articles that could not be unambiguously
excluded based on the title were filtered in a second step based on reading the abstract. In
the third step, the introduction was analyzed. The main purpose was to exclude studies
that did not meet the criteria of this review, such as papers using more complex deep
learning approaches than convolutional neural networks or datasets not only consisting
of histological images. In the last step, approximately 100 articles were fully read. This
part was mainly focused on filtering out studies that only worked with strongly annotated
datasets. We also included some papers that were missing from the initial search but were
cross-referenced in selected articles.

The purpose of this chapter is to explain the concepts and models of deep neural
networks (DNNs) used for classification tasks in digital pathology. Machine learning is a
type of artificial intelligence that allows computers to learn and modify their behavior based
on training data [4]. Supervised learning methods are the most commonly used, where the
dataset consists of input features and corresponding labels. In the case of classification,
the label represents one of a fixed number of classes. The algorithm learns patterns and
connections in the data to find a suitable function that maps inputs to outputs, creating a
model that captures hidden properties in the data and can be used to predict outputs for
new inputs. Training a model involves finding the best model parameters that predict the
data based on a defined loss function [5,6].

Neural networks are the foundation of most DNN algorithms, consisting of intercon-
nected units called neurons organized into layers, including input, hidden, and output
layers. DNNs have multiple hidden layers. A neuron’s output, or activation, is a linear
combination of its inputs and parameters (weights and bias) transformed by an activation
function. Common activation functions in neural networks include sigmoid, hyperbolic tan-
gent, and ReLU functions. At the final output layer, activations are mapped to a distribution
over classes using the softmax function [6,7].

One of the most popular and commonly used supervised deep learning networks
is CNNs, which are often employed for visual data processing of images and video se-
quences [8–10]. CNNs consist of three types of layers: convolutional layers, pooling layers,
and fully connected layers, as shown in Figure 1. The convolutional layer is the most
significant component of the CNN architecture. It consists of several filters, also called
kernels, which are represented as a grid of discrete values. These values are referred to
as kernel weights and are tuned during the training phase. The convolution operation
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consists of the kernel sliding over the whole image horizontally and vertically. Additionally,
the dot product is calculated between the image and kernel by multiplying corresponding
values and summing up to create a scalar value at each position. In particular, each kernel
is convolved over the input matrix to obtain a feature map. Subsequently, the feature
maps generated by the convolutional operation are sub-sampled in the pooling layer. The
convolution and pooling layers together form a pipeline called feature extraction. Above
all, the fully connected layers combine the features extracted by the previous layers to
perform the final classification task [8,11,12].

Figure 1. Convolutional neural network architecture.

3. Classification of Histopathology Images

This section provides a general overview of recent publications using deep learning
and convolutional neural networks (CNNs) in digital pathology. The focus of this work is
solely on supervised learning tasks applied for the classification of histological images. This
category includes models that perform image-level classification, such as tumor subtype
classification and grading, or use a sliding window approach to identify tissue types. Most
deep learning approaches do not use the whole-slide image (WSI) as input because it
would be computationally expensive (high dimensionality). Instead, they extract small
square patches and assign a label to them. Existing methods can be grouped according to
the level of annotations they employ. Based on the type of annotations used for training,
two subcategories may be identified: the strong-annotations approach (patch-level annota-
tions) and the weak-annotations approach (slide-level annotations) [13]. The first approach
relies on the identification of regions of interest and the detailed localization of tumors
by certified pathologists, while for the latter approach, it is sufficient to assign a specific
class to a whole-slide image. In this work, a survey of the strong-annotations approach
is conducted.

3.1. Strong-Annotations Approach (Patch-Level Annotation)

Referring to patch-level annotations as strong means that all extracted patches have
their own label class. Typically, patch labels are derived from pixel-level annotations.
Manually annotating pixels is very time-consuming and laborious work requiring an
expert approach. For instance, pathologists have to localize and annotate all pixels or cells
in WSI by contouring the whole tumor. This approach is shown in Figure 2. Therefore,
there are currently very few strongly annotated histological images. Besides whole-slide
image classification, pixel-wise/patch-wise predictions with the sliding window method
enable spatial predictions such as localization and detection of cancerous cells/tissue. In
addition, stacking patch predictions next to each other builds a WSI heatmap, so the model
can be considered interpretable. Multiple examples of using CNNs in the problem of patch
classification employ a single-stage approach when the patch is classified using one CNN
architecture. In contrast, several approaches use a multi-stage workflow, where typically
the output of one CNN architecture is fed into another CNN that delivers the final decision.
Of course, even more CNN models can be included in such a workflow that can be labeled
as multi-stage classification. For the one-stage approach, one can differentiate between
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models that have been trained from scratch with artificially initiated weights and models
that use pre-trained CNN architectures on data often not related to the original problem.
For multi-stage problems, such differentiation becomes difficult due to many possibilities,
since some CNNs from the multi-stage workflow may be trained from scratch, while others
may be pre-trained. In Figure 3, the top graphic shows the categorization of CNN methods
used in this section.

Figure 2. Construction of patches from pixel-level annotations of WSI.

Figure 3. Methods: Categorization of CNN methods used in Section 3. Application: Categorization
of application areas used in Section 4.

3.2. Fine-Tuning

The easiest way of training CNNs with a limited amount of data is using one of the well-
known pre-trained architectures. Typically, models are initialized using weights pre-trained
on ImageNet and fine-tuned on histopathological images. Papers using this approach are
summarized in Table 1. In [14], the authors fine-tuned VGGNet [15], ResNet [16], and
InceptionV4 [17] models to obtain the probabilities of small patches (100 × 100 pixels),
being tumor-infiltrating lymphocyte (TIL)-positive or TIL-negative extracted from WSIs
of 23 cancer types. For the region classification performance, they extracted bigger super-
patches (800 × 800 pixels) and annotated them with three categories (Low TIL, Medium
TIL, or High TIL) based on the ratio of TIL-positive area. To obtain a prediction of the
category, super-patches were divided into an 8x8 grid and each square (100 × 100 pixel
patch) was classified as TIL-positive or TIL-negative. Subsequently, the correlation between
the score of CNN (number of positive patches in super-patch) and pathologists’ annotations
was observed. In [18], they developed a deep learning-based six-type classifier for the
identification of a wider spectrum of lung lesions including lung cancer. Furthermore,
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they also included pulmonary tuberculosis and organizing pneumonia, which often needs
to be surgically inspected to be differentiated from cancer. EfficientNet [19] and ResNet
were employed to carry out patch-level classification. To aggregate patch predictions into
slide-level classification, two methods were compared: majority voting and mean pooling.
Moreover, two-stage aggregation was implemented to prioritize cancer tissues in slides.

In [20], scholars proposed three steps to develop an AI-based screening method for
lymph node metastases. First, they trained a segmentation model to obtain lymph node
tissue from WSI and broke it into patches. Next, they used a fine-tuned Xception model
to classify patches into metastasis-positive/negative. Finally, the absence or presence of
two connected patches classified as positive determined the final result of WSI. In [21], the
authors compared the accuracies of stand-alone VGG-16 and VGG-19 models with ensemble
models consisting of both architectures in classifying breast cancer histopathological images
as carcinoma and non-carcinoma. In [22], the authors compared the performance of
the VGG19 architecture with methods used in supervised learning with weakly labeled
data to classify ovarian carcinoma histotype. The problem of binary classification into
benign and malignant lesions, with subsequent division into eight subtypes with modified
EfficientNetV2 architecture on images from the BreakHis dataset, was addressed by the
authors in [23]. Similarly, Xception was employed in [24] for subtyping breast cancer into
four categories. The binary subtype classification of eyelid carcinoma was performed
in [25]. They used DenseNet-161 to make predictions for every patch in WSI and then used
a patch voting strategy to decide the WSI subtype. In [26], the authors used AlexNet [27],
GoogLeNet [28], and VGG-16 to detect histopathology images with cancer cells and to
classify ovarian cancer grade. Since neural networks behave like black-box models, the
authors employed the Grad-CAM method to demonstrate that CNN models attended to
the cancer cell organization patterns when differentiating histopathology tumor images
of different grades. Grad-CAM was also employed in [29], where the authors used this
method to provide interpretability and approximate visual diagnosis for the presentation of
the model’s results to pathologists. The model consisted of three neural networks fine-tuned
on a custom dataset to classify H&E stained tissue patches into five types of liver lesions,
cirrhosis, and nearly normal tissue. A decision algorithm consisting of three networks was
also proposed in [30] to detect odontogenic cyst recurrence using binary classifiers. The
procedure consisted of letting the first two models make predictions. If the predictions
did not match, a third model was loaded to obtain the final decision. Another example of
using Grad-CAM is [31] to visualize classification results of the VGG16 network in grading
bladder non-invasive carcinoma.

Hematoxylin-eosin (H&E) is considered as the gold standard for evaluating many
cancer types. However, it contains only basic morphological information. In clinical
practice, to obtain molecular information, immunohistochemical (IHC) staining is often
employed. Such staining can visualize the expressions of different proteins (e.g., Ki67) on
the cell membrane or nucleus. This approach is referred to as double staining. Many recent
studies have shown that there is a correlation between H&E and IHC staining [32–34].

In [35], the authors addressed the problem of double staining in determining the
number of Ki67-positive cells for cancer treatment. They employed matching pairs of IHC-
and H&E-stained images and fine-tuned ResNet-18 at the cell-level from H&E images.
Subsequently, to create a heat map, they transformed the CNN into a fully convolutional
network without fully connected layers. As a result, the fine-tuned ResNet-18 was able to
handle WSI as input and produce a heat map as output.

In [36], the authors proposed a modified Xception network called HE-HER2Net by
adding global average pooling, batch normalization layers, dropout layers, and dense
layers with a Swish activation function. The network was designed to classify H&E images
into four categories based on Human epidermal growth factor receptor 2 (HER2) positivity
from 0 to 3+. In addition to routine model evaluation, the authors compared their modified
network to other existing architectures and claimed that HE-HER2Net surpassed all existing
models in terms of accuracy, precision, recall, and AUC score.
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To produce accurate models capable of generalization, it is essential to obtain large
amounts of diversified data. Typically, this problem is addressed by pooling all necessary
data to a centralized location. However, due to the nature of medical data, this approach
has many obstacles regarding privacy and data ownership, as well as various regulatory
policies (e.g., the General Data Protection Regulation GDPR of the European Union [37]).
The authors of [38] simulated a Federated Learning (FL) environment to train a deep
learning model that classifies cells and nuclei to identify TILs in WSI. They generated a
dataset from WSIs of cancer from 12 anatomical sites and partitioned it into eight different
nodes. To evaluate the performance of FL, they also trained a CNN using a centralized
approach and compared the results. The study shows that the FL approach achieves similar
performance to the model trained with data pooled at a centralized location.

Table 1. Summary of fine-tuning papers.

Reference Cancer Types Staining Dataset
Neural Networks

in Models
Method

Abousamra et al.
(2022) [14] 23 cancer types H&E The Cancer Genome

Atlas (TCGA)
Vgg-16, ResNet-34,

InceptionV4
Patch-level classification of Tumor

infiltrating lymphocytes (TIL)

Yang et al.
(2021) [18] Lung cancer H&E

Custom dataset of 1271
WSIs and 422 WSIs

from TCGA

ResNet-50,
EfficientNet-B5

Six-type classification of lung lesions
including pulmonary tuberculosis and

Organizing pneumonia

Hameed et al.
(2020) [21] Breast cancer H&E Custom dataset of

544 WSIs VGG-16, VGG-19
Ensemble of neural networks to classify

carcinoma and
non-carcinoma images

Yu et.al (2020) [26] Ovarian cancer H&E TCGA AlexNet, GoogLeNet,
VGG-16

Cancerous regions identification and
grades classification

Liu et al. (2020) [35] Different types
of cancer H&E, IHC (Ki67) Custom dataset from

300 Regions of interest ResNet-18 Classification of Ki67 positive and
negative cells

Baid et al.
(2022) [38] 12 types H&E TCGA VGG-16 Federated learning for classification of

tumor infiltrating lymphocytes

Cheng et al.
(2022) [29] Liver cancer H&E Custom dataset ResNet50, InceptionV3,

Xception

Ensemble of 3 networks pretrained on
ImageNet used to differentiate

Hepatocellular nodular lesions (5 types)
with nodular cirrhosis and nearly

normal liver tissue

Shovon et al.
(2022) [36] Breast cancer H&E BCI dataset Modified Xception

Four class classification of HER2 with
modified Xception model pretrained on

ImageNet

Rao et al.
(2022) [30] Odontogenic cysts H&E Custom dataset

Inception-V3,
DenseNet-121,

Inception-Resnet-V2

Binary classification of cyst recurrence
based on decision algorithm consisting

of 3 models

Farahani et al.
(2022) [22] Ovarian cancer H&E Custom dataset VGG19

Comparison of classification of ovarian
carcinoma histotype by

four models

Sarker et al.
(2023) [23] Breast cancer H&E BreakHis dataset Modified

EfficientNetV2

Binary classification of malignant and
benign tissue and multi-class subtyping
using fused mobile inverted bottleneck

convolutions and mobile inverted
bottleneck convolutions with dual

squeeze and excitation network and
EfficientNetV2 as backbone

Luo et al.
(2022) [25] Eyelid carcinoma H&E Custom dataset DenseNet161

The differential diagnosis of eyelid basal
cell carcinoma and sebaceous carcinoma

based on patch prediction by the
DenseNet161 architecture and WSI

differentiation by an average-probability
strategy-based integration module

Mundhada et al.
(2023) [31] Bladder cancer H&E Custom dataset VGG16 Grading of non-invasive carcinoma

Khan et al.
(2023) [20]

Breast and colon
cancer H&E PatchCamelyon Xception

Segmentation of lymph node tissue with
subsequent classification to detect

metastases

Hameed et al.
(2022) [24] Breast cancer H&E Colsanitas dataset Xception

Using Xception networks as feature
extractor to classify breast cancer into
four categories: normal tissue, benign

lesion, in situ carcinoma, and
invasive carcinoma
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3.3. Training from Scratch

As already stated, fine-tuning is a promising method for training deep neural networks.
On the other hand, it can only be applied to well-known architectures that are already
pre-trained. When designing a custom CNN architecture, it needs to be trained from
scratch. Table 2 summarizes studies in which neural networks were trained from scratch.
In [39], the authors proposed a method based on CNN with residual blocks (Res-Net)
referred to as DeepLRHE to predict lung cancer recurrence and the risk of metastasis.
Later in [40], scholars established the new DeepIMHL model consisting of CNN and Res-
Net to predict mutated genes as biomarkers for targeted-drug therapy of lung cancer.
In addition, the authors in [41] trained and optimized EfficientNet models on images of
non-Hodgkin lymphoma and evaluated its potential to classify tumor-free reference lymph
nodes, nodal small lymphocytic lymphoma/chronic lymphocytic leukemia, and nodal
diffuse large B-cell lymphoma. In [42], the authors proposed three architectures of ResNet
differing in the construction of residual blocks trained from scratch. Their suggested model
achieved accuracy comparable to other state-of-the-art approaches in the classification
of oral cancer histological images into three stages. To classify kidney cancer subtypes,
in [43] the authors developed an ensemble-pyramidal model consisting of three CNNs that
process images of different sizes. The authors in [44] demonstrated that CNN-based DL can
predict the gBRCA mutation status from H&E-stained WSIs in breast cancer. According
to researchers in [45], CNN can be employed to differentiate non-squamous Non-Small
Cell Lung Cancer versus squamous cell carcinoma. To classify the tumor slide, they pooled
information using the max-pooling strategy. Moreover, they added quality check with a
threshold for predictions to select only tiles with a high prediction level. Additionally, to
improve the prediction, they also used a virtual tissue microarray (circle from the centroid
based on the pathologist’s hand-drawn tumor annotations) instead of WSI.

To compare the performance of pre-trained networks with the custom ones trained
from scratch, researchers in [46] used images of three cancer types: melanoma, breast
cancer, and neuroblastoma. Unlike others using patches, the authors applied the simple
linear iterative clustering (SLIC) to segment images into superpixels which group together
similar neighboring pixels, as shown in Figure 4. Thus, these superpixels were classified
into multiple subtype categories based on the type of cancer. To make WSI-level predictions,
they used multiple specific quantification metrics such as stroma-to-tumor ratio. Although
the custom NN achieved comparable results, pre-trained networks performed better on all
three cancer types. A similar comparison was carried out in [47] for the classification of
subtypes in lung cancer biopsy slides. Results showed that a CNN model built from scratch
fitted to the specific pathological task could produce better performances than fine-tuning
pre-trained CNNs.

A comparison of training from scratch versus transfer learning was performed in [48].
The authors compared three approaches for training the VGG16 network: training from
scratch, transfer learning as a feature extractor, and fine-tuning on images of breast cancer
to detect Invasive Ductal Carcinoma. According to the results, the model trained from
scratch achieved better results in terms of accuracy (0.85). However, using transfer learning,
they were able to train a comparable model (accuracy 0.81) ten times faster. Furthermore,
among the transfer learning approaches, transfer learning via feature extraction (accuracy
0.81), which involved retraining some of the convolutional blocks, yielded better results in
less time compared to transfer learning via fine-tuning (accuracy 0.51).

208



Computation 2023, 11, 81

Table 2. Summary of papers training neural networks from scratch.

Reference Cancer Types Staining Dataset
Neural Networks

in Models
Method

Wu et al.
(2020) [39] Lung cancer H&E 211 samples from

TCGA
Custom CNN with

residual blocks Prediction of lung cancer recurrence

Huang et al.
(2021) [40] Lung cancer H&E TCGA Custom CNN with

residual blocks Identification of the bio-markers of lung cancer

Steinbuss et al.
(2021) [41] Blood cancer H&E Custom dataset

from 629 patients EfficientNet
Classification of tumor-free lymph nodes, nodal small

lymphocytic lymphoma/chronic lymphocytic leukemia, and
nodal diffuse large B-cell lymphoma

Panigrahi et al.
(2022) [42] Oral cancer H&E Custom dataset Three ResNet

architectures Classification of 3 grades

Wang et al.
(2021) [44] Breast cancer H&E Custom dataset of

222 images ResNet-18 BRCA gene mutations prediction

Le Page et al.
(2021) [45] Lung cancer H&E

Custom dataset of
197 images and 60

images from TCGA
InceptionV3

Classification of patches (tiles) into cancer subtypes. For final
case classification they used majority-vote method or highest

probability class

Zormpas-
Petridis et al.
(2021) [46]

Melanoma,
breast cancer and

childhood
neuroblastoma

H&E Custom dataset Custom CNN

Classification of the: melanoma (tumor tissue, stroma, cluster of
lymphocytes, normal epidermis, fat, and empty/white space)
breast cancer (tumor, necrosis, stroma, cluster of lymphocytes,
fat, and lumen/empty space) neuroblastoma (undifferentiated

neuroblasts, tissue damage (necrosis/apoptosis), areas of
differentiation, cluster of lymphocytes, hemorrhage, muscle,

kidney, and empty/white space)

Abdolahi et al.
(2020) [48] Breast cancer H&E Kaggle Custom CNN,

VGG-16 Classification of invasive ductal carcinoma

Yang et al.
(2022) [47] Lung cancer H&E Custom dataset Custom CNN Comparison of classification lung cancer by fine-tuned models

and models trained from scratch

Abdeltawab et
al. (2022) [43] Kidney cancer H&E Custom dataset Custom CNN

An ensemble-pyramidal deep learning model consisting of
three CNNs processing different image sizes to differentiate 4

tissue subtypes

Figure 4. WSI image segmentation using the SLIC superpixels algorithm. Reprinted from [46], with
permission according to Creative Commons Attribution License.

3.4. Multi-Stage Classification

In [49], scholars tackled the complex problem of computer-aided disease diagnosis
by designing a two-stage system to determine the Tumor Mutation Burden (TMB) status,
which is an important biomarker for predicting the response to immunotherapy in lung
cancer. For the first stage, they developed a CNN based on InceptionV3 [50] to classify
known histologic features for individual patches across H&E-stained WSIs. In the second
stage, the patch-level CNN predictions were aggregated over the entire slide and combined
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with clinical features such as smoking status, age, stage, and sex to classify the TMB status.
The final model was obtained by ensembling 10 independently trained networks.

In [51], the authors proposed a diagnostic framework for generating a whole-case
report consisting of the detection of renal cancer regions, classification of cancer subtypes,
and cancer grades. From every stain-normalized WSI, patches were selected from tumor
and non-tumor regions to form a dataset. For tumor region classification, they fine-tuned
several different architectures and identified InceptionV3 as the most suitable one. Thus,
they also used this architecture for the remaining tasks. Patches classified as containing a
tumor were further classified into three tumor subtypes and four grade classes.

It should be noted that CNNs have proven to be successful classifiers in the field of
histology. Nevertheless, they can also be employed in conjunction with other machine
learning (ML) classifiers. The authors in [52] developed a CNN model for the automated
classification of pathology glioma (brain tumor) images into six subtypes. The images pass
through the CNN to obtain patch-level output categories. At this point, those patch labels
go through a hierarchical decision tree for patient-level diagnosis based on the amounts
and proportions of tumor types. The outcome thus includes results for both the image
patch-label and the patient-level label. In [53], researchers developed a three-step approach
to HER2 status tissue classification in breast cancer. Firstly, they used a pre-trained UNet-
based nucleus detector [54] to create patches. Secondly, they trained a CNN to identify
tumor nuclei and further classified them as HER2-positive or HER2-negative. In [55],
the authors proposed a classification method for subtype differentiation of liver cancer
based on a stacking classifier with deep neural networks as feature extractors. They used
four pre-trained deep convolutional neural networks, ResNet50, VGG16, DenseNet201 [56],
and InceptionResNetV2 [17], to extract deep features from histopathological images. After
fusing extracted deep features from different architectures, they applied multiple ML
classifiers (Support-vector machines (SVMs), k-Nearest Neighbor (k-NN), Random Forest
(RF)) on the feature vector to obtain final classification.

To predict 5-year overall survival in renal cell carcinoma, scholars in [57] fine-tuned
a ResNet18 pre-trained on the ImageNet dataset. The CNN assigned a probability score
for every patch, and to determine the class for an entire WSI, the scores of all associated
patches were averaged and classified. In addition to single-stage classification, they also
used CNN prediction with other clinicopathological variables for multivariable logistic
regression analysis. The authors in [58] presented an approach that combines a deep
convolutional neural network as a patch-level classifier and XGBoost [59] as a WSI-level
classifier to automatically classify H&E-stained breast digital pathology images into four
classes: normal tissue, benign lesion, ductal carcinoma in situ, and invasive carcinoma.
InceptionV3 was trained as the Patch-Level Classifier to generate four predicted probability
values combined into a heatmap. By comparing the classification accuracy of different
classifiers, they chose XGBoost as the WSI-level classifier.

In [60], researchers trained a deep learning classifier and applied it to classify lung
tumor samples into nine tissue classes. From the extracted features, they computed spatial
features that describe the composition of the tumor microenvironment and used them
in combination with clinical data to predict patient survival, as well as to predict tumor
mutation. The authors of [61] claim that they were the first to propose a method for
detecting Pancreatic ductal adenocarcinoma in WSIs based on CNNs. They employed
InceptionV3 as a patch-level classifier and predicted patches combined with a malignancy
probability heatmap. At this point, statistical features were extracted from WSI heatmaps
and applied to train a Light Gradient Boosting Machine [62] for slide-level classification.
Similar approaches were taken by researchers in [63]. On histological images of gastric
cancer (GC), they made both binary and multi-class classifications. Firstly, InceptionV3 was
used for both malignant and benign patch classification as well as discriminating normal
mucosa, gastritis, and gastric cancer. Secondly, they separated all WSIs into categories,
“complete normal WSIs” and “mixture WSIs” with gastritis or GC, and used 44 features
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extracted from the malignancy probability heatmap generated by CNN to train and fine-
tune the RF classifier.

The addition of attention mechanisms to CNNs for increased performance has become
increasingly popular nowadays. In [64], the Divide-and-Attention Network (DANet) was
proposed for breast cancer classification and grading of both breast and colorectal cancers.
This network has three inputs: the original pathological image, the nuclei image, and the
non-nuclei image. The nuclei and non-nuclei images are obtained as a result of a nuclei
segmentation model. A similar approach was used in [65], where the authors developed
the Nuclei-Guided Network (NGNet) for grading of breast invasive ductal carcinoma.
Compared to DANet, NGNet has only two input images: the original image and the nuclei
image obtained from segmentation.

Medulloblastoma (MB) is a dangerous malignant pediatric brain tumor that can lead to
death [66]. In [67], the authors proposed a mixture of deep learning and machine learning
methods called MB-AI-His for the automatic diagnosis and classification of four subtypes of
pediatric MB. The diagnosis is performed in two levels. The first level classifies the images
into normal and abnormal (binary classification level), while the second level classifies
the abnormal images containing MB tumor into the four subtypes of childhood MB tumor
(multi-classification level). Three pre-trained deep CNNs are utilized with transfer learning
(ResNet-50, DenseNet-201, and MobileNet [68]) to extract spatial features. These features
are combined with time-frequency features extracted using the discrete wavelet transform
(DWT) method. Finally, a combination of spatial features and five popular classifiers is
used to perform multi-class classification, including SVM, k-NN, Linear Discriminant
Analysis, and Ensemble Subspace Discriminant. A similar approach is introduced by the
authors in [69]. Multi-class classification of the four classes of childhood MB is much
more complicated than binary classification. Few research articles have investigated this
multi-class classification problem. Their pipeline consists of spatial DL feature extraction
from 10 fine-tuned CNN architectures, feature fusion and reduction using the DWT method,
and subsequent selection of features. Classification is accomplished using a bidirectional
Long-Short-Term Memory classifier. All papers using multistage classification are listed in
Table 3.

Table 3. Summary of studies using multi-stage classification.

Reference Cancer Types Staining Dataset Neural Networks in Models Method

Sadhwani et al.
(2021) [49] Lung cancer H&E TCGA and custom

dataset of 50 WSIs Custom CNN Multiclassification into subtypes and binary
classification of Tumor Mutation Burden

Wu et al. (2021) [51] Renal cell cancer
(RCC) H&E

667 WSIs from
TCGA + new RCC
dataset of 632 WSIs

InceptionV3
Identification of tumor regions and

classification into tumor subtypes and
different grades

Jin et.al (2021) [52] Brain cancer H&E

slides of 323
patients from the
Central Nervous
System Disease

Biobank

custom CNN based on
DenseNet Classification into 5 subtypes of glioma

Anand et al. (2020) [53] Breast cancer H&E, IHC

dataset from
University of
Warwick and

TCGA

Custom neural network
Identification of tumor patches and
classification of HER2 into positive

or negative

Dong et al. (2022) [55] Liver cancer H&E Custom dataset of
73 images

ResNet-50, VGG-16,
DenseNet-201,

InceptionResNetV2
Classification of three differentiation states

Mi et al. (2021) [58] Breast cancer H&E Custom dataset of
540 WSIs InceptionV3

Multi-class classification of normal tissue,
benign lesion, ductal carcinoma in situ, and

invasive carcinoma

Fu et al. (2021) [61] Pancreas H&E Custom dataset of
231 WSIs InceptionV3 Classification of patches into cancerous or

normal

Ma et al. (2020) [63] Gastric cancer H&E Custom dataset of
763 WSIs InceptionV3 Classification of normal mucosa, chronic

gastritis, and intestinal-type
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Table 3. Cont.

Attallah (2021) [67] Brain cancer H&E Custom dataset of
204 images

ResNet-50, DenseNet-201,
MobileNet

Classification of normal and abnormal
Medulloblastoma

Attallah (2021) [69] Brain cancer H&E Custom dataset of
204 images 10 CNN architectures Multi-class classification of 4

medulloblastoma subtypes

Yan et al. (2022) [64] Breast and
colorectal cancer H&E

BACH dataset and
datasets avaiable

from different
articles

Xception

Classification of breast cancer, colorectal and
breast cancer grading based on

Divide-and-Attention Network using
Xception CNN as backbone

Yan et al. (2022) [65] Breast cancer H&E Custom dataset NGNet

Grading of breast cancer using attention
modules and segmentation. Classification is
done with two images: original image and

corresponding nuclei image)

Raczkowski et al.
(2022) [60] Lung cancer H&E Custom dataset ARA-CNN

Classification of mutation based on tissue
prevalence and tumor microenvironment
composition computed from ARA-CNN

output. CNN was used to classify patches
into 9 tissue subtypes

Wessels et al. (2022) [57] Kidney cancer H&E TCGA ResNet18

Pretrained ResNet18 CNN was used to
predict 5-year overal survival in renal cell
carcinoma. Furthermore, the CNN-based

classification was an independent predictor
in a multivariable clinicopathological model

4. Discussion

Based on the studies described in the previous chapter, it is clear that there are many
approaches to successfully use neural networks for many classification tasks in histology
and a variety of cancer types. Most commonly, DL has been applied to lung and breast
cancer. Breast cancer is a leading cause of cancer-related deaths in women worldwide, and
lung cancer was the second most commonly diagnosed cancer worldwide in 2020, behind
female breast cancer [24,47]. From a histological point of view, the tasks in which neural
networks were successfully applied have been divided into the following three groups:
tissue types, grading, and biomarker classification. The articles mentioned in this review
are arranged according to this categorization in Table 4.

Table 4. Overview of all studies classified according to the application area.

Tissue

Tissue type

Yang et al. (2021) [18] Yu et.al (2020) [26]
Hameed et al. (2020) [21] Cheng et al. (2022) [29]
Farahani et al. (2022) [22] Sarker et al. (2023) [23]

Luo et al. (2022) [25] Khan et al. (2023) [20]
Hameed et al. (2022) [24] Steinbuss et al. (2021) [41]
Le Page et al. (2021) [45] Zormpas-Petridis et al. (2021) [46]

Abdolahi et al. (2020) [48] Yang et al. (2022) [47]
Abdeltawab et al. (2022) [43] Sadhwani et al. (2021) [49]

Wu et al. (2021) [51] Jin et.al (2021) [52]
Anand et al. (2020) [53] Dong et al. (2022) [55]

Mi et al. (2021) [58] Fu et al. (2021) [61]
Ma et al. (2020) [63] Attallah (2021) [69]
Yan et al. (2022) [64] Attallah (2021) [67]

Tissue grading Yu et.al (2020) [26] Mundhada et al. (2023) [31]
Wu et al. (2021) [51] Yan et al. (2022) [65]

Panigrahi et al. (2022) [42]

Biomarkers
Abousamra et al. (2022) [14] Liu et al. (2020) [35] Baid et al. (2022) [38]

Shovon et al. (2022) [36] Huang et al. (2021) [40] Wang et al. (2021) [44]
Anand et al. (2020) [53] Raczkowski et al. (2022) [60]

4.1. Tissue Types

One of the most fundamental tasks in histology is the classification of tissue types. It
is possible to look at this task in two ways. The first aspect and the complete basis is to
identify tumor tissue and other tissue types. This may involve a binary division into tumor
and non-tumor tissue (this approach was used in [21]) as well as multi-class detection of
tumor, stroma, lymphocytes, fat, necrosis, and other. In [46], the authors demonstrated that
their proposed SuperHistopath framework succeeded in tissue multi-classification of three
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different cancer types and was able to achieve high accuracy (98.8% in melanomas, 93.1%
in breast cancer, and 98.3% in childhood neuroblastoma).

The second aspect is classifying tumor tissue into cancer subtypes. This could be
the classification of malign vs. benign carcinoma, invasive vs. non-invasive carcinoma,
or various subtypes of a certain cancer type. This subtyping is an important part of
determining a treatment plan; however, it often needs special IHC staining to be done.
Therefore, the ability to perform subtype classification directly from H&E images could
be of great benefit in terms of clinical application. Authors in [23] proposed a method
for subdividing breast cancer into eight subtypes, four for benign (adenosis, fibroade-
noma, phyllodes tumour, and tubular adenoma) and four for malignant (carcinoma, lob-
ular carcinoma, mucinous carcinoma, and papillary carcinoma). They showed that their
model achieved significant results compared to other state-of-the-art models mentioned in
the study.

It should be noted that the two approaches are not always clearly separable, and the
classification of tissue type is often associated with the classification of tumor subtypes.
This approach was demonstrated in [24], where the breast tissue was categorized as normal
tissue, benign lesion, in situ carcinoma, or invasive carcinoma. Another example is [29],
where researchers managed to obtain models with accuracy over 0.95% in classifying
five types of liver lesions, cirrhosis, and nearly normal tissue.

4.2. Tissue Grading

Cancer grading has its origins in 1914 when pathologist Albert Broders began col-
lecting data showing that cancers of the same histologic type behaved differently. By
the late 1930s, tumor grading was considered a state-of-the-art prognostic technique for
scientific cancer care. Today, there are hundreds of grading schemes for various types
of cancer [70]. However, in comparison with subtype classification, pathological image
grading is considered a fine-grained task [64,65].

Researchers in [42] used residual networks to grade images of squamous cell carci-
noma, since it accounts for about 90% of oral disorders. To demonstrate the deep learning
capability of grading different cancer types, the authors of [64] developed a model with an
average classification accuracy of 95% and 91% for colorectal and breast cancer grading,
respectively. The breast cancer grading task was also addressed in [65].

4.3. Bio-Marker Classification

A bio-marker is a biological molecule found in tissues that is a sign of a normal or
abnormal process or of a condition or disease, such as cancer. Typically, bio-markers
differentiate a person without disease from an affected patient. There is a tremendous
variety of bio-markers, including proteins, antibodies, nucleic acids, gene expression, and
others. They can be used in clinical treatment for multiple tasks, such as estimating the risk
of disease, differential diagnosis, predicting response to therapy, determining the prognosis
of the disease, and so on [71].

In [36], the authors presented the architecture HE-HER2Net, which surpassed the
accuracy of other common architectures in the multiclassification of HER2 into four cate-
gories. Following this, researchers in [40] developed a CNN to predict the mutated genes,
which are potential candidates for targeted-drug therapy for lung cancer. The average
probability of the bio-markers of lung cancer was received through the model, with the
highest accuracy of 86.3%.

Ki67 is a protein that is found in the cancer cell nucleus and can be found only in
cells that are actively growing and dividing, which is typical for cells mutated into cancer.
Therefore, Ki67 is sometimes considered a good marker of proliferation (rapid increase in
the number of cells) [72]. In [35], scholars fine-tuned an NN to classify cell images into
Ki67-positive, Ki67-negative, and as a background image with an accuracy of 93%.
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5. Conclusions

The article presents a detailed survey of recent DL models based on neural networks
in the context of classification tasks for the analysis of histological images. The analysis of
approximately 70 articles published in the last three years shows that automated processing
and classification of histopathological images by deep learning methods have been applied
to a wide range of histological tasks, such as tumor tissue classification or biomarker
evaluation to determine treatment plans. The survey reveals several conclusions:

Application Areas: Deep learning has been applied to several types of cancer (e.g., breast,
lung, colon, brain, kidney) and has proven to be capable of assisting pathologists with
visual tasks in the treatment of various diseases. The reviewed works have identified the
following three groups of specific tasks: classification of tissue type, grading of specific
tissue, and identification of the presence of biomarkers.
Single- and Multi-Stage Approaches: Convolutional neural networks can be applied
either as a stand-alone classifier or can be used as a feature extractor whose outputs will
proceed into another machine learning model to carry out the final classification.
Pre-Training: Training networks from scratch requires a large dataset and a lot of com-
puting time. Therefore, it is recommended to experiment with well-known architectures
pre-trained on ImageNet. If the results are not sufficient, then one can design their own
custom network and train it from scratch.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AUC Area Under Curve
BCI Breast Cancer Immunohistochemical
DL Deep Learning
CNNs Convolutional Neural Networks
WSIs Whole Slide Images
NNs Neural Networks
TIL Tumor Infiltrating Lymphocytes
H&E Hematoxylin and Eosin
IHC Immunohistochemical
FL Federated Learning
GDPR General Data Protection Regulation
SLIC Simple Linear Iterative Clustering
TMB Tumor Mutation Burden
ML Machine Learning
HER2 Human Epidermal Growth Factor Receptor 2
SVM Support-vector machines
k-NN k-Nearest Neighbor
RF Random Forest
GC Gastric Cancer
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MB Medulloblastoma
DWT Discrete Wavelet Transform
RCC Renal cell cancer
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Abstract: The past few decades have witnessed remarkable progress in the application of artificial
intelligence (AI) and machine learning (ML) in medicine, notably in medical imaging. The application
of ML to dental and oral imaging has also been developed, powered by the availability of clinical
dental images. The present work aims to investigate recent progress concerning the application of ML
in the diagnosis of oral diseases using oral X-ray imaging, namely the quality and outcome of such
methods. The specific research question was developed using the PICOT methodology. The review
was conducted in the Web of Science, Science Direct, and IEEE Xplore databases, for articles reporting
the use of ML and AI for diagnostic purposes in X-ray-based oral imaging. Imaging types included
panoramic, periapical, bitewing X-ray images, and oral cone beam computed tomography (CBCT).
The search was limited to papers published in the English language from 2018 to 2022. The initial
search included 104 papers that were assessed for eligibility. Of these, 22 were included for a final
appraisal. The full text of the articles was carefully analyzed and the relevant data such as the clinical
application, the ML models, the metrics used to assess their performance, and the characteristics of
the datasets, were registered for further analysis. The paper discusses the opportunities, challenges,
and limitations found.

Keywords: machine learning; artificial intelligence; oral health; X-ray imaging; diagnosis; convolutional
neural networks; deep learning

1. Introduction

Dental caries and periodontal disease are two of the most common dental conditions
that affect people worldwide. Dental caries, also known as tooth decay, is a multifactorial
disease mainly caused by the interaction of the bacteria present in dental plaque and sugars
from the diet, which produces acids that erode the tooth structure [1]. Periodontitis, on
the other hand, is a chronic inflammatory condition that affects the supporting structures
of the teeth, including the gums, periodontal ligament, dental root cement, and alveolar
bone. It is also multifactorial and is caused by the accumulation of bacterial plaque and
dental calculus around the teeth, which triggers an immune response that leads to tissue
destruction [2].

X-ray exams are essential diagnostic tools in dentistry. They allow oral health pro-
fessionals to visualize the internal structures of the teeth and jaws, which are not visible
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Computation 2023, 11, 115

during a clinical examination. There are several types of dental X-ray exams, including
bitewing, periapical, panoramic, and cone beam computed tomography (CBCT). Bitewing
X-rays are used to detect dental caries. Periapical X-rays are used to detect dental caries and
bone loss due to periodontitis and periapical lesions, while panoramic and CBCT X-rays are
used to evaluate the overall condition of the teeth and the upper and lower jaws, including
the presence of periodontal disease and other abnormalities [3].

Dental X-rays have revolutionized the practice of dentistry by providing detailed
information about oral structures. They allow dental professionals to detect dental caries,
periodontal diseases, and other conditions at an early stage, which can prevent further
complications and improve treatment outcomes. Dental X-rays can also reveal other
conditions, such as impacted teeth, tumors, and cysts, which may not be visible during a
clinical examination. Additionally, they are useful in treatment planning and monitoring
the progress of ongoing treatments [4,5].

Fast-emerging artificial intelligence (AI) technology is changing many scenarios in
our society. The oral health field is not an exception, mainly because of its regular use of
digitized imaging and electronic health records which facilitate AI algorithms [6,7]. The
science is recent and caution should be used. Human supervision is needed, but the door
is open and it is important to understand the real benefits of this technology in health
activities [8].

The availability of clinical dental images and the development of deep learning algo-
rithms in recent years has led to significant improvements in the accuracy and robustness
of these algorithms in supporting the diagnosis of various dental conditions.

Convolutional neural networks (CNN) [9] are a type of deep learning neural network
that are considered the most prominent algorithm used, due to their high accuracy and
ability to learn and extract features from images. A CNN consists of multiple layers, in-
cluding convolutional, pooling, and fully connected layers. CNNs have shown remarkable
performance in image classification tasks and have been widely used in a variety of fields,
including medical image analysis, object detection, and natural language processing.

Transfer learning is a machine learning technique that involves the use of a pretrained
model (e.g., a CNN model), which has already learned relevant features from a large image
dataset, such as ImageNet [10], COCO [11], MNIST [12], CIFAR-10/100 [13], or VOC [14].
It is then fine-tuned on a smaller dataset for a specific task. Pretrained image models are
used as a starting point for training the new model and the most popular pretrained image
architectures include GoogLeNet Inception [15], ResNet [16], VGG [17], and Xception [18].
Among these, GoogleLeNEt Inception and ResNet hold special significance in oral health
applications. GoogLeNet Inception–v3 architecture was introduced in 2014 and demon-
strated excellent performance in the ImageNet Large Scale Visual Recognition Challenge. It
was trained with more than a million images of 1000 object categories from the ImageNet
dataset. The original architecture has 22 deep layers, allowing different scale features to be
obtained by applying convolutional filters of different sizes in the same layers.

ResNet was introduced in 2015, and it has since become a foundational architecture
in the field of deep learning, serving as a basis for many subsequent advancements. It
addresses the problem of vanishing gradients that can occur when training very deep
neural networks by using residual connections, where shortcut connections are added to
bypass one or more layers.

Other works use a mixed approach that applies traditional machine learning methods,
such as support vector machine (SVM) [19], k-nearest neighbors (kNN) [20], random
forest [21], or extreme gradient boosting (XGBOOST) [22] for classification, using the image
features previously extracted employing a CNN.

This scoping review aims to explore the current state of the art of AI-assisted diagnosis
in oral health using X-ray-based images, focusing on the last five years. The specific
objectives are to summarize several aspects of the current state of the art in the field and to
identify limitations and research gaps that must be addressed to advance the field.
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By providing a comprehensive overview of the quality and advancements of predictive
models developed using artificial intelligence-based methods for oral X-ray diagnosis, this
scoping review identifies trends, challenges, and gaps in the development and evaluation
of these models. The review’s findings offer valuable insights into the feasibility and
effectiveness of AI-based approaches in dental imaging, potentially improving diagnostic
accuracy and patient outcomes in oral healthcare.

The rest of the paper is organized as follows: Section 2 describes the Methods used
for information search and analysis; Section 3 summarizes the results obtained; Section 4
provides a discussion of the findings and Section 5 presents the Conclusions.

2. Methods

This review aims to obtain important insights into scientific production to identify the
status of machine learning in diagnosis using X-ray-based images in oral health.

Our research questions were built using the PICOT [23] framework. The PICOT
framework is widely used in healthcare research to generate specific research questions
and concisely guide study design. It is an acronym that stands for population, intervention,
control, outcome, and time. The PICOT elements for this review are presented in Table 1.

Table 1. Description of the PICOT elements.

Study Question

Population Oral X-ray diagnostic images of patients (radiography, CBCT)
Intervention Artificial intelligence-based forms of diagnosis

Control Oral health
Outcome Quality of the predictive models

Time Last five years

Therefore, the research question was formulated as follows:
“What is the quality of the predictive models being used for diagnosis in oral health

using X-ray-based images?”
According to the formulated question, the systematic literature search was performed

with the following inclusion criteria:

1. Studies between 1 January 2018 to 31 December 2022, since the goal was to access the
most recent progress in a rapidly evolving field;

2. Studies with a focus on dental/oral imaging techniques based on X-rays, including
cone beam computed tomography (CBCT);

3. Studies with a focus on diagnostic applications. To our knowledge, this is the first
paper that exclusively reviews the application of ML methods in oral health diagnosis.

The three different databases shown in Table 2 were used for information retrieval.

Table 2. Databases used to conduct the search.

Name Acronym URL

IEEE Xplore IEEEXplore https://ieeexplore.ieee.org/Xplore/home.jsp
(accessed on 6 March 2023)

Science Direct SciDir https://www.sciencedirect.com/
(accessed on 6 March 2023)

Web of Science WoS https://www.webofscience.com/wos/
(accessed on 6 March 2023)

The search strategy was built by logical operators used for query search in the
databases. Since each database uses different syntaxes for queries, a specific query was
built for each one. An example of a query used is as follows:

(Dental OR Dentistry) AND (Imaging OR Images) AND (“Machine Learning” OR
“Artificial Intelligence”)
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The search was limited to journal articles written in the English language excluding
conference papers, reviews, and editorials. The search was conducted by one reviewer
(M.V.M.), who also evaluated the search results for relevance based on their title and
abstract. After the remotion of duplicates, the abstracts of the papers selected for screening
were evaluated by blinded pairs of researchers (M.V.M., L.B., H.L., V.A., M.R.A., V.R.)
using the web app Rayyan [24]. After individual evaluation, discrepancies were solved
by reaching a consensus. The full text of the selected studies was examined in detail for
eligibility (M.V.M., L.B., H.L., V.A., M.R.A., V.R.). At this stage, a few papers were excluded
for not meeting the inclusion criteria. Data extraction from the included publications was
then performed (M.V.M., L.B., H.L., V.A., M.R.A., V.R.) and recorded in a spreadsheet. At
all stages, there was complete consensus among the evaluators on the literature selection
process and the classification of the publications.

The study characteristics recorded included the year of publication, country, the aim
of the study, clinical application, type of X-ray images used, data source, size and partition
(training, test, and validation sizes), if augmentation strategies were used, the type of task
(classification, regression), machine learning models used, the metrics used to evaluate the
models and their best reported values, and if human comparators were employed.

3. Results

3.1. Search and Study Selection

The Prisma [23] diagram presented in Figure 1 shows the flowchart for the study
search and selection process. The initial search identified 104 papers. After the remotion
of duplicates, a total of 92 papers were left for screening. During the screening phase,
52 papers were excluded. Reasons for exclusion included the study not dealing with
diagnosis questions; the study did not use X-ray-based images; the metrics of the developed
models were not reported. A total of 40 papers were then accessed for eligibility, and a
further 18 papers were excluded for not dealing with diagnosis issues or not using X-ray
images. A total of 22 papers were included in this review.

 

Figure 1. Flowchart of the search, where n represents the number of papers.

3.2. Included Studies

Some of the characteristics of the selected papers are presented in Table 3. The complete
information can be found in Supplementary Table S1.
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All studies included were published between 2018 and 2022, with a notable increase
in the last year considered, which represented 50% of all studies (Figure 2).

Figure 2. Number of included studies per year of publication.

The 22 included studies involved a total number of 153 researchers affiliated with
17 countries. Of these 153 researchers, 65% (n = 100) had their affiliation with institutions
related to health (colleges or departments of oral health and similar, hospitals and clinics),
and the rest (35%, n = 53) with institutions from areas related to computer science, physics,
engineering and similar. The majority of the first authors were affiliated in China and South
Korea with four papers, and the United States with three papers (Figure 3). These three
countries represent 50% of the included studies.

 

Figure 3. Geographic distribution of the country affiliation of the first author of the studies.

The studies were published in sixteen different journals, with the Journal of Dentistry
being the one that published the most articles, with 23% of the total (n = 5), and Diagnostics
being the second one with 14% (n = 3). The remaining papers were distributed by the
fourteen other sources shown in Table 4.
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Table 4. Journal sources of the included papers.

Journal n %

Journal of Dentistry 5 23%
Diagnostics 3 14%
Biomedical Signal Processing and Control 1 5%
Scientific Reports 1 5%
Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology 1 5%
Informatics in Medicine Unlocked 1 5%
Cluster Computing 1 5%
International Dental Journal 1 5%
Journal of Clinical Medicine 1 5%
Displays 1 5%
Journal of Endodontics 1 5%
Health Information Science and Systems 1 5%
Oral Diseases 1 5%
IEEE Access 1 5%
Applied Sciences 1 5%
IEEE Transactions on Automation Science and Engineering 1 5%

The keywords used in the studies (Figure 4) totalized 120 terms, with the most used
being “artificial intelligence” (n = 13), followed by “machine learning” and “deep learning”
(each n = 11). Less used keywords were “convolutional neural network” (n = 4), “radiogra-
phy”, “supervised machine learning”, “dental caries” (each n = 3), “classification”, “digital
image/radiology”, “endodontics”, “diagnosis”, “panoramic radiograph” and “cysts” (each
n = 2). The rest of the terms, a total of n = 60, each appeared only in one study.

 

Figure 4. Word cloud of keywords.

3.3. Clinical Applications, Image Types, Data Sources and Labeling

Most of the studies analyzed (n = 8) applied the machine learning models to the diag-
nosis of dental caries, followed by the diagnosis of periodontal diseases (n = 7), diagnosis
of oral lesions (n = 4), and diagnosis of apical lesions (n = 3). A small number of papers
addressed the diagnosis of implant defects (n = 1), ectopic eruption (n = 1), and impacted
teeth (n = 1).

The vast majority of the studies considered in this review used periapical (n = 10) or
panoramic images (n = 10), while one paper used both periapical and bitewing images.
Only two papers used CBCT images. One of these used both CBCT and panoramic images.
One paper did not specify the type of X-ray image being used.

Universities were the most common source of data (n = 12), followed by hospitals
(n = 6). There were also studies based on external datasets (n = 2) and a small number
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used data from private clinics (n = 2). The majority of datasets consisted of data from a
single institution. However, there was one particular paper [43] that constructed its dataset
by incorporating information from two different hospitals. The papers that used external
data sources did not include a description of the labeling process. Among the remaining
papers, two did not describe the labeling process. Only 15 papers provided information
regarding the number of annotators. They ranged from one to six annotators, with varying
degrees of experience. Only seven papers provided information regarding the seniority of
the annotators, which ranged from 3 to 33 years of experience. In three of those papers, the
annotators had a minimum of 3 years of experience, while in four they had at least 10 years
of experience.

3.4. Datasets Size, Partitions, and Data Augmentation

The majority of the 22 papers (68%, 15), use data augmentation, namely zooming,
rotation, shearing, flipping, and shifting. For a reliable comparison between papers, the
dataset size must consider the data augmentation process. So, for each paper where
data augmentation was used, we considered the actual number of examples that fed the
machine learning algorithm, instead of the original dataset size. In practical terms, data
augmentation corresponds to an increment in the dataset size.

Table 5 sums up the dataset size distribution. The sizes ranged from small datasets of
one hundred examples to an enormous dataset of 1,292,360 examples. Half of the datasets
were below 1500 instances; only three datasets were above 100,000 instances and all the
other nineteen datasets were below 50,000 instances.

Table 5. Dataset size distribution.

Dataset Size Number of Datasets

<500 5
500–1000 4
1000–1500 2
1500–2000 1
2000–5000 4

5000–10,000 2
10,000–50,000 1

50,000–100,000 0
10,000–500,000 2

500,000–1,000,000 0
>1,000,000 1

Dataset images typically have many teeth, but five (23%) datasets used images with
only one tooth.

Datasets are split into three sets: training, validation, and test. There were two papers
that did not have information regarding the division of the dataset. In these cases, we
assumed that the training set was the dataset. Half of the training sets had sizes above 87%
of the dataset size, and the training set size with the minimum percentage was 60% of the
dataset size.

There were four papers that did not use or had no information regarding the test set.
All the other 18 papers used a test set for evaluating the ML algorithms. Usually, this is a
subset from the original dataset. However, there was a particular paper [38] that used an
external dataset as a test set.

Regarding the validation set, 36% (n = 8) of the papers had no information, 32% (n = 7)
of the papers used cross-validation and the other 32% (n = 7) used a validation set.

3.5. Machine Learning Tasks and Models

Most of the papers addressed the machine learning application to the diagnosis
in dental health as a classification task (n = 20). One study addressed the problem as
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a regression task, and another study used a combination of regression and generative
machine learning models.

The huge majority of studies used exclusively convolutional neural networks (n = 19),
but three studies used a combination of CNN and traditional algorithms. In these three
studies, the approach was to use CNN for feature extraction and then traditional algorithms,
such as support vector machine (n = 2), k-nearest neighbors (n = 2), naïve Bayes (n = 2), and
random forest (n = 1) for classification.

Among the papers that used CNN, 41% (n = 9) used exclusively proprietary archi-
tectures. One study used both a proprietary CNN and pretrained CNNs via transfer
learning.

Transfer learning was used by a considerable number of studies (n = 10), usually by
changing the last layers in the original architectures and fine tuning the model with the
dataset used in the paper. The preferred pretrained models were GoogLeNet Inception
(n = 6), ResNet (n = 6), different versions of VGG (n = 4), Xception (n = 2) and AlexNet (n = 2).
Other architectures used were DeepLab [47], Mask R-CNN [48], DETR [47], DenseNet [49],
Yolo [50], MobileNet [51], and DarkNet [51] (each n = 1).

The preferred pretrained model was the GoogLeNet Inception. In several studies,
GoogleLeNet Inception V3 was used as the main model for their respective classification
tasks [25,30,34]. Hashem et al. used the Inception original architecture, and adjusted output
layers to classify the images in one of three kinds of cysts [30]. The weights of the model
were optimized by adjusting the hyperparameters including the learning rate, batch size,
dropout rate, and by using batch normalization. Lee et al. also adapted the last layer for an
adequate number of categories (presence or absence of dental caries), but provided less
detail about the process of hyperparameter tuning [25].

Some papers used the results obtained with GoogleLeNet Inception V3 for comparison
with other models, such as a proprietary model developed in the paper for a specific diagno-
sis task ([33] for the detection and classification of dental implants), a specific model which
was optimized ([41] for AlexNet), or other pretrained models (such as DenseNet, VGG, and
ResNEt-50 in [39]). Very often, when the pretrained model was used for comparison, there
was a lack of detail in the description of the adaptation of the original model to the specific
task being handled.

ResNet was the other preferred pretrained model used in the selected papers. ResNet
was used by Cha et al. for training a classification model created for sorting upper and
lower periapical radiographs [35]. The weights of the pretrained model were used, with the
last connected layer modified to meet the number of classes (upper and lower maxillary).
The radiograph image was then fed into another model trained specially for the upper
or lower maxillary. This second set of models used a version of the R-CNN architecture
for localizing the implants and finding key points, thus allowing the calculation of the
marginal bone loss ratio. Li et al. use a modification of the ResNet-18 to detect the crown
categories (caries or normal) and root categories (periapical periodontitis/normal) of the
tooth. For a single tooth, the model needed to be executed twice: the first time to obtain the
dental root results and the second time to obtain the dental crown results. It was, however,
not clear how the modified model was trained on the available dataset [37].

In the study conducted by Feher et al., the authors employed an approach that com-
bined object detection and image segmentation of anatomical structures to predict two
classes of cysts: odontogenic and non-odontogenic [43]. The object detection model con-
sisted of a feature pyramid network using a pretrained ResNet as the backbone that outputs
a bounding box with the location of the cysts. In parallel, a pretrained U-Net segmentation
model was used to obtain relevant anatomical structures, such as the maxilla, mandible,
mandibular canal, maxillary sinuses, dentition, and individual teeth. The overlap of the de-
tection boxes and segmented anatomical structures was computed, and fed into a random
forest classifier for cyst classification. Tsoromokos et al. used an architecture named faster
R-CNN, an object detection network based on R-CNN and fast-RCNN [45]. The objective
was to classify teeth in periapical images as caries or non-caries. The main architecture was
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composed of a feature extraction network, a regional proposal network, and a prediction
and localization network. The feature extraction component used the pretrained weights of
ResNet, and the global model was trained with a small dataset of 720 instances. The paper
omitted the details of how validation was performed.

Bui et al. focused on extracting pertinent features to optimize the classification of tooth
images as either caries or non-caries [34]. Several well-known pretrained models, such
as AlexNet, Inception, VGG, ResNet, and Xception were used to extract deep-activated
features. Experiments were performed to find out which deep layer (before the prediction
layer) provided the highest performance features. At this stage, it is worth noting that no
details were provided regarding the parameters used for feature extraction with each model.
The extracted features were then fused with statistical and texture features computed at
the pixel level, such as mean, contrast, entropy, or correlation. The fused set of features
was fed into traditional machine learning algorithms, such as SVM, NB, KNN, DT, and
RF to obtain a prediction of the two categories. Sunnetci et al. had a similar approach but
with the aim of classifying the images as periodontal bone loss or non-periodontal bone
loss [46]. The paper used pretrained AlexNet and SqueezeNet to extract features from a
defined deep layer in each model. The deep image features were then fed to algorithms
such as kNN, NB, SVM, and tree ensemble algorithms that performed the classification
task. The paper also referred to the use of efficient net for comparison purposes, but no
further details were provided. Geetha et al. had a similar but simpler approach, where a
segmentation algorithm using an adaptive threshold and morphological processing was
used for statistical feature extraction [28]. The extracted features were then fed into a neural
network with one hidden layer used to classify the images as either caries or normal. The
results were compared with the results from methods such as SVM, kNN, and XGBoost. It
is worth mentioning that this was one of the papers where it was not possible to identify
the test set used. It was also one of the papers with the smallest training dataset, which
justified the simple neural network used.

In the study conducted by Endres et al., a 26-layer U-net-based architecture was
employed for image segmentation [29]. This methodology was specifically designed
to detect radiolucent alteration in panoramic images. Those alterations are common
radiographic findings that have a differential diagnosis including infections, granuloma,
cysts, and tumors. The model outputs an intensity map indicating regions of high or low
confidence for containing a radiolucent periapical alteration.

The YOLO algorithm was used by Tajima et al. to detect cyst-like radiolucent le-
sions of the jaws [42]. The YOLO algorithm has gained significant attention in the field
of computer vision and medical imaging, as it predicts the bounding boxes and class
probabilities directly from the full image in one pass. The model described in the paper
used 75 convolutional layers and the ResNet structure for feature extraction, followed by a
deep learning network to generate the bounding boxes where the lesions were present. The
metrics reported were all above 90%, but few details were provided regarding the deep
network employed.

Ekert et al. developed a seven layer neural network to classify panoramic images into
apical or non-apical lesions [26]. The network contained four convolutional layers and
two dense layers. The architecture was optimized for the numbers of neuronal units, the
number of filters for each particular convolutional layer, the kernel sizes, the configurations
of the max pooling layers and the dropout layers. A relatively small dataset with fewer than
3000 images was used. The authors justified the preference for custom-made architecture
by the fact that more complex, state-of-the-art pretrained models caused overfitting with
their limited-size dataset. Similar work was performed by Kros et al., but for the task of
detecting periodontal bone loss [27].

In the study conducted by Hashem et al., conventional procedures for image segmen-
tation and feature extraction were employed [31]. Subsequently, these extracted features
were then fed into neural networks to classify the images and determine the presence of
infection. The authors referred to the use of four different models of deep neural networks.
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However, the information provided does not allow us to understand the architectures, or
how the models were trained with a small dataset of 80 images.

Liu et al. devised a deep neural architecture specifically designed for the identification
of ectopic eruptions from panoramic images [38]. It consisted of one first and three last
plain convolutional layers, with middle layers for feature extraction. These middle layers
used specific kernels for position-wise and channel-wise feature extraction. The model
was trained with defined parameters with a dataset of 2960 region images from children’s
panoramic images. No information was provided on how the validation was performed.
Interestingly, this paper used an independent dataset collected from another hospital as an
external testing set.

The authors of [32] used a simplified adaptation of DenseNet to develop a model for
segmentation and lesion detection with CBCT images. The input for the model was both
images and oral-anatomical knowledge, such as constraints regarding the spatial location
of lesions, the connection of restorative material, or the location of the background. The
rationale behind the incorporation of anatomical knowledge was to limit the search space
for the deep learning algorithm to find the optimal parameters. The model was trained on
a very small dataset of 100 slices of CBCT images. It is not clear what test set was used.

One paper employed generative adversarial networks (GAN) to facilitate the mea-
surement of clinical attachment levels [36]. GANs are a class of machine learning models
that consist of a generator and a discriminator, competing against each other to generate
realistic data and distinguish it from real data, respectively. The authors developed a GAN
to predict the out-of-view anatomy in bitewing images for the measurement of clinical
attachment levels. The generative adversarial network with partial convolutions comprises
two generators and three discriminator CNNs. An encoder-decoder generator focuses
the network on the missing regions of the images and fills in missing anatomy, while an
encoder-decoder generator encourages the overall realism of the image and helps refine the
predictions. The intermediate prediction images resulting from the GAN are fed into a re-
fined encoder-decoder generator, a pretrained VGG discriminator and a final discriminator.
The resulting images are then fed into deep learning open-source prediction algorithms
(DETR and DeepLab). The model was trained, validated, and tested in a large set of some
thousand teeth images.

A deep neural network based on UNet and Trans-UNET was developed by Ying
et al. for carie segmentation [40]. Trans-UNet is an extension of UNet introduced in
2001 [52] that incorporates transformer modules, inspired by the success of transformers in
natural language processing tasks. Trans-UNet combines convolutional and self-attention
mechanisms to improve the modeling capability of UNet. The proposed model was trained
with a small dataset of 800 teeth images extracted from periapical images. Despite the high
metric values obtained, the authors recognized that the training set might be too small to
train the deep architecture. There was no information on how validation was performed.

3.6. Outcome Metrics and Model Performance

The studies based on classification tasks all used a combination of two or more metrics
to evaluate the model’s performance. The minimum number of metrics used was two,
the maximum was seven, and the mean was 4.75. Recall, also referred to as sensitivity or
true positive rate (n = 17), precision, also referred to as positive predictive value (n = 16),
specificity, also referred to as true negative rate (n = 14), and F1 score, also referred to
as the Dice coefficient (n = 13), were the most used metrics. Other metrics commonly
used were accuracy (n = 9), receiver operating characteristic–area under curve (n = 8),
and negative predictive value (n = 7). Confusion matrices, false positive rate, precision-
recall curve, Youden’s index, and Matthews correlation coefficient were also used in the
classification studies.

The regression studies used a smaller group of metrics to access model performance,
namely mean absolute error, mean bias error (n = 1), and mean squared error (n = 1).
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The values reported for model performance vary widely. Table 6 presents the average,
minimum, and maximum values of the most used metrics, computed over the best reported
values in each study. Average values were above 0.81 and below 0.93; maximum values
were very high and between 0.96 and 1.0; minimum values ranged between 0.51 and 0.85.
The lowest average values were obtained for precision and F1 score and the highest was
obtained for ROC-AUC.

Table 6. Average, minimum, and maximum values of the most used metrics, considering the best
reported values in each manuscript.

Metric n Average Minimum Maximum

Recall 17 0.84 0.51 0.96
Precision 16 0.81 0.67 0.99

Specificity 14 0.85 0.51 1.00
F1 score 13 0.81 0.58 0.97

Accuracy 9 0.92 0.81 0.98
ROC-AUC * 8 0.93 0.85 0.98

NPV ** 7 0.83 0.68 0.95
* ROC-AUC: receiver operating characteristic–area under curve; ** NPV: negative predictive value.

The lowest values for recall, precision, and F1 score were obtained in a study using
panoramic images for the diagnosis of apical lesions and a dataset size of 3099. The lowest
values of specificity and negative predictive value were reported in a study using panoramic
images for the diagnosis of oral lesions and a dataset of 800 images. The lowest values of
accuracy and ROC-AUC were also obtained with panoramic images, for the diagnosis of
periodontal diseases (dataset size 2538), and of oral lesions (dataset size 120), respectively.

The highest value of recall was obtained in a study that used CBCT images for the
diagnosis of oral lesions, and a dataset size of 170,525. The highest values of precision,
specificity, F1 score, and accuracy were obtained in a study using panoramic images for
the diagnosis of oral lesions, with a dataset size of 1546. The best value for ROC-AUC was
reported in a study using periapical images for the diagnosis of implant defects, with a
dataset size of 533. The highest value of NPV was reported in a study using panoramic
images for the diagnosis of apical lesions, with a dataset size of 2877.

The study that used both CBCT and panoramic images obtained higher performance
metrics for the models that used CBCT images. The study that used periapical and
panoramic images obtained higher performance models using the periapical images.

3.7. Human Comparators

Only a small number of studies (n = 5) compared the machine learning model’s
performance with human performance. Those were all classification tasks, with dataset
sizes ranging from 708 to 7924 instances, and using either proprietary CNN or pretrained
models via transfer learning [10–14]. The number of dentists ranged from one junior
dentist to twenty-four oral and maxillofacial surgeons (OMF). The reported experience
ranged from 3 to 10 years. Most of the studies (n = 4) concluded that the machine learning
models reached a similar diagnostic performance to experienced dentists. One of the
studies that used a high number of experts [29] additionally concluded that the ML model
outperformed 58% of OMF surgeons. Another of these studies [38] additionally found
that the ML algorithm was much faster at reaching a similar to human performance
and that the best detection performance was obtained by human experts assisted by the
automatic model.

One study [37] found that the ML model achieved significantly higher performance
than that of young dentists, and, with the assistance of the model, the experts not only
reached a higher diagnostic accuracy but also increased interobserver agreement.
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4. Discussion

The growth in the number of published studies that investigate the use of machine
learning techniques in X-ray diagnostics for oral health demonstrates the growing interest
that the field has aroused in the scientific community. Most of the researchers involved in
these publications are affiliated with clinical institutions and the majority of the papers were
published in clinical journals, as opposed to technical journals. Moreover, the majority of
those clinical journals belong to the specific clinical field of oral health (Journal of Dentistry,
Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, International Dental
Journal, Journal of Endodontics, Oral Diseases). These facts are in contrast with previous
literature reviews [53], and seem to indicate an evolution in the maturity of the field. The
focus of the research is slowly being displaced from the technical development of the
models to an initial stage in the evaluation of their use as a potential clinical tool.

The sizes of the datasets and the ML strategies used vary widely in the studies
analyzed in this review. There seems to be a relation between the dataset sizes and the use
of pretrained machine learning models. For instance, the average size of the datasets when
pretrained models were used was above 21,000, instances; even if the largest dataset was
not considered, while slightly below 2000 instances when proprietary architectures were
used. Interestingly, there were two small datasets with less than 500 instances that used
pretrained models with accuracy results above 0.95.

Several limitations regarding the data were identified in the reviewed studies. Some
of these problems are common in the application of ML to other areas of medical imaging
as well. One major limitation is that datasets are often constructed using data from a single
institution, which limits their generality and heterogeneity. To minimize potential biases,
datasets should be as diverse as possible. Additionally, a significant number of studies rely
on small datasets with poorly described curation processes. There is often a lack of adequate
description of dataset characteristics, such as category distribution. For large datasets
collected over long periods of time, the diversity of data acquisition (clinical protocols and
equipment) was not always clear. The issue of labeling is also relevant. Usually, multiple
annotators are necessary to obtain a gold standard label for the data. In the revised studies,
it was not always identified how the quality of the labeling process through multiple
annotators was assured. For instance, in some cases the task was performed by a single
annotator. In other cases, it was unclear how disagreements were resolved. Additionally,
some studies lacked information on the annotation procedures employed.

The analysis of the performance of the models did not allow us to draw plain con-
clusions, either concerning the type of image being used, the ML approach, the clinical
application or the dataset size. For instance, some of the best results were obtained for
panoramic images, and some of the worst results were also obtained for panoramic images.
Some of the highest performance models were obtained with big datasets, but some others
with datasets with as low as 533 instances, data augmentation included. On the other hand,
some of the worst performance models were obtained with datasets with several thousand
instances. These results are in line with the findings of other reviews [53] and seem to
indicate the need for the standardization of procedures.

Some of the studies analyzed displayed a few limitations in their described method-
ology. Frequently, there was a lack of information regarding the validation procedure or
the nature of the test set used. These are two aspects that serve as reference in machine
learning, ensuring the prevention of data leakage that can lead to falsely inflated metric
values. The absence of such information raises concerns about the actual quality of the
reported models. It was also observed that the information provided on model training
was not always sufficiently comprehensive. In some cases, there was a lack of information
on the hyperparameters used or the strategy employed to select specific parameters.

No single ML approach could be identified as “the best” approach in the analyzed
papers. They encompass a wide range of ML methods, including vanilla methods using
transfer learning from pretrained models, as well as custom state-of-the-art approaches
using transformers or GANs. Due to the diverse characteristics of the datasets, tasks, and
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metrics employed, making meaningful comparisons becomes challenging. Unlike other
areas where ML is used in medical imaging, the absence of large, curated datasets that can
serve as benchmarks also hinders any comparison. The lack of reporting standards further
complicates this task.

Indeed, the lack of standardized experimental design and reporting in machine learn-
ing research, including oral health applications, contrasts with the presence of reporting
guidelines commonly used in the medical field. While existing standards, such as TRI-
POD [54] and PROBAST [55], might not perfectly fit ML research in medical imaging,
efforts should be made to adhere to reporting guidelines. The upcoming extension to
TRIPOD and PROBAST for AI applications [56], which are also relevant for oral health
applications, is a positive development. In the meantime, there are checklists available
that can and should serve as guidance for researchers and reviewers [57,58]. One approach
that might contribute to the progressive adoption and acceptance of ML technology in oral
health is the application of formal methods [59]. Formal verification techniques can provide
guarantees on the robustness and generalizability of the models, aiding in the detection of
potential biases, and therefore contributing to enhancing the reliability, explainability and
trustworthiness of the diagnostic systems. However, collaboration and further research
are necessary to refine and expand the use of formal methods of ML in healthcare, namely
in oral health diagnosis. Only a small number of studies compared the performance of
the machine learning models with dentists. Notably, in all cases, the models matched
or outperformed the dentists. The main conclusion to be drawn is that the assistance of
AI seems to help experts improve their diagnosis performance, especially in interpreting
difficult cases [38]. These are very interesting results, which need to be confirmed by future
investigations, along with their implications in the clinical setting.

Indeed, the majority of studies focused primarily on the technical aspects of the au-
tomated diagnosis of oral conditions, with limited exploration of the broader healthcare
implications. While the technical components of these systems are unquestionably impor-
tant, it is crucial to also consider the impact of these innovations on patient care and clinical
decision-making as the field progresses. Adopting a more comprehensive approach that
takes into account both technological advancements and healthcare perspectives could be
beneficial for future research endeavors.

Finally, it is crucial to address the complex ethical considerations surrounding pri-
vacy and algorithm biases. These issues require careful attention and consideration to
ensure that patient privacy is protected and that the algorithms used do not perpetuate
biases. Addressing these ethical concerns is essential for the responsible development and
deployment of AI technologies in oral healthcare.

This paper acknowledges some limitations. First, our query, although capturing a
considerable number of papers, was relatively simple, might not have captured some
relevant articles on the subject while including many unrelated papers not pertaining to
diagnosis in oral health. Second, the omission of more specific terms in the query may have
resulted in overlooking potentially relevant literature that could have provided further
insights into our research topic. Additionally, to enhance the comprehensiveness of the
review, it would have been beneficial to supplement the systematic search with snowballing
techniques. These techniques involve reviewing the reference lists of identified articles and
conducting citation searches to identify additional relevant studies that may have been
missed in the initial search. Moreover, by not including the PubMed database, we may
have overlooked papers published in biomedical or clinical journals. Future work should
consider incorporating both snowballing techniques and a more specific query, including
a search in the PubMed database, to address these limitations and enhance the quality of
the research.

5. Conclusions

The application of AI in the diagnosis of oral health issues using X-ray-based images
is a rapidly developing field. There is still a clear need for further investigation of the
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role of AI in dental diagnosis in the clinical setting. The present review of the literature
seems to indicate that the field should naturally evolve toward the use of predictive
models as an effective, stable and sustainable beneficial tool for oral health professionals
performing diagnosis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/computation11060115/s1, Table S1: Papers included in the review
and their characteristics.

Author Contributions: Conceptualization, methodology, investigation: M.V.M., L.B., H.L., V.A.,
M.-R.A. and V.R.; formal analysis: M.V.M., L.B. and V.R.; data curation: M.V.M.; writing—original
draft preparation: M.V.M., L.B. and V.A.; writing—review and editing: H.L., V.A. and M.-R.A.;
visualization: V.R.; project administration: M.V.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by national funds through the Fundação para a Ciência e a
Tecnologia. I.P. (Portuguese Foundation for Science and Technology) by the project UIDB/05064/2020
(VALORIZA—Research Centre for Endogenous Resource Valorization).

Data Availability Statement: All relevant data are available through the paper and Supplementary
Material. Additional information is available from the authors upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection. analyses. or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References

1. Pitts, N.B.; Zero, D.T.; Marsh, P.D.; Ekstrand, K.; Weintraub, J.A.; Ramos-Gomez, F.; Tagami, J.; Twetman, S.; Tsakos, G.; Ismail, A.
Dental Caries. Nat. Rev. Dis. Prim. 2017, 3, 17030. [CrossRef]

2. Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal Diseases. Nat. Rev. Dis. Prim. 2017, 3, 17038. [CrossRef]
3. The Use of Dental Radiographs: Update and Recommendations. J. Am. Dent. Assoc. 2006, 137, 1304–1312. [CrossRef]
4. Ludlow, J.B.; Ivanovic, M. Comparative Dosimetry of Dental CBCT Devices and 64-Slice CT for Oral and Maxillofacial Radiology.

Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2008, 106, 106–114. [CrossRef]
5. Tadinada, A. Dental Radiography BT. In Evidence-Based Oral Surgery: A Clinical Guide for the General Dental Practitioner; Ferneini,

E.M., Goupil, M.T., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 67–90, ISBN 978-3-319-91361-2.
6. Shan, T.; Tay, F.R.; Gu, L. Application of Artificial Intelligence in Dentistry. J. Dent. Res. 2021, 100, 232–244. [CrossRef]
7. Carrillo-Perez, F.; Pecho, O.E.; Morales, J.C.; Paravina, R.D.; Della Bona, A.; Ghinea, R.; Pulgar, R.; Pérez, M.D.M.; Herrera, L.J.

Applications of Artificial Intelligence in Dentistry: A Comprehensive Review. J. Esthet. Restor. Dent. 2022, 34, 259–280. [CrossRef]
8. Mahdi, S.S.; Battineni, G.; Khawaja, M.; Allana, R.; Siddiqui, M.K.; Agha, D. How Does Artificial Intelligence Impact Digital

Healthcare Initiatives? A Review of AI Applications in Dental Healthcare. Int. J. Inf. Manag. Data Insights 2023, 3, 100144.
[CrossRef]

9. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

10. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Li, F.-F. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009.

11. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context BT. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing:
Cham, Switzerland, 2014; pp. 740–755.

12. Deng, L. Digit Images for Machine Learning Research. IEEE Signal Process. Mag. 2012, 29, 141–142. [CrossRef]
13. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: https://www.cs.toronto.edu/

~kriz/learning-features-2009-TR.pdf (accessed on 5 May 2023).
14. Everingham, M.; Eslami, S.M.A.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes Challenge:

A Retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [CrossRef]
15. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with

Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015.

16. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

17. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.

234



Computation 2023, 11, 115

18. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

19. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
20. Fix, E.; Hodges, J.L. Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties. Int. Stat. Rev. 1989, 57,

238–247. [CrossRef]
21. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
22. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, Washington DC USA, 14–18 August 2016.
23. Huang, X.; Lin, J.; Demner-Fushman, D. Evaluation of PICO as a Knowledge Representation for Clinical Questions. AMIA Annu.

Symp. Proc. AMIA Symp. 2006, 2006, 359–363.
24. Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a Web and Mobile App for Systematic Reviews. Syst. Rev.

2016, 5, 210. [CrossRef]
25. Lee, J.H.; Kim, D.H.; Jeong, S.N.; Choi, S.H. Detection and Diagnosis of Dental Caries Using a Deep Learning-Based Convolutional

Neural Network Algorithm. J. Dent. 2018, 77, 106–111. [CrossRef]
26. Ekert, T.; Krois, J.; Meinhold, L.; Elhennawy, K.; Emara, R.; Golla, T.; Schwendicke, F. Deep Learning for the Radiographic

Detection of Apical Lesions. J. Endod. 2019, 45, 917–922.e5. [CrossRef]
27. Krois, J.; Ekert, T.; Meinhold, L.; Golla, T.; Kharbot, B.; Wittemeier, A.; Dörfer, C.; Schwendicke, F. Deep Learning for the

Radiographic Detection of Periodontal Bone Loss. Sci. Rep. 2019, 9, 8495. [CrossRef]
28. Geetha, V.; Aprameya, K.S.; Hinduja, D.M. Dental Caries Diagnosis in Digital Radiographs Using Back-Propagation Neural

Network. Health Inf. Sci. Syst. 2020, 8, 8. [CrossRef]
29. Endres, M.G.; Hillen, F.; Salloumis, M.; Sedaghat, A.R.; Niehues, S.M.; Quatela, O.; Hanken, H.; Smeets, R.; Beck-Broichsitter,

B.; Rendenbach, C.; et al. Development of a Deep Learning Algorithm for Periapical Disease Detection in Dental Radiographs.
Diagnostics 2020, 10, 430. [CrossRef]

30. Lee, J.H.; Kim, D.H.; Jeong, S.N. Diagnosis of Cystic Lesions Using Panoramic and Cone Beam Computed Tomographic Images
Based on Deep Learning Neural Network. Oral Dis. 2020, 26, 152–158. [CrossRef]

31. Hashem, M.; Youssef, A.E. Teeth Infection and Fatigue Prediction Using Optimized Neural Networks and Big Data Analytic Tool.
Clust. Comput. 2020, 23, 1669–1682. [CrossRef]

32. Zheng, Z.; Yan, H.; Setzer, F.C.; Shi, K.J.; Mupparapu, M.; Li, J. Anatomically Constrained Deep Learning for Automating Dental
CBCT Segmentation and Lesion Detection. IEEE Trans. Autom. Sci. Eng. 2021, 18, 603–614. [CrossRef]

33. Lee, D.W.; Kim, S.Y.; Jeong, S.N.; Lee, J.H. Artificial Intelligence in Fractured Dental Implant Detection and Classification:
Evaluation Using Dataset from Two Dental Hospitals. Diagnostics 2021, 11, 233. [CrossRef] [PubMed]

34. Bui, T.H.; Hamamoto, K.; Paing, M.P. Deep Fusion Feature Extraction for Caries Detection on Dental Panoramic Radiographs.
Appl. Sci. 2021, 11, 2005. [CrossRef]

35. Cha, J.Y.; Yoon, H.I.; Yeo, I.S.; Huh, K.H.; Han, J.S. Peri-Implant Bone Loss Measurement Using a Region-Based Convolutional
Neural Network on Dental Periapical Radiographs. J. Clin. Med. 2021, 10, 1009. [CrossRef]

36. Kearney, V.P.; Yansane, A.I.M.; Brandon, R.G.; Vaderhobli, R.; Lin, G.H.; Hekmatian, H.; Deng, W.; Joshi, N.; Bhandari, H.; Sadat,
A.S.; et al. A Generative Adversarial Inpainting Network to Enhance Prediction of Periodontal Clinical Attachment Level. J. Dent.
2022, 123, 104211. [CrossRef] [PubMed]

37. Li, S.; Liu, J.; Zhou, Z.; Zhou, Z.; Wu, X.; Li, Y.; Wang, S.; Liao, W.; Ying, S.; Zhao, Z. Artificial Intelligence for Caries and Periapical
Periodontitis Detection. J. Dent. 2022, 122, 104107. [CrossRef]

38. Liu, J.; Liu, Y.; Li, S.; Ying, S.; Zheng, L.; Zhao, Z. Artificial Intelligence-Aided Detection of Ectopic Eruption of Maxillary First
Molars Based on Panoramic Radiographs. J. Dent. 2022, 125, 104239. [CrossRef]

39. Aljabri, M.; Aljameel, S.S.; Min-Allah, N.; Alhuthayfi, J.; Alghamdi, L.; Alduhailan, N.; Alfehaid, R.; Alqarawi, R.; Alhareky, M.;
Shahin, S.Y.; et al. Canine Impaction Classification from Panoramic Dental Radiographic Images Using Deep Learning Models.
Inform. Med. Unlocked 2022, 30, 100918. [CrossRef]

40. Ying, S.; Wang, B.; Zhu, H.; Liu, W.; Huang, F. Caries Segmentation on Tooth X-Ray Images with a Deep Network. J. Dent. 2022,
119, 104076. [CrossRef] [PubMed]

41. Imak, A.; Celebi, A.; Siddique, K.; Turkoglu, M.; Sengur, A.; Salam, I. Dental Caries Detection Using Score-Based Multi-Input
Deep Convolutional Neural Network. IEEE Access 2022, 10, 18320–18329. [CrossRef]

42. Tajima, S.; Okamoto, Y.; Kobayashi, T.; Kiwaki, M.; Sonoda, C.; Tomie, K.; Saito, H.; Ishikawa, Y.; Takayoshi, S. Development of
an Automatic Detection Model Using Artificial Intelligence for the Detection of Cyst-like Radiolucent Lesions of the Jaws on
Panoramic Radiographs with Small Training Datasets. J. Oral Maxillofac. Surg. Med. Pathol. 2022, 34, 553–560. [CrossRef]

43. Feher, B.; Krois, J. Emulating Clinical Diagnostic Reasoning for Jaw Cysts with Machine Learning. Diagnostics 2022, 12, 1968.
[CrossRef]

44. Tsoromokos, N.; Parinussa, S.; Claessen, F.; Moin, D.A.; Loos, B.G. Estimation of Alveolar Bone Loss in Periodontitis Using
Machine Learning. Int. Dent. J. 2022, 72, 621–627. [CrossRef] [PubMed]

45. Zhu, Y.; Xu, T.; Peng, L.; Cao, Y.; Zhao, X.; Li, S.; Zhao, Y.; Meng, F.; Ding, J.; Liang, S. Faster-RCNN Based Intelligent Detection
and Localization of Dental Caries. Displays 2022, 74, 102201. [CrossRef]

235



Computation 2023, 11, 115

46. Muhammed Sunnetci, K.; Ulukaya, S.; Alkan, A. Periodontal Bone Loss Detection Based on Hybrid Deep Learning and Machine
Learning Models with a User-Friendly Application. Biomed. Signal Process. Control 2022, 77, 103844. [CrossRef]

47. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Con-
volutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848.
[CrossRef]

48. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [CrossRef]
49. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
[CrossRef]

50. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
[CrossRef]

51. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520. [CrossRef]

52. Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. TransUNet: Transformers Make Strong Encoders
for Medical Image Segmentation. arXiv 2021, arXiv:2102.04306.

53. Schwendicke, F.; Golla, T.; Dreher, M.; Krois, J. Convolutional Neural Networks for Dental Image Diagnostics: A Scoping Review.
J. Dent. 2019, 91, 103226. [CrossRef]

54. Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. BMC Med. 2015, 13, 1. [CrossRef]

55. Wolff, R.F.; Moons, K.G.M.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S. PROBAST:
A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann. Intern. Med. 2019, 170, 51–58. [CrossRef]
[PubMed]

56. Collins, G.S.; Dhiman, P.; Navarro, C.L.A.; Ma, J.; Hooft, L.; Reitsma, J.B.; Logullo, P.; Beam, A.L.; Peng, L.; Van Calster, B.;
et al. Protocol for Development of a Reporting Guideline (TRIPOD-AI) and Risk of Bias Tool (PROBAST-AI) for Diagnostic and
Prognostic Prediction Model Studies Based on Artificial Intelligence. BMJ Open 2021, 11, e048008. [CrossRef] [PubMed]

57. Schwendicke, F.; Singh, T.; Lee, J.H.; Gaudin, R.; Chaurasia, A.; Wiegand, T.; Uribe, S.; Krois, J. Artificial Intelligence in Dental
Research: Checklist for Authors, Reviewers, Readers. J. Dent. 2021, 107, 103610. [CrossRef] [PubMed]

58. Norgeot, B.; Quer, G.; Beaulieu-Jones, B.K.; Torkamani, A.; Dias, R.; Gianfrancesco, M.; Arnaout, R.; Kohane, I.S.; Saria, S.; Topol,
E.; et al. Minimum Information about Clinical Artificial Intelligence Modeling: The MI-CLAIM Checklist. Nat. Med. 2020, 26,
1320–1324. [CrossRef]

59. Bonfanti, S.; Gargantini, A.; Mashkoor, A. A Systematic Literature Review of the Use of Formal Methods in Medical Software
Systems. J. Softw. Evol. Process 2018, 30, e1943. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

236



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

www.mdpi.com

Computation Editorial Office
E-mail: computation@mdpi.com

www.mdpi.com/journal/computation

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 
Access Publishing

mdpi.com ISBN 978-3-7258-1393-3


