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Actions COFUND fellowship and the SÊR CYMRU II program. Dr. Li became an associate professor

at Wuhan University of Technology in 2015. His main research interests include numerical methods,

computational mechanics, applied mechanics, soft matters, composites, meta materials and structures,

and self-healing materials. Dr. Li’s research in these fields has resulted in 40+ journal papers in related,

top international journals, which have received a total of more than 900 citations with a h-index

of 14. One of his co-authored paper received the Best Paper Award 2018 of Engineering Analysis

with Boundary Elements. One paper for which he was the corresponding author was selected as an

excellent scientific and technological paper in Hubei Province (2021 to 2023). Dr. Li has received the

Shanghai Postgraduate’s Outstanding Achievements (Dissertation) Award and the CMMM 2023 Best

Presentation Award. He has been invited to be the guest editor and a youth editor board member of

several international journals.

Zechuan Yu

Dr. Zechuan Yu received his Bachelor’s degree from the University of Science and Technology

of China and his Ph.D. from the City University of Hong Kong. He is currently a faculty member

in the School of Civil Engineering and Architecture at Wuhan University of Technology. As of 2023,

Dr. Yu has published approximately 30 SCI articles, garnered over 1,200 citations, and achieved an

h-index of 20. Dr. Yu’s research encompasses a diverse range of topics, including multi-scale molecular

dynamics, calcium–silicate–hydrate, cementitious materials, the cement–epoxy interface, cellulose

nanocrystals, and the application of deep learning methods in structural health monitoring. Among his

interdisciplinary projects, one particularly intriguing ongoing study involves developing a generative

deep learning model for atomistic simulations.

vii





Preface
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experimental/theoretical studies. In this Special Issue, we have successfully collected 10 excellent

papers that present recent progress either in the novel development or the novel application of

advanced numerical and computer methods for solving problems in civil engineering.
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Abstract: As one possible alternative to the finite element method, the interpolation characteristic
is a key property that meshless shape functions aspire to. Meanwhile, the interpolation meshless
method can directly impose essential boundary conditions, which is undoubtedly an advantage
over other meshless methods. In this paper, the establishment, implementation, and horizontal
comparison of interpolative meshless analyses of orthotropic elasticity were studied. In addition, the
radial point interpolation method, the improved interpolative element-free Galerkin method and the
interpolative element-free Galerkin method based on the non-singular weight function were applied
to solve orthotropic beams and ring problems. Meanwhile, the direct method is used to apply the
displacement boundary conditions for orthotropic elastic problems. Finally, a detailed convergence
study of the numerical parameters and horizontal comparison of numerical accuracy and efficiency
were carried out. The results indicate that the three kinds of interpolative meshless methods showed
good numerical accuracy in modelling orthotropic elastic problems, and the accuracy of the radial
point interpolation method is the highest.

Keywords: interpolative shape functions; meshless method; elastic mechanics; orthotropic elasticity

1. Introduction

Unlike finite element methods (FEM), which are currently the most widely used in
engineering computational simulations, meshless/mesh-free methods employ a node-
based rather than element-based approach when constructing shape functions discretizing
the problem domain [1,2]. This strategy makes meshless approaches an increasingly
effective substitute to finite element methods when dealing with problems involving large
deformation [3–6] and crack propagation [7–10], where numerical implementations may
be restricted by predefined meshes/elements. However, mainstream meshless shape
functions, such as the most widely used moving least-squares approximation [1,3,4,6–8,10]
and the reproducing kernel function [2,5,9] and their various modifications, do not have
the same interpolation properties as finite element methods. For the approximate rather
than interpolated meshless methods, certain kinds of additional techniques, such as the
Lagrange multiplier method [1,2] and the penalty method [3–10], will necessarily be used
to enforce essential boundary conditions, with some unwanted side effects in terms of
computational efficiency or numerical accuracy.

Therefore, lots of research efforts have been devoted to the construction of mesh-
less shape functions with the Kronecker delta interpolation property, so that the essential
boundary conditions could be easily and directly imposed in large-scale engineering mod-
elling. A point interpolation method whose shape function is interpolative but prone to
singularity was proposed by Liu et al. [11]. Later, Wang et al. [12] proposed the radial
point interpolation method (RPIM) to overcome the singularity problem of polynomial
point interpolation shape functions. Ren et al. [13] proposed the interpolating moving
least-squares method (IMLSM) by improving the Lancaster’s interpolative approach [14]

Buildings 2023, 13, 387. https://doi.org/10.3390/buildings13020387 https://www.mdpi.com/journal/buildings1
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with a singular weight function. Wang et al. [15] used the non-singular weight function
to develop an improved interpolating moving least-squares method (IIMLSM) thereafter.
An interpolative complex variable moving least-squares method (ICVMLSM) was devel-
oped by Deng et al. [16]. An interpolative variational multiscale element-free Galerkin
method was presented by Zhang and Li [17] for convection-diffusion equations and Stokes
problems. Wang et al. [18] introduced the weighted orthogonal basis in the IIMLSM to
get a diagonal moment matrix. An interpolating meshless local Petrov-Galerkin method
(IMLPGM) with an IMLS scheme for steady-state heat conduction problems was reported
by Singh et al. [19]. Bourantas et al. [20] modified the error functional of the IMLSM to
construct almost interpolating shape functions with ensured invertibility of the moment
matrix. Wang et al. proposed the stable collocation method [21,22] and the gradient smooth
collocation method [23].

The application of different interpolative meshless methods to analyze the mechanical
response of various anisotropic elastic solids widely present in natural [24,25] and artifi-
cial [26,27] engineering materials has also received extensive attention. Dinis et al. [28]
proposed the natural neighbor RPIM and used it to analyze the problems of thin plates
and shells of composite materials. Njiwa et al. [29] combined isotropic boundary element
and local point interpolation to solve the three-dimensional anisotropic elasticity problem.
Bui and Nguyen [30] developed a novel moving Kriging interpolative scheme for efficient
meshfree vibration and buckling analysis of orthotropic plates. Fallah et al. [31] used the
Delaunay triangulation scheme to discretize arbitrarily distributed node sets in the domain
and proposed a meshless finite volume formula to model cracks and fracture in orthotropic
media. A modified interpolative element-free Galerkin method was applied to the mod-
elling of orthotropic thermoelastic fracture by Lohit et al. [32]. Luo et al. [33] developed
an efficient and stable nodal integration RPIM to evaluate the buckling performance of
variable-stiffness composite plates with elliptical cutouts.

We already know that interpolation meshless methods can directly impose essential
boundary conditions, which is undoubtedly an advantage over other meshless methods.
Therefore, the purpose of this paper is to compare the proposed meshless interpolation
methods horizontally, so as to find out which meshless interpolation method has better
accuracy, which is meaningful. In this study, one mature and two relatively fresh interpo-
lating meshless methods, namely the RPIM, the IMLSM and the IIMLSM, are employed to
construct interpolative shape functions of the displacement field of orthotropic elastic solids.
The corresponding formulas of the radial point interpolative meshless method (RPIM),
the interpolative element-free Galerkin method (IEFGM) and the improved interpolative
element-free Galerkin method (IIEFGM) for orthotropic elasticity are established and the
computer programs are developed. In implementations of all three interpolative meshless
orthotropic elastic analyses, the displacement boundary conditions are imposed by the
direct method. Three typical numerical examples are analyzed for verification purpose and
to compare the differences in numerical performance between the three methods. Finally,
we find that the three meshless interpolation methods have good numerical accuracy in the
modeling of orthotropic elastic problems, and the radial point interpolation method has
the highest accuracy.

2. Basics of Three Interpolative Meshless Shape Functions

Here we briefly review the three schemes, i.e., the RPIM [12], the IMLSM [13] and
the IIMLSM [15], to construct the interpolative meshless shape function uh(x) of the dis-
placement field u(x) in the local domain of point x with n nodes xI. Hereinafter, p or
pi(x)(i = 1, 2, 3, · · · , m) are used to represent the vector of m-term polynomial basis.

2
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2.1. Radial Point Interpolation Method (RPIM)

The interpolative function uh(x) in the local domain could be constructed by the linear
superposition of the radial basis and the polynomial basis as follows [12]:

uh(x) =
n

∑
i=1

ri(x)ai(x) +
m

∑
j=1

pj(x)bj(x) = ra + pb (1)

where r is the vector of n-term radial basis, and a and b are the coefficients corresponding to
two kinds of basis. The generally adopted multiquadric (MQ) basis [34] is also employed,

ri(x) = (c2 + ‖x − xI‖2)
q

(2)

where q and c are two coefficients.
Let the interpolation function uh(x) take the value of nodal displacement at each

node, i.e.,
u = Ra + Pb (3)

where u is the nodal displacement vector, and P= [p1 p2 · · · pn
]T and

R= [r1 r2 · · · rn
]T are nodal basis matrices. With an extra constraint PTa = 0, the

unknown coefficient vectors a and b can be written as

a =

[
R−1 − R−1P

(
PTR−1P

)−1
PTR−1

]
u (4)

b =
(

PTR−1P
)−1

PTR−1u (5)

Substituting Equations (4) and (5) into Equation (1) can yield

uh(x) = Φ(x)u (6)

where Φ(x) is the shape function of RPIM,

Φ(x) = r[R−1 − R−1P
(

PTR−1P
)−1

PTR−1]+p
(

PTR−1P
)−1

PTR−1 (7)

2.2. Improved Interpolating Moving Least-Squares Method (IMLSM)

To construct interpolative moving least-squares shape functions, Ren et al. [13] em-
ployed a strategy to rebuild basis functions with a singular weight function ω(x, xI). The
local interpolating function uh(x) of the IMLSM is

uh(x) = p1(x)a1(x) +
m

∑
i=2

pi(x)ai(x) = p1(x)a1(x) + pa (8)

where a is the unknown coefficient vector, and the reformed basis function
pi(x)(i = 1, 2, 3, · · · , m) is reconstructed from the corresponding polynomial basis pi(x)
as follows:

pi(x) =

⎧⎪⎪⎨⎪⎪⎩
1[

n
∑

I=1
ω(x,xI)

]1/2 i = 1

pi(x)−
n
∑

I=1
Γ(x, xI)pi(xI) i = 2, 3, · · · , m

(9)

where γ(x, xI) = ω(x, xI)
/ n

∑
J=1

ω(x, xJ). The singular weight function ω(x, xI) is

ω(x, xI) =

{∥∥∥ x−xI
ρI

∥∥∥−α ‖x − xI‖ ≤ ρI

0 others
(10)

3
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where ρI = dmaxdc is the characteristic radius of the local support domain of point x, dmax is
the scale factor to control the size of the local domain, dc is the characteristic node spacing,
and the parameter α is an even number and takes a value larger than zero in general.

Minimize the weighted error functional J =
n
∑

I=1
ω(x, xI)[uh(xI)− u(xI )]

2, and consider

additional constraint
n
∑

I=1
ω(x, xI)Γ(x, xI)uI pi = 0 to establish a group of algebraic equations

to obtain the unknown coefficient term a as

p1(x)a1(x) =
n

∑
I=1

Γ(x, xI)uI (11)

a = A−1Bu (12)

where A = BPT
0 , and the elements of the matrix B(m−1)×n and the matrix P0 are

BkJ =

⎧⎨⎩
ω(x, xJ)pk(xJ) x �= xJ

Γ(x, xJ)
n
∑

I=1,I �=J
ω(x, xI)[pk(xJ)− pk(xI)] x = xJ

(13)

P0 =

⎡⎢⎢⎢⎣
p2(x, x1) p2(x, x2) · · · p2(x, xn)
p3(x, x1) p3(x, x2) · · · p3(x, xn)

...
...

. . .
...

pm(x, x1) pm(x, x2) · · · pm(x, xn)

⎤⎥⎥⎥⎦ (14)

Substituting Equations (11) and (12) into Equation (8), the interpolative function can
be rewritten as

uh(x) =
n

∑
I=1

ΦI(x)uI = Φ(x)u (15)

where the shape function of IMLSM is

Φ(x) = (Φ1(x), Φ2(x), · · · , Φn(x)) = γ + pA−1B (16)

γ = (γ(x, x1), γ(x, x2), · · · , γ(x, xn)) (17)

2.3. Improved Interpolating Moving Least-Squares Method (IIMLSM)

To remove the unwanted singular weight function in practice, some modifications
are made to the field variable function u(x) and the basis function in the IIMLSM by
Wang et al. [15]. The transformed field variable function is written as

ũ(x) = u(x)−
n

∑
I=1

γ̃(x, xI)u(xI) (18)

where γ̃(x, xI) = ζ(x, xI)
/ n

∑
J=1

ζ(x, xJ) and ζ(x, xI) = ∏
J �=I

(‖x − xI‖2/∥∥xI − xJ
∥∥2
). Its local

moving least-squares interpolation is defined as

ũh
x(x) =

m

∑
i=2

p̃i(x)ãi(x) = p̃ã (19)

The modified basis function p̃ is constructed from the original polynomial basis as

p̃i(x) = pi(x)−
n

∑
I=1

γ̃(x, xI)pi(xI) (20)

where apparently p̃1(x) = 0.

4
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To minimize the weighted discrete error norm J =
n
∑

I=1
ω(x − xI)[ũh

x(xI)− ũ(xI)]
2
, the

unknown coefficient ã could be expressed as

ã = Ã
−1

B̃u (21)

where Ã = P̃
T
0 ωP̃0, B̃ = P̃

T
0 W(I− Ỹ), ω= dig[ω(x − x1) · · · ω(x − xn)

]
, I is the identity

matrix, ω(x − xI) can take any non-singular weight function, P̃0 is the n × (m − 1) matrix
of the nodal basis row vector p̃, and Ỹ is the n × n matrix of the row vector γ̃(x, xI).

Substituting Equation (21) into Equation (18), the IIMLS interpolation uh(x) of u(x) is

uh(x) = Φ(x)u (22)

where the IIMLS shape function Φ(x) is

Φ(x) = γ̃ + p̃Ã
−1

B̃ (23)

γ̃= (γ̃(x, x1), γ̃(x, x2), · · · , γ̃(x, xn)) (24)

3. The Establishment of Discrete Equations

The three meshless interpolative methods, namely the RPIM, the IMLSM, and the
IIMLSM, are used to approximate orthotropic elastic displacement fields and to discretize
the Galerkin weak form of control equation. The corresponding radial point interpolative
meshless method (RPIM), the interpolative element-free Galerkin method (IEFGM) and
the improved interpolative element-free Galerkin method (IIEFGM) for orthotropic elastic
problems are presented. The Galerkin weak form of control equation for orthotropic
elasticity can be written as∫

Ω

δ(Lu)TD(Lu)dΩ −
∫
Ω

δuTbdΩ −
∫
Γt

δuTtdΓ = 0 (25)

where L is the partial differential operator, D is the orthotropic elastic matrix, u is the
column of the nodal displacement, b and t are the columns corresponding to the body force
and the surface traction, respectively, and Ω and Γt represent the problem domain and the
force boundary, respectively.

The constitutive matrix of orthotropic material is represented as

D =

⎡⎣s11 s12 0
s21 s22 0
0 0 s66

⎤⎦−1

(26)

where sij is the orthotropic elastic compliance coefficient.
Discretizing Equation (25), we can get

KU = F (27)

where U is the column of the total displacement, and the overall stiffness matrix K and
the total external force vector F could be assembled from the nodal values, respectively,
as follows:

KI J =
∫
Ω

BT
I DBJdΩ (28)

FI =
∫
Ω

ΦT
I bdΩ +

∫
Γt

ΦT
I tdΓ (29)

5
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where ΦI =

[
ΦI 0
0 ΦI

]
, BT

I =

[
ΦI.1 0 ΦI.2

0 ΦI.2 ΦI.1

]
.

The interpolative shape functions of the above three methods can be used in meshless
methods to impose displacement boundary conditions as easily as in the finite element
methods. In the following three numerical examples, the interpolative meshless methods
adopt the direct method to apply the corresponding essential boundary conditions. The
principle of the direct method is to recombine the equations according to the determined
and undetermined nodal displacements:[

Kaa Kab
Kba Kbb

](
ua
ub

)
=

(
fa
fb

)
(30)

where ua and ub are the unknown and the known nodal displacements, respectively. The
overall stiffness matrix and the total external force vector are partitioned to Kaa, Kab, Kba,
Kba, f a and f b, respectively, according to the dividing of the displacement. Since ub is known,
ua can be obtained as

ua = K−1
aa (fa − Kabub) (31)

4. Numerical Examples

In this section, three numerical examples are analyzed by using the three developed
interpolative meshless methods, namely the radial point interpolative meshless method
(RPIM), the interpolative element-free Galerkin method (IEFGM) and the improved in-
terpolative element-free Galerkin method (IIEFGM), to demonstrate their numerical per-
formance. The corresponding numerical results are validated with both the analytical
solutions and those obtained by the element-free Galerkin method (EFGM). In all meshless
implementations, the rectangular local domain is used and the 4 × 4 Gauss integral is
adopted. Relative errors er and energy norm errors ee are defined to compare numerical
accuracy:

er =
Numerial result − Exact solution

Exact solution
× 100% (32)

ee =

√√√√1
2

∫
Ω

(
εh − ε

)T
D
(
εh − ε

)
dΩ (33)

where εh and ε are the numerical results and exact solutions of the strain, respectively.

4.1. Clamped-Clamped Beam Subjected to Uniformly Distributed Load

The orthotropic material clamped-clamped beam is shown in Figure 1. Beam span l is
48 m, the depth h is 12 m, the upper boundary is under uniformly distributed load, and the
load q is 60 KN/m. Regardless of the structure weight, the numerical example is modelled
as a plane stress problem.

Figure 1. Clamped-clamped beam subjected to uniform load.

The material compliance coefficients (unit: m/KN) of the beam are s11 = 0.078 × 10−10,
s12 = −0.038 × 10−10, s21 = −0.038 × 10−10, s22 = 0.080 × 10−10, and s66 = 0.233 × 10−10.

6
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The exact solutions of the displacements and the stresses for this problem are expressed
as [35]

u1 = (2x1 − l)(s12 + s66)qx3
2/h3 + (l − 2x1)(x1 − l)s11qx1x2/h3 (34)

u2 = −[2s11s12
(
6x2

1 − 6lx1 + l2)− 3s11s22h2 + 3s2
12h2]qx2

2/
(
4s11h3)+(

2s2
12 − s11s22 + s12s66

)
qx4

2/
(
2s11h3)− (

s11s22 − s2
12
)
qx2/(2s11)+

x1(x1 − l)
(
2s11x2

1 − 3s66h2 − 2s11lx1
)
q/
(
4h3) (35)

σ1 = 2(2s12 + s66)qx3
2/
(
s11h3)− [2s11

(
6x2

1 − 6lx1 + l2)+
3s12h2]qx2/

(
2s11h3)+ qs12/(2s11)

(36)

σ2 = −q
(

4x3
2 − 3h2x2 + h3

)
/2h3 (37)

τ12 = 3q(l − 2x1)
(

h2/4 − x2
2

)
/h3 (38)

The computing parameters of the four meshless schemes are obviously different. The
optimal values for each method are surely not the same. To be able to compare the four
methods horizontally, this paper adopts the best results with regard to the energy norm
error of each method within a certain range of the computing parameters for accuracy
comparison. The computing parameters in a certain range for all four methods are collected
as: the number of nodes n1 = (19, 21, 23, 25) in the x1 direction and the number of nodes
n2 = (7, 9, 11, 13) in the x2 direction for a uniform mesh, a fixed uniform background mesh
with l1 × l2 = 12 × 8 for the Gauss quadrature, the scale factor dmax = (1.5, 2.5, 3.5, 4.5) in
the local domain, q = (−0.5, 0.5, 1.5, 2.5) and c = (1.0, 3.0, 5.0) for the MQ radial basis, the
singular weight parameter α = (4, 6, 8) in IMLSM and the penalty factor β = 3 × 1014 in
EFGM. Therefore, according to the different combinations of each computing parameter
within the corresponding ranges, there are, in total, 64, 768, 192 and 64 groups of computing
settings for the EFGM, the RPIM, the IEFGM, and the IIEFGM that need to be evaluated,
respectively. We recode the optimal computing parameters of each method with the lowest
energy norm error in all corresponding computing sets in Table 1. The numerical results
according to these four computing settings are employed for accuracy comparison.

Table 1. Optimal computing parameters of each method within the tested range.

n1 × n2 l1 × l2 dmax Others

EFGM 19 × 11 12 × 8 3.5 β = 3 × 1014

RPIM 25 × 11 12 × 8 4.5 q = 2.5, c = 1.0
IEFGM 25 × 13 12 × 8 2.5 α = 6.0
IIEFGM 19 × 13 12 × 8 1.5 —

To investigate the characteristics of the four shape functions, Table 2 shows the contour
plots of the shape functions of the four methods with the parameters in Table 1 and their
first-order derivatives at the beam center point a (24, 0). It can be seen from Table 2 that
the contour plots of the shape functions of the three interpolative meshless methods are
completely consistent. They all meet the property of the Kronecker delta function and are
significantly different from the contour maps of the MLS. The difference between the four
methods is mainly reflected in the contour maps of the first-order derivatives of the shape
functions, which may be the main reason for the difference in numerical accuracy of the
three meshless interpolative methods.
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Table 2. Contour plot of the shape functions and their 1st order derivate at point (24, 0) by four
different methods.
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The nodal deflection u2 on the central axis x2 = 0 of the beam and the corresponding
relative errors are shown and are compared in Figure 2. It is obvious that the meshless
displacement results of the four methods agree very well with the analytical solutions, and
all the relative errors are below 1.16%. However, the accuracy of the IEFGM is relatively
lower than those of the other three meshless methods. The numerical solutions of EFGM
and RPIM have better stability, and their maximum relative errors do not exceed 0.06% and
0.36%, respectively. The maximum relative error of the IIEFGM is also below 0.59%.

Figure 3 shows the numerical stress results of σ22 on the central axis x2 = 0 of the
beam and the relative errors. The EFGM with relative errors below 0.38% showed the best
numerical accuracy over all the four meshless schemes for this example. For the RPIM, the
accuracy near the two fixed ends with a maximum relative error of 3.73%, which is higher
than the relative error of 1.32% at the middle span of the beam, is relatively poor. The
maximum relative errors of the IEGM and the IIEFGM are 3.51% and 4.27%, respectively.
Figure 4 shows the cloud diagram of the Von Mises stress on the problem domain for the
analytical solution and the four meshless numerical results. The numerical solutions of the
Von Mises stress obtained by the four meshless methods showed good agreement to the
exact ones.

8
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Figure 2. Deflection u2 and its relative error at x2 = 0 m.

Figure 3. Stress σ22 and its relative error at x2 = 0 m.
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Figure 4. Contour of the Von Mises stress of the clamped-clamped beam.

4.2. Cantilever Beam Subjected to a Uniform Load

The orthotropic elastic cantilever beam shown in Figure 5 is considered in this example.
Beam span l is 48 m, and depth h is 12 m. The upper boundary of the beam is subjected to a
uniform load of q = 1000 N/m. The self-weight of the beam is ignored, and the structure is
considered as in a plane stress state in the modelling.

The material coefficients of the beam are considered as s11 = 0.0799 × 10−10,
s12 = −0.0375 × 10−10, s21 = −0.0375 × 10−10, s22 = 0.0798 × 10−10, and s66 = 0.2326 × 10−10.
The analytical solutions of the displacements and the stresses of the beam are [35]

u1 =
2px1x3

2(s12+s66)

H3 −
[

2s11x3
1

H3 − (9s12−3s66)x1
10H + (9s12+12s66)L

10H − 2s11L3

h3

]
px2

+ s12 p(L−x1)
2

(39)
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u2 =
(s12s66−s11s22+2s2

12)px4
2

2s11 H3 −
(

s12x2
1

H2 + s12s66
20s11

+
s2

12
10s11

− s22
4

)
3px2

2
H − s22 px2

2

+ p(L−x1)
2

20H3 (10s11x2
1 + 20s11Lx1 − 12s66H2 − 9s12H2 + 30s11L2)

(40)

σ1 = −6qx2
1x2

H3 + 2p
2s12 + s66

4s11
(

4x3
2

H3 − 3x2

5H
) (41)

σ2 = − p(x2 + H)(H − 2x2)
2

2H3 (42)

τ12 =
3px1(4x2

2 − H2)

2H3 (43)

As the geometry and the material in this example are similar to those in the example of
Section 4.1, the trailed value range of the computing parameters in the meshless numerical
modelling is chosen to be exactly the same as that in Section 4.1. Therefore, the optimal
computing parameters for each meshless method are picked as the ones that get the
lowest energy norm error among the tested value range and are listed in Table 3. The
numerical results according to the optimal computing parameters in Table 3 are used for
the comparison of the computational performance of the four meshless methods.

Figure 5. Cantilever beam under uniform load at its upper boundary.

Table 3. Optimal value of computing parameters in this example.

n1 × n2 l1 × l2 dmax Other Parameters

EFGM 19 × 13 12 × 8 3.5 β = 3 × 1014

RPIM 21 × 7 12 × 8 4.5 q = 2.5, c = 1.0
IEFGM 25 × 13 12 × 8 1.5 α = 6.0
IIEFGM 25 × 13 12 × 8 1.5 —

Since there is no special difference in the accuracy of curves in each direction, this
paper only provides curves in a certain direction for illustration. The meshless solutions for
the deflections of the nodes on the central axis of the beam x2 = 0 and the corresponding
relative errors are presented in Figure 6. Generally, the numerical displacement results
obtained by the four meshless methods show good accuracy and agree well with the exact
solutions. The overall relative error values of RPIM, IEFGM and IIEFGM are about 0.07%,
1.1% and 1.6%, respectively, and the maximum relative error values are about 1.88%, 8.9%
and 13.5%, respectively. The maximum relative error of EFGM is less than 0.27%. The
relative errors of the three interpolative meshless methods, especially the IIEFGM and the
IEFGM, show dramatic increase for the nodes at the fixed end of the beam.

In Figure 7, the numerical results of the Von Mises stress for the nodes on the central
axis of the beam are compared to the values calculated from the analytical stress solutions.
The corresponding relative errors of the Von Mises stress results are also presented in this
figure. Unlike the case of the displacement solutions, the Von Mises stress solutions of
the IEFGM and the IIEFGM show obvious deviation from the corresponding analytical
solution at the fixed end of the beam. Generally, the relative errors of Von Mises stress
calculated by the four meshless methods are relative larger at the free end of the beam and
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gradually decrease and become stabilized towards the fixed end. Meanwhile, the IEFGM
and the IIEFGM show much poorer accuracy with very large relative error near the fixed
end of the beam. The EFGM has the highest accuracy, with a nodal relative error around
0.72% with a maximum of 6.4%. The nodal relative errors of the Von Mises stress solutions
for the RPIM, the IEFGM and the IIEFGM are mostly around 0.4%, 3% and 1%, respectively.
When x2 is between 10m and 40m, the variances of the RPIM, EFGM, IEFGM and IIEFGM
are 0.0425, 0.1129, 0.797 and 0.546 respectively. Therefore, the Von Mises stress solutions of
the RPIM are more accurate and stable than those of the other two interpolative approaches
in this case.

Figure 6. The nodes deflection and its relative error at central axis.

Figure 7. Solutions of the Von Mises stress and the relative error at x2 = 0.

4.3. Ring under Pressures Applied Both Internally and Externally

To consider an orthotropic elastic ring under both internal and external compression,
as shown in Figure 8, only one quarter of the structure needs to be modeled by symmetry.
The inner and outer diameters of the ring are a = 12 m and b = 20 m, respectively. The
pressures of Pa = 100 Pa and Pb = 300 Pa are applied both internally and externally. The
numerical example is considered as in a plane stress state.

Figure 8. A quarter of the ring.
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The ring is circular orthotropic, and the anisotropic pole is located at the center of the
ring. The material compliance coefficients in a polar coordinate system are
s11 = 0.0799 × 10−4, s12 = −0.0375 × 10−4, s21 = −0.0375 × 10−4, s22 = 0.0798 × 10−4

and s66 = 0.2326 × 10−4. The exact solutions of the radial displacement and the stresses are
written as follows [35]:

ur =
b

Eθ(1 − c2k)

[
(Pack+1 − Pb)(k − vθ)(

r
b
)

k
+ (Pa − Pbck−1)ck+1(k + vθ)(

b
r
)

k
]

(44)

σr =
Pack+1 − Pb

1 − c2k (
r
b
)

k−1 − Pa − Pbck−1

1 − c2k ck+1(
b
r
)

k+1
(45)

σθ =
Pack+1 − Pb

1 − c2k k(
r
b
)

k−1
+

Pa − Pbck−1

1 − c2k kck+1(
b
r
)

k+1
(46)

where c = a/b, k =
√

s11/s22, Eθ = 1/s22, vθ = −s12/s22.
In order to effectively compare the accuracy of the four meshless methods with

completely different computing parameter groups, the following appropriate ranges are
also selected for several kinds of the computational parameters in this example: for a
uniform mesh of the nodes, the number of nodes in the radial direction n1 = (7, 9, 11, 13),
the number of nodes in the circular direction n2 = (19, 21, 23, 25); for a fixed uniform mesh
of l1 × l2 = 6 × 24 for the background cells of the Gauss quadrature, the dimensionless
factors for scaling the influence domain dmax = (1.5, 2.5, 3.5), q = (−0.5, 0.5, 1.5, 2.5) and
c = (1.0, 3.0, 5.0); for the MQ radial basis in the RPIM, the singular weight parameter
α = (4, 6, 8, 10) for the IEFGM, and the penalty factor β = 3 × 1014 for the EFGM to enforce
displacement boundary conditions. Apparently, all 48, 576, 192 and 48 groups of the
computing parameters need to be tested for the EFGM, the RPIM, the IEFGM and the
IIEFGM, respectively, to determine the optimal settings for each method with regard to the
relatively lower energy norm error. The corresponding optimal sections of the parameters
for the four meshless schemes are presented in Table 4.

Table 4. Optimal parameters each method within the tested range.

n1 × n2 l1 × l2 dmax Other Parameters

EFGM 9 × 25 6 × 24 2.5 β = 2 × 108

RPIM 11 × 25 6 × 24 3.5 q = 1.5, c = 1.0
IEFGM 13 × 25 6 × 24 1.5 α = 4.0
IIEFGM 7 × 25 6 × 24 1.5 —

The nodal solutions of the radial displacement at section θ = 45◦ of the ring with the
values of parameters in Table 4, the variances of the nodal relative errors in Table 5 and
the relative errors are shown in Figure 9. It is obvious that the displacement results of the
four meshless approaches are in generally good agreement with the analytical ones. The
accuracy of the RPIM and the EFGM are almost the same and are higher and more stable
than the other two methods. The maximum values of the nodal relative errors for the RPIM,
IEFGM and the IIEFGM are about 0.0398%, 0.09% and 0.24%, respectively. The variances of
the nodal relative errors for the RPIM, EFGM, IEFGM and the IIEFGM are about 0.0001,
0.000005, 0.00085 and 0.0043, respectively. The contour plots for the relative errors of the
Von Mises stress obtained by the four meshless methods are presented in Figure 10. It could
be found that the four meshless approaches can get good results of the Von Mises stress
for this example, while the accuracy of each method in the different areas of the problem
domain is not the same.
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Table 5. The variances of the relative errors.

EFGM RPIM IEFGM IIEFGM

Radial
displacement 0.0001 0.000005 0.00085 0.0043

Von Mises stress 0.07225 0.0545 0.391 0.9947

Figure 9. Radial displacement ur and relative error at θ = 45◦ of the ring.

Figure 10. Contour plots of the relative error for the Von Mises stress.

5. Conclusions

In this study, the RPIM, the IEFGM and the IIEFGM are applied to solve orthotropic
elastic problems. The essential/displacement boundary conditions are applied by the
direct method to calculate and analyze orthotropic clamped-clamped beams, orthotropic
cantilever beams and orthotropic rings subjected to uniform loads. Since the principles
and computing parameters of these three interpolative methods are very different, this
paper uses the numerical solution with the optimal parameter group corresponding to the
minimum energy norm error within a certain trailed range of each method to compare their
accuracy. For example in Section 4.1, the maximum relative error of σ22 is 3.73%, which
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is higher than the relative error of 1.32% in the middle of the beam span. However, the
maximum relative errors of the IEGM and the IIEFGM are 3.51% and 4.27%, respectively.
For example in Section 4.2, the overall relative error values of nodal deformation for RPIM,
IEFGM and IIEFGM are about 0.07%, 1.1% and 1.6%, respectively, and the maximum rela-
tive error values are about 1.88%, 8.9% and 13.5%, respectively. For example in Section 4.3,
the accuracy of radial displacement for the RPIM and the EFGM are almost the same and
are higher and more stable than the other two methods. The maximum values of the
nodal relative errors for the RPIM, IEFGM and the IIEFGM are about 0.0398%, 0.09% and
0.24%, respectively. The results show that the three meshless interpolation methods have
better numerical accuracy in the modeling of orthotropic elastic problems, and the radial
point interpolation method (RPIM) has the highest accuracy. The research results of this
paper can provide a certain reference value for future research on the selection of meshless
form functions in interpolation. It is one of the regrets of this paper that the differences in
numerical efficiency of these methods cannot be effectively investigated at the same time.
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Abstract: Welded joints in grid structures are susceptible to damage and destruction when exposed
to random excitation. The complexity of the grid structure poses challenges for realizing the damage
recognition of welded joints. In this study, a two-step method is proposed specifically for damage
identification of welded joints in grid structures, combining wavelet analysis and fuzzy pattern
recognition to accurately identify the location and extent of damage in welded joints. Firstly, the
structure is divided based on the analysis of the influence range of joint damage. Key joints are
selected within the sub-regions where sensors are installed, and the acceleration response of these key
joints is measured. Wavelet analysis is then applied to identify the sub-regions where weld damage
occurs. Secondly, an equivalent finite element model is established for joints with varying degrees
of damage. The damage index, calculated as the ratio of the absolute value of the difference in the
first-order element strain mode of the members, increases with the degree of damage during joint
weld damage. By monitoring the changes in the damage index of sensitive members, which exhibit
significant changes with varying weld damage degrees, a damage pattern database is constructed
for each sub-region. The membership degree between joint damage and the patterns in the pattern
database is then calculated to determine the location and degree of weld damage. To validate the
effectiveness of the proposed method, an experiment was conducted using a grid structure model
with replaceable members. Highly sensitive FBG sensors were designed to measure the acceleration
response of the joints, resulting in accurate identification of damaged sub-regions solely through the
measurement of key joint acceleration responses. Furthermore, within the damaged sub-regions, the
fuzzy pattern recognition method precisely determined the location and degree of weld damage in
the joints. The experimental results demonstrate that the proposed method effectively reduces the
complexity of the structure by dividing the grid structure into sub-regions, and enables the two-step
identification method to achieve successful damage identification for the joints in the grid structure
with high efficiency and accuracy.

Keywords: grid structure; joint weld damage; wavelet transform; fuzzy pattern recognition; strain
mode difference ratio; experiment verification; FBG sensors

1. Introduction

Welded spatial grid structures are extensively utilized in civil engineering, particularly
in densely populated public areas like exhibition halls, stadiums, and theaters, which
often serve as prominent architectural landmarks in cities. The occurrence of engineering
accidents in these structures can result in significant economic losses and have severe social
implications. Among the various components of welded grid structures, welded hollow
spherical joints are particularly prone to damage due to the complex multi-directional
loading conditions they experience. Moreover, Adin analyzed the mechanical properties of
welded joints produced by different welding methods and pointed out that the welding
methods have great influence on the mechanical properties of welded joints [1]. Wu et al.,
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indicated that due to the welding process and environmental influences, the welding zone
tended to lead to stress concentration, making the welded joints vulnerable locations for
structural damage [2]. Therefore, it is essential to accurately identify any damage that may
occur in these joints to ensure the safety of such structures in service.

The dynamic responses of engineering structures often contain valuable information
that can provide insights into their working performance and condition. Analyzing the
dynamic response enables us to understand dynamic characteristics and assess structural
integrity to a certain extent. Several studies have focused on structural damage identifica-
tion based on modal parameters extracted from dynamic response. Wei et al., conducted a
comprehensive review of methods for damage identification in beams or plates, considering
modal parameters such as natural frequencies, modal shapes, curved modal shapes, and
a combination of modal shapes and frequencies [3]. Similarly, Zhu et al., developed an
effective damage detection method for shear wall structures by analyzing variations in
first-mode amplitudes [4]. Yin et al., proposed a practical method for detecting damage in
bolted joints using noisy incomplete modal parameters by only limited data acquisition,
and demonstrated the effectiveness of the combination of numerical simulations and exper-
imental validations [5]. Ditommaso et al., proposed a methodology for damage localization
in frame structures subjected to strong ground motion through monitoring modal curvature
variations [6]. Zhang et al., introduced a displacement modal shape processing method
based on difference accumulation, which was used as a damage characterization parameter
to detect damage in composite materials [7]. Zhou et al., investigated modal flexibility
extraction and damage identification using multi-reference hammering in reinforced con-
crete (RC) beams, and performed static and dynamic experiments on simply supported RC
beams to validate this method [8]. Chang et al., demonstrated the effectiveness of modal
parameter identification and vibration-based damage detection through field experiments
on a simply supported steel truss bridge [9]. Fang et al., employed a substructure-based
damage identification method utilizing the acceleration frequency response function (FRF)
to identify damage in a six-story steel frame structure [10]. These studies highlight the
significance and potential of using dynamic response analysis for structural damage identi-
fication. However, as the complexity of the structure increases, the sensitivity of damage
identification methods that rely on changes in structural dynamic characteristics as damage
indicators becomes less robust. This makes it difficult to apply these damage identification
methods to practical structures.

The modal strain energy (MSE), derived from the structural modal shape and stiffness
matrix, has been recognized as a sensitive physical property that undergoes changes before
and after structural damage. As a result, several damage identification methods utilize
modal strain energy as a damage indicator in structural health monitoring. Cha et al.,
proposed a novel damage detection method that employed a hybrid multi-objective opti-
mization algorithm based on MSE to detect damages in various three-dimensional steel
structures [11]. Li et al., developed an improved modal strain energy (IMSE) method for
detecting damage in offshore platform structures, utilizing modal frequencies as the basis
for the approach. Numerical and experimental studies both demonstrated the effectiveness
and practicality of the IMSE method [12]. Arefi et al., employed MSE and modal shapes
reconstructed by the Guyan reduction method (GRM) as damage indices for identifying
structural damage [13]. Huang et al., addressed computational efficiency and the lack
of high-sensitivity damage indices in structural damage identification by proposing a
framework based on the modal frequency strain energy assurance criterion (MFSEAC),
modal flexibility, and an enhanced moth–flame optimization algorithm [14]. These studies
highlight the significance of modal strain energy as a valuable parameter for structural
damage identification based on dynamic characteristics. However, when the scale of the
structure increases, the high dimensionality of the stiffness matrix and the truncation effects
of modal shapes lead to a decrease in the ability of modal strain energy to characterize
structural damage, potentially resulting in the inability to detect structural damage.
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Spatial grid structures, with their complex shapes and large scale, exhibit complex
stiffness characteristics, resulting in a dense distribution of natural frequencies. In the case
of damage to multiple members within the structure, even complete loss of their bearing
capacity, the resulting changes in modal parameters, such as natural frequencies, tend
to be minimal. Consequently, damage indicator methods relying solely on the magni-
tude of modal parameter changes are often inadequate for diagnosing damage in these
structures. To overcome this limitation, damage identification methods based on direct
structural response information have been proposed. Sohn et al., utilized time series meth-
ods to identify structural damage by analyzing the dynamic response of the structure [15].
Lam et al., developed a Bayesian method to assess the damage status of railway ballast
under a concrete sleeper using vibration data from in situ sleepers [16]. Salehi et al., intro-
duced a novel structural damage detection technique based on multi-channel empirical
mode decomposition (MEMD) of vibrational response data [17]. Zhu et al., used a combi-
nation of statistical regression and deep learning methods to predict the deformation of a
dam based on multiple measuring points in different sections of the dam [18]. Xiao et al.,
proposed a methodology for identifying damage in semi-rigid frames with slender beams,
which was applied on semi-rigid frame structures with different cross-sectional shapes by
formulating an objective function based on minimizing the difference between the analyzed
and measured joint displacements [19]. However, the practical application of these meth-
ods to grid structures is often hindered by the large-scale nature of the structures and the
significant number of connections and members involved. Consequently, the installation of
a large number of sensors on the structure to obtain the required response information for
identifying damaged spherical weld joints becomes challenging and restricts the feasibility
of such approaches in grid structures.

Xiao et al., proposed a stiffness separation method for damage identification in large-
scale space truss structures that simplified the high-dimensional structural damage identifi-
cation problem [20]. Therefore, dividing the grid structure into several simpler substruc-
tures provides a practical method for identifying joint damage within each substructure,
which is analogous to dimensionality reduction processing. This concept forms the basis
for the development of the two-step method presented in this paper, specially designed
to identify weld damage in the welded joints of grid structures. The first step involves
partitioning the grid structure into sub-regions and utilizing data acquired from a limited
number of measurement key joints to identify the sub-regions where joint weld damage has
occurred. In the second step, the focus is on recognizing the precise location and extent of
joint weld damage within the identified sub-regions. The key to implementing the two-step
approach for identifying weld damage at the joints of grid structures lies in the selection
of appropriate identification methods for each step. These identification methods should
meet criteria such as requiring minimal information, while also ensuring high accuracy
and ease of implementation.

Wavelet analysis has gained attention in the field of structural damage detection due
to its ability to capture local characteristics of signals in both time and frequency domains,
leading to significant achievements. Kim et al., utilized continuous and discrete wavelet
transforms in structural health monitoring (SHM) to investigate damage identification in
beam structures [21]. Zhe F. et al., introduced a novel transmissibility concept based on wavelet
transform to detect slight structural damage at its early stage [22]. Janeliukstis et al., employed
a two-dimensional wavelet transform algorithm with isotropic Pet Hat wavelet to locate areas
of damage in a numerically simulated aluminum plate model, finding that the lowest scale of
the selected wavelet function yielded the best results for damage identification [23]. Zhu et al.,
proposed a new damage index for crack identification in functionally graded material (FGM)
beams using wavelet analysis, defining the index based on the position of the maximum value
of the wavelet coefficient modulus in the scale space [24]. Katunin et al., presented a novel
damage identification approach using the 2D continuous wavelet transform-based algorithm
to analyze differences in modal rotation fields obtained from shearographic measurements
of structures [25]. Yazdanpanah et al., proposed an efficient wavelet-based refined damage-
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sensitive feature for nonlinear damage diagnosis in steel moment resisting frames (MRFs),
which utilized acceleration responses extracted from the structures analyzed by incremental
dynamic analysis (IDA) under various ground motion records [26]. Zhu et al., used the
variational mode decomposition (VMD) wavelet packet denoising method to denoise the
prototypical seepage pressure data of dams, and it was demonstrated through experiments
that the method achieved high prediction accuracy and flexibility [27].

However, directly applying wavelet analysis to identify joint damage in grid structures
may lead to incorrect results due to the complexity and symmetry of the structure. The
presence of joint damage in the grid structure can cause significant response changes,
especially at symmetrical locations. To overcome this challenge, partitioning the grid
structure becomes essential as it effectively reduces complexity and breaks symmetry,
rendering wavelet analysis advantageous for damage identification in sub-regions of
the structure.

Furthermore, damage to a joint can result in amplitude changes in the singular values
of the wavelet-transformed acceleration response of adjacent joints. Therefore, the wavelet
analysis method can be employed not only for damage identification but also to determine
the influence range of a damaged joint by analyzing the amplitude changes in the singular
values of the wavelet transform of adjacent joints. This additional feature enhances the
capabilities of the wavelet analysis method for accurately detecting and localizing joint
damage within the grid structure.

Fuzzy pattern recognition, a method that involves extracting identification indicators
and establishing membership functions, has been widely employed in structural damage
identification. Wang et al., proposed a two-stage fuzzy pattern identification method based
on fuzzy theory to establish a fuzzy pattern database for cable force, key point strain, and
weld crack growth length. This method enabled the identification of earplate crack length
in guyed mast structures under wind load [28]. Ren et al., extracted damage-sensitive
features through statistical analysis of time history response data, forming statistical mode
vectors that characterize the structural status. By comparing the distances between mode
vectors in the feature set for different structural conditions, they were able to determine the
damage [29]. Jiang et al., proposed a data fusion damage identification method based on
fuzzy neural networks, which effectively utilized redundant and uncertain information for
more accurate damage diagnosis [30].

However, extracting damage indices becomes challenging in grid structures with
numerous joints and members. Moreover, pattern matching in a large pattern database
based on established membership functions requires extensive analysis, which may result in
low recognition accuracy or errors due to the complexity of the grid structure. Nevertheless,
the implementation of the fuzzy pattern recognition method in sub-regions of the structure
where joint damage has been identified presents a practical solution, which can significantly
reduce the difficulty of identifying the location and extent of joint damage. By focusing
pattern matching solely on the sub-region containing joint damage, the computational
burden is substantially reduced, and potential identification errors caused by the complexity
of the grid structure are effectively avoided.

Therefore, it is recommended to combine the wavelet analysis method in the first step
and the fuzzy pattern recognition method in the second step to achieve joint weld damage
identification in grid structures. In this way, the objective of the study was attained through
the selective placement of acceleration sensors on key joints within the structural sub-region.
By subjecting the response time histories collected from these sensors to wavelet analysis,
the presence of joint damage within the sub-region can be identified. Subsequently, using
this outcome, fuzzy pattern recognition can be applied specifically to the sub-region where
the damage has been detected, allowing the determination of the location and severity of
the joint damage. Furthermore, to validate the effectiveness of the proposed method, a
physical grid structure model was fabricated and subjected to testing. The results of these
experiments demonstrate that the proposed method can accurately identify the location
and degree of damage in the structural joints. Importantly, this method requires minimal
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measurement information, making it practical and feasible for implementation in practical
engineering applications.

2. The Methodology of Two-Step Identification Technology for Weld Damage of
Welded Spherical Joints

The two-step damage recognition procedures for joints in grid structures are illustrated
in Figure 1.

 
Figure 1. The detection framework of weld damage in joints.
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According to Figure 1, the first step involves identifying the influence region of the
damaged joints through wavelet transform analysis, arranging sensors in each sub-region,
and identifying the damaged sub-region. The procedure is as followed: firstly, acquiring
the time history of the acceleration response of both the damaged joint and neighboring
joints when the grid structure is subjected to external excitation. Then, using the wavelet
transform to analyze the acceleration response to obtain the singularity amplitude of the
high-frequency signal, and determining the influence areas of the damaged joints, leading
to the establishment of sub-regions within the structure. Additionally, the key joints in
each sub-region were determined for deploying the fiber Bragg grating (FBG) acceleration
sensors. In practical engineering, only the acceleration responses of the joints with FBG
sensors in each sub-region are measured. The singular amplitude of the high-frequency
signal of these acceleration responses, obtained through wavelet transform analysis, helps
to judge whether weld damage in joints occurs in a sub-region.

The second step involves establishing a damage pattern database for welded joints in
each sub-region, and identifying the location and degree of weld damage in the joints of
sub-regions by adopting the fuzzy pattern recognition method. To ensure that the database
covers various hollow spherical joints, three-dimensional solid weld connections between
joints and members are modelled using the finite element method. These models consider
different spherical wall thicknesses and pipe–sphere diameter ratios within the range of
0.3 ≤ d/D ≤ 0.5, as specified by the JG/T11-2009 Standard for Welded Hollow Spherical
Joints of Steel Grid Structures [31]. The axial stiffness coefficient and bending stiffness
coefficient are obtained from these models and used in equivalent finite element models
with varying crack sizes. Damage indices that characterize the location and extent of joint
damage are extracted based on the damage equivalent model, and can be used to determine
the members that are sensitive to joint damage. A vector composed of these damage indices
from the sensitive members is used to characterize different patterns of joint damage.
A pattern library of joint damage is then established, which contains information about the
location and degree of joint damage for each sub-region.

Following the first step, if joint damage is identified to occur in a sub-region, the
membership degree between the damage indices vector of each joint and each pattern in
the pattern database is calculated only in this sub-region. Based on the membership values,
the damaged joints can be located and the extent of damage can be assessed.

2.1. Damage Sub-Region Identification Based on Wavelet Analysis

The wavelet transform is a mathematical operation that involves taking the inner
product between a basic wavelet function, denoted as ψ(x), and the signal to be analyzed,
denoted as f (x), at different scales a and displacements b. It can be expressed as:

Wf (a, b) = < f (x), ψa,b(x) > =
1√
a

∫ +∞

−∞
f (x)ψ

(
x − b

a

)
dx (1)

where ψ(x) represents the basic wavelet function, while a and b represent the scale factor
and displacement factor, respectively.

The key characteristic of wavelet transform is its ability to provide variable time–
frequency windows. The time–frequency window can be conveniently adjusted using
an optimal base searching method. Wavelet analysis offers excellent time–frequency lo-
calization, allowing it to detect various frequency components of a signal by utilizing its
adjustable time–frequency window. This property makes wavelet transform effective in
detecting small-scale structural damage by analyzing signal singularities [32].

In this study, the acceleration response of joints was subjected to wavelet analysis.
If a joint is damaged, not only that specific joint but also the neighboring joints exhibit
singularities in the high-frequency signal. The magnitude of the singularity in the high-
frequency signal of each joint determines the influence range of the joint’s damage. By
assessing the singularity values of each joint, the structure can be divided into sub-regions,
and the key joints where sensors should be installed can be determined. Consequently,
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by measuring the response of these key joints, the identification of joint damage in the
corresponding sub-region can be achieved.

2.2. Damage Location and Degree of Joints in the Damage Sub-Region Based on Fuzzy
Pattern Recognition
2.2.1. Pattern Database

To establish the pattern database of weld damage in joints, the relationship between
the degree of weld damage and the damage index was analyzed. The weld crack length
was divided into intervals of 15 degrees, and different damage equivalent models were
constructed and analyzed for each crack size. The first-order strain mode of each member
was calculated, and the absolute difference in strain modes was obtained.

For each crack length, a set of absolute difference data of strain modes was generated.
These data were used to determine the crack length of the joints. The absolute difference of
strain modes was considered as the eigenvector to construct the pattern database. Each
entry in the database corresponded to a specific crack length and its corresponding absolute
difference data of strain modes.

To identify the damage in a joint with an unknown crack length, the absolute difference
of strain modes for that joint was compared with the pattern database. By finding the
closest match or determining the degree of similarity between the absolute difference of
strain modes and the entries in the database, damage identification could be achieved.

The case study focused on a welded hollow sphere joint, specifically the WS1204 joint,
which consisted of a hollow sphere with a diameter of 120 mm and a wall thickness of
4 mm, connected to a steel pipe with an external diameter of 48 mm and a wall thickness of
3.5 mm. To simplify the analysis, the calculation model considered only half of the sphere,
as the stressed state of the welded hollow spherical joint under a unidirectional force was
symmetrical. The fixed boundary conditions were applied along the hemisphere edge. The
crack in the joint was assumed to be an opening penetrating crack located on the surface,
which is a common type of crack in engineering. The crack section is shaded in Figure 2,
where 2θ represents the crack angle. A three-dimensional solid model of the crack was
established by dividing the structure into the crack body and non-crack body components,
allowing accurate analysis of the crack behavior [33].

Figure 2. Location of cracks.

To accurately capture the singularity at the crack tip, the meshing process involved
defining the singularity using the ANSYS pre-processing command KSCON. The param-
eters of the KSCON command were adjusted to ensure a uniform radiation pattern on
the surface of the crack tip, as illustrated in Figure 3a. The mesh on the crack tip surface
was then extended in the crack depth direction to form a solid mesh using a degenerated
20-node SOLID95 quadratic element, which is a singular element specifically designed to
reflect the strain and stress singularity at the crack tip, as shown in Figure 3b.
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(a) (b) 

Figure 3. Mesh generation of cracked body, (a) element of the surface of crack front edge, (b) front
body of crack.

For the transition region adjacent to the crack and the remaining portion of the struc-
ture, the element size was controlled using the LESIZE command, and the refinement of
elements was controlled using the SMART command. This allowed for an appropriate
mesh density in the vicinity of the crack and a coarser mesh in other regions. Finally, the
complete mesh model of the joint was obtained, as shown in Figure 4.

 

Figure 4. Model of welded hollow ball joint.

The crack shape of the weld joint was characterized by its depth and width, which
had a notable impact on the stiffness of the welded hollow spherical joint. However, in
this study, the influence of crack depth on the joint stiffness was neglected due to the
observation that the axial and bending stiffness coefficients showed minimal variations
when the crack depth changed within the small range of the pipe wall thickness [34].
Therefore, only the influence of crack width was considered.

To establish the relationship between crack width and axial and bending stiffness
coefficients, an axial force F was applied to the welded hollow spherical joint model to
obtain the average vertical displacement ω. The ratio of axial force to displacement yielded
axial stiffness, expressed as k = F/ω. Additionally, a bending moment M was applied
to the spherical joints, resulting in an angular displacement θ, and the bending stiffness
ke = M/θ, approximated as ke ≈ M/(ω+ − ω−)/d, where ω+ was the mean displacement
value of joints with positive vertical displacement, ω− was the mean displacement value of
joints with negative vertical displacement, and d was the pipe diameter.

By assuming the crack depth to be half of the pipe wall thickness and varying the
crack width, the axial stiffness coefficient and bending stiffness coefficient of the welded
hollow spherical joint were calculated as shown in Figure 5.

To simulate the equivalent model of a joint with a member, the piecewise equivalent
stiffness method is commonly used. In this method, the member is divided into three parts:
the middle element and the fixed-length elements at both ends. The length of the elements
at both ends is determined based on the size of the joint, and the rotation capacity of the
joint is represented by reducing the moment of inertia of the beam element at both ends.
This allows the continuous modification of the reduced coefficient of moment of inertia and
the length of the member end to simulate different degrees of joint damage [35]. However,
the length of the member end depends on the degree of joint damage, and it is not easy to
determine the length in this way. Xiao et al., proposed a method for simultaneous damage
identification of both section damage and joint damage in rigid frames, which furthermore
can also be used to assess the rotational stiffness of semi-rigid connections, represented by
fixed coefficients at the ends of components to characterize the rotational capacity between
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beams and columns [36]. In this study, the concept of adjustable stiffness is utilized to
represent different connection cracks. The Matrix 27 element provided by ANSYS software
was selected to simulate the stiffness of joints with cracks. The joint dimensions were
ignored, and the effect of cracks on the stiffness of welded hollow spherical joints was
considered. The connection stiffness of the joints was simulated by adjusting the spring
stiffness, allowing consideration of changes in the axial, bending, or torsional stiffness. By
adjusting the values of the corresponding elements in the Matrix 27 element’s stiffness
matrix, different crack-connected joints could be described.

 
Figure 5. Fitting curves of stiffness coefficient.

When the structure is damaged, the stiffness in the damaged area decreases, leading
to significant stress redistribution around the damage location. This, in turn, causes a
substantial change in the strain mode at the damage location [37,38]. However, strain mode,
as a relative quantity, can only be used for locating structural damage. Nevertheless, it
is acknowledged that more severe damage results in a more significant change in strain
modes. Therefore, in this paper, the ratio of the absolute value of the difference in the
first-order element strain modes is proposed as the damage index to quantify and assess
the extent of damage. By calculating this index, the damage location of the joint can be
determined, and the severity of the damage can also be assessed.

The link element k in the structure is connected by nodes i, j. the strain εk which
ignores the higher order terms is as follows:

εk = [
(
uj − ui

)(
xj − xi

)
+
(
vj − vi

)(
yj − yi

)
+
(
wj − wi

)(
zj − zi

)
]/L2 (2)

where xi, yi, zi and xj, yj, zj are the coordinates of nodes j and j respectively, ui, vi, wi and
uj, vj, wj are the displacements of nodes i and j respectively, and L is the length of the
link element.

The absolute value of the element strain modal difference is sensitive to local damage
and can be used to locate structural damage, which is expressed as follows:

Δε(k) =
∣∣∣εund(k)− εdam(k)

∣∣∣ (k = 1, 2, . . . , N) (3)

where εund(k), εdam(k) are the strain mode of the kth element before and after structural
damage, and N is the total number of elements.

Based on the analysis results of the equivalent model of welded hollow spherical joints
with cracks, it was observed that the absolute value of the element strain mode difference
increased with the damage aggravation. In particular, it was found that the absolute value
of the element strain modal difference approached its maximum when the crack length
was 345◦. To quantify the damage degree of each element, the damage index of the kth
element was defined as:

Id(k) =
Δε(k)

Δε(k)345◦
(4)
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where Δε(k) and Δε(k)345◦ are the absolute differences of strain modes of the kth elements
at arbitrary damage degree and crack length of 345◦, respectively. The Id(k) increased with
the damage degree monotonically. The crack length increased with the increase of Id(k);
when Id(k) = 1, the crack length was 345◦.

To determine the eigenvector that can effectively characterize the pattern of joint weld
damage, it is important to identify the members that are most sensitive to the damage. When
weld damage occurs at a particular joint, the corresponding member connected to that joint
exhibits the most significant change in the damage index Id, and adjacent members may
also experience considerable changes in their damage indices. These sensitive members
are highly responsive to the joint damage, and their damage indices tend to increase as the
degree of the joint damage worsens. Hence, these sensitive members can be selected as the
key indicators (eigenvector) to characterize the specific damage pattern. The damage index
Id values associated with these members are considered as the eigenvector components,
representing the pattern of joint weld damage. Each set of damage indices Id corresponds
to a specific damage pattern for a given joint, and together they form a pattern database.

To obtain the damage indices Id for each member, the strain modes are calculated using
the vibration mode shapes of both the intact structure and various damage cases, based on
the equivalent finite element model of the joint with weld damage. By analyzing the strain
modes, the corresponding damage indices Id for each member can be determined and used
to construct the pattern database, which facilitates the identification of the location and
degree of joint weld damage in the structure.

2.2.2. Implementation of Fuzzy Pattern Recognition

The fuzzy pattern recognition process consists of the following steps. Firstly, the
eigenvector is determined to establish the fuzzy pattern database. Then, the membership
function is defined. Finally, the membership degree is calculated based on the membership
principle to judge the membership pattern of the object and recognize it.

The membership function employs the distance formula to calculate the distance
between the object to be identified, denoted as b = (b1, b2, · · · , bm), and every pattern in
the pattern database, represented as ai = (ai1, ai2, · · · , aim)(i = 1, 2, · · · , n). The distance
formula is given by:

di(b, ai) =

√√√√∑m
j=1

(
bj − aij

aij

)2

(5)

where m and n are the dimension of the eigenvector and the number of patterns in the
pattern database, respectively. The membership function is defined as:

Abi = 1 − di(b, ai)

D
(6)

where D = max(d1(b, a1), d2(b, a2), . . . , dn(b, an)); if Abl = max(Ab1, Ab2, . . . , Abn), the
object to be identified b = (b1, b2, · · · , bm) belongs to the pattern al = (al1, al2, · · · , alm).

In this study, b = (b1, b2, · · · , bm) is the eigenvector composed of the Id value of the
member, assuming the damage location and degree of joint are unknown, and
al = (al1, al2, · · · , alm) is the eigenvector composed of the Id of members connecting with
different joints with different crack lengths.

3. Damage Identification of Weld Joints in Spatial Grid Structure

To investigate the applicability of the two-step method for identifying weld crack
damage to joints, a welded space steel structure model was developed, as shown in Figure 6
(the numbers of the upper and lower chords are marked), which was used in the numerical
analysis and experimental verification. Due to space limitation in the laboratory, the model
dimensions were set to 3 m in length, 1.8 m in width, and 1.85 m in height. The overall
height of 1.85 m was composed of a 1.5 m pillar and 0.35 m corresponding to the upper
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and lower chords of the grid structure. The hollow spheres utilized in the model were of
WS1204 specification.

 
Figure 6. The numbers of nodes and chords of the structural finite element model.

The grid structure consisted of lower chords with a grid pattern of 5 × 3 and upper
chords with a grid pattern of 4 × 2. All members in the structure were of type φ48 × 3.5,
with an outer diameter of 48 mm and a wall thickness of 3.5 mm. The structure was
supported at all four corners by the pillars, constructed using circular steel tubes of type
φ60 × 3.5, with a net height of 1.5 m. The steel material in the structure had an elastic
modulus of 206 GPa, Poisson’s ratio of 0.3, and a density of 7850 kg/m3.

The finite element model of the structure was created using the ANSYS (v. 12.0.) finite
element analysis software. The member elements were simulated using the element type
BEAM188. The mass of the spherical joints was represented by the MASS21. The welded
spherical joints with cracks were simulated by the MATRIX27. The finite element model
consisted of 43 nodes and 124 elements.

3.1. Damage Identification Sub-Region Division of Spatial Grid Structure

When weld damage occurs at a joint in the grid structure, it can lead to changes in the
acceleration responses of this joint as well as the adjacent joints when subjected to external
excitation. By performing wavelet transform on these acceleration responses, the singular
values of the high-frequency components can be obtained. These singular values help
determine the influence range of the damaged joint and guide the placement of sensors at
specific locations within the structure.

In the analysis, joint 8 was chosen as an example. When a 90◦ weld damage occurred
on the right side of joint 8, the singular values of the high-frequency components in the
acceleration responses of joint 8 and its neighboring joints were examined using wavelet
transform. The magnitude of these singular values was used to determine the range of
influence caused by the weld damage.

To initiate the free vibration of the grid structure, a horizontal displacement of 2 cm
was applied. At 20 s, the weld damage occurred on the right side of joint 8. The time–history
acceleration responses of all joints in the structure were then calculated. Subsequently, the
wavelet transform was performed on the acceleration response of each joint to obtain the
singular value of the high-frequency component. Figure 7 illustrates the singular values of
the high-frequency components for the lower chord joints 7, 8, 9, 10, and the upper chord
joints 25, 31, 36, 37.
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Figure 7. Wavelet transform of acceleration response of each joint, (a) No. 7 joint, (b) No. 8 joint,
(c) No. 9 joint, (d) No. 10 joint, (e) No. 25 joint, (f) No. 31 joint, (g) No. 36 joint, (h) No. 37 joint.

From Figure 7, it is evident that when joint 8 is damaged, its acceleration response
exhibits the highest singular value for the high-frequency component. As the distance from
joint 8 increases, the singular values of the high-frequency components for the lower chord
joints gradually decrease, indicating a diminishing influence caused by the damage of
joint 8 with increasing distance. The distribution of singular values for the high-frequency
components in the upper chord joints follows a similar pattern, and with a sufficient
distance, the influence caused by joint 8 damage becomes negligible. By comparing the
maximum singular value of the high-frequency component for each joint to that of joint 8,
structural sub-regions can be identified, and the locations for sensor placement can be
determined. In this case, the maximum singular value at joint 37 is significantly smaller
than that at joint 8. Therefore, considering joint 37 as the boundary, the damage influence
range of an individual joint is defined as a rectangle measuring 1.5 m × 1.8 m in the lower
chord and a square measuring 1.2 m × 1.2 m in the upper chord. Consequently, the grid
structure is divided into two sub-regions, labeled as A and B. An FBG accelerometer was
mounted on joint 8 of sub-region A and joint 17 of sub-region B, as depicted in Figure 8.

Figure 8. Sub-regional division of the structure and arrangement of joints for FBG accelerometers.
A and B represent sub-region A and sub-region B.

3.2. Formation of Damage Recognition Pattern Database

The formation of an appropriate pattern database is crucial for diagnosing structural
damage using the fuzzy pattern recognition method. To illustrate the process, the damage
to joint 2 in the No. 24 member was taken as an example. In this case, the crack length
range was assumed to be between 15πr/180 and 345πr/180 (where r was the outer radius
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of the tube), with an interval of 15πr/180. Consequently, there were a total of 23 damage
patterns for each weld damage scenario at joint 2.

Figure 9 displays the relationships between the Id values of the No. 24 and No. 25
members and the damage extent of joint 2. As the damage of joint 2 aggravated, the Id value
of the No. 24 member connected to joint 2 exhibited the most significant change, while
the Id value of the adjacent No. 25 member also experienced a noticeable change. Both Id
values gradually increased with the aggravation of the damage to joint 2. Consequently,
these sensitive members’ Id values were selected as eigenvectors to effectively characterize
this particular damage pattern.

 
Figure 9. Id Changes with crack length.

Following a similar approach, the damage patterns for all joints corresponding to
members were determined. In each sub-region, there were 60 pattern libraries, with each
pattern library containing 23 damage patterns.

Then, a sinusoidal load close to the natural frequency of the structure was applied to
induce forced vibrations. The displacement response of the structure during steady-state
vibration was selected for analysis, allowing the determination of the strain mode of each
member in the structure. In the sub-region where joint damage occurred, the strain mode
of each member was compared with that observed during the 345◦ weld damage of the
connecting joint, resulting in the acquisition of the Id for each member in the sub-region.

Subsequently, the membership degree between the eigenvectors representing each
pattern library and the corresponding Id vectors of members in the damaged sub-region
was calculated. The pattern associated with the highest membership degree represented
the location and degree of the joint weld damage. To enhance accuracy, multiple peak
displacement responses were selected to calculate the Id for each member, and the average
value was employed for fuzzy pattern recognition.

3.3. Experimental Model and Sensor Placement for Grid Structures

In the aforementioned model, the members utilized were circular steel pipes with
dimensions of φ48 × 3.5. The four pillars were constructed using φ60 × 3.5 circular
steel pipes, which were welded onto 10mm thick steel plates measuring 0.5 m × 0.5 m.
These steel plates were securely fastened to the concrete platform using high-strength bolts
forming fixed supports. The upper ends of each pillar were connected to the upper grid
via flanges. Each flange was fastened using six outer hexagon bolts with a diameter of
6 mm. The grid structure model was made by Q235; the yield strength of steel is 235 Mpa,
as illustrated in Figure 10.
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Figure 10. Structural model.

To ensure the accuracy of experimental verification, it is essential to produce both
undamaged and damaged structures with identical quality. This is to prevent any identifi-
cation errors caused by fabrication variations. Consequently, a model of the grid structure
with replaceable rods was developed. To simulate joint weld damage, specific individual
damaged members were designed. These damaged members could be substituted for the
members within the test model, leaving the 90◦ angle at one end of the damaged member
unwelded to the flange, as illustrated in Figure 11a. When weld damage occurred at a
specific location in the model, the corresponding undamaged member could be replaced
by the appropriate damaged member, resulting in a grid structure with a weld-damaged
joint. The replaceable damaged members are presented in Figure 11b.

(a) (b)

Figure 11. Replaceable members, (a) Three-dimensional schematic, (b) Actual object.

The FBG (fiber Bragg grating) sensor utilizes wavelength modulation as its sensing
signal, ensuring that measurement signals remain unaffected by factors such as light source
fluctuations, fiber bending losses, connection losses, and detector aging. Additionally,
the use of wavelength division multiplexing enables the convenient connection of mul-
tiple FBGs in series on a single fiber, allowing distributed measurements. Due to these
advantages, FBG sensors have found wide application in civil engineering monitoring and
damage identification [39–41]. Malekzadeh et al., employed robust regression analysis
(RRA) and cross-correlation analysis (CCA) techniques to locate structural damage using
strain data collected by FBG sensors deployed on four-span bridge-type structures [42].
Elshafey designed and fabricated a fiber optic sensing array with eight sensing elements to
measure time–history strain at various points on a simply supported beam subjected to
random loading, by comparing the random decrements at different damage ratios to an
intact case to identify the existence of damage [43].

In the whole length of FBG, there is such a relationship between the central wavelength,
period, and effective refractive index:

λb = 2nΛ (7)
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where λb is the central wavelength, n is the effective refractive index of the core, Λ is the
refractive index modulation period of the core.

When the strain ε of the optical fiber occurs, Λ becomes Λ′:

Λ′ = Λ(1 + ε) (8)

According to photoelastic theory, the wavelength chan Δλ is:

Δλ/λb = (1 − p)ε (9)

where p is the effective photoelastic coefficient.
To avoid low measurement stability and noise disturbance in the existing methods,

and consider the characteristics of low structural vibration frequency at the same time, a
FBG (fiber Bragg grating) acceleration sensor was developed in this study based on the
principle that strain and temperature variations affect the refractive index and period of
the FBG, subsequently changing its reflection wavelength. In the configuration of the FBG
sensor, a lever was located in the center of the sensor, the FBG was straightened above the
lever, and a mass block located under the lever. The top of the mass block was connected
to the bottom of the lever, and the bottom of the mass block was connected to the inside
bottom of the sensor envelope by a spring. When the sensor was installed on the structure,
the structure vibration drove the mass block to vibrate, and caused occurrence of tensile
force in the FBG through the lever, changing the period and the refractive index of the
FBG, and thus modifying the wavelength of its reflection. Notably, a linear relationship
between the reflection wavelength and acceleration was observed, allowing acceleration
measurement by monitoring the wavelength change. The design of the FBG acceleration
sensor is shown in Figure 12.

Figure 12. FBG accelerometers.

In order to achieve higher sensitivity, the measurement range of the FBG acceleration
sensor was set to ±1.0 g, taking into account the expected structural vibration amplitude.
Two types of FBG acceleration sensors were designed, with central wavelengths of 1545 nm
and 1550 nm, and tested to evaluate their performance, respectively. The test data are
shown in Table 1. Additionally, the corresponding acceleration response curves are depicted
in Figure 13.

Table 1. The performance test data of acceleration sensors.

Acceleration (m/s2)
Amplitude of Acceleration Sensors (pm)

1545 nm 1550 nm

0.2 9.2 10
0.4 18.2 21
0.6 29 30
0.8 37 42
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(a) (b)

Figure 13. The performance curve of acceleration sensors, (a) 1545 nm, (b) 1550 nm.

Figure 13 illustrates the sensitivity of the FBG accelerometers with central wavelengths
of 1545 nm and 1550 nm as 47.1 pm/(m/s2) and 52.5 pm/(m/s2), with measurement
accuracies of 0.021 m/s2 and 0.019 m/s2, respectively. To monitor the structural vibrations,
the two FBG accelerometers were installed on key joint 8 in sub-region A and key joint
17 in sub-region B, as shown in Figure 14.

(a) (b)

Figure 14. Acceleration sensors distribution, (a) No. 8 joint, (b) No. 17 joint.

The si425-500 FBG sensor demodulator, along with its supporting software, was
employed to collect the testing data, which is a multi-channel, multi-sensor measurement
system utilizing a calibrated wavelength scanning laser, operating at a sampling frequency
of 250 Hz and offering a resolution of 1 pm.

3.4. Damage Identification of Weld Joints in Grid Structures

In order to further validate the feasibility and effectiveness of the proposed method,
some damage cases were considered, as shown in Table 2.

Table 2. Damage Cases.

Damage Cases Damaged Members Damaged Joints of Member Extent of Damage

Case1 Member 24 Joint 2 90◦

Case2
Member 24 Joint 2 90◦
Member 33 Joint 5 90◦

By applying an initial displacement on its top, the grid model was excited to vibrate
freely, the acceleration responses of the representative joints 8 and 17 were measured with the
FBG sensors and analyzed by wavelet transform. Subsequently, when weld damage occurred
on a specific joint within this sub-region, the singular value of the high-frequency components
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of the acceleration response was obtained through wavelet transform, which was then used to
determine whether weld damage had occurred in this particular sub-region.

To simulate the sudden occurrence of joint damage in the test and capture the time–
history acceleration response, three steps of free vibrations were conducted. In the first
step, a horizontal initial displacement of 2 cm in the X direction was applied to the intact
structure, causing it to vibrate freely. The time–history acceleration responses of joint 8 and
joint 17, referred to as data I, were collected during this vibration. In the second step, a
1 cm displacement in the X direction was applied to the intact structure, leading to another
round of free vibration. The acceleration responses of the two joints, referred to as data II,
were recorded. In the third step, the same 1 cm displacement in the X direction was applied
to the damaged structure resulting in free vibration. The acceleration responses of the two
joints were measured as data III.

The splice point of data I and data III was determined by overlapping the correspond-
ing parts of data I and data II, on which data I and data III were spliced together. The
combined dataset included the acceleration response information of the joints before and
after the occurrence of structural damage.

Case 1, which serves as an example to demonstrate the steps of damage identification,
involves damage solely at joint 2. The measured acceleration responses of joint 8 and joint
17 are presented in Figure 15.

  
(a) (b) 

Figure 15. Acceleration response time history of two joints, (a) No. 8 joint, (b) No. 17 joint.

Upon observation, it becomes evident that during the stable free-vibration stage that
the time–history curves obtained from the FBG accelerometers exhibit relatively smooth and
sensitive behavior. This characteristic indicates that the designed accelerometer possesses
excellent anti-noise performance and sensitivity, allowing precise measurement of the
structural response.

The wavelet transform was performed on the acceleration responses of the joints to
analyze and extract the singular value of the high-frequency component. The amplitude
of this singular value can be utilized to determine whether weld damage has occurred at
sub-region A or B within the structure. Figure 16 displays the amplitudes of the singular
value of the high-frequency component for the two key joints.

 
Figure 16. Case 1, the singular value amplitudes of high-frequency component of key joints.
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Figure 16 reveals that the amplitude of the singular value of joint 8 is notably higher
than that of joint 17. This stark difference indicates the presence of weld damage in structural
sub-region A. Moreover, the results of Figure 16 also illustrate the feasibility of adopting the
method proposed in this paper to simulate weld damage at the joints of the grid structure in
the experiment, and the obtained acceleration response time histories of arrayed sensor joints
also successfully characterize the occurrence of weld damage at the joints.

In the first step it was determined that the weld damage occurred in the sub-region
A. In the second step, the membership degree between the eigenvectors of each pattern
library and the corresponding Id vectors in this sub-region A was calculated using the
strain mode difference. The strain mode difference of each member in sub-region A is
shown in Figure 17.

 
Figure 17. First order strain mode difference of elements in Sub-region A.

Subsequently, the damage index Id was determined by comparing the strain mode
difference with the corresponding member with 345◦ joint damage in each pattern library.
Finally, the membership degrees between the Id vector and all pattern libraries in sub-region
A were calculated. The pattern with the highest membership degree represents the pattern
of joint damage. Some membership degree diagrams are shown in Figure 18.

 
Figure 18. The membership degree between the damage pattern of case 1 and each typical pattern library.

Figure 18 depicts the membership degree between the damage pattern of Case 1
and the 23 pattern libraries of the damaged joint 2 of No. 24 member. It also shows the
membership degree between Case 1 and the pattern libraries of the damaged joint 8 of
No. 24 member, as well as the membership degree between Case 1 and the pattern libraries
of the damaged joint 20 of No. 26 member.

Since joint 2 is adjacent to joint 8, and the sensitive members of the damage pattern
for joint 8 are the No. 24 and No. 25 members, which are the same as those for joint 2, the
membership degree is higher but still smaller than that of joint 2. On the other hand, joint
20 is farther away from joint 2, and its sensitive members are No. 25 and No. 26, which are

34



Buildings 2023, 13, 2141

not exactly the same as those for joint 2. As a result, the membership degree for joint 20 is
much smaller compared with joint 2. Therefore, it is confirmed that the damage occurred
on joint 2 of No. 24 member. The corresponding membership values are shown in Table 3.

Table 3. The Degree of Membership between the damage pattern of Case 1 and Pattern Library of
Joint 2 Damage.

Extent of
Damage

Degree of
Membership

Extent of
Damage

Degree of
Membership

Extent of
Damage

Degree of
Membership

15◦ 0.9411 135◦ 0.9882 255◦ 0.8172
30◦ 0.9481 150◦ 0.9649 270◦ 0.7782
45◦ 0.9527 165◦ 0.9596 285◦ 0.6978
60◦ 0.9562 180◦ 0.9553 300◦ 0.6135
75◦ 0.9898 195◦ 0.9480 315◦ 0.4840
90◦ 0.9958 210◦ 0.9307 330◦ 0.2538

105◦ 0.9954 225◦ 0.8941 345◦ 0.00
120◦ 0.9931 240◦ 0.8325

Based on the values of the membership degree, it is evident that the maximum member-
ship degree is 0.9958 when the weld damage of joint 2 in No. 24 member is approximately
90◦. This high membership degree indicates that the damage location is indeed at joint
2 of No. 24 member in sub-region A. Furthermore, the damage extent is most likely to be
around 90◦, which aligns with the findings of Case 1.

In Case 2, the identification process is similar to that of Case 1. Figures 19 and 20
present the results identifying the location and extent of weld damage for two joints. Table 4
provides further details and information related to the results.

Figure 19. Case 2, the amplitude of singular value of high-frequency component of key joints.

 
Figure 20. The membership degree between the damage pattern of Case 2 and corresponding
pattern library.
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Table 4. The Membership Degree between the damage pattern of Case 2 and Pattern Library of Joint
2 and Joint 5 Damage.

Extent of
Damage

Degree of Membership Extent of
Damage

Degree of Membership

Joint 2 Joint 5 Joint 2 Joint 5

15◦ 0.9458 0.9453 195◦ 0.9345 0.9343
30◦ 0.9605 0.9601 210◦ 0.9056 0.9056
45◦ 0.9721 0.9727 225◦ 0.8746 0.8746
60◦ 0.9832 0.9822 240◦ 0.8418 0.8418
75◦ 0.9930 0.9915 255◦ 0.8096 0.8096
90◦ 0.9954 0.9933 270◦ 0.7742 0.7742
105◦ 0.9905 0.9893 285◦ 0.6943 0.6943
120◦ 0.9857 0.9848 300◦ 0.6011 0.6011
135◦ 0.9778 0.9773 315◦ 0.4790 0.4790
150◦ 0.9706 0.9703 330◦ 0.2465 0.2478
165◦ 0.9571 0.9569 345◦ 0.00 0.00
180◦ 0.9481 0.9479

Based on Figure 19, it is apparent that there is minimal difference between the singular
values of joint 8 and joint 17. This suggests that weld damage has occurred in both sub-regions
A and B. Figure 20 and Table 4 provide additional insights into the identification process.

From Figure 20 and Table 4, it can be observed that the maximum membership degree
for joint weld damage in the pattern library is 0.9954 for joint 2 connected with No. 24
member in sub-region A and 0.9933 for joint 5 connected with No. 33 member in sub-region
B. Both cases indicate a possibility of 90◦ weld damage. These findings confirm that both
joint 2 of No. 24 member in sub-region A and joint 5 of No. 33 member in sub-region B have
the highest likelihood of experiencing 90◦ weld damage, which aligns with the damage
scenario presented in Case 2.

3.5. Discussion

The experimental verification demonstrates that partitioning the grid structure allows
it to fully leverage the benefits of the wavelet analysis method in capturing sudden shifts
in joint response signals caused by structural damage, leading to a reduction in complexity
and symmetry. As a result, it becomes feasible to identify the specific sub-region where
joint damage occurs by solely analyzing the acceleration responses from sensors deployed
on the joints.

By limiting the number of joints and members in each sub-region, the number of
potential joint damage patterns per sub-region is significantly reduced. Consequently,
a comprehensive pattern library can be constructed with minimal computational effort.
Moreover, the adoption of the fuzzy pattern recognition method in the sub-regions with
joint damage not only simplifies the recognition of structural damage but also enhances the
efficiency and accuracy of the method’s application.

Thus, the combination of these two methods enables the effective recognition of
damage in large and intricate structures, such as grid structures, offering a promising
approach for practical application.

While the experimental results have demonstrated the effectiveness of the method,
its application to a practical engineering scenario poses certain challenges. One notable
difficulty is the demanding service conditions of grid structures, leading to the inclusion
of inherent noise in the original measurement information. Despite the recommendation
to employ FBG acceleration sensors for enhanced measurement accuracy, the measured
acceleration responses may still be affected by noise, potentially leading to an increase in
the number of structural sub-regions. Consequently, this may result in reduced recognition
efficiency and accuracy.
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To address this issue, it is essential to process the measured raw information and
apply noise reduction techniques. By doing so, the method can be effectively applied to
accurately recognize damage in joints of grid structures in practical engineering.

4. Conclusions

Weld damage in joints is a prevalent issue in welded spatial grid structures. To address
this problem, a two-step method for identifying weld damage in joints in such structures
has been proposed and experimentally verified. The conclusions are as follows:

1. The structure is divided into sub-regions based on the influence range of joint weld
damage, determined by analyzing the singular value of the high-frequency component
of the acceleration response using wavelet transform. Thereby, reducing the com-
plexity and breaking the symmetry of the grid structure transforms the structure into
multiple simple structures. FBG accelerometers are installed only at representative
joints within each sub-region. The wavelet transforms of the measured acceleration
response at these very few joints facilitate the identification of sub-regions where weld
damage has occurred, allowing subsequent damage location and extent identification
limited to these sub-regions.

2. In the second step, a fuzzy pattern database is developed considering different dam-
age extents and different damaged joints within each sub-region. The strain modal
difference of all members, given the specific damaged location and extent, is used as a
damage index to form a pattern. Since the number of joints in the sub-region of the
grid structure is rather small, fewer calculations are required to build up the pattern
library, and the scale of the pattern library is also smaller. Then, the membership
degree between the measurement data and the pattern library enables easy identi-
fication of the location and extent of joint damage in the identified sub-region. The
step-by-step application of wavelet analysis and fuzzy pattern recognition technology
reduces calculation requirements and improves recognition efficiency.

3. The designed FBG accelerometer, which exhibits high sensitivity, is utilized in the
identification technology. Performance tests and verification experiments demonstrate
that data measured by the FBG accelerometer possess high accuracy and smoothness.
By effectively reducing noise, recognition accuracy can be further improved. Con-
sequently, both the proposed two-step identification method and the designed FBG
accelerometer offer efficient solutions for damage identification in large-span grid
structures, with potential applications in engineering.

These conclusions demonstrate that the proposed method addresses the barriers to
damage identification in welded joints of grid structures, and in combination with FBG
accelerometers, which have high measurement sensitivity and noise immunity, highlights
its effectiveness, efficiency, and potential practical applications in the field of damage
identification in welded spatial grid structures.

Although this paper has developed a two-step method for welded joint damage
identification in grid structures, there are still some issues for further clarification. The
use of crack-equivalent finite element model analysis to establish a library of welded joint
damage patterns introduces a certain degree of error. Therefore, it is necessary to investigate
a multiscale model capable of characterizing joint crack damage to provide more accurate
damage patterns.

If this method is applied to damage identification in practical grid structures, in
addition to processing original measurement information for noise reduction, it should
also be considered that the damage index plays a crucial role in damage identification, and
is the key to the success of damage identification [44]. The complexity of the grid structure
may result in identification difficulties due to the high dimensionality of the damage index
vectors. As a solution, more concise and sensitive damage indices should be developed to
improve the applicability of the damage identification method.
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Application of a Modified Differential Quadrature Finite
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with Arbitrary Elastic Boundaries
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Abstract: This paper formulates a modified differential quadrature finite element method (DQFEM)
by a combination of the standard DQFEM and the virtual boundary spring technique, which makes
it easy to implement arbitrary elastic restraints by assigning reasonable values to the boundary
spring stiffnesses. This new formulated method can offer a unified solution for flexural vibrations of
composite laminates subjected to general elastic boundary combinations including all the classical
cases. The influences of the number of Gauss–Lobatto nodes and the boundary spring stiffnesses
on the convergence characteristics of natural frequencies are investigated, and some conclusions are
drawn in terms of the minimum number of unilateral nodes required to generate convergent solutions
and the optimal values of the boundary spring stiffnesses to simulate classical boundaries. Numeri-
cal examples are performed for composite laminates under various classical boundary conditions.
Excellent accuracy, numerical stability, and reliability of the present method are demonstrated by com-
parisons with available exact and numerical solutions in open literatures. Additionally, for elastically
constrained composite laminates, which are beyond the scope of most existing approaches, numerous
new results obtained by the present method may serve as reference values for other research.

Keywords: differential quadrature finite element method (DQFEM); virtual boundary spring; com-
posite laminates; arbitrary elastic boundary; flexural vibration

1. Introduction

Composite laminates are increasingly used in various engineering structures, such
as space vehicles, aircraft, naval ships, and submarines, which are usually subjected to
frequent dynamic loads. Hence, a thorough understanding of the vibration characteristics
of laminates is critical for the design and analysis of composite structures.

In the past few years, many efforts have been devoted to developing accurate and
efficient methods to determine the vibration behaviors of composite laminates. A com-
prehensive review of the recent works on this subject has been provided by Sayyad and
Ghugal [1], covering both analytical and numerical methods. By contrast with analytical
methods known to be limited to only a few cases, numerical methods are more effective in
a wide range of cases involving various physical properties, arbitrary boundary conditions,
and sophisticated loading configurations. Various numerical procedures are available
for flexural vibrations of multi-layered composite plates [2–12], among which the most
representative and widely used one is the finite element method (FEM) that has already
been successfully incorporated into commercial software. However, FEM generally uses
low-order approximating functions; consequently, a higher accuracy can only be achieved
by mesh refinement, resulting in a higher computation cost. To tackle this problem, more
intensive research activities are motivated, focusing on high-order schemes such as the
mesh-free method [13,14] and differential quadrature (DQ) method [15,16], which tend to
yield highly accurate solutions with far fewer degrees of freedom (DOFs) than low-order
ones owing to the use of high-order basis functions.

Buildings 2022, 12, 1380. https://doi.org/10.3390/buildings12091380 https://www.mdpi.com/journal/buildings40
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Although increased interest is still in the extension of various numerical methods to
the vibration analysis of composite laminates, most of the previous research was confined
to the classical boundary conditions comprised of simply supported, clamped, and free
boundaries. However, the boundary conditions of numerous engineering structures might
not always be ideal essentially. Actually, elastic supports are more commonly seen in
practice, and a relative lack of corresponding research still exists.

Motivated by the state-of-the-art, this paper aims to seek for an accurate, efficient,
and reliable method for the flexural vibration analysis of composite laminates subjected to
arbitrary elastic boundaries. The current work draws on the idea of a well-established high-
order scheme referred to as the differential quadrature finite element method (DQFEM) [17,18],
in which the DQ rule and the Gauss–Lobatto integration rule are utilized to discretize the
energy functional of structures. Fast convergence, high precision, and efficiency, as well as
remarkable versatility of the DQFEM, have been validated in the previous research [17,18].
The boundary conditions in both DQFEM and the standard FEM are implemented via the
same way, that is, the elimination method. However, this classical approach is only limited
to dealing with the classical boundaries but is unable to process general elastic boundaries.

On the purpose of extending the applicability of DQFEM to elastically restrained
composite structures, a modified DQFEM is proposed by introducing the virtual boundary
spring technique [19–28], in which general elastic restraints including several classical
boundary conditions can be easily realized by assigning reasonable values to the virtual
boundary spring stiffnesses.

It is well-known that equivalent single-layer laminate theories, which treat a laminated
plate as an equivalent homogeneous and orthotropic single layer, are adequate to predict
the global response behaviors of composite laminates. Therefore, in the present paper,
the widely acknowledged first-order shear deformation theory (FSDT) [29,30] is adopted
to model the flexural vibration behavior of composite laminates, since it affords the best
compromise between accuracy and efficiency. A detailed formulation of this modified
DQFEM is presented for flexural vibrations of rectangular laminates with general elastic
restraints. Numerical examples are carried out to discuss the convergence characteristics
and validate the accuracy of the present approach.

2. Modified DQFEM Formulation for Composite Laminates

2.1. Constitutive Relations for Composite Laminate

Figure 1 schematically shows a rectangular composite laminate (length a, width b,
and thickness h) composed of multiple orthotropic layers with the same thickness and
material properties. The xy plane of the Cartesian coordinate system is located on the
mid-plane of the laminate, with the origin placed at one corner.

x

y

z

a

b

h

x

y

Figure 1. Schematic representation of a composite laminate.

Each single-layer of the laminate is usually assumed to be in the plane-stress state.
As shown in Figure 2, σ1 and σ2 are the normal stress components in the principle direc-
tions of the single-layer, and τ12 represents the shear stress component. The constitutive
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equations relating in-plane stresses and strains for each layer are expressed in the material
coordinate system as⎡⎣ σ1

σ2
τ12

⎤⎦ =

⎡⎣Q11 Q12 0
Q12 Q22 0

0 0 Q66

⎤⎦⎡⎣ ε1
ε2
γ12

⎤⎦,
[

τ13
τ23

]
=

[
Q44 0

0 Q55

][
γ13
γ23

]
, (1)

in which εi (i = 1, 2) and γij (i, j = 1, 2, 3) are strain components; Qij are modulus components
with respect to the material coordinate system in the following form:

Q11 = E1/(1 − υ12υ21), Q12 = υ12E2/(1 − υ12υ21), Q22 = E2/(1 − υ12υ21)
Q44 = G13, Q55 = G23, Q66 = G12

, (2)

where E1 and E2 are Young’s moduli in prime material axes; ν12 and ν21 are Poisson’s ratios.

 
Figure 2. The plane-stress state.

For a unified formulation for each layer, Equation (1) should be transformed into the
plate (laminate) coordinate system as⎡⎣ σx

σy
τxy

⎤⎦ =

⎡⎣Q11 Q12 Q16
Q21 Q22 Q26
Q61 Q62 Q66

⎤⎦⎡⎣ εx
εy
γxy

⎤⎦,
[

τxz
τyz

]
=

[
Q44 Q45
Q54 Q55

][
γxz
γyz

]
, (3)

in which Qij denotes the modulus component with respect to the plate (laminate) coordi-
nate, and the following relationships are satisfied:

Q12 = Q21, Q16 = Q61, Q26 = Q62, Q45 = Q54. (4)

2.2. Arrangement of Virtual Boundary Springs

To model the flexural vibration behavior of composite laminates, the first-order shear
deformation laminate theory is adopted, and the displacement field is given by

u1(x, y, z) = −zϕx(x, y)
u2(x, y, z) = −zϕy(x, y)
u3(x, y, z) = w(x, y)

(5)

where u1, u2, and u3 are displacement components with respect to the three global axes x, y,
z, respectively; w the deflection of a point on the middle surface. Based on the linear elastic
theory, the strain components in terms of displacements can be defined as

εb =
[
εx εy γxy

]T
= −z

[
∂ϕx
∂x

∂ϕy
∂y

∂ϕx
∂y +

∂ϕy
∂x

]T

εs =
[

γxz γyz
]T

=
[

∂w
∂x − ϕx

∂w
∂y − ϕy

]T (6)
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According to the basic assumptions of the virtual boundary spring technique, all the
classical boundary conditions can be imposed by setting extremely large or small stiffnesses
to the corresponding boundary springs, and any elastic boundary can be simulated by
assigning reasonable and moderate values to the boundary spring stiffness. In FSDT, there
are three generalized DOFs, namely, the deflection w and two rotations of the normal line
ϕx and ϕy. Therefore, one line spring and two torsion springs linking the laminates with
the foundation are arranged on each edge to restrain the three DOFs, as illustrated in
Figure 3. The four edges x = 0, y = 0, x = a, and y = b are numbered 1, 2, 3, and 4, respectively.
For clarity, Figure 3 only gives a detailed illustration of boundary spring arrangements at
sides 2 and 3.

kt1

kt1kt1kt1

kry kry

kt kt

krx krx

krx krx

kt kt
kry kry

krx

kry kry

krx krx

krx krx

kry kry

krx

kry

krx

kt

kt kt

kry

kt

kry

 
Figure 3. Arrangement of boundary springs.

The notations of all the boundary springs are explained in Table 1. The subscript i
of line spring stiffness kti denotes the number of the side where the line spring is located;
the subscripts 1 and 2 of torsion springs krxi and kryi denote restrictions on normal rotations,
while 3 and 4 indicate constraints on tangent rotations.

Table 1. Notations and definitions of boundary springs.

Notations Definitions

kti (i = 1,2,3,4) Line spring of the i-th edge
krxi (i = 1,2) Torsion springs restricting normal rotations of edges 1 and 3
kryi (i = 1,2) Torsion springs restricting normal rotations of edges 2 and 4
krxi (i = 3,4) Torsion springs restricting tangent rotations of edges 2 and 4
kryi (i = 3,4) Torsion springs restricting tangent rotations of edges 1 and 3

2.3. Rectangular Plate Element

The previous studies [17,18] have shown that the DQFEM can afford highly accurate
results even if the entire structure is modeled by very few elements, which is mainly
attributed to the use of higher-order polynomials. In addition, the widely used Gauss–
Lobatto points have proved to be better than the equally spaced Chebyshev and Legendre
points [31–33] in boundary value problems. Therefore, in the present work, the whole
plate is divided into just one element, with M × N Gauss–Lobatto nodes distributed in the
domain, as shown in Figure 4.
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 j i
Figure 4. The distributions of grid nodes.

Introducing the Lagrange polynomials as the trial functions, the three generalized
displacements can be expressed as

w(x, y) =
M
∑

i=1

N
∑

j=1
li(x)lj(y)wij

ϕx(x, y) =
M
∑

i=1

N
∑

j=1
li(x)lj(y)ϕxij

ϕy(x, y) =
M
∑

i=1

N
∑

j=1
li(x)lj(y)ϕyij

(7)

in which li and lj are the Lagrange polynomials, and wij, ϕxij, and ϕyij are the deflections
and rotations of the Gauss–Lobatto nodes (xi, yi).

To obtain the governing equations, Hamilton’s principle is adopted:

δΠ = δ(U + V − T) = 0, (8)

where δ is the symbol of variation, and the total potential energy Π consists of the strain
energy U, the potential energy of boundary springs V, and the kinetic energy T.

For flexural vibrations of composite laminates, the strain energy can be expressed as
the sum of each layer as

U =
1
2

j

∑
i=1

∫ zi+1

zi

∫
A
(εT

bD(i)
b εb + κεT

s D(i)
s εs)dAdz, (9)

in which j is the number of layers; κ is the shear correction factor; zi and zi+1 denote the
z coordinates of the top and bottom surfaces of the i-th layer in the Cartesian coordinate
system; and D(i)

b and D(i)
s represent bending and shear rigidity matrices of the i-th layer in

the forms of

D(i)
b =

⎡⎢⎢⎣Q(i)
11 Q(i)

12 Q(i)
16

Q(i)
21 Q(i)

22 Q(i)
26

Q(i)
61 Q(i)

62 Q(i)
66

⎤⎥⎥⎦, D(i)
s =

[
Q(i)

44 Q(i)
45

Q(i)
54 Q(i)

55

]
. (10)

Considering that the boundary springs are arranged continually on four edges, elastic
potential energy stored in the boundary springs can be given in the integral form as

V = Vt + Vrx + Vry =
1
2

4

∑
i=1

∫ si

0
(ktiw2

i + krxi ϕ
2
xi + kryi ϕ

2
yi)ds, (11)
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in which si denotes the length of the i-th side; wi, ϕxi, and ϕyi represent the deflection and
rotations of the i-th side.

Since the displacement field is continuous through the thickness, thus, the kinetic
energy of the laminate can be written as

T =
1
2

�
A

ρω2(hw2 + Jϕ2
x + Jϕ2

y)dxdy, (12)

in which ρ is the density of the laminate, and J = h3/12 the axial moment of inertia; ω is the
radial frequency of free vibration.

It needs to be pointed out that the potential energy stored in boundary springs is
included in the total energy functional, and this special scheme has already taken boundary
conditions into account; thus, during the subsequent solution procedures, no additional
measures are required to process boundary conditions.

Three generalized node displacement vectors as defined as

ϕT
x =

[
ϕx11 · · · ϕxM1 ϕx12 · · · ϕxM2 · · · · · · ϕx1N · · · ϕxMN

]
ϕT

y =
[

ϕy11 · · · ϕyM1 ϕy12 · · · ϕyM2 · · · · · · ϕy1N · · · ϕyMN
]

wT =
[

w11 · · · wM1 w12 · · · wM2 · · · · · · w1N · · · wMN
] (13)

Then, using the two-dimensional DQ rule in conjunction with the Gauss–Lobatto
integration rule, the strain energy U, the potential energy of boundary springs V, and the
kinetic energy T are further expressed in a simpler form as

U = 1
2

j
∑

i=1

z3
i+1−z3

i
3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(i)
11ϕx

TA(1)TCA(1)
ϕx + Q(i)

12ϕx
TA(1)TCB(1)

ϕy

+Q(i)
21ϕy

TB(1)TCA(1)
ϕx + Q(i)

22ϕy
TB(1)TCB(1)

ϕy

+Q(i)
16ϕx

TA(1)TC(B(1)
ϕx + A(1)

ϕy)

+Q(i)
26ϕy

TB(1)TC(B(1)
ϕx + A(1)

ϕy)

+Q(i)
61(ϕx

TB(1)TC +ϕy
TA(1)TC)A(1)

ϕx

+Q(i)
62(ϕx

TB(1)TC +ϕy
TA(1)TC)B(1)

ϕy

+Q(i)
66(ϕx

TB(1)T +ϕy
TA(1)T)C(B(1)

ϕx + A(1)
ϕy)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
+ 1

2

j
∑

i=1

zi+1−zi
3 κ

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Q(i)

44(wTA(1)T −ϕx
T)C(A(1)w −ϕx)

+Q(i)
45(wTA(1)T −ϕx

T)C(B(1)w −ϕy)

+Q(i)
54(wTB(1)T −ϕy

T)C(A(1)w −ϕx)

+Q(i)
55(wTB(1)T −ϕy

T)C(B(1)w −ϕy)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

, (14)

V =
1
2
(

4

∑
i=1

wTCKtiw +
4

∑
i=1

ϕx
TCKrxiϕx +

4

∑
i=1

ϕy
TCKryiϕy), (15)

T =
1
2

ρω2(hwTCw + Jϕx
TCϕx + Jϕy

TCϕy), (16)

in which A(1) and B(1) are weighting coefficient matrices given in Appendix A, and the
matrices C, Kti, Krxi, and Kryi (i = 1, 2, 3, 4) are defined as follows

C = diag
[
Cx

1 Cy
1 , · · · , Cx

MCy
1 , Cx

1 Cy
2 , · · · , Cx

MCy
2 , · · · , Cx

1 Cy
N , · · · , Cx

MCy
N

]
, (17)
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Kt1 = diag(

N︷ ︸︸ ︷
Kt1, Kt1, · · · , Kt1), Kt1 = diag(kt1,

M−1︷ ︸︸ ︷
0, · · · , 0)

Kt2= diag(

M︷ ︸︸ ︷
kt2, kt2, · · · , kt2,

(N−1)M︷ ︸︸ ︷
0, · · · , 0)

Kt3 = diag(

N︷ ︸︸ ︷
Kt3, Kt3, · · · , Kt3), Kt3 = diag(

M−1︷ ︸︸ ︷
0, · · · , 0, kt3)

Kt4 = diag(

(N−1)M︷ ︸︸ ︷
0, · · · , 0,

M︷ ︸︸ ︷
kt4, kt4, · · · , kt4)

, (18)

Krx1 = diag(

N︷ ︸︸ ︷
Krx1, Krx1, · · · , Krx1), Krx1 = diag(krx1,

M−1︷ ︸︸ ︷
0, · · · , 0)

Krx2 = diag(

N︷ ︸︸ ︷
Krx2, Krx2, · · · , Krx2), Krx2 = diag(

M−1︷ ︸︸ ︷
0, · · · , 0, krx2)

Kry1 = diag(

M︷ ︸︸ ︷
kry1, kry1, · · · , kry1,

(N−1)M︷ ︸︸ ︷
0, · · · , 0)

Kry2 = diag(

(N−1)M︷ ︸︸ ︷
0, · · · , 0,

M︷ ︸︸ ︷
kry2, kry2, · · · , kry2)

, (19)

Kry3 = diag(

N︷ ︸︸ ︷
Kry3, Kry3, · · · , Kry3), Kry3 = diag(kry3,

M−1︷ ︸︸ ︷
0, · · · , 0)

Kry4 = diag(

N︷ ︸︸ ︷
Kry4, Kry4, · · · , Kry4), Kry4 = diag(

M−1︷ ︸︸ ︷
0, · · · , 0, kry4)

Krx3 = diag(

M︷ ︸︸ ︷
krx3, krx3, · · · , krx3,

(N−1)M︷ ︸︸ ︷
0, · · · , 0)

Krx4 = diag(

(N−1)M︷ ︸︸ ︷
0, · · · , 0,

M︷ ︸︸ ︷
krx4, krx4, · · · , krx4)

, (20)

where Cx
M and Cy

N given in Equation (A6) are the M-th and N-th Gauss–Lobatto weights
with respect to x and y, respectively.

Define a displacement vector as

w =
[
ϕT

x ϕT
y wT

]T
. (21)

Then the total potential energy can be further written in a compact form as

Π =
1
2

wTKw − 1
2

ω2wTMw, (22)

where the stiffness matrix K and mass matrix M are given by

K = KU + KV , M = ρdiag(JC, JC, hC ), (23)

in which KU and KV account for the contributions of the strain energy and elastic potential
energy of boundary springs, respectively, which are obtained as

KU =

⎡⎣K11 K12 K13
K21 K22 K23
K31 K32 K33

⎤⎦, KV= diag(
4

∑
i=1

CKrxi,
4

∑
i=1

CKryi,
4

∑
i=1

CKti). (24)

The matrices in expressions of KU are given below.
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K11 = 1
2

j
∑

i=1

z3
i+1−z3

i
3 (

Q(i)
11A(1)TCA(1)

+ Q(i)
16A(1)TCB(1)

+Q(i)
61B(1)TCA(1)

+ Q(i)
66B(1)TCB(1) ) + 1

2

j
∑

i=1

zi+1−zi
3 κQ(i)

44C

K12 = 1
2

j
∑

i=1

z3
i+1−z3

i
3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(Q(i)

12 + Q(i)
21 + Q(i)

66)A
(1)TCB(1)

+(Q(i)
61 + Q(i)

16)A
(1)TCA(1)

+(Q(i)
26 + Q(i)

62)B
(1)TCB(1)

+Q(i)
66B(1)TCA(1)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
+ 1

2

j
∑

i=1

zi+1−zi
3 κQ(i)

54C

K13 = − 1
2

j
∑

i=1

zi+1−zi
3 κ(Q(i)

44CA(1)
+ Q(i)

45CB(1)
)

K21 = 1
2

j
∑

i=1

z3
i+1−z3

i
3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(Q(i)

12 + Q(i)
21 + Q(i)

66)B
(1)TCA(1)

+(Q(i)
61 + Q(i)

16)A
(1)TCA(1)

+(Q(i)
26 + Q(i)

62)B
(1)TCB(1)

+Q(i)
66A(1)TCB(1)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
+ 1

2

j
∑

i=1

zi+1−zi
3 κQ(i)

54C

K22 = 1
2

j
∑

i=1

z3
i+1−z3

i
3

{
Q(i)

22B(1)TCB(1)
+ Q(i)

26B(1)TCA(1)

+Q(i)
62A(1)TCB(1)

+ Q(i)
66A(1)TCA(1)

}
+ 1

2

j
∑

i=1

zi+1−zi
3 κQ(i)

55C

K23 = − 1
2

j
∑

i=1

zi+1−zi
3 κ(Q(i)

54CA(1)
+ Q(i)

55CB(1)
)

K31 = − 1
2

j
∑

i=1

zi+1−zi
3 κ(Q(i)

44A(1)TC + Q(i)
54B(1)TC)

K32 = − 1
2

j
∑

i=1

zi+1−zi
3 κ(Q(i)

54A(1)TC + Q(i)
55B(1)TC)

K33 = 1
2

j
∑

i=1

zi+1−zi
3 κ

(
Q(i)

44A(1)TCA(1)
+ Q(i)

45A(1)TCB(1)

+Q(i)
54B(1)TCA(1)

+ Q(i)
55B(1)TCB(1)

)

. (25)

The DQFEM formulation for free vibration analysis of composite laminate is eventu-
ally equivalent to an eigenvalue problem governed by a standard characteristic equation
obtained from the Hamilton’s principle as

(K − ω2M)w = 0 (26)

It is noteworthy that the stiffness matrix K and mass matrix M are nonsingular due
to the inclusion of boundary spring potential energy into the energy functional; thus,
the characteristic Equation as (26) can be directly solved without reducing the order of
the matrix in this equation, and the directly obtained modal vector is complete. Moreover,
the boundary conditions can be conveniently changed simply by altering the boundary
spring stiffness, without the need of researching and eliminating the zero DOFs.

3. Numerical Examples and Discussions

To investigate the convergence characteristics and accuracy of the modified DQFEM
in application to flexural vibrations of composite laminates, a series of numerical examples
are carried out.

In the following numerical examples, the shear correction factor κ is taken as π2/12,
and a three-layered symmetric cross-ply laminate with the stacking sequence 0◦/90◦/0◦ is
considered. The elastic constants of each single-layer are given as [34,35]

E1/E2 = υ12/υ21 = 40, G12 = G13 = 0.6E2, G23 = 0.5E2, υ12 = 0.25

To facilitate comparison with other published results, a nondimensional natural fre-
quency parameter is defined as [34,35]

Ω = (ωb2/π2)
√

ρh/D0, (27)
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in which D0 = E2h3/12(1 − υ12υ21).

3.1. Convergence Characteristics

To obtain the required number of Gauss–Lobatto nodes to ensure convergent re-
sults and the recommended values of virtual boundary spring stiffnesses that make the
boundaries strictly constrained, the convergence characteristics of the present method are
investigated, covering both thin (h/b = 0.001) and thick (h/b = 0.2) geometries. Additionally,
the specific cases of two boundary combinations, i.e., CCCC and SSSS, are considered.
For these two cases, the virtual spring stiffnesses of all the four boundaries are identical.
Note that for the sake of clarity, the line spring stiffness is denoted by kt, and the stiffnesses
of torsion springs that restrict the normal rotation and tangent rotation are referred to as kr1
and kr2, respectively.

3.1.1. Varying the Number of Gauss–Lobatto Nodes

In order to facilitate the calculation, set the same number of Gauss–Lobatto nodes
along the x- and y-direction. To simulate CCCC boundary combinations, theoretically,
the stiffnesses of all line and torsion springs should be assigned infinitely large values to
restrict both translational and rotational DOFs of all boundaries. However, infinite values
cannot be processed by numerical computations; thus, a relatively large value (i.e., 108) is
assigned instead. Similarly, to model SSSS laminates, the stiffnesses of all line springs kt and
tangent torsion springs kr2 should be infinitely large to restrict the transverse deflections
and tangent rotations of all edges, and a large value of 108 is assigned to them, while the
stiffness of normal torsion springs kr1 should be zero to set the normal rotation free.

For square laminates (h/b = 0.001 and 0.2) with CCCC and SSSS boundary combina-
tions, the variations of nondimensional natural frequencies versus the number of unilateral
Gauss–Lobatto nodes are depicted in Figures 5 and 6, in which the fiducial lines indicate
the convergence values of frequency parameters. Note that in the present paper, if the result
with three decimal digits reaches a constant value, the calculation is seen as converged.
One can find from Figures 5 and 6 that for both CCCC and SSSS plates, the minimum
number of unilateral nodes required to make the nondimensional frequencies converge is
11 when h/b = 0.001 and 0.2.

  
(a) (b) 

Figure 5. Variations of nondimensional frequencies Ω for CCCC laminates (0◦, 90◦, 0◦) versus the
number of nodes: (a) h/b = 0.001, kt = kr1 = kr2 = 108; (b) h/b = 0.2, kt = kr1 = kr2 = 108.

To sum up, the modified DQFEM is capable of yielding convergent results with only
a few Gauss–Lobatto nodes required. In the following calculation for square laminates
with thickness ratios between 0.001 and 0.2, the number of nodes per side is taken as 11 to
ensure good convergence without sacrificing computational efficiency.
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(a) (b) 

Figure 6. Variations of nondimensional frequencies Ω for SSSS laminates (0◦, 90◦, 0◦) versus the
number of nodes: (a) h/b = 0.001, kt = kr2 = 108, kr1 = 0; (b) h/b = 0.2, kt = kr2 = 108, kr1 = 0.

3.1.2. Effect of the Boundary Spring Stiffness on Convergence

For the convenience of calculation, we assign the same value k to the stiffnesses
of boundary springs corresponding to the DOFs that need to be strictly constrained.
For instance, set kt = kr1 = kr2 = k, when simulating a clamped edge, and kt = kr2 = k,
kr1 = 0 for a simply supported edge. During the calculation, set M = N = 11.

Figures 7 and 8 display the variations of nondimensional frequencies with respect to
k when simulating boundary combinations of CCCC and SSSS. The straight line with an
arrow points to the lower limit of k that makes the first five frequency parameters with four
significant digits converge.

 k  k  
(a) (b) 

k  k  
(c) (d) 

Figure 7. Variations of nondimensional frequencies Ω for CCCC laminates (0◦, 90◦, 0◦) versus the
stiffness of boundary spring (kt = kr1 = kr2 = k): (a) h/b = 0.001; (b) h/b = 0.01; (c) h/b = 0.1; (d) h/b = 0.2.
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k   k
(a) (b) 

k  k  
(c) (d) 

Figure 8. Variations of nondimensional frequencies Ω for SSSS laminates (0◦, 90◦, 0◦) versus the
stiffness of boundary spring (kt = kr2 = k, kr1 = 0): (a) h/b = 0.001; (b) h/b = 0.01; (c) h/b = 0.1; (d) h/b = 0.2.

As is seen in Figures 7 and 8, for both CCCC and SSSS laminates with various thickness
ratios ranging from 0.001 to 0.2, the frequencies experience an increase when k is relatively
small so as to simulate the general elastic restraints, and the increase rate grows as the
plate gets thicker. When k reaches a certain value (for instance k = 102 when h/b = 0.01),
the frequencies will remain almost constant; this observation coincides with the basic
assumption that when the spring stiffness is large enough, the corresponding DOF can
be considered as strictly restricted so as to simulate the classical boundary conditions.
It is noteworthy that for composite laminates with a thin geometry (h/b = 0.001 and 0.01),
the frequency parameters are slightly influenced by the value of k as long as it is larger
than 10, while the frequencies of moderately thick laminates (h/b = 0.1 and 0.2) are more
susceptible to k.

Table 2 lists the optimal values of the boundary spring stiffnesses for clamped and
simply supported boundaries. It should be emphasized that the lower limit of k is rigorously
determined by the point where the first five frequency parameters accurate to four decimal
places converge. This may not be shown clearly shown in Figures 7 and 8 due to the slight
variation in the nondimensional frequency during the stationary part of the curve.

One can also see that the spring stiffness in Table 2 varies from 103 to 108, which
is totally within the calculation ability of a personal computer. Additionally, there is an
associated increase in the recommended value of k as the plate thickness increases. It should
be pointed out the calculation may not converge if k is below the recommended value,
and numerically ill-conditioned problems may occur if k is too large.
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Table 2. Optimal values of the stiffness k for boundary springs of laminates (0◦, 90◦, 0◦).

Thickness Ratio h/b CCCC SSSS

0.001 103 102

0.01 106 105

0.1 108 107

0.2 108 108

3.2. Composite Laminates with Classical Boundary Conditions
3.2.1. Verification of Accuracy

To demonstrate the accuracy of Ω estimated from the modified DQFEM, a series of
numerical comparisons is performed.

As is known, more accurate solutions can be generated by increasing Gauss–Lobatto
nodes, but higher requirements on computing resources will be caused at the same time.
Therefore, taking both accuracy and computational cost into account, and according to the
discussions of the convergence characteristics above, 11 × 11 Gauss–Lobatto nodes are
selected to discretize the square laminates in the following numerical examples. The values
of boundary spring stiffnesses to simulate clamped and simply supported boundaries
corresponding to various thickness ratios are listed in Table 3.

Table 3. Boundary spring stiffness for clamped and simply supported boundary.

Thickness Ratio h/b
The Stiffness k of Boundary Spring

Clamped Boundary (C) Simply Supported Boundary (S)

0.001 103 102

0.01 106 105

0.05 1 107 106

0.1 108 107

0.15 1 108 107.5

0.2 108 108

1 The corresponding stiffness are obtained by interpolation.

The first eight nondimensional natural frequencies of square laminates with various
thickness ratios are calculated and listed in Tables 4–10, as well as the exact solutions by
Liu [34] and numerical solutions generated by the p-Ritz method [35]. Several boundary
combinations such as CCCC, SSSS, SCSC, SFSF, SSSF, SSSC, and SCSF are covered. Exten-
sive comparisons show that the present results are highly consistent with the exact solutions
for three digits. For most results, the relative errors approach zero. The non-zero relative
errors exist in only a very small number of results mostly involving SFSF plates, and the
maximum percentage error is less than 0.02% for the worst case. Therefore, the accuracy of
the present method in free vibration of composite laminates is verified.

Table 4. The nondimensional frequency Ω for CCCC laminates.

Thickness
Ratio h/b Method

Order of Frequency

1st 2nd 3rd 4th 5th 6th 7th 8th

0.001 Present 14.666 17.614 24.511 35.532 39.157 40.768 44.786 50.323
p-Ritz 14.666 17.614 24.511 35.532 39.157 40.768 44.786 50.297

0.05 Present 10.953 14.028 20.388 23.196 24.978 29.237 29.369 36.266
p-Ritz 10.953 14.028 20.388 23.196 24.978 29.237 29.369 36.266

0.1 Present 7.411 10.393 13.913 15.429 15.806 19.572 21.489 21.620
p-Ritz 7.411 10.393 13.913 15.429 15.806 19.572 21.489 21.620

0.15 Present 5.548 8.147 9.904 11.622 12.025 14.645 14.911 16.123
p-Ritz 5.548 8.147 9.904 11.622 12.025 14.645 14.911 16.123

0.2 Present 4.447 6.642 7.700 9.185 9.738 11.399 11.644 12.466
p-Ritz 4.447 6.642 7.700 9.185 9.738 11.399 11.644 12.466
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Table 5. The nondimensional frequency Ω for SSSS laminates.

Thickness
Ratio h/b Method

Order of Frequency

1st 2nd 3rd 4th 5th 6th 7th 8th

0.001 Present 6.625 9.447 16.205 25.115 26.498 26.657 30.314 37.785
Exact 6.625 9.447 16.205 25.115 26.498 26.657 30.314 37.785
p-Ritz 6.625 9.447 16.205 25.115 26.498 26.657 30.314 37.785

0.05 Present 6.138 8.888 15.110 19.354 20.665 24.070 24.344 31.028
Exact 6.138 8.888 15.110 19.354 20.665 24.070 24.344 31.028
p-Ritz 6.138 8.888 15.110 19.354 20.665 24.070 24.344 31.028

0.1 Present 5.166 7.757 12.915 13.049 14.376 17.788 19.502 21.051
Exact 5.166 7.757 12.915 13.049 14.376 17.788 19.502 21.051
p-Ritz 5.166 7.757 12.915 13.049 14.376 17.788 19.502 21.051

0.15 Present 4.275 6.667 9.488 10.824 10.826 13.804 14.665 15.590
Exact 4.275 6.667 9.488 10.824 10.826 13.804 14.665 15.590
p-Ritz 4.275 6.667 9.488 10.824 10.826 13.804 14.665 15.590

0.2 Present 3.594 5.769 7.397 8.688 9.145 11.208 11.223 12.117
Exact 3.594 5.769 7.397 8.688 9.145 11.208 11.223 12.117
p-Ritz 3.594 5.769 7.397 8.688 9.145 11.208 11.223 12.117

Table 6. The nondimensional frequency Ω for SCSC laminates.

Thickness
Ratio h/b Method

Order of Frequency

1st 2nd 3rd 4th 5th 6th 7th 8th

0.05 Present 6.890 11.246 18.664 19.619 21.801 26.689 28.260 34.348
Exact 6.890 11.246 18.664 19.619 21.801 26.689 28.260 34.348
p-Ritz 6.890 11.246 18.664 19.619 21.801 26.689 28.260 34.348

0.1 Present 5.871 9.454 13.340 14.878 15.340 19.229 21.231 21.275
Exact 5.871 9.454 13.340 14.878 15.340 19.229 21.231 21.275
p-Ritz 5.871 9.454 13.340 14.878 15.340 19.229 21.231 21.275

0.15 Present 4.275 6.667 9.488 10.824 10.826 13.804 14.665 15.590
Exact 4.275 6.667 9.488 10.824 10.826 13.804 14.665 15.590
p-Ritz 4.275 6.667 9.488 10.824 10.826 13.804 14.665 15.590

0.2 Present 4.137 6.474 7.664 9.159 9.643 11.377 11.625 12.448
Exact 4.137 6.474 7.664 9.159 9.643 11.377 11.625 12.448
p-Ritz 4.137 6.474 7.664 9.159 9.643 11.377 11.625 12.448

Table 7. The nondimensional frequency Ω for SFSF laminates.

Thickness
ratio h/b Method

Order of Frequency

1st 2nd 3rd 4th 5th 6th 7th 8th

0.05 Present 5.734 5.933 7.398 11.918 19.124 19.284 19.603 20.087
Exact 5.734 5.933 7.397 11.917 19.124 19.284 19.602 20.086
p-Ritz 5.734 5.933 7.397 11.918 19.124 19.284 19.602 20.086

0.1 Present 4.781 4.935 6.320 10.345 12.851 12.959 13.677 16.070
Exact 4.781 4.935 6.319 10.345 12.851 12.959 13.677 16.070
p-Ritz 4.781 4.935 6.319 10.345 12.851 12.959 13.677 16.070

0.2 Present 3.213 3.311 4.619 7.195 7.273 7.599 8.004 10.043
Exact 3.213 3.311 4.619 7.195 7.272 7.599 8.004 10.043
p-Ritz 3.213 3.311 4.619 7.195 7.272 7.599 8.004 10.043

Although the above convergence study concentrates on CCCC and SSSS plates, one can
see from the numerical comparisons that the conclusions regarding the required node
number and recommended boundary spring stiffnesses have been successfully extended
into the analysis of other boundary conditions. Additionally, it implies that a slight variation
in the values of boundary spring stiffnesses within a specific interval might have an
influence on the obtained results, but only to a limited extent. Therefore, it can be reasonably
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inferred that the present approach is numerically stable and highly accurate, regardless of
boundary conditions.

Table 8. The nondimensional frequency Ω for SSSF laminates.

Thickness
Ratio h/b Method

Order of Frequency

1st 2nd 3rd 4th 5th 6th 7th 8th

0.05 Present 5.785 6.657 10.301 17.279 19.165 19.655 21.520 25.971
Exact 5.785 6.657 10.301 17.279 19.165 19.655 21.519 25.970

0.1 Present 4.821 5.641 8.976 12.879 13.304 14.614 15.144 19.121
Exact 4.821 5.641 8.976 12.879 13.304 14.614 15.144 19.121

0.2 Present 3.240 4.017 6.654 7.216 7.642 9.323 10.195 11.077
Exact 3.240 4.017 6.654 7.216 7.642 9.323 10.195 11.077

Table 9. The nondimensional frequency Ω for SSSC laminates.

Thickness
Ratio h/b Method

Order of Frequency

1st 2nd 3rd 4th 5th 6th 7th 8th

0.05 Present 6.429 9.983 16.848 19.459 21.172 25.460 26.159 32.661
Exact 6.429 9.983 16.847 19.459 21.172 25.460 26.159 32.661

0.1 Present 5.450 8.587 13.165 13.914 14.832 18.510 20.413 21.123
Exact 5.450 8.587 13.165 13.914 14.832 18.510 20.412 21.123

0.2 Present 3.835 6.140 7.513 8.931 9.401 11.282 11.429 12.286
Exact 3.835 6.140 7.513 8.931 9.401 11.282 11.429 12.286

Table 10. The nondimensional frequency Ω for SCSF laminates.

Thickness
Ratio h/b Method

Order of Frequency

1st 2nd 3rd 4th 5th 6th 7th 8th

0.05 Present 5.8293 7.1375 11.5836 19.1261 19.1837 19.8523 22.1823 27.2341
Exact 5.8293 7.1375 11.5836 19.1261 19.1837 19.8523 22.1823 27.2341

0.1 Present 4.8650 6.0724 9.8872 12.8983 13.4994 15.6061 15.6911 19.8715
Exact 4.8650 6.0724 9.8872 12.8983 13.4994 15.6061 15.6911 19.8715

0.2 Present 3.2877 4.3135 7.0132 7.2389 7.7982 9.5741 10.4079 11.0930
Exact 3.2877 4.3135 7.0132 7.2389 7.7982 9.5741 10.4079 11.0930

Figure 9 presents the first three modes for SSSS, SCSC, and SSSF laminates with
h/b = 0.1, illustrating the physical patterns of the modes.

3.2.2. Verification of Efficiency

To assess the efficiency of the present method in free vibration of composite lami-
nates, comparisons of computation time are carried out with the classical FEM. Square
laminates with thickness ratio h/b = 0.1 and boundary combinations of SSSS and CCCC
are considered.

Varying the number of unilateral nodes, the first six nondimensional frequencies
are calculated by the present method and the FEM adopting the commonly used Q4
element. It should be pointed out that all the calculations are made by running the same
software program on the same computer to guarantee the effectiveness of comparisons.
The variations of both the runtime and frequencies in terms of node number per edge
are presented in Figures 10 and 11. Note that for clarity, only the variations of the first,
third and fifth frequencies are depicted in these figures. One can see that for both CCCC
and SSSS cases, when using the present method, only 11 Gauss–Lobatto nodes per edge
are needed to make the first six frequency parameters with three decimal digits converge,
and the calculation time is less than 0.5 s. In contrast, when using FEM, the first six
modes do not converge even when the number of nodes per edge reaches 60, and the
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calculation time already exceeds 45 s. These results demonstrates that the present method
has incomparable advantages in computation efficiency over the classical FEM, and the
remarkable convergence of the current solution is also demonstrated.

  
(a) 

  
 

 (b)  

   
 (c)  

Figure 9. The first three modes for square laminates (0◦, 90◦, 0◦) with h/b = 0.1: (a) SSSS; (b) SCSC;
(c) SSSF.

  
(a) (b) 

Figure 10. Variations of nondimensional frequencies and the corresponding calculation time vs.
The number of unilateral nodes for CCCC laminates with h/b = 0.1: (a) the present method; (b) FEM
using Q4 element.

 Ω

 
(a) (b) 

Figure 11. Variations of nondimensional frequencies and the corresponding calculation time vs.
The number of unilateral nodes for SSSS laminates with h/b=0.1: (a) the present method; (b) FEM
using Q4 element.

54



Buildings 2022, 12, 1380

3.3. Composite Laminates with Elastic Boundary Conditions

The above numerical examples focus on composite laminates with classical boundaries,
the free vibration characteristics of which are comprehensive in the published literatures,
while those involving arbitrary elastic boundaries are relatively rare. To provide some
supplementary and reference results, the following numerical examples are carried out
covering three types of elastic boundaries often encountered in practical engineering.
The first type referred to as E1 makes only lateral deflection of plate boundary elastically
constrained; two rotations strictly constrained, the corresponding spring stiffness for which
is given as: kt = 102, kr1 = kr2 = 108. Similarly, the second type E2 allows two rotations
elastically restrained with the boundary spring stiffness being set as kr1 = kr2 = 102 and
kt = 108, while in the third type E3, both lateral deflection and two rotations are elastically
restrained (i.e., kt = kr1 = kr2 = 102).

The non-dimensional frequencies for composite laminates with thickness ratios of
0.01, 0.1, and 0.2 are shown in Table 11. It is shown that the natural frequencies have not
changed much for composite laminates with a thin geometry (h/b = 0.01) regardless of
boundary conditions, which coincide with the conclusions made in the previous analysis.
Additionally, one can find that when only the lateral deflection of plate boundary is
elastically constrained (E1E1E1E1), the natural frequencies decrease obviously compared
to those of the fully clamped laminates, while for the case wherein only two rotations
are elastically restrained (E2E2E2E2), there is a slight decline in the natural frequencies,
which indicates that constraints on the lateral deflection rather than rotations play a more
important role on the natural frequencies for composite laminates with elastic boundaries.

Table 11. The nondimensional frequency Ω for composite laminates with elastic boundary conditions.

Thickness
Ratio h/b

B.C.
Order of Frequency

1st 2nd 3rd 4th 5th 6th

0.01 CCCC 14.4339 17.3892 24.2667 35.1818 37.7770 39.3875
E1E1E1E1 14.4271 17.3823 24.2583 35.1684 37.7253 39.3352
E2E2E2E2 14.4336 17.3890 24.2665 35.1817 37.7762 39.3867
E3E3E3E3 14.4268 17.3820 24.2581 35.1682 37.7245 39.3344

0.1 CCCC 7.4108 10.3927 13.9129 15.4287 15.8056 19.5720
E1E1E1E1 6.7022 9.5265 11.9340 13.8435 13.8624 17.2335
E2E2E2E2 7.3785 10.3671 13.9005 15.4083 15.7924 19.5584
E3E3E3E3 6.6796 9.5084 11.9316 13.8306 13.8579 17.2287

0.2 CCCC 4.4466 6.6419 7.6996 9.1852 9.7378 11.3991
E1E1E1E1 3.5877 5.2085 5.9962 7.1819 7.5080 9.0682
E2E2E2E2 4.4054 6.6109 7.6925 9.1741 9.7175 11.3933
E3E3E3E3 3.5673 5.1971 5.9838 7.1720 7.5030 9.0614

Although the results presented in this section are for three types of elastic boundary
combinations only, the present solution procedure can be readily applied to plates subjected
to more complex boundary conditions such as point supports, partial supports, non-
uniform elastic restraints, and their combinations.

4. Conclusions

This paper introduces the virtual boundary spring technique into DQFEM to deal with
the flexural vibrations of composite laminates. In this new formulated method, boundary
conditions are considered in the first step by including the potential energy stored in
boundary springs when constructing the energy functional; thus, during the subsequent
solution procedures, no special schemes are required to deal with boundary conditions,
which is different from the standard DQFEM.

The most significant superiority of the present approach is that it can be universally
applicable to composite laminates with any combinations of elastic boundary conditions
including all the classical cases without the need of making any change to the solution
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procedure. Another advantage of the modified DQFEM over the standard one is that the
former facilitates switches of boundary conditions, while in the latter, changing boundary
conditions requires researching and eliminating the zero node displacements, which will
increase computational cost.

Well-behaved convergence characteristics of the present method are demonstrated.
The minimum number of unilateral Gauss–Lobatto nodes to generate convergent solu-
tions and the recommended values of boundary spring stiffnesses are obtained as well.
The nondimensional natural frequencies of square laminates under various classical bound-
ary conditions and thickness ratios agree well with available analytical and numerical
results from other analyses, which validates the high accuracy of the present method.

Some new results are presented for elastically restrained composite laminates, which
can serve as reference values. Moreover, the present solution procedure can be readily
extended to composite laminates with more complicated boundary conditions such as
multi-point supports, partial supports, non-uniform elastic constraints, and so on.
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Appendix A

For completeness of the present paper, a brief review of the two-dimensional DQ
rule is outlined here. The partial derivatives of f (x, y) can be expressed as the following
compact form:

∂r f
∂xr

∣∣∣∣
k
= A(r)f,

∂s f
∂ys

∣∣∣∣
k
= B(s)f,

∂r+s f
∂xr∂ys

∣∣∣∣
k
= A(r)B(s)f, (A1)

where

A(r)
=

⎡⎢⎢⎢⎢⎣
A(r) 0 · · · 0

0 A(r) · · · 0
...

...
. . .

...
0 0 · · · A(r)

⎤⎥⎥⎥⎥⎦
(M×N)×(M×N)

, A(r) = (A(r)
ij )

M×M
, (A2)

B(s)
=

⎡⎢⎢⎢⎢⎣
B(s)

11 B(s)
12 · · · B(s)

1N
B(s)

21 B(s)
22 · · · B(s)

2N
...

...
. . .

...
B(s)

N1 B(s)
N2 · · · B(s)

NN

⎤⎥⎥⎥⎥⎦
(M×N)×(M×N)

, B(s)
ij = diag(B(s)

ij , · · · , B(s)
ij )

M×M
, (A3)

f =
[

f11 · · · fM1 f12 · · · fM2 · · · · · · f1N · · · fMN
]T, (A4)
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in which M and N represent the number of grid points in the x and y directions, respectively,
and k = (j − 1)M + i, (i = 1, 2, . . . , M; j = 1, 2, . . . , N); A(r)

ij and B(s)
ij are the weighting

coefficients associated with the rth-order partial derivative with respect to x and the sth-
order partial derivative with respect to y.

To make the paper self-contained, an overview of the Gauss–Lobatto integration rule
is also provided here. The Gauss integration of function f (x) in the interval [−1, 1] with a
precision degree of (2n − 3) is given as

∫ 1

−1
f (x)dx =

n

∑
j=1

Cj f (xj), (A5)

in which the weighting coefficients are given by

C1 = Cn =
2

n(n − 1)
, Cj =

2

n(n − 1)[Pn−1(xj)]
2 (j �= 1, n), (A6)

where xj is the (j−1)th zero of P′
n−1(x), the zeros of which are the eigenvalues of its

companion matrix; and the Legendre polynomial Pn(x) of degree n is expressed as

Pn(x) =
[n/2]

∑
k=0

(−1)k(2n − 2k)!
2nk!(n − k)!(n − 2k)!

xn−2k. (A7)
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Abstract: The behavior at the interface between normal strength concrete (NSC) and Ultra-High
Performance Fiber-Reinforced Concrete (UHPFRC) plays a crucial role in accurately predicting the
capacity of UHPFRC for strengthening and repairing concrete structures. Until now, there has been a
lack of sufficient finite element (FE) models for accurately predicting the behavior at the interface
between NSC and UHPFRC. This study aims to investigate the structural behavior of composite
members made of NSC and UHPFRC by developing a model that accurately simulates the interface
between the two materials using a linear traction-separation law. Novel parameters for the surface-
based cohesive model, based on the traction-separation model, were obtained and calibrated from
prior experiments using analytical methods. These parameters were then integrated into seven FE
models to simulate the behavior at the interface between NSC and UHPFRC in shear, tensile, and
flexural tests. The accuracy of the FE models was validated using experimental data. The findings
revealed that the proposed FE models could effectively predict the structural behavior of composite
NSC-UHPFRC members under various working conditions. Specifically, the maximum deviations
between EXP and FEA were 6.8% in ultimate load for the shear test and 15.9% and 2.8% in ultimate
displacement for the tensile and flexural tests, respectively. The model can be utilized to design the
use of UHPFRC and ultra-high performance fiber-reinforced shotcrete (UHPFRS) for repairing and
strengthening damaged concrete structures.

Keywords: interfacial behavior; bond strength; ultra-high-performance fiber-reinforced concrete
(UHPFRC); interfacial transition zone; numerical concrete model

1. Introduction

Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) is a highly advanced
material renowned for its exceptional strength, high ductility, and low permeability [1–3].
This advancement has led to increasing interest in UHPFRC as a promising solution for
rehabilitating and strengthening aged and damaged concrete structures. UHPFRC’s excel-
lent bonding ability with normal strength concrete (NSC) has been particularly noteworthy,
making it an attractive option for repair and strengthening applications. Therefore, the
objective of this study is to develop a reliable model for predicting the bonding behavior at
the interface between NSC and UHPFRC under various loading conditions.

Finite Element (FE) analysis is a vital tool for studying the behavior of composite
NSC-UHPFRC members and designing them to enhance their strength and repairability.
Despite its widespread use in investigating bonding behavior in composite structures,
previous studies have mostly focused on specific conditions.

The cohesive zone model is a popular technique used to model the behavior between
NSC and UHPFRC using a thin material layer. This approach allows for the simulation of
debonding, crack initiation, and crack propagation that can occur at the interface between

Buildings 2023, 13, 950. https://doi.org/10.3390/buildings13040950 https://www.mdpi.com/journal/buildings59



Buildings 2023, 13, 950

NSC and UHPFRC. Tong et al. [4] developed a 2D eight node quadratic line cohesive ele-
ment FE model to simulate the thin layer between NSC and UHPFRC, with the parameters
calibrated from slant shear. The findings showed good agreement with experimental results
in a flexural test of composite NC-UHPC members. Yu et al. [5] developed a 2D cohesive
model with fixed parameters to study the bonding behavior of the NSC-UHPFRC inter-
face. Surface roughness was modeled using representative volume elements (RVEs). The
simulated traction-separation curve agreed well with experimental data, with a maximum
deviation of around 27%.

Additionally, 3D models have been developed by researchers using cohesive zone
models to simulate the bonding behavior between NSC and UHPFRC. For instance, Va-
likhani et al. [6] created a 3D FE model using ATENA software with a cohesive element
calibrated from a bi-surface shear test. The simulated results matched well with the ex-
perimental results in the bi-surface test. Similarly, Hussein et al. [7] successfully used a
cohesive zone model to analyze the direct tensile behavior of HSC-UHPFRC specimens,
with results that matched well with the experimental data. Another study by Kadhim
et al. [8] employed a cohesive zone model with contact-target elements in ANSYS software,
but the results were not validated. However, while cohesive models have been introduced
in some studies, their validity for accurately modeling NSC-UHPFRC composite members
under different working conditions is yet to be established.

Perfect bonding using tie constraints is also a common method for modeling the
NSC-UHPFRC interface, but it can lead to an overestimation of load-carrying capacity and
design errors. According to Farzad et al. [9], the use of a tie constraint to simulate the
bonding interface between NSC and UHPFRC in slant shear and direct shear tests led to
overestimated results that were up to 150% different from the experimental data.

Several other models have been developed to simulate the behavior of the
NSC-UHPFRC interface. For instance, Lampropoulos et al. [10] proposed a 3D model
with a cohesion and friction coefficient of 1.5 MPa and 1.5, respectively, to simulate the
behavior of a composite beam on a well-roughened substrate. However, the model’s valid-
ity on the composite beam has not been tested. Farzad et al. [9] used a contact layer with
a thickness of 100 μm and defined its characteristics using the CDP model to model the
NSC-UHPFRC interface. They found a maximum error of 18% when comparing the results
of this model with experimental data. In addition, Hor Yin et al. [11] used LS-DYNA to
model the NSC-UHPC interface with equivalent beam elements, achieving good agreement
between simulated and experimental results for composite beams.

As far as the authors know, no studies have investigated how different working
conditions, such as the tensile, shear, and bending behavior of composite members, affect
the validity of these models.

This study aims to develop a model for simulating the interfacial bonding between
NSC and UHPFRC and integrate it into 3D FE models using ABAQUS software. The goal
is to accurately predict the nonlinear behavior of NSC-UHPFRC composite members under
various working conditions. The assumption of traction-separation law [12] is used as
a starting point, as it imitates the constitutive behavior of the NSC-UHPFRC interface.
Parameters for the interfacial bonding model are then determined through an analytical
method based on shear and tensile tests. The interfacial model is subsequently integrated
into seven ABAQUS models to verify its accuracy by comparing simulated results with
experimental results for shear, tensile, and flexural tests.

The study yielded promising results, indicating that the developed parameters for the
surface-based cohesive model in ABAQUS can accurately simulate the bonding behavior of
NSC-UHPFRC composite members under shear, tensile, and bending loads. This innovative
model holds significant potential for predicting the behavior of concrete members that have
been reinforced and repaired with UHPFRC, thereby extending their service life.

This study is structured as follows: In Section 2, an analytical method is presented to
determine specific parameters for the surface-based cohesive model, taking into account
the diverse conditions of surface states. In Section 3, the developed model is applied
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to investigate the tensile, shear, and flexural behaviors of composite structures, and its
accuracy is validated through comparison with experimental data. Section 4 presents the
obtained results and provides a discussion of these results. Finally, Section 5 summarizes
the key findings of the study and discusses their implications.

2. Interfacial Bonding Model at the NC-UHPFRSC Interface

Interfacial debonding phenomena between UHPC and NSC typically occur in three
stress cases: pure shear, tensile, and mixed modes of shear and tensile or compressive
stresses [13,14]. The ASSHTO LRFD Bridge Design Specifications [15] outline a shear test
(Figure 1a) for a composite specimen composed of two different materials. The shear
strength at the interface of different concretes cast at various times is determined using
the following:

vu = cAcv + μ(Avffy + Pc) (1)

where c is the cohesion and Acv is the area between two layers of concrete. Avf and fy denote
the area and the yield stress of reinforcement, respectively. μ is the friction coefficient, and
Pc is the compressive force perpendicular to the shear plane.

Figure 1. Types of tests: (a) simple shear bonding test; and (b) pure tensile bonding test.

The tensile strength is calculated based on the pull-off test (Figure 1b) according to
ASTM C1583/C1583M [16] and is shown as follows:

ft =
T
A

(2)

where ft is the direct tensile strength. T and A are the tensile force and the cross-sectional
area of the test specimen, respectively.

The bonded interface between the NSC and UHPFRC in in situ casting can be accu-
rately modeled using cohesive elements and surface-based cohesive behavior in ABAQUS
software [17]. This modeling approach effectively represents the interface, which is usually
composed of a thin layer of UHPFRC material, except in cases of abnormal surface rough-
ness. Therefore, neglecting the surface thickness and using the surface-based cohesive
behavior to model the interfacial behavior between NSC and UHPFRC is appropriate.
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The surface-based cohesive behavior can be simulated using the common bi-linear
traction-separation law [12], as shown in Figure 2. The parameters Kn(s,t), t0

n(s,t), δ0
n(s,t), and

δt
n(s,t) represent the normal and two tangential stiffnesses, maximum stresses, correspond-

ing displacements to the maximum stress, and maximum displacements at zero stress,
respectively. The law of the model includes two stages. In the first stage, the stress at the
interface increases linearly up to the peak t0

n(s,t) with the stiffness K. At the peak, damage
initiation occurs and is followed by the evolution of that damage. The relationship between
traction tn(s,t) and separation δ in the linear traction-separation law can be described by
Equation (3):

tn(s,t)(δ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Kn(s,t)δ = t0

n(s,t)
δ

δ0
n(s,t)

; 0 < δ < δ0
n(s,t)

t0
n(s,t)

δf
n(s,t)−δ

δf
n(s,t)−δ0

n(s,t)
; δ0

n(s,t) < δ < δf
n(s,t)

0; δf
n(s,t) < δ

(3)

Figure 2. Linear traction-separation response.

ABAQUS offers various criteria to determine damage initiation, which is the point at
which the bonding at the interface begins to degrade. In this study, the maximum stress
criterion was utilized, where damage initiation occurs when the maximum contact stress
ratio reaches one. This criterion is expressed in Equation (4):

max
{ 〈tn〉

t0
n

,
ts

t0
s

,
tt

t0
t

}
= 1 (4)

The Macaulay bracket notation, denoted by the symbol <>, is used in this context to
represent purely compressive stress.

The damage evolution law characterizes the degradation of cohesive stiffness follow-
ing damage initiation. During this stage, Equation (5) is used to describe the contact stress
components at the interface that are affected by a scalar damage variable, D.

tn(s,t)(δ) = (1 − D)t0
n(s,t) (5)

The value of the scalar damage variable, D, is zero when there is no damage and one
when the bonding has completely failed. Since the maximum stress criterion was utilized, a
linear damage evolution model was adopted in this study. When the bonding experiences
complete failure, D reaches a value of one, indicating complete plastic displacement. This
displacement is determined by the difference between δf

n(s,t) and δ0
n(s,t).

62



Buildings 2023, 13, 950

The elastic behavior is determined by Equation (6):

t =

⎧⎨⎩
tn
ts
tt

⎫⎬⎭ =

⎡⎣Knn Kns Knt
Kns Kss Kts
Knt Kst Ktt

⎤⎦⎧⎨⎩
δn
δs
δt

⎫⎬⎭ = Kδ (6)

The nominal traction stress vector, represented by t, includes tn for the normal traction
and ts and tt for the two shear tractions. δn, δs, and δt denote corresponding separations.
The uncoupled traction-separation behavior is normally utilized to model the interface’s
working behavior. This uncoupled behavior is applied when the pure normal separation
and the pure shear separation do not affect each other [17].

For surface-based cohesive and uncoupled behavior, the thickness of the cohesive
element is assumed to be equal to one [17]. Therefore, the elastic behavior can be written
as follows:

t =

⎧⎨⎩
tn
ts
tt

⎫⎬⎭ =

⎡⎣Kn 0 0
0 Ks 0
0 0 Kt

⎤⎦⎧⎨⎩
δn
δs
δt

⎫⎬⎭ (7)

Figure 3 illustrates the typical load-displacement curve for both the shear bonding test
(Figure 1a) and the pure direct tensile test (Figure 1b), shown by the blue curve. This curve
is approximated as being linear over two segments, OA and AB. This relationship between
load Pn(s,t) and displacement d can be expressed using Equation (8):

Pn(s,t)(d) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Kn(s,t)d = P0

n(s,t)
d

d0
n(s,t)

; 0 < d < d0
n(s,t)

P0
n(s,t)

df
n(s,t)−d

df
n(s,t)−d0

n(s,t)
; d0

n(s,t) < d < df
n(s,t)

0; df
n(s,t) < d

(8)

Figure 3. The typical load-displacement curve for pure shear and tensile tests.

The ultimate loads of each mode are Pn
◦, Ps

◦, and Pt
◦

, with corresponding displace-
ments of dn

◦, ds
◦, and dt

◦, respectively. The highest displacement at the end of each
damage evolution is represented by dn

f, ds
f, and dt

f. The differences between the highest
and corresponding displacements are denoted as Δn, Δs, and Δt.
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The ultimate stresses and corresponding displacements are typically reached at the
peak points of each mode’s load-displacement curve. By applying these conditions to
Equation (7), the corresponding Equation can be derived as follows:⎧⎪⎪⎨⎪⎪⎩

Knδn = Knd0
n = t0

n = P0
n

An

Ksδs = Ksd0
s = t0

s = P0
s

As

Ktδt = Ktd0
t = t0

t = P0
t

At

(9)

The interfacial areas between NSC and UHPFRC in the tensile and shear tests are
denoted by An and As(At), respectively.

Thus, the normal stiffness and two tangential stiffnesses can be determined from
Equation (10), which is derived from Equation (9).⎧⎪⎪⎪⎨⎪⎪⎪⎩

Kn = P0
n

And0
n

Ks =
P0

s
Asd0

s

Kt =
P0

t
Atd0

t

(10)

The damage of the interface is defined by using the maximum nominal stress tn
◦(ts

◦, tt
◦)

and the total/plastic displacement.
The bonding strength of an interface is primarily determined by its roughness [18,19].

In civil engineering, the roughness of a concrete surface refers to the irregularity or variation
in its texture. The quantification of a concrete surface’s roughness is commonly determined
by its average sand-filling depth, represented as “h” in Figure 4a. Equation (11) can be used
to calculate the value of “h”:

h =
Vs

As
(11)

where h represents the average depth of sand filling (mm); Vs is the volume of sand (mm3);
and As represents the area of the treated concrete substrate (mm2).

Figure 4. Surface roughness of the concrete substrate: (a) sand-filling method; (b) smooth surface
(no sand filling, h = 0 mm); (c) mid-rough surface (sand filling depth of 0.64 mm); and (d) rough
surface (sand filling depth of 1.29 mm).

For example, Feng et al.’s study [20] investigated the bonding strength of three types of
surfaces: smooth, mid-rough, and rough (Figure 4b–d), which corresponded to sand-filling
depths of 0, 0.64, and 1.29 mm, respectively.

Feng et al. [20] and Hussei et al. [21] previously investigated the shear and tensile
behaviors of NSC-UHPFRC composite specimens with various surfaces. These studies
tested NSC-UHPFRC specimens with smooth, mid-rough, and rough interfaces to deter-
mine load-displacement behaviors, as described in Sections 3.2 and 3.3. Table 1 summarizes
the experimental results, including the ultimate loads (Pn(s,t)

0), surface areas (A n(s,t)
0),

displacements (d n(s,t)
0), and maximum plastic displacement (Δ) for both shear and tensile
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tests. Additionally, the table provides the values of tractions and stiffnesses for the three
types of surfaces, which were obtained using Equations (9) and (10).

The parameters for the smooth, mid-rough, and rough surfaces of the NSC-UHPFRC
interface, which were derived from Table 1, are presented in Table 2 for the surface-based
cohesive model used in ABAQUS. The input data required to simulate the bonding behavior
between NSC and UHPFRC for different surfaces is presented in Figure 5. This includes
the interaction properties and interactions defined in ABAQUS for the FE models.

Table 1. Calculation of surface-based cohesive model parameters for various surfaces.

Test Surface P n(s,t)
0(KN) An(s,t)(mm2) dn(s,t)

0(mm) Δ(mm) tn(s,t)(MPa) Kn(s,t)(N/mm3)

Shear test [20]
Smooth 30.81 10,000 0.76 0.02 3.08 4.04

Mid-rough 57.92 10,000 1.39 0.12 5.79 4.17

Rough 65.94 10,000 1.41 0.15 6.6 4.69

Tensile test [21]
Smooth 13.35 4417.86 1.23 0.02 3.02 2.45

Mid-rough 20.34 4417.86 2.20 0.1 4.61 2.09

Rough 24.83 4417.86 2.56 0.24 5.63 2.2

Note: Pn(s,t)
0, A n(s,t)

0, d n(s,t)
0, and Δ represent the ultimate loads, surface areas, corresponding displacements,

and maximum plastic displacement in both shear and tensile tests.

Table 2. Mechanical parameters of the surface-based cohesive model for different types of NSC-
UHPFRC interfaces.

Property Smooth Surface Mid-Rough Surface Rough Surface

Kn (N/mm3) 2.45 2.09 2.20

Ks, Kt (N/mm3) 4.04 4.17 4.69

tn
◦ (MPa) 3.02 4.61 5.63

ts
◦, tt

◦ (MPa) 3.08 5.79 6.60

Total/plastic
displacement Δ (mm) 0.02 0.12 0.24

Figure 5. Input data for a surface-based cohesive model on various surface types. Note: The symbols
* and ** respectively denote the beginning of a command and introduce a comment in the input file
in ABAQUS.
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3. Modeling of Composite Members of NSC and Cast In Situ UHPFRC

This section outlines the modeling process for composite members made up of NSC
and cast in situ UHPFRC. The interfacial bonding between these materials is modeled
using the surface-based cohesive model with the proposed parameters. The accuracy
of the proposed interfacial model is validated by comparing the simulated results with
experimental results obtained from shear, tensile, and flexural tests.

3.1. FE Analysis
3.1.1. Element Types

The C3D8R element (eight node linear brick with reduced integration) was selected to
model NSC and UHPFRC due to its ability to capture concrete materials’ tensile cracking
and compressive crushing accurately [17,22,23]. The T3D2 element [17] was used to model
reinforcements, which can simulate the working behavior between reinforcement and
concrete. In order to model the steel pins and supports in contact simulation, a discrete
rigid shell element was employed [17].

3.1.2. Material Modeling

Concrete damaged plasticity (CDP) is widely recognized as the most popular model
to simulate the nonlinear response of concrete [24,25]. The CDP model can simulate
cracking patterns and crack widths using dt and dc parameters for tension and compression
(Figure 6). Therefore, in this study, the CDP model was chosen to model NSC and UHPFRC.
The CDP model requires five additional parameters, including the dilation angle (ψ),
the eccentricity of the plastic flow (ε), the ratio of the initial biaxial to initial uniaxial
compressive strength (σb0/σc0), and the shape of the failure surface (Kc). Stress-inelastic
strain relationships for compression and tension are based on models by Kent and Park [26]
and Massicotte et al. [27] or experimental data. Table 3 presents the parameters of the CDP
model for simulations of both NSC and UHPFRC materials.

Figure 6. Response of concrete to a uniaxial loading condition: (a) compression and (b) tension [23].

Table 3. Parameters of the CDP model for NSC and UHPFRC materials.

Concrete ψ ε σb0/σc0 Kc Viscosity

NC 30 [24] 0.1 [24] 1.16 [24] 0.6667 [24] 0.0001 [24]

UHPFRC 36 [28] 0.1 [28] 1.07 [29] 0.6667 [25] 0.005 [30]
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3.1.3. Interfacial Interactions

The embedded constraint technique was implemented to simulate the working be-
havior between reinforcements and concrete, as recommended by ABAQUS [17]. The
interfacial bonding behavior between NSC and UHPFRC was modeled using a surfaced-
based cohesive contact model with parameters presented in Table 2.

3.1.4. Mesh Sensitivity

The accuracy of the finite element (FE) simulation is typically directly related to the
mesh density used in the simulation process, as evidenced by previous research [31–34].
However, it is noted that a higher mesh density also results in greater computational costs.
Therefore, a mesh sensitivity study should be conducted to select an appropriate simulation
model. The subsequent sections will present the mesh sensitivity for each specific problem.

3.1.5. ABAQUS Solver

The ABAQUS/Explicit solver was selected for solving all problems in this study, as it
is known to perform better in solving nonlinear and contact problems when mass scaling is
not used, and the step time is one second. Analysis of all models in the study showed that
the total energy remained constant and the ratio of kinetic energy to internal energy in the
system did not exceed 10%. These results demonstrate that the ABAQUS/Explicit solver is
suitable for solving quasistatic problems in this study [17].

3.2. Pure Shear Model

In the previous study, Feng et al. [20] investigated the effect of various factors on the
shear performance at the NC-UHPFRC smooth, mid-rough, and rough interfaces. The
concrete substrate and the UHPFRC have compressive strengths of 42 MPa and 120.61 MPa,
respectively. Figure 7a,b show the detailed experimental setup and geometry.

Figure 7. Pure shear test: (a) experimental setup [20]; (b) specimen dimensions; and (c) FE model.

The selection of a simulation model for the current problem was based on the method-
ology presented in Section 3. Specifically, the C3D8R element was used to model NSC and
UHPFRC. The CDP model parameters for NSC and UHPFRC are provided in Tables 4 and 5,
respectively. In addition, a surface-based cohesive contact model was used to model the
bonding interface between NSC and UHPFRC. The model parameters are specified in
Table 2, along with a penalty contact with a friction coefficient of 0.2 [35]. Figure 7c
illustrates the FE model for the shear test.
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Table 4. Properties of NSC along with CDP model parameters in compression and tension in the
shear test.

Compressive Concrete Strength (MPa) 42

Elastic Modulus (GPa) 30.5

Poisson Ratio 0.18

Strength (MPa) dc εin Strength (MPa) dt εck

16.8 0 0 3.644 0 0
37.8 0 0.001057 2.42 0.33333 0.000993
42 0 0.001227 1.366 0.625 0.001742

39.9 0.05 0.001351 0.607 0.83333 0.002958
2.94 0.93 0.003683 0.1822 0.95 0.00333
2.52 0.94 0.003772 0.14477 0.96 0.003607

Table 5. Properties of UHPFRC along with CDP model parameters in compression and tension in the
shear test.

Compressive Concrete Strength (MPa) 120.61

Elastic Modulus (GPa) 46.5

Poisson Ratio 0.21

Strength (MPa) dc εin Strength (MPa) dt εck

84.427 0 0 7.36241 0 0
108.549 0 0.00103 7.5 0 0.00484
120.61 0 0.00143 5 0.33333 0.00989
114.58 0.05 0.00198 2.8125 0.625 0.01244

108.549 0.1 0.00253 1.25 0.83333 0.01397
7.2366 0.94 0.01194 0.525 0.93 0.01457

In order to evaluate mesh convergence, several FE models were created with mesh
sizes ranging from 2 to 20 mm. The results showed that a 5 mm mesh size provided both
accurate numerical results and a reasonable computation time. Therefore, the 5 mm mesh
size was chosen for the present FE model.

3.3. Pure Tensile Model

In a study by Hussein et al. [21], the bonding behavior of the interface between
UHPFRC and high-strength concrete (HSC) was analyzed. The interface was tested using
cylindrical specimens with a diameter and height of 75 mm. Three types of surfaces were
used to investigate the bonding behavior between the materials. The experimental setup
and specimen geometry are illustrated in Figure 8a,b.

The simulation model consisted of HSC, UHPFRC, and cylindrical steel nipples mod-
eled with C3D8R elements. The CDP model was applied to HSC and UHPFRC specimens,
and their material properties are presented in Tables 6 and 7. The plastic material parameter
of steel was used to model the nonlinear behavior of the steel nipples. A penalty contact
with a friction coefficient of 0.2 was applied at the interface of the cylindrical steel nipples
and the concrete specimens. A surface-based cohesive model was used to model the inter-
action between HSC and UHPFRC surfaces, with the parameters shown in Table 2. The
detailed simulation model of the tensile test is presented in Figure 8c. A mesh size of 5 mm
was chosen based on the results of a mesh convergence study.
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Figure 8. Pure tensile test: (a) experimental setup [21]; (b) dimensions of the specimens; and
(c) FE model.

Table 6. Properties of HSC along with CDP model parameters in compression and tension in the
tensile test.

Compressive Concrete Strength (MPa) 75

Elastic Modulus (GPa) 41

Poisson Ratio 0.2

Strength (MPa) dc εin Strength (MPa) dt εck

30 0 0 5.3638 0 0
67.5 0 0.00067 3.57586 0.33333 0.00109
75 0 0.00077 2.01142 0.625 0.00191
71.25 0.05 0.00096 0.89397 0.83333 0.00325
67.5 0.1 0.00115 0.80457 0.85 0.00334
4.5 0.94 0.00464 0.21455 0.96 0.00396

Table 7. Properties of UHPFRC along with CDP model parameters in compression and tension in the
tensile test.

Compressive Concrete Strength (MPa) 158.58

Elastic Modulus (GPa) 53

Poisson Ratio 0.21

Strength (MPa) dc εin Strength (MPa) dt εin

111.006 0 0 8.83616 0 0
142.722 0 0.00074 9 0 0.00483
158.58 0 0.00101 6 0.33333 0.00989
150.651 0.05 0.00171 3.375 0.625 0.01244
142.722 0.1 0.00241 1.5 0.83333 0.01397
9.5148 0.94 0.01447 0.63 0.93 0.01457
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3.4. Model for Composite Beam Subjected to Four-Point Bending

Osta et al. [36] studied the flexural behavior of an RC beam strengthened by UHPFRC.
The dimensions of the RC beam are 140 × 230 × 1600 mm, made from NSC with a
compressive strength of 54 MPa. In order to enhance the structural integrity of the RC
beam, a UHPFRC layer of 30 mm with a compressive strength of 121 MPa was applied at
the soffit of the RC beam. Figure 9a illustrates the detailed geometry and reinforcements of
the NSC-UHPFRC composite beam.

Figure 9. Flexural test: (a) geometry and reinforcements of the NSC-UHPFRC composite beam [36];
and (b) FE model.

The element types for NSC, UHPFRC, reinforcing bars, and pins were adopted as
presented in Section 3.1.1. In order to model the interfacial bonding between NSC and
UHPFRC, the study adopted a surface-based cohesive model with the parameters listed
in Table 2. The CDP model was applied to both NSC and UHPFRC materials, while the
plastic material model was selected for reinforcements. Tables 8–10 present the material
properties of NSC, UHPFRC, and reinforcements. Figure 9b depicts the detailed simulation
model of the NSC-UHPFRC composite beam. Following a comprehensive evaluation of a
mesh sensitivity study, a mesh size of 5mm was identified as the optimal value due to its
balance between computational efficiency and accuracy.
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Table 8. Properties of NSC along with CDP model parameters in compression and tension in the
flexural test.

Compressive Concrete Strength (MPa) 54

Elastic Modulus (GPa) 33

Poisson Ratio 0.19

Strength (MPa) dc εin Strength (MPa) dt εck

21.6 0 0.0000 3.26 0.0000 0.0000
48.6 0 0.000495 2.1 0.3333 0.00022
54 0 0.000563 1.185 0.6250 0.00052
51.3 0.05 0.001716 0.52 0.8333 0.00099
5.94 0.89 0.003412 0.158 0.9500 0.0013
4.32 0.92 0.00355 0.1264 0.9600 0.0014

Table 9. Properties of UHPFRC along with CDP model parameters in compression and tension in the
flexural test.

Compressive Concrete Strength (MPa) 121

Elastic Modulus (GPa) 41.5

Poisson Ratio 0.21

Strength (MPa) dc εin Strength (MPa) dt εck

90.75 0 0 6.5 0 0
108.9 0 0.00098 5.005 0.23 0.0023794
121 0 0.00148 2.925 0.55 0.0079295
114.95 0.05 0.00171 0.65 0.9 0.0173843
108.9 0.1 0.00194 0.585 0.91 0.0188459
9.68 0.92 0.00574 0.325 0.95 0.0246922

Table 10. Plastic properties of reinforcements in the flexural test.

Diameter (mm) 8 and 10

Poisson Ratio 0.3

Elastic Modulus (GPa) 200

Yield Stress (MPa) Plastic Strain

Plastic behavior

590 0
589.99 0.000668
589.991 0.00295
650.7 0.23455
635 0.2470

4. Results and Discussion

4.1. Results Obtained from the Analysis of Shear Tests

Figure 10 shows a strong agreement between the experimental and simulation re-
sults for three surface types in terms of peak loads and displacements. The agreement is
demonstrated by small deviations between experimental and simulated ultimate loads,
measuring 6.8%, 4.1%, and 5.8% for rough, mid-rough, and smooth surfaces, respectively.
Corresponding small errors in displacements at ultimate loads are also observed for the
same surfaces, measuring 2%, 0.9%, and 2.4%, as shown in Table 11. The highest deviation
of 6.8% is found in the case of the rough surface. It can be explained that in composite
members with a rough surface, the strength of the interface between UHPFRC and NSC is
stronger than the NSC itself due to the majority of UHPFRC penetrating into the NSC to
form the interface. Consequently, the composite member’s shear resistance depends on the
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NSC’s strength. Therefore, any difference in the strength of the NSC between the EXP and
FEM may affect the ultimate load difference between them.

Figure 10. Comparison of the load-displacement characteristics between the EXP [20] and FEM in
three distinct surface types in the shear tests.

Table 11. Summary and comparison of FE model and experimental results.

Type Authors Surface Pexp(KN) PFEM(KN) Δexp(mm) ΔFEM(mm) P Error (%) Δ Error(%)

Shear test Feng et al. [20]

Rough 65.773 61.587 1.406 1.379 6.8 2.0

Mid-rough 57.713 55.445 1.389 1.376 4.1 0.9

Smooth 30.742 29.065 0.763 0.745 5.8 2.4

Tensile test Hussein et al. [21]

Rough 24.155 21.234 2.555 2.205 13.6 15.9

Mid-rough 19.825 20.12 2.203 2.205 1.5 0.1

Smooth 13.180 12.954 1.233 1.205 1.7 2.3

Flexural test Osta et al. [36] Rough 79.302 77.223 15.460 15.041 2.7 2.8

Note: Pexp and PFEM denote the peak load in the experimental and simulation, respectively. Δexp and ΔFEM
indicate the corresponding displacements at the peak load in the experimental and simulated results, respectively.
P error and Δ error indicate the percent error of the peak load and corresponding displacement, respectively,
between the EXP and FEM.

The study found that the load-displacement curves of the experimental and simu-
lation results for the smooth surface were in good agreement. However, the simulation
demonstrates a higher interface stiffness for the mid-rough and rough surfaces than the
experimental results. This difference is due to the simultaneous participation in shear
resistance of both NSC and UHPFRC. The combination of these factors causes the overall
stiffness of the interface to change over time. Additionally, defects in the NSC [37] constitute
a crucial factor that unsettles its stiffness under loading.

Furthermore, the separation of the mid-rough and rough specimens in the simula-
tion was observed to occur gradually, while the experimental results indicated that the
specimens fractured immediately after reaching the peak load. The discrepancy in the
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damage evolution phase between FEA and EXP on mid-rough and rough surfaces could be
attributed to differences in the concrete material’s damage behavior between the simulation
and experiment. In the case of the rough and mid-rough surfaces, the composite members’
damage occurred in the NSC part. However, the CDP model used to model concrete
assumes that it is homogeneous and isotropic, neglecting concrete’s potential variations
in properties and strengths in different directions as well as the existence of microcracks.
Those factors could lead to the difference in the damage evolution stage between FEA
and EXP.

Figure 11 illustrates the damage patterns of composite specimens through the visual-
ization of the tensile damage variable “DAMAGET” and the compressive damage variable
“DAMAGEC” in the ABAQUS output for three distinct surface types. The simulation
results accurately depicted failure modes in all three cases. In the mid-rough and rough
surface cases, failure concentrated on both the NSC and interface (Figure 11a,b). In the
smooth surface case, debonding occurred solely at the interface between NSC and UHPFRC
(Figure 11c).

Figure 11. Comparison of the failure of the NSC-UHPFRC specimens between the EXP [20] and
simulations for three distinct surface types in the shear test: (a) a rough surface; (b) a mid-rough
surface; and (c) a smooth surface.

The failures observed between NSC and UHPFRC can be attributed to the formation
of chemical bonding and mechanical interlocking. Chemical bonding occurs through
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the reaction between calcium oxide and silica at the NSC-UHPFRC interface, forming a
calcium-silicate-hydrate gel. Mechanical interlocking is formed when UHPFRC penetrates
the pores and voids of the NSC surface. On the smooth NSC surface, few pores allow
for mechanical interlocking, so bonding is primarily achieved through chemical bonding.
However, this bond is weaker than the shear strength of NSC, causing failure to occur
at the interface of NSC and UHPFRC. Mechanical interlocking occurs between the NSC
and UHPFRC surfaces on a mid-rough or rough NSC surface, creating small bridges that
enhance the shear strength of the interface. A rougher NSC surface with a higher roughness
degree results in a deeper average sand-fill depth, forming larger UHPFRC small bridges
in the NSC. This can cause a larger failure area in the NSC specimen.

The simulation results revealed that crushing failure accounted for the majority of
the area compared to cracking failure. This is because the shear force at the interface
transmits the compressive load to the NSC specimen. With a higher degree of roughness
in the interface between NSC and UHPFRC, more failures occurred in the top flange of
the NSC. This is because, as the UHPFRC specimen moves downward, the highest node
at the interface between the NSC and UHPFRC experiences a greater load than the lower
nodes do. This is due to the compressive strain of each element between nodes, generating
a compressive force that reduces the load at the lower node. As a result, the highest node
experiences more stress than the lower nodes, which can lead to failure in the top flange of
the NSC specimen. Therefore, failure in the NSC specimen occurs first in the top flange
compared to other parts.

In the surface-based cohesive model used in this study, a rougher surface was assigned
a greater shear strength at the interface in the parameters (Table 2). Therefore, if an element
near the surface is damaged, the load is transmitted to the adjacent element, and failure
develops until the corresponding compressive stress is lower than the compressive strength
of NSC. In the case of a smooth surface, the compressive stress generated in the NSC by
bonding with UHPFRC is lower than its compressive strength, resulting in failure at the
interface instead of within the NSC.

The developed FE models are useful for predicting the shear bonding strength at
the NSC and UHPFRC interfaces for different levels of roughness. This is particularly
beneficial for designing effective strengthening solutions for concrete structures, such as
bridge decks, that are being repaired or reinforced using UHPFRC. Accurately predicting
the shear strength at the interface can ensure the durability and longevity of the structure,
making it an important consideration for engineers.

4.2. Results Obtained from the Analysis of Tensile Tests

Figure 12 shows a high degree of agreement between the simulation and experimental
results for the load-displacement curves overall, particularly for stiffness, peak loads,
and corresponding displacements on both smooth and mid-rough surfaces. The deviation
between EXP and FEA in those comparing variables is less than 3% (Table 11). Although the
simulation and experimental results matched well in terms of stiffness for the rough surface,
Table 11 shows a 13.6% and 15.9% discrepancy for the ultimate load and corresponding
displacement, respectively. A discrepancy in the concrete’s tensile strength used in the
experiment and simulation could be the reason for the observed difference in ultimate
load and corresponding displacement. This is because the rough surface has a higher
tensile strength (5.63 MPa) than the NSC (5.36 MPa), as shown in Table 2. Consequently,
the tensile strength of the NSC-UHPFRC composite specimen during tensile testing is
primarily determined by the strength of the NSC.
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Figure 12. Comparison of the load-displacement characteristics between the EXP [21] and FEM for
three distinct surface types in the tensile test.

Regarding damage patterns, Figure 13 demonstrates that the simulation results are
consistent with the experimental results. The simulation results show greater damage in
the NSC for the mid-rough and rough surfaces. Additionally, on the rough surface, the
failure of NSC occurred further away from the interface than on the mid-rough surface.
Furthermore, debonding mostly occurred at the NSC and UHPFRC interfaces for the
smooth surface.

Figure 13. Comparison of the failure of the HSC-UHPFRC specimens between the EXP [21] and
FEM simulations in three distinct surface types in the tensile test: (a) rough interface; (b) mid-rough
interface; and (c) smooth interface.

The reasons for these results can be explained as follows: The rough surface has a larger
tensile strength at the interface, causing the tensile strain of elements near the interface to
be lower than those farther away during tensile loading. Due to this behavior, the concrete
elements farthest from the interface, particularly those located at the position of the steel
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nipple in the NSC, are more prone to failure. In contrast, the mid-surface and smooth
surface have a lower tensile strength at the interface than NSC, leading to a failure tendency
at the interface. During failure, the NSC-UHPFRC interface undergoes a reduction in area,
which results in an increase in its tensile strength at that specific location. Consequently,
some elements of the NSC fail because their tensile strength exceeds the ultimate tensile
strength of the NSC. The extent of concrete damage depends on the interface’s tensile
strength. As the interface’s tensile strength increases, the concrete’s damaged area also
increases. This finding explains why the damaged area of NSC in the mid-rough surface
was greater than that in the smooth surface, as shown in Figure 13b,c.

By accurately predicting the tensile behavior at the HSC-UHPFRC interface, this FE
model can be used to optimize interface design and maximize the tensile bonding strength
between HSC and UHPC. This optimization can ultimately improve the performance
and durability of concrete structures. Additionally, the model can be utilized to simu-
late different scenarios and loading conditions, enabling engineers to evaluate the struc-
tural behavior of the interface and make informed decisions about design modifications
and repairs.

Based on the two analyses mentioned above, when the interface between HSC and
UHPFRC has a higher roughness level, the concrete substrate experiences either shear or
tensile failure, and the composite member’s shear or tensile strength capacity depends on
the corresponding strength of the concrete substrate. Therefore, it is recommended that
substrate surfaces be prepared with sufficient roughness to ensure that failure occurs in the
substrate during the repair and strengthening of concrete members.

4.3. Results Obtained from Analysis of Flexural Test

Figure 14 demonstrates that the load-displacement curves of the simulated results are
aligned with the experimental results for both the reference beam and composite beam. This
high degree of concordance is evident from the small difference of around 3% between the
simulation and experimental results for both peak load and corresponding displacement
(Table 11). Additionally, the FE model captures the ductile behavior of the composite
beam as observed in the experimental results, with the initiation of the first crack observed
at approximately 22 KN and the first yielding of the reinforcements estimated to occur
at approximately 70 KN. However, the simulation results reveal a higher initial stiffness
compared to the experimental results. The disparity in the initial stiffness of an RC beam
between the experimental and simulated results can be attributed to several factors. One
such factor is the presence of voids and defects inside the experimental beam, which can
reduce its stiffness [37]. Additionally, the modeling assumptions made in the simulation,
such as the use of the embedded constraint technique, may not accurately reflect the actual
response between the reinforcement and concrete, potentially leading to an overestimation
of the beam’s stiffness in the simulated model.

Figure 15 demonstrates a strong correlation in damage patterns between the simula-
tion and experimental results. The results indicate that the debonding between the NSC
and UHPFRC primarily occurred at the interface, highlighting the critical role of the bond
between the two materials in the overall performance of composite beams. Furthermore,
the experimental results revealed the presence of crushing damage at the location of applied
loads. This damage may be attributed to the high concentration of stresses in this region,
which can exceed the material’s load-bearing capacity. These findings underscore the im-
portance of considering both the bond between the NSC and UHPFRC and the distribution
of loads and stresses when designing reinforced and retrofitted concrete structures.
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Figure 14. Comparison of load-displacement characteristics between the EXP [36] and FEM simula-
tions in the flexural test for rough surfaces.

Figure 15. Comparison of the failure of the NSC-UHPFRC specimens between the EXP [36] and FEM
simulations for the rough surface in the flexural test.

5. Conclusions

This study utilized the ABAQUS software to investigate the response of composite
members made of NSC (or HSC) and UHPFRC. The bonding between the NSC and UH-
PFRC was modeled using a surface-based cohesive model derived and calibrated based
on previous experimental results. This cohesive model was then integrated into seven FE
models to simulate and validate the behavior of NSC-UHPFRC composite members under
various loading conditions. The key conclusions derived from this study are as follows:
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(1) The developed FE models show good agreement with experimental data for the
overall response of NSC (HSC)-UHPFRC composite members under different working
conditions. In the rough surface tests, the shear test shows a maximum deviation
of 6.8% in the ultimate load, while the tensile test shows a 15.9% deviation in the
ultimate displacement;

(2) A linear traction-separation model based on experimental data from pure shear and
tensile tests is used to develop an analytical method for determining the parameters
of a surface-based cohesive model in ABAQUS;

(3) Novel parameters for the surface-based cohesive model are proposed to simulate the
bonding between NSC (HSC) and cast in situ UHPFRC, as presented in Table 2.

The present study provides valuable insights into the potential use of UHPFRC and
UHPFRS for reinforcing and retrofitting damaged concrete structures. While the findings
indicate a high potential for UHPFRC in these applications, it is essential to acknowledge
that the uniform surface roughness observed in this study may not fully reflect the complex
conditions encountered in real-world scenarios, where the bonding surfaces of NSC and
UHPFRC can exhibit non-uniform roughness. Therefore, future research should consider
the impact of surface roughness variations on the performance of UHPFRC in practical
settings to ensure its optimal use in reinforcing and retrofitting structural members.
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Abstract: Catastrophic failures of partially or fully submerged structures, e.g., offshore platforms,
hydrokinetic turbine blades, bridge decks, etc., due to the dynamic impact of free surface flows such
as waves or floods have revealed the need to evaluate their reliability. In this respect, an accurate
estimation of hydrodynamic forces and their relationship to instability in structures is required.
The computational fluid dynamics (CFD) solver is known as a powerful tool to identify dynamic
characteristics of flow; however, it commonly consumes a huge computational cost, especially in cases
of re-simulations needed. In this paper, an efficient surrogate model based on the Gaussian process
is developed to rapidly predict the nonlinear hydrodynamic pressure coefficients on submerged
bodies near the water surface. For this purpose, a CFD model is first developed, which is based on
a two-dimensional incompressible Navier–Stokes solver incorporating free surface treatment and
turbulent flow models. Then, an experimental design is adopted to generate initial training samples
considering the effect of the submerged body shape ratio and flow Re number. Surrogate models
of hydrodynamic pressure coefficients and their instability based on Gaussian process modeling
are established using the outcome from the CFD simulations, where optimal trend and correlation
functions are also investigated. Once surrogate models are obtained, the mean and oscillation
amplitudes of hydrodynamic pressure coefficients on a submerged rectangular body, which represents
the shape of most civil structures, can be rapidly predicted without the attempt at re-simulation. The
findings can be practically applied in rapidly assessing hydrodynamic forces and their instability
of existing submerged civil structures or in designing new structures, where a suitable shape ratio
should be adopted to avoid flow-induced instability of hydrodynamic forces.

Keywords: submerged structure; free surface flow; hydrodynamic force; computational fluid dynamics;
surrogate model; Gaussian process; data-driven approach

1. Introduction

Past failures of partially or fully submerged civil structures, e.g., offshore platforms,
hydrokinetic turbine blades, bridge decks, etc., due to the dynamic impact caused by floods,
waves or tsunamis have revealed the significant need for evaluating the reliability of these
structures under hydrodynamic forces [1–3]. Regarding this issue, one of the challenges
is the accurate evaluation of multiphase flows and their impact on submerged structures.
This is essential not only for optimum designs of the newly designed structures but also for
the estimation of the degree of risk for existing ones.

Large-scale structures under free surface flows commonly require time-consuming
experimental analyses. In addition, flow characteristics, e.g., flow patterns, velocities and
pressure fields, are uncertain and nonlinear; hence, resulting in a very high cost and time re-
quired for many experimental setups in order to observe accurate flow characteristics [4,5].
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While analytical models for hydrodynamic forces on submerged bodies have been devel-
oped and incorporated into design codes, they are often overestimated and with a degree
of error [6–8]. An alternative is the development of numerical models for free surface
flows and their impact on structures; this can reduce much effort in terms of cost and time
as compared with experimental models [9]. The numerical models are mainly based on
computational fluid dynamic (CFD) approaches that solve Navier-Stokes equations along
with the treatment of the free surface. However, due to the uncertain flow characteristics,
varying with each particular case, the design of these numerical simulations becomes
complicated and requires numerous computing resources, especially in cases of the large
number of samples considered in a reliability analysis [10,11].

With the development of computer science, besides various computer models which
have been adopted in many fields of CFD [12], machine learning techniques have been
developed and widely used to predict multiphase flow characteristics [13–15], in which,
data-driven techniques, e.g., neural network [13], support vector machine [14] and Gaussian
process [15], have been implemented to build surrogate models for the prediction of
the multiphase flow pattern, as well as the hydrodynamic pressure distribution. These
surrogate models, which are used when an outcome of interest cannot be easily measured
or computed, can efficiently reduce the computational effort and rapidly estimate flow
characteristics in the context of uncertainty treatments and reliability analyses. The first
two methods (i.e., neural network and support vector machine) commonly require an
adequate dataset for a reliable prediction, which depends on the number of input and
output parameters, while the Gaussian process regression makes it possible to predict the
model response with little observed data. In addition, the Gaussian process offers a flexible
kernel method for regression due to various available trends and correlation functions.
Therefore, in many complex problems, this technique is more suitable and efficient in terms
of reducing computational costs [11,16].

The objective of this paper is to develop surrogate models, which are based on Gaus-
sian process modeling, to rapidly predict nonlinear hydrodynamic pressure coefficients
and their instability effect on submerged bodies. As a case study, rectangular submerged
bodies near the water surface are considered. This type of shape is standard and represents
the shape of many engineering applications such as bridge decks, offshore platforms and
hydrokinetic turbine blades. Firstly, a modeling approach of the flow passing a submerged
body is presented based on a two-dimensional incompressible Navier–Stokes solver. The
free surface is treated using the volume of fluid method and the effect of the turbulent
flow is also considered by using the shear stress transport turbulence model. Then, an
appropriate experimental design is used to generate initial training samples considering the
effect of the aspect ratio of the submerged body and the Re number of the flow. Surrogate
models of hydrodynamic pressure coefficients based on the Gaussian process modeling
are established using the outcome from the CFD simulations, where optimal trend and
correlation functions are also investigated. Once surrogate models are obtained, the mean
and oscillation amplitudes of hydrodynamic pressure coefficients of the free surface flow
on a submerged cylinder with an arbitrary aspect ratio can be accurately and rapidly
predicted without the need for attempt at re-simulation. The findings from the work can
be practically applied in rapidly assessing hydrodynamic force and its instability effect on
existing submerged civil structures, or in designing new structures, where a suitable shape
ratio range is recommended to avoid the detrimental effects of flow-induced instability
from hydrodynamic forces.

2. Numerical Model of Free Surface Flow

In this study, a two-dimensional (2D) incompressible Reynolds-averaged Navier-
Stokes (RANS) homogeneous two-phase mixture model is adopted to simulate the non-
linear interactions of a submerged cylinder beneath the free surface [9,17]. The model
solves the mixture continuity and momentum equations to obtain the mean flow velocity
and pressure fields. The RANS model is closed by including a turbulence model to predict
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fluctuating velocity components; thus, the shear stress transport k − ω model is adopted. In
addition, to capture complex free surface behaviors and non-linear hydrodynamic pressure
coefficients, the interface between the water and air phases is numerically treated using the
volume-of-fluid (VOF) method [18,19]. These equations can be described in the Cartesian,

∂uj

∂xj
= 0 (1)

∂ui
∂t

+ uj
∂ui
∂xj

= − 1
ρm

∂p
∂xi

+ gi + μm
∂2ui
∂xj

−
∂u′

iu
′
j

∂xj
, (2)

∂αg

∂t
+

∂
(
αguj

)
∂xj

= 0, (3)

Here, the subscripts i, j = 1, 2 represent two directions of x and y in the computational
domain, respectively; t is the computation time; p denotes the pressure, u and u′ are the
mean and the fluctuating velocities; g is the gravitational term; and ρm and μm are the
mixture density and viscosity, respectively.

The interface position is numerically treated via the phasic volume fraction of the gas
phase, αg. Here, the pure gas phase is obtained in the case of αg equals 1.0, while the pure
water phase is obtained in the case of αg equals 0.0. The interfaces with a limited thickness
between two phases are identified by the values in the range from 0.0 to 1.0. The properties
of the mixture phase at the interface are predicted by a function of the volume of fraction of
the individual phase, an example, for the calculation of the mixture values for density and
mixture valuables

ρm = αgρg +
(
1 − αg

)
ρw, (4)

μm = αgμg +
(
1 − αg

)
μw, (5)

where ρw, μw and ρg, μg are the density and viscosity of the individual water and gas
phases, respectively.

The numerical discretization of the equation system in the generally structured grid is
based on the finite volume method with a pressure-based solver. For time discretization,
the first-order implicit method is applied. The first-order upwind scheme is adopted for
both the convective and viscous terms and the advection equation is approximated using
the implicit compressive scheme. The main reason behind using first-order and implicit
schemes is to obtain better convergence than high-order and explicit schemes, especially for
strongly deformable free surfaces with breaking wave phenomena. All simulation results
are performed using the Ansys Fluent software [20].

3. Surrogate Model of Hydrodynamic Pressure Coefficients

3.1. Basic Formulations

Gaussian process regression uses a set of observed training data to predict spatially
correlated data, which postulates a combination of a functional basis and departure in the
following form [21],

Yi = ∑p
j=1 β j f j(x(i)) + Z(x(i)) with i = 0, . . . , m, (6)

where the first term is the unknown multivariate polynomial function, f =
{

f j(x(i))
}

with
j = 1, . . . , p, called the trend, and Z(x) is the realization of the Gaussian process having
zero mean and variance σ2; Z(x) is expressed as

Cov
[
Z(x), Z

(
x′
)]

= σ2R
(
x − x′, �

)
, (7)

where σ2 is the variance of the Gaussian process, whereas R is the correlation function
which is the function of the difference x − x′ and scale parameters � (�i > 0, i = 1, . . . , n).
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Several correlation functions are proposed, e.g., the exponential (Equation (8)), Gaus-
sian (Equation (9)), and Matérn-3/2 (Equation (10)),

R
(
x − x′, �

)
= ∑n

i=1 e−1/�i |xi−x′i |, (8)

R
(
x − x′, �

)
= ∑n

i=1 e
− 1

2 (
|xi−x′i |

�i
)

2

, (9)

R
(
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n

∑
i=1

(
1 +

√
3

�i

∣∣xi − x′i
∣∣)e−

√
3/�i |xi−x′i | (10)

The vector of the prediction Ŷ0 and the true response Y = {Yi} with i = 1, . . . , m is
normally distributed, {

Ŷ0
Y

}
∼ N1+m

{
fT
0β

Fβ

}
, σ2

[
1 rT

0
r0 R

]
, (11)

where f0 is the vector of regression models evaluated at x(0), F is the regression matrix, r0

is the vector of cross-correlations between the point x(0), r0i = R
(

x(0) − x(i), �
)

, R is the

correlation matrix of the true response, Rij =
(

x(i) − x(j), �
)

.
The best linear unbiased predictor of the unknown quantity of interest y0 is the

Gaussian random variate Ŷ0 with mean and variance,

μŶ0
= fT

0 β̂+ rT
0 R−1(y − Fβ̂

)
, (12)

σ2
Ŷ0

= σ2
(

1 − rT
0 R−1r0 +

(
FTR−1r0 − f0

)T(
FTR−1F

)−1(
FTR−1r0 − f0
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, (13)

where β̂ =
(
FTR−1F

)−1
FTR−1y.

The maximum likelihood estimation technique is better suited for deriving estimators.
Here, the likelihood of the observations y is defined concerning its multivariate normal
distribution, which depends on β, σ2, and �,

L
(

y
∣∣∣β, σ2, �

)
=

1

((2πσ2)
m
[detR(�)])

1/2 exp
[
− 1

2σ2

(
y − FβT

)
R(�)−1(y − Fβ)

]
. (14)

By maximizing the quantity described in Equation (14), the following analytical
estimates of β and σ2 that are functions of � are obtained as

β̂(�) =
(

FTR(�)−1F
)−1

FTR(�)−1y, (15)

ˆ
σ2(�) =

1
m

(
y − Fβ̂

T
)

R(�)−1(y − Fβ̂
)
. (16)

By substituting these two solutions into Equation (14), its corresponding opposite
log-likelihood reads

− log L
(

y
∣∣∣β, σ2, �

)
=

m
2

log(ψ(�)) +
m
2
(log(2π) + 1) with ψ(�) = σ̂2(�)[detR(�)]

1
2 ,
(17)

and thus, the maximum likelihood estimate of � is given as

�̂ = argmin
�

ψ(�). (18)

3.2. Procedure of Surrogate Model-Based Hydrodynamic Pressure Coefficient Prediction

The overall procedure for the development of a Gaussian process based-surrogate
model is as follows:
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(i) In the first step, the most important variables and their distribution functions should
be identified. An appropriate DOE is then conducted within the range of interest
variables. As a result, several initial training samples are generated and corresponding
CFD models are then built.

(ii) CFD simulations of the flow field are conducted for each combination of training
conditions. The flow field characteristics, as well as hydrodynamic pressure coeffi-
cients, are obtained at each simulation. In this study, the mean and oscillation values
of hydrodynamic pressure coefficients, i.e., drag, lift and moment, are considered as
the model responses.

(iii) Once the training dataset has been established based on the DOE and the correspond-
ing model responses, a surrogate model of the model response is built using the
Gaussian process modeling incorporated in a Matlab-based software, Uqlab [22]. In
this step, different trend and correlation functions that compose the Gaussian pro-
cess are tested. An optimal surrogate model is finally obtained based on the error
estimation from the cross-validation.

4. Case study of Submerged Bodies beneath the Water Surface

4.1. CFD Simulation and Design of Experiments

In this study, a rectangular shape body fully submerged beneath a free surface is
selected, which represents the shape of most bridge deck or other civil structure components
under the free surface flow. The computational domain and simulation conditions are
adopted following the experimental work by Chu et al. [23], in which the problem of an
open channel with a particular size is shown schematically in Figure 1. The rectangular
body submerges in the water at a depth of h and a distance between the channel bed and
the cylinder S. To reduce the computational cost, a planar symmetric numerical model is
used under the main assumption that there are no effects in the spanwise direction. This
assumption was also adopted for numerical computations of free surface flows over a
submerged body in many studies [9]. The boundary conditions are applied as follows:
(i) the fixed uniform velocity is specified at the inlet condition, (ii) at the outlet condition,
the extrapolation values are applied for the pressure and velocity fields, (iii) at the top
boundary condition, open conditions are applied and (iv) at the bottom line and cylinder,
non-slip wall conditions are used.

Figure 1. Computational model of the free surface flow around a submerged body.

The mesh distribution for the whole computational domain and zoomed regions
near the submerged body are presented in Figure 2. Here, the meshing strategy with a
high-resolution value close to the body and free surface is used to obtain high accuracy
predictions for the pressure and velocity fields, particularly for the free surface shape
motion. The grid and time step sensitivity tests were performed through convergency
analyses in the previous work [9]; thus the fine grid with a total number of nodes of 112,649,
the y+ value at the body surface of 1.1, and the time step of 0.002 (s) are used in the
present simulations.
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Figure 2. The mesh domain and mesh distribution around the submerged body.

The complex simulation of the above-mentioned CFD model reveals the need for
developing a more efficient surrogate model to possibly and rapidly identify nonlinear
hydrodynamic pressure coefficients on a submerged body under free surface flows. The
development of a surrogate model or metamodel first requires the generated samples
that involve modeling parameters. In this study, Latin Hypercube Sampling (LHS) [24] is
utilized to generate training samples; this technique is widely used and has demonstrated
its efficiency in the construction of surrogate models, especially ones based on the Gaussian
process [25,26].

Many studies have demonstrated that the shape ratio (AR) (i.e., the length and depth
ratios of the rectangular body, AR = L/W) and the Re number are the most significant
parameters that affect the flow characteristic and impact hydrodynamic pressure [8,10].
Therefore, these two parameters are chosen as input random variables in the study with
the ranges selected and presented in Table 1, which are assumed to be a uniform distri-
bution. The other geometry parameters, such as the depth h and the clearance distance S,
are deterministic.

Table 1. Modeling parameters for the design of experiments.

Parameter Distribution Function Lower Value Upper Value

Shape ratio AR Uniform 0.2 4

Re number Uniform 8000 16,000

By using the LHS on two modeling parameters, a total of 40 samples are generated, as
distributed in Figure 3. It should be noticed that there is no specific standard for the number
of initial training samples, depending on the number of input variables, particular problem
and training method. Since the Gaussian process has not needed the pre-assuming of a
specified model and just requires a small number of initial training samples, an optimized
design of 40 samples is chosen, as proposed by [26].
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Figure 3. Design of experiments using LHS.

As examples of the flow characteristic, Figure 4 shows the velocity field and pressure
contour for three cases of AR and Re values, marked by large circles in Figure 3. The free
surface shape is plotted by the red solid line using the air volume fraction value of 0.5.
Under the presence of the submerged body, significantly increasing free surface flow and
reduction in the depth at the upward and the downward regions is observed. Therefore, a
high-velocity water flow in the downstream region is formed. In addition, submerged wake
vortices behind the body are generated under the effects of the inclination of the free surface,
as shown by streamline fields on the left side of Figure 4. This nonlinear evolution behavior
is found to be a major mechanism that increases the hydrodynamic force coefficients in
comparison with the unbounded free surface flow. The pressure distributions around the
submerged body are also shown on the right side of Figure 4. In the presence of the free
surface, asymmetric low-pressure regions at the top and bottom of the submerged body
are observed.

(a) 

(b) 

Figure 4. Cont.
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(c) 

Figure 4. Velocity and pressure fields around the submerged body with the free surface interactions:
(a) AR = 0.208, Re = 8689.223, (b) AR = 2.036, Re = 12,958.475, (c) AR = 3.989, Re = 9339.984.

For each sample, hydrodynamic pressure coefficients (i.e., drag, lift and moment coeffi-
cients) acting on submerged bodies are obtained from CFD analyses. Figure 5 shows an example
of the time evolution of hydrodynamic pressure coefficients for AR = 0.208, Re = 8689.223
(Figure 5a), AR = 2.036, Re = 12,958.475 (Figure 5b), and AR = 3.989, Re = 9339.984 (Figure 5c).
The numerical results show that the hydrodynamic force coefficients are significantly
varied under the nonlinear interaction with the free surface. In the cases of lower AR
values (AR = 0.208), the force coefficients are in periodic evolutions with time and are
characterized by a mean value and oscillated magnitude. These predicted values are de-
termined by an averaged method over five oscillation cycles. In the case of higher values
(AR = 2.036 and 3.989), stable behaviors of the force coefficients without oscillation features
are observed.

(a) (b) 

 
(c) 

Figure 5. The time evolution of hydrodynamic force coefficients: (a) AR = 0.208, Re = 8689.223,
(b) AR = 2.036, Re = 12,958.475, (c) AR = 3.989, Re = 9339.984.
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Similarly, the outcomes of interest including six above-mentioned quantities (the mean
values of CL, CD, CM and their oscillations) are obtained and summarized in Table A1
(Appendix A), resulting in a total of 40 examples of training data in the dataset. The ob-
served responses from the dataset are later used to train surrogate models of the outcomes.

4.2. Surrogate Model Development

Based on the above model output, the surrogate model is then developed using the
above-mentioned Gaussian process modeling. The major advantage of this modeling
approach is that it requires less observed data for the regression as compared to other data-
driven techniques, such as support vector machine or artificial neural network. To optimize
the surrogate model for the prediction, several trend and correlation functions are tested in
this study. Due to the nonlinearity of the hydrodynamic pressure coefficients, nonlinear
regression and correlation models are selected. In particular, for the trend, polynomial
(one, two, and three degrees) functions are employed. On the other term, Matérn 3/2,
exponential and Gaussian (in Equations (8)–(10)) correlation functions are examined.

To estimate the accuracy of each tested surrogate model, the leave-one-out (LOO)
cross-validation is adopted, where one point is randomly ignored for the cross-validation
and the other points are for training the surrogate model. This procedure is repeated until
all the points are used. Therefore, to perform the LOO, one point x(i) from the initial DOE
is subsequently removed and the surrogate model Ŷ0,(−i)

(
x(i)

)
is built from the remaining

points of the design. The LOO cross-validation error is calculated on the true response
design and its corresponding predicted responses as

εLOO =
1
n

∑n
i=1

[
Y(xi)− Ŷ0,(−i)(xi)

]2

Var (Y)
, (19)

where Var(Y) defines the estimated variance of the output variable.
Table 2 shows the cross-validation error of the tested surrogate models as combinations

of different trend and observation functions. It can be observed that the estimated LOO
errors vary with different combinations and outcomes of interest. In most of the cases, the
combination of 3rd degree polynomial function and Matérn 3/2 correlation function results
in the best performance with a minimum mean error of the prediction for the outcomes
(highlighted in bold in Table 2). Also of note is that combinations of 2nd degree polynomial-
Matérn 3/2 and 3rd degree polynomial-Gaussian also exhibit a good prediction.

Table 2. Cross-validation error estimation of the tested surrogate models.

Trend Function
Correlation

Function

LOO Error
Mean Error

CD (Mean) CD (Oscil.) CL (Mean) CL (Oscil.) CM (Mean) CM (Oscil.)

1st degree polynomial

Matérn 3/2

0.0222 0.0244 0.0010 0.0631 0.0956 0.0350 0.0402

2nd degree polynomial 0.0102 0.0250 0.0023 0.0620 0.1004 0.0371 0.0395

3rd degree polynomial 0.0074 0.0270 0.0045 0.0610 0.0745 0.0259 0.0334

1st degree polynomial
Exponential

0.0264 0.0449 0.0100 0.0728 0.1306 0.0672 0.0586

2nd degree polynomial 0.0079 0.0452 0.0068 0.0787 0.1131 0.0486 0.0500

3rd degree polynomial 0.0072 0.0616 0.0060 0.1173 0.0906 0.0367 0.0532

1st degree polynomial

Gaussian

0.0314 0.2446 0.0026 0.0590 0.1250 0.0441 0.0845

2nd degree polynomial 0.0155 0.2637 0.0042 0.3129 0.1111 0.0327 0.1234

3rd degree polynomial 0.0105 0.0316 0.0046 0.0677 0.0841 0.0216 0.0367

Examples of optimal surrogate models for the drag coefficient outcomes, i.e., mean
and oscillation amplitude quantities, are shown in Figure 6, where the red dots represent
the DOE. The estimated parameters of all six models for six quantities of interest are
summarized in Table A2 (Appendix B). Once a surrogate model is built with its estimated
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parameters, the hydrodynamic pressure coefficients of an arbitrary design of AR and Re
can be rapidly predicted without the need for an attempt at re-simulation.

(a) (b) 

Figure 6. Examples of surrogate models of the drag coefficient in terms of μŶ: (a) Mean and (b) Oscil-
lation amplitude.

4.3. Validation of Surrogate Models with a Test Set

A test set of the hydrodynamic pressure coefficients is obtained from the previous
work to validate the developed surrogate models. In particular, five different designs of
the submerged body under free surface flows were numerically performed, which were
uniformly composed by Re = 11,850 and five body shape ratios, AR = 0.25, 0.5, 1.0, 2.0, and
4.0. As a comparison, the plots of observed mean and oscillation magnitude together with
those predicted for three hydrodynamic pressure coefficients are shown in Figure 7. Careful
readers can see a good fit between the observed and predicted values both for the mean and
oscillation quantities. To quantify the goodness of fit between the observed and predicted
data, the mean square error (MSE) and coefficient of determination (R2) are calculated and
presented in Table 3. It can be re-confirmed that the surrogate models predict the mean
and oscillation amplitude of the hydrodynamic pressure coefficients with a high degree of
accuracy. Hence, the developed models are reliable in prediction and efficient in terms of
computational effort.

Table 3. Error estimations of the observed and predicted hydrodynamic pressure coefficients in the
case of Re = 11,850.

Quantity of Interest MSE R2

CD (Mean) 0.0033 0.9776

CD (Oscil.) 0.0009 0.9868

CL (Mean) 0.0060 0.9866

CL (Oscil.) 0.0150 0.9955

CM (Mean) 4.4359 0.9727

CM (Oscil.) 8.8146 0.9030
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(a) (b) 

(c) 

Figure 7. Comparisons of predicted hydrodynamic pressure coefficients with observed values from
Nguyen et al. [9]: (a) Drag, (b) Lift, and (c) Moment coefficients.

In the practice design of potentially submerged civil structures, such as bridge decks,
offshore platforms and hydrokinetic turbine blades, it is important to avoid unstable regions
caused by the oscillation of the hydrodynamic forces. By considering a wide range of Re
number and shape aspect ratio (Re = 6000–20,000, AR = 0.1–10), the unstable or oscillation
regions are plotted based on the developed surrogate models for the three coefficients,
as shown in Figure 8, in which the bar color represents the oscillation amplitude of the
examined coefficients. It can be observed that the most unstable region appears with small
aspect ratios of the submerged body. The amplitude of the oscillation mostly decreases
with the increase of both Re and AR. In the cases of AR > 2, the oscillation amplitude
significantly drops and almost equals zero. These observations are criteria for the dynamic
instability assessment of existing submerged civil structures or for practice design of new
ones under the free surface flow to avoid adverse effects of the dynamic impact.
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(a) 

(b) 

(c) 

Figure 8. Predictions of unstable zones of hydrodynamic pressure coefficients: (a) Drag, (b) Lift, and
(c) Moment coefficients.
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5. Conclusions

This study aimed to develop a computationally efficient and accurate surrogate model
to estimate hydrodynamic pressure coefficients on submerged bodies beneath the water
surface. Using the LHS sampling method, several computational fluid dynamics analyses,
based on a Navier-Stokes solver implemented with the shear stress transport turbulence
model and the volume of fluid method, were performed to extract hydrodynamic pressure
coefficients and their instability.

From the outcomes of the CFD analyses, a Gaussian process modeling-based surrogate
model was trained to predict the hydrodynamic pressure coefficients around submerged
bodies with a rectangular shape considering a range of shape ratio and Re number values.

As cross-validation for several testing surrogate models, the optimized model was found
to be a combination of the 3rd degree polynomial and Matérn 3/2 correlation functions.

Since the surrogate models were developed, the hydrodynamic pressure coefficients
were then predicted for a wide range of input parameters. The finding from the study
highlighted the efficiency of the surrogate model in rapidly estimating the hydrodynamic
pressure coefficients in place of complex and expensive CFD analyses.

By plotting unstable regions of the hydrodynamic pressure coefficients within the
ranges of the shape ratio and Re number, it is concluded that the most unstable region
appeared at small aspect ratios of the submerged body. In most of the cases, the oscillation
amplitude significantly dropped with the increase of both AR and Re and reached almost
zero with AR > 2.

The surrogate model in this study can be practically applied in rapidly assessing the
hydrodynamic force and its instability effect on existing submerged civil structures, or
in designing new structures, where a suitable shape ratio should be adopted to avoid
flow-induced instability of hydrodynamic forces.

The present study can also be enabled and facilitate future sensitivity, fragility and
reliability studies across a broad range of submerged bodies and flow conditions that are
involved in civil structures under flood and wave flows.
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Appendix A

Table A1. Observed response from CFD simulations for the initial training samples.

Input Variable Output Hydrodynamic Pressure Coefficients

AR Re CD CL CM

Mean
Oscillation
Amplitude

Mean
Oscillation
Amplitude

Mean
Oscillation
Amplitude

1.623 14,665.087 1.653 0.146 0.405 0.492 −3.511 12.653

3.476 12,640.045 2.087 0 −1.465 0 −3.957 0

2.403 15,783.894 1.451 0.087 0.260 0.305 −1.895 5.741
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Table A1. Cont.

Input Variable Output Hydrodynamic Pressure Coefficients

AR Re CD CL CM

Mean
Oscillation
Amplitude

Mean
Oscillation
Amplitude

Mean
Oscillation
Amplitude

3.144 15,153.660 1.632 0.018 −0.273 0.084 −1.909 0

2.036 12,958.475 1.920 0.007 0.410 0.042 −3.720 1.029

2.890 8416.533 3.441 0 −2.661 0 −8.266 1.504

1.297 8857.737 3.429 0.102 −0.361 0.433 −9.072 15.586

0.208 8689.223 4.600 0.578 0.290 1.433 −29.590 57.009

2.704 11,139.096 2.458 0.030 −1.416 0.103 −5.916 3.124

1.435 10,833.029 2.569 0.139 −0.065 0.446 −7.160 14.355

2.244 15,512.939 1.487 0.055 0.283 0.333 −2.195 6.928

3.538 9615.309 2.959 0 −2.973 0 −6.677 0

1.926 15,258.790 1.521 0.029 0.382 0.145 −0.823 3.406

1.183 14,304.394 1.737 0.128 0.600 0.465 −1.907 11.747

1.751 14,974.758 1.589 0.098 0.396 0.464 −3.120 11.481

3.755 13,004.791 2.040 0 −1.717 0 −3.330 0

3.879 13,368.033 1.987 0 −1.747 0 −1.323 0

3.377 11,959.480 2.199 0 −1.608 0 −4.654 0

3.651 8313.764 3.372 0 −3.584 0 −7.782 0

0.927 10,719.160 2.701 0.040 0.650 0.190 −1.448 6.000

0.404 12,170.650 3.099 0.541 0.303 1.663 −9.008 42.218

0.846 13,654.136 2.122 0.142 0.597 0.472 −1.460 12.568

1.459 11,762.251 2.170 0.143 0.171 0.463 −6.291 14.129

0.647 11,271.221 2.905 0.262 0.575 1.080 −5.339 26.001

2.786 9449.139 3.077 0.012 −2.200 0.037 −7.400 2.408

1.869 8157.854 3.678 0.036 −1.774 0.158 −11.104 6.056

3.258 14,079.809 1.828 0.001 −0.660 0.025 −2.805 0

0.736 10,250.214 3.081 0.128 0.617 0.650 −7.770 20.596

3.220 15,872.356 1.509 0.016 −0.151 0.081 −1.194 0

1.077 9880.575 2.986 0.028 0.336 0.153 −3.508 4.934

2.641 10,540.904 2.681 0.031 −1.625 0.105 −6.511 3.687

1.650 12,453.679 2.040 0.122 0.010 0.427 −5.513 12.430

0.319 13,810.938 2.893 0.483 0.162 1.227 −11.899 39.283

1.034 11,514.888 2.253 0.013 0.775 0.071 2.268 2.172

3.030 9043.564 3.200 0 −2.554 0 −7.586 0.260

2.176 10,188.772 2.835 0.024 −1.431 0.146 −7.570 5.035

2.371 12,232.946 2.111 0.064 −0.759 0.223 −5.168 6.053

0.544 13,561.550 2.693 0.382 0.291 1.676 −3.352 34.293

2.572 14,520.981 1.699 0.063 −0.116 0.225 −2.922 4.254

3.989 9339.984 2.910 0 −3.380 0 −7.600 0
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Appendix B

Table A2. Estimated parameters of the Gaussian process-based surrogate model.

Surrogate Model β σ2 �

CD (Mean) (2.120; −0.665; 0.150; 0.235; −0.003; 0.002; −0.138; −0.0690; 0.037) 0.009 (0.220;
0.9696)

CD (Oscil.) (0.445; 0.0807; −0.402; −0.027; −0.067; 0.0667; 0.003; 0.052; 0.034; −0.063) 3.661 (1.886; 8.554)

CL (Mean) (−1.531; 0.743; −0.521; −0.037; 0.152; 0.193; −0.061; −0.060; 0.031; −0.094) 58.317 (2.010; 9.945)

CL (Oscil.) (0.140; 0.070; −0.181; 0.014; 0.198; 0.010; −0.008; −0.101; 0.004; −0.035) 0.036 (0.137; 9.991)

CM (Mean) (−3.577; 2.452; −3.368; −0.934; −1.127; 0.049; 0.03; 2.114; 1.166; 0.033) 2.186 (0.148; 1.225)

CM (Oscil.) (3.223; 0.982; −3.512; 0.696; 6.151; 0.755; −0.183; −3.423; −0.919; −1.282) 9.040 (0.178; 1.785)

References

1. Palermo, D.; Nistor, I.; Saatcioglu, M.; Ghobarah, A. Impact and damage to structures during the 27 February 2010 Chile tsunami
Canadian. J. Civ. Eng. 2013, 40, 750–758. [CrossRef]

2. Kim, H.; Sim, S.H.; Lee, J.; Lee, Y.J.; Kim, J.M. Flood fragility analysis for bridges with multiple failure modes. Adv. Mech. Eng.
2017, 9. [CrossRef]

3. Balomenos, G.P.; Padgett, J.E. Fragility analysis of pile-supported wharves and piers exposed to storm surge and waves. J. Waterw.
Port Coast. Ocean Eng. 2018, 144, 04017046. [CrossRef]

4. Liu, T.L.; Guo, Z.M. Analysis of wave spectrum for submerged bodies moving near the free surface. Ocean Eng. 2013, 58, 239–251.
[CrossRef]

5. Ren, H.; Fu, S.; Liu, C.; Zhang, M.; Xu, Y.; Deng, S. Hydrodynamic Forces of a Semi-Submerged Cylinder in an Oscillatory Flow.
Appl. Sci. 2020, 10, 6404. [CrossRef]

6. Olaya, S.; Bourgeot, J.; Benbouzid, M.E.H. Hydrodynamic Coefficient Computation for a Partially Submerged Wave Energy
Converter. IEEE J. Ocean. Eng. 2015, 40, 522–535. [CrossRef]

7. Lagrange, R.; Delaune, X.; Piteau, P.; Borsoi, L.; Antunes, J. A new analytical approach for modeling the added mass and
hydrodynamic interaction of two cylinders subjected to large motions in a potential stagnant fluid. J. Fluids Struct. 2018, 77,
102–114. [CrossRef]

8. Chen, X.; Liang, H. Wavy properties and analytical modeling of free-surface flows in the development of the multi-domain
method. J. Hydrodyn. Ser. B 2018, 28, 971–976. [CrossRef]

9. Nguyen, V.M.; Le, A.T.; Phan, H.N.; Nguyen, Q.K.; Chau, V.T.; Phan, T.H. On the behavior of nonlinear hydrodynamic pressure
coefficients of a submerged cylinder beneath the water surface. Vietnam. J. Mech. 2021, 43, 371–387. [CrossRef]

10. Hoang, P.H.; Phan, H.N.; Nguyen, D.T.; Paolacci, F. Kriging Metamodel-Based Seismic Fragility Analysis of Single-Bent Reinforced
Concrete Highway Bridges. Buildings 2021, 11, 238. [CrossRef]

11. Phan, H.N.; Paolacci, F.; Di Filippo, R.; Bursi, O.S. Seismic vulnerability of above-ground storage tanks with unanchored support
conditions for Na-tech risks based on Gaussian process regression. Bull. Earthq. Eng. 2020, 18, 6883–6906. [CrossRef]

12. Bhatti, M.M.; Marin, M.; Zeeshan, A.; Abdelsalam, S.I. Recent trends in computational fluid dynamics. Front. Phys 2020, 8, 593111.
[CrossRef]

13. Ahmadi, M.A.; Chen, Z. Machine learning models to predict bottom hole pressure in multi-phase flow in vertical oil production
wells. Can. J. Chem. Eng. 2019, 97, 2928–2940. [CrossRef]

14. Guillén-Rondon, P.; Robinson, M.D.; Torres, C.; Pereya, E. Support vector machine application for multiphase flow pattern
prediction. In Proceedings of the Workshop on Data Mining for Geophysics and Geology (DMG2), San Diego, CA, USA,
5 May 2018.

15. Ganti, H.; Khare, P. Data-driven surrogate modeling of multiphase flows using machine learning techniques. Comput. Fluids 2020,
211, 104626. [CrossRef]

16. Quinonero-Candela, J.; Rasmussen, C.E.; Williams, C.K. Approximation Methods for Gaussian Process Regression. In Large-Scale
Kernel Machines; MIT Press: Cambridge, MA, USA, 2007.

17. Duy, T.N.; Nguyen, V.T.; Phan, T.H.; Park, W.G. An enhancement of coupling method for interface computations in incompressible
two-phase flows. Comput. Fluids 2021, 214, 104763. [CrossRef]

18. Phan, H.N.; Lee, J.H. Flood Impact Pressure Analysis of Vertical Wall Structures using PLICVOF Method with Lagrangian
Advection Algorithm. J. Comput. Struct. Eng. Inst. Korea 2010, 23, 675–682.

19. Nguyen, V.T.; Park, W.G. A free surface flow solver for complex three-dimensional water impact problems based on the VOF
method International. J. Numer. Methods Fluids 2016, 82, 3–34. [CrossRef]

20. ANSYS Inc. ANSYS Fluent User’s Guide 2019R1; ANSYS Inc.: Canonsburg, PA, USA, 2019.
21. Santner, T.J.; Williams, B.J.; Notz, W.I. The Design and Analysis of Computer Experiments; Springer: New York, NY, USA, 2003.

94



Buildings 2022, 12, 1683

22. Stefano, M.; Bruno, S. UQLab: A Framework for Uncertainty Quantification in MATLAB. In Proceedings of the 2nd International
Conference on Vulnerability and Risk Analysis and Management (ICVRAM 2014), Liverpool, UK, 13–16 July 2014. [CrossRef]

23. Chu, C.R.; Lin, Y.A.; Wu, T.R.; Wang, C.Y. Hydrodynamic force of a circular cylinder close to the water surface. Comput. Fluids
2018, 171, 154–165. [CrossRef]

24. Mckay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis
of Output from a Computer Code. Technometrics 1979, 21, 239–245. [CrossRef]

25. Pebesma, E.J.; Heuvelink, G.B. Latin hypercube sampling of Gaussian random fields. Technometrics 1999, 41, 303–312. [CrossRef]
26. Iooss, B.; Boussouf, L.; Marrel, A.; Feuillard, V. Numerical study of algorithms for metamodel construction and validation. In

Safety, Reliability and Risk Analysis: Theory, Methods and Applications; Martorell, S., Soares, C.G., Barnett, J., Eds.; Taylor & Francis
Group: London, UK, 2009.

95



Citation: Abu-Ali, M.H.; El-Garhy, B.;

Boraey, A.; Alrashed, W.S.; El-Shami,

M.; Abdel-Daiem, H.; Alrefahi, B.

Behavior of Stiffened Rafts Resting

on Expansive Soil and Subjected to

Column Loads of Lightweight-

Reinforced Concrete Structures.

Buildings 2024, 14, 588. https://

doi.org/10.3390/buildings14030588

Academic Editors: Zechuan Yu and

Dongming Li

Received: 13 January 2024

Revised: 12 February 2024

Accepted: 18 February 2024

Published: 22 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Behavior of Stiffened Rafts Resting on Expansive Soil and
Subjected to Column Loads of Lightweight-Reinforced
Concrete Structures

Mohamed H. Abu-Ali 1,*, Basuony El-Garhy 1, Ahmed Boraey 1, Wael S. Alrashed 1, Mostafa El-Shami 2,

Hassan Abdel-Daiem 3 and Badrelden Alrefahi 1

1 Department of Civil Engineering, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
belgarhy@ut.edu.sa (B.E.-G.); a.boraey@ut.edu.sa (A.B.); walrashed@ut.edu.sa (W.S.A.)

2 Department of Civil Engineering, Faculty of Engineering, Menoufia University, Shibin El-Kom 32511, Egypt;
mostafa.el-shami@protonmail.com

3 Department of Electrical Engineering, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
habdaldaiem@ut.edu.sa

* Correspondence: mabuali@ut.edu.sa

Abstract: An approach to estimate the behavior of stiffened rafts under column loads of a lightweight-
reinforced concrete structure resting on expansive soils is presented in this paper. The analysis was
conducted using the computer program SLAB97, which estimates the 3D distorted mound shape
using the finite difference method by solving the transient suction diffusion equation in 3D and
computing the corresponding soil movements. The interaction between the stiffened rafts and the
3D distorted mound shape is then analyzed using the finite element method. The SLAB97 program
has been validated by comparing its results with the results of others that were shown to be valid.
The goal of the study is to make the expansive soil structure interaction models that the previous
researchers proposed more logical. Assuming the worst initial 3D distorted mound shapes of the
two cases of edge heave and edge shrinkage, an upper-bound solution is obtained. Using the two
scenarios of edge shrinkage and edge heave, the program was utilized in a parametric investigation
to examine the impact of various parameters on the behavior of stiffened rafts on expansive soils.
These parameters include the stiffening beam depth, the maximum differential movement of the
distortion mound shape, and the raft dimensions. The behavior of the stiffened rafts subjected
to concentrated column loads is concluded to be similar to that of the stiffened rafts subjected to
uniform and perimeter line loads in both cases of distortion modes, with regard to the shape of raft
deformation and distribution of the bending moments; however, the values of the design parameters
such as maximum deflection, maximum differential deflection, and maximum moments are entirely
different in these two situations.

Keywords: stiffened rafts; expansive soils; suction diffusion equation; lightweight-reinforced concrete
structure; edge shrinkage; edge heave; distorted mound shape

1. Introduction

As is well known, the unsaturated expansive soils undergo movements (shrinkage
or heave) in response to the changes in their moisture content (i.e., soil suction). The soil
heaves and shrinks as its moisture content increases and decreases. The shrinkage or
heave in expansive soils causes distortions in structures constructed over them, especially
lightweight structures such as low to medium-rise buildings, commercial buildings, schools,
hospitals, mosques, swimming pools, and rigid and flexible pavements. The changes in the
soil suction may be caused by rainfall and evaporation, lawn irrigation, leaking from water
or sewage pipelines, large trees, and raising or lowering in the groundwater table.

Lightweight structures constructed on expansive soils are frequently subjected to
severe movements (shrink or heave) arising from non-uniform soil moisture changes,
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with consequent cracking and damage related to the distortion. The damage caused by
expansive soils can range from minor cracking in walls and sidewalks to major cracking in
the structural elements of the structures. Damage to lightweight structures constructed on
expansive soils has been widely reported in many countries of the world [1,2]. In the United
States alone, the annual loss due to structural damage caused by expansive soils exceeds
that caused by earthquakes, hurricanes, and floods combined [3]. According to Krohn
and Slosson [4], the annual cost of expansive soil damage in the United States exceeded
$7.0 billion. In Australia, expansive soils cause structural cracks in nearly 50,000 houses
each year [5]. According to Dafalla et al. [6], Saudi Arabia’s expansive soils are believed to
have caused economic losses in the hundreds of millions of US dollars.

Expansive soil is found in many parts of the world; however, the problems usually
appear in the areas of semi-arid, arid, and severely arid climates such as Egypt and Saudi
Arabia [7,8]. Only 41 years ago, Erol and Dhowian [9] conducted research on the swell and
shrinkage behavior of active Madinash clays, which led to the discovery of expansive soil in
Saudi Arabia. For the long-term monitoring of changes in soil suction and the consequent
volume changes (shrink/heave) in expansive soil, Dhowian et al. [10] set up a primary
field station in Al-Ghatt town in Saudi Arabia. Ruwaih [11] and Abduljauwad et al. [12]
revealed the sites in Saudi Arabia where expansive soils have been discovered. Since there
has been a growth in urban development in Saudi Arabia since 1998, it is expected that
the expansive soils will be discovered in other areas of the country. For this reason, it is
crucial for researchers and civil engineers to update the extensive soil presence places in
Saudi Arabia.

Several scholars (e.g., [13–18]) have reported on the features of the expansive soils in
various parts of KSA. Sabtan [19] and Dafalla and Al-Shamrani [18] reported the subsurface
conditions and the geotechnical properties of the expansive soils in Tabuk City. Abdul-
jauwad [16] reported the swelling properties of the expansive soils for different locations
in the Eastern Province of Saudi Arabia. Abduljauwad and Ahmed [14] reported case
histories in the Eastern Province of Saudi Arabia, including the residential district north of
AI-Mubarraz city in the AI Hassa area and the A1-Qatif housing project.

The types of damage observed in structures constructed on expansive soils in Saudia
Arabia include serious cracks, tilting, twisting, and sticking doors and windows [15,20]. The
authors observed damage in a number of private and government lightweight structures in
the Al Masif district of Tabuk City. Examples of the observed damage are shown in Figure 1.
These cracks occurred shortly after the initial use of the structures as a result of moisture
migration into the expansive soils.

Soil movements and improper foundation system selection and design are the causes
of these cracks. Nelson et al. [2] state that grade beams on drilled piers, stiffened strip
footing, and stiffened rafts are foundation systems that have been used successfully with
expansive soils.

The performance and construction cost of lightweight structures built on expansive soil
are influenced by the choice of foundation system, and the determination and categorization
of the expansive soil, as well as the superstructure loads, are necessary factors for the
proper foundation system selection [21]. Nelson et al. [2] reported the variables that affect
how structures are designed on expansive soils, as well as the design options available to
builders: (1) building the structure to withstand expansion-related movements and/or swell
pressures; (2) treating the expansive soil or managing the supporting soil’s environment by
taking preventative measures to reduce the movements; (3) combining the two options.

Designing the structure to be stiff enough to accommodate soil movements is one way
to reduce damage for structures built on expansive soil [2,22,23]. Stiffened rafts and strip
footings and inverted T sections are the two foundation systems that are successfully used
in various countries around the world (i.e., United States, Australia, South Africa, Saudia
Arabia, and Egypt) to reduce or eliminate the damage of lightweight structures constructed
on expansive soils [2,21,23–25]. Given Saudi Arabia’s Vision-2030, urbanization is growing
quickly, which makes it more likely that lightweight structures can be built on expansive
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soils in various parts of the country. This demonstrates the critical need for useful advice to
assist civil engineers in minimizing or removing potential issues and damage to lightweight
structures built on expansive soils, thereby lowering the loss of millions of dollars.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1. Examples of damage in lightweight structures constructed on expansive soils: (a) Cracks in a
wall (Private building in Al Masif, Tabuk, Saudia Arabia), (b) Cracks in a ground beam (Government
building in Al Masif, Tabuk, Saudia Arabia), (c) Cracks in a wall (Government building in Al
Masif, Tabuk, Saudia Arabia), (d) Cracks in a column (Government building in Al Masif, Tabuk,
Saudia Arabia).

Two primary items are presented in this study: Using the two scenarios of edge
shrinkage, ES, and edge heave, EH, the program was utilized in a parametric investigation
to examine the effect of various parameters on the behavior of stiffened rafts on expansive
soils. Some of these parameters include the stiffening beam depth, the raft dimensions, and
the mound shape’s maximum differential movement. The three-story lightweight structure
is made of reinforced concrete, which includes slabs, beams, columns, and a stiffened raft.

2. Analysis Method

2.1. Limitations in Existing Design Methods

Many design approaches have been documented and discussed in the literature for
the design of a stiffened raft resting on expansive soils (e.g., [23,25–31]). Every one of the
current design approaches has certain shortcomings that the new approach should address.
The following limitations have been the subject of numerous studies (e.g., [23,32–34]).

The main flaw is that they require an estimate of the initial distorted mound shape
and assume that the interaction is between the raft and an already-distorted mound shape.
Mitchell [33] has noted that one of the key factors influencing the analysis of raft foundations
resting on expansive soils in all of the design methods is the initial distorted mound shape.
The mound exponent, m, the maximum differential movements, ym, and the edge moisture
variation distance, em, determine the initial distorted mound shape. One of the main issues
is thought to be determining the em reliably. Additionally, estimating the initial distorted
mound shape has the drawback of not accounting for the soil movements that result from
various edge effects, such as ponded water, tree roots, and climate.

The current design methodologies made use of three different kinds of supporting
soil models, including a rigid model (1), a Winkler and coupled spring model (2), and an
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elastic continuum model (3). Because of the soil’s compressibility, the stiff model used by
the BRAB method did not permit any decrease in the edge moisture variation distance,
leading to extremely conservative structural design parameters. The soil was represented
by independent springs in the Winkler model, each of which had a stiffness known as the
modulus of subgrade reaction. According to Winkler’s theory, the vertical displacement at
a given point in the foundation is proportional to the contact pressure there. The primary
limitation of the Winkler model is its inability to account for the soil’s shearing resistance.
The coupled spring model captures the soil’s behavior in the absence of lateral displacement
quite accurately. The model that best captures the behavior of the soil is thought to be the
elastic continuum model [32].

The concentrated loads from columns are disregarded, and only two forms of struc-
tural loads (i.e., uniformly distributed loads and perimeter line loads) were taken into
account by any of the approaches. Put another way, every design technique currently in
use is appropriate for wall-bearing structures but inappropriate for use with reinforced
concrete structures made up of slabs, beams, and columns.

A few of the current techniques were created for one-story residential buildings
(e.g., [23]).

The majority of the design techniques currently in use ignored the third direction and
instead focused on the interaction between the distorted mound shape and the stiffened
raft in two dimensions. Put differently; they treat the raft similarly to a beam on an elastic
foundation or a strip footing.

Pidgeon [35] advises using all of the current design methodologies with caution
in areas other than their original development. The present study employs a design
methodology that seeks to enhance the rationality of previous design approaches and to be
suitable for the design of the stiffened raft under reinforced concrete, lightweight structures
that are constructed on expansive soils in Saudi Arabia.

2.2. Computer Program SLAB97

A program named SLAB97 has been developed by the second author and his col-
leagues to analyze the stiffened raft–expansive soil interaction. The program is able to
estimate the behavior of stiffened rafts subjected to concentrated column loads and resting
on expansive soils. SLAB97 takes into account two problems that are solved separately:
(1) analysis of the interactions between the stiffened raft and the 3D distorted mound
shapes as a result of the soil movements and (2) 3D moisture movement (i.e., changes in soil
suction) in the expansive soil underneath a flexible cover such as a raft and the associated
soil movements. Since the vertical stress beneath the raft affects moisture movements in
the supporting expansive soil, the analysis of these two problems actually had an impact
on each other. The movements in the expansive soils beneath the stiffened raft or the
outcome of the initial issue determine the structural analysis of the structure. To simplify
computation, every issue is resolved independently. SLAB97 coupling between the finite el-
ement model was used to solve the second problem, and the 3D moisture diffusion and soil
movements model was used to solve the first problem. A number of papers [24,36–38] have
described and validated the two models. For background information, a brief description
of the SLAB97 program is provided below.

The finite difference method, FDM, in the SLAB97 program, was used to solve the
3D suction diffusion equation, and the finite element method, FEM, which is based on the
classical theory of thin plate on elastic half-space, was used to solve the stiffened raft–3D
distorted mound shape interaction. Mitchell [39] developed the 3D suction diffusion
equation, and Wray’s model [40] served as the basis for the computation of soil movements,
such as shrinkage or heave.

As illustrated in Figure 2, the raft and soil mass are discretized and represented as a
grid of nodes. According to El-Garhy [41] and Abu Ali et al. [42], the size of the modeled
soil mass beneath the stiffened raft is taken to be greater than the size of the raft by B/4
from each side. The advantage of symmetry can be considered in SLAB97 to spare time.
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In the present study, for the solution of the 3D transient suction diffusion equation, the
boundary conditions at the soil surface, outside the domain of the raft, are taken equal to
(ψe + ψ0) and beneath the raft as well as at the end of the active zone is considered equal to
ψe as shown in Figure 2. Whereas, at the corners of the soil mass and its sides (i.e., x − z
and y − z planes), the boundary values of soil suction are obtained by solving the transient
suction diffusion equation in 1D and 2D under the boundary conditions of (ψe + ψ0) at the
top and ψe at the bottom, respectively.

Figure 2. The discretization of the raft and the underneath soil mass for the SLAB97 program.

Some of the drawbacks of the current design methods are addressed by the program
SLAB97. These include (1) predicting the response of the stiffened raft to changes in
the climatic boundary conditions simply by stating the initial soil suction conditions
in the soil mass; (2) taking into account the interaction between the stiffened raft and
the distorted mound shape in three dimensions; (3) avoiding the need to prescribe the
maximum differential movement and edge moisture variation distance as input values, as
well as the locations of the points not in contact between the raft and the subgrade and the
gap at these points. It does, however, necessitate estimating the worst-case scenario for the
climatic boundary conditions, which could result in the worst possible distribution of soil
suction throughout the expansive soil mass beneath the stiffened raft over the course of
its lifetime.

SLAB97 is capable of estimating the 3D initial distorted mound shapes in addition
to determining the maximum and minimum values of deflections, shears, and moments
required for structural design, as well as the values induced in the stiffened raft. One of
the benefits of the SLAB97 program’s analysis of stiffened rafts is that it considers all of
the variables that could influence the outcome, such as (1) load factors, (2) soil factors,
(3) stiffened raft factors, and (4) climatic factors. The 3D initial distorted mound shape is
produced by the interaction of the climatic and soil factors, and the deflections and internal
forces induced in the stiffened raft are produced by the interaction of the stiffened raft and
the initial distorted mound shape.

Validation of the Program SLAB97

El-Garhy et al. [36] reported the validation of the program SLAB97 against field
measurements by comparing its results with the measured displacements of an actual raft
resting on expansive soils at Sunshine, Melbourne, Australia. by Holland et al. [29]. In
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addition to previous validation, the problem of rafts resting on expansive soil has been
solved by Shams et al. [43] resolved by SLAB97, and the results are compared for the
purpose of more program validation. Shams et al. (2018) solved the raft problem by two
different methods (i.e., ABAQUS program and AS2870-2011 [44]) for the two cases of ES
and EH. The raft is of dimensions 20 m × 20 m and rests on a 4 m expansive soil layer.
The thickness of the raft is 55 cm in the case of ES and 90 cm in the case of EH. The raft is
subjected to a uniformly distributed load of 6.5 kPa plus its own weight and a perimeter
line load of 10 kN/m. The elasticity modulus and Poisson’s ratios of the raft and the
expansive soil are 2.1 × 104 MPa, 0.16 and 80 MPa, 0.30, respectively.

The SLAB97 program’s input parameters are chosen to generate a mound heave value
that is similar to the mound heave employed by Shams et al. [43] in order to facilitate
appropriate comparison. The values of the equilibrium soil suction, the amplitude of
surface suction change, the diffusion coefficient of the soil, and the suction compression
index of 2.0 pF, 4.0 pF 0.08 m2/day, and 0.0215, respectively, are used in the present analysis
for the two cases of ES and EH. The SLAB97 program analyzes a 20 m × 20 m raft that is
resting on an expansive soil mass with dimensions of 30 m × 30 m × 4 m. Only a quarter
of the raft and the supporting soil mass are taken into account because of symmetry about
the x and y axes.

Figures 3–6 show comparisons among the results of the SLAB97 program, ABAQUS
program, and AS2870-2011 method. For the cases of ES, an excellent comparison is obtained
between the distorted surface movements along the x axis of the SLAB97 program and
the AS2870-2011 method, whereas the maximum differential movement of the SLAB97
program is greater than that of the ABAQUS program, as shown in Figure 3. The predicted
deflection at the center of the raft by the SLAB97 program is slightly greater than the
deflections predicted by the ABAQUS program and AS2870-2011 method, whereas, at the
mid-edge point of the raft, the deflection of SLAB97 is equal to the deflection of the AS2870-
2011 method and slightly smaller than the deflection of the ABAQUS program as shown in
Figure 3. The predicted differential deflection along the x-axis by the SLAB97 program (i.e.,
15.63 mm) is smaller than the differential deflections predicted by the ABAQUS program
and AS2870-2011 method by about 18.4% and 53.6%, respectively. The maximum bending
moment along the x-axis predicted by the SLAB97 program (i.e., 205.2 kN·m/m) is greater
than that predicted by the ABAQUS program and AS2870-2011 method by about 13.3%
and its location at 4 m from raft edge whereas, the location of the maximum moments of
the other two methods at 5 m from the edge of the raft as shown in Figure 4.

For the case EH, the difference in the distorted surface mound shapes of the three
methods is clear; however, the maximum differential movement is approximately equal,
as shown in Figure 5. The predicted maximum deflection at the raft center by the SLAB97
program (i.e., 26.41 mm) is greater than the deflections predicted by the ABAQUS program
and AS2870-2011 method by about 35.3% and 26.5%, respectively. However, the predicted
differential deflection along the x-axis by the SLAB97 program (i.e., 16.79 mm) is slightly
smaller than the differential deflection predicted by the ABAQUS program (i.e., 17.1 mm)
and smaller than that predicted by the AS2870-2011 method by about 15.5% as shown in
Figure 5. The maximum bending moment at the center of the raft predicted by the SLAB97
program (i.e., 578.6 kN·m/m) is slightly greater than that predicted by the ABAQUS
program and AS2870-2011 method by about 11.5% and 8.96%, respectively, as shown in
Figure 6.
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Figure 3. Comparisons between SLAB97 results and others for the surface mound shape and raft
deflection (case of ES).

 

Figure 4. Comparisons between SLAB97 results and others for bending moments (case of ES).
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Figure 5. Comparisons between SLAB97 results and others for the surface mound shape and raft
deflection (case of EH).

 
Figure 6. Comparisons between SLAB97 results and others for bending moments (case of EH).

3. Parametric Study

A parametric study is conducted using the SLAB97 program to examine the impact of
different parameters on the stiffened rafts’ behavior when they are built on expansive soils.
These parameters are the raft’s dimensions, L/B, the maximum differential movement of
the mound shapes, ym, and the depth of the stiffening beam d.

The following input parameters must be known at any site in order to use the SLAB97
program to calculate the structural design parameters (i.e., deflections, shears, and mo-
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ments) of a stiffened raft resting on expansive soil: the equilibrium soil suction, ψe, the
diffusion coefficient, α, the suction compression index, SCI, the amplitude of the surface
suction change, ψo, and the depth of the active zone, Za, are the four initial parameters.
Additionally, it is important to know the initial values of soil suctions in the expansive soil
as well as the worst predicted weather scenarios that could result in the worst variations
in soil suctions through the expansive soil beneath the raft over the course of its lifetime.
Abu-Ali et al. [42] developed a rational procedure for estimating the climate-controlled soil
parameters (i.e., α, ψo, Za, SCI, and ψo) from the results of routine geotechnical tests. They
used their procedure and estimated the climate-controlled soil parameters for expansive
soils at various locations in the KSA.

In this study, an equilibrium suction condition beneath the raft followed by a four-
month dry spell (i.e., extended draught) to simulate the distortion mode of ES, and an
equilibrium suction condition in the soil mass underneath the raft followed by a four-month
wet spell (i.e., extended wet) to simulate the distortion mode of EH [3,38]. For the two
instances of distortion modes with maximum differential movements, ym, covering the soil
classes taken into consideration in the Australian standard [44], it was found that a period
of four months was sufficient to predict the distribution of wet and dry suction through the
soil mass.

One of the climate-controlled parameters affecting the distorted mound shapes (i.e.,
the diffusion coefficient) is changed. In contrast, the other parameters are left unchanged
to minimize the parameters affecting the analysis of the interaction between the stiffened
rafts and the distorted mound shapes.

Because there are no measurements for the maximum differential movements, ym, due
to climatic changes at all locations of Saudia Arabia, and since the climatic conditions in
the KSA are very close to the climatic conditions in large areas of Australia, the diffusion
coefficient is changed to produce mound shapes of maximum differential movements,
ym, covering the soil classes (i.e., slightly reactive to extremely reactive) considered in the
Australian standard [44]. The values of the climate-controlled parameters considered in the
parametric study are selected to cover the range of those parameters in the different KSA
locations, as shown in Table 1.

Table 1. Range of the parametric study’s parameters.

Za
(m)

ψe

pF

(kPa)

ψo

pF

(kPa)
SCI α

(m2/Day)

Raft Size
B×L

(m×m)
Aspect Ratio

(L/B)

Stiffening Beam Depth
(m)

5.0 4.0 (1000) 2.0
(10) 0.02

0.00144
0.00432
0.0104
0.0200
0.0360

8 × 8
12 × 16
16 × 28
20 × 40

1.00
1.33
1.75
2.00

0.30
0.60
0.90
1.20
1.50

The site classes recommended by the Australian standard [44] along with the values
of the ym considered in the parametric study for different rafts are shown in Table 2. As
recommended by [44], the ym = 0.7 ys for footing design.

The modulus of elasticity of the soil, Es, is taken at 60 MPa and 20 MPa for ES and EH,
respectively, and its Poisson ratio is 0.4. The creep modulus of elasticity and Poisson’s ratio
of the raft are 12,000 MPa and 0.15, respectively. The raft thickness and stiffening beams
width and spacing are kept constant and equal to 0.15 m, 0.30 m, and 4 m, respectively. The
stiffening beam depth varies and includes the slab thickness.

The most common type of construction in the KSA is reinforced concrete structures,
which consist of slabs, beams, columns, and footings. This study concerns the lightweight-
reinforced concrete structures (e.g., Villas) consisting of three stories, which are usually
susceptible to expansive soil problems. Unlike most of the previous studies, two types of
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loads are considered in the present study. These are column loads and a uniform distributed
load representing the weight of the raft, the flooring, and the live loads.

Table 2. Site classes according to [44], along with the ym values considered in the parametric study.

Site Classes According to AS2870-2011 [44] Values of the ym Considered in the Parametric Study (mm)

Class Site classification
ys

(mm )
Raft size (m × m )

8 × 8 12 × 16 16 × 28 20 × 40

S Slightly reactive 0 < ys ≤ 20 20.14 20.52 20.52 20.52

M Moderately reactive 20 < ys ≤ 40 31.37 32.88 32.88 32.88

H1 Highly reactive 40 < ys ≤ 60 45.60 48.52 48.52 48.51

H2 Highly reactive 60 < ys ≤ 75 58.54 63.68 63.76 63.75

E Extremely reactive ys > 75 67.92 76.77 77.32 77.37

The columns’ loads are calculated by the approximate tributary area method [45] based
on an equivalent uniform load (i.e., dead load and live load) for each story = 11.63 kN/m2.
Figure 7 shows the dimensions of the studied stiffened rafts along with the columns’ loads,
columns dimensions, and spacing of stiffening beams.

The equivalent moment of inertia, Ieq, is used in the SLAB97 program to calculate the
equivalent rigidity of the stiffened raft.

Ieq =
√

I2
x + I2

y (1)

where Ix and Iy are the moments of inertia per unit width of stiffened raft cross-section in x
and y directions

To determine the equivalent thickness of the raft, the equivalent rigidity is equated to
the rigidity of the constant raft thickness as follows.

heq = 3
√

12(1 − υ2
r )Ieq (2)

 

(a) (b) 

Figure 7. Cont.
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(c) (d) 

Figure 7. Dimensions and loads of the studied rafts: (a) raft size 8 m × 8 m, (b) raft size 12 m × 16 m,
(c) raft size 16 m × 28 m, (d) raft size 20 m × 40 m.

4. Analysis of Results

The obtained results from the parametric study are used to investigate the effect of
stiffening beam depth, the maximum differential movement of mound shape, and the raft
dimensions represented by the aspect ratio, L/B, on the distribution of deflections and
bending moments along the x and y axes. For space limitations, only the results of rafts of
sizes 8 m × 8 m and 16 m × 28 m are presented here.

4.1. Effect of the Stiffening Beam Depth

The effect of the stiffening beam depth on the distribution of deflections and bending
moments induced in the stiffened raft along the x and y axes for the rafts (i.e., 8 m × 8 m
and 16 m × 28 m) at the maximum ym shown in Table 2 (i.e., 67.92 mm and 77.32 mm) for
two distortion modes of ES and EH are presented and discussed in this section.

For the case of ES, Figures 8–11 show the effect of beam depth on the deflections,
bending moments, and the initial surface movements along the x and y axes for rafts of
sizes 8 m × 8 m and 16 m × 28 m. As illustrated in these Figures, it is observed that:
(1) The total and differential deflections (differential deflection is the difference between
the deflections at the center of the raft and the mid-edge points on the x or y axes) decrease
as the beam depth increases, (2) the length of the unsupported raft, Lur (i.e., the distance
inward from the edge of the raft to the point of separation between soil and raft) decreases
as the beam depth increases in the x and y axes because of an increase in the raft deflections
as a result of decreasing the beam depth (e.g., at the beam depths of 0.6, 0.9, and 1.2 m, the
lengths of the unsupported raft are 0.80, 0.92, and 1.2 m for raft size 8 m × 8 m as shown in
Figure 8 whereas, those lengths are 0.0, 0.88, and 0.96 m in the x direction and 0.84, 0.98, and
1.06 m in the y direction for raft size 16 m × 28 m as shown in Figure 10), (3) The distance
from the edge of the raft to the point of separation between soil and raft, Lur, is smaller
than the distance from the edge of the raft to the point of the maximum moment in the two
directions (e.g., at the beam depths of 0.6, 0.9, and 1.2 m, the lengths of Lur are 0.84, 0.98,
and 1.06 m for raft size 16 m × 28 min the y direction whereas the distance to the points of
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maximum moments are 2.0, 2.3, and 5.0 m, respectively, as shown in Figure 11). A similar
observation has been reported by Briaud et al. (2016) from the analysis of a stiffened raft
on expansive soil subjected to uniform and perimeter line loads using ABAQUS software
and they referred to the reason as that overhanging raft (i.e., raft on a dome shape mound)
does not behave as a pure cantilever, (4) The distance from the raft edge to the points of
maximum moments in the two directions increases as the beam depth increases (e.g., at
beam depths of 0.6, 0.9, and 1.2 m, the distances to the points of maximum moments are
2.5, 3.0, and 3.5 m in x and y directions for raft size 8 m × 8 m as shown in Figure 9 and for
raft size 16 m × 28 m the distances to the points of maximum moments are 1.0, 2.0, and 3.0
m in x direction and 3.0, 3.3, and 4.0 m in the y direction and as shown Figure 11), and (5)
the bending moments induced in all stiffened rafts are negative moments because of the
dome shape of the distorted mound and the bending moments along the x or y axes are
not taken the same trends in some cases as shown in Figures 9 and 11 and this is may be
due to the difference in the final contact area between the stiffened rafts and the distorted
mound of expansive soils in the two directions and the columns concentrated loads.

 x/B                       y/L
 

Figure 8. Effect of beam depth on the deflection along with the initial surface movement through the
x and y axes for raft size 8 m × 8 m (case of ES).

For the case of EH, Figures 12–15 show the effect of beam depth on the distribution of
deflections and bending moments along the x and y axes for rafts of sizes 8 m × 8 m and
16 m × 28 m. Referring to these Figures, it is shown that (1) generally, total and differential
deflections decrease as the beam depth increases, and (2) two types of soil supports are
observed; these are simply support conditions and multiple support conditions. For raft
size 8 m × 8 m at beam depths of 0.6, 0.9, 1.2, and 1.5 m simply support occurs, and the raft
behaves as a slab supported at its edges whereas, at beam depth of 0.3 m, multiple supports
(i.e., support at the raft perimeter and support at the raft core area) are occurred as shown
in Figure 12. For raft size 16 m × 28 m full contact occurs between the raft and soil in the x
direction for all beam depths, whereas, in the y direction, full contact occurs except for cases
of beam depths of 1.2 m and 1.5 m as shown in Figure 14. This explains the difference in the
trends of the bending moments along the x or y axes, as shown in Figures 13 and 15. The
two types of soil supports are observed by Shams et al. [23] from the analysis of stiffened
rafts of single-story building subjected to a uniform load and a perimeter line load using
ABAQUS software, (3) for raft size 8 m × 8 m because of the simple soil support condition,
at beam depths of 0.6, 0.9, 1.2, and 1.5 m, the maximum moments occurred at the center
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of the raft and the moments taken the same trends except for the beam depth of 0.3 m the
moments shows a different trend because of multiple soil support condition as shown in
Figure 12 while, for raft size 16 m × 28 m, at all beam depths, the maximum moments
occurred near the raft edges and shows similar trends in both x and y direction as shown
in Figure 15 and this is attributable to the full contact between the rafts and soil, at all
beam depths, because of the heavy interior columns loads, (4) for raft size 16 m × 28 m,
the distance inward from raft edge to the point of maximum moment along the x or y axes
increases as the beam depth increases as shown in Figure 15, (5) the moments induced in
the rafts are positive moments due to the dish shape of the distorted mound.

 x/B                       y/L
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Figure 9. Effect of beam depth on the Mx and My through the x and y axes for raft size 8 m × 8 m
(case of ES).

 x/B                       y/L
 

Figure 10. Effect of beam depth on the deflection along with the initial surface movement through
the x and y axes for raft size 16 m × 28 m (case of ES).
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Figure 11. Effect of beam depth on the Mx and My through the x and y axes for raft size 16 m × 28 m
(case of ES).

 x/B                       y/L
 

Figure 12. Effect of beam depth on the deflection along with the initial surface movement through
the x and y axes for raft size 8 m × 8 m (case of EH).

The absolute values of maximum deflections and maximum bending moments along
the x and y axes for the case of EH are greater than those in the case of ES for all the studied
rafts except for raft size 8 m × 8 m, and this is attributable to two reasons: (1) the soil
stiffness in case of EH is smaller than that in case of ES (i.e., Es = 20 MPa in case of EH
and equal to 60 MPa in case of ES) and (2) there is one interior column in case of raft size
8 m × 8 m and the rest of the columns on the raft perimeter that supported on the soil in
the case of EH.

109



Buildings 2024, 14, 588

 x/B                       y/L

M
x

M
y

 
Figure 13. Effect of beam depth on the Mx and My through the x and y axes for raft size 8 m × 8 m
(case of EH).

 x/B                       y/L
 

Figure 14. Effect of beam depth on the deflection along with the initial surface movement through
the x and y axes for raft size 16 m × 28 m (case of EH).
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Figure 15. Effect of beam depth on the Mx and My through the x and y axes for raft size 16 m × 28 m
(case of EH).

4.2. Effect of the Differential Movement of Mound Shape

The effect of the differential movements of mound shape, ym, on the deflections
and bending moments induced in the stiffened raft along the x and y axes, rafts of sizes
8 m × 8 m and 16 m × 28 m at beam depth of 1.2 m are presented and discussed.

For the case of ES, Figures 16–19 show the effect of the ym on the deflections and
bending moments along the x and y axes for rafts of sizes 8 m × 8 m and 16 m × 28 m. The
deflections, differential deflections, and bending moments along the x and y axes increase
as the ym increases as shown in Figures 16–19, except for raft size 8 m × 8 m, the maximum
differential deflections along the x and y axes at ym = 58.54 mm is slightly greater than that
at ym = 67.92 mm by about 11.45%, and therefore, the maximum bending moments along
the x and y axes at ym = 58.54 mm is slightly greater than the maximum bending moments
at ym = 67.92 mm by about 7.7%, and this may be attributable to the maximum number of
iterations (i.e., 10) considered by the program to achieve convergence, in other words, at
ym = 67.92 mm, the convergence condition may need iterations greater than 10, and this
is considered a rare case. Also, from a loading point of view, a raft of size 8 m × 8 m is
considered a special case because the columns’ loads located on the perimeter of the raft
represent 66.7% of building loads, and the load of the interior column represents 33.3% of
the building loads unlike raft of size 16 m × 28 m the interior columns’ loads represent
64.3% from the building loads and the columns’ loads located on the perimeter of the raft
represent a 35.7%. The distance inward from the raft edge to the point of maximum bending
moment increases as the ym increases as shown in Figures 17 and 19 (e.g., for raft size
8 m × 8 m, the distances from the raft edge to the points of maximum bending moments at
the values of the ym = 37.37 mm and 58.54 mm are 2.5 m and 3.0 m, respectively, and for
raft size 16 m × 28 m, these distances along the y axis are 2.0 m and 5.0 m at the values of
the ym = 32.88 mm and 63.76 mm, respectively).

For the case of EH, Figures 20–23 show the effect of the ym on the deflections and
bending moments along the x and y axes for rafts of sizes 8 m × 8 m and 16 m × 28 m. For
raft size 8 m × 8 m, the deflections, differential deflections, and bending moments along the
x and y axes are the same at all values of the ym as shown in Figures 20 and 21, and this is
because the raft behaves as a simply supported plate at all values of the ym because of three
reasons: the high stiffness of the raft as the beam depth was 120 mm, the shortened length
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of the raft, and all the column loads located on the perimeter of the raft except one interior
column load acting at the raft center. Whereas, for raft size 16 m × 28 m, the deflections,
differential deflections, and bending moments along the x and y axes increase as the ym
increases, as shown in Figures 22 and 23. The distance inward from the raft edge to the
point of maximum bending moment along the x and y axes are the same and equal to 2.0 m
for all values of ym except for the value of ym = 76.33 mm. This distance along the y axis
was increased to 2.5 m as shown in Figure 23.

 x/B                       y/L
 

Figure 16. Effect of differential movement on the deflection through the x and y axes for raft size
8 m × 8 m (case of ES).
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Figure 17. Effect of differential movement on the bending moments through the x and y axes for raft
size 8 m × 8 m (case of ES).
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Figure 18. Effect of differential movement on the deflection through the x and y axes for raft size
16 m × 28 m (case of ES).
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Figure 19. Effect of differential movement on the bending moments through the x and y axes for raft
size 16 m × 28 m (case of ES).
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Figure 20. Effect of differential movement on the deflection through the x and y axes for raft size
8 m × 8 m (case of EH).
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Figure 21. Effect of differential movement on the bending moments through the x and y axes for raft
size 8 m × 8 m (case of EH).

114



Buildings 2024, 14, 588

 x/B                       y/L
 

Figure 22. Effect of differential movement on the deflection through the x and y axes for raft size
16 m × 28 m (case of EH).
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Figure 23. Effect of differential movement on the bending moments through the x and y axes for raft
size 16 m × 28 m (case of EH).

4.3. Effect of Raft Dimensions

Figures 24–27 show the effect of raft dimension represented by the aspect ratio, L/B,
on the deflections and bending moments induced in the raft along the x and y axes for all
studied rafts at a diffusion coefficient of 0.036 m2/day and stiffening beam depth of 1.2
m for the two cases of ES and EH. The deflections and maximum deflection along the x
and y axes increase as the L/B ratio increases for the two cases of ES and EH, as shown in
Figures 24 and 26. For the case of ES, the maximum bending moments along the x and y
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axes increase as the L/B ratio increases, as shown in Figure 25. The distance from the raft
edge to the point of maximum moments that occurred along the x and y axes decreases as
the L/B ratio increases for the two cases of ES and EH, as shown in Figures 25 and 27.

 x/B                       y/L

L/B
L/B
L/B
L/B

 
Figure 24. Effect of raft dimensions on the deflections through the x and y axes (case of ES).
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Figure 25. Effect of raft dimensions on the bending moments through the x and y axes (case of ES).

Not shown in this paper but discovered in the overall analysis is that for the studied
rafts (i.e., 12 m × 16 m and 20 m × 40 m), the distribution of deflections and bending
moments along the x and y axes are similar to that of raft size 16 m × 28 m with some small
differences according to the condition of soil supports, the columns’ loads, and the raft
dimensions of each raft in both cases of ES and EH.
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Figure 26. Effect of raft dimensions on the deflections through the x and y axes (case of EH).
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Figure 27. Effect of raft dimensions on the bending moments through the x and y axes (case of EH).

5. Conclusions

The behavior of stiffened rafts subjected to concentrated column loads and resting on
expansive soils is calculated using a finite element program named SLAB97. The program
can calculate the 3D distorted mound shape and examine how the stiffened raft interacts
with the 3D distorted mound shape. The goal of the analysis technique presented in
this work is to increase the earlier researchers’ soil–raft interaction models’ rationality.
For both edge shrinkage and edge heave scenarios, the worst initial 3D distorted mound
shapes are assumed to yield an upper-bound solution. The program has been validated by
comparing its results with the results of others and shows good agreement. A parametric
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investigation is carried out by the program to study the impact of different parameters (i.e.,
the stiffening beam depth, the maximum differential movement of the mound shape, and
the raft dimensions) on the behavior of stiffened rafts resting on expansive soils for the two
cases of edge shrinkage and edge heave.

The following are some of the conclusions from this study:

1. The stiffened rafts subjected to concentrated columns’ loads exhibit a similar shape
of raft deformation and distribution of bending moments to those of the stiffened
rafts subjected to uniform and perimeter line loads in both cases of distortion modes;
however, the values of the design parameters (i.e., maximum deflection, maximum
differential deflection, and maximum bending moments) are completely different.

2. For the case of EH distortion mode, two conditions of soil support were observed;
these are simply-support condition and multiple-supports condition (i.e., support at
the raft perimeter and support at the raft core area), depending on the stiffness of
the raft.

3. The maximum bending moments in long and short directions, in both distortion
modes, occur near the raft edge, and the distance from the raft edge to the locations of
maximum moments depends on the stiffening beam depth, the maximum differential
movement, and the aspect ratio of the raft.

4. The greatest amount of differential deflection was found to occur at the corner of
the raft, and its value is dependent on the stiffening beam depth, the maximum
differential movement, and the raft dimensions.

5. The stiffened raft components should be designed to withstand both negative mo-
ments and positive moments arising from both two distortion modes of ES and
EH, respectively.
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Abstract: To investigate the variation law of the wind-resistant performance of transmission towers
during their operation, this paper proposes an evaluation method for the wind resistance of the
transmission tower considering corrosion, and a 220-kV transmission tower is analyzed as an ex-
ample. Considering the uncertainty of the material and geometric parameters, the wind-induced
collapse of the transmission tower was analyzed, and the collapse wind speeds were obtained via
pushover and incremental dynamic analyses. In addition, the sensitivity of the transmission tower to
various parameters was analyzed. Based on the existing meteorological and corrosion data, corrosion
prediction models were established using a back-propagation (BP) artificial neural network, and
the mean relative error between the predicted and measured values of the test samples was 8.91%.
On this basis, the corrosion depth of the tower members in the four regions was predicted, and the
fragility of the transmission tower was analyzed considering the effects of corrosion and strong winds.
The results show that the collapse wind speed of the transmission tower is most significantly affected
by the thickness of the angle steel, followed by the elastic modulus and yield strength, and is less
affected by the width of the angle steel. When the exposure time was 25 years, the wind-resistant
performance of transmission towers in regions with severe acid rain and coastal industrial regions
decreased by 10% to 20%. With an increase in exposure time, the failure mode of the transmission
tower tended to be brittle failure.

Keywords: transmission tower; wind resistance; fragility analysis; BP artificial neural network; corrosion

1. Introduction

A transmission tower is a tall and flexible structure, and it is significantly affected by
wind load; therefore, wind load is very important in the structural design of transmission
towers [1]. Wind tunnel tests and numerical simulation methods are often used in the
research on the wind-resistant performance of transmission towers. Deng et al. [2] studied
the dynamic characteristics and wind-induced vibration response of a tower-line system
using wind-tunnel tests. Huang et al. [3] performed a numerical simulation and wind
tunnel test of a transmission tower and compared the results of the test and simulation
using the gust loading factors and gust response factors. The response and failure modes of
transmission towers can be effectively predicted using nonlinear finite element analysis [4,5].
Zhang and Xie [6] used nonlinear buckling and dynamic analyses to evaluate the ultimate
bearing capacity and vulnerable parts of a transmission tower. In the finite element analysis
of transmission towers, more accurate results can be obtained by considering the coupling
effects of the transmission tower and lines. Yasui et al. [7] simplified a transmission line as
a truss element and studied the wind-induced vibration responses of different transmission
towers. Battista et al. [8] calculated the response and stability of a transmission tower
through time-domain and frequency-domain analyses.

Transmission towers are often affected by uncertain factors during their operation;
therefore, it is more meaningful to evaluate the carrying capacity of transmission towers
using probability analysis. The fragility analysis method is widely used to study the seismic
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performance of structures. Yazdani et al. [9,10] evaluated the seismic performance of plain
concrete arch bridges under near-field and far-field earthquakes using an incremental
dynamic analysis method. Chen et al. [11] revealed the potential failure modes of concrete
gravity dams through incremental dynamic analysis. However, these studies only consid-
ered the randomness of seismic waves in their fragility analysis. So, Dolsek [12] conducted
incremental dynamic analyses on four-story reinforced concrete frame models considering
the uncertainty of the material properties. In recent studies, the probability analysis method
has been applied to evaluate the wind resistance performance of transmission towers.
Tian et al. [13] conducted fragility analysis of a transmission tower-line system considering
the uncertainty of the wind load. Pan et al. [14] analyzed the sensitivity of transmission
towers to earthquakes using the stripe analysis method. Fu et al. [15–18] conducted ex-
tensive research on the fragility analysis of transmission towers, proposed an uncertainty
analysis method, and observed that deterministic analysis overestimated the wind-resistant
performance of transmission towers; moreover, they confirmed that uncertainty analysis is
effective in predicting the failure mode of the structure and performed fragility analysis of
a transmission tower subjected to wind and rain loads. Based on the above research, we
think it is necessary to consider the uncertainty of structure parameters and wind loads
when conducting the fragility analysis of a transmission tower.

Research on the wind resistance of transmission towers has been conducted in-depth,
but most analyses of transmission towers do not consider the effect of corrosion. As trans-
mission towers are always in an outdoor atmospheric environment, they are vulnerable
to atmospheric corrosion [19]. Corrosion causes mass loss and weakens the mechanical
properties of steel [20,21], resulting in a decrease in the stability of the transmission tower.
Therefore, the effect of corrosion should be considered when analyzing the bearing capacity
of transmission towers. The degree of atmospheric corrosion of steel has a quantitative
relationship with environmental factors and the chemical composition of steel [22–24].
Therefore, the corrosion rate of steel can be predicted according to the measured data.
Zhi et al. [25] combined the nonlinear grey Bernoulli model with a genetic algorithm to
predict the atmospheric corrosion rate of carbon steels; however, in the field of corrosion
prediction, artificial neural network has broad application prospects. Song et al. [26] con-
structed four models to predict the corrosion rate of carbon steel in a dynamic atmospheric
corrosion environment. Mohammed et al. [27] predicted the corrosion rate of medium
carbon steel using an artificial neural network. In addition to the above research, the
artificial intelligence algorithm can also be applied to the sensitivity analysis of steel corro-
sion. Li et al. [28] combined the mean impact value algorithm and back-propagation (BP)
artificial neural network to evaluate the factors affecting the soil corrosion rate of Q235 steel.
Cai et al. [29] conducted a sensitivity analysis of steel under atmospheric corrosion using an
artificial neural network. Halama et al. [30] evaluated the effect of the SO2 concentration on
the atmospheric corrosion rate of carbon steel using an artificial neural network. Therefore,
we think that the corrosion of steel can be accurately predicted if appropriate influencing
factors can be selected.

Generally, strong winds are the main reason for the collapse of transmission towers,
and steel corrosion is a hidden danger that affects their stability. However, the existing
research did not give enough consideration to corrosion. Therefore, it is necessary to analyze
the wind-resistant performance of transmission towers considering corrosion. In this paper,
a method for evaluating the wind resistance of a transmission tower based on corrosion
prediction and fragility analysis is proposed for the first time, and an uncertainty analysis
of the collapse of a 220 kV transmission tower under the coupling effect of corrosion and
strong wind is performed, which provides a valuable reference for the wind-resistant
design of high-voltage transmission towers.

2. Probabilistic Evaluation Method for Wind Resistance of a Transmission Tower

The effect of corrosion on the wind resistance of transmission towers has not been
considered in most studies. Therefore, in this paper, a method is proposed to evaluate the
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wind performance of a transmission tower by considering the effect of corrosion. As shown
in Figure 1, the method is based on probability analysis and considers the uncertainty
of the structural parameters of the transmission tower. The evaluation method includes
three parts. First, after determining the probability distribution of parameters, a sensitivity
analysis of the transmission tower is performed to obtain the collapse wind speed range
of the structure and evaluate the impact of various parameters on the wind-resistant
performance of the transmission tower. Subsequently, the Latin hypercube sampling
method is used to sample each parameter, and the uncertainty models of the transmission
tower are established. The fragility curves of the collapse wind speed and tower top
displacement are obtained using pushover and incremental dynamic analyses, and the
distribution of initial failure members in the transmission tower is obtained using nonlinear
buckling analysis, which provides a comprehensive probabilistic assessment of the wind
resistance performance of the transmission tower in the initial state.

Figure 1. Proposed procedure of the wind resistance evaluation method for the transmission tower.

Based on the existing measured steel corrosion data, the corrosion depth prediction
models of steel are obtained using a BP artificial neural network, and corroded trans-
mission tower models are established. Combined with the above analysis methods, the
corresponding fragility surfaces are obtained, and the variation rules for the failure modes
and members of the transmission tower are identified. Based on the analysis results, the im-
pact of corrosion on the wind-resistant performance of the transmission tower is evaluated.

3. Sensitivity Analysis of the Tower-Line System under Wind Loads

3.1. Finite Element Model

A latticed 220 kV transmission tower was investigated in this study. The nominal
height was 30 m. The parameters of the conductor and the ground wire are listed in Table 1.
The horizontal span was 410 m. The tower members were composed of Q235 and Q345
angle steels. The segmentation of the tower and parameters of the main leg members are
shown in Figure 2.
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Table 1. Material parameters of the conductor and ground wire.

Parameters 2 × LGJ-400/35 JLB20A-150

Diameter (mm) 26.82 15.75
Elastic modulus (GPa) 65 147.2

Cross-sectional area (mm2) 425.24 148.07
Weight (per unit length) (kg/km) 1349 989.4

Tensile breaking force (N) 103900 178570

× 

Figure 2. Segmentation of the tower and parameters of main leg members.

The finite element models of the transmission tower and tower line system were
established using the Abaqus 2020 software. The B31 element was used to simulate the
tower members, and the T3D2 element was used to simulate both the transmission line
and the insulator. Fixed constraints were applied to the bottom of the transmission tower.
Hinge restraints were used at the ends of the transmission line and at the connection of the
insulator to the transmission tower and conductor. A bilinear isotropic hardening plasticity
model was used to simulate the constitutive model of the steel material, as shown in Figure 3.
The finite element model of the structure is shown in Figure 4. The modal analysis results of
the transmission tower were as follows: the first-order natural frequencies of lateral bending
(the direction perpendicular to the transmission line), longitudinal bending (the direction
parallel to the transmission line), and torsion were 2.095, 2.107, and 4.856 Hz, respectively.

× 

Figure 3. The stress–strain relationship for angles in the FEM models.
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Figure 4. Finite element model of the structure.

3.2. Uncertainty of Material and Geometric Parameters

Transmission tower members are inevitably affected by external factors during their
production and transportation, resulting in random variations in their parameters, which
also affects the wind-resistant performance of transmission towers. Therefore, in this study,
the uncertainty of the six parameters in the structure was considered based on existing
research [15]. The material property parameters included the yield strength of Q235 steel,
yield strength of Q345 steel, elastic modulus, and Poisson’s ratio. The geometric parameters
included the width and thickness of the angle steel. The probability distributions of different
parameters are listed in Table 2. According to the unified standard for the reliability design
of building structures [31], the standard values of the elastic modulus and Poisson’s ratio
took the 0.5 quantile value of the probability distribution, and the standard values of
material strength took the 0.05 quantile value of the probability distribution. Therefore, the
mean value of each material-property parameter was obtained. The mean values of the
geometric parameters were obtained from the statistical results of relevant research [32]. In
addition, the mean value of the geometric parameters in Table 2 was equal to that of the
measured results divided by the standard value.

Table 2. Probability distributions of material and geometric parameters.

Parameter Variable Mean Value Coefficient of Variation Distribution Type

Elastic modulus (GPa) Es 206 0.03 Lognormal
Poisson ratio ν 0.3 0.03 Lognormal

Yield strength of Q235 steel (MPa) fy_Q235 263.7 0.07 Lognormal
Yield strength of Q345 steel (MPa) fy_Q345 387.1 0.07 Lognormal

Width of the angle steel b 1.001 0.008 Normal
Thickness of the angle steel t 0.985 0.032 Normal

Considering that the calculation cost of the fragility analysis for multiple groups of
transmission tower models with different corrosion degrees was relatively large, the sample
size in this paper was determined to be 20 based on relevant research [13], and the accuracy
of analysis can be evaluated as follows [33]:

N >
− ln(1 − K)

Pf
(1)

where K is the confidence level, Pf is the failure probability, and N is the sample size. By
calculation, the accuracy of probability analysis in this paper is close to 90%.
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The above parameters were sampled using the Latin hypercube sampling (LHS)
method, which has an advantage over Monte Carlo sampling in that the sampling effect is
good even when the sample size is low. LHS is a stratified sampling method, that is, the
research object is divided into multiple parts with equal probability, and then the sample
proportion is determined according to the sample size, and each part is sampled according
to this proportion [34]. The sampling results are shown in Figure 5. Uncertainty models of
the transmission tower were established based on the sampling results.

  
(a) (b) 

Figure 5. Sample distributions of uncertainty parameters. (a) Sampling result of elastic modulus.
(b) Sampling result of yield strength of Q345 steel.

3.3. Simulation of Wind Load

The simulation of the wind load on a structure is the basis of nonlinear dynamic anal-
ysis. The transmission tower was divided into seven panels vertically, and the transmission
line was divided into ten parts longitudinally. The simplified wind load points of the
tower-line system are shown in Figure 6.

Figure 6. Schematic diagram of simplified wind load points.
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Atmospheric boundary-layer wind consists of static and fluctuating winds. The static
wind speed was calculated according to the exponential law, and the fluctuating wind
speed with the Davenport spectrum was simulated using the harmonic superposition
method. The harmonic synthesis method uses spectral decomposition and trigonometric
series superposition to realize the numerical simulation of random process samples [17].
The total time of the wind speed time series was 300 s. The time interval was 0.125 s, and
the cutoff frequency was 4 Hz. Taking a basic wind speed of 25 m/s as an example, the
wind speed at the top of the tower is shown in Figure 7a. In addition, Figure 7b shows
that the simulation spectrum was consistent with the target spectrum, indicating that the
simulated wind speed can be used for nonlinear dynamic analysis.

 
(a) (b) 

Figure 7. Simulated wind speed results. (a) Wind speed at the top of the tower. (b) Comparison of
the simulated and target spectrum.

3.4. Sensitivity Analysis

Different material and geometric parameters have different degrees of impact on
transmission towers. Using the basic collapse wind speed of the transmission tower as the
criterion, the lower-limit-value, standard-value, and upper-limit-value models of the tower-
line system were established. The strip analysis method is widely used in the sensitivity
analysis of structures under earthquake [14], so in this paper, we studied the sensitivity of
the transmission tower under wind load using this method.

The lower and upper limit values of each parameter were taken as the 0.05 and
0.95 quantiles of its probability distribution, respectively. To better reflect the impact of
each parameter on the transmission tower, according to the control variable method [34],
we changed only one parameter of the structure, and the other parameters still had their
standard values when the model was established. The most unfavorable wind incidence
angle for this tower was 90◦ (the direction perpendicular to the transmission line); therefore,
the response of the transmission tower at this wind incidence was selected for research.

Multiple basic collapse wind speeds can be obtained by an extensive dynamic analysis
of the models, and the log mean and log-standard deviation of the collapsed wind speeds for
each group of models can be calculated using the maximum likelihood estimation method:{

μ̂ = 1
n ∑n

i=1 ln Xi

σ̂2 = 1
n ∑n

i=1

(
ln Xi − 1

n ∑n
i=1 ln Xi

)2 (2)

where μ̂ and σ̂ are the maximum likelihood estimators of the parameters in the lognormal
distribution. The results of stripe analysis for the standard-value model are shown in
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Figure 8. The log mean and log-standard deviation of the basic collapse wind speeds for
the standard-value model were 3.412 and 0.0397, respectively.

μ σ

Figure 8. Stripe analysis results.

The log mean interval of the basic collapse wind speed corresponding to each pa-
rameter is shown in Figure 9a. The vertical dotted line represents the log-mean value of
the collapsed wind speed of the standard value model, the end of each bar represents the
analysis result of the lower- or upper-limit-value model, and the length of the bar reflects
the impact level of its corresponding parameter on the basic collapse wind speed of the
transmission tower. The bar length of the angle steel thickness was the largest, as shown in
Figure 9a, indicating that the angle steel thickness had the greatest impact on the collapsed
wind speed when the tower was in operation. The yield strength of Q345 steel and elastic
modulus also had a significant effect on the collapse of the transmission tower. The width
of the angle steel had a slight effect on the wind-resistant performance of the tower because
the measured values of the angle steel width were close to the standard value according to
the statistical results of the relevant research [32]. The bar length of the yield strength of
Q235 steel was the minimum, which was due to the stress and deformation of the diagonal
members of the transmission tower in this paper were relatively small. However, the results
will be different for transmission towers with large stress on diagonal members.

  
(a) (b) 
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Figure 9. Tornado chart of collapse wind speeds. (a) Log mean of basic collapse wind speeds. (b) Log-standard
deviation of basic collapse wind speeds.
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The log-standard deviation reflects the dispersion degree of the collapsed wind speed
results. Figure 9b shows that the change in geometric parameters reduced the log-standard
deviation of the collapsed basic wind speeds, which meant that the collapsed basic wind
speed of the transmission tower became more concentrated. The variations in the elastic
modulus and Poisson’s ratio made the basic collapse wind speed results more dispersed;
however, the strength of the steel did not significantly affect the dispersion of the basic
collapse wind speed results.

4. Fragility Analysis of Transmission Tower Considering Structural Uncertainty

Based on the established uncertainty models, pushover analysis for the transmission
tower and incremental dynamic analysis for the tower-line system were performed. The
calculation results of the two analysis methods were compared to study the collapse
resistance of the transmission tower, and the calculation accuracy of the pushover analysis
was evaluated using probability analysis.

4.1. Pushover Analysis

The simplified wind load points of the transmission tower are the same as those in
the previous section, and the wind incidence angle was still determined to be 90◦ when
calculating the equivalent static loads. The equivalent static wind loads of the structure were
calculated according to the load code for the design of overhead transmission lines [35]. The
wind load on the transmission tower panels can be calculated using the following equation:

PT= W0·μZ·μS·βZ·AS (3)

where W0 is the standard value of the reference wind pressure (kN/m2); μZ is the coefficient
of wind pressure variation with height; μS is the shape coefficient of the tower; AS is the
calculated value of the projected area; and βZ is the wind vibration coefficient, calculated
as follows [35]:

βZi= 1 + 2g · εt · I10 · BZi ·
√

1 + R2 (4)

BZi =
miφ1i

μSiμZi Ai
·

√
∑n

j=1 ∑n
j′=1(μ SjμZjφ1j IZj Aj)(μ Sj′μZj′φ1j′ IZj′Aj′)cohZ(z j, zj′

)
∑n

j=1 mjφ
2
1j

(5)

R2 =
π

6ζ1

x2
1

(1 + x 2
1

)4/3 (6)

x1 =
30 f 1√
kwW0

(7)

where g is the peak factor equal to 2.5; εt is the reduction coefficient of the wind load
fluctuation; I10 is the nominal turbulence intensity at a 10 m height, which is 0.14 for class
B ground roughness; BZi is the background factor; R2 is the resonance factor; φ1 is the
first-order mode coefficient of the structure; cohZ(z j, zj′

)
is the vertical coherence function;

ζ1 is the first-order damping ratio of the structure; and f 1 is the first-order natural frequency
of the structure.

The wind load on the transmission line can be calculated using the following equation:

PD= βC·αL · W0 · μZ · μSC · d · LP (8)

where βC is the gust coefficient of the conductor and ground wire; αL is the span reduction
factor; μSC is the shape coefficient of the transmission line, which is 1.0 when the diameter
is greater than 17 mm and otherwise equal to 1.1; d is the diameter of the transmission line;
and LP is the horizontal span.
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The wind load of the insulator string can be calculated using the following equation:

PJ= n · λ1 · W0 · μZ · μS1 · A1 (9)

where n is the number of insulator strings perpendicular to the wind direction; λ1 is
the shielding reduction factor of the wind load on the insulator string; μS1 is the shape
coefficient of the insulator, equal to 1.0; and A1 is the calculated value of the wind-pressure
bearing area of the insulator string.

The calculated results for the wind load on the structure are shown in Tables 3 and 4.

Table 3. Wind load of each panel (basic wind speed at 25 m/s, wind incidence angle at 90◦).

Panel
Number

Height above
Ground (m)

Height of
Panel (m)

Wind Pressure
Height

Variation
Coefficient

μZ

Wind
Vibration

Coefficient
βZ

Shape
Coefficient

μS

Projected
Area

AS (m2)

Standard Value
of Reference

Wind
Pressure

W0 (kN/m2)

Standard
Value of

Wind Load
(kN)

Design
Value of

Wind Load
(kN)

1 37.0 2.3 1.481 5.860 2.217 0.528 0.391 3.432 4.805
2 33.1 5.9 1.430 1.537 2.217 2.154 0.391 4.100 5.740
3 29.4 1.8 1.380 2.642 2.217 1.596 0.391 3.441 4.817
4 24.9 6.3 1.308 1.316 2.356 3.635 0.391 5.758 8.061
5 18.0 7.5 1.190 1.116 2.356 6.018 0.391 7.352 10.293
6 10.8 6.9 1.021 1.059 2.356 7.120 0.391 7.083 9.156
7 3.6 7.5 1.000 1.012 2.356 9.467 0.391 8.818 12.345

Table 4. Wind load of conductor, ground line, and insulator.

Wind Speed (m/s)

Wind Load Design
Value of Middle

Conductor
PD1 (N)

Wind Load Design
Value of Side

Conductor
PD2, PD3 (N)

Wind Load Design
Value of Ground Wire

PB (N)

Wind Load Design
Value of Middle

Insulator
PJD1 (N)

Wind Load Design
Value of Side

Insulator
PJD2, PJD3 (N)

15 4567 4344 1497 314 297
20 8118 7720 2662 558 528
25 12,679 12,056 4158 871 826
26 13,712 13,039 4497 942 893
27 14,786 14,059 4850 1016 963
28 15,900 15,118 5216 1093 1036
30 18,249 17,351 5987 1255 1189

The calculated wind loads were applied to the corresponding nodes on the transmission
tower in the form of concentrated forces. The weights of the conductor, ground wire, and in-
sulator were also simplified as a concentrated force and applied at the corresponding position
of the transmission tower. A pushover analysis was performed on the uncertainty models. By
increasing the basic wind speed continuously to cause the collapse of the transmission tower
models, the pushover curves of the uncertainty models were obtained (Figure 10).

Figure 10. Pushover curves for transmission tower models.
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We observed that the displacement response of the deterministic model lay between
those of the uncertainty models. The basic collapse wind speed of the deterministic model
was 30.4 m/s, and the collapsed-tower top displacement was 0.391 m. According to the
analysis results of the uncertainty models, multiple collapse wind speeds and tower-
top displacements were obtained. The fragility curve of the uncertainty analysis for the
transmission tower was obtained by fitting the collapse data to the cumulative function of
the lognormal distribution.

The fragility curves of the basic collapse wind speed and tower top displacement are
shown in Figure 11. The value corresponding to a 10% probability in the fragility curve
is frequently used as the critical collapse datum; thus, the collapse wind speed calculated
by the uncertainty analysis was 28.68 m/s and the ultimate displacement at the top of the
tower was 0.368 m. Compared with the results of the deterministic analysis, the collapse
wind speed and ultimate tower top displacement of the uncertainty analysis were 5.66%
and 5.88% lower, respectively, which indicated that the results of the deterministic analysis
overestimated the bearing capacity of the structure.

 
(a) (b) 

Figure 11. Fragility curve for transmission towers. (a) Fragility curve of the basic collapse wind
speed. (b) Fragility curve of collapsed-tower top displacement.

4.2. Incremental Dynamic Analysis

The collapsed tower top displacement of each sample was determined using the
nonlinear static analysis results. These displacements were taken as the critical values of
the transmission tower models for incremental dynamic analysis.

When calculating the response of the tower-line system under different wind speeds,
multiple wind speed time histories were generated by the harmonic superposition method
to consider the uncertainties in the wind load. In total, 20 groups of wind speeds were
gradually increased from 20 m/s, and the increment in the basic wind speed was 0.2 m/s,
when calculating the response of the tower-line system under different wind speeds. By
capturing the maximum top displacement of the transmission tower at each basic wind
speed, the variation curve could be obtained, as shown in Figure 12. The red line in
Figure 12a is the collapsed tower top displacement of the transmission tower model. Only
part of the data are shown in Figure 12b to avoid overlapping curves, and each curve
represents the result of the incremental dynamic analysis.

In the incremental dynamic analysis of the tower-line system, we considered that the
basic wind speed corresponding to the tower top displacement that exceeded the critical
displacement value for the first time was the basic collapse wind speed. The collapse wind
speed for each sample was obtained and compared with that calculated using pushover
analysis. As shown in Figure 13a, the collapse wind speed values obtained using the
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two methods were similar, with a maximum relative error of 5.7% and a mean relative
error of 3.18%, indicating that the mass and coherence functions were considered when
calculating the equivalent wind load according to the load code for the design of the
overhead transmission line [35]; therefore, accurate response results can be obtained using
pushover analysis.

 
(a) (b) 

Figure 12. Variation curve of the maximum tower top displacement. (a) One of the incremental
dynamic analysis results. (b) Multiple incremental dynamic analysis results.

 
(a) (b) 

Figure 13. Comparison of pushover analysis and IDA results. (a) Comparison results of the basic
collapse wind speeds. (b) Comparison results of the basic collapse wind speed fragility curves.

Based on the collapse wind speed of each sample, the fragility curve corresponding
to the incremental dynamic analysis was fitted. The comparison results of the collapse
wind speed fragility curves obtained using the two methods are shown in Figure 13b. We
observed that the end position of the fragility curve corresponding to the incremental
dynamic analysis was farther from the starting position, which was due to the uncertainty
of the wind load being considered in the incremental dynamic analysis. The curve of the
pushover analysis was on the left side of the curve of the incremental dynamic analysis, and
the starting positions of the two curves were close. In the fragility curve corresponding to
the incremental dynamic analysis, the basic collapse wind speed corresponding to the 10%
probability was 28.96 m/s, which is only 0.97% different from the result of the pushover
analysis, which further indicated that the collapse wind speed obtained using the pushover
analysis was accurate.
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5. Prediction of Corrosion Depth Based on the BP Artificial Neural Network

The BP artificial neural network is a widely used network model. Its construction
concept is as follows: first, a part of the measured data is input into the neural network
as the training set, the weights in the network are adjusted through the back-propagation
algorithm until the error meets the requirement, and then the test set is calculated using
the generated model to evaluate the prediction accuracy of the artificial neural network.

5.1. Generation of the Artificial Neural Network Model

In this study, a three-layer neural network was constructed based on the corrosion
data from the National Materials Corrosion and Protection Data Center [36]. As shown
in Figure 14, the connections between adjacent layers of the neural network were fully
connected. The data selection for the neural network prediction model is shown in Table 5.
There were 15 steel materials involved in the model construction, and the steel types
were carbon steel and low-alloy steel. Meteorological data and atmospheric corrosion data
during model training were obtained from the test stations in six regions. The meteorological
data are presented in Table 6. The exposure times of the specimens were 1, 2, 4, 8, and
16 years. The input factors of the neural network model included material parameters,
meteorological factors, and exposure time. The number of nodes in the input layer was 15,
and the parameter in the output layer was the corrosion rate of steel.

Figure 14. Schematic diagram of the BP artificial neural network.

The transfer function of the network was a sigmoid function with a learning rate of
0.05. The interval of the optimal number of hidden layer nodes was determined using
existing research [37]. After testing, the number of hidden layer nodes was nine, and a
neural network prediction model was obtained through training.
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Table 5. Data selection for the artificial neural network model.

Network Parameter Data Selection

Steel material

Carbon steel: 3C, 20, 15MnMoVN, 14MnMoNbB, 09MnNb(S),
08Al, 12CrMnCu, Q235;
Low-alloy steel: 16MnQ, 10CrMoAl, 10CrCuSiV, 09CuPTiRE,
09CuPCrNi, 09CuPCrNiA, Q345

Region Beijing, Qingdao, Jiangjin, Guangzhou, Wuhan, Qionghai

Input factor

Material parameters: Content of carbon, manganese, sulfur,
phosphorus, silicon, and copper
Meteorological factors: annual average temperature, annual
average relative humidity, annual sunshine hours, annual
precipitation, SO2 concentration, Cl− concentration, NO2
concentration, pH value of rainwaterExposure time

Table 6. Meteorological data of each region.

Region

Annual
Average

Temperature
(◦C)

Annual
Average
Relative

Humidity (%)

Annual
Sunshine

Hours
(h)

Annual
Precipitation

(mm)

SO2

Concentration
(mg/cm3)

Cl−
Concentration

(mg/cm3)

NO2

Concentration
(mg/100
cm2/d)

pH Value of
Rainwater

Beijing 12.8 55 2368.6 578.7 0.06 0.85 0.11 6.52
Qingdao 12.8 70 2199.9 582.6 0.05 0.11 0.08 5.42
Jiangjin 19.8 77 1369.3 998 0.22 0.00 0.08 5.44

Guangzhou 21.5 81 1582.9 2095.4 0.06 0.03 0.08 6.68
Wuhan 17.1 77 2092.5 1434.2 0.08 0.02 0.14 6.81

Qionghai 24.6 82 1743.1 2506.1 0.02 0.05 0.01 6.38

5.2. Corrosion Depth Prediction Results

Test samples were calculated using the generated model to evaluate the prediction
accuracy of the artificial neural network. As shown in Figure 15a, the predicted results
of the test samples were close to the measured values. The error analysis results for the
test set are shown in Figure 15b to reflect the prediction accuracy of the model more
intuitively. We observed that the relative error of almost all predicted values was less than
20%, the mean relative error between the predicted and measured values was 8.91%, and
the correlation coefficient was 0.9849, which indicated that the prediction accuracy of the
corrosion prediction model established by the BP artificial neural network was high.

 
(a) (b) 

μ

Figure 15. Evaluation results of the test set. (a) Comparison between measured values and predicted
values. (b) Error analysis results of the test set.
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Owing to the randomness of the prediction model generated by the BP neural network,
20 prediction models were generated in this study, and the average of the 20 prediction
results was considered the final result. The transmission tower contained Q235 and Q345
steels; therefore, the corrosion rates of Q235 and Q345 steels in Beijing, Qingdao, Jiangjin,
and Guangzhou were predicted in this study.

Through multiple attempts, we observed that the change trends of the prediction
curves within 25 years were the same, and the results were relatively dense. However,
when the exposure time exceeded 25 years, the dispersion of the predicted results was larger;
therefore, the maximum exposure time was determined to be 25 years. Figures 16 and 17
show the corrosion rate prediction results for Q235 and Q345 steels, respectively, in the
four regions.

    
(a) Beijing  (b) Qingdao (c) Jiangjin (d) Guangzhou 

μ μ μ μ

Figure 16. Predicted results of the Q235 steel corrosion rate.

    
(a) Beijing  (b) Qingdao (c) Jiangjin (d) Guangzhou 

Figure 17. Predicted results of the Q345 steel corrosion rate.

Based on the predicted corrosion rate, the corresponding variation law of the corrosion
depth was obtained using integration, that is, the corrosion depth in the t year is the sum of
the corrosion rates in the previous t years. The fitting function of the mean curve of the
corrosion depth can be expressed as follows:

D = Atn (10)

where D is the corrosion depth in t years, A is the corrosion depth in the first year, and n
reflects the changing trend of the curve. The fitting results for the corrosion depth are listed
in Table 7. The R-squared value represents the correlation between the power function and
the predicted value. The R-squared value of each fitting result was close to 1, indicating that
the effect of fitting the corrosion depth by the power function was good. The fitting curves
for the corrosion depths are shown in Figure 18. We observed that the corrosion depth
in Beijing was smaller, and the corrosion depths in Qingdao and Jiangjin were larger. By
comparing the meteorological factors in different regions, we can consider that the relative
humidity and SO2 concentration have a significant impact on the corrosion rate of steel.
In addition, the corrosion depth of Q235 steel is greater than that of Q345 steel in a short
exposure time, but with an increase in exposure time, the corrosion depth of Q345 steel
exceeds that of Q235 steel. However, Q345 angle steel is used as the main leg member in
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the transmission tower; therefore, the section dimensions of Q345 angle steel are relatively
large. Therefore, although the corrosion depth of Q345 steel is larger, its mass loss ratio is
generally smaller than that of Q235 steel, indicating that the mass loss ratios of the diagonal
members are greater during the operation of the transmission tower.

Table 7. Fitting results of corrosion depth prediction values.

Steel Material Region A n R2

Q235 Beijing 34.03 0.5951 0.9953
Q235 Qingdao 65.37 0.6581 0.9988
Q235 Jiangjin 66.78 0.6592 0.9887
Q235 Guangzhou 51.89 0.6675 0.9886
Q345 Beijing 32.94 0.6444 0.9944
Q345 Qingdao 63.42 0.7219 0.9985
Q345 Jiangjin 65.20 0.6817 0.9877
Q345 Guangzhou 51.81 0.7044 0.9894

 
(a) Q235 steel  (b) Q345 steel 

μ μ

Figure 18. Fitting curves of corrosion depth.

6. Uncertainty Analysis of Transmission Tower Considering Corrosion and Strong
Wind Effects

6.1. Results of Wind Resistance Degradation

According to statistics [38], the steel protective layer of the transmission tower in
regions with severe acid rain and coastal regions will become invalid within a few years,
and the transmission tower will be completely corroded. The material properties and
geometric parameters of the steel also decrease noticeably because of corrosion. Therefore,
in this paper, we converted the corrosion depth into the mass loss ratio of steel and
analyzed the wind-resistant performance of corroded transmission towers. The mechanical
properties of Q235 and Q345 steels before and after corrosion were compared in relevant
research [20,21], and the variation law of the mechanical properties of Q235 and Q345 steels
with the mass loss ratio was revealed based on the statistical results. The formula for the
mechanical property degradation of the Q235 and Q345 steel is as follows:

p′
p
= 1 − cη (11)
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where p and p′ are the mechanical property of the steel before and after corrosion. η is the
mass loss ratio. c is the value of the reduction coefficient of mechanical properties as shown
in Table 8.

Table 8. Value of the reduction coefficient of mechanical properties.

Steel Type Yield Strength Ultimate Strength Elastic Modulus

Q235 0.875 0.894 0.88
Q345 0.96 0.99 0.98

The uncertainty of geometric parameters will affect the calculation results of the mass
loss ratio, and further, it will affect the decline of material parameters. Therefore, it is
necessary to consider the uncertainty of its structural parameters when analyzing the
wind-resistant performance of corroded transmission towers. According to the obtained
corrosion depth prediction results, the mass loss ratios of angle steel with different section
dimensions in each uncertainty model were calculated, and the material properties of each
angle steel after corrosion were calculated using the degradation formula. Considering
the degradation of the mechanical properties and geometric parameters, an uncertainty
analysis of the wind-induced collapse of the transmission tower was performed.

Figures 19 and 20 show the relationship between the collapse probability of the
transmission tower and the basic wind speed and the relationship between the collapse
probability and tower top displacement in Beijing, Qingdao, Jiangjin, and Guangzhou
at different exposure times, respectively. Tables 9 and 10 show the basic wind speeds
and tower top displacements corresponding to a 10% probability of the collapse fragility
surface for different exposure times. The collapse wind speed and tower top displacement
decreased significantly with the intensification of corrosion. Beijing and Jiangjin are both
inland regions, but the collapse wind speed of the transmission tower in Jiangjin decreased
faster than that in Beijing, which was due to severe acid rain caused by the high SO2
concentration in the atmosphere of Jiangjin. The decline in wind speeds in Qingdao and
Guangzhou, which are coastal regions, was also greater than that in ordinary inland regions.
In addition, the decline in tower top displacements in regions with severe acid rain and
coastal regions was also greater than that in ordinary inland industrial regions.

To reflect the declining trend in the collapse wind speed and tower top displacement
of the transmission tower with exposure time more intuitively, Figure 21 shows the decay
curves of the wind-resistant performance of the transmission tower. The decrease ratio in
Figure 21 was calculated as the reduction value of the collapse wind speed or collapsed
tower top displacement divided by its initial value. We observed that the decay curves
of the collapse wind speed and tower top displacement in the same region were almost
coincident, indicating that the decrease ratios of the collapse wind speed and tower top
displacement were synchronized. When the exposure time was less than 5 years, the
wind resistance performance of the transmission tower decreased rapidly. With increasing
exposure time, the decay rate gradually slows. When the exposure time was 25 years, the
wind resistance performance of the transmission tower in the Beijing region could still be
maintained at more than 90%. However, the wind resistance performance of transmission
towers in regions with severe acid rain and coastal industrial regions decreased by 10%
to 20%. In addition, the decrease ratios of the collapsed wind speeds of the transmission
towers in Qingdao, Jiangjin, and Guangzhou were all greater than 10% when the exposure
time was 10–15 years.
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(a) Beijing  (b) Qingdao 

 
(c) Jiangjin (d) Guangzhou 

Figure 19. Fragility surface of the collapsed basic wind speed in each region.

 
(a) Beijing  (b) Qingdao 

 
(c) Jiangjin (d) Guangzhou 

Figure 20. Fragility surface of the collapsed-tower top displacement in each region.
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Table 9. Collapsed basic wind speed statistics at different exposure times in each region.

Exposure Time (Years) VBJ (m/s) VQD (m/s) VJJ (m/s) VGZ (m/s)

0 28.68 28.68 28.68 28.68
5 27.96 27.00 26.79 27.31
10 27.47 26.09 25.82 26.45
15 27.12 25.23 25.16 25.78
20 27.06 24.22 24.75 25.35
25 26.67 23.45 24.19 24.96

VBJ, VQD, VJJ, and VGZ are the critical basic collapse wind speeds of the transmission towers in Beijing, Qingdao,
Jiangjin, and Guangzhou, respectively.

Table 10. Collapsed-tower top displacement statistics at different exposure times in each region.

Exposure Time (Years) UBJ (m) UQD (m) UJJ (m) UGZ (m)

0 0.368 0.368 0.368 0.368
5 0.359 0.346 0.346 0.349
10 0.353 0.336 0.332 0.340
15 0.350 0.326 0.323 0.330
20 0.350 0.310 0.318 0.326
25 0.342 0.301 0.313 0.321

UBJ, UQD, UJJ, and UGZ are the critical collapse tower top displacements of the transmission towers in Beijing,
Qingdao, Jiangjin, and Guangzhou, respectively.

 
Figure 21. Decay curves of the wind-resistant performance of the transmission tower.

6.2. Variation in Transmission Tower Failure Modes

When tower members are corroded, in addition to the smaller collapse wind speed
and tower top displacement, the failure mode of the tower also changes. Therefore, in this
study, the failure members and modes of the transmission tower models with different
exposure times were analyzed to study the impact of corrosion on the transmission tower
more comprehensively.

The failure mode of the tower was observed through the nonlinear buckling analysis
of the finite element model of the transmission tower. Firstly, the equivalent loads of the
transmission tower and lines were applied to the corresponding nodes, and the eigenvalue
buckling analysis was performed on the transmission tower model. Secondly, the vibration
mode result of buckling analysis was applied to the tower as an initial defect. Finally, the
nonlinear buckling analysis was carried out on the tower after updating the model. The
results showed that vulnerable members in the studied tower complied with buckling fail-
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ure. Additionally, the possible failure members of the transmission tower can be obtained
through uncertainty analysis. As shown in Figure 22a, the possible failure members of the
tower are the main leg members in the 5th and 6th panels and the failure mode of tower is
shown in Figure 22b.

 
 

(a) Initial failure members  (b) Failure mode 

Figure 22. Initial failure members and failure mode of tower.

The changes in the failure members and modes of transmission towers in different
regions with the exposure time are listed in Table 11. Without considering the effect of
corrosion, when the transmission tower collapses, there was a 70% probability that the
failure member was No. 502, and a 30% probability that the failure member was No. 601.
The failure mode of the transmission tower is plastic instability, that is, the transmission
tower undergoes plastic deformation before collapsing. However, with an increase in
the exposure time, the failure mode of the structure changes, and the transmission tower
is prone to elastic instability, which indicates that the failure mode of the transmission
tower tends to be brittle failure. In addition, the failure probability of each member in the
transmission tower also changes with increasing corrosion of the tower members. The
failure probability of member No. 502 decreased, and the failure probability of member
No. 601 increased. From the failure modes of transmission towers in different regions, we
observed that in the Beijing region, elastic instability would not occur in the transmission
tower until the exposure time is 25 years; however, the transmission towers in the Qingdao,
Jiangjin, and Guangzhou regions may experience elastic instability when the exposure time
is 10 years, which indicates that in ordinary inland industrial regions, the failure modes of
transmission towers are less affected by corrosion. However, in regions with severe acid
rain and coastal industrial regions, the collapse failure modes of transmission towers will
change significantly with the increase in the exposure time.
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Table 11. Collapse failure probability of the transmission tower in each region.

Exposure Time Initial Failure Member Failure Probability (%)
Probability of Plastic

Instability (%)
Probability of Elastic

Instability (%)

Initial state
No. 502 70 70 0
No. 601 30 30 0

5 to 20 years in Beijing No. 502 70 70 0
5 years in Qingdao

No. 601 30 30 05 years in Jiangjin
5 years in Guangzhou

25 years in Beijing No. 502 70 65 5
10 to 15 years in Qingdao

No. 601 30 30 010 to 15 years in Jiangjin
10 to 20 years in Guangzhou

20 years in Jiangjin No. 502 70 55 15
25 years in Guangzhou No. 601 30 25 5

20 years in Qingdao No. 502 65 45 20
25 years in Jiangjin No. 601 35 30 5

25 years in Qingdao No. 502 65 45 20
No. 601 35 20 15

7. Conclusions

In this paper, a wind resistance evaluation method for a transmission tower is proposed
and taking a 220 kV transmission tower as an example, the sensitivity of the transmission
tower to various uncertain parameters was studied. The fragility curves for the transmission
tower were obtained by pushover and incremental dynamic analyses, respectively. The
variation curves of the steel corrosion depth in the transmission tower with exposure time
were obtained based on a BP artificial neural network, and by taking the collapse wind
speed and tower top displacement as the evaluation indicators, the decline trend of the
wind-resistant performance of the transmission tower with the increase in corrosion was
evaluated. The conclusions drawn from this study are summarized as follows:

(1) The sensitivity analysis of the transmission tower shows that the angle steel thickness
has the greatest impact on the wind-resistant performance of the transmission tower
when the tower is in operation, and the yield strength of Q345 steel and the elastic
modulus also have a significant impact on the collapse wind speed. The change in
geometric parameters reduces the log-standard deviation of the basic collapse wind
speeds, and the variations in the elastic modulus and Poisson ratio can make the basic
collapse wind speed results more dispersed. Therefore, more attention should be paid
to the thickness of steel when designing and manufacturing transmission towers.

(2) The collapse wind speed results obtained using the pushover analysis based on the
load code for the design of the overhead transmission line [35] were close to those
obtained by the incremental dynamic analysis. The maximum relative error was 5.7%
and the mean relative error was 3.18%. The starting positions of the fragility curves
obtained by the two methods were almost coincident, and the basic collapse wind
speed results corresponding to a 10% probability differed by only 0.97%. Therefore,
probability analysis method can improve the accuracy of the results.

(3) The accuracy of predicting the steel corrosion rate using a BP artificial neural network
was high. The mean relative error between the predicted and measured values was
8.91% and the correlation coefficient was 0.9849. The mass loss ratios of the diagonal
members were greater than those of the main leg members during the operation of the
transmission tower, so in engineering design, it is feasible to use the artificial neural
network method for corrosion prediction.

(4) The corrosion of tower members will reduce the basic collapse wind speed of the
tower and collapsed-tower top displacement, particularly in regions with severe acid
rain and coastal industrial regions, and will result in variations in the failure mode
and members of the transmission tower. With the increase in the exposure time,
the possibility of brittle failure of the transmission tower increases; therefore, the
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transmission tower should be maintained in time according to the corrosion degree of
the tower members in different regions.

This study evaluated, for the first time, the wind-induced collapse of a transmission
tower with different corrosion degrees using the fragility analysis method, but we did not
consider the texture characteristics of the steel surface after corrosion. In future research,
more measured data and artificial intelligence methods should be combined to study the
corrosion of transmission towers.
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Abstract: The use of fabric-reinforced cementitious mortar (FRCM) or steel-reinforced grout (SRG) is
now recognized to be effective in enhancing the axial capacity of masonry columns when confinement
is achieved. Numerous experimental tests demonstrated the symbiotic role of the fabric and the
inorganic matrix. An open issue is still related to the numerical simulation. In fact, if the compressive
behavior by the numerical simulation of the unreinforced and reinforced masonry columns confined
by a FRCM/SRG jacket may follow different approaches. The inorganic matrix transfers the stresses
from the substrate to the fabric differently, depending on the presence or absence of cracks. The fabric
consists of an open grid whose yard could be differently stressed after the matrix damage because
of the occurrence of a possible slippage at the fabric–matrix interface. Definitely, these aspects are
difficult to numerically predict. The paper herein is devoted to the assessment of different numerical
approaches for the FRCM/SRG confinement of masonry columns by considering data from the
literature and varying the parameters related to the matrix, the fabric, and the masonry itself. The
goal is to best fit the experimental outcomes (from different available sources) with different strategies
based on a finite element (FE) modeling. The results show good matching between the experimental
and theoretical curves for the different FRCM/SRG systems. The results evidenced that the accuracy
of the experimental versus the numerical curves match is met for the different FRCM/SRG systems.

Keywords: FRCM systems; SRG systems; masonry columns; numerical modeling

1. Introduction

An important part of existing structures is mainly made out of masonry. Indeed,
most historical buildings consist of monumental masonry structures (churches, temples,
towers, etc.), as well as most ordinary buildings. There are substantial differences that
exist between monumental and ordinary buildings in terms of geometry and structural
details. Various strategies for the prediction and the assessment of the structural behavior
of masonry buildings by a numerical model have been developed in recent decades. Nu-
merical models have been favorably developed and preferred over analytical approaches,
given the complex mechanical response of masonry and the irregular geometries of historic
masonry buildings. The numerical strategies are subdivided into four classes: block-based
models (BBM), continuum models (CM), macro-element models (MM), and geometry-
based models (GBM). The strategy of BBM models is based on masonry heterogeneity by
the assembly of the blocks with mortar joints. Through this strategy, the real texture of
the masonry structure can be described, while the individual mechanical properties can
be evaluated through experimental tests on small-scale samples. In addition, by means
of models, it is possible to simultaneously describe both the out-of-plane and in-plane
behavior of masonry walls [1,2]. Interaction is the fundamental part of the BBM strategy; it
depends on the type of interaction. In the technical literature, there are five categories: (i) in-
terface element-based approaches [1–4], (ii) contact-based approaches [5,6], (iii) textured
continuum-based approaches [7–9], (iv) block-based limit analysis approaches [10–13], and
(v) extended finite element (XFEM) approaches [14,15]. The drawbacks of this strategy are
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the massive computational burden of solving the numerical model, and the time dedicated
to modeling the block and assembling it [16–18]. The strategy of the continuum model
(CM) is based on the use of a deformable continuous body. In particular, the mesh does not
always have to respect the real texture but can be much bigger. Through this characteristic,
the computational burden is less than that of BBM models. However, the assumption
of an appropriate constitutive law that is due to the properties of the masonry itself can
be calibrated through two strategies: direct approach and homogenization procedures
and multiscale approaches. The strategies calibrate the constitutive laws directly on the
results of experimental tests. There are two types of direct approaches in the literature.
With the introduction of FE and the use of the complementary energy theorem, it was
possible to obtain a solution via of minimization of a quadratic function with equality and
inequality constraints [19]. Other continuum-directed approaches base their nonlinear
constitutive laws on theories of fracture or damage mechanics and/or plasticity. The use
of these models has been shown to be favorable for assessing the structural performance
of historic monumental masonry buildings, particularly because of the limited computa-
tional demands of these models and their ease in representing complex geometries [20–22],
churches and temples [23–25], palaces [26–28], and bridges [29,30]. The second strategy
introduces a homogenization strategy that connects the structural scale model to a scale
model of the material and its heterogeneities. Homogenization procedures are generally
based on accurate modeling strategies of an RVE (representative volume element). In
particular, the RVE must statically represent the heterogeneity of the masonry under study.
Three models based on this strategy can be identified in turn in the technical literature: (i) a
priori homogenization approaches, (ii) step-by-step multiscale approaches, and (iii) adap-
tive multiscale approaches. The first model uses the RVE technique to initially define
the homogenized material properties and then use them in the structural-scale model,
while using homogenized properties [31–35]. In the second model, the structural response
is evaluated for each point in the structural model of a boundary value problem on the
RVE [36–39]. Finally, in the adaptive multiscale approaches one uses, through adaptability,
the material-scale model in the structural-scale one [40–42]. The MM strategy generalizes
the structure with panel-scale behavior—in other words, as a macro-element [43]. The two
main elements are pier (vertical elements) and spandrel, which are horizontal portions
of the structure between two openings aligned along the height. The global behavior of
the structure under seismic action depends on the panel response and, consequently, on
the load redistribution given by the diaphragms [44]. In fact, the MM strategy does not
predict out-of-plane ruptures and would lead to an overestimation of the capacity of the
structure [2]. Moreover, in severely irregular structures, subdivision appears complicated
and, in some cases, impossible. The advantages are easy discretization of the model and
definition of mechanical properties. This strategy is employed through two approaches:
equivalent beam and spring based. The first approach is based on modeling the masonry
structure by schematization in equivalent frame models. A first model, called the POR
(pushover response) method, is based on the simplified elasto-plastic relationships to
describe the beam nonlinearity connected by rigid links [45–47]. Recently, an advanced
equivalent beam-based macro-element was developed in [48] for the nonlinear static and
dynamic simulation of masonry structures. The beam mechanical description conceived
axial, bending, and shear deformation within the Timoshenko beam theory. The second
approach is based on nonlinear springs within an equivalent frame to simulate the in-plane
nonlinear behavior of masonry walls [49]. In [50], the authors developed a spring-based
approach where piers and spandrels are conceived as equivalent arrangements of nonlinear
springs, while in [51], each masonry facade was conceived as an integral unit, instead of
one of piers and spandrels. As a result, masonry behavior is described by two vertical
springs and one horizontal spring for the shear behavior of the wall. Finally, the last
strategy (GBM) conceives the structure as a rigid body, the only input being the geometry
of the structure and the loading conditions. Through this approach, it is possible to analyze
structural equilibrium or evaluation of a possible collapse through static or film theorems,
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both based on limit analysis. There are several approaches based on the static theorem in
the technical literature. For example, thrust-network analysis (TNA), reported in [52,53],
is based on the duality between geometry and in-plane forces in networks, and plausible
funicular solutions under gravitational loading within a defined envelope are studied.
A further approach to thrust networks was proposed in [54], where the equilibrium of
masonry vaults was analyzed using polyhedral stress functions, while the discrete singular
stress network is calculated based on Airy’s stress formulation [55]. Solutions based on
kinematic approaches are based on discretization into rigid blocks according to the collapse
mechanisms observed in earthquake-affected structures. Various strategies have been
proposed, including [56] a discontinuous upper boundary analysis tool with sequential
linear programming and mesh fitting to investigate the actual collapse mechanisms of
double-curved masonry structures and a recently developed tool based on genetic algo-
rithms for upper boundary analysis of masonry vaults [57]. Application of the modeling
approaches described above normally each extend to an experimental case. Often in a
strengthening or rehabilitation action for masonry buildings, it is necessary to improve the
capacity in plane (under compression load). Next-generation systems used for reinforcing
masonry structures are composed of an inorganic matrix combined with an ultra-strong
fiber fabric. In this so-composed system, the fibers have the task to bear the tensile load
while the matrix has the task of protecting and transferring the compression load between
the masonry substrate and the fiber. The types of inorganic matrices could be cement-based
or lime-based. In the technical literature, there are many acronyms attributable to the
new generation of reinforced systems based on the type of fiber used in the reinforcement
system: basalt B-FRCM [58–62], poliparafenilenbenzobisoxazole [63,64] PBO-FRCM, glass
G-FRCM [61,65,66], steel SRG [59,60,62,66–68], and carbon C-FRCM [69–73]. It was also
observed that, depending on the reinforcement system adopted or better depending on
the fiber used, different modes of failure were observed. The most recurrent ones are the
opening of the reinforcement jacket near the overlap zone or the rupture of the fabric,
always in the overlap zone. The purpose of this paper is to show several different types of
modeling on unreinforced masonry (URM) under compressive loads while providing a
general and different approach of modeling reinforced masonry with the FRCM or SRG
system that combines versality and moderate computational cost.

2. Numerical Model

2.1. Modeling of Unreinforced Masonry (URM)

The performance of the numerical model depends on the experimental description
of the heterogenous behavior of the masonry structure through the adequate constitutive
laws. The type of experimental method used for evaluating the material properties and
the boundary conditions are of critical importance for the numerical model and results.
However, particular attention should also be given to the geometrical aspects of the masonry
structure: unit dimensions, type and quality of mortar joint, and unit surface conditions.
The variety of clay brick units and mortar types and typology methods of construction do
not allow development of unified constitutive laws. In fact, several codes and standards
prioritize experimental characterizations of material properties for design and numerical
simulations [74,75]. The set of mechanical properties used for the masonry numerical
model depends both on the accurate description (elastic and inelastic) of material and on
the adopted modeling approach. Generally, the elastic range can be defined through the
modulus of elasticity and the compressive strength. When a description of cracking is
necessary, the nonlinearity effects are necessary through additional mechanical properties
such as shear strength, tensile strength, and fracture energies. The extent of knowledge
required on material properties depends on the modeling strategy, where in technical
literature [76] there are three different approaches aimed at the modeling of a masonry
column: (i) macro-modeling, (ii) micro-modeling, and (iii) simplified micro-modeling. In
Figure 1, the schematic models used for a small-scale column are reported.
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Figure 1. Numerical approaches: (a) macro; (b) simplified micro; (c) micro.

2.1.1. Macro-Modeling (MA-Approach)

This is the simplest of the three approaches, where the single brick and the mortar
joint merge into a unique element. This approach does not take into account the interaction
between the two constituents of the column. In the literature, there exists two different
strategies where the internal structure of masonry cannot be described explicitly and
the damage within the masonry is evaluated through a continuous medium. The first
strategy most widely used is considered as a homogenous and anisotropic material using
plasticity or another macro-scale constitutive relationship. The main advantage consists
of the reduced computational burden (time-consuming). Moreover, this method is the
most used by researchers; in fact, in the literature there are different studies that take into
account different strategies based on this technique. In [49,77–81], the research developed a
shear wall or masonry column such as a continuous element where the mortar unit of clay
brick was described through an average function of the mechanical properties of the single
parts. The second strategy is based on the reduction in the elasticity modulus by increasing
the load in the model, which represents the propagation of cracks in the elements. This
strategy is generally used in reinforced concrete.

2.1.2. Micro-Modeling (MI-Approach)

This approach is more realistic, and it takes into account the behavior of the single
constituents of the column such as continuous and discontinuous elements. In fact, it
is also known as the heterogeneous approach, while in terms of time it is uneconomic
and inefficient because of the many parameters and various interactions between the
individual parts. It introduces two important steps to create a numerical model, which
are the local and global steps of the unreinforced masonry. The local view refers to the
single details in terms of geometrical and mechanical characteristics, respectively, while
the global view refers to the definition of contact surface (plane) and interaction (Mohr–
Coulomb [82,83] law) among all the parts. Therefore, this approach is not applicable
if applied on a realistic scale of masonry structures. Moreover, to avoid this drawback,
in the literature there are two strategies. Both strategies focus their attention on how to
represent and how to model the mortar joint. The first strategy considers the masonry made
only of bricks while modeling the vertical and horizontal mortar joints as an interaction
surface [84,85] with a zero thickness. The merging of the clay brick and the mortar joint
(as interaction surface) is called the unit to represent the continuum elements. Important
research conducted in [84] followed this approach, where the mortar joints (vertical and
horizontal) are modeled through the elastic–plastic behavior of the interface. The obtained
numerical curves fit the experimental results satisfactorily. The second approach consists
of representing the mortar joint with its real geometric thickness [85], thus modeling the
entire masonry 3D structure, including both the brick and the mortar joints. In particular,
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the modeling of mortar joints requires particular attention, such as isolating a part of the
structure for particular boundary conditions [85] or inhibiting any interaction with the
external reinforcement [33]. Furthermore, in terms of mortar strength, there is a reduction
and the introduction of penalties at the interaction surface in terms of tangential behavior.
In addition, this approach with respect to the first one allows the occurrence of cracks in
the mortar joints and in the brick unit.

2.1.3. Simplified Micro-Modeling (SIMI-Approach)

This approach is an intermediate one with respect to macro- and micro-modeling,
which is generally used in real-scale structures. In the literature, there are two strategies
for using this modeling. The first strategy consists of those mortar joints that are clamped
into the unit/mortar interface as a discontinuous element. Expanded units, up to half of
the mortar thickness in vertical and horizontal directions, were simulated by continuum
elements as reported in [13,86–88]. In this approach, the mortar joints are considered as
the weakest elements and modeled by an elastic–plastic interface behavior. The obtained
results showed that the strategy was able to reproduce the experimental response and
evaluate the cracks inside the expand unit. The second strategy, called the homogenization
approach in the literature, is reported in [56,89]. It is made up of periodic units. Through
the periodic units, it is possible to model heterogeneous masonry structures, reducing
the number of material parameters and by avoiding independent modeling of all mortar
joints. The use of these strategies permits the modeling of masonry structures, reducing
the computational burden and, at the same time, the material parameters in input. The
obtained results showed that the strategy was able to reproduce the experimental response
and evaluate the cracks.

2.2. Constitutive Laws of: Unreinforced Masonry (URM), Clay Brick and Mortar Joints

A largely adopted constitutive law is based on Feenstra [90]. It considers a three-branch
behavior in compression. For it, the macro and simplified micro approaches were used.
The geometrical and the mechanical parameters that govern the model are compressive
strength (fcm), elastic modulus (Ecm), fracture energy (Gcm), and mesh size (h).

fc =
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where, particularly, the first branch is assumed linear, while the other two, after the elastic
range and the peak stress, are nonlinear. The behavior is defined through three characteristic
strain values. The first strain εc/3 where the linear branch ending is expressed:

ε c
3
= −1

3
fcm
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(2)

while the relative strain at the peak stress is expressed as:

εc = −5
3
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(3)

and the ultimate strain where the URM has terminated the softening compression is
expressed as:

εcu = εc − 3
2

Gcm

h fcm
(4)
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The ultimate strain depends on two parameters; fracture energy (Gcm) and the charac-
teristic element length (h). Fracture energy (Gcm) was computed as being equal to the area
under the softening third branch (Equation (1)), while the h is evaluated as the cubic root of
the masonry column volume.

Gcm = h
∫ εcu

εc
σ(εc)dεc (5)

h = 3
√

Volume o f the masonty column (6)

Other researchers used a modified constitutive law based on that of reinforced con-
crete [91], described by nonlinear equations. The simplicity of this last approach is due
to the parameters involved, i.e., the stress (fcm) and the relative strain (εc) at peak. The
constitutive tensile law was modeled according to the following branches. The first branch
is linear elastic until the peak tensile stress (fct), while the second branch is expressed by:

ft = fct e−
εt

εtu (7)

where εt is the crack strain and εtu is the ultimate crack strain. The softening branch also
depends on the fracture energy (Gfm) and the characteristic element length. The Gfm is
evaluated according to:

Gf m = h
∫ εtu=∞

εt=0
σ(εt)dεt (8)

while h is evaluated according to Equation (6). Therefore, the ultimate crack strain is:

εtu =
Gf m

fct h
(9)

However, the post-peak branch is exponential and, to avoid snap-back phenomena,
the parameter h is evaluated according to the expression:

h ≤ Gf m Etm

f 2
ct

(10)

where Etm is the initial tangent Young’s modulus. The constitutive law in tension and in
compression were reported in Figure 2, which is possible to use by the internal functions of
the commercial software adopted [92], called Elastic (E) and Concrete Damage Plasticity
(CDP).

Figure 2. Material constitutive law: of masonry in (a) compression and (b) tension.

The elastic branch of the constitutive law (compression and tension) was modeled in
E by parameters such as density (ρ), both elastic modulus in compression and in tension
(Ecm and Ect), the Poisson ratio (ν), and the maximum stress (f ), which were kept constant
during the analysis. The nonlinear branches, in terms of two main failure mechanisms,
which are compressive crushing and tensile cracking, were modeled through the CDP. The
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evolution of the yield surface is controlled by two hardening variables called equivalent
plastic strains in compression and in tension. Consequently, in the CDP model, one must
necessarily describe the behavior in uniaxial terms outside the elastic branch. Moreover,
the CDP entails the nonlinear branch through the following parameters, namely, the yield
stress damage parameter and the relative strain inelastic and cracking for the masonry
compression and tension damage, respectively. The CDP function, as understood by its
name, is a concrete material function, but by means of the following parameters it was
possible to adopt this function for the masonry column as reported in [77,93–96] and for
other quasi-brittle materials:

• Dilation angle (DA): 30◦ angle measured in the meridional plane between the failure
surface and the hydrostatic axis;

• Plastic potential eccentricity (PPE): 0.1 due to a non-associated potential plastic flow
and it is a length’s segment between the vertex of the hyperbola and the asymptotes
with respect to the center of the hyperbola;

• Ratio between the initial biaxial and yield compressive stress: 1.16;
• Viscosity parameter (VP): 0.0 visco-plastic regularization.

In the SIMI approach, the periodic unit was modeled in compression using
Equations (1)–(6). Through the micro approach, it was possible to independently describe
both the single clay brick and the mortar joints. In particular, the clay brick was modeled
by linear elasticity until failure by function E through the mechanical parameters (fbrick
and Ebrick), generally evaluated by [95,96], while the mortar joints were modeled in both
compressive and tensile behavior, through function CDP. The compressive constitutive law
was modeled with a nonlinear model suggested in [77,92,93,97–99], while the equations
are reported by the following:

fc = fcmat

[
2
(

ε j

εcmat

)
−
(

ε j

εcmat

)2
]

(11)

where fcmat is the peak compression stress and the relative strain. The strain is evaluated by
Equation (12) and the Young’s modulus (Ecmat):

εcmat = 2
0.85 fcmat

Ecmat
(12)

In addition, the tensile constitutive law was modeled with a bilinear model [77,92,93,97–99]
with a μ factor equal to 25.

ft =

{
Etmat εtmat ε j ≤ εtmat

ftmat − ftmat
μ εtmat

(
ε j − εtmat

)
εtmat(1 − μ) ≥ ε j ≥ εtmat

(13)

In both micro- and simplified micro-modeling strategies, an important step is the
definition of contact surfaces and the type of interaction. The contact surfaces between
expansion cells by a standard contact including surface-to-surface and self-contact was
used to avoid penetration among them. The surfaces were assumed to be zero thickness;
therefore, hard contact for normal behavior of contact was assigned. Hard contact refers
to an interaction without any softening to avoid no penetration of the surfaces, which can
occur in the model. Another mechanical characteristic was assigned in terms of tangential
behavior, called the friction coefficient. Generally, the most common friction coefficient of
concrete/masonry, which is set equal to 0.67, is reported in [100]. Meanwhile, in the micro-
modeling, all nodes are degree-of-freedom and the bond slip is not considered between
brick and mortar. In other words, the perfect bond between the vertical and horizontal
mortar joints and between single clay bricks and the mortar joints were considered. This
strategy, because of the not easy estimation of bond parameters and the related slip law
between the single clay brick and the mortar joints [83], is hard to apply. In all of the three
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approaches, it is possible to introduce the cracking phenomenon to simulate the experi-
mental behavior of the masonry or concrete structures being tested. This phenomenon is
introduced through the nonlinear behavior of the material in compression and in tension,
as reported in these studies [77,78,80,94]. The results furnished are in good agreement in
the comparison between the numerical model and the experimental one. Moreover, the
authors emphasize that the efficiency is related to the accurate definition of the equations
that describe the behavior of the unreinforced column and the nonlinear solution strategy.

2.3. FRCM–SRG (Macro and Micro-Approach) and Interface Modeling

The numerical simulation of the FRCM or SRG system for the confinement of masonry
columns is poorly investigated in the literature. All the available studies [58–73,77] carried
out by the authors are devoted, as their main goal, to the investigation of the structural or
the debonding problem and to model the strengthened systems on the basis of the experi-
mental results that refer to the specific type of FRCM or SRG systems. A clear distinction
within the FRCM systems is crucial for proper selection of the numerical strategies. The
acronym FRCM includes all of the several types of fibers, namely metallic and nonmetallic
ones, their different behavior should be underlined. All nonmetallic reinforcements are
characterized by a negligible stiffness, except under tensile stresses in the fiber’s direc-
tion; contrarily, the metallic reinforcement, known also as SRG when combined with the
mortar matrix, presents a significant stiffness under a different stress state. In the case
of confinement, this specific feature often involves a failure by the opening of the jacket
after the matrix damage, instead of fibers breaking [68,77]. For the above reason, the two
kinds of composites (metallic and nonmetallic) are herein modeled with different strategies.
The presence of the metallic reinforcements provides evidence of only one failure type
that was possible to observe in the confinement action, independent of the matrix (cement
or lime-based) used [67,68]. Consequently, the matrix was not physically modeled, but
the low influences were considered in the mechanical values of system characterization
by tensile tests on SRG specimens made up of fiber and matrix [68]. The above-stated
and the effect of the matrix in the FRCM system, based on the experimental observation,
has a crucial role for the initial tensile stiffness of the composite, while the fabric mainly
affects the strength and the post-cracking stiffness. In the relatively few works present in
the technical literature [77,93,101,102] the matrix was excluded from the numerical model.
The performance and effects of the matrix were considered in this model by assessing the
mortar cracking. Generally, the ductility is related to the damage evolution depending on
both the matrix and the fabric and on their interactions. In fact, the nonlinear models for
the matrix and the fabric and matrix modeled separately were introduced. The behavior of
external reinforcement was described by two approaches: macro approach (MA) and micro
approach (MI). The first approach (MA) was used for the SRG system, where the strength-
ened system is modeled without distinguishing the matrix (lime- or cement-based) and
the fabric by an element shell. This approach is made possible by similar values between
the mechanical value of the dry fibers such as steel fibers (with different steel density)
and the mechanical values obtained by tensile tests on the SRG specimen (steel fibers and
matrix), while the second approach (MI) was used for the FRCM system, where the external
reinforced (matrix) was modeled with real thickness (tfm) and the fabric was modeled with
the equivalent thickness (tf) for both reinforcement systems. The compressive constitutive
law of the matrix was modeled with a nonlinear model (see Figure 3), while the tensile
constitutive law was modeled with a bilinear model. The equations used are (11)–(13).
The behavior in compression and in tensile was described by the CDP function. A similar
modeling technique was used in [75–91], where the external FRCM reinforcement was used
to strengthen the unreinforced masonry columns. In both approaches for the two external
reinforcement systems, the fabric was linear-elastic-until-failure modeled (see Figure 3) and
was described by the internal function E.
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Figure 3. Stress–strain relationship: (a) compression, (b) tension for the mortar, and (c) linear elastic
for fabric.

Moreover, even if the adhesion of the composite with the masonry substrate is gen-
erally not relevant in the case of confinement, as demonstrated for the case of FRP [103],
a perfect bond was considered in the proposed numerical simulations to make the com-
putation easier and more robust. The same assumption was also imposed for the bond
between the matrix and the fabric interaction for the FRCM system. On the basis of the
failure mode [58–73], in particular in the overlap zone, the presence of a greater quantity of
fibers was considered through the equivalent thickness parameter (tf and tmat), modifying
it appropriately.

The interaction between the steel fabric and the overlap layer was used as an interface
cohesive surface and a different interaction between the masonry substrate and the external
reinforcement was considered (see Figure 4). The bond slip law adopted is reported in [104];
in particular, it is a bilinear model. The bond slip law was evaluated by statistical studies
and a meso-scale finite element model on a large database on the single-lap direct shear
test. The latter one was used to evaluate the initial stiffness of the bond slip curve. This
bilinear model is illustrated in Figure 5.

Figure 4. Scheme of interaction.

Figure 5. Interface modeling.
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To evaluate parameter k0, many experimental results are needed. This is due to the
limited available test results relative to the considered confining systems. Consequently,
the value of k0,SRG was assumed unchanging with respect to that reported in [104]. The
parameter Gf,SRG was calculated as:

Gf ,SRG =
∫ s f ,SRG

0
τf ds (14)

Finally, the parameters s0,SRG and sf, SRG are evaluated by the following equations:

s0,SRG = 0.0195 βw ftmat (15)

s f ,SRG =
2 Gf ,SRG

τf ,SRG
(16)

τf ,SRG = 1.5 βw ftmat (17)

Gf ,SRG = 0.308 βw
2
√

ftmat (18)

and they depend on the geometric parameter βw, the fractures energy (Gf,SRG), and tensile
strength of the mortar (ftmat). The bond slip law adopted depends on the three failure
modes that are due to the opening and sliding associated with the normal and shear
stress, respectively. The initialization and evaluation of the damage were evaluated by the
quadratic function reported in a previous numerical work on the columns strengthened
with an SRG system [77,92].

2.4. Geometry, Boundary Conditions, and Solution Technique

The all-masonry columns were modeled in three dimensions (3D) through the three
types of modeling strategies described in Section 2. The element used to model the masonry
column, single clay brick, mortar joints, and external matrix of FRCM system is the linear
tetrahedral four node C3D4 element with constant stress. The FE element used in the MA
for the SRG system and fibers of the FRCM system is a two-dimensional shell element called
S4R. This element is used to model mono-dimensional structures with small thickness. The
equivalent thickness of the fibers (tf) adopted for the S4R element is equal to the values of
the fabric mesh considered, while the matrix thickness (tmat) is equal to the matrix layer
adopted in the tests. Moreover, the masonry column equipped with externally reinforced
corners was rounded to avoid stress concentration. All numerical tests in displacement
control were conducted through the enforcement of a displacement -λu along the y-axis.
The displacement on the entire surface at the top column was applied, while all nodes on
the surface of the column bottom (translations and rotations) were blocked. To solve the
nonlinear equations associated to the numerical problem focused on in this work, a dynamic
approach was used. Generally, this approach is not used to solve a quasi-static problem
because of the parameters involved. The first users of this technique were Chen et al. [105];
they suggested paying particular attention to two parameters, providing their values to
obtain only the static solution. The first parameter is the variable mass scaling and the
value used is equal to 0.00005. The role of this parameter is to scale the mass of all (or
single macro-element) the elements at the beginning of a step and periodically during the
displacement phase. The second parameter is the ratio between the kinetic and total energy
of the model. The value of this ratio is less than 5% during the entire analysis, except at the
first displacement increment.

3. Inventory of Experimental Data and Results

3.1. Unreinforced Masonry (URM)

The unreinforced masonry considered in this numerical work was reported in [65,68];
in particular, both experimental campaigns reported that all masonry columns had a square-
type cross-section of 250 × 250 mm with a horizontal and vertical thickness of mortar joints
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of 10 mm. The current columns have different heights equal to 500 and 720 mm, respectively.
Finally, two and three unreinforced columns in [65,68] were used as reference columns,
respectively.

Table 1 and Figure 6 show all mechanical and geometrical parameters regarding the
unreinforced masonry columns investigated in [65,68].

Table 1. Statistical values of the masonry’s constituents.

ID Brick Mortar

Compressive Flexural Elastic Flexural Compressive
Strength Strength Modulus Strength Strength

fbrick (MPa) - (MPa) Ebrick (MPa) ftmat (MPa) fcmat (MPa)

[65] Average
(CoV %)

12.43 1.91 1625 0.83 1.89
(8%) (17%) (3%) (1%) (12%)

[68]
20.8 - - 0.55 4.3

(18.4%) (13.4%) (7.6%)

Figure 6. Geometrical details of stress–strain relationship: (a) Cascardi et al. [65] and Sneed at al. [68].

The columns were tested under axial compression, and the typical failure observed
was masonry crashing (brittle failure) through a vertical crack in the mortar joints that was
then propagated at the single clay brick units. In Table 2, a compressive strength fcm (peak
stress) and the elastic modulus in compression Ecm were reported. The value of Ect (elastic
modulus in tension) was set equal to compression.

Table 2. Test result of unreinforced masonry.

ID Fcm (MPa) Ecm (MPa)

[65]
U1 8.08

7.61 - 250.33U2 7.15

[68]
UC-1 8.7

7.36 - 2953.21UC-2 6.6
UC-3 6.8

To perform the analyses of the available case studies, it was necessary to assume
values for the missing parameters. The available literature overviewed in the present work
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along with the guidelines [106] offers an adequate amount of information upon which to
base these assumptions. The average values of Poisson’s ratio υ was equal to 0.15, 0.20,
and 0.3 for the masonry, mortar joint, and clay brick, respectively; similar values were
adopted in [78,81,85,94,107–109]. The values used for the density ρ was suggested by the
standard [106] and it was equal to 18 (kN/m3). The elastic modulus for mortar joints was
calculated according to Eurocode 2 [110]. Finally, parameter fct was set equal to 1/3 fcm.

The parameter is that the softening branches of the constitutive laws of materials
depend on fracture energies (Gcm and Gfm) and these were calculated by the equations
reported in [100]. The values adopted are 0.784 and 0.25, respectively, for the experimental
campaign reported in [65]. While for the [68], they were equal to 0.760 and 0.025, respec-
tively. Finally, for both [65,68], the parameter h was set equal to 10, while in Figure 7 the
finite-element resolution is shown.

Figure 7. Geometrical modeling and finite-element resolution for URM: (a) Cascardi et al. [65] and
(b) Sneed et al. [68].

3.2. FRCM and SRG System

In [65], nine columns were divided into three groups (three columns for each group);
they were reinforced with the G-FRCM system using glass fiber combined with a different
strengthening mortar. As described in the section, the FRCM external reinforcement was
modeled through the MI approach. The matrix was modeled in 3D with its real thickness,
while the fiber was modeled in 2D through its equivalent thickness. Specifically, the mortars
presented a difference in terms of compression strength (fcmat), and in Table 3 the flexural,
compressive strength and the elastic modulus are reported (Emat). The thickness (tmat)
adopted per all types of mortar is equal to 5 mm, while the density (ρ) and Poisson’s ratio
υ were assumed to be 20 (kN/m3) and 0.15, respectively. In Figure 8, the finite-element
resolution for external reinforcement is shown.
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Table 3. Statistical values of the mortar and the results of reinforced columns reported in [65].

Mortar Reinforced Columns

Flexural Compressive Elastic Peak Axial
Strength Strength Modulus Strength Average

ftmat (MPa) fcmat (MPa) Emat (MPa) fcmax (MPa) fcmax (MPa)

M4 0.83 4.15 16,898 *
7.54
8.28 8.06
8.34

M7 1.46 7.26 19,984 *
10.31
8.34 10.01
11.37

M23 4.61 22.93 28,219 *
15.65
12.21 14.20
14.73

* Note: evaluated according to [110].

Figure 8. Finite-element resolution for (a) FRCM and (a) SRG.

All columns were reinforced with a single layer of continuous reinforcement over
the entire height of the column, while the length of the overlap was equal to the width of
the column. The mechanical properties of glass fibers in terms of tensile strength (ffu) and
elastic modulus (Ef) were equal to 742.40 (CoV 9%) and 37,120 (11%) MPa, respectively.
Meanwhile, the equivalent thickness (tf) was equal to 0.046 mm. In addition, round corners
equal to 30 mm were in the four column corners to avoid stress concentration.

The typical failure observed was the brittle failure type, while a knife effect was
observed for the reinforced ones, i.e., opening of a large vertical crack in the corner zone
(overlap zone). In [68], the masonry columns were reinforced by an SRG system; in
particular, three groups of four reinforced columns were considered. The reinforced system
consisted of two types of inorganic matrices (hydraulic lime mortar and cementitious
mortar matrix) with compressive strengths and different steel density.

The first approach used with the SRG system is MA without distinguishing the mortar
and the steel fabric, and it was modeled in 2D. The equivalent thickness value used depends
on the steel fibers’ density (Table 4) and the constitutive law was linear elastic until failure.
The mechanical parameters adopted in terms of tensile strength (fSRG), ultimate strain
(εSRG), and cracked modulus (ESRG) were suggested by the manufacturer [111], and they
were obtained by tensile tests on the SRG specimen. In addition, the density used is equal
to 7.8 g/cm3. The mechanical parameters of the bilinear model are summarized in Table 5.
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Table 4. Statistical values of the external reinforcement and its constituents for columns reported in [68].

Group
Steel

Fabric
Mortar SRG Specimen

Round
Corner

Steel
Density

Equivalent
Thickness

Flexural
Strength

Compressive
Strength

Tensile
Strength

Elastic
Modulus

Ultimate
Strain

Cracked
Modulus

r (mm) p (g/m2) tf (mm) ftmat (MPa) fcmat (MPa) fSRG (MPa) Emat (MPa) εSRG (-) ESRG (GPa)

1 0 670 0.084 1.5 13.0 3060 23801 0.010 156.0
2 0 670 0.084 4.4 47.1 2900 35021 0.018 160.0
3 9.5 1200 0.169 4.4 47.1 3060 35021 0.021 170.0

Table 5. Lu’s parameter values.

Interface Modeling

Group 1/3 Group 2

k0,SRG [N/mm2] 76.92 76.92
τf,SRG [N/mm2] 1.66 4.88
Gf,SRG [N/mm] 0.21 0.37

The typical failure observed, independent of the types of steel density and inorganic
matrix used, was located at the overlap zone with the opening of the reinforcement jacket.
It should be noted that by increasing the steel density it was possible to observe a decrease
in terms of peak axial strength. Table 6 shows the peak axial strength values for each type
of column analyzed in [68].

Table 6. Results of reinforced columns reported in [68].

Group Reinforced Columns

Peak Axial Strength
fcmax (MPa)

Average
fcmax (MPa)

1

10.3

9.3
9.5
9.1
8.5

2

9.1

9.3
10.1
9.4
8.7

3

10.7

10.5
11.1
10.1
10.1

3.3. Experimental versus Numerical Results
3.3.1. Unreinforced Columns

Figure 9 shows the comparison between the stress–axial-strain curves obtained from
experimental tests and the numerical results obtained by the MA for the experimental
campaign reported in [65,68]. The numerical branch before the peak stress is in good
agreement with the experimental curves, while the softening branch presents higher scatter.
In terms of peak axial stress, the numerical curves present an error between 2 and 3%.
Furthermore, in terms of peak axial stress, the error of the curves shown in Figure 9 was
evaluated by means of Equation (19) and summarized in Table 7.

Δerr[%] =
fcm (Num) − fcm (Exp)

fcm (Exp)
100 (19)
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Figure 9. Comparison results for unreinforced column between the numerical and experimental
curves reported in (a) Cascardi et al. [65] and (b) Sneed et al. [68].

Table 7. Results of comparison.

Cascardi et al. [65] Sneed et al. [68]

Δerr[%] 2.1 2.8

The numerical model curve is affected by the type of approach used; in particular, the
experimental curves have a more rapid descending post-peak branch until final collapse.

Figure 10 shows the comparisons between the experimental curve reported in [65]
and the curves obtained from the numerical models by using the MI and SIMI approaches.
In terms of peak stress, lower values are reached compared with the experimental and
with higher values of axial deformation in correspondence to the peak stress. However,
in the first branch, the numerical curve differs from the experimental one and exhibits
nonlinear behavior before reaching the peak stress. In addition, it is possible to observe
drops near the peak stress because of the type of interaction adopted. The differences in
drops are more pronounced in the SI approach. Finally, for the assumptions present in the
interaction between bricks and mortar joints and between the mortar joints themselves,
the compressive and tensile strength of the vertical mortar joints was reduced by 50% as
suggested in [81] to not harden the numerical model and cause failure in the vertical mortar
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joints. The softening branch is in good accordance until the reduction of 20% in the peak
stress. In terms of peak axial stress, the numerical curves present an error of less than 1%
for both the approaches.

Figure 10. Comparison results for unreinforced column between the numerical and experimental
curve reported in Cascardi et al. [65]: (a) SIIMI and (b) MI approach.

3.3.2. Wrapped Columns

The external reinforcement called FRCM, which the columns reported in [65], were
reinforced and modeled in 3D. In particular, the glass fibers were described by a 2D
model, while the matrix was by a 3D model. In Figure 11, the comparison between the
experimental curves and the numerical curves is shown. It should be noted that the strategy
adopted to emphasize the matrix effect of the numerical curve is in good agreement with
the experimental ones. In addition, the numerical curves showed good accordance in terms
of both peak axial stress and branches until the peak axial stress. The post-peak branch was
reduced because of the models used to describe the behavior of the external reinforcement,
particularly for the excessive distortion of the FE elements used.
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Figure 11. Comparison results for reinforced column between the numerical and average experimen-
tal curve reported in Cascardi et al. [65]: (a) FRCM_M4, (b) FRCM_M7, and (c) FRCM_M23.

In Table 8, the error evaluated by Equation (19) is summarized. In Figure 11, the
crack pattern at failure is also reported and is compared to that observed experimentally.
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The modeling strategy adopted is in good accordance with the experimental in terms of
the crack pattern. The error evaluated through Equation (19) is between 1 and 4%. The
approach used has a drawback that is due to the excess computational burden. In addition,
the matrix effect may be observed, especially for the matrix named FRCM_M23. The
columns reinforced with the SRG system [68] were modeled in 2D using the MA approach
without distinguishing the matrix and steel fiber. Figure 12 shows the comparison between
the experimental curves and that obtained from the numerical model varying the type of
matrix and density of steel fibers.

Table 8. Results of comparison.

Δerr[%]

FRCM M4 [65] 1.1
FRCM M7 [65] 3.6

FRCM M23 [65] 2.0
Group 1 [68] 5.7
Group 5 [68] 7.1
Group 8 [68] 7.4

Figure 12. Cont.
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Figure 12. Comparison results for reinforced column between the numerical and experimental curve
reported in Sneed et al. [68]: (a) Group 1, (b) Group 5, and (c) Group 8.

The error is between 5 and 8%. The values are slightly higher than those obtained
with the approach used for the FRCM system. This approach has the advantage of a lower
computational burden and, consequently, may be used for structures of greater geometric
dimensions. The crack pattern at failure is also reported in Figure 12. It is possible to note
the detachment along the overlap zone along the entire height of the column. While the
one observed experimentally is sometimes localized and does not develop along the entire
height, this type has also been noted in [77,92]. Localized detachment is caused by the
arrangement of the steel sheet during the casting phase of the steel fibers. The steel fiber
sheet is commercialized in 30 cm wide rolls; therefore, multiple sheets of 30 cm wide steel
fiber are placed side by side to cover the full height of the column and the several steel
cords are joined together by the matrix alone. In Table 8, the errors are summarized.

4. Conclusions

The numerical procedure found, which was based on the finite element, was devel-
oped in this paper. Parameters of the numerical model were calibrated on the available
experimental results present in the literature. The effectiveness of the model was evaluated
by a comparison of test results conducted on clay brick masonry columns confined with
FRCM (glass-FRCM) and SRG (with different types of matrix and steel density) systems.
Based on the obtained results, the following conclusions can be drawn:

• The different numerical strategies adopted furnish accurate outcomes in terms of axial
strength for unconfined masonry columns;

• The proposed strategy adopted to describe the external reinforcement FRCM/SRG by
the MA and MI approaches in terms of axial stress and crack pattern are similar;

• For glass-FRCM- and SRG-confined columns, numerical predictions in terms of axial
stress–axial strain curves are in good agreement with experimental results in the
ascending branches of the curves, while they are inaccurate for describing the post-
peak;

• The approach used for the FRCM system resulted in errors of less than 4%, but with a
considerable increase in computational burden;

• The approach used for the SRG system could possibly obtain an error of between 5
and 8%.

Further experimental analysis is needed to confirm the results obtained in the investi-
gation described and discussed in the paper.
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Abstract: Long-span steel structure trusses are widely used in factory buildings. However, with the
increase in service time and dynamic load fatigue, transverse cracks at the bottom of the middle span
and oblique deformation of the abdomen during the operation process may appear in a considerable
part of long-span trusses with dynamic load. The U-shaped cracks at the bottom and belly, as
well as the mid-span down deflection of the main truss, can also reduce the functionality of the
factory building truss structure and limit the original crane load, thus affecting the normal safety and
durability of the structure. Therefore, the principle of variable axial force cable system in the long-span
factory building truss structure and 3D3S software modelling were applied. Analysing and studying
the reinforcement method of large-span powerhouse trusses can provide practical experience for
subsequent similar projects. In view of the above phenomenon, the large-span powerhouse trusses of
Hongcheng Powerhouse No. 1 and No. 2, located in Tonglu, Zhejiang Province, were used as the
research objects, and the variable axial force cable method was proposed to strengthen and lift the
load. Considering the span of the powerhouse truss, a cable system with 22 m and a controlling force
of 400 kN was proposed for Powerhouse 1, and a cable system with a variable axial force of 24 m
was proposed for Powerhouse 2. The force model of large-span trusses was established by using the
finite element method, which is commonly used to analyse the force of the truss. The influence of the
reinforcement effect was analysed under two working conditions and compared from three aspects:
stiffness, bearing capacity and stability. Furthermore, the phenomenon of uneven stress distribution
was analysed. The stress distribution characteristics of each node were understood by simulating the
most disadvantageous node plates with the greatest internal force before and after reinforcement.

Keywords: long-span steel structure truss; variable axial force cable; 3D3S finite element model; joint
plate analysis; variable system reinforcement combination stiffness; load domain

1. Introduction

Many previous researchers have conducted corresponding research on the application
of variable axial force cables in reinforcement engineering. For example, the application
of variable axial force cables in bridge reinforcement has been widely studied. One study
investigated the application of VLM.TS-type outer cable in the Dongming Huanghe Bridge
reinforcement project [1]. Gong proposed strengthening the Pu Shan Wan cantilever bridge
using a cable system [2]. Hu et al. studied the application of 2000 MPa parallel steel
cables in highway and cable bridges [3]. Simultaneously, the application of the variable
axial force cable in bridge reinforcement has attracted the attention of researchers [4]. For
example, He et al. conducted a stress and reinforcement analysis of steel truss structures
considering the influence of global joint stiffness [5]. Pan studied the application of cable
installation and construction technology of single-tower suspension bridges [6]. Yu et al.
studied the application of cable installation and construction technology of composite beam
suspension bridges.
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The Variable Axial Load Cable Method is a structural retrofitting technique used to
strengthen trusses. This method involves the installation of steel cables with appropriate
tension to transfer the loads from weak or damaged members of the truss to stronger ones.

The process of retrofitting through this method starts with the identification of the
damaged or weak member(s) and an assessment of the truss system’s overall strength.
Once identified, steel cables are installed in place of the damaged or weakened member(s),
so that the original load-bearing function is restored.

The cables are then pre-tensioned to a specified load and attached to the adjacent
members of the truss. The tension in the cables is adjusted to ensure the load is evenly
distributed among all members of the truss. This ensures that the strength of the entire
truss system is improved without overloading any one member [7].

Additionally, a number of researchers have studied the application of variable axial
force cables in concrete bridge reinforcement. For instance, Hu studied damage inversion
analysis and variable system reinforcement of concrete bridges based on an equivalent
sandwich beam model [8], whilst Zhao et al. applied and investigated the effect of a cable
shock absorber in the Jiayu Yangtze River Highway Bridge [9]. Several studies have also
cited the variable axial force cable construction and related technologies of the standard
specification, such as building structure load calculation code (GB50009-2019) [10], steel
structure construction quality acceptance code (GB50205-2014) [11], cable construction
technical code (JGJ257-2012) [12] and building structure test technical code (GB/T50344-
2019) [13]. Teng et al. determined the axial force on stay cables whilst accounting for
their bending stiffness and rotational end restraints by free vibration test [14]. Other
researchers have introduced the design method for the overall strength and stability of
steel structures [15–18] and used advanced structural inspection and evaluation techniques,
such as 3D3S modelling inspection [19–21], and introduced the stress loss and strength
failure detection methods of some high-strength bolts and steel [22–24].

Finally, researchers have also used the variable axial force cable application in struc-
tural engineering experimental research and finite element (FE) analysis. For example, one
study verified the FE analysis method by conducting experiments on reinforced concrete
beams [25], whilst another study conducted the stiffness evaluation and FE analysis of
fibre-reinforced epoxy resin laminates [26]. In summary, the variable axial force cable has
been widely used in reinforcement engineering, with great success. In practical engineering,
the construction scheme of the cable with variable axial force should be reasonably de-
signed in accordance with the application research of the cable with variable axial force in
reinforcement engineering and relevant standards, combined with the actual situation, thus
improving the reinforcement effect. However, studies on the application of the variable
axial force cable in reinforcement engineering of steel truss structures have been limited,
thereby motivating this research.

As typical representatives of modern industrial buildings, large-span factory buildings
have various structural forms, huge spans and weak seismic ability and can easily be
affected by natural disasters and human factors. Therefore, how to improve the earthquake
resistance and overall stability of large-span plants has always been a concern of researchers.
Recently, variable axial force cable technology has gradually been widely used, as it can
effectively resist the impact of earthquakes, wind and other abnormal loads; improve the
structural stability and seismic ability of long-span factory buildings; and can be widely
used in large bridges, high-rise buildings and other fields.

This paper explores the application of cable technology with variable axial forces in the
reinforcement of large-span powerhouses. Taking two large-span powerhouses as examples,
the influence of cable reinforcement with variable axial force on large-span powerhouse
structure is studied through FE analysis and experimental verification. The results of
this study can provide a theoretical and practical basis for seismic reinforcement of large-
span powerhouses. Simultaneously, this paper also discusses the application prospects
and development trends of the variable axial force cable reinforcement technology in
other fields. Through this study, we make an important contribution to the structural
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reinforcement and seismic capacity improvement of large-span factory buildings, as well as
provide a useful reference for the sustainable development of modern industrial buildings.

2. Project Profile

Powerhouses 1 and 2 of Zhejiang Hongcheng Industrial Co., Ltd. are double-span
gantry rigid steel structures. Industrial Powerhouse 1 was built in 2008, covering a building
area of 11,200.3 m2 and with an eaves elevation of 11.400 m, according to the fire risk
classification D, fire resistance grade 2 and the redesigned safety grade 2. Powerhouse 1
has waterproof-grade III roofing and uses a moulding steel plate for defensive protection.
As for the seismic fortification of this project category C, its seismic fortification intensity is
6◦, the design basic acceleration is 0.05 g, and the engineering design life of the steel frame
main body is good for 50 years.

Powerhouse 2 was also built in 2008, covering a building area of 5952 m2 and with an
eaves elevation of 11.100 m (slightly higher than Powerhouse 1). Its fire risk classification,
fire resistance grade, safety grade, waterproof grade, seismic fortification category, seismic
fortification intensity, design basic acceleration and engineering design life are the same as
those of Powerhouse 1. The photos of the two house trusses are shown in Figures 1 and 2,
respectively, whilst the corresponding section views of Powerhouses 1 and 2 are shown in
Figures 3 and 4.

 
Figure 1. Powerhouse 1.

 
Figure 2. Powerhouse 2.
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Figure 3. Cross-section view of Powerhouse 2.

 

Figure 4. Cross-section view of Powerhouse 1.

3. Reinforcing Analysis

3.1. Reinforcement Scheme

Due to the addition of roof photovoltaic panels in the two plant buildings, the existing
plant buildings cannot meet the requirements of the new code. Therefore, under the
influence of the above two factors, the buildings must be strengthened comprehensively.
Simultaneously, the roofs of the two factory buildings are cracked, causing water leakage
that affects their normal use. Furthermore, the deflection of the truss exceeds the limit, the
crane track is seriously worn, and the crane in the lane cannot pass normally. The plant
area is reinforced and reformed under the influence of the new regulations.

Due to the large span of the trusses in the powerhouses of Zhejiang Hong Cheng
Company, if the conventional increase force surface of the column is arranged between
the rigid trusses, the headroom area of the powerhouse will be reduced, and the crane
and the vehicles inside the powerhouse cannot be used or passed normally. Therefore,
we selected a variable axial force cable for the overall truss reinforcement. The cable is
arranged in a radial manner, and the anchor block is arranged in the purlin of the original
rigid frame node. Upon reinforcement, the original truss only must bear the dead weight
of the truss, whilst the new cable variable axial force bears two parts of the load, mainly
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the dead weight and tension of the cable, as well as the additional dead load and other live
loads of the truss, thereby improving the overall bearing capacity of the truss.

To summarise the prestressing force value of the cable, two kinds of cable calculations
and comparisons were selected in this paper. Type 1 simulates the cable reinforcement with
a low controlling force. The span of the original truss was 22 m, whilst the controlling force
was 400 kN. For the cable reinforcement of the conventional control force in the Type 2
simulation, the span of the original truss was 24 m, and the control force was 600 kN, as
shown in Figures 5 and 6. Through theoretical calculations and analysis, we obtained the
influence of two kinds of cable reinforcement effects, from which information the whole
node plates are designed.

 

Figure 5. Detailed drawing of the variable axial force cable in Powerhouse 1.

3.2. Reinforcement Mechanism

In this study, we developed a method of cable reinforcement with variable axial force
from a bridge system. The cable is a kind of cable-bearing bridge, in which the force form of
the main truss is similar to the continuous beam that is supported by an elastic multi-point
position. In truss calculations, the position and controlling force of the cable have a great
influence on the whole force of the truss.

The main impact of changing the controlling force and position of the cable is that the
height of the cable directly affects the dip angle of the cable. In the general truss design,
the cable provides elastic support for the roof structure [1]. Therefore, to obtain a larger
vertical component, a cable with a larger dip angle must be selected. A study of the bridge
systems found that the ratio between the layout height of the conventional cable and the
span of the truss generally ranges from 1/4–1/6, which is the reasonable layout height of a
cable. If the height of the truss is short, the ratio between the layout height and the path of
the truss generally ranges from 1/8–1/12 [2]. Due to the different layout heights, the stress
characteristics of the two are also different. Simultaneously, for the transverse diameter
cable tie truss/cover, both ends of the suspension cable can be designed to be equal or
unequal height, and the sag should have a range of 1/10–1/20 of the span, according to
JGJ257-2012 cable structure technical regulations [3]. Here, we selected the design value of
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the cable control force and verified that this is actual practice, according to Articles 5.6.1
and 5.6.2 of the JGJ257-2012 Cable Structure Technical Regulations.

Figure 6. Detailed drawing of the variable axial force cable in Powerhouse 2.

3.3. Computational Analysis and Modelling

(1) The overall situation is shown in Figures 3 and 4.
(2) The force analysis of the 3/A axis column and the deformation analysis of the column

section after stress are shown in Figure 7. The schematic diagram of the roof truss
load G1 and crane beam load G2 is shown in Figure 8.

 
Figure 7. Column stress deformation diagram.
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Figure 8. Column cross-section.

(3) Analysis of the upper part: The height of the column section is within the height
range of 16.9–9.9 m. The original eccentricity of G1 is 400 mm, which has turned
100 mm to the right—a condition that is favourable to the upper end and ensures that
no breakage occurs. The calculation is based on the GB 50009-2019 building structure
loading code.

(4) Overall analysis (see Figure 9):

 
Figure 9. Schematic of the overall mechanical analysis.

G1: Original eccentricity + 0.3 (positive to the left)
G2: original eccentricity − 0.5
Deflection due to the column force:
G1: original eccentricity e1 = + 0.5
G2: eccentricity becomes e2 = −0.4
Based on the calculation of a single piece of house truss in Powerhouse 1:

1) Roof plate dead load: 3 kN/m2; Live load: 0.5 kN/m2; The span ranges from
22–24 m, with Seta pin spacing of 8 m

G1 = (1.3 × 3 + 1.5 × 0.5)× 8 × 14 × 1
2
= 45.9 kN
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2) Wind load: Using simplified calculation, we take 1 as a uniform load, and then
the line load is as follows: 1 × 8 = 8 kN

m = qw.
3) Vertical crane load (see Figure 10), because the eccentricity of the crane load is

negative, the worst case is 0.

 
Figure 10. Schematic of vertical crane load mechanics.

4) Dead weight of the wall: M4 = 8 × 0.3 × 30 × 22 × 0.1 × 1.3 = 205.4 kN/m
5) The horizontal load (transverse) of the crane is two sets of Q = 20/5 t soft

hook crane A6 and heavy car.

∑ Tk = 2 × 2 × 0.1 × 5 + 20
4

× 9.8 = 24.5 kN

M = M1 + M2 + M4 + 0.7 × M5

For the convenience of calculation, we considered the roof live load, according
to the dead load, to meet the guaranteed rate. This includes the following:

= 45.9 × 0.5 + 205.4 +
1
2
× 8 × 30 × 30 × 1.5 + 0.7 × 915.08 = 6268.906 kN/m

6) Current situation: mm column bending capacity configuration: 10 HRB400
rebar with a diameter of 25 mm:

Mconfiguration = 2425 kN/m

7) Horizontal tie-bar tension:

T =
M

11.4
= 549.9 kN

When the current mm can bear part of the bending distance, then:

T =
6268.906 − 2425

11.4
= 337.18 kN

We considered adding a cable rod between the columns at an elevation of 6.9 m.
The cable rod coordinates the bending distance between the two ends [27]. It can either
be removed after reinforcement or retained permanently (more suitable) to reduce the
eccentricity of the columns.

(5) 3D3S modelling was applied after importing the overall calculation data [28], as
shown in Figures 11 and 12.
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Figure 11. 3D3S model of the southeast axis.

 

Figure 12. 3D3S model of the southwest axis.

3.3.1. Condition 1: Uniform Load

We compared and analysed the deflection values of different span trusses before and
after reinforcement under a uniform load in working condition 1, as shown in Figure 11.
The maximum deflection value was 55.42 mm before reinforcement, whilst the maximum
deflection value was 12.52 mm after the span of 22 m. Compared with the state before
reinforcement, the deflection value of each component decreased by more than 77.4%. The
maximum deflection value of the cable span after reinforcement at 24 m was 15.64 mm.
Compared with the state before reinforcement, the deflection value of each component
decreased by more than 71.8% [29], as shown in Figure 13.

 

Figure 13. Deflection distribution under live load.
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The difference in cable span and axial force led to a change in the cable dip angle.
When the span and axial force of the cable changed, the components of the cable force along
the X axis and the Z axis also differed, in which the larger the span, the larger the axial
force (i.e., the larger the component along the Z axis, the larger the deflection reduction
value). Compared with the axial forces of 400 kN with a 22 m span and 600 kN with a 24 m
span, the reduction rate of the deflection value of the component strengthened with the
latter was greater than that of the former under the same uniform load conditions. When
the controlling force exceeded 600 kN, the reduction rate of the deflection value became
smaller [30].

3.3.2. Condition 2: Stress Value

Table 1 lists the changes in the maximum stress value of the lower member after cable
reinforcement. Combined with the data in the table and the stress distribution trend of the
lower member of the truss in Figure 14, it can be seen that the stress system of the original
truss changed after reinforcement, after which the internal forces of each truss member
changed accordingly. Before the original truss reinforcement, it can be regarded as a simply
supported truss structure, with the maximum bending moment value at the mid-span.
The reinforced cable was similar to the elastic support, which changed the type of original
structure, i.e., the 1-span 22 m/24 m truss changed into a 4-span 5.5 m/6 m continuous
beam. Furthermore, the structural type and single span changed, greatly reducing the
internal force value of the reinforced truss. After reinforcement, the initial tension of the
cable expanded the range of the compression member of the truss under the action of dead
load, whilst the tensile stress of the tension rod decreased.

Table 1. Changes in the stress values of lower truss members after cable reinforcement.

Span (m)/Control
Force (kN)

Maximum Stress
(MPa)

Stress Reduction
(MPa)

Reduction Rate
(%)

Before reinforcement 310.82 0.0 0.0
22 m/400 kN 112.52 212.54 65.38
24 m/600 kN 70.54 244.70 77.62

 

Figure 14. Stress distribution diagram of the lower truss members.

Figure 15 shows that the maximum compressive stress of the upper member of the
reinforced front truss exceeded the yield strength of the steel used for the upper member,
with the value reaching 155.85 MPa. Some members will be damaged. The compressive
stress value of the upper member almost reached 30 MPa, and the stress value was greatly
reduced after the reinforcement with a variable axial force cable. When the original truss
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was a single-span truss that was a simply supported structure, the mid-span maximum
compressive stress of the upper member was nearly three times that of the fulcrum. The
multi-point elastic support provided by the reinforced cable reduced the span of a single
span, thus decreasing the compressive stress difference of the upper component. This
resulted in more uniform stress of the component and increased structural life. Due to the
influence of the initial tension of the cable, the truss has an upward arch under the action of
a dead load, and there is a reserve of tensile stress on the upper member. When the strain is
applied to the whole truss, the reserve stress generated by the initial tension can offset part
of the load effect, resulting in a substantial reduction in the tensile stress value.

 

Figure 15. Stress distribution diagram of the upper truss member.

As shown in Figure 16, the stress distribution of the inclined rod of the reinforced front
truss consisted of two inclined rods connected to the same node (one under tension and
one under pressure), whilst the absolute value of the stress decreased continuously from
the fulcrum to the span [30]. After reinforcement, eight of the 24 diagonal rods on each side
were placed under tension, whilst 16 were under pressure. Furthermore, the two diagonal
rods at the node position of the cable anchorage were under pressure, whilst the tension
and pressure of nodes at adjacent positions were placed alternately. The details presented
in Table 2 below can also be seen in Figures 16–18.

 
Figure 16. State before reinforcement.
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Table 2. The stress changes in the inclined bar of the truss after cable reinforcement.

Component Name
Maximum

Compressive Stress
(MPa)/Position

Component Name
Maximum

Compressive Stress
(MPa)/Position

Reduced Value (MPa)

Reinforce the front
inclined bar 219/Near-truss Reinforce the rear

diagonal bar 33.8/Near-truss 185.2 ↓

Reinforce the front
mid-span diagonal bar 73.5

Reinforce the diagonal
bar in the middle of the

rear span
38.2 34.6 ↓

The rear inclined rod
was reinforced with

22 m controlling force
and 400 kN cable

39.9

The rear inclined rod
was reinforced with a
24 m controlling force

of 600 kN cable

38.2 1.7 ↓

Note: ↓: It means to decrease or decrease.

 
Figure 17. 400 kN control force cable after reinforcement.

 
Figure 18. 600 kN control cable after reinforcement.

By comparing the stress changes after the control force changes, the maximum stress
value of the inclined bar with a 22 m span and 400 kN control force decreased by 1.7 MPa
compared with that with a 24 m span and 600 kN control force. Therefore, the maximum
stress value of the inclined bar changes with the span and control force.
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By comparing the deflection, stress values of the upper and lower truss members and
inclined bar of two kinds of plant trusses with variable axial force reinforcement under live
load, the results showed that, in terms of the reinforcement of large-span trusses, the cable
with a large controlling force within a reasonable span had better performance, and the
controlling force increased with the increase in span. According to the standard, the 600 kN
control force can be considered the conventional control force. The cable reinforcement
produces a certain inclination angle, and the Z-component increases, which greatly unloads
the powerhouse truss. Moreover, the vertical support provided by the cable can transform
the large-span simply supported structure into a multi-span continuous structure, thus
shortening the span of the single-span structure and greatly reducing its internal force value.

4. Nodal Analysis

4.1. FE Modelling

A solid model was established for the lug plate at the joint position of the plant with
complex forces (Figure 19). The joint plate was made of Q345B [30] steel, and the thickness
was 20 mm. Each side of the roof truss was provided with internal and external node plates,
each with a diameter of 20 mm large hexagonal head high-strength bolts 64 and a hole
diameter of 22 mm. The bolt strength class was 10.9 S, and the bolt pretension ranged from
155–187 kN, the value of which was specified in Appendix B of the GB50205-2020 Steel
Structure Engineering Construction Quality Acceptance Standard [31].

 
Figure 19. Finite element model of gusset plate.

Here, the force of each member of the node was transferred through welded connec-
tions, such as the flange plate and bottom plate, and friction was provided by friction-type
high-strength bolts [5]. The ASET software was used to establish the model. The material
nonlinearity and geometric linearity were considered in the calculation, and the model
was loaded in five steps, according to the GB50344-2004 Technical Standard of Building
Structure Inspection, thus ensuring the convergence of the calculation structure. To save
computing resources, only bolts were established in this paper (the stress test of side plate
materials was omitted). For the simulation test, we selected the most unfavourable joint
plate with the greatest internal force before and after reinforcement.

4.2. Node Plate Analysis

As can be seen, the stress value of the bolt group is greatly reduced after adding cable
reinforcement, which improves the overall stability of the powerhouse trusses.

5. Conclusions

(1) After the cable reinforcement, the stiffness of the building truss increased, and the
stress distribution trend of each component changed. Under the action of the crane
and other main live loads, the reduction rate of the deflection value exceeded 50%. Fur-
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thermore, the maximum stress reduction rates of the upper and lower truss members
exceeded 60%, whilst the overall load increase rates of the first and second power-
house trusses exceeded 70% (Figures 11–21) after being reinforced by the variable
axial force cable.

 

(a) Outside connecting plate bolt (b) Inner connecting plate bolt 

Figure 20. Stress distribution diagram of the bolt before reinforcement.

 

(a) Outside connecting plate bolt (b) Inner connecting plate bolt 

Figure 21. Stress distribution of bolts reinforced with 600 kN cable with 24 m controlling force.
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(2) Before reinforcement, the overall stress level of each node was reasonable, but this
increased due to the increased load and service life limit after the installation of
photovoltaic panels, along with the second-highest stress concentration at the bolt
position of the node plate. After the reinforcement, the stress values of the node plates
all decreased significantly. Moreover, the stress below 100 MPa accounted for over
90% of the nodes, whilst the higher stress accounted for less than 1% of the nodes
(Tables 1 and 2). The node plates after the reinforcement were in the stable stress area
without tearing or stress damage.

(3) The high-stress and secondary high-stress areas of the bolt group were mainly dis-
tributed near the load position. After the reinforcement, the stress zone area of
50–100 MPa accounted for about 35% of the bolt group, whilst the stress zone area
above 100 MPa accounted for less than 1% (Table 3) TA. The problem of stress concen-
tration has been solved, and the requirements of the new specification have been met.

Table 3. Results of the comparative analysis of Figure 20a,b and Figure 21a,b.

Condition
Maximum Stress of the

Connecting Plate
Bolt (MPa)

The Stress Distribution
Area above 100 MPa
Accounted for (%)

The Stress Distribution
Area between 50 and 100
MPa Accounted for (%)

The Stress Distribution
Area below 50 MPa
Accounted for (%)

Before reinforcement 204 25.6 68.1 6.3

After using 24 m of control
force and 600 kN

cable reinforcement
106 0.1 ↓ 34.6 ↓ 65.3 ↑

Note: ↓: It means to decrease or decrease. ↑: It means to rise or increase.

In summary, the plant truss reinforced using the variable axial force cable method can
play a role in lifting and strengthening the whole truss [3]. Two kinds of cables with different
spans and controlling forces were used to conduct load-lifting reinforcement application
practice in Powerhouses 1 and 2. Through comprehensive comparative analysis, the results
revealed that the cable reinforcement of powerhouse trusses plays an active and effective
role in the stress system. When the cable reinforcement of Powerhouse 2 was used with a
24 m span and controlling force of 600 kN, the reinforcement effect of the structural system
was better than that of Powerhouse 1.
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Abstract: Promoting prefabricated steel structures is considered one of the crucial approaches to
meeting the objectives of “carbon peak” and “carbon neutrality” in the construction industry. Due to
insufficient practical experience and incomplete fine engineering techniques in civil construction, the
sustainable development of prefabricated building systems in China faces many challenges. Taking
steel components as an example, the design process of tubular columns does not pay enough attention
to the influence of the cold-working effect on material mechanical properties, and the constitutive
relationship of cold-formed steels is not clear, which will cause an engineering economic burden and
may affect the judgment of catastrophic problems. To serve the refined design and meet the intelligent
construction technology using the computer platform, a modified Menegotto-Pinto model using
a continuously derivable function is proposed in the paper. The proposed model can successfully
describe the complete stress-strain curve of cold-formed circular mild steels as long as the basic
mechanical parameters of the parent material are determined. Taking into account the influence of
the strength and thickness of the parent steel sheets, as well as the internal bending radius r, on the
cold-rolling effect, the model can also flexibly track the elastic-plastic nonlinearity of the cold-formed
materials. In addition, the research shows that the cold-rolling effect will weaken with the increase
of the yield strength fsy,0 of the parent steels and r/t ratio, and may disappear when fsy,0 reaches
1748 MPa or the r/t ratio is approximately 60, which can be used as economic indicators during the
design process.

Keywords: cold-formed; mild steels; circular hollow sections; uniaxial tensile stress-strain model;
material property; high-strength

1. Introduction

To accomplish the objectives of “carbon peak” and “carbon neutrality” in the building
and construction industries, the promotion and application of prefabricated steel structure
buildings are advocated to meet the requirements of the circular economy and sustainable
development in China [1,2]. The measures to promote prefabricated steel structure build-
ings can be divided into the following broad categories: construction technology, the use of
high-strength steel, intelligent construction technology using the computer platform, and
so on [3]. In recent years, due to their high capacity, ease of construction, and recyclable
utilization, cold-formed steel structures have shown great potential in intelligent design.
While experiencing cold-forming, the uniaxial tensile stress-strain curve of mild steels
exhibits a more rounded stress-strain response which is no longer suitable to be described
by an ideal elastic-plastic model or simple broken line models. However, the most popular
structural design is still inclined to use such models to simulate cold-formed steels. On
the other side, the guidance contents in most of the current specifications [4–6] are on the
basis of early experimental work, which limits the range of material strength and geometry
parameters. In fact, there are significant differences in the strength improvement of different
steel section types formed through cold-rolling. Those specifications primarily concentrate
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on the strength enhancement for the corner sections but neglect the cold-rolling effect for
the circular hollow sections (CHSs for short). The above issues may lead to some key
technical issues being vague and increasing the economic burden of engineering, which
contradicts the intention of green building and intelligent design.

Determining a material constitutive model is one of the essential parts of structural
analysis. Establishing an efficient computational numerical model in intelligent design
requires defined material strength and a continuous function to deal with the stress-strain
relationship of materials. Many studies have been carried out to study the uniaxial tensile
stress-strain models of cold-formed steels as well as the strength enhancement due to
cold work. Li et al. [7] have contrasted several available predictive methods of strength
enhancement and found that current specifications, such as AISI [5] and Eurocode 3 [6],
overestimate the cold-formed effect on corner yield strength, while the empirical methods
proposed by various researchers have limitations in terms of the r/t ratio. Liu et al. [8]
proposed a new method to predict the corner strength of cold-formed conventional steels
based on measured data, and the method can be applicable to the yield strength fsy,0 of
parent materials, which ranges from 256 MPa to 497 MPa and the r/t ranges from 0.57 to 7.54.
Masoud Kalani [9] investigated the cold work effect on the tensile behavior of thick steel
plates and verified the accuracy of several available equations for predicting the average
yield stress of the experimental specimens. Pham [10] investigated the G450 channel steels
to better predict the strength enhancement of high-strength steels. Chen [11] conducted
an investigation into the material properties of high-strength CHS steels with r/t ranging
from 11.5 to 32.3 and found that the yield strength improvement rate fsy/fsy,0 of the Q460
was 1.09, while the Q960 section exhibited no increase in strength. Meng [12] discovered
that tensile coupons of high-strength CHS (fsy,0 = 799 MPa, r/t = 7~29) exhibit lower fsu/fsy
as the r/t ratio decreases. Generally, the use of high-strength material leads to a longer life
span of the structure and brings cost-effectiveness [13]. However, based on experimental
investigations, Chan et al. [14] found that the measured failure strain of high-strength steels
cannot meet the requirements of Eurocode 3 due to the press-braking process.

Given that most research has focused on the effect of cold-forming on material strength
enhancement, the influence of cold-forming on the deformation ability of steels should
be given more attention and carefully introduced into the relationship between stress
and strain. Based on the differences in the fabrication process, Yao et al. [15] established
a finite element-based method for plastic strains, as well as residual stresses, in cold-
formed steel hollow sections, but the stress-strain relationships of cold-formed steels used
in the finite element model were transformed from experimental curves. Gardner [16]
proposed a method to predict the strength enhancement in the corner regions of cold-
formed sections by considering the plastic strains associated with the dominant stages in
the fabrication process. Further, Gardner [17] improved the Ramberg-Osgood model [18] by
using piecewise functions to describe the stress-strain curve of cold-formed steels, and the
improved model was confirmed to have good accuracy. Similarly, Quach and Huang [19]
also raised a modified Ramberg-Osgood model to describe the uniaxial tensile stress-strain
curve of cold-formed steels. Based on detailed experimental testing, Li et al. [20] established
a material model to simulate cold-formed high-strength steels. Note that although the
above models can reflect the rounded tensile curve characteristics of cold-formed steels,
their mathematical carriers are all piecewise functions, and the steel yield strength fsy after
cold work is required before using these models.

In summary, the cold-rolling effect of steel is generally affected by the yield strength
fsy,0, and thickness t of the parent steel sheets, the internal bending radius r, and the
section shape [21,22]. The available prediction expressions used to reveal the strength
enhancement and stress-strain curves of cold-formed steels were more for corner sections
than for CHSs. In order to better promote the efficient, intelligent design of prefabricated
steel structures, the objective of this paper is to propose a continuously derivable uniaxial
tensile stress-strain model of cold-formed circular steels. The paper focuses on the influence
of cold-rolling on the material properties of CHS mild steels based on the design parameters
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of the parent steels. More specifically, based on the collected experimental data of CHS mild
steels with a wide range of yield strength and r/t ratio, a systematic analysis was conducted
on the influence of cold-rolling on the strength and deformation of different sections of
slenderness. The proposed constitutive model was established by modifying the Megenetto-
Pinto model [23] since the function image can reflect a complete nonlinear characteristic of
cold-formed steels under uniaxial tension and exhibits a clear physical meaning. Finally, in
order to demonstrate the superiority of the proposed model, comparative studies of the
full range of stress-strain curves and corresponding absorption capacity were carried out
with the measured curves and available models.

2. Uniaxial Tensile Stress-Strain Model Based on the Menegotto-Pinto Model

Establishing a complete stress-strain model with a unified function will enhance the
design and process of intelligent platforms. Through detailed comparison and investigation,
a modified Menegotto-Pinto model was raised to describe the uniaxial tensile stress-strain
relationship of cold-formed CHS mild steels. In fact, the Menegotto-Pinto model was
first raised to deal with the nonlinear responses of reinforced concrete members under
earthquakes, and the material law of mild steels is a four-parameter model, which is
described by a continuously derivable composite function [23]. In previous studies, the
model was successfully improved to fit the ascending stage of the equivalent stress-strain
relationship of cold-formed steel stub columns [24], and its mathematical expression and
corresponding figure are shown in Equation (1) and Figure 1, respectively. Note that the
parameter S, as shown in Figure 1, represents the ratio of ultimate tensile strength to yield
strength. Combining Equation (1) and Figure 1, it can be seen that the modified model
is composed of a derivable function and can flexibly track the material nonlinearity by
adjusting the value of N.

fs = Esεs(Q +
1 − Q

(1 + ( εs
εsy

)N)
1
N
), εs ≤ εsu (1)

where Q is the strain-hardening coefficient; the exponent N mainly controls the roundness
of the yield stage; εsy is the nominal yield strain; εsu is the ultimate strain corresponding to
the ultimate tensile strength fsu.

Figure 1. Outline of the improved uniaxial stress-strain model for cold-formed CHS steels based on
the Menegotto-Pinto model.

To improve the efficiency of intelligent design and to highlight the relationship be-
tween the constitutive model of cold-formed mild steels and design parameters (fsy,0 and t
of the parent material and the r/t ratio of CHS), the paper intends to continue improving the
modified Megenetto-Pinto model for fitting the material constitutive model of cold-formed
CHS mild steels.

3. Tensile Coupon Details of Cold-Formed CHS Steels

A comprehensive collection of 74 experimental results from the available literature is
assembled. Figure 2 displays the labels assigned to the tensile coupon, while specimens
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from the weld area are excluded from the analysis. Additionally, specimens failing to meet
the ductility requirements of the specifications are also eliminated. A summary of the
variables of specimens as well as necessary experimental results is provided in Table 1,
where fsy,0 and fsy are the yield strengths of the same material before and after cold-rolling,
respectively. Additionally, fsu represents the ultimate tensile strength of cold-formed CHS
steel specimens. For convenience, based on the parent steel, coupons with fsy,0 exceeding
460 MPa are considered high-strength steels [25]. As shown in Table 1, the range of fsy,0
is from 400 MPa to 1400 MPa, corresponding to the thickness t of steel sheets varying
from 1.5 mm to 10 mm, while the yield strength improves from 357 MPa to 1402 MPa for
cold-formed CHSs with a r/t ratio of 6~32.

Figure 2. Location of the tensile coupon.

Table 1. Summary of the detail of tensile coupons.

Ref. Specimens r/t Es (Gpa) fsy,0 (MPa) fsy (MPa) fsu (MPa)

[11] 4C200 × 3 32.3 207.4 546.5 571.7 632.8
4C150 × 3 24 205.4 546.5 574.4 623.2
4C150 × 6 11.5 217.2 580.7 623.9 694.8
4C200 × 6 15.7 216 580.7 630.3 698.5
4C250 × 6 19.8 217.8 580.7 603.5 685.2
6C150 × 6 11.5 198.8 756.3 765.1 808.6
6C200 × 6 15.7 208 756.3 758.3 808
6C350 × 6 28.2 207.7 756.3 755.6 804.1
9C150 × 6 11.5 205.6 973.3 959 1045.2
9C200 × 6 19 208.3 973.3 964.7 1040.5
9C300 × 6 29 207.7 973.3 969.9 1037.1

[12] CHS139.7 × 4 16.6 213.3 700 742.4 842.3
CHS168.3 × 4 20.3 211.7 700 720 823.4
CHS139.7 × 5 13.3 212.5 700 729.7 843.3
CHS139.7 × 6 10.6 207.9 700 779 866.7
CHS139.7 × 8 7.9 205.7 700 784.8 866.8
CHS139.7 × 10 6.1 205.6 700 787.6 877.5

[26] 89 × 4 10.1 209 1100 1084 1242
108 × 4 12.5 208 1100 1233 1327
133 × 4 15.6 210 1100 1164 1278
89 × 3 13.8 203 900 980 1093

[27] V89 × 4 10.4 210 900 1054 1108
S89 × 4 10.4 205 1100 1180 1317
S108 × 4 12.9 215 1100 1180 1292
S133 × 4 16.1 204 1100 1159 1291
S139 × 6 10.8 194 1100 1014 1382
V89 × 3 14.03 209 900 1053 1124

Total 21 coupons 6.1~32.3 198.8~217.8 546.5~1100 571.7~1233 623.2~1382

[28] CHS01 11.5 203 690 746 811
CHS02 15.7 204 690 747 816
CHS03 9 202 690 757 837
CHS04 11.5 201 690 767 827
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Table 1. Cont.

Ref. Specimens r/t Es (Gpa) fsy,0 (MPa) fsy (MPa) fsu (MPa)

[29] 193.7 × 8 11.1 198.6 355 404 480

[30] C1 8.7 191 350 454 520
C2 11.3 220 350 416 484
C3 15.5 204 350 453 521
C4 18.3 200 350 430 514
C5 19.4 204 350 379 440
C6 22.8 207 350 357 474
C7 23 193 350 433 479
C8 27.5 206 350 395 481

[31] CBC1 19.1 200 350 365 469
CBC2 14.9 210 350 432 538
CBC3 14.6 218 350 415 534
CBC4 11.4 211 350 433 508
CBC5 10.8 205 350 456 548
CBC6 9.1 204 350 408 503
CBC7 7.1 207 350 442 511
CBC8 5.4 209 350 460 568

[32] TS1A 10.7 190.9 1350 1402 1558
TS1B 10.8 195.1 1350 1392 1533
TS1C 10.6 190.7 1350 1400 1550
TS2A 9.3 198.3 1350 1361 1513
TS2B 9.4 204.4 1350 1360 1507
TS2C 9.2 197.6 1350 1362 1499
TS3A 8.3 195.6 1350 1328 1477
TS3B 8.4 197.1 1350 1329 1495
TS3C 8.3 200.2 1350 1332 1487
TS4A 16.8 203 1350 1346 1506
TS4B 16.6 194.2 1350 1365 1519
TS4C 16.9 197 1350 1368 1540
TA5A 16.9 195.2 1350 1363 1540
TS5B 16.9 196.7 1350 1370 1568
TS5C 22.7 203.7 1350 1399 1520

[33] 1 22.6 201.6 355 456.8 527
2 22.9 203.6 355 451.7 534.2
3 14 200.2 355 455.6 529.2
4 14 195.4 355 392 503.7
5 17.9 196.6 355 405.2 511.8
6 17.9 198.5 355 443.9 508.1
7 21.2 196.7 355 385 500
8 21.2 197.3 355 397.4 511.1
9 21.2 196.7 355 436.4 502.1

[34] CHS139.7 × 8 8 202.2 700 856.8 893.7
CHS139.7 × 10 6 203.1 700 762 804.9

Total 53 coupons 5.4~27.5 190.7~220 350~1350 357~1402 440~1568

Figure 3 summarizes the range of values for several key parameters of the collected
tensile coupons. The coupons are divided into three groups, with the boundaries of fsy,0
being 460 MPa and 690 MPa, respectively. As shown in Figure 3, the number of coupons
for the three groups is relatively uniform, as well as the range of r/t.
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Figure 3. Distribution of the main measured variables of the collected experimental data.

All the gathered measured data are utilized to establish a predictive expression for the
yield strength fsy and ultimate tensile strength fsu considering the cold work of materials.
54 sets of experimental values of ultimate strain εsu from cold-formed CHS steel speci-
mens are used to assess the corresponding empirical formula. Furthermore, a total of 26
stress-strain curves spanning the full range are examined and analyzed to derive suitable
prediction formulas for the curvature coefficient N and the strain-hardening exponent Q.
The mathematical expressions of these parameters will be derived in the following sections.

4. Analysis of Results and Recommendations

4.1. Yield Strength fsy of Cold-Formed CHSs

Based on the collected data of Table 1, Figure 4 presents the relationship between the
measured yield strength fsy and the r/t ratio, and fsy has been normalized by the measured
fsy,0. According to the trend line of the red dotted line shown in Figure 4, it can be found
that the fsy/fsy,0 ratio decreases with the r/t ratio increasing, and the cold-rolling effect seems
to disappear when the value of the r/t ratio reaches 60 based on the trend line of Figure 4.

f sy
f sy

,0

r/t

fsy/fsy,0 e − r/t

Figure 4. Relationship between the measured fsy/fsy,0 ratio and r/t.

The yield strength of the cold-formed CHS steels differs from that of the parent mate-
rial. To examine the influence of the cold-rolling effect, a sensitivity analysis is conducted
on the r/t ratio and the yield strengths fsy,0 and fsy. By comparing the relationship between
fsy and three different physical quantities shown in Figure 5, it can be found that the inde-
pendent r/t is different in establishing connections with fsy, while the compound parameter
fsy,0/(r/t)0.5 exhibits a better correlation with fsy as the R2 reaches 0.87. The optimal group is
the relationship between fsy,0 and fsy because the measured fsy has the strongest correlation
with fsy,0, which can be expressed by a linear function.
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fsy fsy,0
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(a) (b) (c) 

Figure 5. Relationships between the yield strength fsy of CHS and the main variables. (a) r/t. (b) fsy,0.

(c) combined parameters based on r/t and fsy,0.

The red trend line in Figure 5b shows that the relationship between fsy,0 and fsy
exhibits a strong linear correlation. The difference between fsy and fsy,0 decreases and
even disappears with the increase of fsy,0, and the results is also confirmed by previous
research [11], the relevant experimental data of which is highlighted in green dots in
Figure 5b. Furthermore, if setting the fsy/fsy,0 ratio to 1.0, it can be obtained that the value
of fsy is 1748 MPa, and the value suggests that the influence of material strength on the
cold-rolling effect has an upper limit. Based on the results shown above, a more physically
meaningful way of determining fsy can be obtained, as shown in Equation (2). When fsy,0
exceeds 1748 MPa, the value of fsy can be considered consistent with fsy,0.

fsy

1748
= 0.95

fsy,0

1748
+0.05 ( fsy,0 ≤ 1748 MPa) (2)

4.2. Curvature Coefficient N

The curvature coefficient N is the critical roundness variable at the yield stages of
the stress-strain curve. In this section, the analytical curve is required to pass through
the coordinate origin and the point (εsu, fsu) shown in Figure 1. The ideal value of N is
evaluated based on two criteria: (1) the envelope area ratio of the calculated results Acal to
the experimental results Aexp (corresponding to Figure 6a), and (2) the coincidence degree
of the transition curvature in the elastic-plastic stage (corresponding to Figure 6b). Through
debugging and analysis, as shown in Figure 6, the empirical values of N are almost in the
range of 4 to 8.

A c
al

A e
xp

 

N

N

N

 
(a) (b) 

Figure 6. The value of the curvature coefficient N. (a) Optimal envelope area. (b) Optimal elastic-
plastic curvature.

The relationships between the curvature coefficient N and the main variables are
shown in Figure 7. It is clear that the r/t ratio and the combined parameter fsy,0/(r/t)0.5 are
not the primary factors affecting the curvature coefficient N, while fsy,0 and the correspond-
ing strain εsy,0 have the same correlation coefficient relationship with N. Considering the
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influence of the elastic modulus Es of tensile coupons, εsy,0 is chosen to be the primary
factor, and Equation (3) is proposed to calculate the curvature coefficient N.

N = 0.33εsy,0
−0.05 = 0.33

(
fsy,0/Es

)−0.5
(3)

N

r/t  

N

fsy,0

N fsy,0
−

 

N

sy,0

N sy,0
−

N

fsy r/t  

Figure 7. Relationships between the curvature coefficient N and the main variables.

4.3. Strain-Hardening Exponent Q

The strain-hardening exponent Q characterizes the strain-hardening behavior of the
strengthening segment. The value of Q can be determined by defining two points (εsy, fsy)
and (εsu, fsu), as shown in Figure 1. To identify the critical factor for Q, the relationships
between the measured Q and the main variables are shown in Figure 8. It can be concluded
that the correlation coefficient R2 between the combination parameter (r/t)2/fsy,0 and Q
is 0.65, which is higher than that of the other variables. Therefore, the strain-hardening
coefficient Q can be calculated using Equation (4).

Q= 0.0053
[
(r/t)2/ fsy,0

]−0.13
(4)

Q

r/t  

Q

fsy,0  

Q

r/t /fsy,0 

Q r t fsy,0

 

Figure 8. Relationships between the strain-hardening exponent Q and the main variables.
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4.4. Ultimate Strain εsu

The relationships between the ultimate strain εsu and the main variables are shown in
Figure 9. There is no obvious relationship between the measured ultimate strain εsu,cal, and
the r/t ratio. The correlation coefficient between εsu and the εsy,0 is 0.82. It can be observed
that the ultimate strain εsu shows a stronger correlation with the combined parameter
fsy,0/(r/t)0.5 compared with εsy,0, whose correlation coefficient is 0.9.

ε s
u

r t  

ε s
u

εsy,0

εsu εsy,0
−

 

ε su

fsy,0 r t

εsu fsy,0 r t −

 
Figure 9. Relationships between the ultimate strain εsu and the main variables.

To summarize, the ultimate strain εsu can be calculated by the following formula:

εsu = 26
[

fsy,0/(r/t)0.5
]−1.2

(5)

4.5. Ultimate Strength fsu

Figure 10 shows the relationship between ultimate tensile strength fsu and three main
factors. There is no obvious relationship between the r/t ratio and fsu. The correlation
coefficient between fsu and the combined parameter is 0.87, while the strongest correlation
can be observed between fsy,0 and fsu with a correlation coefficient as high as 0.99, which
implies an extremely strong linear correlation.

f su
 

r/t  

f su
 

fsy,0 

fsu fsy,0+

 

fsu fsy r/t +

f su
 

fsy,0 r/t  
Figure 10. Relationships between the ultimate strength fsu and the main variables.

By comparing the relationship between fsu and three different physical quantities
shown in Figure 10, it can be found that the optimal group is the linear relationship
between fsy,0, and fsu. This indicates that there is a significant correlation between the
yield strength of the parent steels and fsy compared with other factors, and the following
equation is derived to calculate the ultimate tensile strength:

fsu = 1.026 fsy,0+132.7 (6)

5. Verification of the Proposed Model

5.1. Comparison of the Calculated Results and Measured Results

Comparisons between the experimental and calculated results are conducted, includ-
ing ultimate tensile strength fsu, ultimate strain εsu, and uniaxial tensile stress-strain curves
of cold-formed steels. Firstly, the experimental ultimate strain of 54 groups of specimens
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is compared with the calculated results εsu,cal based on both Equation (5) and the method
by Gardner [17]. As shown in Figure 11, the proposed method by Equation (5) can better
predict the actual results by Gardner than the method proposed by Gardner (the corre-
sponding equations can be found in Appendix A), because its mean εsu,cal/εsu,exp of 1.079
and moderate standard deviation of 0.3400 are both smaller than the other.

su
,c

al
ε su

,e
xp

fsy,0  

su
,c

al
ε su

,e
xp

fsy,0  
(a) (b) 

Figure 11. Comparison between the measured and calculated ultimate strain εsu. (a) Available
method raised by Gardner. (b) Proposed method in the paper

Secondly, the comparison between the experimental ultimate tensile strength fsu,exp
(from 74 test groups) and the calculated results fsu,cal (obtained using Equation (6)) is
conducted, as illustrated in Figure 12. The predictive expression of ultimate strength fsu
proposed by Gardner is also plotted in the figure. Both expressions proposed demon-
strate relatively high accuracy in predicting the ultimate tensile strength with errors of
approximately 15%, while Equation (6) proposed by the authors is better suited for high-
strength steels.

−

f su
,c

al
 

fsu,exp  

−

f su
,c

al
 

fsu,exp  
(a) (b) 

Figure 12. Comparisons between the measured and calculated ultimate strength fsu. (a) Available
method raised by Gardner. (b) Proposed method in the paper

It is crucial to elucidate the difference between the stress-strain relationship prediction
models. In order to evaluate the overall accuracy of the proposed model, a comparison is
made between the measured stress-strain curves of tensile coupons and the corresponding
calculated ones. Similarly, as a representative of existing models, the improved Ramberg-
Osgood model proposed by Gardner is still being compared. Table 2 lists the main variables
of the chosen specimens. As shown in Figure 13, both of the predictive models for cold-
formed CHS steels have good consistency. Concretely, when fsy,0 is within 600 MPa, as
shown in Figure 13a,b, the proposed model based on the Megenetto-Pinto model is almost
better than the one based on the Ramberg-Osgood model. With the value of fsy,0 increasing,
as shown in Figure 13c, the two models are seen to have consistent accuracy. However,
it should be noted that the improved Megenetto-Pinto model proposed in the paper is
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directly based on the most basic design parameters, including fsy,0 and t of the parent steels
and internal bending radius r, while the model proposed by Gardner needs to know the
yield strength of cold-formed steel.

Table 2. Main variables of the test specimens for comparison.

Notation 193.7 × 8 4C200 × 3 4C200 × 6 CHS168.3 × 4 CHS139.7 × 5 6C200 × 6 6C150 × 6 9C200 × 5

fsy,0 (MPa) 355 546.5 580 700 700 756.3 756.3 973
r/t 11.1 32.2 15.7 20.3 13.3 15.7 15.7 15

Ref. [29] [11] [12] [11]
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(c) 

Figure 13. Comparison of experimental and calculated uniaxial tensile stress-strain curves. (a) Con-
ventional strength steels. (b) High-strength steels with an average fsy,0 of 565 MPa. (c) Ultra-high
strength steels with fsy,0 greater than 690 MPa

5.2. Case Application Analysis

Choosing the cold-formed CHS steel stub columns under axial load as simulated
subjects, a comparison of energy absorption, which is gained from the load-bearing curves,
are carried out based on 0material constitutive models of the ideal elastoplastic model and
the modified model, respectively. The energy absorption can be obtained by Equation (7).
The higher the value, the stronger the ability of the component to resist deformation
will become.
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E =
∫ D

0
F(s)ds (7)

where E represents the energy absorbed by the component through the entire ascending
stage; F(s) is the load; and D is the displacement corresponding to the load.

Table 3 shows the main variables of the numerical examples, in which the thickness
t is 3 mm, the r/t ratio varies from 10 to 60, and the range of fsy,0 is 235 MPa to 1900 MPa.
Figure 14 shows the ultimate energy absorption of the total numerical examples. It can
be seen that the energy absorption is often underestimated for the specimens without
considering the cold-rolling effect. For the example specimens with fsy,0 of 235 MPa shown
in Figure 14a, the energy absorption capacity obtained by using the proposed model is
twice that of using the ideal elastoplastic model. However, the difference in the energy
absorption capacity caused by the two models decreases with fsy,0 increasing. When the
value of fsy,0 is 960 MPa and the r/t ratio is about 60, the cold-rolling effect has little influence
on the energy absorption. As fsy,0 reaches 1800 MPa, the influence of material models seems
to disappear regardless of the value of r/t.
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Figure 14. Energy absorption of numerical examples using different material constitutive models.
(a) Conventional strength steels within 460 MPa. (b) High-strength steels exceeding 690 Mpa.

Overall, the consistency between the calculated results and measured results shows
that the proposed model can be used as a digital platform for intelligent construction. In
addition, compared with the ideal elastoplastic model, the proposed model established in
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this paper has more distinct material properties and can more accurately evaluate the ulti-
mate bearing capacity and corresponding deformation of the components to achieve energy
saving, which is beneficial to the sustainable development of prefabricated steel buildings.

Table 3. Main variables of the numerical examples.

Sets fsy,0 (MPa) t (mm) r/t L (mm)

1 235, 460, 690, 960, 1800 3 10 198
2 235, 460, 690, 960, 1800 3 20 378
3 235, 460, 690, 960, 1800 3 30 558
4 235, 460, 690, 960, 1800 3 40 738
5 235, 460, 690, 960, 1800 3 50 918
6 235, 460, 690, 960, 1800 3 60 1098

6. Conclusions

In order to provide a unified and efficient material constitutive model for the digital
intelligent design, a continuously derivable function based on the Menegotto-Pinto model
is proposed to describe a complete uniaxial tensile stress-strain relationship for cold-formed
circular mild steel. The key physical quantities and auxiliary parameters of the proposed
model can be calibrated once the r/t ratio of CHSs, thickness t and yield strength fsy,0 of
parent steels are determined.

To verify the validity and accuracy of the proposed model, 74 sets of experimental
data on mild steel have been collected. Through comparisons between the measured results
and the calculated ones, the following conclusions can be drawn:

(1) The proposed model can predict the complete uniaxial tensile stress-strain behavior of
cold-formed circular steels with high accuracy. Considering the wide varying range of
the collected experimental variables such as fsy,0 (400~1400 MPa), and r/t (5.4~32.3),
the good agreement observed between the predictive and measured stress-strain
curves indicates that the improved Menegotto-Pinto model proposed in this paper
has a wide application scope.

(2) The ultimate tensile strain εsu of cold-formed circular steels can be predicted by
Equation (5) with more improved accuracy than the model proposed by Gardner, due
to the comprehensive consideration of the influence of fsy,0 and r/t.

(3) The cold-rolling effect that causes strength enhancement will weaken with fsy,0 and r/t
increasing and seems to be neglected when fsy,0 reaches 1748 MPa or the r/t ratio is
approximately 60.

(4) Compared with the ideal elastoplastic model, the proposed model can more accurately
estimate the load-bearing capacity of the components under extreme loads, which
reduces the economic burden of engineering.

Based on the mathematical and statistical analysis process presented in the paper, the
proposed material constitutive model has reparability to a certain degree, which can also
be a helpful tool to develop more models for the CHS and CFST members for analyzing
catastrophic engineering problems. The related studies will be reported in the near future.
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Appendix A

Uniaxial tensile stress-strain model of cold-formed steels including the mathematical
expressions for the ultimate tensile strength fsu and the corresponding strain εsu proposed
by Gardner [17] are expressed by Equations (A1)–(A3), respectively. Note that the models
are based on the available experimental specimens with fsy,0 of 235~1100 MPa.

εs =

⎧⎨⎩
fs
Es

+ 0.002
(

fs
fsy

)n
, fs ≤ fsy

fs− fsy
E0.2

+
(

εsu − ε0.2 − fsu− fsy
E0.2

)(
fs− fsy
fsu− fsy

)m
+ ε0.2, fsy < fs ≤ fsu

(A1)

εsu = 0.6
(
1 − fsy/ fsu

)
(A2)

fsu = 1 +
(
130/ fsy

)1.4 (A3)
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