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Preface

In this reprint, 10 works are presented on the topic of battery management in electric vehicles,

spanning from fundamental studies of batteries to the application of neural network modeling

and machine learning to optimize battery performance. Specifically, they cover the optimization

and state-of-health estimation of batteries using various techniques to enhance efficiency and

ensure proper battery management. Additionally, this reprint includes studies on the design and

construction of protective cases for batteries aimed at improving their safety and reliability, as

well as the parametric evaluation of thermal behavior for different lithium-ion battery chemistries.

Complementing the research papers, three review articles focusing on wireless charging, battery

packing design, and battery management are also featured.

As the Guest Editor, I extend my sincere gratitude to all of the contributors who generously

shared their expertise and insights, as well as the reviewers whose constructive feedback

strengthened the quality and rigor of this work. I am also deeply appreciative of the unwavering

assistance and support provided by the editorial team of Batteries. Financial support from the Faraday

Institution (grant numbers FIRG005 and FIRG027) through the ReLiB project is also gratefully

acknowledged. It is my hope that ”Battery Management in Electric Vehicles – Current Status and

Future Trends” will serve as a valuable resource for researchers, policymakers, and graduate students

working in the areas of lithium-ion batteries and electric vehicles.

Prodip K. Das

Editor
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Editorial

Battery Management in Electric Vehicles—Current Status and
Future Trends

Prodip K. Das

School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK; prodip.das@ed.ac.uk

Rechargeable batteries, particularly lithium-ion batteries (LiBs), have emerged as the
cornerstone of modern energy storage technology, revolutionizing industries ranging from
consumer electronics to transportation [1,2]. Their high energy density, long cycle life,
and rapid charging capabilities make them indispensable for powering a wide array of
applications, with electric vehicles (EVs) standing out as one of the most transformative
domains. The rise of EVs represents a pivotal shift in the automotive industry, driven by
the urgent need to mitigate climate change and reduce greenhouse gas emissions.

Conventional internal combustion engine vehicles are major contributors to air pol-
lution and greenhouse gas emissions, exacerbating the global climate crisis. Conversely,
EVs offer a cleaner and more sustainable alternative, leveraging LiBs to propel a greener
transportation revolution [3]. EVs powered by LiBs offer a promising solution to decar-
bonize transportation, reducing reliance on fossil fuels and mitigating the adverse impacts
of vehicle emissions on human health and the environment [4]. In this context, the intersec-
tion of lithium-ion batteries, electric vehicles, and greenhouse gas emissions embodies a
transformative synergy with profound implications for global sustainability.

Despite significant growth in the usage of lithium-ion batteries in EVs worldwide,
this expansion is not without its challenges. The continuous demand for LiBs is antici-
pated to precipitate global environmental and supply chain concerns regarding critical
raw materials [2,5]. The critical materials essential for LiBs, including cobalt, lithium,
nickel, graphite, and manganese, are finite resources primarily mined in limited regions
worldwide. This reliance on scarce resources coupled with the inevitable proliferation of
battery waste poses formidable challenges for the future of electric mobility. The increasing
demand for LiBs highlights the urgent need for effective battery management strategies to
mitigate environmental and supply chain concerns while optimizing battery performance
and lifespan, and understanding their degradation [6,7]. Improved battery management
not only enhances the efficiency and longevity of EV batteries, but also facilitates their
safe integration into secondary applications and promotes recycling and reuse, thereby
minimizing the environmental footprint of spent EV batteries [8–11].

In response to these challenges, we have undertaken an exploration of the recent
advances and future trajectories of battery management in electric vehicles within this
Special Issue. This issue was crafted to provide the scientific community with up-to-date
insights into the latest advancements and prospects regarding various facets of lithium-ion
batteries. Researchers were invited to contribute original research articles as well as review
papers for inclusion in the Special Issue titled “Battery Management in Electric Vehicles:
Current Status and Future Trends”.

This Special Issue presents seven research papers [12–18] and three critical
reviews [19–21], meticulously scrutinized through peer review processes. These publi-
cations span a spectrum of EV battery advancements, encompassing fundamental studies
of batteries to the application of neural network modeling and machine learning to optimize
battery performance. Ren et al. [12], for instance, proposed a deep learning neural network
and fine-tuning-based transfer learning strategy to accurately estimate the state of health of
batteries, thereby ensuring reliable and safe operating conditions for EVs. In another study,

Batteries 2024, 10, 174. https://doi.org/10.3390/batteries10060174 https://www.mdpi.com/journal/batteries1
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artificial neural network modeling was employed to forecast thermal and electrical perfor-
mances using an innovative cooling method [13], suggesting that direct cooling surpasses
conventional air cooling and indirect cooling methods for developing next-generation
thermal management techniques for high-power density batteries [13,22]. Conversely,
Juan et al. [14] employed a hybrid methodology, combining simulation and reinforcement
learning, to address the orienteering problem and optimize battery management under
dynamic routing conditions.

To address prolonged recharging times and the limited availability of recharging
stations for electric vehicles, the practice of battery sharing or swapping was introduced [15].
This initiative has garnered support from key industrial players such as Eni in Italy and
Shell in the UK. It was concluded that battery swapping holds promise in alleviating traffic
congestion and mitigating environmental impact. Iterative nonlinear fuzzy modeling of
lithium-ion batteries was also employed to enhance their efficiency and ensure proper
management [16].

The imperative to explore potential strategies for reusing, remanufacturing, or recy-
cling batteries at the end of their lifecycle prompted an investigation into the structural
optimization of battery module cases [17]. This study presents an approach aimed at
enhancing the design and construction of protective housing/cases for electric vehicles,
ensuring compliance with safety and reliability standards throughout various stages, from
initial design to impact. Furthermore, the parametric evaluation of thermal behavior for
different lithium-ion battery chemistries was showcased [18], revealing the potential of
NMC (LiNixMnyCo1−x−yO2) chemistry in future applications for lower-cost and higher-
specific-energy batteries for EVs.

Complementing the research papers, three review articles focusing on wireless charg-
ing, battery packing design, and battery management are featured in this Special Is-
sue [19–21]. Ghazizadeh et al.’s [19] review offers a comprehensive analysis of the factors
influencing the efficiency of wireless charging for EV batteries, including coil designs and
compensation techniques. Likewise, the second review [20] delves into the core challenges
confronting battery thermal management systems within EVs, proposing innovative design
approaches for battery packing to enhance efficiency and longevity. Finally, the third
review [21] serves as a comprehensive roadmap to the latest technological advancements
propelling EVs into the future, providing a panoramic view of innovations in storage tech-
nology, battery management systems, and power electronics, with a particular emphasis
on charging strategies, methods, algorithms, and optimizations. This review encapsulates
the dynamic landscape of EV technology, offering insights into the advancements shaping
the vehicles of tomorrow.
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FIRG005 and FIRG027) is gratefully acknowledged.
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unwavering assistance and support provided by the editorial team of Batteries, including our assistant
editor, Spring Deng, throughout the review process.

Conflicts of Interest: The author declares no conflicts of interest.

References

1. Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561. [CrossRef]
2. Harper, G.D.; Kendrick, E.; Anderson, P.A.; Mrozik, W.; Christensen, P.; Lambert, S.; Greenwood, D.; Das, P.K.; Ahmeid, M.;

Milojevic, Z. Roadmap for a sustainable circular economy in lithium-ion and future battery technologies. J. Phys. Energy 2023,
5, 021501. [CrossRef]

3. Alanazi, F. Electric Vehicles: Benefits, Challenges, and Potential Solutions for Widespread Adaptation. Appl. Sci. 2023, 13, 6016.
[CrossRef]

4. Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on Electric Vehicles: Technologies and
Challenges. Smart Cities 2021, 4, 372–404. [CrossRef]

2



Batteries 2024, 10, 174

5. Dunn, J.; Slattery, M.; Kendall, A.; Ambrose, H.; Shen, S. Circularity of Lithium-Ion Battery Materials in Electric Vehicles. Environ.
Sci. Technol. 2021, 55, 5189–5198. [CrossRef] [PubMed]

6. Akbarzadeh, M.; Kalogiannis, T.; Jaguemont, J.; Jin, L.; Behi, H.; Karimi, D.; Beheshti, H.; Van Mierlo, J.; Berecibar, M. A
comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery
module. Appl. Therm. Eng. 2021, 198, 117503. [CrossRef]

7. Andriunas, I.; Milojevic, Z.; Wade, N.; Das, P.K. Impact of solid-electrolyte interphase layer thickness on lithium-ion battery cell
surface temperature. J. Power Sources 2022, 525, 231126. [CrossRef]

8. Cusenza, M.A.; Guarino, F.; Longo, S.; Mistretta, M.; Cellura, M. Reuse of electric vehicle batteries in buildings: An integrated
load match analysis and life cycle assessment approach. Energy Build. 2019, 186, 339–354. [CrossRef]

9. Attidekou, P.S.; Milojevic, Z.; Muhammad, M.; Ahmeid, M.; Lambert, S.; Das, P.K. Methodologies for large-size pouch lithium-ion
batteries end-of-life gateway detection in the second-life application. J. Electrochem. Soc. 2020, 167, 160534. [CrossRef]

10. Christensen, P.A.; Wise, M.S.; Attidekou, P.S.; Dickmann, N.A.; Lambert, S.M.; Das, P.K. Thermal and mechanical abuse of electric
vehicle pouch cell modules. Appl. Therm. Eng. 2021, 189, 116623. [CrossRef]

11. Fordham, A.; Milojevic, Z.; Giles, E.; Du, W.; Owen, R.E.; Michalik, S.; Chater, P.A.; Das, P.K.; Attidekou, P.S.; Lambert, S.M.
Correlative non-destructive techniques to investigate aging and orientation effects in automotive Li-ion pouch cells. Joule 2023, 7,
2622–2652. [CrossRef]

12. Ren, Z.; Du, C.; Zhao, Y. A Novel Method for State of Health Estimation of Lithium-Ion Batteries Based on Deep Learning Neural
Network and Transfer Learning. Batteries 2023, 9, 585. [CrossRef]

13. Garud, K.S.; Han, J.-W.; Hwang, S.-G.; Lee, M.-Y. Artificial Neural Network Modeling to Predict Thermal and Electrical
Performances of Batteries with Direct Oil Cooling. Batteries 2023, 9, 559. [CrossRef]

14. Juan, A.A.; Marugan, C.A.; Ahsini, Y.; Fornes, R.; Panadero, J.; Martin, X.A. Using Reinforcement Learning to Solve a Dynamic
Orienteering Problem with Random Rewards Affected by the Battery Status. Batteries 2023, 9, 416. [CrossRef]

15. Neroni, M.; Herrera, E.M.; Juan, A.A.; Panadero, J.; Ammouriova, M. Battery Sharing: A Feasibility Analysis through Simulation.
Batteries 2023, 9, 225. [CrossRef]

16. Andújar, J.M.; Barragán, A.J.; Vivas, F.J.; Enrique, J.M.; Segura, F. Iterative Nonlinear Fuzzy Modeling of Lithium-Ion Batteries.
Batteries 2023, 9, 100. [CrossRef]

17. Szabo, I.; Scurtu, L.I.; Raboca, H.; Mariasiu, F. Topographical Optimization of a Battery Module Case That Equips an Electric
Vehicle. Batteries 2023, 9, 77. [CrossRef]

18. Buidin, T.I.; Mariasiu, F. Parametric Evaluation of Thermal Behavior for Different Li-Ion Battery Chemistries. Batteries 2022, 8, 291.
[CrossRef]

19. Ghazizadeh, S.; Ahmed, K.; Seyedmahmoudian, M.; Mekhilef, S.; Chandran, J.; Stojcevski, A. Critical Analysis of Simulation of
Misalignment in Wireless Charging of Electric Vehicles Batteries. Batteries 2023, 9, 106. [CrossRef]

20. Widyantara, R.D.; Zulaikah, S.; Juangsa, F.B.; Budiman, B.A.; Aziz, M. Review on Battery Packing Design Strategies for Superior
Thermal Management in Electric Vehicles. Batteries 2022, 8, 287. [CrossRef]

21. Lipu, M.S.; Mamun, A.A.; Ansari, S.; Miah, M.S.; Hasan, K.; Meraj, S.T.; Abdolrasol, M.G.M.; Rahman, T.; Maruf, M.H.; Sarker,
M.R.; et al. Battery Management, Key Technologies, Methods, Issues, and Future Trends of Electric Vehicles: A Pathway toward
Achieving Sustainable Development Goals. Batteries 2022, 8, 119. [CrossRef]

22. Tan, X.; Lyu, P.; Fan, Y.; Rao, J.; Ouyang, K. Numerical investigation of the direct liquid cooling of a fast-charging lithium-ion
battery pack in hydrofluoroether. Appl. Therm. Eng. 2021, 196, 117279. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

3



Citation: Lipu, M.S.H.; Mamun, A.A.;

Ansari, S.; Miah, M.S.; Hasan, K.;

Meraj, S.T.; Abdolrasol, M.G.M.;

Rahman, T.; Maruf, M.H.; Sarker,

M.R.; et al. Battery Management, Key

Technologies, Methods, Issues, and

Future Trends of Electric Vehicles:

A Pathway toward Achieving

Sustainable Development Goals.

Batteries 2022, 8, 119. https://

doi.org/10.3390/batteries8090119

Academic Editor: King Jet Tseng

Received: 27 July 2022

Accepted: 1 September 2022

Published: 7 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

batteries

Review

Battery Management, Key Technologies, Methods, Issues, and
Future Trends of Electric Vehicles: A Pathway toward Achieving
Sustainable Development Goals

Molla Shahadat Hossain Lipu 1,*, Abdullah Al Mamun 2, Shaheer Ansari 3, Md. Sazal Miah 1,4,

Kamrul Hasan 5, Sheikh T. Meraj 6, Maher G. M. Abdolrasol 7, Tuhibur Rahman 1, Md. Hasan Maruf 1,

Mahidur R. Sarker 8, A. Aljanad 9 and Nadia M. L. Tan 10,*

1 Department of Electrical and Electronic Engineering, Green University of Bangladesh,
Dhaka 1207, Bangladesh

2 Department of Electrical and Electronic Engineering, Northern University Bangladesh,
Dhaka 1205, Bangladesh

3 Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia,
Bangi 43600, Selangor, Malaysia

4 School of Engineering and Technology, Asian Institute of Technology,
Khlong Nueng 12120, Pathum Thani, Thailand

5 School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA,
Shah Alam 40450, Selangor, Malaysia

6 Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS,
Seri Iskandar 32610, Perak, Malaysia

7 Electrical Department, Civil Aviation Higher Institute (CAHI), Alwatar, Tobruk 7502, Libya
8 Institute of IR 4.0, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
9 Department of Science, Technology, Engineering and Mathematics, American University of Afghanistan,

Doha 122104, Qatar
10 Key Laboratory of More Electric Aircraft Technology of Zhejiang Province, University of Nottingham

Ningbo China, Ningbo 315100, China
* Correspondence: shahadat@eee.green.edu.bd (M.S.H.L.); nadia.tan@nottingham.edu.cn (N.M.L.T.)

Abstract: Recently, electric vehicle (EV) technology has received massive attention worldwide due
to its improved performance efficiency and significant contributions to addressing carbon emission
problems. In line with that, EVs could play a vital role in achieving sustainable development goals
(SDGs). However, EVs face some challenges such as battery health degradation, battery management
complexities, power electronics integration, and appropriate charging strategies. Therefore, further
investigation is essential to select appropriate battery storage and management system, technologies,
algorithms, controllers, and optimization schemes. Although numerous studies have been carried out
on EV technology, the state-of-the-art technology, progress, limitations, and their impacts on achieving
SDGs have not yet been examined. Hence, this review paper comprehensively and critically describes
the various technological advancements of EVs, focusing on key aspects such as storage technology,
battery management system, power electronics technology, charging strategies, methods, algorithms,
and optimizations. Moreover, numerous open issues, challenges, and concerns are discussed to
identify the existing research gaps. Furthermore, this paper develops the relationship between EVs
benefits and SDGs concerning social, economic, and environmental impacts. The analysis reveals that
EVs have a substantial influence on various goals of sustainable development, such as affordable and
clean energy, sustainable cities and communities, industry, economic growth, and climate actions.
Lastly, this review delivers fruitful and effective suggestions for future enhancement of EV technology
that would be beneficial to the EV engineers and industrialists to develop efficient battery storage,
charging approaches, converters, controllers, and optimizations toward targeting SDGs.

Keywords: battery storage; battery management; electric vehicles; converter; controllers; optimizations
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1. Introduction

Global warming is one of the most concerning issues to scientists and researchers
at present, and the main reason behind this vital issue is the greater emission of carbon.
Approximately 3 billion metric tons of carbon dioxide emissions will be produced by only
passenger cars worldwide in 2021 [1]. According to the statistics, 41% of the carbon dioxide
is emitted from the transportation sector globally [2]. In the USA, a total of 29% of the
carbon emissions were produced by passenger cars in the year 2020, according to USA
Environment Protection Authorities [3]. However, some issues should be investigated fur-
ther, such as selecting appropriate battery energy storage, fast charging approaches, power
electronic devices, conversion capability, and hybridization of algorithms or methods [4,5].
Hence, further investigation is required to improve EV technology to achieve sustainable
development goals (SDGs) [6,7].

Unlike traditional vehicle technology, EVs fully depend on batteries in the case of
supplying power, and that is why batteries are considered as the heart of EV technology [8].
Many battery technologies have been introduced by researchers that can easily replace the
traditional methods of supplying cars, such as the lead–acid, nickel–cadmium, lithium-
ion, lithium-ion polymer, and sodium–nickel chloride batteries [9]. Lead–acid battery
technology was introduced at the beginning of the journey of battery technology. Although
it has a short life cycle, it can provide 20–40 Wh/kg at the stage of 100% charge [10,11].
To solve the life cycle problem, inventors introduced a new technology called the nickel–
cadmium battery that has a long-life cycle. However, the fast charging and deep discharging
can cause damage to battery health and performance [12]. Removing all the drawbacks of
the battery technology, a new technology known as the lithium-ion battery was introduced,
which has greater efficiency, longer life cycle, high energy density, and performance at
high temperatures. All of these characteristics make this technology most suitable for
EV applications [9]. Lithium-ion technology has risen to the peak because of its unique
feature such as high energy density, performance at a high temperature, fast charging,
and long lifespan. Nonetheless, the performance of lithium-ion batteries varies with the
combination of different materials such as cobalt, manganese, iron, nickel, aluminum, and
titanate [13–15]. Furthermore, the unavailability of the materials is the drawback that makes
lithium-ion technology a little bit dull [12]. Although the battery technology has advanced
to significant development, each of these batteries has some downsides. Recently, fuel cell
and supercapacitor-based EVs have made a significant stride toward the advancement of
energy storage in the EV market.

The management system of the battery storage system plays a crucial role in the
EV system [16]. For proper supervision of energy storage devices for safe and healthy
operation, various techniques and control operations such as cell monitoring, voltage,
and current monitoring, data acquisition, charge–discharge control, power management
control, temperature control, fault diagnosis, and network and communication network
should work spontaneously [17–19]. In order to perform all the operations efficiently, a
set of highly efficient power electronic devices are needed. DC/DC converters play a
vital role in EV technology. The most widely used DC/DC converters are isolated and
non-isolated. A non-isolated DC/DC converter such as Ćuk, switched capacitor, coupled
inductor, and quasi Z-source converters are used for converting voltage up or down in a
relatively low ratio [20,21]. Due to low cost, high efficiency, and lower ripples, DC/DC
converters are famous in EV technology. However, present switching control techniques
are not reliable enough for EVs. An isolated DC/DC converter is used when the ratio of
output and input voltage is high. The buck–boost converter, push–pull converter (PPC),
DC/DC resonant converter (RC), zero-voltage switching converter (ZVSC), and full-bridge
boost DC/DC converter (FBC) are widely used converters in EV technology, with each
having individual drawbacks.
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EV technology is not only a revolution in the transportation industry, but also a
roadmap to economic development [16]. The increasing EV industry has tremendously
influenced the economy by creating jobs that meet sustainable economic growth, which
is related to SDG8 [17]. Unlike other transportation technologies, EV technology totally
depends on battery storage; thus, there is no need to burn coal, oil, or gas, which means
that it is a technology that provides clean and green energy, which is the requirement of
SDG7 [18]. Furthermore, EV technology is an environmentally friendly solution that emits
zero carbon which meets the major requirement of SDG13 [19]. Moreover, EV technology
can also integrate renewable energy sources (RESs). As a result, industries which produce
the materials for generating energy from renewable energy sources will develop. This will
represent industrial innovation that can fulfill another goal (SDG9) [20]. Smart cities are
currently becoming popular, and EVs are the most precious requirement for smart cities
related to SDG11 [21].

To date, many technologies related to EV energy storage have been proposed by
many researchers throughout the world. Hannan et al. [14] presented a strong review
with criticism of lithium-ion batteries in which they illustrated a brief history and per-
formance and demand of lithium-ion batteries in the EV industry, as well as the effect of
environment-related facts and issues. Another study by Tie et al. [22] studied alternative
energy sources, energy storage systems, energy management and control, supervisory
control, and algorithms. The authors developed a relationship between the EV industry
and economic growth relating to SDGs, but they did not consider other SDGs with EV
technology. Sujitha et al. [23] presented a review of RES-based EV charging systems in
which various types of power converters were discussed. However, the authors delivered
specific topologies and their working principle. Katoch et al. [24] conducted a detailed
review on the thermal management system for EV batteries, such as air cooling, liquid
cooling, direct refrigerant cooling, phase change material cooling, thermoelectric cooling,
and heat pipe cooling. Manzetti et al. [11] illustrated a wide history of EV batteries from the
beginning to the present. They mentioned that bio batteries could be a promising solution
in green battery technology over metal–lithium batteries in upcoming days in the EV indus-
try. Lipu et al. [5] reviewed various converter schemes and controller technologies in EV
application; however, a comprehensive study based on other EV-based technologies was
not mentioned. Although green chemistry, which meets one of the major SDGs (climate),
was considered in this study, how this technology can complement the other SDGs is still
needed to investigate. In summary, the relationship among EV technology, SDGs, and
battery technology was not considered in any of the abovementioned studies. Therefore,
further study is required to integrate the SDGs with the EV industries.

To bridge the existing shortcomings, this study highlights a detailed survey on
prospects of EV and SDG integration. Furthermore, the study presents various tech-
nological advancements, issues, challenges, and future recommendations. This review
provides the following contributions:

• This review critically examines the various battery storage systems, materials, charac-
teristics, and performance. Additionally, the key components of the battery manage-
ment system are outlined.

• The various technological advancements of EVs concerning the power electronics
technology and charging strategies are discussed rigorously.

• The state-of-the-art methods, algorithms, controllers, and optimization schemes ap-
plied in EVs are explained thoroughly.

• The work establishes the relationship of EV energy management and technologies
with sustainable development targeting various goals such as clean energy, sustainable
cities, economic development, industry, infrastructure, and emission reduction.

• Lastly, this research illustrates the scope, opportunities, and future trends for the
advancement of EVs. The analysis, key findings, and suggestions can be helpful in
successfully integrating the EV technologies with SDG targets.
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The remainder of the paper is divided into seven sections. Section 2 covers several
battery energy storage systems and key components of battery management systems. The
EV technologies concerning power electronics converters and charging features and tech-
nologies are presented in Section 3. In Section 4, the algorithms, methods, approaches,
controllers, and optimizations employed in EVs are reported. The open issues and chal-
lenges are highlighted in Section 5. The impacts of EVs in achieving different goals of
sustainable development are examined in Section 6. Lastly, the conclusions, along with the
future trends, are provided in Section 7.

2. Battery Energy Storage and Management in EVs

This section broadly discusses and analyzes the various battery storage characteristics,
features, and key components of battery management in EV applications.

2.1. Battery Storage Technology
2.1.1. Lead–Acid (Pb–Acid)

The lead–acid battery is considered as one of the oldest battery technologies to be used
globally. Lead–acid batteries display a specific energy of 20–40 Wh/kg at 100% of the state
of charge (SOC) of a lead–acid battery. It contributes a small cycle life due to the shedding
of active material compared to other types of batteries such as nickel metal hydride. The
low energy-to-weight ratio and low energy-to-volume ratio are considerable limitations.
Furthermore, the lead–acid battery is not an environmentally sound technology due to
the presence of lead and acid. Despite several drawbacks, the low manufacturing cost of
around 100 USD/kWh makes it suitable for small-scale, light-performance vehicles [10,11].

2.1.2. Nickel–Cadmium (NiCd) Battery

Nickel–cadmium (NC) battery technology was employed in the 1990s, presenting high
energy density. The NC battery technology was employed in applications such as power
quality and energy reserves for telecommunication and portable services [25]. NC batteries
provide a long lifecycle span of 1500 cycles compared with NiMH battery. However, the
NC battery may cause damage due to deep discharge and a faster charging time. NiMH
batteries possess a memory loss effect, which occurs due to the battery’s frequent charging
process before complete discharge. One of the major drawbacks of NC is the adoption of
toxic metals such as cadmium during the manufacturing process. Cadmium causes adverse
effects on the environment and human health. Equation (1) shows the electrochemical
cell reaction of an NC battery, where Cd is used as an anode and NiO(OH) is used as a
cathode [12].

Cd + 2NiO (OH) + 2H2O � 2NiO (OH)2 + Cd (OH)2. (1)

2.1.3. Lithium-Ion Battery

The lithium-ion battery is considered as one of the leading battery technologies used
in EVs. The high energy density, greater efficiency, longer life cycle, and better performance
at high temperatures are the well-known features of Li-ion batteries. Lithium maintains the
lowest redox potential, which is around (−3.05 V), and the largest electrochemical equiva-
lence of (3.86 Ah·g−1) [25]. It is still recognized as suitable for battery-driven EVs. Moreover,
lithium alone has the smallest reduction potential capacity of any element, which enables
this battery to hold the topmost cell potential. The most important advantage of this battery
relates to the recycling ability of the various components used. However, the material’s
unavailability and high cost per kWh (135 USD /kWh) represent significant drawbacks [12].
Generally, the performance of the lithium-ion battery relies upon various internal material
properties. The selection of materials is crucial, specifically the positive electrode, which
controls the battery characteristics such as power, safety, cost, and lifespan [26–29]. The
positive electrode material can be classified into lithium cobalt oxide, lithium manganese
oxide, lithium iron phosphate, lithium nickel manganese cobalt oxide, lithium nickel cobalt
aluminum oxide, and lithium titanate, which are discussed below [13–15].
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Lithium Cobalt Oxide—LiCoO2

Goodenough announced the existence of layered transition metal oxides in 1980 [25].
They are considered among the most commonly implemented positive electrodes. Initially,
Sony marketed lithium cobalt oxide (LCO) in 1991 and used cobalt oxide as a cathode
which was the most commonly used material in lithium-ion battery technology. The
theoretical capacity of LCO is approximately 274 mAh·g−1 with a high volumetric capacity
of 1363 mAh·cm−3. It constitutes high energy density, offers a moderate lifespan, and has
considerable safety applicable for several electronic gadgets such as cameras, notebooks,
and tablets [9,12,13]. Nevertheless, the LCO shows unsatisfactory behavior during its
operating condition at the rate of high current of charge–discharge. Consequently, proper
protections are required due to excessive heating and stress. In addition, the cost of cobalt
is high due to its limited availability [30]. Hence, an alternative to cobalt cathode materials
is preferred to raise the appropriateness of LCO in EVs.

Lithium Manganese Oxide—LiMn2O4

Lithium manganese oxide (LMO) is one of the most reviewed cathode materials
for lithium-ion battery technology due to its easy accessibility to raw materials and low
cost [31,32]. The Bellcore lab developed the LMO battery technology in 1994. The 3D
spinel architecture of LMO helps to reduce the internal resistance and simultaneously
increases the charge/discharge current flow. It exhibits decent specific power and energy
density and can carry >50% more energy than nickel-based batteries. The theoretical
capacity of LMO is about 148 mAh·g−1. Pristine LMO ensures 95% delivery of its capacity,
which is not possible in the case of LCO [33]. However, it has negative effects on its
life cycle and performance. Moreover, LMO has extensive manganese breakdown in the
electrolyte at high temperatures, which results in a high capacity loss. The capacity of
LMO is approximately 33% lower than that of cobalt-based batteries [34–36]. Presently, the
application of LMO is carried out in Nissan Leaf EV technology [14].

Lithium Iron Phosphate—LiFePO4

The University of Texas investigated the application of phosphate as a cathode material
and concluded that phosphate demonstrates better performance than LCO or LMO batteries
at high temperatures and in overcharged states. Phosphates exhibit good thermal stability,
operating in the temperature range of −30 ◦C to 60 ◦C [37,38]. Lithium iron phosphate (LFP)
can contribute with a nominal voltage of approximately 3.2 V and moderate power and
energy density. In addition, the LFP battery has low cost, a long lifespan, an enhanced safety
system, and high load-handling capability. The major drawbacks of LFP relate to poor
lithium diffusion, poor electronic conductivity, and lower specific energy of 160 mAh/g
compared to LCO and LMO battery technology. Furthermore, it requires a small particle
size and carbon coating to enable performance at high current rates, resulting in a high
processing cost [39].

Lithium Nickel Manganese Cobalt Oxide—Li(Ni, Mn, Co)O2

Lithium nickel manganese cobalt oxide (LNMC) battery technology was first com-
modified in the year 2004. At present, battery industries are focusing on improving the
cathode material by developing composite nickel–manganese–cobalt (NMC). These NMC
electrode sheets are available in four different compositions, namely, NANOMYTE® BE-
50E (NMC111), BE-52E (NMC532), BE-54E (NMC622), and BE-56E (NMC811). These
different compositions possess unique outcomes. In terms of minimum capacity, BE-
50E (NMC111), BE-52E (NMC532), BE-54E (NMC622), and BE-56E (NMC811) reveal
150 mAh/g, 155 mAh/g, 166 mAh/g, and 190 mAh/g, respectively, while the experi-
mental outcomes were ≥155 mAh/g (2.7–4.3 V @ 0.1 C), ≥165 mAh/g (2.7–4.3 V @ 0.1 C),
≥175 mAh/g (3–4.3 V @ 0.1 C), and ≥200 mAh/g (3–4.3 V @ 0.1 C), respectively [40].
The cathode material of LNMC is developed by utilizing 33% nickel, 33% manganese,
and 34% cobalt. The hybrid mixture of NMC draws out the low internal resistance
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effect of manganese and the high specific energy of nickel. Moreover, LNMC offers
high power and energy density with improved lifespan and performance. At present,
LNMC has high demand in EV applications for its low self-heating rate and long lifespan
(1000–2000 cycles) [41–43]. It is suggested that LMNC battery characteristics could be al-
tered by varying the combination of nickel, manganese, and cobalt for certain applications.
The increment in manganese percentage leads to an enhancement of specific power, while
the increment in nickel leads to an enhancement of specific energy. Presently, the BMW i3
is run by NMC-based lithium-ion batteries [13].

Lithium Nickel Cobalt Aluminum Oxide—Li(Ni, Co, Al)O2

The nickel cobalt aluminum oxide (NCA) battery was commercially presented in 1999.
The maximum utilization of nickel as a cathode material reduces the dependency of cobalt
in LCO. It provides increased specific power, excellent specific energy of 200–250 Wh/kg,
and a durable life cycle. In recent years, lithium nickel cobalt aluminum oxide (LNCA)
battery technology has gained increasing attention in EV applications. Due to its high
power and energy densities, automobile companies are concentrating on LNCA battery
application in EV technology. However, further advancement is needed to improve its
safety mechanism [37,44,45]. The automobile giant Tesla is currently utilizing LNCA battery
technology to develop EVs [13].

Lithium Titanate—Li4Ti5O12

Lithium titanate (LTO) has a spinel architecture and is configured using LMO, LNCA
as a cathode material, and titanate as an anode material. The spinel configuration delivers
a few advantages, such as structural firmness due to the zero strain effect and considerable
reversibility [46]. LTO delivers high performance and a long lifespan. Furthermore, LTO
operates safely at cold temperatures [47–49]. However, the power and energy density of
LTO are lower compared to NMC- and NCA-based lithium-ion battery technology. The
LTO recommends a constant active potential of around 1.55 V, but the electronic structure
depicts insulating behavior with a bandgap of 2–3 eV [50]. The main obstacles that appear
in LTO batteries are gas evolution, which leads to battery swelling, and low performance
during charge/discharge due to low electrical conductivity [51]. Thus, further explorations
are focused on improving these areas, including specific energy and cost reduction.

A detailed comparative study of lithium-ion battery materials, performance, and
characteristics is shown in Figure 1 [52]. The figure clearly presents that LMO, LNMC, and
LNCA batteries are the best depending upon the voltage, power, and energy categories.
On the other hand, LFP and LTO batteries can be used when high lifecycle and safety
are major concerns. Moreover, LTO is economically excellent and capable of delivering
high performance.

Lithium-Ion Polymer

At the beginning of the 21st century, lithium-ion battery technology started to shift the
paradigm from liquid electrolyte cells with metal housing to plastic casings. The battery
technology was generally named as a lithium-ion polymer (LPO) battery [53]. The LPO
battery technology is a secondary battery that consists of a polymer electrolyte in the liquid
electrolyte utilized in usual lithium-ion batteries [54]. All Li-ion cells expand at high levels
of state of charge (SOC) or overcharge due to slight vaporization of the electrolyte. This
may result in delamination and bad contact of the internal layers of the cell, which in
turn brings diminished reliability and overall cycle life of the cell. Lithium-ion polymer
batteries have delivered satisfactory outcomes and have taken over nickel–metal hydride
(NiMH) batteries for moveable electronic devices such as smartphones and laptops. They
provide excellent high energy density (400 Wh·L−1) compared to other types of batteries.
The high power and energy density make them qualified candidates for EV and HEV
applications [55]. They also contribute toward the extended cycle life of ordinary Li-ion
batteries. The temperature should be kept at less than 50 ◦C to ensure the available cell
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capacity and utilize the full life span. However, functional instability materializes during
limited battery discharge and overload conditions.
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Figure 1. Performance comparison of different lithium-ion batteries according to indexed values.

Lithium-Ion Silicon

The initial work with lithium-ion silicon (LS) technology was initiated by Sharma and
Seefurth in 1976 [56]. The preliminary research in LS battery technology was conducted by
Dahn et al., as well as other teams from the year 1990 to 2000. At the same time, extensive
research work was conducted between 2011 and 2015 [57]. The LS battery shows great
potential due to its high capacity and long cycle life. However, some concerns related to
LS battery technology need to be overcome, such as low Coulombic efficiency, lower real
mass loading density, and high cost. Silicon anodes are among the most promising anode
materials for lithium-ion batteries due to their various advantageous features, including
the highest known capacity and relatively low working potential. However, the problem of
extremely large volumetric change must be addressed before silicon anodes can be utilized
in practical lithium batteries.
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2.1.4. Sodium–Nickel Chloride (Na/NiCl2)

The high-temperature sodium–nickel chloride (SNC) battery, also known as the ZEBRA
(zero-emission battery research activity) battery, is manufactured from diluted sodium and
nickel chloride. The solid ceramic simultaneously acts as an electrolyte and a separator at
an optimal operating temperature of 270–350 ◦C. The specific energy of SNC is reported
to be 125 Wh/kg with an energy efficiency of 92%, which is better than Pb–acid, NCd,
and nickel–metal hydride (NMH) battery technologies [58]. The major concern of SNC is
its operational safety due to the high operating temperature of 300 ◦C and its storage for
longer periods. Furthermore, the high internal resistance and faster self-discharge cause
low power capability for SNC batteries [59].

2.1.5. Fuel Cell

A fuel cell is an electrochemical device that uses two redox processes to transform the
chemical energy of a fuel (typically hydrogen) and an oxidizing agent into electrical energy.
Fuel cells require a constant supply of fuel and oxygen (often from the air) to sustain the
chemical reaction, and they can constantly create electricity as long as fuel and oxygen are
available. Sir William Grove created the first fuel cells in 1838. One century later, Francis
Thomas Bacon created the hydrogen–oxygen fuel cell in 1932 [60]. Song et al. [61] examined
the temperature effects on the performance of fuel cell-based hybrid EVs. Quan et al. [62]
evaluated the fuel cell EV energy management strategies using model predictive control
considering performance degradation in real time. Fuel cells offer a much more silent and
a smoother alternative to conventional energy production that can greatly reduce CO2 and
harmful pollutant emissions. However, the fuel cell is expensive to manufacture due to the
high cost of catalysts (platinum).

2.1.6. Supercapacitor

A supercapacitor (SC), sometimes known as an ultracapacitor, is a high-capacity
capacitor that bridges the gap between electrolytic capacitors and rechargeable batteries.
It has a capacitance value that is significantly higher than ordinary capacitors but with
lower voltage restrictions. In comparison to electrolytic capacitors, it typically stores 10 to
100 times more energy per unit volume or mass, accepts and delivers charge considerably
more quickly, and can withstand many more charge and discharge cycles than rechargeable
batteries. Nguyen et al. [63] used the SC for energy storage in EV applications. Although
the SC exhibits long life, it has some drawbacks, such as the generally lower amount of
energy stored per unit weight compared to an electrochemical battery.

2.2. Battery Management System in EVs

The battery management system (BMS) can be defined as a system that assists in
managing the battery operation via electronic, mechanical, and advanced technological sys-
tems [64]. An advanced BMS for EV applications is presented in Figure 2 [4]. The basic aims
of BMS are cell/battery protection from being damaged and ensuring optimum operating
conditions. The BMS ensures the proper supervision of the battery storage systems through
control and continuous monitoring via various control techniques such as charge–discharge
control, temperature control, cell potential, current, and voltage monitoring, thus enhanc-
ing the safety and lifetime of the energy management system (EMS) [65–67]. Nonetheless,
the deep charge and discharge of the battery during long-distance traveling in EV are
fundamental issues [68], potentially causing the failure of the battery or shock hazards due
to the high discharge and thermal effect [69]. The BMS becomes effective in minimizing
these difficulties by controlling the charge and discharge profile, as well as managing the
thermal behavior of the battery packs. The state of charge (SOC), state of health (SOH),
and remaining useful life (RUL) are the key parameters in the BMS for understanding
the status of the battery. The BMS also protects the battery pack from high-voltage stress
and short-circuit current by integrating controllers, actuators, and sensors [14]. The key
components and operation of BMS applications in EV technology are explained below.
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Figure 2. Various critical applications of BMS in EV technology.

2.2.1. Battery Cell Monitoring

The information on battery charging/discharging, health, temperature, and fault
diagnosis is the foundation for completing the BMS duties [70,71]. Generally, a pack of
battery cells is used in EVs [72]. The battery cell may react differently during the battery
charging/discharging operation. As a result, continual battery cell monitoring is required
to investigate the different states and performance indices [52]. The findings of the battery
cell monitoring can help the system function better by managing, protecting, balancing,
and controlling operations [73].

2.2.2. Voltage and Current Measurement

The battery cells are connected in series and parallel to the battery bank to acquire a
sufficient amount of voltage and current. Hundreds of cells are linked in series in battery
packs of electric automobiles, resulting in a large number of voltage measurement channels.
When the cell voltage is measured, there is accumulated potential, and the combined
potential of one cell differs from another. Hence, a suitable charge equalization must be
provided in order to enhance EV autonomy [74]. An accurate battery cell measurement is
required for the estimation of SOC and other battery states. One of the common voltage
monitoring methods is the voltage divider technique which consists of a resistor and
precise temperature-corrected voltage reference used to monitor the cell voltage. The
other available methods are the optical coupling relay, optical coupling isolation amplifier,
discrete transistor, and distributed measurement [64]. High-voltage current sensors are
used to monitor the current of the battery module, which is later converted to a digital
signal via analog to digital conversion (ADC). Finally, the voltage and current data are
utilized to appropriately estimate the SOC, SOH, and RUL [75].

2.2.3. Data Acquisition

The data acquisition system (DAS) is used for measuring and estimating the param-
eters of the battery pack, such as current, voltage, temperature, and SOC [76,77]. This
facilitates diagnosing the battery’s health and identifying defective cells. It also investigates
battery changes that would assist in delivering the status of battery aging, climate, and
other factors. The DAS is an integral part of the BMS, which consists of a hardware device
(microcontroller unit) and software. The DAS uses the ADC module for data conversion. A
controlled area network (CAN) bus and serial communication interface (SCI) module are
used to exchange information and communicate with the BMS [78–80]. A cloud-based DAS
platform within the BMS to extract critical information such as battery current, voltage, and
temperature is presented in Figure 3 [81].
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Figure 3. BMS-based cloud-integrated data acquisition framework for EV technology.

2.2.4. Battery State Estimation

The battery state estimation is critical for estimating battery charge and health. The
SOC, SOH, RUL, state of function (SOF), state of power (SOP), state of energy (SOE), and
state of safety (SOS) are some of the common battery states [82]. A framework for estimating
SOC, SOH, RUL, SOF, SOP, SOE, and SOS for the BMS is depicted in Figure 4 [83].
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Figure 4. BMS-based battery SOC, SOH, RUL, SOF, SOP, SOE, and SOS estimation framework for
EV applications.

State of Charge

SOC can be defined as the proportion of currently available capacity to maximal battery
capacity [84]. It is not directly measurable from terminals; hence, a method must be created
to predict the state from measured data [85]. The appropriate assessment of SOC is not
only needed for battery protection from degradation but also for the highest level of energy
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management [86]. Several methods are available to estimate the SOC, such as the discharge
test method, sliding mode observer method, neural network method, fuzzy logic method,
impedance method, and internal resistance method, as well as Kalman filter (KF), machine
learning, and deep learning approaches [52]. The Ampere-hour (Ah) and open-circuit
voltage methods are also common methods to calculate the SOC [87,88]. The Ah technique
becomes a simple choice for SOC calculation since charging or discharging current may
be easily monitored. However, the accuracy of SOC estimation is not error-free, and the
firmness of the initial state is complex. Furthermore, the estimation accuracy is improved in
the open-circuit voltage (OCV) method, but the long resting time limits the rapid application
of this method in EVs [89]. KF-based SOC estimation achieves accurate results but has
complex mathematical computation and functional relationships [90]. Recently, machine
learning and deep learning methods for SOC estimation have received wide attention due
to their high accuracy, improved learning capability, better generalization performance,
and convergence speed [91].

State of Health

The SOH of the battery can be defined as the available maximum capacity left by the
cycling effect of charge–discharge [92]. The following equation can be used to estimate
the SOH:

SOH (%) = (QactualQrated) × 100, (2)

where Qactual is the actual capacity of the battery, and Qrated is the rated capacity [93].
The SOH can be easily estimated from an understanding of capacity degradation

and the internal resistance of the battery. A variety of methods have been developed to
estimate battery SOH, which can be divided into three categories: model-free, model-based,
and data-driven methods [93]. Electrochemical impedance spectroscopy (EIS) analysis is
much more convenient compared with direct methods for capacity and internal resistance
estimation in a model-free method [94]. On the other hand, model-based methods follow
the equivalent circuit model and electrochemical model to estimate the capacity and internal
resistance during battery operation. Similarly, the data-driven method uses the support
vector machine (SVM) mechanism to estimate SOH by measuring the terminal voltage,
current, and temperature [95].

Remaining Useful Life

Accurate and robust EV performance is subjected to the battery’s remaining useful
life (RUL). The battery’s continuous charging and discharging process results in capacity
degradation, which can deliver unacceptable outcomes such as major breakdown, eco-
nomic loss, and safety issues [5,96]. Therefore, it is crucial to estimate the RUL of the
battery toward the achievement of safe, accurate, robust, and reliable operation of EV
technology [97]. When the battery is charged and discharged continuously, and its capacity
remains 70% or 80% of the initial capacity, the battery needs replacement. Therefore, several
model-based and data-driven-based techniques have been explored to predict the RUL
of the battery. The model-based techniques rely on a mathematical model and detailed
experiments; however, the technique requires a huge volume of data to estimate the battery
degradation pattern. On the other hand, data-driven methods depend on battery historical
data, which comprise various parameters such as voltage, current, impedance, capacity,
and temperature. Data-driven methods predict the RUL by considering battery data and
do not require complex mathematical models [96].

State of Function

The SOF is described as the capability of a battery that can finish a specific task. It
narrates the performance of the battery in terms of meeting the power demand [98]. It can
also be determined from the ratio of available useable energy to the maximum stored energy
of the battery [99]. The SOF is estimated with the help of SOC, SOH, and temperature [64].
The SOF can be calculated from a few approaches, such as (adaptive) characteristic maps
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and equivalent circuit models, including the fuzzy logic control method [100]. The SOC,
power pulse duration, power, voltage, and temperature are the characteristics needed in
(adaptive) characteristic maps [98]. Additionally, KF and artificial neural network (ANN)
algorithms are adopted in model-based methods for the accurate estimation of SOF. The
parameters related to SOC, SOH, and C-rate of the battery are also employed in the fuzzy
logic algorithm to estimate the battery SOF [64].

2.2.5. Battery Protection Strategies

Battery protection is one of the major tasks of BMS. Due to alterations in physical and
chemical characteristics of the battery and frequent charge–discharge, voltage and charge
deviance may occur in battery cells [101]. The overall battery performance and lifetime may
be reduced because of the deviation of voltage and charge. Moreover, the deep discharge
below the minimum SOC limit and overcharge of the battery beyond the C-rating may
cause a critical situation for the battery [102]. Thus, a suitable protection system for the
battery in EV applications is important. The proper maintenance of operating temperature
is also a significant parameter for ensuring safety. The BMS provides temperature safety
limits which stand between 0 ◦C and 60 ◦C for charge and between −20 ◦C and 60 ◦C for
discharge [103]. It also provides deep discharge protection, overcharge protection, high-
temperature protection, uplifted voltage protection, and power cutoff safety. However,
BMS safety protocols should comply with the automobile International Organization for
Standardization (ISO) 26262 [104]. A fully integrated, cost-effective, and low-power single-
chip lithium-ion battery protection IC (BPIC) was proposed by Lee et al. [105], as shown
in Figure 5.

Figure 5. Block diagram of the lithium-ion battery protection circuit.
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2.2.6. Battery Equalizer Control

The BMS can protect the battery from abnormalities that are caused by the un-
der/overcharging of the battery through individual cell monitoring and charge equal-
ization control [106,107]. The undercharging of the battery can deteriorate the lifetime,
and overcharging of the battery can damage it completely. To enhance and maintain the
constant performance of the battery, the equalization of voltage and charge of battery cells
is critical [108]. Battery equalizer control can be broadly categorized into active and passive
charge equalization controllers, as shown in Figure 6 [109].

 

Figure 6. Charge equalization controllers for lithium-ion batteries.

The active charge equalization controller (CEC) works on the principle of transferring
energy from cell to cell, cell to battery pack, or battery pack to cell [110]. The excess energy
is collected from overcharged cell and delivered to the undercharged cell to equalize the
charge and voltage. The active CEC can also be categorized into three types, namely,
capacitor-based, inductor/transformer-based, and converter based. The energy transfer
from cell to heat via a shunting resistor is the basic hypothesis of passive CEC, which can be
distinguished into fixed shunting, switched shunting, and analog shunting. A fixed resistor
is used in the fixed shunting method to bypass the current flows and control the voltage.
Similarly, a controllable switch (relay) bypasses the release path from the overcharged
battery in the switched shunting method. The most effective method among the three is the
analog shunting method which uses a transistor instead of a resistor to complete the task of
the current bypass from high-energy cells [109]. A constant current string-to-cell battery
equalizer with open-loop current control was proposed by Wei et al. [111], as depicted
in Figure 7.
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Figure 7. Flowchart of string-to-cell battery equalization algorithm.

2.2.7. Charge and Discharge Control

The battery charging/discharging determines the protection, performance, and dura-
bility. Incorrect charging drastically accelerates the battery’s deterioration. Nonetheless,
enhancing battery efficiency, reducing overheating, and prolonging the life cycle depends
on controlled and quality charge and discharge. There are a few conventional but widely
used charging techniques for resolving battery charging issues with a variety of aims
and termination circumstances. The charging techniques can be classified into four types:
constant-current (CC) charging, constant-voltage (CV) charging, constant-current/constant-
voltage (CC-CV) charging, and multistage constant-current (MCC) charging [112]. A
constant current rate is the main approach adopted by the CC technique to charge the bat-
tery. During the CC technique, a low current rate can lower the charging speed, which is not
suitable for EV applications. The CV charging method works on the basis of a predefined
constant voltage to charge the battery, eliminating the risk of overcharge and enhancing the
battery cycle life. The charging speed and temperature variation are new modifications
that have been added to this technique. The hybrid charging technique is CC-CV which
works on interconnecting the principle of predefined current, a voltage of CC, and CV. In
the beginning, the battery is charged with constant current (CC), and then the voltage is
increased to a safe limit. In the end, the battery starts working in the CV phase and remains
as such until the target capacity is obtained. Constant multistage series current is injected
into the battery during the whole process of charging in the MCC charging technique. This
highlights the basic difference between CC-CV and MCC. The speed of MCC charging is
quite slow compared to the CC-CV technique. However, fuzzy logic technology has been
incorporated with MCC to improve performance [95,113]. An orderly charge and discharge
control process for EVs based on charging reliability indicators was developed by Li et al.,
as presented in Figure 8 [114].
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Figure 8. Orderly charge and discharge control process in EV applications.

2.2.8. Power/Energy Management Control

EV performance depends not only on energy storage but also on power and energy
intelligent control strategies. In order to regulate power/energy flow efficiently in electric
vehicles, the energy storage control system must be capable of dealing with high peak
power when accelerating or decelerating [114]. Two basic types of common strategies are
adopted for power and energy management (PEM) control [115]. A low-level component
control strategy enhances the PEM performance and flexibility via a power transfer train
mechanism that connects ESS, auxiliary ES, ICE, and generators altogether. A high-level
supervisory control system works on the time-based data extraction process and balances
the operations of different components. Various types of efficient PEMC systems have also
been reported in several articles for HEV; among them, two major types are rule-based and
optimization-based. The rule-based strategy can be classified into two types: deterministic
rule-based and fuzzy logic. The real-time optimization and global optimization PEMC
systems are types of optimization-based PEMC systems [22,116,117]. Based on the driving
schedule, the powertrain model, and two neural networks, the energy management strategy
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based on the deep Q-learning method for a hybrid EV was proposed by Du et al., as shown
in Figure 9 [118].
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Figure 9. Advanced energy management strategy framework for EV.

2.2.9. Operating Temperature Control

The battery temperature significantly impacts several aspects of battery performance,
including longevity, energy conversion efficiency, and safety [119]. The rapid charge–
discharge cycle of the battery was identified as the main cause of the rising operating
temperature of the battery, which reduces the battery performance [120]. A low operating
temperature affects the electrolyte performance, and a high operating temperature causes
thermal runway and safety issues. Temperatures of more than 40 ◦C and less than −10 ◦C
cause capacity losses and performance degradation of the battery. Hence, the thermal
management of a battery pack in an EV is a crucial aspect [121]. To ensure the operation at
optimal operating temperature, a BTMS should perform crucial tasks such as heat removal
from the battery by cooling, increasing heat when the temperature is too low, and providing
suitable ventilation for exhaust gases. According to the heat transfer medium, the BTMS
can be classified into air, liquid, and phase-change material (PCM) types [122]. The internal
temperature estimation of a battery is another important issue that can prevent the battery
from aging and explosion risk. The internal temperature estimation can be performed using
micro-temperature sensors, EIS measurement, and a lumped-parameter battery thermal
model [95,122]. In contrast to battery-based EV applications, fuel cell vehicles (FCVs) have
shown huge potential toward decarbonization. They are more efficient than conventional
internal combustion engine vehicles and produce no tailpipe emissions since they only emit
water vapor and warm air. However, thermal management in FCV should be considered
an important research area to be explored [60]. Accordingly, Hu et al. [123] developed an
operating temperature tracking control framework to decouple the operating temperature
from the complicated driving conditions of the FCV, as shown in Figure 10.
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Figure 10. The optimal operating temperature tracking control framework of a fuel cell.

2.2.10. Fault Diagnosis

The unbalance, undercharge, overcharge, overcurrent, and extremely low or high
temperatures are some critical issues suffered by battery storage systems [124]. Moreover,
other types of faults related to data acquisition, networking, programming, etc. are expe-
rienced by BMSs in EV technology. The International Electrotechnical Commission (IEC)
developed a BMS standard in 1995 that stipulates that BMSs for EVs must have battery
fault diagnosis functions that can provide early warnings of battery aging and risk [64].
Analytical model-based, signal processing, knowledge-based, and data-driven methods
are frequently used for fault diagnosis in EV applications [125]. The model-based method
detects the faulty parameters with the help of a residual signal that is compared with a
threshold to determine the fault. However, the diagnosis results can be affected by mea-
surement and process noise. Time-domain analysis is a key tool to collect the test data for
fault analysis in the signal processing-based method. Wavelet transform is a widely used
technique in signal processing methods to carry out multiscale fault analysis for battery
systems [126]. In addition, machine learning and expert systems are the methods used in
a knowledge-based method for fault diagnosis, which can also be utilized to identify the
battery lifetime. Moreover, the information entropy, local outlier factor, and correlation
coefficient are the key tools to detect faulty data in the data-driven method for fault diag-
nosis [125,127]. A flowchart describing fault diagnosis of a lithium-ion battery system as
proposed by Xiong et al. is shown in Figure 11 [125].

Figure 11. Fault diagnosis process of a battery system.
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2.2.11. Communication and Networking

BMS communication with the EV and its external system is essential to protect the
battery storage unit. The communication system can be established through wires or data
links [128]. A simple BMS consists of a microcontroller unit, debugger, CAN bus, and
host computer. For battery status monitoring, a monitoring IC such as AS8505 is used to
communicate with the microcontroller through I/O lines via a CAN bus, which controls
the cell data and monitors the balancing process [129]. The battery parameters such as
voltage, current, and cell temperature are utilized to estimate the SOC, SOH, DOD, etc. in
BMSs, which can also be used in IoT-based wireless communication systems with EVs to
monitor battery health. The wireless communication technologies that can be employed to
monitor battery comprise ZigBee communication, Wi-Fi communication, GSM communica-
tion, Bluetooth communication, GPRS communication, and GPS [130,131]. Furthermore,
parameter identifier (PID) codes can also be used to collect critical parameters such as
voltage, temperature, energy, power, SOC, SOH, DOD, and resistance. Additionally, PIDs
use the CAN bus for data processing. Therefore data-driven personalized battery manage-
ment schemes based on the platform of big data and cloud computing were introduced by
Wang et al., as presented in Figure 12 [129]. A summary of BMS components, functions,
algorithms, targets, and contributions is presented in Table 1.

Figure 12. Advanced BMS architecture with 5G in EV technology.

Table 1. The various BMS components, functions, algorithms, targets, and outcomes in EV applications.

BMS
Components

Functions Algorithm/Methods Target Outcomes

Monitoring
and data

acquisition

� Cell monitoring
� Voltage and

current
monitoring

� Data processing

� Voltage and current
measurement

� Voltage divider
technique

� CAN bus
� SCI

� Current, voltage,
and temperature
monitoring

� Communication

� Better systems
function by
managing, protecting,
balancing, and
controlling
operations

� Enhanced EV
autonomy

� Information
exchange
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Table 1. Cont.

BMS
Components

Functions Algorithm/Methods Target Outcomes

State
estimation

� SOC
� SOH
� SOF

� Ampere-hour (Ah)
� Open-circuit voltage

methods
� Model-free,

model-based, and
data mining
methods

� Fuzzy logic
algorithm

� To minimize
estimation error

� To reduce the
computational cost

� Enhanced vehicle
performance

� Accurate estimation
� Understanding of

maximum capacity
� Reduced capacity

degradation
� Identification of

internal resistance

Control
operation

� Charge and
discharge control

� Power/energy
management
control

� Operating
temperature
control

� CC
� CV
� CC-CV
� MCC
� PEM

� To enhance
performance

� To improve
durability

� To increase
efficiency

� To provide
protection

� To control energy
flow

� To ensure safety

� Controlled operation
in battery charging
and discharging

� Improved efficiency
and safety

� Increased life cycle

Fault diagnosis
and protection

� Battery protection
� Unbalance
� Undercharge
� Overcharge
� Overcurrent

� Deep discharge
protection and
overcharge
protection

� Analytical
model-based
methods, signal
processing-based
methods,
knowledge-based
methods, and
data-driven
methods

� Protection of
battery due to
physical and
chemical alteration

� Warnings of battery
aging

� Warnings of
explosion

� Improved overall
battery performance

� Increased battery
lifetime

� Protection from high
temperature obtained

� Protection from aging
confirmed

� Detection of faulty
system

Communication
and

networking

� Monitor and
protect the
battery

� Microcontroller unit,
Debugger, and CAN
bus

� Wireless
� PIDs

� To control the
battery data and
monitoring

� Monitoring of the
battery status using
wired or wireless
approach

3. Key Technological Progress of EVs

This section presents the various technological advancements of EVs concerning power
electronics and charging systems in EV applications.

3.1. Power Electronics Technology

Power converter structures need to be dependable and lightweight for automotive
applications with minimal electromagnetic interference and low current/voltage ripples
to meet the automotive industry standards for high reliability and efficiency [132,133]. A
proper interface between energy storage systems (ESSs) and power electronics converters is
required for effective EV operation. There are numerous varieties of ESSs that are coupled
to different types of power electronic converters in electric vehicles. AC/DC converters
are typically used to charge ESSs through charging stations or grids. To accelerate the
vehicle, ESSs transmit the necessary energy from a battery to the motor. However, the
energy provided by ESSs is unreliable and suffers from significant voltage dropouts. As
a result, DC/DC converters are crucial in transforming uncontrolled power flow into
controlled/regulated power flow to support various electrical loads and auxiliary power
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supply in EVs [5]. The layout of the power conversion technique using various power
electronics components is shown in Figure 13 [5]. The classification of power electronics
technology in EV applications is shown in Figure 14.
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Figure 13. The EV drivetrain with converters connected with a charging system.
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Figure 14. Power electronics converter types in EV applications.

3.1.1. DC/DC Converter: Non-Isolated

When voltage needs to be stepped up or down by a relatively small ratio, non-isolated
converters are typically utilized. These types of converters are applicable where the
presence of dielectric isolation is not a major issue [134,135]. The mid- and high-range
vehicular types are more appropriate for utilizing non-isolated DC/DC converters [136].
A conventional boost DC/DC converter is usually employed where low DC voltage gain
is required (<4%). There are five major types of commonly used DC/DC converters:
multi-device interleaved, Ćuk, switched capacitor, coupled inductor, and quasi Z-source
converters [5,137].

Because of their simple construction, low cost, high efficiency, lower ripples, and easy-
to-use control method, multidevice interleaved (MDI) bidirectional DC/DC converters
are frequently utilized in BEV and PHEV powertrains. They can maintain the constant
magnitude of input current and output voltage ripple without including additional devices
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such as an inductor or capacitor. Some advantageous features of interleaved converters
make them highly suitable for EV applications, such as enhanced heat dispersal, high
energy density, reduced current stress, high efficiency, small size filter, and inherent ability
to eliminate current ripples [138]. The interleaved topology suggested in [139] is structurally
simple and has high modularity, resulting in reduced current stress on the switches and
enhanced heat distribution. However, the current configuration of this converter can only
be used for a low-power EV that can carry a maximum of two passengers. For high-power
EVs, the structure needs to be extended using supercapacitors, making it structurally
complex, bulky, and expensive. A two-phase bidirectional interleaved converter was
proposed in [140] for EVs. This converter can be operated in both buck and boost mode
with fast and low overshoot switching performance. A major drawback of this converter is
that its operation is highly reliant on the switching control technique. In order to achieve
the optimized performance from this converter, a highly complex control technique named
optimal Bézier curve is required. The dynamic response of this converter with direct
switching control is poor and may not be suitable for EVs. A two-phase hybrid mode
interleaved converter was developed by [141] for EV fuel cells. This converter has the ability
to simultaneously operate in continuous conduction mode and discontinuous conduction
mode. With regard to load conditions and duty cycles, the boundaries between the two
conducting modes are distinguished. Although this converter showed high-performance
efficiency with low output voltage and current ripple, the dynamic performance of this
converter has not been verified. Since the modes are distinguished on the basis of load
conditions, transient conditions can greatly hamper the performance of this converter.

The Ćuk converter (CC) delivers flexibility toward regulating the output power as
compared with input power. The Ćuk converter is developed by utilizing a single magnetic
core and delivers important features such as low ripples/harmonics and high efficiency.
The Ćuk converter also delivers high-performance efficiency compared with the DC/DC
boost converter by controlling the current ripple through the L−C filter. A modified Ćuk
converter for Toyota Prius was proposed in [142] with a basic proportional–integral (PI)
controller for tuning and filtering. Since the conventional PI controller has various perfor-
mance deficiencies such as sluggish transient response, high overshoot, manual tuning,
and poor filtration, the real-time execution of this converter is questionable. Furthermore, a
bridgeless modified Ćuk converter was developed in [143] to improve the power quality of
the EV charger. The proposed converter’s operation was verified under transient voltage
conditions, and it successfully followed the IEC 6100-3-2 standard for reduced current
harmonics. The only downside of this proposed topology is that it utilizes an additional
flyback converter for current harmonic reduction, which is connected through a transformer.
Thus, the implementation of this converter will be significantly expensive, and it will also
have increased weight.

Additionally, In EVs, the switched-capacitor bidirectional converter (SCBC) uses
synchronous rectification to conduct turn-on and turn-off actions. By utilizing switched
capacitors, the SCBC can deliver stable voltage and current without magnetic coupling.
Additionally, with the employment of power switches in SCBC, the application of additional
components is minimized to improve the power conversion efficiency [144]. Some of the
recently proposed SCBCs for EV applications can be found in [144–146]. Nonetheless, the
SCBC suffers from various factors such as high harmonics and low efficiency at widespread
input to output voltages. Zhang et al. [144] designed a switched capacitor-based converter
for EV applications without the magnetic coupling that can deliver continuous inductor
current and a stable switched-capacitor voltage through the switched capacitors. The
performance of the proposed configuration was investigated using a 300 W prototype
considering a wide voltage-gain range and variable low-voltage side (40 V to 100 V). The
results demonstrated a maximum efficiency of the converter of 94.39% in step-up mode and
94.45% in step-down mode. Zhang et al. [147] developed a hybrid bidirectional DC/DC
converter with switched capacitor-based converter for hybrid energy source-based EVs.
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According to the experimental outcome obtained from a 400 W prototype, the authors
validated the characteristics and theoretical analysis of the proposed converter.

On the other hand, the coupled inductor bidirectional converter (CIBC) demonstrates
improved performance efficiency due to high voltage gain and low voltage stress com-
pared to SCBC [148]. A reduced-component CIBC was proposed in [149] for EV charging
applications. This topology can provide a wide range of voltage conversion by operating
in both buck and boost mode. It also showed a high performance efficiency greater than
95%. Another CIBC for EVs was proposed in [150], and the operation was verified under
transient conditions using simulation and experimental results. However, both of these
CIBC topologies have inherent weaknesses due to the application of leakage inductance,
resulting in resonance and voltage spikes [151]. This drawback can cause serious conse-
quences in EV applications; therefore, the implementation of CIBC for EVs is still limited
in the industry. Wu et al. [152] developed a couple inductor-based converter for EVs to
enhance the voltage gain and decrease the switching voltage stress. An experimental model
of the converter rated as 1 kW, 40–60 V to 400 V, was designed to validate its performance.

Lastly, due to several significant properties such as simple design, common ground,
and wide range of voltage gain, the quasi Z-source bidirectional converter (QZBC) is
employed in EV technology. Commonly, the EV application employs a conventional
two-level QZBC topology. The QZBC replaces the conventional Z-source DC/DC boost
converter by enhancing the output voltage gain, which is suitable for high step-up voltage
conversion [153]. However, the employment of QZBC results in various drawbacks such as
uneven input current and capacitance of high-voltage stress [135].

3.1.2. DC/DC Converter: Isolated

Isolated converters are essential where the output is completely separated from the
input. In low- and medium-power vehicle applications, isolated DC/DC converters are
commonly utilized [5]. Some of the important isolated DC/DC converters employed in
BEV and PHEV applications are flyback, push–pull, multiport, resonant, zero-voltage
switching (ZVS), dual-active bridge full bridge, ZVS full-bridge, and forward converters.

When a buck–boost converter splits an inductor into transformers, the result is a
flyback converter (FBC). This is an isolated DC/DC converter that stores energy during
the on state and transfers it to the off state. The application of FBCs can be carried out
in low-power applications due to their various characteristics, such as low cost, high
output voltage, and electrical isolation [154]. The constructional features of FBCs can
obtain high gain and reduce the output current ripple and the leakage inductance [155].
A boosting multioutput FBC was proposed in [156] for EV application. This topology
consists of three separate FBCs to provide multioutput voltage. Although this topology has
high voltage gain and can be applied in high-power EV because of a parallel connection,
it requires a transformer winding technique to decrease leakage inductance, which can
drastically increase the cost and weight of this topology. A multiphase bidirectional FBC
was developed for hybrid EVs in [157]. Due to its modularity, it is suitable for high-power
applications while maintaining structural minimization and features such as high voltage
gain, accurate operation during load fluctuations, decreased current ripple, and parallel-
battery energy capacity. However, similar to the FBC in [156], it also utilizes a transformer,
making it highly expensive and overweight.

The working principle of the push–pull converter (PPC) is based on the transformer
operation, which transforms power from primary to secondary. A rectifier diode, bypass
capacitor, power switches, and transformer circuit are the basic circuit components of
the PPC configuration. The PPC demonstrates simple topology with high efficiency and
results in low conduction loss due to low peak current. However, careful attention is
required while operating the PPC due to the formation of a low impedance path and high
current [158]. Some notable PPC topologies developed particularly for EV applications can
be found in [159].
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The multiport isolated converter (MPIC) performs the operation while considering
several input sources and offers galvanic isolation. The performance efficiency and func-
tionality are improved by feeding back the recovered power obtained during regenerative
braking to the input sources [160,161]. A highly energy-efficient T-type MPIC was proposed
in [162] for EVs. In order to handle multiple energy generation/storage units, the sug-
gested converter unit has multiple input sources. Because the unit requires fewer switching
components, the cost of the power electronics interface for EV implementation is greatly
reduced. Although this MPIC has shown promising performance, it requires a complex
multipurpose algorithm for accurate energy management in different modes of operation.
Furthermore, another novel MPIC with the inherent ability to control multidirectional
power flow was suggested in [163]. Unlike [162], this topology offers galvanic isolation
by using a common magnetic link among the multiple input sources. It can be stated that
MPIC topologies comprise several advantageous features compared to other converter
topologies, especially for EV applications. Nonetheless, they are still in the early phase of
development for EVs, and further research is required to optimize their cost and weight
since they utilize transformers [136].

A DC–DC resonant converter (RC) is made of a resonant tank constructed with a
combination of inductors and capacitors. The RC exhibits several benefits, including low
switching loss, zero circulating currents, zero-voltage switching, and high efficiency. These
features can be essential for EV applications, as demonstrated in [164,165]. However, RC ex-
hibits various limitations in terms of transformer design complexity and high magnetizing
current [165], which requires further improvement.

The zero-voltage switching converter (ZVSC) was designed on the basis of the dual
half-bridge topology placed on both sides of the main transformer. Due to various strengths
such as less circuitry topology, easy control, soft switching, and higher efficiency, the ZVSC
is regarded as highly suitable for EV technology [166]. The topology of ZVSC can be
adopted for both BEV and PHEV powertrains even though it has a power limitation >10 kW
for automobiles [167,168]. The experimental verification of a 53.2 V, 2 kWh low-voltage
and high-current lithium-ion battery energy storage system based on a 6 kW single-phase
dual-active bridge (full-bridge) achieved efficiency as high as 96.9% [169]. A three-phase
dual-active bridge with phase-shift modulation and burst mode switching was evaluated
for battery energy storage systems to achieve high power density, high efficiency, and
galvanic isolation [170].

The full-bridge boost DC/DC converter (FBC) is the most convenient converter topol-
ogy that diminishes the voltage and current stresses on diodes and switches. The FBC
operates in three stages: initially an inverter (DC/AC), then a high-frequency transformer
(HFT), and finally a rectifier (AC/DC). This type of converter contributes higher step-up
voltage due to HFT and galvanic isolation between input and load. An improved FBC was
developed in [171] for efficient power conversion and distribution in EV charging. It has
other valuable characteristics such as the minimized size of the EV charger and switching
loss, faster operation, and economical performance. Moreover, another FBC was suggested
in [172] with the phase-shift switching control technique. Even though FBCs have some
effective characteristics for EV applications, they have a major performance deficiency;
their maximum achievable efficiency is only around 91.5% [173].

Lastly, the forward converter (FC) works on the forward balancing technique, which
has a fast balancing time and is easy to control. It consists of one magnetic core with one
primary winding and multiple secondaries based on the desired application. The energy is
transferred to the secondary when the switch is turned on. A few forward converter topolo-
gies have recently been developed for EV applications [174–176]. A detailed comparative
study of different power electronics converters is shown in Table 2.
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Table 2. Comparison of various power electronic converters in EV applications.

Converter
Type

Converter
Topologies Strength Weakness Objectives Outcomes Refs.

Non-
isolated

MDI

- Efficiency up to
97%

- Low current stress
- Reduced

component size

- Complicated
analysis during
transient and
steady state

Multiple input to
a single output

- Enhancement of
efficiency

- Reduction in
additional
components

[138]

CC

- Continuous input
and output
currents

- Power factor
improvement.

- Uncontrolled and
undamped
resonance

Reduction in
energy loss

- Ripple-free
constant output [143]

SCBC

- Improved power
conversion
efficiency

- Cost-effective
- Compact design

- High ripple
current

High voltage
gain and
efficiency

- Efficiency greater
than 90%

- Stable voltage
and current

[177]

CIBC
- Operational

flexibility
- Small in size

- No consideration
for voltage ripples

To reduce output
current and
inductor current
ripples

- Increased
efficiency by
increasing the
coupling
coefficient

[178]

QZBC

- Lower switch
stress

- Bidirectional
operation

- Enhanced output
voltage gain

- Discontinuous
input current

Maximum and
minimum
efficiency of
96.44% and
88.17%,
respectively

- To obtain high
voltage gain for
step-up
conversion

[153]

Isolated

FBC

- Applicable to
higher-load-
voltage
situations

- Ability to regulate
multiple output
voltages

- Ripple current
Attains lower
leakage
inductance to an
acceptable limit

- To enable support
of a wide input
voltage range

[156]

PPC

- Less filtering is
required

- Low conduction
losses

- Protection
required during
switching

To change the
voltage of the
DC power
supply

- Achieves low
current and
voltage on the
primary side

[158]

MPIC

- Low output
voltage ripple
current

- Galvanic isolation
bidirectional
power flow

- High sensitivity
corresponding to
duty cycle under
load changes

- Difficult to achieve
proper
synchronization

To minimize the
overall system
losses

- Independent
control of power
flow

[163]

RC
- High conversion

ratio
- High efficiency

- Complex
integrated
transformer

To minimize
magnetic
components and
passive filters

- Low switching
loss [164]

ZVSC

- Low EMI factor
- Soft switching
- Increased power

density

- Poor fault-tolerant
capability.

- High gate current
rating

To clamp the
output diode
bridge voltage

- Achieves
zero-voltage
switching under
all load
conditions

[167]

Sinusoidal
amplitude

high-voltage
bus converter

(SAHVC)

- Flat output
impedance up to
1MHz

- Ensures noise-free
operation

- Complex gate
switching pattern

- Not suitable for
high-power
conversion

Lowers voltage
stress on the
switching circuit

- High voltage bus
conversion [134]
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Table 2. Cont.

Converter
Type

Converter
Topologies Strength Weakness Objectives Outcomes Refs.

Isolated

Single-phase
and

three-phase
DAB

- High power
density

- Bidirectional
power transfer

- Zero-voltage
switching

- Low voltage and
current stresses

- Circulating current
in the high
frequency-
transformer
(three-phase)

- Optimum
efficiency is
achieved only
when the ratio of
the DC-link
voltages is equal to
1 using the
phase-shift
modulation
switching method

-Galvanic
isolation
-Voltage
matching

- High efficiency
for low-voltage
and high-current
applications

- Low DC voltage
ripple

[169,170]

FC

- Fast balancing
time

- Easy to control
- High efficiency

- Nonuniform
voltage of the
secondaries

Voltage
equalizing

- Reduces use of an
inductor

- The number of
components is
decreased

[174–176]

3.2. EV Charging Technology

EV charging is a major barrier to sustainable adoption in the global market. Charging
entails injecting a suitable amount of electrical power from the grid into the battery. The
length of time it takes to charge a battery is determined by the battery’s capacity and the
charger’s power level. Three methods are frequently utilized for charging the battery of
an electric vehicle (EV), i.e., conductive charging, inductive charging, and battery swap-
ping [179,180]. Figure 15 shows the typical architecture of an electric vehicle charging
system, where both the on-board and the off-board one are represented [181].

Figure 15. Charging system configuration for EV applications.

3.2.1. Conductive Charging

Conductive charging involves EV charging by connecting to the grid through a wire,
allowing for a direct connection between the charger and the vehicle. This charging
method comprises a rectifier (AC/DC) and converter (DC/DC) with power factor correction
(PFC), which is categorized as an onboard and off-board charger. The construction of the
rectifier and the DC/DC converter initially determines the topology of an on-board and
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off-board conductive charger [180,182]. The on-board charger is placed inside the EV,
which is frequently utilized for slow charging. However, a fixed location is mandatory
for an off-board charger, which is applicable for quick charging. The Nissan Leaf, Tesla
Roadster, and Chevy Volt all are suitable EVs having conductive charging [183]. Figure 16
shows the conductive on-board and off-board charging infrastructures, as proposed by
Khalid et al. [184].

Figure 16. The on-board and off-board conductive charging infrastructures.

When it comes to charging electric vehicles, several standards are used. These require-
ments are mostly determined by the location in which the EV technology is embraced and
employed. For instance, the charging of EVs in North America and the Pacific is based on
SAE-J1772 specifications. Furthermore, the charging of EVs in China is based on GB/t 20234
standards, whereas the charging of EVs in Europe is based on IEC-62196 standards. The
standards for North America, the Pacific, and China depend on the application of charging
modes. On the other hand, the European standards are solely divided into categories on
the basis of charging power, i.e., AC or DC.

The North American standard was developed in 1996 for electric connections of
EVs, promoted by SAE International. The various charging mode standards and their
implementation in several regions (the USA, Japan, Europe, and China) are depicted in
Table 3 [185].

According to the survey, the North American SAE-J1772 standard is only compatible
with the 120 V recharge mode, in contrast to the IEC-62196 and GB/T-20234 standards,
which can operate at a greater voltage even in their lowest charging modes.

Moreover, the GB/T-20234 standard has a lower current intensity (10 A) than the
other two standards, which have a current intensity of 16 A. However, the SAE-J1772
only supports a maximum intensity of 200 A in its most powerful modes, compared to
400 A for the IEC-62196 and 250 A for the GB/T-20234. In addition, the North American
SAE-J1772 standard provides a reduced power of 1.9 kWh in comparison to the 2.5 kWh of
the GB/T-20234 and the 3.8 kWh based on the AC power source. On the other hand, the
IEC-62196 standard offers the power of 120 kW at 480 V AC which is much higher than the
other two standards.
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Table 3. Standard charging power ratings of various conductive Charging standards for EV applications.

Charge Method Volts
Maximum Current

(Amps—Continuous)
Maximum Power

SAE-J1772

AC level 1 120 V AC 16 A 1.9 kW

AC level 2 240 V AC 80 A 19.2 kW

DC level 1 200–500 V DC
maximum 80 A 40 kW

DC level 2 200–500 V DC
maximum 200 A 100 kW

IEC-62196

Single-phase 230–240 V AC
16 A

3.8 kW

Three-phase 480 V AC 7.6 kW

Single-phase 230–240 V AC
32 A

7.6 kW

Three-phase 480 V AC 15.3 kW

Single-phase 230–240 V AC
32–250 A

60 kW

Three-phase 480 V AC 120 kW

GB/T-20234.2 AC charging 250 V and 440 V 10–63 A 27.7 kW

GB/T-20234.3 DC charging 750–1000 V 80–250 A 250 kW

For charging EVs in China, the Guobiao (GB) GB/T-20234 standard was adopted
and promoted. This standard categorizes the charging modes between AC and DC. A
detailed comparative analysis of various conductive charging standards for EV operation
is presented in Tables 3 and 4.

Moreover, the International Electrotechnical Commission (IEC) established the IEC-
62196 standard in 2001 as a global standard for charging an electric vehicle in Europe and
China. The general guideline for the charging process and energy transferred pattern was
introduced by the IEC-62196 standard, which was deduced from the IEC-61851 standard.
The IEC-61851 administers a first classification of the type of charging based on its nominal
power and the recharging time [186,187]. The EV users are offered four modes of charging
the vehicle, as mentioned below. The different charging modes for EV operation are shown
in Figure 17 [186].

 

Figure 17. The various charging modes for EV applications.
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Table 4. Comparative study of various conductive charging standards for EV operation.

Charging
Standard

Country
Mode of Operation/

Classification
Features Advantages Disadvantages Ref.

AC level (single-phase)

SAE-J1772
USA and

Japan

Provides a physical
connection

Utilized at home,
workplace, and public

charging facilities

High output
voltage

regulation and
high slew rate

Charging
rate is limited

by battery
chemistry, in-
frastructure

[188]

DC level

IEC-62196 Europe and
China

Mode-1
Single-phase Only for domestic

(household) use
The range of

charging is high,
i.e., recharge

from 3 and 43
kW, and can

support single
phase up to 16 A
and three phases

up to 63 A

Can only be
used with

three-phase
supply due

to its specific
design

[22]

Three-phase

Mode-2 Single-phase Overcurrent protection
Over-temperature

protectionThree-phase

Mode-3 Single-phase Useable in public
places or at home

Utilizes EVSEThree-phase

Mode-4 DC

The charger is part of
the charging station,

not part of the vehicle
Utilizes an

off-board charger

GB/T-20234.2
China

AC charging
Conductive charging Fast charging - [189]

GB/T-20234.3 DC charging

• Mode-1 (slow charging). This mode is designed for domestic use purposes, frequently
used in client houses. It provides the maximum current intensity of 16 A with a single-
phase or three-phase power outlet facility, including neutral and earth conductors.

• Mode-2 (semi-fast charging). A similar charging approach is implemented in this
mode with a slight modification in current intensity and user facility. This mode can
handle the current intensity of a maximum of 32 A, and it also allows users to utilize
the charging in public places.

• Mode-3 (fast charging). This mode contributes to a fast charging process with the
help of current intensity from 32 A to 250 A. This model also adopts the specific
power supply known as EV supply equipment (EVSE), which is utilized for recharging
electric vehicles. This EVSE device accommodates a communication system that
provides a communication advantage with the vehicles. Additionally, a control system
to regulate energy flow, a monitoring system to observe the charging process, and a
protection system are incorporated for protection with the EVSE.

• Mode-4 (ultrafast charging). According to the latest IEC-62196-3 standard, this model
has a maximum charging power capacity of up to 400 kW. This standard also defines
a direct connection between the EV and the DC supply network, having a maximum
voltage of 1000 V and a current intensity of up to 400 A. An external charger is required
in this mode, which provides protection, control, and communication between the
vehicle and the recharging point [182].

3.2.2. Wireless Charging

Wireless power transfer (WPT) has been around for over two centuries. Nikola Tesla
conducted tests at Colorado Springs, USA, in 1899 to see if electrical energy could be trans-
mitted without wires. Wireless charging technology involves transferring electricity from
one medium to another without the use of a contact medium. Electromagnetic radiation,
electric coupling, and magnetic coupling are the three primary types of WPT systems.
Moheamed et al. [190] classified the available WPT technologies into three categories.
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Figure 18 shows a classification diagram for the different wireless power transmission
technologies [190].

 

Figure 18. The categories of WPT technologies for EV applications.

WPT works in three stages: initial conversion of power supply, then resonance between
coil to transfer power, and final charging of the battery. An input AC power supply is
converted to high-frequency AC at the first stage. This high-frequency AC is utilized
to generate an alternating magnetic field at the transmitter side (primary); as a result,
AC voltage is induced at the receiver (secondary side coil). Finally, the AC voltage at
the receiver is converted to DC to charge the battery. A magnetic resonant coupling and
DC/DC converter can be incorporated at the secondary to improve the performance of the
system. The converter system provides an efficiency of 90% under the frequency variation
of 20 to 100 kHz. Figure 19 illustrates an outline of WPT for EV technology [180].

Figure 19. The layout of the WPT system in EV applications.
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WPT is also a convenient source of charging because of its flexibility and comfort.
Currently, there exist two wireless recharge modes, namely, capacitive power transfer (CPT)
and inductive power transfer (IPT). However, IPT is the most often utilized since it can be
applied to a wide range of gap lengths and power levels. In contrast, CPT, despite showing
promising results with high power levels in terms of kilowatt-power-level applications, is
only suitable for small gap power transfers.

An IPT system is electrically separated, and there is minimal wear and tear on me-
chanical components because no physical touch is necessary. The design of the magnetic
structure is crucial in the IPT system for EV charging due to high-power applications. The
magnetic coupling between the primary and secondary pads determines the power transfer
capabilities of an IPT system, which is determined by the geometry, size, materials, and
relative location of the magnetic couplers [191]. Recently, a 30 kW bus online electric vehicle
(OLEV) IPT system was used at a bus stop, maintaining a charging height of 170 mm with
an efficiency of 80% [192].

Moreover, the CPT technology is based on the notion of a capacitor’s functioning. An
air gap (d) between the conducting plates of a capacitor is generally filled with a dielectric
substance for insulation. The direction of the electric field is reversed every half-cycle in
an AC excitation, and the charge and discharge are alternately repeated. According to this
method, the capacitor is thought to be carrying an AC. Power transmission via a metal
barrier, system simplicity, minimal eddy current loss, and less electromagnetic interference
(EMI) are all advantages of CPT technology [193,194].

Furthermore, depending on the situation, there are three different types of wireless
recharges: (a) stationary charging, where the vehicle remains stationary or static during
charging. For acceptable misalignment, the owner may just park the car in a location and
leave it for charging with a set range, (b) opportunity charging, which occurs when the
vehicle is stopped for a short period of time, and (c) dynamic charging, which occurs when
the vehicle is moving along a dedicated charging lane. Utilizing this method, the charging
of public transport (buses and taxis) is possible at the stops when passengers board and
alight [180,195,196].

3.3. Battery Swapping

The battery swapping approach is one of the most time-efficient and hassle-free
charging methods. In this method, the EV replaces the drained battery with a completely
charged battery at a battery swapping station (BSS). Then, the BSS transfers the empty
battery to the battery charging station (BCS) to recharge it. After the complete charge,
the BCS transfers it back to the BSS for exchange in EVs. To complete the BSS process, a
distribution transformer, AC/DC converters, battery chargers, vehicle batteries, robotic
arms, charging racks, a maintenance system, a control system, and other types of equipment
are required. One major advantage is that the battery swapping stations may execute bulk
bidirectional power transfer with the grid. During peak demand, the fully charged batteries
can inject electricity into the grid, while charging occurs during off-peak hours [179]. The
battery swapping method is depicted in Figure 20 [197].
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SWAPPING STATION

Figure 20. Battery swapping station layout for EV applications.

4. Intelligent Control Schemes, Optimization Algorithms, and Methods in EVs

4.1. EV Control Strategies

Improvements in fuel economy and carbon emission reduction can be achieved with an
appropriate power split between the energy sources. Therefore, various control strategies
have been applied, and their performance has been analyzed toward the achievement of
the abovementioned objectives. Furthermore, the EV performance and battery state of
charge are not compromised during the implementation of control strategies. Primarily,
the control strategies employed in EV technology can be divided into two categories, i.e.,
offline control and online control strategies [198,199].

4.1.1. Offline Control Strategies

The offline control strategies in EV applications present incompetence toward deliver-
ing outcomes in the real-time world; nonetheless, their application is utilized to validate
the performance of real-time controllers. In recent times, techniques such as linear pro-
gramming (LP), dynamic programming (DP), genetic algorithm (GA), stochastic control
(SC) strategy, and particle swarm optimization (PSO) have been employed as offline control
techniques in EV applications.

• Linear programming (LP): A nonlinear fuel consumption model of HEV for a globally
optimal solution can be estimated and resolved by linear programming. Convex
optimization and linear matrix inequality techniques are used in LP to analyze the
propulsion capabilities and minimize fuel consumption [200].

• Dynamic programming: The dynamic programming (DP) technique aims to figure out
the optimal control policies based on multistage decision making without depending
on the previous decision. The backward recursive method and the dynamic forward
method are the common DP algorithms, as introduced by Bellman [201].

• Stochastic control (SC) strategy: The SC control technique is implemented to solve the
optimization issues related to uncertainties. The formulation of the infinite-horizon
stochastic dynamic optimization issue is conducted using this technique. Furthermore,
the SC strategy delivers optimal control outcomes while considering diverse driving
patterns. Liu et al. developed a hybrid power optimal control strategy by utilizing
stochastic dynamic programming (SDP) to analyze the effects of harmonics on emis-
sions from the engine. Additionally, Tate et al. developed two variants of SC strategy
for parallel HEV application to analyze fuel consumption and tailpipe emissions. A
two-stage stochastic programming method was proposed by Zeynali et al. [202] for
a home energy management system including battery energy storage and EVs, as
shown in Figure 21.
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Figure 21. The flowchart diagram of the proposed scenario generation algorithm.

4.1.2. Online Control Strategies

Rule-based (RB) control strategies are implemented according to a set of predefined
rules which rely on some intuition, heuristics, or the human experience without a priori
knowledge of a predetermined driving cycle. The control strategies can be simply expressed
as an if–then type of control rule, which determines the shutdown of the engine or the
power discharge at a specific point in time. Alsharif et al. [203] developed a simple rule-
based control strategy that can control the power flow from grid to EV and EV to the grid.
The control objectives were formulated to minimize two objective functions, including loss
of power supply probability (LPSP) and cost of electricity (COE). Several data inputs were
considered to perform the operation, such as mean wind speed (m/s), mean solar irradiance
(W/m2), max solar irradiance (W/m2), mean ambient temperature (◦C), mean energy
demand (kW), peak energy demand (kW), and min energy demand (kW). Even though the
RB energy management system (EMS) is simple and can be implemented in real time on
vehicle engines, it has some drawbacks. The first is that it lacks optimality while needing
prior knowledge of the driving cycle. Furthermore, a substantial amount of calibration work
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is necessary to ensure that the performance is within a reasonable range for each driving
cycle. Deterministic and fuzzy logic EMSs represent rule-based approaches [204,205].
The rules may be drawn from experience in a deterministic RB-EMS, in which the major
energy sources are regulated to function primarily within ideal operating circumstances.
This approach works in a high-efficiency region to improve fuel economy and decrease
energy transmission loss. Frequency-decoupling control is another deterministic rule for
power splitting, in which low-frequency power is provided by energy sources with slow
dynamics. However, peak and/or high-frequency power is provided by energy sources
with rapid dynamics.

The fuzzy logic (FL) approach translates human thinking and experience into a set of
if–then rules. Input quantization, fuzziness, fuzzy reasoning, inverse fuzziness, and output
quantization are the five steps of this FL conversion process. This route provides the advan-
tage of wholesomeness and easy tuning, which facilitates the independent adaptation of
the control strategy. The FL also offers control of efficient engine operation and coordinates
the parallel HEV subsystems. Optimized fuzzy rules control, adaptive fuzzy logic control,
and predictive fuzzy logic control are the types of FL control strategies. An optimization
method is followed by optimized fuzzy rules control to meet the target of reduction in
fuel consumption, minimization of emission, improvement of driving performance, and
maintenance of the SoC. The adaptive FL strategy works on an adaptive algorithm to
enhance self-adaptation so that the HEV powertrain can accommodate the unknown tire
dynamics, changing road surface, and vehicle loading. Moreover, the predictive FL control
strategy is aimed at understanding the future states of vehicles and performing real-time
control tasks. A fuzzy logic-based EMS controller was proposed by Mohd Sabri et al., as
shown in Figure 22 [206]. The controller mechanism appropriately distributes the power
via the hybrid train while achieving the minimum fuel consumption as its objective. The
inputs to the controller are current vehicle speed, ICE speed demand, current ICE speed,
current SOC of ESS, and total trip distance.

 

Figure 22. Fuzzy logic-based EMS controller block in EV applications.

4.2. EV Optimization Strategies

The neural network (NN) method works on the basis of periodicity and predictable
operation with an optimal charging strategy that helps to estimate the energy demand and
optimize the charging cost of EV. Compared to NN, the nonoptimal strategy is expensive
and not suitable for the health of the battery. The NN can optimize the charging price, as
well as estimate the daily energy demand, with the help of the energy predictor model
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named nonlinear autoregressive network with exogenous inputs (NARX) as a function of
the meteorological data and previous energy data used [207]. In this case, the inputs to the
NN model comprise SOC (0 . . . t), temperature, and charging time slots, while the output
of the model is SOC (t + 1). Two different constraints, SOC and temperature, are applied to
minimize the charging costs of EVs.

Pontryagin’s minimal principle (PMP) is the most well-known technique for solving
the optimal control problem, which is widely used in adaptive forms to develop real-time
optimization-based EMS. Delprat et al. [208] presented a PMP application for optimizing
the EMS of a parallel HEV. The constraints addressed in this work were the limitations of
the motor, the engine, and the battery while fulfilling the objective toward minimizing fuel
consumption during the driving interval. The global optimization issue represented by DP
has been converted into an instantaneous Hamiltonian optimization problem through PMP,
which was developed using a variational approach [209]. German et al. [63] proposed a
new approach of PMP to develop real-time EMS in EVs, in which no additional adaptation
of the co-state variable is required for real-time applications. The objective function was
formulated to reduce battery degradation by considering the objective constraint as the set
of system dynamical models.

The simulated annealing (SA) algorithm is utilized in derivative-free algorithms for
EMS control. Kirkpatrick [210] invented the SA in 1983 on the basis of the metal annealing
process. The SA method uses a stochastic technique to find a solution, where the solution
candidates are selected, and the improvements are assessed on the basis of the objective
function. The SA was utilized by Chen et al. [211] to discover the best engine-on power and
maximum current coefficient, while the PMP was used to determine the battery current
commands. The inputs to the model were battery power/current and SOC. The objective
of the proposed study was to minimize fuel consumption by satisfying the constraints of
driving power and battery SOC. Trovao et al. [212] also used the SA to find the best energy
distribution between the battery and the SC for short-term power management. An SA
algorithm-based control scheme was proposed by Song et al., as shown in Figure 23 [213].
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Figure 23. The control scheme of the proposed strategy in EV applications.
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The genetic algorithm (GA) is another stochastic search approach, influenced by natu-
ral selection and genetic evolution. GA is a reliable and viable global optimization method
with a large search space that may be used to solve complicated engineering optimiza-
tion problems with nonlinear, multimodal, and nonconvex objective functions [199,204].
Chen et al. [211] utilized the GA to minimize the fuel consumption of a power-split PHEV
by achieving the optimal engine-on power threshold and the QP to obtain the best battery
current at high speed. The GA provides the advantage of multi-objective optimization
such as fuel consumption, energy cost, the health of the battery, and emission. For instance,
Piccolo et al. [214] presented a GA-based control strategy for optimizing fuel consumption
and carbon emission terms for EV applications. Altundogan et al. [215] applied GA to find
the optimal location of an EV charging station in urban areas. Li et al. [216] employed GA
to address the fleet allocation issues of EV considering demand uncertainty.

The particle swarm optimization (PSO) technique is a meta-heuristic optimization
technique utilized for searching a large area of a candidate solution. The PSO technique
is inspired by bird flocking, where the optimization is carried out with suitable iterations
for a given candidate solution. In recent times, the PSO technique has been employed
in EV applications. PSO algorithms have been widely utilized for the optimized design
of electromechanical systems, SC, and fuel cell size, in addition to energy control [217].
Zhang et al. [218] used the PSO-based multi-objective, multi-constraint optimization model
to address the load dispatch issue in the microgrid. The results illustrated that the orderly
charging–discharging method decreased cost and load variance by 13.4% and 78.8%, respec-
tively. Yin and Ming [219] introduced a PSO-based charging and discharging scheduling
strategy considering cost and environmental protection. The proposed approach reduces
the user charging costs and improves the safe operation of the power grid. Similarly,
Wang et al. [220] proposed a multi-objective PSO-based scheduling strategy for the orderly
charging and discharging of EVs. Sadeghi et al. [221] developed multi-objective PSO to
determine the optimal sizing of hybrid renewable energy systems in the presence of EVs. A
comparative analysis of various methods, controllers, and optimization techniques for EV
operation is shown in Table 5.

Table 5. The control strategies and optimization schemes are applied for EV applications.

Operation Methods Objectives Benefits Shortcomings Achievements Refs.

Control

Offline

LP Minimization of
fuel cost

Fuel consumption
minimization
Understanding
the propulsion
capabilities

Depends on prior
knowledge.

Successful in
automotive energy
management

[222]

DP Reduction in
emission

Computation
efficiency can be
improved
Prior knowledge
is not required

Computational
burden

Improved fuel
economy
Multistage
optimization

[201]

Online

RB
Optimization of
the energy flow
management

Easy control
strategies

Human skills are
required
Calibration work is
needed

Real-time
implementation of
the vehicle engine

[205]

FL Energy cost and
battery health.

Independent
adaptation of the
control strategy

Human thinking
and experience are
required
It cannot
guarantee optimal
performance

Reduction in fuel
consumption
Minimization of
emission
Maintenance of
the SOC

[204]
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Table 5. Cont.

Operation Methods Objectives Benefits Shortcomings Achievements Refs.

Optimization

NN Cost
minimization

Able to predict
the energy
requirement

Meteorological
data are required

Estimation of
energy demand
Optimization of the
charging cost

[207]

PMP
Minimizing
battery
degradation

Real-time
optimization

Feedback
controller is
required

Optimization of
EMS [63]

SA Minimizing the
fuel-consumption

Short- and
long-term power
management

Cannot guarantee
a globally optimal
solution

Optimal engine-on
power
Maximum current
coefficient

[212]

GA

Ensuring power
demand between
the electric motor
and internal
combustion
engine.

Improvement of
the overall vehicle
environmental
impact

Crossover
probability effect
on algorithm

Optimal fuel
consumption
Minimized
emissions

[214]

PSO

Multi-objective,
multi-constraint
optimization
model providing
load dispatch for
a microgrid

The impact of EV
charging on the
power system is
improved by
enhancing safety
and reducing cost

Slow convergence
rate and easy to
fall into local
optimum in
high-dimensional
space

The orderly
charging–
discharging method
decreases cost and
load variance by
13.4% and 78.8%,
respectively

[218]

5. Open Issues, Challenges, and Limitations

The future EVs have to be more sustainable in order to compete with conventional
gasoline-powered vehicles, and they need smart optimization, controller, and management
systems to maintain the charge level of the battery storage system. Simple structure, envi-
ronmentally friendliness, lack of noise, and high efficiency are some value-added features
of EVs. EV also offers noninterrupted acceleration and instantaneous high torques [223].
However, there are several areas where EVs fall short, which are covered in this section. As
EVs are still under development, this study covers some crucial aspects and difficulties in
attaining sustainable development.

5.1. Battery Storage Technology

There are several concerns regarding battery storage technology, including aging,
charging current, and health degradation. Fast charging causes high current flow, leading
to temperature rise, which affects the battery performance and shortens the battery life.
Series and parallel combinations of small batteries are necessary to create a battery system
with a safe structure, competitive cost, and high capacity in a compact form with air
ventilation. In the future, the controller should split the batteries in such a way that some of
them can charge from the source while others deliver power to the motor. Some cells have
been divided into more segments that can enable fast charging [224]. The latest battery
materials, including hydrogen and fuel cells, can be suggested with desirable characteristics
and a reasonable price.

5.2. Battery Balancing and Temperature Issues

A pack of batteries is needed, which is made up of multiple batteries connected in
series and parallel [225]. The performance of the battery pack as a whole is difficult to
monitor since batteries can charge and discharge at different rates and operate under
different conditions due to other operational states in terms of temperature, state of charge,
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and state of health. The battery management system must monitor the charge rate across
the whole pack down to the cell level to ensure efficient battery-pack performance and
prolonged battery life [4]. Charge balancing and thermal management are the two main
responsibilities of the battery management system. Passive balancing is not helpful when
batteries are discharged because of the limitation of weakening cells. Excess energy is
dissipated as heat through an external resistor, and a cooling system is needed for these
reasons [101]. Active balancing is necessary and more efficient in balancing a cell’s energy
because it redistributes the energy among cells rather than dissipating and wasting it.
Power electronic devices are used to move energy from strong to weak cells to maximize the
available energy and increase the module’s capacity. Additionally, the thermal management
of each battery has to operate in an acceptable and safe temperature range, and failing to
do so will cause performance degradation or irreversible damage.

5.3. Motor Drive Technology

The induction motor is the most popular choice for EVs, which uses three-phase AC
power input, providing a four-pole magnetic field. The induction motor speed is dependent
on the frequency of the AC power supply; thus, by varying the frequency, the speed drive
wheel will increase or decrease in place of the transmission gearbox, making the EV simple
and dependable. The motor can spin from 0 to 1800 RPM with a single gear as compared to
a regular combustion engine. The induction motor has a good starting torque when the car
goes down a hill. Furthermore, there is no energy loss in the rotor; however, it is not efficient
for a long and high-speed drive. This problem is caused by the back electromagnetic force
in the rotor, which is a reverse voltage to the stator’s supply voltage. Therefore, a higher
speed results in a higher back electromagnetic force, which can affect motor performance.
Moreover, this high-power magnet results in magnetic eddy current losses, thus increasing
the motor’s heat. In Tesla Model 3, a new motor called IPMsynRM uses a permanent
magnetic and reluctance design to solve these issues.

5.4. Power Electronics Technology

Power electronic devices are a key technology for control in almost all EV applications
because they can convert energy to run motors, batteries, and generators. The power elec-
tronics technology is used in two levels of EVs that require high-power electric energy to
rotate the electric motors and energy management for other applications such as charging
the battery. Power electronic components such as silicon-based power MOSFETs and IGBTs
are used as power electronic switches in the power train system of automotive electrical
and electronic systems to reduce the overall size [226]. The power electronics devices
require powerful thermal management because, when operating at high temperatures,
the power electronics devices can be defective and fail, in which case the EV would not
function, necessitating a major operation to inspect the faulty parts and replace them. This
could happen when the cooling system is not working efficiently due to fan or compressor
problems. In power electronics, the reliability issues of power, semiconductors, and capaci-
tors stand out because of the different stress factors and field return data. Antiferroelectric
ceramics are needed to keep the capacitance stable under a voltage bias and to maintain
performance at high operating temperatures [227]. The integration of capacitors, cooling,
and active devices ensures that power electronics are safe and reliable.

5.5. EV Charging Technology

The increasing number of EVs has raised several issues based on the level of charger
types, yet the main issue is the recharge time [228]. During fast charging, the charging
procedure is interrupted frequently, which wastes passenger time. Consequently, there are
challenges with the technology, cost, safety, sustainability, and environment [228]. Public
EV charging station systems have problems such as being expensive to build and needing
more charging stations in almost all parking spots along highways. Charging during times
of high demand costs more, and the electricity load is problematic for utility providers.
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Scalability is another leading challenge that EV chargers have to deal with. Wireless
inductive charging is still in a standby situation and is waiting for advanced technology to
make it possible for EVs to charge spontaneously without the need for cables [229].

5.6. Intelligent Control and Optimization Schemes

Intelligent controllers such as artificial intelligence and machine learning are always
used in advanced technology, and they are the key to most improvements made in the last
few years in EV applications. Yet, they can have a serious problem if the training process
is not executed accurately or if too much or too little data are taken into account [230]. To
solve the abovementioned concerns, various optimization schemes can be employed before
setting up these smart controllers, especially during unexpected conditions. Regarding the
optimization issues associated with EVs, they require a different level of optimization in
many applications in EVs, ranging from the wheel size to the battery management system
and controller for both batteries and motor [231].

5.7. EV Aerodynamic Mechanical Design and Materials

The selection of appropriate aerodynamic and mechanical design and materials is a
key research area to be explored. Aerodynamic efficiency is a big factor during the manu-
facturing process, but these issues primarily affect the driver. The design and materials,
including wheel size and material, vehicle body shape and size, battery sets, and motor size,
are the main factors that could make the vehicle light and less resistant to the airflow [232].

5.8. Safety Design of EVs

A range of issues associated with power system security and safety in EVs need to
be addressed effectively. Since the EV does not have an engine in the front of the vehicle,
which always absorbs the shock of a crash, the driver and the passengers will be right up
against the next car in the event of an accident [232]. When the battery is damaged by a
severe accident, the high voltage may affect the driver and passengers.

5.9. Availability of Charging Stations

Charging station availability issues can be solved by the fast charging and popularity
of EVs. However, this issue is vital because the user needs to identify the nearest charging
station before traveling. The lack of charging stations may limit the proliferation of EVs
and have a negative impact on society. The EV must be charged conveniently and quickly
to ensure the EV owner’s comfort. The EV charging infrastructure needs to accommodate
exponential market growth and a wide range of charging use-cases.

5.10. V2G Concept Challenges

Vehicle-to-grid (V2G) interactions have never been so easy, but building an integrated
system that can host a large number of EVs for the benefit of both parties poses many
challenges and issues. Communication platforms, for example, network bandwidth and
the radius of EV information, are needed for aggregation and network latency. Legislation
and agreements are some of the challenges [233]. The governments’ regulatory issues and
electric grid upgrades also play an important role in this context. From this point of view,
the EV revolution faces important regulatory and technological challenges which require
close collaboration among different levels of the same government. EV gird interconnection
has some main issues such as the Doppler effect of changing frequency waveforms, adjacent
interference of power singles, multipath fading (which may cause signal attenuation and
distortion), interference from other EVs or other sources, access delay of mobility between
peers, and network stabilization time [234]. Detailed requirements for V2G communication
such as network latency, network bandwidth, and actual radius information need to be
investigated. Security threats need to be met in a smart EV charging service using an
authentication protocol to guarantee a safe integration of power grid data [233].
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5.11. Battery Environmental Issues

EVs are environmentally friendly vehicles because they can reduce emissions that
contribute to climate change. However, they can be harmful when their batteries die and
are not landfilled or recycled properly [235,236], or if the source of charge is nonrenewable
resources. Although energy storage is a complex system having several factors, including
state coupling, input coupling, environmental sensitivity, life degradation, and added
characteristics [237], the majority of materials can be recycled.

6. EVs on the Road to Achieving Sustainable Development Goals

The United Nations (UN) established 17 Sustainable Development Goals (SDGs) in
2015, with the goal of providing a common vision for good living and a tranquil atmosphere
for the globe and its inhabitants [16]. According to the SuM4All’s Global Roadmap of
Action (GRA) toward sustainable mobility, global GHG emissions from the transportation
industry must be reduced from 8 billion tons of CO2 to 2–4 billion tons by 2050, with
net-zero emissions in the following decades [238]. As a result, the transportation industry
is a key participant in the fight against climate change to achieve the SDGs. With the
advancements in technology in the transport sector, electric vehicles (EVs) have been
introduced. They are predicted to play a large role in lowering overall road transport-
related emissions caused by internal combustion engine vehicles (ICEVs), as outlined in
Figure 24 [239]. The environmental effect of ICEVs is mostly determined by the fossil
fuel utilized in the combustion vehicles, but the EV’s impact is determined by the energy
utilized to generate electricity. In 2019, the worldwide EV fleet emitted approximately
51 million tons of carbon dioxide, which is almost half of what an ICE-powered fleet of the
same size would have emitted, totaling 53 Mt CO2-eq of averted emissions [240].

 
Figure 24. CO2 emissions of a typical mid-size automobile in terms of the powertrain (2018) over a
10 year lifetime.

The transportation industry supports almost all SDGs, including those related to social
and economic growth, improving access to services, enhancing agricultural production,
and linking commodities to markets. Sustainable development requires sustainable, secure,
and clean transportation that is available to all, and EVs fulfill all these features.

Electric vehicles have recently been linked to renewable energy, batteries, and other
uses, all of which have improved environmental implications and can help achieve the
relevant SDGs. As demonstrated in Table 6 and Figure 25, EVs have an impact on three
aspects of sustainability (social, economic, and environmental), as well as a significant
association with seven of the 17 SDGs.
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Table 6. The correlation between EVs and SDGs.

Sector SDGs Objective EVs on the Road to Achieving SDGs
Relevant Research
that Supports the

Correlation

Social

SDG 3: Good health
and wellbeing

Reduce pollution-related
illnesses

Unlike internal combustion engine
(ICE) vehicles, electric vehicles (EVs)
emit no pollution. As a result, EVs
have been promoted as part of a larger
global solution to bad air quality and
the healthful life of city residents.

[241–249]

SDG 11:
Sustainable cities
and communities

Improve inclusive and
long-term urban
planning and
management

EVs are being utilized in the
development of smart cities, which
implies that all of the municipality
services, such as local infrastructure
and transportation, have been
combined into a single, fully
functional system. As a result,
everyone benefits from a sustainable
transportation system.

[21,250–253]

SDG 7: Affordable
and clean energy

Ensure that everyone has
access to energy that is
affordable, dependable,
and contemporary

With the adoption of several
functional activities, for example,
optimum scheduling and energy
optimization associated with EVs,
affordable energy and reduced power
consumption can be accomplished.

[17,254–263]
Maximize the worldwide
percentage of renewable
energy in the energy mix
by a significant amount

EVs can be used with a variety of
renewable energy sources to produce a
cost-effective alternative to fossil fuels.

Global energy efficiency
improvement rate

EVs use distributed generation,
energy efficiency, and energy storage
to deliver contemporary, sustainable,
and efficient energy.

Economic

SDG 8: Decent
work and economic
growth

Encourage measures to
promote productive
activity and good
employment creation

The success of the EV market, along
with its numerous functions,
particularly in the fields of renewable
energy, electric buses, and trains,
plays a part in economic growth and
job creation in production, marketing,
and supply.

[18,239,264–270]

SDG 9: Industry,
innovation, and
infrastructure

Create high-quality,
sustainable, dependable,
and robust infrastructure
to strengthen the
economy

Electric vehicles are transforming the
transportation sector into one that is
adaptive, robust, and sustainable to
changing global climatic
circumstances while also promoting
economic growth.

[3,260,271–275]

SDG 12:
Responsible
consumption and
production

Create a program
framework for the
sustainable use of
resources

In the context of the virtual power
plant, smart grid, distributed power
production, and microgrid, energy
management in EVs ensures the
effective utilization of supply
and load.

[276–283]

Environmental SDG 13: Climate
action

Take quick action to
combat climate change’s
impacts

Carbon emissions can be reduced by
combining various renewable energy
sources with EV batteries to combat
climate change.

[17,50–60]
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Figure 25. Association of EVs with SDGs.

6.1. Social Impact of EVs

Within the society category, the construction and implementation of EVs have a benefi-
cial influence on the achievement of multiple SDGs. According to the categorization of the
17 SDGs into three categories, EVs can be related to three of the SDGs, as discussed below.

6.1.1. SDG3

We looked into a number of studies to validate the link between EVs and their so-
cial impact on SDG targets. EVs, for example, can provide thermal comfort [241], air
quality comfort [242,243], temperature control [244], humidity control [245], and heat radi-
ation [246], all of which are connected to SDG 3.9 aimed at excellent health and wellbeing.
In the area of human health effects, however, the vehicle categories exhibit a distinct
proportion of impact location. Human physiological consequences of ICVs arise when
driving due to tailpipe pollution, which accounts for 94% of all ICV human health implica-
tions [247]. Public health effects from BEVs are related to the energy-generating subphase.
Electrification of automobiles, on the other hand, benefits the human health effect sector
since the consequences are reduced from ICV to BEV. According to research, one of the
primary issues that healthcare institutions confront, particularly in rural and distant places,
is the lack of reliable energy services [248]. Only 34% of hospitals have dependable energy
connections in the Sub-Saharan African nations investigated. However, a study of two
nations found that energy access has improved little over time. This crucial issue must be
addressed in realistic initiatives to improve healthcare delivery in Sub-Saharan Africa [249].
This impacts a developing country’s high maternal and infant mortality rates. However, a
high-reliability power source may be established using a standalone hybrid energy system
based-EV, improving the efficacy of healthcare services in rural/remote places.
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6.1.2. SDG11

EVs can also assist in socioeconomic development through effective energy man-
agement [250], which is linked to SDG 11.3. Substantial published data exist for SDG 11
regarding the favorable function of environmentally friendly electric buses, electric vehicles,
and solar cars [251]. They are also being utilized in the development of smart cities, which
implies that all of the municipality services, for example, infrastructure and transportation,
have been combined into a single, fully functional system. As a result, everyone benefits
from a sustainable transportation system [21]. As batteries play an important part in EV
technology, with today’s technology, the efficiency and density of battery energy storage
(BES) have aided in the development of inexpensive electric cars that emit little pollution.
People will use electric vehicles as their major means of mobility when high-performance
batteries are developed [21,252]. Batteries of various forms and sizes are considered to be
among the most efficient power storage strategies, and studies on different battery technolo-
gies and applications can be found in the literature; nevertheless, the damaging outcomes
of large usage on environmental and human health (Targets 11.5 and 11.6) continue to be
a major problem. The BESS has a short lifespan since it is made up of large amounts of
diverse raw materials, including metals and nonmetals. As a result, massive amounts of
pollutants (e.g., emissions of greenhouse gases, poisonous gases, and toxic materials) can
be created in the battery sector in many phases, including production, mining, shipping,
application, storing, repair, recycling, and dumping [253].

6.1.3. SDG7

As electric vehicles are powered by electricity, they are strongly related to SDG7 on
reasonable and sustainable energy. EVs can provide power generation [254], high energy
efficiency [255] through power management [256], optimal scheduling [257], and renewable
energy integration [258], all of which are related to Targets 7.1, 7.2, and 7.3. In order to meet
Target 7.2, which calls for a significant increase in the proportion of renewable energy in
the universal energy composition, considerable information is available showing that the
EV, which is considered among the BES technologies, has aided in growing the market for
renewable energy in the universal energy composition and can help achieve this goal [259].
In the case of SDG 7 (affordable and clean energy), there is evidence that the use and
development of EV-BES will enable the attainment of all goals (100%) under this target.
Many studies advocate the use of EV-BES in the pursuit of a contemporary energy service
that is dependable, clean, and inexpensive. The BES, which can be connected with RE
and electric vehicles (EVs), has grown in popularity as a way to replace the usage of
conventional energy resources since it is more flexible in terms of storing and delivering
electricity, making it a more economical option [17]. With the lowering cost of renewable
energy and the rising scarcity of fossil fuels, a long-term solution is required in which
renewable energy paired with EVs may assure universal access to power [259]. According
to a study in China [260], a hybrid renewable resource-based charging station for EVs
is economically and technically feasible and guarantees clean and dependable energy
supply. The high initial financing required for BESs in EVs is a major drawback; however,
studies have shown that the cost can be compensated during its operation [261]. For
instance, to meet Target 7.2, which calls for a significant increase in the proportion of clean
energy sources, there is significant proof that the EV, which is involved in storage systems
and power systems, has aided in creating a market for renewable energy in the world
energy pack and can help achieve this goal [262]. Despite the ongoing COVID-19 epidemic,
research forecasted a 5% growth in the standalone (with storage system) renewables market
in the power industry in 2020 relative to 2019. This is in line with a rise in BESSs needed
for stationary and transportation applications [240].
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6.2. Economic Influences of EVs

The three SDGs in the economic category (SDGs 8, 9, and 12) are concerned with em-
ployment, industries, growth of the economy, and technology and infrastructural facilities
to achieve the objective.

6.2.1. SDG8

During the production of the different components of EVs, such as batteries, sensing
devices, smart appliances, and electric motors, jobs can be created, aligning with Target
8.3 [18,263]. The extensive and diverse uses of EVs have been identified to provide economic
prospects through the use of categorical employment from domestic resources and firms.
In view of SDG8, development and suitable work, recent research shows that the success in
the EV market along with its numerous functions, particularly in the fields of renewable
energy, electric buses, and trains, has played a part in economic growth and job creation in
production, marketing, and supply. EVs can help reach Target 8.3 by helping to create new
employment. According to a 2019 forecast, battery-powered and plug-in hybrid cars might
account for the bulk of new vehicle sales by 2040 [264]. In 2020, the German government
announced a stimulus package involving 2.5 billion EUR to enhance electric car charging
infrastructure and to encourage more e-mobility research and development, such as battery
solutions. The UK government is committed to reducing 68% of CO2 emissions by 2030.
To meet the target, 43% of vehicles in the UK need to be electric [239]. In recent times,
the US government announced a 3 billion USD initiative to enhance electric car battery
production [265]. According to research published in [266], the electric automobile market
is increasing rapidly in Flanders, Belgium. Using data from a large-scale poll conducted in
2011 and a choice-based conjoint study, it was estimated that battery electric vehicles would
account for roughly 5% of new vehicle sales by 2020, while plug-in hybrid electric vehicles
would account for around 7%. These percentages might rise to 15% and 29% by 2030,
respectively. However, the rate of adoption of electric cars is influenced by their purchasing
cost. The EV market also fulfills Target 8.6 by creating work possibilities for youngsters,
lowering the youth unemployment rate, and helping to raise per capita income [267]. Job
possibilities offered will also assist local children in obtaining more schooling and a greater
employment rate since most projects would employ locals [268,269], favorably impacting
Targets 8.1 and 8.3.

6.2.2. SDG9

EVs can contribute to the achievement of Target 9.1, which aims at the creation of
dependable, high-quality, and long-lasting infrastructures to promote social wellbeing and
economic growth [260,270]. For instance, an investigation in Sub-Saharan Africa found
that using climate-resilient EV-BESs for photovoltaic house systems in remote regions has
improved local infrastructure and aided public community, environment, and financial
stability [271,272]. Creating a publicly recharging infrastructure system is a critical com-
ponent for increasing the use of electric vehicles. As a result, GHG emissions associated
with conventional fuel automobiles are reduced while also enhancing the metropolitan
environment. The availability of charging stations (CS) and their characteristics is a major
recognized obstacle to the adoption of electric vehicles among residents. The introduction
of publicly CS systems helps to improve the EV customer journey by enhancing the acces-
sibility of infrastructural facilities. The best way to encourage the formation and future
growth of a sustainable local CS system is an apparent problem for city areas and local
officials [273]. A case study in Canada [274] showed that British Columbia (BC) adopted
EV technology as it is a favorable site for EVs since massive hydropower accounts for 85%
of this region’s electricity. EVs are ideally suitable for metropolitan environments, where
the majority of housing structures in BC are situated, because of concerns with respect to
their driving range and ability to cut local emissions.
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6.2.3. SDG12

The deployment of EV integrated virtual power plants (VPPs) [275], distributed power
production [276,277], smart grids [278], and microgrids [279] can help achieve effective en-
ergy usage between supply and load, which is relevant to Target 12.1. Unifying a significant
quantity of EVs into VPPs will have ecological advantages, including energy efficiency and
pollution minimization, safety advantages connected to the electrical grid’s steady func-
tioning, and economic incentives to VPPs and automobile stakeholders. More EVs will be
included in VPPs in the long run because of these advantages. In addition to VPPs, electric
vehicles in distribution networks are becoming controlled commodities with vehicle-to-grid
(V2G) technology, enabling them to perform various auxiliary operations (e.g., maximum
energy harvesting, voltage stabilization, and frequency regulation). Moreover, evidence
exists to demonstrate the favorable impact of EV-BESs on SDG12, particularly Target 12.5,
which calls for considerably reducing waste creation through minimization, recycling,
and reuse. According to research, the BES of an EV is likely reused or discarded, or its
components will be retrieved depending on the application [280]. Recycling the materials
used in lithium-ion batteries (lithium, cobalt, nickel, and aluminum) can reduce the power
density by 10–53%, and the construction price of lithium-oxygen batteries can be reduced to
1510 MJ/kWh from 1870 MJ/kWh, resulting in minimal GHG emissions [281]. According
to Dewulf et al., recycling battery elements can reduce fossil source usage and, hence,
minimize waste production [282].

Although there is a bright employability perspective, there will be beneficiaries and
sufferers in the switch to the electric-powered transportation industry. There will be a loss
of jobs in the oil business, at petrol stations, and perhaps in the car repair and mechanic
sector because of the worldwide adaptation of EVs, since EVs require considerably lower
maintenance compared to traditional petrol and diesel automobiles. There will not be
practically as many employments needed to make batteries, electrical motors, and power
electronic components as compared to the manufacture of petrol engines, exhaust systems,
pollution control systems, fuel monitoring systems, gearboxes, and automotive components.
Thousands of jobs may be lost in Germany alone by 2030 as a result of the switch to EVs,
according to projections [268]. In order to transition to electrification, Volkswagen AG’s
parent company, which owns the premium brand Audi in Germany, stated last year
that it would eliminate 7500 positions internationally. However, production, R&D, and
battery manufacturing will all directly create employment in the EV sector. Installation
and servicing of the equipment used in EVs will create indirect employment. Moreover,
the workforce responsible for building petrol or combustion engine components might
be reassigned to manufacture EV motor parts and battery packs. However, it is likely
that there will be fewer such positions in the EV sector than currently employed in ICEV
production lines [267].

Additionally, electric cars are less expensive to maintain and drive, leading to an
impact on both direct and indirect employment. Each dollar saved on petrol, oil changes,
and engine components can be reinvested in the domestic economy. The US Energy
Information Administration estimates that more than 80% of the price of a gallon of
petrol leaves the domestic economy straightaway [283,284]. More money will remain in
the community and strengthen the local economy if fuel costs are reduced. According
to research conducted by the California Electric Transportation Coalition, every dollar
conserved on petrol that is put toward the cost of other domestic products and commodities
leads to the creation of 16 jobs statewide [196,285]. Residents of New York City drive far
less than those in typical US metro areas, keeping 19 billion USD annually within the city’s
economy [286].

47



Batteries 2022, 8, 119

6.3. Environmental Effects of EVs

Batteries have recently been linked to renewable energy, electric cars, and other uses,
all of which have improved environmental implications and can help achieve the rele-
vant SDGs. The advantages and disadvantages of EVs related to the environment are
discussed below.

SDG13

The advantages of EVs for the climate (SDG13) can be summarized as their capacity
to minimize emissions from conventional sources of energy utilized as a major element
of RE to contain power [287]. Furthermore, with the advancing feature of EV solutions,
many nations are incorporating initiatives aimed at environmental issues into their policy
proposals [288]. The Intergovernmental Panel on Climate Change (IPCC) projected in
2018 that electric vehicles, electric motorcycles, and electric transport must displace fossil
fuel-powered passenger vehicles by 2035–2050 in order to keep global warming below
1.5 ◦C. Targets 13.1 and 13.2 address environment-related problems and incorporate clean
environment activities into social policies, schemes, and management. According to strate-
gies reported in Europe [289], New Zealand [290], China [263], and the United States [291],
by 2050, the use of EVs combined with RE will contribute to a 70% reduction in CO2
emissions in the electricity sector. Many studies advocate the use of EVs in the pursuit of a
contemporary energy service that is dependable and clean. EVs, which are connected with
BESs, have grown in popularity as a way to replace the usage of traditional power sources
since EVs are feasible in delivering and storing electricity, representing a more economical
option [17]. With the lowering cost of renewable energy and the rising shortage of natural
fuels, a sustainable strategy is required in which renewable energy and BESSs paired with
EVs may ensure universal access to power [292]. Different studies, however, concurred that
EVs have environmental drawbacks [293,294]. In certain cases, they employ dangerous and
combustible ingredients, and they need substantial energy to make them, which results
in extensive GHG emissions [295]. As a result, the BESS may function as a deterrent to
Target 13.1’s goal of reducing climate-related dangers. Because the BESS contains elements
with severe environmental implications, it may have a detrimental influence [296]. EVs
appear to be a viable climate answer because, if we can make our networks carbon-free,
automobile emissions will decline dramatically. The excellent news for EVs is that many
nations are now focusing on decarbonizing their power infrastructures. During the past
few years, utility companies in the United States have abandoned hundreds of coal facilities
in favor of a combination of solar, wind, and natural gas electricity with fewer emissions.
Therefore, researchers have discovered [297] that EVs have become greener in general, and
they will only grow greener.

7. Conclusions and Future Trends

Currently, global warming has triggered several studies in the field of energy toward
curbing carbon emissions. A major portion of carbon emissions comes from the auto-
mobiles industries, which is currently undergoing drastic improvements by developing
EVs. However, the development of EV technology requires several factors to consider.
Therefore, in this review paper, battery storage and management, along with several EV
technologies emphasizing power electronics converters, charging infrastructure, and meth-
ods, algorithms, controllers, and optimization, were reviewed toward achieving SDGs.
Firstly, various battery storage technologies along with components of battery manage-
ment were discussed. The analysis revealed that each battery technology features different
performance characteristics such as specific power, specific energy, and thermal stability.
Therefore, the battery features should be considered before their application in EV tech-
nology. Secondly, several EV-based technologies, such as power electronics technology
and charging strategies, were critically reviewed. The investigation showed that power
converters act as the key technology to control and optimize EV operations. With regard to
charging strategies, more efficient technologies to limit the charging time, thermal loss, and
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appropriate thermal management should be developed. Thirdly, state-of-the-art methods,
algorithms, and optimization approaches were investigated. It was reported that each
algorithm and optimization technique for EV application delivers satisfactory outcomes.
However, the computational complexity and high training time still need to be addressed.
Fourthly, the open issues, limitations, and research gaps were identified. It was found
that appropriate hybridization of various technologies such as battery storage systems,
power converters, charging strategies, optimization approaches, and algorithms should be
explored toward the efficient development of EV technology. Lastly, various SDG targets
associated with EV application were explored and analyzed. On the basis of the issues and
challenges, this article provides the following future trends and suggestions:

• For the power capacity of commercial and industrial energy storage systems, battery
storage technology appears promising. The majority of EVs are powered by lithium-
ion batteries. Fast charging shortens battery life and reduces performance because
of the high current and temperature produced. In the future, the controller should
split the batteries in such a way that some of them can charge from any source while
others deliver power to the motor. Therefore, further study is suggested for designing
controllers for improved performance and accuracy in EV technology.

• EVs cannot be powered by a single battery; instead, a battery pack comprises multiple
modules connected together in series and parallel. The battery pack’s performance
is difficult to monitor at the pack level since batteries might function under different
conditions. In order to balance a cell’s energy, active balancing is required, which is
more effective because it redistributes the energy among cells rather than letting it
go to waste. Power electronic devices are employed to transmit energy from strong
to weak cells and maximize the amount of energy available, which also increases
the module’s capacity. Henceforth, in-depth investigation is needed to deliver better
active balancing between the battery pack by utilizing the converter circuits.

• Powerful thermal management is needed for the power electronics equipment since it
may malfunction and fail while working at high temperatures. The power electronic
devices are not entirely developed, and the thermal management is questionable
because the EV industry is not totally mature and has various difficulties. Additionally,
condition monitoring adds complexity and potential threats to the vehicle. Therefore,
comprehensive exploration is needed to study the thermal management of power
electronics devices.

• The major difficulty with EVs is the long recharge times; however, there are other
problems related to the degree of charger types. High voltage, power, and energy
transmission are needed for EV charging. Consequently, there is a difficulty with
technology, cost, safety, sustainability, and the environment. Public rapid EV charging
systems are dealing with problems such as being generally expensive to establish
and all of the parking on the highways needing more chargers. Henceforth, consider-
able work needs to be accomplished to develop an appropriate charging system for
EV applications.

• Intelligent controllers such as AI and ML are constantly used in cutting-edge tech-
nology, and they have been at the heart of the majority of advancements in recent
years across a variety of applications. EV optimization problems require a varied
level of optimization in various applications, starting with wheel size and extending
to optimizing the battery management system and controller for both batteries and
motor. Therefore, extensive optimization and AI techniques need to be explored for
EV applications.

• EVs can lower emissions contributing to climate change, making them eco-friendly
automobiles. However, when their batteries run out and are not properly disposed
of or recycled, or when their power source is a nonrenewable resource, they can
be dangerous. The battery energy storage system is complex with respect to state
coupling, input coupling, environmental sensitivity, life-cycle deterioration, and ad-
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ditional characteristics. Henceforth, further investigation is needed to study the life
cycle of batteries and its associated factors.

• The power electronics converter technology is important toward controlling, stabiliz-
ing, and providing the conversion to operate motors, battery storage, and generators,
as well as optimizing the EV operations for effective outcomes. At present, the power
electronics converter technology is undergoing a drastic technological shift to develop
lightweight converters, which depict less electromagnetic interference and fewer rip-
ples to meet automotive industry standards. Therefore, further investigation is needed
toward developing power converters with appropriate characteristics.

• Battery state estimation (e.g., SOC, SOH, and RUL) holds significant importance in
EV technology. State estimation is important toward battery protection and energy
management in EV applications. Various state-of-the-art technologies and methods,
such as model-based, data-driven-based, and hybrid-based, have been applied to
estimate the various battery states. However, in cases where the battery state is not
appropriately estimated, system failure and economic loss could result. Additionally,
inappropriate estimation may lead to early replacement of batteries, delay in battery
replacement, and explicit failure events. Therefore, further exploration is necessary to
develop a suitable estimation technique.

• The development of clean technology and SDG for EV applications can be achieved
with the significant involvement of battery storage technology. Nonetheless, the
participation and profitability of battery technology in the existing global energy
market have not been explored comprehensively. Therefore, the development and
analysis of various battery technologies in EV applications should be further studied.

• The performance, accuracy, and robustness of the EVs can be conducted by implement-
ing the Internet of things (IoT) technology, which consists of sensors, data processors,
and cloud technology. With IoT-based EV technology, EV data in the form of voltage,
current, temperature, etc. can be stored and analyzed on the cloud platform. Hence-
forth, further examination to develop an effective IoT-based EV technology should
be conducted.

Overall, the constructive discussion, analysis, concerns, and recommendations can
provide decision makers with useful opportunities and directions for the adaptation of
SDGs in the EV industries. In conclusion, proper selection and consideration of battery stor-
age technology, battery management systems, power electronics technology, EV charging
technology, and environmental issues of EVs can help in SDG integration.
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Abbreviations

ADC Analog-to-digital conversion
ANN Artificial neural network
BCS Battery charging station
BMS Battery management system
BPIC Battery protection IC
BSS Battery swapping station
CAN Controlled area network
CC Constant current
CEC Charge equalization controller
CIBC Coupled inductor bidirectional converter
CPT Capacitive power transfer
CS Charging stations
CV Constant voltage
DAS Data acquisition system
DP Dynamic programming
EIS Electrochemical impedance spectroscopy
EMI Electromagnetic interference
EMS Energy management system
EV Electric vehicle
FBC Full-bridge boost DC/DC converter
FL Fuzzy logic
GA Genetic algorithm
GB Guobiao Standards
GHG Greenhouse gas
GRA Global roadmap of action
HFT High-frequency transformer
ICEV Internal combustion engine vehicle
IEC International Electrotechnical Commission
IPCC Intergovernmental Panel on Climate Change
IPT Inductive power transfer
ISO International Organization for Standardization
KF Kalman filter
LCO Lithium cobalt oxide
LFP Lithium iron phosphate
LMO Lithium manganese oxide
LNMC Lithium nickel manganese cobalt oxide
LNCA Lithium nickel cobalt aluminum oxide
LTO Lithium titanate oxide
LP Linear programming
MCC Multistage constant current
MPIC Multiport isolated converter
NaNiCl Sodium–nickel chloride
NCA Nickel cobalt aluminum oxide
NiMG Nickel–metal hydride
NMC Nickel–manganese–cobalt
OCV Open-circuit voltage
OLEV Online electric vehicle
PCM Phase-change material
PEM Power and energy management
PFC Power factor correction
PI Proportional–integral
PID Parameter identifiers
PMP Pontryagin’s minimal principle
PPC Push–pull converter
PSO Particle swarm optimization
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QZBC Quasi Z-source bidirectional converter
RC Resonant converter
RES Renewable energy sources
RUL Remaining useful life
SA Simulated annealing
SC Stochastic control
SCBC Switched-capacitor bidirectional converter
SCI Serial communication interface
SDG Sustainable Development Goals
SOC State of charge
SOF State of function
SOP State of power
SOE State of energy
SOS State of safety
SVM Support vector machine
UN United Nations
VPP Virtual power plants
V2G Vehicle to the grid
WPT Wireless power transfer
ZEBRA Zero-emission battery research activity
ZVSC Zero-voltage switching converter
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Abstract: In the last decades of electric vehicle (EV) development, battery thermal management has
become one of the remaining issues that must be appropriately handled to ensure robust EV design.
Starting from researching safer and more durable battery cells that can resist thermal exposure, battery
packing design has also become important to avoid thermal events causing an explosion or at least to
prevent fatal loss if the explosion occurs. An optimal battery packing design can maintain the battery
cell temperature at the most favorable range, i.e., 25–40 ◦C, with a temperature difference in each
battery cell of 5 ◦C at the maximum, which is considered the best working temperature. The design
must also consider environmental temperature and humidity effects. Many design strategies have
been reported, including novel battery pack constructions, a better selection of coolant materials, and
a robust battery management system. However, those endeavors are faced with the main challenges
in terms of design constraints that must be fulfilled, such as material and manufacturing costs,
limited available battery space and weight, and low energy consumption requirements. This work
reviewed and analyzed the recent progress and current state-of-the-art in designing battery packs
for superior thermal management. The narration focused on significant findings that have solved
the battery thermal management design problem as well as the remaining issues and opportunities
to obtain more reliable and enduring batteries for EVs. Furthermore, some recommendations for
future research topics supporting the advancement of battery thermal management design were
also discussed.

Keywords: battery pack; design strategies; thermal management; lithium-ion battery; electric vehicles

1. Introduction

Lithium-ion batteries (LIBs), as energy storage devices, are considered to have a signifi-
cant role in determining the performance of electric vehicles (EVs). LIBs depend vastly on
temperature for facilitating an optimum performance and lifetime, with the commonly sug-
gested operating temperature being in the range from 25 to 40 ◦C [1,2]. Operation at lower
or higher temperatures than the range can adversely affect or degrade the performance and
lifetime of LIBs. Lower-temperature operation with a high current rate leads to lithium
plating on the anode, capacity loss, impedance rises, ionic conductivity decreases, and inter-
nal short circuits due to metallic lithium dendrites [3,4]. Meanwhile, higher-temperature
operation could reduce the active materials and increase the internal resistance, even for
overly high temperatures, potentially causing thermal runaways that might prompt fires
and explosions [5].

LIBs are packaged in relatively small sizes, called battery cells, to allow effective
manufacturing; therefore, LIBs need to be electrically arranged in series and parallel
connections (called battery modules) to provide sufficient voltage and capacity in powering
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EVs [6]. During EV operation, batteries can experience varying temperatures that lead to
unbalanced performances. Each cell generates heat from internal resistance (Joule heating)
and redox chemical reactions [7]. In the discharging process, the battery experiences an
exothermic chemical reaction, while during the charging process the battery experiences an
endothermic chemical reaction [8]. However, as the heat generated from Joule heating is
relatively larger than that of the endothermic reactions during charging cycling, the battery
cell can still generate heat, with the amount of generated heat depending on the state of
charge (SoC) and power flow of the battery cell [9]. By this condition, each battery cell
in the battery module might carry a different performance and SoC, leading to different
temperatures. Several studies have suggested that the different temperatures between
battery cells must not exceed 5 ◦C [1,2]. Accordingly, battery thermal management systems
(BTMS) are demanded to ensure the operating temperatures are within an optimal range
and are well distributed across all the battery cells [10–12].

A BTMS, as a part of battery packing, has a role in maintaining the thermal condition
of batteries under optimal conditions by performing heat transfer from the battery to the
outside when the battery is prone to overheat, and occasionally vice versa when the battery
is in a low-temperature application. Several prior studies have reported various developed
BTMS designs and strategies, which can be categorized based on the working principle
and the coolant material used to transport the heat. Under the working principle, the
heat can either be transported by direct contact between the coolant and battery cell or
by indirect contact through a pipe as a heat transfer medium (see Figure 1a) [13,14]. The
significant factors influencing the thermal management performance of a direct contact
BTMS are the battery pack geometry [15], the space between batteries [16], and the battery
layout configuration [17]. When using a heat transfer medium, the significant factors that
must be considered include the contact area [18] and pipe dimensions, such as height
and thickness [13]. Both types also share some of the same significant factors, such as the
coolant material [19], velocity [20], and temperature [21]. In the meantime, the coolant
materials include air-cooled [21–23], liquid-cooled [24,25], and phase-change materials
(PCMs) [26,27] (see Figure 1b). Each of these BTMS types have particular advantages and
disadvantages. An air-cooled BTMS has a simple construction that makes it low-cost, but it
still suffers from the low heat capacity of the air as the heat transfer medium.

Figure 1. (a) Working principle of thermal transport from the battery to the environment and vice
versa and (b) typical coolant materials for battery thermal management. The battery illustration only
shows cylindrical cell types, but it also applies to prismatic and pouch cells.
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On the other hand, a liquid-cooled BTMS utilizes liquid with a higher heat capacity
than air, but practical EV applications require a high conductivity pipe, which leads to a com-
plicated construction [21]. The pipe also possesses leakage risks and potentially prompts
battery cell corrosion and short circuit. Subsequently, solid–liquid-phase-transitioning
PCMs, mostly based on paraffin, have been developed to increase heat capacity and are
widely suggested for EV battery cooling systems [28]. A PCM-based BTMS has a high
efficiency and stable performance under extreme conditions due to its ability to store heat
during the phase change process; however, the material has a low heat conductivity and
needs to be regenerated after being completely melted [29]. Based on the working principle
and the coolant materials used, more advanced battery packing design strategies have been
presently proposed, such as air-cooled batteries with liquid cooling [30], liquid cooling
with a heat pipe [31], and PCMs with a heat pipe [32]. For low-temperature operation, a
preheating mechanism is utilized to initially condition the batteries under a working tem-
perature. Preheating can be categorized into external preheating using air [33], liquid [34],
or PCMs [35] and internal preheating using excitation by direct current [36], alternating
current [37], and pulse preheating [38]. These strategies are applicable to different battery
geometries, such as cylindrical, prismatic, and pouch, even though each type has its own
thermal characteristics. Concretely, pouch cells tend to have maximum temperature near
the terminal tabs due to the high concentration of local current densities. Cylindrical cells
can have higher core temperatures than surface temperatures due to adiabatic conditions
and higher thermal resistance at the cell core. In terms of thermal management, cylindrical
cells have the advantage of a high heat transfer area, which can improve heat transfer by
the BTMS. Prismatic cells also have their maximum temperature at their core and different
temperatures across their thickness. However, in prismatic cells, the temperature rise might
be mitigated by its large thermal mass. An additional fin also can be added in the case
of prismatic cells to improve heat transfer by the BTMS [39,40]. BTMSs are expected to
ensure that the battery temperature can be managed at optimal operating temperatures
with a minimal temperature difference for each battery cell. In achieving the main objective
of providing the optimal temperature and performance of LIBs, some challenges must be
tackled in designing a battery pack. The advancement of LIB technology using different
kinds of battery constituent materials that keep bringing higher energy density batteries
must also consider thermal properties as an essential battery issue. The limited space of
EV compartments for the battery and the BTMS is also the reason for the urgency of LIB
packing technology advancement. The climates and seasons that vary in different places of
the world and at different times of the year must also be considered as one of the battery
packing design requirements. Furthermore, the safety of the battery, drivers, environment,
and the BTMS itself must also become the main points of view in the design. This review
paper provides a comprehensive discussion of the challenges, the recent advancement of
technology, and the opportunities for research in the design and development of BTMS
for EVs.

2. Challenges in Managing the Thermal Aspect of Batteries

2.1. Novel Battery Materials for Higher Energy and Power Density Demand

From 2008 up to now, LIB technology has been improved by an increase in the vol-
umetric energy density to more than five times, with nearly a 90% cost reduction in the
battery pack level. This substantial progress was achieved due to research and development
in active materials, electrode processing, and cell manufacturing [41]. Early LIB commer-
cialization was conducted by Sony in 1990 for electronic devices, in which a LiCoO2 (LCO)
cathode and a petroleum coke anode developed by the Goodenough and Asahi Kasei Cor-
poration, respectively, were combined to create a fully rechargeable battery with an energy
density of 80 Wh/kg and a volumetric energy density of 200 Wh/L [42,43]. The creation of
LIBs with a graphite anode, proposed by Sanyo Electric, together with ethylene carbonate
(EC) as the co-solvent in the liquid electrolyte based on Dahn’s work, could increase the
voltage and volumetric energy to 4.2 V and 400 Wh/L, respectively. For its increased
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oxidation stability, Guyomard and Tarascon published a novel electrolyte formulation,
namely LiPF6 in EC/DMC, in 1993 [44]. This electrolyte is still widely used today and
allows LCO-based LIBs to have three times the energy density (250 Wh/kg and 600 Wh/L)
of Sony’s first-generation batteries [44]. Such an immense improvement is expected to be
progressively performed for considerable opportunities in improving LIB technology [45].
Despite this, at present, the technology still cannot beat internal combustion engine (ICE)
vehicles in terms of energy density.

Other cathode materials besides LCO have also been introduced for commercial EVs to en-
sure robustness and reliability during operation. They are LiFePO4 (LFP), LiNixMnyCo1–x–yO2
(NMC), LiNixCoyAl1–x–yO2 (NCA) [46], LiMn2O4 (LMO) and LiN0.5Mn1.5O4 (LNMO) [47].
Each cathode has superiorities over others. For example, LFP is considered the safest cathode
but has the lowest energy density. LFP is usually used for low-cost EVs, light EVs, and electric
motorcycles. LFP does not require a complex cooling system because it might not explode if a
thermal event occurs [48]. In contrast, NCA has the highest energy density, but its explosive
content requires a special battery packing design. Due to its characteristics, NCA batteries
are used for luxurious cars requiring high energy and power densities. The safety issues are
solved by implementing a more advanced BTMS, which might be expensive and complicated
but reliable in their design. Furthermore, depending on its nickel content, NMC has moderate
energy density and safety [49]. NMC-based batteries are suitable for heavy vehicles, such as
electric buses and trucks, which require high density and moderate risk due to their size and
the related implications when an accident happens. Spinel-type cathode materials, such as
LMO and LNMO, were introduced as cobalt-free cathodes to counter the scarcity and toxicity
of cobalt [50,51]. LMO cathodes are cheap and environmentally friendly but have a low
energy density, making them less preferable for practical applications [52]. Nickel-substituted
spinel cathodes, LMNO, known for their high voltage stability, have a high power-density
and fast Li+ diffusion [47,53]. On the other hand, the impurity of LixNi1−xO in LNMO drops
the electrical performance, which makes the material difficult to prepare [54].

Significant work has been conducted by Murashko et al., in which they investigated
the heat properties of LIB materials based on LFP, NMC, and NCA cathodes with graphite
anodes. The specific heat capacity and thermal conductivity as a function of the SoC of
the batteries were found to be different [55]. NMC and LFP have a higher specific heat
capacity and a lower thermal conductivity, so they are more challenging to heat up and
cool down, but this gives them more thermal stability. NCA, in comparison, has a lower
specific heat capacity and a higher thermal conductivity. This means it is less thermally
stable and is easy to heat up, but it is also easier to cool down. Such behavior needs to be
accommodated by the BTMS to keep the LIBs in the optimal temperature range and with a
minimum temperature difference.

In general, the higher energy density of LIBs results in a longer usage time, leading to
more heat generation. The cooling load requirements for BTMSs are increasing along with
the development of batteries with a high energy density. Different LIB constituent materials
result in different heat generation rates and thermal properties. The main reason that NMC
and NCA are more active than LFP is the adoption of nickel as the reactive material [49]. It
might ensure high energy and power densities, but at the same time, it can easily generate
exothermic reactions [56]. Golubkov et al. showed that NCA produced more flammable
CO, CO2, and H2 gases than LFP during a temperature ramp test, indicating that NCA was
more reactive than LFP [57]. The potential for flammable gas production is bigger when
the SoC of the battery is full or overcharged. Table 1 shows a characteristic comparison of
cathode materials generally used for EVs.

Figure 2 illustrates the heat flux curves during the charging and discharging processes
of a common battery cell. During the charging process, the heat flux increases until a steady
state value is obtained. The value depends on the charging rate. A steady-state condi-
tion is achieved when there is a heat flow balance among the environmental conditions,
Joule heating, and endothermic chemical reactions during the charging process [58]. In
contrast, rather than reaching a certain steady state value, the discharging process tends to
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generate heat in a transient manner [58]. The discharging process results in Joule heating
and exothermic chemical reactions, which cause the heat flux to increase proportionally.
Identical to the charging process, this heat flux also depends on the discharging rate. In
the relationship of thermal management design, the charging process might implement
a high charging rate as long as the steady-state heat flux does not cause a thermal event.
For the discharging process, the heat flux can be limited by ensuring that the battery does
not discharge with a high C rate in the long term. This condition can be controlled by the
battery management system.

Figure 2. Typical heat generation curves of battery cells during the charging and discharging process.

Table 1. Characteristics of cathodes for lithium-ion batteries.

Cathode Material
Specific Capacity

(mAh/g)
Average Potential

(V, vs. LiO/Li+)
Max Discharge

Current (A)
Acceptable

Temperature (◦C)
Refs.

LiCoO2 140 3.0 8 0 to 50 [59,60]
LiFePO4 95 3.5 70 −20 to 65 [61–63]

LiNixCoyAl1–x–yO2 199 3.75 6 0 to 45 [64,65]
LiNi0.8Mn0.1Co0.1O2 180 3.8 20 −5 to 50 [46,66]

2.2. Limited Vehicle Compartment Space and Safety

BTMSs of EVs need to have robust cooling and heating performances. This can
be realized by increasing the system size to maximize the heat transfer area and the
cooling medium. However, when designing the battery packing of EVs, we have only
a limited space for the vehicles to work with ergonomically; hence, the design needs to
be simultaneously as compact as possible and still sufficiently reliable. The limited space
in EVs also makes the battery packs susceptible to heat accumulation, especially during
fast charging and discharging [67]. Weng et al. showed that in a limited space with a
limited cooling medium rate, increasing the heat transfer area does not always give a better
cooling efficiency [68]. Indeed, a compact battery pack design is also required to ensure
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the high energy density of EVs and to compete with other vehicle types, such as ICE and
hybrid vehicles.

Figure 3a shows the total carried energy versus the weight of commercial vehicles.
ICE and hybrid vehicles are still leading in terms of energy storage. However, it is worth
noticing that the efficiency of ICEs might be much lower (around 20%) compared with
electric motors (about 80%) [69]. Furthermore, the efficiency of hybrid vehicles can be
calculated based on whether the energy is stored in the fuel tank (20%) or the batteries (80%).
Those efficiencies also depend on the power train configuration used for the vehicles [70].
A more complicated power train system requires more components, consequently reducing
power train efficiency. Figure 3b shows the effective energy used for vehicles considering
the energy efficiency of power trains. EVs still have lower energy storage, even though
this is after considering the drive train efficiency. This problem is related to the battery’s
stored energy density, which is highly determined by active material characteristics and
the heavy cooling system carried by the vehicles. Therefore, adding more batteries to EVs
might not be beneficial, since this can increase the total weight of the vehicle. EVs have
an advantage due to the use of electric motors having a constant torque in a wide range
of rotational speeds, eliminating the transmission and gearbox. However, this advantage
must be compensated by a heavy battery pack due to the low stored energy density. To
compete with ICE vehicles, EVs must have at least a two times higher stored energy density
than the current technology battery, as shown in Figure 3b.

Three common types of battery cells are available in the market that can accommodate
the limited space for battery packing, namely cylindrical cells, prismatic cells, and pouch
cells [71]. A cylindrical cell uses steel to wrap the battery with various diameters and
lengths, which ensures full protection from mechanical loading [72]. The size is considerably
small to ensure the battery cell has good thermal stability. The small size also helps the cell
to be arranged within the available space. Furthermore, the small size also makes the cell
adaptive to various battery modules or pack designs. However, these advantages must
be paid with their low effective volumetric and gravimetric energy densities. In contrast,
pouch batteries use aluminum polymer foils to wrap the cell [73]. This makes the cell have
an effective high gravimetric energy density, but at the same time the strength and rigidity
of the battery become questionable [74]. Such battery cells also require additional packs
when they are used for EVs, reducing their densities. To improve the density, a prismatic
cell is introduced with a relatively bigger size than other cells. This might be promising
for EVs requiring a high energy capacity. However, their bigger size causes the cell to be
not favorable for thermal management. The quality of each cell might also be different
since it is more difficult to control the quality during the manufacturing process of these
battery cells.

Besides the battery cell design, battery modules and packing are optimally designed
to meet the available space and to provide good thermal management. The battery cells
must unavoidably be arranged in series and parallel connections. A series connection is
created to fulfill the required voltage, whereas a parallel connection is created to fulfill the
required energy capacity [75]. In a series connection, the nonuniform charging/discharging
process of each cell is unavoidable. Consequently, each cell has a different SoC, which
implies different temperatures and different levels of Joule heating [76]. This phenomenon
makes designing BTMS more complicated, which must be handled by optimized design
strategies. It is worth noting that in designing battery packing, thermal management is
only one of the main issues that must be handled. Other issues, such as vibration and crash
safety, must also be considered during the design process [77].
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Figure 3. (a) Total carried energy by vehicles versus their weights and (b) total effective energy of
vehicles versus their weights. The effective energy is calculated by considering total power train
efficiencies of 20% for ICE vehicles and 80% for EVs.

2.3. Climate and Seasonal/Environmental Temperature

For obtaining the best performance and lifetime, LIBs should generally be operated at
a temperature between 25 and 40 ◦C with a maximum difference between the batteries of
5 ◦C [1,2]. The optimum operating temperature might depend on the battery’s active mate-
rials [78]. The battery’s cooling and heating requirements should be considered depending
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on environmental conditions such as the climate, season, and driving circumstances. To
improve the performance and maintain the battery’s ideal state of health, the temperature
across the battery pack should be kept inside the optimal range and as uniform as possible.
As a result, a sophisticated BTMS with accurate temperature management capabilities in
locations with varying temperatures throughout the year is greatly desired for EVs [79].
Since the heat transfer rate and specific heat of air significantly decrease during a hot
summer, an air-cooled BTMS might not be suitable for year-round usage. An air-cooling
system cannot provide the necessary cooling load to the battery pack [80]. A hot envi-
ronmental temperature can trigger the battery to accelerate the redox chemical reactions,
which directly causes an abundance of heat generation (thermal event). In the long run, the
phenomenon can cause thermal runaway in the battery.

For subtropical climates, EVs require a heating system to ensure the battery does not
freeze. A low temperature makes the battery lose its performance due to the increased
liquid electrolyte viscosity, causing high internal resistance [81,82]. This makes the chemical
reactions in the battery slow. As a result, the current output can be low, causing the electric
motor of the EV drive train to not have the power to rotate. At an environmental tempera-
ture of 0 ◦C, the discharging capacity can drop by more than 20%, and the dropped capacity
proportionally increases as the temperature decreases [83]. Even though a low temperature
is usually less hazardous for a battery than a high temperature, the malfunctioning of the
battery makes the EV unable to operate normally, which is less favorable than ICE vehicles.
Figure 4 shows the effects of environmental temperature on battery performance for several
battery types [84,85]. Operating the battery outside the optimal temperature causes low
performance for both charging and discharging conditions.

Figure 4. Typical LIBs performance during charging–discharging process for different tempera-
ture conditions.

3. Recent Advancements in Research and Development of LIBs

As a summary of the discussion in the previous section, three fundamental problems
must be solved in designing battery packing with superior thermal management in EVs.
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These problems have become design constraints that might be difficult to solve simulta-
neously. For example, considering the current technology of the constituent material of
batteries, high-energy-capacity cathodes (NMC or NCA) release a lot of heat during the
charging and discharging processes, increasing the thermal runaway risk [86,87]. Extreme
climate or season conditions also require robust and complicated battery packing designs
that might increase the vehicle weight and consume a lot of energy [79,88]. Optimizing
a battery design that accommodates all constraints is usually suggested to solve such
problems. In this section, we explain the significant findings from the recent decade that
can solve these problems. Some ideas are still under ongoing research, which might become
promising game changers in battery packing design and technology, even though they still
need to be further proven before their implementation.

The thermal problems of LIBs, which are high heat generation and varying environ-
mental temperatures, are caused by the narrow working temperature of LIBs. Recent
advancements in battery technology give potential solutions to these problems, for in-
stance by implementing a functional co-solvent for the electrolytes—or utilizing solid-state
batteries. Functional co-solvents and electrolyte additives have been vastly studied and
developed, with significant progress being achieved in recent decades such as in obtaining
a longer cycle life, allowing a fast charging process, hindering electrolyte decomposition
at the electrodes, enhancing the energy density, enabling a wider temperature range of
operation, or producing lower-cost LIBs [89–95]. Lu et al. [96] proposed 2,2,2-trifluoroethyl
N-caproate (TFENH) as a co-solvent for LIB electrolytes. The TFENH co-solvent improved
the low- and high-temperature performance of a LiCoO2/graphite battery by keeping the
volume ratio of TFENH within 17 to 25 vol%. An X-ray photoelectron spectroscopy (XPS)
test showed that a film of CH3(CH2)4COOLi was formed, which decomposed from the
TFENH. The film reduced the other reduction reaction products from the carbonate solvent
and lithium salt, which in turn improved the low-temperature performance and cycling sta-
bility of the LIB. Another co-solvent application was proposed by Ouyang et al. [97], which
used a combination of fluoroethylene carbonate (FEC) and dimethyl carbonate (DMC) at a
ratio of 3:7, named FD37. The co-solvent was used for an NMC LIB and showed a signifi-
cant improvement in cycling features due to the formation of a cathode–electrode interface.
The interface inhibited the electrolyte decomposition and further improved the stability of
the electrode/electrolyte interface. The co-solvent also improved the thermal stability of
the LIB, which was shown in high-temperature cycling and storage tests. The LIBs with
an FD37 co-solvent showed a better capacity retention and Coulombic efficiency than the
traditional LIB. However, employing this strategy in the LIBs with liquid-based electrolytes
does not mean fully omitting the natural characteristics of liquid electrolytes that tend to
have a consequence in easier fire ignition when it reacts with particular chemicals, even
if they are non-flammable [98]. For small-scale applications, such as power sources for
portable devices, attempting this strategy could be favorable and promising, while the
drawback case might be conveniently handled or prevented. On the contrary, aside from
the enhancement of the electrochemical performances required for large-scale demands,
especially in EV applications, this technology needs more concern regarding safety, owing
to the severe impacts, such as catastrophic fires or explosions, which will result in the case
where the battery gets into trouble.

Therefore, in recent LIB development, it is believed that solid-state battery (SSB)
technology could replace the LIB technology based on liquid electrolytes currently commer-
cialized in the market, considering the exponential progress of SSB research pursued in the
last decades, which is much improved compared to the initially revealed idea many years
past [99,100]. Furthermore, a functional additive that previously accounted for significant
advantages in LIBs could also be employed in solid electrolytes, allowing SSBs to become
more promising candidates for next-generation power sources, especially for EV applica-
tions [101]. The use of materials such as oxide inorganic solid-electrolyte NASICON-type
LATP (Li1+xAlxTi2–x(PO4)3), NASICON-type LGPS (Li10GeP2S12), NASICON-type LAGP
(Li1+xAlxGe2–x(PO4)3) or garnet-type LLZO (La3Li7O12Zr2) instead of liquid electrolytes
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with a separator enables the significant enhancement of a battery’s capacity by up to four
times due to generally of having a wide electrochemical stability window [102]. The main
capacity of LIBs is in the range of 150–200 mAh [103]. Liu et al. recently constructed a
solid-state Li–air battery with lithium foil anode, LAGP and a solid electrolyte, and an
LAGP–nanoparticle composite/single-walled carbon nanotubes (SWCNTs) as the air elec-
trode [104]. A remarkably high capacity of 2800 mAh/g was shown in the first cycle despite
the good cycling performances being limited to 1000 mAh/g, and the electrochemical
process may vastly differ between an air and a pure oxygen atmosphere. Tao et al. reported
that the use of LLZO-nanoparticle-filled poly(ethylene oxide) electrolytes could generate
favorable capacities of >900, 1210, and 1556 mAh/g at successive temperatures of 37, 50,
and 70 ◦C, respectively, even though at the first charge/discharge cycle they ran into an
irreversible electrochemical reaction, which lead to capacity decay [105]. Accordingly, the
use of solid electrolytes also allows the battery to have a wider operational temperature
owing to the high thermal resistance, and this substantially increases the battery safety
significantly, even in harsh environments [105–109]. The current method proposed to
extend the temperature range is thus available by coupling the types of solid electrolyte
material and implementing such filler/substitute material. These superiority aspects lead
SSBs to be the primary candidates for solving the low-density and safety concerns that
mostly arise in conventional batteries. Furthermore, the manufacturing process of SSBs can
be considerably easier when producing a solid electrolyte using additive manufacturing,
spark plasma sintering, or conventional sintering [106]. The installation of solid electrolyte
in SSBs could also prevent leakage that commonly arises from the liquid electrolyte, which
can cause a short circuit and thermal runaway [107].

The promising nature of SSBs does not mean they can be implemented immediately.
In fact, one remaining fundamental problem must be solved, i.e., mechanical damages that
always appear after several charging–discharging cycles [108]. These damages occur due to
the solid electrolytes that always bear the pressure loading from the expansion–shrinkage
of electrodes, which is different to liquid electrolytes that can redistribute the pressure
around the cell pack. The most common solutions to avoid these damages involve using
zero-strain cathodes such as LTO or limiting the SoC in the battery application to ensure
the solid electrolyte is not subjected to overpressure. The high internal resistance of SSBs
also occurs due to the low quality of the manufacturing process. Toyota has spent research
funding to solve the SSB problem so that they can be implemented in their cars [110].
Bolloré Group launched the BlueIndy electric-car-sharing program to demonstrate an EV
prototype installed SSB of 30 kWh [111]. Other established companies such as Volkswagen,
BMW, Daimler, and Hyundai also keep paying attention to the research and development
of SSB technology [112]. The immediate solution to overcome the high heat generation
of high-energy-density batteries and their environmental problems is through advanced
BTMSs, which have better thermal management performances. The advancement of
BTMS research has resulted in hybrid BTMSs, which combine one type of BTMS with
another to utilize the advantages of both systems while overcoming the weaknesses of each
system. Yang et al. [30] combined mini-channel liquid and air cooling to improve the BTMS
cooling performance for cylindrical batteries. The maximum temperature and temperature
distribution were reduced to 2.22 and 2.04 K, respectively. Another hybrid BTMS combining
liquid cooling with a heat pipe was proposed by Jang et al. for a prismatic battery [31].
The liquid cooling utilized a mini-channel heat sink placed on top of the battery, while a
heat pipe was placed on the front side of each battery. The heat pipe transferred the heat
generated by the batteries up to the heat sink area to be further transferred by the liquid
coolant out of the battery pack. The proposed BTMS successfully reduced the maximum
temperature of the battery up to 9.4 ◦C. A BTMS with a combination of a liquid PCM and
a heat pipe for a pouch battery was proposed by Zhou et al. [32]. The PCM took the heat
from the battery through convection, and then the heat pipe transferred the heat out of the
battery pack by air. The system lowered the temperature difference between the batteries
by up to 67% compared to a forced air-cooled BTMS. A comparison of several of the recent
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BTMSs is presented in Table 2. The progress of BTMS strategies in providing the optimal
temperature conditions of batteries with a maximum temperature of 25 to 40 ◦C and a
maximum temperature difference of 5 ◦C, which LIBs require, is summarized in Figure 5.

Table 2. BTMS comparison.

BTMS
Maximum Temperature

(◦C)
Maximum Temperature

Difference (◦C)
Refs.

Air-cooled (AC) 34 4.4 [22]
Liquid-cooled (LC) 37.36 1.96 [24]

Heat pipe (HP) 31 4.6 [20]
PCM 44.5 0.42 [26]

Air–liquid-cooled (AC/LC) 29.61 2.09 [30]
Liquid-cooled heat pipe (LC/HP) 24.6 4.27 [31]

PCM heat pipe (PCM/HP) 48 2 [32]

Figure 5. The progress and achievement of BTMS strategies in providing the optimal temperature
conditions for LIBs in the form of AC [7], HP/LC [13], HP [14], AC [15], LC [18], HP [20], AC [22],
AC [23], LC [24], LC [25], PCM [26], AC/LC [30], LC/HP [31], PCM/HP [32], LC [67], LC [80],
PCM [113], LC [114], HP [115], LC [116], and LC [117].

The mentioned research [30–32] proved that hybrid BTMSs could improve the cooling
performance of ordinary BTMSs. However, the drawback of hybrid BTMSs is that they
require a higher energy consumption and a bigger compartment space. Therefore, due
to their compactness (handling the limited compartment space) and minimum power
consumption, without sacrificing safety, direct-cooling BTMSs have been introduced in
the last decades [80]. Their cooling design is superior to air- and liquid-cooling designs.
In addition, they can be integrated with the air conditioning system of an EV to achieve a
compact design without sacrificing the cooling performance [113,118,119]. The basic idea
of direct cooling BTMSs is that the battery requires an operational temperature similar to
the comfort temperature of the passenger. Thus, the cooling system of the battery and
cabin can be integrated. A direct cooling system solves the basic problem of air-cooling
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system, which is usually unreliable without implementing a complicated structure, such as
liquid cooling. Together with an advanced control system, direct cooling BTMSs could be
promising for solving the thermal management of EV batteries. At this time, the Nissan
Leaf and Toyota Prius use a direct cooling system and show favorable performance.

A battery preheating mechanism was a method introduced and proposed by re-
searchers for EV applications in cold environmental temperatures, which can be further
categorized into external and internal preheating. External heating uses a heat source
outside the battery to heat the battery by transferring the heat through a medium, such as
air, liquid, or PCM. Air preheating uses power from the battery to heat a resistance heater
and then transfers the heat to the battery via air convection produced by a fan [33]. In con-
trast, Wang et al. [34] proposed an immersive preheating system by immersing prismatic
batteries in a flowing heat transfer liquid. The system used an external heat exchanger to
heat the liquid for heating the battery. Ruan et al. [36] proposed an internal preheating
method by direct current discharge due to its simplicity and high heat generation. The
research successfully optimized the heating time to 103 s and reduced the capacity degra-
dation to 1.4%. Zhang et al. [37] proposed a preheating mechanism using a sinusoidal
alternating current, causing the battery to be only heated by the irreversible heat of Joule
heating, since the reversible heat of the electrochemical reaction was canceled out after
one period. The study found that the heating process can take less than 15 min with no
capacity loss after repeated preheating, which was slower than DC preheating but had less
capacity degradation. Moreover, a pulse internal preheating system heats the battery by
pulse excitation, which Wu et al. [38] successfully optimized by varying the amplitude and
frequency. The results showed that the heating time was 308 s with a capacity degradation
of 0.035% after 30 cycles.

Advanced control systems always become the main solution to control complicated
BTMSs, considering that heat generation in the battery caused by internal resistance (Joule
heating) and redox chemical reactions cannot be avoided. The same thing also goes for
the non-uniform temperature of each cell, which is also unable to be averted since the
battery must be arranged in both series and parallel connections. Hence, a control system
was implemented to ensure a constant and uniform battery temperature, which can be
approached by two methods. The first approach is to control the SoC and voltage level
of each cell using a battery management system (BMS) so that the battery can generate
heat uniformly.

In addition, a BMS can also restrict the excessive current flow during the charging–
discharging process, which commonly raises the heat generation drastically. The second
approach is installing a temperature sensor, heat flow sensor, fuse, and gas sensor for
identifying a heating spike. The data obtained from the sensor can then be analyzed to
determine the necessary action of a cooling system set. The development of machine
learning in this situation can plentifully help researchers to find robust control systems that
are urgently needed, especially for extreme climates and weather. Figure 6 maps the efforts
conducted to solve the thermal management issues, and it can be seen that many solutions
have been proposed to tackle the thermal management issues. However, the facts show
that the researchers are only capable of dealing with it partially. This implies that thermal
management issues are still the biggest concern, which is directly related to the main safety
concerns of EVs, aside from the driver’s range anxiety.
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Figure 6. The remaining problems of battery thermal management and packing design that must be
solved in future research.

4. Future Perspectives of BTMS Design

In recent decades, a great deal of research has been devoted to preventing thermal
events and thermal runaways in batteries, which practically bears out the fundamental
problem of EVs. Various proposals of solutions to ensure a constant, steady, and uniform
operational temperature were introduced and substantiated to resolve these problems,
regardless of the limited and controlled conditions encountered, such as in lab-scale or
prototype models. Consistent progress drawn from these conditions is expected to lead to
further research opportunities until a superior battery thermal management is realized for
general application.

To systematically discuss and analyze the recent progress and future prospects of
thermal management in the battery packing of EVs, we divided the solutions into two main
categories: practical and fundamental solutions. The difference between both solutions
is in how they define the problem and propose solutions in terms of complying with the
thermal management requirements of battery packing design. In practical solutions, the
researchers strive to develop advanced module cooling strategies to ensure the battery cells
are at operational temperature and has a low temperature difference among its battery cells.
Significant efforts have been deployed to address this concern. In contrast, fundamental
solutions focus on improving the battery cell to resist environmental conditions and thermal
self-generation (see Figure 6).

Under practical solutions, the ongoing research on battery management technology
is presumably capable of reaching maturity, which can be implemented in future EV de-
sign. Some promising technologies have been developed, including the implementation of
machine learning for advanced control systems [114,120], high thermal diffusivity fluids
by nanofluids for liquid coolants [121], and reconstructions of battery packing to obtain
the temperature distribution among the cell levels in a compact design [115]. Tang et al.
implemented machine learning to analyze the performance of liquid-cooled batteries [120].
Implementing machine learning can predict cooling parameters that can significantly im-
prove the liquid-cooling performance without expensive and time-consuming experiments.
Another significant piece of work has been conducted by Khan et al. who implemented and
developed machine learning to optimize the design of liquid-cooled thermal management
in a battery [114]. These studies proved that machine learning could effectively increase
the liquid-cooling performance in the design process and operation.

Nanofluids are another promising method for further improving the cooling capacity
by altering the thermal transport properties of the cooling liquid. Nano-sized solid mate-
rials, mainly metal oxides and carbon nanotubes (CNT), with superior thermal transport
properties can be mixed into the liquid to improve its thermal transport properties. Di-
electric liquids (aliphatic liquids, silicone liquids, fluorocarbons) and non-dielectric liquids
(water, ethylene glycol, oils) have been used as base fluids to combine with nanoparticles
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to improve heat transmission. The fluid’s poor thermal conductivity determines the heat
transfer rate, a problem for well-known heat transfer fluids including water, glycol, and
oil. Mixing nanoparticles into these fluids is one of the most acceptable ways to boost
their thermal conductivity. An essential step in nanofluid research is preparing the fluid to
produce a stable fluid that will not agglomerate at high temperatures or after a specific time.
Nanoparticle agglomeration is a fundamental issue with all nanopowder technologies that
needs to be addressed in order to produce effective nanoparticle suspensions. The creation
and suspension of non-agglomerated or uniformly distributed nanoparticles are necessary
to significantly improve the heat transfer properties of nanofluids.

A number of experimental and numerical studies have been reported on the thermal
conductivity of nanofluids as a function of temperature, volume fraction, nanoparticle
properties, size, and shape. An experimental study with an improved cooling efficiency has
also been reported for the water cooling of a battery pack by adding alumina nanoparticles
to water as a base fluid [116]. With a relatively low volume fraction of aluminum oxide at
2 vf%, an increase in the heat transfer coefficient was observed, resulting in an enhancement
of the maximum temperature and temperature difference by 7.76% and 117.668 and 0.26 K,
respectively [116]. Aluminum oxide with a much higher thermal conductivity could
increase the overall thermal conductivity and density of nanofluids, improving the heat
transfer rate of the cooling liquid [122]. A numerical simulation of a liquid-cooling BTMS
for 31 lithium-ion batteries reported a maximum temperature difference decreases of 12.6%
by employing Cu–water-based nanofluids [117]. The simulation results also showed a
proportional effect of the cooling performance as the volume fraction increased to 5%.

However, the addition of nanoparticles in the cooling liquid increases the density
of the liquid, affecting the pressure drop along the liquid flow. A higher pressure drop
requires more powerful and expensive pumping equipment, reducing the overall battery
performance. At a low Reynolds number of 920, the pressure drop increased significantly
to over 60% at a 2 vf% nanoparticle addition [116]. A lesser effect of nanoparticles on the
pressure drop was shown with a high Reynolds number of 1840, generating only 8.33%
of additional pressure drop with 2 vf% of nanoparticles [120]. In summary, nanoparticle
addition in cooling liquids in the form of nanofluids may boost the cooling efficiency, which
is a promising practical solution for BTMSs. The addition of nanoparticles is, however,
limited by the dispersion conditions in the liquid and the operational flow characteristics,
which determine the effects of nanoparticle addition on the pressure drop.

The reconstruction of more robust battery packing is also one of the practical solutions
to handle battery packing design problems. Arora et al. show that for commercial cars,
relative battery cell movement and displacement are commonly used as the failure criteria
of the packing. The source of movement or displacement can come from a thermal event,
vehicle vibration, or impact loading when an accident happens [77]. Most cars position
battery packs integrated into the chassis to ensure they can have sufficient structural
rigidity and be protected from front, back, and side impacts. Another common method is
rearranging the battery cells to achieve the most efficient space usage without sacrificing
thermal management. Many studies have proposed cell arrangements for cylindrical
battery cell types, including inline or staggered formations, a number of series and parallel
connections, and customized cell sizes.

Furthermore, the arrangement can only be focused on the cell size and geometry
for other types of battery cells since they can be more flexibly arranged. An innovative
battery pack is demonstrated by Tesla, in which their battery packs in their cars use a small
wire fuse to protect the battery cells from thermal events [123]. The Nissan Leaf considers
using direct cooling rather than liquid cooling to manage the battery temperature. It is
worth noting that even though the practical solutions might work for actual applications
considering the currently available battery technology, they still require complicated design
and manufacturing processes, which might not be economically beneficial for commercial
cars. Each implemented battery pack technology must be tested and proven safe, following
standards, to have a high reliability and, simultaneously, not significantly increase the
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manufacturing costs to compete with ICE cars. A permanent solution that solves the
fundamental problems of battery management systems has to be found as soon as possible.

To overcome the fundamental problems, the characteristics of non-flammable designs,
-wide-range operational temperatures, and non-poisonous materials must be unveiled in the
future by conducting research and development. The material couple of anode–electrolyte–
cathode also ought to have low Joule heating and low heat generation considering the
internal resistance and redox chemical reactions. SSBs have been admitted as a permanent
solution to tackle the low mechanical stiffness and battery strength induced by liquid-based
electrolyte use. In addition, SSBs can produce wider operational temperatures. As studied
by Ogawa et al. [124] solid-state thin film lithium batteries can be operated at a low tempera-
ture of –40 ◦C with a high temperature of 170 ◦C, and, correspondingly, a recent study from
Wang et al. [125] showed that lithium-metal-based SSBs can be operated at the temperature
range from −73 to 120 ◦C. Using solid materials to replace flammable organic liquid-based
electrolytes would also allow the battery to resist thermal events [126]. Furthermore, the
possible much lower freezing point could make SSBs operate at a lower temperature,
making them more promising and capable of running in subtropical climates [127].

However, as discussed in the previous section, the mechanical damages of SSBs must
be initially solved, such as by implementing functionally graded material (FGM), which is
currently predicted as one solution that can solve this problem by eliminating the thermal
management component in the battery packing [128].

SSBs with future ideal materials make it possible to integrate battery cells into the
EV frame or body [129,130]. This idea can be a game changer in which the battery will
also become a load-bearing structure. This would be possible if a novel multi-functional
material that not only stores energy but also acts as a load-bearing structure could be found.
At this stage, the voltage and capacity of the battery can be achieved by one cell only, in
which the design of the series and parallel connections of the battery is not required. This
proposed research topic can possibly and interestingly be further explored, but it would
still require much groundbreaking research to be conducted before implementing this
technology. In other words, all this SSB research is still on the laboratory scale and probably
needs time to be ready and to be implemented in EVs.

5. Conclusions and Recommendation

This paper reviewed the fundamental problems of BTMSs in EVs. The design strate-
gies of battery packing to solve these problems were also explained comprehensively. It
was shown that many research publications have tried to analyze and summarize the
strategies for solving these problems. Finally, complicated battery packing, including
advanced control for thermal management, was introduced to ensure that the battery cell
temperatures are kept at optimal operating temperatures. This is a practical solution due to
the current state of battery technology.

Thermal management systems might not be required in the future after novel material
constituents of batteries are found. The new materials should possess the properties of
being non-flammable, having a wide-range operational temperature, being non-poisonous,
and generating low Joule heating and redox chemical heating. In fact, the current battery
operating temperature is identical to environmental temperatures, which might not require
additional battery temperature control as long as novel material constituents are found.
SSB types of battery are believed to be the next generation of battery technology for EVs.
Furthermore, materials that can be used for the EV frame are also desired, which means
that they must be able to bear external loading.
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Abstract: The prediction of thermal behavior is essential for an efficient initial design of thermal
management systems which equip energy sources based on electrochemical cells. In this study, the
surface temperature of various cylindrical types of Li-ion batteries is monitored at multiple points
during discharge. Three different battery chemistries and two sizes (18650 and 21700) are considered
in this study, allowing the comparison of the influence these parameters have on the temperature rise
considering different discharge rates (1C, 2C and 3C). Based on repeated experimental measurements,
a simple equation that describes the thermal behavior of batteries is proposed and further used to
create 3D thermal maps for each analyzed battery (generally error is below 1 ◦C but never exceeds
3 ◦C). The practical utility of such an equation is that it can drastically reduce the time spent with
experimental measurements required to characterize the thermal behavior of cylindrical Li-ion
batteries, necessary for the initial design process of energy sources’ thermal management system.

Keywords: battery; Li-ion; temperature; thermal map; parametric equation

1. Introduction

In recent years, the need to reduce environmental pollution has been increasingly
acknowledged, offering a wider market share to electric vehicles year by year [1]. Lithium-
ion (Li-ion) batteries are the preferred energy source for electric vehicles, due to their
proven supremacy compared to other chemistries in terms of power and energy density,
self-discharge rate and cycle life [2]. However, these properties are strongly affected by
temperature [3]. During charging and discharging operations the ongoing electrochemical
processes generate a considerable quantity of heat, resulting in the rise of the battery
temperature [4]. The heat generation of Li-ion batteries generally varies in time and
influenced by the working conditions, such as state of charge, discharge rate and ambient
temperature [4,5].

Studies show that operating Li-ion batteries at high temperatures can quicken chemical
changes, such as the growth of solid electrolyte interphase in cells, loss of active material
or electrolytic corrosion [6–9]. This leads to the reduction in the electrodes’ available
surface area for electrochemical reactions. Therefore, it is crucial to be able to predict heat
generation characteristics and temperature rise for the right battery thermal management
system design, for maintaining the performance and safety of the battery cells.

The different processes that take place inside the batteries are strongly connected one
to another. The reactions generate heat which affects temperature uniformity inside the
cell [10,11]. The temperature gradient consecutively dictates the electrochemical reaction
kinetics, the transfer of ionic charge and the crystalline phase equilibria of the electrodes.
The dynamics of these phenomena are heavily connected [12]. The interactions between
thermal, electrical, and electrochemical phenomena are illustrated in Figure 1. The processes
include species diffusion, charge transport, chemical kinetics and thermal transport and
are directed by physical laws including several transport properties, such as thermal
conductivity, mass diffusivity or reaction rates [12].
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Figure 1. Schematic illustrating processes inside Li-ion batteries.

The elementary components of Li-ion batteries are the two electrodes, anode and
cathode, and the electrolyte which allows the transfer of lithium ions between the electrodes.
The negative electrode (anode) is usually made from carbon (graphite) or lithium titanate
(Li4Ti5O12), while other materials such as Li metals or Li(Si) alloys are considered. The
electrolyte is typically an organic liquid containing a variety of organic carbonates and
a salt, such as lithium hexafluorophosphate (LiPF6) [13]. Within the family of Li-ion
batteries, there are several positive electrode (cathode) materials, which define the battery
chemistry, for example: LiCoO2 (LCO), LiFePO4 (LFP), Li(Ni1−x−yMnxCoy)O2 (NMC),
Li(Ni1−x−yCoxAly)O2 (NCA) and LiMn2O4 (LMO) [14]. LCO batteries have high energy
density but are very reactive and therefore have weak thermal stability. LFP batteries
have high power density and thermal stability and are inexpensive. NMC batteries have
high specific energy and exceptional thermal properties, obtained by the right proportions
of nickel and manganese to enhance each other’s strengths. Therefore, they are in high
demand for their use in electric vehicle batteries. NCA batteries also offer high specific
power and specific energy and a long lifespan, but are not as safe as the other chemistries
and are more expensive.

The heat generation and temperature rise of Li-ion batteries have been investigated by
a large number of papers [4,5,10,15–19]. Generally, there are two main causes attributed
to battery heat generation, namely the over-potential and the entropic heat flow [20,21].
The former is due to ohmic losses, charge transfer at the interfaces and mass transfer
constraints, as well as the current flowing from one electrode to the other, originating in
an irreversible heat flow. Meanwhile, the latter is due to the reactions at the anode and
cathode, respectively, during charge and discharge [17]. Experimental measurements and
mathematical models have shown that the thermal influence of the two electrodes can
be different, with a more concentrated heat generation at the positive terminal [22,23].
Different values at the two terminals also exist for parameters such as lithium diffusion
coefficient, reaction rate and entropy change, influencing the characterization of thermal
behavior at the electrodes [24].

The prediction of Li-ion batteries’ thermal behavior can be conducted in several ways.
Equivalent circuit models are used due to their simplicity and suitable performance, de-
scribing the state of charge, current and heat generation [25]. Multiphysics modeling can
be used to analyze the influence of the battery’s active components on the contribution of
reversible and irreversible heat generation [13]. Another numerical prediction method of
the battery core temperature is the use of coupled linear differential equations, based on
measured ambient and battery surface temperatures [26]. Drake et al. [5] monitored the
variation of internal and external temperatures of cylindrical Li-ion batteries, as well as
the heat flux on their outer surface, to determine the heat generation rate. Well-established
experimental methods are the accelerating rate calorimetry (ARC) and isothermal heat con-
duction calorimetry (IHC) [27]. Under adiabatic conditions (ARC method), heat generation
can be calculated based on the specific heat capacity and temperature rise of the battery [28].
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To minimize heat exchange with the surroundings, Arora et al. [18] placed pouch battery
cells in slots inside HDPE slabs. A novel isothermal calorimetric method is proposed
by Hu et al. [29], which allows the simultaneous measurement of internal resistance and
entropy coefficient by applying a sinusoidal current and analyzing the heat generation
responses in the frequency domain. An additional IHC calorimeter was designed by
Yin et al. [30] with highly dynamic properties, obtained from the use of thermoelectric
devices. The proposed calorimeter allows the monitoring of variations in heat generation
rate during dynamic charge/discharge processes, due to the reduced thermal inertia. A
similar concept was proposed by Diaz et al. [31], where the entire experimental apparatus,
placed in an environmental chamber, was set to be maintained at constant temperature
by the means of thermoelectric elements. The rate of heat extraction must be equal to the
rate of heat generation, resulting in 4D maps of heat generation, as a function of frequency,
current, state of charge and temperature.

Most of the studies limit temperature and heat flux measurement to the exterior sur-
face of the batteries, although temperature distribution inside the cell can be experimentally
investigated using micro thermocouples [11]. Such measurements show that due to the
poor radial thermal conductivity of the cylindrical batteries, significant temperature gra-
dients can form within the cells, especially at high discharge rates. This non-uniform
temperature distribution amplifies the non-uniform distribution of current density, caused
by the dependencies between the state of charge (SoC), current and temperature, which in
extreme conditions can cause a short circuit or overcharge [32,33]. Therefore, measuring
the internal temperature provides more information about the state of health of the battery,
while external measurements can significantly underestimate the maximum temperature.

Consequently, the prediction of battery heat generation and temperature rise for a
given battery shape, capacity and chemistry must be addressed before designing the battery
pack and its thermal management system [34]. Regarding temperature indication meth-
ods, key characteristics are accuracy, resolution, and measurement range. Thermistors are
solid semiconductor devices, which show a rapid change in their electrical resistance with
temperature [35]. Resistance Temperature Detectors are equipment consisting of metallic
conductors and presenting an increase in electrical resistance with temperature [36]. Ther-
mocouples are devices functioning on the principle of the Seebeck effect, which consists of
the formation of an electromotive force by exposing two distinct conductors to a tempera-
ture difference [37]. They are a preferred solution due to their low cost, robustness, size and
temperature range [38]. Even though a higher accuracy can be obtained, it normally lies
within 1 or 2 ◦C and is thus ordinary. Amid the numerous accessible scientific papers that
conduct experimental measurements regarding battery temperature, commercial thermo-
couples are regularly adopted. A justification might be that devices are generally equipped
with thermocouple input channels. The greater part of investigations uses the common
K-type or T-type thermocouples to measure the battery temperature [39–48].

The authors analyzed bibliographic sources related to this subject and failed to identify
a mathematical relationship of the thermal behavior that considers the chemical particu-
larities of cylindrical Li-ion batteries. For this purpose, in this paper, cylindrical Li-ion
batteries of different sizes and chemistries are discharged at several rates while measuring
the surface temperature in three points using K-type thermocouples. The objective is to cre-
ate a 3D thermal map for each of the tested batteries, in which temperature rise is described
as a function of the state of charge and discharge rate and finally a mathematical equation
is proposed that characterizes the thermal behavior of the batteries. Fitting equations
describing temperature rise or heat generation appear in numerous papers, usually in the
form of simple polynomial equations of the second or third degree. Although these have
excellent accuracy, their implementation requires the definition of all the individual un-
known parameters present in polynomial equations (up to nine in the case of a third-degree
two-variable polynomial equation), which is a time-consuming process. The novelty of this
research lies in the general character of the proposed fitting equation, which includes some
of the main parameters of Li-ion batteries, such as nominal voltage and capacity, reducing
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the number of unknown parameters to just one. The function of the battery’s chemistry, this
parameter can be quickly determined even by a single measurement, reducing considerably
the time necessary for creating the sought thermal maps.

2. Materials and Methods

Three types of cylindrical Li-ion batteries from different manufacturers were used
during the measurements, their parameters are listed in Table 1. Cylindrical Li-ion cells
have a significantly higher energy density than prismatic or pouch cells [49]. Even though
they cannot be packed as optimally as the other two cell shapes, cylindrical cells maintain a
slight advantage even at a system (battery pack) level. Temperature measurements were
made using K-type thermocouples with PTFE insulation and 0.2 mm twisted pair conductor
fixed to the battery surface using thermal insulation tape. To capture possible differences in
heat generation and therefore temperature at the battery terminals, three thermocouples
were used for the tests, in the proximity of the cathode, in the proximity of the anode and
at the middle of the battery, as shown in Figure 2. Nickel sheets were welded to the cell
terminals using spot welding.

Table 1. Battery cell parameters.

Parameters KeepPower Panasonic Samsung

Chemistry LCO NCA NMC
Size 18650 18650 21700

Anode active material Graphite Graphite Graphite
Cathode active material LiMn2O4 LiNi0.8Co0.15Al0.05O2 Li(NiMnCo)O2

Anode electrode thickness 126 μm 126 μm 126 μm
Cathode electrode thickness 125 μm 125 μm 125 μm

Anode current collector
foil thicknesses (copper) 10 μm 10 μm 10 μm

Cathode current collector
foil thicknesses (aluminum) 20 μm 20 μm 20 μm

Electrolyte Lithium Hexafluorophosphate (LiPF6)
Separator (polypropylene (PP)) 20 μm 20 μm 22 μm

Nominal voltage [V] 3.7 3.6 3.6
Nominal capacity [Ah] 2.6 3.1 4

Maximum discharge current [A] 15 10 45

   
(a) (b) (c) 

Figure 2. Positioning of thermocouples on the battery surface: (a) LCO; (b) NCA; (c) NMC.

The thermocouples were connected to a Pico TC-08 data logger, for which the temper-
ature accuracy is the sum of ±0.2% of reading and ±0.5 ◦C. Temperatures were recorded
from the date logger at an interval of one second on the personal computer. The constant cur-
rent discharge of the batteries was conducted using an East Tester ETS5410 programmable
electronic load, with a current accuracy of ±(0.05% + 0.05% FS). Additionally, a thermal
camera with a sensor resolution of 76,800 pixels and a thermal sensitivity of 70 mK was
used as a second temperature monitoring tool for validation. The whole experimental
setup is shown in Figure 3.
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Figure 3. Experimental setup.

Experimental Procedure

In this experimental study, for each battery type, three individual cells from the same
batch were selected. The nine selected cells were numbered as follows: #1, 4, 7–NCA
(Panasonic, Beijing, China); #2, 5, 8–NMC (Samsung); #3, 6, 9–LCO (KeepPower). Every
cell was successively discharged three times at discharge rates of 1C, 2C and 3C. For
each discharge process, the average temperature rise for all three thermocouples was
determined. In the case where at a single thermocouple a difference larger than 5% of
the average temperature rise between measurements was detected, a fourth measurement
was conducted at the respective discharge rate. The four measurements were compared
and only the three with the smallest added differences were considered in the following.
Completing the above-mentioned experimental procedure required a total of approximately
60 h of experimental measurements.

The hereby selected experimental data collections were then plotted on a single diagram
for each battery type, resulting in a total of nine diagrams (3 battery types × 3 discharge rates).
Each diagram illustrates a total of 27 curves, representing the measured temperature rise
on all three locations on the battery surface. For every location, a 3rd-order polynomial
equation was generated to describe the thermal behavior at the positive and negative
terminal and in the middle of the cell, respectively. Additionally, another equation was
generated to describe the trendline of all measured data.

The nine diagrams with their respective equations are illustrated in Figure 4, while
the equations’ coefficients are represented in Table 2.
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NMC–1C discharge rate 
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Figure 4. Cont.
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NCA–2C discharge rate 

 
NMC–2C discharge rate 
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Figure 4. Cont.
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NCA–3C discharge rate 

 
NMC–3C discharge rate 

 
LCO–3C discharge rate 

Figure 4. Temperature variations during the discharge process, for different cell chemistries.
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Table 2. Third-order polynomial equations’ coefficients.

Discharge
Rate

Battery’s
Chemistry

Location of
Measurement

Polynomial Equations’ Coefficients
R-Square

a b c

1C

NCA

Positive
terminal 1.14 × 10−9 5.95 × 10−6 1.13 × 10−2 0.9714

Middle 1.25 × 10−9 6.46 × 10−6 1.20 × 10−2 0.9828
Negative
terminal 1.23 × 10−9 6.37 × 10−6 1.18 × 10−2 0.9854

All data 1.21 × 10−9 6.26 × 10−6 1.17 × 10−2 0.9774

NMC

Positive
terminal 4.60 × 10−10 2.10 × 10−6 4.73 × 10−3 0.9626

Middle 4.68 × 10−10 2.11 × 10−6 4.84 × 10−3 0.9686
Negative
terminal 4.62 × 10−10 2.11 × 10−6 4.88 × 10−3 0.97

All data 4.63 × 10−10 2.11 × 10−6 4.82 × 10−3 0.9644

LCO

Positive
terminal 4.90 × 10−10 2.54 × 10−6 5.24 × 10−3 0.9763

Middle 5.37 × 10−10 2.75 × 10−6 5.61 × 10−3 0.9625
Negative
terminal 5.50 × 10−10 2.86 × 10−6 5.80 × 10−3 0.959

All data 5.26 × 10−10 2.72 × 10−6 5.55 × 10−3 0.9581

2C

NCA

Positive
terminal 9.86 × 10−9 3.19 × 10−5 4.26 × 10−2 0.9786

Middle 1.10 × 10−8 3.42 × 10−5 4.42 × 10−2 0.9915
Negative
terminal 1.15 × 10−8 3.60 × 10−5 4.58 × 10−2 0.996

All data 1.08 × 10−8 3.40 × 10−5 4.42 × 10−2 0.9863

NMC

Positive
terminal 3.17 × 10−9 9.68 × 10−6 1.80 × 10−2 0.9901

Middle 2.68 × 10−9 8.44 × 10−6 1.79 × 10−2 0.9864
Negative
terminal 3.23 × 10−9 9.90 × 10−6 1.90 × 10−2 0.9926

All data 3.02 × 10−9 9.33 × 10−6 1.83 × 10−2 0.9841

LCO

Positive
terminal 3.68 × 10−9 1.23 × 10−5 2.02 × 10−2 0.934

Middle 4.08 × 10−9 1.35 × 10−5 2.22 × 10−2 0.98
Negative
terminal 4.73 × 10−9 1.55 × 10−5 2.36 × 10−2 0.9638

All data 3.91 × 10−9 1.31 × 10−5 2.15 × 10−2 0.9481

3C

NCA

Positive
terminal 3.43 × 10−8 8.40 × 10−5 9.11 × 10−2 0.9838

Middle 3.80 × 10−8 9.14 × 10−5 9.71 × 10−2 0.9977
Negative
terminal 4.27 × 10−8 9.91 × 10−5 0.1 0.9971

All data 3.83 × 10−8 9.15 × 10−5 9.61 × 10−2 0.9887

NMC

Positive
terminal 6.03 × 10−9 2.17 × 10−5 4.02 × 10−2 0.9885

Middle 3.68 × 10−9 1.66 × 10−5 3.98 × 10−2 0.9938
Negative
terminal 8.40 × 10−9 2.39 × 10−5 4.26 × 10−2 0.9948

All data 6.04 × 10−9 2.07 × 10−5 4.08 × 10−2 0.9858

LCO

Positive
terminal 9.28 × 10−9 2.80 × 10−5 4.51 × 10−2 0.9959

Middle 9.47 × 10−9 2.86 × 10−5 4.63 × 10−2 0.9953
Negative
terminal 1.46 × 10−8 3.91 × ·10−5 5.20 × 10−2 0.9924

All data 1.11 × 10−8 3.19 × 10−5 4.78 × 10−2 0.9911

The given coefficients are from a general 3rd-order polynomial equation of the follow-
ing form:

ΔT = a·t3 + b·t2 + c·t (1)

where ΔT is the temperature rise in ◦C and t is the discharge time in seconds.
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3. Results and Discussions

It can be observed that especially at the lowest discharge rate of 1C, near the start
and end of the discharge process, a steeper temperature rise appears. When applying the
discharge current, a sudden drop in battery voltage occurs, increasing the irreversible part
of the generated heat. Similarly, near the end of discharge, the battery voltage drops at a
faster rate, increasing again the irreversible component. The initial stage of discharge is
also the moment that presents the highest differences in local current density inside the cell,
while near the terminal stage of the process the gradient of electrolyte Li+ concentration is
at its highest [50].

In Figure 5, pictures taken with the thermal camera at the end of the 2C discharge
process are illustrated, which seem to be in agreement with the temperature rise values
presented in Figure 4. One can also notice the different color shades of the wires in the
presented three pictures, which can be due to the variable color scales present in the color
bars, but mostly to differences in current values corresponding to the discharge rate for
the presented battery capacities. The differences in wire temperature for the same C-rates
also influenced the results presented in Figure 4 and the comparative analysis between
battery chemistries.

   
(a) (b) (c) 

Figure 5. Thermal camera pictures at end of 2C discharge process: (a) NCA; (b) NMC; (c) LCO.

Contrarily to what was expected, the results from Figure 4 indicate that for every
case the lowest temperatures were recorded at the positive terminal. While the differences
between the negative terminal and the middle of the battery were negligible, those to the
positive terminal were up to even 3 ◦C at the highest analyzed discharge rate. This disparity
could be attributed to the limits of measuring temperature on the battery surface or the
moderate accuracy of the thermocouples and other equipment. However, given the high
number of tests completed and the repeatability of the performed experimental procedure,
the authors consider that this ever-present trend’s origins should be further investigated.

Regarding the comparison of the different battery chemistries and capacities, the
conducted experiments show that the temperature rise for the analyzed NCA battery
is far higher. Temperatures at the end of the discharge process were regularly 10 ◦C
above the ones measured at the other two chemistries, but in some cases exceeded even
20 ◦C. Based on the ambient conditions, one can see that the end surface temperature
for the analyzed NCA batteries can easily exceed 70 ◦C when discharged at 3C, a case in
which a thermal management system is necessary. This finding can be aligned with other
investigations where the thermal stability of different cathode chemistries was compared.
Barkholtz et al. [51] stated that NCA and LCO cathodes are metastable, with NCA batteries
showing the highest thermal runaway rates, while LFP cathodes are stable. Another
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study [52] also showed that from the thermal stability and reactivity point of view, when
comparing three cathode materials for Li-ion batteries, the electrochemically delithiated
NCA was found to be the least stable.

The magnitude of temperature rise was similar for the analyzed LCO and NMC
batteries, although the variation with increasing discharge rate was slightly different. If
at 1C the average temperature rise for the LCO battery was 3 ◦C lower than for the NMC,
at 2C the results became closely the same, and finally, at 3C it increased above the values
recorded for the NMC battery. Additionally, different studies [13,53] have already proved
that a higher nominal capacity results in an increase in the irreversible heat generation’s
contribution, due to the ohmic polarization in the cathode, separator and anode. This
information, in correlation with the obtained results, indicates the conclusion that of the
analyzed batteries, the NMC chemistry presents the best thermal behavior, and offers the
potential to be used in the future in lower-cost and higher-specific-energy batteries for
electric vehicles [54]. However, for a stronger validation of this statement, a similar test
procedure with a 18650-type NMC battery is suggested for further investigations.

It is observed that no relevant temperature gradient was detected at the various
thermocouple measuring locations on the batteries’ surface nor on the thermal camera
images. Given the prior observation as well as the large number of data and generated
coefficients, only the general trendline for all measured data will be considered in the
following, with the aim of simplifying the results’ interpretation process. Even though only
one dataset will be used in the following, indicating the global thermal behavior of batteries,
measurements in several locations on the battery surface gave a more accurate calculation
of the average temperature rise and offered the possibility to analyze thermal behavior also
on a local level. Furthermore, if more relevant temperature differences arose at the different
measuring locations, thermal maps and subsequently temperature predictions could be
generated for multiple locations on the batteries. The obtained equations (presented in
Table 2) were introduced in Matlab software and a thermal map was generated for each
considered battery, as shown in Figure 6.

Based on the presented thermal maps an equation is proposed, which can describe
relatively simply and with good accuracy the illustrated surfaces with as few coefficients as
possible. For this purpose, several battery parameters are integrated into the equation and
a single coefficient is left to be determined for every case based on the battery chemistry.

The proposed equation is the following:

ΔT = B
[
n·U

(
D + S2 − D·S2

)
− S3 − atan

(
eD

)]
− 1.5·Q·S (2)

where ΔT–temperature rise [◦C]; n–size coefficient: n = 1 for 18650-type cell; n = 2 for 21700-
type cell; U–battery nominal voltage [V]; D–discharge rate (C-rate) [-]; S – State of Charge
(SoC) [-]; Q–battery nominal capacity [Ah]; B–chemistry coefficient to be determined for
each battery.

From our study, a general indicative value for the B coefficient should be between 0
and 5. Together with the original polynomial equations from Figure 6, the surfaces obtained
from the proposed fitting equation are illustrated in Figure 7, while in Table 3 the values
for the B coefficient and main fitting parameters are indicated.

It can be seen that the proposed equation is in good agreement with the experimental
results (according to R-square values). The largest differences are at values of the battery
state of charge below 0.1 (SoC-10%), where the equation underestimates battery tempera-
tures by up to 3 ◦C. Other than that, the error generally is below 1 ◦C but never exceeds
2 ◦C. Naturally, the proposed fitting equation represents only an approximation of battery
temperature rise and cannot be yet applied for precise value estimation. Moreover, all
results are limited to cases with a constant discharge rate and therefore cannot be taken for
good in the case of dynamic discharge profiles. Additionally, more experiments with other
battery chemistries and sizes are needed to truly validate the equation and possibly refine
its current form. However, the utility of such an equation is that it can drastically reduce the
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time spent with experimental measurements required to characterize the thermal behavior
of Li-ion batteries. With the mean of only a few measurements, the equation can be used to
determine the B coefficient for any battery type and then apply it to other discharge rates,
eliminating the necessity of performing all the experimental and data processing work
presented in this study.

 

 

Figure 6. Thermal maps for the studied batteries (Panasonic- NCA, Samsung-NMC, KeepPower-LCO).

95



Batteries 2022, 8, 291

 
NCA 

 
NMC 

 
LCO 

Figure 7. Thermal maps obtained from the proposed equation.

Table 3. Fitting parameters.

Parameters
Panasonic

NCA
Samsung

NMC
KeepPower

LCO

B coefficient 4.697 1.26 2.786
R-square 0.993 0.991 0.993

RMSE 1.04 0.662 0.632
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4. Conclusions

The article presents a research topic in accordance with the need to introduce sustain-
able transport systems, which led to the research and analysis of efficient energy sources for
electric vehicles. In the presented study, the temperature rise was experimentally analyzed
during discharge mode at 1C, 2C and 3C for three electrochemistry types (NCA, NMC and
LCO) used in the construction of cylindrical batteries.

Based on the obtained results, it can be observed that the temperature rise for the
analyzed NCA battery was by far the highest, while the magnitude of temperature rises
for the analyzed LCO and NMC batteries were similar. Furthermore, through a more
accurate analysis of the results, it can be stated that the NMC chemistry presents the
best thermal behavior and offers the potential to be used in the future in lower-cost and
higher-specific-energy batteries for electric vehicles.

By analyzing the data related to the thermal variation of batteries with different
chemistries, it was possible to propose a parametric equation with good statistical correla-
tion (generally error is below 1 ◦C but never exceeds 3 ◦C, compared to the experimental
data), describing temperature rise as the main function of the state of charge and discharge
rate. The simple form of the equation offers the advantage of being easily used in the initial
design and construction processes of an energy source consisting of cylindrical batteries.

Future research directions can aim to investigate whether the proposed form of the
parametric equation offers a potential application for other chemistries, sizes of cylindrical
batteries or even constructive types of batteries (prismatic, pouch).

An important future research orientation is increasing the number of parameters that
are used in describing the prediction function. This desiderate can be achieved in several
ways. Co-simulations with finite element analysis can be conducted to simultaneously
evaluate the thermal, mechanical and chemical performances of the batteries. Such an
approach would allow us to monitor the aging mechanisms of the cells, the electrodes’
structural deterioration due to mechanical strains and the generation of reversible and
irreversible heat [55]. The second possibility is the implementation of machine learning
methods, given the large quantity of measured data. Such a future development would
enable a precise prediction of battery performance in various working conditions, with
the possibility of increasing the dataset’s complexity by measuring other input parameters,
such as state of health or internal resistance.
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Abstract: The exponential development and successful application of systems-related technologies
that can put electric vehicles on a level playing field in direct competition with vehicles powered
by internal combustion engines mean that the foreseeable future of the automobile (at least) will be
dominated by vehicles that have electric current stored in batteries as a source of energy. The problem
at the European level related to the dependence on battery suppliers from Asia directly correlates with
the need to use batteries as energy storage media for energy from renewable sources (photovoltaic
and wind), and leads to the need for research into the possibilities for their reuse, remanufacturing or
recycling (at the end of their life or purpose of use), and reintroduction, either fully or partially, back
into the economy. This article presents possibilities for increasing the protection of the integrity of
the cells that form a battery in the event of an impact/road accident, by the numerical analysis of a
topographically optimized battery module case. The proposed solution/method is innovative and
offers a cell protection efficiency of between 16.6–60% (19.7% to 40.7% if the mean values for all three
impact velocities are considered). The efficiency of a cell’s protection decreases with the increase
in impact velocity and provides the premise for a greater part of the saved cells to be reintegrated
into other energy storage systems (photovoltaic and/or wind), avoiding future problems relating to
environmental pollution.

Keywords: battery; electric vehicle; topographical optimization; mechanical stresses;
circular economy

1. Introduction

The potential of electric vehicles (EVs) as a suitable solution to the massive reduction
in greenhouse gases caused by transportation is increasingly evident in the automotive
industry, with numerous electric vehicles already on the market. Because, at this time,
the field of transport mainly uses means of transport equipped with internal combustion
engines, the pollution caused by them makes the field of transport one of the biggest
contributors to greenhouse emissions and toxic emissions that affect the global population.
The use of internal combustion engines powered by fossil fuels (diesel or petrol) leads to
toxic emissions consisting of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides
(NOx), hydrocarbons (HC), and suspended particles (PM), volatile organic compounds
(VOCs) [1,2], with a direct and negative impact on the environment and human health [3,4].
For example, in 2017, in Europe, road transport was responsible for almost 72% of total
greenhouse gas emissions from transport, and of these emissions, 44% were from passenger
cars, 9% from light commercial vehicles, and 19% came from heavy-duty vehicles [5].

For these main reasons, the development and use of electric vehicles directly and
immediately contribute to the reduction in greenhouse gas pollution, as well as to the
reduction in pollution in large urban agglomerations. Another aspect that should not
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be neglected is the operating/utilization costs of vehicles with conventional combustion
engines and vehicles with an electric powertrain. It is estimated that it costs about six times
less to operate an electric vehicle than an internal combustion engine vehicle, as the cost
difference is primarily due to the low efficiency of internal combustion engines (30–35%)
compared to the efficiency of electric motors (90–92%). The flow of cumulative mechanical
and thermal losses leads to a decrease in the efficiency of the thermal engine by three times
compared to an electric vehicle, and also, an electric vehicle consumes up to 75% of the
energy for travel (motion), with the necessary energy stored in the batteries, which is about
6–10 km/kWh [6]. However, in addition to the primary advantages presented, there are
two major barriers to massive entry into the automotive market for electric vehicles: the
high cost of the energy source (25–45% of the purchase cost of an electric vehicle [6,7]) and
the low storage capacity for electrical energy. A high battery energy capacity also brings
higher costs, but at the same time increases the weight characteristics, which directly affects
the autonomy of electric vehicles. For these reasons, there are currently several trends to
increase the energy efficiency of electric vehicles by [7–12]:

• The development of the energy capacity of cells through other technologies;
• The functional optimization of the components of a battery cell;
• High-performance and energy-efficient battery management systems (BMS);
• The reduction of mechanical losses by reducing the number of components in the

electric powertrain;
• The development of energy flow management systems at the level of the entire vehicle;
• The protection, safety, and security assurances in the use of energy sources.

Improving the safety of the energy sources used in electric vehicles requires major
and constant attention from manufacturers [13,14]. Currently, there is much research that
is focused on the safe integration of energy sources in electric vehicles to solve problems
that can result in various safety incidents (which can lead to ignition and fire hazards),
which are a pressing priority already in the design phase [13,15–20]. It is considered that
the stresses that may appear in the exploitation of EV energy sources (Figure 1) are multiple
from the point of view of physical phenomena.

Figure 1. Stresses occurring in lithium-ion batteries during operation and in an impact/road accident.
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In various research, the reactions to the safety incidents that occur in the energy
sources after overloading have been analysed in detail, and based on this, the following
classification, the external stresses on the energy sources have been determined as in [20–22]
and as follows:

• Mechanical: impact, deformation, penetration, free fall, mechanical shock, vibrations,
and immersion.

• Electrical: overload, overloading, forced download, and high C-rate.
• Thermal: heating, overheating, and thermal runaway.

During the operation/exploitation of an electric vehicle, the battery may undergo
deformations due to an external impact (as a result of a traffic accident), which subsequently
leads to mechanical damage to the housing (case) and components of the battery systems.
To improve the safety and performance of lithium-ion power sources, several international
organizations and committees have promulgated standards and test specifications for
power sources. These tests evaluate the safety limits of the energy sources, such as overload
tests, mechanical deformation, and penetration tests, and the analysis of short-circuit and
high-temperature behaviours [21,23]. The problem of the structural optimization of the
battery case in electric vehicles has been addressed in various research, both at the micro
level (the effect of mechanical impact on the cells) and at the macro level (the construction
of the case and the materials used in construction). In most cases, modelling and numerical
simulations were carried out, taking into account the immediate advantages offered by
these engineering methods.

Recent research carried out by Ahn Y.J. et al. [24] and Muresanu and Dudescu [25]
on safety issues in lithium-ion batteries in mechanical impact cases, used a numerical
model to evaluate the degree of integrity of each component of the electric cell after being
mechanical stressed. The numerical finite element models incorporating the multilayered
structure showed good accuracy in the prediction of the cell-level failure mode, being
verified through comparison with the experimental results.

Shui et al. proposed and applied a methodology to optimize the design of the battery
case in four phases based on various optimization methods (central composite design—
CCD, response surface methodology—RSM, artificial neural network—ANN, Latin hy-
percube sampling—LHS) [26]. Based on these methods, optimization of the structural
rigidity was achieved by determining (reducing against an arbitrarily preset initial value)
the optimal thickness of the plates (flats) that form the battery box. The material chosen for
the construction of the battery case was aluminium and the battery cells considered were
18650-type Li-ion. It should be mentioned that the use of flat plates in the construction of
the battery case can lead to an increased weight compared to construction with thinner
plates and stiffening ribs.

Optimizing the construction and mechanical strength of the battery case from the point
of view of using different materials (e.g., glass fibre composite, carbon fibre composite, and
steel) were considered and researched by An Y. et al. [27]. The study was carried out using
numerical simulation methods and showed that the use of carbon fibre composite in the
construction of the battery case offers advantages in high strength and low weight. A 30%
deformation of the casing was achieved at a force of 81 kN using steel compared to a force
of 100 kN for carbon fibre composite.

Ruan et al. [28] also used numerical simulation methods to address the constructive
optimization problem of the lug connection and the upper cover of a battery case. They
considered that the structural stresses were due to acceleration loads in all directions on the
battery, and the major conclusion was that the maximum stress occurred in the connection
area between the battery pack ears and the box (of 86 mm, for the particular construction of
the battery considered in the study). It should be mentioned that in this study, a specific
box construction and geometric shape were used, and the plates that formed the box were
considered flat and without stiffness ribs.

Qiao et al. added additional EVA (Ethylene-vinyl acetate) foam in the construction
of the battery to try and identify the effect on the integrity of the battery in the case of an
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accident (frontal collision at 50 km/h with a wall) [29]. Based on the imposed conditions
and restrictions, they obtained a reduction in deformation of 8.2% for the area of the
electrochemical cells and a reduction of 12.65% for the maximum deformation of the casing
(by adding EVA foam). However, the study had many limitations: the construction of the
battery case and the monomer model were simple, the design, heat dissipation structure,
and the external connection of the battery case were not taken into account, and the frontal
impact was made with a fixed wall that did not faithfully represent the construction of
the body of a vehicle. The plates from which the battery case were made were also flat
(without stiffening ribs).

The research carried out by Pan Y. et al. [30] focused on the possibility of reducing
the weight of the battery case while maintaining the mechanical resistance properties. The
type of material and its optimal thickness were determined using different optimization
methods, considering fixed-frequency vibration, and mechanical shock and fatigue life
analysis. Further, the obtained optimized design of the battery pack was tested in different
tests (crush and crash simulations), which considered the impact of the battery case with
a cylindrical pilar (a particular situation that cannot happen because of the design of the
car body structure). Regardless, the results obtained showed that the impact protection
of the battery was maintained, along with a weight reduction of 10.41% (by changing the
construction material of the battery case).

Dong S. et al. [31] addressed the optimization of battery case construction by consid-
ering a multitude of goals: to improve the protection level of the battery pack to IP68; to
reduce the weight of the battery box frame structure; to simplify the cooling mode of the
battery pack; and to improve the battery protection level. In general, the research focused
on optimizing the internal resistance structure of the battery (which allowed for the assem-
bly of the modules that made up the battery), and flat plates and covers that made up the
battery case (they were not considered in the optimization process). The results obtained
showed that it was possible to maintain the mechanical resistance of the battery case by
applying a new design and achieved thermal management through a natural air-cooling
scheme, which led to a reduction in the total weight of the energy source by 450 kg.

The use of a sandwich-type structure (based on an innovative auxetic structure, located
in the core of the structure) to protect the battery system of an electric vehicle in the case of
an impact of the load with the road, was designed and studied by Biharta M.A.S. et al. [32].
The protection efficiency of this composite structure was analysed using the nonlinear
finite element method and showed that under certain impact conditions, the battery cells
were very well protected (a maximum deformation of 1.92 mm was obtained, below the
deformation threshold that causes failure of the cells/battery). Another study on the use
of sandwich structures in the construction of battery cases was carried out by Pratama
L.K. et al. [33]. An optimized form of the lattice structure was determined by considering
the structure that offered the highest impact energy absorption value, which was then
used further to analyse the protection of a battery in an impact with a body (impactor)
at a speed of 42 m/s. Under the conditions imposed on the simulation, the maximum
measured deformation of the battery was 2.7 mm, which demonstrated the effectiveness of
the construction.

It must be emphasized that with the increasing use of EVs in traffic, there will in-
evitably be accidents that affect the structural integrity of the batteries, which highlights
the need for a specific and effective recycling process. In this context, at the level of the
European Union, steps have been taken to establish future directions and policies regarding
the need to adopt measures to reintegrate batteries that are no longer used in vehicles into
other energy storage systems, or in other industrial processes. In the European Commission
document “Green Deal: Sustainable batteries for a circular and climate neutral economy”
(2020), it is specified that batteries introduced to the EU market (including those used in the
construction of electric vehicles) must be durable, effective, and safe throughout their life
cycle [34]. Batteries must be manufactured with the lowest possible environmental impact,
using materials obtained with full respect for human rights, as well as social and ecological
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standards. Batteries must be long-lasting and safe, and at the end of their useful life or
purpose, they must be reused, remanufactured, or recycled, putting all or part of them back
into the economy. It is expressly stated that “ . . . the reuse of batteries from electric vehicles will
be facilitated, so that they can have a second life, for example as stationary energy storage systems,
or their integration into electrical networks as energy resources”.

Under the conditions and premises presented previously, the topic of this article
falls into a topical area of major interest (both on a European and international level)
regarding the identification of solutions to increase the degree of inclusion of batteries
equipping electric vehicles in the circular economy (reuse of batteries) [35], by optimizing
the battery module case to protect against structural mechanical stresses and to protect
the electrochemical cells against impact/road accidents. Furthermore, from the analysis of
the most recent studies relating to the constructive optimization of the battery case for the
protection of the cells upon impact (and already briefly presented), the idea proposed in
this article is new. The restriction used for the topographical optimization of the battery
casing (box) covers increases the rigidity of the casing through the construction of special
ribs. The use of optimized battery case covers provided with stiffening ribs leads to the
possibility of using thinner plates (in this case, aluminium), and implicitly, the reduction in
the total weight of the battery case (while maintaining the mechanical rigidity properties).

2. Materials and Methods

The research carried out on the possibilities of increasing the integrity of the battery
cells (which equip an electric vehicle) to protect against the event of a road accident
(through the constructive topographic optimization of the casing) has been carried out in
the following directions (see Figure 2):

• Experimental research—The first direction of research was an experimental one and
aimed to identify the point where (following mechanical deformation stresses on a
Samsung 18650-type cell, with an 80% state of charge) the short-circuit occurs, and the
cell becomes unusable.

• Numerical CAD modelling of a 18650-type cell—the creation of a CAD model consid-
ering the cell’s complex construction/design.

• Validation of a 18650-type cell CAD model—using experimentally obtained data.
• Numerical CAD modelling of a battery case—the creation of a CAD model for a battery

(including the internal thermal management system), consisting of 12 modules (a total
number of 5760 cells, where each module is made of 480 cells).

• Topographical optimization—the idea of a topographical optimization of the upper
and lower surface of the battery case was approached by imposing a restriction relating
to the real-world conditions of an electric vehicle. The considered restriction was the
range of frequencies (vibrations) due to the tire–road interaction, which are transmitted
to the vehicle chassis (and implicitly to the mechanical structure of the battery).

• Numerical simulation of base and optimized cases.
• Comparative analysis of data and conclusions on the efficiency.

2.1. Experimental Research

The experimental tests were performed in a closed room with an average ambient
temperature of 20 ◦C, using an experimental stand and 50 experimental tests (on 50 cells).
The experimental stand was configured using a 10-ton hydraulic press, a mini hydraulic
group equipped with an electric motor, and the associated hydraulic installation equipment
(Figure 3). The hydraulic group was equipped with a simple manual valve that allowed
the oil flow to be adjusted between 0.52 and 2.5 L/min, at a working pressure between
50–600 bar. The terminals of the voltmeter were placed at the two terminals of the cell (to
identify the moment of short-circuit) and the temperature measuring probe was placed
on the cell anode area. Figure 3 shows the configuration of the cylindrical cell bending
test system. The linear movement of the piston is driven by the hydraulic pump with
an advance of 5 mm/minute and the T-type device bends and deforms the test cell. The
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obtained results were analysed and validated with statistical tests (removal of erroneous
values using Fischer’s test). The corresponding values from the 50 tests were averaged and
are shown in Figures 4 and 5.

Figure 2. The algorithm of research methodology.

Figure 3. Experimental setup ((a)—experimental stand, (b)—battery bending test, (c)—indentation
device geometric dimensions, 1–press; 2–thermometer; 3–voltmeter; 4–hydraulic group; 5–force
transducer support; 6–reflector; 7–indentation device; 8–electronic calliper; T.s.—temperature sensor).
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Figure 4. The change in the electric voltage (a) and the change in the temperature (b) of the 18650-type
cell under the action of the deformation force.

Figure 5. The change in the 18650-type cell deformation over time.

Under the action of the deformation force, the cell’s functional parameters started to
change at the 100th second. The cell voltage changed from 3.45 V to 3.20 V at a deformation
of 4 mm and reached lower than 3 V at the 130th second at a cell deformation of 6.4 mm.

The short-circuit that occurred at the 190th second was also highlighted by the sudden
variation in the battery temperature, with an immediate increase from 25 ◦C to a maximum
value of 114 ◦C (roughly a 5-fold increase). The value of the force at the onset of the
short-circuit was 7.18 kN at a cell deformation of 9.8 mm.

2.2. Numerical Modelling and Simulation
2.2.1. Numerical Modelling and Simulation of the 18650-Type Cell

The CAD model of the cylindrical cells was created using SolidWorks computer-aided
design software. The geometric dimensions used to create the models corresponded to the
real physical dimensions of the cells used in the experimental tests and the cell geometry
was imported into HyperMesh and prepared for discretization into finite elements. For
each part of the cell, an optimal quality criterion was applied. After the generation of the
finite element model, the mechanical structural properties and the materials were assigned,
and the last step of this stage was the definition of the load case (forces, contact between
components, and impact body velocity). TYPE7 was used as the contact interface, which
ensures permanent contact between the model’s surfaces. The properties of the materi-
als used are centralized in Table 1 (the material type assigned to the components being
M2_PLAS_JOHNS_ZERIL). This is an isotropic elastic–plastic type of material and repro-
duces internal stresses as a function of strain, strength, and temperature. All components
of this study were meshed into mixed shell elements, having assigned type P1_SHELL pre-
defined properties. The preprocessing part was carried out in Altair HyperMesh software
in the Radioss solver environment. The results obtained from the simulation process were
interpreted using the HyperView and HyperGraph modules of HyperWorks software.
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Table 1. Physical–mechanical properties of the 18650-type cell components considered in the mod-
elling and simulation [36].

Battery’s
Component

Material
[-]

Density
[kg/m3]

Elasticity
Modulus

[GPa]

Poisson’s
Coefficient

[-]

Single-Layer
Thickness

[μm]

Cathode LiFePO4 4000 100 0.35 90
Anode Graphite 2300 110 0.23 130
Positive collector Aluminium 2700 180 0.35 20
Negative collector Copper 7980 210 0.34 10
Separator Polyethylene (PE) 1500 20 0.3 10
Case Steel 7850 210 0.3 560

From the simulation results, when analysing the distribution of von Mises stresses
(Figure 6a), the maximum value appeared in the outer areas of the battery case where the
impactor has the main point of impact (6.245 × 10−1 GPa).

Figure 6. Bending test of the 18650-type cell ((a)—von Mises stress variation by simulation;
(b)—experimental result).

In the graph presented in Figure 7, the results from the experimental tests and the
results from the simulation for the bending of the 18650-type cell were superimposed. The
analysis of the results shows that the force–deformation variation is almost linear and
the experimental results curve follows the simulation results curve through almost the
entire deformation range considered. It was also considered that the CAD model of the
cell was validated and could be used further in the study since the differences between the
simulated and experimental values were approximately 1% (A maximum of 13% difference
was recorded for the very final part, which was outside of the range of consideration in
this study).

Figure 7. Comparison of experimental results with those obtained by simulation for the bending test
of the 18650-type cell.
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2.2.2. Topographical Optimization of the Battery Module Case

The batteries that equip electric vehicles must have a certain mechanical rigidity
required for the manufacturing process, the handling process, and actual use. Hence,
at present, it was found that the necessary rigidity of the battery case is achieved by
creating ribs on the surface/surfaces of the case (especially the upper and lower surfaces),
ribs whose shapes and placement differ from one manufacturer to another. In general,
topographic optimization is applied to flat or already deformed surfaces of a model to
reach a geometric shape with reinforcements on various surfaces, so that, through this
process, a product can be developed to meet the constructive parameters and ensure a
higher level of functionality. Optimization can be performed on the components of an
assembly or subassembly, wherever it is considered that there is potential for improvement.
In the process of topographical optimization of a basic model, certain configuration levels
must be completed in the optimization algorithm: design and development of the model;
defining the variables for topographical optimization; defining optimization responses;
and postprocessing and analysis of the results. In carrying out this study, we started with a
battery module case based on a simple geometric model, with well-defined flat surfaces
and with the following geometric dimensions: a length of 500 mm, a width of 240 mm, and
a height of 73 mm (Figure 8). The optimization areas chosen were the lower and upper
surfaces of the battery module case. The material chosen and defined for the module case
model was aluminium, due to its low specific weight, thus reducing the total weight of the
battery assembly (thickness, 4 mm; density, 2.7 g/cm3; Poisson’s ratio, 0.33; and Young’s
modulus, 70 GPa).

Figure 8. The structure and components of a battery module.

Topographic optimization is an advanced shape optimization, applicable to models
discretized into shell elements, and the process is presented in Figure 9. The process of
topographic optimization begins by creating the finite element model from the imported
basic geometry of the model. The definition of objective functions, design variables, and
the creation of the load case is carried out in the second part of the process. The required
design parameters are represented by the minimum width of the geometric elements
(wmin = 28 mm), the height of the elements (hmax = 2 mm), and the drawing angle (α = 82◦)
(Figure 10).

After creating the load case, the model was statically analysed to extract the vibration
modes in the frequency range of 22–33 Hz (a frequency range generally considered to be
transmitted to the vehicle chassis due to the wheel–road interaction and also to the battery
and the battery case, which is fixed to the chassis [37]). In the last stage of the process, it was
determined if the results converged towards a feasible solution. If the results converged,
then the optimization process was completed by generating the optimized model of the
battery case, and in a case where the results did not converge, the process would enter an
iterative loop by modifying the geometrics of the beads and reanalysing the pattern until
its geometry converged.

After the optimization process was performed on the base case, the topographic opti-
mization algorithm provided an optimized model according to the input data (Figure 11).
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Furthermore, the optimized model was completed by the geometric optimization of the
areas proposed by the algorithm, for the construction of simple geometric shapes (which
are easy to implement in the manufacturing process).

Figure 9. Flowchart of the topography optimization process.

Figure 10. Design parameters of the battery case cover for topographical optimization.

Figure 11. Battery module case model used in simulations (from bottom view): (a) base nonoptimized
(initial); (b) topographically optimized; (c) the final shape used in the simulations; (d) optimized
module case view from top and bottom.

To continue the comparative analysis between the basic case model and the optimized
version, an electric vehicle battery pack including 12 modules was modelled, each module
having 480 electrochemical cells (18650-type), resulting in a total number of 5760 cells
(Figure 8). The discretization was performed in 767,396 shell elements for the basic model
(initial shell) and 869,620 shell elements for the topographically optimized shell.

109



Batteries 2023, 9, 77

It should also be noted that these simulations did not consider the thermal influ-
ences that may occur (temperature variations in the external environment and varia-
tions due to the electrochemical processes in operation), and a constant temperature
of 25 ◦C was considered (it was considered that the battery has a functional thermal
management system).

The numerical analysis aimed to analyse the behaviour and the mechanical deforma-
tion of the cells and the battery module in the event of impact/accident (the effect of impact
on the integrity of the battery’s cells).

The most unfavourable case was also chosen in terms of the possibility of accidental
damage to the battery, namely the side impact to the body of an electric vehicle (the impact
area is located between the vehicle’s pillars A and B), and the hypothesis considered was
that only a maximum of 80% of the total impact force/energy was transmitted to the battery
pack (Figure 12). In the case of a frontal impact, the design of the vehicle chassis offers the
greater possibility of absorbing and dispersing a large part of the impact energy up to the
area where the battery is located; in the case of a side impact, the battery is essentially only
protected by the longitudinal beams, the passenger compartment floor, and the structures
that form the body (pillars).

Figure 12. The hypothesis regarding the side impact simulation of the electric vehicle (a) and the
design details for the battery frame (b).

Reporting on the efficiency of the topographical optimization solution for the battery,
a scenario was chosen that represented the number of cells that undergo deformation, but
which, according to the experimental research carried out, remains in a working condition
(a short-circuit does not occur) and can be reused. The chosen value of the maximum
deformation that could be suffered by a cell, at which the cell is still considered to be
functional, is 2.5 mm (measured on the transversal plane of the cell, i.e., 15% of the size
of the diameter of the 18650-type cell). The test impact velocities considered for both
the initial/base and topographically optimized cases were 36 km/h (10 m/s), 72 km/h
(20 m/s), and 108 km/h (30 m/s).

3. Results and Discussion

The obtained results for the simulation of the deformation of the battery modules
(and the effects on the integrity of the cells) under the considered impact conditions are
presented below, considering the variation in the mechanical stresses, kinetic energy and
internal energy, and von Mises stress values. The energy balance plots represent the method
to check the quality of the results. An important indicator for proper analysis is the total
energy of the system, which remains constant. It can be observed that the total energy
variation remains almost constant in all simulation cases and the higher values of the kinetic
energy are absorbed in the frame and the case structure. To obtain an accurate simulation
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result, more attention was focused on hourglass energy, which must be less than 5% of the
overall internal energy.

The results obtained by simulating the battery module case are presented in
Figures 13–30, both for the basic version and for the topographically optimized version
(considering parameters such as: energy balance, displacement and von Mises stresses).
For a better view of the deformation and mechanical stresses that occur in the battery cells
area, the module cover is hidden.

Figure 13. Details of the mechanical stress and energy balance on the modules and base module case
at an impact velocity of 10 m/s.

Figure 14. View of displacement magnitude (mm), base module case, 10 m/s impact velocity.

Figure 15. View of von Mises stress (GPa), base module case, 10 m/s impact velocity.

Figure 16. Details of the mechanical stress and energy balance on modules, optimized module case,
10 m/s impact velocity.
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Figure 17. View of displacement magnitude (mm), optimized module case, 10 m/s impact velocity.

Figure 18. View of von Mises stress (GPa), optimized module case, 10 m/s impact velocity.

Figure 19. Details of the mechanical stress and energy balance on modules, base module case, 20 m/s
impact velocity.

Figure 20. View of displacement magnitude (mm), base module case, 20 m/s impact velocity.

Figure 21. View of von Mises stress (GPa), base module case, 20 m/s impact velocity.
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Figure 22. Details of the mechanical stress and energy balance on modules, optimized module case,
20 m/s impact velocity.

Figure 23. View of displacement magnitude (mm), optimized module case, 20 m/s impact velocity.

Figure 24. View of von Mises stress (GPa), optimized module case, 20 m/s impact velocity.

Figure 25. Details of the mechanical stress and energy balance on modules, base module case, 30 m/s
impact velocity.
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Figure 26. View of displacement magnitude (mm), base module case, 30 m/s impact velocity.

Figure 27. View of von Mises stress (GPa), base module case, 30 m/s impact velocity.

Figure 28. Details of the mechanical stress on modules, optimized module case, 30 m/s impact velocity.

Figure 29. View of displacement magnitude (mm), optimized module case, 30 m/s impact velocity.
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Figure 30. View of von Mises stress (GPa), optimized module case, 30 m/s impact velocity.

The energy balance was plotted after the impact analysis of the battery modules. The
kinetic energy variation shown in Figure 13 starts at an initial value of 47,773.4 J and
remains constant until the first 1.7 ms when the battery assembly first comes into contact
with the longitudinal beam. Thereafter, the kinetic energy drops dramatically, intersecting
the internal energy variation at 24,080 J, and continues to decrease to near zero at 8 ms.
During the impact, the first row of cells in the battery of the first module is initially damaged
by direct contact with the case, while the following rows of cells absorb (and at the same
time dissipate) the mechanical shock through contact with the first row of batteries. The
deformation of the battery cells due to the impact at a velocity of 10 m/s is shown in
Figure 15, where the first row of batteries located in the impact area is partially damaged
and the heat exchanger is destroyed during the impact.

The energy balance variation during the rigid side impact of the optimized battery
assembly model is presented in Figure 16. The maximum kinetic energy curve starts from
the same kinetic energy value as the previous simulation for the base model. The kinetic
energy curve intersects the internal energy curve at 23,966.84 J, at 3.185 ms. In Figure 18
it can be observed that the largest deformations are in the impact area of the first rows
of battery cells of the battery’s modules. The cells are not seriously damaged, compared
to the simulation results of the base module simulation. Increasing the impact velocity
of the battery packs, the number of damaged batteries is higher, as can be viewed in
Figures 20, 23, 26 and 29. In addition to the previous basic simulation, the more affected
cells are situated in the impact area and on the opposite side of the battery module frame.
The deformation from the opposite of the impact area is due to the mass attached to the
battery module’s support. In the simulation case presented for optimized module, the
number of affected cells is lower than in the previous basic simulation case.

Following the simulations carried out in the three cases with different impact velocities
and with different case models (base vs. topographically optimized), a series of values
were obtained for the number of batteries deformed by less than 2.5 mm (maximum value
at which the cells are considered/alleged to be (still) electrically functional), as shown
in Table 2.

Based on the results obtained, it can be stated that the proposed constructive solution
offers a reduction in cell deformation with an efficiency of between 16.6–60% (19.7%
to 40.7% if the mean value differences are considered for all three impact velocities),
which shows that the topographically optimized solution (from a constructive point of
view) presents more effective battery case protection against the mechanical stresses from
impact phenomena (i.e., road accidents). It should be noted that through topographical
optimization, the case tends to be more effective in protecting the cells of the battery, but at
the same time, the modification of the optimized surfaces (by increasing them) also leads to
modification of the mass of the battery case covers. A larger mass has an immediate effect
in the possibility of taking over (and dispersing) more of the impact energy, maintaining
the deformation of the structure in the plastic domain for a longer period of time.
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Table 2. Comparative results for the considered simulation cases.

Range of Cells
Deformation

[mm]

Base Battery
Module Case

Optimized Battery
Module Case

Difference
(Base vs. Optimized)

[%]

Impact Velocity [m/s]

10 20 30 10 20 30 10 20 30

Deformed
cells (pcs)

<0.5 5 8 12 2 4 8 −60.0 −50.0 −33.3
0.5–1.0 6 9 19 3 5 13 −50.0 −44.4 −31.6
1.0–1.5 8 18 22 4 11 16 −50.0 −38.9 −27.3
1.5–2.0 9 25 29 5 16 22 −44.4 −36.0 −24.1
2.0–2.5 13 35 49 8 24 38 −38.5 −31.4 −22.4

>2.5 18 122 265 13 91 221 −27.8 −25.4 −16.6

Total affected cells 59 217 396 35 151 318 −40.7 * −30.4 * −19.7 *

* Mean values.

Considering that, according to the statistics on road accidents in the EU, most accidents
take place at low velocity, it can be observed that for the proposed constructive battery
case solution, the maximum effect is obtained at low impact velocities (<36 km/h), and
at an impact velocity greater than 70 km/h the difference falls below 17%. Thus, the
effectiveness of the mechanical protection for the battery cells through the proposed method
of topographical optimization could provide a benefit in the application of the circular
economy concept by reusing more valid electrochemical cells in other/future constructions
of energy sources, reducing (or why not eliminating) costs and economic and environmental
pollution due to industrial manufacturing processes.

4. Conclusions

Based on the results obtained from the experimental research activities and numerical
analysis presented in this article, it can be stated that research in the field of electric vehicles
is necessary, current, and important, considering the continuous growth dynamics of the
number of electric vehicles in traffic, with the immediate reality that they will inevitably be
involved in road accidents. Considering the major cost that an energy source (battery) is as
part of the total construction costs of an electric vehicle, as well as the risks associated with
electrochemical cells’ behaviour in the event of accidents, this article presents an approach
that aims to improve the construction of the energy source protective housing/case for
electric vehicles from the design phase to impact, to meet the requirements related to their
use and operation in conditions of maximum safety and reliability.

The structural optimization of the battery module case was based on the topograph-
ical optimization process (considering the vibrations due to the wheel–road interaction
transmitted to the chassis), which allowed for the proposal of a modified but rigid casing
structure. In the study, the most unfavourable case of a road accident was considered,
namely the side impact (impact area between A and B pillars, for different impact veloci-
ties), and the proposed theme was studied through numerical analysis methods (modelling
and simulation). Based on the obtained results, it was observed that there was a reduction
in the number of damaged cells, which shows that the proposed topographically optimized
solution tends to be highly effective at low impact velocities (<36 km/h), when a major
number of batteries are protected from impact (with 27.8% more protection). The functional
remaining cells can later be used in other constructions/applications of energy sources that
do not require strict and highly efficient operating parameters, according to the circular
economy concept.

The main directions for future research and development that can offer solutions
for the reuse of electrochemical cells in the construction of electric vehicle batteries could
be the use of other/complex topographical restrictions to further optimize the design of
the casing shape, topographical optimization of all casing surfaces, the development and
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use of a complex numerical model of an electrochemical cell that also takes into account
the mechanics of the internal chemical structure of the battery (friction phenomena for
example), and the influences of the electrochemical and thermal phenomena that occur in
the operation of the battery.
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Abstract: Electric vehicles (EVs), in their pure and hybrid variants, have become the main alternative
to ensure the decarbonization of the current vehicle fleet. Due to its excellent performance, EV
technology is closely linked to lithium-ion battery (LIB) technology. A LIB is a complex dynamic
system with extraordinary nonlinear behavior defined by electrical, thermal and electrochemical
dynamics. To ensure the proper management of a LIB in such demanding applications as EVs, it is
crucial to have an accurate mathematical model that can adequately predict its dynamic behavior.
Furthermore, this model must be able to iteratively adapt its parameters to accommodate system
disturbances during its operation as well as performance loss in terms of efficiency and nominal
capacity during its life cycle. To this end, a methodology that employs the extended Kalman filter to
iteratively improve a fuzzy model applied to a real LIB is presented in this paper. This algorithm
allows to improve the classical Takagi–Sugeno fuzzy model (TSFM) with each new set of data
obtained, adapting the model to the variations of the battery characteristics throughout its operating
cycle. Data for modeling and subsequent validation were collected during experimental tests on a
real LIB under EVs driving cycle conditions according to the “worldwide harmonised light vehicle
test procedure” (WLTP) standard. The TSFM results allow the creation of an accurate nonlinear
dynamic model of the LIB, even under fluctuating operating conditions, demonstrating its suitability
for modeling and design of model-based control systems for LIBs used in EVs applications.

Keywords: adaptation; batteries; fuzzy; intelligent system; iterative; Kalman; lithium-ion; modeling;
WLTP

1. Introduction

The growing popularity in recent decades of devices that require reliable and efficient
storage of electrical energy, such as portable devices (phones, laptops, etc.) and electric
vehicles (EVs) [1], logically entails a development of battery technology and the devices
that manage them.

Currently, the decarbonization of the transport industry involves the use of lithium-ion
batteries (LIBs) [2]. The need to know precisely and in real time the autonomy of EVs
requires not only reliable models but also control systems to increase this autonomy [3,4].
To design an efficient control system, it is desirable to have an accurate model at all times,
regardless of conditions in which the battery is working. The model must provide reliable
predictions about the state of the battery, available energy and remaining operating time
for given conditions and power requirements. However, the behavior of batteries changes
with time, charge and discharge cycles, temperature, degradation and even depending on
the instantaneous power required from them [5,6]. Therefore, it is necessary to develop
modeling solutions that allow the dynamic model to be adapted or modified to provide a
computationally cost-effective, efficient and robust solution to the modeling problem for
any instantaneous battery operating condition.

Thus, many models have been suggested in the specialized scientific literature, with
their corresponding modifications and subsequent improvements, which try to describe
the behavior of the different battery technologies [7]. However, given that what underlies
the operation of these energy accumulators are chemical reactions, more or less complex,
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that depend on various factors and variables, and that show highly nonlinear behavior,
obtaining accurate models is not an easy task. Therefore, it is currently a scientific field in
full activity.

In summary, most of the models developed to date can be grouped as follows [8,9],
(summarized in a simple way in Figure 1):

Figure 1. Brief classification of battery models.

(a) Electrochemical models:
These models are built from the physics of electrochemical processes that occur
at the battery cell level. They are quite accurate at this level [10–16], although
they present significant errors at larger scales. In view of the above, its usefulness
is justified to optimize the physical design of the cells [17]. These models are
highly complex to define and implement, requiring a large computational burden,
since they are usually described by nonlinear differential equations [10,18,19] that
model microscopic transport phenomena or the chemical kinetics of the reactions
involved [20,21]. However, recent research seeks to obtain low-order models for
use in real-time applications [22]. The most common are usually single particle
models [23], porous electrodes [24] and pseudo-two-dimensional models [9].

(b) Electrical models:
They are implemented by means of electrical circuits (resistors, capacitors and
sources), to describe the behavior of a battery. They are usually intuitive models,
and by their nature, they are directly applicable to the use of simulators where it
is easy to integrate them with the rest of the participating systems. That is why
their uses, in their different versions, are widespread. Most of these models can be
grouped into a few categories:

– Thevenin-based models [25–28]. These models basically consist of a real volt-
age source followed by a concatenation of n RC cells in series. The voltage
source represents the open circuit voltage, VOC, related to the state of charge
(SOC) of the battery [29]. This model has a relatively uncomplicated design
and demonstrates good accuracy in simulations [30]. In addition, it does not
consider nonlinear behavior and temperature effects in batteries, although
recent works are making improvements in this aspect [31]. A Thevenin-based
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model of n-RC order is shown in Figure 2, and its transfer function is shown
in (1).

VOC(s)− V(s)
I(s)

= R0 +
n

∑
i=1

(
Ri

RiCis + 1

)
(1)

−
+VOC(t)

R0i(t)

C1

R1

C2

R2

Cn

Rn +

−

v(t)

Figure 2. Thevenin-based model of nth order RC cells.

– RC-based models [32–34]. These are simpler electronics models that basically
consist of a network formed by two capacitors and several resistors. Generally,
a large capacitor models the energy storage capacity of the battery, and another,
smaller than the previous one, models its transient effects.

– Impedance-based models [35–37]. These types of models change the RC cells of
the Thevenin model by impedances determined by electrochemical impedance
spectroscopy methods. They are usually suitable models for slow discharges
but not for high currents.

Obviously, in the scientific literature, there are models that, trying to obtain better
performance, hybridize the previous ones and introduce controlled sources and
nonlinear elements [38,39] and even operators or mathematical blocks such as
integrators and filters [40], obtaining general and robust models, although due to
their complexity, they may require a lot of computational burden to adjust their
parameters.
We should also mention the so-called intermediate models, which are located be-
tween purely electrochemical and equivalent circuit models, although they are
basically formulated with electrical variables [32]. The simplest is the Peukert model
from 1897 [41], and among the most famous is the Shepherd model from 1965 [42],
which is still widely used today, as well as their respective improvements in the
Unnewehr, Nertst and Plett models [32,43–45]. Plett’s model can be considered
an improved compendium of the previous ones; however, its improvement comes
at the cost of increasing its complexity and requiring several parameters to be
experimentally determined.

(c) Mathematical and empirical models: There are multiple techniques in the liter-
ature, most of them employing artificial intelligence techniques, that allow ob-
taining nonlinear models of dynamic systems with high accuracy, such as neural
networks [46–48], neuro-fuzzy models [49], particle swarm optimization [50], or
the most recent hybrid models [51,52], among others [53]. Many of these mod-
els (algorithms) have been used to estimate the LIB performance from operating
data [50,54–57]. The goodness of these algorithms is more than proved, especially
when they are based on a large set of data, but they do not allow these models to
adapt to subsequent LIB changes.

The previous methodologies allow obtaining more or less accurate models, but they
are unable to adapt to the changes in the dynamics that a LIB undergoes during its life cycle.
The main objective of this work is to present an iterative modeling methodology, capable
of improving an initial model with each new set of data obtained and, therefore, capable
of adapting to such changes. In order to respond to these problems, the main novelty of
the paper is the use of an iterative modeling technique, which allows a balanced solution
in terms of modeling error and computational cost, as well as adaptability to changes in
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battery performance in demanding applications such as the one studied. In this paper, we
propose the use of an extended Kalman filter (EKF) algorithm [58] as an iterative modeling
algorithm to adapt a Takagi–Sugeno fuzzy model (TSFM) [59]. This combination provides
the accuracy and interpretability of a fuzzy model, together with the adaptability and
computational efficiency of the EKF [60], so that it is possible to maintain model accuracy
in the face of dynamic variations experienced by the batteries during their operating cycle.
In addition, it should also be noted that the EKF is particularly suitable for systems where
noise or inaccuracies are present, making it ideal for real-world applications [61].

Following this introduction, in Section 2, the materials and methods used during the
experiments are presented. The iterative battery modeling process is described in Section 3,
and the results obtained are discussed in Section 4. Finally, some conclusions are presented.

2. Materials and Methods

To evaluate and validate the adaptive capacity of the developed algorithm to model
the LIB, two experimental tests (charging and discharging tests) were carried out on a
59.2 VDC and 120 Ah LIB ( The battery used has the following characteristics: Pack lithium
ion Samsung 50 59.2 V 120 Ah + BMS 80 A + aluminum box). Specifications of lithium Ion
battery 59.2 V 120 Ah—Samsung 50E. Technology: NMC. Battery pack nominal voltage:
59.2 V. Battery pack charging voltage: 67.2 V. Capacity: 120 Ah (7.10 kWh). Continuous
maximum discharge current: 240 A. In this case, the setting is 16 cells of 3.7 V in series, and
24 cells of 5 Ah in parallel to obtain the 120 Ah., specially designed and manufactured from
Samsung, model INR21700-50S cells by Batesur©. For this purpose, simulations results
of the proposed algorithm were compared with the experimental data obtained on the
real battery. The model simulations were performed in the MATLAB© environment. The
sampling time during all tests was set at 1 s.

To evaluate the battery performance, in particular its voltage, with respect to its op-
erating temperature, a temperature-controlled high-capacity thermal chamber was used.
Specifically, during the two tests, different heating cycles were programmed up to a maxi-
mum internal temperature of 60 ◦C, and a subsequent forced cooling of the battery, always
taking into account the safety temperature limits established by the manufacturer. The
cooling stage was carried out using a high-flow axial fan. The objective of the temperature
control was never to reach a target temperature but to provoke substantial temperature
variations in a short period of time, essential to appreciate the effect of the temperature on
the voltage both in the training and validation phases of the model.

For the experimental tests, a 32 kW programmable source and sink of the Regatron©

TC.GSS series were used. This device allows operation in the first (source) and fourth (load)
quadrant depending on the voltage set point and the current or power limits established.
The electrical connection between the battery and the programmable source was made
by direct connection using fuses. Due to the internal protections of the device, it was not
necessary to add additional elements such as antireverse diodes. The charge and discharge
profiles (current and power profiles, respectively) were previously defined in the software
that includes the programmable source and executed directly on the final assembly. The
measurement of the variables of interest, voltage, current and operating temperature of
the battery was performed by means of specific sensors and a signal conditioning circuit
designed ad hoc. For voltage and current measurements, Hall Effect sensors model LV25-P
and LA25-P from LEM©, respectively, were used. For temperature measurement, an NTC
type thermoresistance and a conditioning circuit based on a resistive divider and zero
correction circuit were used. To ensure an optimal and homogeneous measurement, the
temperature sensor was placed in the center of the side face of the battery, at the opposite
end of the thermal chamber heat source. The measurement obtained was compared at all
times with a reference contact thermometer. The acquisition of the variables was carried
out by means of a 12-bit resolution data acquisition card (DAQ) NI-USB-6008 from National
Instruments©. Their storage, processing and representation was carried out by means
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of a data acquisition and control system (SCADA) designed ad hoc and programmed in
LabVIEW©.The experimental setup carried out can be seen in Figure 3.

Figure 3. Laboratory experimental setup.

2.1. Takagi–Sugeno Fuzzy Model

Fuzzy logic, unlike bi-evaluated logic, is able to work with infinite possible values,
not only with ‘TRUE’ and ‘FALSE’. It is therefore very close to human reasoning, able
to infer by vague predicates, i.e., able to logically integrate the infinite shades of gray
that exist between absolute black and white. Fuzzy models are based on IF-THEN rules.
The condition that must be fulfilled (the ‘IF’), is called the antecedent, and the one that is
activated if the antecedent is fulfilled (the ‘THEN’), is the consequent. Between the different
fuzzy models that exist, TSFM are those whose consequent is a linear polynomial [59,62],
see (2)).

R(l,i) : If x1(k) is Al
1i and . . . and xn(k) is Al

ni

Then yl
i(k) = al

0i+
n
∑

j=1
al

jixj(k),
(2)

where n and m are respectively the number of input (xj) and output (yi) variables of a
system to be modeled; l = 1, . . . , Mi represent the index of the rule and Mi the total number
of rules for the i-th output (yi(k), i = 1, . . . , m). On the other hand, al

ij, j = 0, . . . , n is the

parameters of the consequents, and k is the sampling time. Al
ji are the fuzzy sets that define

the antecedents of the fuzzy rules [63].
Obtaining an accurate model is a fundamental step to control any system. TSFM are

universal approximators [64], allowing approximate reasoning [65], and have proven to
be very accurate in modeling nonlinear systems [66–69]. Usually, the number of rules
increases if the modeling error is to be reduced [70]; therefore, this process is crucial to
obtain a good, accurate and manageable model for both analysis [71–73] and control system
design [74,75].

To work with a more compact expression, the input vector x = (x1, x2, . . . , xn)T could
be extend [67,74] by the coordinate x̃0 = 1:

x̃ = (x̃0, x̃1, . . . , x̃n)
T = (1, x1, . . . , xn).T (3)
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Thus, the output yi can be calculated by [76]:

yi(k) = hi(x(k)) =
n

∑
j=0

aji(x)x̃j(k), (4)

where aji(x) are variables coefficients [77]

aji(x) =

Mi
∑

l=1
wl

i(x)al
ji

Mi
∑

l=1
wl

i(x)

, (5)

and wl
i(x) is the degree of activation of the fuzzy rules:

wl
i(x) =

n

∏
j=1

μl
ji(xj(k), σl

ji). (6)

μl
ji(xj(k), σl

ji) is the jth membership function in the l rule, for the ith output (Al
ji fuzzy set).

The σl
ji are the parameters of this membership functions. So, the modeling process consists

of determining σl
ji and al

ji parameters to obtain a TSFM.

2.2. Extended Kalman Filter and Its Application to Takagi–Sugeno Fuzzy Modeling

The EKF allows to construct a pseudo-optimum observer for nonlinear systems [58,78,79]
(pseudo because it is based on a linear approximation). The filter is based on the assumption
that the noises (uncertainties in the model and inaccuracies of the sensors) are zero mean
white Gaussian noise, although there are also variants that allow working with other types
of noise. It has shown that the EKF is an excellent algorithm for iteratively modeling
complex systems based on data [60,61,80–84]. Therefore, in this work, it is used as an
iterative adjustment method for the TSFM.

Be a nonlinear dynamical system in discrete time:

x(k + 1) = f(x(k), u(k)) + v(k)
y(k) = g(x(k)) + e(k),

(7)

where x(k) is the state vector, u(k) is the input vector, and v(k) and e(k) are white noise
vectors. The system’s Jacobian matrices are:

Φ(k) =
∂f

∂x

∣∣∣∣
x=x(k),u=u(k)
, (8)

Γ(k) =
∂f

∂u

∣∣∣∣
x=x(k),u=u(k)
, (9)

and

C(k) =
∂g

∂x

∣∣∣∣
x=x(k)
. (10)

The EKF is considered as the execution of a prediction phase followed by an update
phase. The prediction phase uses the state model and past data, while the update phase
adds sensor information to the prediction—all this taking into account the quality of this
information known through its covariance matrices. To solve the EKF, the following set of
equations must be used iteratively:

Prediction (a priori estimation):

x̂(k|k − 1) = Φ(k)x̂(k − 1|k − 1) + Γ(k)u(k) (11)
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P(k|k − 1) = Φ(k)P(k − 1|k − 1)ΦT(k) + Rv (12)

Update (a posteriori estimation):

K(k) =
(

Φ(k)P(k|k − 1)CT(k) + Rve

)(
C(k)P(k|k − 1)CT(k) + Re

)−1
(13)

x̂(k|k) = x̂(k|k − 1) + K(k)(y(k)− ŷ(k)) (14)

P(k|k) = Φ(k)P(k|k − 1)ΦT(k) + Rv − K(k)
(

C(k)P(k|k − 1)ΦT(k) + RT
ve

)
, (15)

From (11) to (15), x̂(k|k − 1) represents the priori estimations of the true state x, and
x̂(k|k) represents the posteriori one.

P(k|k − 1) and P(k|k) are, respectively, the a priori and the a posteriori estimate covari-
ance matrices. ŷ(k) are the estimated output vector, Rv, Rve and Re, are the noise covariance
matrices, and K(k) is the Kalman gain.

Starting from an initial prediction x̂(0), and its corresponding covariance matrix, P(0),
the algorithm evolves iteratively, minimizing the estimation error and its covariance matrix
for the linearization obtained at each instant.

As shown in [60,61], the EKF algorithm allows to estimate the parameters of a TSFM.
To do it, it is necessary to define a new model whose states are the parameters to be
estimated [85], p(k) in (16), which will be adjusted iteratively to reduce the estimation
error on the output to be modeled, y(k). e(k) represents the uncertainty of the output
measurements of the system, which are assumed to be a zero mean Gaussian white noise
with Re covariance. So, Equations (11) to (15) can be iteratively applied to estimate the
model’s parameters, p(k).

p(k + 1) = p(k)
y(k) = h(x(k), p(k)) + e(k).

(16)

Applying (8), (9) and (10) on (16):

Φ(p(k)) = I, Γ(p(k)) = 0, and C(p(k)) =
∂h

∂p

∣∣∣∣
p=p̂(k)
. (17)

In the above expressions, p̂(k) is the current estimation of p(k), which includes all the
TSFM parameters, both antecedent (σl

ji) and consequent (al
ji). C(p(k)) is the derivative of

the TSFM with respect to its parameters, which was obtained in [60], and its calculation
was implemented in the Fuzzy Logic Tools library (FLT) [86].

3. Iterative Modeling of a Lithium-Ion Batteries

A LIB is a system whose parameters change over time due to degradation of its
components or internal chemical processes, so a good prediction of its behavior requires
the constant adjustment of the model. The conjunction of the Kalman algorithm with TSFM
has demonstrated the ability to obtain good models while allowing to improve and adapt
these models with each new data obtained from the operation of the system [60,61]. The
use of such an algorithm for modeling the consequents of a TSFM based on operating data
from a real LIB is presented below. It has been decided not to also adapt the antecedents of
the TSFM in order to obtain a more efficient algorithm that can be executed iteratively at
run time without requiring particularly fast hardware. Of course, if a more accurate model
is required, it is possible to adapt the model antecedents as well [87].

The modeling process consisted of 4 phases:
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3.1. Phase 1. Obtaining Discharge and Charge Data of a Real Battery

The first step is to obtain a sufficiently large and representative dataset of the LIB,
taking that the data must be obtained in an operating environment as close as possible
to that of a real EV into account. For this purpose, using the test bench presented in
section 2, the battery was discharged from its maximum capacity until it was completely
discharged, and then it was subjected to a charging process. To do that, the “Worldwide
Harmonised Light Vehicle Test Procedure” [88,89] (WLTP) was used for the discharge
test. This procedure is used as a global standard to determine the CO2 emissions, fuel
consumption and pollutant levels of traditional and hybrid cars, as well as the range of
fully EVs. Specifically, based on the performance of the LIB, the WLTP standard was used
assuming a low-power class 2 electric vehicle (with a power-to-mass ratio between 22 and
34 W/kg and a upper speed of less than 90 km/h). This driving profile is characterized by a
speed and acceleration profile composed of three phases associated with low, medium, and
high-speed driving, each with a defined duration, Figure 4. The associated discharge power
profile was calculated from the acceleration profile, assuming a direct relationship between
power and acceleration, matching the peak acceleration with the maximum allowable
discharge power of the LIB. Due to the type of electric vehicle under study, in this test,
only the discharge of the LIB has been considered. In Figure 4b, the negative accelerations
present in the acceleration profile will not have any effect, as the battery recharging by
means of regenerative systems is not considered. To evaluate the performance of the model,
this power profile was evaluated over the entire operating range of the battery (0% ≤ SOC
≤ 100%). The described power profile is shown in Figure 5.

(a)

(b)

Figure 4. WLTP class 2 driving profile: (a) speed; (b) acceleration.
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Figure 5. Power profile for WLTP class 2 driving profile.

In accordance with the application and with the aim of evaluating the response of the
modeling algorithm throughout the battery’s operating range, the LIB charging process
was carried out by simulating the use of a commercial type 2 semifast charger. For this
purpose, a charging test was performed for a maximum current of 35 A, according to
the well-known two-phase charging protocol, constant current (Bulk Phase) and constant
voltage (Absorption Phase).

In this first phase, a set of 86508 data sampled every second was obtained from
the battery voltage, current, temperature and SOC (The battery SOC was estimated by
integration of the current according to the Coulomb counting method [90].). These data
are shown in Figure 6.

Figure 6. Modeling data.

3.2. Phase 2. Initial TSFM

To obtain an initial structure of the dynamic model for the LIB similar to (7), a series of
tests were performed on a reduced dataset consisting of the first 1000 data. Through these
tests, it was determined to perform a third-order discrete dynamic model, i.e., including as
inputs three memories of the previous outputs, together with the inputs (current, tempera-
ture, and SOC), and a memory of the current. That is, the discrete dynamic model of the
system will have the form:

v(k + 1) = f (i(k), i(k − 1), T(k), SOC(k), v(k), v(k − 1), v(k − 2)) (18)
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where k is the discrete time, v(k + 1) is the estimate future voltage, v(k . . . k − 2) are the
previous voltages, i(k) and i(k − 1) are the current and its previous value, T(k) is the
temperature, and SOC(k) is the estimated SOC. f is the TSFM to be fitted.

Once the model structure was determined, the dataset was used to obtain an ini-
tial TSFM using the well-known subtractive clustering algorithm of Chiu [91]. Using a
Cluster center’s range of influence (RADII) of 0.6, six rules with Gaussian antecedents
were obtained.

3.3. Phase 3. Iterative Modeling

This is the most relevant phase of the experiment, since the objective of the present
work is to demonstrate that it is possible to perform an iterative modeling that allows
readjusting an existing model based on the new data obtained.

With the initial model obtained in the previous phase, the EKF was applied to improve
the estimation of the parameters with each of the data, i.e., iteratively as it would be im-
proved in a working system. The initial covariance matrix of the EKF, P(0), was initialized
as 2I, this is α = 2, being I an identity matrix. The fitting process is shown in Algorithm 1,
where α is a value indicating the reliability on the initial parameters of the model.

Algorithm 1 EKF algorithm for the adaptation of consequents.
1: p̃(0| − 1) = 0
2: P(0| − 1) = Iα
3: for k = 0..kend do
4: Calculate P(k|k − 1) by (12)
5: Estimate ỹ(k) using the fuzzy model
6: Calculate C(k) by (17)
7: Get K(k) by (13)
8: Update p̃(k|k) by (14)
9: Update P(k|k) by (15)

10: end for k

A Mean Absolute Error (MAE) of 31.40 mV, or the equivalent Root Mean Square Error
(RMSE) of 53.00 mV, was obtained during the modeling phase.

The prediction of the model at each iteration can be seen in Figure 7, and the error
obtained at each instant can be seen in Figure 8.

Figure 7. Modeling output.
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Figure 8. Modeling error.

The model improves as new data appears. When a new behavior not yet modeled
occurs, an error is raised, as can be seen in Figure 8. However, the algorithm will learn
from this error and will improve the model.

The fuzzy model obtained after running through all the experimental data is reflected
by the following rules, where GAUSS(c, σ) is the Gauss function (this antecedents can be
seen in Figure 9):

IF i(k) is GAUSS(2.317; 25.41) and i(k − 1) is GAUSS(3.925; 25.41)
and T(k) is GAUSS(24.8; 5.94) and SOC(k) is GAUSS(0.526; 0.3)
and v(k) is GAUSS(60.39; 7.187) and v(k − 1) is GAUSS(60.33; 7.187) and v(k − 2) is GAUSS(60.3;

7.187)
THEN v(k + 1) = 9.007 −0.03385 i(k) +0.02963 i(k − 1) +0.0007178 T(k) +2.638 SOC(k) +0.6987 v(k)
−0.3983 v(k − 1) +0.527 v(k − 2)

IF i(k) is GAUSS(1.501; 25.41) and i(k − 1) is GAUSS(3.032; 25.41)
and T(k) is GAUSS(27.22; 5.94) and SOC(k) is GAUSS(0.878; 0.3)
and v(k) is GAUSS(65.51; 7.187) and v(k− 1) is GAUSS(65.47; 7.187) and v(k− 2) is GAUSS(65.38;

7.187)
THEN v(k + 1) = 0.08457 −0.03393 i(k) +0.03365 i(k − 1) +0.00247 T(k) +0.08013 SOC(k) +0.8829 v(k)
−0.4889 v(k − 1) +0.6025 v(k − 2)

IF i(k) is GAUSS(3.032; 25.41) and i(k − 1) is GAUSS(4.027; 25.41)
and T(k) is GAUSS(22.84; 5.94) and SOC(k) is GAUSS(0.197; 0.3)
and v(k) is GAUSS(55.41; 7.187) and v(k− 1) is GAUSS(55.42; 7.187) and v(k− 2) is GAUSS(55.33;

7.187)
THEN v(k+ 1) = 0.1629 −0.03028 i(k) +0.03077 i(k− 1) +0.00001303 T(k) +0.1531 SOC(k) +0.8291 v(k)
−0.03837 v(k − 1) +0.2058 v(k − 2)

IF i(k) is GAUSS(−0.158; 25.41) and i(k − 1) is GAUSS(−0.158; 25.41)
and T(k) is GAUSS(17.56; 5.94) and SOC(k) is GAUSS(1; 0.3)
and v(k) is GAUSS(67.44; 7.187) and v(k− 1) is GAUSS(67.44; 7.187) and v(k− 2) is GAUSS(67.44;

7.187)
THEN v(k + 1) = 1.453 −0.04581 i(k) +0.04429 i(k − 1) −0.0007327 T(k) +0.3583 SOC(k) +0.6178 v(k)
−0.3521 v(k − 1) +0.7076 v(k − 2)
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IF i(k) is GAUSS(−34.87; 25.41) and i(k − 1) is GAUSS(−34.87; 25.41)
and T(k) is GAUSS(25.5; 5.94) and SOC(k) is GAUSS(0.318; 0.3)
and v(k) is GAUSS(59.38; 7.187) and v(k− 1) is GAUSS(59.43; 7.187) and v(k− 2) is GAUSS(59.43;

7.187)
THEN v(k + 1) = 1.598 +0.1012 i(k) −0.08297 i(k − 1) +0.0002574 T(k) +0.2328 SOC(k) +1.248 v(k)
−1.106 v(k − 1) +0.8397 v(k − 2)

IF i(k) is GAUSS(-34.77; 25.41) and i(k − 1) is GAUSS(−34.9; 25.41)
and T(k) is GAUSS(32.82; 5.94) and SOC(k) is GAUSS(0.774; 0.3)
and v(k) is GAUSS(65.61; 7.187) and v(k− 1) is GAUSS(65.61; 7.187) and v(k− 2) is GAUSS(65.64;

7.187)
THEN v(k+ 1) = 0.2383 +0.08311 i(k)−0.08389 i(k− 1)−0.0001479 T(k) +0.06106 SOC(k) +1.446 v(k)
−1.274 v(k − 1) +0.8237 v(k − 2)

This model allows us to interpret the relationships between the variables linguistically
within each rule. In this case, the initial model was not considered to be easily interpretable
as a whole, so the antecedents appear overlapped, but there are algorithms that allow this
to be done [92–94].

Figure 9. TSFM antecedents.

3.4. Phase 4. Validation Data

Using the same philosophy as previous modeling data, a new charge/discharge cycle
was performed to obtain another dataset to validate the resulting TSFM. On this occasion,
14746 data were obtained with the same sample time of 1 s, which are shown in Figure 10.
The final TSFM obtained in the previous phase was validated to check the performance of
the iterative algorithm.
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Figure 10. Validation data.

4. Analysis of the Results

Finally, once all the data were run through, it was checked that the model obtained
adequately represented the dynamic behavior of the battery under study. Note that the
proposed algorithm does not perform the modeling with all the data, but iteratively adjusts
the model with each new data obtained. Therefore, the main objective is not focused on
obtaining a lower error rate than those obtained by other techniques presented in the
scientific literature, but to demonstrate that the algorithm is able to perform the iterative
adjustment, with good performance considering the model error, against diverse and
highly fluctuating power profiles, regardless of the battery temperature, SOC or operating
condition (charge or discharge). Obviously, the performance of the modeling process will
be highly dependent on the initial model. In this case, for the test performed, the initial
model was obtained from the clustering, without any additional tuning. Despite this, the
model validation obtained a MAE of 69.90 mV, and a RMSE of 21.20 mV. The model output
during the validation process is shown in Figure 11, and the error in Figure 12.

Figure 11. Validation output.
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Figure 12. Validation error.
From the results obtained, it is verified that the EKF works properly, and that it

allows modeling iteratively a real LIB with a reduced error. This will allow continuous
improvement and adaptation of the TSFM to the variations that the LIB may undergo.

5. Conclusions and Future Works

The modeling process of a LIB is a complex task that requires a deep knowledge of the
laws of electrochemistry but is essential for its efficient use and proper management. For
EVs application, the high fluctuation of the power profile means that the dynamic behavior
of the LIB is strongly influenced by intrinsic nonlinearities. The main proposals found in
the scientific literature for these applications are based on equivalent electrical models that
present reduced performance in terms of dynamic behavior and in many cases, for the sake
of simplicity, ignore the dependence on certain parameters such as temperature.

To address to the shortcomings found in terms of modeling, this research has applied
an iterative fuzzy modeling methodology based on the EKF to a real LIB for use in EVs.
The proposed method is not a closed algorithm and can be easily applied to other types
of batteries or applications. The model parameters were fitted iteratively from an initial
unfitted model, using a 59.2 VDC and 120 Ah commercial LIB on a profile under WLTP
standard conditions for a class 2 driving cycle. Experimental results for both charging
and discharging, for the entire useful operating range of the LIB and different operating
SOC and temperatures, validate the effectiveness of the model in a WLTP test resulting a
MAE below 70 mV (about 21 mV RMSE) and taking into account that the starting model
was unadjusted.

Based on the results, it is found that the designed algorithm and the obtained dy-
namic model are sufficiently accurate to iteratively model nonlinear LIBs even under such
demanding operating profiles. Similarly, thanks to the iterative run-time fuzzy model-
ing methodology proposed in this work, the model can adapt to changes in the LIB’s
performance or rated capacity due to usage time. This will contribute to the design and
development of model-based energy management strategies and controllers for the proper
operation of LIBs in EVs applications throughout their lifetime.

Further experiments and verifications will be carried out in the future to test the
effectiveness of the proposed method for different driving cycle profiles and operating
conditions, as well as its application for the design of iterative model-based SOC estimators.
Finally, as a natural outcome of the research process, these models will be applied in the
design of new model-based energy management and control strategies for use in hybrid
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EVs powered by LIBs hybridized with traditional combustion engines and/or hydrogen
fuel cells.
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Abbreviations

The following abbreviations are used in this manuscript:
Acronym or Parameter Description

Al
ji Fuzzy antecedent for rule l, derivative i and input j.

al
ji Consequents parameters of the fuzzy model

DAQ data acquisition
C(p(k)) Derivative of the fuzzy model (output matrix of the EKF model)
EKF Extended Kalman filter
EVs Electric vehicles
LIB Lithium-ion battery
MAE Mean Absolute Error
n System order (length of the state vector)
P Covariance matrix of the Kalman filter
p(k) Vector of parameters to be estimated
p̂(k) Vector of estimated parameters
RADII Cluster center’s range of influence parameter
RMSE Root Mean Square Error
SCADA Supervisory control and data acquisition system
SOC Battery State of Charge
TSFM Takagi–Sugeno fuzzy model
WLTP Worldwide Harmonised Light Vehicle Test Procedure standard
x State vector
x̃ Extended state vector
y(k) Output of the actual system
ŷ(k) Estimated output
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Abstract: The transition from conventional to electric transportation has become inevitable in recent
years owing to the significant impact of electric vehicles (EVs) on energy sustainability, reduction
of global warming and carbon emission reduction. Despite the rapidly growing global adoption
of EVs in today’s electrical and transportation networks, energy storage in EVs, particularly in
regards to bulky size and charging process, still remains a major bottleneck. As a result, wireless
charging of EVs via inductively coupled power transfer (ICPT) through coupled coils is becoming
a promising solution. However, the efficiency of charging EV batteries via wireless charging is
hugely affected by misalignment between the primary and secondary coils. This paper presents
an in-depth analysis of various key factors affecting the efficiency of EV battery charging. Finite
element analysis (FEA) using Ansys Maxwell® is performed on commonly used coil designs such as
circular and rectangular coils under various misalignment conditions. In addition, various reactive
power compensation topologies applied in ICPT are investigated and the behavior of each topology
is observed in simulation. It is revealed that circular structures with S–S compensation topology show
more robustness in misalignment conditions and maintain the desired efficiency for a wider range of
displacement. A critical analysis of coil designs, compensation techniques and the combination of
both factors is accomplished and conclusions are presented.

Keywords: electric vehicles; inductively coupled power transfer; EV battery charging; misalignment;
coil design; compensation topology

1. Introduction

Transportation accounts for a large percentage of global energy consumption and
greenhouse gas emissions [1,2]. EVs are becoming more commercialized due to the global
transition from internal combustion engine vehicles (ICEVs) to EVs. Studies suggest that
the number of EVs is growing significantly due to their environment-friendly merits and
high efficiency [3]. In this regard, batteries are considered as the heart of electric trans-
portation [4,5]. Given that EVs essentially work on the basis of electricity, one vital issue
is to address the challenges of charging the electric reservoir of the vehicles, namely, the
batteries. Conventional conductive charging methods are still widely used; however, their
drawbacks such as wiring, trip hazards, contact wear and risk of tearing [6,7] are motivating
researchers to pursue the idea of wireless power transfer (WPT). Compared to conductive
charging, wireless charging offers safer, more convenient and more robust power trans-
fer [8,9]. In addition, wireless charging benefits from the advantages of automated charging
processes [10], i.e., the charging process becomes driver-independent. In the 1990s, the idea
of plug-in inductive charging was proposed [11–17], but the issue of plugging in the charger
cable remained unsolved until early 2000s, when the idea of contact-less charging was
significantly redeveloped [16]. Therefore, the design and production of efficient wireless
charging methods became more vital.
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Power is essentially transferred between two coils through the air medium [18] via the
ICPT system. The coupling between the two coils is evaluated by measuring the coupling
coefficient (k). The system is termed as tightly coupled if k > 0.5, and loosely coupled if
k < 0.5 [19]. The efficiency of the charging process is affected by the coupling coefficient,
which itself depends on the linkage flux and alignment between the coils [18,20–22]. Once
displacement is applied to the relative position of coils, the linkage flux reduces, resulting
in lower coupling and lower efficiency, and causing disturbance to the output power stabil-
ity [23]. Numerous solutions have been proposed by scholars to improve the misalignment
tolerance, e.g., enlarging the transmitter coil size or using multicoil structures rather than
single coil systems [23–26], albeit at an extra cost. The tolerance of WPT system against
displacement possess more importance in Dynamic wireless charging (DWC) systems than
static wireless charging (SWC) due to higher vulnerability of efficiency against misalign-
ment [27]. SWC refers to the wireless charging of an EV while the vehicle is stationary, such
as at home or in office parking, whereas DWC refers to charging an EV while it is moving
on the road, e.g., on highways. The emergence of DWC may revolutionize the EV industry
by alleviating the energy storage issue, which is a critical bottleneck of today’s costly
EVs [28]. The driving range of EVs can be extended by increasing the size and capacity of
the batteries, but this increases the price of the product for the customer [29]. Thus, the
idea of DWC could tackle the issue. Having said this, despite SWC being commercially
feasible, DWC has not been commercialized yet due to its significant challenges [10]. As
implied in [16], the investment cost of DWC may be as high as 10% of a highway lane.
To solve the misalignment issue, Ahmad et al. investigated the reduction of efficiency
due to misalignment by simulating different displacements applied to coils, and proposed
the concept of an “automatic alignment receiver system” to address the problem by em-
ploying Hall effect sensors and electromechanical motors to adjust the receiver coil to
the best possible aligned position [6]. However, this approach could make the charging
process slow and mechanically complex [30]. Therefore, in order to achieve an efficient
fast-charging system, it is necessary to have a highly misalignment-tolerant coupling circuit.
One factor that affects the coupling between the two coils is the use of shielding in the
couplers. Kushwaha et al. investigated variations of mutual inductance and efficiency of a
WPT system with and without shielding in various types of misalignment [18]. The effect
of shielding on the performance of the system depends on the structure of couplers, which
will be elaborated on later in this paper.

Section 2 demonstrates a general classification of different misalignment types. Since
the theoretical calculations of mutual inductance of coils under misaligned conditions are
relatively complex [31], the behavior of a WPT system in misalignment is analyzed using
finite element analysis (FEA) simulation with Ansys Maxwell®, while the effect of coil
shape on magnetic coupling is investigated in Section 3. Section 4 includes the analysis of
power transfer efficiency under different compensation topologies during misalignment
conditions using ANSYS Simplorer® software. Based on the investigations on different
types of coil designs for different misalignment conditions, a conclusion is presented in
Section 5.

2. Classification of Different Types of Misalignments

Fundamentally the function of a WPT system relies on two separate coils forming
mutual inductance. Any alterations in the shape and position of these two coils is known
as misalignment and leads to a deforming airgap, which alters the mutual inductance
and thus affects the transferred power [32]. This can put the stability of the system at
risk, as well as producing oscillations in output voltage [33]. Moreover, misalignment
creates challenging safety issues due to increased chances of electromagnetic exposure [34].
In [33], a classification of different misalignments is presented for different positions of two
square coils. The two coils are perfectly aligned when the planes are close enough and both
axes are parallel to each other, as shown in Figure 1. There are different classifications of
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misalignment in the literature. In this paper, displacements are categorized by the type of
movement, which can be either translational or angular.

Figure 1. Perfectly aligned coils: (a) rectangular coils, (b) circular coils.

Various structures of coils have been introduced by scholars. The design of the coil
impacts the magnetic flux distribution and the linked flux between the two coils [35,36].
Moreover, mutual inductance, self-inductance and the coupling coefficient are affected by
the design of coils [35]. Mostak et al. [37] has shown the impact of the core on the coupling
coefficient in horizontal misalignment. As reported, the core significantly increases the
coupling coefficient. Misalignment in cases of circular- and rectangular-shaped coils have
are further elaborated in this paper.

The misalignment phenomenon occurs when either translational or rotational displace-
ment occurs in one or both of the coils; thus, there are two main types of misalignment:

(1) Translational misalignment;
(2) Angular and rotational misalignment.

Translational misalignment refers to either lateral or longitudinal displacement of
planes with respect to each other, as shown in Figure 2a,b. Therefore, the linkage flux is
reduced, resulting in reduction of MI, and the system enters loose coupling mode, with
diminished efficiency [38,39]. In [16], longitudinal and lateral misalignments are referred
to as X-axis and Y-axis misalignments, respectively.

Figure 2. Misalignment forms of rectangular coils: (a) longitudinal, (b) lateral, (c) rotational,
(d) angular.

In Figure 2c,d rotational misalignment is depicted where one plane rotates around
its axis either in-plane or out of the parallel plane, classified as rotational and angular
misalignment, respectively. In practice, there is a high possibility of a combination of
different types of misalignments occurring. Although perfect alignment is desirable, placing
the vehicle at the exact point of perfect alignment does not necessarily guarantee the best
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performance, since the load of the vehicle alters the height of the airgap; thus, changing the
airgap between the two coils results in a different MI and different efficiency. This situation
is not considered to be misalignment and is categorized as vertical variation [18].

In addition to rectangular structures, circular coils are also employed in practice.
Although both systems are based on mutual inductance and magnetic interaction between
the two coils, their tolerance to misalignment differs hugely. As shown in Figure 1b, in the
circular design, as long as the two planes are parallel, any flat rotation in the position of the
coils does not change the linked flux density. In addition, due to the intrinsic symmetrical
geometry, there is no difference between lateral or longitudinal displacement in circular
pads. Therefore, as depicted in Figure 3, the possible displacement scenarios for circular
structures diminishes to two classes, i.e., translational and angular misalignment.

Figure 3. Misalignment in circular coils: (a) translational, (b) angular.

3. The Effect of Coupler Structure on the Efficiency of a WPT System

As described earlier, the performance of a WPT system is affected by the coupling
coefficient [40]. The coupling coefficient is considerably affected by coupler design; thus,
the structure of the magnetic couplers is one of the most substantial factors in a WPT
system [41]. More precisely, the coupling coefficient determines what portion of the flux
created by the primary coil is linked with the secondary coil [10]. The rest of the flux that is
not linked with the secondary is termed as flux leakage. As a result, the voltage induced in
the secondary coil depends on the coupling coefficient. The relation between the coupling
coefficient and mutual inductance is shown in (1):

M = k
√

LpLs (1)

Equation (1) indicates the linear relationship between mutual inductance (M) and
coupling coefficient (k). The results of the simulation can compute M, which then can be
used to find the efficiency of the system [18]. Thus, in order to investigate the impact on
the efficiency of a WPT system, the mutual inductance and the coupling coefficient can be
analyzed; then, the efficiency can be derived from the results.

Couplers are the most substantial part of a WPT system and should have high coupling
coefficient and good misalignment tolerance [10]. Research on square coil design [42–44] and
circular design [45,46] has been presented in the literature. Utilizing different coil geometries
can change the magnetic coupling considerably [47]. Various structures have been proposed
by scholars to achieve the desired characteristics. Conventionally, couplers used in EV
charging have either a flat spiral circular shape or a cylindrical spiral solenoid [16]. Compared
to solenoidal types, the flat spiral coils offer various advantages including compactness,
robustness and light weight [31]. Coil geometries vary from basic structures such as circular
and square-shaped pads to more complex designs such as double D (DD) and DD-quadrature
(DDQ) [48]. Covic and Boys [16] presented a review of different coupler structures and
analyzed the performance of interoperation of different coupler designs, showing the tolerance
of each design to displacements in the x- and y-axes. In a comparison between circular
pads and polarized solenoidal pads, circular pads were found to have poorer coupling
ability. However, polarized pads are restricted in terms of the direction in which the vehicle
approaches the pad, while circular pads can be approached in any direction [16], proving that
circular pads are strongly robust against rotational misalignment. Li et al. argued that for
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similar size, DD coils provide a better coupling, with a charging area almost two times larger
than that of a circular pad, making them a possible solution for DWC [41].

Although using DD coils can improve the lateral misalignment tolerance, in the
EV industry, circular-shaped and square-shaped coils are mostly used for static wireless
charging [47]. Both circular and square-shaped (including rectangular) geometries offer
a single-sided field that goes through the coil from its front [10,49]. The higher coupling
coefficient of circular geometries compared to square-shaped or rectangular coils has
been pointed out by scholars [50]. However, there still remains a lack of analysis of their
performance in misalignment. The proposed assessment is based on the comparison
of coupling coefficients computed by the simulator. Apart from the coil structure and
displacement, there are other factors such as shielding that could affect the result. Patil et al.
compared the coupling coefficient and misalignment tolerance of various structures such as
circular, combined circular and square, circular with ferrite bar, bipolar and three-circular
coils [10]. It was concluded that the bipolar structure demonstrated the best performance
without shielding, whereas with aluminum shielding, the coupling coefficient of circular
coils was less affected and thus achieved better performance than bipolar pads. As a
general conclusion, the effect of shielding on couplers with a single-sided flux path is
low, while it has a considerable impact on couplers with a double-sided flux path. This is
because the double-sided coils have half of their flux on the front side and half on the rear
side, while single-sided pads offer the advantage of having most of their flux on one side,
with only a small portion making its way through the back [41]. Nevertheless, given that
the computations without considering the effects of shielding are still valid [51], it is not
included in this paper. Moreover, different coil shapes can be used interchangeably, e.g., a
circular coil can be placed as a secondary coupled with a square-shaped primary. However,
the following simulations are executed on identical coupled coils.

3.1. Circular Coils

Circular pads are the most reported structure and the most widely used couplers
for SWC charging in EVs [10,50,52,53]. Due to the nature of circles, there is no difference
between lateral and longitudinal displacement in this design, i.e., it is non-directional [52].
In addition, due to the symmetrical shape, rotational displacement is not applicable for
this type of coils. In this section, the behavior of a coil set during lateral and angular
misalignment is examined. Moreover, the effect of height alteration between the two coils
is also investigated. To evaluate the behavior of the couplers in misalignment, various
parameters such as magnetic field density, coupling coefficient and mutual inductance
were computed by simulation using ANSYS Maxwell ®. The simulation was executed
in a boundary area with relative permeability of 1 and conductivity of 0; this boundary
emulates ambient conditions identical to air.

In order to calculate the coupling coefficient, this simulation was performed in magne-
tostatic mode and a parametric sweep was executed to analyze the alterations experienced
by the coupling system during misalignment conditions. The values of the parameters
used for the simulation are presented in Table 1. The airgap between the coils was set to
one quarter of the coils’ average diameter [54].

Table 1. Simulation parameters for circular coupler set.

Parameters Values

Current in Rx 10 A

Coil inner radius (Tx and Rx) 50 mm

Coil outer radius (Tx and Rx) 70 mm

Vertical distance between coils 30 mm

Tx turns 20

Rx turns 20
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To better represent the issue, relevant figures are provided where needed. Given that
mutual inductance is not a function of current, there is no load applied to the secondary coil,
i.e., the secondary coil is an open circuit. The effects of induced voltage and current (in order
to assess the efficiency rate) in the secondary coil are analyzed in detail in further sections.

Figure 4 depicts the distribution of magnetic flux density around the transmitter. To
analyze the effect of misalignment on the coupling coefficient and mutual inductance, the
receiver coil was first moved both vertically and horizontally and the output parameters
were computed at certain distances; the same approach was implemented for the angular
(tilted) displacement. In the final stage, the values were plotted against different variables
to assess tolerance against each type of misalignment. Figure 5a shows that the coupling
coefficient decreases hyperbolically when the height of the secondary coil increases from 5
to 200 mm; in this case, the coupling coefficient drops from around 0.6 to close to zero. In
Figure 5b, lateral displacement in applied to the secondary coil. As can be seen, the curve
plunges to zero at a point regarded as the “null coupling position” or “flux cancellation”
area, and rises again as the displacement increases [40,52]. The reason for this local zero
coupling area is that at this particular distance, the amount of flux intersected by the
secondary pad is equal to the intersected flux in the reverse direction, resulting in a net flux
equal to zero. Ke and Chen et al. developed a method to correct this phenomenon [40]. In
this case, the flux cancellation occurs at around 80 mm lateral offset, confirming the results
of the empirical formula derived by [40] and implying that the flux cancellation zone of
circular pads occurs at a displacement of approximately 50% of the coil outer diameter.
However, this can vary based on the airgap between the two coils. Figure 5c represents the
alterations of the coupling factor with angular misalignment from 0 to 20 degrees.

Figure 4. Magnetic flux density of perfectly aligned circular coils with 30 mm vertical distance.

3.2. Rectangular Coils

Another basic shape for couplers is rectangular. To obtain fair comparison results,
the surface area of the rectangular coil in the x-y plane (7520 mm2) is kept close to that of
circular coil (7540 mm2). This means that the quantity of copper used for manufacturing
both structures is the same. The simulation parameters are shown in the Table 2. The
magnetic flux distribution around the rectangular coil is shown in Figure 6.

Rectangular and square-shaped geometries have been widely investigated by schol-
ars [18,31,33,55,56]. The rectangular design creates a polarized magnetic flux spread. Thus,
the flux linkage is better than circular design coils [57] and is suitable for mid-range ICPT
systems [56]. Wang et al. investigated a rectangular coupler set at a fixed distance of 5 cm
to analyze lateral and angular misalignment effects [56]. However, rotational misalignment
was not covered. Kushwaha et al. examined the misalignment tolerance of rectangular
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coils and confirmed that the results of analytical and experimental methods are in close
agreement with simulation results [18]. In [33], a detailed analysis was conducted on
square-shaped coils with all types of misalignment. However, the null coupling zone
was not analyzed. The layout of the magnetic flux density of rectangular coil geometry
is depicted in Figure 6. As can be seen, under vertical and angular misalignment, the
rectangular coil experiences a similar pattern to that of a circular structure. Figure 7b shows
sensitive this structure is to lateral displacement, while longitudinal offset has less of an
impact on the linked flux. The null coupling zone occurs at approximately 60 and 105 mm
for lateral and longitudinal displacements, respectively. In addition, such coils are vulnera-
ble to rotation of the secondary coil, i.e., when the vehicle approaches the ground pad at
an angle. Figure 7d shows that rotational misalignment leads to a significant reduction
in coupling coefficient from around 0.45 to below 0.15. However, this alteration varies
based on the airgap between the windings. For an airgap of 30 mm, the alteration range is
significantly reduced.

Figure 5. Circular coil under misalignment conditions: (a) against height of the secondary coil,
(b) lateral misalignment, (c) angular misalignment.

Table 2. Simulation parameters for rectangular coupler set.

Parameter Value

Current in Rx 10 A

Coil length (Tx and Rx) 140 mm

Coil width (Tx and Rx) 88 mm

Vertical distance between coils 30 mm

Tx turns 20

Rx turns 20
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Figure 6. Magnetic flux density of perfectly aligned rectangular coils with 30 mm vertical distance.

Figure 7. Rectangular coil under misalignment conditions: (a) against height of the secondary coil,
(b) lateral and longitudinal misalignment, (c) angular misalignment, (d) rotational misalignment.

3.3. Comparative Analysis

In order to visualize the differences between the two coil shapes, in this section, the
results of both structures are superimposed. As depicted in Figure 8a, a circular pad offers
better tolerance to vertical displacement, as the rectangular coil experiences a steeper slope.
At 50 mm height, the circular pad considerably outperforms the rectangular coil with a
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50% higher coupling coefficient. Figure 8b indicates that the coupling coefficient of the
rectangular coil plunges more drastically when lateral displacement is applied. However,
due to the lengthened geometry of the rectangular coil, it achieves better performance
than the circular coil in terms of longitudinal misalignment. This could make such coils
a suitable choice for DWC, where high tolerance to longitudinal misalignment is more
desired. The behavior of the system against angular misalignment is shown in Figure 8c,
where the circular coil outperforms the rectangular pad slightly. Given that both structures
require the same amount of copper for production, circular coils achieve greater tolerance
to against misalignment overall. Moreover, such couplers offer better performance under
rotational displacement due to their intrinsic neutrality to flat rotation.

Figure 8. Circular and rectangular pads against different types of misalignments: (a) vertical distance,
(b) lateral and longitudinal displacement, (c) angular misalignment, (d) rotational misalignment.

4. Impact of Compensation Topology on System Performance

Inductive power transfer can be efficient when the two coils are at close relative dis-
tance of a few centimeters, but its efficiency plunges drastically as a result of increased
leakage inductance when the distance is increased [58,59]. The inductive nature of the cir-
cuit and high leakage flux leads to a high reactive current and, thus, a high VA rating of the
power source. In addition, the excessive current results in higher losses and subsequently
lower efficiency. Therefore, the presence of a compensatory capacitor is vital [10]. The
simultaneous use of capacitive and inductive elements results in a resonance state, which
realizes the concept of resonant coupling. The value of the resonant capacitors depends
on the desired frequency of resonance. There is a trade-off between choosing the desired
frequency and reactive components XL, XC, in that higher frequencies lead to a higher

146



Batteries 2023, 9, 106

quality factor, but may cause higher losses in the switching stage [60]. By operating at the
resonance frequency, the capacitor cancels out the effect of the inductive component, i.e.,
cancelling out the leakage inductance effect; thus, the volt–amp capacity of the inverter on
the primary side is optimized. When reducing the phase angle between the primary voltage
and current to zero, known as the zero phase angle (ZPA), the power factor (PF) hovers
around 1, which is desirable. ZPA maintains the necessary conditions for soft switching of
electronic components [41]. Depending on the application, the tuned frequency at which
the circuit is designed to operate is determined. Therefore, a precise control system is
needed to keep the circuit operating at the resonance frequency even when the coupling
is changed due to the misalignment. This frequency control is significantly dependent
on the compensation topology [30]. In compliance with the SAE J2954/1 standard, the
nominal frequency should be 85 kHz [10]. Nevertheless, the frequency can range between
81.38–90 kHz, which is the agreed frequency spectrum internationally, as it has the least
interference with other facilities [10]. One widely used method of compensation comprises
only two capacitors; this is also the most economical approach [36]. Therefore, there are
four principal compensation networks classified based on the position of compensatory
capacitors in the circuit. The capacitors are placed either in series or parallel on both the
primary and secondary sides; hence, there are four basic designs of compensation network—
series–series (S–S), series–parallel (S–P), parallel–series (P–S) and parallel–parallel (P–P).
Each of these topologies has its own merits and drawbacks, which results in a trade-off
based on the desired application. Sohn et al. investigated all four schemes in terms of
maximum efficiency, maximum transferred power, load-independency, k-independency
and no magnetic coupling performance, concluding that current-sourced S–S and S–P
topologies have better performance [61]. However, the author mentions that there remains
uncertainty regarding which compensation is the most suitable choice depending on the
application. In another study, Shevchenko et al. conducted a comprehensive review of
basic compensation topologies, as well as a comparison of more complex hybrid compensa-
tion approaches [47]. It was concluded that using series primary compensation leads to
higher efficiency amongst the four abovementioned topologies [47]. Apart from these four
basic compensation strategies, many scholars have proposed more complex compensation
topologies. For instance, Villa et al. investigated the performance of four basic topologies
under misalignment conditions to find a high-misalignment tolerant design, and presented
the use of SPS topology in an ICPT system [30]. In [47], it is concluded that amongst
complex topologies, LCL and LCC are more advantageous, with an efficiency of more than
95%. In this paper, however, the four basic topologies are investigated and other more
complex designs are excluded. Although in some designs the circuit is driven by a current
source, in this paper, a voltage-sourced circuit is evaluated.

The impact of different compensation topologies on the efficiency of a WPT system
under misalignment conditions is essentially based on how the circuit reacts to changes
applied to the circuit. Different parameters such as mutual inductance (equivalent to the
coupling coefficient) [62], operating frequency and load variations eventually result in
changes in system efficiency. Here, the aim of the analysis is to determine the impact of
mutual inductance alterations on the efficiency of power transfer. It has been determined
that each compensation topology has a certain behavior to mutual inductance alterations,
which will be analyzed in this section.

In order to investigate the circuit behavior, an equivalent model of the system is
required (see Figure 9). The load impedance can be modeled as reflected impedance to the
primary side, as shown in Figure 9c.

Zr = − jωMI2

I1
(2)

I2 =
jωMI1

Z 2
eq

(3)
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Figure 9. Coupled circuit: (a) basic model, (b) equivalent model of induced voltages, (c) reflected
impedance to the primary side.

Substituting (2) in (3) returns the reflected impedance relation:

Zr =
ω2M2

Z 2
eq

(4)

The reflected secondary impedance to the primary side is derived in (4), where ω is the
resonance frequency, Zeq

2 is the equivalent impedance of the secondary side and Zr is the
reflected Zeq

2 to the primary side. The formation of capacitor and load determines the value
of Zeq

2 and, consequently, Zr. Thus, it is vital to calculate the equivalent impedance based
on the compensation topologies used in primary and secondary sides (Figure 10). The
equivalent impedance of the secondary side (neglecting the parasitic winding resistance)
can be found using (5) and (6):

Series secondary compensation : Zeq
2 = jωLS +

1
jωCS

+ ZL; (5)

Parallel secondary compensation : Zeq
2 = jωLS +

1
jωCS +

1
ZL

. (6)

Using (4) to transfer Zeq
2 to the primary side, the input impedance seen by the source

is determined (Table 3). The circuit can be fed by either a voltage source or current source.
In Figure 11, the circuit is driven by voltage source Vs, where the load is represented by
ZL, which is considered as a purely resistive load. The parasitic resistances of the primary
and secondary windings are modeled by R1 and R2, while L1 and L2 represent the self-
inductances of the respective windings. The secondary capacitor is selected such that the
imaginary part of the secondary impedance becomes zero to achieve the maximum transfer
capability [63]. To achieve the maximum efficiency, the secondary capacitor is determined
by (7) [28].

Secondary side capacitor : C2 =
1

ω2 L2
(7)
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Figure 10. Inductive power transfer system.

Table 3. Total impedance seen by the source [10].

Compensation Topology Reflected Impedance

S–S
(

R1 + j
(

ωL1 − 1
ωC1

))
+ ω2 M2

R2+RL+j
(

L2ω− 1
C2ω

)
S–P

(
R1 + j

(
ωL1 − 1

ωC1

))
+ ω2 M2

R2+
RL

1+jRLC2ω +jL2ω

P–P 1
jωC1+

1

R1+jL1ω+
ω2 M2 (1+jRLC2ω)

RL+(R2+jL2ω)(1+jRLC2ω)

P–S 1
R1+jL1ω+ ω2 M2

R2+RL+j
(

L2ω− 1
C2ω

)+jC1ω

Figure 11. Basic compensation topologies. (a) series–series, (b) series–parallel, (c) parallel–parallel,
(d) parallel–series.
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The resultant impedance is reflected to the primary side, which is seen by the source.
The primary capacitor compensates for the reactive power and, thus, the imaginary part
of the equivalent impedance seen by the source (including the reflected impedance) is
eliminated to ensure that the circuit is operating in ZPA mode; this achieves the minimum
VA rating of the power source [63]. Depending on what topology is used, the capacitance of
the primary capacitor is determined [29,61,63,64]. The values of the primary and secondary
compensating capacitors are determined such that the system resonates at the desired
frequency of 85 kHz. The value of the primary capacitor, depending on the corresponding
compensation topology, is given by Table 4.

Table 4. Primary capacitance for different topologies [64].

Compensation Topology Primary Capacitance

S–S 1
ω2

0 L1

S–P 1
ω2

0

(
L1− M2

L2

)

P–P L1− M2
L2(

M2 R
L2

2

)2

+ω2
0

(
L1− M2

L2

)2

P–S L1(
ω2

0
M2
R

)2
+ω2

0 L2
1

The performance of the compensation network is assessed by computing the efficiency
of the power transmitted by the transmitter and acquired by the load. Although in practice,
the load is often a rectifier, filter and switched controller, it is possible to model the load
with an equivalent resistor [31]. To evaluate the efficiency, simulations were executed in
ANSYS Simplorer®. The results previously achieved using ANSYS Maxwell® (in Section 3)
were used to determine the mutual inductance for simulation in this section. The Maxwell
results indicate that the primary and secondary inductances remain constant at 59 uH,
whereas the mutual inductance changes as a result of changing the relative coil positions.
A constant resistance is placed at the secondary terminals as a load. The simulation was
executed in AC-analysis mode in Simplorer to investigate the system efficiency across a
wide range of frequencies, including the resonant frequency. The efficiency was then found
by computing the ratio of the real power received on the secondary side to the transmitted
real power on primary side [65]. The efficiency was plotted in the frequency domain to
compare the consistency of the resonance frequency.

η =
PReceived

Ptransmitted
(8)

To investigate the overall behavior of various combinations of different compensation
methods with different coil designs, simulations were executed for all four basic com-
pensation topologies with both circular and rectangular coils. A lateral displacement of
0–200 mm was then applied to the secondary coil and the efficiency of the system was
measured during misalignment. It is desirable that the system maintain its maximum
efficiency for a wide range of misalignment.

4.1. S–S (Series–Series)

S–S compensation is widely used in WPT charging for EVs [23]. In terms of copper
mass, S–S is the best choice among all four options [47,51]. Another merit of this topology
is that the required capacitor for compensation is independent from the coupling coefficient
and load variations [10,28,58,59,63]. Therefore, the frequency of resonance remains constant
when misalignment occurs (see Figure 12a) [28]. This stability of resonant frequency during
misalignment makes WPT suitable for applications with high misalignment requirements.
Furthermore, the current drawn on the secondary side depends upon the AC source regard-
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less of the voltage induced at the secondary coil, which is beneficial for battery charging
purposes [66]. Another merit of this design is that since the imaginary part of the reflected
impedance remains zero (see Table 3), the unity power factor is maintained during misalign-
ment [28,67]. As a result, S–S-compensated systems are the most appropriate for EV charging
applications [28,68,69]. Moreover, in terms of charging requirements, this topology can pro-
vide constant voltage and current for battery charging applications [28,70,71]. Nevertheless,
one major drawback of S–S topology is its performance at light-load conditions and when
no receiver is on the secondary side [28]. This is because the equivalent impedance seen by
the primary side is reduced when the coupling is weakened, which results in a tremendous
current on the primary side and an extreme voltage at the secondary terminal when the circuit
is supplied by a voltage source [10,41]. Therefore, working in zero-coupling mode must
be avoided [47].

Figure 12. Cont.
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Figure 12. Resonant frequency mutations of different compensation topologies: (a) S–S, (b) S–P,
(c) P–P, (d) P–S.

4.2. S–P (Series–Parallel)

Due to the series primary connection, both S–S and S–P designs have the advantage
of transferring higher power than rated [59]. S-P topology, however, lacks the benefit
of independence from mutual inductance, in contrast to S-S topology. In addition, it
requires a larger capacitor on the primary side. S–P compensation is usually employed
to maintain a constant voltage output [63]. Nevertheless, it has the hazard of excessive
current when the secondary side is not in proximity due to the negligible impedance
seen by the source [10]; therefore, a current limit mechanism is needed. As depicted in
Table 4, the primary capacitance changes with mutual inductance alterations, and given
that the capacitor is fixed in practice, a change in the mutual inductance leads to significant
resonance frequency mutation (see Figure 12b).
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4.3. P–P (Parallel–Parallel)

The relationships of primary capacitance and impedance in this topology are relatively
complex. Using a parallel capacitor in the primary side is safe in case of the absence of
a secondary coil [59]. However, this also leads to large input impedance, which requires
high voltage to transfer power sufficiently [47]. A merit of this technique is that if an
appropriate alignment is guaranteed by the coupling unit, it offers a high efficiency with
suitable robustness against frequency mutations (see Figure 12c). However, since the
value of the primary capacitor depends on both mutual inductance and load impedance
(see Table 4), this method has a low misalignment tolerance, as shown in Figure 12c [28].
Another disadvantage of this technique is its low power factor [10]. This topology is not
widely investigated due to its numerous disadvantages [10,65,72].

4.4. P–S (Parallel–Series)

Due to the parallel connection on the primary side, the relationship of the primary
capacitor in this topology is also relatively complex. The primary capacitor is strongly
affected by mutual inductance and load. Compared to P–P, the primary capacitor for P–S
has a steeper relation with mutual inductance, as it decreases with the fourth power of
M. Another drawback of this design is that it requires more copper than the other three
topologies (30% more than S–S) [47]. Unlike other topologies, the reflected impedance
in P–S is inversely correlated with the mutual inductance, meaning that the impedance
increases when misalignment occurs; thus, the current is limited during misalignment
(Table 3). A major advantage of using P–S topology is that it provides soft-switching for
semiconductors [47]. However, it is not capable of transferring sufficient power when
misalignment happens [28,70]. It also has a low tolerance to frequency mutations [28],
especially in misalignment conditions (see Figure 12d).

4.5. Comparative Analysis

Figure 12a–d reveals that there is a trade-off between misalignment tolerance and ro-
bustness to frequency mutations. Using series compensation on the secondary side results
in higher efficiency during misalignment, but lower tolerance to frequency alterations. This
can increase costs, since it requires a high frequency control system to maintain the exact
optimal frequency with high precision. On the contrary, using a parallel compensation on
the secondary side leads to higher frequency tolerance, but misalignment tolerance is com-
promised. Each compensation technique has been simulated under the same parametric
conditions (see Figure 12a–d). In [10], a comparison indicates that S–S and P–S topologies
demonstrate higher efficiency at low mutual inductances than S–P and P–P, meaning that
having series compensation on the secondary side offers better tolerance under misalign-
ment [73]. A reconfigurable resonant and hybrid circuit for the ICPT system has been
proposed to sustain the changes in load and misalignment variation [74]. However, in
terms of economic analysis, using a series capacitor on the primary side, namely, S–S or S–P,
is more suitable for high-power applications [51]. Sohn et al. [61] concluded that in terms
of maximum efficiency, S–S and P–S schemes offer complete k-independency, meaning that
S–S and P–S offer better performance in misalignment conditions.

To compare the performance of all four schemes, the efficiency of each topology
was measured at the frequency of 85 kHz while lateral misalignment was applied to the
secondary position at certain steps.

Due to the changes in coupling, the resonant frequency was shifted when the misalign-
ment was applied to the system. Figure 12a,d indicates that using a series capacitor on the
secondary side (S–S and P–S) mitigates the frequency shift caused by misalignment; hence,
better performance is achieved during misalignment. It should be noted that although
the efficiency of P–S drops more sharply than S–S, the frequency shift is not considerable
and the efficiency can be maintained around the desired area by using a frequency control
circuit. However, this can increase the production costs. Figure 13 implies that S–S has
the most robust curve under misalignment, whereas P–P and S–P experience more deteri-

153



Batteries 2023, 9, 106

oration in efficiency as the mutual inductance decreases. S–P demonstrates the weakest
misalignment tolerance of all the topologies.

Figure 13. Misalignment tolerance of different combinations of coils and compensation topologies:
(a) S–S, (b) S–P, (c) P–P, (d) P–S.

5. Limitations and Future Trends

Various limitations still persist in EV wireless charging systems. Conventional control
methods of WPT charging systems use communication devices; however, there can be
delays data transmission causing unnecessary energy loss. In addition, despite extensive
research in achieving high-misalignment-tolerant designs; a high risk of electromagnetic
field exposure remains during misalignment. Moreover, the interoperability of different
charging coil designs and circuit configurations lacks careful consideration of misalignment.

The future prospects of this technology demand further investigation of the following
topics:

• A reconfigurable arrangement of coil design that can switch different arrangements of
coils to offer high coupling coefficients between EVs and chargers for each misalign-
ment condition;

• Instead of using communication between the EV and the charging circuit, a new control
using system parameters whose changes reflect misalignment between the charging coils,
e.g., mutual inductance deviations, should be a candidate for future research;

• Current studies on the thermal failure of the ferrite core employed in coil construction
are inadequate, making it difficult to draw any firm conclusions;

• Although dynamic wireless charging is a promising solution to the challenges of EVs,
there are limited studies considering misalignment with this type of EV charging.
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6. Conclusions

A comparison of non-polarized coupler structures and basic compensation topologies
used in EV battery charging is presented in this paper. It was found that with regards
to misalignment tolerance, circular pads outperform rectangular structures due to their
maintaining a higher coupling coefficient, as well as offering freedom of approach direction.
In terms of compensation topology, it was concluded that using series compensation on the
secondary side leads to higher misalignment tolerance, while system robustness against
frequency alterations is compromised. The S–S topology demonstrates the best performance
considering its independency from load and coupling mutations and its ability to provide
suitable charging conditions for EV battery charging applications. Given that there are
various trade-offs between different designs, selection of the most optimal mixture of coil
structure and compensation topology must be determined based on the EV specifications,
e.g., chassis height, size, dimensions and battery capacity.
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Abstract: Nowadays, several alternatives to internal combustion engines are being proposed in
order to reduce CO2 emissions in freight transportation and citizen mobility. According to many
experts, the use of electric vehicles constitutes one of the most promising alternatives for achieving
the desirable reductions in emissions. However, popularization of these vehicles is being slowed by
long recharging times and the low availability of recharging stations. One possible solution to this
issue is to employ the concept of battery sharing or battery swapping. This concept is supported by
important industrial partners, such as Eni in Italy, Ample in the US, and Shell in the UK. This paper
supports the introduction of battery swapping practices by analyzing their effects. A discrete-event
simulation model is employed for this study. The obtained results show that battery sharing practices
are not just a more environmentally and socially friendly solution, but also one that can be highly
beneficial for reducing traffic congestion.

Keywords: electric vehicles; mobility; battery sharing; battery swapping; discrete-event simulation

1. Introduction

Electric vehicles (EVs) are among the most prominent and valid alternatives to internal
combustion-based vehicles [1,2]. Even in industrialized and technologically advanced
countries, some customers are insecure regarding the transition to EVs [3]. Some studies
have assessed the life cycle of EVs and have concluded that greenhouse gas emissions
are reduced when these vehicles are employed [4,5]. The life cycle of EVs includes their
production, use, and recycling. However, toxicity level increases because of the higher
exposure to chemicals and metals during the life cycle of EVs [4]. The initial cost of EVs is
expected to be higher than conventional diesel or petrol vehicles. Still, in the long run, the
cost of powering them is found to be much cheaper [6,7]. In addition, hydrogen vehicles
seem to be an alternative in practice, but unfortunately they are still expensive to refuel.
This is due to the fact that hydrogen is expensive to produce and refine [8]. They are similar
in design to EVs, since they are also powered by fuel cells, which are characterized by
an anode, a cathode, and a catalyst that triggers the separation of protons and electrons.
Electrons are removed from the hydrogen, sent to the power motor, and combined with
oxygen to form water vapor. The energy generated can be used both to power the electric
engine directly or to recharge small lithium-ion batteries, which allows the vehicle to store
the energy for later use.

Despite of their huge potential, the large-scale dissemination of EVs is hindered by low
efficiency and long charging times. Charging times vary depending on the technology [9]
used. These can range from around half an hour to several hours. Waiting for about
half an hour (or even more) for vehicles to recharge is not handy, realistic, or compliant
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with modern commercial transportation requirements, including the car-sharing and ride-
sharing mobility modes. In addition, charging at home is not an option for EV users that
do not have home charger. Some representatives of the automotive sector and battery
manufacturers are working to provide valid alternatives to lithium-ion batteries in terms of
duration and charging time. However, this will require big investments and a consistent
research effort.

To the best of our knowledge, given the urgency and rapid changes required, a more
straightforward solution relies on the concept of battery sharing (BS) [10,11], which is also
known as battery swapping. This refers to a situation where drivers of EVs, once arrived at
a charging station, remove exhausted batteries and replace them with the charged batteries
previously left by somebody else. This approach might be more convenient [12], and
it gives rise to a scenario that may be enhanced by previously developed technologies
provided by companies such as Ample in the US, Eni in Italy, or NIO in China.

The considered BS scenario has several requirements. First of all, batteries need
to be standard or clustered in as few categories as possible. Secondly, they must be
redistributed, since there might be more vehicles traveling in one direction rather than the
other. Whenever these requirements are correctly fulfilled, BS may lead to an increase in
efficiency of commercial travel, a reduction in waiting times at charging stations, and a
more handy and user-friendly way to use EVs [13].

Battery sharing is also a more environmentally and socially friendly scenario for the
following reasons:

• The service life of batteries is decoupled from the service life of vehicles. In this way,
the use of batteries might significantly increase.

• Batteries would be managed by a few easy-to-control companies, thus reducing the
risk of illegal disposal.

• The need to redistribute batteries may give rise to many new job positions.

The main goal of this work is to study the performance of some indicators when a BS
strategy is employed. For this, we use a discrete-event simulation model that allows us to
measure the benefits of employing such a strategy and gain insight into how BS can support
the popularization of EVs. The remaining sections are distributed as follows. Section 2
discusses the current state of the art on EVs and battery sharing. Then, Section 3 introduces
the main components and the architecture of our simulation model. This simulation model
is available at https://github.com/mattianeroni/batteryswap (accessed on 8 April 2023).
Section 4 describes the algorithms incorporated into the simulation, which allows the
reader to better understand how it works. In Section 5, the BS scenario is validated and
compared to a classic approach with no sharing in several road networks across Europe
and considering dynamic conditions. Finally, conclusions and future research perspectives
are discussed in Section 6.

2. Related Work

Researcher interest in studying energy consumption has increased exponentially during
the last decade. According to the Scopus database, 205, 540 documents have been published
between 2010 and 2022 concerning energy consumption. This trend is associated with the
energy crisis, increased energy demand, and rising energy prices. Many of these documents
focused on studying models to estimate energy consumption and investigate solutions to
reduce this consumption. One of these solutions is to utilize EVs. These vehicles can substitute
traditional fossil fuel vehicles and can also include so-called unmanned aerial vehicles (drones).
EVs have a significant role in diminishing environmental pollution and counterbalancing the
effects of fossil fuel-based energy [4,14]. However, there are several obstacles that make it
difficult to complete the transition to sustainable transportation by utilizing electric power
systems. These include the potential increase in electric power demand beyond current
generation capabilities and the continued use of fossil fuel-based electric energy sources in
the industry [15]. In addition, while EVs are emission-free, the batteries used in them are not
environmentally clean in terms of production. Furthermore, an increase in EV penetration can
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lead to a rise in peak load demand due to unexpected individual EV charging times, which
implies that more power plants must be constructed to maintain grid stability. There are
several factors that influence consumer perception, such as the limited drive range [14] and
extended charging time of EVs [9,16]. International standards have been defined to regulate
the charging process of EVs, such as SAE J1772 and IEC 61851-1 [17]. For example, the IEC
61851-1 standard classifies charging systems in Europe and some other countries into four
modes. Each mode defines the charging power, protection installation, and socket type.

Sanguesa et al. [2] reviewed batteries and their technology in EVs. These authors
highlighted several battery characteristics, such as their capacity, energy density, specific
power, life span, internal resistance, and efficacy. These characteristics depend on the
battery technology. One of oldest and most widely used types of batteries is the lead-acid
battery [2,18]. Because of the low energy density of lead-acid batteries [19], the battery
industry faced developments in battery technology, and new types of batteries were devel-
oped, such as lithium-ion batteries [2,5] and zinc-nickel batteries [19]. Researchers have
compared between the developed battery types and investigated possible improvements in
their characteristics [2,19,20].

In recent times, various models for analyzing energy consumption of EVs have been
established in the scientific literature. These models generally involve the examination of
real-world data and investigating the impact of various factors on the energy consumption
of EVs. Li et al. [21] employ a design of experiments to analyze the statistical significance
of various factors that affect the energy consumption of EVs. Despite the large number
of potential factors, their study focuses on four factors and their interactions, utilizing an
empirical approach that has been tested with a real-world case. The results indicate that
the use of heating, ventilation, as well as air conditioning and topography has the greatest
impact on energy consumption compared to other factors. Yang et al. [22] investigate the
impact of the road tilt angle on the energy consumption of EVs. Their study quantifies
how the energy consumption increases as the tilt angle of the road increases on uphill
sections and decreases on downhill sections. In another work, Mediouni et al. [23] propose
a machine learning model for the prediction of the energy consumption based on vehicle
speed and acceleration, road tilt angel, road coefficient of rolling resistance, wind speed, and
extra weight carried in vehicles. Fiori et al. [14] present the Virginia Tech comprehensive
power-based EV energy consumption model (VT-CPEM) as a solution to enhance the
limited driving range and harness the energy obtained during braking. The proposed
model is an EV energy model that utilizes instantaneous data—such as vehicle speed,
acceleration, and roadway grade—to calculate the energy consumption of the vehicle
for a specific driving cycle. Chen et al. [24] emphasize the significance of predicting
future driving conditions such as vehicle speed, recognizing driving styles and patterns, or
anticipating terrain information. They use this information to optimize energy consumption.
Neural networks, which are primarily utilized for route and driving pattern recognition,
are presented as the most promising equivalent factor adaptation methods for energy
consumption management systems in EVs. Moreover, machine learning techniques are
shown to have the capability to enhance control decisions through the use of historical
and real-time driving data. Wu et al. [25] propose a system for collecting in-use EV data.
The system collected and analyzed approximately 5 months of data. It was found that
providing the driver with timely information on energy usage could lead to conscious
adjustments in driving behavior, which in turn results in a reduction in energy consumption.
An analytical model is also presented to estimate the instantaneous power and trip energy
consumption in real time. It is based on the principles of vehicle dynamics and the
correlation among various essential variables. The authors concluded that driving on
urban city streets requires less power compared to driving on freeways—notice that this
differs from the typical behavior of internal combustion vehicles. Wager et al. [26] studied
energy consumption and driving range of EVs under the influence of various parameters
using mathematical modeling. They found that the driving range is significantly reduced
under high speed, as well as under scenarios where the overall weight increases. This is
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particularly true when the vehicle has also to face headwinds (20 km/h or more) and a
roof rack. Their study also highlights that the combination of the 80% charge level limit of
fast DC charging, battery aging, and battery safety margins result in not utilizing the full
battery capacity. In other words, the battery weight is not being used but it significantly
contributes to the vehicle’s weight. Chang et al. [27] introduce an instantaneous power
modeling of EVs to study the effect of velocity, acceleration, road slope, and EV weight on
the battery power consumption. In addition, they consider the effect of an onboard charger
and regenerative braking on the battery charging power. All the mentioned models found
in the literature could potentially be used as an online energy management strategy for
on-board control logic [28].

The research directed to batteries is not limited to the estimation of energy consump-
tion and affecting factors, but researchers also considered applying a circular economy
regarding the manufacturing of batteries [29,30]. This research trend studies the handling
of battery waste and re-manufacturing of batteries, as well as the collection of used batteries.
Another research trend is focused on operational decisions concerning the utilization of
the EVs that used these batteries. Thus, researchers planned routes that minimize traveled
time and distance [31,32], resulting in the green vehicle routing problem [33]. Reducing
the travel time and distance could reduce the energy consumption of vehicles and, hence,
have a positive impact on the environment. In this context, approaches introducing battery
sharing (battery swapping) were introduced [34]. For example, Li et al. [35] studied energy
consumption in a vehicle routing problem of EVs where battery swapping is allowed. They
aimed to support logistics enterprises so they can reduce energy consumption and gas
emissions while delivering goods. This solution is an alternative to battery charging and
affects the planning of EVs routes. Utilizing battery sharing might help to overcome one of
the EV constraints presented as limiting driving range and long charging times. Thus, this
paper investigates this approach using a simulation model.

3. Simulation Components and Architecture

In this paper, the simulation model consists of several components, as illustrated in
Figure 1 and described in the following subsections. In addition, our simulation architecture
includes algorithmic modules that are described in Section 4.

Figure 1. General architecture of the developed simulation library.
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3.1. Batteries

Batteries are the lowest-level elements of the simulation. The proposed simulation
library offers the possibility of introducing new battery types. Each type is characterized
by a certain capacity (expressed in kWh) and can be limited to a specific vehicle, i.e.,
each vehicle may require a specific type of battery. Each battery instance is characterized
by level attributes that describe the remaining energy level. Batteries move around the
network carried by vehicles and can be left at charging stations or redistributed among
charging stations.

3.2. Vehicles

Vehicles are powered by batteries and move around the road network during a simu-
lation run. Even for vehicles, it is possible to define a set of vehicle types, and each vehicle
type will mount a certain number of batteries, all of them belonging to a specific type. It is
possible to associate a consumption rate (expressed in kWh per kilometer) with any vehicle
type, as well as a positive and negative slope rate, i.e., a percentage that quantifies the effect
of street slopes on vehicle consumption. Vehicle consumption is computed as follows:

consumption = L · c · (1 + s · θ)

where L is the road length, c is the vehicle consumption rate, θ is the slope of the road, and
s refers to the vehicle slope rate, which is positive in the case of positive slope and vice
versa. This relationship between road slope and EV consumption is based on the work by
Yang et al. [22] and Anselma et al. [28].

Each vehicle type may represent a different class of vehicle characterized by the
number of batteries and a specific consumption rate (which is associated with its weight).
For instance, we may define three types of vehicles representing trucks, sport utility vehicles
(SUVs), and city cars. Each of these vehicle types will have a different consumption rate
and will require a different number and type of batteries.

3.3. Distributors

Distributors are particular vehicles in charge of taking unused batteries in a charging
station and moving them to another station which is supposed to have a higher demand.
For the sake of simplicity, in this work we have assumed that the fleet of distributors is large
enough, so we do not need to worry about capacity limitations or recharging operations in
vehicles belonging to this fleet.

3.4. Stations

Stations are the network nodes where vehicles can stop to charge or swap batteries.
Charging takes place if no sharing is carried out, while swapping takes place only in case
of battery sharing. Stations are split into types, and each type is characterized by a certain
disbursed power (expressed in kW), a capacity, i.e., the number of vehicles that can be
processed at the same time, and a charging capacity, representing the maximum number of
batteries of each type the station can charge at the same time; if a station does not handle
any battery type, this number can be simply set to 0.

In our experiments, battery charge is assumed to be linear with time, as discussed in
Zeng et al. [36] and Cataldo-Díaz et al. [37]. In addition Cataldo-Díaz et al. [37] assumed
linear recharge at stations, despite the fact that this assumption might not be fully accurate
when using high recharging speeds. Hence, given a battery capacity C, a starting battery
power level, and the station disbursed power p, the charging time is computed as follows:

time = (C − level)/p
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3.5. Road Network

The road network is a directed graph including additional details that concern road
slope, charging stations, real-time vehicle positions, and distribution of batteries among
charging stations.

3.6. Runner

The runner is the main element of the simulation and is in charge of coordinating
and running all the simulation processes. Given the number of travelling vehicles in the
simulation N, the main process is designed to keep this number constant. Hence, it initially
instantiates and executes N processes (one per vehicle). Then, as soon as a process is
concluded, a new one is started. It may be represented as in Algorithm 1.

Algorithm 1 Main simulation process
Instantiate N vehicle trip processes
while Simulation is not concluded do

Get the concluded vehicle trip processes
for each process concluded do

Instantiate a new vehicle trip process
end for

end while

In the case of sharing, a parallel process is executed; this process is analogous to the
one mentioned in Algorithm 1. However, while the main process is in charge of keeping
constant the number of traveling EVs, i.e., the traffic intensity, this vehicle handles the
redistributors, so that the redistribution of batteries never stops.

4. Incorporated Algorithms

In this section, a deeper description of the algorithmic modules represented in Figure 1
is provided. The algorithms herein described are essential for the simulation to function.
Many alternative solutions can be designed and implemented in the simulation model,
which allows us to analyze their performance. Notice, however, that the objective of this
study is not to find an optimal solution, but rather to reproduce reasonable decisions a stan-
dard driver would make in his/her daily activity. The main decision-making processes to
consider concern how drivers define the path and how battery redistribution is carried out.

4.1. Driver’s Path Definition

The procedure for determining the path of a vehicle when traversing from point a to
point b involves the following steps:

1. Using the A∗ algorithm [38], find the shortest path from a to b.
2. If a path is not possible, we have a graph error and the trip is considered concluded

as well as excluded from the final statistics.
3. If a path can be covered without stopping at the charging stations, the trip is simulated

and the process concluded.
4. If b cannot be reached without stops, the algorithm iterates the nodes from a to b

looking for a charging station s.
5. If s exists and is on the original path, we simulate a trip from a to s, set a = s, and

go to step 1. Otherwise, if there are no stations on the path or the station s cannot be
reached with residual battery, the algorithm moves to the next step.

6. For each node i from the last reachable node to a, consider i as the root and start a
breadth-first search method [39], looking for a station outside the original path. If a
station is found, then simulate a trip to s, set a = s, and go to step 1.
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4.2. Battery Redistribution

The process of redistributing batteries among charging stations is extremely important
in periods when most of the vehicles are moving. In these periods, some stations could end
up without batteries. As mentioned above, each station has a charging capacity describing
the maximum number of batteries that it can charge at the same time. However, vehicles
are allowed to leave exhausted batteries in a station even if the station charging capacity
is saturated. These batteries will take the name of batteries on-the-side and will remain
unused until the station has the opportunity to charge them. Distributors are responsible for
identifying the nearest station with a critical number of batteries on-the-side and shipping
them to the station with the greatest need for additional batteries. The path traversed
by distributors is again determined using the A∗ algorithm. As mentioned previously,
distributors do not have loading capacity limitations and do not require recharging or
refueling operations.

5. Validation and Results

In order to validate the proposed concepts and show the benefits that battery sharing
can provide, our simulation model was used to analyze several scenarios. First of all,
four different road networks were used (Figure 2): (i) a small section of the Chicago (IL)
downtown area, representing a small test network; (ii) the urban area of Modena, a typical
Italian medium-sized city; (iii) the urban area of Sassari, an Italian city representing an
ancient road network; and (iv) the urban area of Barcelona, representing a modern and
large European city. As mentioned, each selected network has some peculiarities that make
it a good representative for a specific scenario. The details that concern the road networks
were extracted from Open Street Maps (OSM) by using the standard API. Concerning
the elevation and altitude, since OSM does not provide this information, the possibility
of querying the Open Elevation (https://open-elevation.com/, accessed on 8 April 2023)
and National Map (https://www.usgs.gov/the-national-map-data-delivery, accessed on
8 April 2023) services was implemented. For this study, elevation data were taken from
Open Elevation. For each road network, we simulated three different situations: (i) a
scenario in which no sharing is carried out (i.e., when a vehicle arrives to a charging station,
it simply waits to be charged); (ii) a scenario with battery sharing where drivers are allowed
to take only fully charged batteries; and (iii) a scenario with battery sharing where even
partially charged batteries can be picked up.

The proposed simulation model described in Section 3 offers many possibilities to
customize the system’s behavior. However, in order to carry out a feasibility analysis and
validate the BS approach, we will standardize it using the following configuration:

• The simulation handles three types of batteries—small, medium, and large—with
respective capacities 10, 15, and 20 kWh. For experimental purposes, we have consid-
ered that the batteries do not reduce their performance with use. Thus, the simulator
assumes that the capacity of the batteries does not decrease with the charge cycles.

• In each road network, exactly 2% of nodes are characterized by the presence of a
charging station. This results in a different number of charging stations for each net-
work: 4 charging stations in the test network, 69 in Sassari’s network, 66 in Modena’s
network, and 196 in Barcelona’s network.

• The simulation handles three types of vehicles. The first two types are more frequent
and powered by two batteries each, while the latter is less frequent and powered by
three batteries.

• All vehicles have the same consumption rate, 0.3 kWh/km, and their consumption is
equally affected by the road slope.

• The simulation handles two types of equally spread charging station, small and large.
The first one can process only one vehicle at a time and disburses a power of 10 kWh.
The second one can process two vehicles together and disburses a power of 12 kWh.
The charging time can be easily estimated using the following equation:
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ChargingTime =
BatteryCapacity · CurrentBatteryLevel

DisbursedPower

• The number of traveling vehicles is constant, exactly 1, 100 vehicles, during the entire
duration of the simulation.

• Battery swapping takes 60 s.
• There are 10 vehicles dedicated to battery redistribution, and a new redistribution is

carried out every hour if the previous one is already concluded.
• The simulation runs for 8 h.

(a) (b)

(c) (d)

Figure 2. Main streets of considered roads networks. (a) Test network (b) Sassari (c) Barcelona
(d) Modena.

Notice that all technical and quantitative data we assumed herein are in line with the
current technical solutions on the market, as well as well-justified by scientific publica-
tions [13,16,30].

Results are presented in terms of relative travel time (i.e., travel time/covered distance),
average waiting time at charging stations (i.e., difference between the time at which the
vehicle enters the charging station to be processed and the time at which it enters the
queue), and average queue at the entrance of the charging station. Results are reported in
Tables 1–4, which are also summarized in Figures 3–5.

166



Batteries 2023, 9, 225

Table 1. Results concerning the test network.

Scenario Relative Travel Time [min/km] Waiting Time [s] Queue

Sharing of partially charged batteries 1.020 127 3.247
Sharing of fully charged batteries 1.091 3060 77.104

No sharing 1.200 5803 103.570

Table 2. Results concerning Sassari’s city network.

Scenario Relative Travel Time [min/km] Waiting Time [s] Queue

Sharing of partially charged batteries 1.020 62 0.154
Sharing of fully charged batteries 1.2 5517 30.004

No sharing 1.38 8917 31.692

Table 3. Results concerning Modena’s city network.

Scenario Relative Travel Time [min/km] Waiting Time [s] Queue

Sharing of partially charged batteries 1.020 62 0.126
Sharing of fully charged batteries 1.14 2020 6.679

No sharing 1.200 4091 15.641

Table 4. Results concerning Barcelona’s city network.

Scenario Relative Travel Time [min/km] Waiting Time [s] Queue

Sharing of partially charged batteries 1.020 31 0.037
Sharing of fully charged batteries 1.083 1074 2.012

No sharing 1.267 2933 5.553

Figure 3. Comparison of relative travel time for each scenario.
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Figure 4. Comparison of waiting times for each scenario.

Figure 5. Comparison of queues for each scenario.

As can be seen in these figures, the scenario without battery sharing shows visible
traffic congestion that would require the installation of further charging stations. The
waiting time at charging stations always exceeds 1 h (and sometimes exceeds 2 h). The
relative travel time is higher (because of waiting time at charging stations), and queues
exceed 103 vehicles in the test network, 30 vehicles in Sassari city, 15 vehicles in Modena
city, and 5 vehicles in Barcelona (since the number of vehicles is constant, the queue length
is higher in small networks characterized by fewer charging stations). All conditions being
equal, the adoption of partially charged battery sharing leads to a perfectly feasible situation
with no need of further charging stations. The relative travel time is reduced, while the
waiting time and the queues are almost non-existent. Of course, one should notice that
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sharing of partially charged batteries generally requires drivers to take more stops during a
single trip. Therefore, it may be convenient in terms of the overall network but inefficient
from a drivers’ perspective. The scenario in which battery sharing is allowed only for fully
charged batteries lays in between the other two scenarios. The average waiting time at
charging stations is between 30 min and 1 h. This can be considered as an amount of time
reasonable according to current standards, even though it can be improved. The queue
length at charging stations is often excessive, especially in small networks, and the relative
travel time lays in between the results obtained in other scenarios.

As an example, in order to provide an intuitive and visual representation, we can
compare in Figures 6 and 7 a representation of the Barcelona city network before and after
implementing battery sharing. In the figures, we can see in red, orange, and green the
streets with high, medium, and low traffic, respectively. The red points represents the
charging stations, and it is easy to see how, in the case of no sharing, the most congested
streets are the ones characterized by the presence of a charging station, where vehicles
waste a considerable amount of time.

Additional results are obtained by increasing the number of redistributors, i.e., vehicles
in charge of moving batteries from one charging station to another, from 10 to 100 vehicles.
Table 5 shows how sharing of fully charged batteries may be easily improved with a
relatively low budget if compared to the construction of new charging stations required by
a scenario with no sharing.

Figure 6. A view of Barcelona city network with no battery sharing.
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Figure 7. A view of Barcelona city network after implementing battery sharing.

Table 5. Results obtained increasing the number of redistributors in a scenario of fully charged
battery sharing.

Scenario
Relative Travel Time

[min/km]
Waiting Time [s] Queue

Test network 1.158 3010 45.210
Sassari 1.28 2012 5.110

Modena 1.13 1920 3.029
Barcelona 1.083 433 1.512

6. Conclusions and Future Work

This paper has analyzed a novel concept: the impact of using a strategy of battery
sharing in electric vehicles as an alternative to a full charging strategy, which is not handy
and efficient at the moment mainly due to long charging times. Battery sharing strategies
are based on the fact that drivers remove exhausted batteries and replace them with
the charged batteries previously left by somebody else (after they have been partially
recharged in the station). This allows for significantly reducing the waiting queue at the
charging stations. To assess how this approach may affect traffic conditions and how it
relates to a classic scenario where no sharing of batteries is used, we have developed a
discrete-event simulation model, which validates our approach in four different real road
networks and under several environmental conditions. Results show that battery sharing, if
feasible from a technological point of view, may be beneficial for traffic networks and easily
scalable in case of limited resources, such as the possibility or the budget to install several
high-performance charging stations. The current study does not consider imposed costs
associated with swapping those batteries and their handling, which are partially caused
by the need to hire more staff at the stations. We are aware that research is moving fast
in this area and parameters, technologies, and interests may be subject to rapid changes.
The objective of this paper was to share a first starting point of a long research project that
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may also lead to several possible improvements and changes according to the evolution of
the EV market. In addition, the simulation results we have obtained are based on some
assumptions and data, which means that modifications in these inputs might generate
slightly different results. As future work and research perspective, we plan to include into
the simulation model more realistic and accurate aspects concerning battery changes and
energy consumption starting from weather conditions, passengers, type of vehicle, road
state, and many others. As future work, we also plan to combine optimization methods
with the proposed simulation model, in order to optimize decisions about which battery
has to be selected. Notice that this might depend upon different variables, including the
travel time to reach the destination, the type of vehicle, or the number of passengers.
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Abstract: This paper discusses an orienteering optimization problem where a vehicle using electric
batteries must travel from an origin depot to a destination depot while maximizing the total reward
collected along its route. The vehicle must cross several consecutive regions, with each region
containing different types of charging nodes. A charging node has to be selected in each region,
and the reward for visiting each node—in terms of a ‘satisfactory’ charging process—is a binary
random variable that depends upon dynamic factors such as the type of charging node, weather
conditions, congestion, battery status, etc. To learn how to efficiently operate in this dynamic
environment, a hybrid methodology combining simulation with reinforcement learning is proposed.
The reinforcement learning component is able to make informed decisions at each stage, while the
simulation component is employed to validate the learning process. The computational experiments
show how the proposed methodology is capable of design routing plans that are significantly better
than non-informed decisions, thus allowing for an efficient management of the vehicle’s battery
under such dynamic conditions.

Keywords: orienteering problem; battery management; electric vehicle; reinforcement learning; simulation

1. Introduction

Modern transportation and logistics systems call for efficient vehicle routing solu-
tions that can adapt to dynamic and uncertain conditions. This is particularly relevant for
electric vehicles (EVs), which are gaining popularity due to their potential for reducing
transportation costs and minimizing environmental impact. The increasing adoption of EVs
has sparked a revolution in the automotive industry, offering a sustainable alternative to
conventional internal combustion engine vehicles [1]. However, these vehicles face several
challenges when it comes to real-time route planning under dynamic scenarios, such as
the need to consider weather conditions, traffic or on-site congestion, and travel time. In
addition, as EVs rely heavily on batteries for their power supply, effective battery man-
agement is crucial to ensure optimal performance, an extended battery life, and enhanced
driving range. Moreover, the need for an efficient battery management system (BMS) calls
for a cutting-edge technology combined with a more refined software. Any BMS has to
consider the uncertainty associated with the availability of charging stations along the
route. Finding reliable charging infrastructure can be a daunting task, as charging stations
are still relatively scarce in many areas. This lack of widespread charging infrastructure
poses a significant obstacle for EV owners, as it restricts the number of feasible options.

For long-distance routes, there comes a time when the vehicle needs to face the
problem of choosing the next charging station point. This can be challenging given the
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environmental dynamic conditions mentioned above. The distinction becomes crucial,
especially for aged batteries, when considering charging up having a 60% charge level
versus charging up having a 20% level. Therefore, an ‘optimal’ route towards the charging
station point should be taken into account, so that given the distance from the current
location to the station, the congestion and weather conditions, and the available chargers,
the goal is to maximize the lifespan of the batteries while ensuring a charging time that is
acceptable, as discussed in Abdollahi et al. [2].

Initially proposed by Golden et al. [3], the orienteering problem (OP) is named after
the sport of orienteering, where a runner selects specific points to navigate between within
a given time limit. The OP involves a vehicle that begins at a depot, traverses a set of nodes,
and finally reaches a destination depot, with the objective of maximizing the total reward
earned from visiting the nodes. The problem becomes more challenging as the vehicle has
a limited distance or time to cover the path from the origin node to the destination node.
The OP and its extension to multiple vehicles, the team orienteering problem, have found
relevance in modern applications such as unmanned aerial vehicles and road EVs with
limited battery capacity [4,5]. This paper explores a dynamic OP where a single vehicle
must travel from an origin to a destination while visiting specific charging nodes along the
way to ensure it can reach its final destination (Figure 1). The vehicle needs to pass through
multiple regions and, since a region represents a set of clustered charging stations, it makes
sense to assume that it will only visit one charging station per region. Once charged at a
station, it can then resume its travel to the next region until it finally reaches the destination
node. Each region contains different types of charging nodes, e.g., alternating current (AC)
level 2, direct current (DC) fast, superchargers, etc. The reward associated with visiting
each charging node is represented by a binary random variable, indicating whether or not
the vehicle arrived at the charging node within the ‘optimal’ charging window to prolong
the battery’s lifespan and to complete the charging process in a reasonable time period. In
order to consider realistic context conditions, it is assumed that the probability of receiving
a positive reward at each charging node depends on dynamic factors such as: (i) weather
conditions along the route to the charger; (ii) congestion on the road or at the charging
station; (iii) travel time from the vehicle’s current position to the charger’s location; and (iv)
the age of the battery.

Figure 1. An orienteering problem with 3 regions and 5 potential charging nodes per
region.

To address the aforementioned dynamic orienteering problem, this paper proposes
the combination of simulation with reinforcement learning (RL) [6] to emulate how the
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system would perform in a real-life scenario. Our approach involves training a machine
learning model, which can be a slow process in a real-life scenario. Hence, to illustrate
how this learning process works, a simulation experiment is proposed. The simulation
allows us to emulate how the learning process would occur in a real-life scenario and test
the quality of the learning models employed in our approach. Thus, the main contribution
of this paper is the combination of reinforcement learning with simulation to illustrate how
to make informed decisions in a dynamic OP with electric vehicles and binary random
rewards that can be influenced by several factors, including their battery status.

The remainder of the paper is structured as follows: Section 2 gives a more extensive
context on the types of EVs and their integration into the ongoing transportation network,
current research in the field, battery capacity, materials and charging time, and several
factors that might influence the state of the battery. Section 3 provides a brief review of OPs.
Section 4 describes the problem in a more formal way. Section 5 introduces the numerical
case study that is considered. Section 6 discusses the details of the simulation experiment
as well as the reinforcement learning algorithm employed. Section 7 analyzes the results
obtained in our computational test. Finally, Section 8 highlights the main conclusions of
our work and suggests open research lines.

2. Some Technical Details on EVs

The transportation sector accounted for 23% of energy-related emissions in 2019 [7].
The largest source of transport emissions are road vehicles, predominantly powered by
internal combustion engines. Since EVs are a promising mitigation technology to reduce the
impact on climate change, air pollutants, and noise [8], researchers have shown significant
interest in studying EV energy consumption due to its importance for understanding the
efficiency, performance, and environmental impact [9,10]. Several models can be used to
calculate energy consumption in EVs, and Qi et al. [11] classified them into three main
categories: analytical, statistical, and computational models. While accurate estimation
and prediction of EVs’ range is crucial for driver confidence and planning, the design and
optimization of charging infrastructure networks also play an important role in ensuring
efficient charging processes and minimizing energy consumption. There are several types
of EVs available on the market [12]. These range from conventional vehicles with no
electric components to fully EVs, including hybrid electric vehicles (HEVs) as well as
battery electric vehicles (BEVs). Each type has its own advantages and considerations, and
the choice depends on factors such as driving habits, range requirements, the availability
of charging infrastructure, and personal preferences.

As discussed in [13], BEVs produce zero tailpipe emissions but require charging
infrastructure to recharge their batteries. The battery is the core component of an EV,
especially for BEVs, and can be categorized by qualities such as its specific energy, specific
power, capacity, voltage, and chemistry [14]. Battery modeling is quite complex and many
models have been developed: empirical, equivalent circuit, physics-based, and high level
stochastic [15]. The initial technology used was a lead–acid battery that was soon replaced
because of its drawbacks such as having low energy density and being heavy. Nickel-
based batteries were introduced soon after as a mature technology, but they have longer
recharging times and poor performance in cold weather. Currently, lithium-based batteries
are the most common and widely adopted in the EV industry [16]. Even though some
methods have been proposed to predict the remaining useful life of lithium batteries [17],
there are still several open issues with their use: in particular, their safety as well as
environmental impact concerns.

One of the main challenges raised by BEVs is to obtain acceptable driving ranges. The
state of charge (SOC) measurement is particularly important as it indicates the maximum
driving range. The capacity of EV batteries can range from around 20 kWh in smaller
electric cars to over 100 kWh in larger, high-end electric vehicles. However, accurately
estimating driving distance is difficult, and factors such as the vehicle’s efficiency, driving
style, and weather conditions also influence the actual driving range achieved [18,19]. The
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optimal SOC range in batteries can vary depending on the specific type of lithium-based
battery chemistry and the desired operating parameters [20]. According to Koltermann
et al. [21], the capabilities are limited at the border areas of the SOC. The results show
that batteries can only safely deliver full power without a detrimental impact on their
health and longevity at between 20–80% of the SOC. At both ends, the battery exhibits
much higher polarization impedance [22]. The maximum SOC is usually set to ensure
safe operation and prevent overcharging, stress on the material, or elevated operating
temperatures [23]. Likewise, the minimum SOC tries to avoid an unexpected system
shutdown or loss of power that can occur due to low voltage levels and the risk of cell
imbalance. In addition, maintaining a low SOC can potentially contribute to driver anxiety.
Advancements in charging infrastructure are also reducing concerns about range anxiety
by providing faster and more accessible charging options for EV owners [24]. However, the
number of charging stations is still relatively limited, so predicting the best place to charge
the vehicle in dynamic conditions is important. There are several charging technologies
available for EVs depending on the different power levels an EV can be charged to [25].
Level 1 charging (120 V AC) uses a household electrical outlet and provides around 1.4 to
1.9 kW. It provides the slowest charging rate for EVs. Level 2 charging (240 V AC) requires
a compatible charging station or wall-mounted charger. It delivers power ranging from
3.3 kW to 22 kW. Level 3 or DC fast charging stations can provide charging powers ranging
from 50 kW to over 350 kW. The vehicle’s onboard charger and charging port specifications
will determine the maximum charging rate it can accept. Among other factors, a vehicle’s
charge time depends on the level of the charger and the type of EV. According to the U.S.
Department of Transportation [26], to reach an 80% battery level from empty can take
between 40 and 50 h for a BEV, and between 5 and 6 h for a plug-in HEV (with a Level 1
charger). Likewise, it can take between 4 and 10 h for a BEV and between 1 and 2 h for a
plug-in HEV (with a Level 2 charger). Finally, it can take between 20 min and 1 h for a BEV
(with a Level 3 charger).

EV penetration causes significant issues on the power distribution grid, such as an
increase in power demand, system losses, voltage drops, equipment overloading, and
stability impact [27]. At the same time, some exciting opportunities appear with EV deploy-
ment on the smart grid, such as grid flexibility through vehicle-to-grid (V2G) technology,
demand response, and the integration of renewable energy sources [25]. V2G mode allows
EVs to discharge power back to the grid. This can support grid balancing, frequency
regulation, and voltage stabilization. The weather conditions directly affect the battery
temperature [28], the climate control [29], and the charging efficiency [30]. Extreme weather
conditions can affect the temperature of the EV’s battery. High temperatures can increase
the risk of the battery overheating, which may reduce its performance and lifespan. Like-
wise, very cold temperatures can decrease the battery’s efficiency and capacity temporarily.
EVs often rely on climate control systems to maintain a comfortable cabin temperature.
This includes features such as air conditioning in hot weather and heating in cold weather.
The use of these systems can impact the overall energy consumption and range of the
vehicle. Extreme temperatures can also affect the efficiency of charging systems. Con-
gestion can generate an increase in the stop-and-go driving style. This can lead to more
energy-intensive acceleration and braking, and thus result in increased energy consumption
and a higher load on the battery, potentially reducing its overall range [31]. In addition,
when stuck in congestion, EVs may be required to idle for extended periods, especially in
situations where traffic is at a standstill. Idling consumes energy from the battery to power
auxiliary systems such as climate control and entertainment systems. Prolonged idling can
drain the battery charge faster and reduce the available range [32].

3. Related Work on Vehicle Orienteering Problems

The orienteering problem was first introduced by Golden et al. [3], who proved it to be NP
hard. Early research examined the deterministic version of the problem within the framework
of vehicle routing, where one vehicle chooses the nodes to visit and the order of visits within
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a defined time frame. In contrast, research on the stochastic OP is relatively recent. The first
study to include stochasticity in the OP was conducted by Ilhan et al. [33], which assumed
that only node rewards were stochastic. Other researchers, including Campbell et al. [34],
Papapanagiotou et al. [35], Verbeeck et al. [36], or Evers et al. [37], focused on cases where
service and travel times were stochastic, with service times typically incorporated into travel
times. Several approaches have been employed to solve the stochastic orienteering problem,
including a combination of branch and bound algorithms with local search [34] and local search
simulations [38]. Further refinements were made to these methods, with Varakantham and
Kumar [39] utilizing a sample average approximation technique to improve on the results of
Lau et al. [38]. Additionally, Zhang et al. [40] expanded the method of Campbell et al. [34] to
include time windows for arriving at nodes. Gama and Fernandes [41] introduced a solution
to the orienteering problem with time windows, employing Pointer Network models trained
through reinforcement learning. A comprehensive review of the orienteering problem and its
variants can be found in Gunawan et al. [42]. Still, to the best of our knowledge, our work is
the first one that proposes the combined use of RL and simulation to deal with a version of
the problem with stochastic rewards that depend upon dynamic conditions. In our view, this
dynamic OP with stochastic rewards has relevant applications to scenarios involving EVs that
require an efficient management of their batteries.

4. Modeling the Dynamic OP with Binary Random Rewards

Let G = (V, E) be a directed graph with node set V and edge set E. Node O ∈ V
is the origin node, while node D ∈ V is the destination node. Each node i ∈ V \ {O, D}
has a reward ri associated with it, which is a binary random variable that takes the value
1 with probability pi and 0 with probability 1 − pi. Let us denote this by region Rk, with
k ∈ K = {1, 2, . . . , |K|}, a subset of V \ {O, D}. The problem is to find a path P that starts
at O and ends at D, maximizes the expected total reward collected along the path, and
visits at most one node in each region Rk. In our case, the reward is based on extending the
battery’s lifespan [21], as well as on completing the charging process within a certain time
interval. Thus, the probability of obtaining a reward for a recharging node i depends on
the type of node as well as on the current status at the region Rk. This status is determined
by dynamic context conditions, i.e., pi = f (i, Rk) for an unknown (black-box) function f .

Let xi be a binary decision variable that takes the value 1 if node i is visited along the
path P, and 0 otherwise. Let eij be a binary decision variable that takes the value 1 if there
is an arc from node i to node j �= i along the path P, and 0 otherwise. Then, the problem
can be formulated as follows:

max ∑
i∈V\{O,D}

ri pixi (1)

subject to:

∑
i∈V\{O}

eOi = 1 (2)

∑
j∈V\{i,O}

eij − ∑
j∈V\{i,D}

eji = 0 ∀i ∈ V \ {O, D} (3)

∑
j∈V\{D}

ejD = 1 (4)

∑
i∈Rk

xi = 1 ∀k ∈ K (5)

xi ∈ {0, 1} ∀i ∈ V (6)

eij ∈ {0, 1} ∀(i, j) ∈ E (7)
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The objective function Equation (1) maximizes the expected total reward collected
along the path P. Constraint Equations (2) and (4) ensure that the path starts at the origin
node O and ends at the destination node D, respectively. Constraint Equation (3) ensures
that the flow of the path P is conserved at each node i ∈ V \ {O, D}, i.e., the number of
incoming arcs is equal to the number of outgoing arcs. Constraint Equation (5) ensures that
at most one node in each region Rk is visited. Constraint Equations (6) and (7) enforce the
binary variables.

5. A Numerical Case Study

Consider a dynamic OP, with binary random demands y ∈ {0, 1}, similar to the one
represented in Figure 1. Let us assume that a vehicle must now cross six consecutive
regions, with each region containing five different types of charging nodes, each type with a
different probability of obtaining a reward. In accordance with Section 2, let us assume that
such probability will depend on a vector of factors that describe the context conditions at
each region–node pair, which are: battery age, congestion, weather, battery status, and time
of charge. The logistic sigmoid function σ(z) = 1

1+e−z maps real-valued numbers to a range
between 0 and 1. In particular, for each type of node i ∈ {1, 2, . . . , 5}, let us assume that
the real-life probability of obtaining a reward pi is modeled as a logistic function f , which
is defined for each region, k1i to k6i (Table 1), and each of the following factors: (i) battery
age (cycles) ba ∈ {10, 1000}; (ii) current battery status (in %) bei ∈ {0, 100}; (iii) congestion
ci ∈ {0, 1} (where c = 1 represents high congestion and c = 0 represents low congestion);
(iv) weather conditions wk ∈ {0, 1} (where w = 1 represents good weather and w = 0
represents bad weather); and (v) time of charge (in hours) tci ∈ (0, 30). Hence, the real-life
probability pi of obtaining a reward when visiting a node of type i in region Rk under
context conditions (ba, bei, ci, wk, tci) is given by:

pi =
1

1 + exp(−(k1iwk + k2ici + k3itci + k4iba + k5i(20 − |bei − 20|) + k6i))
(8)

For each of the five considered nodes, Figure 2 shows the real probability of obtaining
a reward of 1 when the node is visited under different combinations of congestion, weather
conditions, battery age, and battery status. Notice also that charging time has a great
influence on this probability for all nodes since the objective is to extend the lifetime of
the battery without compromising the time at which the vehicle reaches its destination.
Moreover, the node offering a higher probability of reward might vary according to the
current weather, congestion, and other conditions in the region.

Table 1. Real-life parameters for each node type (coefficients of the associated logistic
function).

Node
Type

k1i k2i k3i k4i k5i k6i

1 3.0 −0.5 −0.4 −0.0010 −0.00010 3.5

2 1.5 −0.1 −0.41 −0.0004 −0.00030 4.5

3 3.5 −0.1 −0.43 −0.0012 −0.00010 4.5

4 2.0 −0.2 −0.50 −0.0009 −0.00035 4.0

5 4.5 −0.9 −0.42 −0.0008 −0.00030 3.0

Despite the fact that the function f that represents the real probability of obtaining a
reward has been properly defined, this will not usually be possible in a real-life application.
In effect, the real-life parameters shown in Table 1 will be unknown in many practical appli-
cations. Then, given a vector x of five factors associated with a region–node combination,
the goal will be to predict y, i.e., ŷ = P(y = 1|x), so the next charging node i to be visited
can be selected using this estimated probability. Hence, from this point on, it is assumed
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that the true values of the parameters k1i to k6i are unknown, and a reinforcement learning
algorithm is proposed in order to predict the real probability of obtaining a reward. In a
real-life application, the algorithm achieves this predictive capacity by making decisions,
observing the associated outcomes, and then learning from these interactions with reality.
In online RL, the learning agent interacts directly with the environment in real-time. The
agent makes decisions, receives feedback (rewards), and updates its policy based on the
observed outcomes. The agent explores (tries out different options) and exploits (selects
the best-known option) the environment simultaneously, making decisions and adapting
its behavior as it interacts with the environment. In order to illustrate this learning process,
simulation is employed to emulate this interaction between the algorithm and reality. A
total of 10, 000 trips were simulated.

At each region Rk, the algorithm must select a node type i to visit. This selection
is based on the current estimate of the expected reward for each node type i, and the ε
parameter controls the balance between exploration and exploitation. Specifically, with
probability 1 − ε, the algorithm selects the node type with the highest expected reward
(exploitation), and with probability ε, it selects a node type at random (exploration). After
selecting a node type, the algorithm receives feedback from reality (the simulation in our
case) in the form of a binary reward, and updates its estimate of the expected reward for
each node type accordingly.

In the computational experiments a hybrid gradient boosting with decision trees
model is utilized to estimate the expected reward for each region–node combination based
on the feedback provided by the simulation environment. During the simulation, random
values are generated to emulate the context conditions of each region. Then, using the
black-box function f , the response that would be obtained in a real-life environment is
estimated. The algorithm uses this response to iteratively enhance the model that predicts,
for each node and contextual values, the probability of obtaining a reward. Thus, for
example, suppose that after several simulation runs, the algorithm learns that nodes of
type 1 are the most rewarding under good weather and low congestion conditions, nodes
of type 2 are the most rewarding under bad weather and high congestion, nodes of type
3 are the most rewarding under good weather and high congestion, nodes of type 4 are
the most rewarding under bad weather and low congestion, and nodes of type 5 are the
most rewarding under any other context condition, it then adjusts its policy accordingly
and continues to improve over time.

A conceptual schema summarizing the described methodology is provided in Figure 3.
The simulation component provides new testing conditions for the RL component to make
decisions (step 1). The RL component makes decisions by selecting the next charging node
in the routing plan (step 2). Then, the black-box function emulating real life is employed
to check the real impact of the decision suggested by the RL agent (step 3) and provide
feedback to it (step 4). Finally, the simulation of a new scenario is activated and the process
is repeated until a complete solution (a selection of charging nodes connecting the origin
depot with the destination depot) is built. At this stage, the entire loop is iterated for a
number of runs. As more and more runs are executed, the more trained the RL model
becomes and, hence, the better its decisions are in terms of which charging node has to be
visited next according to the vector of factors.
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Figure 2. Real probabilities of obtaining a reward of 1 for each node and combination of
factors.
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Figure 3. A conceptual schema of the proposed methodology.

6. Simulation and Algorithm Details

Using the Python programming language as a base, this section provides insights on
the reinforcement learning algorithm employed to predict the probability of reward for
each node and contextual conditions. It also describes the simulation process utilized to
illustrate how the learning process works in a practical application. Notice that only the
key parts of the code are provided here.

Listing 1 defines a multivariate logistic function, real_reward_p, which provides the
real probability of obtaining a binary reward of 1 for a given node, based on the inputs
weather conditions, congestion, battery age, expected battery, and charging time. This
function acts as a black-box model (unknown for the learning algorithm) that emulates
reality. This logistic function takes in a node, weather (0 or 1 where 1 is good weather and
0 is bad), congestion (0 or 1 where 1 is high congestion and 0 is low congestion), battery
age (an integer between 10 and 1000), expected battery (an integer between 0 and 100), and
charging time (an integer between 1 and 40) as parameters. Inside the function, a linear
combination of the parameters and some weights stored in the params dictionary for that
node are computed. The result of the linear combination is passed through the sigmoid
function 1/(1 + np.exp(−linear_comb)) to obtain a probability of obtaining a reward of 1
for that node given the input parameters. For instance, if the parameters associated with
a giving node i are k1i = 4, k2i = −0.5, k3i = −0.45, k4i = −0.001, k5i = −0.0004, and
k6i = 3.5, then real_reward_p(i, 1, 0, 20, 10, 20) would return the probability of obtaining a
reward of 1 for node i when the weather is good, congestion is low, the charging time is 40,
the age of the battery is 10 cycles, and the battery status is 20.

In a similar fashion, Listing 2 defines a CatBoost model (gradient boosting with
decision trees) [43] to predict the probabilities of obtaining a reward of 1 for a given
node–region pair and context inputs. In order to train the model, the data are divided
into two sets: training and testing. The training set is utilized to construct the model,
while the test data serve the purpose of preventing overfitting by employing an early
stopping strategy [44]. The model’s performance improves significantly when more data
are available. To ensure calibrated probabilities, Platt scaling is applied to fine-tune the
model’s probability outputs [45]. This model acts as a white-box one that aims at predicting
how reality will behave, i.e., it tries to predict the real-life probability provided by the black-
box function described in Listing 1. Given that the CatBoost Python library is employed,
it is possible to use the inbuilt function predict_proba to generate predictions. Notice,
however, that a different predictive model—e.g., a neural network—could have been used
as a white box.
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Listing 1. Python code illustrating the black box used to compute the real probability of
reward.
1 # Logistic functions (one per node type) defining the probability of obtaining a

binary reward of 1

2 # weather (1 = good , 0 = bad), congestion (1 = high , 0 = low), battery age (10 to

1000) , time of charge (1 to 40), battery status (0 to 100)

3 # ex: p(reward = 1 / N1) = 1 / (1 + exp(-(4 * weather + -0.5 * congestion + -0.001 *

battery age + -0.15 * expected battery + -0.0004 * time + 3.5)))

4 def real_reward_p(node , weather , congestion , batery_age , battery_status , time): %

Attention AE: battery is spelt incorrectly here. The authors should check if this

is correct.

5 linear_comb = np.dot(params[node], [weather , congestion ,batery_age , time , (20-abs(

battery_status -20)), 1])

6 return 1 / (1 + np.exp(-linear_comb)) # probability of obtaining a reward of 1

Listing 2. Python code illustrating the trained model used to predict the probability of
reward.
1 # Train a CatBoost classifier to predict the probability of reward

2 # Split the data in train and test (80 -20) and uses early stopping to avoid

overfitting

3 # To predict probabilities correctly we apply Platt Scaling to calibrate the model

4 def fit_catboost_model(node , X, y):

5 model = CatBoostClassifier(loss_function="Logloss",max_depth =5, iterations =1000,

early_stopping_rounds =50, eval_metric="Logloss")

6 node_X = X[X[’node’] == node].drop(columns =[’node’])

7 node_y = y[X[’node’] == node]

8 node_y = [1 if i == True else 0 for i in node_y]

9 X_train , X_val , y_train , y_val = train_test_split(node_X , node_y , test_size =0.2,

random_state =42)

10 model.fit(X_train , y_train , eval_set =(X_val , y_val), verbose=False)

11 calibrated_model = CalibratedClassifierCV(model , cv=’prefit ’, method=’sigmoid ’)

12 calibrated_model.fit(X_val , y_val)

13 return calibrated_model

14 # Predict the probabilities of obtaining reward = 1 on each node for a new context

15 def predict_reward_p(node , weather , congestion , battery_age , battery_status , time):

16 model = models[node]

17 return model.predict_proba ([[ weather , congestion , battery_age , battery_status ,

time ]]) [0][1]

The code in Listing 3 defines a Python function called select_node_eps that selects a
node from a dictionary predicted_reward_p based on a slightly modified epsilon-greedy
strategy. The function takes in two optional parameters: eps, the value of epsilon used in the
epsilon-greedy algorithm, and uniform, a Boolean flag that specifies whether to choose the
node uniformly at random among all nodes with the same probability. The function first
sorts the nodes in descending order based on their corresponding probability of reward.
It then checks whether a random number between 0 and 1 is greater than eps. If it is, the
function returns the node with the highest probability of reward (i.e., the first element in
the sorted list). If the random number is less than or equal to eps, the function randomly
selects a node from the sorted list, either uniformly or non-uniformly depending on the
value of the uniform flag. If uniform is True, the function selects a node uniformly at random.
If uniform is False, the function selects the node with the second highest probability of
reward (i.e., the best ‘alternative’). This function is typically used in reinforcement learning
algorithms to balance the exploration and exploitation of different nodes based on their
predicted rewards. Still, other strategies, such as the Thompson sampling [46], could also
be used instead.

The code in Listing 4 simulates the generation of new regions in our route and selects
the node to visit. The code uses a for loop to iterate over the number of observations
specified by the variable n_obs. At each iteration, it simulates weather conditions, con-
gestion, battery age, expected battery, and charging time. The code then selects nodes
using a round-robin (balanced) selection method for the first n_update iterations. From
that point on, it uses a trained model and the epsilon-greedy strategy to select the next
node. The code then simulates the real probability of reward when this node is selected
and updates the accumulated regrets. Since rewards are binary, the expected reward for
each node is computed as the estimated probability of success. The code records the new
data, increasing the size of observations for X (predictors), y (response), and z (regrets),
and updates the models every n_update iterations.
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Listing 3. Python code illustrating a modified epsilon-greedy strategy.
1 # Selects a node from nodes based on an epsilon -greedy strategy

2 def select_node_eps(predicted_reward_p , eps=0.1, uniform=True): # default epsilon

3 # sort nodes from higher to lower probability of reward

4 sorted_dict = dict(sorted(predicted_reward_p.items(), key=lambda x: x[1], reverse=

True))

5 sorted_list = list(sorted_dict.keys())

6 if random.random () > eps:

7 return sorted_list [0] # choose the node with the highest probability

8 elif uniform:

9 return random.choice(sorted_list)

10 else: # choose the node with the second highest probability

11 return sorted_list [1]

Listing 4. Python code illustrating the core part of the simulation.
1 # Simulate the generation of new routes and select the node

2 for i in range(n_obs):

3 a_weather = random.randint ([0, 1])

4 a_congestion = random.randint ([0, 1])

5 a_battery_age = random.randint (10, 1000)

6 a_battery_status = random.randint(0, 100)

7 a_time = random.randint(start_time , end_time) # includes end_time

8 # Round -robin (balanced) selection of first n_update nodes

9 if i+1 < n_update:

10 selected_node = list(nodes)[0]

11 for node in nodes:

12 if n_selected[node] < n_selected[selected_node ]:

13 selected_node = node

14 # Caution !: for this stage , we’ll use real p as predicted so we can

estimate regrets

15 predicted_reward_p[node] = real_reward_p(node , a_weather , a_congestion ,

a_battery_age , a_battery_status , a_time)

16 n_selected[selected_node] = n_selected[selected_node] + 1

17 else: # after the first model update , we can predict probabilities and select node

18 for node in nodes:

19 if i+1 == n_update: # set an initial model for node when n_update is

reached

20 models[node] = fit_catboost_model(node , X, y)

21 predicted_reward_p[node] = predict_reward_p(node , a_weather , a_congestion ,

a_battery_age , a_battery_status , a_time)

22 selected_node = select_node_eps(predicted_reward_p , 0.1, True)

23 # Simulate the real probability of reward when this node is selected

24 real_reward = random.random () < real_reward_p(selected_node , a_weather ,

a_congestion ,a_battery_age , a_battery_status , a_time)

25 # Update accum. regrets. Since rewards are binary , E[reward(node)] = estimated P(

success / node)

26 regrets = regrets + (max(predicted_reward_p.values ()) - predicted_reward_p[

selected_node ])

27

28 # Record the new data , thus increasing the size of observations for X, y, and z

29 new_data = {’weather ’: a_weather , ’congestion ’: a_congestion ,

30 ’battery_age ’:a_battery_age ,

31 ’battery_status ’: a_battery_status ,

32 ’time’: a_time ,’node’: selected_node ,

33 ’reward ’: real_reward ,’regrets ’: regrets}

34

35 new_df = pd.DataFrame(new_data , index =[0])

36 df = pd.concat ([df , new_df], ignore_index=True)

37 X = df[[’weather ’, ’congestion ’,’battery_age ’,’battery_status ’, ’time’, ’node’]]

38 y = df[’reward ’]. astype(bool) # make sure it is a bool data type

39

40 # Update the models every n_update observations

41 if (i+1) % n_update == 0 and i+1 > n_update:

42 for node in nodes:

43 models[node] = fit_catboost_model(node , X, y)

7. Computational Experiments

Table 2 shows a comparison between the predicted and the actual (real-life) probability
of obtaining a reward of 1 for a randomly selected set of nodes and factor configurations.
This table confirms that the trained model is capable of estimating the real-life probability
with a relatively low average error.

After training the predictive model, it is possible to apply it to the proposed case study
on dynamic OP with binary random rewards. Whenever the EV reaches a new region and
receives updated contextual information such as weather, congestion, battery age, expected
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battery, and time of charge, it will use the predictive model to select one of the nodes with a
higher probability of obtaining a reward. Since selecting a node in one region might affect
our options in subsequent regions, following a greedy approach in each region—i.e., always
selecting the node with the highest expected reward at each step—would not necessarily
lead us to an optimal solution for the entire trip. In a situation such as this, it is often
convenient to employ diversification strategies based on biased randomization and agile
optimization techniques [47].

Table 2. Predicted vs. actual probabilities of reward.

Node
Type

Weather Congest.
Batt. Age
(Cycles)

Batt.
Status (%)

Charge
Time (h)

Predicted Actual Error

5 1 0 467 98 18 0.283 0.3974 0.1145

5 0 1 228 82 22 0.032 0.0007 0.0314

1 1 1 69 16 29 0.065 0.0034 0.0616
3 0 1 98 30 17 0.0499 0.0462 0.0038

1 0 0 107 79 25 0.0506 0.0014 0.0493

4 1 1 378 31 22 0.0273 0.0039 0.0234

5 0 1 486 3 15 0.0363 0.0101 0.0263

5 0 1 373 66 21 0.0309 0.0009 0.03

4 0 0 224 92 28 0.0262 0.0 0.0261

5 0 0 235 64 5 0.7532 0.6724 0.0808

1 1 1 354 22 23 0.0544 0.0278 0.0267

5 0 0 402 28 18 0.0312 0.0075 0.0237

3 0 1 196 31 3 0.9524 0.9465 0.0058

3 0 1 464 20 4 0.947 0.8929 0.054

3 1 0 58 44 4 0.9667 0.998 0.0313

4 0 0 234 59 29 0.0261 0.0 0.0261

4 1 1 314 59 7 0.7149 0.8833 0.1684

2 1 1 56 26 19 0.0691 0.1282 0.0591

5 1 1 159 52 28 0.0341 0.005 0.029

5 1 1 349 6 3 0.9603 0.9937 0.0334

Average: 0.0452

A total of 10,000 trips for the case study were simulated, which considered six regions
and five types of nodes per region. Figure 4 shows boxplots with the expected accumu-
lated reward for solutions generated by our approach (in which the trip is guided by the
predictive model) and a non-guided approach (in which a node is randomly chosen in
each region). Hence, while solutions proposed by our methodology show an average
value of 2.83 and a standard deviation of 1.02 for the expected accumulated reward, solu-
tions provided by a non-guided approach show an average value of 2.37 and a standard
deviation of 0.99 for the expected accumulated reward. As expected, a t-test provides a
t-statistic = 32.44, with an associated p-value = 4.82 ∗ 10−225, which clearly indicates that
the solutions generated by our reinforcement learning approach are significantly better
than the ones constructed without taking into account the dynamic contextual conditions.

Figure 5 illustrates a comparative analysis between a non-guided solution and the
route provided by our approach. The blue nodes (N1, N2, N3, N4, N5) in the figure
represent the chargers in each region, and the weight of the edges in the graph represents
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the real probabilities of reward based on the original solution. Notably, the selections made
by our approach consistently demonstrate higher probabilities of obtaining rewards.

Figure 4. Boxplots for comparing our guided routing solutions with non-guided ones.

Figure 5. Visual representation of our guided routing solution and a non-guided one.

8. Conclusions

This paper proposes a hybrid methodology combining simulation and reinforcement
learning to explore a vehicle orienteering problem with binary random rewards and dy-
namic conditions. This problem is discussed in the context of electric vehicles that, while
covering a long trip, have to cross different regions and choose, in each of these region, a
charging station with a high probability of reward. The challenge lies in the fact that the
reward for visiting each charging node is a binary random variable and depends on dy-
namic context conditions, such as: weather conditions, road or on-site congestion, current
battery status, etc. In order to emulate the learning process in real-life conditions under
uncertainty, a simulation is employed. Thus, a black-box model is used to estimate the
real-life probability of obtaining a reward for each node based on the dynamic context
conditions at a given time. A reinforcement learning mechanism is then employed to make
informed decisions at each stage of the problem, and a logistic regression model is used
to predict the aforementioned probabilities. Through the simulation results, it is shown
that the proposed reinforcement learning approach can effectively learn to make informed
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decisions based on the dynamic context conditions. The computational experiments show
that a statistically significant improvement is obtained when the proposed approach is
utilized. All in all, the proposed approach can be useful in a range of real-life scenarios
such as transportation logistics, delivery services, and resource allocation.

One potential direction is to explore more complex models for the probability of ob-
taining a reward, such as neural networks or models that account for additional context
conditions. To mitigate some of the downsides of the strategy chosen in this paper (ε
greedy), various enhancements could be carried out, such as using decaying exploration
rates or dynamically adjusting the exploration rate based on the agent’s learning progress.
Another potential area for future work is to investigate the impact of different reinforce-
ment learning algorithms and strategies on the performance of the model. For example,
analyzing different exploration strategies (beyond the epsilon-greedy strategy used in this
study) may lead to more efficient learning and better decision making. Furthermore, it
may be valuable to consider the use of more advanced optimization techniques, such as
metaheuristics and simheuristics [48], that can be combined with the reinforcement learning
approach introduced in this paper. Finally, this study focused on a single vehicle traveling
through a fixed set of regions. Future work could explore more complex scenarios, such
as the involvement of multiple vehicles, i.e., a dynamic team orienteering problem with
stochastic rewards.
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Abstract: The limitations of existing commercial indirect liquid cooling have drawn attention to direct
liquid cooling for battery thermal management in next-generation electric vehicles. To commercialize
direct liquid cooling for battery thermal management, an extensive database reflecting performance
and operating parameters needs to be established. The development of prediction models could
generate this reference database to design an effective cooling system with the least experimental
effort. In the present work, artificial neural network (ANN) modeling is demonstrated to predict the
thermal and electrical performances of batteries with direct oil cooling based on various operating
conditions. The experiments are conducted on an 18650 battery module with direct oil cooling to
generate the learning data for the development of neural network models. The neural network models
are developed considering oil temperature, oil flow rate, and discharge rate as the input operating
conditions and maximum temperature, temperature difference, heat transfer coefficient, and voltage
as the output thermal and electrical performances. The proposed neural network models comprise
two algorithms, the Levenberg–Marquardt (LM) training variant with the Tangential-Sigmoidal
(Tan-Sig) transfer function and that with the Logarithmic-Sigmoidal (Log-Sig) transfer function. The
ANN_LM-Tan algorithm with a structure of 3-10-10-4 shows accurate prediction of thermal and
electrical performances under all operating conditions compared to the ANN_LM-Log algorithm
with the same structure. The maximum prediction errors for the ANN_LM-Tan and ANN_LM-Log
algorithms are restricted within ±0.97% and ±4.81%, respectively, considering all input and output
parameters. The ANN_LM-Tan algorithm is suggested to accurately predict the thermal and electrical
performances of batteries with direct oil cooling based on a maximum determination coefficient (R2)
and variance coefficient (COV) of 0.99 and 1.65, respectively.

Keywords: artificial neural network; battery; direct oil cooling; electrical performance; electric vehicle;
thermal performance

1. Introduction

The excessive consumption of fossil fuels by internal combustion engine vehicles is
causing a rapid increase in greenhouse gas emissions, including environmental contam-
inates of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), sulfur
dioxide (SO2), and particulate matter (PM) [1]. To assure a low carbon future, the govern-
ments of various countries have passed regulations on emissions, for example, the United
States has issued the “1990 Clean Air Act”, European countries have implemented the “Low
Emission Zone Program”, and Japan has recirculated the “2007 NOx and PM Law” [2].
Furthermore, the European Commission has introduced the package “Fit for 55” to reduce
greenhouse gas emissions up to 55% by 2030 [3]. In global greenhouse gas emissions, the
transportation sector is the second largest contributor [4]. Therefore, the current transporta-
tion sector is undergoing a drastic change of replacing internal combustion engine vehicles
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with electric vehicles to achieve a carbon-free and energy-sustainable future [5,6]. Electric
vehicles offer several benefits, such as a safe and clean environment and improved safety
and human health [7,8]. In addition, the ecological benefits of electric vehicles could be
extended by charging their batteries from renewable energy sources [9].

Electric vehicles are provided with batteries as the main energy storage system on
board the vehicle, the energy densities of which are continuously increasing to improve
the performance of electric vehicles [10,11]. The battery temperature should be maintained
within a range of 20 ◦C to 45 ◦C to ensure safe and efficient operations [12,13]. However,
the increasing energy densities result in higher heat generation, thus degrading the per-
formance and operational life of batteries [14]. Furthermore, the excessive heat generation
during high charging/discharging operations results in thermal runaway and explosion in
batteries [15,16]. Therefore, an advanced cooling technique should enable effective thermal
management of batteries, which could improve their efficiency and life span and thus the
safety and performance of electric vehicles.

Air cooling and indirect liquid cooling are commercially adopted for the thermal
management of electric vehicle batteries [17]. The cooling performance of air cooling is
poor and indirect liquid cooling imposes high thermal resistance owing to the existence of
cooling channels/plates, which reduces its cooling performance for high power density
batteries [18,19]. To overcome the limitations of the existing cooling strategies, research
has been initiated to find next-generation thermal management techniques for batteries.
Direct liquid cooling diminishes the thermal resistance by enabling direct contact between
batteries and the dielectric cooling fluid, hence improving the cooling performance [20,21].
In the last few years, numerous research studies have reported on direct liquid cooling as
an emerging battery thermal management technique. Li et al. restricted the temperature of
18650 batteries within 34 ◦C and 34.5 ◦C at 4C and 7C discharge rates, respectively, using
SF33 coolant-based direct liquid cooling [22]. Patil et al. employed immersion cooling
to maintain the maximum temperature of a battery pack within 28 ◦C at a 3C discharge
rate and 10 L/min flow rate [23]. Sundin et al. proposed single-phase immersion cooling,
which maintained the battery temperature within 30 ◦C at a 2C discharge rate, and Zhou
et al. further demonstrated that the thermal runaway of batteries was suppressed using
two-phase immersion cooling [24,25]. Dubey et al. showed improvements in maximum
temperature and pumping power for 21700 batteries with Novec 7500-based direct cooling
compared to that with water/glycol-based indirect cooling [26].

In recent years, machine learning is gaining popularity to predict and optimize the
performance of physical systems based on various influential variables compared to other
prediction approaches. Furthermore, ANN models are widely adopted to replicate the
behaviors of specific systems/devices under several conditions owing to the benefits of
faster response, minimal error, and least complex mathematical manipulation [27,28]. Nu-
merous studies have confirmed the potential of neural network models to accurately predict
the performance of batteries. Panchal et al. proposed a neural network model to predict
the thermal and electrical characteristics of batteries under real driving conditions [29].
Furthermore, Wang et al. also predicted the thermal and electrical characteristics of lithium-
ion batteries using a coupled thermal-equivalent circuit model integrated with a neural
network [30]. Feng et al. predicted the voltage and temperature of batteries using a neu-
ral network model under several conditions of current and temperature [31]. Xie et al.
developed a back-propagation-based neural network model to estimate battery internal
resistance and battery temperature [32]. Arora et al. proposed a neural network model with
battery heat generation as the output parameter and battery nominal capacity as the input
parameter [33]. Liu et al. developed an ANN model with the structure of 1-30-1 to predict
the surface temperature of batteries and pressure drop [34]. Jaliliantabar et al. predicted
the battery temperature for input conditions of phase change material with and without
paraffin/graphene composite, phase change material thickness, time, and discharge rate
using a neural network model with an accuracy of 0.99 and mean square error of 0.0173 [35].
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The open literature reveals that significant research has reported on direct liquid
cooling for next-generation battery thermal management. However, the reported research
is not sufficient to commercialize direct liquid cooling and there is scope to extend the
research to prove its reliability for battery thermal management. The development of a
final-stage direct liquid cooling system for batteries needs extensive efforts in terms of
prototype fabrication, testing, and optimization, which are time consuming and expensive.
In this scenario, accurately trained neural network models could effectively replicate
the performance behavior of a cooling system under actual operating conditions with
comparatively less effort. However, there is no concrete research that elaborates neural
network modeling for batteries with a direct liquid cooling system. Therefore, in the
present study, ANN models based on experimental data are developed to predict the
thermal and electrical performances of batteries with direct oil cooling. Two combinations
of an algorithm, namely ANN_LM-Tan and ANN_LM-Log, are developed to predict
the maximum temperature, temperature difference, heat transfer coefficient, and voltage,
considering operating conditions of oil temperature, oil flow rate, and discharge rate. The
ANN model with the best algorithm is suggested to accurately replicate the performance
data of batteries with direct oil cooling under several operating conditions.

2. Experimental Method

2.1. Experimental Set-Up Description

The experimental set-up of the 18650 battery module with direct oil cooling is depicted
in Figure 1. The considered batteries are INR18650 MJ1 3.5 Ah, comprising silicone-graphite
as the anode material and NMC-811 as the cathode material and outsourced from LG Chem
Ltd. (Seoul, South Korea). The battery module is composed of 16 cylindrical cells with
a 4-series and 4-parallel configuration. The specifications of the selected battery cells are
presented in Table 1. The battery module is contained within an acryl box, which is filled
with dielectric thermal oil manufactured by Shell company. The thermophysical properties
of the selected dielectric thermal oil are presented in Table 2 [20]. The oil is distributed
around the battery cells through inlet and outlet ports, located at the center on opposite
faces of the acryl box. Sixteen T-type thermocouples with a range of −200 ◦C to 400 ◦C
are used to measure the temperature of the battery module. A thermocouple is attached
at the center of each battery cell, considering a negligible temperature difference over the
battery cell surface. Li et al. observed that there was no significant difference in battery
temperature over its various surface locations [22]. Pt-100 temperature sensors with a
range of 0 ◦C to 850 ◦C are provided at the inlet and outlet of the acryl box to measure
the temperature of the oil. A peristaltic pump with a range of 0.4 mL/min to 2.2 L/min is
used to circulate the oil in the acryl box. The heated oil from the battery module is cooled
using a 30 L chiller with range of −25 ◦C to 80 ◦C. The terminals of the battery module are
connected to the 1.2 kW DC electronic loader (TOYOTECH TLF1200, Incheon, South Korea)
with a voltage range of 1 V to 150 V and current range of 0 A to 240 A. The electronic loader
is used to discharge the battery module at constant current mode, considering different
discharge rates ranging from 1C to 4C. The battery module is discharged until the voltage is
cut off and rested for 2 h. The fully discharged battery module is charged using a DC power
supply with a voltage range of 0 V to 30 V and current range of 0 A to 10 A, considering a
charging rate of 0.5C. The battery module is charged in constant current mode with 7 A
until it reaches 16.8 V, and then the battery module is maintained at constant voltage mode
until the current approaches to 0.2 A. The fully charged battery is rested for 2 h. The battery
management unit with passive cell balancing is employed. Furthermore, the rest time after
full discharging and charging operations ensures cell balancing of the battery module. All
measuring devices are connected to a GL840 data logger to monitor and record the data.
The temperature and voltage data of the battery module with direct oil cooling are recorded
at each second over the discharge period of battery. The temperature difference and heat
transfer coefficient are calculated corresponding to the measured data. The measured and
calculated data of the battery module with direct oil cooling are evaluated considering
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four oil flow rate conditions of 0.4 L/min, 0.6 L/min, 0.8 L/min, and 1.0 L/min, four oil
temperature conditions of 15 ◦C, 20 ◦C, 30 ◦C, and 35 ◦C, and four discharge rates of 1C,
2C, 3C, and 4C. These measured and calculated data under several operating conditions
are employed to develop the ANN models. The sample of the experimental data used for
neural network modeling is depicted in Figure 2. The experimental set-up is housed within
a chamber with temperature and humidity ranges of −30 ◦C to 60 ◦C and 30% to 95%,
respectively; therefore, the ambient temperature during all experiments is controlled at
25 ◦C.

 
Figure 1. Experimental set-up of 18650 battery module with direct oil cooling.

Table 1. Specifications of the selected battery cells.

Specification Value

Nominal capacity (Ah) 3.5
Nominal voltage (V) 3.653

Max voltage (V) 4.2
Discharge cut-off voltage (V) 2.5
Standard charge current (A) 1.7

Standard charge cut-off current (A) 0.050

Table 2. Thermophysical properties of dielectric thermal oil.

Property Value

Density (kg/m3) 810
Thermal conductivity (W/m-K) 0.14

Specific heat (J/kg-K) 2100
Viscosity (cSt) 19.4

2.2. Experimental Parameters and Uncertainty Analysis

Uncertainty analysis was conducted on the experimental parameters to consider the
accuracies of the experimental devices and errors owing to probe position, calibration,
and measurement [36,37]. The accuracies labeled with the T-type thermocouples, Pt-100
temperature sensors, DC loader, data logger, and pump were ±0.5%, ±0.25%, ±0.1%,
±0.1%, and ±0.2%, respectively. The uncertainties in various experimental parameters
were evaluated using Equation (1) [38]:

UR =

[(
∂R
∂X1

U1

)2
+

(
∂R
∂X2

U2

)2
+ · · ·+

(
∂R

∂Xn
Un

)2
] 1

2

(1)
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Figure 2. Sample of experimental data used for neural network modeling.

Here, R is the dependent experimental parameter and UR is the uncertainty in the
dependent experimental parameter, whereas X1, X2, . . . Xn are independent experimental
parameters, and U1, U2, . . . Un are the uncertainties in the independent experimental pa-
rameters. The uncertainties in measured temperature, voltage, and heat transfer coefficient
were evaluated as 3.13%, 1.29%, and 6.45%, respectively.

The temperature difference of the battery module was calculated as follows [39]:

ΔT = Tmax, battery − Tmin,battery (2)

Here, Tmax, battery and Tmin,battery are the maximum and minimum temperatures of the
battery module, respectively.

The heat transfer coefficient for the battery module with direct oil cooling was calcu-
lated as follows [40]:

h =
Qconvection, oil

Abattery

(
Tmean,battery − Tmean,oil

) (3)

The convective heat transfer from the battery module to the oil was calculated as
follows [40]:

Qconvection,oil =
.

moilCp,oil(Toutlet, oil − Tinlet,oil) (4)

Here, Abattery is the surface area of the battery module, Tmean,battery is the mean tem-
perature of the battery module, Tmean,oil is the mean temperature of the oil,

.
moil is the mass
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flow rate of the oil, Cp,oil is the specific heat of the oil, and Toutlet, oil and Tinlet,oil are outlet
and inlet temperatures of the oil, respectively.

3. Artificial Neural Network Modeling

The non-linear and complex relationship between various performances and influ-
ential factors can be effectively mapped with the least computational time using neural
network models. The ANN mimics the biological neural structure, which relates larger
datasets of various parameters for any physical system [41]. The neural network involves
the integration of the neurons in respective layers of input, output and hidden [42]. The
input and output parameters decide the number of neurons in respective layers, whereas
the numbers of hidden layers and neurons in hidden layers are considered based on the
optimized training error [43]. The weights are the connection link between each layer of
neurons. Various combinations of algorithms with transfer functions and training variants
are employed to train the neural network [44]. The effective mapping pattern between
input and output datasets is established by adjusting the weights while neural network
training [45].

In the present work, ANN was modeled to predict the thermal and electrical perfor-
mances of batteries for direct oil cooling considering different operating conditions. The
developed ANN model comprised oil temperature, oil flow rate, and battery discharge rate
as input neurons in the input layer. And the discharge voltage, maximum temperature,
temperature difference, and heat transfer coefficient were included as output neurons in the
output layer. The input conditions of oil temperature, oil flow rate, and discharge rate were
varied in the ranges of 15 ◦C to 35 ◦C, 0.4 L/min to 1.0 L/min, and 1C to 4C, respectively,
for neural network modeling. After trying several combinations, the number of hidden
layers was adjusted to 2, each with 10 hidden neurons to achieve the minimum error and
computational time. Hence, the structure of the proposed ANN model was presented by 3-
10-10-4, as depicted in Figure 3. The neural network was trained using a back-propagation
algorithm comprising of two combinations of the LM training variant, that with transfer
functions of the Tan-Sig and the Log-Sig. MATLAB R2018a software was used for neural
network modeling considering the aforementioned parameters and algorithms.

 
Figure 3. Structure of proposed ANN model.
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The predicted output from the developed ANN model was expressed as follows [46]:

Yi = G
(

Ai + UTYi−1
)

(5)

Here, Y is the predicted output, G indicates the transfer function, A and U present the
connection and weight matrixes, respectively, and i stands for the layer number.

The mathematical expressions for the considered Tan-Sig and Log-Sig transfer func-
tions are as follows [41,46]:

f (Y) =
1 − e−Y

1 + e−Y (6)

f (Y) =
1

1 + e−Y (7)

To evaluate the accuracy of the predicted results from the ANN model, three statistical
parameters, the coefficient of determination (R2), variance coefficient (COV), and mean
square error (MSE), were calculated using Equations (8)–(10) [47]:

R2 = 1 − ∑n
i=1

(
Ypre,i − Ymea,i)

2

∑n
i=1(Ymea,i)2 (8)

COV =

√
∑n

i=1(Ypre,i−Ymea,i)2

n∣∣Ymea
∣∣ × 100 (9)

MSE =
1
n∑n

i=1

(
Yi − Y)2 (10)

Here, Ypre,i is the predicted value at ith data point, Ymea,i is the measured value at ith
data point, Ymea is the average value of measured data points, and n indicates the maximum
data points.

The experimental data of the considered input and output parameters were evaluated
over the discharge period of the batteries at each second. A time series of experimental
data was considered to develop the ANN models. The 1000 data points comprising
four performances (output parameters) were evaluated corresponding to three operating
conditions (input parameters). Thus, the neural network models were developed for input
and output parameters comprising 1000 experimental data points. The total dataset of
1000 data points was divided into three subgroup proportions of 60%, 20%, and 20%,
corresponding to training, validation, and testing, respectively. Based on the considered
data, the deducted training, validation, and testing errors for the developed ANN model
with two algorithms are presented in Figure 4. It should be noted that the input parameter
values were fixed; however, the output parameter values were predicted in form of time
series over the discharge period of the batteries. And from the predicted results in form of
time series, the thermal performance was compared at the end of discharge and electrical
performance was compared at the same discharge capacity, considering the variations in
various influential factors.
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Figure 4. Deducted training, validation, and testing errors for developed ANN model with two algorithms.

4. Results and Discussion

The thermal and electrical performances of batteries with direct oil cooling are eval-
uated and discussed in this section for various operating conditions. Furthermore, the
ANN models with two combinations of the algorithm are compared to predict the battery
performance under similar operating conditions. The thermal performance under various
conditions is elaborated in Section 4.1, followed by Section 4.2 with a discussion of the
electrical performance under various conditions, and Section 4.3 presents a replication of
the thermal and electric performances by the best ANN algorithm with the experimental
results under various discharge capacities.

4.1. Thermal Performance

The maximum temperature, temperature difference, and heat transfer coefficient were
evaluated and predicted as the thermal performance of the batteries under various oil
temperatures, oil flow rates, and discharge rates. The thermal performance of the batteries
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in terms of maximum temperature, temperature difference, and heat transfer coefficient
was predicted in form of time series over the discharge period of the batteries, considering
variations in oil temperature, oil flow rate, and discharge rate. However, for comparison,
the predicted and experimental results of thermal performance at the end of discharge
are presented.

4.1.1. Maximum Temperature

The variation in experimental and predicted maximum temperatures of the batteries
with change in oil temperature is presented in Figure 5. The difference in temperature
between battery and oil decides the rate of dissipated heat generated in the battery. The
heat transfer rate is superior when the difference in temperatures between the two sources
is high. Therefore, the heat transfer rate from battery module to oil was maximum when
oil at a lower temperature contacted the battery surface. The maximum temperature of the
batteries increased from 44.6 ◦C to 64.3 ◦C when the oil temperature rose from 15 ◦C to 35 ◦C.
Accurate training with lower prediction error in the case of the ANN_LM-Tan algorithm
resulted in closer agreement between predicted and experimental maximum temperatures.
The maximum temperature increased from 44.32 ◦C to 63.76 ◦C and 43.23 ◦C to 61.69 ◦C
for the ANN_LM-Tan and ANN_LM-Log algorithms, respectively, with an increase in the
oil temperature from 15 ◦C to 35 ◦C, which indicated corresponding maximum prediction
errors of 0.94% and 4.05%.

 

Figure 5. Variation in experimental and predicted maximum temperatures of batteries with change
in oil temperature.

The experimental and predicted maximum temperatures of the batteries decreased
with an increase in oil flow rate, as shown in Figure 6. The convective heat transfer from
the battery module to the oil improved as the oil flow rate increased owing to the increase
in local obstruction of flowing oil around the battery cells. The predicted maximum
temperatures by the ANN_LM-Tan and ANN_LM-Log algorithms followed the same trend
as the experimental maximum temperature variation with oil flow rate, corresponding to
maximum errors of 0.97% and 4.30%. The experimental results and the ANN_LM-Tan and
ANN_LM-Log algorithms showed decreases in maximum temperature from 63.40 ◦C to
45.20 ◦C, 63.91 ◦C to 45.46 ◦C, and 65.73 ◦C to 46.91 ◦C, respectively, with an increase in oil
flow rate from 0.4 L/min to 1.0 L/min.
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Figure 6. Variation in experimental and predicted maximum temperatures of batteries with change
in oil flow rate.

The maximum temperature was predicted for the two algorithms and compared with
experimental results under various discharge rates, as shown in Figure 7. The batteries
generated a larger amount of heat during the high discharge rates; hence, for the same direct
oil cooling conditions, the maximum temperature of the batteries increased with an increase
in discharge rate. With an increase in discharge rate from 1C to 4C, the experimental
results and the ANN_LM-Tan- and ANN_LM-Log-predicted maximum temperatures
showed increases from 32.40 ◦C to 60.20 ◦C, 32.69 ◦C to 60.68 ◦C, and 33.51 ◦C to 62.18 ◦C,
respectively. It can be observed that the predicted maximum temperature by the ANN_LM-
Tan algorithm showed closer agreement with the experimental maximum temperature
compared to the ANN_LM-Log algorithm, with corresponding maximum errors of 0.89%
and 4.20%.

 

Figure 7. Variation in experimental and predicted maximum temperatures of batteries with change
in discharge rate.

4.1.2. Temperature Difference

The difference between the maximum and minimum temperatures of the battery
module improved with a decrease in oil temperature and increase in oil flow rate. As
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explained, the lower oil temperature and high oil flow rate improved the heat transfer
rate between battery module and oil, which resulted in a lower temperature difference. In
addition, similar to the maximum temperature, the temperature difference also increased
as the discharge rate increased owing to an increase in battery heat generation under the
same cooling conditions. Figures 8–10 show the variations in experimental and predicted
temperature differences with changes in oil temperature, oil flow rate, and discharge rate,
respectively. The temperature difference increased from 6.9 ◦C to 17.3 ◦C and 3 ◦C to
16.8 ◦C with an increase in oil temperature from 15 ◦C to 35 ◦C and increase in discharge
rate from 1C to 4C, respectively. However, the temperature difference dropped from
16.7 ◦C to 7.3 ◦C with an increase in flow rate from 0.4 L/min and 1.0 L/min. In the
case of temperature difference, the ANN_LM-Tan algorithm also had high prediction
accuracy with the experimental results compared to the ANN_LM-Log algorithm for all
oil temperatures, oil flow rates, and discharge rates. The maximum errors between the
predicted and experimental temperature differences were 0.95% and 4.29% in the case
of oil temperature, 0.96% and 4.86% in the case of oil flow rate, and 0.81% and 3.52%
in the case of discharge rate, corresponding to the ANN_LM-Tan and ANN_LM-Log
algorithms, respectively.

 
Figure 8. Variation in experimental and predicted temperature difference of batteries with change in
oil temperature.

 

Figure 9. Variation in experimental and predicted temperature difference of batteries with change in
oil flow rate.
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Figure 10. Variation in experimental and predicted temperature difference of batteries with change
in discharge rate.

4.1.3. Heat Transfer Coefficient

To assess the effectiveness of direct oil cooling for the battery module, the heat transfer
coefficient was evaluated under various conditions of oil temperature, oil flow rate, and
discharge rate, as shown in Figures 11–13. The convective heat transfer between batteries
and oil improved when the oil temperature decreased and oil flow rate increased. There-
fore, the lower battery temperature at the lower oil temperature and higher oil flow rate
indicated a maximum heat transfer coefficient. The maximum heat transfer coefficients
of 3908.83 W/m2-K and 2374.92 W/m2-K were evaluated corresponding to 15 ◦C oil tem-
perature and 1.0 L/min oil flow rate, respectively. There was no significant difference
in heat transfer coefficient with change in discharge rate; however, the higher discharge
rate enabled the opportunity for increased convective heat transfer from battery to oil
owing to higher heat generation compared to the lower discharge rate. The maximum
heat transfer coefficient of 2741.22 W/m2-K was observed at a discharge rate of 4C. Closer
agreement between the actual and predicted heat transfer coefficients was observed for the
ANN_LM-Tan algorithm under conditions of oil temperature, oil flow rate, and discharge
rate with corresponding lowest maximum errors of 0.93%, 0.94%, and 0.79%, respectively.
The highest maximum errors of 4.14%, 4.73%, and 4.17% were observed between ANN_LM-
Log-predicted and actual heat transfer coefficients in the case of oil temperature, oil flow
rate, and discharge rate, respectively.

4.2. Electrical Performance

The discharge voltage was evaluated and predicted using the ANN model as the
electrical performance of the batteries under various conditions of oil temperature, oil flow
rate, and discharge rate. The voltage results were predicted in the form of time series over
the discharge period of the batteries for changes in influential factors. However, it should
be noted that the voltage at the end of discharge was the same; hence, to compare the
experimental and predicted results of voltage under variations of oil temperature, oil flow
rate, and discharge rate, the voltage results were considered at the same discharge capacity.

Voltage

The effect of oil temperature on the voltage of batteries is depicted in Figure 14. The
presented voltage results are compared at the same discharge capacity. The operating
temperature of a battery affects the electrochemical characteristics of the battery; therefore,
a change in oil temperature has a significant impact on the voltage of a battery during
the discharge condition. The lower oil temperature showed a decreased voltage value,
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which increased as the oil temperature increased because the lower oil temperature had
a higher heat transfer rate from the batteries, which raised the internal resistance of the
batteries. A drop in surrounding temperature results in the enhancement of ohmic resis-
tance, which degrades the voltage of a battery [48]. In addition, Lu et al. claimed that
the ionic conductivities of the SEI layer, electrode, and electrolyte were minimum at low
temperature, which generates a decreasing voltage trend for the battery [49]. The voltage
of the batteries dropped from 12.181 V to 10.996 V when the oil temperature decreased
from 35 ◦C to 15 ◦C. Furthermore, the predicted voltages from the ANN model with two
algorithms are compared to the experimental results under various oil temperatures in
Figure 14. The overall error combining training, validation, and testing was higher in
the case of the ANN_LM-Log algorithm compared to the ANN_LM-Tan algorithm, as
presented in Figure 4. Therefore, the voltage predicted by the ANN_LM-Tan algorithm
showed closer agreement with the experimental voltage at all oil temperatures compared
to that by the ANN_LM-Log algorithm. The maximum errors between the experimental
and predicted voltages by the ANN_LM-Tan and ANN_LM-Log algorithms were 0.88%
and 4.81%, respectively.

 

Figure 11. Variation in experimental and predicted heat transfer coefficient with change in oil temperature.

 

Figure 12. Variation in experimental and predicted heat transfer coefficient with change in oil flow rate.
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Figure 13. Variation in experimental and predicted heat transfer coefficient with change in discharge rate.

 
Figure 14. Variation in experimental and predicted voltage of batteries with change in oil temperature.

The effect of oil flow rate on experimental voltage and predicted voltage using both
algorithms is depicted in Figure 15. An increase in oil flow rate indicates an improvement
in battery cooling performance, which means the internal resistance of the battery increases
with an increase in oil flow rate and thus a decrease in battery voltage during the discharge
condition. Tong et al. also observed that the voltage of batteries dropped owing to a rise in
the internal resistance of batteries when the battery cooling rate improved [50]. Therefore,
the experimental and predicted voltage results showed a decreasing trend with an increase
in oil flow rate. The voltage dropped from 11.113 V to 10.725 V with an increase in oil flow
rate from 0.4 L/min to 1.0 L/min. The prediction accuracy for the ANN_LM-Tan algorithm
was higher compared to the ANN_LM-Log algorithm with experimental voltages at each
oil flow rate. The maximum prediction errors for the ANN_LM-Tan and ANN_LM-Log
algorithms were 0.62% and 3.43%, respectively.
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Figure 15. Variation in experimental and predicted voltage of batteries with change in oil flow rate.

The comparison of experimental and predicted voltages for different discharge condi-
tions is shown in Figure 16. The voltage dropped rapidly as the discharge rate increased;
therefore, at the same discharge capacity, the lower and higher discharge rates showed
maximum and minimum voltages. The voltage dropped from 13.553 V to 10.725 V with
an increase in discharge rate from 1C to 4C. The predicted voltages for both algorithms
showed the same decreasing trend as the experimental voltage with the rise in discharge
rate. However, the ANN_LM-Tan algorithm was found to be an accurate model to predict
closer voltages with corresponding experimental values compared to the ANN_LM-Log
algorithm. Considering all discharge rates, the maximum errors between the predicted
voltages by the ANN_LM-Tan and ANN_LM-Log algorithms with the experimental voltage
were 0.57% and 3.79%, respectively. As explained, the experimental and predicted results
of the voltage were compared at the same discharge capacity of 8.136 Ah.

 

Figure 16. Variation in experimental and predicted voltage of batteries with change in discharge rate.
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4.3. Accuracy of Proposed ANN Model

The ANN_LM-Tan algorithm depicted accurate predictions of all thermal and electrical
performances under several conditions of oil temperature, oil flow rate, and discharge
rate compared to the ANN_LM-Log algorithm. Therefore, the ANN_LM-Tan algorithm is
suggested to replicate the various performances of battery modules with direct oil cooling
under real operating conditions. Furthermore, to assure the accuracy and reliability of the
suggested ANN model, the maximum temperature and voltage were predicted as thermal
and electrical performances with change in discharge capacity and compared with the
corresponding experimental results. The variations in experimental and ANN_LM-Tan-
predicted maximum temperature and voltage with discharge capacity are presented in
Figure 17. This comparison is presented for an oil temperature of 30 ◦C, oil flow rate of
1.0 L/min, and discharge rate of 4C. For each condition of discharge capacity, the proposed
ANN model depicted accurate replications of maximum temperature and voltage compared
to the experimental data. The statistical parameters were calculated for the comparison,
as presented in Figure 17, to quantify the accuracy of the predicted thermal and electrical
performances. The calculated R2 and COV were 0.9998 and 1.55, respectively, in the case of
maximum temperature, and 0.9997 and 1.66, respectively, in the case of voltage, indicating
the reliability of the proposed ANN model to accurately mimic the actual condition data.

 

Figure 17. Variations in experimental and ANN_LM-Tan-predicted maximum temperature and
voltage with discharge capacity.

The development of an accurate neural network model enables replication of the
performance of a battery with direct oil cooling under realistic operating conditions with
minimal errors. The proposed neural network model could be used to generate a database
relating the influential parameters and performance of batteries with direct oil cooling.
Thus, several efforts in the development of prototypes could be minimized to fabricate a
final-stage direct oil cooling system using the generated comprehensive reference database.

5. Conclusions

The thermal and electrical performances of a battery module with direct oil cool-
ing were experimentally evaluated and predicted using neural network models under
several operating conditions. The following key findings are listed from the conducted
present work.
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(a) The thermal performance in terms of maximum temperature, temperature difference,
and heat transfer coefficient improves with a decrease in oil temperature. The lower
maximum temperature and temperature difference of 44.6 ◦C and 6.9 ◦C, respectively,
and higher heat transfer coefficient of 3908.83 W/m2-K were evaluated at a lower oil
inlet temperature of 15 ◦C. The electrical performance in terms of voltage drops with
a decrease in oil temperature, such that oil temperatures of 15 ◦C and 35 ◦C showed
voltages of 10.996 V and 12.181 V, respectively.

(b) An increase in oil flow rate reduces the maximum temperature, temperature difference,
and voltage, whereas the heat transfer coefficient is enhanced. With an increase in
oil flow rate from 0.4 L/min to 1.0 L/min, drops of 18.2 ◦C, 9.4 ◦C, and 0.388 V and
an improvement of 1602.78 W/m2-K were observed in the maximum temperature,
temperature difference, voltage, and heat transfer coefficient, respectively.

(c) The maximum temperature and temperature difference increased by 27.8 ◦C and
13.8 ◦C, respectively, and the voltage dropped by 2.828 V with an increment in dis-
charge rate from 1C to 4C. The maximum heat transfer coefficient of 2741.22 W/m2-K
was evaluated at a higher discharge rate of 4C.

(d) The ANN_LM-Tan and ANN_LM-Log algorithms showed maximum errors of 0.97%
and 4.30% in the case of maximum temperature, 0.96% and 4.86% in the case of
temperature difference, 0.94% and 4.73% in the case of heat transfer coefficient, and
0.88% and 4.81% in the case of voltage, respectively, considering all conditions of
oil temperature, oil flow rate, and discharge rate. The prediction accuracy of the
ANN_LM-Tan algorithm was superior compared to the ANN_LM-Log algorithm for
all thermal and electrical performances under the considered operating conditions.

(e) The ANN_LM-Tan algorithm is recommended as the best neural network model to
generate data of thermal and electrical performances under influential conditions for
batteries with direct oil cooling. The reliability of the best neural network model was
further established by predicting the maximum temperature and voltage for various
discharge capacities, reflecting a maximum R2 and COV of 0.99 and 1.66, respectively.

(f) The proposed prediction model and prediction database could guide mapping the
relationship between operating conditions and performance, which could be utilized
to design and fabricate a direct liquid cooling system for high energy density batteries
in electric vehicles. In future, tests will be conducted to develop prediction models
for a battery module with direct oil cooling under fast charging and discharging
conditions to assure the safety and reliability of the proposed next-generation battery
thermal management technique.
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Abstract: Accurate state of health (SOH) estimation of lithium-ion batteries is critical for maintaining
reliable and safe working conditions for electric vehicles (EVs). The machine learning-based method
with health features (HFs) is encouraging for health prognostics. However, the machine learning
method assumes that the training and testing data have the same distribution, which restricts its
application for different types of batteries. Thus, in this paper, a deep learning neural network and
fine-tuning-based transfer learning strategy are proposed for accurate and robust SOH estimation
toward different types of batteries. First, a universal HF extraction strategy is proposed to obtain four
highly related HFs. Second, a deep learning neural network consisting of long short-term memory
(LSTM) and fully connected layers is established to model the relationship between the HFs and SOH.
Third, the fine-tuning-based transfer learning strategy is exploited for SOH estimation of various
types of batteries. The proposed methods are comprehensively verified using three open-source
datasets. Experimental results show that the proposed deep learning neural network with the HFs
can estimate the SOH accurately in a single dataset without using the transfer learning strategy where
the mean absolute error (MAE) and root mean square error (RMSE) are constrained to 1.21% and
1.83%. For the transfer learning between different aging datasets, the overall MAE and RMSE are
limited to 1.09% and 1.41%, demonstrating the reliability of the fine-tuning strategy.

Keywords: lithium-ion battery; state of health estimation; machine learning; transfer learning

1. Introduction

After years of development in the electric vehicle (EV) industry, lithium-ion batteries
(LiBs) have become the main source of EVs [1,2]. Although EVs’ market share has steadily
increased in recent years, their safety and lifespan have always been essential issues restrict-
ing their long-term use. Therefore, the battery management system (BMS) is implemented
to monitor the health state of the battery system and to ensure safety and reliable operation.
State of health (SOH) is an important indicator to evaluate the health state of the battery,
and it can be expressed as follows:

SOHc =
Ct

C0
× 100% (1)

where Ct and C0 are the actual and rated capacity, respectively.
SOH estimation is a key function of the BMS [3]. In the past decades, the existing

SOH estimation approaches can be classified as direct measurement methods and indirect
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analytical methods [4]. Typical direct measurement methods include capacity measurement
based on the coulomb counting method, internal resistance measurement based on specific
tests, and the impedance measurement method, which relies on electrochemical impedance
spectroscopy (EIS). The direct measurement methods suit laboratory conditions but not
onboard applications. Indirect analytical methods can be further classified as model-based
and data-driven methods. A high-fidelity battery model, such as the electrochemical
model [5], equivalent circuit model (ECM) [6], empirical model, and stochastic degradation
model, is first built for the model-based methods. Then, the well-parameterized battery
model is integrated with filter algorithms to estimate the SOH [7,8].

Owing to advanced techniques, such as 5G, cloud computing, and the Internet of
Things (IoT), the data-driven approaches have found successful applications across different
domains of LiBs, such as the production of LiBs [9,10], material design [11], fast charging
strategy [12], safety control [13], as well the state estimation, especially the SOH estimation.
Compared with the model-based method, the superiority of the data-driven method is that
it considers the battery as a black box, and the pre-determined battery model is not required
anymore. Machine learning (ML) methods can mine the hidden degradation information
from the aging data [14]. The typical flowchart to develop an ML-based SOH estimation
method is shown in Figure 1. Data processing and model training are two critical steps
that determine the performance of the SOH estimation [15]. For data preprocessing, the
so-called health features (HFs) [16] are extracted from the raw data, which is the foundation
and key for ML methods. The extraction methods include direct extraction and indirect
extraction methods [17]. The direct extraction method obtains HFs based on the measured
raw data directly. For example, the charging time of constant current (CC) and constant
voltage (CV) processes [18,19], the slope of the curve during the end of the CC charging
process [20], and voltage discrepancy at uniform time intervals [21] were used as HFs
in recently published papers. The indirect extraction method obtains HFs based on the
reconstructed curves. Commonly used reconstructing methods are incremental capacity
(IC) analysis [22], differential voltage (DV) analysis [23], and differential temperature (DT)
analysis [16]. For example, multiple peaks can be seen in the IC curve, and each peak
reflects the phase transition when the battery is working. With the aging of LiBs, the
IC curve shows a specific trend of change, especially the peaks. Therefore, the value,
position, width, slope, and area under each peak are often used as HFs. For these kinds
of reconstructed curves, filtering methods are required to eliminate the influence of noise.
Other indirect HFs include open circuit voltage and ohmic resistance within the ECM or
polarization capacitance and resistance derived from electrochemical impedance [24,25].
The main drawback is that additional algorithms are required, increasing its difficulty.
Other variables, namely, the sample entropy [26,27] and Kullback–Leibler distance [28], are
also used as HFs for SOH estimation.

 

Figure 1. The procedures to build an ML-based SOH estimation method.

Based on the pre-processed HFs and SOH values, different ML approaches are em-
ployed to train the SOH estimation model, including shallow neural networks, deep
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learning methods, Gaussian process regression (GPR), support vector machine (SVM), and
ensemble learning methods. Although developing the data-driven-based SOH estimation
method requires numerous aging data, more and more public aging datasets are avail-
able online thanks to the joint efforts of all researchers, which is beneficial for developing
advanced health prognostic methods. Some popular public aging datasets are given in
Table 1.

Table 1. Summary of the publicly available battery datasets.

Sources Refs.

Research & development data repository from Sandia National Labs [29]

Oxford battery degradation dataset [30]

Center for Advanced Life Cycle Engineering (CALCE) at the University of Maryland [31,32]

NASA Ames Prognostic Data Repository (NASA) [33]

Massachusetts Institute of Technology (MIT) dataset [34]

The Tongji University dataset [35]

The Huazhong University of Science and Technology dataset [36]

Currently, the HF-based ML methods for SOH estimation are usually developed based
on a single battery dataset, which means that the effectiveness and applicability of the
HF extraction strategy cannot be guaranteed toward other battery datasets. For example,
Fan et al. [37] used different combinations of HFs to train the SOH estimation model toward
the NASA and Oxford aging datasets, respectively. When choosing appropriate HFs, in
addition to the principles of easy acquisition, suitability for practical conditions, and a
highly relevant degree, the adaptability and universality of different types of batteries
are significant. Therefore, it is essential to explore a robust HF extraction strategy that is
especially applicable to diverse material types and varied working conditions [38].

On the other hand, when using a single battery dataset to train the SOH estimation
model, it usually assumes that the training and testing data have the same distribution.
However, such an assumption does not work for different types of batteries or working
conditions. Therefore, the well-trained SOH estimation model cannot guarantee an accept-
able estimation performance toward other battery datasets. In this case, transfer learning
(TL) technology is utilized for such problems [39]. Two strategies, namely, the model
parameter fine-tuning and domain adaption methods, are used in recent works for SOH
estimation [40].

For the fine-tuning strategy, the data from the source domain is used to train the
base model first, and then the specific layer in the base model is re-trained using the data
from the target domain while other layers keep frozen. Huang et al. [41] proposed a deep
learning model, and the principles of either fine-tuning or rebuilding were applied based
on whether the target domain shared the same type of LiBs. However, the HFs used in the
source domain and target domain were different according to different source and target
domain selections. In another work [42], according to whether the feature expression score
(FES) was greater than a threshold, the last fully connected (FC) layer of the base model
was fine-tuned or reconstructed. However, the proposed method was only validated inside
the same aging datasets (e.g., the NASA aging dataset). In addition, the need for individual
fine-tuning for each battery in the target domain significantly increases computational
expenses. Zhu et al. [35] randomly selected a battery from the target domain and used
its complete cyclic data for TL. They also compared different data selection strategies and
concluded that using data from a randomly selected battery can achieve much better results
than that from the time-series-based data. In addition, the fine-tuning strategy was applied
for the SOH estimation of the battery pack [43].

Domain adaptation methods aim to reduce the disparity in feature distributions
between the source and target domains, ultimately enhancing the generalization and
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accuracy of data-driven models. [44]. Li et al. [45] used transfer component analysis (TCA)
to minimize data differences and eliminate redundancy across various datasets. In another
work [46], joint distribution adaptation (JDA) was employed to achieve simultaneous
adaptation of both the marginal probability and the conditional probability distribution.
Fu et al. [38] proposed a feature mapping strategy that first identified the reference cell (RC)
and optimal matching cell (OMC) in the source domain and target domain, respectively.
Then, a linear matching approach was developed. The cyclic data of the OMC in the target
domain was used to re-train the base model. However, for different source and target
domains, it is necessary to identify the RC and OMC first, increasing the complexity of the
algorithm.

Based on the analysis above, some challenges need to be considered: (1) a universal
and effective HF extraction strategy is imperative, especially for different types of batteries
and different working conditions; (2) how accurate and robust SOH estimation toward
different types of batteries using TL can be ensured. To address these challenges, a universal
HF extraction strategy and a deep learning neural network-based transfer learning method
are established for SOH estimation in this paper. Three open-source aging datasets, namely
the Oxford, CALCE, and NASA aging datasets, are used to validate the effectiveness of the
proposed algorithms. The main contributions are as follows:

(1) To comprehensively reflect the aging characteristics of LiBs and apply them to dif-
ferent battery types and working conditions, a universal HF extraction strategy is
proposed. Only partial voltage and current information is required to extract four
straightforward and highly relevant HFs.

(2) To learn the long-term dependency between the HFs and capacity and fulfill TL, a
deep learning neural network consisting of the long short-term memory (LSTM) and
FC layers is proposed in this paper. For the same battery type (or in the same aging
dataset), the proposed neural network is trained using a random-selected battery, and
other batteries are used to test the model directly without using the TL strategy.

(3) To achieve accurate and robust SOH estimation of different types of batteries and
different working conditions, the fine-tuning-based TL strategy is used in this paper.
The basic principle is to use a random-selected battery in the source domain to train
the base model, and then use a random-selected battery in the target domain to re-train
the base model, where only the last layer is re-trained and the other layers are frozen.

(4) Comprehensive verifications are conducted using three popular open-source aging
datasets, namely Oxford, CALCE, and NASA aging datasets. Sixteen batteries, featur-
ing two distinct cathode material types, are subjected to cycling under five different
operating conditions to assess the efficacy of the proposed methods.

The remainder of the paper is organized as follows: Section 2 introduces the exper-
imental datasets and feature extraction strategy. Section 3 explains the used algorithms.
Section 4 gives the results and discussions. Finally, conclusions are summarized in Section 5.

2. Experimental Datasets

Referring to recent research, three open-source aging datasets provided by the Uni-
versity of Oxford [30], the CALCE at the University of Maryland [31,32], and NASA Ames
Prognostics Center of Excellence [33] are used in this paper. Note that only the most used
data from each dataset is used in this paper, e.g., Cell 1 to 8 from the Oxford aging dataset.
Details are explained as follows.

2.1. Oxford Aging Dataset

Eight LiCoO2 (LCO) pouch batteries with 0.74 Ah nominal capacity were selected
from the Oxford aging dataset, labeled Cell 1 to Cell 8, respectively. The aging experimental
procedures were as follows: (1) The batteries were discharged using a driving cycle obtained
from the urban Artemis profile (average current = 1.36 A), and the termination voltage
was 2.7 V. (2) Then, the CC charging process was conducted with the batteries with a
constant current rate of 2 C until the terminal voltage reached 4.2 V. (3) The above charging–
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discharging cycle was repeated 100 times, and then a characterization test was conducted
to measure the capacity of the batteries. The aging experiment was conducted under 40 ◦C.
The SOH curves of the Oxford aging dataset are shown in Figure 2a. Note that the cycle
number in the x-axis represents the number of characterization tests. For example, 45 cycles
mean the 45th characterization test after 4500 charging–discharging cycles.

 

Figure 2. Degradation paths of three aging datasets: (a) Oxford dataset, (b) CALCE dataset,
and (c) NASA dataset.

2.2. CALCE Aging Dataset

Four LCO prismatic batteries with 1.14 Ah nominal capacity were selected from the
CALCE aging, labeled CS35, CS36, CS37, and CS38, respectively. The aging experimental
procedures were as follows: (1) The batteries were discharged using a constant current
rate of 1 C, and the termination voltage was 2.7 V. (2) Then, the batteries underwent the
same constant current–constant voltage (CC–CV) protocol, where the CC charging current
was 0.5 C, and the CV process ended when the current dropped to 0.05 A. (3) The above
charging–discharging cycle was repeated until the end-of-experiment criteria were met.
The aging experiments were conducted at room temperature (around 25 ◦C). The SOH
curves of the CALCE aging dataset are shown in Figure 2b.

2.3. NASA Aging Dataset

Three 18650 LiNiCoAlO2 (NCA) batteries with 2 Ah nominal capacity were selected
from the NASA aging dataset, labeled as B05, B06, and B07, respectively. The aging
experimental procedures were as follows: (1) The batteries were discharged with a constant
current of 2 A, and the termination voltages were 2.7 V, 2.5 V, and 2.2 V, respectively. (2) The
batteries were then fully charged with the CC–CV protocols, where the CC charging current
was 1.5 A, and the CV process ended when the current dropped to 0.02 A. (3) The above
charging–discharging cycle was repeated until the end-of-experiment criteria were met.
The aging experiments were conducted at room temperature (around 24 ◦C). The SOH
curves of the NASA aging dataset are shown in Figure 2c.

According to Figure 2, it is clear that significant differences between the degradation
paths of the three aging datasets due to different materials, structures, and working condi-
tions can be observed. In addition, as for the Oxford or CALCE aging datasets, even though
the batteries have the same cathode materials and experience the same test protocols, they
have different aging paths because of the initial difference. For example, the first charged
capacity of the four batteries from CALCE are 1.135 Ah, 1.142 Ah, 1.130 Ah, and 1.137 Ah,
respectively, indicating the aging inconsistency. The initial difference could result in more
aggressive internal variations as the battery ages. The characteristics of the three aging
datasets are given in Table 2.
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Table 2. Characteristics of three open-source aging datasets.

Aging
Dataset

Battery Label
Cell

Types
Charge C
Rate (C)

Charging
Cut-Off

Voltage (V)

Discharge
C Rate

(C)

Discharging
Cut-Off

Voltage (V)

Temperature
(◦C)

Nominal
Capacity

(Ah)

Oxford Cell 1 to Cell 8 LCO 2 4.2 2 2.7 40 0.74

CALCE CS35 to CS38 LCO 0.5 4.2 1 2.7 25 1.1

NASA

B05

NCA 0.75 4.2 1

2.7

24 2B06 2.5

B07 2.2

2.4. Aging Analysis and Feature Extraction

The HF extraction is the foundation and key for building the ML method for SOH
estimation. When choosing appropriate HFs, in addition to the principles of easy acqui-
sition, suitability for practical conditions, and high relevant degree, the adaptability and
universality toward different types of batteries are significant. Based on this principle,
although many valuable HFs are summarized in the Introduction, we want to choose as
few neural network inputs as possible but maintain accuracy and robustness simultane-
ously. Therefore, a universal HF extraction strategy is proposed in this section based on the
analysis of three open-source aging datasets.

Note that the CC–CV charging protocol was used in the experiments of the CALCE
and NASA, while the CC charging protocol was used in the experiments of Oxford. Hence,
only the data from CC charging duration is used to obtain HFs. Figure 3 shows the terminal
voltage curves during the CC charging process under different aging states. Taking the
Oxford aging dataset as an example, it can be observed that the time for LiBs to reach
the upper cut-off voltage (4.2 V) decreases as the battery ages. This phenomenon directly
reflects the reduction in usable capacity. Therefore, the charged time during the CC charging
process is selected as an HF in many existing research. However, to fulfill the HF-selection
principle stated at the beginning of this section, the whole CC charging process cannot be
used to obtain the time-related HFs because LiBs are hardly charged from 0% to 100% in
practical applications. Hence, the charging duration derived from the specific segment
(from 3.8 V to 4.1 V) of the CC charging curves is selected as an HF to represent the battery
degradation, denoted as T1. Correspondingly, the charged capacity in this voltage range
can be calculated easily since the current remains constant. Therefore, the charged capacity
is considered as another HF, denoted as Q1.

Figure 3. The terminal voltage curves under different aging states: (a) Oxford dataset, (b) CALCE
dataset, and (c) NASA dataset. (EOL means end of life).
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The incremental curve analysis (ICA) is a popular method to analyze the aging mecha-
nism of LiBs and is used to extract high-related HFs. The IC curves can be calculated from
the CC charging process using a differential equation as follows:

IC =
dQ
dV

= I · dt
dV

(2)

where Q and V represent the capacity and voltage, respectively, I represents the current,
and t is the sampling time.

Figure 4 shows the IC curves under different aging states. We note that the IC curves
are further smoothed by the Gaussian filter. Taking the IC curves of the Oxford aging
dataset as an example, two peaks can be observed in the middle range of about 3.6–4.1 V.
Each peak represents the phase transition process during active material insertion and
delamination. With the aging of LiBs, the first peak gradually disappears, and the second
peak decreases with a clear trend. In addition, the region beneath the peaks diminishes as
the age of the LiBs decreases, indicating a loss of active material and a loss of lithium [47].
As for the other two aging datasets, the IC curves of the CALCE aging dataset also have
two peaks and have the same trend as the Oxford aging dataset, while there is only one
obvious peak in the IC curves of the NASA aging dataset. To guarantee the universality of
the HF extraction strategy, the second peak value and the region beneath the second peak
(between 3.8 V and 4.1 V) are selected as HFs, denoted as P1 and A1, respectively.

Figure 4. The IC curves under different aging states: (a) Oxford dataset, (b) CALCE dataset,
and (c) NASA dataset.

In many existing research and our previous work [48], temperature information is
used to extract valuable HFs. However, to build a uniform feature-extraction strategy
considering the commonality of different datasets where the CALCE aging dataset does not
provide the temperature information, the temperature information is ignored in this paper.
Then, the Pearson correlation coefficient, an efficient method to evaluate the correlation
degree between two data sets, is employed in this paper. The expression is as follows:

ρ =
∑n

i=1
(

HFi − HF
)(

Ci − C
)

√
∑n

i=1
(

HFi − HF
)2

∑n
i=1

(
Ci − C

)2
(3)

where HFi and Ci represent HF and SOH, respectively, HF and C are their mean values,
and n is the number of samples. Typically, the Pearson correlation coefficient spans from −1
to 1, with a closer absolute value to 1 indicating a stronger degree of correlation. Figure 5
gives the heat map of the Pearson correlation coefficients of each battery in three open-
source aging datasets. It is evident that every Pearson correlation coefficient surpasses 0.95,
signifying a robust correlation. In summary, four straightforward and high-related HFs are
obtained from the specific segments of the voltage and current curves based on analyzing
three aging datasets’ degradation characteristics and commonalities.
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Figure 5. Heat map of the Pearson correlation coefficient of each battery.

3. Related Algorithms

3.1. The Deep Learning Neural Network

Referring to [41,42,46], a deep learning neural network consisting of one LSTM layer,
one dropout layer, and three FC layers is established to achieve accurate SOH estimation
toward a single aging dataset and fulfill a TL strategy toward different aging datasets. For
simplicity, the proposed deep learning neural network is abbreviated as LSTM-FC-NN.

The LSTM layer is used because of its superiority in dealing with time-series data.
The LSTM was first created by Hochreiter et al. [49] to solve the information decay during
the algorithm back-propagation through time (BPTT). Most gradient-based learning algo-
rithms, such as the Elman neural network [50], suffer either gradient vanishing or gradient
explosion when the backflow transfers the information over a long period. To overcome
the time dependence problem, the LSTM is proposed with a cell state (memory cell), a
hidden state, a forget gate, an input gate, and an output gate, as shown in Figure 6. The
expressions are as follows:

ft = σ
(

Wf xt + Uf Ht−1 + b f

)
it = σ(Wixt + Ui Ht−1 + bi)

ot = σ(Woxt + Uo Ht−1 + bo)

ct = ft
⊙

ct−1 + it
⊙

tanh(Wcxt + UC Ht−1 + bc)

Ht = ot
⊙

tanh(ct)

(4)

where xt represents the input of the LSTM, Ht represents the hidden state, W and U
represent the weight matrices, b represents the bias, it, ft, ot, and ct represent the input,
forget, output gates, and memory cell, respectively, and σ is the sigmoid activation function.
The significant feature of LSTM is the use of different gates to control the information
flows. In particular, the input gate determines the new information allowed to pass into the
memory cell, while the forget gate identifies the information from the previous memory
cell (ct−1) that should be disregarded. The output gate is used to calculate the outputs.
More details can be found in [51].
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Figure 6. The structure of LSTM.

Although different batteries have similar declining degradation curves, the specific
characteristics are different. As referred to in [52], the FC layers in the base model can
serve as the “firewall” to achieve outstanding transfer learning performance. Therefore,
three FC layers are used in this paper. In addition, to prevent overfitting, especially when
there is limited data, a dropout layer is added to the base model. In the end, the structure
of the proposed deep learning neural network is shown in Figure 7. For reproducibility,
important hyperparameters are listed in Table 3. Note that all algorithms and computations
are executed using MATLAB 2022b.

 
Figure 7. The structure of the proposed deep learning neural network.

Table 3. Hyperparameters of the deep learning neural network.

Hyperparameters Values and Settings

Optimization method Adam

Number of units in LSTM layer 100

Number of units in FC layers 10/10/1

Dropout rate 0.5

Data split ratio for training base model 80%/10%/10%

Data split ratio for re-training 80%/20%

3.2. Transfer Learning Strategy

Parameter fine-tuning and domain adaptation methods are two commonly used
strategies in TL. The parameter fine-tuning method is more straightforward than the
domain adaption method. Thus, the fine-tuning-based TL strategy is used in this paper.
The principle of the fine-tuning-based TL is shown in Figure 8:
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(1) First, three open-source aging datasets, the Oxford, CALCE, and NASA aging datasets,
are represented using different shapes, respectively. Note that different color shades
represent the inconsistency between the batteries in the same aging dataset, caused
by different initial states, working conditions, and internal variations in material
properties from battery manufacturing.

(2) Second, one of the three aging datasets is selected as the source domain, and the other
two are considered the target domains. Then, the cyclic data of a randomly selected
battery from the source domain is used to train the base model. And other batteries in
the source domain are used to test the base model.

(3) Third, the fine-tuning-based TL strategy is applied when the target domain is available.
The data-selection principle is used to randomly select a battery in the target domain
and re-train the base model with its cyclic data using the fine-tuning method. The
fine-tuning method in this paper means that only the last FC layer is updated during
re-training, while other layers are frozen.

(4) Finally, other batteries in the target domain are used to test the re-trained model.

Figure 8. The principle of the fine-tuning-based TL strategy.

By using the random-selected strategy, the accuracy and robustness of the proposed deep
learning neural network and fine-tuning-based TL strategy can be thoroughly evaluated.

4. Results and Discussion

This section gives the results of the proposed universal HF extraction strategy and
LSTM-FC-NN for SOH estimation on the single aging dataset, as well as the effectiveness
of the proposed fine-tuning-based TL strategy toward different types of batteries in detail.
Commonly used statistical metrics, namely, the mean absolute error (MAE), root mean
square error (RMSE), and the maximum error (MaxE), are used to evaluate the performance
quantitively. The MAE gives equal weight to all errors, which can be used to evaluate
the accuracy of a regression model. At the same time, the RMSE is more sensitive to
outliers and can be used to evaluate the robustness of a model. The MaxE is useful for
understanding the magnitude of the largest error. The expressions are as follows:

MAE =
1
N

N

∑
i=1

∣∣∣̂SOHi − SOHi

∣∣∣ (5)
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RMSE =

√√√√ 1
N

N

∑
i=1

(
̂SOHi − SOHi

)2
(6)

MaxE = max
∣∣∣̂SOHi − SOHi

∣∣∣ (7)

where ̂SOHi represents the predicted value, SOHi represents the reference value, and N is
the number of samples.

4.1. Results of the Single Aging Dataset

This section separately evaluates the proposed deep learning neural network for SOH
estimation using three open-source aging datasets. It first verifies the effectiveness of the
proposed universal HFs extraction strategy and proves that the proposed LSTM-FC-NN
model can achieve accurate and robust SOH estimation toward different battery types.
Note that the training and evaluation principle for the same type of batteries is that a
random-selected battery is used to train the base model, and other batteries are used to test
the base model directly without using the TL strategy.

4.1.1. Oxford Aging Dataset

Table 4 gives the statistical metrics of the case that Cell 1 in the Oxford aging dataset
is randomly selected to train the base model, and other batteries are used to test the base
model directly without using the TL strategy. Table 5 gives the results where another
battery is randomly selected to train the model, e.g., Cell 2 to Cell 7, and the MAE, RMSE,
and MaxE in Table 5 are the mean values. For example, the second column in Table 5
represents that Cell 2 is used to train the base model, and the other seven cells are used to
test the base model. Then, the MAE, RMSE, and MaxE are the mean values of the seven
testing results. Correspondingly, the eight curves in Figure 9 represent which battery is
used to train the base model.

Table 4. Estimation results of the Oxford aging dataset.

Train Test MAE (%) RMSE (%) MaxE (%)

Cell 1

Cell 2 0.22 0.28 0.59

Cell 3 0.21 0.27 0.52

Cell 4 0.29 0.36 0.89

Cell 5 0.49 0.56 1.05

Cell 6 0.56 0.61 1.02

Cell 7 0.45 0.53 1.07

Cell 8 0.56 0.62 1.09

Table 5. Estimation results of all cases in the Oxford aging dataset.

Unit: % Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8

MAE * 0.37 0.39 0.32 0.34 0.32 0.34 0.29 0.32

RMSE * 0.43 0.48 0.40 0.42 0.39 0.39 0.35 0.37

MaxE * 0.84 0.95 0.83 0.86 0.82 0.75 0.71 0.70

* The MAE, RMSE, and MaxE are the mean values.
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Figure 9. Estimation results of the Oxford aging dataset: (a) Cell 1; (b) Cell 2; (c) Cell 3; (d) Cell 4.
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Overall, it can be seen from Figure 9 that no matter which battery is randomly selected
to train the base model, the base model can achieve accurate SOH estimation results toward
other batteries without using the TL strategy. Specifically, as an example, Figure 9a gives the
results where Cell 2 to Cell 7 are used to train the base model in turn, and Cell 1 is used to
test the base model. It can be observed that all seven estimated SOH curves can follow the
actual SOH curves quite well. The MaxE is merely 1.09% when Cell 8 is used to train the base
model, according to Table 4. In addition, the mean values of MAE and RMSE are only 0.37%
and 0.43%, respectively, according to Table 5. As for other evaluation cases in Table 5, the
estimation results demonstrate that the proposed universal HF strategy and LSTM-FC-NN
model can achieve accurate and robust SOH estimation toward the Oxford aging dataset.

4.1.2. CALCE Aging Dataset

Table 6 gives the results that a random-selected battery from the CALCE aging dataset
is used to train the base model, and other batteries are used to test the base model without
using the TL strategy. Correspondingly, Figure 10 illustrates the estimation results.

Table 6. Estimation results of the CALCE aging dataset.

Train Test MAE (%) RMSE (%) MaxE (%)

CS35

CS36 0.51 0.70 2.55

CS37 0.48 0.59 3.06

CS38 0.63 0.75 3.32

CS36

CS35 0.51 0.61 2.54

CS37 0.57 0.70 3.38

CS38 0.80 0.94 3.70

CS37

CS35 0.63 0.94 3.87

CS36 0.74 1.04 5.08

CS38 0.48 0.60 3.04

CS38

CS35 1.11 1.87 8.30

CS36 1.21 1.83 9.71

CS37 0.66 0.90 3.60

Mean values - 0.69 0.96 4.35

Similar to the Oxford aging dataset results, on which a battery is used to train the base
model, the model can achieve accurate and robust SOH estimation toward other batteries
without the TL strategy. For example, Figure 10d shows the estimation results of CS38 using
different battery-based base models. It can be observed that no matter which battery is used
to train the base model, the base model can obtain accurate estimation results toward CS38.
The estimated SOH curves can always follow the actual aging path, even in some slight range
fluctuation. In addition, the estimation errors rarely exceed absolute 2%, demonstrating the
proposed method’s robustness. However, for CS35 and CS36, when evaluated using the
CS38-based base model, the results are slightly worse than other battery-based models. This
is because the aging path of CS38 is quite different from that of CS35 and CS36, especially
when the SOH drops below 80%, as shown in Figure 2b. When the SOH drops below 80%, the
internal electrochemical reaction becomes more uncontrollable, resulting in quicker and more
different aging paths. Therefore, significant estimation errors and MaxE occur when the SOH
drops below 80%. At the same time, there is consistency between the estimated and actual
SOH curves when the SOH is higher than 80%, as shown in Figure 10a,b. Overall, the last
row in Table 6 represents the mean values of the corresponding columns. It can be concluded
that the mean values of MAE and RMSE are 0.69% and 0.96%, respectively, demonstrating the
accuracy and robustness of the proposed model toward the CALCE aging dataset.
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Figure 10. Estimation results of the CALCE aging dataset: (a) CS35; (b) CS36; (c) CS37; (d) CS38.
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4.1.3. NASA Aging Dataset

Table 7 gives the results that a random-selected battery from the NASA aging dataset
is used to train the base model, and other batteries are used to test the model directly
without using the TL strategy. Figure 11 compares the estimated SOH curves based on
different base models and actual SOH curves and the estimated errors.

Table 7. Estimation results of the NASA aging dataset.

Train Test MAE (%) RMSE (%) MaxE (%)

B05

B06 3.40 3.88 12.43

B06_retrain 1.39 1.86 8.21

B07 0.63 0.97 5.68

B06
B05 2.94 3.12 4.85

B07 1.99 2.22 5.00

B07

B05 0.72 0.95 5.10

B06 3.40 3.91 12.72

B06_retrain 1.37 1.93 8.66

According to Table 7, it can be concluded that when the B05 is used to train the base
model, the base model can achieve accurate SOH estimation toward B07 but not B06.
The MAE and RMSE of B07 are 0.63% and 0.97%, respectively, while the MAE and RMSE
of B06 are 3.40% and 3.88%, respectively. As shown in Figure 11c, the estimated SOH
curve based on B05 can follow the actual aging path quite well, but in Figure 11b, there is a
significant difference between the estimated SOH curve based on B05 and the actual SOH
curve. The same results can be observed when B07 is used to train the base model. As for
the case when B06 is used to train the base model, it can be seen from Figure 11a,c that the
estimated curves based on B06 cannot follow the real SOH curves well, e.g., the blue line in
Figure 11a and the yellow line in Figure 11c. The reasons can be explained as follows. First,
the initial SOH of these three batteries is quite different, indicating 0.92%, 1.01%, and 0.94%
for B05, B06, and B07, respectively, as shown in Figure 2c. Second, the discharging protocols
for these three batteries are different, as summarized in Table 2. Different discharging
cut-off voltages would result in different depths of discharge, which is essential for battery
aging. The initial differences are bound to result in inconsistencies in the aging paths of
different batteries, and different cycling protocols exacerbate the inconsistencies. Therefore,
as shown in Figure 2, it can be observed that the differences between different aging paths
of the NASA aging dataset are more evident than the other two aging datasets.

Since the aging path of B06 is quite different from B05 and B07, the fine-tuning-based
TL strategy is used to improve the accuracy. Figure 12 compares the estimation results of
B06 with or without using the fine-tuning-based TL strategy, and the corresponding results
are given in Table 7. After fine-tuning the base model, the re-trained model can perform
much better. The estimated SOH curves can follow the actual SOH curve well. The MAE
and RMSE after using the TL strategy are 1.39% and 1.86%, respectively, decreasing by 59%
and 52%, respectively. In summary, the effectiveness of the proposed LSTM-FC-NN model
and fine-tuning-based TF strategy is verified toward the NASA aging dataset.
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Figure 11. Estimation results of the NASA aging dataset: (a) B05; (b) B06; (c) B07.

 

Figure 12. Estimation results of B06 when using the TL strategy.
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In summary, three open-source aging datasets are used separately to evaluate the
effectiveness of the proposed universal HF extraction strategy and LSTM-FC-NN model
for SOH estimation in this section. On the one hand, from the results of the Oxford and
CALCE aging datasets, it can be concluded that when the training and testing batteries are
the same battery type and have the same aging protocol, the estimations are accurate and
reliable, whatever the training dataset. On the other hand, from the results of the NASA
aging dataset, it can be concluded that when the testing battery has a significantly different
aging path from the training one, the estimations cannot be guaranteed. In this case, the
fine-tuning-based TL strategy can be used to improve the adaptivity of the trained model
toward the testing battery, which builds the foundation for the following results.

4.2. Results of the Proposed Transfer Learning Strategy between Different Aging Datasets

This section gives the results of the proposed fine-tuning-based TL strategy between
three open-source aging datasets in detail. As shown in Figure 8, the evaluation principle
is that one of the three aging datasets is randomly selected as the source domain, and the
other two aging datasets are then used separately as the target domain. Then, a randomly
selected battery from the source domain is used to train the base model. Next, one of the
batteries in the target domain is selected randomly, and its cyclic data is used to fine-tune
the base model. Finally, the re-trained model is tested using other batteries in the target
domain. The following three subsections explain the results in detail.

4.2.1. Transfer Learning between Oxford and CALCE Aging Datasets

Figure 13 gives the results that Cell 1 is used to train the base model, CS38 is randomly
selected to re-train the base model using the fine-tuning strategy, and other batteries in
the CALCE aging datasets are used to test the re-trained model. Note that the blue lines
(labeled as Before TL) give the estimated SOH curves using the base model directly, and
the yellow lines (labeled as After TL) give the estimated SOH curves using the fine-tuned
base model.

It can be observed that although the overall trend of the estimated SOH curves without
using the TL strategy has the same downtrend as the actual SOH curves, there are significant
estimation errors between them. That is because the LSTM layer can learn the long-term
dependency between the input features and SOH, but the last FC layer determines the final
output. Therefore, the re-trained model can adapt to the target domain when the last FC
layer is updated. Then, the estimated SOH curves can track the real SOH curves quite well,
even with slight fluctuation. Specifically, according to Table 8, the MAE and RMSE of CS35
after using the TL strategy are 0.68% and 0.95%, respectively, which is even better than the
results in Table 6.

Table 8. The results of the TL strategy from Oxford to CALCE.

Source/Target Test Method MAE (%) RMSE (%) MaxE (%)

Cell 1/CS38

CS35
Before TL 10.61 11.40 19.88

After TL 0.68 0.95 3.49

CS36
Before TL 10.96 12.12 20.45

After TL 0.74 1.08 4.71

CS37
Before TL 10.68 11.26 19.68

After TL 0.59 0.72 3.06

Figure 14 illustrates that CS35 is used to train the base model, and Cell 4 is used to
fine-tune the base model. The corresponding results are summarized in Table 9. Similar
results can be observed in Figure 14 that the estimated SOH curves based on the base model
have the same downtrend as the actual SOH curves, but there are significant errors between
them. After fine-tuning the base model, the estimated SOH curves can track the actual
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SOH curves quite well. The MAE and RMSE are limited to 0.46% and 0.57%, respectively.
Overall, the above results between the Oxford and CALCE aging datasets demonstrate the
validity of the proposed LSTM-FC-NN model and the fine-tuning-based TL strategy.

 

Figure 13. The results of the TL strategy from Oxford to CALCE: (a) CS35; (b) CS36; (c) CS37.
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Figure 14. The results of the TL strategy from CALCE to Oxford: (a) Cell 1; (b) Cell 2; (c) Cell 3;
(d) Cell 5.
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Table 9. The results of the TL strategy from CALCE to Oxford.

Source/Target Test Method MAE (%) RMSE (%) MaxE (%)

CS35/Cell 4

Cell 1
Before TL 8.11 8.19 9.31

After TL 0.35 0.42 0.90

Cell 2
Before TL 8.26 8.32 9.21

After TL 0.26 0.32 0.64

Cell 3
Before TL 8.15 8.22 9.27

After TL 0.32 0.36 0.67

Cell 5
Before TL 8.63 8.69 9.52

After TL 0.46 0.57 1.11

4.2.2. Transfer Learning between CALCE and NASA Aging Datasets

The mutual estimation results of the TL strategy between the CALCE and NASA aging
datasets are given in Figures 15 and 16, respectively. As an example, Figure 15 shows the
estimation results of CS36, CS37, and CS38 with or without using TL. The corresponding
results are summarized in Table 10. The overall trend of the estimated curves before using
the TL strategy is similar to the real ones, but significant gaps can be found. After updating
the last FC layer of the base model, the re-trained model can track the descent SOH curves
well. Furthermore, the proposed LSTM-FC-NN model showcases robustness, with the
MAE and RMSE constrained to 0.80% and 0.95%, respectively.

Table 10. The results of the TL strategy from NASA to CALCE.

Source/Target Evaluation Method MAE (%) RMSE (%) MaxE (%)

B05/CS35

CS36
Before TL 5.66 6.45 13.42

After TL 0.58 0.85 3.15

CS37
Before TL 4.26 4.99 12.59

After TL 0.63 0.78 3.16

CS38
Before TL 4.20 5.04 12.83

After TL 0.80 0.95 3.40

Figure 16 gives the estimation results of B05 and B06 with or without using TL, and
the corresponding results are summarized in Table 11. As analyzed in Section 4.1.3, the
model trained using data of B07 can achieve accurate estimation toward B05 but not B06.
Similar results can be found in this TL case. As shown in Figure 16a, the B07-based model
can achieve accurate estimation toward B05 after implementing the TL strategy. As for B06,
the B07-based model improves the estimation accuracy after implementing the TL strategy,
and the MAE and RMSE decreased by 68.80% and 73.43%, respectively.

Table 11. The results of the TL strategy from CALCE to NASA.

Source/Target Test Method MAE (%) RMSE (%) MaxE (%)

CS35/B07

B05
Before TL 19.91 20.97 28.29

After TL 0.70 0.95 5.12

B06
Before TL 10.77 14.42 27.38

After TL 3.36 3.83 12.48
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Figure 15. The results of the TL strategy from NASA to CALCE: (a) CS36; (b) CS37; (c) CS38.
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Figure 16. The results of the TL strategy from CALCE to NASA: (a) B05; (b) B06.

4.2.3. Transfer Learning between NASA and Oxford Aging Datasets

The mutual estimation results of the TL strategy between the NASA and Oxford aging
datasets are shown in Figures 17 and 18, respectively. The same estimation results can be
found that although the estimated SOH curves before using the TL strategy can follow
the overall trend with the real SOH curves, there are significant gaps between them. After
fine-tuning the base model, the estimated SOH curves can accurately track the real ones.
The results corresponding to Figures 17 and 18 are given in Tables 12 and 13, respectively.
For the TL strategy from NASA to Oxford, the MAE, RMSE, and MaxE are limited to
0.4%, 0.47%, and 0.87%, respectively, demonstrating the effectiveness of the proposed deep
learning neural network and fine-tuning-based TL strategy.

Table 12. The results of the TL strategy from NASA to Oxford.

Source/Target Test Method MAE (%) RMSE (%) MaxE (%)

B05/Cell 2

Cell 1
Before TL 19.22 19.59 26.06

After TL 0.25 0.29 0.52

Cell 3
Before TL 19.34 19.70 25.86

After TL 0.17 0.20 0.38

Cell 4
Before TL 19.26 19.60 25.41

After TL 0.32 0.36 0.65

Cell 5
Before TL 20.04 20.31 25.99

After TL 0.40 0.47 0.87

229



Batteries 2023, 9, 585

 

Figure 17. The results of the TL strategy from NASA to Oxford: (a) Cell 1; (b) Cell 3; (c) Cell 4; (d) Cell 5.
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Figure 18. The results of the TL strategy from Oxford to NASA: (a) B06; (b) B07.

Table 13. The results of the TL strategy from Oxford to NASA.

Source/Target Test Method MAE (%) RMSE (%) MaxE (%)

Cell 6/B05

B06
Before TL 4.96 6.03 13.38

After TL 2.00 2.53 10.19

B07
Before TL 10.66 11.26 15.94

After TL 0.87 1.12 4.84

In summary, this section evaluates the effectiveness of the proposed LSTM-FC-NN
model and fine-tuning-based TL strategy using three open-source aging datasets. It can
be concluded that although the estimated curves based on the base model can follow the
overall downtrend of the actual curves, there are significant gaps between them. This
result is because the LSTM layer can learn the long-term dependency between the inputs
and outputs, and the overall degradation trend of different types of batteries is similar.
However, the final outputs are determined by the last layer of the base model. Therefore,
after using the fine-tuning strategy to update the last FC layer of the model, the re-trained
model can adapt to the target domain quite well and achieve accurate and robust estimation
results. Table 14 compares the results with or without using the TL strategy between three
aging datasets. The first column represents the source domain, and the first row represents
the target domain. The MAEs and RMSEs in Table 14 are the mean values of all evaluation
cases from the source domain to the target domain. It can be concluded that with the
fine-tuning-based TL strategy, the accuracy of SOH estimation improves significantly, and
the MAE and RMSE are limited to 1.09% and 1.41%, respectively. In addition to the model
accuracy, the number of learnable parameters and training time are used to analyze the
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algorithm complexity with or without the TL. According to the hyperparameter setting,
the proposed deep learning neural network has 43,100 learnable parameters. If the whole
model needs to be re-trained toward the target domain, 43,100 learnable parameters must
be involved in the training process. However, only the last FC layer is updated for the
fine-tuning-based TL method, meaning only 11 learnable parameters are involved. As for
the training time, take training B05 as an example. When training the entire model, it took
14.43 s, and when re-training the model using the fine-tuning method, it took only 7.08 s.
Note that this is the average time when training 10 times.

Table 14. The comparison of results with or without the TL strategy.

Unit: (%)
Oxford CALCE NASA

MAE * RMSE * MAE * RMSE * MAE * RMSE *

Oxford
Before TL

-
12.78 13.55 7.81 8.65

After TL 0.93 1.18 1.09 1.41

CALCE
Before TL 8.88 8.97

-
15.34 17.70

After TL 0.42 0.51 0.92 1.24

NASA
Before TL 19.83 20.13 6.55 7.37

-
After TL 0.41 0.48 0.86 1.09

* The MAE and RMSE are the mean values of all evaluation cases.

4.3. Future Work

This work comprehensively verifies the effectiveness of the proposed LSTM-FC-NN
model using a universal HF extraction strategy and the fine-tuning-based TL strategy for
SOH estimation using three open-source aging datasets with different material types and
working conditions. However, there are some limitations beyond this research. First, this
research does not consider the LiFePO4 (LFP) cell, which is a commonly used type of LiB.
Second, the batteries used in this research were cycled under CC–CV charge–CC discharge
protocols, which are different from real-world working conditions. Third, the results of
the NASA aging dataset are worse than the other two because of severe inconsistency
and capacity regeneration. In our forthcoming research, we plan to investigate a broader
range of battery types, including those cycled under dynamic operational conditions.
The accuracy and robustness of the proposed method will be improved according to the
specific characteristics of different types of batteries.

5. Conclusions

A universal HF extraction strategy and an LSTM-FC-NN model are proposed in this
paper for accurate and robust SOH estimation. In addition, the fine-tuning-based TL
strategy is developed considering the difference in data distribution between different
types of batteries. Sixteen batteries, featuring two distinct cathode material types, are
subjected to cycling under five different operating conditions to assess the efficacy of the
proposed methods. The main conclusions are summarized as follows:

(1) Four straightforward HFs, including charged time, charged capacity, peak value
of the IC curve, and area under the IC peak, were extracted from partial voltage
curves to reflect the battery degradation of different battery types. The Pearson
correlation analysis demonstrates that the four extracted HFs are highly related to
battery capacity.

(2) A deep learning neural network consisting of one LSTM layer, one dropout layer, and
three FC layers was proposed to estimate the SOH accurately. The effectiveness of the
proposed LSTM-FC-NN model with the HFs was verified using three open-source
aging datasets. The MAE and RMSE are less than 1.21% and 1.83%, respectively.

(3) The fine-tuning method was used to transfer learning between three aging datasets
where a random-selected battery from the target domain was utilized to re-train the
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base model. The mutual evaluation between the three aging datasets demonstrates
the validity of the TL strategy, with the MAE and RMSE limited to 1.09% and 1.41%,
respectively.
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