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Preface

We are pleased to present the ”Mathematical Methods in Applied Sciences” Special Issue of

Axioms, which includes 17 meticulously selected articles and an editorial. This collection explores a

wide range of topics in applied mathematics, encompassing both pure mathematical methods and

their applications across various scientific disciplines.

The articles featured in this Special Issue cover several pivotal fields, including mathematical

methods and analysis, statistical methods, natural language processing, neural networks, numerical

methods, and fuzzy systems. Each contribution offers unique insights and advancements, reflecting

the dynamic and interdisciplinary nature of contemporary mathematical research.

The primary objective of this Special Issue is to provide a platform for scholars to publish

their recent work, enabling them to delve deeper into a variety of complex problems and propose

innovative solutions through mathematical approaches. By bringing together diverse perspectives

and cutting-edge research, we aim to enhance our collective understanding of these critical areas and

stimulate further developments in applied mathematics.

We extend our gratitude to the authors for their exceptional contributions and to the reviewers

for their diligent efforts in ensuring the high quality of this Special Issue. We hope that readers

will find these articles both informative and inspiring and that they will serve as a valuable

resource for researchers and practitioners alike, sparking new ideas and collaborations in the field of

applied mathematics.

Nuno Bastos, Touria Karite, and Amir Khan

Editors
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1. Introduction

In this editorial, we introduce “Mathematical Methods in Applied Sciences”, a Special
Issue of Axioms comprising 17 articles. These articles delve into various mathematical
methods and emerging trends in applied sciences, spanning from theoretical explorations
to practical applications. While covering diverse topics, particular emphasis is placed on
fields such as mathematical methods and analysis, statistical modeling, natural language
processing, neural networks, inverse problems, numerical methods, and fuzzy systems. The
primary objective of this Special Issue is to provide a platform for scientists and researchers
to showcase their work in optimization, optimal control theory, biomathematical studies,
population dynamics, network problems, and reinforcement learning, as well as machine
learning and deep learning, thereby enhancing our understanding of the world.

2. Overview of the Published Papers

This Special Issue contains 17 papers that were accepted for publication after a rigorous
review process.

In contribution 1, A. Khanfar et al. present an analytic solution to the Stefan problem,
a mathematical model describing the phase change of a material with a moving boundary,
considering nonlinear temperature-dependent thermal parameters and a heat source term.
The authors establish the existence and uniqueness of the solution in scenarios both with
and without a heat source. They then determine lower and upper bounds for solutions of
the problem under different conditions. Remarkably, the lower bounds closely align with
numerical solutions, suggesting their utility as approximate analytic solutions.

In contribution 2, K. S. Sultan et al. present the derivation of L-moments for several
distributions, including logistic, generalized logistic, doubly truncated logistic, and doubly
truncated generalized logistic distributions. They introduce new axioms and identities,
including recurrence relations specific to L-moments derived from these distributions.
They also establish general recurrence relations applicable to L-moments derived from
any distribution.

In contribution 3, M. A. Zaitri et al. introduce an analytical solution for the time-optimal
control problem during the induction phase of anesthesia, aligning closely with results ob-
tained via the shooting method. The authors employ a pharmacokinetic/pharmacodynamic
(PK/PD) model for propofol infusion, proposed by Bailey and Haddad in 2005. The study
evaluates this solution by comparing it with the existing literature using the Pontryagin
minimum principle and numerical simulations in MATLAB. The results indicate a sim-
ilarity between the newly proposed analytical method and the shooting method, with
the advantage of the former being independence from unknown initial conditions for the
adjoint variables.

Axioms 2024, 13, 327. https://doi.org/10.3390/axioms13050327 https://www.mdpi.com/journal/axioms1
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In contribution 4, X. Hu and H. Ren address reliability estimation using the inverse
Weibull distribution with intuitionistic fuzzy lifetime data. They extend fuzzy set theory
concepts to derive intuitionistic fuzzy conditional density, likelihood function, and condi-
tional expectation. Both maximum likelihood and Bayesian estimations, employing the
EM algorithm and gamma priors, respectively, are explored. Monte Carlo simulations
favor Bayesian estimation, validated by real data, offering precise reliability estimates for
intuitionistic fuzzy lifetime data in scientific analysis.

In contribution 5, H. S. Bakouch et al. explore count data analysis using the two-
parameter Bernoulli–Poisson–Lindley distribution, obtained through convolution of Bernoulli
and Poisson–Lindley distributions. Statistical properties such as moments, survival func-
tions, and parameter inference via maximum likelihood are investigated. Simulation
exercises assess estimation effectiveness, followed by application to real datasets. Ad-
ditionally, a flexible count data regression model is constructed based on the proposed
distribution, illustrated with practical examples.

In contribution 6, L. C. Chen and K. H. Chang introduce a corpus assessment method
crucial for Natural Language Processing (NLP), especially pertinent in contexts like COVID-
19 information retrieval. Traditional approaches based on single parameters, such as key-
ness value, are deemed inadequate. To address this limitation, the authors propose an
extended Analytic Hierarchy Process (AHP)-based approach, considering multiple parame-
ters (keyness, frequency, and range) simultaneously. Empirical validation using COVID-19
research articles confirms the effectiveness of this approach, offering improvements in
refining corpus data, multi-parameter consideration, and integration of expert evaluation.

In contribution 7, G. Singh et al. propose a new Laplace variational iterative method
for solving (2+1)-D and (3+1)-D Burgers equations, employing a combination of modified
variational iteration method and Laplace transform. This method transforms the differential
problem into algebraic equations via Laplace transform, and iteratively solves them using
the modified variational iterative approach. The technique enables both numerical and
analytical solutions for the Burgers equations, validated through three specific examples,
demonstrating its effectiveness.

In contribution 8, F. Al Basir et al. devise an integrated pest management model for
crop pest control, utilizing periodic application of biopesticide and chemical pesticides.
Theoretical analysis yields a periodic solution for pest eradication, ensuring boundedness
of system variables. Optimization aims to find the most effective pesticide concentration
and application frequency. Employing Floquet theory and small amplitude perturbation
method, the study establishes local and global stability of pest eradication periodic solution.
Numerical comparisons validate integrated pest management’s superiority over single
controls, with analytical results illustrated through simulations.

In contribution 9, A. F. Jameel et al. propose a novel approach to solve and analyze
two-point fuzzy boundary value problems in fractional ordinary differential equations
(FFOBVPs). FFOBVPs describe complex phenomena with uncertainty, making exact or close
analytical solutions challenging, particularly for nonlinear problems. The study extends
the optimal homotopy asymptotic method (OHAM) to handle FFOBVPs, incorporating
fuzzy sets theory and fractional calculus principles. Fuzzification and defuzzification
transform fuzzy problems into solvable crisp ones. The method’s efficiency and accuracy
are demonstrated through solving and analyzing linear and nonlinear FFOBVPs at various
fractional derivatives, showcasing its viability for fuzzy analysis.

In contribution 10, R. Alotaibi et al. investigate constant-stress accelerated life tests
with test units following the XLindley distribution, employing maximum likelihood and
Bayesian estimation methods based on progressively Type-II censored samples. They
derive point and interval estimations of model parameters and reliability indices under
normal operating conditions. Bayesian estimates are calculated using the Markov chain
Monte Carlo algorithm with the squared error loss function. A performance simulation
illustrates the proposed methodology, with application to two real-life accelerated life test
cases. Numerical outcomes suggest the superiority of the Bayesian estimation method,
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particularly in evaluating XLindley parameters and reliability measures, under constant-
stress accelerated life tests with progressively Type-II censoring.

In contribution 11, A. J. Fernández presents guaranteed-coverage and expected-
coverage tolerance limits for Weibull models, addressing situations where extreme sample
values are censored or disregarded due to data collection restrictions or outliers. Both un-
conditional and conditional tolerance bounds are discussed, particularly when the smallest
observations are discarded. The paper also explores determining the minimum sample
sizes for setting Weibull tolerance limits from trimmed data with fixed numbers or propor-
tions of trimmed observations. Step-by-step procedures for optimal sampling plans are
outlined, with numerical examples provided for illustration.

In contribution 12, L. Han et al. address the challenge of solving the dynamic Sylvester
equation (DSE) in noisy environments using neural networks. While the original zeroing
neural network (OZNN) performs well in noise-free settings, it struggles in noisy condi-
tions. An integral-enhanced zeroing neural network (IEZNN) improves noise handling, but
lacks speed. To overcome these limitations, an accelerated double-integral zeroing neural
network (ADIZNN) is proposed, designed to resist linear noise and accelerate conver-
gence. Theoretical proofs confirm the convergence and robustness of the ADIZNN, while
simulation experiments demonstrate its superior convergence rate and noise resistance
compared to OZNN and IEZNN. Additionally, chaos control experiments with a sine
function memristor chaotic system highlight the ADIZNN’s superior performance in terms
of accuracy and error reduction.

In contribution 13, A. Freitas et al. investigate the relationship between meteorological
variables and dengue transmission during the 2019 outbreak in the Dominican Republic.
Using generalized linear mixed modeling, they analyze weekly dengue incidence rates,
finding that temperature and rainfall impact outbreaks with a delay of 2–5 weeks, conducive
to mosquito breeding conditions. The study employs a backward-type selection method to
identify influential variables, noting variations in lag correlations across provinces. These
findings provide critical insights for healthcare authorities to prepare and manage dengue
outbreaks effectively.

In contribution 14, D. Karaoulanis et al. highlight the significance of fractional deriva-
tives in modeling anomalous diffusion in brain tissue, linked to diseases like Alzheimer’s,
multiple sclerosis, and Parkinson’s. The accumulation of proteins in axons and discrete
swellings contribute to neurodiseases. To model voltage propagation in axons, a fractional
cable geometry is adopted, although the absence of a fractional differential geometry based
on well-known fractional derivatives poses questions. The Λ-fractional derivative (Λ-FD)
is introduced as the unique fractional derivative generating differential geometry for model-
ing the human neural system’s intricate parts. Examples are provided to draw meaningful
conclusions, aiding medical and bioengineering scientists in combating brain diseases.

In contribution 15, S. Pakzad et al. emphasize the significance of surface quality in
wooden product manufacturing, necessitating a comprehensive understanding of cutting
parameters’ impacts on wood. Response surface methodology is employed to design
experiments and analyze the effects of feed rate, spindle speed, step over, and depth of
cut on beech wood surface quality. Mathematical models are derived for the parameters
and surface roughness. Optimal machining parameters are determined to enhance surface
quality, reducing roughness by up to 4.2 μm. Notably, the feed rate exhibits the most
significant impact on surface quality among the machining parameters.

In contribution 16, M. S. Concha-Aracena et al. introduce a theorem demonstrating
the generation of density functions from moments of the standard normal distribution,
leading to a family of models. Different random variable domains are achieved through
transformations, exemplified by transforming the second-order moment to create the Alpha-
Unit (AU) distribution, characterized by a single parameter α (AU(α)∈[0, 1]). Properties
of the AU distribution are presented, along with estimation methods for the α parameter.
Monte Carlo simulations confirm the statistical consistency and robustness of the estimators.
Real-world applications demonstrate the competitiveness of the AU model, especially for
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data with a range greater than 0.4 and extremely heavy asymmetric tail, compared to other
commonly used unit models.

In contribution 17, A. Hussain et al. delve into biomedical image reconstruction,
particularly focusing on functional near infra-red spectroscopy (fNIRs), a non-invasive
imaging technology using near infra-red light. Image reconstruction involves solving both
forward and backward problems to deduce the image’s optical properties from measured
boundary data. Researchers employ various numerical methods to tackle these challenges.
This study highlights the latest advancements in numerical methods for solving forward
and backward problems in fNIRs, offering insights into physical interpretations, state-of-
the-art numerical techniques, and toolbox descriptions. A comprehensive discussion on
numerical solution approaches for the inverse problem in fNIRs is provided, shedding light
on this evolving field.

Funding: This work was supported by CIDMA (Center for Research and Development in Mathe-
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Abstract: In the field of biomedical image reconstruction, functional near infra-red spectroscopy
(fNIRs) is a promising technology that uses near infra-red light for non-invasive imaging and re-
construction. Reconstructing an image requires both forward and backward problem-solving in
order to figure out what the image’s optical properties are from the boundary data that has been
measured. Researchers are using a variety of numerical methods to solve both the forward and
backward problems in depth. This study will show the latest improvements in numerical methods
for solving forward and backward problems in fNIRs. The physical interpretation of the forward
problem is described, followed by the explanation of the state-of-the-art numerical methods and the
description of the toolboxes. A more in-depth discussion of the numerical solution approaches for
the inverse problem for fNIRs is also provided.

Keywords: image reconstruction; functional near infra-red spectroscopy; forward problem; inverse
problem; numerical methods

MSC: 81-10; 65L03

1. Introduction

Neuroscientists have proposed several imaging modalities to comprehend and study
the anatomical and functional aspects of the human brain. Magnetic resonance imag-
ing (MRI), computerized tomography (CT), magnetoencephalography (MEG), electroen-
cephalography (EEG), functional magnetic resonance imaging (fMRI), and Fourier-domain
near-infrared spectroscopy (fNIRs) are some of the most well-known imaging methods.
fNIRs is a relatively recent non-invasive neuroimaging technology that uses near infrared
light with frequency ranges between 650 and 900 nanometers to evaluate the optical char-
acteristics of the brain tissues. In the near-infrared part of the electromagnetic spectrum,
the most important optical absorbers are the oxygenated (HbO) and deoxygenated (HbR)
hemoglobin’s found in brain tissue.

The location of the source and detector, as well as the equipment used, affect NIR light
measurements. In the context of source or detector probes, the measurement of NIR light
is regarded as a measurement of transmission or reflectance. It is possible to measure the
transmission by positioning the source and detector in the opposite direction if the NIR
light is bright enough. However, only biological tissues like hands and arms can be used
with this technique. The source and detector probes are typically arranged on the same side
of the measuring instrument when measuring reflectance. Currently, three techniques can

Axioms 2023, 12, 326. https://doi.org/10.3390/axioms12040326 https://www.mdpi.com/journal/axioms6
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be used to simulate how light moves through tissue: time-domain (TD), frequency-domain
(FD), and continuous wave (CW) (Figure 1) [1–5].

Figure 1. Visual representation of the case (c) continuous wave, case (b) frequency domain, and case
(a) (adapted from Ref. [6]).

TD systems illuminate tissues with incredibly brief light pulses, which are widened
and attenuated as they travel through the tissue. Detectors in time-resolved devices capture
the temporal distribution of photons as they leave the tissue. The optical properties of
the tissue can be figured out by looking at the shape and size of this distribution [3]. In
FD systems, the light that comes in is changed in amplitude at a frequency between tens
and hundreds of megahertz. Both the change in amplitude and the change in phase with
respect to the signal that came in are measured. By using both data formats, it is possible
to get unique information about the optical properties of tissues, such as the absorption
and scattering coefficients [4]. The simplest and least expensive approach is CW mode. It
makes use of a light source that is modulated at a frequency lower than a few tens of hertz
or one that has a constant amplitude. It only examines the light’s amplitude attenuation
after it has contacted biological tissues. Therefore, attenuation effects due to light scattering
and absorption cannot be separated. It, however, has the highest signal-to-noise ratio. The
most common modality is this one [5].

In fNIRs, the scalp is covered with an Optode montage, a spatially distributed ar-
rangement of sources and detectors that emit and detect near-infrared light. The HbO and
HbR) hemoglobin found in brain tissue are the two most prominent optical absorbers in
the near-infrared range of the electromagnetic spectrum, respectively. The result of this
conversion is that variations in hemoglobin concentration ([HbO] and [HbR]) at a single
location can be derived from differences in optical density (OD) detected at two or more
wavelengths. It is common practice to use a modified version of the Beer-Lambert Law
(mBLL) when calculating these changes.

7



Axioms 2023, 12, 326

Mathematically, the procedure of image reconstruction entails reconstructing the
optical properties using the experimentally measured boundary data and can be thought of
as consisting of two parts: developing a forward model of light propagation and obtaining
an inverse solution to the forward problem (Figure 2). The forward problem tries to estimate
the boundary data at the position of the detector based on the distribution of the optical
properties inside the object. This means making an estimate of the sensitivity matrix as
absorption changes at each location in the head or trying to predict the optical flux density
at the detectors based on a geometric model with optical parameters like source-detector
location and functionality. The inverse problem is based on the same general equation as
the forward problem. However, the goal is to dissect the vector of intracranial phenomena
that can explain the vector of observed scalp values, given a specific sensitivity matrix.

Figure 2. A graphical representation of the forward and inverse problems (adapted from Ref. [7]).

This review is being done to learn more about the basic ideas behind the forward and
inverse problems in fNIRs. For researchers who are new to the subject, it is designed to
provide insight into the most up-to-date methods for tackling the problem and the types
of toolboxes currently being used. It is also meant to give the reader a good idea of the
best ways to solve the inverse problem in fNIRs so that the reader can understand these
methods thoroughly.

The following is the flow of the paper; it begins with the fundamental concepts of mod-
eling light transport through biological tissue as a forward problem, which are discussed
in detail. The available methods and toolboxes that were applied to simulate the forward
problem were thoroughly investigated. The review also includes an in-depth discussion of
the inverse problem and a detailed explanation of various available image reconstruction
methods. Aside from that, the paper offers a comparison of several algorithms as well as
conclusions and recommendations.

2. Mathematical Modeling of Light Transport in Biological Tissue as Forward Problem

The radiative transport equation (RTE), which is based on the idea that energy stays
the same as light moves through a volume element of a medium with an absorber and
scattered light, accurately describes how light moves through biological tissue. The RTE in
the TD is expressed as [8,9],{

∂

c(r)∂t
+ Ω·V + μa(r) + μ(r)

}
I(r, Ω, t) = μs(r)

∫
4π

dΏP
(
r, Ω·Ώ)

I(r, Ω, t) + q(r, Ω, t) (1)

here I(r, Ω, t) described as the energy radiance or light intensity as a function of position
r(x, y, z), Ω is defined as angular direction with zenith and azimuth angles, and time t. The
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absorption and scattering coefficients are represented by μa(r) and μs(r), respectively. The
velocity of light in a turbid medium is denoted by c(r), and the light source is denoted
by q(r, Ω, t). Moreover, P

(
r, Ω·Ώ)

is the scattering phase function, which determines the
probability that a photon travelling in a direction Ώ will be scattered in that direction Ω
during a scattering event. And P is normalised to the value of 1.

∫
4π

dΏP
(
r, Ω·Ώ)

=
∫ 1

−1
P(cosθ)dcosθ = 1 (2)

As the sprinkling phase function, the Henyey–Greenstein function is widely used as
follows:

P
(
r, Ω·Ώ)

=
1

4π

1 − g(r)2{
1 + g(r)2 − 2gΩ·Ώ

} 3
2

(3)

where g(r) denotes the anisotropy factor, which ranges from −1 (full backscattering) to +1
(full forward scattering) and anything between 0 (isotropic scattering).

A numerical solution to the RTE is challenging since it is an integrodifferential equation,
and the computational complexity for numerical solutions is exceedingly high. On the other
hand, the diffusion equation (DE) assumes that radiance in a medium that is optically thick
and has multiple scattering is almost entirely isotropic. The DE can be calculated using the
diffusion approximation to the RTE. The following equation shows the TD and DE:

∂

c(r)∂t
Φ(r, t)−∇·κ(r)∇Φ(r, t) + μa(r)Φ(r, t) = q(r, t) (4)

where Φ(r, t) denotes the fluence rate as estimated by
∫

4π dΩI(r, Ω, t), κ(r) is denoted
as diffusion coefficient as determined by 1/3(μa(r) + (1 − g)μs(r)), and q(r, t) signifies
the light source as calculated by

∫
4π dΩq(r, Ω, t) and the reduced scattering coefficient is

defined as (1 − g)μs = μ́s.
Similarly, RTE in terms of FD and CW is given as follow [10]:

∂

c(r)∂t
Φ(r, ω)−∇·κ(r)∇Φ(r, ω) + μa(r)Φ(r, ω) = q(r, ω) (5)

The fluence rate with modulated frequency ω from the light source q(r, ω) in a medium
at the same frequency is denoted by Φ(r, ω). In an FD, the frequency ω �= 0, whereas in
a CW instrument, the frequency is equal to zero. In the fNIRs context, the DA equation
is generally nonlinear, so it can be linearized as given in [11] and then used to perform
the Rytov approximation [12]. When performing functional brain imaging, the absorption
coefficient is assumed to be proportional to hemoglobin change, whereas the scattering co-
efficient is supposed to be constant. So, under these assumptions, the Rytov approximation
can be formulated as [13]

y = Ax (6)

where A denotes the sensitivity matrix as determined by the absorption proportion within
the brain, y is the difference in log-ratio between the optical density recorded before and
after blood flow, x denotes the change in absorption coefficient.

3. Methods for Forward Model Simulation

The methods used to solve the forward problem are discussed in this section. The
forward problem, in general, considers the modeling of light propagation from sources to
sensors across the head. The solutions to this problem can be divided into three categories.
(i) Analytical techniques (ii) Numerical techniques (iii) Stochastic techniques.

9



Axioms 2023, 12, 326

3.1. Analytical Methods

The term “Green’s function approach” generally refers to the analytical method. The
solution can be visualized using Green’s function, which is defined as follows when the
source is represented as a spatial and temporal delta function: First and foremost, one must
ascertain their own GI functions. Following that, Green’s functions can be used to create
more general solutions. In homogeneous media, the convolution of these Green’s functions
with the source term yields the full fluence rate solution, which is simple to compute.

Equation gives the most basic analytical solution for TD-DE for an infinitely homoge-
neous medium [14],

φ(r, t) =
c

(4πDct)
3
2

exp
(
− r2

4Dct
− μact

)
(7)

where r is the distance from the origin to a point impulse source. The authors [15] first used
the mirror image source method to find analytical solutions for TD-DE for semi-infinite and
slab media with a zero-boundary condition. The pulsed laser source systems (TD systems)
are close enough to the source that they can be calculated with convolution methods [16].

Even in modern times, Green’s function approach is most commonly used to find
solutions to the DE in regular geometries [15,17]. For instance, researchers [17] came up
with ways to solve an endless cylinder by putting in a source line that goes on forever.
Also, they used Green’s function method to solve the DE for a point source in several
regular geometries. In addition, authors [18] Using a series expansion method, solved
the DE for concentric spheres. In a separate piece of work, authors [19] solved the DE in
the CW, frequency, and time domains using the Green’s function approach with extended
boundary conditions for a multiple-layered finite cylinder. These solutions were obtained
by solving the equation for a multiple-layered finite cylinder. In addition, researchers [20]
provided a CW solution for a point source that made use of the extrapolated boundary
conditions in cylindrical coordinates. Finally, by employing a number of different integral
transformations, Liemert and Kienle were able to derive specific solutions for the DE [21]
when it was applied to a homogeneous and turbid medium with a point source.

In recent research, Erkol et al. [22] have derived analytical solutions to the DE in
two and three dimensions for the steady state CW case in a cylindrical media. In this
case, a Dirac function with different strengths is used to model the light source. To get
the Green’s function for the Robin boundary condition, an integral method is used. This
method is extremely adaptable, allowing the implementation of any boundary condition
(i.e., not limited to the Robin boundary condition). This is also applicable to other regular
geometries, like spherical. Because finding solutions to the DE at the boundary is the
primary focus of their study, this method is perfectly suited for determining the DOI in
homogeneous or nearly homogeneous environments.

Theoretically, analytical solutions could be a direct and accurate way to get light to
travel, but the complexity of biological tissue makes it hard to make analytical solutions.
The analytical solutions of the RTE and the DA are faster to calculate, but they can only
be used for certain specific geometries with values that are almost all the same inside.
Therefore, numerical methods are usually used to solve the RTE and the DA models. The
critical constraint in its applicability is that the solutions are only available for simple
homogeneous geometries [17], which induces severe modeling errors by providing a
poor approximation [23]. In some cases, it has been possible to get these solutions for
time-domain DE, like slab media [24].

3.2. Numerical Methods

In diffuse optical imaging, numerical methods are often used because they are good
at simulating how light moves through realistic, complex geometries as well as different
types of media. Numerical solutions for the forward model can be found using the partial
differential equation, which can be solved in a variety of ways. The finite difference method
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(FDM), the finite volume method (FVM), the boundary element method (BEM), and the
finite-element method (FEM) are all examples of this.

3.2.1. Finite Difference Method

In the finite difference method, the medium is broken up into small pieces using a
regular grid, and complex shapes are made around the points inside the grid. Points with
absorption values in the thousands are assigned outside of the required form. It has been
demonstrated that this method produces more accurate results than other methods such
as Monte Carlo and analytic solutions [25]. However, because the FEM is so simple to
use when dealing with complex geometries, the FDM is rarely used in DOT applications.
However, it has been used to determine the dispersion of light in the human brain and the
cranium of a rat [26,27]. This method has been employed in the literature: for additional
details, read the following studies [28–30].

3.2.2. Finite Volume Method

In a way like the finite element and finite difference methods, the FVM calculates
values at discrete points within a meshing geometry. In this way, both approaches compute
values. The element (in a cell center formulation) is known as a volume of control, or VC
for short, in FVM. This is a distinct region of space in which the PDEs will be integrated.
During this step of the process, you will be evaluating the volumetric sources as well as
the surface fluxes that flow into and out of VC. In order to convert the surface integral
into volume integrals, it will be necessary to make use of Gauss’ theorem. Interpolation
functions that are the same, like the FDM method, or almost the same, like the Laplace
equation, are used to get close to surface derivatives. The name of the method comes from
the fact that each node in the mesh takes up a relatively small amount of space.

The primary advantage of this method over FDM is that it does not require the use of
structured grids. Additionally, the effort that would have been required to transform the
provided mesh into a structured numerical grid internally may be completely avoided. In
the same way as with FDM, the approximation that is reached results in a discrete solution;
however, the variables are often positioned at the centres of the cells rather than at the
nodal points. This is not always the case, however, as there are also approaches that centre
on the face of the volume. Interpolation is used to determine the values of field variables at
locations other than storage locations (such as vertices). This is the case regardless.

The finite volume technique is used a lot in optical tomography reconstructions [31,32],
because it uses less energy than other methods. It takes a long time to run [33], despite
the fact that it has a high level of mesh flexibility, which is necessary for modelling com-
plex shapes.

3.2.3. Boundary Element Method

The BEM has evolved as a viable alternative mathematical technique over the last
twenty years. Because it just necessitates surface discretisation and hence is less computa-
tionally expensive. BEM is like FDM and FEM in that it calculates values at discrete points
for solving PDEs. The simplicity of this method is derived from the fact that it meshes
only the boundary of the body rather than the full domainIn DOT, the BEM uses Green’s
second identity to describe the field via its integral on the surface, i.e., photon density and
fluxes. In large-scale geometries [34–39], it outperforms FEM in terms of performance,
but it cannot predict light propagation in complicated heterogeneous domains accurately.
This is attributed to the complex nature of the boundaries encountered between the tissue
interfaces. The hybrid or coupled BEM-FEM method has also been employed. It shows
that, compared to analytical solutions, the meshing task can be made easier and the size of
the problem can be reduced while the model’s correctness is kept.

The BEM is better than the FEM because you don’t have to break up the area you’re
looking at into smaller pieces. Instead, you only need to know the area’s edges. As a result,
meshing effort is reduced, and system matrices are smaller. However, the BEM has some
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disadvantages over the FEM; the BEM matrices are fully populated with complex and
frequency-dependent coefficients, which reduces the solution’s efficiency. Furthermore,
singularities may occur in the solution, which must be avoided [6].

3.2.4. Finite Element Method

In optical imaging applications [40–46] with irregular boundaries, FEM is one of the
most common ways to solve the DE. FEM is a mathematical method for approximating
boundary values and making absorption spectra and optical flux for a given distribution of
absorption and diffusion coefficients. The method employs a collection of basis functions
on a mesh, also known as interpolation functions, to convert the PDE into a system of
differential equations in finite-dimensional space [41]. As a result of its ability to handle ir-
regular geometries [47], it has been utilized to solve both the RTE and DE models [41,48,49].
As a result, numerical solutions are required. Because of its ease in handling complex
geometries and modeling boundary effects, the FEM is more versatile than other methods,
including the finite difference method. The FEM is a variational method that uses a family
of finite-dimensional basis functions to approximate the solution.

Researchers like the FEM because it uses a piecewise representation of the solution in
terms of certain basis functions. The computational domain is broken up into smaller areas
called “finite elements”, and the solution for each element is built from the basis functions.
The typical method for obtaining the actual equations is to restate the conservation equation
in weak form, write the field variables in terms of the basis functions, multiply the equation
by the appropriate test functions, and then integrate over an element. Because the FEM
solution is expressed in terms of specific basis functions, it is much better known than the
FDM or FVM solutions. This can be a double-edged sword because the selection of basis
functions is critical, and boundary conditions may be more difficult to formulate. Again, a
system of equations (usually for nodal values) is obtained and must be solved in order to
obtain a solution.

3.3. Stochastic Methods

The Monte-Carlo (MC) simulation is the most widely used stochastic approach for
modeling photon transport through tissue. It is used with random-walk or Markov-chain
models to provide the best results. A photon’s or a photon packet’s propagation across a
medium can be simulated using MC models, which helps make the process more efficient.
This process is accomplished by tracing the photon’s passage through the medium and
modeling each event the photon meets sequentially. More than two decades ago, it became
a standard method for simulating light transport in tissues because of its versatility and
rigorousness in dealing with turbid fluids with complicated structures.

The MC method entails the following steps: In the first step, voxels representing
various types of tissues are first divided into three-dimensional tissue geometry. In the
second step, the optical properties of each voxel, such as scattering and absorption, are
allocated to each voxel in the second step. The third step is to “inject” a photon at a specific
location on the surface of this shape. The photon’s movement is accomplished in the fourth
step through probabilistic scattering and absorption as it travels through tissue. Repeat
steps 3–4 hundred or even millions of times to figure out how much fluence (photon weight)
and how far each tissue type has travelled through it [50].

Interest in using MC to calculate the forward model for optical tomography has
resurfaced in recent years, thanks to the combination of efficient MC formulations with
improved processing capacity and geometrical complexity [51,52].

4. Types of Toolboxes for Forward Model Simulation

There is a wide variety of software/toolboxes available to simulate forward problems
that are currently in use. Some of them are listed and explained in greater detail below.
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4.1. MCML

Due to its user-friendliness, Researchers [50] first introduced the programming tool
known as MC simulation for light propagation in multi-layered tissue (MCML) in planner
geometry, which is still widely used today. The multilayer model was greatly simplified.
The simulation geometry was set by the number of layers and the thickness of each
layer. Each layer represented a homogeneous part of the simulated medium. The MCML
simulation code is written in ANSI C, which is a standard programming language. Figure 3
shows the main steps of the MCML simulation process, which are explained and shown
in [53].

Figure 3. Fundamental steps of MCML technique (adapted from Ref. [53]).

4.2. NIRFAST

The Near-infrared Frequency-domain Absorption and Scattering Tomography (NIR-
FAST) program is a FEM-based technique developed by the National Institute of Standards
and Technology in 2009 [54], and this software is offered free of charge. In this package,
many MATLAB.m files are produced and executables are included, which the user can
customise to incorporate the programme into their measurement apparatus (Figure 4, for
details, see [54]). NIRFAST requires that a finite element mesh be provided before any
simulation can be started. The user’s responsibility is to provide this mesh, which can be in
either 2D or 3D format. NIRFAST cannot produce a mesh on its own. The DE is changed
into a set of linear equations that can be solved on a finite element grid. A finite element
mesh represents the flux rate at each node.
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Figure 4. Fundamental steps of the NIRFAST technique for the forward problem (adapted from
Ref. [54]).

NIRFAST has been shown to work well for geometries with a single boundary condi-
tion, especially when the boundary condition is a modified Robin (or Type III) in which air
is assumed to surround the simulation region (as implemented in NIRFAST), also known
as a Neumann boundary condition. NIRFAST has been developed for 2D and 3D and is
widely used for FEM analysis in forward models with image reconstruction. It is available
for free via the following URL link: http://newton.ex.ac.uk/research/biomedical/hd/
NIRFAST.html (accessed on 5 October 2022).

4.3. TOAST++

To tackle DOT’s forward and inverse problems, Martin Schweiger and Simon R.
Arridge [55] developed an efficient open-source software framework that some researchers
are using. Originally built in C++, it was later rewritten as a toolbox that includes a set of
MATLAB routines and PYTHON code, which is now available. This software suite contains
libraries for computation of sparse matrices, finite-element, alternative numerical modeling,
nonlinear inverse, MATLAB and, python bindings, and visualization tools (see Figure 5).
This toolbox offers parallel matrix assembly and solver capabilities for distributed and
shared memory architectures and graphics processor platforms, which enable scalability
on distributed and collective memory architectures. In this way, researchers can quickly
design analysis tools without worrying about developing the low-level sparsity matrix and
finite-element subroutines beforehand.
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Figure 5. Libraries for Toast++ technique for forward model simulation (adapted from Ref [55]).

4.4. MCX/MMC

Qianqian Fang created open-source MC simulators called Monte Carlo eXtreme (MCX)
and Mesh-based Monte Carlo (MMC) in 2009 [56]. These simulators are two of the most
advanced Monte Carlo programs available today, and researchers use them to simulate
light propagation as photons across complex biological tissues [56,57]. Binary executable
software was used to develop the first versions of MCX and MMC. Because of MATLAB’s
popularity among academic researchers, MEX variants such as MCXLAB, MMCLAB, and
voxel-based MC (vMC) have been developed to make it more user-friendly for scien-
tists. These open-source MC programs are essential resources for academics and students
interested in modeling light interaction in tissue and comprehending fundamental the-
ories [58,59]. Figure 6 depicts the basic steps of the MCX simulation process for the
forward problem.
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Figure 6. Basic steps of MCX technique (adapted from Ref. [56]).

4.5. ValoMC

Based on the MC method, Leino et al. [60] made ValoMC, an open-source program.
With this software package, you can solve problems like the number of photons in the
computing domain and their presence at the domain boundary. It is a useful tool for
researchers because it can simulate complex measurement geometries with different light
sources, intensity-modulated light, and optical parameter distributions that change in
different places. Also, the interface for MATLAB (The Math Works Inc., Natick, MA) is
made to be easy to use and to let users set up and solve problems quickly. The code for the
software simulation is written in C++, and the Open MP parallelization library is used to
make it work in multiple places at once. Visit the website at https://inverselight.github.
io/ValoMC/ (accessed on 5 October 2022) and click on the “Download” button to get
the software.

In the last few years, many ways to solve the forward problem have been written
about. Table 1 provides an overview of these methods.
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Table 1. Details about the various methods and types of toolboxes/software used for the simulation
forward problem in fNIRs measurements.

References Forward Simulation Method
Simulation

Software/Toolbox
Data Type

B. W. Pogue et al., 1995 [61] FDM N/A N/A

M. A. Ansari et al., 2014 [62] BEM N/A N/A

Dehghani, Hamid, et al., 2009 [54] FEM NIRFAST Breast model data

Yalavarthy, Phaneendra K. et al.,
2007–2008 [7,63,64] FEM N/A Phantom

Brigadoi, Sabrina, et al., [65] FEM Toast++ Real resting-state data

Chiarelli, Antonio M., et al., 2016
[66] FEM NIRFAST Phantom

Lu, Wenqi, Daniel Lighter, and
Iain B. Styles. 2018 [67] FEM NIRFAST Realistic simulation data

Machado, A., et al., 2018 [68] MC MCX Realistic simulation data

Yu, Leiming, et al., 2018 [58] MC MCX Phantom

Jiang, Jingjing, et al., 2020 [69] MC and FEM MCX and Toast++ Silicon phantom
experiment

Fu, Xiaoxue, and John E. Richards.
2021 [70] MC MCX Realistic simulation data

Cai, Zhengchen, et al., 2021 [71] MC MCX Realistic

Mazumder, Dibbyan, et al., 2021
[72] MC MCX Realistic simulation data

5. Inverse Problem

In image reconstruction, the inverse problem is figuring out where the changes in
absorption along the path of the diffuse light are. This can be done by using the relationship
between the scalp and the law of propagation. In order to solve the image reconstruction
problem, the forward model must be turned around, which can be written as the linear
underdetermined inverse problem when there is noise.

y = Ax + γ (8)

γ is the noise present in the data and A is the Jacobian/sensitivity matrix.
The Jacobian matrix shows the relationship between how sensitively light intensity is

measured on the surface of the head and the optical properties of the head itself. The image
reconstruction problem requires the direct inversion of the Jacobian/sensitivity matrix,
which makes it a highly underdetermined and poorly posed problem. Because of the ill-
conditioning of the system, regularization techniques must be employed to obtain a reliable
solution. In the literature, several image reconstruction methods for the solution of inverse
problems have been developed. Regularization-based methods and Bayesian estimating
methods, which are two fundamental methodologies, have dominated the literature for a
very long time.

6. Methods for Inverse Problem Solution

The various methods employed to solve the inverse problem (Equation (2)) will be ex-
plained in further detail in this section. Among these methods are back projection, singular
value decomposition (SVD), truncated singular value decomposition (tSVD), lease square
QR decomposition (LSQR), regularized lease square QR decomposition (rLSQR), minimum
norm estimate (MNE), weighted minimum norm estimate (WMNE), low-resolution electro-
magnetic tomography (LORETA), L1-norm, hierarchical Bayesian (HB) as MAP estimate,

17



Axioms 2023, 12, 326

expectation-maximization (EM), maximum entropy on the mean (MEM), and Bayesian
model averaging (BMA).

The basic formulation of the inverse methods for the solution of fNIRs is given in the
section. These methods are also described in terms of their mathematical form. According
to the previously published literature, the performance of the inverse methods is thoroughly
explained. The comparison is being made using a variety of parameters, including sparsity,
spatial resolution, localization error, image quality, root mean square error, and quantitative
and qualitative reconstructions, among other things.

6.1. Back Projection

Back projection is the inverse technique of projection. While projection aims to extract
data from an image, back projection seeks to extract the image from the data calculated
during the projection process. As a result, the back-projection process accepts as input
the results matrix returned by the projection process, as well as all data related to the
projection process that may be beneficial in completing the process. The BP method in
image reconstruction is more straightforward and consists of back projecting the boundary
measurements in the sensitivity matrix in the following manner [61,62]

xBP = ATy (9)

This method assumes that the sensitivity matrix is orthogonal in a broad sense (for
example, that it is an estimate of its pseudo-inverse), which is not always the case. Never-
theless, this method has been employed in the literature [62–64] even though it typically
overestimates the amplitude when multiple measurements are taken simultaneously.

Back projection is better than other iterative methods because it makes images faster
with less processing power. But it can be hard to know how much oxygen is in the blood
or to use breast mammography as a screening tool when there isn’t enough quantitative
information. Also, most diagnostic imaging techniques used today, like MRI and CT scans,
use only qualitative information to make important diagnoses, like finding tumors and
where they are. Back propagation is also efficient in terms of computing, but it has a low
spatial resolution, which makes it hard to tell apart multiple objects that absorb light.

6.2. Singular Value Decomposition (SVD) and Truncated Singular Value Decomposition (tSVD)

The SVD and its hybrid version, the tSVD, try to find the pseudo-inverse of the sensi-
tivity matrix while ignoring the smallest singular values that cause numerical instability
(this solution will show the main contribution of the sensitivity matrix) [65].

Consider Ui and Vi to be the i-th column vectors of U and V correspondingly, the SVD
decomposition as a decomposition of A into rank one matrices as

A =
n

∑
i=1

σiUiViT

U and V are orthonormal column vectors correspondingly, while σi are the nonnegative
singular values (in descending order); If the inverted form of the solution is multiplied by
the boundary measurements, the solution is found as follows:

xSVD/tSVD = ∑n
i=1

UiTy
σi

V (10)

As the literature shows, Gupta, Saurabh, et al. [66] compare the SVD method to
the Levenberg–Marquard method. SVD is computationally efficient and is applied to
experimental data. Furthermore, prior information is used in conjunction with SVD by
Zhan, Yuxuan, et al. [67] to significantly improve the crosswalk between the retrieved
parameter. On the other hand, the tSVD solution is known for reconstructed images that
are blurry [65].
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6.3. Least Square by QR Decomposition (LSQR) and Regularized LSQR (rLSQR)

The LSQR method by Paige and Saunders [68] and its hybrid version, the rLSQR
method, are both based on Tikhonov regularization, but they also add a term that makes
the method more regular. The mathematical formulation for LSQR and rLSQR is given
under [69]:

xLSQR/rLSQR = argmin
{
‖y − Ax‖2 + α‖x − xinitial‖2

}
(11)

As opposed to the previous technique, this one does not require that the matrix A
be saved; rather, it requires that one matrix-vector product with A and one matrix-vector
product with AT be assessed for each iteration.

The LSQR was presented by Prakash, Jaya, and Phaneendra K. Yalavarthy [70] in
comparison to the regularized minimum residual approach (MRM). Compared to the MRM
method, the LSQR method outperforms it in terms of computational time, the number of
iterations, and image quality. It is applied to experimental data obtained from gelatine
phantoms. Furthermore, C. B. Shaw et al. [71] demonstrate the computational efficiency and
effectiveness of the LSQR using a simulated blood—vascular phantom experiment. Both
quantitative and qualitative reconstructions benefit from the LSQR technique. However,
hybrid algorithms, which incorporate the variation and modification of least square image
reconstruction algorithms, have been developed and used in the literature [72–74].

6.4. Minimum Norm Estimate (MNE) and Weighted Minimum Norm Estimate (WMNE)

MNE is the most common inverse method. It was created to solve the inverse prob-
lem of MEG, and the norm solution is used to find the location of the EEG source. The
mathematical formulation for MNE is given as under:

xMNE = argmin
{
‖y − Ax‖2 + α‖x‖2

}
(12)

Similarly, the WMNE can be written as follow:

xWMNE = argmin
{
‖y − Ax‖2 + α‖Wx‖2

}
(13)

The MNE solution, like tSVD, is known for producing scattered and blurry reconstruc-
tion images [75].

6.5. Low-Resolution Electromagnetic Tomographt (LORETA)

LORETA was initially created and used to locate EEG sources by Pascual-Marqui et al. [76].
LORETA has been used as a regularization method for fNIRs, which also considers L2-norm
formulation as described for the MNE method by incorporating the Laplacian operator [11].
The mathematical formula for LORETA is given as follows:

xLORETA = argmin
{
‖y − Ax‖2 + α‖Lx‖2

}
(14)

It is possible to interpret it as a weighted form of the MNE solution that aims to achieve
maximum smoothness across space. Despite this, it continues to generate results with a
vast spatial extent.

6.6. L1-Norm

L1-norm method has been developed and applied for EEG/MEG localization problem.
The mathematical formulation for the L1-norm is given as under:

xL1−norm = argmin
{
‖y − Ax‖2 + α‖x‖1

}
(15)
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The L1-norm method has been demonstrated to have improved noise tolerance quali-
ties and enhanced convergence features. It has also been shown to make solutions to other
linear estimating problems more L1-norm sparse.

According to Habermehl, Christina, et al. [65], the L1-norm delivers the best results on
experimental data (Gelatine cylindrical phantom that simulates breast tissues) compared
to L0, L2, tSVD, and wMNE. Additionally, it demonstrates that the incorporation of the
sparse algorithm into the procedure has the potential to improve accuracy. Meanwhile,
the inclusion of sparsity in the lp norm minimization (0 < p < 1) as presented by Prakash,
Jaya, et al. holds promise in improving the image quality compared to the L0-norm
method [77,78]. The results of a numerical experiment conducted by S. Okawa et al. [79]
demonstrate that lp sparsity regularisation improves spatial resolution. In addition, it
describes how the reconstructed region is affected by the value of p. A lower p-value
suggests that the target is highly localized.

Another image reconstruction approach is Bayesian estimation, which relies on a
probabilistic model of observations and constraints called the likelihood function and prior
distribution.

6.7. Hierarchical Bayesian as MAP Estimate

HB approach was initially developed and applied for the MEG localization prob-
lem [80]. In this method, observation and regularization are described as hierarchical
probabilistic models. The HB estimation method uses an ARD prior to introduce the reg-
ularization parameter at each voxel position, which controls the degree of penalty. The
basic formulation of the HB method for fNIRs is presented here (see [81] for detailed
information).

i. Considering the measurement noise γ as a Gaussian distribution N(0, ν) and the
forward problem as a probabilistic model as

P(y/x) ∼ N(Ax, ν) (16)

where ν is the covariance matrix.
ii. Assuming the data prior distribution and likelihood function as logP(x/y) and

logP(x/C) respectively.
iii. Computation of the posterior distribution of the unknown as

xMAP = argmax{logP(x/y) + logP(x/C)} (17)

where C anatomical prior image.

P(x, y, θ, ϑ) = P(y/x)P(x/θ, ϑ)P(θ)P(ϑ) (18)

iv. By applying the variational Bayesian (VB) method, the posterior could be written as
variational free energy

F(Q(x, θ, ϑ)) =
∫

Q(x, θ, ϑ)log
(

P(x, y, θ, ϑ)

Q(x, θ, ϑ)

)
dβdadx (19)

with
Q(x, θ, ϑ) = Q(x)Q(θ)Q(ϑ)

image by maximizing the free energy, providing the reconstruction, and applying the
Bayes rule to the posterior distribution.

In contrast to more traditional ways of regularizing, the idea of using Bayesian regu-
larization to solve fNIRs has only been around for a short time. In a Bayesian paradigm,
where all unknowns are thought of as random variables, the prior density is what is
thought about the solution before the facts are considered. As a result, in conventional
regularization, the prior functions similarly to the penalty term. The traditional Tikhonov
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regularized solution and the Bayesian maximum a posteriori (MAP) estimate have a well-
established relationship, with classes of penalty functions and priors favoring similar types
of solutions [82].

The HB algorithm for fNIRs has been proposed and used to make the changes in
blood flow in the cortex and scalp less random and smoother. Using phantoms to test
the performance and improve the accuracy of depth and spatial resolution [83]. Recent
research by Shimokawa, Takeaki, et al. [83] provides the HB method with an ARD prior
for fNIRs, as well as the inclusion of the two-step method. The sensitivity-normalized
Tikhonov regularisation is utilised in the initial step of the process to locate a preliminary.
In the second step, the result is refined through applying the hierarchical Bayesian estimate
method. Furthermore, in another study, T. Shimokawa et al. [84] provide the HB method
with Laplacian smooth prior to spatially variant Tikhonov regularization. This study
include Two-layer phantom experiments, as well as the inclusion of MRI-based head-
model simulations, are carried outBased on the results of that experiment, the proposed
algorithm estimates the smooth, superficial activity in the scalp while also assessing the
deep, localized activity in the cortical region. T. Aihara et al. also used the HB method to
estimate spontaneous changes in cortical hemodynamic [85], in contrast to the task-related
changes discussed in [86] for fMRI data. P. Hiltunen et al. [87] used the Bayesian and EM
methods, as well as Tikhonov regularisation, in another study. Estimates of both the spatial
organisation and the physical parameters can be obtained concurrently by using a Bayesian
technique with a Gaussian prior. The reconstructed images’ contrast is improved by the
algorithm that was proposed, which has a high degree of spatial precision.

6.8. Expectation-Maximization (EM)

The Expectation-Minimization (EM) method for fNIRs sense was developed and
employed by Cao et al. [88], and the mathematical description of the EM method can be
described as follows:

By incorporating misplaced data and maximising the comprehensive penalised log-
likelihood estimator, the maximum penalised log-likelihood estimator (MPLE) can
be obtained.

xEM = argmax

{
−‖y − Ax‖2

2δ2 − α‖x‖1

}
(20)

The EM procedure generates a sequence of approximations xk by alternating two
phases (as shown below) until some stopping requirement is fulfilled.

� E-step given the observed data y and the current estimate μk, the conditional anticipa-
tion of the whole log-likelihood could be computed as

xk = μk +
β2

δ2 AT
(

y − Aμk
)

(21)

� M-step: Update the estimated value of xk

xk+1 = argmax
{
−‖μ − xk‖2 − 2δ2α‖x‖1

}
(22)

Equation can be explained separately for each element xk+1
l as

xk+1
l = argmax

{
−μ2

l + 2μl xl − 2δ2α‖x‖1
}

(23)

xl is the element. It can be resolved using the soft threshold technique.

6.9. Maximum Entropy on the Mean (MEM)

The MEM method was first introduced by [89], and it has since been utilised and
rigorously analysed in the context of EEG/MEG source imaging research [90,91]. MEM is
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not a new statistical method in the traditional sense, but rather a novel stochastic approach
that leads to deterministic methods when some discretization step trends toward zero.
Cai et al. [92] recently employed and evaluated the MEM approach to solving the inverse
problem of fNIRs reconstruction.

Consider the variable x as an arbitrary variable with the probability distribution
dP(x) = P(x)dx then the unique solution dP(x) could be attained as

dP∗(x) = argmaxdP(x)∈Cm(Sv(dP(x))) (24)

where Sv(dP(x)) is the Kullback-Leiber divergence or v-entropy of dP(x) and define it as

Sv(dP(x)) = −
∫

x
log

(
dP(x)
dv(x)

)
dP(x) = −

∫
x

f (x) log( f (x))dv(x) (25)

dv(x) is the prior distribution, the MEM solution from the gradient of free energy Fv is
obtained as follows?

xMEM = ∇ξ Fv(ξ) = ATλ∗ (26)

where λ∗ = argmaxλD(λ), with the cost function D(λ) = λTy − Fv
(

ATλ
)− 1

2 λTν(ν)Tλ.

6.10. Bayesian Model Averaging

The fundamental concept of BMA theory, which was initially developed and applied
to MEG/EEG, is a mixture of Bayesian hierarchical models that can be used to estimate
highly parameterized models [93]. Using Bayesian inference (BI) assumptions based on the
given model or data (prior probability distribution), BMA may be used to construct the
posterior distribution for quantities of interest [94]. The following is the basic mathematical
description of BMA for fNIRs image-based model reconstruction (see [11] for additional
information) and is given in more detail below:

i. Consider the basic assumption of the Bayesian formulization of the given problem as
a normal probability density function as

p(y/x, ϕ) = N(Ax, ϕ)

where ϕ represents as hyperparameters which is unknown [11].
ii. The estimation of the parameter as the first level of inference using the Bayes theorem

is described as the posterior probability density function a

(x/y, ϕ, Hk) =
p(y/x, ϕ, Hk)p(x/ϕ, Hk)∫
p(y/x, ϕ, Hk)p(x/ϕ, Hk)dϕ

where Hk represents as k-th model which is to be considered for the given problem.
iii. The estimation of the hyperparameters as 2nd level of inference is describing as the

posterior probability density function as

p(ϕ/y, Hk) =
p(y/ϕ, Hk)p(ϕ/Hk)∫
p(y/ϕ, Hk)p(ϕ/Hk)dϕ

iv. The estimation of the model as the third level of inference as the posterior probability
density function

p(Hk/y) =
p(y/Hk)p(Hk)∫
p(y/Hk)p(Hk)dϕ

v. Lastly, marginalizing the first, second, and third level of inference as posterior pdf as

p(x/y) =
∫

f orallHk

p(x/y, Hk)p(Hk) = ∑k p(x/y, Hk)p(Hk) (27)
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This procedure considers all possible solutions for every model (using 1st and 2nd
level of inference) and averages weighted by each model’s posterior model probability
(PMP).

Furthermore, J. Tremblay et al. [11] applied the BMA for fNIRs and their results show
that in terms of localization error, ROI, and RMSE, the BMA produces better results.

7. Conclusions

fNIRs is a practical approach due to their portability, little interference in magnetic
and electrical fields, hyper-scanning, ease of use for neonates, and the fact that they require
no ongoing maintenance. As a result of the rapid development of fNIRS devices and
analytic toolboxes and its findings’ reliability in various fields, the fNIRs approach can
be considered a versatile and promising instrument. In fNIRs, the image reconstruction
problem is divided into two parts: the model used to predict light distribution in tissue
(the forward problem) and the method used to estimate the optical properties of the
domain in tissue (the inverse problem). In order to achieve correct image reconstruction,
it is essential to do accurate forward model simulation and develop methods to address
inverse problems.

Concerning how to solve the problem, many researchers have used and presented
a wide range of methods, such as toolboxes. FEM and MC are the two most advanced
forward model simulation technologies today. Various toolboxes are being built and put
into operation to improve the accuracy and efficiency of the forward model simulations.
Regarding forward models, NIRFAST for FEM and MCX for the MC method are the most
often used and developed software packages up to this moment.

When it comes to the solution of the inverse problem, the inverse methods such as
back projection, SVD, tSVD, LSQR, rLSQR, MNE, WMNE, LORETA, l1-norm, HB as a MAP
estimate, EM, MEM, and BMA, have been employed thusly. According to the research,
while considering inverse methods, it is vital to consider factors such as computational time,
localization ability, localization error, energy error, system complexity, improved resolution,
and improved image quality, among others. According to the research reviewed above,
when numerous measurements are collected at the same time, the back-projection method
gives an overestimation of the amplitude. The SVD, tSVD, LSQR, and rLSQR methods are
all efficient in terms of computational resources. On the other hand, the L1-norm and lp
regularisation approaches have been found to be sparser than the other inverse methods,
which is a positive development.

Incorporating priors into the inverse approach improves image quality and spatial
accuracy. For this reason, the HB method has been employed in the literature and has
produced satisfactory outcomes. Based on the prior information, the EM method for
fNIRs has been used to increase the image quality and resolution by incorporating sparsity
regularisation into the image. Furthermore, in terms of localization error, ROI, and RMSE,
the BMA produces better results. Recently the MEM method has been used for fNIRs, and
it has been proven to be more accurate and robust than both MNE and wMNE.

Considering the preceding, it is evident and apparent that, while the methods em-
ployed thus far have produced satisfactory results, continuous improvement in inverse
problem solutions is ongoing. As a result, it may be possible to utilize the inverse method,
which incorporates the sparse algorithm and prior information, to improve image quality
and reduce localization error.
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Abstract: This paper presents an important theorem, which shows that, heading from the moments of
the standard normal distribution, one can generate density functions originating a family of models.
Additionally, we discussed that different random variable domains are achieved with transformations.
For instance, we adopted the moment of order two, from the proposed theorem, and transformed
it, which enabled us to exemplify this class as a unit distribution. We named it as Alpha-Unit
(AU) distribution, which contains a single positive parameter α (AU(α) ∈ [0, 1]). We presented its
properties and demonstrated two estimation methods for the α parameter, the maximum likelihood
estimator (MLE) and uniformly minimum-variance unbiased estimator (UMVUE) methods. In order
to analyze the statistical consistency of the estimators, a Monte Carlo simulation study was carried
out, in which the robustness was demonstrated. As a real-world application, we adopted two sets
of unit data, the first regarding the dynamics of Chilean inflation in the post-military period, and
the other one regarding the daily maximum relative humidity of the air in the Atacama Desert. In
both cases presented, the AU model is competitive, whenever the data present a range greater than
0.4 and extremely heavy asymmetric tail. We compared our model with other commonly used unit
models, such as the beta, Kumaraswamy, logit-normal, simplex, unit-half-normal, and unit-Lindley
distributions.

Keywords: asymmetry accommodation; rates and proportions; single-parameter distribution; unit
distribution; water monitoring

1. Introduction

Statistical methodology plays an important role in quantitative methods, given the
hypothesis testing and inferential procedures. Nonetheless, the comparison across features
is given based on a generated function estimated from the data information. Most often,
mild suppositions are assumed, which compromises the generalization of the results.

Under the perspective of statistical generalization (inferential method), some chal-
lenges are found for bounded distribution estimation. For instance, the confidence interval,
which is often adopted from the maximum likelihood estimation approach and asymptotic
supposition, is also assumed. Specially, interval estimation can be seen as the parameter
space domain.

One exemplification is the case in which bounded information data are observed and,
nonetheless, normality is commonly assumed to be true. This is the case of proportion/rate
data, which are double bounded in the lower limit equal to zero and upper limit equal
to one. Relative humidity is an example of this scenario in which every decision-making
should be ∈ [0, 1] [1,2], or rates commonly used in the fields of finance, economics and
demography, to number a few.

Axioms 2022, 11, 666. https://doi.org/10.3390/axioms11120666 https://www.mdpi.com/journal/axioms28
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In the case of rates and proportions processes, as well as other processes whose vari-
ables of interest assume values in the range (0, 1), there is a well-represented class of
models, the unit distributions family, which deals with this type of double-bounded data.
Among the many existing unit distributions, it is noteworthy mentioning the power distri-
bution, beta distribution [3], Kumaraswamy distribution [4], unit-logistic distribution [5],
simplex distribution [6], unit-Weibull distribution [7,8], unit-Lindley distribution [9], unit-
half-normal distribution [10], unit log-log distribution [11], modified Kumaraswamy and
reflected modified Kumaraswamy distributions [12], unit-Teissier distribution [13], unit
extended Weibull families of distributions [14], lognormal distribution [15], unit folded
normal distribution [16], Marshall-Olkin reduced Kies distribution [17], and unit-Chen
distribution [18].

Despite the applicability of the unit distributions in double-bounded variables, another
important fact is that the interval estimation for the parameter may also be limited in a
domain (like positive real number). In the face of it, we also presented an inferential
alternative through the delta method.

This study starts with a presentation of an important theorem that changes from a
modification of the standard normal distribution into a class of density functions that can be
seen as a unit. Then, as an exemplification, a second moment case was chosen to illustrate
the usefulness of this class of probabilistic models. This class of distributions shows to be
competitive for high-frequency data with range greater than 0.4, important to real-world
applications, whereas a classical unit distribution fails [19]. Additionally, two different
data sets were selected to illustrate the adjustment of the proposed model. The first one is
related to the Chilean inflation (ultimate post-military era), and the second one comes from
the driest area of the planet (excluding the north and south poles).

This paper is structured in four parts. Section 2 presents the proposed one-parameter
unit distribution. In Section 3, the inferences for the distribution parameter adopting the
uniformly minimum-variance unbiased estimator (UMVUE) and maximum likelihood
estimator (MLE) as point estimators, as well as interval estimations, are discussed. A
simulation study is also presented in this section. In Section 4, two real data sets are used
to illustrate the proposed methodology, one from the Chilean inflation in the post-military
period, and other one from the relative humidity water monitoring in the Atacama Desert.
Finally, Section 5 lists the conclusions of this study. Nevertheless, before moving on into
the described structure, a wide class of models that can be generated in many different
random variable supports is presented. Therefore, a theorem is elicited and, as a special
case, the whole paper will consider an order two for exemplification of this powerful class
of distributions.

Motivation

The normal (or Gaussian) distribution is very important to the history of statistics, and
numerous modifications to this distribution have been proposed in the literature [20,21].
An interesting fact related to the normal distribution is that its even moments can be used
to generate new distributions, which is the case presented below, through a definition
and a result embodied in a theorem that accounts for the characterization of these new
distributions.

Definition 1. A random variable B is said to be distributed according to a Bimodal Normal (BN)
distribution of order k, that is, B ∼ BN(k) (discussed in [22]), if its probability density function
(PDF) is given by

f (b | k) =
1
c

b2kφ(b), b ∈ R,

in which φ(·) is the PDF of the standard normal distribution, c = ∏k
j=1(2j − 1) and k =

{1, 2, 3, . . .}.
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This class of distributions is always bimodal, which means that the observed modes
move away from each other when the order k increases (as depicted by Figure 1).

Figure 1. Density function of the BN distribution by varying the parameter k (displayed at the top of
each chart).

It is noteworthy mentioning that transformations derived from the BN(k) distribution
may lead to other domains of interest, e.g., the unit domain. For example, let B ∼ BN(k),
then a scale parameter α, the transformation α|B| ∈ R+, and then the transformation
e−α|B| ∈ [0, 1]. Thus, the stochastic characterization of a BN(k) distribution can be obtained
according to the following theorem.

Theorem 1. Let W1 and W2 be independent random variables, in which W1 is such that P(W1 =
1) = P(W1 = −1) = 1/2 and W2 ∼ χ2

2k+1. Then,

W1
√

W2 ∼ BN(k). (1)

So, this theorem is mainly motivated by the result that shows that if X ∼ BN(k), then
X2 ∼ χ2

2k+1. The entire demonstration is presented in Appendix A.

2. The Model

In this section, a new unit distribution, named Alpha-Unit, which presents a single
parameter, α, is discussed. Its stochastic representations (probability density and cumulative
distribution functions), moments (including mean and variance), moment-generating
function, and how to generate pseudo-random numbers from it will be presented. Moreover,
a proposal of statistical control chart for unit data based on the Alpha-Unit distribution
will also be shown.

The Alpha-Unit density is originated from the general theorem (Theorem 1), by
considering k = 1. Moreover, it represents the second moment of the standard normal
distribution and, later, transformed its domain. However, as k increases, the concentration
of the distribution intensifies and other densities could be obtained.

Properties and Characterization

Definition 2. (Alpha-Unit distribution). A random variable X follows an Alpha-Unit (AU)
distribution with parameter α > 0, that is, X ∼ AU(α), if its PDF is given by

fX(x | α) =
2

xα

(
ln(x)

α

)2

φ

(
ln(x)

α

)
, 0 < x ≤ 1. (2)

Remark 1. If X ∼ AU(α), then its PDF is unimodal.
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Proof. The maxima of the AU distribution are studied, to which the criterion of the first
derivative is first considered:

d fX(x | α)

dx
=

2
xα2

ln(x)
α

φ

(
ln(x)

α

)[
2
x
− ln(x)

x
− [ln(x)]2

α

1
xα

]
= 0.

By solving algebraically for x, we obtain:

x =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e

(
α2+

√
α4+8α2
2

)
(i)

e

(
α2−

√
α4+8α2
2

)
(ii)

.

By working algebraically, it can be seen that this is only true for (ii), and is a global
maximum, given that the solution is in between 0 and 1. Therefore, the AU distribution is
unimodal.

Proposition 1. If X ∼ AU(α), then its r-th order moment is given by

E[Xr] = 2e
(

r2α2
2

)[(
1 + r2α2

)
(1 − Φ(rα))− rαφ(rα)

]
,

in which Φ(·) is the cumulative distribution function (CDF) of the standard normal distribution.

Proof. From the definition of the r-th order moment, we have:

E[Xr] =
∫ 1

0
xr fX(x | α)dx =

∫ 1

0
xr 2

xα

(
ln(x)

α

)2

φ

(
ln(x)

α

)
dx. (3)

By changing the variables:⎧⎪⎨⎪⎩
u = 1

α ln(x) ⇒ euα = x

du = 1
αx dx ⇒ αeuαdu = dx

,

then substituting into Equation (3) and developing algebraically, we obtain:

E[Xr] = 2e
α2r2

2

∫ 0

−∞
u2 1√

2π
e−

(u−αr)2
2 du.

Then, by making another change of variables: h = u − αr, dh = du; and replacing
these expressions in the previous equation, we have:

E[Xr] = 2e
α2r2

2

∫ −αr

−∞
(h + αr)2 1√

2π
e−

h2
2 dh

= 2e
α2r2

2

∫ −αr

−∞

(
h2 + 2hαr + α2r2

)
φ(h)dh

= 2e
α2r2

2

(∫ −αr

−∞
h2φ(h)dh + 2αr

∫ −αr

−∞
hφ(h)dh + α2r2

∫ −αr

−∞
φ(h)dh

)
.

By solving the integrals, we get to:

E[Xr] = 2e
α2r2

2

[
αrφ(αr) + (1 − Φ(αr))− 2αrφ(αr) + α2r2(1 − Φ(αr))

]
.

Then, by solving algebraically, we go down to the expression of Proposition 1.
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Out of Proposition 1, we obtain the mean and variance of the AU(α) model as it
follows:

E[X] = 2e
α2
2

[
(1 + α2)(1 − Φ(α))− αφ(α)

]
,

Var[X] = E[X2]− (E[X])2

= 2e2α2
[
(1 + 4α2)(1 − Φ(2α))− 2αφ(2α)

]
− 4eα2

[
(1 + α2)(1 − Φ(α))− αφ(α)

]2
.

Remark 2. As an illustration, Figure 2 displays the generated asymmetry and kurtosis based on
the chosen α parameter of the AU distribution.

Figure 2. Density function of the AU distribution by varying the parameter α (displayed at the top of
each chart). Whereas B ∼ BN(1) → B2 ∼ χ2

3, then the AU model was generated from X = e−α|B|.

Proposition 2. If X ∼ AU(α), then its CDF is given by

FX(x | α) = 2Φ
(

ln(x)
α

)
− 2

(
ln(x)

α

)
φ

(
ln(x)

α

)
.

Proof. By definition, the CDF is:

FX(x | α) =
∫ x

0

2
tα

(
ln(t)

α

)2

φ

(
ln(t)

α

)
dt. (4)

By making the change of variables:⎧⎪⎨⎪⎩
u = ln(t)

α ⇒ euα = t

du = 1
αt dt ⇒ αeuαdu = dt

,

then substituting into Equation (4) and reducing expressions algebraically, we get to:

FX(x | α) = 2
∫ ln(x)

α

−∞
u2φ(u)du.
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By calculating the integral, we find:

FX(x | α) = 2
[
−uφ(u)

∣∣∣ln(x)/α

−∞
+
∫ ln(x)/α

−∞
φ(u)du

]
= 2

[
−
(

ln(x)
α

)
φ

(
ln(x)

α

)
+ Φ

(
ln(x)

α

)]
.

Then, by multiplying and commuting, we get to the expression of Proposition 2.

Additionally, if X denotes the monitored variable, then the PDF of X is given by (2).
Also, consider that the probability of false alarm (known as type I error) is π. Thus, we
get to:

P(X < LCL | α) = P(X > UCL | α) = π/2,

in which α is the in-control process parameter (that is, the parameter that controls the
quality characteristic based on the in-control state), and LCL and UCL are the lower and
upper control chart limits, respectively. Given the CDF FX(x | α), then the quantile function
of X is defined by Q(p | α) = F−1

X (p | α), 0 < p < 1, which can be obtained by setting to
zero and solving (numerically) for x the following equation:

Φ
(

ln(x)
α

)
−
(

ln(x)
α

)
φ

(
ln(x)

α

)
− p

2
, for 0 < p < 1.

Following [23], the control limits and centerline (CL) of the proposed control chart for
unit data based on the AU distribution or, simply, AU control chart, are given by

LCL = Q(π/2 | α), CL = E[X | α], UCL = Q(1 − π/2 | α),

in which Q(.) is the quantile function of the AU(α) distribution.

Proposition 3. If X ∼ AU(α), then its moment-generating function (MGF) is given by

ψX(t | α) = 2
∞

∑
k=0

tk

k!
e
(

k2α2
2

)[(
1 + k2α2

)
(1 − Φ(kα))− kαφ(kα)

]
.

Proof. By definition, the MGF is:

ψX(t | α) = E
[
etx] = ∫ 1

0
etx 2

xα

(
ln(x)

α

)2

φ

(
ln(x)

α

)
dx. (5)

By making the following change of variables:⎧⎪⎨⎪⎩
u = ln(x)

α ⇒ euα = x

du = 1
αx dx ⇒ αeuαdu = dx

,

then substituting and simplifying into Equation (5), we get to:

ψX(t | α) = 2
∫ 0

−∞
e(te

uα)u2φ(u)du

= 2
∫ 0

−∞

∞

∑
k=0

tkeuαk

k!
u2φ(u)du.
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Working algebraically, we obtain:

ψX(t | α) = 2
∞

∑
k=0

tk

k!
e
(

α2k2
2

) ∫ 0

−∞
u2 1√

2π
e

(
−(u−αk)2

2

)
du.

By making the following change of variables: h = u − αk, dh = du; then substituting
it into the previous equation, we get to:

ψX(t | α) = 2
∞

∑
k=0

tk

k!
e
(

α2k2
2

) ∫ −αk

−∞
(h + αk)2φ(h)dh.

Then, by solving the integral and adjusting algebraically, we get to the expression of
Proposition 3.

The pseudo-code presented in Algorithm 1 describes the important steps for the
generation of random (in fact, pseudo-random) numbers from the AU(α) distribution.
Further proofs are attached under Appendix B.

Algorithm 1 Random number generation from the AU(α) model.

Step 1. Generate a random number x1 ∼ χ2
3.

Step 2. Generate a random number u ∼ Uniform(0, 1). If u ≤ 1/2, set v =
√

X1;
otherwise, v = −√

x1.

Step 3. Based on the numbers obtained, generate y = α|v|, in which α is a (positive) scale
parameter and |v| follows a Bimodal Half-Normal (BHN) distribution.

Step 4. Conclude with the number generated by Step 3 as a negative power of base e,
that is, x = e−y = e−α|v| ∈ [0, 1].

Step 5. Repeat Steps 1–4 n times to obtain a random sample of size n from the AU(α)
model.

3. Inference

In this section, the parameter estimation adopting the UMVUE and MLE approaches
are discussed. At first, it will be demonstrated that the UMVUE can be obtained straight-
forwardly, since the proposed AU distribution is part of the exponential family. Later, the
MLE will also be discussed, which will help to estimate not only the point estimation of the
α parameter, but also the interval estimation. We enrolled the reasoning considering the
asymptotic convergence in distribution of the parameter estimator, as well as adapted a
transformation that ensures that the interval of the parameter will always be on its domain
(the delta method). The delta transformation procedure will enable the correct inferences
and the standard error calculation associated with the parameter estimate. Later on, a
simulation study to illustrate these theoretical results is presented.

3.1. UMVUE through the Exponential Family

Many of the distributions used in statistics belong to the exponential family, thereby
implying in a considerable advantage over other models that do not belong to this family.
Such an advantage is significantly declared when it comes to calculating the statistic T(X)
of a random sample X = (X1, X2, . . . , Xn). Next, it is shown that the proposed AU(α)
distribution belongs to this family.

A random variable X is said to belong to the one-parameter exponential family if its
associated PDF f (· | θ) can be written in the form of:

f (x | θ) = exp{c(θ)T(x) + d(θ) + S(x)}.
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Let X ∼ AU(α), then the PDF of X can be written in exponential form as it follows:

f (x | α) = exp
{
− 1

2α2 [ln(x)]2 − 3 ln(α) + ln
(
[ln(x)]2

x
√

2π

)}
.

Then, X belongs to the one-parameter exponential family if we define:

c(α) = − 1
2α2 , T(x) = [ln(x)]2, d(α) = −3 ln(α), S(x) = ln

(
[ln(x)]2

x
√

2π

)
.

Let x = (x1, x2, . . . , xn) be an observation (or realization) of the random sample
X = (X1, X2, . . . , Xn), with Xi ∼ AU(α), for i = 1, 2, . . . , n. Then, the joint PDF presented
in exponential form is

f (x | α) = exp

{
− 1

2α2

n

∑
i=1

[ln(xi)]
2 − 3n ln(α) +

n

∑
i=1

ln
(
[ln(xi)]

2

xi
√

2π

)}
,

from which it can be concluded that the statistic T(X) = ∑n
i=1[ln(Xi)]

2 is sufficient and
complete, once the AU distribution is part of the exponential family.

Proposition 4. Let X = (X1, X2, . . . , Xn) be a random sample, with Xi ∼ AU(α), for i =
1, 2, . . . , n, and T(X) = ∑n

i=1[ln(Xi)]
2. Then,

Wn =
1
α2 T(X) ∼ χ2

3n.

Proof. If G =
[

ln(X)
α

]2
, then G ∼ χ2

3. Thus, n independent and identically distributed

samples of G will have the sum of n χ2
3, which will result in a chi-squared distribution with

degrees of freedom equal to 3n, that is, χ2
3n, since

FG(g) = P(G ≤ g) = P

([
ln(X)

α

]2

≤ g

)
= P

(
−√

g ≤ ln(X)

α
≤ √

g
)

= P(−α
√

g ≤ ln(X) ≤ α
√

g) = P(ln(X) ≤ α
√

g)− P(ln(X) ≤ −α
√

g)

= 1 − P(ln(X) ≤ −α
√

g) = 1 − P

(
X ≤ e−α

√
g
)
= 1 − FX

(
e−α

√
g
)

,

so,

fG(g) =
dFG(g)

dg
= fX

(
e−α

√
g
)(

e−α
√

g
)( α

2
√

g

)
=

2
αe−α

√
g

(−α
√

g
α

)2

φ

(−α
√

g
α

)
e−α

√
g α

2
√

g

=
1√
g
(
√

g)2 1√
2π

e−
(
√

g)2

2 =
1√
2π

g1/2 exp(−g/2) ≡ χ2
3.

Proposition 5. Let X = (X1, X2, . . . , Xn) be a random sample, with Xi ∼ AU(α), for i =
1, 2, . . . , n, and T(X) = ∑n

i=1[ln(Xi)]
2. Then,

S(X) =
Γ
( 3n

2
)√

2

Γ
(

3n+1
2

)√T(X)

is an unbiased estimator of α.
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Proof. First, remember that if X ∼ Gamma(a, b) distribution, then E[Xk] = Γ(a+b)
bkΓ(a) . Since

the α parameter is observed to be squared, it will be necessary to apply it to find an unbiased
estimator. So, considering the random variable W1/2

n (with Wn as defined in Proposition 4),
it follows that:

E

[
(Wn)

1/2
]
=

Γ
(

3n
2 + 1

2

)
21/2Γ

( 3n
2
) ,

so,

E

[(
1
α2 T(X)

)1/2
]
=

Γ
(

3n
2 + 1

2

)
21/2Γ

( 3n
2
)

E

⎡⎣√T(X)
Γ
( 3n

2
)√

2

Γ
(

3n
2 + 1

2

)
⎤⎦

︸ ︷︷ ︸
S(X)

= α.

Remark 3. Considering the two previous propositions and resorting to the Lehmann-Scheffé
theorem, one can conclude that S(X) is UMVUE for α.

3.2. Estimation using the Maximum Likelihood Method

Let x = (x1, x2, . . . , xn) be a realization of the random sample X = (X1, X2, . . . , Xn)
taken from the AU(α) distribution. Then, the log-likelihood function is given by

�(α) = constant − 3n ln(α)− Σn
i=1 ln(xi) + 2Σn

i=1 ln(ln(xi))− 1
2α2 Σn

i=1[ln(xi)]
2.

The MLE of α, i.e., α̂, is found by solving the following equation:

d�(α)
dα

= −3n
α

+
1
α3 Σn

i=1[ln(xi)]
2 = 0,

resulting

α̂ =

{
1

3n

n

∑
i=1

[ln(xi)]
2

}1/2

.

On the other hand, the second derivative of �(α) evaluated at α = α̂ is negative,
therefore concluding that α̂ is MLE for α.

It is known that, under certain regularity conditions,

√
n(α̂ − α)

D−→ N
(

0, I−1(α)
)

,

in which I(α) = −E

[
d2�(α)

dα2

]
= 6n

α2 .
A two-sided 100(1 − π)% confidence interval for α can be calculated by[

α̂ − z1−π/2

√
Var[α̂], α̂ + z1−π/2

√
Var[α̂]

]
, (6)

in which zq is the q-th percentile of the standard normal distribution. The variance of α̂ can
be approximated by the inverse of the observed Fisher information, as

Var[α̂] = I−1(α̂) =
α̂2

6n
.
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Since α is a positive value and we cannot guarantee that the lower limit of the inter-
val (6) is positive, we resort to the delta method to remedy such situation. For this, we
define the function g : [0, ∞) → R as g(α) = ln(α), and knowing that

√
n(g(α̂)− g(α)) D−→ N

(
0, I−1(α)

[
dg(α)

dα

]2
)

,

we can, then, obtain an approximate two-sided 100(1 − π)% confidence interval for α
through ⎡⎣α̂ exp

(
− z1−π/2√

6n

)
,

α̂

exp
(
− z1−π/2√

6n

)
⎤⎦. (7)

3.3. Simulation Study

In order to illustrate the presented inferences for the estimation of the AU distribution,
the MLE versus the UMVUE are compared (via simulation study) in this subsection. More-
over, we considered the scenarios in which the parameter α = {0.1, 0.3, 0.5, 0.7, 1.1, 1.5},
considering sample sizes n = {100, 200, 500}, through the Monte Carlo method with
N = 1000 repetitions. This entire procedure took into account the random number genera-
tor for the AU(α) distribution shown in Algorithm 1. All analyses carried out in this study
adopted the open-source R software [24].

For the performance comparison of the proposed estimators (MLE and UMVUE), since
the true parameter value is known, the bias and mean squared error (MSE) metrics were
adopted, and they are defined, respectively, as it follows:

Bias(α) =
1
N

N

∑
i=1

(α̂i − α) and MSE(α) =
1
N

N

∑
i=1

(α̂i − α)2,

in which α̂i is the estimate for α in the i-th iteration (point estimation). Additionally, based
on the asymptotic results presented in this study, we also calculated the 95% confidence
interval (CI) length by adopting the delta method from Equation (7) (interval estimation).
That is, it analyzed the average of all the upper limits of the 95% confidence interval, as
well as the average of all the lower limits, and then calculated their difference.

Table 1 presents the obtained average estimates (AvE) of the α parameter, for each
sample size n, as well as the corresponding bias, MSE and 95% CI length (this last one only
for MLE) results.

The asymptotic convergence of the MLE towards the robustness is noticed as the
sample size increases. In addition, both MLE and UMVUE’s bias and MSE are small and
tend to decrease as n gets larger. On the other hand, the CI length also decreases as the
sample size increases.

Finally, regarding the robustness of the estimators, the difference between the MLE and
UMVUE estimates was taken, considering each different sample size n. Then, the interquartile
range (IQR) was calculated per sample size group. That is, IQR(ni)

(
α̂1

(ni)
MLE − α̂1

(ni)
UMVUE, . . . ,

α̂j
(ni)
MLE − α̂j

(ni)
UMVUE, . . . , α̂6

(ni)
MLE − α̂6

(ni)
UMVUE

)
, in which ni = {100, 200, 500} and αj = {α1 =

0.1, α2 = 0.3, . . . , α6 = 1.5}. For instance, the IQR for n = 100 was 0.00053, whereas for
n = 200 and n = 500, it went down to 0.00025 and 0.00012, respectively. This points out,
in short, that as the sample size gets larger, the error range gets smaller, regardless of the
value of the α parameter.
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Table 1. AvE, bias, MSE and 95% CI length (only for MLE) for the proposed estimators (MLE and
UMVUE) of the single parameter (α) of the AU distribution, considering different sample sizes (n).

n α
MLE UMVUE

AvE Bias MSE CI Length AvE Bias MSE

100 0.1 0.0998 −0.0002 1.6930 × 10−5 0.0160 0.0999 −8.2264 × 10−5 1.6165 × 10−5

200 0.0999 −9.8758 × 10−5 8.7306 × 10−6 0.0113 0.0999 −5.7124 × 10−5 8.7314 × 10−6

500 0.0999 −3.3400 × 10−6 3.5542 × 10−6 0.0071 0.1000 1.3327 × 10−5 3.5555 × 10−6

100 0.3 0.2996 −0.0004 0.0002 0.0480 0.2999 −8.0656 × 10−5 0.0002
200 0.2997 −0.0003 7.8575 × 10−5 0.0339 0.2998 −0.0002 7.8582 × 10−5

500 0.2999 −1.0020 × 10−5 3.1987 × 10−5 0.0214 0.3002 0.0002 3.0979 × 10−5

100 0.5 0.4994 −0.0006 0.0004 0.0800 0.4999 −0.0001 0.0004
200 0.4997 −0.0003 0.0002 0.0565 0.4997 −0.0003 0.0002
500 0.4999 −1.6700 × 10−5 8.8855 × 10−5 0.0357 0.5000 6.6637 × 10−5 8.8888 × 10−5

100 0.7 0.6992 −0.0008 0.0008 0.1120 0.6998 −0.0002 0.0008
200 0.6993 −0.0007 0.0004 0.0791 0.6996 −0.0004 0.0004
500 0.6999 −2.3380 × 10−5 0.0001 0.0501 0.7000 9.3291 × 10−5 0.0001

100 1.1 1.0987 −0.0013 0.0020 0.1760 1.0997 −0.0003 0.0020
200 1.0989 −0.0011 0.0010 0.1244 1.0994 −0.0006 0.0010
500 1.0999 −3.6741 × 10−5 0.0004 0.0787 1.1001 0.0001 0.0004

100 1.5 1.4983 −0.0017 0.0038 0.2400 1.4996 −0.0004 0.0038
200 1.4985 −0.0015 0.0019 0.1696 1.4991 −0.0009 0.0019
500 1.4999 −5.0101 × 10−5 0.0008 0.1073 1.5002 0.0002 0.0007

4. Real-World Exemplifications

In this section, two applications adopting the AU distribution with real-world issues
are exemplified. The first case is related to the dynamics of the Chilean inflation in the
post-military dictatorship period. The second case pertains to the relative humidity of the
air in the northern Chilean city of Copiapó (Atacama region).

The Chilean inflation data are recorded annually, whose values considered the range
from 1992 to 2021. These are based on the period after the military dictatorship of 1973–1990.
It was analyzed the dynamics of the inflation data (in %), which were standardized by
min-max transformation, resulting in a unit response variable (value between zero and
one). The years 1990 and 1991 were excluded, since they are considered to be a period of
transition. Then, the total amount of observations was of 30 years (from 1992 to 2021).

On the other hand, the relative air humidity data cover the period from February 2015
to October 2022, with a one-hour recording format (104,415 observations). Then, this data
set was transformed into daily maximum observation (6226 observations).

4.1. Chilean Inflation (Post-Military Era)

Figure 3 presents the dynamics of the Chilean inflation in the post-military dictatorship
period, demonstrating stability between the years of 1999 and 2008. The right panel displays
the time series of inflation, in which time is measured in years, from year 1 (1992) to year
30 (2021). The left panel depicts the accumulation of the values throughout the time series,
in which a predominant trend is shown around 0.1 of the inflation rate.

Once the empirical dynamics of these data was analyzed, the most common unit
distributions, presented in the statistical literature, were fitted. The upper panel of Figure 4
illustrates the histogram for the inflation data, in which it is compared with different
fitted densities based on the MLE: AU, beta (BE), Kumaraswamy (KUM), logit-normal
(LOGITNO), simplex (SIMPLEX), unit-half-normal (UHN), and unit-Lindley (ULINDLEY).
The lower panel of the same figure presents the fitted CDFs superimposed to the empirical
CDF (ECDF).
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Figure 3. Chilean inflation in the period 1992–2021 (post-military era). The histogram on the left
presents a skewness of the data. The dynamics is represented in the right panel, in which a disturbance
(outlier) is observed in the year 2008 (observation #17).

Figure 4. Estimated densities superimposed to the histogram (top-chart), and estimated CDFs
superimposed to the ECDF (bottom-chart) (Chilean inflation data).

In order to quantify the performance of the fitted models, the Akaike Information
Criterion (AIC) [25] and the Bayesian (or Schwarz) Information Criterion (BIC) [26] were
analyzed. The obtained results (see Table 2) indicated the AU model as the best-fitted
model to this data set. In addition, it is possible to make an inference about the average
of the phenomenon, that is, the expectation of the AU(α̂ = 1.2059) model, resulting in
E[XInflation] = 0.1948. In other words, the average Chilean inflation, in post-military era, is
of 19.49%.

In the following subsection, it is illustrated the performance of the AU model when
adopting a high-frequency data set originated from the relative humidity from a city located
in the Atacama Desert.
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Table 2. Parameter estimates, AIC and BIC values (Chilean inflation data). S.E. = standard error.

Model Parameter Estimate (S.E.) AIC BIC

AU(α) α̂ = 1.205943 (0.008079) −47.89 −46.49

BE(μ, σ)
μ̂ = 0.185857 (0.000496) −44.58 −41.78σ̂ = 0.314688 (0.001304)

KUM(μ, σ)
μ̂ = 1.370127 (0.045522) −43.63 −40.83σ̂ = 7.968427 (7.750459)

LOGITNO(μ, σ)
μ̂ = 0.150323 (0.000457) −46.23 −43.43σ̂ = 0.916938 (0.014013)

SIMPLEX(μ, σ)
μ̂ = 0.182462 (0.000584) −43.17 −40.37σ̂ = 2.854833 (0.135834)

UHN(σ) σ̂ = 0.413894 (0.002855) −33.62 −32.22

ULINDLEY(μ) μ̂ = 0.186834 (0.000575) −41.99 −40.58

4.2. Water Monitoring in Air Humidity

The hydrological regime of the main rivers of Atacama is characterized by ice sources:
water flows from the peaks following the melting of snowfall, glaciers, and permafrost
located in the upper parts of the Andes range. In the context of climate change, it is,
therefore, essential to understand the hydrological cycle of these regions, in order to set up
a sustainable management policy to them. Understanding the hydrological cycle requires
the implementation of tools for forecasting river flows, relative humidity, groundwater
reservoirs, or any other water-related quantity monitoring, which inevitably demands an in-
depth knowledge with respect to the physical phenomena that rule the entire hydrological
cycle and, more precisely, the complex interaction between atmosphere, climate, landforms,
ice, snow and river flows.

Additionally, a unique phenomenon called Camanchaca happens, which consists in
a fog passing by the Copiapó city, recurrent only between midnight to around 10 a.m.
Here, we demonstrate the variation of the relative humidity of Copiapó city, proposing
a methodology that can be efficient, adjustable to these data. Using the daily maximum
relative humidity, six different unit distributions were compared: AU, BE, KUM, LOGITNO,
SIMPLEX, and UHN, as shown in Figure 5.

After comparing the commonly used unit models, we demonstrate the advantage
of fitting the AU model over others (visually). Table 3 confirms the best fit of the AU
model, based on information criteria (AIC and BIC), as well as depicts the estimation of the
parameter(s) of each model.

Table 3. Parameter estimates, AIC and BIC values (relative air humidity data).

Model Parameter Estimate (S.E.) AIC BIC

AU(α) α̂ = 0.1092 (3.1902 × 10−7) −14,023.49 −14,016.76

BE(μ, σ)
μ̂ = 0.8476 (1.2027 × 10−6) −13,927.89 −13,914.41
σ̂ = 0.2410 (4.1119 × 10−6)

KUM(μ, σ)
μ̂ = 9.4004 (0.0141) −13,605.90 −13,592.43σ̂ = 2.3882 (0.0019)

LOGITNO(μ, σ)
μ̂ = 0.8693 (3.1376 × 10−6) −7600.43 −7586.95
σ̂ = 1.2299 (1.2148 × 10−4)

SIMPLEX(μ, σ)
μ̂ = 0.9735 (1.2959 × 10−6)

32,477.13 32,490.61σ̂ = 94.0480 (0.7103)

UHN(σ) σ̂ = 99.9900 (6.5334 × 10−7) 5,101,018,733.13 5,101,018,739.86
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Figure 5. Estimated densities superimposed to the histogram (top-chart), and estimated CDFs
superimposed to the ECDF (bottom-chart) (relative air humidity data).

After obtaining the parameter estimate for α, the AU model (best-fitted model) was
used to construct a Statistical Process Control (SPC) chart [27], by calculating a tolerance
upper-lower bound. Moreover, the Highest Density Interval (HDI) was adopted, consider-
ing a confidence degree of 99%, to monitor the daily maximum relative humidity records
(as displayed by Figure 6).

Figure 6. SPC control chart, considering a 99% of tolerance based on the AU model fitted to the
daily maximum relative humidity of Copiapó city, Chile, from 1 February 2015 to 4 October 2022.
It is observed that 193 days (3.1%) presented anomaly values (out-of-control signals). The obtained
control limits were: LCL = 68.56% and UCL = 97.73%.
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The expected daily maximum water relative humidity is of 84.23% (based on the fitted
AU model). The obtained control limits, considering a confidence (or tolerance) level of
99%, were: LCL = 68.56% and UCL = 97.73%. Thus, the control chart based on the AU
model (AU control chart) is another exciting and valuable alternative to some well-known
SPC tools, which enlightens the forecasting and opens new doors to discuss extreme events
in the Atacama water particles monitored by probabilistic reasoning.

5. Conclusions

This study showed the competitiveness of the developed Theorem 1 (Equation (1)),
which enables for a great class of distributions that belong all to the exponential family.
As an exemplification, we adopted the special case for k = 1, which is equivalent to the
moment of order two of the standard normal distribution, and after some transformations,
we developed the Alpha-Unit (AU) distribution. Also, we dedicated to the unit range,
given the importance of this stochasticity representation.

Unit distributions are useful for values that oscillate between zero and one, such as
fractions, proportions and rates, among others, or for a set of values in which there is
a minimum or maximum limitation, resorting to standardization through the min-max
transformation. Most distributions of this type come from transforming a random variable
with certain distribution so that it takes values between zero and one, as in the case of
unit-Lindley distribution [9], which comes from the Lindley distribution [28,29].

There are numerous studies based on (e.g., unit) distributions, by extending a model
and applying it to several areas [11,14,16]. In this study, we introduced and showed the
competitiveness of the AU distribution, especially for data with a range greater than 0.4,
or which present high asymmetry and low decay. Further studies shall investigate this
hypothesis in a wider amount of data sets (through different sorts of wide data range).
Additionally, an implementation of this model adopting hierarchical estimation and spatio-
temporal dependence would be useful for forecast/predictable problems.
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Appendix A

This appendix shows the proof that for a random variable

X ∼ BN(k) → X2 ∼ χ2
2k+1.

Then,

FX2(x) = P

(
X2 ≤ x

)
= P

(−√
x ≤ X ≤ √

x
)
= 2P

(
X ≤ √

x
)− 1 = 2FX

(√
x
)− 1.
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It follows that

fX2(x) = 2 fX
(√

x
) 1

2
√

x
=

1
c
(√

x
)2k

φ(
√

x)
1√
x
=

1

∏k
j=1(2j − 1)

(√
x
)2k−1 1√

2π
e−

x
2 .

Knowing that Γ
(

2k+1
2

)
= ∏k

j=1(2j − 1)
√

π
2k , then

fX2(x) =
1

∏k
j=1(2j − 1)

x
2k−1

2
1√
2π

e−
x
2 =

√
π

2kΓ
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2

) x
2k−1

2

21/2
√

π
e−

x
2

=
1

Γ
(

2k+1
2

)
2

2k+1
2

x
2k−1

2 e−
x
2 .

Therefore, X2 ∼ χ2
2k+1.

Besides that, complementation can be taken into account by saying that, considering
W2 ∼ χ2

2k+1 and P(W1 = ±1) = 1/2, then B = W1
√

W2 ∼ BN(k).
Let b ≥ 0, then

FB(b) = P(B ≤ b) = P

(
W1

√
W2 ≤ b

)
= P

(
W1

√
W2 ≤ b | W1 = 1

)
P(W1 = 1) + P

(
W1

√
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ind.
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2
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(
(−1)
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)1
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Since b ≥ 0, then P
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Therefore,

fB(b) =
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Analogously, it is proved for b < 0.

Appendix B

The proposed theorem (Theorem 1) will be illustrated considering k = 1, to show the
origin of the random numbers that generate the AU distribution.

Proposition A1. If X ∼ BN(1), then fX(x) = x2φ(x) is a bimodal density function.
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Proof. If fX(x) is bimodal, it would have two maxima, to which the first and second
derivative criteria would be applied:

d fX(x)
dx

= 0 ⇒

d
(
x2φ(x)

)
dx

= 2xφ(x) + x2[−xφ(x)] = 2xφ(x)− x3φ(x) = xφ(x)
(

2 − x2
)
= 0.

Then, it can be seen that the solutions for the previous equation would be: x1 = 0,
x2 =

√
2, x3 = −√

2. Hence, by applying the second derivative criterion:

d2 fX(x)
dx2 < 0 ⇒

d
(
xφ(x)

(
2 − x2))

dx
= φ(x)

(
2 − x2

)
+ x[−xφ(x)]

(
2 − x2

)
+ xφ(x)(−2x).

Reducing algebraically, we get to:

d2 fX(x)
dx2 = φ(x)

(
2 − 5x2 + x4

)
< 0.

The only solutions that satisfy the previous inequality are: x2 =
√

2, x3 = −√
2.

Therefore, there are two maxima and the BN distribution is bimodal.

Definition A1 (Bimodal Half-Normal distribution). Let Y ∼ BN(1). If Q = α|Y|, with α > 0,
then we say that Q is distributed according to a Bimodal Half-Normal (BHN) distribution with
parameter α, and we denote it by Q ∼ BHN(α).

Proposition A2. If Q ∼ BHN(α), then the PDF of Q is given by

fQ(q | α) =
2
α

( q
α

)2
φ
( q

α

)
, q > 0.

Proof. Since Q = α|Y|, with Y ∼ BN(1), then

FQ(q) = P(Q ≤ q) = P(α|Y| ≤ q) = P

(
− q

α
≤ Y ≤ q

α

)
= 2P

(
Y ≤ q

α

)
− 1 = 2FY

( q
α

)
− 1.

Hence, by deriving the previous expression, one has that

fQ(q) = 2 fY

( q
α

) 1
α
=

2
α

( q
α

)2
φ
( q

α

)
.

Proposition A3. If Q ∼ BHN(α), then

X = e−Q ∼ AU(α).

Proof. Let X = e−Q, 0 < x ≤ 1, then

FX(x) = P(X ≤ x) = P

(
e−Q ≤ x

)
= P(−Q ≤ ln(x)) = P(Q ≥ − ln(x))

= 1 − P(Q ≤ − ln(x)) = 1 − FQ(− ln(x)).
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By deriving the previous expression, we have:

fX(x) = fQ(− ln(x))
1
x
=

2
α

(− ln(x)
α

)2

φ

(− ln(x)
α

)
1
x
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2
αx

(
ln(x)

α

)2
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(
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.
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Abstract: The surface quality of wooden products is of great importance to production industries.
The best surface quality requires a thorough understanding of the cutting parameters’ effects on the
wooden material. In this paper, response surface methodology, which is one of the conventional
statistical methods in experiment design, has been used to design experiments and investigate the
effect of different machining parameters as feed rate, spindle speed, step over, and depth of cut on
surface quality of the beech wood. The mathematical model of the examined parameters and the
surface roughness have also been obtained by the method. Finally, the optimal machining parameters
have been obtained to achieve the best quality of the machined surface, which reduced the surface
roughness up to 4.2 (μm). Each of the machining parameters has a considerable effect on surface
quality, although it is noted that the feed rate has the greatest effect.

Keywords: optimization; response surface method; surface roughness; machining parameters

1. Introduction

In recent years, the wood industry has gained significant attention for its applications
in various industries and because the wood and its products are very important in industrial
production. The surface roughness, as the main parameter of surface quality, is among the
requirements for quality production. The examination of the methods conducive to achieve
the optimal cutting parameters for the minimum surface roughness of wooden products is
one of the vital research issues that fill the gap existing in the literature in this respect.

Fujiwara et al. [1] have investigated the surface roughness of Japanese oak and beech
that were polished with different sandpapers, and after paying attention to the distribution
of the respective area the peaks of the roughness profile were checked. Usta et al. [2] have
studied the effect of the number of grater knife blades, feed speed and depth of cut on
the surface roughness of Acacia locust and European oak in the planning process. The
samples have been tested with two and four blades, feeding speed of 5 and 9 (m/min)
and cutting depth of 1, 2 and 4 (mm), respectively. It should be noted that under the same
conditions, Acacia Locust has a smoother surface than European oak. They found that the
surface roughness decreases by reducing the feed speed and depth of cut and increasing
the number of grater blades. The lowest surface roughness in the experiment with the
highest number of grater blades (4 blades), feed rate of 5 m per minute and cutting depth of
1 (mm) is achieved. Hernández et al. [3] have investigated the effect of cutting width and
height on the surface quality of black spruce timber in the process of turning the trunk into
lumber. So that the spindle speed and feed rate are kept constant, surface roughness tests
have been performed in two conditions of summer and winter temperature and different
cutting width and height. Finally, they obtained the suitable surface quality in summer
temperature where the width and height of cut of the black spruce was less. Kilic et al. [4]
have evaluated the effect of different machining techniques on the surface roughness of
beech and spruce wood. They designed a test to consider the characteristics of sawn and
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sanded surfaces with 60 and 80 sandpapers. Pinkowski et al. [5] have studied the effect of
cutting angle and feed rate on the surface roughness of different woods in the planning
process. They performed experiments with four different cutting angles of the blade, four
different feed rates, and constant rotational speed. They found that surface roughness
decreases with decreasing cutting angle and surface roughness increases with increasing
feed rate. The optimal cutting angle is 40 degrees. Moreover, the surface area decreases
with increasing wood density. Extensive research [6–10] has been conducted to investigate
cutting parameters on different woods in the planning process. Koch et al. [11] have studied
the effects of feed rate and spindle rotational speed on two types of wood and MDF in
the CNC milling process. They used the factorial method in the design of the experiment
and found that a smoother surface was obtained by increasing the rotational speed of the
spindle and decreasing the feed rate. Bal and AKÇAKAYA [12] have studied the effect of
step over, feed rate, and cutting depth on fiber surface roughness in the CNC machining
process. They performed experiments on two cutting depths of 2 and 6 (mm), step over
of 40, 60, and 80% of the tool diameter, feed rate of 3, 5, 7 (m/min) and a constant spindle
speed of the spindle. They found that the feed rate and surface roughness increase with
increasing the depth of cut. In the design of traditional experimental methods, only one
factor was considered as a variable and other factors were constant. In this method, due to
the existence of one variable, the effects between the variables are not studied and the full
effect of the variables on the response is not displayed. In addition, to do the project in the
mentioned method, many tests are needed, which leads to an increase in time and cost as
well as an increase in the consumption of materials. To overcome this problem, the response
surface methodology (RSM) was proposed by Box and Wilson for optimization studies [13].
RSM is a mathematical tool that determines the relationship between a set of responses and
independent variables. An important aspect of RSM is design of experiments, commonly
known as DOE. This strategy was originally developed to fit experimental models but
can also be used for numerical experiments. DOE’s goal is to select the points where the
response should be evaluated. The test design can have a great impact on the accuracy of the
estimation and the cost of constructing the response surface model. Rao and Murthy [14]
have studied the effect of cutting parameters on the surface roughness and workpiece
vibrations using experimental design methods including the RSM in the drilling process.
Moreover, Hazir and Koc [15] have investigated the optimization of cutting parameters in
the CNC process of Lebanese Cedar and European black pine with the aim of minimum
surface roughness using RSM. Extensive research [16–19] has been done on modeling and
optimization of cutting parameters to achieve the desired surface roughness by using the
RSM method.

This research has been conducted to determine the effective parameters in machining
of beech wood to achieve the best surface quality. Afterwards, the effect of machining
parameters such as feed rate, spindle speed, cutting depth, and step over on beech wood
surface roughness have been studied. Finally, Optimization modeling has been performed
under RSM, and the mentioned parameters have been optimized to achieve the minimum
surface roughness of the workpiece.

2. Materials and Methods

Woodworking with CNC technologies is an integral part of the woodworking industry,
and there are various methods to achieve the desired smooth surface that is important in
high-performance machining and high-quality production. In this section, the workpiece
material and the utilized CNC machine and tool are introduced. The conditions and
methods of testing and machining and the optimization method are also explained.

2.1. Test Materials and Conditions

The wood used in this research is beech wood, which is widely used for wooden
products due to its stable internal structure, high density and good compressive strength
performance. The physical and mechanical properties of beech wood have been studied in
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recently published literature [20–22]. Here, the details for the under-study wood mechanical
properties are listed in Table 1. Pieces of this wood with dimensions of 10*30 (cm) and a
thickness of 15 (mm) in the radial direction have been prepared for testing. The machine
used for milling is a three-axis cartesian CNC with a Mach3 control system. The zigzag
strategy has been used for the end milling of the desired surface in ArtCAM software. Here,
the end mill series used are ARDEN 214, which are ideal for high volume end mills with
medium feed rates due to their hard materials and diamond crystal structure. The end mill
tool code 214,214 has a working height of 12 (mm) and a diameter of 20 (mm) with two
tungsten carbide teeth.

Table 1. Mechanical properties of under study beech wood [21].

Bending
Strength

Elasticity
Modulus

Grain
Parallel

Compression

Grain Parallel
Shear Strength

Grain Parallel
Tensile Strength

Grain Normal
Tensile Strength

Impact
Bending

99.01 (MPa) 11,224 (MPa) 57.05 (MPa) 10.47 (MPa) 131.15 (MPa) 3.71 (MPa) 11.081 (KJ/m2)

2.2. Experimentation

As the response surface method is one of the common statistical methods in the design
of experiments, in the present study Design-Expert software and the response surface
method have been used to design the experiments and analyze the results. In this method,
the variables affecting the response and the minimum and maximum limits are determined,
and based on these limits and the model the test matrix is designed. One of the main
advantages of this method over the full factorial method is the reduction in the number of
experiments while the number of variables is high, which reduces the costs and time of
the research. The three main types of response surface methods are the central composite,
Box Benken, and Dehlert models, in which the central composite model used in this paper
is more valid than the others [23]. Work piece material, machine tool type, and geometric
factors may be varied during machining [24]. Required surface quality can be attained
by proper machining parameters selection. Here, in a milling condition with the given
factors for the machine tool and work piece material, surface quality can be determined and
improved depending on the geometric factors’ selection which includes feed rate, cutting
speed, step over, and depth of cut [25–27]. The effective variables considered on the surface
roughness method and their minimum and maximum values are presented in Table 2.

Table 2. Minimum and maximum input data.

Parameter Maximum Minimum

Depth of cut (mm) 10 4
Feed rate (mm/s) 55 30

Spindle speed (rpm) 15,000 9000
Step over (mm) 7.75 5.25

By importing the data listed in Table 1 into the Design-Expert environment and using
the central composite model for the response surface method, the test conditions have been
designed according to the Table 3. The total number of experiments can also be obtained
by the following equation:

N = 2k + 2k (1)

where N is the total number of experiments and k is the number of independent variables.
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Table 3. Experimental test conditions.

No. Step Over (mm) Spindle Speed (rpm) Feed Rate (mm/s) Depth of Cut (mm)

1 7.75 9000 30 10
2 7.75 12,000 40 10
3 7.75 15,000 50 10
4 7.75 9000 35 8
5 7.75 12,000 45 8
6 5.25 12,000 55 8
7 5.25 15,000 55 8
8 7.75 15,000 45 8
9 6.5 15,000 45 8
10 5.25 9000 50 6
11 6.5 12,000 55 6
12 7.75 15,000 55 6
13 7.75 12,000 30 6
14 5.25 12,000 40 6
15 6.5 15,000 50 6
16 7.75 9000 40 6
17 7.75 9000 30 6
18 7.75 15,000 40 6
19 7.75 15,000 55 4
20 6.5 12,000 45 8
21 7.75 15,000 55 4
22 6.5 15,000 30 6
23 5.25 12,000 50 6
24 7.75 12,000 45 6

Surface roughness can be measured by tracing the probe across the workpiece surface.
The arithmetical mean of the absolute values of the profile deviations, Ra, is a vertical
parameter that shows the average roughness of a surface. After performing 24 designed
tests the average roughness parameter (Ra) has been measured using a TIME 3202 digital
roughness meter according to ISO 4287 standard [28], which uses five sampling lengths for
Ra measurement. Figure 1 shows the machining process and average surface roughness
measurement.

  

 

  
(a) (b) 

Figure 1. (a) CNC machining of beech wood; (b) surface roughness measurement.

2.3. Response Surface Analysis

Response surface analysis is known as a time and cost economic method that makes it
easy to identify the outlier data. This method has been adopted in various fields of study,
and particularly in manufacturing research works [29–38]. Since the adjusted coefficient
of determination R2 represents the accuracy of the estimation concerning the roughness
regression, it should be more than 90% to achieve the appropriate relation. Table 4 shows
R2 coefficient values for different equations. The value of this coefficient in the cubic
equation is 100%, and it indicates the high accuracy of the estimated equation which has
been utilized in this study.
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Table 4. Regression models validation.

Regression Model Adj−R2 Valid

Linear
Ra(μm) = a0 + a1 f + a2n + a3a + a4s 0.4480

Linear + 2 factor interaction
Ra(μm) = a0 + a1 f + a2n + a3a + a4s + a5 f n + a6na + a7as + a8s f 0.5732

+a9 f a + a10ns

Quadratic
Ra(μm) = a0+ a1 f + a2n + a3a + a4s + a5 f 2 + a6n2 + a7a2 + a8s2

+a9 f n + a10na + a11as + a12s f + a13 f a + a14ns
0.4278

Cubic
Ra(μm) = a0+ a1 f + a2n + a3a + a4s + a5 f 2 + a6n2 + a7a2 + a8s2

+a9 f n + a10na + a11as + a12s f + a13 f a + a14ns
+a15 f 3 + a16n3 + a17a3 + a18s3 + a19a f n + a20a f s
+a21ans + a22 f ns + a23a2 f + a24a2n + a25a2s
+a26a f 2 + a27an2 + a28as2 + a29 f 2n + a30 f 2s
+a31 f n2 + a32 f s2 + a33ns2 + a34n2s

1 ×

2.4. Variance Analysis

ANOVA (analysis of variance) is a statistical analysis used to determine the model’s
suitability. Table 5 shows the results of ANOVA for the third-order equation of Ra, where
the p-value shows the significance of each coefficient. If the p-value becomes less than 0.05 it
indicates the coefficient’s significance and importance. Considering Table 5, all parameters
of a third-order equation, including the third power of the parameters, are presented in the
estimated equation. The total p-value of the equation is 0.0014, and therefore the estimated
model is valid. The estimated coefficient of each parameter is also shown on the general
model, which has the greatest effect on the feed rate that is equal to 31.47.

Table 5. Analysis of variance results.

Parameter p-Value Predicted Coefficient

Constant 22.26

Linear
a 0.0031 10.75
f 0.0016 31.47
n 0.0013 −11.24
s 0.0012 9.88

Quadratic
a2 0.0072 2.80
f 2 0.0015 15.89
n2 0.0012 1.93
s2 0.0016 2.04

2 Factor interaction
a f 0.0026 19.51
an 0.0012 −11.87
as 0.0015 7.04
f n 0.0017 −9.14
f s 0.0012 10.44
ns 0.0015 −5.62

a f n 0.0015 −8.44
a f s 0.0014 7.62
ans 0.0022 1.58
f ns 0.0014 −5.08
a2 f 0.0061 2.31

50



Axioms 2023, 12, 39

Table 5. Cont.

Parameter p-Value Predicted Coefficient

2 Factor interaction
a2n 0.0075 −1.41
a f 2 0.0021 10.83
f 2n 0.0048 −1.10

Total 0.0014 (Significant)

3. Results and Discussions

3.1. The Effect of Different Machining Parameters on Surface Roughness of Beech Wood

The effect of different machining parameters on surface roughness of other work-
piece materials has been studied in several research works. In the literature [39–41] it
was reported that the control parameters having the most effect on surface quality are the
spindle speed, feed rate and depth of cut rate, and that better surface quality was obtained
at higher spindle speeds, lower feed rates and depth of cut. In this study similar results
have been obtained for the effect of spindle speed, feed rate, and depth of cut on surface
quality of the beech wood. Particularly, the step-over effect on the surface roughness has
been investigated in this study.

Figure 2 shows the effect of machining parameters on surface roughness. According
to Figure 2a, which presents the effect of spindle speed on surface roughness, when the
spindle speed increases the surface roughness increases as well. Moreover, this figure
shows that the surface roughness increases with the increase in cutting depth. Figure 2b
shows the effects of feed rate and surface roughness on cutting depth, where it is seen
that if the feed rate increases the surface roughness increases, and with the increase in
the cutting depth the surface roughness also increases. Figure 2c also shows the effects of
cutting depth and surface roughness on step over. It can also be obtained from this figure
that increasing the depth of cut leads to an increase in surface roughness. Significantly,
with the increase in the step over, the surface roughness continues to increase.

Figure 2d illustrates the effects of spindle speed and surface roughness on the step
over. As the spindle speed increases the surface roughness increases. With an increase in
step over the surface roughness increases as well. Figure 2e shows the effects of step over
and surface roughness on to the feed rate, and it is apparent that the step-over increase
leads to the surface roughness increase. Per Figure 2f that presents the effects of spindle
speed and surface roughness on feed rate, one can understand that the higher spindle
speed or feed rate results in the higher surface roughness increases.

3.2. Parameter Optimization

The focus of the present work is to reduce the surface roughness of the workpiece to
achieve the desired surface quality. Optimal machining parameters can be used to minimize
the desired workpiece surface roughness. Table 6 shows the optimal machining parameters
that are obtained here using the response surface method.

Table 6. Goal and optimized value of parameters.

Parameter Goal Description Optimized Value

Depth of cut Maximum Increase in
production rate 10

Feed rate Maximum Increase in
production rate 66.262

Spindle speed In range 15,000
Step over In range 5.25

Surface roughness Minimum Increase in product
quality 4.2

Desirability 0.812
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2. Effect of machining parameters on surface roughness: (a) effects of spindle speed and depth
of cut on surface roughness; (b) effects of feed rate and depth of cut on surface roughness; (c) effects
of depth of cut and step over on surface roughness; (d) effects of spindle speed and step over on
surface roughness; (e) effects of step over and feed rate on surface roughness; (f) effects of spindle
speed and feed rate on surface roughness.

By analyzing the results obtained from the optimization, the optimal value of Ra can
be obtained based on the estimated model. This value is equal to 4.2 (μm) (Figure 3). As
the desirability value approaches 1, a better optimization result will be obtained.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3. Effect of machining parameters and graphical analysis for surface roughness and desirabil-
ity: (a) spindle speed and feed rate on desirability; (b) spindle speed and feed rate on roughness;
(c) feed rate and thickness on desirability; (d) feed rate and thickness on roughness; (e) feed rate and
step over on desirability; (f) feed rate and step over on roughness.

The optimized results’ ramps are illustrated in Figure 4. The red bullets represent the
optimized values and the blue bullet represents how well the surface quality increased. The
relevant bar graph of desirability for the machining condition, replies, and the combined
desirability of 0.812 is presented in Figure 5 that shows the overall desirability of all the
parameters and the response.
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Figure 4. The graphs for optimal parameter ramp’s function and combined optimization.

 

Figure 5. Desirability bar graph for combined optimization.

3.3. Model Validation

To validate the proposed model, the estimated surface roughness value and the value
obtained from the model measurement have been compared here. Table 7 shows the
estimated and measured values in different model conditions. According to this table
the measured and estimated values are equal or have a slight difference with each other.
Therefore, the estimated model has enough accuracy to calculate surface roughness based
on different machining parameters (feed rate, spindle speed, depth of cut, step over).
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Table 7. Comparison of surface roughness values measured and predicted by the model.

Condition 95 % PI High 95 % PI Low Std Dev
Roughness

Measured Value

Roughness
Predicted Value

by Model

1 8.52612 8.44988 0.003 8.488 8.488
2 7.38712 7.31088 0.003 7.349 7.349
3 5.25612 5.17988 0.003 5.218 5.218
4 6.70112 6.62488 0.003 6.663 6.663
5 7.06512 6.98888 0.003 7.027 7.027
6 7.63512 7.55888 0.003 7.597 7.597
7 5.92112 5.84488 0.003 5.883 5.883
8 6.95712 6.88088 0.003 6.919 6.919
9 6.79412 6.71788 0.003 6.756 6.756

10 7.53112 7.45488 0.003 7.493 7.493
11 7.84812 7.77188 0.003 7.81 7.81
12 8.01412 7.93788 0.003 7.976 7.976
13 5.27812 5.20188 0.003 5.24 5.24
14 7.52612 7.44988 0.003 7.488 7.488
15 6.78812 6.71188 0.003 6.75 6.75
16 9.03112 8.95488 0.003 8.993 8.993
17 8.02412 7.94788 0.003 7.986 7.986
18 5.10712 5.03088 0.003 5.069 5.069
19 7.87251 7.80649 0.002598 7.838 7.8395
20 7.08212 7.00588 0.003 7.044 7.044
21 7.87251 7.80649 0.002598 7.841 7.8395
22 4.21112 4.13488 0.003 4.173 4.173
23 7.46212 7.38588 0.003 7.424 7.424
24 6.30112 6.22488 0.003 6.263 6.263

4. Conclusions

This research mainly focuses on parameters investigation and optimization to achieve
the best surface quality for the machined beech wood. The effect of machining parameters
on the surface roughness of a piece of beech wood was investigated. RSM method is used
to design experiments and the results are analyzed using Design-Expert. The studied
parameters were optimized to achieve the minimum surface roughness. The summary of
the obtained results is as follows:

• The roughness of surface decreased with decreasing feed rate. Changes in surface
roughness due to the feed rate changes at high load depth, low spindle speed, and
high step were very significant. Moreover, the surface roughness increased with an
increasing pitch;

• The surface roughness increased with increasing the depth of cut. At this step, changes
in surface roughness were very noticeable due to the changes in cutting depth, low
spindle speed and high feed rate. In addition, as the spindle speed decreased, the
surface roughness increased accordingly. Changes in surface roughness due to changes
in spindle speed at high depth of cut, step over, and feed rate were very noticeable;

• The third-order mathematical model was modeled by the response surface method to
estimate surface roughness based on machining parameters (feed rate, spindle speed,
depth of cut and step by step). ANOVA showed that the greatest effect on surface
roughness was related to the feed rate.

Finally, the optimal parameters for minimizing the surface roughness were obtained
by the response surface method. Feed rate 66.262 (mm/s), spindle speed 15000 (rpm),
cutting depth 10 (mm) and pitch 5.25 (mm). Moreover, the best surface roughness was
obtained 4.2 (μm).

The results of the proposed model for the estimated surface roughness value were
evaluated by the value obtained from the model measurement. The measured and esti-
mated values are equal or have a slight difference. Finally, it can be concluded that the
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model has a good accuracy to predict surface roughness based on different machining
parameters. As RSM allows investigating the influences of multiple factors and their inter-
actions on one or more response variables, for future works this method can be applied to
other factors influential on surface quality, and can even be employed to investigate the
effects of the mentioned parameters on other response variables such as tool wear. This
produces high-precision machining and high-quality wooden products. The study can also
be continued on other wood types to study the product cost and quality. This, moreover,
clearly shows the applicability and significance of the method in other studies in terms of
economical cost, time, and any other limitations.
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Abstract: Fractional derivatives can express anomalous diffusion in brain tissue. Various brain
diseases such as Alzheimer’s disease, multiple sclerosis, and Parkinson’s disease are attributed to the
accumulation of proteins in axons. Discrete swellings along the axons cause other neuro diseases.
To model the propagation of voltage in axons with all those causes, a fractional cable geometry has
been adopted. Although a fractional cable model has already been presented, the non-existence
of fractional differential geometry based on the well-known fractional derivatives raises questions.
These minute parts of the human neural system are modeled as cables that function with a non-
uniform cross-section in the fractional realm based upon the Λ-fractional derivative (Λ-FD). That
derivative is considered the unique fractional derivative generating differential geometry. Examples
are presented so that fruitful conclusions can be made. The present work is going to help medical
and bioengineering scientists in controlling various brain diseases.

Keywords: human neural network; axons; dendrites; Λ-fractional derivative
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1. Introduction

Fractional calculus (FC) is a mathematical procedure with global characteristics de-
manded by many scientific fields, from mechanics (Drapaca et al. [1], Di Paola et al. [2],
Carpinteri et al. [3]) to economics, and from medicine and biology (Magin [4]) to physics
(Hilfer [5], West et al. [6]), so that mathematical procedure expresses non-locality, generating
in addition non-uniform geometry. Eringen [7] has already presented non-local theories
in physics and mechanics applied to micro and nanoparticles and mechanics. He states
that problems in micro or nano fields should be considered in the context of non-local
theories. To be more precise, fractional calculus is based on fractional derivatives (FD),
mainly Riemann-Liouville, Grunwald-Letnikov, and Caputo (Kilbas et al. [8], Podlubny [9]).
Of course, many other fractional derivatives are applied in the scientific field, such as Riesz,
Miller–Ross, Hadamard, Caputo Fabrizio, and Atangana-Baleanu fractional derivatives,
to name a few. The main advantage of all these derivatives is their non-local behavior
in space as well as in time. That means fractional calculus appeals to global phenomena
and not local ones (Podlubny [9]). However, these derivatives are not derivatives in the
mathematical sense. Indeed, they do not satisfy the fundamental perquisites of differential
topology to correspond to differentials generating geometry (Chillingworth [10]). Therefore,
their use, although very fruitful in results, is questionable. Replacing derivatives in differ-
ential equations with relative fractional derivatives is unjustifiable from the perspective of
mathematical accuracy; therefore, one cannot develop a sound theory or model based on
those derivatives.

On the other hand, the Λ-fractional derivative tackles that problem best. That deriva-
tive, introduced in 2018 (Lazopoulos [11]), aspires to provide a way out of the dead end
that fractional derivatives face. Along with the Λ-transform (Λ-T) and Λ-space (Λ-S), that
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derivative transforms the initial fractional differential equation (FDE) into an ordinary
equation in Λ-space and then transfers the results of Λ-space to the initial space, using a
special transform formula. Therefore, the solution of the ordinary transformed equation is
developed in Λ-space, where all topological perquisites are satisfied and then transferred
back to the initial space.

Dendrites and axons are the building blocks of the human neural system. They carry
electric signals to each other, thus allowing the neural system to work harmoniously. Their
behavior is not local but mainly global, making them truly appealing to fractional calculus.
Hence, the model of the electric potential is discussed in the present article concerning the
dendrites and axons of the human neural network, where it is supposed that the behavior
of the system has non-local dependence due to the microphysics of the electric neural
network. To accomplish that, we model dendrites and axons as cables. Therefore, we focus
on the solution for the coaxial cylindrical cable problem (the radius of the cable R = R0
is constant), where the fractional derivatives in the corresponding differential equation
are thought to be the ones defined by K. Lazopoulos et al. [11]. According to Λ-fractional
analysis, we make the necessary transformation of the equation to Λ-space with the normal
derivatives, resulting in a solution for the voltage in Λ-space, thus solving the problem.

This article is structured thus: In Section 2, a brief description of the behavior of
Λ-fractional derivative, Λ-space, and Λ-transformation is given. In Section 3, the role of
fractional calculus in the study of dendrites and axons as cables is described. Finally, a
discussion is made in Section 4, and conclusions are drawn.

2. Foundations of Λ-Fractional Derivative, Λ-Transform, and Dual Λ-Space

To study fractional calculus, there are many thought-provoking books that the inter-
ested reader can refer to; Kilbas et al. [8], Podlubny [9], Samko et al. [12], Oldham [13], and
Mainardi [14] are some very intriguing propositions. Nevertheless, we will summarize
some essential points of FC to present them to the reader briefly.

Let us assume Ω = [α,b] (−∞ < α < b < ∞) to be a finite interval on the real axis. The
left and right Riemann-Liouville fractional integrals are then defined by (Kilbas [8]):

RL
a I γ

x f (x) =
1

Γ(γ)

∫ x

a

f (s)

(x − s)1−γ
ds (1)

RL
x I γ

b f (x) =
1

Γ(γ)

∫ b

x

f (s)

(s − x)1−γ
ds (2)

with γ (0 < γ ≤ 1) being the order of fractional integrals and Γ(x) = (x − 1)! (Γ(γ) is called
Euler’s Gamma function). Furthermore, since 0 < γ ≤ 1 applies, the Riemann-Liouville
(RL) Fractional Derivatives are defined by (Kilbas [8]):

RL
a Dγ

x f (x) =
d

dx

(
RL

a I1−γ
x f (x)

)
(3)

and

RL
x Dγ

b f (x) = − d
dx

(
RL

x I1−γ
b f (x)

)
(4)

where Equation (3) defines the left and Equation (4) the right Fractional Derivatives. More-
over, the fractional integrals with the corresponding Riemann-Liouville FDs are related by
the equation:

RL
a Dγ

x

(
RL

a I γ
x f (x)

)
= f (x) (5)
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The Riemann-Liouville Fractional Derivative is also essential to our methodology
since Λ-Derivative is defined as the fraction of two such derivatives (see Lazopoulos [10]):

Λ
a Dγ

x f (x) =
RL

α Dγ
x f (x)

RL
a Dγ

x x
=

dRL
a I x

1−γ f (x)
dx

dRL
a I x1−γx

dx

=
dRL

a I x
1−γ f (x)

dRL
a I x1−γx

(6)

It is clear that RL
α Dγ

x f (x) is the Riemann-Liouville Derivative of F(X), as described in
FC (Equations (4) and (5)), and RL

a I1−γ
x f (x) is the Riemann-Liouville fractional integral of

the real fractional dimension. In this article, 0 < γ ≤ 1 is considered (see Samko et al. [12],
Podlubny [9]).

Λ-transform consists of defining new variables and functions in Λ-space using
the transformation

F(X) = a I1–γ
x f (x(X)) (7)

for functions F(X) and
X = a I1–γ

x x (8)

for variables x.
F(X) and X then belong to Λ-space, and from there, they can form Λ-derivative

(Equation (6)) and Λ-fractional differential equations (Λ-FDE). These equations in Λ-space
have ordinary form; therefore, they can be treated conventionally, satisfying all perquisites
of differential topology and allowing a proper geometry to be formed. The solution H(X)
of the Λ-FDE is then transferred to the initial space using the formula

h(x) = RL
a D1−γ

x H(X(x)) (9)

(where h(x) is the solution in the initial space).

3. Λ-Fractional Calculus Studying Dendrites and Axons

Dendrites and axons transfer potential electric signals of potential V. We model these
minute parts of the neural system using fractional calculus and assume that these are
cables of constant radius R0. Since the phenomenon is non-local, fractional derivatives
are most suitable to describe this phenomenon. Λ-fractional derivative (introduced by
K.A. Lazopoulos in 2018 (Lazopoulos [11])) is used to model the electric current passing
through these building blocks of the neural system while Λ-transform and Λ-space are also
participating. The equation that governs the voltage of the electric current inside the cable
is (Lopez et al. [15])

CM
∂V(x, t)

∂t
=

d0

4rL

∂2V(x, t)
∂x2 − iion (10)

where d0 is the constant diameter of the cable, V(x,t) is the voltage of the current passing
through the cable, where CM denotes the specific membrane capacitance, rL denotes the
longitudinal resistance and iion is the ionic current per unit area into and out of the cable. In
the passive cable case, namely when iion = V/rM, with rM the specific membrane resistance,
we have this equation processed geometrically in Lopez et al. [15], so the final cable equation
can be extracted:

∂V(s, t)
∂t

=
1

rLCM
∫ 2π

0 dθ
√

detg(θ, s)

∂

∂s

(
a(s)

∂V(s, t)
∂s

)
− V(s, t)

rMCM
(11)

where s is the length of the cable, θ is the angle in the cross-section of the cable, a(s) is the
cross-sectional area of the cable, and g(θ,s) is the metric of the cable. It is important to stress
that this equation was solved using the Caputo derivative in Lopez et al. [15].
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According to the Lazopoulos approach, we make the necessary transformation of the
equation to Λ-space with the ordinary derivatives, resulting in the following solution for
the voltage in Λ-space (Lopez et al. [15]):

VΛ(T, S) = V0l0

√
rL · cM

2 · π · R0 · T
· e−

rL ·cM ·S2

2R0 ·T · e−
T

rL ·cM (12)

where T, S is the time and arc length of the cable in Λ-space. They are connected with the
ones in real space with the relations for fractional order γ:

t = [Γ(3 − γ) · T]
1

2−γ , s = [Γ(3 − γ) · S]
1

2−γ (13)

Following [15], the other parameters in Equation (12) are constants and take the values

cM = 0.001F/ cm2, rM = 3000 · Ω · cm2, rL = 100 · Ω · cm R0
= 10−4 cm, V0 = 1.3 × 10−6 V, l0 = 0.13 cm

Firstly, we will examine the case where the values of arc lengths S in Λ-space are
constants. In order to find the values of the voltage V(t,s) in the initial space, we impose
the following inverse transformation:

V(t, s) = RL
0 D1−γ

t

(
VΛ(t, s)

)
=

1
Γ(γ)

· d
dt

∫ t

0

VΛ(τ, s)

(t − τ)1−γ
dτ (14)

The results for voltage V(t, s) for various values of s and fractional order γ in real
space are shown in Figures 1–4. In these figures, we can see that as the value of arc length s
increases, we shift the voltage’s maximum to higher time values. We believe this delay in
maximum response is expected due to increased cable length. Also, for the same reason,
we have a decrease in the maximum value of voltage and broadness of the voltage curve as
the arc length s increases, denoting an inertial behavior across the cable.

Figure 1. The voltage V(t,s) for various values of fractional order γ and corresponding values of s in
real space (S = 0.01).
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Figure 2. The voltage V(t,s) for various values of fractional order γ and corresponding values of s in
real space (S = 0.02).

Figure 3. The voltage V(t,s) for various values of fractional order γ and corresponding values of s in
real space (S = 0.04).

Finally, we must mention that in all cases of arc length values, the decrease of fractional
order γ gives greater maximum values in voltage and reverses the polarity of the resulting
voltage (from positive values to negative ones) as time passes.

Now, we will examine the voltage VΛ(T,S) (Equation (12)) as a two-variable function in
Λ-space. In order to transform it to the initial space, we will use the following formula of in-
verse transformation for both t and s, according to K. Lazopoulos’ [11] fractional approach:

V(t, s) = RL
0 D1−γ2

t (RL
0 D1−γ1

s (VΛ(τ, q))) =
1

Γ(γ2) · Γ(γ1)
· d

dt

∫ t

0

1

(t − τ)1−γ2
(

d
ds

∫ s

0

VΛ(τ, q)

(s − q)1−γ1
dq)dτ (15)

where the relation gives VΛ (τ,q):

VΛ(τ, q) = V0l0

√
rL · cM · Γ(3 − γ2)

2 · π · R0 · τ2−γ2
· e

− rL ·cM ·Γ(3−γ2)·q4−2γ1

2R0 ·(Γ(3−γ1))
2 ·τ2−γ2 · e

− τ2−γ2
rL ·cM ·Γ(3−γ2) (16)
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Here, the fractional orders (γ2,γ1) for the inverse transformation are different for time
t and arc length s. Figures 5–11 present the voltage V(t,s) in real space for various values of
fractional orders. The constants in Equation (16) take the same values as in Equation (12).

Figure 4. The voltage V(t,s) for various values of fractional order γ and corresponding values of s in
real space (S = 0.08).

Figure 5. The voltage VΛ(T,S) in Λ-space as a function of time T and arc length S.
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Figure 6. The voltage V(t,s) in real space as a function of time and arc length s, for fractional orders
γ2 = 0.8 and γ1 = 0.9.

Figure 7. The voltage V(t,s) in real space as a function of time and arc length s, for fractional orders
γ2 = 0.8 and γ1 = 0.7.
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Figure 8. The voltage V(t,s) in real space as a function of time and arc length s, for fractional orders
γ2 = 0.8 and γ1 = 0.5.

Figure 9. The voltage V(t,s) in real space as a function of time and arc length s, for fractional orders
γ2 = 0.6 and γ1 = 0.9.
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Figure 10. The voltage V(t,s) in real space as a function of time and arc length s, for fractional orders
γ2 = 0.6 and γ1 = 0.7.

Figure 11. The voltage V(t,s) in real space as a function of time and arc length s, for fractional orders
γ2 = 0.6 and γ1 = 0.5.

Based on Figures 5–11, we can indeed conclude that as the fractional order for time
t (γ2) or arc length s (γ1) decreases, the maximum value reached by the voltage V(t,s)
increases. Also, in all cases, we have a change in the polarity of the voltage (positive to
negative) along the cable. Finally, we can observe that as fractional order for time t (γ2) or
arc length s (γ1) decreases, we have non-zero voltage values for higher values of arc length
s (longer cable).
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4. Conclusions

Dendrites and axons are modeled as cables using fractional calculus. The voltage
potential is transferred from Λ-space to the initial space. During this procedure, many
interesting conclusions can be addressed, such as the high influence of the length of the
cable s and the critical impact of the fractional order. More precisely, an increasing s results
in the increase of voltage, while the decrease in fractional order also increases the voltage.
The present work is addressed to medical and bioengineering researchers for controlling
the evolution of various brain diseases, refs. [16–19].
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Abstract: Dengue is a vector-borne disease that is endemic to several countries, including the Do-
minican Republic, which has experienced dengue outbreaks for over four decades. With outbreaks
growing in incidence in recent years, it is becoming increasingly important to develop better tools to
understand drivers of dengue transmission. Such tools are critical for providing timely information
to assist healthcare authorities in preparing human, material, and medical resources for outbreaks.
Here, we investigate associations between meteorological variables and dengue transmission in the
Dominican Republic in 2019, the year in which the country’s largest outbreak to date ocurred. We
apply generalized linear mixed modelling with gamma family and log link to model the weekly
dengue incidence rate. Because correlations in lags between climate variables and dengue cases
exhibited different behaviour among provinces, a backward-type selection method was executed to
find a final model with lags in the explanatory variables. We find that in the best models, meteoro-
logical conditions such as temperature and rainfall have an impact with a delay of 2–5 weeks in the
development of an outbreak, ensuring breeding conditions for mosquitoes.

Keywords: dengue; Dominican Republic; climate variables; lags; generalized linear mixed models

MSC: 92B15; 62P10; 62J12

1. Introduction

Dengue is one of the most significant mosquito-borne diseases to threaten human
populations, particularly in tropical and subtropical regions. The number of dengue cases
reported to the World Health Organization (WHO) has increased sharply from less than
0.5 million in 2000 to 5.2 million in 2019, and the number of dengue-induced deaths
increased from 960 in 2000 to 4032 in 2015 [1], leading WHO to name dengue as one of
the ten biggest threats to global health in 2019 [2]. Given the global increases in dengue in
recent years, it is increasingly important to develop tools to better understand drivers of
dengue transmission and to predict future outbreaks.

One country where dengue has long been endemic is the Dominican Republic. In the
past decade, however, dengue outbreaks have grown in incidence, with the 2019 outbreak
being the largest outbreak in the country to date [3,4]. In fact, 2019 was the year in which
the WHO recorded the highest number of global dengue cases ever to occur within a
year [1], suggesting that dengue in the Dominican Republic is mirroring global trends.
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In an exploratory analysis of dengue in the Dominican Republic, Iutis et al. [3] showed
there is no single meteorological, demographic or geographic factor that affects the inci-
dence rate of dengue. They instead suggest that a combination of different factors could
be responsible for increases in dengue cases. Among these factors is climate, which plays
a very important role in dengue transmission and in the life cycle of the mosquitos that
transmit dengue virus. For example, it is well known that the mosquito must have certain
meteorological conditions to survive and reproduce [5,6]. Herein, we aim to characterize
relationships between dengue cases and meteorological variables such as temperature, hu-
midity, and precipitation by considering the 2019 outbreak of dengue in multiple provinces
of the Dominican Republic. It is important to study not only the impact of climate variables
on dengue transmission, but also lags between dengue cases and these variables because
there are inherent lags in the dengue transmission process that arise from the mosquito life
cycle. To that end, we also explore the relevance of time between meteorological conditions
and reported dengue incidence by studying lags between climate and dengue variables.

By using 2019 dengue case data collected by hospitals in geographically distinct ar-
eas of the Dominican Republic, we implement gamma generalized linear mixed models
(gamma-GLMM) to model relationships between dengue incidence rate and climatic vari-
ables, such as temperature, humidity, and precipitation. We emphasize here that 2019
is an important year in the evolution of dengue in the Dominican Republic and globally
because the highest number of dengue cases ever reported both in the country and globally
was in 2019 [1], and an investigation such as the present one will contribute to a better
understanding of the drivers of this large outbreak.

This paper is organized as follows. First, we review literature of recent research on
dengue. In Section 3, we introduce the response variable and discuss possible explanatory
variables. We analyze the effect of lags between variables by studying correlations between
the response variable and the meteorological variables with delays. Section 4 describes
the gamma-GLMM method implemented for this study. In Section 5, we present two
regression models and their results and discuss implications for modelling the weekly
dengue incidence rate. Finally, in Section 6, we present some conclusions and directions for
future work.

2. Literature Overview

2.1. Disease Transmission

Dengue virus is transmitted to humans by female mosquitoes, mainly of the species
Aedes aegypti and Aedes albopictus. There are four strains of the dengue virus, and people
can be infected with the virus more than once [7]. Infection in humans begins when an
infectious female mosquito bites a human and injects dengue virus from one strain into
the blood of the human host. Then the dengue virus develops and causes symptomatic or
asymptomatic infection in humans. Symptoms of the disease can range from mild forms
such as sudden fever, severe headache, nausea, vomiting, myalgia, and skin erythema,
to more severe forms including dengue hemorrhagic fever and dengue shock syndrome.
Severe dengue can cause death due to plasma leakage, fluid accumulation, severe bleeding,
and respiratory failure [1].

On average, dengue infection persists for approximately 2 weeks [8]. The infected
person has permanent immunity to the strain of dengue virus that caused the illness and
temporary immunity to the other three strains. It should be noted that, in many cases,
a second infection with a different strain of dengue virus can lead to a more virulent
form of the disease [9]. Dengue virus transmission depends on four factors: the presence
of the virus, the human host, the mosquito vector, and the suitability of environmental
conditions [10]. With regard to environmental conditions, the transmission of the dengue
virus is influenced by several factors, such as temperature, precipitation, relative humidity,
and rapid urbanization [1].
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2.2. Disease Control

To date, there are no effective antiviral therapies and the only treatment is to control
the symptoms with medication. Vaccination is a measure of reduced effectiveness because
currently there is only one licensed dengue vaccine which has several limitations. In partic-
ular, it can only be administered to people between 9 and 45 years old who have already
been infected with one of the dengue viruses [1,11]. Vector control is the only available
strategy against dengue.To this end, it is possible to implement measures including the use
of insecticides and educational campaigns. Although insecticides have been effective in
controlling dengue, increasing trends in mosquito-borne diseases may indicate an increase
in insecticide resistance or ineffectiveness in controlling dengue transmission. Therefore, it
is of great importance to understand mechanisms of resistance and the susceptibility of
the mosquitoes to insecticides in order to develop more effective Aedes mosquito-control
methods [12]. Educational campaigns are of great importance in preventing and controlling
the spread of dengue. It is very important that the population recognize the symptoms
of dengue, to be aware of the importance of having medical treatment in case of severe
dengue, and to know how to control populations of the Aedes mosquito. In [13] the authors
concluded that the population of Sri Lanka in 2019 has better awareness of dengue preven-
tion compared to awareness of dengue mortality and dengue management. This study on
knowledge, attitudes, and practices regarding dengue fever identified as a weak point the
patient awareness of the patient’s role in the management of dengue and identification of
warning signs that precede hospitalization. If dengue hemorrhagic fever is detected early,
the mortality is 2–5% but is can increase to 20% if there is no immediate treatment.

2.3. Dengue Modelling

Simulation models are useful for understanding the drivers and spread of dengue and
for helping to understand the efficacy of potential control methods. Many simulation model
studies use dynamical models based on ordinary differential equations [14–16]. However,
in general, these models do not describe the effects that arise from delays between drivers
and reported cases. There are inherent delays in the dengue transmission cycle that arise
from the mosquito life cycle, the incubation period of the pathogen in the mosquito, and the
incubation period of the pathogen in humans. Delay differential equations can model
delayed effects because these models take into account not only the present time but
also the past. For instance, in [10], the authors developed a model involving delayed
(deterministic) differential equations that predicts locations of mosquito occurrence with
a high accuracy, and the model realistically replicates mosquito population dynamics.
The model depends on environmental drivers (temperature, precipitation, photoperiod,
latitude, day of year) and human population density, and was tested with data from the
Aedes albopictus mosquito, the most common dengue vector in Asia. By using this model,
the authors analyzed the risk of dengue transmission in mainland China and concluded that
temperature plays a key role in dengue outbreaks. Based on a dengue virus transmission
model with maturation delay for mosquito production and seasonality, in [17] it is also
found that the temperature change causes periodic oscillations of dengue fever cases.

Other usual approaches in the literature to investigate relationships between climatic
factors and dengue incidence are based on regression models where overdispersion, which
is often observed in dengue datasets, is taken into consideration. For instance, applying
negative binomial regression models with climatic, spatial, cyclical and seasonal features
as explanatory variables, ref. [18] found that precipitation, air pressure and climatic season
significantly affected dengue transmission in Sri Lanka during the study period (2017–2019).
In [18], all the variables were calculated with zero lags. In [19] a generalized additive model
also considering a negative binomial distribution for the dengue cases (but adjusted for
seasonality) was built by using climatic features with lags of 0–10 weeks and correlations
were determined via Spearman’s coefficient test. The model revealed that the relative
humidity (with a lag of 1 week), minimum temperature (with a lag of 10 weeks) and wind
(with a lag of 4 weeks) are associated with dengue cases in Asunción, Paraguay. These
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authors, however, did not evaluate the fitting of the proposed model to their data. In [20],
generalized linear mixed models are fitted to the number of dengue cases and allow for
specific effects for different data groupings. Concretely, negative binomial regression mod-
els, with random effects related to the localization (city), the time period (year), and their
interaction (city:year) are constructed to describe the associations between the dengue
cases reported in 20 cities in the Brazilian state of Goiás. Spearman’s correlation test is
also used to identify which lags in climate factors are more correlated with cases. The au-
thors conclude that weekly precipitation, minimum temperature, maximum temperature,
and relative humidity are positively associated with dengue cases, with lags of 10,10,10,
and 6 weeks, respectively.

Another way to analyse dengue data is based on stochastic models. For instance,
in [21], discrete time–space stochastic SIR-SI models (susceptible-infective-recovered for
human populations; susceptible-infective for vector populations) were adapted from their
deterministic analogs in order to estimate the relative risk for dengue disease mapping in
Malaysian states during the years 2008–2009. The authors concluded that all the states have
similar patterns of expected relative risk for all epidemiological weeks.

Concerning the modelling of dengue datasets from the Dominican Republic, we
highlight [22] where a generalized linear model was fitted to the cumulative reported
cases for each outbreak between 2012 and 2018. In that work, the authors concluded that
emerging dengue outbreaks were robust to climatological and spatiotemporal conditions,
indicating that constant surveillance is necessary to prevent future outbreaks. In addition,
they showed that reported dengue cases occurred mainly in the 0–15 year age group,
indicating that the older age groups had higher levels of immunity. However, the effect of
a time delay is not considered in this study.

In this work, we study the dependence of the dengue incidence rate in the Dominican
Republic in 2019 on delayed meteorological characteristics (temperature, rainfall, and hu-
midity) by using gamma regression models with a normal random effects structure. The
random effect is determined by geographical area (namely, the provinces) which means,
in a broader sense, the modelling is conditioned to the geographical conditions of each
considered area. To account for delays in transmission of dengue that arise from timing
the mosquito life cycle that may be climate-dependent, we analyze relationships between
dengue case data and independent meteorological variables at different times (consider-
ing lag time). For the selection of the lags, cross-correlation analysis (conditional to each
province) and simple gamma regressions (one for each meteorological variable and lag)
will be discussed and used to identify significant lag periods which will then be included
in the final multiple regression model.

3. Material

3.1. Geographical Area and Period of Time

This study focuses on dengue cases reported in 2019 in the Dominican Republic when
a total of 20,230 dengue cases were reported corresponding to 195.3 cases per 100,000 in-
habitants. The Dominican Republic is a Caribbean country on the eastern two-thirds of
the Island of Hispaniola. Divided into 31 provinces plus one autonomous district (Distrito
Nacional, to which we refer hereafter as one of the provinces for simplicity), the coun-
try’s estimated population in 2019 was over 10.3 million people, with the metropolitan
area of Santo Domingo comprising 32% of the total population [23]. The country largely
experiences a tropical climate for most of the regions.

Epidemiological surveillance data for dengue and weather records were reported
during 2019 for each of the 32 provinces; however, due to the lack of completeness of
the data available to us, this study focuses only on eight provinces for which the total
percentage of missing values was very low: Barahona, Distrito Nacional, La Romana,
Monte Cristi, Puerto Plata, Samaná, Santiago, and Santo Domingo (see provinces labeled in
Figure 1).
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Figure 1. Dengue incidence per 100,000 inhabitants, in Dominican Republic in 2019. We include
labels for the eight provinces included in this study.

3.2. Dependent Variable

The observed number of dengue cases officially diagnosed in hospitals of the Domini-
can Republic during 2019, is the dependent variable used for modelling the weekly dengue
incidence rate. The data were recorded weekly and were aggregated by province. We let
yij be the number of cases in province i (i = 1, . . . , 8) reported in epidemiological week j
(j = 1, · · · , 52).

We compute five descriptive summary statistics: minimum (Min), maximum (Max),
mean, standard deviation (Std.Dev), and coefficient of variation (in percentage, C.Var(%))
for the eight provinces in the study (Table 1). Throughout 2019, dengue incidence per
week was, on average, highest in Santo Domingo and lowest in Samaná. Barahona had the
least variability in relation to its mean comparatively among the eight provinces. For three
of eight provinces, namely Barahona, Distrito Nacional, and Santo Domingo, there were
dengue cases reported every week of the year.

Table 1. Summary statistics for dengue cases by province and by week in 2019 along with calculations
of the annual dengue incidence rate (aDIR) and estimates of population size (Population).

Barahona Distrito La Romana Monte Puerto Samana Santiago Santo
Nacional Cristi Plata Domingo

Min 4 5 0 0 0 0 0 17
Max 46 89 42 15 21 7 132 287
Mean 16.6 32.9 8.0 5.7 6.7 1.6 43.4 117.7
Std.Dev 10.9 23.7 9.9 4.9 6.4 1.7 40.3 90.2
C.Var(%) 65.9 72.0 123.5 86.4 94.6 106.7 92.89 76.6
aDIR 456.2 163.9 153.0 250.8 104.7 72.2 216.1 210.7
Population 189,149 1,036,494 270,166 116,605 332,386 111,217 1,038,044 2,855,892

Std.Dev, standard deviation; C.Var(%), standard deviation/mean × 100% (coefficient of variation); Population,
total number of inhabitants.

Because the eight provinces vary greatly in population size, the total number of
diagnosed dengue cases yij does not always give enough information about the severity of
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transmission, so we calculate the total weekly incidence per 100,000 people. We calculate
the incidence rate in week j in province i as

yij/ni × 100,000, (1)

where ni denotes the total number of inhabitants in province i. This variable will be used
in our analyses in Section 4. Additionally, we analyse the annual dengue incidence rate per
100,000 inhabitants, aDIRi, for each province i:

aDIRi = ∑
j

yij/ni × 100,000. (2)

We include the annual dengue incidence rate per 100,000 inhabitants in Table 1 for
each province studied. Additionally, Figure 1 shows the annual dengue incidence rate
per 100,000 inhabitants for all 32 provinces of the Dominican Republic. Although we only
have reliable meteorological data from eight provinces, it can be seen in Figure 1 that
these provinces are representative of all geographic regions of the country (in the figure,
provinces with name labels in the figure are those included in this study). Spatially, it is
possible to observe that the disease was spread across the country. Barahona exhibited
the highest value of aDIR (≈456 cases per 100,000 inhabitants) followed by Monte Cristi
(≈251 cases per 100,000 inhabitants), which is the second-largest province by population
among the eight provinces. Two provinces in the north and north east, Samaná and Puerto
Plata exhibited the lowest values of aDIR, with Samaná having the lowest aDIR of fewer
than 73 cases per 100,000 inhabitants.

3.3. Independent Variables

In this study, meteorological conditions such as temperature, rainfall, and humid-
ity are the factors considered to influence dengue incidence. Environmental data were
obtained from the Oficina Nacional de Meteorologia (ONAMET), Dominican Republic,
and supplemented with data from the National Aeronautics and Space Administration
(NASA), of the United States of America, when some data were missing. The data include
daily information on temperature (Temp; minimum, average, and maximum), precipitation
(Precip; cumulative and average), relative humidity (RH; average) and daily temperature
range (DTR; minimum, average, and maximum), in a total of nine variables.

3.3.1. Preliminary Analysis

For each province and meteorological variable, daily data were aggregated into the
52 epidemiological weeks of 2019, giving the corresponding statistical measure per week.
For instance, Temp.min is the weekly minimum of daily minimum temperatures and
Temp.avg is the average temperature of the week calculated from the mean of the daily
average temperatures.

For the 24 provinces not included in this study, there were missing values for many
weeks (14 or more) for some independent variables. For the eight remaining provinces and
the nine meteorological independent variables over the 70 weeks (=the last 18 weeks of
2018 + the 52 weeks of 2019) considered in a preliminary analysis, only about 0.7% of values
were missing. Interpolations of those values were then executed by using the average of
the values observed in the week before and after the occurrence of each missing value.
Then, statistical measures for all the nine independent variables with respect to 2019 were
calculated by province and are displayed in Table 2.

As shown in Table 2, average, maximum, and minimum temperature measurements
across provinces were mostly similar. The exceptions are Monte Cristi and La Romana
which both presented very low minimum values for the weekly minimum temperatures
(Temp.min). For Monte Cristi, we also observed the largest coefficients of variation for
both weekly minimum temperatures and maximum temperatures with C.Var(%) values of
20% and 12%, respectively. For DTR, Monte Cristi was the province whose measurements
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deviated the most from the others, with low average, maximum, and minimum DTR values
and higher C.Var(%) values.

Table 2. Summary statistics for weekly meteorological variables across the eight provinces in 2019.

Barahona Distrito La Romana Monte Puerto Samaná Santiago Santo
Variables Statistics Nacional Cristi Plata Domingo

Temp.avg

Min 24.94 26.06 22.90 20.34 24.21 24.69 23.40 26.06
Max 29.88 30.42 28.54 26.87 29.85 29.84 29.25 30.42
Mean 27.44 28.30 26.26 24.51 27.25 27.61 26.69 28.30
Std.Dev 1.34 1.33 1.48 1.48 1.76 1.36 1.69 1.33
C.Var(%) 4.87 4.70 5.65 6.05 6.47 4.93 6.33 4.70

Temp.max

Min 30.60 31.00 30.50 23.00 30.20 29.50 30.20 31.00
Max 35.80 37.00 35.80 35.90 37.70 35.00 37.40 37.00
Mean 32.83 33.82 32.97 27.34 33.83 32.80 33.80 33.82
Std.Dev 1.29 1.66 1.39 3.30 2.18 1.53 1.71 1.66
C.Var(%) 3.92 4.91 4.20 12.06 6.43 4.67 5.07 4.91

Temp.min

Min 18.00 20.10 0.00 2.20 15.60 14.00 15.00 20.10
Max 25.00 26.00 23.20 25.00 23.60 25.00 22.00 26.00
Mean 21.68 22.90 19.08 21.40 20.86 22.11 19.17 22.90
Std.Dev 1.71 1.49 3.50 4.18 1.94 2.16 2.08 1.49
C.Var(%) 7.88 6.53 18.35 19.55 9.31 9.77 10.87 6.53

DTR.avg

Min 5.99 6.94 8.99 0.00 8.54 5.26 8.76 6.94
Max 11.30 10.50 14.10 10.20 12.57 10.39 15.47 10.50
Mean 8.72 8.47 11.09 2.29 10.31 8.18 11.98 8.47
Std.Dev 1.15 0.88 1.15 3.99 0.85 1.07 1.18 0.88
C.Var(%) 13.20 10.43 10.33 174.08 8.21 13.13 9.81 10.43

DTR.max

Min 7.10 7.50 10.20 0.00 10.10 6.50 10.80 7.50
Max 12.70 12.60 32.20 13.30 18.10 18.00 18.60 12.60
Mean 10.44 9.96 13.18 2.97 12.25 9.90 13.91 9.96
Std.Dev 1.29 1.04 3.00 4.98 1.40 1.84 1.58 1.04
C.Var(%) 12.39 10.45 22.78 167.78 11.41 18.61 11.34 10.45

DTR.min

Min 3.50 3.60 4.10 0.00 5.00 -4.00 5.40 3.60
Max 9.60 9.70 12.20 9.50 11.20 8.80 13.80 9.70
Mean 6.82 6.97 8.99 1.55 8.50 6.67 9.77 6.97
Std.Dev 1.41 1.03 1.53 3.04 1.20 1.85 1.82 1.03
C.Var(%) 20.69 14.80 16.98 196.30 14.07 27.77 18.62 14.80

Precip.avg

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Max 14.23 11.97 21.44 15.36 21.29 21.14 20.03 11.97
Mean 2.19 2.23 3.10 1.09 2.56 4.42 2.48 2.23
Std.Dev 3.27 2.81 .57 2.39 3.98 4.29 3.95 2.81
C.Var(%) 149.05 125.98 147.80 219.66 155.78 97.06 159.05 125.98

Precip.total

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Max 99.60 83.80 150.10 107.50 149.00 148.00 140.20 83.80
Mean 15.00 13.73 20.98 7.63 17.63 30.69 16.94 13.73
Std.Dev 22.65 18.23 31.32 16.86 27.76 29.84 27.48 18.23
C.Var(%) 151.07 132.75 149.30 221.04 157.39 97.25 162.22 132.75

RH.avg

Min 64.23 72.56 76.29 60.66 75.44 77.03 69.66 72.56
Max 83.10 84.06 90.20 77.56 90.46 89.43 88.83 84.06
Mean 72.51 78.57 82.59 69.34 81.76 83.20 79.84 78.57
Std.Dev 4.12 2.56 3.32 3.69 3.91 2.67 4.06 2.56
C.Var(%) 5.69 3.26 4.02 5.33 4.78 3.21 5.08 3.26

Temp. avg., average of daily temperature observed during a week. Similar extension for the other variables:
Precip., precipitation; RH, relative humidity; DTR, daily temperature range. C. Var(%), standard deviation/
mean × 100% (coefficient of variation).

Although all eight provinces experienced weeks without rain in 2019, the maximum
and average values of precipitation in 2019 tend to vary greatly among provinces. Precip-
itation is perhaps the factor that differs most among provinces of all the meteorological
variables, with very high C.Var(%) values for both average and total weekly precipitation.
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Most of the provinces present a coefficient of variation higher than 100% for both measure-
ments with the only exception being Samaná province. Concerning the relative humidity,
the weekly averages and variability therein were similar across all provinces.

3.3.2. Spearman’s Rank Correlation in Lags

Because dengue infection relies on transmission by a mosquito vector, which in turn,
along with the virus, experiences a life cycle regulated by meteorological conditions, it is
important to study the time between meteorological conditions and reported cases. We
consider here lags between environmental data and dengue cases. In this analysis, we
include meteorological data from September 2018–December 2019 in order to consider
potential impacts of weather conditions in late 2018 on transmission in early 2019.

We calculate Spearman’s rank correlation coefficients between each one of the nine
meteorological variables indicated in Table 2 and the weekly dengue incidence rate with
time lags of 0–18 weeks, globally (by aggregating the eight provinces: ∑i yij/ni × 100,000)
and locally (by province, given by (Equation (1))). For the local analyses, because there are
eight simultaneous null hypotheses for each pair lag-variable in test, the Holm procedure for
multiple testing correction was applied to control the family-wise error rate at level 0.05. We
show correlation coefficients for each lag for each province in Figures 2–4. In these figures,
solid dots and plus points correspond to statistically significant correlations with adjusted
p-values < 0.05 and p-values < 0.05, respectively, with nongray colour corresponding to
each of the provinces, and gray colour corresponding to the global observations.
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Figure 2. Spearman’s rank correlation coefficient between the dengue incidence rate (1) and the
minimum temperature (top left), the maximum temperature (top right) and the average temperature
(bottom center) by week at lag 0–18 weeks.
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Figure 3. Spearman’s rank correlation coefficient between the dengue incidence rate (1) and the
minimum DTR (top left), the maximum DTR (top right) and the average DTR (bottom center) by
week at lag 0–18 weeks.

These graphs show that the effect of time lag of meteorological variables on dengue
incidence rate is varied among the eight provinces. For temperature variables, almost
all provinces had significant positively correlated lags between dengue incidence rate
and minimum, maximum, and average temperatures for many of the 19 time points
we considered. Notably, Monte Cristi and Barahona were the only two provinces in
which temperature variables were significantly negatively correlated with temperature.
Correlation of lags with daily temperature range were much more mixed, with some
provinces having negative correlations with lags in the same week that others had positive
correlations in lags. However, in general, correlations in lags between dengue incidence
rate and DTR were negative for most weeks studied. Regarding precipitation, very few lags
were significantly correlated with dengue incidence. In fact, there are only two provinces
where precipitation with lags less than 18 weeks was positively correlated with dengue
cases: Samaná taking lag = 2 and Santiago taking lag = 8. Correlations in lags between
dengue incidence rate and relative humidity exhibited a downward trend as the length of
the lag increased: in general, correlations in smaller lags with average relative humidity
were positive while correlations in larger lags were negative and often significantly so. This
could be indicative of seasonal fluctuations in relative humidity.

Moreover, when we compared lags at the global level with those of provinces, we saw
that correlations between climate variables, particularly temperature and DTR measure-
ments, and dengue incidence rate in some provinces differed from the global correlations
in direction and trends with increasing lag time. This potential province-specific lag effect
introduces more complexity in the modelling of dengue incidence because global trends in
meteorological variables may not be useful for predicting dengue at a local level, suggesting
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that the inclusion of lags in variables for each province may be necessary to understand
and predict dengue transmission at the province level.

To avoid increasing complexity, a singular lag per independent variable was outlined
for the present work. Hence, a lag selection criterion was first established based on a
positive lower lag for which there are significant associations between the independent
variable, and each dependent variable for the largest number of provinces and, at the same
time, preferably, for the global level. Inspecting again Figures 2–4, some lag values might
visually be suggested for each climatic variable. Concretely, in Figure 2, it is observed
that statistically significant associations of dengue incidence with (weekly) minimum and
average temperature are only found simultaneously for all the eight provinces and globally
when lag is equal to 1 and 2 weeks, respectively. However, for the remaining climatic
variables, the selection of a lag value following that criterion for the eight provinces and at
the global level simultaneously is more difficult. In this sense, to avoid subjectivity, further
on, in Section 4, a more objective lag-selection criterion will be established.
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Figure 4. Spearman’s rank correlation coefficient between the dengue incidence rate (1) and the
cumulative precipitation (top left), the average precipitation (top right) and the average relative
humidity (bottom center) by week at lag 0–18 weeks.

4. Method

For analyzing the effect of the meteorological variables on dengue incidence rate
that follows a gamma distribution, gamma regressions defined by generalized linear
models with fixed effects (gamma-GLM) or mixed effects (gamma-GLMM) can be adequate.
Although both types of models have been applied in many studies, the latter has the
advantage of being able to model clustered data structures and then incorporate within-
group variability.
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4.1. Gamma Distribution

The gamma distribution is a probability distribution for a positive continuous random
variable Y with density function given by

f (y; k, θ) =
1

Γ(k)θk yk−1 exp(−y/θ) , y > 0 ,

where k and θ are the shape parameter and the scale parameter of the distribution of
Y, respectively, and Γ(k) is the gamma function evaluated at k. For lower values of k,
the density function is right-skewed.

The expected value μ and the variance value σ2 of Y are related to the shape and scale
parameters in the following way:

μ = kθ and σ2 = μθ.

4.2. Gamma Regression

Let
{
(xj1, · · · , xjp, Yj) , j = 1, 2, · · · , n

}
be a random sample defined by n independent

random variables Yj, j = 1, 2, · · · , n, such that Yj|(xj1, · · · , xjp) follows a gamma distribu-
tion, and consequently, its mean depends on p explanatory variables (xj1, · · · , xjp), i.e.,

μj = E
(
Yj|xj1, · · · , xjp

)
, j = 1, · · · , n.

In a generalized linear model with gamma responses (gamma-GLM), each mean μj is
described as a function of the p covariates using the link log on a linear predictor in the
following form,

log(μj) = β0 + β1xj1 + · · ·+ βpxjp, j = 1, · · · , n , (3)

where [β0 · · · βp] is a vector of p + 1 unknown parameters. Because the log function is
invertible, then the Gamma-GLM provides a multiplicative model to the arithmetic mean:

μj = exp
(

β0 + β1xj1 + · · ·+ βpxjp
)

.

The generalized linear mixed model with gamma responses (gamma-GLMM) is an
extension of the gamma-GLM in which random effects are added to the fixed-effect pa-
rameters β0, β1, · · · , βp in the linear predictor (3). This class of regression models is useful
when there is a grouping structure of k object clusters in the set of the n data points. In such
conditions, the response variable Y(i)

j corresponds to the jth observation into the ith group

with values of the independent variables x(i)j1 , · · · , x(i)jp . Denoting b(i) = [b(i)1 · · · b(i)q ] a
vector of q random effects, which are specific to the group i, the conditional response
Y(i)

j |(xj1, · · · , xjp, b(i)) follows a gamma distribution with expected value μij satisfying:

log(μij) = β
(i)
0 + β

(i)
1 x(i)j1 + · · ·+ β

(i)
p x(i)jp + b(i)1 z(i)1 + · · ·+ b(i)q z(i)q (4)

for j = 1, · · · , ni , i = 1, · · · , k, where ∑i ni = n, the variables z(i)1 , z(i)2 , · · · , z(i)q depend on
the independent variables and define the specific random effect for the ith predefined object
cluster, and the vector of random effects b(i) is assumed to follow a q-multivariate normal
distribution N(0, Σb), where Σb is a positive definite covariance matrix independent of the
cluster i.

In this work, the modelling of the dengue incidence rate in terms of the environmental
variables is analyzed assuming the eight provinces as k = 8 clusters in the dataset and
random effect models with q = 1 and z(i)1 = 1 in (4), and, consequently, Σb = σ2 > 0.
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Therefore, generalized regression models with gamma responses and a specific Y-intercept
for each level of the random effects were fitted to the following models:

log(μij) = β
(i)
0 + β

(i)
1 x(i)j1 + · · ·+ β

(i)
p x(i)jp + b(i), j = 1, · · · , 52 , i = 1, · · · , 8 . (5)

The beta parameter β
(i)
k , for k = 1, · · · , p, can be interpreted by comparing the ex-

pected value of incidence rate μij at week j in the province i with that obtained when
the independent xk increases a unit and the remaining ones are not changed. In fact,
from (Equation (5)) we have

μij when x(i)jk + 1

μij when x(i)jk

= exp(β
(i)
k ), j = 1, · · · , 52 , i = 1, · · · , 8 . (6)

Hence, these beta parameters correspond to the logarithm of the rate ratio. Therefore,
if exp(β

(i)
k ) > 1, it is expected that the dengue incidence rate, at kth epidemiological week

in the province i, increases (exp(β
(i)
1 )− 1)× 100% for each one-unit increase in the inde-

pendent variable x(i)jk . Otherwise, if exp(β
(i)
1 ) < 1, it is expected that the dengue incidence

rate, at kth epidemiological week in the province i, decreases (1 − exp(β
(i)
k )) × 100% for

each one-unit increase in the independent variable x(i)jk .

4.3. Gamma Fitting for the Dependent Variable

The dengue incidence rate (Equation (1)) is a continuous variable limited to the interval
[0,+∞). It is asymmetrically distributed due to the greater presence of lower values. Given
the presence of zero, the rate (Equation (1)) was (artificially) rescaled to guarantee strict
positive outcomes and, consequently, a more suitable fitting of a gamma distribution.
Then, an auxiliary constant equal to 0.5 was added to the numerator of (1) resulting in the
adjusted rate

y∗ij =
yij + 0.5

ni
× 100,000 (7)

for the jth week and province i.
This strategy of adding an amount of 0.5 becomes relevant whenever there are no

weekly records of dengue (a similar approach was also reported in other nonnormal
regression models (e.g., [24]). We note that we considered alternative constants (such as
0.0001, 0.1, and 1), but numerical experiments showed that 0.5 provides good results in
terms of convergence in the estimation process of the gamma-GLMM regression.

4.4. Lag Selection of the Independent Variables

Because certain climatic conditions can favor the development of the mosquito and
virus, and consequently, dengue transmission at a later time, effects of meteorological
conditions on dengue infections were analyzed with lags. From the cross-correlation
analysis of lags of 0–18 weeks performed in Section 3.3.2, it was observed that there was
no clear identification of which delay week for each meteorological variable is the most
important to dengue incidence rate. Thus, a more objective lag selection procedure was
then established.

Concretely, the effect of each independent meteorological variable, with lags from 0 up
to 5 weeks, on the adjusted incidence rate (Equation (7)) were then separately examined by
using (simple) gamma-GLMM models with a single independent variable (i.e., model (5)
with p = 1). The period until 5 weeks in lags is justified, as it is a biologically plausible
period of time that includes the combined time for Ae. aegypti egg hatching and larval
development to adult mosquitoes. So, an exhaustive study with lags until 5 weeks seems
to provide an adequate choice from a practical point of view.
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Thus, for each meteorological variable, six simple models (simple in that there is
only one independent variable and the random intercept) were considered: one for each
lag-week. The lag-weeks that led to significant association (p-value < 0.05) to the adjusted
incidence rate (Equation (7)) were identified so they could be present in the final multiple
model. To determine the best lag-week of each meteorological variable, four different
selection criteria were then established as follows. Three criteria are based on the Akaike
Information Criterion (AIC). Because all the models have the same number of parameters,
comparing AIC is equivalent to comparing deviance (i.e., −2 log (likelihood function)).
For each meteorological variable, the best lag-week was defined among the simple models
with significant independent variables as

- Criterion I: the first week (0 ≤ weeks ≤ 5) where a local minimum value of AIC
occurred;

- Criterion II: the shortest delay (1 ≤ weeks ≤ 5) where a local minimum value of AIC
occurred;

- Criterion III: the delay (1 ≤ weeks ≤ 5) where the global minimum value of AIC
occurred;

- Criterion IV: the shortest delay (1 ≤ weeks ≤ 5) where a significant association was
first achieved.

In Table 3, the best lag is identified for each independent variable, in accordance
with each Criterion I-IV. For RH avg., there is no significant association with the adjusted
incidence rate (7), with the lowest p-value of 0.1891 calculated for a lag of 5 weeks (data
not shown). For the variable DTR.min and for both rainfall variables, Precip.total and Pre-
cip.avg, the same lag was identified by all criteria: five and two delayed weeks, respectively.
For the other five meteorological variables, the four criteria are not consensual about the
lag set selection for the independent variables.

Table 3. Selection of the best lag-week based on the criteria I-IV for each independent variable.

Criterion I Criterion II Criterion III Criterion IV
Best Lag AIC Best Lag AIC Best Lag AIC Best Lag p-Value

Temp.avg 2 1767.1 ** 2 1767.1 ** 5 1750.2 ** 0 0.0000
Temp.max 2 1847.6 ** 2 1847.6 ** 4 1846.7 ** 0 0.0000
Temp.min 0 1876.1 ** 2 1869.6 ** 5 1869.3 ** 0 0.0000
DTR.avg 5 1921.5 ** 5 1921.5 ** 5 1921.5 ** 2 0.0420
DTR.max 3 1923.6 ** 3 1923.6 ** 5 1922.1 ** 2 0.0192
DTR.min 5 1925.4 * 5 1925.4 * 5 1925.4 * 5 0.0119
Precip.avg 2 1925.1 * 2 1925.1 * 2 1925.1 * 2 0.0137
Precip.total 2 1925.6 * 2 1925.6 * 2 1925.6 * 2 0.0178
RH.avg — — — —

*: 0.01 ≤ p-value < 0.05; **: p-value < 0.01.

4.5. Selection of the Final Gamma-GLMMs

Given that the four criteria I-IV suggest that the lags 0, 2, 4, and 5 could be assigned
to the different temperature variables and the lags 2, 3, and 5 could be assigned to the
variables DTR.avg and DTR.max, multiple regression models combining these lags for the
(meteorological) independent variables were constructed. One of the two precipitation
variable, either Precip.average or Precip.total, was also included in the constructed models.
Both precipitation variables are not simultaneously considered in the same model. For both,
lag = 2 was selected in accordance with the four criteria (Table 3). The remaining variables,
DTR.min and RH.avg, were also included in the models and with lag equal to 5 and 2,
respectively, in accordance with the four criteria. An exhaustive comparative analysis of the
constructed multiple regression models was performed to find the best multiple gamma-
GLMM (Equation (5)) for estimating the adjusted incidence rate (Equation (7)). Normal
and independent random intercepts b(i), i = 1, · · · , 8 (defined by the eight provinces) were
assumed for all the constructed models. The best-fitting final model was identified by the
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lowest AIC. At the end, two multiple gamma-GLMMs, both incorporating only intercept
random effects determined by provinces, were established.

4.6. Validation of the Gamma-GLMMs

For checking the fitting of the gamma distribution to the observed values of the
adjusted rates (7), a QQ-plot and the test based on the ratio V of two variance estimators
proposed in [25] were used. For analyzing the fitting of the two final gamma GLMMs
to the data, the behavior of the deviance residuals of the fitted models was examined:
(i) the existence of residual patterns, globally and by province, was visually evaluated
using adequate residual plots; and (ii) the normality of the deviance residuals was assessed
by using QQ-plot and the Shapiro–Wilks test. To assess how well the two final gamma
GLMMs performs on each province, a 95% confidence interval of the weekly average of
the adjusted dengue incidence rate estimated from these two developed final models was
constructed by province and verified whether the provinces contain the correspondent
weekly average observed from the data.

4.7. Software

All the statistical analyses were performed in the R statistical environment (R Core
Team, 2020) by using the package EnvStats [26] for construction of gamma QQ-plot,
the package goft [27] for goodness-of-fit test of the gamma distribution with unknown
shape and scale parameters [25], and the package lme4 [28] for modelling of the data by
gamma-GLMMs with normal random intercept. The maps of the Dominican Republic was
constructed by using QGIS software.

5. Results

5.1. Selected Models

Based on the lags suggested by Criterion I-IV (Section 4.5), twelve multiple gamma-
GLMMs for estimating the adjusted incidence rate (Equation (7)) in terms of meteorological
regressors were constructed: models M01-M12 with lags of meteorological variables as
indicated in Table 4. For the construction of these models, we considered the variable
Precip.avg as the precipitation regressor. For six of these models, the process of estimating
the parameters was not convergent (i.e., the iteration process in the optimizer via the
R-function glmer was stopped without an optimum value for the objective function) as
noted in the last column in Table 4. Among the remaining six models, the lowest AIC was
achieved by the model M12, which employs as explanatory variables the weekly average
and minimum temperatures and average DTR with a lag of 5 weeks, the weekly maximum
temperature with a lag of 4 weeks, and the average weekly precipitation with a lag of
2 weeks. M12 also included the maximum and minimum DTR with a lag of 5 weeks,
but these variables were not significant to predictions.

In fact, the variable DTR.max was not a significant predictor in any of the previous
models, so it was removed, and we replicated the procedure as before. With DTR.max
removed, a total of eight models were developed, M13-M20 as indicated in Table 4.
Among the convergent models, the lowest AIC was achieved to the model M20, which
included all of the same predictors as M12 excepting DTR.max.

For both models, M12 and M20, the same set of independent variables was obtained
as statistically significant: Temp.avg, Temp.max, Temp.min, DTR.avg, DTR.min and Pre-
cip.avg with lag equals to 5, 4, 5, 5, 5, and 2 weeks, respectively. Finally, because the variable
DTR.min (with lag = 5 weeks) is not statistically significantly in the model, it was removed
at this stage to obtain the final model (M21 in Table 4) which reached a slightly lower AIC
value than the previous ones.

In this final model, temperature and DTR variables have larger lags. Therefore, this
model could represent a long-term alarm based on both temperature and DTR conditions.
Therefore, it will be called a longer-term model. Given this result, we aimed to next answer
the question: could these same variables predict adjusted dengue incidence rate in a shorter
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time? Consequently, an extra model (M22 in Table 4), called a shorter-term model, with all
these variables with a delay of 2 weeks was analyzed. All variables with a delay of 2 weeks
were significant predictors; however, the AIC for M22 was not lower than that of M21,
indicating that it is not a better model overall.

Table 4. Lag for the meteorological regressors in 22 multiple gamma-GLMMs constructed for fitting
the dengue incidence rate. Statistical significance of the regressors are identified.

Temperature DTR Precipitation
Model avg. max. min. avg. max. min. avg. AIC

M01 0 0 0 2 2 5 2 nc
M02 0 0 0 5 3 5 2 1806.5

(0.0003) (0.0659)
M03 0 0 0 5 5 5 2 nc
M04 2 2 0 2 2 5 2 1738.9

(<0.0001) (0.0905) (0.0174) (0.0744) (<0.0001)
M05 2 2 0 5 3 5 2 1729.5

(<0.0001) (0.0309) (0.0021) (<0.0001)
M06 2 2 0 5 5 5 2 nc
M07 2 2 2 2 2 5 2 nc
M08 2 2 2 5 3 5 2 1728.1

(0.0026) (<0.0001)
M09 2 2 2 5 5 5 2 1728.6

(<0.0001) (0.0038) (0.0950) (<0.0001)
M10 5 4 5 2 2 5 2 nc
M11 5 4 5 5 3 5 2 nc
M12 5 4 5 5 5 5 2 1699.3

(<0.0001) (0.0006) (0.0153) (0.0076) (0.0296)

M13 0 0 0 2 – 5 2 1804.8
(0.0002) (0.0086) (0.0001)

M14 0 0 0 5 – 5 2 1804.8
(0.0002) (0.0086) (0.0001)

M15 2 2 0 2 – 5 2 nc
M16 2 2 0 5 – 5 2 1728.6

(<0.0001) (0.0523) (<0.0001) (<0.0001)
M17 2 2 2 2 – 5 2 nc
M18 2 2 2 5 – 5 2 1727.2

(<0.0001) (<0.0001) (<0.0001)
M19 5 4 5 2 – 5 2 nc
M20 5 4 5 5 – 5 2 1697.3

(<0.0001) (0.0006) (0.0120) (<0.0001) (0.0250)

M21 5 4 5 5 – – 2 1695.5
(<0.0001) (0.0004) (0.0120) (<0.0001) (0.0258)

M22 2 2 2 2 – – 2 1736.8
(<0.0001) (0.1260) (<0.0001) (<0.00005) (0.0258)

The p-value is indicated in parentheses; nc means the optimization routine was non-convergent.

We note that the procedure described above was replicated substituting the variable
Precip.avg by Precip.total as a precipitation regressor. Under this condition, more noncon-
vergent models emerged, and slightly higher values of AIC were in general produced for
the convergent homologous models (data not shown). We also note that when the random
intercepts b(i) are not included in the multiple model (5) (i.e., where the approach GLM
is used for modelling of the adjusted dengue incidence rate (Equation (7)), substantially
higher values of AIC would be obtained for the correspondent GLMs, namely AIC = 1923.7
and AIC = 1936.8) for the fitted longer-term model and shorter-term model, respectively,
justifying the modelling of the dengue data set by GLMM than by GLM.

As indicated in Table 4, in the longer-term model (M21), the weekly dengue incidence
rate is described in of terms the average and the minimum values of the temperature both
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delayed by 5 weeks (Temp.avg5 and Temp.min5), the maximum value of the temperature
delayed by 4 weeks (Temp.max4), and the average value of precipitation delayed by
2 weeks (Precip.avg2). In the shorter-term model (M22), the weekly dengue incidence rate
is described by effects of those five meteorological features all with a delay of 2 weeks
(Temp.avg2, Temp.max2, Temp.min2, DTR.avg2, and Precip.avg2).

Formally, these two models are defined as follows,

log(μij) = β0 + β1Temp.avg5j + β2Temp.max4j + β3Temp.min5j + β4DTR.avg5j + β5Precip.avg2j + Province(i)

and

log(μij) = β0 + β1Temp.avg2j + β2Temp.max2j + β3Temp.min2j + β4DTR.avg2j + β5Precip.avg2j + Province(i)

respectively, for each province i = 1, · · · , 8, and meteorological conditions summarized
in epidemiological week j = 1, · · · , 52 of 2019. The variable Province(i) is assumed to be
normally distributed with zero mean and constant variance σ2

i in the estimation process
of the regressor coefficients in each model and represents the random effect specific (Y-
intercept) to the ith province.

5.2. Validation

The histogram and the QQ-plot presented in Figure 5 suggest that the empirical right-
skewed distribution of the adjusted rates (Equation (7)) for the set of the eight provinces
is close to a gamma distribution (with μ ≈ 4.29 and σ ≈ 4.09). There was no signifi-
cant evidence that a gamma distribution did not provide an adequate fit (V = 0.51294,
p-value = 0.7168).
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Figure 5. Histogram and gamma QQ-plot for the adjusted dengue incidence rate.

In Figure 6, for both models, it is observed that almost all of the deviance residuals
vary between −2 and 2 and there is a higher spread of points for higher observed values
of the incidence rate (7). When the observed incidence rate is close to zero, there are
many negative residuals suggesting that both models tend to predict higher incidence
rates than the observed rates. For higher observed values (e.g., for weekly incidence rate
between approximately 6 and 15 per 100,000 inhabitants), both the smoothed average
curves (red lines in the graphs) tend to increase, indicating that the values predicted by
both models will be lower than the observed. Nevertheless, for situations with the highest
incidence rates, the fitted curve is closer to zero in the shorter-term model. This suggests
that meteorological conditions of temperature, DTR and precipitation of 2 weeks earlier
tend to provide better predictions for dengue incidence when outbreaks are larger than
than those predictions using longer delays.
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Figure 6. Deviance residuals versus observed values of the longer-term model (on the left) and the
shorter-term model (on the right) with smooth loess curve (in red).

In Figure 7, the comparative boxplots of the deviance residuals for the eight provinces
show that (i) the deviance residuals only exceeds the interval [−2, 2] in Santiago, and only
slightly; (ii) there are outliers, suggesting that there are a few weeks when the model
estimates of the incidence rates could be atypical (in Distrito Nacional, Puerta Plata and
Santiago); and (iii) the variability in two provinces, Santo Domingo and Distrito Nacional,
seems to be lower than in other provinces. Although these results indicate the models do
not always predict the true incidence rates in some weeks and some provinces, both the
models fit relatively well to the data.
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Figure 7. Comparative boxplots for deviance residuals across the eight provinces.

In Figure 8, the good alignment of the points with the diagonal line in both the QQ-
plots suggests a normal distribution to the deviance residuals for both models. From the
Shapiro–Wilks test, there was no significant evidence that the distributions of deviance
residuals of both models were nonnormal (p-value = 0.818 for longer-term model and
p-value = 0.136 for the shorter-term model).
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Figure 8. QQ-plots for the deviance residual related to the longer-term model (on the left) and the
shorter-term model (on the right).

5.3. Interpretation

The estimates of the fixed effects and the effect variance of the two fitted models
are displayed in Table 5. Only a single covariate coefficient (Temp.max2 for the shorter-
term model) was not statistically significantly different from zero at a 5% significance
level. Therefore, associations between each significant meteorological variable and the
dengue incidence rate for the eight provinces of Dominican Republic can be then described
assuming that the remaining variables are fixed. Variations in the daily average temperature
(Temp.avg) have the greatest effect on the dependent variable (dengue incidence rate)
with an increase of 1 ◦C leading to an increase in the dengue incidence rate by 52.4%
(exp(0.4212) = 1.5238) 2 weeks later and 44.4% (exp(0.3674) = 1.4440) 5 weeks later.
Although the same increase of the maximum temperature (Temp.max) increases the dengue
incidence rate by 3.5% (exp(0.0341) = 1.0347) 2 weeks later and 13% (exp(0.1218) =
1.1295) 4 weeks later, the minimum temperature (Temp.min) reduces the rate of reported
cases by 5.0% (exp(−0.0510) = 0.9503) 2 weeks later and 6.0% (exp(−0.0618) = 0.9401)
5 weeks later. If the average daily temperature range (DTR.avg) is 1 ◦C higher, then a
decrease of 18.3% (exp(−0.2025) = 0.8167) and 11.5% (exp(−0.1224) = 0.8848) in dengue
incidence rate is observed 5 and 2 weeks later, respectively. A 1-mm increase in the weekly
average precipitation (Precip.avg) triggers an increase in the dengue incidence rate of 2.0%
(exp(0.0210) = 1.0212) and 4.5% (exp(0.0436) = 1.0446) 2 weeks later for the longer-term
and shorter-term models, respectively.

Table 5. Parameter estimates of two fitted gamma-GLMMs for modelling the adjusted incidence
dengue rate.

Longer-Term Model Shorter-Term Model
Parameter Lag Beta Std. Error p-Value Lag Beta Std. Error p-Value

(Intercept) −9.7579 0.7087 0.0000 −9.3166 0.7250 0.0000
Temp.avg 5 0.3674 0.0526 0.0000 2 0.4212 0.0676 0.0000
Temp.max 4 0.1218 0.0343 0.0004 2 0.0341 0.0476 0.4743
Temp.min 5 −0.0618 0.0247 0.0122 2 −0.0510 0.0247 0.0388
DTR.avg 5 −0.2025 0.0249 0.0000 2 −0.1224 0.0296 0.0000
Precip.avg 2 0.0210 0.0094 0.0258 2 0.0436 0.0101 0.0000

The variances of the random effects, σ2
province, were estimated to be equal to 0.2363

and 0.2764 for the longer-term and shorter-term models, respectively. This result indicates
slightly lower variability among the eight provinces for the Y-intercept of the fitted model
when the meteorological variables are considered with more delays.
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In Table 6, we show the observed adjusted dengue incidence rate along with 95%
confidence intervals in the weekly average adjusted dengue incidence rate estimated by
using both longer-term and shorter-term models across the eight provinces under study.
The observed values fall within the estimated 95% confidence interval in all cases except for
in Barahona for the longer-term model. Consequently, the longer-term model overestimates
the dengue incidence rate in Barahona.

Table 6. Weekly average of the observed value and 95% confidence intervals (CI) for the weekly
average of the estimated value from the two fitted gamma-GLMMs across the 52 weeks of 2019 for
the adjusted dengue incidence rate for each province.

Longer-Term Model Shorter-Term Model
Provinces Lower CI Upper CI Observed Lower CI Upper CI Observed

Barahona 9.377 13.160 9.038 8.549 11.732 9.038
Distrito Nacional 2.767 3.826 3.221 2.685 3.597 3.221
La Romana 2.257 3.193 3.153 2.289 3.177 3.153
Monte Cristi 4.788 6.356 5.278 4.473 5.869 5.278
Puerto Plata 1.726 2.472 2.117 1.788 2.518 2.170
Samaná 1.709 2.333 1.850 1.837 2.459 1.850
Santiago 3.160 4.504 4.233 3.764 5.406 4.233
Santo Domingo 3.357 4.642 4.140 3.274 4.386 4.140

In Table 7, estimates of the random effects are presented. Comparing longer-term
and shorter-term models, we observe very similar negative estimates of random intercepts
between models among four provinces: Santo Domingos, Puerto Plata, Districto Nacional
and Samaná. This indicates that, based on meteorological variables with shorter and longer
delays, with lags as described in Table 5 for both models, lower expected values for the
adjusted dengue incidence rate are predicted for these four provinces, with Samaná pre-
senting the lowest one. Among the other four provinces, which have positive estimates,
similar values between the two models are only observed for Santiago’s province. The high-
est estimate of the random intercept of the longer-term model occurs for the province of
Barahona and for the shorter-term model the highest estimate occurs for Monte Cristi.
Therefore, although the adjusted dengue incidence rate based on 2 week-lag meteorological
variables is expected to be higher in Monte Cristi, meteorological variables with a longer
delay, with lags as indicated in the longer-term model will lead to a higher estimated rate
in Barahona.

Table 7. Estimated intercept random effects for each of the eight provinces for the two fitted gamma-
GLMMs.

Random Effects
Provinces Longer-Term Model Shorter-Term Model

Barahona 0.977 0.873
Distrito Nacional −0.648 −0.646
La Romana 0.240 0.136
Monte Cristi 0.747 0.908
Puerto Plata −0.550 −0.535
Samaná −0.841 −0.851
Santiago 0.536 0.567
Santo Domingo −0.454 −0.448

6. Conclusions

Dengue outbreaks are a consequence of complex interactions among multiple fac-
tors. In particular, dengue disease depends on the development of mosquitoes through
a four-stage life cycle that is heavily influenced by environmental conditions [29]. This
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implies that the current number of cases can be influenced by past conditions that impact
the mosquito life cycle. By using consistent methods for fitting gamma-GLMM models, we
have analysed the effect of meteorological conditions with lags on the incidence of dengue
conditioned to the human population density of eight provinces of the Dominican Republic.
We defined two relationships in terms of province-specific effects and different statistics
for meteorological variables related to temperature (average, maximum, minimum), daily
temperature range (average), and precipitation (average) to explain the dengue incidence
rate. Although one model provides estimates of dengue incidence by using meteorological
variables in the short term (2 weeks), the other describes dengue incidence in terms of mete-
orological conditions reported after passage of more time. Our results showed a significant
effect from temperatures with delay of 2, 4, and 5 weeks, from daily temperature range
with delay of 2 and 5 weeks and from precipitation with delay of 2 weeks. Additionally,
variations in average temperature (Temp.avg) have the greatest effect on dengue cases.
These results are in agreement with similar studies that found significant risk of dengue
when considering lags in climate variables of 2–5 weeks [3,4]. Our findings provide a better
understanding of the relationships between meteorological conditions and weekly trends
in dengue cases during the outbreak that occurred in the Dominican Republic in 2019.

Different geographical and spatial locations may have local effects that lead to different
dengue models. We note that the focus of this work is on the effects of meteorological
variables and the modelling of the dengue cases is conditioned to the population size of each
province. But other influencers of dengue transmission are likely. We included province-
specific random effects to account for some of the variability that could be produced by
these influencers. In particular, geographical and sociopolitical features of each province
could play a role in dengue transmission; however, these features are not considered
as independent variables in this study. Analysing the variances of random effects, it is
possible to conclude that among the eight provinces studied there is lower variability.
But the distribution of values for random effects (Table 7) suggest that it is important to
question whether other factors could be considered to improve model predictions. Our
results highlight that dengue prediction models developed at local scales are important
to understanding the risk of dengue because conditions at a higher level (such as at the
national level), may not be useful for predicting dengue cases that have high heterogeneity
driven by different geographic, climatic, sociodemographic, or other factors.

The analysis of the deviance residuals shows that, overall, both the models fit relatively
well to the data. A normal distribution is fitted to the deviance residuals; however, there
is a variability of the incidence rate within the provinces which suggest that both models
might be improved by the addition of more random effects. The diagnostic model showed
that there is variability in the incidence rate between provinces. Using the same lag for
all provinces could not be the best choice; instead, it is important to investigate whether
the selected lags in the meteorological variables are province-specific. For this reason,
further studies are needed to develop a better understanding of variability in dengue
incidence rates.

The lack of reliable data for a long period of time was a limitation of this work. There is
a lack of long-term spatiotemporal and climate data for dengue incidence in the Dominican
Republic. In spite of having data for 32 provinces, we only had reliable data for eight
of them. Even considering eight provinces, it was necessary to supplement climate data
collected in the Dominican Republic with data collected from other sources (NASA) to
reduce missing values in the database. For future works, complete climate data from other
provinces in the Dominican Republic is necessary. Having data from more provinces would
allow us to assess how well the two final models perform in other provinces. Moreover,
having data from more provinces and years could allow us to establish a better final model
by using another strategies like cross-validation by splitting the data into two sets: a
training data set for model-selection and a testing data set for inference. In order to develop
better models aimed at understanding the intensification of dengue transmission in the
Dominican Republic and to develop reliable warning systems for predicting future dengue
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incidence, it is important to gather more long-term data and to build robust systems for
continuous collection of this data.

This research contributes to developing a better understanding of the dynamics of
dengue and their relationship with climatological variables in the Dominican Republic,
a tropical country where, despite minor differences in climate across the country, dengue
incidence can vary greatly. This paper has practical implications for preparing vector
control and public health departments by providing potential warning indicators for
dengue outbreaks, which will in turn contribute to the development of comprehensive
dengue management programs.
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Abstract: The dynamic Sylvester equation (DSE) is frequently encountered in engineering and
mathematics fields. The original zeroing neural network (OZNN) can work well to handle DSE under
a noise-free environment, but may not work in noise. Though an integral-enhanced zeroing neural
network (IEZNN) can be employed to solve the DSE under multiple-noise, it may fall flat under linear
noise, and its convergence speed is unsatisfactory. Therefore, an accelerated double-integral zeroing
neural network (ADIZNN) is proposed based on an innovative design formula to resist linear noise
and accelerate convergence. Besides, theoretical proofs verify the convergence and robustness of the
ADIZNN model. Moreover, simulation experiments indicate that the convergence rate and anti-noise
ability of the ADIZNN are far superior to the OZNN and IEZNN under linear noise. Finally, chaos
control of the sine function memristor (SFM) chaotic system is provided to suggest that the controller
based on the ADIZNN has a smaller amount of error and higher accuracy than other ZNNs.

Keywords: dynamic Sylvester equation; linear noise; accelerated double integral ZNN; chaos control

MSC: 15A24; 34A34; 34H10; 93D20

1. Introduction

The Sylvester equation is a crucial matrix equation. It has a crucial position in many
fields, such as image fusion [1], object detection [2], control configuration selection [3],
fast tensor product solution [4], robotics [5–8], permanent magnet synchronous motors [9]
and mobile manipulators [10]. Therefore, finding a quick solution to handle the dynamic
Sylvester equation (DSE) is exceptionally crucial. Many scholars previously utilized nu-
merical methods to solve the Sylvester equation, such as the Hessenberg–Schur iteration
method [11] and Krylov subspace methods [12]. Nevertheless, numerical methods are
only suitable for small-scale matrix issues and cannot solve DSE well. In recent years,
the advantages of feedforward neural networks and recurrent neural networks (RNNs)
with the parallel process and easy implementation in hardware have been gradually
excavated [13–16]. The gradient neural network (GNN), an important type of RNN, has
become increasingly popular in high-dimensional Sylvester equation solving [17,18]. Nev-
ertheless, when the GNN approach was extended to dynamic domains, researchers discov-
ered the two defects of GNN: first, the GNN method cannot make the residual value reach
zero; second, its convergence rate is deficient.

After that, the original zeroing neural network (OZNN) was reported, aiming at
the shortcomings of the GNN [19]. With the development of the zeroing neural network
(ZNN) model, many scholars have focused on ZNN because it can deal with many dynamic
mathematical problems [20–22]. Simultaneously, scholars constantly improved and inno-
vated on the basis of the ZNN and they obtained many derived ZNN models for specific
problems [7,9,23–25]. For instance, He et al. presented a double-accelerated ZNN for
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handling dynamic matrix inversion [23]. Xiao et al. proposed two nonlinear ZNN models
and applied them to the 3D moving target location [24]. A noise-suppression variable
parameter ZNN was proposed to handle the DSE [26]. In addition, there is much related
work on the universal DSE [27,28].

It is worth noting that noise cannot be ignored, and it will affect the stability of the
system [29–31]. Therefore, we should consider both convergence and robustness when
designing ZNN models [32–34]. In order to better suppress noise, the PID control method
is usually used by the public [35]. The control principle also mentions that the integral
term can eliminate noise so that the error in the system is continuously reduced. Thus, the
integral-enhanced ZNN model (IEZNN) was designed [32], and the integral term made up
for the defect that the original ZNN could not suppress noise. Besides, many anti-noise
ZNNs were researched and applied [36–38].

Nevertheless, the IEZNN model cannot suppress linear noise well. Many researchers
point out that the activation functions can accelerate convergence and suppress
noise [39–41]. Utilizing double integration and the fixed-time activation function (FTAF),
we propose an accelerated double integral ZNN (ADIZNN) model with anti-linear noise
interference to settle the DSE under linear noise. In brief, the ADIZNN has the charac-
teristic of accelerated convergence and enhanced robustness due to the introduction of
the FTAF and the double integral term. In addition, the theoretical proofs and simulation
experiments under the linear noise environments are given. At last, the design ideas of
ZNNs are extended to chaos control of the SFM chaotic system to show that the controller
based on the ADIZNN has significant advantages compared with other controllers.

The remaining part of this paper is divided into five sections. Section 2 introduces the
OZNN, IEZNN and ADIZNN models. Theoretical analyses of the ADIZNN are provided
in Section 3. Section 4 offers two specific examples under linear noise. Besides, the chaos
control experiment of the SFM chaotic system is provided in Section 5. Section 6 is the
summary part of paper. These are the significant contributions of this research.

• Based on the novel ZNN design formula, an innovative ADIZNN is constructed for
settling the dynamic Sylvester equation under the linear noise.

• The ADIZNN model has a novel double integral structure and activation function,
which guarantees accelerated convergence and enhanced anti-noise capacity.

• Theoretical analyses and simulation results are provided to ensure that the ADIZNN
model can handle the DSE with excellent convergence and robustness.

• Chaos control schemes of the TFM chaotic system are established to display that the
controller based on the ADIZNN has superior performance than that based on the
OZNN and IEZNN.

2. DSE Description and Models Design

Firstly, the general dynamic Sylvester equation (DSE), OZNN and IEZNN are offered.
Posteriorly, the novel ADIZNN model proposed is particularly elaborated.

2.1. Description of DSE

The definition of the DSE is described in detail as follows:

U(t)P(t)− P(t)V(t) + G(t) = 0, (1)

in which U(t), V(t), G(t) ∈ Rn×n are time-varying matrices, and P(t) ∈ Rn×n is an un-
known matrix.

The purpose of the ZNN model is to solve the unknown P(t) in Equation (1) under
noise, and the theoretical solution is denoted by P∗(t). Moving matrix G(t) of (1), we have

U(t)P(t)− P(t)V(t) = −G(t). (2)
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For further derivation, we need to vectorize Equation (2) and obtain(
In ⊗ U(t)−VT(t)⊗ In

)
vec(P(t)) = −vec(G(t)), (3)

in which In ∈ Rn×n is an identity matrix, and vec(·) and the symbol ⊗ signify the vector-
ization and Kronecker product operation. Setting Q(t) = In ⊗U(t)− VT(t)⊗ In ∈ Rnn×nn,
p(t) = vec(P(t)) ∈ Rnn×1, g(t) = vec(G(t)) ∈ Rnn×1 of (3), the DSE is transformed into a
linear equation:

Q(t)p(t) = −g(t).

For monitoring the solution process, we define

W(t) = Q(t)p(t) + g(t) (4)

as an error function. The derivative of (4) with respect to time can be written as

Ẇ(t) = Q̇(t)p(t) + Q(t) ṗ(t) + ġ(t). (5)

2.2. Relevant Models Design

A detailed description of the relevant models are introduced in this subsection. The
design formula of error in the ZNN model is defined as

Ẇ(t) = −ξΦ(W(t)), (6)

in which ξ ∈ R+ and Φ(·) is a mapping array composed by the activation function. The
elemental form of (6) is as follows

ẇi(t) = −ξφ(wi(t)),

where φ(·) denotes the nonlinear monotone non-decreasing odd activation function, and
wi(·) and φ(·) are element forms of the W(·) and Φ(·), where i = 1, 2, . . ., n2. When φ(·) is
the linear activation function

(
i.e., φ(ı) = ı

)
, we get the design formula of the OZNN model:

Ẇ(t) = −ξW(t). (7)

Considering the case of linear noise, the design formula of the OZNN is

Ẇ(t) = −ξW(t) + Z(t), (8)

where Z(t) ∈ Rnn×1 refers to linear noise. Linear noise is a significant kind of noise, and it is
generally shaped like Z(t) = At + B, where A, B ∈ Rnn×1. Let zi(t), ai and bi stand for the
ith elements of Z(t), A and B. Then, the element form of Z(t) is rewritten as zi(t) = ait + bi.
Substituting Equations (4) and (5) into (8), the OZNN model to solve the DSE is obtained

Q(t) ṗ(t) = −Q̇(t)p(t)− ġ(t)− ξ(Q(t)p(t) + g(t)) + Z(t). (9)

On this basis, Jin et al. added an integral term to suppress the noise and proposed an
integral-enhanced ZNN (IEZNN) [32], and its design formula is

Ẇ(t) = −ξW(t)− λ
∫ t

0
W(τ)dτ, (10)

with ξ and λ ∈ R > 0. Then, we obtain the case of (10) under noise:

Ẇ(t) = −ξW(t)− λ
∫ t

0
W(τ)dτ + Z(t). (11)
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Substituting (4) and (5) into (11), the model of the IEZNN can be rewritten as

Q(t) ṗ(t) =− Q̇(t)p(t)− ġ(t)− ξ(Q(t)p(t) + g(t))

− λ
∫ t

0
(Q(τ)p(τ) + g(τ))dτ + Z(t).

(12)

Now that all the relevant models descriptions are complete, the accelerated double integral
ZNN will be introduced.

2.3. ADIZNN Model Design

In this subsection, an accelerated double integral ZNN (ADIZNN) model is proposed,
which can resist the linear noise effectively. We know that Ẇ(t) = −ξΦ(W(t)) from
Section 2.2, to describe the evolution of the model more intuitively, set

Θ(t) = Ẇ(t) + ξΦ(W(t)), (13)

where Φ(·) denotes the fixed-time activation function (FTAF) here, and its element form is

φ(ı) = (ε1|ı|μ + ε2|ı|σ)sign(ı) + ε3ı + ε4sign(ı), (14)

in which ε1 and ε2 > 0, ε3 and ε4 ≥ 0, 0 < μ < 1, σ > 1.

Remark 1. We make some detailed remarks about FTAF (14).

• The ε1|ı|μsign(ı) and ε2|ı|σsign(ı) of FTAF (14) are to accelerate convergence.
• The ε3ı and ε4sign(ı) of FTAF (14) are to suppress noise;

In addition, let

Θ(t) = −λ
∫ t

0
Θ(τ)dτ,

with λ ∈ R+. We define

Υ(t) = Θ(t) + λ
∫ t

0
Θ(τ)dτ. (15)

Substituting (13) into (15), one can get

Υ(t) = Ẇ(t) + ξΦ(W(t)) + λ
∫ t

0

(
Ẇ(τ) + ξΦ(W(τ))

)
dτ. (16)

Similarly, set

Υ(t) = −λ
∫ t

0
Υ(τ)dτ. (17)

Substituting (16) into (17), we obtain

Ẇ(t) + ξΦ(W(t)) + λW(t) + λξ
∫ t

0
Φ(W(τ))dτ

=− λ
∫ t

0

(
Ẇ(τ) + ξΦ(W(τ)) + λW(τ) + λξ

∫ τ

0
Φ(W(σ))dσ

)
dτ

=− λW(t)− λξ
∫ t

0
Φ(W(τ))dτ − λ2

∫ t

0
W(τ)dτ − λ2ξ

∫ t

0

∫ τ

0
Φ(W(σ))dσdτ.

Thus, the design formula of the ADIZNN for DSE is obtained:

Ẇ(t) =− 2λW(t)− ξΦ(W(t))− λ2
∫ t

0
W(τ)dτ

− 2λξ
∫ t

0
Φ(W(τ))dτ − λ2ξ

∫ t

0

∫ τ

0
Φ(W(σ))dσdτ.

(18)
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Furthermore, the design formula of the ADIZNN with noise can be written as

Ẇ(t) =− 2λW(t)− ξΦ(W(t))− λ2
∫ t

0
W(τ)dτ

− 2λξ
∫ t

0
Φ(W(τ))dτ − λ2ξ

∫ t

0

∫ τ

0
Φ(W(σ))dσdτ + Z(t).

Furthermore, W(t) = Q(t)p(t) + g(t) and Ẇ(t) = Q̇(t)p(t) + Q(t) ṗ(t) + ġ(t) are already
known. Hence, the ADIZNN model that included noise can be further obtained:

Q(t) ṗ(t) =− Q̇(t)p(t)− ġ(t)− 2λ(Q(t)p(t) + g(t))− ξΦ(Q(t)p(t) + g(t))

− 2λξ
∫ t

0
Φ(Q(τ)p(τ) + g(τ))dτ − λ2

∫ t

0
(Q(τ)p(τ) + g(τ))dτ

− λ2ξ
∫ t

0

∫ τ

0
Φ
(
Q̇(σ)p(σ) + Q(σ) ṗ(σ) + ġ(σ)

)
dσdτ + Z(t).

(19)

Remark 2. We make some detailed remarks about ADIZNN (19).

• Based on the novel ZNN design formula, an innovative ADIZNN is constructed for settling
the DSE under the linear noise.

• The novel double integral structure and activation function, which guarantees accelerated
convergence and enhanced anti-noise capacity.

3. Theoretical Analyses

We mainly discuss and prove properties of the ADIZNN in this section. In order
to better express the Frobenius norm of W(t), we introduce the error norm ‖W(t)‖F =
‖Q(t)p(t) + g(t)‖F.

3.1. Convergence

The convergence performance of ADIZNN (19) is investigated and studied under the
ideal noise-free condition in this subsection.

Theorem 1. Given matrices U(t) ∈ Rn×n, V(t) ∈ Rn×n and G(t) ∈ Rn×n. From any initial
value P(0), the error norm ‖W(t)‖F of ADIZNN (19) can reach zero under the ideal noise-free
condition, that is,

lim
t→∞

‖W(t)‖F = 0.

Proof of Theorem 1. In order to give a clearer proof process, let wi(t), θi(t), γi(t) and φ(·)
represent the elements form of W(t), Θ(t), Υ(t) and Φ(·). First, considering

Υ(t) = Ẇ(t) + ξΦ(W(t)) + λ
∫ t

0

(
Ẇ(τ) + ξΦ(W(τ))

)
dτ, (20)

ADIZNN model (19) under the noiseless environment can be transformed into

Υ(t) = −λ
∫ t

0
Υ(τ)dτ. (21)

The element form of (21) is

γi(t) = −λ
∫ t

0
γi(τ)dτ. (22)

Then, the derivative of (22) is
γ̇i(t) = −λγi(t). (23)

Setting a Lyapunov equation
�(t) = γ2

i (t),
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its derivative is
�̇(t) = 2γ̇i(t)γi(t). (24)

Substituting (23) into (24), we have

�̇(t) = −2λγi(t)γi(t) = −2λγ2
i (t).

Because �(t) is positive definite and �̇(t) is negative definite, �(t) is globally asymptotically
stable, and we have

lim
t→∞

|�(t)| = lim
t→∞

∣∣∣γ2
i (t)

∣∣∣ = lim
t→∞

|γi(t)| = 0. (25)

Thus, γi = ẇi(t) + ξφ(wi(t)) + λ
∫ t

0 (ẇi(τ) + ξφ(wi(τ)))dτ = 0 as t → ∞ based on (20)
and (25). Considering θi(t) = ẇi(t) + ξφ(wi(t)), then we have

θi(t) = −λ
∫ t

0
θi(τ)dτ, t → ∞. (26)

Therefore,

lim
t→∞

∣∣∣∣θi(t) + λ
∫ t

0
θi(τ)dτ

∣∣∣∣ = 0.

It is not difficult to know

lim
t→∞

|θi(t)| = lim
t→∞

∣∣∣∣−λ
∫ t

0
θi(τ)dτ

∣∣∣∣.
The derivative of the above equation is

lim
t→∞

∣∣θ̇i(t)
∣∣ = lim

t→∞
|−λθi(t)|+ Δ, Δ → 0,

where Δ is a small error in the derivative of θi(t). Setting another Lyapunov equation

h̄(t) = θ2
i (t). (27)

The derivative of (27) is
˙̄h(t) = 2θ̇i(t)θi(t) = −2λθ2

i (t).

According to the Lyapunov theorem, we get

lim
t→∞

|θi(t)| = 0.

Because θi(t) = ẇi(t) + ξφ(wi(t)), thus,

lim
t→∞

|θi(t)| = lim
t→∞

|ẇi(t) + ξφ(wi(t))| = 0. (28)

Thus,
ẇi(t) = −ξφ(wi(t)).

Clearly, we get
lim
t→∞

|wi(t)| = 0.

Thus, writing it in matrix form gives the following

lim
t→∞

‖W(t)‖F = 0.

The proof is completed now.
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3.2. Robustness

Furthermore, the ADIZNN model can still approximate the theoretical solution in-
finitely when solving the DSE in a noisy environment. In other words, the ADIZNN model
has strong robustness. Its robustness proof process is presented below.

Theorem 2. Given matrices U(t) ∈ Rn×n, V(t) ∈ Rn×n and G(t) ∈ Rn×n, the identity matrix
In ∈ Rn×n. From any initial value P(0), P(t) of the proposed ADIZNN can reach P∗(t) in solving
the DSE under the linear noise condition, that is,

lim
t→∞

‖W(t)‖F = 0.

Proof of Theorem 2. Linear noise can be written as

Z(t) = At + B, (29)

where A ∈ Rnn×1 and B ∈ Rnn×1 are constant matrices. Its element form can be written as

zi(t) = ait + bi.

According to (20) and (21) of Theorem 1, the ADIZNN model (19) can be converted to

Υ(t) = −λ
∫ t

0
Υ(τ)dτ + Z(t). (30)

Its element is

γi(t) = −λ
∫ t

0
γi(κ)dκ + zi(t). (31)

Taking the derivative of γi twice, we get

γ̈i(t) = −λγ̇i(t) + z̈i(t). (32)

Differentiating the linear noise once and twice yield żi(t) = a and z̈i(t) = 0. Then,

γ̈i(t) = −λγ̇i(t).

We set up a Lyapunov function �(t) = γ̇2
i (t), so

�̇(t) = 2γ̈i(t)γ̇i(t) = −λγ̇2
i (t).

Due to the �(t) being positive definite and �̇(t) being negative definite, �(t) is globally
asymptotically stable, and we have

lim
t→∞

|�(t)| = lim
t→∞

∣∣∣γ̇2
i (t)

∣∣∣ = lim
t→∞

|γ̇i(t)| = 0. (33)

According to (31) and (33), we obtain

lim
t→∞

|γ̇i(t)| = lim
t→∞

|−λγi(t) + żi(t)| = 0.

We know that żi(t) = a, so it is not hard to figure out

lim
t→∞

|−λγi(t) + a| = 0.

Then it is concluded that
lim
t→∞

|λγi(t)| = |a|.
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Thus we get

lim
t→∞

|γi(t)| =
∣∣∣ a
λ

∣∣∣.
Thus |γi(t)| =

∣∣∣ẇi(t) + ξφ(wi(t)) + λ
∫ t

0 (ẇi(τ) + ξφ(wi(τ)))dτ
∣∣∣ = |a/λ| as t → ∞. Let

θi(t) = ẇi(t) + ξφ(wi(t)), (34)

then we have |γi(t)| =
∣∣∣θi(t) + λ

∫ t
0 θi(τ)dτ

∣∣∣ = |a/λ| as t → ∞. Thus we can infer that

lim
t→∞

(
θ̇i(t) + λθi(t)

)
= 0.

Then, we can draw
lim
t→∞

θ̇i(t) = lim
t→∞

−λθi(t).

Obviously, due to λ > 0, θ̇i(t) and θi(t) having different signs, thus we get

lim
t→∞

|θi(t)| = 0.

In addition, θi(t) = ẇi(t) + ξφ(wi(t)) is known from (34), that means

lim
t→∞

|θi(t)| = lim
t→∞

|ẇi(t) + ξφ(wi(t))| = 0.

The above equation and (28) are the same, we can say

lim
t→∞

|wi(t)| = 0.

The corresponding matrix form is

lim
t→∞

‖W(t)‖F = 0.

Thus, the proof is accomplished now.

4. Examples Verification

In Section 3, the properties of the ADIZNN are proved. In this section, comparative
experiments are adopted to highlight the outstanding performance of ADIZNN (19). The
OZNN (9), IEZNN (12) and ADIZNN (19) models are applied in solving the dynamic
Sylvester equation problem. Besides, P∗(t) refers to the theoretical value of P(t) in the
experiment 1 and experiment 2.

Remark 3. Sylvester matrix equations play an important role in the field of control [3,42,43], and
they are widely used in the fields of manipulators [10], signal processing [1,44] and statistics [45].
For example, the redundant decomposition of manipulator in the Ref. [10] can first be represented
by the quadratic programming problem with equality constraints, then this problem can be further
converted into a dynamic linear equation (i.e., a special case of the DSE when V(t) = 0) by the
Lagrange multiplier method. Therefore, this paper only verifies the effect of the proposed model to
solve the DSE, which can be extended to related fields.

4.1. Experiment 1

The dynamic matrices U(t), V(t) and G(t) are provided

U(t) =
[

s(−2t) −c(−2t)
c(−2t) s(−2t)

]
, V(t) =

[
t 0
0 2

]
, G(t) =

[
s(3t) c(3t)
2s(3t) −2c(3t)

]
, (35)
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where s(·) and c(·) represent the sine function and cosine function. The default model
parameters are: ξ = 2, λ = 1, ε1 = ε2 = ε3 = ε4 = 0.5 and μ = 0.5, σ = 2.

Figure 1 presents state trajectories synthesized by the OZNN model (9), IEZNN
model (12) and ADIZNN model (19) using FTAF (14) for the DSE with (35) in the noiseless
environment. It is obvious that the OZNN model (9), IEZNN model (12) and ADIZNN
model (19) can fit the theoretical solutions in a noiseless environment. Even without linear
noise, ADIZNN (19) has the fastest convergence speed, which means that its convergence
performance is better than the other two models.

(a) (b)

(c) (d)

Figure 1. State trajectories of OZNN (9), IEZNN (12) and ADIZNN (19) for the DSE with (35) in the
absence of the noise. (a) State trajectory of p11(t). (b) State trajectory of p12(t). (c) State trajectory of
p21(t). (d) State trajectory of p22(t).

Although in the noiseless environment, all three models can fit the theoretical value,
model testing in noisy environment is more important. In Figure 2, we explore the state
trajectories of these three models under linear noise zi(t) = t/4 + 4 for the DSE with (35).
Obviously, the OZNN’s state trajectory completely deviates from the theoretical results,
that is to say, OZNN (9) cannot calculate the theoretical result of DSE under zi(t) = t/4 + 4.
In Figure 2, the fitting trend of IEZNN (12) is closer and closer to P∗(t) with the increase of t,
p11(t), p12(t), p21(t) and p22(t) of IEZNN (12) still cannot converge to p∗11(t), p∗12(t), p∗21(t)
and p∗22(t). However, the p11(t), p12(t), p21(t) and p22(t) of ADIZNN (19) converge to
theoretical values within 1.3 s. The above results are sufficient to illustrate that ADIZNN (19)
can suppress zi(t) = t/4 + 4 when solving the DSE problem.

Remark 4. Here, we have a discussion of the results of the comparison about Figures 1 and 2. Since
the OZNN model (9) does not contain an integral term, it has no ability to suppress linear noise.
The IEZNN model (12) contains an integral term, which can resist linear noise to a certain extent,
and the error results obtained by solving the DSE with the IEZNN model (12) are not satisfactory.
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However, the ADIZNN model (19) contains the double integral term and FTAF (14), which can
effectively suppress linear noise, and its convergence time is much faster than IEZNN.

(a) (b)

(c) (d)

Figure 2. State trajectories of OZNN (9), IEZNN (12) and ADIZNN (19) for the DSE with (35) under
the linear noise zi(t) = t/4 + 4. (a) State trajectory of p11(t). (b) State trajectory of p12(t). (c) State
trajectory of p21(t). (d) State trajectory of p22(t).

In Figure 3, we study the error norms ‖W(t)‖F of OZNN model (9), IEZNN model
(12) and ADIZNN model (19) with ξ = 2 and λ = 1 under the different noise environments
for the two-dimensional matrices (35). Figure 3a–d correspond to zi(t) = 0, zi(t) = t/4 + 4,
zi(t) = 4t + 4 and zi(t) = 16t + 4, respectively. From Figure 3a, ‖W(t)‖F of the OZNN
model (9), IEZNN model (12) and ADIZNN model (19) can achieve convergence to zero.
However, in the comparison of convergence time, the OZNN model (9) is the slowest, and
the IEZNN (12) and ADIZNN model (19) can converge within 1.3 and 4.7 s, respectively.
Under linear noise, the information suggested by the Figure 3b–d is that the error norms
‖W(t)‖F of the OZNN model (9) and IEZNN model (12) present a divergence trend.
However, ‖W(t)‖F of the ADIZNN model (19) can converge under the linear noise, and the
convergence accuracy can reach 1 × 10−3. It can be seen that the convergence accuracy of
the ADIZNN model (19) does not decrease with the increase of linear noise zi(t). Besides,
the detailed comparison of the three models under the four different noises is given in
Table 1.

Furthermore, the different parameters of ADIZNN (19) are reported for the DSE
with (35) under the noise zi(t) = 16t + 4 in Figure 4. The parameter λ = 1 of the ADIZNN
is fixed, and ξ = 1.2, ξ = 2.4, ξ = 3.6 are selected respectively in Figure 4a. Then, the
parameter ξ = 1 of the ADIZNN is fixed, and λ = 0.8, λ = 1.6, λ = 2.4 are investigated
respectively in Figure 4b. From Figure 4a,b, as ξ and λ increase, the convergence speed of
ADIZNN (19) becomes faster. By contrast, the gain of parameter λ on the convergence rate
of the model is greater than that of parameter ξ.
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(a) (b)

(c) (d)

Figure 3. Error norms ‖W(t)‖F of OZNN (9), IEZNN (12) and ADIZNN (19) for the DSE with (35) in
different noise environments. (a) No noise zi(t) = 0. (b) Linear noise zi(t) = t/4 + 4. (c) Linear noise
zi(t) = 4t + 4. (d) Linear noise zi(t) = 16t + 4.

(a) (b)

Figure 4. Error norms ‖W(t)‖F of ADIZNN (19) with different parameters for the DSE with (35) in
linear noise zi(t) = 16t + 4. (a) Fixed λ = 1, different ξ. (b) Fixed ξ = 1, different λ.
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Table 1. The detailed comparison of OZNN (9), IEZNN (12) and ADIZNN (19) with ξ = 2 and λ = 1
for the DSE with (35) under the different noise environments.

Noise OZNN Model (9) IEZNN Model (12) ADIZNN Model (19)

zi(t) = 0 convergent convergent convergent
zi(t) = t/4 + 4 diverging diverging convergent
zi(t) = 4t + 4 diverging diverging convergent
zi(t) = 16t + 4 diverging diverging convergent

4.2. Experiment 2

Furthermore, the two-dimensional matrices are extended to the four-dimensional
matrices are considered:

U(t) =

⎡⎢⎢⎣
s(t) −s(t) −s(t) c(t)
s(t) c(t) c(t) s(t)
s(t) −c(t) c(t) −s(t)
−c(t) −s(t) s(t) c(t)

⎤⎥⎥⎦,

V(t) =

⎡⎢⎢⎣
t 0 0 0
0 1

t+1 0 0
0 0 t + 2 0
0 0 0 1

⎤⎥⎥⎦, G(t) =

⎡⎢⎢⎣
s(3t) s(3t) s(3t) c(3t)

0 s(3t) c(3t) c(3t)
0 0 c(3t) c(3t)
0 0 0 c(3t)

⎤⎥⎥⎦.

(36)

The parameters of FTAF (14) are ε1 = ε2 = ε3 = ε4 = 0.5 and μ = 0.5, σ = 2.
Figure 5 presents the error norms ‖W(t)‖F of OZNN (9), IEZNN (12) and ADIZNN (19)

with ξ = 2 and λ = 1 under the different noise environments for the four-dimensional matri-
ces (36). In Figure 5a, all three models can achieve convergence in a noiseless environment,
but the convergence rate of ADIZNN (19) is much faster than OZNN (9) and IEZNN (12).
However, the convergence time of these three models is very different. ADIZNN (19) can
achieve convergence within 1.1 s, OZNN (9) can achieve convergence within 5.2 s, and
IEZNN (12) takes a longer time to achieve convergence. Figure 5b–d presents the error
norms ‖W(t)‖F of ADIZNN (19) can achieve convergence, while the error norms of the
other two models are diverging. It can be seen that when the noise are zi(t) = t/4 + 4,
zi(t) = 4t + 4 and zi(t) = 16t + 4, the convergence time of ADIZNN (19) are 1.1 s, 2.1 s and
4.3 s, respectively. It shows that only ADIZNN (19) can still solve the DSE problem under
linear noise well for the high-dimensional matrices.

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. Error norms ‖W(t)‖F of OZNN (9), IEZNN (12) and ADIZNN (19) for the DSE with (36) in
different noise environments. (a) zi(t) = 0. (b) zi(t) = t/4 + 4. (c) zi(t) = 4t + 4. (d) zi(t) = 16t + 4.

5. Application to the Control of the Sine Function Memristor Chaotic System

The design method of ZNN can not only be effectively used to solve the DSE, but
also can be utilized for the control of the chaotic system. Chaotic system [46] is a kind of
common nonlinear systems, which is widely used in secure communication [47,48], power
systems and network systems [49–51]. Hence, the SFM chaotic control system [52] and
three controllers based on ZNNs are presented in this section.

The SFM [52] is introduced in detail as follows:⎧⎪⎪⎨⎪⎪⎩
ẋ1(t) =s(x2(t)),

ẋ2(t) =− 1
3

s(x1(t)) +
1
2

s(x2(t))− 1
2

η2s(x2(t))s2(x3(t)),

ẋ3(t) =− s(x2(t))− 0.6s(x3(t)) + ηs(x2(t))s(x3(t)),

(37)

where X(t) = [x1(t), x2(t), x3(t)]T are state variables.
When considering uncertainties, noise and the controller, (37) is rewritten as⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ1(t) =s(x2(t)) + Δ f1(x) + h̄1(t) + u1(t),

ẋ2(t) =− 1
3

s(x1(t)) +
1
2

s(x2(t))− 1
2

η2s(x2(t))s2(x3(t)) + Δ f2(x) + h̄2(t) + u2(t),

ẋ3(t) =− s(x2(t))− 0.6s(x3(t)) + ηs(x2(t))s(x3(t)) + Δ f3(x) + h̄3(t) + u3(t),

(38)

where Δ f1(x), Δ f2(x) and Δ f3(x) are uncertainties of the system, h̄1(t), h̄2(t) and h̄3(t)
refer to external disturbances, u1(t), u2(t) and u3(t) represent the controllers.

Define error E(t) = X(t)− 0, where E(t) = [e1(t), e2(t), e3(t)]T.
According to design Formula (7), we have

Ė(t) = −ξE(t). (39)

Thus, combining (38) and (39), the controller based on OZNN (39) is⎧⎪⎪⎨⎪⎪⎩
u1(t) =− ξx1(t)− s(x2(t)),

u2(t) =− ξx2(t) +
1
3

s(x1(t))− 1
2

s(x2(t)) +
1
2

η2s(x2(t))s2(x3(t)),

u3(t) =− ξx3(t) + s(x2(t)) + 0.6s(x3(t))− ηs(x2(t))s(x3(t)).

(40)

Based on the (10), we get

Ė(t) = −ξE(t)− λ
∫ t

0
E(τ)dτ. (41)
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Similarly, combining (38) and (41), we have the controller based on IEZNN (41) as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u1(t) =− ξx1(t)− λ
∫ t

0
x1(τ)dτ − s(x2(t)),

u2(t) =− ξx2(t)− λ
∫ t

0
x2(τ)dτ +

1
3

s(x1(t))− 1
2

s(x2(t)) +
1
2

η2s(x2(t))s2(x3(t)),

u3(t) =− ξx3(t)− λ
∫ t

0
x3(τ)dτ + s(x2(t)) + 0.6s(x3(t))− ηs(x2(t))s(x3(t)).

(42)

Analogously, the design formula of the ADIZNN is

Ė(t) =− 2λE(t)− ξΦ(E(t))− λ2
∫ t

0
E(τ)dτ − 2λξ

∫ t

0
Φ(E(τ))dτ

− λ2ξ
∫ t

0

∫ τ

0
Φ(E(σ))dσdτ.

(43)

Thus, combining (38) and (43), the controller based on ADIZNN (43) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(t) =− 2λx1(t)− ξφ(x1(t))− λ2
∫ t

0
x1(τ)dτ − 2λξ

∫ t

0
φ(x1(τ))dτ

− λ2ξ
∫ t

0

∫ τ

0
φ(x1(σ))dσdτ − s(x2(t)),

u2(t) =− 2λx2(t)− ξφ(x2(t))− λ2
∫ t

0
x2(τ)dτ − 2λξ

∫ t

0
φ(x2(τ))dτ

− λ2ξ
∫ t

0

∫ τ

0
φ(x2(σ))dσdτ +

1
3

s(x1(t))− 1
2

s(x2(t)) +
1
2

η2s(x2(t))s2(x3(t)),

u3(t) =− 2λx3(t)− ξφ(x3(t))− λ2
∫ t

0
x3(τ)dτ − 2λξ

∫ t

0
φ(x3(τ))dτ

− λ2ξ
∫ t

0

∫ τ

0
φ(x3(σ))dσdτ +

1
3

s(x1(t)) +
1
2

s(x2(t))− 1
2

η2s(x2(t))s2(x3(t)).

(44)

Let Δ f (x) = [s(x2(t)), 2c(x1(t)), 3s(x1(t))c(x3(t))]T, h̄(t) = [t/4 + 4] ∈ R3×1 and set
the η = 3, ξ = 2 and λ = 1, the ADIZNN model using the FTAF with ε1 = ε2 = ε3 =
ε4 = 0.5 and μ = 0.5, σ = 2. Figure 6a presents space tracks of the original system (37)
under no controller. Figure 6b–d indicate space tracks of system (38) under controller
(40), controller (42) and controller (44) from initial values X(0) = [0.1, 0.1, 0.1]T. The end
points of system (38) under controller (40), controller (42) and controller (44) are respectively
[1266, 1266, 1266]T, [0.9748, 0.9918,−0.0518]T and [−0.0033, 0.0047, 9.952× 10−7]T. Figure 7a
presents states of original system (37). It is obvious from the Figure 7b–d that the state
(i.e., errors) of system (38) under controller (40) and controller (42) cannot reach zero in a
three-dimensional space. At the same time, the state of and controller (44) can stable to
zero. From the above data, it can be seen that the phase of the SFM system under controller
(44) is fairly close to zero with a tiny error, and we hope that the end point of the phase
of controller is the closest to zero, so as to achieve the smallest error as possible. The
experimental results substantiate the effectiveness and feasibility of the controller (44). In
other words, a double integral design scheme can also effectively suppress the existing
linear noise and other additional interference items in the application of sine function
memristor chaotic system control.
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(a) (b)

(c) (d)

Figure 6. Phases of the original SFM system and the SFM under controller (40), controller (42) and
controller (44) from X(0) = [0.1, 0.1, 0.1]T. (a) Original SFM system; (b) By controller (40); (c) By
controller (42); (d) By controller (44).

(a) (b)

(c) (d)

Figure 7. State trajectories of the original SFM system and the SFM under controller (40), controller
(42) and controller (44) from X(0) = [0.1, 0.1, 0.1]T. (a) Original SFM system; (b) By controller (40);
(c) By controller (42); (d) By controller (44).
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6. Conclusions

An innovative ZNN with a double integral was proposed, which can settle the DSE un-
der linear noise. It is worth mentioning that the ADIZNN model has excellent convergence
and robustness, which has been verified by theory. Additionally, two different dimensional
experiments have revealed that the ADIZNN has more remarkable convergence and anti-
noise ability than the OZNN and IEZNN under various linear noises. Finally, phases and
states trajectories of the SFM chaotic system synthesized by several controllers have been
given to indicate that the controller based on ADIZNN has the highest convergence rate in
three-dimensional space.
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The following abbreviations are used in this manuscript:

DSE Dynamic Sylvester equation
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IEZNN integral enhanced ZNN model
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Abstract: Guaranteed-coverage and expected-coverage tolerance limits for Weibull models are
derived when, owing to restrictions on data collection, experimental difficulties, the presence of
outliers, or some other extraordinary reasons, certain proportions of the extreme sample values have
been censored or disregarded. Unconditional and conditional tolerance bounds are presented and
compared when some of the smallest observations have been discarded. In addition, the related
problem of determining minimum sample sizes for setting Weibull tolerance limits from trimmed
data is discussed when the numbers or proportions of the left and right trimmed observations are
fixed. Step-by-step procedures for determining optimal sampling plans are also presented. Several
numerical examples are included for illustrative purposes.

Keywords: missing or discarded data; guaranteed-coverage and expected-coverage tolerance limits;
optimal sampling plans; unconditional and conditional tolerance limits

MSC: 62F25; 62N05; 62N01; 62G30

1. Introduction

Tolerance limits are extensively employed in some statistical fields, including sta-
tistical quality control, economics, medical and pharmaceutical statistics, environmental
monitoring, and reliability analysis. In essence, a tolerance interval describes the behavior
of a fraction of individuals. Roughly speaking, the tolerance limits are bounds within which
one expects a stated proportion of the population to lie. Two basic types of such limits
have received considerable attention, β-content and β-expectation tolerance limits; see
Wilks [1], Guttman [2] and Fernández [3] and references therein. Succinctly, a β-content tol-
erance interval contains at least 100β% of the population with certain confidence, whereas
a β-expectation tolerance interval covers, on the average, a fraction β of the population.

In life-testing and reliability analysis, the tolerance limits are frequently computed
from a complete or right-censored sample. In this paper, the available empirical information
is provided by a trimmed sample, i.e., it is assumed that determined proportions q1 and q2
of the smallest and largest observations have been eliminated or censored. These kinds of
data are frequently used in several areas of statistical practice for deriving robust inferential
procedures and detecting influential observations, e.g., Prescott [4], Huber [5], Healy [6],
Welsh [7], Wilcox [8], and Fernández [9,10]. In various situations, some extreme sample
values may not be recorded due to restrictions on data collection (generally for reasons of
economy of money, time, and effort), experimental difficulties or some other extraordinary
reasons, or be discarded (especially when some observations are poorly known or the pres-
ence of outliers is suspected). In particular, a known number of observations in an ordered
sample might be missing at either end (single censoring) or at both ends (double censoring)
in failure censored experiments. Specifically, double censoring has been treated by many
authors in the statistical literature (among others, Healy [11], Prescott [12], Schneider [13],
Bhattacharyya [14], LaRiccia [15], Schneider and Weissfeld [16], Fernández [17,18], Escobar
and Meeker [19], Upadhyay and Shastri [20], and Ali Mousa [21]).
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The Weibull distribution provides a versatile statistical model for analyzing time-to-
event data, which is useful in many fields, including biometry, economics, engineering,
management, and the environmental, actuarial, and social sciences. In survival and relia-
bility analysis, this distribution plays a prominent role and has successfully been used to
describe animal and human disease mortality, as well as the reliability of both components
and equipments in industrial applications. This probability model has many practical
applications; e.g., Chen et al. [22], Tsai et al. [23], Aslam et al. [24], Fernández [25], Roy [26],
Almongy et al. [27], and Algarni [28]. If the Weibull shape parameter α = 1, the distribu-
tion is exponential, which plays an notable role in engineering; see Fernández et al. [29],
Lee et al. [30], Chen and Yang [31], and Yousef et al. [32]. The random variable is Rayleigh
distributed when α = 2. This case is also important in various areas; see Aminzadeh [33,34],
Raqab and Madi [35], Fernández [36], and Lee et al. [37].

This paper is devoted to deriving tolerance limits using a trimmed sample drawn from
a Weibull W(θ, α) population. It is assumed that α is appropriately chosen while the Weibull
scale parameter, θ, is unknown. The conditionality principle, proposed primarily by Fisher,
is adopted when some of the smallest observations have been disregarded. The related
problem of determining minimum sample sizes is also tackled. In the exponential case,
Fernández [38,39] presented optimal two-sided tolerance intervals and tolerance limits for
k-out-of-n systems, respectively. On the basis of a complete Rayleigh sample (i.e., α = 2),
Aminzadeh [33] found β-expectation tolerance limits and discussed the determination of
sample size to control stability of coverage, whereas Aminzadeh [34] derived approximate
tolerance limits when θ depends on a set of explanatory variables. Weibull tolerance limits
based on complete samples were obtained in Thoman et al. [40].

The structure of the remainder of this work is as follows. The sampling distribution
of a Weibull trimmed sample is provided in the next section. Section 3 presents β-content
tolerance limits based on W(θ, α) trimmed data. In addition, the problem of determining
optimal sample sizes is discussed. Mean-coverage tolerance limits are derived in Section 4.
Optimal sampling plans for setting β-expectation tolerance limits are also deduced. The cor-
responding unconditional and conditional bounds are compared in Sections 3 and 4 when
the lower trimming proportion, q1, is positive, whereas Section 5 includes several numerical
examples, reported by Sarhan and Greenberg [41], Meeker and Escobar [42], and Lee and
Wang [43], for illustrative purposes. Finally, Section 6 offers some concluding remarks.

2. Weibull Trimmed Samples

The probability density function (pdf) of a random variable X which has a Weibull
distribution with positive parameters θ and α, i.e., X ∼ W(θ, α), is defined by

fX(x | θ, α) =
αxα−1/θα

exp
{
(x/θ)α} , x > 0. (1)

Its k-th moment is obtained to be E[Xk | θ, α] = θkΓ(1 + k/α), k = 1, 2, ..., where Γ(·)
is the well-known gamma function. The parameter α controls the shape of the density
whereas θ determines its scaling. Since the hazard rate is h(x | θ, α) = (α/θα)xα−1 for
x > 0, the Weibull law may be used to model the survival distribution of a population with
increasing (α > 1), decreasing (α < 1), or constant (α = 1) risk. Examples of increasing
and decreasing hazard rates are, respectively, patients with lung cancer and patients who
undergo successful major surgery. Davis [44] reports several cases in which a constant risk
is reasonable, including payroll check errors and radar set component failures.

In many practical applications, Weibull distributions with α in the range 1 to 3 seem
appropriate. If 3 ≤ α ≤ 4, the W(θ, α) pdf has a near normal shape; for large α (e.g., α ≥ 10),
the shape of the density is close to that of the (smallest) extreme value density. The
Weibull density becomes more symmetric as α grows. In Weibull data analysis it is quite
habitual to assume that the shape parameter, α, is a known constant. Among other authors,
Soland [45], Tsokos and Rao [46], Lawless [47], and Nordman and Meeker [48] provide
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justifications. The α value may come from previous or related data or may be a widely
accepted value for the problem, or even an expert guess. In reliability analysis, α is
often tied to the failure mechanism of the product and so engineers might have some
knowledge of it. Klinger et al. [49] provide tables of Weibull parameters for various devices.
Abernethy [50] supplies useful information about past experiments with Weibull data.
Several situations in which it is appropriate to consider that α is constant are described in
Nordman and Meeker [48]. Among many others, Danziger [51], Tsokos and Canavos [52],
Moore and Bilikam [53], Kwon [54], and Zhang and Meeker [55] also utilize a given Weibull
shape parameter.

Consider a random sample of size n from a Weibull distribution (1) with unknown
scale parameter θ ∈ Θ = (0, ∞), and let Xr:n, ..., Xs:n be the ordered observations remaining
when the (r − 1) smallest observations and the (n − s) largest observations have been
discarded or censored, where 1 ≤ r ≤ s ≤ n. The trimming proportions q1 = (r − 1)/n and
q2 = 1 − s/n, as well as the shape parameter α, are assumed to be predetermined constants.

The pdf of the (q1, q2)-trimmed sample X = (Xr:n, ..., Xs:n) at x = (xr:n, ..., xs:n) is then
defined by

fX(x | θ, α) =
n!αs−r+1{1 − exp(−xα

r:n/θα)}r−1 ∏s
i=r xα−1

i:n

(r − 1)!(n − s)!θ(s−r+1)α exp{T(x)/θα} , (2)

for 0 < xr:n < · · · < xs:n, where T(x) is the observed value of

T ≡ T(X) =
s

∑
i=r

Xα
i:n + (n − s)Xα

s:n.

Clearly, T is sufficient when r = 1, whereas the sample evidence is contained in the
sufficient statistic (Xr:n, T) if r > 1.

The maximum likelihood estimator (MLE) of θ, denoted by θ̂ ≡ θ̂(X), can be derived
from the equation ∂ ln fX(X | θ, α)/∂θ = 0. It is well-known that θ̂ is the unique solution to
the equation

(θ̂)α =
Xα

r:n(r − 1)/(s − r + 1)
1 − exp([Xα

r:n/(θ̂)α])
+

T
s − r + 1

. (3)

See, e.g., Theorem 1 in Fernández et al. [29]. Therefore, the MLE of θ is given explicitly by
θ̂ = (T/s)1/α when r = 1. Otherwise, θ̂ must be found upon using an iterative procedure.

3. Guaranteed-Coverage Tolerance Limits

Given the Weibull (q1, q2)-trimmed sample X = (Xr:n, ..., Xs:n) and β, γ ∈ (0, 1), a
statistic Lβ,γ ≡ Lβ,γ(X) is called a lower β-content tolerance limit at level of confidence γ
(or simply a lower (β, γ)-TL for short) of the W(θ, α) distribution if

Pr X|θ,α
{

Pr X|θ,α(X > Lβ,γ
) ≥ β

}
= γ (4)

for all θ > 0, where Pr X|θ,α{·} and Pr X|θ,α(·) refer to the respective sampling distribution of
X and X under the nominal values of θ and α, which are defined in (1) and (2), respectively.

According to (4), one may guarantee with confidence γ that at least 100β% of popu-
lation measurements will exceed Lβ,γ. In other words, with confidence γ, the probability
that a future observation of X ∼ W(θ, α) will surpass Lβ,γ is at least β. Clearly, an upper
(β, γ)-TL, Uβ,γ ≡ Uβ,γ(X), is provided by L1−β,1−γ. In this manner, one can be 100γ%
confident that at least 100β% of Weibull W(θ, α) observations will be less than Uβ,γ.

Assuming that 1 < r = s, as Xr:n is minimal sufficient for θ, it is logical to consider a
lower (β, γ)-TL for the form Lβ,γ = Cβ,γXr:n, where, from (4), Cβ,γ must satisfy

Pr
(

exp
{
−(Cβ,γXr:n/θ

)α
}
≥ β

)
= γ.
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Since exp(−Xα
r:n/θα) ∼ Beta(n − r + 1, r), it follows that β1/(Cβ,γ)

α
is merely the (1 − γ)-

quantile of the Beta(n − r + 1, r) distribution. Thus, Cβ,γ satisfies the equation

r−1

∑
k=0

(n
k){1 − β1/(Cβ,γ)

α}k

β(k−n)/(Cβ,γ)α = 1 − γ.

Alternatively, Cβ,γ may be expressed explicitly as

Cβ,γ =

(
− ln β

ln{1 + rF2r,2(n−r+1);γ/(n − r + 1)}

)1/α

, (5)

where F2r,2(n−r+1);γ denotes the γ-quantile of the F-distribution with 2r and 2(n − r + 1)
degrees of freedom (df). In particular, Cβ,γ = {n ln β/ ln(1 − γ)}1/α when r = s = 1,
whereas Cβ,γ = {ln β/ ln(1 − γ1/n)}1/α if r = s = n.

If 1 = r ≤ s, it is clear that T is minimal sufficient for θ, which implies that it is
sensible to assume that Lβ,γ is proportional to T1/α, i.e., Lβ,γ = Cβ,γT1/α. In this situation,
it can be shown that 2T/θα ∼ χ2

2s, where χ2
2s represents the chi-square distribution with

2s df. Observe that, letting X0:n ≡ 0, the pivotal 2T/θα coincides with ∑s
i=1 Zi, where

Zi = 2(n − i + 1)
(
Xα

i:n − Xα
i−1:n

)
/θα, i = 1, .., s, are mutually independent χ2

2 variables.
Since, in view of (4),

Pr
(
exp

{−(Cβ,γ)
αT/θα

} ≥ β
)
= Pr

(
2T/θα ≤ −2 ln β/(Cβ,γ)

α
)
= γ,

it turns out that Cβ,γ = (−2 ln β/χ2
2s;γ)

1/α. Consequently, Lβ,γ = (−2T ln β/χ2
2s;γ)

1/α.

3.1. Unconditional and Conditional Tolerance Limits

When focusing on the more general case, in which 1 < r < s, obviously (Xr:n, T) is a
sufficient statistic for θ. Moreover, if R = T − (n − r + 1)Xα

r:n, then 2R/θα ∼ χ2
2(s−r) since

this pivotal quantity can be expressed as the sum of the (s − r) independent χ2
2 variables

Zr+1, Zr+2, ..., Zs. Therefore, it can be shown that

Lβ,γ = Cβ,γR1/α = (−2R ln β/χ2
2(s−r);γ)

1/α

constitutes a (unconditional) lower (β, γ)-TL. Notice, however, that this limit is based on
an insufficient statistic R.

An alternative and more appropriate TL can be constructed assuming that A = Xα
r:n/R

is an ancillary statistic. Note that, by itself, A does not contain any information about θ,
and that the statistic (R, A) is minimal sufficient for θ. Therefore, given A, the statistic R is
conditionally sufficient. In accordance with the conditional principle suggested by Fisher, a
tolerance limit should be based on the distribution of R given the observed value of the
ancillary statistic A. Then, adopting the above principle and assuming that A = a, it is
sensible to look for a conditional lower (β, γ)-TL of the form La

β,γ = Ca
β,γR1/α, where

Pr X|θ,α
{

Pr X|θ,α
(

X > La
β,γ

)
≥ β | A = a

}
= γ. (6)

Thus, as Pr(R/θα ≤ − ln β/(Ca
β,γ)

α | A = a) = γ, it follows that − ln β/(Ca
β,γ)

α is precisely
the γ-quantile of the distribution of R/θα conditional to A = a.

The pdf of Y = R/θα given A = a is derived to be

fY(y | a) =
ys−r exp[−{1 + (n + 1 − r)a}y]

(s − r)!G[a]{1 − exp(−ay)}1−r , y > 0,

111



Axioms 2023, 12, 351

where

G[a] =
r−1

∑
k=0

(−1)i(r−1
k )

{(k + n + 1 − r)a + 1}s−r+1 ,

whereas the cumulative distribution function of Y conditional to A = a is defined by

Pr(Y ≤ y | a) = 1 − G∗[y; a]/G[a], y > 0,

where

G∗[y; a] =
r−1

∑
i=0

s−r

∑
j=0

(−1)i(r−1
i )yj{1 + (n − r + 1 + i)a}j−s+r−1

j! exp[{1 + (n − r + 1 + i)a}y]
.

Consequently, if ya
γ denotes the γ-quantile of the distribution of Y given A = a, i.e., ya

γ

satisfies the equation G∗[ya
γ; a] = (1 − γ)G[a], it is obvious that Ca

β,γ = (− ln β/ya
γ)

1/α. In

this way, it follows that La
β,γ = (−R ln β/ya

γ)
1/α.

Of course, LA
β,γ ≡ LA

β,γ(X) is also a lower (β, γ)-TL in the ordinary unconditional
sense because

Pr X|θ,α
{

Pr X|θ,α
(

X > LA
β,γ

)
≥ β

}
coincides with

E
[
Pr X|θ,α

{
Pr X|θ,α

(
X > LA

β,γ

)
≥ β | A

}]
= E[γ] = γ.

Table 1 compares, for selected values of r, s, and n, the unconditional and conditional
lower (β, γ) tolerance factors, Cβ,γ and Caε

β,γ, corresponding to the W(θ, α) distribution
when α = 1, (β, γ) = (0.90, 0.95) and A = aε, ε = 0.01, 0.25, 0.75, 0.99, where aε denotes the
ε-quantile of the distribution of A. It can be proven that aε is the unique positive solution in
a to the following equation

r−1

∑
i=0

(−1)ir(r−1
i )(n

r)/(n − r + 1 + i)

{1 + (n − r + 1 + i)a}s−r = 1 − ε.

Table 1. Unconditional and conditional lower (β, γ) tolerance factors, Cβ,γ and Caε

β,γ, for the W(α, θ)

model based on X = (Xr:n, ..., Xs:n) when α = 1, β = 0.90, and γ = 0.95.

r s n Cβ,γ Ca0.01

β,γ Ca0.25

β,γ Ca0.75

β,γ Ca0.99

β,γ

2 6 10 0.0135885 0.0103609 0.0124313 0.0183526 0.0450331
10 20 0.00801336 0.00682716 0.00751394 0.00921814 0.0147077

4 8 30 0.0135885 0.00934313 0.0129005 0.0211442 0.0562717
20 40 0.00456163 0.00396171 0.00437034 0.00506643 0.00673139

6 10 50 0.0135885 0.00894574 0.0133632 0.0230475 0.0636906
30 60 0.00323337 0.00285084 0.00312617 0.00353006 0.00438183

It is worthwhile to mention that the difference between Cβ,γ and Caε
β,γ might be large

when A takes extreme percentiles (i.e., when ε is near to 0 or 1). For instance, if (r, s, n) =
(4, 8, 30), the unconditional factor is Cβ,γ = 0.01359, whereas the respective conditional
factors Ca0.01

β,γ and Ca0.99
β,γ are given by 0.009343 and 0.05627. The difference between Cβ,γ and

Caε
β,γ becomes smaller when n grows to infinity and the trimming proportions, q1 and q2,

are fixed. Indeed, provided that s − r is large, Cβ,γ and Ca
β,γ are quite similar. In addition, it

turns out that

Cβ,γ � C∗
β,γ =

( − ln β

s − r + zγ
√

s − r

)1/α

from the Wilson–Hilferty transformation (see, e.g., Lawless [47], p. 158), where zγ is
the γ-quantile of the standard normal distribution. For instance, Cβ,γ = 0.001862 and
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C∗
β,γ = 0.001880 when (r, s, n) = (5, 50, 55), α = 1 and (β, γ) = (0.90, 0.95). In this case,

(Ca0.01
β,γ , Ca0.99

β,γ ) is (0.001741, 0.002170). If one assumes now that (r, s, n) = (5, 90, 95), then

Cβ,γ = 0.001046 and C∗
β,γ = 0.001051, whereas (Ca0.01

β,γ , Ca0.99
β,γ ) = (0.001007, 0.001134).

3.2. Sample-Size Determination

The choice of sample size plays a primordial role in the design of most statistical
studies. A traditional approach is to assume that it is desired to find the smallest value of n
(and the corresponding values of r and s), such that the lower (β, γ)-TL based of a (q1, q2)-
trimmed sample X = (Xr:n, ..., Xs:n) drawn from X ∼ W(α, θ), Lβ,γ ≡ Lβ,γ(X), satisfies

Pr X|θ,α
{

Pr X|θ,α(X > Lβ,γ
) ≥ β′

}
≤ γ′ (7)

for all θ > 0, and certain β′ > β and γ′. In this way, one could affirm that at least 100β% of
population measurements will exceed Lβ,γ with confidence γ, and that at least 100β′% of
population measurements will surpass Lβ,γ with confidence at most γ′. That is to say, the
random coverage of (Lβ,γ(X),+∞) is at least β with probability γ and it is at least β′ > β
with a probability not exceeding γ′.

In this subsection, a sampling plan (r, s, n) satisfying condition (7) will be named
feasible. Our target is obtaining the optimal (minimum sample size) feasible plan (r, s, n)
for setting the lower (β, γ)-TL. For later use, �x� and �x� will represent the rounded-up
and -down values of x to integer numbers.

Supposing that 1 < r = s ≤ n, it is clear that Lβ,γ = Cβ,γXr:n and Lβ′ ,γ′ = Cβ′ ,γ′Xr:n,
where Cβ,γ and Cβ′ ,γ′ are defined in accordance with (5). Thus, condition (7) will hold
if and only if Cβ,γ ≥ Cβ′ ,γ′ . Therefore, (r, r, n) is a feasible sampling plan if and only if
g1(r, n) ≥ 0, where

g1(r, n) =
ln{1 + rF2r,2(n−r+1);γ′/(n − r + 1)}
ln{1 + rF2r,2(n−r+1);γ/(n − r + 1)} − ln β′

ln β
.

Since F2r,2(n−r+1);γ −→ χ2
2r;γ/(2r) when n → ∞ and ln(1 + t)/t −→ 1 as t → 0, there

exists a value of n, such that (r, r, n) is feasible if h1(r) > 0, where

h1(r) = χ2
2r;γ′/χ2

2r;γ − ln β′/ ln β.

Otherwise, the inequation g1(r, n) ≥ 0 has no solution in n. On the other hand, provided
that 1 = r ≤ s ≤ n, as Lβ,γ = (−2T ln β/χ2

2s;γ)
1/α is the lower (β, γ)-TL, the sampling plan

(1, s, n) will be feasible if and only if h1(s) ≥ 0. Similarly, if 1 < r < s ≤ n, the plan (r, s, n)
would be feasible if and only if h1(s − r) ≥ 0 because Lβ,γ = (2R ln β/χ2

2(s−r);γ)
1/α.

The determination of the optimal feasible sampling plan for setting the lower (β, γ)-TL
assuming fixed numbers of trimmed observations (Case I) or fixed trimming proportions
(Case II) will be discussed in the remainder of this subsection.

Case I: Fixed numbers of left and right trimmed observations

Suppose that the researcher wishes to find the optimal feasible plan (r, s, n), such that
(r − 1) = δ1 and (n − s) = δ2, where δ1 and δ2 are prespecified non-negative integers. Then,
if g1(r, n) ≥ 0 with r = δ1 + 1 and n = δ1 + δ2 + 1, it follows that (δ1 + 1, δ1 + 1, δ1 + δ2 + 1)
would be the optimal plan. Otherwise, if m denotes the smallest integer value, such that
h1(m) ≥ 0, it turns out that

(r, s, n) = (δ1 + 1, δ1 + m + I(δ1 > 0), δ1 + δ2 + m + I(δ1 > 0))

would be the optimal plan, where I(·) is the indicator function. Observe that m will always
exist because χ2

2k;γ′/χ2
2k;γ −→ 1 as k → ∞ and ln β′/ ln β < 1. It is worthwhile to point out
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that m = 1 if and only if γ′ ≥ 1 − (1 − γ)ln β′/ ln β since χ2
2;ε = −2 ln(1 − ε) for ε ∈ (0, 1).

In particular, m is always 1 when γ′ ≥ γ. Note also that (δ1 + 1, δ1 + 1, δ1 + δ2 + 1) is not
feasible when m > δ1 + 1.

Due to the fact that χ2
2k;ε � 2k{1 − 1/(9k) + zε/(9k)1/2}3 when k ≥ 5 and ε ∈ (0, 1)

from Wilson–Hilferty transformation, it can be proven that m is approximately equal to the
smallest integer greater than or equal to ρ, i.e., m � �ρ�, where

ρ = {ω + (ω2 + 1/9)1/2}2 and ω =
zγ′ − zγ(ln β′/ ln β)1/3

6{(ln β′/ ln β)1/3 − 1}
. (8)

It can be proven that the approximation m � �ρ� is exact in practically all cases. Nonethe-
less, a method for determining the proper value of m would be immediate: using m0 = �ρ�
as initial the guess of m, calculate h1(m0) and h1(m0 − 1). If h1(m0) ≥ 0 and h1(m0 − 1) < 0,
then m = m0; otherwise, set m0 = m0 − 1 if h1(m0) < 0 or set m0 = m0 + 1 if h1(m0) ≥ 0,
and repeat again this process.

Case II: Fixed left and right trimming proportions

Assuming that πi ≥ 0, i = 1, 2, and π1 + π2 < 1, consider now that the researcher
desires to obtain the minimum sample size feasible plan (rn, sn, n) with rn = �nπ1 + 1� and
sn = �n(1 − π2)�. In such a case, the left and right trimming proportions, q1 and q2, are
approximately π1 and π2, respectively. Furthermore, rn ≤ sn and the available observations
would be at least �n(1 − π1 − π2)�.

Our aim is to determine the smallest integer n, such that g1(rn, n) ≥ 0 if 1 < rn = sn
or such that h1(sn − rn + I(rn = 1)) ≥ 0 otherwise. As before, m will represent the smallest
integer satisfying h1(m) ≥ 0. It is important to take into account that if (rn, sn, n) is a feasible
plan, then rn must be greater than or equal to m when rn = sn. Otherwise, as

sn − rn + I(rn = 1) = m, sn ≥ m + 1 − I(rn = 1) and n ≥ sn,

it follows that n ≥ n0, where

n0 = max
{⌈

m − 1 − I(rn = 1)
1 − π1 − π2

⌉
,
⌈

m − I(rn = 1)
1 − π2

⌉
, m + 1 − I(rn = 1)

}
. (9)

In addition, since n(1 − π2)− (nπ1 + 1) ≤ m−I(rn = 1), it turns out that

n ≤ �{m + 1 − I(rn = 1)}/(1 − π1 − π2)�. (10)

On the other side, if rn = sn = k > 1, it is clear that k ≤ nπ1 + 1 and n(1 − π2) ≤ k. As
a consequence,

�(k − 1)/π1� ≤ n ≤ �k/(1 − π2)�.

The above results may be helpful for finding the optimal sampling plan. Once the researcher
chooses the desired values of β, γ, β′, γ′, π1, π2 ∈ (0, 1), with β < β′ and π1 +π2 < 1, a step-
by-step procedure for determining the smallest sample size plan (rn, sn, n) satisfying (7),
where rn = �nπ1 + 1� and sn = �n(1 − π2)�, may be described as follows:

• Step 1: If γ′ ≥ 1 − (1 − γ)ln β′/ ln β, then set (rn, sn, n) = (1, 1, 1) and go to step 10.
Otherwise, find the smallest integer m, such that h1(m) ≥ 0 using m0 = �ρ� as initial
guess (see Case I), where ρ is given in (8).

• Step 2: Define n = n0 assuming that rn = 1, where n0 is provided in (9), and compute
rn and sn. If rn > 1, redefine n = n0 and recalculate rn and sn.

• Step 3: While (sn − rn + I(rn = 1) < m) set n = n + 1 and recompute rn and sn.
• Step 4: If rn < m, then go to step 10. Otherwise, take k = m.
• Step 5: If k > �1/{1 − π1/(1 − π2)}�, go to step 10.
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• Step 6: Take n1 = �(k − 1)/π1�.
• Step 7: If n1 > n, go to step 10.
• Step 8: If n1 > �k/(1 − π2)�, set k = k + 1 and go to step 7.
• Step 9: If g1(rn1 , n1) ≥ 0, then set (rn, sn, n) = (k, k, n1) and k = k + 1, and go to step 6.

Otherwise, let n1 = n1 + 1 and go to step 7.
• Step 10: The optimal sampling plan is given by (rn, sn, n).

Table 2 reports the optimal sampling plans (r, s, n) for setting lower (β, γ)-TLs based
on the Weibull W(θ, α) trimmed sample X = (Xr:n, ..., Xs:n) when (i) q1 � 0.2 and q2 � 0.3
and (ii) r − 1 = 2 and n − s = 3.

Table 2. Optimal sampling plans (r, s, n) for setting lower (β, γ)-TLs for the W(α, θ) model based on
X = (Xr:n, ..., Xs:n) when (i) q1 � 0.2 and q2 � 0.3 and (ii) r − 1 = 2 and n − s = 3.

q1 � 0.2, q2 � 0.3 r = 3, n − s = 3

β β′ γ γ′ r s n r s n

0.80 0.85 0.90 0.25 16 54 76 3 41 44
0.50 6 21 29 3 18 21

0.95 0.25 21 73 103 3 55 58
0.50 10 35 49 3 28 31

0.90 0.95 0.90 0.25 4 12 16 3 11 14
0.50 1 3 3 3 3 6

0.95 0.25 4 14 19 3 13 16
0.50 2 7 9 3 8 11

For instance, consider that (β, γ) = (0.8, 0.9) and (β′, γ′) = (0.85, 0.25). Assuming
that the researcher desires around, 20% and 30% of the smallest and the largest observations
be trimmed, respectively, (i.e., q1 � π1 = 0.2 and q2 � π2 = 0.3), as m = �ρ� = 38, it
follows from (9) and (10) that 72 ≤ n ≤ 78. The optimal sampling plan would be precisely
(16, 54, 76), i.e., one needs a sample of size n = 76, but the smallest 16 and the largest
24 observations are disregarded or censored. The left and right trimming proportions are
exactly q1 = 0.1974 and q2 = 0.2895. If it was required that the first two and last three data
are discarded or censored (i.e., r − 1 = 2 and n − s = 3), the optimal sampling would be
(3, 41, 44). On the other hand, suppose that (β, γ) = (0.9, 0.9) and (β′, γ′) = (0.95, 0.50).
In that case, m also coincides with �ρ� = 3. If the researcher assumes that π1 = 0.2 and
π2 = 0.3, then n0 = 3 from (9), whereas (rn, sn, n) = (1, 3, 3) is the optimal plan since
sn − rn+I(rn = 1) ≥ m. The minimum sample size plan would be (3, 3, 6) provided that
r − 1 = 2 and n − s = 3.

4. Expected-Coverage Tolerance Limits

Given the Weibull (q1, q2)-trimmed sample X = (Xr:n, ..., Xs:n) and β ∈ (0, 1), a statistic
Lβ ≡ Lβ(X) is called a lower β-expectation tolerance limit (or lower β-ETL for simplicity)
of the W(θ, α) distribution if it satisfies

EX|θ,α
[
Pr X|θ,α(X > Lβ

)]
= β (11)

for all θ > 0. In this way, the probability that a future observation of X will surpass Lβ is
expected to be β. Obviously, an upper β-ETL, Uβ ≡ Uβ(X), is given by L1−β.

Provided that β ∈ (0, 1), our purpose is determining β-ETLs based on the trimmed
sample X = (Xr:n, ..., Xs:n) drawn from X ∼ W(θ, α).

Suppose that 1 < r = s, in which case Xr:n is minimal sufficient for θ. It is therefore
rational to consider a lower β-ETL of the form Lβ = DβXr:n, where, from (11), the constant
Dβ must satisfy

EX|θ,α
[
exp

{
−(DβXr:n/θ

)α
}]

= β.
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Since exp(−Xα
r:n/θα) ∼ Beta(n − r + 1, r), Dβ is the unique positive solution to the follow-

ing equation in D

ζ(D) = B(n − r + 1 + Dα, r)/B(n − r + 1, r) = β,

where B(·, ·) is the beta function, i.e., Dβ = ζ−1(β). Note that ζ(·) is continuous and
decreasing with ζ(0) = 1 and ζ(+∞) = 0. Therefore, Dβ is the positive constant which
satisfies the equation

r−1

∑
i=0

(−1)i(r−1
i )r(n

r)

n − r + 1 + i + (Dβ)α
= β.

Observe that Dβ = {n(1 − β)/β}1/α when r = s = 1. In general, as

r−1

∏
i=0

{1 + (Dβ)
α/(n − i)} = 1/β,

it is clear that

(n − r + 1)1/α(β−1/r − 1)1/α ≤ Dβ ≤ n1/α(β−1/r − 1)1/α.

The above lower and upper bounds on Dβ might serve as a starting point for iterative
interpolation methods, such as regula falsi. In addition,

Dβ � (n − r/2 + 1/2)1/α(β−1/r − 1)1/α

when r/n is small.
If 1 = r ≤ s, as T is minimal sufficient for θ, it is evident that Lβ = DβT1/α is an appro-

priate lower β-ETL. Since 2T/θα ∼ χ2
2s, the tolerance factor is given by Dβ = (β−1/s − 1)1/α.

4.1. Unconditional and Conditional Tolerance Limits

In the more general case in which 1 < r < s, the statistic (Xr:n, T) is minimal sufficient.
Since 2R/θα ∼ χ2

2(s−r), where R = T − (n − r + 1)Xα
r:n, it is obvious that Lβ = DβR1/α is a

(unconditional) lower β-ETL when Dβ = {β1/(r−s) − 1}1/α. The lower and upper β-ETLs
are then given by

Lβ =
[{

β1/(r−s) − 1
}

R
]1/α

and Uβ =
[{

(1 − β)1/(r−s) − 1
}

R
]1/α

.

Nonetheless, as in Section 3, these limits are based on an insufficient statistic R. As men-
tioned previously, (R, A) is minimal sufficient for θ and A = Xα

r:n/R is pivotal for θ. Thus,
if ones adopts the conditionality principle and assumes that A = a, it is then natural to seek
a conditional lower β-ETL of the form La

β = Da
βR1/α, where

EX|θ,α
[
Pr X|θ,α

(
X > La

β

)
| A = a

]
= β. (12)

After some calculations, it follows from (12) that

E
[
exp

{
−(Da

β)
αR/θα

}
| A = a

]
=

G[a/{1 + (Da
β)

α}]
G[a]{1 + (Da

β)
α}s−r+1 = β.

Manifestly, the conditional lower β-ETL given A, LA
β , is also an unconditional lower

β-ETL because

EX|θ,α
[
Pr X|θ,α

(
X > LA

β

)]
= E

[
E
[
Pr X|θ,α

(
X > LA

β

)
| A

]]
= E[β] = β
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Table 3 compares unconditional and conditional lower β-expectation W(α, θ) tolerance
factors, Dβ and Daε

β , for selected values of r, s, and n when α = 1, β = 0.90 and A = aε,
ε = 0.01, 0.25, 0.75, 0.99.

Table 3. Unconditional and conditional lower β-expectation tolerance factors, Dβ and Daε

β , for the
W(α, θ) model based on X = (Xr:n, ..., Xs:n) when α = 1 and β = 0.90.

r s n Dβ Da0.01

β Da0.25

β Da0.75

β Da0.99

β

2 6 10 0.0266901 0.0183145 0.0219756 0.0324522 0.0796828
10 20 0.0132572 0.0107789 0.0118633 0.0145544 0.0232244

4 8 30 0.0266901 0.0154573 0.0213445 0.0349895 0.0931401
20 40 0.00660676 0.00553705 0.00610823 0.00708131 0.00940913

6 10 50 0.0266901 0.0141242 0.0211005 0.0363961 0.100592
30 60 0.00439967 0.00376406 0.00412769 0.00466106 0.00578604

As before, the difference between Dβ and Daε
β might be considerable when ε is near

to 0 or 1. Nevertheless, Dβ and Daε
β are quite similar when s − r is large. For instance,

Dβ = 0.001240, Da0.01
β = 0.001189, and Da0.99

β = 0.001339 when (r, s, n) = (5, 90, 95), α = 1,
and β = 0.90.

4.2. Sample-Size Determination

Frequently, the researcher wishes to choose the minimum sample size to achieve a
specified criterion for β-ETLs. In our circumstances, a classical criterion is to require the
maximum variation of the content of the β-expectation tolerance interval

(Lβ,+∞
)

around
its mean value, β, to be sufficiently small (say, less than ε ∈ (0, min{β, 1 − β})) with a
determined minimum stability (say λ ∈ (0, 1)). In other words, the coverage of the random
interval (Lβ(X),+∞) must be contained in (β − ε, β + ε) with a probability of at least λ, i.e.,

Pr X|θ,α
(∣∣∣Pr X|θ,α(X > Lβ

)− β
∣∣∣ < ε

)
≥ λ (13)

or, equivalently, Pr X|θ,α{ln(β − ε) < −(Lβ/θ)α < ln(β + ε)
} ≥ λ for all θ > 0. In this

subsection, if condition (13) is satisfied, the corresponding sampling plan (r, s, n) will be
called feasible.

Assuming that 1 < r = s ≤ n, as exp(−Xα
r:n/θα) ∼ Beta(n − r + 1, r) andLβ = DβXr:n,

where Dβ = ζ−1(β), it is deduced that the sampling plan (r, r, n) is feasible if and only if
g2(r, n) ≥ 0, in which

g2(r, n) =
r−1

∑
k=0

(
n
k

)⎡⎢⎣
{

1 − (β + ε)1/(Dβ)
α
}k

(β + ε)(k−n)/(Dβ)α −
{

1 − (β − ε)1/(Dβ)
α
}k

(β − ε)(k−n)/(Dβ)α

⎤⎥⎦− λ.

Provided that 1 = r ≤ s ≤ n, the sampling plan (1, s, n) will be feasible if and only if
h2(s) ≥ 0, where

h2(s) =
s−1

∑
i=0

(βi/s/i!)
(1 − β1/s)i

[
{− ln(β + ε)}i

(β + ε)1/(1−β−1/s)
− {− ln(β − ε)}i

(β − ε)1/(1−β−1/s)

]
− λ,

in view of that Lβ = DβT1/α with Dβ = (β−1/s − 1)1/α and 2T/θα ∼ χ2
2s. In particular, the

plan (1, 1, n) would be feasible if and only if (β + ε)β/(1−β) − (β − ε)β/(1−β) ≥ λ. Finally, if
1 < r < s ≤ n, it can be shown that (r, s, n) is feasible if and only if h2(s − r) ≥ 0.

The determination of the optimal feasible sampling plan for setting the lower β-ETL
assuming fixed numbers of trimmed observations (Case I) or fixed trimming proportions
(Case II) will be tackled in the remainder of this subsection.
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Case I: Fixed numbers of left and right trimmed observations

In this situation, the researcher desires to find the optimal feasible plan (r, s, n), such
that (r − 1) = δ1 and (n − s) = δ2, where δ1 and δ2 are prespecified non-negative integers.
Then, (δ1 + 1, δ1 + 1, δ1 + δ2 + 1) would be the optimal plan if g2(r, n) ≥ 0 with r = δ1 + 1
and n = δ1 + δ2 + 1. Otherwise, if m is now the smallest integer value, such that h2(m) ≥ 0,
it turns out that the optimal plan would be

(r, s, n) = (δ1 + 1, δ1 + m + I(δ1 > 0), δ1 + δ2 + m + I(δ1 > 0))

Note that m will always exist because h2(k) > 0 when k is sufficiently large. It is important
to mention that m = 1 if and only if

h2(1) = (β + ε)β/(1−β) − (β − ε)β/(1−β) − λ ≥ 0.

Moreover, if r = s and n → ∞, as 2nXα
r:n/θα converges in law to a χ2

2r distribution and
Dβ/n1/α −→ (β−1/r − 1)1/α, it follows that g2(r, n) −→ h2(r). Consequently, if (r, r, n)
is a feasible plan, it is indispensable that r ≥ m. Hence, (δ1 + 1, δ1 + 1, δ1 + δ2 + 1) is not
feasible when m > δ1 + 1.

Case II: Fixed left and right trimming proportions

Consider that it is now needed to obtain the minimum sample size feasible plan (rn, sn, n)
with rn = �nπ1 + 1� and sn = �n(1 − π2)�, where πi ≥ 0, i = 1, 2, and π1 + π2 < 1. Our
goal in this case is to determine the smallest integer n such that g2(rn, n) ≥ 0 if 1 < rn = sn
or such that h2(sn − rn + I(rn = 1)) ≥ 0 otherwise.

Assume that (rn, sn, n) is a feasible plan and also that m is the smallest integer satisfying
h2(m) ≥ 0. Then, it turns out that rn ≥ m when rn = sn, whereas n ≥ n0 if rn < sn, where
n0 is given in (9).

Given β, ε, λ, π1, π2 ∈ (0, 1), with ε < min{β, 1 − β}, and π1 + π2 < 1, a step-by-step
procedure for determining the minimum sample size plan (rn, sn, n) satisfying (13), where
rn = �nπ1 + 1� and sn = �n(1 − π2)�, would be similar to that presented in Section 3.2,
except that g1(rn1 , n1) is replaced by g2(rn1 , n1) in step 9, and step 1 is now as follows:

• Step 1: If (β + ε)β/(1−β) − (β − ε)β/(1−β) ≥ λ, then set (rn, sn, n) = (1, 1, 1) and go to
step 10. Otherwise, find the smallest integer m, such that h2(m) ≥ 0.

Table 4 shows the optimal sampling plans (r, s, n) for setting lower β-ETLs based on
the Weibull W(θ, α) trimmed sample X = (Xr:n, ..., Xs:n) for selected values of β, ε and δ
when (i) q1 � 0.2 and q2 � 0.3 and (ii) r − 1 = 2 and n − s = 3.

In particular, if β = 0.9, ε = 0.03, δ = 0.9 and the experimenter desires that at least 20%
of the smallest and 30% of the largest observations were trimmed, the minimum sample
size for setting the lower β-ETL would be n = 53, whereas the smallest 10 and the largest
15 data would be disregarded or censored (i.e., r = 11 and s = 38). On the other hand, if
the experimenter wishes to discard the first two and last three data, the required sample
size is n = 33; obviously, the optimal sampling plan would be (3, 30, 33).
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Table 4. Optimal sampling plans (r, s, n) for setting lower β-ETLs for the W(α, θ) model based on
X = (Xr:n, ..., Xs:n) when (i) q1 � 0.2 and q2 � 0.3 and (ii) r − 1 = 2 and n − s = 3.

q1 � 0.2, q2 � 0.3 r = 3, n − s = 3

β ε δ r s n r s n

0.80 0.03 0.70 16 54 76 3 41 44
0.90 39 135 192 3 99 102

0.06 0.70 4 14 19 3 13 16
0.90 10 34 48 3 27 30

0.90 0.03 0.70 5 16 22 3 14 17
0.90 11 38 53 3 30 33

0.06 0.70 1 3 3 3 3 6
0.90 3 10 13 3 10 13

5. Illustrative Examples

Three numerical examples are considered in this section to illustrate the results devel-
oped above.

5.1. Example 1

An experiment in which students were learning to measure strontium-90 concentra-
tions in samples of milk was considered by Sarhan and Greenberg [41]. The test substance
was supposed to contain 9.22 microcuries per liter. Ten measurements, each involving
readings and calculations, were made. However, since the measurement error was known
to be relatively larger at the extremes, especially the upper one, a decision was made to
censor the two smallest and the three largest observations, leaving the following trimmed
sample: x = (8.2, 8.4, 9.1, 9.8, 9.9). Thus, n = 10, r = 3, and s = 7, which imply that q1 = 0.2
and q2 = 0.3.

Fernández [10] assumed that the above data arisen from a Weibull model (1) with
α = 3, which has a near normal shape. In such a case, T = 6720.03, R = 2309.09 and
A = a = 0.238782. Furthermore, in view of (3), the MLEs of θ and the mean concentration,
μ = E[X | θ, α], are given by θ̂ = 10.1049 and μ̂ = 9.02343.

Table 5 contains the unconditional and conditional lower and upper (β, γ)-TLs and
β-ETLs for selected values of β and γ when α = 3. For instance, if β = γ = 0.9, Lβ,γ = 3.315
and La

β,γ = 4.162, whereas Lβ = 3.950 and La
β = 4.783. In particular, the experimenter

might assert with confidence γ = 0.9 that at least 90% of strontium-90 concentrations will
exceed 3.315 (4.162) if the unconditional (conditional) approach is adopted. Moreover,
under the unconditional (conditional) perspective, one can be 90% confident that a future
strontium-90 concentration will surpass 3.950 (4.783). The corresponding unconditional
and conditional upper (β, γ)-TLs and β-ETLs are derived to be Uβ,γ = 14.50, Ua

β,γ = 16.23,
Uβ = 12.16 and U a

β = 14.12.

Table 5. Unconditional and conditional lower and upper (β, γ)-TLs and β-ETLs in Example 1.

β γ Lβ,γ La
β,γ Lβ La

β Uβ,γ Ua
β,γ Uβ U a

β

0.80 0.90 4.257 5.345 5.098 6.160 12.87 14.40 10.46 12.31
0.95 4.050 5.139 13.96 15.24

0.90 0.90 3.315 4.162 3.950 4.783 14.50 16.23 12.16 14.12
0.95 3.154 4.002 15.73 17.18

Suppose the experimenter wish to determine the optimal sampling plan (r, s, n) for
setting the lower (0.9, 0.9)-TL based on a Weibull trimmed sample under the premise that
the left and right trimming proportions are nearly 0.2 and 0.3, respectively. According to
Table 2, if (β′, γ′) is (0.95, 0.25), the needed sample size would be n = 16, whereas r = 4
and s = 12. On the other side, if the experimenter wants to ignore the smallest two and the
largest three observations, the optimal sampling plan would be (3, 11, 14).
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In addition, consider now the experimenter desires to find the optimal sampling plan
(r, s, n) for setting a lower 0.9-ETL, L0.9(X), such that the coverage of (L0.9(X),+∞) is
contained in (0.87, 0.93) with a probability of at least 0.7. If it is also required that about 20%
and 30% of the smallest and largest observations were trimmed, respectively, the optimal
sampling plan is given by (5, 16, 22) based on Table 4 with β = 0.9, ε = 0.3 and δ = 0.7.
Likewise, in the case of it was demanded that r = 3 and n − s = 3, the smallest sample size
would be n = 17.

In order to explore the effect of α on the tolerance limits, the unconditional and
conditional lower and upper (β, γ)-TLs and β-ETLs for selected values of α around 3 are
displayed in Table 6. In general, as expected, the influence of α is quite appreciable,
especially in the unconditional case.

Table 6. Unconditional and conditional lower and upper (β, γ)-TLs and β-ETLs for selected values
of α around 3 in Example 1.

β = 0.80, γ = 0.90 β = 0.90, γ = 0.95

α Lβ,γ La
β,γ Lβ La

β Uβ,γ Ua
β,γ Uβ U a

β

2.8 3.936 5.133 4.775 5.976 2.855 3.764 3.633 4.557
2.9 4.100 5.241 4.940 6.071 3.006 3.885 3.794 4.673
3.0 4.257 5.345 5.098 6.160 3.154 4.002 3.950 4.783
3.1 4.408 5.444 5.248 6.245 3.298 4.114 4.100 4.889
3.2 4.552 5.538 5.391 6.326 3.437 4.222 4.244 4.990

5.2. Example 2

Meeker and Escobar [42] (pp. 151, 198) present the results of a failure-censored fatigue
crack-initiation experiment in which 100 specimens of a type of titanium alloy were put on
test. Only the nine smallest times to crack-initiation were recorded. In this way, n = 100,
r = 1 and s = 9. The observed times in units of 1000 cycles were 18, 32, 39, 53, 59, 68,
77, 78, and 93. Based on experience with fatigue tests on similar alloys, it was assumed
the adequacy of the Weibull model (1) with α = 2 to describe the above data. Hence,
T = 821504 and R = 789104, whereas θ̂ = 302.123 and μ̂ = 267.749 are the MLEs of θ and
the expected failure-time μ.

Table 7 shows the unconditional and conditional lower and upper (β, γ)-TLs and
β-ETLs when r = 1, 2, ..., 9 for selected values of β and γ. For example, if the engineer
wants to discard the smallest two data (i.e., r = 3) and (β, γ) = (0.8, 0.9), it turns out that
T = 820156, R = 671098, θ̂ = 302.154 and μ̂ = 267.777, whereas A = X2

3:100/R takes the
value a = 0.00226644. In such a case, it follows that Lβ,γ = 127.1, La

β,γ = 118.8, Lβ = 159.5,
and La

β = 143.6. Hence, the reliability engineer could affirm with confidence γ = 0.9 that at
least 80% of the times to crack-initiation (in units of 1000 cycles) of specimens of that type
of titanium alloy will be greater than 127.1 (118.8) when the unconditional (conditional)
viewpoint is considered. Likewise, adopting the unconditional (conditional) perspective,
the engineer may be 80% sure that a future time to crack-initiation will surpass 159,500
(143,600) cycles.

It is interesting to point out that the variability of La
β,γ when r = 2, ..., 8 is very small. In

addition, observe that La
β,γ, r = 2, ..., 8, is quite similar to the unconditional lower (β, γ)-TL,

Lβ,γ, for r = 1. Analogous results are obtained for the β-ETLs when r = 2, ..., 5.
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Table 7. Unconditional and conditional lower and upper (β, γ)-TLs and β-ETLs when r = 1, . . . , 9 in
Example 2.

β = 0.80, γ = 0.90 β = 0.90, γ = 0.95

r Lβ,γ La
β,γ Lβ La

β Uβ,γ Ua
β,γ Uβ U a

β

1 118.8 143.6 77.44 98.35
2 123.5 118.8 152.7 143.6 80.03 77.44 104.5 98.37
3 127.1 118.8 159.5 143.6 82.01 77.44 109.0 98.36
4 123.5 118.9 157.9 143.7 79.29 77.50 107.8 98.43
5 126.8 118.9 166.2 143.7 80.90 77.49 113.4 98.43
6 125.1 118.9 169.7 145.3 79.01 77.54 115.5 108.5
7 119.9 119.0 171.9 152.0 74.57 77.61 116.4 105.8
8 151.2 118.9 242.9 150.9 91.10 77.50 161.9 105.2
9 119.4 144.3 77.81 98.84

5.3. Example 3

Lee and Wang [43] (p. 205) consider that 21 patients with acute leukemia have the
following remission times in months: 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 8, 8, 9, 10, 10, 12, 14, 16, 20, 24,
and 34. The available sample is now complete, since r = 1 and s = n = 21.

In accordance with previous tests, the researcher assumes that the remission time
follows the exponential distribution. A probability plot also indicates that the Weibull
model (1) with α = 1 fits the above data very well. In this situation, T = ∑n

i=1 xi = 198
and θ̂ = T/n = 9.42857. Supposing that (β, γ) = (0.8, 0.9), it follows that Lβ,γ = 1.634 and
Lβ = 2.115.

Table 8 provides the unconditional and conditional lower and upper (β, γ)-TLs and
β-ETLs when r = 1, 3, 5, 7, 9, 11, and n − s = r − 1 (i.e., q1 = q2). For instance, if the
two smallest and largest observations are missing, and the unconditional (conditional)
perspective is adopted, the researcher might state with confidence γ = 0.9 that at least
80% of patients with acute leukemia will have remission times greater than Lβ,γ = 1.467
(La

β,γ = 1.622) months. In the same manner, one might be 80% confident that a future
remission time will exceed Lβ = 1.966 (La

β = 2.126) months.

Table 8. Unconditional and conditional lower and upper (β, γ)-TLs and β-ETLs for r = 1, 3, 5, 7, 9, 11
and s = n + 1 − r in Example 3.

β = 0.80, γ = 0.90 β = 0.90, γ = 0.95

r s Lβ,γ La
β,γ Lβ La

β Uβ,γ Ua
β,γ Uβ U a

β

1 21 1.634 2.115 0.7178 0.9959
3 19 1.467 1.622 1.966 2.126 0.6386 0.7102 0.9249 1.001
5 17 1.385 1.586 1.933 2.110 0.5960 0.6920 0.9083 0.9926
7 15 1.232 1.507 1.839 2.039 0.5209 0.6542 0.8617 0.9591
9 13 1.436 1.580 2.467 2.184 0.5843 0.6817 1.148 1.027

11 11 1.768 2.518 0.7563 1.182

6. Concluding Remarks

Weibull tolerance limits with certain guaranteed or expected coverages are obtained
in this paper when the available empirical information is provided by a trimmed sample.
These bounds are valid, even when some of the smallest and largest observations have been
disregarded or censored. Single (right or left) and double failure-censoring are allowed.
Unconditional and conditional tolerance bounds have been obtained and compared when
s > r > 1. The difference between these limits might be large when the auxiliary statistic
A takes extreme percentiles. In our case, it is preferable to use the suggested conditional
tolerance limits. Optimal sampling plans for setting β-content and β-expectation tolerance
limits have also been determined. Efficient step-by-step procedures for computing the
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corresponding test plans with smallest sample sizes have been proposed. These methods
can be easily applied and require little computational effort. Several numerical exam-
ples have been studied for illustrative and comparative purposes. An extension of the
frequency-based perspective presented in this work the Bayesian approach is currently
under investigation.
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Abstract: This paper assumes constant-stress accelerated life tests when the lifespan of the test units
follows the XLindley distribution. In addition to the maximum likelihood estimation, the Bayesian
estimation of the model parameters is acquired based on progressively Type-II censored samples.
The point and interval estimations of the model parameters and some reliability indices under
normal operating conditions at mission time are derived using both estimation methods. Using the
Markov chain Monte Carlo algorithm, the Bayes estimates are calculated using the squared error loss
function. Simulating the performances of the different estimation methods is performed to illustrate
the proposed methodology. As an example of how the proposed methods can be applied, we look
at two real-life accelerated life test cases. According to the numerical outcomes and based on some
criteria, including the root of the mean square error and interval length, we can conclude that the
Bayesian estimation method based on the Markov chain Monte Carlo procedure performs better than
the classical methods in evaluating the XLindley parameters and some of its reliability measures
when a constant-stress accelerated life test is applied with progressively Type-II censoring.

Keywords: XLindley distribution; accelerated life tests; reliability analysis; Bayes inference; progressive
Type-II censoring

1. Introduction

Under normal operating conditions, the life test for high-reliability products is fre-
quently time-consuming and expensive because it would take a considerable amount of
time before acquiring a sufficient number of failures for the necessary analysis. To rapidly
and cheaply gather data regarding such products under experimental time constraints,
accelerated life tests (ALTs) are typically conducted. As part of the ALTs, stress variables
are typically set, including the temperature, humidity, voltage, pressure, etc. To determine
the life characteristics of the products, the data gathered throughout the accelerated testing
can be analyzed and extrapolated to the normal operating conditions. Nelson [1], Meeker
and Escobar [2], Tang [3] and Balakrishnan [4] have all offered substantial reviews on past
findings on the topic of ALTs. One of the most often utilized tests in reliability engineering
is the constant-stress ALT (CSALT). As a result of the CSALT, the researchers can divide the
products into several groups and test each group at a specific level of stress. A constant
level of stress is applied during the entire test duration, for example, to semiconductors and
microelectronics, see Luo et al. [5]. There are usually two or more levels at which products
are tested separately. For time saving, tests are even run simultaneously when possible.
Numerous studies have been conducted on the statistical inferences for the CSALT under
various lifetime distributions using both classical and Bayesian approaches. For instance,
when the product lifetime follows the Weibull distribution, Wang [6] discussed the inference
of the CSALT. Lin et al. [7] investigated the inferences of the CSALT for log-location-scale

Axioms 2023, 12, 352. https://doi.org/10.3390/axioms12040352 https://www.mdpi.com/journal/axioms124



Axioms 2023, 12, 352

lifetime distributions. Sief et al. [8] studied the inference of the CSALT from the generalized
half-normal distribution. Nassar et al. [9] investigated the estimation issues of the Lindley
distribution with the CSALT. See also Hakamipour [10], Kumar et al. [11] and Wu et al. [12]
for more detail.

Although the main objective of the ALTs is to shorten the period of the experiment, the
researchers spend a lot of time waiting for all test units to fail. In such situations, it is crucial
to deal with censored data. In general, censoring means that actual failure times are known
for just a part of the units under investigation. The Type-I, Type-II, and progressive Type-II
censoring (PT-IIC) schemes are the most frequently utilized censoring schemes in ALTs.
The PT-IIC is more powerful than traditional Type-I and Type-I censoring which enables
researchers to withdraw live units at various testing stages. Consider an experiment
in which n identical units are put on a life test with a predetermined censoring plan
(R1, R2, . . . , Rm), where m is the desired number of observed failures. For i = 1, . . . , m − 1,
at the time of the ith failure, Ri units from the remaining units are picked at random
and removed from the test. Immediately, upon the occurrence of the last failure, all
the remaining units Rm are removed and the test is ended, i.e., Rm = n − m − ∑m−1

i=1 Ri.
In engineering experiments, some items must be removed for a more in-depth inspection or
saved for use as test samples in future investigations. In this case, the PT-IIC plan naturally
arises from such experiments. The test procedure of the CSALT in the presence of PT-IIC
data will be discussed in detail in the next section. The PT-IIC scheme has received a lot
of attention in the literature, for example, see Balakrishnan et al. [13], Balakrishnan and
Lin [14], Chen and Gui [15], Wu and Gui [16], Dey et al. [17] and Alotaibi et al. [18]. A good
introduction to the idea of progressive censoring as well as a leading review article is
provided by Balakrishnan [19].

In view of the importance of the CSALT in rapidly ending the life test and the flexibility
of the PT-IIC scheme over the conventional censoring schemes, our main aim in this
paper is to investigate the estimation issues of the XLindley (XL) distribution when the
data are gathered based on the PT-IIC plan with the CSALT. As far as we are aware, no
work has yet addressed the CSALT model when PT-IIC data from the XL distribution are
utilized. Although numerous studies investigated the estimation problems in the presence
of CSALTs, few works studied the estimations of the reliability function (RF) and hazard
rate function (HRF) under normal use conditions. In other words, the majority of the
available studies considered only the estimation problems of the unknown parameters and
say nothing regarding the estimation of the reliability indices under operating settings.
Therefore, we think it is of interest to reliability engineers and other practitioners to identify
the reliability measures under normal operating conditions in the case of the XL distribution.
For more detail about the reliability estimation, see Wang et al. [20], Wang et al. [21] and
Zhuang et al. [22]. In this study, the model parameters are estimated using both classical
and Bayesian approaches and then after some reliability measures are evaluated under
normal use conditions. Using the maximum likelihood method, as a classical approach,
the maximum likelihood estimates (MLEs) of the different quantities are acquired and
the associated approximate confidence intervals (ACIs) are also obtained. On the other
hand, the Bayes estimates are investigated based on the squared error (SE) loss function.
Due to the complex form of the joint posterior distribution, the Markov chain Monte Carlo
(MCMC) procedure is implemented to obtain the required Bayes estimates as well as the
Bayes credible intervals (BCIs). It is important to mention here that the derived estimators
from the two estimation procedures cannot be theoretically compared because of their
complicated structures. To get over this problem, we consider carrying out simulation
research to compare the effectiveness of different estimators (point or interval) based on
some statistical standards. Additionally, two examples are provided to illustrate how
different approaches can be used. The simulation findings show that the MCMC procedure
provides more accurate estimates of the model parameters as well as the RF and HRF under
normal operating settings than those acquired based on the classical maximum likelihood
method. Moreover, the real data analysis demonstrates that the XL distribution can be
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considered as a suitable model to fit constant-stress accelerated data sets, namely the oil of
insulating fluid and transformer life-testing (TLT) data.

The article’s structure is as follows: A description of the model, the test method, and
the assumptions are given in Section 2. The MLEs as well as the ACIs confidence intervals
are covered in Section 3. The Bayes estimation and BCIs of the unknown parameters are
provided in Section 4. Section 5 presents the findings of the simulation research that was
carried out to assess the effectiveness of the various estimators. Finally, two data sets are
examined in Section 6, and some concluding remarks are offered in Section 7.

2. Model Description, Test Procedure, and Assumptions

A special combination of the exponential and Lindley distributions, known as the
XL distribution, was introduced by Chouia and Zeghdoudi [23] as a new variant of the
Lindley distribution. They demonstrated that compared to other one-parameter models
like the Xgamma, exponential, and Lindley distributions, the XL has greater flexibility.
They demonstrated the flexibility and suitability of the XL distribution as a model for
representing time-to-event data in the real world. In addition to having an increasing
hazard function, which is typical in many fields, it also has a single parameter which
considerably reduces the mathematical challenges in reliability estimation. Using an
adaptive Type-II progressive hybrid censoring plan, Alotaibi et al. [24] addressed the
estimation problems, including both classical and Bayesian methods, of the XL distribution.
They also demonstrated that data sets from chemical engineering may be modeled using
the XL distribution rather than some other classical distributions, including gamma and
Weibull distributions. Assume that Y is an experimental unit’s lifetime random variable
that follows the XL distribution with scale parameter α. As a result, the probability density
function (PDF), distribution function (DF), RF and HRF corresponding to Y are expressed,
respectively, by

g(y; α) =
α2e−αy(1 + ᾱ + y)

ᾱ2 , y > 0, α > 0, (1)

G(y; α) = 1 − e−αy
(

1 +
αy
ᾱ2

)
, (2)

G(y; α) = e−αy
(

1 +
αy
ᾱ2

)
, (3)

and

H(y; α) =
α2(1 + ᾱ + y)

ᾱ2 + αy
, (4)

where ᾱ = 1 + α.

2.1. Test Procedure

Under CSALT, assume that we have r accelerated stress levels x1 < x2 < · · · < xr,
where the stress level under usual conditions is xu. Let nj, j = 1, . . . , r be r subgroups created
from a total of N identical test items, where n1 + · · ·+ nr = N. Assume that xj is the level
of stress applied to the nj test units. The number of observed failure mj is fixed before
starting the experiment with a prefixed progressive censoring plan (Rj1, Rj2, . . . , Rjmj), with

the awareness that nj = mj + ∑
mj
i=1 Rji. At stress level xj, when the first failure, say Yj1,

occurred, from the remaining surviving items, Rj1 items are randomly removed. Similarly,
at Yj2, Rj1 items are randomly removed from the remaining items, and so on. At the time of
the mth

j failure, say Yjmj , all the remaining items are withdrawn. The PT-IIC data that were
observed under the stress level xi were collected in this manner

yj1 < yj2 < · · · < yjmj , j = 1, . . . , r.

2.2. Basic Assumptions

In the context of CSALT, the following assumptions are applied across the whole paper:
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1. Under the designed stress xu and the accelerated stress levels xj, the lifetime of test
items follows the XL distribution with DF given by

Gj(y; αj) = 1 − e−αjy

(
1 +

αjy
ᾱ2

j

)
, y > 0, j = 1, . . . , r.

2. It is assumed that the life-stress model for the scale parameter αj, j = 1, . . . , r of the
XL distribution is log-linear, i.e.,

log(αj) = λ + βxj, j = 1, . . . , r,

where λ and β are unknown parameters depending on the product’s characteristics
and need to be estimated.

Based on the above assumptions, without the normalized constant, we can write the joint
likelihood function of the unknown parameters λ and β, given the observed data, as follows

L(λ, β|y) =
r

∏
j=1

mj

∏
i=1

gj(yji; λ, β)[1 − Gj(yji; λ, β)]Rji , (5)

where y = (yj1, . . . , yjmj).

3. Maximum Likelihood Estimation

In this section, the MLEs of the unknown parameters λ and β as well as the RF under de-
signed stress are investigated. Moreover, the ACIs of these different parameters are discussed,
employing the asymptotic properties of the MLEs. Using the aforementioned assumptions
and by substituting the PDF and DF in the joint likelihood function presented in (5) by the
PDF and DF of the XL distribution given by (1) and (2), respectively, we obtain

L(λ, β|y) =
e2mλ+β ∑r

j=1 mjxj

e2 ∑r
j=1 mj log

(
1+eλ+βxj

) exp

⎡⎣− ∑
(j,i)

(1 + Rji)yji eλ+βxj + ∑
(j,i)

log
(

2 + eλ+βxj + yji

)⎤⎦

×
r

∏
j=1

mj

∏
i=1

⎡⎢⎣1 +
yji eλ+βxj(

1 + eλ+βxj
)2

⎤⎥⎦
Rji

, (6)

where m = ∑r
j=1 mj and ∑(j,i) = ∑r

j=1 ∑
mj
i=1. The log-likelihood function of (6) is obtained

as follows:

l(λ, β|y) = 2mλ + β
r

∑
j=1

mjxj − 2
r

∑
j=1

mj log
(

1 + eλ+βxj
)
− ∑

(j,i)
(1 + Rji)yji eλ+βxj

+ ∑
(j,i)

log
(

2 + eλ+βxj + yji

)
+ ∑

(j,i)
Rji log

⎡⎢⎣1 +
yji eλ+βxj(

1 + eλ+βxj
)2

⎤⎥⎦. (7)

The MLEs of the model parameters, indicated by λ̂ and β̂, can be determined by
solving the following non-linear likelihood equations which are obtained by setting the
derivatives of the log-likelihood function in (7) with respect to λ and β to zero

∂l(λ, β|y)
∂λ

= 2m − 2
r

∑
j=1

mje
λ+βxj

1 + eλ+βxj
− ∑

(j,i)
(1 + Rji)yji eλ+βxj + ∑

(j,i)

eλ+βxj

2 + eλ+βxj + yji

+ ∑
(j,i)

Rjiyjie
λ+βxj(1 − eλ+βxj)

(1 + eλ+βxj)
[
1 + eλ+βxj

(
2 + yji + eλ+βxj

)] = 0 (8)
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and

∂l(λ, β|y)
∂β

=
r

∑
j=1

mjxj − 2
r

∑
j=1

mjxje
λ+βxj

1 + eλ+βxj
− ∑

(j,i)
(1 + Rji)yjixj eλ+βxj + ∑

(j,i)

xje
λ+βxj

2 + eλ+βxj + yji

+ ∑
(j,i)

Rjiyjixje
λ+βxj(1 − eλ+βxj)

(1 + eλ+βxj)
[
1 + eλ+βxj

(
2 + yji + eλ+βxj

)] = 0 (9)

Because the solutions to the previous equations cannot be found in a closed form, the
Newton–Raphson method is frequently employed in these circumstances to produce the
appropriate MLEs λ̂ and β̂. Based on the estimated values λ̂ and β̂, we can obtain the MLEs
of RF and HRF under normal operating conditions xu at mission time t, respectively, using
the invariance property of the MLEs, as demonstrated below:

Ĝu(t) = e−α̂ut
(

1 +
α̂ut
ˆ̄α2

u

)
and

Ĥu(t) =
α̂2

u(1 + ˆ̄αu + t)
ˆ̄α2

u + α̂ut
,

where α̂u = eλ̂+β̂xu .
After having the point estimates for the various parameters, it is now interesting to

construct the confidence intervals for the unknown parameters λ and β, or any function
of them, such as the RF and HRF. Here, we utilize the asymptotic normality of the MLEs
to obtain the ACIs of the different parameters. According to Miller [25], the asymptotic
distribution of the MLEs can be expressed as (λ̂, β̂) ∼ N[(λ, β), I−1(λ̂, β̂)], where I−1(λ̂, β̂)
is the approximated variance–covariance matrix as presented below:

I−1(λ̂, β̂) =

⎛⎝ − ∂2l(λ,β|y)
∂λ2 − ∂2l(λ,β|y)

∂λ∂β

− ∂2l(λ,β|y)
∂β∂λ − ∂2l(λ,β|y)

∂β2

⎞⎠−1

(λ,β)=(λ̂,β̂)

=

(
σ̂11 σ̂12
σ̂21 σ̂22

)
, (10)

where

∂2l(λ, β|y)
∂λ2 = −2

r

∑
j=1

mje
λ+βxj

(1 + eλ+βxj)2
− ∑

(j,i)
(1 + Rji)yji eλ+βxj + ∑

(j,i)

(2 + yji)e
λ+βxj

(2 + eλ+βxj + yji)2

− ∑
(j,i)

Rjiyjie
λ+βxj

{
2eλ+βxj + e2(λ+βxj)

[
6 + 2eλ+βxj − e2(λ+βxj) + 2yji

]
− 1

}
(1 + eλ+βxj)2

[
1 + eλ+βxj

(
2 + yji + eλ+βxj

)]2 ,

∂2l(λ, β|y)
∂β2 = −2

r

∑
j=1

mjx2
j eλ+βxj

(1 + eλ+βxj)2
− ∑

(j,i)
(1 + Rji)yjix2

j eλ+βxj + ∑
(j,i)

x2
j (2 + yji)e

λ+βxj

(2 + eλ+βxj + yji)2

− ∑
(j,i)

Rjiyjix2
j eλ+βxj

{
2eλ+βxj + e2(λ+βxj)

[
6 + 2eλ+βxj − e2(λ+βxj) + 2yji

]
− 1

}
(1 + eλ+βxj)2

[
1 + eλ+βxj

(
2 + yji + eλ+βxj

)]2

and
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∂2l(λ, β|y)
∂λ∂β

= −2
r

∑
j=1

mjxje
λ+βxj

(1 + eλ+βxj)2
− ∑

(j,i)
(1 + Rji)yjixj eλ+βxj + ∑

(j,i)

xj(2 + yji)e
λ+βxj

(2 + eλ+βxj + yji)2

− ∑
(j,i)

Rjiyjixje
λ+βxj

{
2eλ+βxj + e2(λ+βxj)

[
6 + 2eλ+βxj − e2(λ+βxj) + 2yji

]
− 1

}
(1 + eλ+βxj)2

[
1 + eλ+βxj

(
2 + yji + eλ+βxj

)]2 .

Therefore, for 0 < τ < 1, the 100(1 − τ)% ACIs for λ and β are provided by

λ̂ ± zτ/2
√

σ̂11 and β̂ ± zτ/2
√

σ̂22,

where σ̂11 and σ̂22 are the main diagonal elements of (10) and zτ/2 is the upper (τ/2)th

percentile point of the standard normal distribution.
As a matter of fact, in order to establish the confidence bounds of the RF and HRF under

normal operating conditions, we should first determine the variances of their estimators.
Here, we approximate the necessary estimated variances of Ĝu(t) and Ĥu(t) using the delta
method. To apply this approach, we need the first derivatives of RF and HRF with respect
to the parameters λ and β as follows:

∂Gu(t)
∂λ

= − te−teλ+βxu+2(λ+βxu)
[
4 + t + eλ+βxu

(
3 + t + eλ+βxu

)]
(1 + eλ+βxu)2 ,

∂Gu(t)
∂β

= xu
∂Gu(t)

∂λ

∂Hu(t)
∂λ

=
e2(λ+βxu)

{
2t + eλ+βxu

[
7 + 4eλ+βxu + e2(λ+βxu) + t(4 + t2 + 2eλ+βxu)

]}
[(1 + eλ+βxu)2 + teλ+βxu ]2

,

and
∂Hu(t)

∂β
= xu

∂Hu(t)
∂λ

.

Let Λ1 = ( ∂Gu(t)
∂λ , ∂Gu(t)

∂β ) and Λ2 = ( ∂Hu(t)
∂λ , ∂Hu(t)

∂β ), evaluated at the MLEs of λ and β.

Then, the approximate estimated variances of Ĝu(t) and Ĥu(t) are obtained as follows:

σ̂G ≈ [Λ1 I−1(λ̂, β̂)Λ�
1 ] and σ̂H ≈ [Λ2 I−1(λ̂, β̂)Λ�

2 ].

Consequently, the ACIs of Gu(t) and Hu(t) can be constructed, respectively, as

Ĝu(t)± zτ/2

√
σ̂G , and Ĥu(t)± zτ/2

√
σ̂H .

4. Bayesian Estimation

When the sample size is large or the data are well collected, MLEs usually produce
results that are reasonably accurate. However, when there is a lot of information missing
from the data or the sample size is limited, the Bayesian paradigm produces a more precise
inference. We discuss the Bayesian inference for the model parameters as well as the RF and
HRF in this section. As we are aware, in a Bayesian investigation, the model parameters are
generally treated as random variables that follow a set of predetermined prior distributions.
On the basis of the prior knowledge and the observed data, it is then possible to acquire
the posterior distributions of the model parameters and obtain the Bayes estimators as
well. Keep in mind that the mean time to failure of the testing units is often lower in
ALTs because of the stress conditions. In our case and for the XL distribution, one can see
from Chouia and Zeghdoudi [23] that the mean is a decreasing function of the parameter
α. Under the log-linear model, this can be achieved for positive β with any value for the
parameter λ. This idea can be incorporated into the priors. We assume that the parameters
are independent, where the parameter λ follows the normal distribution, which allows the
parameter λ to be negative or positive. On the other hand, the parameter β is assumed to
follow the gamma distribution which is more flexible than other prior distributions and
adapts the support of the parameter β, i.e., λ ∼ N(a, b) and β ∼ Gamma(c, d). Then, the
joint prior distribution can be expressed as
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p(λ, β) ∝ βc−1e−0.5(λ−a)2/b2−dβ,−∞ < λ < ∞, β > 0, (11)

where b, c, d > 0 and −∞ < a < ∞ are the hyperparameters. Equations (6) and (11), when
combined, can provide the following as the joint posterior density function of λ and β:

q(λ, β|y) =
βc−1e2mλ+β ∑r

j=1 mjxj−0.5(λ−a)2/b2−dβ

A e2 ∑r
j=1 mj log

(
1+eλ+βxj

) r

∏
j=1

mj

∏
i=1

⎡⎢⎣1 +
yji eλ+βxj(

1 + eλ+βxj
)2

⎤⎥⎦
Rji

× exp

⎡⎣− ∑
(j,i)

(1 + Rji)yji eλ+βxj + ∑
(j,i)

log
(

2 + eλ+βxj + yji

)⎤⎦, (12)

where A is the normalized constant given by

A =
∫ ∞

0

∫ ∞

−∞
p(λ, β) L(λ, β|y) dλdβ.

We can draw Bayes estimators with respect to parameters of interest and/or functions
of parameters, say ψ(λ, β), using the SE loss function as follows:

ψ̃(λ, β) =

∫ ∞
0

∫ ∞
−∞ ψ(λ, β)p(λ, β) L(λ, β|y) dλdβ∫ ∞
0

∫ ∞
−∞ p(λ, β) L(λ, β|y) dλdβ

. (13)

Due to the ratio of two intractable integrals in (13), it appears that the Bayes estimator
cannot be derived analytically. Due to this difficulty, the MCMC method is used, which
does not require the computation of a normalizing constant. First, we must derive the
conditional distributions of the parameters λ and β to apply the MCMC technique. In light
of (12), the following are the conditional posterior distributions of λ and β, respectively,

q(λ|β, y) ∝
e2mλ−0.5(λ−a)2/b2

e2 ∑r
j=1 mj log

(
1+eλ+βxj

) r

∏
j=1

mj

∏
i=1

⎡⎢⎣1 +
yji eλ+βxj(

1 + eλ+βxj
)2

⎤⎥⎦
Rji

× exp

⎡⎣− ∑
(j,i)

(1 + Rji)yji eλ+βxj + ∑
(j,i)

log
(

2 + eλ+βxj + yji

)⎤⎦ (14)

and

q(β|λ, y) =
βc−1eβ ∑r

j=1 mjxj−dβ

e2 ∑r
j=1 mj log

(
1+eλ+βxj

) r

∏
j=1

mj

∏
i=1

⎡⎢⎣1 +
yji eλ+βxj(

1 + eλ+βxj
)2

⎤⎥⎦
Rji

× exp

⎡⎣− ∑
(j,i)

(1 + Rji)yji eλ+βxj + ∑
(j,i)

log
(

2 + eλ+βxj + yji

)⎤⎦. (15)

It is noted that no analytical reduction to any well-known distributions can be achieved
for the conditional distributions of λ and β provided by (14) and (15), respectively. The main
goal of MCMC algorithms is to generate samples from a given probability distribution.
The “Monte Carlo” part of the method’s name is due to the sampling purpose, whereas the
“Markov Chain” part comes from the kind of Markov chains. As a result, the Metropolis–
Hastings (M-H) procedure is used to generate samples from these distributions in order to
obtain the Bayes estimates and the BCIs. To implement the M-H procedure, we consider
the normal distribution as the proposal distribution for both parameters. Thus, follow the
steps listed below for the sample generation process:

Step 1. Put l = 1.

Step 2. Start with the primary guesses (λ(0), β(0)) = (λ̂, β̂).
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Step 3. Obtain λ(l) from (14) using the M-H algorithm.

Step 4. Acquire β(l) using (15) via the M-H algorithm.

Step 5. Use λ(l) and β(l) to obtain α
(l)
u , and then compute

G(l)
u (t) = e−α̂

(l)
u t

(
1 +

α̂
(l)
u t

[ ˆ̄α(l)u ]2

)

and

H(l)
u (t) =

[α̂
(l)
u ]2(1 + ˆ̄α(l)u + t)

[ ˆ̄α(l)u ]2 + α̂
(l)
u t

Step 6. Set l = l + 1.

Step 7. Perform Steps 3–6 M times to acquire[
λ(l), β(l), G(l)

u (t), H(l)
u (t)

]
, l = 1, 2, . . . , M.

To guarantee convergence and avoid the appeal of starting values, the first D generated
samples are eliminated. In this case, we have φ(l), where l = D + 1, . . . , M, where φ =
λ, β, Gu(t), Hu(t). Based on large M, one can compute the Bayes estimates of φ based on
the SE loss function as

φ̃ =
1

M◦
M

∑
l=D◦

φ(l),

where M◦ = M − D and D◦ = D + 1. To obtain the BCI of φ, sort φ(l) as φ[l], l = D◦, . . . , M.
Then, the 100(1 − τ)% BCI of the φ takes the form{

φ[0.5τM◦ ], φ[M◦(1−0.5τ)]
}

.

5. Monte Carlo Simulations

To compare the behavior of the proposed point and interval estimators of the XL model
parameter α and its reliability characteristics RF Gu(t) and HRF Hu(t), extensive simulation
studies are conducted based on several combinations of xj, j = 1, 2, . . . , r (stress levels), nj
(group size), mj (effective sample size) and Rji, j = 1, 2, . . . , r i = 1, 2, . . . , mj (censoring pat-
tern). We replicated the PT-IIC mechanism 1000 times when the true value of (λ, β) is taken
as (0.2, 0.5). At the same time, for the usual condition xu = 0.1, the acquired estimates
of Gu(t) and Hu(t) at time t = 0.1 are evaluated when their actual values are taken as
0.9011 and 1.0438, respectively. Take 2 choices of stress levels (x1, x2), namely (1, 2) and
(3, 5), n1 = n2 = n(= 30, 80), without loss of generality, and the failure percentages (FPs)
are taken as m

n × 100% = (40, 80)% to a specific amount m of each n. Moreover, for each
setting, different progressive censoring mechanisms are considered as follows:

Scheme-1 : R1 = n − m, Ri = 0 for i �= 1;

Scheme-2 : R m
2
= n − m, Ri = 0 for i �= m

2
;

Scheme-3 : Rm = n − m, Ri = 0 for i �= m.

Once 1000 constant stress PT-IIC samples are collected, the maximum likelihood
and Bayes estimates of λ, β, α (based on normal condition xu = 0.1), Gu(t) and Hu(t)
along with their asymptotic and credible interval estimates are calculated. To perform the
desired numerical evaluations, using R 4.2.2 software, we suggest to install both the ’maxLik’
(proposed by Henningsen and Toomet [26]) and ’coda’ (proposed by Plummer et al. [27])
packages in order to carry out the maximum likelihood and Bayesian analysis.

Following the mean and variance criteria of the proposed density priors, we have
chosen different sets of the prior parameters (a, b, c, d) of λ and β, called Prior[1]:(0.2,
5, 0.5, 1) and Prior[2]:(0.2, 1, 2.5, 5). These values are determined in such a way that
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the expected prior refers to the sample mean for the coefficient of interest. Alternatively,
the hyperparameter values can also easily be specified using the past-sample technique.
Following the M-H sampler described in Section 4, to obtain the Bayes point (or credible)
estimates of λ, β, αu, Gu(t) or Hu(t), we simulated D = 2000 and M◦ = 10, 000 samples.

To evaluate the convergence of the simulated MCMC draws of λ, β, αu, Gu(t) or
Hu(t), when (x1, x2) = (1, 2), n[FP] = 30[40%] and Scheme-1 (as an example), both the
autocorrelation and trace convergence diagnostic plots are shown in Figure 1. It shows
that the samples drawn from the Markov chain of all the unknown parameters are mixed
adequately, and thus the calculated estimates are satisfactory.
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Figure 1. Autocorrelation (top) and trace (bottom) plots for MCMC draws in Monte Carlo simulation.

Now, the comparison between the acquired point estimates of λ is made based on
their root mean squared errors (RMSEs) and mean absolute biases (RABs), respectively, as

RMSE =

√√√√ 1
1000

1000

∑
i=1

(
λ̆(i) − λ

)2

and

MAB =
1

1000

1000

∑
i=1

∣∣∣λ̆(i) − λ
∣∣∣,

respectively, where λ̆(i) is the calculated estimate at ith sample of λ.
Additionally, taking τ = 5%, the comparison between the acquired interval estimates of λ

is made based on their average confidence lengths (ACLs) and coverage percentages (CPs) as

ACL95%(λ) =
1

1000

1000

∑
i=1

(Uλ̆(i) −Lλ̆(i)

)
,

and

CP95%(λ) =
1

1000

1000

∑
i=1

1(L
λ̆(i)

;U
λ̆(i)

)(λ),
respectively, where 1(·) is the indicator function, (L(·),U (·)) is the two-sided interval
estimate. In a similar fashion, both point and interval estimates of β, αu, Gu(t) and Hu(t)
can easily be developed.
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Nowadays, heat-map data visualization has become a popular tool for digital data
representation as the value of each data point is indicated using specific colors. Therefore, all
the simulated results (including the RMSE, MAB, ACL and CP) of λ, β, αu, Gu(t) and Hu(t)
are displayed by a heat-map tool in Figures 2–6, respectively. Specifically, for Prior-1 (say P1)
as an example, the Bayes estimates are mentioned as “BE-P1”, whereas the BCI estimates are
mentioned as “BCI-P1”. All the numerical tables are also available as Supplementary Materials.
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Figure 2. Heat map for the simulation results of λ.
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Figure 3. Heat map for the simulation results of β.
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Figure 4. Heat map for the simulation results of αu.
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Figure 5. Heat map for the simulation results of Gu(t).
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Figure 6. Heat map for the simulation results of Hu(t).

From Figures 2–6, in terms of the lowest level of the RMSE, MAB and ACL values as
well as the highest level of the CP values, we list the following conclusions:

1. As a general comment, it is clear that the derived point (or interval) estimates of λ, β,
αu, Gu(t) or Hu(t) have a good performance.

2. As n (or m or both) increases, all the calculated estimates provide better results and
hold the consistency property. An equivalent observation is also reached when ∑

mj
i=1 Rji

decreases.
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3. As xj, j = 1, 2 increase, the following can be seen:

• The RMSEs and MRABs of all the estimates of λ increase while of β they decrease.
• The RMSEs and MRABs of αu, Gu(t) and Hu(t) derived from the likelihood

method increase while those derived from the Bayes method decrease.
• The ACLs of λ increase while of β they decrease. The CPs of λ decrease while of β

they increase.
• The ACLs of αu, Gu(t) and Hu(t) obtained from the ACI method increase while those

obtained from the BCI decrease. Regarding their CPs, the opposite result is noted.

4. It is known that more accurate estimates will be obtained when the priors are used
more accurately. Thus, for all settings, the MCMC estimates of λ, β, αu, Gu(t) and Hu(t)
provide more accurate results compared to those obtained from the likelihood method.

5. Because the calculated variance of Prior[1] is higher than that associated with Prior[2],
as anticipated, all the MCMC (or BCI) estimates using Prior[2] have more accurate
results than the others, and both are better than those obtained from the MLE (or ACI)
estimates.

6. Comparing the proposed censoring schemes 1, 2 and 3, for both the point and interval
estimates, it is observed that the proposed estimation procedures of λ, β, αu, Gu(t) or
Hu(t) perform better based on Scheme-3 (right censoring) than the others.

7. To sum up, the simulation facts showed that the Bayes estimation method according to
the M-H sampler for evaluating the XL parameters of life has a good performance and is
recommended across different scenarios.

6. Real-Life Applications

To highlight the adaptability of acquired estimators to real-life situations, this sec-
tion demonstrates two applications from the engineering field using two real data sets.
These applications showed that the proposed estimation approaches work satisfactorily
in practice.

6.1. Oil of Insulating Fluid

This application provides an analysis of the oil breakdown times (OBTs) of an insulating
fluid subjected to various high test voltages. From Nelson [28], two data sets (in seconds)
under different stress levels (kilovolt or kV) are considered; one is taken from 30 kV (normal
use condition) and the other is taken from 32 kV (stress use condition). For computational
convenience, each breakdown time point is divided by one hundred. So, the new transformed
OBT data are presented in Table 1. Before addressing our inference, to check whether the
XL model provides a significant fit to the OBT data or not, the Kolmogorov–Smirnov (KS)
statistics along its p-value at a 5% significance level are considered. First, from Table 1, the MLE
(standard error (SE)) of α based on the normal and stress use OBT data sets is 1.5101(0.3835)
and 2.6212(0.6097), respectively. Correspondingly, the KS (p-value) of the normal and stress
use data sets is 0.203(0.682) and 0.309(0.089), respectively. It indicates, for both given stress
levels, that the XL model fits the OBT data appropriately. Graphically, from Table 1, the
fitted/empirical RFs as well as the probability–probability (PP) plots are plotted and shown in
Figure 7. As we anticipated, Figure 7 shows that the proposed XL model provides a suitable
fit to the OBT data sets.

Table 1. Oil breakdown times of insulating fluid.

Normal Use

0.1705 0.1774 0.2046 0.2102 0.2266 0.4340 0.4730 1.3907 1.4412 1.7588 1.9490

Stress Use

0.0027 0.0040 0.0069 0.0079 0.0275 0.0391 0.0988 0.1395 0.1593 0.2780 0.5324
0.8285 0.8929 1.0058 2.1510
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Figure 7. Fitted RF (right) and PP (left) plots from OBT data. (a) Normal condition; (b) stress condition.

In this part, to see the usefulness of the derived point/interval estimators, several PT-
IIC samples from the OBT data sets are obtained. From Table 1, taking different options of
the effective samples mj, i = 1, 2 and censoring plans (Rj1, Rj2, . . . , Rjmj), 3 artificial samples
are created and listed in Table 2. Here, for brevity, the scheme (1, 1, 1, 1, 1) is considered as
(15). So, for each generated sample, the point estimates (including the maximum likelihood
and Bayes estimates) and the interval estimates (including the asymptotic and credible
interval estimates) of λ, β, αu, Gu(t) and Hu(t) (for distinct time t = 1 and the normal
operating level xu = 25) are calculated. Obviously, we do not have any prior information
about λ and β; thus, we set a = b = c = d = 0.001 which means that the posterior density
becomes quite close to the likelihood function. We also run the proposed MCMC procedure
with a burn-in of 10,000 followed by 40,000 iterations. Thus, the Bayes point (or credible
interval) estimates are evaluated. The initial values of β and δ for beginning our iterations
are taken as λ̂ and β̂, respectively. However, in Table 3, the point estimates (with their
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SEs) and the interval estimates (with their lengths) are presented. It shows that both the
frequentist and Bayesian estimates are very close to each other while the latter performed
better than the former with respect to the minimum standard errors and interval lengths.
A similar behavior is also noted in the case of the interval estimates.

Moreover, to display the convergence of the generated Markovian chains, the his-
tograms plot with the Gaussian kernel as well as the trace plot based on 40,000 MCMC
variates are shown in Figure 8. Specifically, in Figure 8, the Bayes estimate of λ, β, αu, Gu(t)
and Hu(t) is highlighted by a solid line while their BCI bounds are highlighted by dashed
lines. As a result, from Figure 8, it is observed that (i) the proposed estimates developed
by the MCMC algorithm have sufficient convergence, (ii) the burn-in sample has enough
size to eliminate the effect of the starting points and (iii) the density distribution of λ or δ is
almost fairly symmetrical, of αu or Hu(t) it is positively skewed and of Gu(t) it is negatively
skewed.

(a) (b) (c)

Figure 8. Density (left) and trace (right) plot of λ, β, αu, Gu(t) and Hu(t) from OBT data. (a) Sample 1;
(b) Sample 2; (c) Sample 3.
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Table 2. Various constant stress PC-T-II samples from OBT data.

Sample Scheme Normal Use Censored Data from (n1, m1) = (11, 8)

1 (3, 07) 0.1705, 0.2046, 0.2102, 0.2266, 0.4340, 1.3907, 1.4412, 1.7588
2 (03, 3, 04) 0.1705, 0.1774, 0.2046, 0.2102, 0.4730, 1.3907, 1.4412, 1.7588
3 (07, 3) 0.1705, 0.1774, 0.2046, 0.2102, 0.2266, 0.4340, 0.4730, 1.3907

Sample Scheme Stress Use Censored Data from (n2, m2) = (15, 10)

1 (5, 09) 0.0027, 0.0069, 0.0079, 0.0275, 0.0391, 0.1395, 0.1593, 0.2780, 0.8285, 0.8929
2 (04, 5, 05) 0.0027, 0.0040, 0.0069, 0.0079, 0.0275, 0.1593, 0.2780, 0.5324, 0.8285, 0.8929
3 (09, 5) 0.0027, 0.0040, 0.0069, 0.0079, 0.0275, 0.0391, 0.0988, 0.1395, 0.1593, 0.2780

Table 3. Point and interval estimates from OBT data.

Sample Par.
MLE MCMC 95% ACI 95% BCI

Est. SE Est. SE Lower Upper Length Lower Upper Length

1 λ −15.821 5.0750 −15.815 0.0122 −25.768 −5.874 19.894 −15.834 −15.795 0.0394
β 0.5402 0.1637 0.5397 0.0056 0.2192 0.8611 0.6418 0.5286 0.5504 0.0218

αu 0.0986 0.0985 0.0990 0.0139 −0.0946 0.2917 0.3863 0.0742 0.1282 0.0540
Ḡu(t) 0.9801 0.0359 0.9797 0.0052 0.9098 0.9995 0.0897 0.9683 0.9882 0.0199
Hu(t) 0.0231 0.0413 0.0235 0.0059 −0.0578 0.1040 0.1618 0.0138 0.0367 0.0229

2 λ −14.988 5.5623 −14.982 0.0116 −25.890 −4.0865 21.804 −15.001 −14.963 0.0388
β 0.5088 0.1795 0.5083 0.0056 0.1570 0.8605 0.7034 0.4970 0.5189 0.0219

αu 0.1034 0.1129 0.1037 0.0144 −0.1178 0.3246 0.4424 0.0775 0.1339 0.0564
Ḡu(t) 0.9784 0.0425 0.9780 0.0055 0.8951 0.9942 0.0991 0.9657 0.9872 0.0215
Hu(t) 0.0251 0.0489 0.0256 0.0063 −0.0706 0.1208 0.1915 0.0149 0.0396 0.0247

3 λ −19.302 7.2219 −19.295 0.0125 −33.457 −5.1476 28.309 −19.314 −19.276 0.0381
β 0.6521 0.2332 0.6516 0.0056 0.1951 1.1092 0.9141 0.6403 0.6623 0.0220

αu 0.0498 0.0700 0.0500 0.0070 −0.0874 0.1870 0.2744 0.0374 0.0647 0.0273
Ḡu(t) 0.9944 0.0149 0.9943 0.0015 0.9652 0.9996 0.0344 0.9908 0.9968 0.0059
Hu(t) 0.0066 0.0174 0.0067 0.0018 −0.0275 0.0406 0.0681 0.0038 0.0107 0.0069

6.2. Transformer Life-Testing

In this application, to show the usefulness of the proposed estimation approaches and
to verify how our estimates work in practice, the failure times (in hours) of the TLT at high
voltage are analyzed. These data were first given by Nelson [28] and later re-analyzed by
Nassar et al. [9]. Under three accelerating stresses, 35.4, 42.2 and 46.7 kV, the TLT data sets
were generated. In Table 4, each failure time in 35.4 kV (as normal use data) and 42.2 kV (as
stress use data) is divided by 1000 for computational purposes, and the new transformed
TLT data are presented. From Table 4, the MLE (SE) of α based on the normal and stress use
TLT data sets is 5.0778(1.7186) and 37.968(12.640), respectively. Next, the KS distance and
its (p-value) from the normal and stress use TLT data sets is 0.185(0.901) and 0.287(0.374),
respectively. This result is evidence that the XL model fits the TLT data sets well. On the
other hand, in Figure 9, two plots, namely the fitted/empirical RFs and PP of the XL model,
are displayed. It supports the same goodness-of-fit findings.

Table 4. Failure times of transformer life-testing.

Normal Use

0.0401 0.0594 0.0712 0.1665 0.2047 0.2297 0.3083 0.5379

Stress Use

0.0006 0.0134 0.0152 0.0199 0.0250 0.0302 0.0328 0.0444 0.0562
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Figure 9. Fitted RF (right) and PP (left) plots from TLT data. (a) Normal condition; (b) stress condition.

From Table 4, based on several choices of mj = 5, i = 1, 2 and (Rj1, Rj2, . . . , Rjmj), some
artificial constant stress PT-IIC samples are generated and provided in Table 5. For each
sample, in Table 6, the Bayes and maximum likelihood estimates along with their SEs as
well as the 95% ACI/BCI estimates along with their lengths of λ, β, αu, Gu(t) and Hu(t)
(at t = 1 and xu = 20) are calculated and provided. Just like our assumption about the
prior parameters in Section 6.1, the acquired Bayes point/interval analyses are made. It is
seen that the calculated point and interval estimates of λ, β, αu, Gu(t) and Hu(t), derived
from the Bayes MCMC and likelihood estimation methods, are quite similar to each other.
It also supports the same findings established in Table 3. To evaluate the behavior of 40,000
simulated Markovian chains of λ, β, αu, Gu(t) or Hu(t), for each generated sample in
Table 4, the density and trace plots are shown in Figure 10. It indicates that the MCMC
estimates converged adequately. It also depicts that the simulated posteriors of λ are
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distributed as fairly symmetric while of (β or Gu(t)) and (αu or Hu(t)) they are distributed
as negatively and positively skewed, respectively.

(a) (b) (c)

Figure 10. Density (left) and trace (right) plot of λ, β, αu, Gu(t) and Hu(t) from TLT data. (a) Sample 1;
(b) Sample 2; (c) Sample 3.

Table 5. Various constant stress PC-T-II samples from TLT data.

Sample Scheme Normal Use Censored Data from (n1, m1) = (8, 5)

1 (3, 04) 0.0401, 0.0594, 0.1665, 0.2047, 0.2297
2 (02, 3, 02) 0.0401, 0.0594, 0.0712, 0.2047, 0.3083
3 (04, 3) 0.0401, 0.0594, 0.0712, 0.1665, 0.2047

Sample Scheme Stress Use Censored Data from (n2, m2) = (9, 5)

1 (4, 04) 0.0006, 0.0134, 0.0199, 0.0250, 0.0328
2 (02, 4, 02) 0.0006, 0.0134, 0.0152, 0.0250, 0.0444
3 (04, 4) 0.0006, 0.0134, 0.0152, 0.0199, 0.0250
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As a summary, the numerical results developed from the OBT or TLT data revealed
that the proposed XL model is useful for addressing the proposed inferential issues and is
also beneficial for addressing the engineering problems.

Table 6. Point and interval estimates from TLT data.

Sample Par.
MLE MCMC 95% ACI 95% BCI

Est. SE Est. SE Lower Upper Length Lower Upper Length

1 λ −9.0329 3.4227 −9.0180 0.0249 −15.741 −2.3244 13.417 −9.0572 −8.9797 0.0775
β 0.3067 0.0879 0.3052 0.0078 0.1345 0.4790 0.3445 0.2896 0.3193 0.0297

αu 0.0551 0.0926 0.0549 0.0083 −0.1264 0.2367 0.3631 0.0397 0.0720 0.0323
Ḡu(t) 0.9932 0.0215 0.9932 0.0020 0.9511 0.9993 0.0482 0.9888 0.9964 0.0075
Hu(t) 0.0079 0.0250 0.0080 0.0023 −0.0410 0.0569 0.0979 0.0043 0.0131 0.0088

2 λ −6.8924 3.2927 −6.8806 0.0231 −13.346 −0.4388 12.907 −6.9197 −6.8415 0.0782
β 0.2438 0.0846 0.2425 0.0076 0.0780 0.4097 0.3316 0.2269 0.2563 0.0295

αu 0.1333 0.2154 0.1327 0.0196 −0.2888 0.5553 0.8442 0.0961 0.1731 0.0770
Ḡu(t) 0.9661 0.0958 0.9659 0.0087 0.7783 0.9985 0.2202 0.9468 0.9810 0.0342
Hu(t) 0.0393 0.1101 0.0394 0.0100 −0.1765 0.2550 0.4315 0.0221 0.0614 0.0393

3 λ −7.9132 3.3983 −7.8999 0.0238 −14.574 −1.2526 13.321 −7.9386 −7.8612 0.0775
β 0.2658 0.0874 0.2645 0.0075 0.0945 0.4372 0.3426 0.2491 0.2783 0.0292

αu 0.0746 0.1241 0.0744 0.0109 −0.1687 0.3178 0.4865 0.0540 0.0968 0.0428
Ḡu(t) 0.9881 0.0367 0.9880 0.0032 0.9161 0.9968 0.0807 0.9808 0.9935 0.0127
Hu(t) 0.0139 0.0424 0.0141 0.0037 −0.0693 0.0971 0.1663 0.0076 0.0223 0.0147

7. Conclusions and Future Work

A statistical analysis of constant-stress accelerated life tests for the XLIndley distri-
bution based on progressive Type-II censoring is investigated in this article. Even though
there have been many studies looking into estimating problems when constant-stress
accelerated life tests are present, there have been relatively few studies looking into the
estimation of reliability and hazard rate functions in the context of normal use conditions.
To fill this gap, we utilized classical and Bayesian inferential approaches to estimate the
unknown parameters and reliability measures under normal use situations. Based on
the maximum likelihood approach, the point estimates and the approximate confidence
intervals based on the asymptotic normality of the maximum likelihood estimators are
obtained. The squared error loss function is used in the Bayesian technique to derive
the Bayes estimates. The Markov chain Monte Carlo approach is employed to obtain the
Bayes estimates and the Bayes credible intervals of the unknown parameters due to the
joint posterior distribution’s complex expression. The effectiveness of the various esti-
mation techniques is demonstrated through a simulation study, and the applicability of
the different estimators is verified through the analysis of two data sets from accelerated
life tests. Based on the root mean square error, absolute bias and interval length of the
estimates, the numerical results show that the Bayes estimates, whether point or interval,
perform quite well. It is observed that the various estimates based on the right censoring
scheme perform better than other censoring schemes. Moreover, the accuracy of the Bayes
estimates increases as the prior distribution’s variance decreases. In general, when prior
knowledge about the unknown parameters is available, the Bayes estimates outperform the
maximum likelihood method. It is preferable to utilize the classical method when there is
no information about the unknown parameters because the Bayesian method requires more
calculation time. On future work, one can perform the same estimation procedures for
the XLindley distribution described in the current study based on adaptive progressively
censored samples. Referring to Opheim and Roy [29] and Avdović and Jevremović [30], the
concepts of these two papers can be extended to test the XLindley distribution empirically
by providing cut-off values for the required number of samples to attain predetermined
nominal significance levels.
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//www.mdpi.com/article/10.3390/axioms12040352/s1, Table S1: Average estimates (1st column),
RMSEs (2nd column) and MABs (3rd column) of λ; Table S2: Average estimates (1st column), RMSEs
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column) and MABs (3rd column) of Ḡu(t); Table S5: Average estimates (1st column), RMSEs (2nd
column) and MABs (3rd column) of Hu(t); Table S6: The ACLs (1st column) and CPs (2nd column) of
95% ACI/BCI of λ; Table S7: The ACLs (1st column) and CPs (2nd column) of 95% ACI/BCI of β;
Table S8: The ACLs (1st column) and CPs (2nd column) of 95% ACI/BCI of αu; Table S9: The ACLs
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Abstract: This work focuses on solving and analyzing two-point fuzzy boundary value problems
in the form of fractional ordinary differential equations (FFOBVPs) using a new version of the
approximation analytical approach. FFOBVPs are useful in describing complex scientific phenomena
that include heritable characteristics and uncertainty, and obtaining exact or close analytical solutions
for these equations can be challenging, especially in the case of nonlinear problems. To address
these difficulties, the optimal homotopy asymptotic method (OHAM) was studied and extended in a
new form to solve FFOBVPs. The OHAM is known for its ability to solve both linear and nonlinear
fractional models and provides a straightforward methodology that uses multiple convergence
control parameters to optimally manage the convergence of approximate series solutions. The new
form of the OHAM presented in this work incorporates the concepts of fuzzy sets theory and some
fractional calculus principles to include fuzzy analysis in the method. The steps of fuzzification and
defuzzification are used to transform the fuzzy problem into a crisp problem that can be solved using
the OHAM. The method is demonstrated by solving and analyzing linear and nonlinear FFOBVPs
at different values of fractional derivatives. The results obtained using the new form of the fuzzy
OHAM are analyzed and compared to those found in the literature to demonstrate the method’s
efficiency and high accuracy in the fuzzy domain. Overall, this work presents a feasible and efficient
approach for solving FFOBVPs using a new form of the OHAM with fuzzy analysis.

Keywords: fuzzy sets theory; fuzzy fractional derivative; caputo derivative; fuzzy boundary value
problems; fuzzy fractional differential equations; optimal homotopy asymptotic method

1. Introduction

Fractional-order models are more accurate than integer-order models since there are
more degrees of freedom in the fractional-order models. Fractional calculus apparently
captures some of the hereditary properties of the system [1]. Fractional calculus is not
modern; it is a generalization of traditional calculus theory, which deals with the integer
order [2]. In fractional calculus, the derivative and integral found in classical calculus
are generalized to the arbitrary real or complex order, that is, to non-integer order [3].
Fractional calculus is seen as an essential tool for managing such complicated problems that
are reliant on long-term memory terms, even though classical calculus is a great tool for
modeling many complex real-world phenomena [4]. Memory is the term used to describe
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the output or results that depend on the history of the variables from a previous period.
Classical calculus cannot solve issues that depend on the memory of the variables [5].

During the past decade, fractional differential equations under the effect of uncertainty
(FFDEs) have appeared more and more practically in different research areas, such as
physics and engineering [6,7], in addition to many other fields [8]. FFDEs are characterized
by a nonlocal derivative operator. This, in turn, contributes to modeling the complicated
real-world problems that are based on the long memory term. Unfortunately, the stemming
uncertainty caused by a lack of data or the difficulty of exactly determining the supple-
mentary conditions will lead to errors in measurement, so using the nonlocal fractional
derivative operators in the fuzzy environment will ensure a more accurate mathematical
model that simulates human thinking.

Accurate modeling of complex real-world problems helps us provide a clear and
explicit concept of complex dynamics by employing the definitions and theories of the
fractional calculus theory and the fuzzy calculus theory. However, these models remain
impractical until they are solved because the solutions provide a comprehensive view, in
addition to the fact that the solutions aid in studying and understanding the physical and
engineering properties of real-world problems [8]

In solving some of the FFODEs, the analytical approach aims to present a closed-form
solution [9,10]. A closed-form solution is considered the exact solution to the problem [11].
The solution may be expressed as the sum of a finite number of elementary functions, such
as polynomial, exponential, trigonometric, and hyperbolic functions. The advantage of
a closed-form solution is that it provides an overall view of the solution to the problem.
Moreover, in the analysis of results, using closed-form solutions generally does not require
a huge amount of computation [12]. In many instances, analytical solutions cannot be
found [13–16]. Nevertheless, the solutions to such equations are always in demand due
to practical interests. Therefore, to deal with such instances in a more realistic manner,
FFODEs are commonly solved using the approximation approach, which includes the
numerical and approximate analytical methods.

Numerous methods were proposed for solving FFOBVPs; for instance, we refer the
reader to explore [16–19]. These numerical methods demonstrated their ability to solve only
linear cases of FFODEs. In the numerical approach, the aim is to obtain an approximate
solution, where an open-form solution is sought instead of a closed-form. However, the
numerical class of methods directly solves FFODEs of high orders; instead, they require
a transformation into a system of the first order. Further, most studies employ numerical
methods for linear first-order problems [20,21]. Unfortunately, most of the complicated
real-world problems were modeled using nonlinear differential equations, which makes
these methods inappropriate to deal with them—especially the problems governed by
strong nonlinearity.

In addition to the optimal homotopy asymptotic method (OHAM) presented in this
work, several other approximate analytical methods have been used to solve different types
of FFOBVPs. These include the variational iteration method (VIM) [22,23], the reproducing
kernel Hilbert space method (RKHSM) [24], the spectral collocation method (SCM) [7], the
Adomian decomposition method (ADM) [25], the differential transform method [26], the
residual power series method (RPSM) [27], and the fractional residual power series method
(FRPSM) [28].

Hashim et al. [29] solved fuzzy IVPs with fractional derivative orders between 0 and 1
using the optimal homotopy asymptotic method (OHAM), and the paper presented the
defuzzification of fuzzy fractional IVPs. The authors then introduced a framework for
solving the considered problem using the OHAM. Upper and lower solutions were investi-
gated in terms of the accuracy and convergence of the method by finding optimal values of
the convergent parameters using a few terms of the series solution with higher accuracy
than the fractional residual power method. The paper did not discuss the fuzzification
of the boundary value problem or its solution. As one more section of this work, we will
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investigate the fuzzy theory and the OHAM to solve the fuzzy boundary value problem
with a fractional derivative order between 1 and 2.

While these methods have shown promise in solving FFOBVPs, they often fail to
provide a simple way to control and adjust the convergence area. This can be a significant
obstacle in obtaining accurate solutions, especially for nonlinear problems. Therefore,
the development of new approximate analytical methods is necessary to overcome these
challenges and improve the accuracy of solutions.

The OHAM presented in this work addresses this issue by using multiple convergence
control parameters to optimally manage the convergence of approximate series solutions.
This allows for greater flexibility in controlling and adjusting the convergence area, re-
sulting in more accurate solutions for FFOBVPs. This is due to the proposed methods’
inability to control the convergence region. Nowadays, homotopy methods are the most
promising approaches for solving nonlinear real-world problems [30] due to their ability to
simplify complicated problems, provide the freedom to choose the auxiliary functions, and
provide a simple way to control the convergence, which helps us optimize the convergence
series solutions for the strong nonlinearity problems. The OHAM has been used to solve
various types of differential equations, including classical differential equations [31], fuzzy
differential equations [32], and fractional differential equations [33]. The method’s effec-
tiveness in controlling the convergence area has been demonstrated through numerical
results for both linear and nonlinear problems. The OHAM provides multiple convergence
control parameters that allow for greater flexibility in adjusting the convergence area and
obtaining accurate solutions. This makes OHAM a promising method for solving complex
differential equations encountered in science and engineering applications.

In order to solve FFOBVPs, this study intended to create novel approximative analyti-
cal techniques with convergence-control capabilities. The fundamental idea of the OHAM
will be applied to the development of the new approach, which will be able to manage
the significant challenge of managing the convergence of the approximative analytical
solutions. This work also focuses on the development of the fuzzy OHAM’s fractional form,
represented by the abbreviation FF-OHAM, on two different types of application problems
that fall under the Caputo definitions of differentiability and involve linear and nonlinear
application problems. This starts with the introduction of the basic tools of fuzzy fractional
calculus in the second section, followed by providing the defuzzification procedure for the
FFOBVPs in Section 3. Section 4 provides the new version of the FF-OHAM for solving
FFOBVPs; then, the numerical simulation of the physical applications of the FF-OHAM will
be provided in Section 5. Then, we will end with the conclusions regarding the effectiveness
of the proposed method and the gained results.

2. Mathematical Background

In this section, we will present the basic concepts and definitions linked with fractional
calculus theory in the fuzzy domain, which will help us comprehend the work in the next
sections, such as the fuzzy fractional integral [34], which is a generalization of the classical
fractional integral concept to the fuzzy-valued functions. It is a fuzzy operator that takes
a fuzzy-valued function [35] as an input and produces another fuzzy-valued function
as an output. The fuzzy fractional integral can be interpreted as a generalization of the
fuzzy integral and the classical Riemann–Liouville integral of fractional order [36]. The
Caputo derivative of fractional order is used to define the fuzzy fractional integral in the
sense of Caputo [37]. It is worth noting that the concept of α-cut is also used in the fuzzy
fractional integral theory to define the α-cut of a fuzzy fractional integral. The α-cut of a
fuzzy fractional integral is a fuzzy number that corresponds to the fuzzy α-cut [38]. The
fuzzy-valued function is obtained by taking the fuzzy fractional integral and the Riemann–
Liouville integral of fractional order [24]. On the other hand, the following fundamental
definition of the fuzzy fractional integral needs to be recalled:
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Definition 1 ([7]). For any continuous fuzzy valued function,
∼
g ∈ CF [a, b] ∩ LF [a, b], the fuzzy

fractional Riemann–Liouville integration of
∼
g(x) will be defined by the following form:

∼
J

ω∼
g(x) =

1
Γ(ω)

∫ x

0

∼
g(y)(x − y)ω−1dy, for ω, x ∈ R and ω, x > 0 (1)

∀α ∈ [0, 1], α-cuts for fuzzy-valued function,
∼
g, can be represented by

∼
g(x; α) =

[
g(x; α), g(x; α)

]
(2)

where
∼
J

ω

is the Riemann–Liouville integral operator of order ω; Γ(ω) is the famous Gamma
function; CF [a, b] is the set of all fuzzy-valued measurable functions,

∼
g, on [a, b]; and LF [a, b] is

the space of fuzzy-valued functions, which are continuous on [a, b].

Definition 2 ([24]). Let ω ∈ (1, 2], and
∼
g : [a, b] → ∼

U , such that
∼
g and

∼
g
′ ∈ CF [0, b]∩ LF [0, b].

Then, F can define the fuzzy fractional derivative in the sense of the Caputo of the fuzzy function
∼
g

at x ∈ (a, b), as follows:(∼
D

ω∼
g
)
(x) =

1
Γ(2 − ω)

∫ x

0

∼
g
′′
(x)

(y − x)ω−1 dx, x > 0 (3)

where D is the Housdorff metric of the fuzzy set
∼
U. Note that the fuzzy fractional Riemann–Liouville

integration represents the left inverse operator of the fuzzy fractional Caputo derivative sense, such
that ∀∼g(x) ∈ CF [a, b] ∩ LF [a, b]. We have

∼
J

ω
(∼

D
ω∼

g
)
(x) =

∼
g(x)− xg′(0)− g(0),x ∈ R, and x > 0. (4)

3. Fuzzification and Defuzzification of FFODEs

The first step of the development of the proposed FF-OHAM for solving second-order
FFOBVPs is the defuzzification step. This is a general step that applies to the general form
of second-order FFOBVPs, as shown below.

Consider the second-order FFOBVP as follows:⎧⎨⎩
∼
y
(ω)

(x) =
∼
g
(

x,
∼
y(x),

∼
y
(1)

(x)
)

, x ∈ [x0, X],

1 < ω ≤ 2,
(5)

subject to the following boundary conditions:⎧⎨⎩
∼
y(x0) =

∼
a0,

∼
y
(1)

(x0) =
∼
a1,

∼
y(X) =

∼
b0,

∼
y
(1)

(X) =
∼
b1,

(6)

where
∼
g is the fuzzy function, while

∼
y
(ω)

(x) is the fractional Caputo derivative of the fuzzy
function

∼
y(x); and the boundary conditions at the points x0 and X are fuzzy numbers.
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For x ∈ [x0, X] and ∀α ∈ [0, 1], the fuzzy function will be defined by
[∼

y
]

α
=
[
y, y

]
α∀x ∈ [x0, X] as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∼
y(x0)

]
α
=
[
y(x0; α), y(x0; α)

]
,[

∼
y
(1)

(x0)

]
α

=

[
y(1)(x0; α),

−
y
(1)

(x0; α)

]
,[∼

y(X)
]

α
=
[
y(X; α), y(X; α)

]
,[

∼
y
(1)

(X)

]
α

=

[
y(1)(X; α),

−
y
(1)

(X; α)

]
.

(7)

Now, by assuming
∼
Ŷ(x) =

{
∼
y(x),

∼
y
(1)

(x)
}

, for defuzzification we have:

∼
Ŷ(x, α) =

[
Ŷ(x, α),

−
Ŷ(x, α)

]
=
[
y(x, α), y(1)(x, α), y(x; α),

−
y
(1)

(x; α)

]
. (8)

In addition, by utilizing the concepts of the extension principle theory, we can write
the α-cut of the fuzzy function, as shown below:[

∼
g
(

x,
∼
Ŷ
)]

α

=
∼
g
(

x,
∼
Ŷ(x; α)

)
=

[
g
(

x,
∼
Ŷ; α

)
, g
(

x,
∼
Ŷ; α

)]
, (9)

where ⎧⎪⎪⎨⎪⎪⎩
g
(

x,
∼
Ŷ(x; α)

)
= gl

(
x, Ŷ(t; α),Υ(x; α)

)
= gl

(
x, Ŷ(x; α)

)
,

g
(

x,
∼
Ŷ(x; α)

)
= gu

(
x, Ŷ(x; α),Υ(x; α)

)
= gu

(
x, Ŷ(x; α)

)
.

(10)

which means that ∀α ∈ [0, 1]. We have⎧⎪⎪⎨⎪⎪⎩
y(ω)(x; α) = gl

(
x,

∼
Ŷ(x; α)

)
,

y(ω)(x; α) = gu

(
x,

∼
Ŷ(x; α)

)
.

(11)

where ⎧⎪⎪⎨⎪⎪⎩
gl

(
x,

∼
Ŷ(x; α)

)
= min

{
∼
y
(ω)(

x,
∼
μ(α)

)∣∣∣∣∼μ(α) ∈ [∼
Ŷ(x; α)

]
α

}
,

gu

(
x,

∼
Ŷ(x; α)

)
= max

{
∼
y
(ω)(

x,
∼
μ(α)

)∣∣∣∣∼μ(α) ∈ [∼
Ŷ(x; α)

]
α

}
.

(12)

4. FF-OHAM for FFTBVPs

In this section, the F-OHAM presented by [21] for solving the integer order of ODEs is
fuzzified and then defuzzified using some concepts of the fuzzy set theory in Section 2 to
create a new form of the method denoted by the FF-OHAM for solving linear and nonlinear
second-order FFOBVPs approximately.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∼
y
(ω)

(x) =
∼
g
(

x,
∼
y(x),

∼
y
(1)

(x)
)
+

∼
G(x) x ∈ [x0, X],

∼
y(x0) =

∼
a0,

∼
y
′
(x0) =

∼
a1,

∼
y(X) =

∼
b0,

∼
y
′
(X) =

∼
b1,

ω ∈ (1, 2],

(13)
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Followed by the defuzzification of Equation (5), such that for all α ∈ [0, 1], we have
the following lower bound:⎧⎪⎪⎨⎪⎪⎩

Lβ1

(∼
y(x; α)

)
− gl

(
x,

∼
Ŷ(x)

)
− G(x) = 0, x ∈ [x0, X],

ß
(

y(x; α),
∂[y]

α
∂x

)
= 0.

(14)

and the following upper bound:⎧⎪⎪⎨⎪⎪⎩
Lβ1

(∼
y(x; α)

)
− gu

(
x,

∼
Ŷ(x)

)
− G(x) = 0, x ∈ [x0, X],

ß
(

y(x; α),
∂[y]

α
∂x

)
= 0.

(15)

According to [3], Equations (14) and (15) can be written as the following lower and
upper zeroth order deformation homotopy equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − q)
[
Lω

([
y(x; q)

]
α

)
− G(x; α)

]
= H(q; α)

[
Lω

([
y(x; q)

]
α

)]
−H(q; α)[G(x; α)]−H(q; α)

[
gl

([∼
y(x; q)

]
α

)]
,

(1 − q)
[Lω([y(x; q)]α)− G(x; α)

]
= H(q; α)

[Lω([y(x; q)]α)
]

−H(q; α)
[
G(x; α)

]−H(q; α)
[

gl

([∼
y(x; q)

]
α

)]
,

(16)

subject to the following fuzzy boundary conditions

ß

⎛⎝[∼
y(x; q)

]
α
,

∂
[∼

y(x; q)
]

α

∂x

⎞⎠ = 0, (17)

where
∼
Lω =

[Lω,Lω

]
=

[
∂(ω)[y(x;q)]

α

∂x(ω) , ∂(ω)[y(x;q)]α
∂x(ω)

]
are the linear operators and q ∈ [0, 1]

is an embedding parameter. Here,
∼
H(q; α) =

[H(q),H(q)
]

α
is a nonzero auxiliary fuzzy

function for q �= 0, and
[∼

y(x; q)
]

α
is an unknown fuzzy function.

Obviously, for q = 0 and q = 1, we obtain the initial approximation, and the exact
solution, respectively, as follows:{[

y(x; 0)
]

α
= y

0
(x; α),

[
y(x; 1)

]
α
= Y(x; α),

[y(x; 0)]α = y0(t; α).[y(x; 1)]α = Y(x; α).
(18)

Thus, as q increases from 0 to 1, the series solution,
[∼

y(x; q)
]

α
, changes from

∼
y0(x; α) to

the solution of Equations (14) and (15),
∼
Y(x; α), where

∼
y0(x; α) is obtained from Equation (16)

for q = 0 as follows: ⎧⎪⎨⎪⎩y
0
(x; α) =

∼
J

(β1)

G(x; α),

y0(x; α) =
∼
J

(β1)

G(x; α),
(19)

subject to the following fuzzy boundary condition

ß

⎛⎝∼
y0(x; α),

∂
[∼

y0

]
α

∂x

⎞⎠ = 0 (20)
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We choose the auxiliary function
∼
H(q; α) for Equation (16) in the following form:⎧⎪⎪⎪⎨⎪⎪⎪⎩

H(q; α) = S1(α)q + S2(α)q2 + . . . =
k
∑

j=1
Sj(α)q

j,

H(q; α) = S1(α)q + S2(α)q
2 + . . . =

k
∑

j=1
Sj(α)qj,

(21)

where
∼
S1(α) =

[
S1(α), S1(α)

]
,
∼
S2(α) =

[
S2(α), S2(α)

]
, . . . are the constants to be found for

all α ∈ [0, 1]. Now, by expanding
[∼

y
(
x; q, Sj(α)

)]
α

into Taylor’s series about q, we obtain
the following approximate series solution:⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
y
(

x; q, Sj(α)
)]

α
= y

0
(x; α) +

k
∑

j=1

[
y

j

(
x, Sj(α)

)]
α
qj,

[
y
(
x; q, Sj(α)

)]
α
= y0(x; α) +

k
∑

j=1

[
yj
(
x, Sj(α)

)]
α
qj.

(22)

According to [3], by substituting Equation (22) into Equation (16) and then collecting
the coefficient of like powers of q, we will obtain the following system of linear equations—
where the zeroth-order problem is given by Equation (19), while the first to kth -order
problems are given as in the general kth-order formula with respect to

∼
yk(x; α), for k ≥ 1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
k
(x; α) = y

k−1
(x; α) +

k−1
∑

j=1
Sj(α)

(
y

k−j
(x; α)

)
J (ω)

(
Sk(α)gl0

(∼
y0(x; α)

)
+ ∑k−1

j=1 Sj(α)glk−j

(
k−1
∑

i=0

∼
yi(x; α)

))
yk(x; α) = yk−1(x; α) +

k−1
∑

j=1
Sj(α)

(
yk−j(x; α)

)
J (ω)

(
Sk(α)gl0

(∼
y0(x; α)

)
+ ∑k−1

j=1 Sj(α)guk−j

(
k−1
∑

i=0

∼
yi(x; α)

))
(23)

ß

⎛⎝∼
yk(x; α),

∂
[∼

yk

]
α

∂x

⎞⎠ = 0 (24)

where glk−j

(
∑k−1

i=0
∼
yi(x; α)

)
and guk−j

(
∑k−1

i=0
∼
yi(x; α)

)
are the coefficients of qj in the expan-

sion of gl

[∼
y(x; q)

]
α

and gu

[∼
y(x; q)

]
α

about the embedding parameter q. We have the lower
and upper bounds as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

gl

([
∼
y

(
x; q,

k
∑

j=1

∼
Sj(α)

)]
α

)
= gl0(

∼
y0(x; α)) +

k
∑

j=1
gl j

(
k
∑

j=0

[∼
yj

]
α

)
qj,

gu

([
∼
y

(
x; q,

k
∑

j=1

∼
Sj(α)

)]
α

)
= gu0(

∼
y0(x; α)) +

k
∑

j=1
gu j

(
k
∑

j=0

[∼
yj

]
α

)
qj.

(25)

It has been observed that the convergence of the series in Equation (22) depends upon

the auxiliary constants
∼
S1(α),

∼
S2(α), . . .

∼
Sk(α), then, at q = 1, we obtain the exact solution

shown below: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[
Y

(
x,

∞
∑

j=1
Sj(α)

)]
α

= y
0
(x; α) +

∞
∑

j=1

[
y

j

(
x;

∞
∑

j=1
Sj(α)

)]
α

,

[
Y

(
x,

∞
∑

j=1
Sj(α)

)]
α

= y0(x; α) +
∞
∑

j=1

[
yj

(
x;

∞
∑

j=1
Sj(α)

)]
α

.

(26)
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5. Convergence Dynamic of the FF-OHAM

Substituting Equation (22) into Equations (14) and (15) yields the following residual:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RE

(
x,

k
∑

j=1
Sj(α); α

)
= Lω

(
y

(
x,

k
∑

j=1
Sj(α); α

))
− G(x; α)

−gl

(
∼
y

(
x,

k
∑

j=1

∼
Sj(α); α

))
,

RE

(
x,

k
∑

j=1
Sj(α); α

)
=

−
Lω

(
y

(
x,

k
∑

j=1
Sj(α); α

))
− G(x; α)

−gu

(
∼
y

(
x,

k
∑

j=1

∼
Sj(α); α

))
.

(27)

As mentioned in [22], if
∼

RE = 0, then
∼
y yields the exact solution

∼
Y, although, generally,

it does not happen, especially in nonlinear FFOBVPs. To identify the auxiliary constants

of
∼
Sj(α), j = 1, 2, . . . k, we choose x0 and X, such that the optimum values of

∼
Sj(α) for the

convergent solution of the desired problem is obtained. To find the optimal values of
∼
Sj(α)

here, we apply the method of least squares as follows:

∼
SRE

(
x,

k

∑
j=1

∼
Sj(α); α

)
=

X∫
x0

∼
RE

2
(

x,
k

∑
j=1

∼
Sj(α); α

)
dx, (28)

where
∼

RE is the residual,⎧⎪⎨⎪⎩
[RE]α = Lω

([
y
]

α

)
− G(x; α)− gl

([∼
y
]

α

)
[
RE

]
α
=

−
Lω([y]α)− G(x; α)− gu

([∼
y
]

α

) (29)

and
∂

∼
SRE

∂
∼
S1(α)

=
∂

∼
SRE

∂
∼
S2(α)

= . . .
∂

∼
SRE

∂
∼
Sk(α)

= 0. (30)

It should be noted that our process included the fuzzy level set α, so the best values of
∼
Sk(α) are determined from Equation (30) for each α ∈ [0, 1], which provides us with an easy
way to set and optimally control the convergent area and the rate of the solution series.

6. Numerical Simulation of the Physical Applications via FF-OHAM

This section reflects the use of the FF-OHAM from Sections 3 and 4 for some fuzzy
models in physics. The method’s performance is tested in two linear and nonlinear FFOB-
VPs applications.

• Mechanical Application: Fuzzy Fractional Bagley–Torvik Equation

Consider the fuzzy fractional Bagley–Torvik equation [7]:

D(1.5)∼y(x) +
∼
y(x) =

∼
F(x; α), x ∈ [0, 1], (31)

such that
∼
F(x; α) =

{
F(x; α)
F(x; α)

=

⎧⎨⎩ α
(
x2 − x

)
+ 4α

√
x√ ,

(2 − α)
(
x2 − x

)
+ 4(2 − α)

√
x√ .

(32)
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subject to the following fuzzy boundary condition{
y(0; α) = y(1; α) = (α − 1),

y(0; α) = y(1; α) = (1 − α).
(33)

with the following fuzzy exact solution{
Y(x; α) = α

(
x2 − x

)
,

Y(x; α) = (2 − α)
(
x2 − x

)
.

(34)

we can contract the FF-OHAM series solution for all α ∈ [0, 1] of Equation (31) as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1 − q)

[
∼
D

(1.5)(∼
y(x; α)

)
− ∼

F(x; α)

]
=

5
∑

j=1

∼
Sj(α)q

j

∼
Sj(α)q

j

[
∼
D

(1.5)(∼
y(x; α)

)
+

∼
y(x; α)−

(∼
F(x; α)

)] (35)

such that
∼
y(x; α) =

∼
y0(x; α) +

k

∑
j=1

∼
yj
(

x, S1, . . . , Sj; α
)
qj (36)

Zeroth-order problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∼
y0(x, α) =

∼
J

(1.5)[
α
((

x2 − x
)
+ 4

√
x√
)

, (2 − α)
((

x2 − x
)
+ 4

√
x√
)]

ß

(
∼
y0(x; α),

∂
[∼

y0

]
α

∂x

)
= 0

(37)

First-order problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∼
y1

(
x,

∼
S1(α); α

)
=

(
1 +

∼
S1(α)

)
∼
y

0
(x; α) +

∼
S1(α)

∼
J

(1.5)∼
y0(x; α)

−
(

1 +
∼
S1(α)

)∼
J

(1.5)(∼
F(x; α)

)
,

ß

(
∼
y1(x; α),

∂
[∼

y1

]
α

∂x

)
= 0.

(38)

Second-order problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∼
y2

(
x,

∼
S1(α),

∼
S2(α); α

)
=

(
1 +

∼
S1(α)

)
∼
y

1

(
x,

∼
S1(α); α

)
+

∼
S2(α)

∼
y0(x; α)+

∼
S1(α)

∼
J

(1.5)∼
y1

(
x,

∼
S1(α); α

)
+

∼
S2(α)

∼
J

(1.5)∼
y0(x; α)−

∼
S2(α)

∼
J

(1.5)(∼
F(x; α)

)

ß

(
∼
y2(x; α),

∂
[∼

y2

]
α

∂x

)
= 0.

(39)
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Third-order problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∼
y3

(
x,

∼
S1(α),

∼
S2(α),

∼
S3(α); α

)
=

(
1 +

∼
S1(α)

)
∼
y

2

(
x,

∼
S1(α),

∼
S2(α); α

)
+

∼
S2(α)

∼
y1

(
x,

∼
S1(α); α

)
+

∼
J

(1.5) 3
∑

j=1

∼
Sj(α)

∼
y3−j

(
x,

∼
S1(α), . . . ,

∼
S3−j(α); α

)

−
∼
S3(α)

∼
J

(1.5)(∼
F(x; α)

)
+

∼
S3(α)

∼
y0(x; α)

ß

(
∼
y3(x; α),

∂
[∼

y3

]
α

∂x

)
= 0.

(40)

Fourth-order problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∼
y4

(
x,

∼
S1(α), . . . ,

∼
S4(α); α

)
=

(
1 +

∼
S1(α)

)
∼
y

3

(
x,

∼
S1(α),

∼
S2(α),

∼
S3(α); α

)
+

∼
S2(α)

∼
y2

(
x,

∼
S1(α),

∼
S2(α); α

)
+

∼
S3(α)

∼
y1

(
x,

∼
S1(α); α

)
+

∼
S4(α)

∼
y0(x; α)+

∼
J

(1.5) 4
∑

j=1

∼
Sj(α)

∼
y4−j

(
x,

∼
S1(α), . . . ,

∼
S4−i(α); α

)
−

∼
S4(α)

∼
J

(1.5)(∼
F(x; α)

)

ß

(
∼
y4(x; α),

∂
[∼

y4

]
α

∂x

)
= 0

(41)

Fifth-order problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∼
y5

(
x,

∼
S1(α), . . . ,

∼
S5(α); α

)
=

(
1 +

∼
S1(α)

)
∼
y

4

(
x,

∼
S1(α), . . . ,

∼
S4(α); α

)
+

∼
S2(α)

∼
y3

(
x,

∼
S1(α),

∼
S2(α),

∼
S3(α); α

)
+

∼
S3(α)

∼
y2

(
x,

∼
S1(α),

∼
S2(α); α

)
+

∼
S4(α)

∼
y1

(
x,

∼
S1(α); α

)
+

∼
S5(α)

∼
y0(x; α)−

∼
S5(α)

∼
J

(1.5)(∼
F(x; α)

)
+

∼
J

(1.5) 5
∑

j=1

∼
Sj(α)

∼
y5−j

(
x,

∼
S1(α), . . . ,

∼
S5−i(α); α

)
ß

(
∼
y5(x; α),

∂
[∼

y5

]
α

∂x

)
= 0.

(42)

Next, we will solve Equation (31) with a third-order series FF-OHAM using the
Mathematica 13 Dsolve package

∼
y(x; α) =

∼
y0(x; α) + ∑3

j=1
∼
yj

(
x,

∼
S1(0.5), . . . ,

∼
Sj(0.5); 0.5.

)
(43)

For this linear application, we found that the fuzzy convergence parameters at
α = 0.5 provide an appropriate and accurate series solution at each α ∈ [0, 1], such

that
∼
S1(0.5) = −1.065291064957493,

∼
S2(0.5) = −0.00004338985509905724, and

∼
S3(0.5) =

−0.0020739269082325523.
Next, we will employ the fuzzy convergence parameters

∼
S1(0.5),

∼
S2(0.5), and

∼
S3(0.5)

in Equation (43) to find the third-order FF-OHAM approximate series solution for
Equation (31), as shown in Table 1, as follows.
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Table 1. The approximate solutions and errors for Equation (31) using the third-order FF-OHAM at
x = 0.5 for all α ∈ [0, 1].

α

[
ER
¯

]
α

,
~
Sj

[
¯

ER
]

α

,
~
Sj

[
y
¯

]
α

,
~
Sj

[
¯
y
]

α

,
~
Sj

0 −1.36061 × 10−5 0 −0.49998 0
0.2 −1.22455 × 10−5 −1.36061 × 10−6 −0.44998 −0.04999
0.4 −1.08849 × 10−5 −2.72123 × 10−6 −0.39999 −0.09999
0.6 −9.52429 × 10−6 −4.08184 × 10−6 −0.34999 −0.14999
0.8 −8.16368 × 10−6 −5.44245 × 10−6 −0.29999 −0.19999
1 −6.80306 × 10−6 −6.80306 × 10−6 −0.24999 −0.24999

Using a three-dimensional graph, we summarize the solutions using the third-order FF-
OHAM over all x ∈ [0, 0.5] and α ∈ [0, 1] corresponding with the best optimal convergence

control values—
∼
S1(0.5),

∼
S2(0.5), and

∼
S3(0.5)—of Equation (31) in Figure 1.

Figure 1. The three-dimensional approximate solution of Equation (31) given by the third-order
FF-OHAM over all x ∈ [0, 0.5], and for all α ∈ [0, 1].

To analyze the behavior of FF-OHAM for solving second-order FFOBVPs, we shall
proceed to solve Equation (31) using the same data, x ∈ [0, 0.5] and ω = 1.5, and the
fifth-order FF-OHAM instead of the third-order FF-OHAM to illustrate the convergence
dynamic of FF-OHAM for different terms of the approximate series solution; therefore, the
series solution will take the following form:

∼
y(x; α) =

∼
y0(x; α) + ∑5

j=1
∼
yj

(
x,

∼
S1(0.5), . . . ,

∼
Sj(0.5); 0.5.

)
(44)

such that the optimal convergence control parameters calculated using the Mathematica 13
Dsolve package are

∼
S1(0.5) = −1.0270653590282228

∼
S2(0.5) = 6.734609572815013 × 10−7

∼
S3(0.5) = −0.000025083072228706767

∼
S4(0.5) = 0.000131089732250741

∼
S5(0.5) = 0.0001858737255737089

The above convergence parameters will be employed in Equation (44) to find the
fifth-order FF-OHAM approximate series solution for Equation (31), as shown in Table 2,
as follows.

157



Axioms 2023, 12, 387

Table 2. The approximate solutions and errors for Equation (31) using the fifth-order FF-OHAM at
x = 0.5 for all α ∈ [0, 1].

α

[
ER
¯

]
α

,
~
Sj(0.5)

[
¯

ER
]

α

,
~
Sj(0.5)

[
y
¯

]
α

,
~
Sj(0.5)

[
¯
y
]

α

,
~
Sj(0.5)

0 −2.79607 × 10−8 0 −0.50000 0
0.2 −2.51647 × 10−8 −2.79607 × 10−9 −0.45000 −0.05000
0.4 −2.23686 × 10−8 −5.59214 × 10−9 −0.40000 −0.10000
0.6 −1.95725 × 10−8 −8.38822 × 10−9 −0.35000 −0.15000
0.8 −1.67764 × 10−8 −1.11843 × 10−8 −0.30000 −0.20000
1 −1.39804 × 10−8 −1.39804 × 10−8 −0.25000 −0.25000

Figure 2 illustrates the summary of the solutions using the fifth-order FF-OHAM
over all x ∈ [0, 0.5] and α ∈ [0, 1] corresponding with the best optimal convergence

control values—
∼
S1(0.5),

∼
S2(0.5),

∼
S3(0.5),

∼
S4(0.5), and

∼
S5(0.5)—of Equation (43) in a three-

dimensional figure.

Figure 2. The three-dimensional approximate solution for Equation (31) given using the fifth-order
FF-OHAM over all x ∈ [0, 0.5], and for all α ∈ [0, 1].

Tables 1 and 2 and Figures 1 and 2 illustrate that the third- and fifth-order FF-OHAMs
satisfy the triangular solution of the fuzzy differential equations for Equation (31) [2]. On
the other hand, we can conclude that the series solution of the linear physical application
involving FFOBVP using the FF-OHAM will approach the exact solutions whenever the
order of the FF-OHAM increases. The developed FF-OHAM is compared with the spectral
collection method (SCM) for solving the mechanical application described in Equation (31).
Figures 3 and 4 illustrate the lower and upper accuracy of the fifth-order FF-OHAM in
comparison to the fifth-order SCM for solving the mechanical pplication ∀x ∈ [0, 1] at
α = 0.5 based on the absolute error defined below in Equation (45).{

ERR =
∣∣∣Y(x; α)− y(x; α)

∣∣∣
ERR =

∣∣Y(x; α)− y(x; α)
∣∣, ∀x ∈ [0, 1] ,and ∀α ∈ [0, 1] (45)
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Figure 3. Comparison of the lower approximate solution for Equation (31) using the fifth-order
FF-OHAM and the fifth-order SCM for α = 0.5 and ∀x ∈ [0, 1].

  

 

Figure 4. Comparison of the upper approximate solution for Equation (31) using the fifth-order
FF-OHAM and the fifth-order SCM for α = 0.5 and ∀x ∈ [0, 1].

We can conclude from Figures 3 and 4 that the accuracy of the approximate solution
solved for using the fifth-order FF-OHAM series provides better accuracy compared to
SCM for all x ∈ [0, 1].

• Thermal Conductivity of a Material: Nonlinear Fractional Temperature Distribution
Equation
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Consider the mathematical model, a nonlinear fractional temperature distribution
equation of order ω ∈ (1, 2], which explains the distribution of the temperature in the
lumped convection system in a layer comprised of materials with varying thermal conduc-
tivity [39]: {

D(ω)y(x)− η(y(x))4 = 0, x ∈ [0, 1]
y′(0) = 0, y(1) = 1.

(46)

where x is the time-independent variable, and y(x) is the dimensionless temperature.
The following is the fuzzy version of Equation (46):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∼
D

(ω)∼
y(x; α)− η(y(x; α))4 = 0, x ∈ [0, 1]

y′(0; α) = (0.1α − 0.1), y(1; α) = (0.1α + 0.9),

y′(0; α) = (0.1 − 0.1α), y(1; α) = (1.1 − 0.1α).

(47)

To solve the fuzzy fractional model of the thermal conductivity using the FF-OHAM,
sccording to Section 3, we can build the approximate series solution for Equation (47) of
order ω ∈ (1, 2] for all α ∈ [0, 1] as follows:

For k ≥ 0, we can construct the following FF-OHAM form

(1 − q)

[
∼
D

(ω)(∼
y(x; α)

)]
=

k

∑
j=1

Sj(α)q
j

[
∼
D

(ω)(∼
y(x; α)

)
− η

(∼
y(x; α)

)4
]

, (48)

Then, the approximate series solution is introduced in Equation (49) below:

∼
y(x; α) =

∼
y0(x; α) +

k

∑
j=1

∼
yj
(
x, S1, . . . , Sj; α

)
qj (49)

For a zeroth-order problem:

∼
y0(x; α) =

[∼
0
]

. (50)

For first- to tenth-order problems:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 − q)

[
∼
D

(ω)(∼
y(x; α)

)]
=

9
∑

j=0

∼
Sj(α)q

j

[
∼
D

(ω)(∼
y(x; α)

)
−

η

(
9
∑

i=0

∼
y9−i(x; α)

i
∑

j=0

∼
yi−j(x; α)

j
∑

s=0

∼
ys(x; α)

∼
yj−s(x; α)

)]
,

∼
yk

′
(0; α) =

∼
yk(1; α) =

∼
0.

(51)

Next, using the Mathematica 13 Dsolve package to find the series solutions for the
lower and the upper bounds of Equation (47), for j = 1, 2, . . . , 10, we obtain

∼
y(x; α) =

∼
y0(x; α) + ∑10

j=1
∼
yj
(
x, S1, . . . , Sj; α

)
qj (52)

such that the optimal lower and upper convergence control parameters calculated and
coded using Mathematica 13 to find the most accurate solution for Equation (47) via the
tenth-order FF-OHAM are listed in Tables 3 and 4 below.
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Table 3. Lower auxiliary convergence parameters of the tenth-order FF-OHAM for solving
Equation (47) at ω = 1.9, x = 0.1, for all α ∈ [0, 1].

α S
¯j

0

S1 = −0.42754243116098856 S2 = 0.10029988098228566 S3 = −0.13497958972180282
S4 = 0.057027658640051423 S5 = −0.026736473824494192 S6 = −0.09334881995323582
S7 = 0.14476539458261192 S8 = 2.6782513149178886 S9 = −3.1547021023298236

S10 = 0

0.5

S1 = −0.4275424758687012 S2 = 0.10581949295995502 S3 = −0.1375566084081214
S4 = 0.07545735284696302 S5 = −0.049825680474098175 S6 = −0.21083114235974942
S7 = 0.33623100353843177 S8 = −1.780319356305217 S9 = 1.8279961729200187

S10 = 0

1

S1 = −0.4275424759052609 S2 = 0.10838719398757574 S3 = −0.1393691078519383
S4 = 0.0819534530845722 S5 = −0.05404354434171497< S6 = −0.06431130239382181
S7 = 0.12107016205095011 S8 = −0.9412597479377718 S9 = 1.0018880129871244

S10 = 0

Table 4. Upper auxiliary convergence parameters of the tenth-order FF-OHAM for solving
Equation (47) at ω = 1.9, x = 0.1, for all α ∈ [0, 1].

α
¯
Sj

0

S1 = −0.4499999715464292 S2 = 0.07033774093204971 S3 = −0.08588077852784994
S4 = 0.02200367504397761 S5 = −0.013738000249538687 S6 = −0.13177749373901043
S7 = 0.20247748961630552 S8 = −1.167757698543094 S9 = 1.1715997608744646

S10 = 0

0.5

S1 = −0.4500000000118868 S2 = 0.11085869384502318 S3 = −0.1322901831399701
S4 = 0.053720614964490584 S5 = −0.019748829952898384 S6 = −0.12141795332965101
S7 = 0.1700603758070842 S8 = −0.7863871032395353 S9 = 0.7686499426055967

S10 = 0

1

S1 = −0.4499999999893346 S2 = 0.1095056263140715 S3 = −0.1302513333365527
S4 = 0.0473415579627094 S5 = −0.0185338348210904 S6 = −0.14589007991813402
S7 = 0.2076338115632854 S8 = −1.0720018208884141 S9 = 1.0605759385659808

S10 = 0

The above lower and upper convergence parameters in Tables 3 and 4 bare em-
ployed in Equation (52) to find the tenth-order FF-OHAM approximate series solution for
Equation (47), as shown in Table 5 and summarized Figure 5 below.

Table 5. The approximate solutions and errors for Equation (47) using the tenth-order FF-OHAM
when ω = 1.9 at x = 0.1 for all α ∈ [0, 1].

α
[

ER
¯

]
α

,S
¯j

[
¯

ER
]

α

,
¯
Sj

[
y
¯

]
α

,S
¯j

[
¯
y
]

α

,
¯
Sj

0 −7.73663 × 10−5 −1.78658 × 10−5 0.81730 0.83216
0.5 −6.65123 × 10−6 1.68215 × 10−6 0.82167 0.82909
1 6.42966 × 10−5 −2.62733 × 10−5 0.82560 0.82560

Figure 5 illustrates the summary of the solutions using the tenth-order FF-OHAM
over all x ∈ [0, 0.1] and α ∈ [0, 1] corresponding with the best optimal convergence control

values,
∼
Sj, of Equation (47) in the three-dimensional graph.

Morever, the fuzzy solutions, shown in Table 5 and Figure 5, clarify that the new
construction of the FF-OHAM satisfies the fuzzy solution of the new fuzzy version of the
distribution of the model of the temperature in the lumped convection system in a layer
comprised of materials with varying thermal conductivity. Furthermore, the FF-OHAM
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provides an appropriate approximate series solution for the strong nonlinearity fractional
differential equation with the presence of the uncertainty, which makes this approach
applicable and suitable for solving the most complicated, nonlinear real-world problems.

Figure 5. The three-dimensional approximate solution for Equation (47) given using the tenth-order
FF-OHAM over all x ∈ [0, 0.1] at ω = 1.9 and for η = 0.6, and for all α ∈ [0, 1].

7. Conclusions

The present study focused on developing an approximate analytical method, called
FF-OHAM, for solving linear and nonlinear fractional order boundary value problems
(FFOBVPs). The FF-OHAM method has the ability to control the convergence of the series
solution by selecting the optimal convergence parameter for each method. The Bagley–
Torvik equation, which is an inhomogeneous linear FFOBVP, was used as a case study to
demonstrate the accuracy of the FF-OHAM method in solving linear cases. The method was
found to provide an accurate series solution as the series order increases and the obtained
solution converges to the exact solution. The solutions obtained using the FF-OHAM were
found to be more accurate than those obtained using the SCM. Furthermore, the study
also introduced a new fuzzy version of the fractional temperature distribution equation
and utilized the FF-OHAM to find the series solution for this nonlinear problem. The
FF-OHAM method was found to provide an accurate series solution for solving nonlinear
cases without needing an exact solution. The convergence dynamic of the FF-OHAM
was also used to obtain optimal convergence parameters for this problem. Finally, it is
noted that all the fuzzy fractional solutions obtained using the FF-HAM and the FF-OHAM
satisfy the triangular fuzzy solution, which is a desirable property for fuzzy systems. It is a
good idea to explore techniques to improve the computational efficiency of the developed
FF-OHAM method, as this can lead to faster and more efficient solutions for FFOBVPs, such
as parallelization. The FF-OHAM method can be parallelized to run on multiple processors
or cores simultaneously. This can help to reduce the computational time required to obtain
a solution, especially for large and complex problems.
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Abstract: We formulate an integrated pest management model to control natural pests of the crop
through the periodic application of biopesticide and chemical pesticides. In a theoretical analysis of
the system pest eradication, a periodic solution is found and established. All the system variables
are proved to be bounded. Our main goal is then to ensure that pesticides are optimized, in terms
of pesticide concentration and pesticide application frequency, and that the optimum combination
of pesticides is found to provide the most benefit to the crop. By using Floquet theory and the
small amplitude perturbation method, we prove that the pest eradication periodic solution is locally
and globally stable. The acquired results establish a threshold time limit for the impulsive release
of various controls as well as some valid theoretical conclusions for effective pest management.
Furthermore, after a numerical comparison, we conclude that integrated pest management is more
effective than single biological or chemical controls. Finally, we illustrate the analytical results through
numerical simulations.

Keywords: integrated pest management (IPM); impulsive differential equations; stability; Floquet
theory; perturbation method; numerical simulations

MSC: 92D45; 34D20

1. Introduction

In today’s farming systems, a variety of approaches are used for pest control. Maintain-
ing high output while guaranteeing sustainability is crucial for the entire agriculture sector.
Since the beginning of human civilization, insect and pest control has been one of the most
significant difficulties in the agricultural sector [1,2]. Every day, people come up with fresh
ideas for equipment and tactics to use in their fight against pests. As a result of human
efforts to manage pests, our natural ecology and nature are on the verge of extinction [3].

Chemical controls are less expensive to implement, yet they result in significant
environmental damage [4–6]. On the other hand, biological controls are more costly to
implement but have less environmental impact [7]. However, frequently, the use of a single
control method is not beneficial to control pest resistance and preserve environmental
quality [8,9]. In order to reduce insect populations below economic levels, integrated
pest management (IPM), a safer and more effective method, was developed. IPM is
used for a variety of agronomic crops and is now widely used as an economical and
environment-friendly pest control method in several nations [8–10]. When the ecological
cost of management is added to the economic price of controls, a combination of chemical
and biological controls yields a superior result when they are used with proper rate and with
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tolerable intervals. Modeling of this phenomenon leads naturally to the use of impulsive
differential equations [11,12].

Many researchers have designed mathematical models for pest management through
control strategies, some of which promote chemical agents [4,7], some advocate the use of
biological agents to impose a total solution of pest and disease [1,2,10,13–15], and some
researchers use both the chemical and biopesticides in their mathematical models [5,16–18].
Mathematical-model-based works using impulsive differential equations are also available
in the literature, as already mentioned [19–26]. Recently, Li, Huang, and Liu proposed a pest
management model to simulate the application of pesticides and build a pesticide function
with residual and delayed effects of pesticides, proposing pest management with pollutant
emission [27]. Liu et al. constructed a mathematical model for pest control in which
susceptible and infected pests are separated from the pest population and only susceptible
pests are harmful to crops [28]. They weighed the two approaches of spraying pesticides and
releasing diseased pests and natural enemies to control vulnerable pests when completing
their task. Alzabut established a mathematical model based on the sense of biological
survey in the field of agriculture, and introduced various control methods to determine
how to protect the crops from destructive pests [29]. In [24], an integrated pest management
model using impulsive differential equations was proposed and analyzed for Jatropha curcas
using the release of infective pests and spraying of chemical pesticides. The existence and
stability of susceptible pest-eradication solutions were analyzed using Floquet theory and
the small amplitude perturbation method. To the best of our knowledge, all available
articles deal with single-impulse differential equation models where the stability analysis
of the periodic pest extinction solution is obtained by the Floquet theory, the method of
small amplitude perturbation, and the comparison theorem. However, none of the prior
research available in the literature employs the concentration of chemical pesticides as a
system variable as we do here. Moreover, in our study, we spray biological and chemical
pesticides at two different time intervals, simultaneously varying the time period.

Pest control models using a single impulse are available (see, e.g., [30]), but using
double-impulsive controls is rare [31,32]. The authors of [31] took a predator population
along with biopesticides in an impulsive periodic way for the control of crop pests. The
authors of [32] proposed a predator–prey model with disease in the prey and investigated
it for the purpose of integrated pest management. The permanence of the system and
global stability of the susceptible pest-eradication periodic solution were shown by means
of the released amounts of infective prey and predator. In contrast, here, impulses on both
chemical and biopesticides were assumed in the formulation of the mathematical model
for crop pest management.

Our use of the concentration profile of the chemical pesticide as a model variable is a
novel approach. We demonstrated the dynamics using both the chemical and biological
pesticides in the system in an impulsive way, which is, to the best of our knowledge, a novel
concept in crop pest control. The proposed double-impulsive system was analyzed with
proper analytical methods, namely, using Floquet theory and the perturbation method.

Floquet theory is a powerful mathematical tool for analyzing periodic systems, and it
can be extended to impulsive models with periodic impulses. In impulsive models, the
system’s behavior is characterized by a sequence of discrete impulses applied at regular
intervals. These impulses may arise in many practical scenarios, including electrical circuits,
control systems, and biological systems. Floquet theory provides a robust framework for
analyzing and designing control strategies for impulsive models with periodic impulses.
One can analyze the stability of the impulsive system by examining the eigenvalues of the
Floquet matrix [33]. In our analysis, we utilize small amplitude perturbation techniques
and Floquet theory and obtain some valid theoretical results for successful management
of pests. Moreover, we also establish the threshold time limit for the impulsive release
of control agents. Our approach for using the Floquet theory is novel. Additionally, we
examined the dynamics of the system for biological and chemical pesticides used as a sole
control measure.
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The paper is organized as follows. In Section 2, we derive the model by using impulsive
differential equations for capturing the IPM system dynamics, taking plant, pest, virus,
and chemical pesticide as model variables. The mathematical analysis of the model is then
discussed in Section 3, which contains three subsections. In Section 3.1, we determine
susceptible pest-eradication periodic solutions and check the feasibility–boundedness of
the system variables discussed in Section 3.2. The local and global stability conditions
around the susceptible pest-eradication periodic solutions are explored in Section 3.3. In
Section 4, we exhibit our mathematical results through numerical simulations. Finally,
in Section 5, we provide a discussion on the three types of control strategies: spraying
chemical pesticide only, impulsively incorporating of infected pest only, and integrated
control with a fixed and a variable impulse period, to make the final conclusion.

2. Derivation of the Impulsive Control Model

The following assumptions are taken to formulate the desired model: the crop plant
and susceptible pest populations are denoted by x and y, respectively, and we denote z as
the infected pest population.

Due to the finite size of a crop field, which, however, may be large, we assume logistic
growth for the biomass of the crop, with net growth rate r and carrying capacity k. Crops
become affected by pests, thereby causing considerable crop reduction.

Let α be the contact rate between crop and susceptible pest; let v(t) be the biopesticide
(virus); and s be the concentration of chemical pesticide. A virus infects the susceptible
pest at a rate, λ. The chemical pesticide kills the susceptible and infected pests at the rates
m1 and m2, respectively. Parameters c1 and c2 are the conversion factors of susceptible
and infected pests, respectively, due to consumption of crop; d and d + δ are the mortality
rates of susceptible and infected pest, respectively; θ is the virus replication rate; and γ is
the lysis rate of the virus. Finally, we introduce a periodic application of biopesticide and
chemical pesticide with different time intervals.

Based on the above assumptions, the desired impulsive system for integrated pest
management is given as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

= rx
(

1 − x
k

)
− αxy − φαxz, t �= (nτ1, nτ2),

dy
dt

= c1αxy − λyv − dy − m1sy, t �= (nτ1, nτ2),

dz
dt

= c2φαxz + λyv − (d + δ)z − m2sz, t �= (nτ1, nτ2),

dv
dt

= θ(d + δ)z − γv, t �= (nτ1, nτ2),

ds
dt

= −μs, t �= (nτ1, nτ2),

v(t+) = v(t−) + vi, t = nτ1,

s(t+) = s(t−) + si, t = nτ2,

(1)

where vi and si are the strength of biopesticide and chemical pesticide application in the
system at t = nτ1 and t = nτ2, respectively; n = 0, 1, 2, 3, . . ., where τ1 and τ2 are the time
periods. Here, v(t−) and s(t−) are the strength of biopesticide and chemical pesticide
before the periodic input, and v(t+) and s(t+) are the strength of biopesticide and chemical
pesticide after the periodic input.

In the impulsive model (1), we assumed the concentration of chemical pesticide as
a model population, which is realistic and a novel idea. We use two different impulse
intervals for two control agents (biopesticide and chemical pesticide) that will be analyzed
both analytically and numerically. We proceed by analyzing the dynamics of model (1) by
discussing the existence of equilibria with their stability.
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3. Dynamics of the Impulsive Model

In this section, we analyze the boundedness of the solutions of system (1), we find out
its pest-eradication steady state, and we analyze the local and global stability. Finally, we
discuss the permanence of the impulsive system.

3.1. Boundedness of the Model Variables

Let V(t) = x(t) + y(t) + z(t) + v(t) + s(t) and

dV
dt

+ mV ≤ (
rx + mx − rx2

k
)− (1 − c1)αxy − (1 − c2)φαxz − {(d − m}y

−{(1 − θ)(d + δ)− m}z − (γ − m)v − (μ − m)s.

Now, let us define m = min{d, γ, μ, (d + δ)(1 − θ)}. As 0 < c1, c2, θ < 1, then
1 − c1 > 0, 1 − c2 > 0, and 1 − θ > 0, so we can write that

dV(t)
dt

+ mV(t) ≤ M0, (2)

where
k(m + r)2

4r
= M0. At t = nτ1, we have

V(nτ+
1 ) ≤ V(nτ1) + vi. (3)

By the comparison theorem, for t ≥ 0 we have

V(t) ≤ V(0)e−mt +
M0(1 − e−mt)

m
+ vi

e−m(t−τ1)

1 − emτ1
+ vi

emτ1

emτ1 − 1

→ M0

m
+ vi

emτ1

emτ1 − 1
as t → ∞. (4)

When t = nτ2,

V(nτ+
2 ) ≤ V(nτ2) + vi (5)

and from the comparison theorem it follows that

V(t) ≤ V(0)e−mt +
M0(1 − e−mt)

m
+ vi

e−m(t−τ2)

1 − emτ2
+ vi

emτ2

emτ2 − 1

→ M0

m
+ vi

emτ2

emτ2 − 1
as t → ∞. (6)

Thus, V(t) is uniformly bounded and there exists a positive constant M > 0 such that
x(t) ≤ M, y(t) ≤ M, z(t) ≤ M, v(t) ≤ M, and s(t) ≤ M for all t.

From the above discussion, we have the following theorem.

Theorem 1. For the impulsive system (1), there exists a positive constant M such that x(t) ≤ M,
y(t) ≤ M, z(t) ≤ M, v(t) ≤ M, and s(t) ≤ M for all t.

For non-negative solutions, the following lemma follows from [13].

Lemma 1. Let X(t) be a solution of the impulsive system (1) with X(0+) ≥ 0. Then X(t) ≥ 0 for
all t > 0.
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3.2. Existence of the Pest-Free Periodic Orbit

Since both pests are assumed to be harmful for crops, we discuss stability at infected
and susceptible pest-eradication solutions of the system when y = 0 and z = 0, t �=
(nτ1, nτ2), and the linear forms of the fourth and fifth equation of (1) are

dv
dt

= −γv and
ds
dt

= −μs, (7)

respectively. For an impulse control, we must have

v(t+) = v(t−) + vi, for t = τ1,

s(t+) = s(t−) + si, for t = τ2.
(8)

From (7) and (8) it is clear that v and s are independent of each other. Thus, the solution of
Equation (7) can be given as follows:

v(t) = {v(0+)− v∗(0+)}e−γt + v∗(t), f or t ∈ (τ1, (n + 1)τ1],

s(t) = {s(0+)− s∗(0+)}e−μt + s∗(t), f or ∈ (τ2, (n + 1)τ2], (9)

where v∗(t) and s∗(t), the positive periodic solution of (7), are given by

v∗(t) =
vie−γ(t−nτ1)

1 − e−γτ1
, s∗(t) = sie−μ(t−nτ2)

1 − e−μτ2
, (10)

with initial values
v∗(0+) = vi

1 − e−γτ1
, s∗(0+) = si

1 − e−μτ2
. (11)

If y(t) = 0 and z(t) = 0, then the first equation of (1) is

dx
dt

= rx
(

1 − x
k

)
, (12)

which is a logistic equation, and its solution is

x(t) =
kx(0)

x(0) + (k − x(0))ert for t �= (nτ1, nτ2). (13)

Clearly, (13) has two equilibria, such as x = 0 and x = k. Therefore, (1) has two pest-
eradication solutions, (0, 0, 0, v∗, s∗) and (k, 0, 0, v∗, s∗). Obviously, at x = 0 the system (13)
is impossible from the perspective of ecology. For this reason, in the following subsection
we study the stability for the system (1) at E = (k, 0, 0, v∗, s∗).

3.3. Stability of the Pest-Free Periodic Solution

We establish the following theorem for the stability of the pest-free periodic orbit.

Theorem 2. System (1) is both locally and globally stable around the pest-free periodic solution
E = (k, 0, 0, v∗, s∗) for the following:

(i) Application of biopesticide and chemical pesticide with same time interval t = nτ, provided
that

c1α − d − λvie−γ(t−nτ)

1 − e−γτ
− m1sie−μ(t−nτ)

1 − e−μτ < 0,

c2φkα − (d + δ)− m2sie−μ(t−nτ)

1 − e−μτ < 0; (14)
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(ii) Application of biopesticide with time interval t = nτ1 and chemical pesticide with time interval
t = nτ2, i.e., for different time intervals, where τ1 �= τ2, provided that

c1α − d − λvie−γ(t−nτ1)

1 − e−γτ1
< 0,

c2φkα − (d + δ) < 0,

c1α − d − m1sie−μ(t−nτ2)

1 − e−μτ2
< 0.

(15)

Proof. We need to prove the stability of the system in two cases:
(i) Application of chemical pesticide and biopesticide with same time interval;
(ii) Application of biopesticide and chemical pesticide with different time intervals.
(i) In this case, let t = nt1 = nt2 = nτ. We discuss the stability of the system through

the small amplitude perturbation method at the periodic solution (k, 0, 0, v∗, s∗). Let

x(t) = k + ε1(t), y(t) = ε2(t), z(t) = ε3(t),

v(t) = v∗(t) + ε4(t), s(t) = s∗(t) + ε5(t). (16)

Here, ε1, ε2, ε3, ε4, and ε5 denote small amplitude perturbations. Thus, the corresponding
system of (1) at (k, 0, 0, v∗, s∗) is given by

dε1
dt

= r{k + ε1(t)}
(

1 − k + ε1(t)
k

)
− α{k + ε1(t)}ε2(t)

−φα{k + ε1(t)}ε3(t), t �= nτ,
dε2
dt

= c1α{k + ε1(t)}ε2(t)− λε2(t){v∗(t) + ε4(t)}
−dε2(t)− m1{s∗(t) + ε5(t)}ε2(t), t �= nτ,

dε3
dt

= c2φα{k + ε1(t)}ε3(t) + λε2(t){v∗(t) + ε4(t)} − (d + δ)ε3(t)

−m2{s∗(t) + ε5(t)}ε3(t), t �= nτ,
dε4
dt

= θ(d + δ)ε3(t)− γ{v∗(t) + ε4(t)}, t �= nτ,

dε5
dt

= −μ{s∗(t) + ε5(t)}, t �= nτ,

�{v∗(t) + ε4(t)} = vi, t = nτ,

�{s∗(t) + ε5(t)} = si, t = nτ. (17)

Now, the linear system corresponding to the system (17) is given as

dε1
dt

= −rε1(t)− αkε2(t)− φαkε3(t), t �= nτ,

dε2
dt

= c1αkε2(t)− λε2(t)v∗(t)− dε2(t)− m1s∗(t)ε2(t), t �= nτ,

dε3
dt

= c2φkαε3(t) + λε2(t)v∗(t)− (d + δ)ε3(t)− m2s∗(t)ε3(t), t �= nτ,

dε4
dt

= θ(d + δ)ε3(t)− γε4(t), t �= nτ,

dε5
dt

= −με5(t), t �= nτ,

�ε4(t) = vi, t = nτ,

�ε5(t) = si, t = nτ. (18)
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The fundamental matrix M(t) of (18) is obtained as

dM(t)
dt

=
1
m

⎡⎢⎢⎢⎢⎣
−r −αk −φαk 0 0
0 c1αk − λv∗(t)− d − m1s∗(t) 0 0 0
0 λv∗(t) m33 0 0
0 0 θ(d + δ) −γ 0
0 0 0 0 −μ

⎤⎥⎥⎥⎥⎦
with initial condition M(t) = I5 (the identity matrix) and m33 = c2φkα − (d + δ)− m2s∗(t).
Now, the fundamental solution matrix is given by

M(t) =
1
m

⎡⎢⎢⎢⎢⎣
exp (−rt) M1(t) M2(t) 0 0

0 M3(t) 0 0 0
0 M4(t) M5 0 0
0 0 M5(t) exp (−γt) 0
0 0 0 0 exp (−μt)

⎤⎥⎥⎥⎥⎦.

Here, M5 = exp
∫ t

0
{c2φkα − (d + δ)− m2s∗(t)}dt,

M3(t) = exp
∫ τ

0
{c1αk − λv∗(t)− d − m1s∗(t)}dt,

where the other Mi(t)s are not required for our further analysis. According to Floquet
theory [33], the periodic solution E(k, 0, 0, v∗v, s∗) is asymptotically stable if the absolute
values of the eigenvalues of M(τ) are less than one.

The eigenvalues of M(t) are

λ1 = exp{−rτ}, λ2 = exp
∫ τ

0
{c1αk − λv∗(t)− d − m1s∗(t)}dt,

λ3 = exp
∫ τ

0
{c2φkα − (d + δ)− m2s∗(t)}dt, λ4 = exp{−γτ},

λ5 = exp{−μτ}.

Clearly, 0 < λ1 < 1, 0 < λ4 < 1 and 0 < λ5 < 1. Thus, when both pesticides are applied
with the same time interval, then the system is locally stable around the periodic solution
E = (k, 0, 0, v∗v, s∗) if 0 < λ2 < 1 and 0 < λ3 < 1. From this, we obtain

exp
∫ τ

0
{c1αk − λv∗(t)− d − m1s∗(t)}dt < 1,

exp
∫ τ

0
{c2φkα − (d + δ)− m2s∗(t)}dt < 1. (19)

From Equation (19), we can choose δ1 > 0 such that

η1 = exp
∫ (n+1)τ

nτ
{c1α − λ(v∗(t)− δ1)− d − m1(s∗(t)− δ1)}dt < 1,

η2 = exp
∫ (n+1)τ

nτ
{c2φkα − (d + δ)− m2(s∗(t − δ1))}dt < 1.

Since all state variables are positive,

dv
dt

≥ −γv;
ds
dt

≥ −μs.

Thus, according to the comparison theorem and Equations (10) and (11), for δ1 > 0 there
exists t0 > 0 such that v(t) ≥ v∗ − δ1, s(t) ≥ s∗ − δ1 for all t > t0.
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From the second equation of system (1), it can be written that

ẏ(t) ≤ y(t){c1α − λ(v∗(t)− δ1)− d − m1(s∗(t)− δ1)}, t �= nτ,

y(t+) = y(t), t = nτ. (20)

Integrating (20) into [nτ, (n + 1)τ], it can be shown that

y{(n + 1)τ} ≤ y(nτ) exp
∫ (n+1)τ

nτ
{c1α − λ(v∗(t)− δ1)− d − m1(s∗(t)− δ1)}dt

= y(nτ)η1. (21)

Similarly,

y{nτ} ≤ y{(n − 1)τ}η1. (22)

Hence, from (21) and (22),

y{(n + 1)τ} ≤ y{(n − 1)τ}η2
1.

Proceeding in this way, we obtain

y{(n + 1)τ} ≤ y(τ)ηn
1 . (23)

Since η1 < 1, one has ηn
1 → 0 whenever n → ∞. Hence, y{(n + 1)τ} → 0 as n → ∞. Now

we take nτ < t ≤ (n + 1)τ. Then, clearly, 0 < y(t) ≤ y(nτ) exp (n τ). Thus, y(t) → 0
as t → ∞. For

η2 = exp
∫ (n+1)τ

nτ
{c2φkα − (d + δ)− m2(s∗(t − δ1))}dt < 1,

we can similarly prove that z(t) → 0 as t → ∞.
We now prove that v(t) → v∗(t) as t → ∞. Since z(t) → 0 as t → ∞, then for some

0 < δ2 < γ
θ(d+δ)

there exists t1 > 0 such that 0 < z(t) < δ2 for all t > t1. Thus, for t > t1

and from the fourth equation of system (1), we can write that

θ(d + δ)δ2 − γv(t) ≥ v̇(t) ≥ −θ(d + δ)δ2 − γv(t). (24)

Let v1(t) and v2(t) be the solutions of

v̇1(t) = −θ(d + δ)δ2 − γv1(t), t �= nτ,

v1(t+) = v1(t) + vi, t = nτ,

and

v̇2(t) = θ(d + δ)δ2 − γv2(t), t �= nτ,

v2(t+) = v2(t) + vi, t = nτ,

respectively. Then, the solution will be

v∗1(t) =
vie−γ(t−nτ)

1 − e−γτ
+ θ(d + δ)δ2,

v∗2(t) =
vie−γ(t−nτ)

1 − e−γτ
− θ(d + δ)δ2. (25)

From (25), it is clear that when δ2 → 0 we have v∗1(t) → v∗(t) and v∗2(t) → v∗(t).
Hence, it follows from (24) that v(t) → v∗(t) as t → ∞.
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Similarly, we can choose 0 < δ3 < μ and, in the same way, we can prove that
s(t) → s∗(t) as t → ∞.

Finally, we shall prove that x(t) → k as t → ∞. We already proved that y(t), z(t) → 0
as t → ∞. Thus, for δ3 > 0, there exists t3 > 0 such that y(t), z(t) < δ3 for all t > t3. Hence,
from the first equation of system (1), we can write that

rx(t)− rx2(t)
k

> ẋ(t) ≥ {r − δ3α(1 + φ)}x(t)− rx2(t)
k

,

which implies that

kx0

x0 + (k − x0)ert ≥ x(t) ≥ k{r − δ3α(1 + φ)}x0

rx0 + [k{r − δ3α(1 + φ)} − rx0]e−{r−δ3α(1+φ)}t
. (26)

Hence, for δ3 → 0, x(t) → k as t → ∞. Thus, for application of biopesticide and chemical
pesticide together with the same time interval t = nτ, we can say that system (1) is locally
as well as globally stable if

c1α − d − λvie−γ(t−nτ)

1 − e−γτ
− m1sie−μ(t−nτ)

1 − e−μτ < 0,

c2φkα − (d + δ)− m2sie−μ(t−nτ)

1 − e−μτ < 0. (27)

Two subcases arise here, namely,
Subcase I. Application of biopesticide with time interval t= nτ1.
In this case, si = 0. Hence, system (1) is locally as well as globally stable around the

periodic solution if

c1αk − d − λvie−γ(t−nτ1)

1 − e−γτ1
< 0,

c2φkα − (d + δ) < 0. (28)

Subcase II. Application of chemical pesticide with time interval t= nτ2.
In this case, vi = 0, and hence system (1) is locally as well as globally stable around

the periodic solution if

c1αk − d − m1sie−μ(t−nτ2)

1 − e−μτ2
< 0,

c2φkα − (d + δ)− m2sie−μ(t−nτ2)

1 − e−μτ2
< 0. (29)

The proof is complete.

4. Numerical Simulations

Now we solve the impulsive system numerically and we graphically display the
results found. We varied the crucial parameters within their feasible ranges to observe their
impact on the impulsive model’s solution trajectories and equilibria. Precisely, we solved
the impulsive system and plotted the results in figures using the ode45 MATLAB solver.

In Figure 1, the impulsive time interval for microbial biological pesticide release is
5 days, and releasing of biopesticide was considered in different rates: vi = 0 (i.e., without
pesticides), vi = 6, and vi = 12. It is revealed that susceptible pest population decreases
with an increase in the release rate of biopesticides.
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Figure 1. Impact of biopesticide application in impulsive mode on system (1). Evolution of (a) crop;
(b) uninfected pest; (c) infected pest; (d) biopesticide. The set of parameters are r = 0.1, k = 1, α = 0.2,
β = 0.003, m1 = 0.8, m2 = 0.6, c1 = 0.5, c2 = 0.8, γ = 0.15, δ = 0.2, d = 0.05, κ = 100, s = 0.3, and
λ = 0.35. Here, the time interval is τ1 = 5 days and the rates of biopesticide release are vi = 0 (black
line), vi = 6 (red line), and vi = 12 (blue line).

In Figure 2, by taking different impulsive intervals, biopesticide is applied to the
system. A better result is obtained for lower intervals (2 days) but, with a higher release of
biopesticide, pests are present in the system. From Figures 1 and 2, we can conclude that
pest control using only biopesticides is very costly and a time-consuming process.
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Figure 2. Impact of biopesticide on system (1) for different impulse intervals and rates. Evolution of
(a) crop; (b) uninfected pest; (c) infected pest; (d) biopesticide. Red line indicates vi = 6 and τ1 = 5,
green line indicates vi = 12 and τ1 = 5, and blue line indicates vi = 12 and τ1 = 2.

Recall that in our model we take τ1 as the time period for biopesticide spraying
(generally a virus particle) and τ2 as the time period for chemical pesticide sprays. In
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Figure 3 we see the effect for the same time intervals, τ1 = τ2 = 5 days, whereas in Figure 4
we see the effect for different time intervals, τ1 = 3 days and τ2 = 2 days.

If both microbial biopesticides and chemical pesticides are released simultaneously,
with an equal time interval of 5 days, then the extinction of both infected and susceptible
pest populations is possible (see Figure 3).
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Figure 3. Impact of both biopesticide and chemical pesticide on system (1) with the same impulse
interval, τ1 = τ2 = 5. Evolution of (a) crop; (b) uninfected pest; (c) infected pest; (d) biopesticide;
(e) chemical pesticide. The rates of impulses are si = 0.15 and vi = 6 for black dotted color; si = 0.1
and vi = 6 for red dashed line; and si = 0.05 and vi = 6 for blue solid line.

Figure 4 illustrates the dynamics of the double impulse with different impulse intervals.
Double impulses occur at the time which is the common multiple of the two intervals.
For example, if we take τ1 = 2 and τ2 = 3, then simultaneous impulses will occur at the
times t = 6, t = 12, t = 18, and so on. Figure 4 is the most important figure characterizing
the impact of two different but simultaneous impulses on the total pest population with
different time intervals. It is observed that for vi = 12, si = 0.15, τ1 = 3, and τ2 = 2, the
total pest population becomes extinct. In Figure 4d, the impact of double impulses occurs
at t = 48, t = 54, t = 60 days, etc., which are common multiples of the two intervals τ1 = 2
and τ2 = 3.

It is also numerically checked that when the rate of the impulse control is high, a
comparatively lower interval can be taken for cost-effectiveness of the process.

Thus, the advantage of the impulsive control is that we can determine the proper rate
and a suitable interval of giving controlling agents in the system.
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Figure 4. Impact of both biopesticide and chemical pesticide on system (1) with same impulse
interval, τ1 = 3, τ2 = 2, and where the rates of impulses are si = 0.15 and vi = 6. Evolution of
(a) crop; (b) uninfected pest; (c) infected pest; (d) pesticides (biopesticide in blue, chemical pesticide
in red).

5. Discussion and Conclusions

In the present research, we studied impulsive periodic applications of integrated pesti-
cides, that is, simultaneous use of biopesticide and chemical pesticide in a pest management
system. We proposed a two-impulse mathematical model using an impulsive differen-
tial equation to observe the impact of periodic application of the combined pesticides in
impulsive modes.

In the previous models available in the literature, chemical and biological pesticides
were used in the model in a continuous way. In contrast, here, we used them in an
impulsive periodic way. Consequently, a two-impulse mathematical model was established.
Moreover, in the proposed model, we took chemical pesticides concentration as the model
population, which is a novel approach.

Stability theory (Floquet theory) and numerical calculations were used to examine
the system dynamical behavior. We determined the conditions under which the impulsive
system will be stable both locally and globally. For example, the local stability of a pest-free
periodic orbit was established. The dynamics varied with the rate of both biopesticide
recruitment and the chemical pesticide concentration.

Chemical pesticides minimize the oscillations in the system and make the system stable
in a shorter time. Numerical and analytical analysis reveals that increasing frequency of
pesticide application will require less administration of biopesticide and chemical pesticide,
which is economically beneficial and environmentally safe.

Our research is directed to optimize and find the right combination of pesticides with
maximum benefit to the crop plant. The numerical simulation also shows that control
over the spraying of chemical pesticides is needed to control pests and minimize the cost
of cultivation. On the other hand, chemical pesticides may have negative environmental
implications due to their lingering effects; nonetheless, the best control approach provides
the least amount of collateral damage to the environment.

In a nutshell, the promising feature of the system is the combined use of the pesticides
in impulsive control methods that reduce the cost and negative effects on the environment.
Using a combination of pesticides to deliver the pesticide can save the cost and reduce
the side effects of chemical pesticides. Our obtained results will give a new perspective to
farmers who implement this in a real-world setting.
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In the future, one can extend this work to an optimal impulsive system for cost-
effectiveness of the control process.
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Abstract: The new Laplace variational iterative method is used in this research for solving the (2+1)-D
and (3+1)-D Burgers equations. This technique relies on the modified variational iteration method
and the Laplace transform. To apply this approach, the differential problem is first transformed into
an algebraic form using the Laplace transform, and then the algebraic equations are iteratively solved
using the modified variational iterative approach. By utilizing this technique, the Burgers equations
can be solved both numerically and analytically. The study demonstrates the effectiveness of the new
Laplace variational iterative approach through three specific examples.

Keywords: partial differential equations; partial derivatives; (2+1)-D Burgers’s equation; (3+1)-D
Burgers’s equation; system of two-dimensional Burgers’s equation

MSC: 44A10; 35E15; 47J30

1. Introduction

The J.M. Burgers equation, also known as Burgers’s equation, is a significant and
commonly used non-linear PDE. It was first introduced by Bateman and later corrected by
Burgers, and is sometimes referred to as the Bateman–Burgers equation. This equation is
employed to simulate numerous physical phenomena, for example, acoustics, diffraction
water waves, heat conduction, shock waves, and turbulence issues, among others.

This research focuses on the analytical solutions of the two-dimensional and
three-dimensional Burgers equations. The new Laplace transform with the variational
iteration method (LVIM) is utilized for solving these equations. Approximate results ob-
tained using the LVIM approach are then compared with the analytical results of Burgers’s
equation, the numerical approximations of the Burgers equation obtained via the Laplace
Homotopy Perturbation method (LHPM) [1], and the numerical results of the Burgers
equation obtained via the EHPM [2]. To demonstrate the effectiveness of the proposed
method, a comparison study is given in Section 3.

In addition, the suggested strategy’s convergence is illustrated through graphs of both
precise and approximate solutions. Various partial differential equations with linear and
non-linear coefficients can be utilized to solve initial value and boundary value problems.
To find approximate solutions to Burgers equations, several numerical schemes have been
developed, including the spline FEM, ADM, Douglas FD scheme, exact explicit FDM,
VIM, and others [3–10]. However, only a few analytical methods, such as the LHPM [11],
Hopf–Cole Transformation [12], etc., have been developed to obtain the precise solution of
certain PDEs. Laplace transform-based methods are extensively employed in mathematics
to solve differential equations. Other techniques, such as the VIM and the HPM, can also

Axioms 2023, 12, 647. https://doi.org/10.3390/axioms12070647 https://www.mdpi.com/journal/axioms179
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be combined with it to make it hybrid. By combining these approaches with the Laplace
Transform method, partial differential equations can be solved analytically. The VIM has
been used to solve various differential equations [13]. It has been demonstrated that the
VIM can also solve non-linear equations [14]. The Laplace Transformation and variational
iteration approach have been used to solve Smoluchowski’s coagulation equations [15]. A
new modified variational iterative approach has been proposed for the solution of boundary
value problems of higher order [16]. The variational iteration approach and Laplace
transformation have been combined in [17]. In [18], certain issues with the variational
iterative approach and how the Laplace transform method fixes them are detailed. Modified
fractional derivatives have a Laplace variational approach built into them [19]. A new
Laplace Transformation and variational iterative approach can solve non-linear PDEs [20].
The new Laplace and variational iterative approach has been used to solve numerous
equations [21–24].

Consider, the (2+1)-D non-linear Burgers’s equation can also be written as

∂ϕ(α, β, τ)

∂τ
+ ρϕ(α, β, τ)

∂ϕ(α, β, τ)

∂α
= μ

(
∂2 ϕ(α, β, τ)

∂α2 +
∂2 ϕ(α, β, τ)

∂β2

)
(1)

with the initial conditions
ϕ(α, β, 0) = h(α, β)

where u is the velocity component, μ is the kinematic viscosity, ρ is any constant, and t is
the time.

Similarly, the (3+1)-D Non-linear Burgers equation is

∂ϕ(α, β, z, τ)

∂τ
+ ρϕ(α, β, z, τ)

∂ϕ(α, β, z, τ)

∂α
= μ

(
∂2 ϕ(α, β, z, τ)

∂α2 +
∂2 ϕ(α, β, z, τ)

∂β2 +
∂2 ϕ(α, β, z, τ)

∂z2

)
with initial conditions

ϕ(α, β, z, 0) = j(α, β, z)

where u is the velocity component, μ is the kinematic viscosity, ρ is any constant, and τ is
the time.

Non-linear partial differential equations find wide application in the fields of engi-
neering, physics, and applied mathematics. Various approaches have been suggested in the
literature to solve the two-dimensional Burgers equations as well as the two-dimensional
and three-dimensional Burgers equations. The importance of discovering exact solutions to
PDEs for developing novel techniques to obtain precise or approximate solutions remains
a topic of great interest in mathematics, engineering, and physics, as evidenced by recent
publications [25–30].

2. Materials and Methods

2.1. New LVIM for Solving (2+1)-D Burgers’s Equation

Consider the following (2+1)-D Burgers equation:

∂ϕ(α, β, τ)

∂τ
+ ρϕ(α, β, τ)

∂ϕ(α, β, τ)

∂α
= μ

(
∂2 ϕ(α, β, τ)

∂α2 +
∂2 ϕ(α, β, τ)

∂β2

)
(2)

with given conditions as
ϕ(α, β, 0) = h(α, β)

Rewriting Equation (2), we have

∂ϕ(α, β, τ)

∂τ
= μ

(
∂2 ϕ(α, β, τ)

∂α2 +
∂2 ϕ(α, β, τ)

∂β2

)
− ρϕ(α, β, τ)

∂ϕ(α, β, τ)

∂α
(3)
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By applying Laplace transformation on (3), we have

L
{

∂ϕ(α, β, τ)

∂τ

}
= L

{
μ

(
∂2 ϕ(α, β, τ)

∂α2 +
∂2 ϕ(α, β, τ)

∂β2

)
− ρϕ(α, β, τ)

∂ϕ(α, β, τ)

∂α

}
(4)

sL{ϕ(α, β, τ)} − ϕ(α, β, 0) = L
{

μ

(
∂2 ϕ

∂α2 +
∂2 ϕ

∂β2

)
− ρϕ

∂ϕ

∂α

}
(5)

sL{ϕ(α, β, τ)} − h(α, β) = L
{

μ

(
∂2 ϕ

∂α2 +
∂2 ϕ

∂β2

)
− ρϕ

∂ϕ

∂α

}
(6)

sL{ϕ(α, β, τ)} = h(α, β) + L
{

μ

(
∂2 ϕ

∂α2 +
∂2 ϕ

∂β2

)
− ρϕ

∂ϕ

∂α

}
(7)

L{ϕ(α, β, τ)} =
h(α, β)

s
+

1
s

L
{

μ

(
∂2 ϕ

∂α2 +
∂2 ϕ

∂β2

)
− ρϕ

∂ϕ

∂α

}
(8)

By using inverse Laplace transformation on (8), we obtain

ϕ(α, β, τ) = h(α, β) + L−1
[

1
s

L
{

μ

(
∂2 ϕ

∂α2 +
∂2 ϕ

∂β2

)
− ρϕ

∂ϕ

∂α

}]
(9)

Now, by modifying VIM from Equation (9), we obtain

ϕn+1 = h(α, β) + L−1
[

1
s

L
{

μ

(
∂2 ϕn

∂α2 +
∂2 ϕn

∂β2

)
−
(

ρϕn
∂ϕn

∂α

)}]
(10)

Equation (10) represents the modified iteration formula of LVIM; the solution is given by

ϕ = lim
n→∞

ϕn

2.2. The Convergence of LVIM for (2+1)-D Partial Differential Equations

Consider the two-dimensional differential equation

lϕ(α, β, τ) + nϕ(α, β, τ) = g(α, β, τ) (11)

with the initial conditions
ϕ(α, β, 0) = h(α, β) (12)

where l, n, and g are a linear operator of the first order, a non-linear operator, and a
non-homogeneous term, respectively.

The iteration formula of the new LVIM is

ϕm+1(α, β, τ) = G(α, β) + L−1
[

1
s

L{nϕm(α, β, τ)}
]

Now, define the operator A[ϕ] as

A[ϕ] = L−1
[

1
s

L{nϕm(α, β, τ)}
]

(13)
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define the components vm, m = 0, 1, 2, 3 . . . as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

v0 = u0,
v1 = A[v0],
v2 = A[v1],

.

.

.
vm+1 = A[vm]

(14)

Hence,
ϕ(α, β, τ) = lim

m→∞
ϕm(α, β, τ) (15)

For the analysis of convergence of new LVIM, let us discuss the following theorem.

Theorem 1. Let A, as defined in (14), be an operator from Hilbert space H to H; the solution, as
defined in (16), converges if there exists 0 < γ < 1 such that

‖A[vm+1]‖ ≤ γ‖A[vm]‖ (i.e., ‖vm+1‖ ≤ γ‖vm‖)

for all m ∈ N ∪ {0}.

Proof. Define the sequence {Sn}∞
n=1 as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1 = G(α, β) + v1,
S2 = G(α, β) + v2,
S3 = G(α, β) + v3,

.

.

.
Sm = G(α, β) + vm

(16)

Now, we will show that sequence {Sn}∞
n=1 is a Cauchy sequence in the Hilbert space H.

Consider

‖Sm+1 − Sm‖ = ‖vm+1 − vm‖ ≤ γ‖vm‖ ≤ γ2‖vm−1‖ ≤ . . . ≤ γm+1‖v0‖

For every m, n ∈ N, m ≥ n, we have

‖Sm − Sn‖ = ‖(Sm − Sm−1) + (Sm−1 − Sm−2) + . . . + (Sn+1 − Sn)‖
≤ ‖(Sm − Sm−1)‖+ ‖(Sm−1 − Sm−2)‖+ . . . + ‖(Sn+1 − Sn)‖
≤ γm‖v0‖+ γm−1‖v0‖+ . . . + γn+1‖v0‖
=

1 − γm−n

1 − γ
γn+1‖v0‖

Since 0 < γ < 1, therefore,

lim
m,n→∞

‖Sm − Sn‖ = 0 (17)

Hence, {Sn}∞
n=1 is a Cauchy sequence in the Hilbert space H and it implies that the

series solution (16) converges. �

2.3. New LVIM for Solving (3+1)-D Burgers’s Equation

Consider the following (3+1)-D Burgers equation:
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∂ϕ(α, β, τ, z)
∂τ

+ ρϕ(α, β, z, τ)
∂ϕ(α, β, z, τ)

∂α
= μ

(
∂2 ϕ(α, β, z, τ)

∂α2 +
∂2 ϕ(α, β, z, τ)

∂β2 +
∂2 ϕ(α, β, z, τ)

∂z2

)
(18)

with given conditions as
ϕ(α, β, z, 0) = j(α, β, z)

Rewriting Equation (18), we have

∂ϕ(α, β, z, τ)

∂τ
= μ

(
∂2 ϕ(α, β, z, τ)

∂α2 +
∂2 ϕ(α, β, z, τ)

∂β2 +
∂2 ϕ(α, β, z, τ)

∂z2

)
− ρϕ(α, β, z, τ)

∂ϕ(α, β, z, τ)

∂α
(19)

By applying Laplace transformation on (19), we have

L
{

∂ϕ(α, β, z, τ)

∂τ

}
= L

{
μ

(
∂2 ϕ(α, β, z, τ)

∂α2 +
∂2 ϕ(α, β, z, τ)

∂β2 +
∂2 ϕ(α, β, z, τ)

∂z2

)
− ρϕ(α, β, z, τ)

∂ϕ(α, β, z, τ)

∂α

} (20)

sL{ϕ(α, β, z, τ)} − ϕ(α, β, z, 0) = L
{

μ

(
∂2 ϕ

∂α2 +
∂2 ϕ

∂β2 +
∂2 ϕ

∂z2

)
− ρϕ

∂ϕ

∂α

}
(21)

sL{ϕ(α, β, z, τ)} − j(α, β, z) = L
{

μ

(
∂2 ϕ

∂α2 +
∂2 ϕ

∂β2 +
∂2 ϕ

∂z2

)
− ρϕ

∂ϕ

∂α

}
(22)

sL{ϕ(α, β, z, τ)} = j(α, β, z) + L
{

μ

(
∂2 ϕ

∂α2 +
∂2 ϕ

∂β2 +
∂2 ϕ

∂z2

)
− ρϕ

∂ϕ

∂α

}
(23)

L{ϕ(α, β, z, τ)} =
j(α, β, z)

s
+

1
s

L
{

μ

(
∂2 ϕ

∂α2 +
∂2 ϕ

∂β2 +
∂2 ϕ

∂z2

)
− ρϕ

∂ϕ

∂α

}
(24)

By using inverse Laplace transformation on (24), we obtain

ϕ(α, β, z, τ) = j(α, β, z) + L−1
[

1
s

L
{

μ

(
∂2 ϕ

∂α2 +
∂2 ϕ

∂β2 +
∂2 ϕ

∂z2

)
− ρϕ

∂ϕ

∂α

}]
(25)

Now, by modifying VIM from Equation (25), we obtain

ϕn+1 = j(α, β, z) + L−1
[

1
s

L
{

μ

(
∂2 ϕn

∂α2 +
∂2 ϕn

∂β2 +
∂2 ϕn

∂z2

)
−
(

ρϕn
∂ϕn

∂α

)}]
(26)

Equation (26) represents the modified iteration formula of LVIM; the solution is given by

ϕ = lim
n→∞

ϕn (27)

2.4. The Convergence of LVIM for (3+1)-D Partial Differential Equations

Consider the three-dimensional differential equation

lϕ(α, β, z, τ) + nϕ(α, β, τ) = g(α, β, τ) (28)

with the initial conditions
ϕ(α, β, 0) = h(α, β) (29)

where l, n, and g are a linear operator of the first order, a non-linear operator, and a
non-homogeneous term, respectively.

The iteration formula of the new LVIM is

ϕm+1(α, β, z, τ) = G(α, β) + L−1
[

1
s

L{nϕm(α, β, z, τ)}
]
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Now, define the operator A[ϕ] as

A[ϕ] = L−1
[

1
s

L{nϕm(α, β, z, τ)}
]

(30)

define the components vm, m = 0, 1, 2, 3 . . . as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

v0 = u0,
v1 = A[v0],
v2 = A[v1],

.

.

.
vm+1 = A[vm]

(31)

Hence,
ϕ(α, β, z, τ) = lim

m→∞
ϕm(α, β, z, τ) (32)

For the analysis of convergence of new LVIM, let us discuss the following theorem.

Theorem 2. Let A, as defined in (30), be an operator from Hilbert space H to H; the solution, as
defined in (32), converges if there exists 0 < γ < 1 such that

‖A[vm+1]‖ ≤ γ‖A[vm]‖ (i.e., ‖vm+1‖ ≤ γ‖vm‖)

for all m ∈ N ∪ {0}.

Proof. Define the sequence {Sn}∞
n=1 as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1 = G(α, β, z) + v1,
S2 = G(α, β, z) + v2,
S3 = G(α, β, z) + v3,

.

.

.
Sm = G(α, β, z) + vm

(33)

Now, we will show that sequence {Sn}∞
n=1 is a Cauchy sequence in the Hilbert space H.

Consider

‖Sm+1 − Sm‖ = ‖vm+1 − vm‖ ≤ γ‖vm‖ ≤ γ2‖vm−1‖ ≤ . . . ≤ γm+1‖v0‖

For every m, n ∈ N, m ≥ n, we have

‖Sm − Sn‖ = ‖(Sm − Sm−1) + (Sm−1 − Sm−2) + . . . + (Sn+1 − Sn)‖
≤ ‖(Sm − Sm−1)‖+ ‖(Sm−1 − Sm−2)‖+ . . . + ‖(Sn+1 − Sn)‖
≤ γm‖v0‖+ γm−1‖v0‖+ . . . + γn+1‖v0‖
=

1 − γm−n

1 − γ
γn+1‖v0‖

Since 0 < γ < 1, therefore,

lim
m,n→∞

‖Sm − Sn‖ = 0 (34)

Hence, {Sn}∞
n=1 is a Cauchy sequence in the Hilbert space H and it implies that the

series solution (32) converges. �
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3. Numerical Examples

Examples are provided in this part to illustrate the effectiveness and precision of the
suggested Laplace variational iterative method.

Example 1. Consider the following Two-Dimensional Burgers Equation

∂ϕ(α, β, τ)

∂τ
=

1
A

ϕ(α, β, τ)
∂ϕ(α, β, τ)

∂α
+

∂2 ϕ(α, β, τ)

∂α2 +
∂2 ϕ(α, β, τ)

∂β2 (35)

with conditions given as
ϕ(α, β, 0) = A(α + β)

By applying the LT on (35), we have

L
{

∂ϕ(α, β, τ)

∂τ

}
= L

{
1
A

ϕ(α, β, τ)
∂ϕ(α, β, τ)

∂α
+

∂2 ϕ(α, β, τ)

∂α2 +
∂2 ϕ(α, β, τ)

∂β2

}
(36)

sL{ϕ(α, β, τ)} − ϕ(α, β, 0) = L
{

1
A

ϕ(α, β, τ)
∂ϕ(α, β, τ)

∂α
+

∂2 ϕ(α, β, τ)

∂α2 +
∂2 ϕ(α, β, τ)

∂β2

}

sL{ϕ(α, β, τ)} − A(α + β)} = L
{

1
A

ϕ(α, β, τ)
∂ϕ(α, β, τ)

∂α
+

∂2 ϕ(α, β, τ)

∂α2 +
∂2 ϕ(α, β, τ)

∂y2

}

L{ϕ(α, β, τ)} =
A(α + β)

s
+

1
s

L
{

1
A

ϕ(α, β, τ)
∂ϕ(α, β, τ)

∂α
+

∂2 ϕ(α, β, τ)

∂α2 +
∂2 ϕ(α, β, τ)

∂β2

}
(37)

By applying the inverse Laplace transformation on (37), we get

ϕ = A(α + β) + L−1
[

1
s

L
{

1
A

ϕ(α, β, t)
∂ϕ(α, β, τ)

∂α
+

∂2 ϕ(α, β, τ)

∂α2 +
∂2 ϕ(α, β, τ)

∂β2

}]
(38)

Using the proposed variational method from (38), we obtain

ϕm+1 = A(α + β) + L−1
[

1
s

L
{

1
A

ϕm
∂ϕm

∂α
+

∂2 ϕm

∂α2 +
∂2 ϕm

∂β2

}]
(39)

From (39), we obtain
ϕ0 = A(α + β),

ϕ1 = A(α + β)(1 + τ),

ϕ2= A(α + β)

(
1 + τ + τ2 +

τ3

3

)
,

ϕ3= A(α + β)

(
1 + τ + τ2 + τ3 +

2τ4

3
+

τ5

3
+

τ6

9
+

τ7

63

)
Similarly, we can find the fourth, fifth, and other iterations.
The solution can be found as

ϕ = lim
m→∞

ϕm

After simplification, we obtain

ϕ = A(α + β)
(

1 + τ + τ2 + τ3 + τ4 + τ5 . . .
)

,
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This implies
ϕ = A(α + β)(1 − τ)−1

or

ϕ =
A(α + β)

(1 − τ)
(40)

This series solution is valid only if |τ| < 1.

Table 1 shows the comparison study of solutions obtained by new Laplace variation
iteration method (up to fourth term), variational homotopy perturbation method (up to
fourth term (as discussed in [1])), and the exact solutions for α = 0.1, β = 0.1 and A = 2
of Example 1. Table 2 shows the comparison of absolute errors obtained by new Laplace
variation iteration method (up to fourth term) and variational homotopy perturbation
method (up to fourth term (as discussed in [1])) for α = 0.1, β = 0.1 and A = 2 of
Example 1. Table 3 shows the comparison of absolute errors obtained by new Laplace
variation iteration method (up to fourth term) for different value of τ. Figure 1 shows the
physical behavior of solutions for τ = 0.2 at different domain of α and β.

Table 1. The comparison study of new LVIM (up to fourth term), VHPM (up to fourth term (as
mentioned in [1])), and the exact solution for (α, β) = (0.1, 0.1) and A = 2.

τ Exact LVIM VHPM [1]

0.01 0.40404040 0.40404040 0.40404040

0.02 0.40816326 0.40816324 0.40816320

0.03 0.41237113 0.41237101 0.41237080

0.04 0.41666666 0.41666629 0.41666560

0.05 0.42105263 0.42105170 0.42105000

0.06 0.42553191 0.42552996 0.42552640

0.07 0.43010752 0.43010383 0.43009720

0.08 0.43478260 0.43477617 0.43476480

0.09 0.43956043 0.43954990 0.43953160

0.10 0.44444444 0.44442804 0.44440000

Table 2. The comparison of absolute errors obtained by new LVIM (up to fourth term) and VHPM
(up to fourth term (as mentioned in [1])) for (α, β) = (0.1, 0.1) and A = 2.

τ |ϕexact−ϕLVIM| |ϕexact−ϕVHPM| [1]

0.01 1.3604 × 10−9 4.0404 × 10−9

0.02 2.2210 × 10−8 6.5306 × 10−8

0.03 1.1475 × 10−7 3.3402 × 10−7

0.04 3.7016 × 10−7 1.0667 × 10−6

0.05 9.2255 × 10−7 2.6316 × 10−6

0.06 1.9531 × 10−6 5.5149 × 10−6

0.07 3.6948 × 10−6 1.0327 × 10−5

0.08 6.4373 × 10−6 1.7809 × 10−5

0.09 1.0532 × 10−5 2.8840 × 10−5

0.10 1.6399 × 10−5 4.4444 × 10−5
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Table 3. The comparison of absolute errors obtained by new LVIM (up to fourth term) and VHPM
(up to fourth term (as mentioned in [1])) for (α, β) = (0.1, 0.1) and A = 2 at different τ.

τ Exact Solutions |ϕexact−ϕLVIM| |ϕexact−ϕVHPM| [1]

0.2 0.50000000 3.2774 × 10−4 8.0000 × 10−4

0.3 0.57142857 2.1108 × 10−3 4.6286 × 10−3

0.4 0.66666666 8.6822 × 10−3 1.7067 × 10−2

0.5 0.80000000 2.8423 × 10−2 5.0000 × 10−2

0.6 1.00000000 8.2421 × 10−2 1.2960 × 10−1

Figure 1. Description of solutions of Example 1 for τ = 0.2.

Example 2. Consider the following (3+1)-D Burgers equation

∂ϕ(α, β, z, t)
∂τ

=
1
B

ϕ(α, β, z, τ)
∂ϕ(α, β, z, τ)

∂α
+

∂2 ϕ(α, β, z, τ)

∂α2 +
∂2 ϕ(α, β, z, τ)

∂β2 +
∂2 ϕ(α, β, z, τ)

∂z2 (41)

with the initial conditions
ϕ(α, β, z, 0) = B(α + β + z)

By using the Laplace transformation on (41), we obtain

L
{

∂ϕ(α, β, z, τ)

∂τ

}
= L

{
1
B

ϕ(α, β, z, τ)
∂ϕ(α, v, z, τ)

∂α
+

∂2 ϕ(α, β, z, τ)

∂α2 +
∂2 ϕ(α, β, z, τ)

∂β2 +
∂2 ϕ(α, β, z, τ)

∂z2

}
sL{ϕ(α, β, z, τ)} − ϕ(α, β, z, 0)

= L
{

1
B

ϕ(α, β, z, τ)
∂ϕ(x, β, z, τ)

∂α
+

∂2 ϕ(α, β, z, τ)

∂α2 +
∂2 ϕ(α, β, z, τ)

∂β2 +
∂2 ϕ(α, β, z, τ)

∂z2

}
sL{ϕ(α, β, z, τ)} − (α + β + z)}

= L
{

1
B

ϕ(α, β, z, τ)
∂ϕ(α, β, z, τ)

∂α
+

∂2 ϕ(α, β, z, τ)

∂α2 +
∂2 ϕ(α, β, z, τ)

∂β2 +
∂2 ϕ(α, β, z, τ)

∂z2

}
L{ϕ(α, β, z, τ)} =

B(α + β + z)
s

+

1
s

L
{

1
B

ϕ(α, β, z, τ)
∂ϕ(α, β, z, t)

∂α
+

∂2 ϕ(α, β, z, t)
∂α2 +

∂2 ϕ(α, β, z, t)
∂β2 +

∂2u(α, β, z, t)
∂z2

}

(42)

By the inverse Laplace transformation on (42), we obtain

ϕ = B(α + β + z)+

L−1
[

1
s

L
{

1
B

ϕ(α, β, z, τ)
∂ϕ(α, β, z, τ)

∂α
+

∂2 ϕ(α, β, z, τ)

∂x2 +
∂2 ϕ(α, β, z, τ)

∂β2 +
∂2 ϕ(α, β, z, t)

∂z2

}]
(43)
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Using the modified variational iteration method from Equation (43), we obtain

ϕm+1 = B(α + β + z) + L−1
[

1
s

L
{

ϕm
∂ϕm

∂x
+

∂2 ϕm

∂x2 +
∂2 ϕm

∂β2 +
∂2 ϕm

∂z2

}]
(44)

From (44), we obtain
ϕ0 = B(α + β + z),

ϕ1 = B(α + β + z)(1 + τ),

ϕ2= B(α + β + z)
(

1 + τ + τ2 +
τ3

3

)
,

ϕ3= B(α + β + z)
(

1 + τ + τ2 + τ3 +
2τ4

3
+

τ5

3
+

τ6

9
+

τ7

63

)
,

The solution can be obtained by
ϕ = lim

m→∞
ϕm

Now, after simplification, we obtain

ϕ = B(α + β + z)
(

1 + τ + τ2 + τ3 + τ4 + τ5 . . .
)

This implies
ϕ = B(α + β + z)(1 − τ)−1

or

ϕ =
B(α + β + z)

(1 − τ)

This series solution is valid only if |τ| < 1.

Table 4 shows the comparison study of solutions obtained by new Laplace variation
iteration method (up to fourth term), variational homotopy perturbation method (up to
fourth term (as discussed in [1])), and the exact solutions for α = 0.1, β = 0.1, z = 0.1
and B = 3 of Example 2. Table 5 shows the comparison of absolute errors obtained by
new Laplace variation iteration method (up to fourth term) and variational homotopy
perturbation method (up to fourth term (as discussed in [1])) for particular values of
variables α = 0.1, β = 0.1, z = 0.1 and B = 3 of Example 3. Table 6 shows the comparison
of absolute errors obtained by new Laplace variation iteration method (up to fourth term)
for different value of τ. Figure 2 shows the physical behavior of solutions for τ = 0.1 at
different domain of α, β and z.

Table 4. The comparison of new LVIM (up to fourth term), VHPM (up to fourth term (as mentioned
in [1])), and exact solution for (α, β, z) = (0.1, 0.1, 0.1) and B = 3.

τ Exact NLVIM VHPM [1]

0.01 0.90909090 0.90909090 0.90909090

0.02 0.91836734 0.91836729 0.91836720

0.03 0.92783505 0.92783479 0.92783430

0.04 0.93750000 0.93749916 0.93749760

0.05 0.94736842 0.94736634 0.94736250

0.06 0.95744680 0.95744241 0.95743440

0.07 0.96774193 0.96773362 0.96771870
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Table 4. Cont.

τ Exact NLVIM VHPM [1]

0.08 0.97826086 0.97824638 0.97822080

0.09 0.98901098 0.98898729 0.98894610

0.10 1.00000000 0.99996310 0.99990000

Table 5. The comparison of absolute errors obtained by new LVIM (up to fourth term) and VHPM
(up to fourth term (as mentioned in [1])) for (α, β, z) = (0.1, 0.1, 0.1) and B = 3.

τ |ϕexact−ϕLVIM| |ϕexact−ϕVHPM| [1]

0.01 3.0608 × 10−9 9.0909 × 10−9

0.02 4.9972 × 10−8 1.4694 × 10−7

0.03 2.5818 × 10−7 7.5155 × 10−7

0.04 8.3287 × 10−7 2.4000 × 10−6

0.05 2.0757 × 10−6 5.9211 × 10−6

0.06 4.3945 × 10−6 1.2409 × 10−5

0.07 8.3134 × 10−6 2.3235 × 10−5

0.08 1.4484 × 10−5 4.0070 × 10−5

0.09 2.3698 × 10−5 6.4889 × 10−5

0.10 3.6899 × 10−5 1.0000 × 10−4

Table 6. The comparison of absolute errors obtained by new LVIM (up to fourth term) and VHPM
(up to fourth term (as mentioned in [1])) for (α, β, z) = (0.1, 0.1, 0.1) and B = 3 at different τ.

τ Exact Solutions |ϕexact−ϕLVIM| |ϕexact−ϕVHPM| [1]

0.2 1.12500000 7.3742 × 10−4 1.8000 × 10−3

0.3 1.28571428 4.7493 × 10−3 1.0414 × 10−2

0.4 1.50000000 1.9535 × 10−2 3.8400 × 10−2

0.5 1.80000000 6.3951 × 10−2 1.1250 × 10−1

0.6 2.25000000 1.8545 × 10−1 2.9160 × 10−1

Figure 2. Description of solutions of Example 2 for z = 0.2 and τ = 0.1.
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4. Conclusions

Based on the preceding discussion and experiments, the combination of the Laplace
transforms, and the variational iteration technique presents an effective approach to solve
the (2+1)-D and (3+1)-D Burgers equations. Compared to the variational homotopy pertur-
bation technique (VHPM), the new Laplace variational iteration method (LVIM) is more
effective in obtaining an approximate solution that closely approximates the actual one. It
is possible that this technique may be utilized in the future to solve the three-dimensional
Burgers equation system.
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Abstract: The use of corpus assessment approaches to determine and rank keywords for corpus data
is critical due to the issues of information retrieval (IR) in Natural Language Processing (NLP), such
as when encountering COVID-19, as it can determine whether people can rapidly obtain knowledge
of the disease. The algorithms used for corpus assessment have to consider multiple parameters and
integrate individuals’ subjective evaluation information simultaneously to meet real-world needs.
However, traditional keyword-list-generating approaches are based on only one parameter (i.e., the
keyness value) to determine and rank keywords, which is insufficient. To improve the evaluation
benefit of the traditional keyword-list-generating approach, this paper proposed an extended analytic
hierarchy process (AHP)-based corpus assessment approach to, firstly, refine the corpus data and
then use the AHP method to compute the relative weights of three parameters (keyness, frequency,
and range). To verify the proposed approach, this paper adopted 53 COVID-19-related research
environmental science research articles from the Web of Science (WOS) as an empirical example.
After comparing with the traditional keyword-list-generating approach and the equal weights (EW)
method, the significant contributions are: (1) using the machine-based technique to remove function
and meaningless words for optimizing the corpus data; (2) being able to consider multiple parameters
simultaneously; and (3) being able to integrate the experts’ evaluation results to determine the relative
weights of the parameters.

Keywords: corpus assessment approach; natural language processing (NLP); COVID-19; analytic
hierarchy process (AHP); environmental science

1. Introduction

The corpus assessment approach has been applied in the Natural Language Processing
(NLP) field for a long time, and it is seen as a critical technique for identifying linguistic
patterns [1–3]. Since the end of 2019, the emergence of the novel coronavirus disease
COVID-19 has caused serious impacts on global political and economic systems, and even
endangered people’s lives [4–6]. Diseases always do more harm than good to humans;
nevertheless, during the pandemic, scientists discovered that a series of public health
policies, such as city lockdowns, as well as decreasing unnecessary commercial activities
and travel, can mitigate global environmental pollution issues that we have been helpless
to address in the past, especially the air quality index (AQI), which has been shown to
have significantly decreased in many modern cities [7–9]. COVID-19 does not seem to be
completely eradicated so far; thus, to keep mining knowledge of the disease, it is critical to
effectively integrate, process, and reproduce its corpus data.

Corpus assessment approaches have been utilized to process the corpus data of var-
ious domains to discover domain-oriented tokens and define linguistic patterns. For
example, Poole [3] used the corpus-based approach to process the collected published
judicial opinions from 12 geographic distribution areas of the U.S. Federal Court of Appeals
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(i.e., the target corpus), for analyzing stance adverbs in its target domain. The contribu-
tions of the research defined the linguistic patterns of legal writing styles and provided
pedagogical suggestions for legal purposes in English. Otto [2] proposed a three-phase
corpus-based data driven learning (DDL) approach to identify special-purpose tokens in
the civil engineering domain. The results disclosed that the approach was able to unveil
the tokens’ functions and improve the efficiency of defining the linguistic patterns in the
specialized context of civil engineering. However, when the traditional corpus assessment
approach [10] encountered function words and meaningless letters in the keyword list, it
could not automatically remove them to conduct corpus optimization, which decreased the
efficiency of the corpus assessment. Moreover, the keyword list only adopted the likelihood
ratio method [11] as an information retrieval (IR) mean to rank keywords. This caused
inaccurate results, because other potential parameters such as frequency and range were
not taken into consideration, which made the traditional approach unable to truly define
the keywords’ level of importance.

The equal weights (EW) method is a classic approach used to process multiple parame-
ters simultaneously when the relative importance of the parameters is unknown. However,
the EW method assumes that the relative weights of each parameter are equal, which
ignores the relative importance between different parameters. Saaty [12] firstly proposed
the analytic hierarchy process (AHP) method to handle the relative importance between
different parameters in decision-making problems. The AHP method uses the pairwise
comparison between different parameters to compute the eigenvector and eigenvalue and
then obtains the relative weights of the parameters. Since then, the AHP method has been
adopted in a wide range of applications. For example, Rezaei and Tahsili [13] adopted
the AHP method to conduct urban and crisis management, for accessing the vulnerability
and immunization parts to decrease the effects of earthquakes. In addition, Ristanovic
et al. [14] demonstrated that the AHP method can obtain the best solutions in processing
the operational risk management of banks. Prior studies have shown that the AHP method
is usually applied in the fields of management and operational research (OR) [12–20];
nevertheless, properly modifying the AHP method can allow it to be used in NLP fields
for the computer processing of natural languages, by considering the relative weights of
multiple parameters simultaneously.

Corpus assessment approaches have been widely used as an NLP tool in the fields of social
sciences and the sciences to explore the linguistic patterns of specific domains [1–3,10,21–23].
The traditional keyword-list-generating approach [10] is based on the likelihood ratio
method, which is an IR approach utilized in many types of corpus software [1,23] to
calculate a token’s keyness value and rank tokens to form a keyword list. Many corpus-
based approaches also adopt these types of corpus software to handle corpus analysis
tasks [24,25]. However, for traditional keyword ranking, it is difficult to determine the
actual importance of each keyword when the program only uses their keyness values
for ranking. Namely, the traditional keyword-list-generating approach is only based
on one parameter (i.e., the keyness values) to determine and rank keywords, which is
insufficient. In the advanced information, communication, and technology (ICT) era, people
have developed many algorithms for machine learning and optimizing prior algorithms
or machines, with the expectation of machines being able to make more complete and
accurate judgments and evaluation results. Thus, the corpus assessment approach should
integrate with machine-based corpus optimization and consider multiple parameters (or
vectors) simultaneously, to make the evaluation results more accurate. To optimize the
deficiency of the traditional keyword-list-generating approach, this paper proposed an
extended AHP-based corpus assessment approach to integrate the likelihood ratio method,
the corpus optimization approach, and the AHP method, to improve the accuracy of
keyword ranking in corpus assessments. The proposed approach firstly optimizes the
likelihood ratio method results by removing function words and meaningless letters, and
then simultaneously takes three parameters (i.e., the keyness, frequency, and range) into
consideration to rank keywords while considering multiple parameters. More importantly,
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the relative importance of these parameters is evaluated and determined by experts. That
is, the proposed approach not only conducts a complete assessment on the issue but
also enables expert evaluation results to be integrated and transformed qualitatively and
quantitatively, thereby further making the keyword ranking more complete, precise, and
able to satisfy individuals’ intentions. To verify the proposed extended AHP-based corpus
assessment approach, this paper adopted 53 research articles from the Web of Science
(WOS) as empirical examples of natural language data.

The remainder of this paper is organized as follows. Section 2 presents the background
information of related methods and the COVID-19 impacts on environmental sciences.
Section 3 describes each step of the proposed extended AHP-based corpus assessment
approach. Section 4 uses COVID-19-related research articles as empirical examples to verify
the proposed approach and compare it with the other two methods, and highlight the
contributions. Section 5 is the concluding section.

2. Background

2.1. Likelihood Ratio Method

With the rise of ICT, people have started to rely on computers to process big natural
language data. Dunning [11] first introduced the likelihood ratio method for computing
the keyness values of tokens for keyword retrieval in corpus analysis tasks, and it is now
considered a critical algorithm that is embedded in many types of corpus software. The
logic behind the algorithm is that it compares a token’s frequency values in two corpora (i.e.,
the target corpus and the benchmark corpus). When it finds a token with high frequency
values in the target corpus and relatively low frequency values in the benchmark corpus, it
will calculate the token’s keyness values, after which the computation results of the tokens’
keyness values will be ranked for generating a keyword list.

The definition of likelihood ratio method is described as follows:

Definition 1 ([11,21]). Assume that two random variables, X1 and X2, follow the binomial
distributions B(N1, p1) and B(N2, p2); p1 and p2 are a single trial’s success probability, and n1
and n2 represent the number of successes that can occur anywhere among the N1 and N2 trials,
respectively. The logarithm of the likelihood ratio (λ) can be defined as:

−2logλ = 2[logL(p1, n1, N1) + logL(p2, n2, N2)− logL(p, n1, N1)− logL(p, n2, N2)]

where
L(p, n, N) = pn(1 − p)N−n

p1 = n1
N1

, p2 = n2
N2

, and p = n1+n2
N1+N2

2.2. Environmental Science Perspective of COVID-19

The earth is the only planet that humans have detected so far in the vast universe to
cultivate life [26]. Creatures on the earth depend on a pleasant environment to survive
and grow from generation to generation. However, due to the rapid development of
human civilization, people have caused serious damage to the earth’s environmental and
ecological systems. The emission of large amounts of carbon and toxic pollutants (e.g.,
PM2.5 and PM10 particulate matter, carbon monoxide (CO), ground-level ozone (O3), sulfur
dioxide (SO2), and nitrogen dioxide (NO2)) has caused serious air pollution and global
warming, leading to the emergence of extreme climates or weather events, and ultimately
damaging the survival of organisms [26–29]. Many countries are continuously advocating
pro-environmental behaviors to create sustainable development of the ecosystem and
the environment. However, people may believe that environmental impacts are a future
matter and that even vigorous efforts to promote environmental protection cannot achieve
immediate mitigations [30].

Since 2019, the COVID-19 pandemic has impacted economic and political systems
globally [31,32]. The COVID-19 virus has been classified as severe acute respiratory syn-
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drome coronavirus 2 (SARS-CoV-2). It is related to SARS-CoV and Middle East Respiratory
Syndrome (MERS-CoV), but it has a much higher infectious capability and a lower fatality
rate than the former two coronavirus types [31,33–35]. In the middle of 2023, the WHO de-
clared that there were over 765 million confirmed cases, with over 6 million deaths during
the COVID-19 pandemic [36]. The genetic formation of the spike protein in SARS-CoV-2
has mutated and caused difficulties for the human immune system to resist the virus,
hence causing the virus to have a have rapid infection rate [32,33,37]. Moreover, because
of its low fatality rate, the virus can parasitize and remain in its hosts for an extended
period, thus giving the virus opportunities to mutate and evolve [38]. Until now, many
countries are still suffering from COVID-19 variants (such as the Alpha, Beta, Gamma, and
Delta variants), which have caused this anti-virus battle to become endless [39]. Current
measurements for fighting the COVID-19 pandemic rely on expanding viral detection,
enhancing vaccination rates, and following public health policies [34,35]. In addition, the
development and introduction of vaccines and specific medicines indicate that people are
gradually gaining the dominant position in this anti-virus battle [40].

From the perspective of environmental science, the series of quarantine policies such as
travel limitations, city lockdowns, prohibiting non-essential commercial activities, shutting
down unnecessary industries, and banning large gatherings has unexpectedly and signifi-
cantly mitigated pollution levels and the AQI [26,27,41–44]. Prior studies have taught an
important lesson—do not think that the self-contribution of pro-environmental behaviors
are insignificant—and the improved AQI has proved that restoration of the environment
can be an immediate improvement as long as people are willing to strike a balance between
economic development and the environment [27,42,43,45].

3. Methodology

Keyword ranking in the corpus assessment approach is an important technique for
handling big natural language data and assisting humans in IR and language pattern
recognition. For example, information about COVID-19 continuously spreads in our daily
life. Although the vaccine has been invented and people are being vaccinated gradually,
the SARS-CoV-2 variants keep mutating and causing the anti-virus war to become endless.
To enhance our understanding and awareness of COVID-19, the algorithms used for NLP
in corpus analysis must be optimized. Hence, this paper proposes an extended AHP-
based corpus assessment approach to integrate the likelihood ratio method, the corpus
optimization approach, and the AHP method to improve the accuracy of keyword ranking
in corpus assessments. The proposed approach is mainly divided into 11 steps, and a
detailed description is described as follows (see Figure 1):

Step 1. Create the target corpus.

Compile the natural language data as the target corpus, and convert the file format of
the target corpus from the .docx or .pdf format into the .txt (UTF-8) format.

Step 2. Import the target corpus and the benchmark the corpus to the program.

Input the compiled target corpus to AntConc 3.5.8 [1] (the corpus software adopted
in this paper) to compute the frequency of each lexical unit’s occurrence. In addition,
before generating the keyword list, input the benchmark corpus data. English for general
purposes (EGP) genres such as blogs, fictional works, magazines, and news of the Corpus
of Contemporary American English (COCA) is adopted as the benchmark corpus.

Step 3. Optimize the target corpus.

Before initializing the likelihood ratio calculation, from a linguistic perspective, func-
tion words will decrease the accuracy of high frequency words and the keyword-generating
process [21]. Therefore, to increase the accuracy and efficiency of soft computing in NLP
tasks, this optimization process is inevitable. This step adopts the corpus optimization
process of Chen et al. [21], which uses a machine-based processing approach to eliminate
function words.
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Figure 1. Flowchart of the proposed approach.

Step 4. Generate the optimized keyword list.

After all corpus data is inputted, Dunning’s [11] likelihood ratio method will compute
and extract words that appear highly frequently in the target corpus in comparison with
the words in the benchmark corpus (i.e., computing words’ keyness values and ranking
them). These words can be considered to be characteristic of the target corpus. Namely,
keywords of the target corpus will be retrieved and ranked on the keyword list.

Step 5. Decide the evaluation parameters.

Give experts questionnaires with a paired comparison based on Table 1 to conduct a
pairwise comparison of each parameter, in order to, respectively, evaluate the two criteria’s
relative contribution or importance.
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Table 1. Pairwise comparison scale [12].

Relative Importance Scale Definition of Relatively Important Level Explanation

1 Equal importance Two indicators contribute equally to the objective

3 Moderate importance of one over another From experience and judgment, a certain
indicator is slightly important

5 Essential or strong importance From experience and judgment, a certain
indicator is quite important

7 Demonstrated or very strong importance Practical aspects show that a certain indicator is
extremely important

9 Absolute importance The evidence indicates that a certain indicator is
absolutely important

2, 4, 6, 8 The median value of adjacent measures When a compromise is needed

Then, use Equation (1) to establish the pairwise comparison matrix and proceed
with the computation process. If there are n influencing elements, an n(n−1)

2 pairwise
comparisons must be conducted.⎡⎢⎢⎢⎣

1 a12 · · · a1n
1/a12 1 · · · a2n

...
...

. . .
...

1/a1n 1/a2n · · · 1

⎤⎥⎥⎥⎦ (1)

Step 6. Compute the eigenvalue and the relative weights of each parameter.

The eigenvalues and eigenvectors are computed by Equation (2), in which A is the
n × n pairwise comparison matrix, λ is the eigenvalue of matrix A, and X is the eigenvector
of matrix A.

A·X = λ·X (2)

After obtaining the maximal eigenvalue λmax, use Equation (3) to calculate the relative
weights, W, of each parameter.

A·W = λmax·W (3)

where W = [w1, w2, . . . , wn]
T , and ∑n

i=1 wi = 1.

Step 7. Conduct the consistency test.

When conducting an expert questionnaire survey, relatively important level scores are
usually given by the experts’ subjective comments. In other words, the objective and ideal
framework should satisfy the transitivity. To inspect whether the pairwise comparison
matrix created by the experts’ questionnaires is consistent, the consistency index (CI)
must be computed by Equation (4) and the consistency ratio (CR) must be calculated by
Equation (5) for verification. If the CR value is less than 0.1, the pairwise comparison matrix
is consistent.

CI =
λmax −n

n− 1
(4)

CR =
CI
RI

(5)

where n is the dimension of the pairwise comparison matrix, λmax is the maximal eigenvalue
of the matrix, and RI is the random index (see Table 2).

Table 2. Random index (RI) table [12].

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RI N/A N/A 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59

197



Axioms 2023, 12, 740

Step 8. Normalize each parameter.

This paper used three parameters, including the keyness, frequency, and range, to
calculate the normalized value of each parameter.

Assume that the pij is the value of the ith item of keyword data and the jth parameter.
The value of rij is the normalization of pij, defined as follows.

rij =
pij

pmax
j

, j = 1, 2, . . . , 3 (6)

Step 9. Compute the aggregated value of each keyword.

The aggregated value of each keyword is computed by the multiplication of the
relative weights of the results for the three parameters from step 8 (shown as Equation (7)).

aggregated valuei = ∑3
j=1 wj × rij (7)

Step 10. Rank keywords based on their aggregated values.

Re-rank the keywords based on their aggregated values from step 9, and generate the
ultimate optimized keyword list.

Step 11. Offer the results to decision makers as reference data for future NLP applications.

The optimized keyword list can be provided as critical reference data for decision
makers in future NLP applications, such as corpus analysis, keyword analysis, or key
information extraction.

4. Empirical Analysis

4.1. Overviews of the Target Corpus

This paper adopted 53 research articles published in 2020–2021 from WOS, which is
an internationally well-known academic database. These research articles were under the
categorization of environmental science as defined by journal citation reports (JCR), and
the topics were all centered on COVID-19. The selection of the research articles had to
satisfy the following criteria: (1) the research article needed to correlate with COVID-19;
(2) the research article needed to belong to the environmental science discipline; (3) the
research article needed to be highly cited; and (4) the research article needed to have a
science citation index (SCI) or a social science citation index (SSCI). The main reason to set
these criteria was that there is bounteous fake news (information) about COVID-19. After
the researchers used the above criteria to search for the relevant research articles from the
WOS database, during that moment, there were 53 highly cited research articles showing
in the search results. Thus, to verify and highlight the contributions of the proposed
approach, the 53 research articles were selected as the target corpus for being the rigorous
and non-controversial natural language data.

4.2. Traditional Keyword-List-Generating Approach for Ranking Keywords

The traditional keyword-list-generating approach [10] adopted by this study used
Dunning’s [11] likelihood ratio method as the main algorithm to determine the keywords
of the target corpus. However, some deficiencies occurred in the traditional keyword-
list-generating approach. First, without the corpus data optimization process, function
words and meaningless letters would affect and reduce the tokens’ keyness computation
accuracy and cause the keyword list to contain unrelated or meaningless tokens; second, if
the keyness value was the only parameter used to determine and rank keywords, it would
be impossible to define which keyword was the most commonly used or the most widely
dispersed. In other words, the tokens’ keyness value needed to be computed with other
parameters (e.g., frequency and range) to become a multiple-parameter calculation result
that could be used to rank keywords.
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4.3. The EW Method for Ranking Keywords

The EW method [46,47] assumes that each criterion has the same importance. If the
problem to be solved contains n parameters, P1, P2, . . . , Pn, the weight of the EW method is
1
n . Let ai be the assessment value of criterion Pi. The weights of the aggregated values for
the EW method are shown in Equation (8).

EW value =
1
n∑n

i=1 ai (8)

When the EW method was adopted for computing the parameters of this paper (i.e.,
the keyness, frequency, and range) for ranking keywords, several deficiencies emerged.
First, from the linguistic perspective, under the circumstance that the target corpus was
not optimized, the keyness calculation results would have interference from function
words and meaningless letters, causing the keyness values to be biased at the beginning.
Second, although the EW method can simultaneously consider all parameters, the relative
importance level of each parameter should not be the same; hence, it was difficult to meet
the experts’ expectations.

4.4. The Proposed Extended AHP-Based Corpus Assessment Approach

To optimize and address the deficiencies of the two aforementioned methods, this
paper adopted the target corpus as the empirical case, to demonstrate and verify the
efficacy and practicality of the proposed approach. Detailed descriptions of each step were
as follows.

Step 1. Create the target corpus.

The target corpus in this paper was based on 53 research articles with SCI from WOS.
The lexical features included 10,595 word types, 189,680 tokens, and a type–token ratio
(TTR) of 0.05586 (representing the lexical diversity).

Step 2. Import the target corpus and the benchmark corpus to the program.

To retrieve the keywords, the algorithm of the software will calculate a word’s keyness
value to determine whether it is the domain-oriented word, by finding the word that
has high frequency in the target corpus but has low frequency in the benchmark corpus.
From the perspective of linguistic analysis, when the target corpus is the textual data of
professional fields, then the benchmark corpus should select more general-purpose-use
data (i.e., EGP). In addition, COCA is considered as the biggest and genre-balanced EGP
corpus data, and is widely adopted by many corpus-based researchers as the benchmark
corpus [11,21], and so did this paper. After processing by the software, the lexical features
of the benchmark corpus (i.e., COCA) included 109,306 word types, 8,266,198 tokens, and a
TTR of 0.01322.

Step 3. Optimize the target corpus.

To increase the accuracy of keyword extraction, this step adopted the corpus-based
machine optimization approach to eliminate function words and meaningless letters [21].
Table 3 shows the refined target corpus, which eliminated 217 word types and 81,097 tokens,
and downsized the target corpus by 43%. Without the interference of function words and
meaningless letters, the keyword generator could retrieve more domain-oriented or content
words to form a more accurate keyword list.

Table 3. Data discrepancy between the original data and the refined data.

Lexical Feature Original Data Refined Data Data Discrepancy

Word Types 10,595 10,378 −217 (decreasing 2%)
Tokens 189,680 108,583 −81,097 (decreasing 43%)

TTR 0.05586 0.09558

199



Axioms 2023, 12, 740

Step 4. Generate the optimized keyword list.

Once the target corpus, the benchmark corpus, and the stop wordlist are input into
AntConc 3.5.8 [1], the traditional keyword-list-generating approach is used to exclude func-
tion words and meaningless letters to calculate each token’s keyness value and determine
the keyword list (see Figure 2). However, during this step, the keyword list still remains at
the single-parameter evaluation stage.

 

Figure 2. The optimized keyword list on AntConc 3.5.8 [1].

Step 5. Decide the evaluation parameters.

In this step, the evaluation parameters decided by experts are determined as the tokens’
keyness, frequency, and range values for the following evaluation processes. The evaluation
team in this study included three experts with academic specialties including NLP, corpus
linguistics, teachers of English to speakers of other languages (TESOL), performance
evaluation, and fuzzy logic. Based on Table 1, the three experts determined the pairwise
comparison results of the evaluation parameters, respectively. The results are shown in
Table 4.

Table 4. Pairwise comparison results of the parameters.

Criteria Experts
Experts’ Comments

Keyness Frequency Range

Keyness
Expert 1 1 1/2 1/3
Expert 2 1 1 1/2
Expert 3 1 1/2 1/3

Frequency
Expert 1 2 1 1/2
Expert 2 1 1 1/2
Expert 3 2 1 1/2

Range
Expert 1 3 2 1
Expert 2 2 2 1
Expert 3 3 2 1

Next, the researchers arithmetically averaged each element in the matrix given by the
experts and summarized the results as shown in Table 5, and then used Equation (1) to
create the matrix for computation in the following steps.
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Table 5. The aggregated pairwise comparison matrix.

Criteria Keyness Frequency Range

Keyness 1.000 0.667 0.389
Frequency 1.499 1.000 0.500

Range 2.571 2.000 1.000

Step 6. Compute the eigenvalue and the relative weights of each parameter.

After computing the aggregated pairwise comparison matrix (see Table 5) using
Equations (2) and (3), the maximum of the eigenvalue, λmax was 3.003, and the relative
weights for the keyness, frequency, and range were 0.195, 0.278, and 0.527, respectively.
The relative weights were given by the experts’ evaluation and calculated through the AHP
computing process, which indicated the relative importance between each vector. Based on
the priority vector that range (0.527) > frequency (0.278) > keyness (0.195), we reasoned that
the experts’ overall assessments indicated that the so-called keywords should also occur
widely and frequently in the corpus data.

Step 7. Conduct the consistency test.

To verify the reliability and validity of the relative weights, use Equations (4) and (5),
and Table 2 to compute the CI and CR values. The CR value is 0.003, which is less than 0.1,
which expressed that the results were acceptable.

Step 8. Normalize each parameter.

Use Equation (6) to normalize each parameter for further aggregated value computation.

Step 9. Compute the aggregated value of each keyword.

Once all parameters were nominalized, the researchers used Equation (7) to compute
the aggregated value of the keywords. The partial results of the keywords’ aggregated
values are presented in Table 6.

Table 6. Keyword list results of the three compared approaches (partial data).

The Traditional Keyword List Generator [10] The EW Method [47] The Proposed Method

Rank Keyness Value Token Rank EW Value Token Rank AHP-Based Value Token

1 14,098.08 COVID-19 1 0.717 COVID-19 1 1.000 COVID-19
2 6008.24 et 2 0.695 the 2 0.699 health
3 4803.88 al 3 0.592 of 3 0.608 coronavirus
4 4129.4 SARS 4 0.552 and 4 0.608 study
5 3562.98 CoV 5 0.488 in 5 0.598 cases
6 3232.45 pandemic 6 0.426 health 6 0.598 China
7 3195.11 health 7 0.406 et 7 0.591 disease
8 3015.85 coronavirus 8 0.403 coronavirus 8 0.587 data
9 2626.35 cases 9 0.377 pandemic 9 0.568 pandemic

10 2584.59 outbreak 10 0.377 al 10 0.557 SARS
11 2560.15 virus 11 0.377 SARS 11 0.555 public
12 2414.4 fig 12 0.376 study 12 0.548 reported
13 2358.18 of 13 0.374 cases 13 0.537 high
14 2151.97 lockdown 14 0.372 china 14 0.531 used
15 2101.9 china 15 0.372 disease 15 0.531 number
16 1907.4 epidemic 16 0.370 by 16 0.527 due
17 1885.46 infection 17 0.360 data 17 0.526 virus
18 1872.07 transmission 18 0.343 were 18 0.515 confirmed
19 1844.72 data 19 0.342 virus 19 0.513 countries
20 1789.67 study 20 0.342 reported 20 0.508 spread
21 1708.46 disease 21 0.336 during 21 0.503 analysis
22 1682.23 psychological 22 0.333 public 22 0.502 outbreak
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Table 6. Cont.

The Traditional Keyword List Generator [10] The EW Method [47] The Proposed Method

Rank Keyness Value Token Rank EW Value Token Rank AHP-Based Value Token

23 1663.43 respiratory 23 0.329 outbreak 23 0.500 level
24 1639.61 temperature 24 0.328 confirmed 24 0.497 table
25 1602.85 Wuhan 25 0.327 between 25 0.496 results
26 1580.8 confirmed 26 0.326 due 26 0.483 measures
27 1518.98 during 27 0.323 high 27 0.483 significant
28 1504.64 reported 28 0.320 number 28 0.483 period
29 1395.95 anxiety 29 0.319 used 29 0.476 respiratory
30 1307.22 emissions 30 0.318 spread 30 0.475 including
31 1292.84 concentrations 31 0.318 countries 31 0.471 impact
32 1206.96 measures 32 0.317 CoV 32 0.471 infection

33 1205.46 and 33 0.315 analysis 33 0.469 different
34 1182.21 the 34 0.310 respiratory 34 0.468 days
35 1164.24 spread 35 0.307 results 35 0.463 transmission
36 1143.28 march 36 0.307 level 36 0.463 CoV
37 1127.58 pollution 37 0.306 measures 37 0.463 Wuhan
38 1104.61 period 38 0.304 infection 38 0.462 increased
39 1095.2 countries 39 0.304 table 39 0.462 research
40 1079.93 infected 40 0.304 transmission 40 0.459 population
41 1073.05 analysis 41 0.302 Wuhan 41 0.454 March
42 1035.12 CI 42 0.301 significant 42 0.451 related
43 1029.14 emergency 43 0.299 period 43 0.449 studies
44 1022.27 RNA 44 0.296 impact 44 0.448 compared
45 1014.58 impact 45 0.292 e 45 0.448 epidemic
46 1008.79 in 46 0.292 epidemic 46 0.443 using
47 997.92 variables 47 0.289 increased 47 0.437 based
48 991.82 patients 48 0.287 population 48 0.437 associated
49 975.98 PM 49 0.287 march 49 0.434 total
50 958.18 results 50 0.285 related 50 0.433 case
51 942.67 infectious 51 0.283 research 51 0.431 increase
52 935.49 factors 52 0.283 studies 52 0.429 observed
53 933.81 air 53 0.281 compared 53 0.428 low
54 896.63 severe 54 0.278 associated 54 0.428 control
55 894.87 respondents 55 0.273 observed 55 0.426 severe
56 888.35 wastewater 56 0.273 using 56 0.422 February
57 869.62 concentration 57 0.272 based 57 0.421 affected
58 866.76 depression 58 0.271 severe 58 0.416 current
59 856.5 associated 59 0.270 total 59 0.416 patients
60 850.23 stress 60 0.270 affected 60 0.414 higher

※ COVID-19: Corona Virus Disease 2019; CoV: Corona Virus; CI: Confinement Index; PM: Particulate Matter;
RNA: Ribonucleic Acid; SARS: Severe Acute Respiratory Syndrome.

Step 10. Rank the keywords based on their aggregated values.

Based on each keyword’s aggregated value, the researchers re-ranked the keyword
list (see Table 6) to form the ultimate optimized keyword list.

Step 11. Offer the results to decision makers as reference data for future NLP applications.

The results of the ultimate optimized keyword list can be integrated with the complete
evaluation results from the experts to provide a more complete benchmark for defining
critical lexical units, thereby improving the efficiency and accuracy of NLP.

4.5. Comparison and Discussion

To enhance the accuracy of the corpus evaluation results, a corpus assessment ap-
proach must be able to compute multiple parameters at the same time and consider the
relative importance between different parameters. However, the traditional keyword-list-
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generating approach [10] only uses the likelihood ratio method [11] to determine and rank
keywords in the target corpus, which is a deficiency of corpus assessment [2,3,10,22]. Thus,
to optimize the aforementioned issues, this paper proposed an extended AHP-based corpus
assessment approach that integrated the likelihood ratio method, the corpus optimization
approach, and the AHP method to refine corpus data, simultaneously handle multiple pa-
rameters, and consider the relative importance between different parameters for accurately
evaluating keywords. COVID-19-related research articles (N = 53) from the environmental
science discipline were adopted as the target corpus and used as an empirical example to
verify the proposed approach.

This paper compared three approaches from three perspectives: (1) corpus optimiza-
tion; (2) considering multiple parameters simultaneously; and (3) considering the relative
importance between different parameters to highlight the contributions of the proposed
approach (see Table 7).

Table 7. Comparison of the optimization features between three approaches.

Research Method

Optimization Feature

Corpus Optimization
Considering Multiple

Parameters Simultaneously

Considering the Relative
Importance between
Different Parameters

The traditional
keyword-list-generating

approach [10]
No No No

The EW method [47] No Yes No

The proposed extended AHP-based
corpus assessment approach Yes Yes Yes

Firstly, for corpus optimization, Table 6 indicates that function words, such as the,
and, of, and in, appeared on the keyword lists generated by the traditional keyword-list-
generating approach [10] and the EW method [47]. Due to function words being critical
elements to form meaningful sentences, those tokens usually occupy over 40% of the corpus
data. If the function words are not eliminated beforehand, the likelihood ratio method [11]
will consider them as keywords because their extremely high frequency values will disguise
the keyness computation results. Once the function words are included in the keyword
list, content words that may be true keywords will be excluded; thus, causing bias in the
computation results. Before entering the algorithm computation process, the proposed
approach adopted the corpus optimization approach to eliminate function words and
meaningless letters, to enhance the computation accuracy.

Secondly, when considering multiple parameters simultaneously, it is insufficient
to use the traditional keyword-list-generating approach [10], as it is based on only one
parameter (the keyness) to rank keywords. To make the evaluation results approach uncon-
troversial, the EW method [47] and the proposed approach were used to simultaneously
take three parameters (i.e., the keyness, frequency, and range) into consideration, and each
keyword’s aggregated value was used to re-rank the keyword list.

Finally, in consideration of the relative importance of different parameters, the re-
searchers soon discovered the major problem of the EW method [47]. Although the EW
method could consider the three parameters at the same time, the importance between the
three parameters would be considered as equal, and the relative importance between the
parameters would not be confirmed. To compensate for this deficiency, the proposed ap-
proach integrated the AHP method [12] to calculate the relative weights of each parameter
and identify the relative importance between parameters. After using the AHP method to
calculate the experts’ evaluation scores, the researchers discovered that the relative weights
of the keyness, frequency, and range were 0.195, 0.278, and 0.528, respectively, which were
not equal. The derived implications of the unequal relative weights indicated that, after
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generating the keyword list, the experts wanted to identify the most widely- and frequently-
used keywords in the target corpus; hence, their assessment results determined the relative
importance of the three parameters as range > frequency > keyness.

In summation, to handle the single-parameter evaluation deficiency of keyword
ranking and optimize the traditional corpus-based assessment approach, the proposed
extended AHP-based corpus assessment approach was able to exclude function words
and meaningless letters, simultaneously compute multiple parameters, and consider the
relative importance between different parameters.

5. Conclusions

The algorithms used for today’s corpus analytical tasks are gradually being used for
multiple-parameter and high-precision analysis. Keyword ranking is one of the critical
techniques of corpus analysis to extract key information from the target corpus. COVID-19
is no longer limited to medical or public health issues, but also impacts other issues such
as ecological systems, environmental science, and economics. High-precision COVID-19
corpus data analysis can enhance the efficiency of knowledge discovery for this novel
disease. However, the traditional keyword-list-generating approach [10] is only based on
the likelihood ratio method [11] to compute the tokens’ keyness values, to determine and
rank keywords. Thus, there is still room for optimization, as it does not automatically elim-
inate function words and meaningless letters or conduct multiple-parameter evaluations.
Moreover, when the EW method [47] is adopted as the multiple-parameter evaluation
approach to re-rank keywords, it cannot eliminate function words and meaningless letters
or confirm the relative importance between each parameter to obtain more accurate results.
Hence, this paper proposed an extended AHP-based corpus assessment approach to com-
pensate the aforementioned problems, by optimizing the target corpus and conducting a
multiple-parameter evaluation by using the relative weights of the parameters to determine
the keywords’ actual importance levels.

The proposed extended AHP-based corpus assessment approach has the following
significant contributions. First, the proposed approach uses a machine-based approach to
eliminate function words and meaningless letters for optimizing the target corpus, thereby
further enhancing the accuracy of the followed algorithms’ computations. Second, the
proposed approach uses the AHP method to fully consider the relative weights of three pa-
rameters to provide calculation results with higher accuracy. Third, the proposed approach
is a corpus-based assessment approach based on the perspectives of multiple parameters,
which differs from traditional approaches that are based on the perspective of a single
parameter. The optimized keyword list represents that each keyword has been fully consid-
ered as being truly important, which enhances the accuracy of keyword application. Fourth,
the traditional corpus-based assessment approaches that were mentioned in this paper were
just special cases of the proposed extended AHP-based corpus assessment approach. In
addition to optimizing the traditional approaches, the proposed approach also makes itself
more generally applicable. Once the keyword ranking results are optimized and improved
by the proposed method, the important and domain-oriented words (i.e., keywords) will
be ranked in the ahead ranks, which will improve users’ IR efficiency through the corpus
software. In other words, without the optimization, the ahead ranks will show the words of
grammar, or those which are meaningless, unimportant, or even unrelated to the domain,
which will rely on human’s tasks to filter the unnecessary information. The target corpus
(i.e., COVID-19 corpus data) used in this paper was only a specific case for verification
and highlighted the advantages of the proposed approach; namely, any corpus data can be
processed and optimized by the proposed approach.

This paper has some limitations for future researchers to overcome. With today’s
advanced information technology, future studies can be based on the proposed approach
to develop other algorithms for optimizing corpus analytical tasks, such as the Term
Frequency-Inverse Document Frequency (TF-IDF) method, high-precision NLP techniques
e.g., [48,49], multiple-parameter evaluation models, and novel corpus programs.
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Abstract: Count data are encountered in real-life dealings. More understanding of such data and
the extraction of important information about the data require some statistical analysis or modeling.
One innovative technique to increase the modeling flexibility of well-known distributions is to use
the convolution of random variables. This study examines the distribution that results from adding
two independent random variables, one with the Bernoulli distribution and the other with the
Poisson–Lindley distribution. The considered distribution is named as the two-parameter Bernoulli–
Poisson–Lindley distribution. Many of its statistical properties are investigated, such as moments,
survival and hazard rate functions, mode, dispersion behavior, mean deviation about the mean, and
parameter inference based on the maximum likelihood method. To evaluate the effectiveness of the
bias and mean square error of the produced estimates, a simulation exercise is carried out. Then,
applications to two practical data sets are given. Finally, we construct a flexible count data regression
model based on the proposed distribution with two practical examples.

Keywords: discrete statistical model; dispersion index; hazard rate function; parameter estimation;
simulation; regression

MSC: 62E15

1. Introduction

In recent decades, count data analysis has drawn interest. There are many count
data sets in practical as well as theoretical domains, including medicine, sports, engineer-
ing, finance, insurance, etc. (see [1]). However, we are unable to use methodologies or
typical standard probability distributions to analyze them. Building adaptable models
has attracted a lot of interest from statisticians and applied scientists in order to improve
the modeling of count data. Therefore, it is critical to create models that are superior to
standard distributions in order to successfully investigate real-world data and its attributes.

Recently, for the purpose of modeling count data, several models have evolved.
The use of conventional discrete distributions as models for dependability, hazard rates,
counts, etc., is limited. The widespread parametric models for analyzing such data are
the Poisson, geometric, and negative binomial (NB) models (see [2]). The Poisson regres-
sion model is the most common model for modeling count data, but an obstacle arises:
there is a fact that they may exhibit over- or under-dispersion, which is when a count’s
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conditional variance is greater or less than its conditional mean (see [3]). In these cases,
the Poisson model’s mean–variance relationship is a well-known drawback. This has led
to the introduction of various Poisson distribution types (see [4,5]). A traditional way
of overcoming over-dispersion is to allow the single parameter of the Poisson distribu-
tion to be a random variable following a given distribution. This is also known as the
compounding method, and the idea was first proposed in [6]. The resultant compound
distributions are also termed as mixture distributions. One such famous mixture distribu-
tion is the negative binomial distribution, obtained by mixing the Poisson distribution with
a gamma distribution. In real-world count modeling applications, the negative binomial
distribution with an additional dispersion parameter is widely accepted as a solution to the
over-dispersion issue.

As a result, various discrete distributions based on widely used continuous distribu-
tions for reliability, hazard rates, etc., have been developed. The discrete Weibull distri-
bution is the most well-liked of these. It was introduced in [7–9]. Since then, numerous
applications have been made. There are many other recently constructed distributions
with continuous analogues. The author in [10] introduced the discrete gamma distribution,
which has received significant attention for applications in the areas of molecular biology
and evolution. Discrete analogues of the continuous Burr and Pareto distributions were
constructed in [11]. On the other hand, the authors in [12] introduced a discrete analogue
of the continuous inverse Weibull distribution. The discrete Lindley distribution was
proposed in [13].

There are so many models for studying over-dispersion, while only a few models
are there to deal with under-dispersion, because over-dispersion exists more frequently
(see [14]).

Various extensions and generalizations of the Poisson distributions were developed
for both over-dispersed and under-dispersed count data in the literature over the last
decade. The authors in [15] proposed the generalized Poisson (GP) regression model,
whereas those of [16] introduced the Conway–Maxwell–Poisson (COM–Poisson) model.
The COM–Poisson regression model was also created. The authors in [17] invented the
Poisson–Tweedie regression model.

Each of the aforementioned models has some drawbacks. For instance, the GP model’s
range must be truncated in order to achieve under-dispersion, with the level of truncation
depending on the actual model parameters. The issue is that because of the range’s shorten-
ing, the probabilities no longer add up to 1. The convolutions (sum and difference) of two
independent random variables are a clever way of broadening the modeling possibilities of
well-known distributions.

The author in [18] proposed the discrete Poisson–Lindley distribution, a compound
Poisson distribution obtained by compounding the Poisson distribution with the Lind-
ley distribution. The authors in [19] introduced an efficient regression model for under-
dispersed count data based on the Bernoulli–Poisson convolution (BerPoi) for under-
dispersed count data. In it, the response variable is distributed according to the BerPoi
distribution using a specific parameterization indexed by mean and dispersion parameters.

In this paper, we introduce a distribution generated from the sum of two independent
random variables, one with the Bernoulli distribution and the other with the Poisson–
Lindley distribution. The resulting distribution is known as the Bernoulli–Poisson–Lindley
(BPL) distribution. One of its key advantages is that it is suitable for modeling both under-
dispersed and over-dispersed count data, unlike the Poisson distribution. Furthermore,
it has only two parameters, which reduces the complexity of the simulation study, unlike
some Poisson generalizations with three parameters. Moreover, it has an increasing hazard
rate, making it appropriate for modeling equipment wear and tear or ageing processes.
The proposed model is appropriate for regression modeling since its moments may be
retrieved in closed form.

The remaining sections of the paper are organized as follows: Section 2 presents
the BPL distribution. Section 3 discusses the statistical properties of this distribution.
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Section 4 introduces the parameter estimation using the maximum likelihood method,
and its performance is assessed via a simulation study. The new model is shown to
perform at least as well as other recently proposed two-parameter discrete models, and the
conventional one-parameter discrete models using two real data sets are analyzed in
Section 5. In Section 6, a regression model is developed. Finally, several key takeaways are
outlined in Section 7.

2. Bernoulli-Poisson-Lindley Distribution

The BPL distribution is obtained by the distribution of the sum of two independent
random variables, one with the Bernoulli distribution, and the other with the Poisson–
Lindley distribution.

The result below presents a simple expression of the corresponding probability mass
function (pmf).

Proposition 1. The pmf of the BPL distribution with parameters α and θ can be expressed as

p(x, α, θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − α)θ2(θ + 2)

(θ + 1)3 i f x = 0

θ2[(1 + αθ)(x + θ + 1) + (1 − α)
]

(θ + 1)x+3 i f x = 1, 2, 3, . . .

(1)

Proof. Let X1 and X2 be two independent random variables, with X1 following the
Bernoulli distribution with parameter 0 < α < 1, i.e., P(X1 = 0) = 1− α and P(X1 = 1) = α
and X2 following the Poisson–Lindley distribution with parameter θ > 0, i.e.,

P(X2 = x) =
θ2(x + θ + 2)
(θ + 1)x+3 with x = 0, 1, 2, 3, . . . Then, by the definition, the BPL dis-

tribution is the distribution of X = X1 + X2. Let us now determine its pmf. For any
x = 0, 1, . . ., we have

p(x, α, θ) = P(X = x) = P(X1 + X2 = x)

= P(X1 = 0)P(X2 = x) + P(X1 = 1)P(X2 = x − 1).

In particular, for x = 0, we have

p(x, α, θ) = P(X1 = 0)P(X2 = 0) =
(1 − α)θ2(θ + 2)

(θ + 1)3 .

For x = 1, 2, . . ., we have

p(x, α, θ) = P(X = x)

= (1 − α)
θ2(x + θ + 2)
(θ + 1)x+3 + α

θ2(x − 1 + θ + 2)
(θ + 1)x−1+3

=
θ2

(θ + 1)x+3

[
α(x + θ + 1)(θ + 1) + (1 − α)(x + 2 + θ)

]
=

θ2

(θ + 1)x+3

[
αθ(x + θ + 1) + α(x + θ + 1) + (1 − α)(x + θ + 1 + 1)

]
=

θ2

(θ + 1)x+3

[
αθ(x + θ + 1) + α(x + θ + 1) + (1 − α)(x + θ + 1) + (1 − α)

]
=

θ2

(θ + 1)x+3

[
(1 + αθ)(x + θ + 1) + (1 − α)

]
.

This ends the proof of Proposition 1.
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Remark 1. When α → 0, the Poisson–Lindley distribution is included in the BPL distribution as a
special case.

Proposition 2. The cumulative density function (cdf) of the BPL distribution can be expressed as,
for any integer x,

F(x, α, θ) = 1 +
[−1 − θ(3 + x + θ + xαθ + αθ(2 + θ))]

(1 + θ)x+3 , x = 0, 1, 2, . . . (2)

Proof. It follows from the geometric series expansions and some algebra, that

F(x, α, θ) =
x

∑
k=0

p(k, α, θ)

=
θ2(1 − α)(θ + 2)

(θ + 1)3 +
x

∑
k=1

θ2
[
[(1 + αθ)(k + θ + 1)] + (1 − α)

]
(θ + 1)k+3

= 1 +
[−1 − θ(3 + x + θ + xαθ + αθ(2 + θ))]

(1 + θ)x+3 .

This ends the proof of Proposition 2.

The corresponding survival function is given by

S(x, α, θ) =
1 + θ[3 + x + θ + xαθ + αθ(2 + θ)]

(1 + θ)x+3 , x = 0, 1, 2, . . . (3)

The hazard rate function (hrf) of the BPL distribution is obtained as

h(x, α, θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − α)θ2(θ + 2)

1 + θ[3 + θ + αθ(2 + θ)]
i f x = 0

θ2[1 − α + (1 + x + θ)(1 + αθ)]

1 + θ[3 + x + θ + xαθ + αθ(2 + θ)]
i f x = 1, 2, 3, . . .

(4)

Figure 1 shows the different shapes of the pmf. It clearly indicates that the BPL
distribution is positively skewed, unimodal and as θ goes larger, the mass concentrates
more on values closer to 0 than at higher values. Figure 2 also presents different shapes of
the cdf.

Figure 3 presents different shapes of the hrf, indicating that the BPL distribution
exhibits increasing hazard rates with respect to both α and θ.
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Figure 1. Pmfs of the BPL distribution for different values of the parameters.

Figure 2. Cdfs of the BPL distribution for different values of the parameters.
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Figure 3. Hrfs of the BPL distribution for different values of the parameters.

3. Statistical Properties

3.1. Mode

We now provide some theory to the observation of the mode of the BPL distribution
made in Figure 1.

Proposition 3. Let X be a random variable following the BPL distribution. Then, the mode of X,
denoted by xm, exists in {0,1, 2, . . . }, and satisfies

−1 +
1
θ
− θ +

2 + α

1 + αθ
≤ xm ≤ 1

θ
− θ +

α − 1
1 + αθ

, (5)

with xm = 0 if the upper bound is non-positive.

Proof. By the definition of the mode, it corresponds to the integer x = xm for which
p(x, α, θ) has the greatest value, where we recall that

p(x, α, θ) =

⎧⎪⎪⎨⎪⎪⎩
(1 − α)θ2 (θ + 2)

(θ + 1)3 i f x = 0

θ2

(θ + 1)x+3

[
(1 + αθ)(x + θ + 1) + (1 − α)

]
i f x = 1, 2, 3, . . .

(6)
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To reach our aim, we need to solve p(xm, α, θ) ≥ p(xm − 1, α, θ) and p(xm, α, θ) ≥
p(xm + 1, α, θ). Obviously, p(xm, α, θ) ≥ p(xm − 1, α, θ) implies that

xm ≤ 1
θ
− θ +

α − 1
1 + αθ

. (7)

Furthermore, p(xm, α, θ) ≥ p(xm + 1, α, θ) implies that

xm ≥ −1 +
1
θ
− θ +

2 + α

1 + αθ
. (8)

By combining Equations (7) and (8), we obtain Equation (5), hence, the proof of
Proposition 3.

3.2. Moments, Skewness, and Kurtosis

Hereafter, let X be a random variable following the BPL distribution. Then, after some
algebraic developments, the probability generating function of X is given by

P(s) = E
(
sX) = [1 + (−1 + s)α]θ2(2 − s + θ)

(1 + θ)(1 − s + θ)2 ,

for s < θ + 1.
The moment-generating function of X can be obtained by replacing s by et, for

t < log(θ + 1), which gives

M(t) = E
(
etX) = [1 + (−1 + et)α]θ2(2 − et + θ)

(1 + θ)(1 − et + θ)2 .

Basically, the r-th moment about the origin of X is derived as

E
(
Xr) = ∞

∑
x=0

xr p(x, α, θ) =
∞

∑
x=1

xr θ2

(θ + 1)x+3

[
(1 + αθ)(x + θ + 1) + (1 − α)

]
.

Thus, after an intense use of the geometric series formulas (see Appendix A), the first
four moments of X are

E
(
X
)
= α +

2 + θ

θ(θ + 1)
,

E
(
X2) = 6 + θ[4 + θ + α(4 + θ(3 + θ))]

θ2(1 + θ)
,

E
(
X3) = 24 + θ

[
24 + θ(8 + θ) + α(3 + θ)(6 + θ(4 + θ))

]
θ3(1 + θ)

,

and

E
(
X4) = 120 + θ

[
168 + θ[78 + θ(16 + θ)] + α[96 + θ(132 + θ[64 + θ(15 + θ)])]

]
θ4(1 + θ)

.

Now, the variance of X is calculated as

V(X) = E(X2)− [E(X)]2 =
2 + θ[6 + θ(4 + θ + (1 − α)α(1 + θ)2)]

θ2(1 + θ)2 .

Figure 4 presents the plots of the variance of X for different values of the parameters α
and θ. We see that the variance decreases when α is fixed and θ increases.
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Figure 4. Variance of the BPL distribution for different values of the parameters.

On the other hand, based on the first four moments of X, the skewness of X is

Skewness(X) =
[4 + θ(18 + θ[32 + θ(22 + α(1 + θ)3 − 3α2(1 + θ)3 + 2α3(1 + θ)3 + θ(7 + θ))])]2

[2 − θ(6 − θ[4 + θ + (1 − α)α(1 + θ2)])]3
.

Furthermore, the kurtosis of X is

Kurtosis(X) =
1

[−2 + θ(−6 + θ[−4 − θ − (1 − α)α(1 + θ)2])]2

[
24 + θ(144 + θ[338+

6α3θ2(1 + θ)4 − 3α4θ2(1 + θ)4 + α(1 + θ)2[12 + θ(4 + θ)(9 + θ[4 + θ])]+

θ[406 + θ(258 + θ(87 + θ[15 + θ]))]

− 2α2(1 + θ)2[6 + θ(18 + θ[14 + θ(7 + 2θ)])]])

]
.

Figure 5 presents the plots of the skewness and kurtosis of X, respectively. From these
plots, when the value of α is held constant, and θ increases, a significant effect on both the
skewness and kurtosis is observed. Furthermore, when θ increases, the BPL distribution is
rightly skewed and leptokurtic.

Figure 5. Skewness and kurtosis of the BPL distribution for different values of the parameters.

3.3. Dispersion Index and Coefficient of Variation

In this section, we discuss the dispersion index (DI) and coefficient of variation (CV)
associated with the BPL distribution. The CV of X is obtained as

CV(X) =

√
2 + θ[6 + θ(4 + θ + (1 − α)α(1 + θ)2)]

2 + θ + αθ(θ + 1)
.
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The DI of X is given by

DI(X) = 1 +
1
θ
+

1
1 + θ

−
(

α +
1 − α + αθ

2 + θ(1 + α + αθ)

)
.

Clearly, DI(X) is greater than 1 when θ tends to 0, and less than 1 when θ tends to ∞.
Thus, the BPL distribution has under- or over-dispersed properties.

Numerical values for some moment measures, such as mean, variance, DI, skewness,
and kurtosis for the BPL distribution for different sets of parameter values are given in
Tables 1 and 2. It can be observed that the mean and variance decrease as θ tends to ∞ for
fixed values of α.

Table 1. Numerical values for some moment measures associated with the BPL distribution for
α = 0.1 and different values of θ.

Measures
θ

0.1 10 50 99 999

Mean 19.1909 0.2091 0.1204 0.1102 0.1010
Variance 218.3545 0.2108 0.1108 0.1003 0.0910

DI 11.3780 1.0083 0.9204 0.9102 0.9010
Skewness 2.0459 5.1086 6.4470 6.7468 7.0719
Kurtosis 6.0496 8.5888 8.2779 8.2024 8.1209

Table 2. Numerical values for some moment measures associated with the BPL distribution for
α = 0.3 and different values of θ.

Measures
θ

0.1 10 50 99 999

Mean 19.3909 0.4091 0.3204 0.3102 0.3010
Variance 218.4745 0.3309 0.2308 0.2203 0.2110

DI 11.2669 0.8087 0.7204 0.7102 0.7010
Skewness 2.0426 1.4711 0.9079 0.8355 0.7692
Kurtosis 6.0462 4.3926 2.4144 2.1001 1.7964

3.4. Mean Deviation about the Mean

The mean deviation (MD) about the mean measures the amount of scatter in a popula-

tion. Let μ be the mean of the BPL distribution, i.e., μ = E(X) = α +
2 + θ

θ(θ + 1)
. Then the

MD about the mean is defined as MD(X) = E
(|X − μ|), and can be calculated as

MD(X) =
∞

∑
x=0

|x − μ|p(x, α, θ)

= μp(0, α, θ) +
�μ�
∑
x=1

(μ − x)p(x, α, θ) +
∞

∑
x=�μ�+1

(x − μ)p(x, α, θ)

=
(1 + θ)−3−�μ�

θ

[
2(1 + θ)2[2 + θ(1 + α + αθ)]− 2θ(1 + θ[3 + θ + αθ(2 + θ)])μ

− (1 + θ)2+�μ�[2 + θ(1 + α + αθ − (1 + θ)μ)]

+ 2θ�μ�(2 + θ[4 + α + θ + αθ(3 + θ − μ)− μ] + θ(1 + αθ)�μ�)
]

,

where �μ� is the greatest integer less than or equal to μ.
Figure 6 shows the plot of the MD about the mean of X. From this plot, we observe

that when θ increases, the values of the MD about the mean decrease.
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Figure 6. MD about the mean of the BPL distribution for different values of α and θ.

4. Parameter Estimation

Parameter estimation is an important step toward a deeper understanding of the
process. The classical method of estimation, the maximum likelihood (ML) method, is used
here to estimate the parameters. Let X1, X2, . . . , Xn be a random sample of size n from a
BPL distribution with unknown parameters α and θ. Let x1, . . . , xn be the n observed values.
Let y be the number of xi taking the value 0 and (n − y) of xi’s are taking the nonzero
values. The log-likelihood function is given by

log L(α, θ) = y log(1 − α) + 2y log θ + y log(θ + 2)− 3y log(θ + 1) + 2(n − y) log θ

− 3(n − y) log(1 + θ)

+
n−y

∑
i=1,xi �=0

{
log

[
(1 + αθ)(1 + θ + xi) + (1 − α)

]− xi log(θ + 1)
}

.

The maximum likelihood estimates (MLEs) of α and θ are the values that maximize
log L(α, θ). They are denoted as α̂ and θ̂, respectively. The partial derivatives of log L(α, θ)
with respect to each parameter are the following:

∂

∂α
log L(α, θ) =

n−y

∑
i=1

{
θ(1 + xi + θ)− 1

(1 + αθ)(1 + xi + θ) + (1 − α)

}
− y

1 − α
,

∂

∂θ
log L(α, θ) =

n−y

∑
i=1

{
(1 + αθ) + (1 + xi + θ)α

(1 + αθ)(1 + xi + θ) + (1 − α)

}
− n(3 + x̄)

θ + 1
+

y
θ + 2

+
2n
θ

.

In order to obtain the MLEs, note that the above system of equations set to zero contains
non-linear equations and does not have an explicit solution. Consequently, the system
must be solved numerically, for example, using the statistical programming language R

(see Appendix A).

Simulation Study

In this section, a brief simulation study is performed to evaluate the asymptotic
behavior of the MLEs for different parametric combinations. Here the iteration is carried
out for different sample sizes (50, 100, 200, 500, 1000) and N = 1000 replications are used
for the same. The measures such as percentage relative bias (PRB) and mean square errors
(MSEs) are calculated with the following formulas:
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PRB =
∑N

i=1(a − âi)

∑N
i=1 âi

× 100,

where a ∈ {α, θ}, âi is the MLE of a at the i-th replication, and

MSE =
1
N

N

∑
i=1

(ai − âi)
2.

It is evident from Table 3 that all the estimates are asymptotically unbiased as n
increases, i.e., with the PRBs approaching zero and the MSEs decreasing to zero.

Table 3. Simulation results.

α = 0.25, θ = 0.6

n MLE (α) PRB (α) MSE (α) MLE (θ) PRB (θ) MSE (θ)

50 0.24715 1.15434 0.29785 0.61781 −2.88305 0.10035
100 0.24663 1.36523 0.19457 0.60301 −0.49874 0.06998
200 0.23642 3.74246 0.15031 0.60426 −0.70581 0.05007
500 0.24617 1.55751 0.08833 0.60124 −0.20587 0.03022

1000 0.25123 −0.88448 0.06078 0.60058 −0.09602 0.02079

α = 0.5, θ = 1.2

n MLE (α) PRB (α) MSE (α) MLE (θ) PRB (θ) MSE (θ)

50 0.49695 0.61431 0.15829 1.24485 −3.60276 0.24016
100 0.50188 −0.37455 0.10670 1.22124 −1.73911 0.16789
200 0.49925 0.15014 0.07770 1.21047 −0.86520 0.11252
500 0.50077 −0.15318 0.04811 1.20429 −0.35658 0.06926

1000 0.50027 −0.05312 0.03408 1.20472 −0.39213 0.04991

α = 0.65, θ = 3

n MLE (α) PRB (α) MSE (α) MLE (θ) PRB (θ) MSE (θ)

50 0.64882 0.18225 0.02067 3.26433 −8.09744 1.14048
100 0.65254 −0.38979 0.06712 3.10000 −3.22588 0.60840
200 0.64524 0.73814 0.04595 3.03897 −1.28222 0.41492
500 0.65194 −0.29778 0.09402 3.03066 −1.01156 0.26135

1000 0.65068 −0.10485 0.02939 3.00499 −0.16592 0.17036

5. Empirical Studies

This section describes a comparison of the BPL model with other competing models
given in Table 4, to demonstrate the BPL model’s practical effectiveness. Two practical
data sets are considered. The comparison of the fitted models is based on conventional
metrics: the Akaike information criterion (AIC), the Bayesian information criterion (BIC),
the Kolmogorov–Smirnov test (KS) and the resulting p-value. In particular, the formulas
for the AIC and BIC are

AIC = −2 log L + 2r

and BIC = −2 log L + r log n,

respectively, where log L is the estimation of the log-likelihood function and r is the number
of parameters.

The pmfs of the competing models are given as follows:

• For the DG model:

p(x, β, γ) = e−βγx+1 − e−βγx
, x = 0, 1, 2, . . . , β > 0, 0 < γ < 1.
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• For the DIW model:

p(x, β, γ) =

{
β i f x = 1
βx−γ − β(x−1)−γ

i f x = 2, 3, 4, . . . , 0 < β < 1, γ > 0.

• For the PQX model:

p(x, β, γ) =
2βγ(γ + 1)2 + γ3(x + 1)(x + 2)

2(β + 1)(γ + 1)x+3 , x = 0, 1, 2, . . . , β > 0, γ > 0.

Table 4. Discrete competitive models.

Distribution Abbreviation Reference

Discrete Gumbel DG [20]
Discrete inverse Weibull DIW [12]
Poisson-quasi-xgamma PQX [21]

Poisson - -
Geometric - -

5.1. Survival Times

The first data set consists of survival times in days for 72 guinea pigs. These data are
taken from [22]. The flexibility of the BPL model is compared with other discrete flexible
models, such as the DG, DIW, PQX, Poisson, and geometric models. The results of the
fitted models along with their estimates together with the standard errors (SEs) are given
in Table 5. This table demonstrates that the Poisson and geometric models, two of the
researched models, may not be fitted to the relevant data set (based on their p-values),
but we nevertheless use them for comparison since they are very common models to take
into account. The BPL model, as can be observed, offers the highest p-value and the smallest
AIC, BIC, and KS statistic values.

Table 5. AIC, BIC and p-values values for the survival times data.

Model Parameters Estimates (SE) AIC BIC KS Value p-Value

BPL
α 0.9900 (2.9821)

793.0159 797.5692 0.1299 0.176
θ 0.0200 (0.0013)

DG
β 4.2894 (0.7061)

800.2187 804.7720 0.14825 0.08443
γ 0.9789 (0.0021)

DIW
β 1.517024 × 10−41 (1.1371)

801.8879 806.4412 0.14357 0.1028
γ 1.1214 (0.4120)

Poisson β 99.8194 (1.1774) 795.1784 797.9551 0.5697 2.2 × 10−16

Geometric β 0.0100 (0.0012) 808.1606 810.4372 0.2232 0.0015

PQL
β 1.527183 × 10−7 (0.0779)

798.0983 802.6516 0.1768 0.0222
γ 3.005888 × 10−2 (0.0025)

5.2. Final Examination Marks

The results of 48 slow space students’ final mathematics exams from the Indian
Institute of Technology in Kanpur in 2003 are included in the second data set (see [23]).
The results of the fitted models given in Table 6.

The BPL model has the largest p-value, the smallest KS value, and the smallest AIC
and BIC values, as seen in Tables 5 and 6. We can therefore conclude that the BPL model
outperforms all other competitive models for the two real-life data sets.
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Table 6. AIC, BIC and p-values values for the final examination marks.

Model Parameters Estimates (SE) AIC BIC KS Value p-Value

BPL
α 0.9950 (4.7501)

399.4703 403.2127 0.0976 0.7507
θ 0.0774 (0.0114)

DG
β 4.4664 (0.8884)

402.6350 406.3774 0.0987 0.7375
γ 0.9224 (0.0089)

DIW
β 2.750165 × 10−15 (0.4321)

406.3307 410.0731 0.1552 0.1978
γ 1.3479 (0.5324)

Poisson β 25.8958 (0.7345) 795.1784 797.0496 0.3998 4.342 × 10−7

Geometric β 0.0386 (0.0055) 408.5140 410.3852 0.2501 0.0049

PQX
β 1.07574 × 10−8 (0.2323)

399.9926 403.7350 0.1093 0.6149
γ 1.158624 × 10−1 (0.0183)

6. Bernoulli–Poisson–Lindley Regression Model

We already mentioned that the BPL distribution is capable of modeling under-dispersed
as well as over-dispersed data sets. However, over-dispersed data sets are of utmost signifi-
cance. In order to describe such data sets, this section introduces a count regression model
based on the BPL distribution.

6.1. Model Construction

Let Y be a random variable with the BPL distribution that indicates how many times
an event has been counted.

Consider the following reparametrization:

θ =
α + 1 − μ +

√
(μ − α − 1)2 + 8(μ − α)

2(μ − α)
.

Then the pmf of the BPL distribution can be expressed in terms of the mean
E(Y) = μ > 0 as

P(y, α, μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − α)

(
α+1−μ+

√
(μ−α−1)2+8(μ−α)
2(μ−α)

)2

(
α+1−μ+

√
(μ−α−1)2+8(μ−α)
2(μ−α) +2

)
(

α+1−μ+
√

(μ−α−1)2+8(μ−α)
2(μ−α) +1

)3 , i f y = 0

(
α+1−μ+

√
(μ−α−1)2+8(μ−α)
2(μ−α)

)2

(
α+1−μ+

√
(μ−α−1)2+8(μ−α)
2(μ−α) +1

)y+3

([
(1 + α

α+1−μ+
√

(μ−α−1)2+8(μ−α)
2(μ−α)

)

[y +
α+1−μ+

√
(μ−α−1)2+8(μ−α)
2(μ−α)

+ 1]
]
+ (1 − α)

)
, i f y = 1, 2, 3, . . .

(9)

with 0 < α < 1, μ > 0 and μ − α > 0.
Assume that we have n observations of the response variable Y, which is also the

response variable, with the i-th observation being a realization of a random variable Yi for
i = 1, 2, . . . , n. In addition, assume that the mean of the response variable Yi is linked to the
covariates with a log link function given by

μi = exT
i γ, i = 1, 2, . . . , n (10)
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where xT
i = (1, xi1, xi2, xi3, . . . , xik)

T is the covariate vector and γ = (γ0, γ1, . . . , γk) is the
unknown regression coefficient vector. Substituting Equation (10) in Equation (9), a linear
form for the pmf of Yi provided that {XT

i = xT
i } is realized and the BPL distribution with

parameters α and μi, is obtained as

P(yi, α, exT
i γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − α)

(
α+1−exT

i γ+

√
(exT

i γ−α−1)2+8(exT
i γ−α)

2(exT
i γ−α)

)2

(
α+1−e

xT
i γ

+

√
(e

xT
i γ−α−1)2+8(e

xT
i γ−α)

2(e
xT

i γ−α)

+2)

(
α+1−e

xT
i γ

+

√
(e

xT
i γ−α−1)2+8(e

xT
i γ−α)

2(e
xT

i γ−α)

+1)3

, i f yi = 0

(
α+1−e

xT
i γ

+

√
(e

xT
i γ−α−1)2+8(e

xT
i γ−α)

2(e
xT

i γ−α)

)2

(
α+1−e

xT
i γ

+

√
(e

xT
i γ−α−1)2+8(e

xT
i γ−α)

2(e
xT

i γ−α)

+1

)yi+3

(
(1 + α

α+1−exT
i γ+

√
(exT

i γ−α−1)2+8(exT
i γ−α)

2(exT
i γ−α)

)

(yi +
α+1−exT

i γ+

√
(exT

i γ−α−1)2+8(exT
i γ−α)

2(exT
i γ−α)

+ 1) + (1 − α)

)
, i f yi = 1, 2, 3, . . .

6.2. Estimation of the Model Parameters

The ML method is used to estimate the parameter α and the regression coefficient
vector γ of the model. The logarithm of the likelihood function L of the BPL count regression
model is given by

log L =
y

∑
i=1

{
log(1 − α) + 2 log

(
α + 1 − exT

i γ +
√
(exT

i γ − α − 1)2 + 8(exT
i γ − α)

2(exT
i γ − α)

)2

+

log
((

α + 1 − exT
i γ +

√
(exT

i γ − α − 1)2 + 8(exT
i γ − α)

2(exT
i γ − α)

)2

+ 2
)
−

3 log
((

α + 1 − exT
i γ +

√
(exT

i γ − α − 1)2 + 8(exT
i γ − α)

2(exT
i γ − α)

)2

+ 1
)}

+

n−y

∑
i=1,xi �=0

{
2 log

(
α + 1 − exT

i γ +
√
(exT

i γ − α − 1)2 + 8(exT
i γ − α)

2(exT
i γ − α)

)2

+

log
((

1 + α

(
α + 1 − exT

i γ +
√
(exT

i γ − α − 1)2 + 8(exT
i γ − α)

2(exT
i γ − α)

))
(

yi +

(
α + 1 − exT

i γ +
√
(exT

i γ − α − 1)2 + 8(exT
i γ − α)

2(exT
i γ − α)

)
+ 1

)
+

(1 − α)

)
− (yi + 3) log

((
α + 1 − exT

i γ +
√
(exT

i γ − α − 1)2 + 8(exT
i γ − α)

2(exT
i γ − α)

)
+ 1

)}
. (11)

Now the unknown parameters α and γ are obtained by maximizing Equation (11).

6.3. Residual Analysis

This part introduces a residual to test the goodness-of-fit of the BPL model defined in
Section 6.1 based on randomized quantile (RQ) residuals. Let F(y, μ) be the cdf of the BPL
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model in which the regression structures are assumed in the parameter as in Equation (10).
The i-th RQ residual of the BPL regression model is

rq
i = Φ−1(F(Ui, μ̂i)), i = 1, 2, . . . , n,

where μ̂i = exT
i γ̂, and Φ−1(·) represents the quantile function of the standard normal distri-

bution. Furthermore, Ui is a random variable that follows the uniform

U
(

F(yi − 1, μ̂i), F(yi, μ̂i)

)
distribution. When the fitted model is correct, the RQ residuals

are normally distributed with zero mean and unit variance.

6.4. Simulation of the Bernoulli–Poisson–Lindley Regression Model

This section provides a simulation exercise to assess how well the MLEs of the BPL
regression model’s parameters performed. We generate N = 1000 samples of sizes n = 100,
200, 300, and 500 for the parametric combinations (α = 0.25, γ0 = 0.5, γ1 = 0.4, γ2 = 0.6) and
(α = 0.5, γ0 = 0.3, γ1 = 1.2, γ2 = 2) by using μi = exp(γ0 + γ1xi1 + γ2xi2). The independent
variables xi1 and xi2 are generated from the standard uniform distribution, i.e., U(0, 1).
On the basis of the estimates, biases, and MSEs, the simulation findings are discussed.
The simulation results are listed in Table 7.

Table 7. Simulation results for the BPL regression model.

α = 0.25, γ0 = 0.5, γ1 = 0.4, γ2 = 0.6 α = 0.5, γ0 = 0.3, γ1 = 1.2, γ2 = 2

n Parameters Estimates Bias MSE n Parameters Estimates Bias MSE

100
α 0.25781 0.00781 0.01867

100
α 0.51368 0.01368 0.01360

γ0 0.53025 0.03025 0.49531 γ0 0.37353 0.07353 0.16408
γ1 0.49863 0.09863 0.26276 γ1 1.19985 0.00015 0.37260
γ2 0.65218 0.05218 0.31935 γ2 1.80780 0.19220 1.21552

200
α 0.25420 0.00420 0.00987

200
α 0.50673 0.00673 0.00525

γ0 0.53000 0.03000 0.55058 γ0 0.35115 0.05115 0.11311
γ1 0.47112 0.07112 0.20901 γ1 1.18296 0.01705 0.74723
γ2 0.63384 0.03384 0.24494 γ2 1.93278 0.06722 1.10588

300
α 0.25214 0.00214 0.00223

300
α 0.50106 0.00106 0.00370

γ0 0.50183 0.00183 0.38789 γ0 0.31464 0.01464 0.08764
γ1 0.44939 0.04939 0.16479 γ1 1.20512 0.00512 0.52853
γ2 0.61069 0.01069 0.17588 γ2 1.93557 0.06443 0.53403

500
α 0.25051 0.00051 0.00430

500
α 0.50121 0.00121 0.00215

γ0 0.50031 0.00031 0.00031 γ0 0.30628 0.00628 0.07150
γ1 0.40352 0.01352 0.00141 γ1 1.20053 0.00052 0.35168
γ2 0.60321 0.00321 0.16040 γ2 1.96866 0.03134 0.36140

Table 7 shows that the bias and MSEs reduce as sample size rises, indicating the
consistency property of the MLEs for estimating the regression parameters.

6.5. Applications

Two data sets are used here to assess the performance of the BPL regression model.
Only the Poisson distribution is considered in both scenarios for comparison.

6.5.1. Titanic Survivors Data

The first data set used is the Titanic survivors data. These data, which come from
the Titanic’s survival record, show the proportion of survivors among all the passengers,
broken down by age, sex, and class. They are available in the CountsEPPM package of the
statistical programming language R. The aim of the study is to investigate the effects of age
(adult) (x1i), sex (male) (x2i), and classes (2-nd class and 3-rd class) (x3i and x4i) on the number
of survivors (yi).

The summary statistics for the Titanic survivors data are shown in Table 8.
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Table 8. Summary statistics for the Titanic survivors data set.

Variables Min Max Median

survive 1 140 14
age adult 0 0.5 1
sex male 0 0.5 1

2-nd class 0 0 1
3-rd class 0 0 1

The results of the regression analysis applied to the Titanic survivors data are given in
Table 9.

Table 9. Modeling results for the Titanic survivors data set.

Covariates
Poisson BPL

Estimates p-Values Estimates p-Values

γ0 2.71128 <0.001 2.25802 <0.001
γ1 2.04421 <0.001 2.03979 <0.001
γ2 −0.59605 <0.001 −0.37823 0.01094
γ3 −0.52602 <0.001 0.07812 0.03181
γ4 −0.12805 0.02179 0.39305 <0.001

AIC 145.83530 111.45620
BIC 148.74480 114.85050

From this table, it is clear that the BPL regression model has a better fit than the
Poisson regression model with the smallest AIC and BIC. In conclusion, all the covariates
can explain the number of survivors.

The corresponding quantile–quantile (Q–Q) plots are shown in Figure 7. These graphs
demonstrate that the BPL regression model is better than the Poisson regression model.

Figure 7. The Q–Q plots of the BPL and Poisson regression models, respectively.

6.5.2. Low Birth Weight Data

The second data set used here is the low birth weight data. It is taken from the COUNT

package in the statistical programming language R. The BPL regression model is used to
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model the number of low-weight babies (lowbw) (yi) by using the covariates, cases (x1i),
race1 (x2i) and race2 (x3i). The summary statistics for the low birth weight data are shown
in Table 10.

Table 10. Summary statistics for the low birth weight data set.

Variables Min Max Median

lowbw 12 60 16.5
cases 30 90 165
race1 0 0.5 1
race2 0 0 1

The results of the regression analysis applied to the low birth weight data are given in
Table 11.

Table 11. Modeling results for the low birth weight data set.

Covariates
Poisson BPL

Estimates p-Values Estimates p-Values

γ0 2.0679 <0.001 2.2041 0.0194
γ1 0.0124 <0.001 0.0119 0.2390
γ2 −0.3287 0.0690 −0.4641 0.8689
γ3 0.2192 0.0505 0.1506 0.8273

AIC 61.9544 59.31121
BIC 60.9132 58.06177

According to this table, the BPL regression model offers a better fit than the Poisson
regression model since it has lower AIC and BIC values. Additionally, the covariates have
no statistically significant effect on the number of low-weight babies.

Figure 8 presents the Q–Q plots corresponding with the low birth weight data. Here
also, these graphs demonstrate that the BPL regression model is better than the Poisson
regression model.

Figure 8. The Q–Q plots of the BPL and Poisson regression models, respectively.
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7. Conclusions

This paper focused on a two-parameter discrete distribution generated from the sum of
two independent random variables, one with the Bernoulli distribution and the other with
the Poisson–Lindley distribution. We have naturally called it the Bernoulli–Poisson–Lindley
distribution. This distribution has a number of advantages, including the absence of special
functions in its pmf and cdf, as well as its utilization of only two parameters. Furthermore,
the model’s ability to exhibit under- or over-dispersion makes it well-suited for modeling
purposes. With the aim of estimating the unknown parameter, the ML method was used,
and a simulation exercise was conducted. Furthermore, its associated count regression
model was developed and discussed from an inferential viewpoint. The regression model
is applied to two real-life data sets, and it is observed that our model is competitive in
modeling practical data. To assess the viability of the suggested paradigm, two real-
world data sets are examined. Favorable results were obtained for the proposed modeling
strategy in all cases. Thus, the BPL distribution will be productive in modeling count data,
beyond the scope of this paper.
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Appendix A

• The formula for a finite geometric series is as follows:

n

∑
i=0

ri =
1 − rn+1

1 − r
,

where r ∈ R and n is a positive integer. When |r| < 1, by applying n → ∞, we obtain
the standard infinite geometric formula, which can be generalized for any non-negative
integer k as follows:

∞

∑
i=0

i(i − 1) . . . (i − k + 1)ri−k =
k!

(1 − r)k+1 .

• The R-code for the empirical study of BPL distribution is given below.

library(AdequacyModel)

data<-NULL

n<-length(data)

n

x<-mean(y)

x

TTT(y)

dbpl <- function(x,alpha,theta) {
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ifelse (x==0,(((1-alpha)*(theta^2)*(theta+2))/((theta+1)^3)), \\

(((theta^2)*((1+alpha*theta)*(x+theta+1)+(1-alpha))/((theta+1)^(x+3)))))

}

dbpl(1,0.25,0.66)

pbpl <- function(q,alpha,theta){

(1-(1+theta*(3+q+theta+(q*alpha*theta)+ \\

(alpha*theta*(2+theta))))/((1+theta)^(q+3)))

}

z<-sort(y)

c1=c(0,-1)

a1=matrix(c(1,0,-1,0),byrow = TRUE,2)

a1

L<-function(par)

{alpha=par[1];theta=par[2]

res= - sum(log(dbpl(y,alpha,theta)));

return(res);

}

initial<-c()

est=constrOptim(initial,L,ci=c1,ui=a1,grad = NULL)

est

ks.test(y,"pbpl",initial)
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Abstract: As a commonly used model in reliability analysis, the inverse Weibull distribution (IWD)
is widely applied in various scientific fields. This paper considers the reliability estimation of the
IWD based on intuitionistic fuzzy lifetime data. Firstly, the related concepts of the fuzzy set theory
are reviewed, and the concepts of the intuitionistic fuzzy conditional density, intuitionistic fuzzy
likelihood function, and intuitionistic fuzzy conditional expectation are obtained by extension. In
classical estimations, the maximum likelihood estimators of parameters and reliability are derived.
Due to the nonlinearity, the EM algorithm is used to obtain the maximum likelihood estimates. In
the Bayesian estimation, the gamma prior is selected, and the Bayesian estimation of the parameters
and reliability is conducted under the symmetric entropy and the scale square error loss function,
respectively. Since the integrals are complicated, the Lindley approximation is used to approximate
the Bayesian estimates. Then, the performance of these estimators is evaluated by the Monte Carlo
simulation. The simulation results show that the Bayesian estimation is more suitable than the
maximum likelihood estimation for the reliability estimation. Finally, a set of real data is used
to prove the effectiveness of these proposed methods. Through these methods, the reliability of
the intuitive fuzzy life data is accurately estimated, which provides an important reference for the
reliability analysis in the scientific field.

Keywords: Bayesian estimation; EM algorithm; intuitionistic fuzzy lifetime data; inverse Weibull
distribution

MSC: 62F10; 62F15

1. Introduction

Reliability refers to the ability of a product to complete the specified tasks under
the specified time and conditions. This is a theory based on product failure. Due to the
existence of two parameters, the IWD is a very flexible life distribution that can be used to
represent various failure characteristics. It has become one of the commonly used models
in reliability analysis. Depending on the shape parameter, the risk function can be flexibly
varied. Therefore, it is appropriate to use IWD for data fitting in many cases. Yilmaz and
Kara [1] investigated the classical and Bayesian estimation methods for estimating the
reliability of IWD. The classical approach involved obtaining the maximum likelihood
estimation and the modified maximum likelihood estimation. Meanwhile, the Bayesian
estimation method under symmetric and asymmetric loss functions was considered. The
Bayes estimators were computed numerically using the Lindley approximation and MCMC
algorithm. Chakrabarty and Chowdhury [2] analyzed two probability distributions formed
by compounding the IWD with zero-truncated Poisson and geometric distributions, respec-
tively. They derived some important statistical and reliability attributes for each distribution
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and estimated the parameters of the distributions using the expectation–maximization al-
gorithm and minimum distance estimation method. Cai et al. [3] investigated the statistical
inference of the IWD with masked data in a series system under type-II censoring. They
obtained Bayes estimators of parameters based on gamma priors, as well as multilevel
Bayes estimators. Finally, they conducted a Monte Carlo simulation with different masking
probabilities and effective sample sizes to compare the performances of various estimates.
Bi and Gui [4] considered the stress-strength reliability estimation of an inverse Weibull
lifetime model with identical shape parameters but different scale parameters. In terms of
the classical estimation, maximum likelihood estimators and asymptotic distributions were
obtained. As the estimators were in implicit forms, an approximate maximum likelihood
estimator was proposed, and asymptotic confidence intervals were obtained. In terms
of the Bayesian estimation, Bayes estimators were obtained by Gibbs sampling and the
MH algorithm. The performance of each estimator was compared through Monte Carlo
simulations. For an additional reliability analysis of the IWD, please refer to [5–9].

The key to reliability estimation lies in collecting lifetime data or transforming other
reliability data collected into lifetime data. However, in the process of obtaining the data,
there may be some degree of measurement errors, resulting in imprecise data collection. In
1965, Zadeh [10] introduced the fuzzy set theory, which offered a proper tool for handling
inaccurate data. The importance of fuzzy sets lies in their ability to handle uncertain-
ties and vagueness, making them valuable mathematical tools in fields, such as artificial
intelligence, control theory, and decision analysis [11–17]. By using fuzzy sets, we can
translate vague information from the real world into mathematical language, allowing
for precise calculations and reasoning. In recent years, some scholars have extended the
fuzzy set theory to reliability analysis. Hashim [18] considered the problem of the fuzzy
reliability estimation for the Lomax distribution. The first step was to use the composite
trapezoidal rule to estimate the fuzzy reliability based on its definition. The second step
was the Bayesian estimation method, where a gamma prior was selected to estimate the
fuzzy reliability under symmetric and asymmetric loss functions. Neamah and Ali [19]
considered the parameter estimation for the Frechet distribution of fuzzy lifetime data.
Maximum likelihood and Bayes estimators were obtained for both parameters and reliabil-
ity. Through a comparison of the mean squared error and mean absolute percentage error,
it was found that the performance of the Bayesian estimation was better than that of the
maximum likelihood estimation. Abbas et al. [20] studied the Bayesian estimation of the
parameters of the Rayleigh distribution for fuzzy lifetime data. As an explicit form of the
Bayes estimator could not be obtained, Lindley and Tierney–Kadane approximations were
used for the numerical computation. Monte Carlo simulations were conducted to evaluate
their performance, and a set of examples were provided to illustrate the analysis.

However, fuzzy sets only use one attribute parameter (membership degree) to rep-
resent both support and opposition, and cannot represent a neutral state, i.e., neither
supporting nor opposing. To address this, Atanassov [21] introduced the notion of the
intuitionistic fuzzy set, which was an extension of Zadeh’s fuzzy set. Compared with
traditional fuzzy sets, intuitionistic fuzzy sets add a new non-membership parameter,
which can more delicately characterize the ambiguity inherent in the objectively defined
world. When dealing with decision-making problems, intuitionistic fuzzy sets can provide
more information, making the decision results more accurate and reliable, and have a wider
range of application prospects [22–26]. Zahra et al. [27] considered the parameter and
reliability estimation of the Pareto distribution by setting the parameter as a generalized
intuitionistic fuzzy number. First, an L-R-type intuitionistic fuzzy number was proposed,
and its cut set was provided. Secondly, a series of generalized intuitionistic fuzzy reliability
characteristics were defined and used to evaluate the reliability of series and parallel sys-
tems. Finally, generalized intuitionistic fuzzy reliability characteristics were provided for
certain special parameters and cut-set cases. Ebrahimnejad and Jamkhaneh [28] considered
the reliability estimation problem of the Rayleigh distribution by assuming the parameter
as a generalized intuitionistic fuzzy number. Extending the fuzzy reliability concept, a
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series of generalized intuitionistic fuzzy reliability characteristics and their cut sets were
provided, and a numerical example was provided to demonstrate the analysis.

There are many uncertainties in real-life phenomena, which are usually classified into
three categories: randomness, fuzziness, and roughness. However, in many cases, multiple
types of uncertainties are at play, making it impossible to solve these problems using only
one uncertainty theory. Fuzzy stochastic phenomena, which are common in real life, are
the result of the simultaneous interaction of randomness and fuzziness, and their study is
of great significance. To better handle this phenomenon, the fuzzy stochastic theory has
emerged, which is a theory combining the fuzzy set and probability theories. One of its
important concepts is the fuzzy random variable proposed by Huibert [29]. Zahra et al. [30]
extended the definitions of probability, conditional probability, and likelihood function to
intuitionistic fuzzy observations, and considered the parameter and reliability function
estimation problem of the two-parameter Weibull distribution based on intuitionistic fuzzy
lifetime data. ML estimators were obtained using the Newton–Raphson and EM algorithms,
and Bayes estimators were obtained using Lindley and Tierney–Kadane approximations.
To demonstrate the applicability of the proposed estimation methods, a simulation dataset
was analyzed.

In terms of the reliability estimation for the IWD, many scholars have conducted
research; however, most of them are based on complete or censored samples, and these
studies assume that the available data are precise. However, in real life, the available
lifetime data may not be precise, which indicates the necessity of extending classical
estimation methods to fuzzy numbers.

The main contribution of this paper is to provide a suitable estimation method for
the parameters and reliability of IWD based on intuitionistic fuzzy lifetime data. For
the classical estimation, we obtain MLEs for the parameters and reliability. Due to the
nonlinearity of the likelihood equation, we provide the EM algorithm with specific iteration
steps. For the Bayesian estimation, we obtain BEs of parameters and reliability under
the SE loss and SSE loss functions. The approximate Bayesian estimates are obtained by
the Lindley approximation. Based on several sets of different parameter values and a
large number of simulation experiments, the simulation results show that the Bayesian
estimation performs much better than the maximum likelihood estimation.

This paper considers the reliability estimation problem of the IWD based on intuition-
istic fuzzy lifetime data. In Section 1, the article mainly introduces the research status of the
reliability estimation of the IWD lifetime model, as well as the research background and
significance of fuzzy sets and intuitionistic fuzzy sets. Section 2 reviews the concepts of
fuzzy sets and intuitionistic fuzzy sets, and extends some important concepts of the proba-
bility theory to the fuzzy set theory. Section 3 performs the maximum likelihood estimators
(MLEs) of IWD, and iteratively calculates them using the expectation–maximization (EM)
algorithm. Section 4 performs the Bayes estimators (BEs) under the symmetric entropy
(SE) loss function and scale squared error (SSE) loss function, and numerically calculates
the results using the Lindley approximation. Section 5 evaluates the performance of each
estimation method using the Monte Carlo simulation and illustrates it using the mean
squared error (MSE). The feasibility of the proposed methods is verified by a real dataset in
Section 6. Section 7 presents the conclusions, limitations, and future research.

2. Preliminary Knowledge

The probability density function (pdf), cumulative distribution function (cdf), and
reliability function of IWD are defined, respectively, as:

y(t; λ, η) = ληt−η−1 exp(−λt−η), t > 0, (1)

Y(t; λ, η) = exp(−λt−η), t > 0, (2)

R(t) = 1 − exp(−λt−η), t > 0, (3)
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where λ > 0 is the scale parameter and η > 0 is the shape parameter. For convenience,
denote IWD owing pdf (1) by IW(λ, η). Figures 1 and 2 show the pdf and risk function
under different values of the shape and scale parameters.

Figure 1. The pdf of IWD.

Figure 2. The risk function of IWD.

A fuzzy set is a set used to express the concept of fuzziness. Similar to the definition
of the characteristic function of the classical set, the definition of fuzzy set can be obtained
by extending its domain.

Definition 1 (Zadeh [10]). Let T be a non-empty universal set. Fuzzy set Ã is defined as the form
Ã =

{
< t, μÃ(t) > |t ∈ T

}
, where μÃ : T → [0, 1] is the degree of membership of t in Ã.

The intuitionistic fuzzy set (IFS) first proposed by Atanassov in 1986 contains two
parameters, membership and non-membership degrees, which can more comprehensively
describe the characteristics of things.

Definition 2 (Atanassov [21]). Let T be a non-empty universal set. IFS Ã is defined as the
form Ã =

{
< t, μÃ(t), νÃ(t) > |t ∈ T

}
, where μÃ : T → [0, 1] is the degree of membership

of t in Ã and νÃ : T → [0, 1] is the degree of non-membership of t in Ã. They satisfy 0 ≤
μÃ(t) + νÃ(t) ≤ 1 for each t. When T has only one element, Ã =< μÃ, νÃ > is commonly
referred to as a intuitionistic fuzzy number.
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Two special classes of intuitionistic fuzzy numbers are triangular intuitionistic fuzzy
numbers (TriIFNs) and trapezoidal intuitionistic fuzzy numbers (TraIFNs), which serve as
extensions of intuitionistic fuzzy numbers. In 2006, Shu et al. [31] proposed the definition of
TriIFN and its application to fault tree analysis. Building on this work, Wang and Zhang [32]
defined TraIFN in 2008. The membership and non-membership functions are:

μÃ(t) =

⎧⎪⎪⎨⎪⎪⎩
α t−a

b−a t ∈ [a, b]
α t ∈ (b, c)

α d−t
d−c t ∈ [c, d]
0 else ,

(4)

νÃ(t) =

⎧⎪⎪⎨⎪⎪⎩
b−t
b−a + β t−a

b−a t ∈ [a, b]
β t ∈ (b, c)

t−c
d−c + β d−t

d−c t ∈ [c, d]
1 else ,

(5)

where α is the maximum membership degree and β is the minimum membership degree.
In this paper, we assume T be a set of real numbers, which is T = R. Additionally, we

assumed that the IFSs discussed in this paper were TraIFNs.
To better investigate the estimation problem on the basis of intuitionistic fuzzy data,

some concepts in the probability theory were extended to intuitionistic fuzzy random
variables.

Definition 3. Consider a probability space (Rn,A,P), the probability of an intuitionistic fuzzy
observation x̃ in Rn is defined by

P(x̃) =
∫
Rn

1 − νx̃(t) + μx̃(t)
2

dP (6)

Let the continuous random variable T = (T1, T2, . . . , Tn) obey the IW(λ, η), and its
intuitionistic fuzzy observations are denoted by x̃ = (x̃1, x̃2, . . . , x̃n). The conditional
density of random variables in probability theory is introduced, and the intuitionistic fuzzy
conditional density is given as below,

y(t|x̃) = s(t)y(t; λ, η)∫
R

s(t)y(t; λ, η)dt
(7)

where s(t) = 1−νx̃(t)+μx̃(t)
2 . In such a situation, the intuitionistic fuzzy likelihood function

of IW(λ, η) is:

h(λ, η|x̃) =
n

∏
i=1

P(x̃i|λ, η) =
n

∏
i=1

∫
R

si(t)y(t; λ, η)dt, (8)

where si(t) =
1−νx̃i

(t)+μx̃i
(t)

2 .
Finally, intuitionistic fuzzy conditional expectation is introduced. Based on the intu-

itionistic fuzzy conditional density and intuitionistic fuzzy observation x̃ = (x̃1, x̃2, . . . , x̃n),
the intuitionistic fuzzy conditional expectation of a random variable T = (T1, T2, . . . , Tn) is:

E(T|x̃) =
∫
R

ty(t|x̃)dt
=
∫
R

t s(t)y(t;λ,η)∫
R

s(t)y(t;λ,η)dt dt

=
∫
R

t s(t)y(t;λ,η)
h(λ,η|x̃) dt.

(9)
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3. Maximum Likelihood Estimation

The intuitionistic fuzzy likelihood function of IW(λ, η) is shown in Equation (8). Thus,
the intuitionistic fuzzy log-likelihood function is provided as:

H(λ, η|x̃) = ln h(λ, η|x̃) =
n

∑
i=1

ln[
∫
R

si(t)y(t; λ, η)dt]. (10)

The MLEs λ̂ML and η̂ML are obtained by the below equations:{
∂H(λ,η|x̃)

∂λ = 0
∂H(λ,η|x̃)

∂η = 0
,

where ∂H(λ,η|x̃)
∂λ and ∂H(λ,η|x̃)

∂η are shown in Equations (11) and (12):

∂H(λ, η|x̃)
∂λ

=
n

∑
i=1

1
h(λ, η|x̃i)

∫
R

si(t)
∂y(t; λ, η)

∂λ
dt, (11)

∂H(λ, η|x̃)
∂η

=
n

∑
i=1

1
h(λ, η|x̃i)

∫
R

si(t)
∂y(t; λ, η)

∂η
dt. (12)

Here, h(λ, η|x̃i) =
∫ +∞

0 si(t)y(t; λ, η)dt, ∂y(t;λ,η)
∂λ and ∂y(t;λ,η)

∂η are shown in Equations
(13) and (14):

∂y(t; λ, η)

∂λ
=

1
λ

y(t; λ, η)− t−ηy(t; λ, η), (13)

∂y(t; λ, η)

∂η
=

1
η

y(t; λ, η)− y(t; λ, η) ln t + λt−ηy(t; λ, η) ln t. (14)

It is obvious that the abovementioned equations are nonlinear and difficult to solve.
Then, we considered the EM algorithm.

The EM algorithm was first introduced by Dempster [33] in 1977, which is an algorithm
used for ML estimations when there are missing observations. The algorithm involves
two steps: E- and M-steps. The E-step is used to impute the missing part of the observed
data, forming a pseudo-complete dataset. The M-step is used to maximize the likelihood
function of the pseudo-complete dataset. Singh and Tripathi [34] considered the parameter
estimation problem of the IWD based on a progressively type-I interval censored sample,
using the EM algorithm to derive the MLEs. Kurniawan et al. [35] considered the MLEs of
the shape parameter for the Weibull distribution based on type-II censored data, using the
EM algorithm. Finally, an aircraft component lifetime data study was used as an example
to illustrate the methods. For more references on the EM algorithm, please see [36–40].

The EM algorithm is also applicable to intuitionistic fuzzy data because the observed
intuitionistic fuzzy data can also be considered as incomplete characterizations of the
completed data. In order to better illustrate the iterative process of the EM algorithm, we
first performed some processing on Equations (11) and (12).

Substitute Equation (13) into (11):

∂H(λ,η|x̃)
∂λ =

n
∑

i=1

1
h(λ,η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂λ dt

=
n
∑

i=1

1
h(λ,η|x̃i)

∫ +∞
0 si(t)[ 1

λ y(t; λ, η)− t−ηy(t; λ, η)]dt

=
n
∑

i=1

∫ +∞
0

1
λ

si(t)y(t;λ,η)
h(λ,η|x̃i)

dt − n
∑

i=1

∫ +∞
0 t−η si(t)y(t;λ,η)

h(λ,η|x̃i)
dt

= n 1
λ − n

∑
i=1

E1i.

232



Axioms 2023, 12, 838

Let ∂H(λ,η|x̃)
∂λ = 0,

λ = n(
n

∑
i=1

E1i)
−1

, (15)

where

E1i = E(T−η |x̃i) =
∫ +∞

0
t−η si(t)y(t; λ, η)

h(λ, η|x̃i)
dt.

Substitute Equation (14) into (12):

∂H(λ,η|x̃)
∂η =

n
∑

i=1

1
h(λ,η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂η dt

=
n
∑

i=1

1
h(λ,η|x̃i)

∫ +∞
0 si(t)[ 1

η y(t; λ, η)− y(t; λ, η) ln t + λt−ηy(t; λ, η) ln t]dt

= n 1
η − n

∑
i=1

E2i + λ
n
∑

i=1
E3i

. (16)

Let ∂H(λ,η|x̃)
∂η = 0,

η = n(
n

∑
i=1

E2i − λ
n

∑
i=1

E3i)
−1

, (17)

where

E2i = E(ln T|x̃i) =
∫ +∞

0

si(t)y(t; λ, η)

h(λ, η|x̃i)
(ln t)dt,

and

E3i = E(T−η ln T|x̃i) =
∫ +∞

0

si(t)y(t; λ, η)

h(λ, η|x̃i)
(t−η ln t)dt.

The iterative steps of using the EM algorithm to obtain MLEs are as follows:

Step 1. Let the initial value be θ(0) = (λ(0), η(0)), and set j = 0. Give the accuracy ε > 0.
Step 2. At the (j + 1)th iteration, compute the intuitionistic fuzzy conditional expectations
below:

E1i =
∫ +∞

0
t−η si(t)y(t; λ, η)

h(λ, η|x̃i)
|θ(j+1)=θ(j)dt, (18)

E2i =
∫ +∞

0

si(t)y(t; λ, η)

h(λ, η|x̃i)
(ln t)|θ(j+1)=θ(j)dt, (19)

E3i =
∫ +∞

0

si(t)y(t; λ, η)

h(λ, η|x̃i)
(t−η ln t)|θ(j+1)=θ(j)dt. (20)

Step 3. Substitute Equation (18) into (15):

λ(j+1) = n(
n

∑
i=1

E1i)
−1

. (21)

Substitute Equations (19) and (20) into (17):

η(j+1) = n(
n

∑
i=1

E2i − λ(j)
n

∑
i=1

E3i)
−1

. (22)

Step 4. If |θ(j+1) − θ(j)| < ε, the MLEs are obtained by λ̂ML = λ(j) and η̂ML = η(j). If not,
then set j = j + 1 and return to step 2.

According to the invariance of maximum likelihood estimation, the MLE R̂ML(t) is
derived by:

R̂ML(t) = 1 − exp(−λ̂MLt−η̂ML). (23)
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4. Bayesian Estimation

In the Bayesian statistical inference, the prior distribution plays a crucial role. It
represents our prior knowledge or belief about the parameters and can help us estimate the
posterior distribution more accurately [41]. Choosing an appropriate prior distribution is
essential because it can affect the final inference results [42].

The gamma distribution is a flexible continuous probability distribution with many
desirable properties, making it a common choice as the prior distribution for parameters
in Bayesian statistics [43]. The parameters of the gamma distribution can be adjusted to
accommodate different prior beliefs. Additionally, the gamma distribution has conjugacy,
meaning that when used as a prior distribution, its product with the likelihood function
remains a gamma distribution, making posterior distribution calculations simpler [44]. The
pdf of the gamma distribution is ([44]):

π(ω) =
ba

Γ(a)
ωa−1e−bω, ω > 0, a, b > 0.

In this section, we assume that λ and η are random variables and independent of each
other, where λ follows Gamma(c1, d1) and η follows Gamma(c2, d2). That is:

π1(λ) ∝ λd1−1e−c1λ λ > 0, c1 > 0, d1 > 0, (24)

π2(η) ∝ ηd2−1e−c2η η > 0, c2 > 0, d2 > 0. (25)

Thus, the joint prior distribution of λ and η is:

π(λ, η) = π1(λ)× π2(η) ∝ λd1−1ηd2−1e−c1λ−c2η . (26)

With reference to the Bayesian formulation, the posterior distribution of λ and η is

π(λ, η|x̃) ∝ h(λ, η|x̃)× π(λ, η)

∝ λn(d1−1)ηn(d2−1)e−c1nλ−c2nη
n
∏
i=1

∫ +∞
0 si(t)y(t; λ, η)dt . (27)

According to the Equation (9), the posterior expectation of the function g(λ, η) of λ
and η is:

E[g(λ, η)|x̃] =
∫ +∞

0

∫ +∞
0 g(λ, η) π(λ,η|x̃)∫ +∞

0
∫ +∞

0 π(λ,η|x̃)dλdη
dλdη

=
∫ +∞

0

∫ +∞
0

g(λ,η)λn(d1−1)ηn(d2−1)e−c1nλ−c2nη
n
∏

i=1

∫ +∞
0 si(t)y(t;λ,η)dt∫ +∞

0
∫ +∞

0 [λn(d1−1)ηn(d2−1)e−c1nλ−c2nη
n
∏

i=1

∫ +∞
0 si(t)y(t;λ,η)dt]dλdη

dλdη.
(28)

The form of the posterior expectation is complex and not easily solved analytically.
Therefore, the Lindley approximation is used to obtain the BEs.

With reference to the Lindley approximation, the posterior expectation can be writ-
ten as:

E[g(λ, η)|x̃] =
∫

g(λ, η)eH(λ,η|x̃)+G(λ,η)d(λ, η)∫
eH(λ,η|x̃)+G(λ,η)d(λ, η)

, (29)

where G(λ, η) = ln π(λ, η). If the sample is large, Equation (29) can be formulated as:

E[g(λ, η)|x̃] = g(λ̂ML, η̂ML) +
1
2
(A + B + C + D), (30)

A = (ĝλλ + 2ĝλĜλ)φ̂λλ + (ĝηλ + 2ĝηĜλ)φ̂ηλ, (31)

B = (ĝλη + 2ĝλĜη)φ̂λη + (ĝηη + 2ĝηĜη)φ̂ηη , (32)

C = (ĝλφ̂λλ + ĝηφ̂λη)(Ĥλλλφ̂λλ + Ĥηλλφ̂ηλ + Ĥληλφ̂λη + Ĥηηλφ̂ηη), (33)
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D = (ĝλφ̂ηλ + ĝηφ̂ηη)(Ĥλληφ̂λλ + Ĥηληφ̂ηλ + Ĥληηφ̂λη + Ĥηηηφ̂ηη), (34)

where φij(i, j = λ, η) is the element of the inverse matrix of −Hij. The ĝλλ represents taking
the second derivative of g(λ, η) with respect to λ and placing λ̂ML into it. In the same way,
the rest can be shown as:

Hλλλ =
n
∑

i=1
[2h−3(λ, η|x̃i)(

∫ +∞
0 si(t)

∂y(t;λ,η)
∂λ dt)

3 − h−1(λ, η|x̃i)
∫ +∞

0 si(t)
∂3y(t;λ,η)

∂λ3 dt]

− n
∑

i=1
[3h−2(λ, η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂λ dt

∫ +∞
0 si(t)

∂2y(t;λ,η)
∂λ2 dt]

, (35)

Hλλη = Hληλ = Hηλλ

=
n
∑

i=1
[2h−3(λ, η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂η dt(

∫ +∞
0 si(t)

∂y(t;λ,η)
∂λ dt)

2
]

− n
∑

i=1
[2h−2(λ, η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂λ dt

∫ +∞
0 si(t)

∂2y(t;λ,η)
∂λ∂η dt]

− n
∑

i=1
[h−2(λ, η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂η dt

∫ +∞
0 si(t)

∂2y(t;λ,η)
∂λ2 dt]

+
n
∑

i=1
h−1(λ, η|x̃i)

∫ +∞
0 si(t)

∂3y(t;λ,η)
∂λ2∂η

dt

, (36)

Hηηλ = Hηλη = Hληη

=
n
∑

i=1
[2h−3(λ, η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂λ dt(

∫ +∞
0 si(t)

∂y(t;λ,η)
∂η dt)

2
]

− n
∑

i=1
[2h−2(λ, η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂η dt

∫ +∞
0 si(t)

∂2y(t;λ,η)
∂η∂λ dt]

− n
∑

i=1
[h−2(λ, η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂λ dt

∫ +∞
0 si(t)

∂2y(t;λ,η)
∂η2 dt]

+
n
∑

i=1
[h−1(λ, η|x̃i)

∫ +∞
0 si(t)

∂3y(t;λ,η)
∂η2∂λ

dt]

, (37)

Hηηη =
n
∑

i=1
[2h−3(λ, η|x̃i)(

∫ +∞
0 si(t)

∂y(t;λ,η)
∂η dt)

3
+ h−1(λ, η|x̃i)

∫ +∞
0 si(t)

∂3y(t;λ,η)
∂η3 dt]

− n
∑

i=1
[3h−1(λ, η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂η dt

∫ +∞
0 si(t)

∂2y(t;λ,η)
∂η2 dt]

, (38)

Gλ =
d1 − 1

λ
− c1, (39)

Gη =
d2 − 1

η
− c2. (40)

The role of the loss function in the Bayesian statistical inference is crucial as it measures
the discrepancy between model predictions and the true outcomes. In the Bayesian frame-
work, we used the posterior distribution to represent uncertainty and used the loss function
to choose the optimal decision or prediction. Different loss functions lead to different
decisions or predictions; therefore, selecting an appropriate loss function is essential for the
accuracy and reliability of the Bayesian inference.

Then, we studies the Bayesian estimation of the unknown parameters under the SE
and SSE loss functions.

4.1. Bayesian Estimation under the SE Loss Function

The SE loss function is defined in Equation (41) [45]:

L1(θ, θ̂) =
θ̂

θ
+

θ

θ̂
− 2, (41)

where θ̂ is the estimator of unknow parameter θ.
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Lemma 1. Suppose that T = (T1, T2, . . . , Tn) is a continuous random variable. For any prior
distribution π(θ), the BE θ̂SE under SE loss function is:

θ̂SE = [
E(θ|T)

E(θ−1|T) ]
1
2
, (42)

where E(θ|T) and E(θ−1|T) are the posterior expectation.

Proof. The Bayesian risk of θ̂SE under SE loss function is:

R = Eθ [E(L1(θ, θ̂SE)|T)].

Denote r1(θ̂SE) = E(L1(θ, θ̂SE)|T), and

r1(θ̂SE) = θ̂−1
SE E(θ|T) + θ̂SEE(θ−1|T)− 2.

The derivative of r1(θ̂SE) is:

r′1(θ̂SE) = −θ̂−2
SE E(θ|T) + E(θ−1|T).

Therefore, the BE θ̂SE under SE loss function is obtained by solving the equation
r′1(θ̂SE) = 0. �

Referring to Lemma 1, the BEs λ̂SE, η̂SE and R̂SE(t) under SE loss function of IW(λ, η)
based on intuitionistic fuzzy lifetime data are obtained by:

λ̂SE = [
E(λ|T)

E(λ−1|T) ]
1
2
, (43)

η̂SE = [
E(η|T)

E(η−1|T) ]
1
2
, (44)

R̂SE(t) = [
E(R(t)|T)

E(R−1(t)|T) ]
1
2
. (45)

Next, the steps to obtain the Lindley approximation for λ̂SE are presented. The BEs
η̂SE and R̂SE(t) are obtained by replacing g(λ, η) in the following steps.

When g(λ, η) = λ, there are:

gλ = 1, gη = gλλ = gλη = gηλ = gηη = 0. (46)

The posterior expectation E(λ|T) can be written as:

E(λ|T) = λ̂ML + Ĝλφ̂λλ + Ĝηφ̂ηλ + 1
2 [φ̂λλ(Ĥλλλφ̂λλ + Ĥληλφ̂λη + Ĥηλλφ̂ηλ + Ĥηηλφ̂ηη)

+φ̂ηλ(Ĥλληφ̂λλ + Ĥληηφ̂λη + Ĥηληφ̂ηλ + Ĥηηηφ̂ηη)]
. (47)

When g(λ, η) = λ−1, there are:

gλ = − 1
λ2 , gλλ =

2
λ3 , gη = gλη = gηλ = gηη = 0. (48)

The posterior expectation E(λ−1|T) can be written as:

E(λ|T) = − 1
2 λ̂−2

ML[φ̂λλ(Ĥλλλφ̂λλ + Ĥληλφ̂λη + Ĥηλλφ̂ηλ + Ĥηηλφ̂ηη) + φ̂ηλ(Ĥλληφ̂λλ + Ĥληηφ̂λη

+Ĥηληφ̂ηλ + Ĥηηηφ̂ηη)] + λ̂−1
ML + (λ̂−3

ML − λ̂−2
MLĜλ)φ̂λλ − λ̂−2

MLĜηφ̂λη
. (49)

BE λ̂SE is obtained by substituting Equations (47) and (49) into (43).
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4.2. Bayesian Estimation under the SSE Loss Function

The SSE loss function is defined in Equation (50) [46]:

L2(θ, θ̂) =
(θ − θ̂)

2

θd , (50)

where d is a non-negative integer.

Lemma 2. Suppose that T = (T1, T2, . . . , Tn) is a continuous random variable. For any prior
distribution π(θ), the BE θ̂SSE under SSE loss function is:

θ̂SSE =
E(θ1−d|T)
E(θ−d|T) , (51)

where E(θ1−d|T) and E(θ−d|T) are the posterior expectations.

Proof. The Bayesian risk of θ̂SSE under the SSE loss function is:

R = Eθ [E(L2(θ, θ̂SSE)|T)].

Denote r2(θ̂SSE) = E(L2(θ, θ̂SSE)|T), and

r2(θ̂SSE) = E(θ2−d|T)− 2θ̂SSEE(θ1−d|T) + θ̂2
SSEE(θ−d|T).

The derivative of r2(θ̂SSE) is:

r′2(θ̂SSE) = 2θ̂SSEE(θ−d|T)− 2E(θ1−d|T).

Therefore, BE θ̂SSE under the SSE loss function is obtained by solving the equation
r′2(θ̂SSE) = 0. �

According to Lemma 2, the BEs λ̂SSE, η̂SSE and R̂SSE(t) under the SSE loss function
are presented in Equations (52)–(54):

λ̂SSE =
E(λ1−d|T)
E(λ−d|T) , (52)

η̂SSE =
E(η1−d|T)
E(η−d|T) , (53)

R̂SSE(t) =
E(R1−d(t)|T)
E(R−d(t)|T) . (54)

As in Section 4.1, the steps of the Lindley approximation of λ̂SSE are provided.
When g(λ, η) = λ1−d, then:

gλ = (1 − d)λ−d, gλλ = d(d − 1)λ−d−1, gη = gλη = gηλ = gηη = 0. (55)

The posterior expectation E(λ1−d|T) can be written as:

E(λ1−d|T) = λ̂1−d
ML + (1 − d)λ̂−d

MLĜλφ̂λλ + (1 − d)λ̂−d
MLĜηφ̂λη +

1
2 [−d(d − 1)λ̂−d−1

ML φ̂λλ

+(1 − d)λ̂−d
MLφ̂λλ(Ĥλλλφ̂λλ + Ĥληλφ̂λη + Ĥηλλφ̂ηλ + Ĥηηλφ̂ηη)

+(1 − d)λ̂−d
MLφ̂ηλ(Ĥλληφ̂λλ + Ĥληηφ̂λη + Ĥηληφ̂ηλ + Ĥηηηφ̂ηη)]

. (56)

When g(λ, η) = λ−d, then:

gλ = −dλ−d−1, gλλ = d(d + 1)λ−d−2, gη = gλη = gηλ = gηη = 0. (57)
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The posterior expectation E(λ−d|T) can be written as:

E(λ1−d|T) = λ̂−d
ML − dλ̂−d−1

ML Ĝλφ̂λλ − dλ̂−d−1
ML Ĝηφ̂λη +

1
2 [d(d + 1)λ̂−d−1

ML φ̂λλ

−dλ̂−d−1
ML φ̂λλ(Ĥλλλφ̂λλ + Ĥληλφ̂λη + Ĥηλλφ̂ηλ + Ĥηηλφ̂ηη)

−dλ̂−d−1
ML φ̂ηλ(Ĥλληφ̂λλ + Ĥληηφ̂λη + Ĥηληφ̂ηλ + Ĥηηηφ̂ηη)]

. (58)

BE λ̂SSE under the SSE loss function is derived by submitting Equations (56) and (58)
into (52).

5. Monte Carlo Simulation

In this section, the mean square error (MSE) was employed to compare the performance
of these estimators, where m was the number of trials. We took different true values
(λreal , ηreal) and n, and the number of trials was 1000. The hyper-parameters of the prior
distribution were (c1, d1) = (3, 2) and (c2, d2) = (3, 2.5), and the parameter of the SSE loss
function was d = 4. The simulation was conducted by MATLAB on a laptop, and the
simulation results of each group took about 30 min. We used the average of reliability as
the estimates. The MSEs of λ and η are shown in Table 1, and the MSEs and estimates of
R(t) with t = 2 are shown in Table 2.

Table 1. The MSEs of λ and η.

n λreal ηreal
MSE

λ̂ML λ̂SE λ̂SSE η̂ML η̂SE η̂SSE

20
5 1 0.6252 0.5126 0.2208 0.1247 0.0171 0.0056
8 4 0.8302 0.7005 0.4867 0.6479 0.2369 0.1875
2 3 0.8011 0.6801 0.1644 0.8141 0.4975 0.1810

50
5 1 0.4900 0.0584 0.0543 0.0458 0.0009 9.94 × 10−4

8 4 0.6842 0.5550 0.4786 0.3718 0.0762 0.0530
2 3 0.6195 0.0048 0.0053 0.5094 0.1396 0.0638

100
5 1 0.1330 0.0143 0.0165 0.0358 0.0002 0.0003
8 4 0.2717 0.1148 0.1819 0.1138 0.0150 0.0154
2 3 0.3339 0.0003 0.0013 0.1838 0.0218 0.0213

200
5 1 0.0525 0.0034 0.0044 0.0217 4.64 × 10−5 6.51 × 10−5

8 4 0.0914 0.0562 0.0602 0.0454 0.0033 0.0040
2 3 0.1020 0.0001 0.0004 0.0840 0.0039 0.0052

300
5 1 0.0240 0.0016 0.0021 0.0214 2.12 × 10−5 2.96 × 10−5

8 4 0.0840 0.0253 0.0295 0.0096 0.0015 0.0019
2 3 0.0863 5.31 × 10−5 0.0002 0.0472 0.0017 0.0024

400
5 1 0.0093 0.0009 0.0012 0.0184 1.24 × 10−5 1.72 × 10−5

8 4 0.0692 0.0142 0.0174 0.0016 8.25 × 10−4 0.0011
2 3 0.0691 2.21 × 10−5 9.63 × 10−5 0.0112 9.55 × 10−4 0.0014

500
5 1 0.0087 0.0006 0.0008 0.0168 7.89 × 10−6 1.11 × 10−5

8 4 0.0590 0.0092 0.0115 0.0008 5.50 × 10−4 7.24 × 10−4

2 3 0.0489 1.27 × 10−5 5.98 × 10−5 0.0093 6.39 × 10−4 9.28 × 10−4

MSE of a parameter θ is defined as follows ([47]):

MSE(θ) =
1
m

m

∑
i=1

(θ̂i − θreal)
2
. (59)

In order to perform simulations based on intuition fuzzy observations, we needed
to transform the generated precise data into intuitive fuzzy data. According to the fuzzy
representation proposed in the work of González et al. [48], each precise data xi can be

238



Axioms 2023, 12, 838

transformed into 0.6252 intuitive fuzzy data x̃i, and its membership and non-membership
functions are shown below:

μx̃i
(t) =

⎧⎪⎪⎨⎪⎪⎩
αi(

t−ai
xi−ai

)
hL(xi) t ∈ [ai, xi]

αi(
bi−t
bi−xi

)
hR(xi) t ∈ [xi, bi]

0 else

, (60)

νx̃i
(t) =

⎧⎪⎪⎨⎪⎪⎩
( xi−t

xi−ai
)

hL(xi) + βi(
t−ai
xi−ai

)
hL(xi) t ∈ [ai, xi]

( t−xi
bi−xi

)
hR(xi) + βi(

bi−t
bi−xi

)
hR(xi) t ∈ [xi, bi]

1 else

. (61)

such that:

(C1) x1, x2, . . . , xn are random samples of observations that are exact and independently
and identically distributed and obey IW(λ, η).
(C2) For any i = 1, 2, . . . , n, ai and bi are chosen randomly with satisfying ai ≤ xi ≤ bi
(C3) For any i = 1, 2, . . . , n, the αi and βi are chosen randomly with satisfying αi ∈ [0, 1],
βi ∈ [0, 1], and 0 ≤ αi + βi ≤ 1.
(C4) hL(·) : R → [0, 1] , hR(·) : R → [0, 1] .

Table 2. MSEs and estimates of R(t).

n λreal ηreal R(t)
Estimates MSE

R̂ML(t) R̂SE(t) R̂SSE(t) R̂ML(t) R̂SE(t) R̂SSE(t)

20
5 1 0.9179 0.9500 0.8984 0.9286 0.0024 8.98 × 10−4 3.21 × 10−3

8 4 0.3935 0.4089 0.3973 0.3465 0.0185 8.60 × 10−3 2.80 × 10−3

2 3 0.2212 0.2826 0.3003 0.2798 0.0083 8.23 × 10−3 1.82 × 10−2

50
5 1 0.9179 0.9483 0.9122 0.9621 0.0011 6.48 × 10−5 8.72 × 10−5

8 4 0.3935 0.3872 0.4086 0.3825 0.0048 8.11 × 10−4 5.79 × 10−4

2 3 0.2212 0.1744 0.2604 0.2373 0.0044 5.80 × 10−3 7.91 × 10−2

100
5 1 0.9179 0.9262 0.9146 0.9143 0.0006 1.32 × 10−5 2.04 × 10−5

8 4 0.3935 0.3891 0.4035 0.3885 0.0029 5.51 × 10−5 2.55 × 10−5

2 3 0.2212 0.2819 0.2455 0.2312 0.0020 4.32 × 10−4 3.43 × 10−4

200
5 1 0.9179 0.9213 0.9164 0.9163 0.0002 2.69 × 10−6 4.52 × 10−6

8 4 0.3935 0.3351 0.3933 0.3878 0.0012 8.66 × 10−6 5.45 × 10−6

2 3 0.2212 0.1783 0.2331 0.2251 0.0013 5.95 × 10−5 8.19 × 10−6

300
5 1 0.9179 0.9399 0.9169 0.9168 0.0002 1.46 × 10−6 2.23 × 10−6

8 4 0.3935 0.4096 0.3931 0.3901 0.0008 3.82 × 10−6 2.18 × 10−6

2 3 0.2212 0.2580 0.2260 0.2235 0.0009 2.54 × 10−5 3.78 × 10−6

400
5 1 0.9179 0.9230 0.9172 0.9171 0.0001 1.25 × 10−6 1.63 × 10−6

8 4 0.3935 0.3826 0. 3945 0.3917 0.0008 2.05 × 10−6 1.05 × 10−6

2 3 0.2212 0.1664 0.2252 0.2228 0.0007 1.38 × 10−5 1.95 × 10−6

500
5 1 0.9179 0.9393 0.9172 0.9171 0.0001 5.02 × 10−7 7.84 × 10−7

8 4 0.3935 0.3737 0.3947 0.3921 0.0006 1.40 × 10−6 6.87 × 10−7

2 3 0.2212 0.2048 0.2236 0.2217 0.0007 9.22 × 10−6 1.38 × 10−6

The simulation steps are shown below:

(i) Generate a set of data x1, x2, . . . , xn from IW(λreal , ηreal) with λreal = (2, 3, 1.5, 5) and
ηreal = (5, 4, 2, 1). Calculate the real reliability Rreal(t) with t = 2.

(ii) For convenience, let hL(·) = hR(·) = 1. The data x1, x2, . . . , xn are transformed into
TraIFNs according to Equations (60) and (61).

(iii) Calculate the MLEs by the EM algorithm and calculate the BEs by the Lindley approx-
imation.

(iv) Repeat steps (i) to (iii) 1000 times and obtain 1000 estimates, respectively, and the MSE
is calculated according to Equation (59).
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From Tables 1 and 2, the following conclusions can be drawn.
(1) Whether parameters or reliability, the MSEs of MLEs and BEs decrease when the

sample size increases. Thus, enlarging the sample size can appropriately enhance the
accuracy of the estimation.

(2) In terms of the MSE, the performance of BEs under the SE and SSE loss functions is
better than MLE. As for the reliability, the MSEs of BEs are much smaller than the MSEs of
MLEs.

(3) From the simulation results of the different real values, the BEs of the parameters
and corresponding reliability values both under the SE and SSE loss functions have different
effects.

6. Real Dataset Analysis

In this section, we considered a real dataset proposed by Efron [49], as shown in
Table 3. The dataset presents the survival times of 103 head and neck cancer patients
treated with radiotherapy.

Table 3. Real dataset.

6.53 7 10.42 12.2 14.48 16.1 22.7 23.56 23.74 25.87
31.98 34 37 41.35 41.55 42 43 45.28 47.38 49.4
53.62 55.46 58.36 63 63.47 64 68.46 74.47 78.26 81

83 84 84 91 92 94 108 110 112 112
119 127 129 130 133 133 133 139 140 140
140 146 146 146 149 149 154 154 155 157
157 159 160 160 160 160 165 165 173 173
176 179 194 195 209 218 225 241 248 249
273 277 281 297 319 339 405 417 420 432
440 469 519 523 583 594 633 725 817 1101
1146 1417 1776

According to the simulation results presented in Section 5, we took the Bayesian
estimates of the parameters and reliability under the SE loss function to draw the cumulative
distribution function plot. It can be seen in Figure 3 that the cdf of the IWD has a high
degree of overlap with the empirical cdf. We can conclude that the IWD has a good fitting
effect on this real dataset.

Figure 3. Empirical and IWD cdf values.
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The real dataset was transformed into intuitional fuzzy data by Equations (60) and
(61). All the estimates were calculated by MATLAB and are tabulated in Table 4.

Table 4. Real dataset estimates with t = 49.4.

λ̂ η̂ R̂(t)

MLE SE SSE MLE SE SSE MLE SE SSE

64.6171 67.7140 67.7630 0.8000 1.0886 1.0885 0.9423 0.6205 0.6170

7. Conclusions, Limitations, and Future Research

In a real-life scenario, the observed data may be less accurate due to uncontrollable
factors, necessitating the use of fuzzy lifetime data for the reliability estimation of the IWD.
While fuzzy sets are commonly used for this purpose, they only have one membership
degree parameter, resulting in a less precise description of the objective world. In contrast,
intuitionistic fuzzy sets can more accurately express uncertainty and fuzziness when
dealing with fuzzy information, thereby improving the accuracy and efficiency of fuzzy
reasoning. Therefore, this paper extended the probability to intuitionistic fuzzy sets and
considered the parameters and reliability estimations for IWD based on intuitionistic fuzzy
lifetime data. First, the MLEs were obtained through the EM algorithm. Then, BEs were
obtained under the SE and SSE loss functions using the Lindley approximation. Finally,
multiple sets of parameters were selected for the Monte Carlo simulation. Based on the
simulation results, it was observed that by altering the true values of multiple sets of
parameters, the mean square error under the Bayesian estimation was significantly smaller
than that under the maximum likelihood estimation. This finding leads to the conclusion
that the Bayesian estimation is a more effective approach for estimating parameters and
reliability in an intuitionistic fuzzy environment.

Limited by the performance of the computer, we could not compare the performances
of more methods during a limited time frame. In addition, there were many types of
intuitionistic fuzzy numbers in addition to TraIFNs. We hope to discuss the statistical
inference of lifetime distribution based on other types of intuitionistic fuzzy numbers in
the future.
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Abstract: We obtain an analytical solution for the time-optimal control problem in the induction
phase of anesthesia. Our solution is shown to align numerically with the results obtained from
the conventional shooting method. The induction phase of anesthesia relies on a pharmacoki-
netic/pharmacodynamic (PK/PD) model proposed by Bailey and Haddad in 2005 to regulate the
infusion of propofol. In order to evaluate our approach and compare it with existing results in the
literature, we examine a minimum-time problem for anesthetizing a patient. By applying the Pontrya-
gin minimum principle, we introduce the shooting method as a means to solve the problem at hand.
Additionally, we conducted numerical simulations using the MATLAB computing environment. We
solve the time-optimal control problem using our newly proposed analytical method and discover
that the optimal continuous infusion rate of the anesthetic and the minimum required time for
transition from the awake state to an anesthetized state exhibit similarity between the two methods.
However, the advantage of our new analytic method lies in its independence from unknown initial
conditions for the adjoint variables.

Keywords: pharmacokinetic/pharmacodynamic model; optimal control theory; time-optimal control
of the induction phase of anesthesia; shooting method; analytical method; numerical simulations

MSC: 49M05; 49N90; 92C45

1. Introduction

Based on Guedel’s classification, the first stage of anesthesia is the induction phase, which
begins with the initial administration of anesthesia and ends with loss of consciousness [1].
Millions of people safely receive several types of anesthesia while undergoing medical
procedures: local anesthesia, regional anesthesia, general anesthesia, and sedation [2].
However, there may be some potential complications of anesthesia including anesthetic
awareness, collapsed lung, malignant hyperthermia, nerve damage, and postoperative
delirium. Certain factors make it riskier to receive anesthesia, including advanced age,
diabetes, kidney disease, heart disease, high blood pressure, and smoking [3]. To avoid
the risk, administering anesthesia should be carried out on a scientific basis, based on
modern pharmacotherapy, which relies on both pharmacokinetic (PK) and pharmaco-
dynamic (PD) information [4]. Pharmacokinetics is used to describe the absorption and
distribution of anesthesia in body fluids, resulting from the administration of a certain
anesthesia dose. Pharmacodynamics is the study of the effect resulting from anesthesia [5].
Multiple mathematical models were already presented to predict the dynamics of the
pharmacokinetics/pharmacodynamics (PK/PD) models [6–9]. Some of these models were
implemented following different methods [2,10,11].
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The parameters of PK/PD models were fitted by Schnider et al. in [12]. In [6], the authors
study pharmacokinetic models for propofol, comparing Schnider et al. and Marsh et al.
models [13]. The authors of [6] conclude that Schnider’s model should always be used in
effect-site targeting mode, in which larger initial doses are administered but smaller than those
obtained from Marsh’s model. However, users of the Schnider model should be aware that
in the morbidly obese, the lean body mass (LBM) equation can generate paradoxical values,
resulting in excessive increases in maintenance infusion rates [12]. In [14], a new strategy is
presented to develop a robust control of anesthesia for the maintenance phase, taking into
account the saturation of the actuator. The authors of [15] address the problem of optimal
control of the induction phase. For other related works, see [8,16] and references therein.

Here, we consider the problem proposed in [15], to transfer a patient from a state
consciousness to unconsciousness. We apply the shooting method [17] using the Pontryagin
minimum principle [18], correcting some inconsistencies found in [15] related with the stop
criteria of the algorithm and the numerical computation of the equilibrium point. Secondly,
we provide a new different analytical method to the time-optimal control problem for the
induction phase of anesthesia. While the shooting method, popularized by Zabi et al. [15], is
widely employed for solving such control problems and determining the minimum time, its
reliance on Newton’s method makes it sensitive to initial conditions. The shooting method’s
convergence is heavily dependent on the careful selection of initial values, particularly for
the adjoint vectors. To overcome this limitation, we propose an alternative approach, which
eliminates the need for initial value selection and convergence analysis. Our method offers
a solution to the time-optimal control problem for the induction phase of anesthesia, free
from the drawbacks associated with the shooting method. Furthermore, we propose that
our method can be extended to other PK/PD models to determine optimal timings for drug
administration. To compare the methods, we perform numerical simulations to compute
the minimum time to anesthetize a man of 53 years, 77 kg, and 177 cm, as considered in [15].
We find the optimal continuous infusion rate of the anesthetic and the minimum time that
needs to be chosen for treatment, showing that both the shooting method of [15] and the
one proposed here coincide.

This paper is organized as follows. In Section 2, we recall the pharmacokinetic and
pharmacodynamic model of Bailey and Haddad [19], the Schnider model [12], the bispectral
index (BIS), and the equilibrium point [14]. Then, in Section 3, a time-optimal control
problem for the induction phase of anesthesia is posed and solved both by the shooting and
analytical methods. Finally, in Section 4, we compute the parameters of the model using
the Schnider model [12], and we illustrate the results of the time-optimal control problem
through numerical simulations. We conclude that the optimal continuous infusion rate for
anesthesia and the minimum time that should be chosen for this treatment can be found by
both shooting and analytical methods. The advantage of the new method proposed here
is that it does not depend on the concrete initial conditions, while the shooting method is
very sensitive to the choice of the initial conditions of the state and adjoint variables. We
end with Section 5 of conclusions, pointing also some directions for future research.

2. The PK/PD Model

The pharmacokinetic/pharmacodynamic (PK/PD) model consists of four compart-
ments: intravascular blood (x1(t)), muscle (x2(t)), fat (x3(t)), and effect site (x4(t)). The
effect site compartment (brain) is introduced to account for the finite equilibration time
between central compartment and central nervous system concentrations [19]. This model
is used to describe the circulation of drugs in a patient’s body, being expressed by a
four-dimensional dynamical system as follows:⎧⎪⎪⎨⎪⎪⎩

ẋ1(t) = −(a1 0 + a1 2 + a1 3) x1(t) + a2 1 x2(t) + a3 1 x3(t) + u(t),
ẋ2(t) = a1 2 x1(t)− a2 1 x2(t),
ẋ3(t) = a1 3 x1(t)− a3 1 x3(t),
ẋ4(t) =

ae 0
v1

x1(t)− ae 0 x4(t).

(1)
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The state variables for system (1) are subject to the following initial conditions:

x(0) = (x1(0), x2(0), x3(0), x4(0)) = (0, 0, 0, 0), (2)

where x1(t), x2(t), x3(t), and x4(t) represent, respectively, the masses of the propofol in the
compartments of blood, muscle, fat, and effect site at time t. The control u(t) is the continu-
ous infusion rate of the anesthetic. The parameters a1 0 and ae 0 represent, respectively, the
rate of clearance from the central compartment and the effect site. The parameters a1 2, a1 3,
a2 1, a3 1, and ae 0/v1 are the transfer rates of the drug between compartments. A schematic
diagram of the dynamical control system (1) is given in Figure 1.

Effect site

Central compartment
Intravascular blood

FatMuscle

Elimination (Liver, Kidney)

Elimination

Continuous infusion

u(t)u(t)

a12

a31a21

a13

ae0/v1

ae0

a10

Pharmacokinetic Model (PK)

Pharmacodynamic Model (PD)

Figure 1. Schematic diagram of the PK/PD model with the effect site compartment of Bailey and
Haddad [19].

2.1. Schnider’s Model

Following Schnider et al. [12], the lean body mass (LBM) is calculated using the James
formula, which performs satisfactorily in normal and moderately obese patients, but not so
well for severely obese cases [20]. The James formula calculates LBM as follows:

for Male, LBM = 1.1 × weight − 128 ×
(

weight
height

)2
, (3)

for Female, LBM = 1.07 × weight − 148 ×
(

weight
height

)2
. (4)

The parameters of the PK/PD model (1) are then estimated according to Table 1.

Table 1. Parameter values for model (1) according to Schnider’s model [12].

Parameter Estimation

a10 (min−1) 0.443 + 0.0107 (weight − 77)− 0.0159 (LBM − 59) + 0.0062 (height − 177)

a12 (min−1) 0.302 − 0.0056 (age − 53)

a13 (min−1) 0.196

a21 (min−1) (1.29 − 0.024 (age − 53))/(18.9 − 0.391 (age − 53))

a31 (min−1) 0.0035

ae0 (min−1) 0.456

v1 (L) 4.27
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2.2. The Bispectral Index (BIS)

The BIS is the depth of anesthesia indicator, which is a signal derived from the EEG
analysis and directly related to the effect site concentration of x4(t). It quantifies the level
of consciousness of a patient from 0 (no cerebral activity) to 100 (fully awake patient), and
can be described empirically by a decreasing sigmoid function [19]:

BIS(x4(t)) = BIS0

(
1 − x4(t)γ

x4(t)γ + ECγ
50

)
, (5)

where BIS0 is the BIS value of an awake patient typically set to 100, EC50 corresponds to
the drug concentration associated with 50% of the maximum effect, and γ is a parameter
modeling the degree of nonlinearity. According to [21], typical values for these parameters
are EC50 = 3.4 mg/L and γ = 3.

2.3. The Equilibrium Point

Following [14], the equilibrium point is obtained by equating the right-hand side of (1)
to zero, ⎧⎪⎪⎨⎪⎪⎩

0 = −(a1 0 + a1 2 + a1 3) x1 + a2 1 x2 + a3 1 x3 + u,
0 = a1 2 x1 − a2 1 x2,
0 = a1 3 x1 − a3 1 x3,
0 = ae 0

v1
x1 − ae 0 x4,

(6)

with the condition
x4 = EC50. (7)

It results that the equilibrium point xe = (xe 1, xe 2, xe 3, xe 4) is given by

xe 1 = v1 EC50, xe 2 =
a1 2 v1 EC50

a2 1
, xe 3 =

a1 3 v1 EC50

a3 1
, xe 4 = EC50, (8)

and the value of the continuous infusion rate for this equilibrium is

ue = a1 0 v1 EC50. (9)

The fast state is defined by

xeF(t) = (x1(t), x4(t)). (10)

The control of the fast dynamics is crucial because the BIS is a direct function of the
concentration at the effect site.

3. Time-Optimal Control Problem

Let x(t) = (x1(t), x2(t), x3(t), x4(t)) ∈ R4. We can write the dynamical system (1) in a
matrix form as follows:

ẋ(t) = A x(t) + B u(t), (11)

where

A =

⎛⎜⎜⎝
−(a1 0 + a1 2 + a1 3) a2 1 a3 1 0

a1 2 −a2 1 0 0
a1 3 0 −a3 1 0
ae 0
v1

0 0 −ae 0

⎞⎟⎟⎠ and B =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠. (12)
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Here, the continuous infusion rate u(t) is to be chosen so as to transfer the system (1) from
the initial state (wake state) to the fast final state (anesthetized state) in the shortest possible
time. Mathematically, we have the following time-optimal control problem [15]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
t f

J =
t f∫
0

dt,

ẋ(t) = A x(t) + B u(t), x(0) = (0, 0, 0, 0),
C xeF(t f ) = xeF,
0 ≤ u(t) ≤ Umax, t ∈ [0, t f ], t f is free,

(13)

where t f is the first instant of time that the desired state is reached, and C and xeF are
given by

C =

(
1 0
0 1

)
, xeF = (xe1, xe4), (14)

with
xeF(t f ) = (x1(t f ), x2(t f )). (15)

3.1. Pontryagin Minimum Principle

According to the Pontryagin minimum principle (PMP) [18], if ũ ∈ L1 is optimal
for Problem (13) and the final time t f is free, then there exists ψ(t) = (ψ1(t), . . . , ψ4(t)),
t ∈ [0, t f ], ψ ∈ AC([0, t f ];R4), called the adjoint vector, such that⎧⎪⎪⎨⎪⎪⎩

ẋ =
∂H
∂ψ

,

ψ̇ = −∂H
∂x

,
(16)

where the Hamiltonian H is defined by

H(t, x, u, ψ) = 1 + ψT (A x + B u). (17)

Moreover, the minimality condition

H(t, x̃(t), ũ(t), ψ̃(t)) = min
0≤u≤Umax

H(t, x̃(t), u, ψ̃(t)) (18)

holds almost everywhere on t ∈ [0, t f ].
Since the final time t f is free, according to the transversality condition of PMP,

we obtain:
H(t f , x(t f ), u(t f ), ψ(t f )) = 0. (19)

Solving the minimality condition (18) on the interior of the set of admissible controls
gives the necessary condition

ũ(t) =

{
0 if ψ̃1(t) > 0,
Umax if ψ̃1(t) < 0,

(20)

where ψ̃1(t) is obtained from the adjoint system (16), that is, ψ̃′(t) = −ATψ̃(t), and the
transversality condition (19). This is discussed in Sections 3.2 and 3.3.

3.2. Shooting Method

The shooting method is a numerical technique used to solve boundary value problems,
specifically in the realm of differential equations and optimal control. It transforms the
problem into an initial value problem by estimating the unknown boundary conditions.
Through iterative adjustments to these estimates, the boundary conditions are gradually

248



Axioms 2023, 12, 867

satisfied. In [17], the authors propose an algorithm that addresses numerical solutions for
parameterized optimal control problems. This algorithm incorporates multiple shooting
and recursive quadratic programming, introducing a condensing algorithm for linearly
constrained quadratic subproblems and high-rank update procedures. The algorithm’s
implementation leads to significant improvements in convergence behavior, computing
time, and storage requirements. For more on numerical approaches to solve optimal control
problems, we refer the reader to [22] and references therein.

Using (16), (17), (19), and (20), we consider the following problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ(t) = A x(t) + B × max (0,−Umax sign(ψ1(t))),
ψ̇(t) = −AT ψ(t),
x(0) = (0, 0, 0, 0), x1(t f ) = xe1, x4(t f ) = xe4,
ψ(0) is free, H(t f , x(t f ), max (0,−Umax sign(ψ1(t f ))), ψ(t f )) = 0.

(21)

Let z(t) = (x(t), ψ(t)). Then, we obtain the following two points’ boundary value
problem: {

ż(t) = A∗z(t) + B∗,
R(z(0), z(t f )) = 0,

(22)

where A∗ ∈ M8×8(R) is the matrix given by

A∗ =
(

A 04×4
04×4 −AT

)
, (23)

B∗ ∈ R8 is the vector given by

B∗ =
{
(0, 0, 0, 0, 0, 0, 0, 0) if ψ1(t) > 0,
(Umax, 0, 0, 0, 0, 0, 0, 0) if ψ1(t) < 0,

(24)

and R(z(0), z(t f )) is given by (2), (15), and (19). We consider the following Cauchy problem:{
ż(t) = A∗z(t) + B∗,
z(0) = z0.

(25)

If we define the shooting function S : R4 −→ R3 by

S(z0) = R(t f , z(t f , z0)), (26)

where z(t, z0) is the solution of the Cauchy problem (25), then the two points’ boundary
value problem (21) is equivalent to

S(z0) = 0. (27)

To solve (27), we use Newton’s method [23].

3.3. Analytical Method

We now propose a different method to choose the optimal control. If the pair (A, B)
satisfies the Kalman condition and all eigenvalues of matrix A ∈ n × n are real, then any
extremal control has at most n − 1 commutations on R+ (at most n − 1 switching times).
We consider the following eight possible strategies:

Strategy 1 (zero switching times):

u(t) = Umax, ∀t ∈ [0, t f ]. (28)

249



Axioms 2023, 12, 867

Strategy 2 (zero switching times):

u(t) = 0, ∀t ∈ [0, t f ]. (29)

Strategy 3 (one switching time):

u(t) =

{
Umax if 0 ≤ t < tc,
0 if tc < t ≤ t f ,

(30)

where tc is a switching time.

Strategy 4 (one switching time):

u(t) =

{
0 if 0 ≤ t < tc,
Umax if tc < t ≤ t f .

(31)

Strategy 5 (two switching times):

u(t) =

⎧⎪⎨⎪⎩
Umax if 0 < t < tc1,
0 if tc1 < t < tc2.
Umax if tc2 < t ≤ t f ,

(32)

where tc1 and tc2 represent two switching times.

Strategy 6 (two switching times):

u(t) =

⎧⎪⎨⎪⎩
0 if 0 < t < tc1,
Umax if tc1 < t < tc2.
0 if tc2 < t ≤ t f .

(33)

Strategy 7 (three switching times):

u(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Umax if 0 < t < tc1,
0 if tc1 < t < tc2.
Umax if tc2 < t ≤ tc3.
0 if tc3 < t < t f ,

(34)

where tc1, tc2, and tc3 represent three switching times.

Strategy 8 (three switching times):

u(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if 0 < t < tc1,
Umax if tc1 < t < tc2.
0 if tc2 < t ≤ tc3.
Umax if tc3 < t < t f .

(35)

Let x(t) be the trajectory associated with the control u(t), given by the relation

x(t) = exp(A t) x(0) +
t∫

0

exp(A(t − s))Bu(t)ds, (36)

where exp(A) is the exponential matrix of A.
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To calculate the switching times tc, tc1, tc2 and the final time t f , we have to solve the
following nonlinear equation:

x̃eF(t f ) = (xe1, xe4). (37)

We also solve (37) using the Newton method [23].

4. Numerical Example

In this section, we use the shooting and analytical methods to calculate the minimum
time t f to anesthetize a man of 53 years, 77 kg, and 177 cm.

The equilibrium point and the flow rate corresponding to a BIS of 50 are:

xe = (14.518 mg, 64.2371 mg, 813.008 mg, 3.4 mg), ue = 6.0907 mg/min. (38)

Following the Schnider model, the matrix A of the dynamic system (11) is given by:

A =

⎛⎜⎜⎝
−0.9175 0.0683 0.0035 0
0.3020 −0.0683 0 0
0.1960 0 −0.0035 0
0.1068 0 0 −0.4560

⎞⎟⎟⎠ and B =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠. (39)

We are interested to solve the following minimum-time control problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
min

t f
J =

t f∫
0

dt,

ẋ(t) = A x(t) + B u(t), x(0) = (0, 0, 0, 0),
xe1(t f ) = 14.518 mg, xe4(t f ) = 3.4 mg,
0 ≤ u(t) ≤ 106.0907, t ∈ [0, t f ], t f is free.

(40)

4.1. Numerical Resolution by the Shooting Method

Let z(t) = (x(t), ψ(t)). We consider the following Cauchy problem:{
ż(t) = A∗z(t) + B∗,
z(0) = z0 = (0, 0, 0, 0, ψ01, ψ02, ψ03, ψ04),

(41)

where

A∗ = 10−4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−9175 683 35 0 0 0 0 0
3020 −683 0 0 0 0 0 0
196 0 −35 0 0 0 0 0
1068 0 0 −456 0 0 0 0

0 0 0 0 9175 −3020 −196 −1068
0 0 0 0 −683 683 0 0
0 0 0 0 −35 0 35 0
0 0 0 0 0 0 0 456

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (42)

B∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

max (0,−106.0907 sign(ψ1(t)))
0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (43)
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The shooting function S is given by

S(z0) = (S1(z0), S2(z0), S3(z0)), (44)

where

S1(z0) = xe1(t f )− 14.518,

S2(z0) = xe4(t f )− 3.4,

S3(z0) = 1 + ψT(t f )
(

Ax(t f ) + B max (0,−106.0907 sing ψ1(t f ))
)

.

All computations were performed with the MATLAB numeric computing environ-
ment, version R2020b, using the medium-order method and the function ode45 (Runge–
Kutta method) in order to solve the nonstiff differential system (22). We have used the
variable order method and the function ode113 (Adams–Bashforth–Moulton method) in
order to solve the nonstiff differential system (25), and the function fsolve in order to solve
equation S(z0) = 0. Thus, we obtain that the minimum time is equal to

t f = 1.8397 min, (45)

with
ψT(0) = (−0.0076, 0.0031, −0.0393, −0.0374). (46)

4.2. Numerical Resolution by the Analytical Method

The pair (A, B) satisfies the Kalman condition, and the matrix A has four real eigen-
values. Then, the extremal control u(t) has at most three commutations on R+. Therefore,
let us test the eight strategies provided in Section 3.3.

Note that the anesthesiologist begins with a bolus injection to transfer the patient state
from the consciousness state x(0) to the unconsciousness state

xeF = (14.518, 3.4),

that is,
u(0) = Umax = 106.0907 mg/min. (47)

Thus, Strategies 2, 4, 6, and 8 are not feasible here. Therefore, in the sequel, we investigate
Strategies 1, 3, 5, and 7 only.

Strategy 1: Let u(t) = 106.0907 mg/min for all t ∈ [0, t f ]. The trajectory x(t), associated
with this control u(t), is given by the following relation:

x(t) =
t∫

0

exp(A(t − s))BUmaxds, ∀t ∈ [0, t f ], (48)

where

exp(A (t − s)) = V D(t − s)V−1 (49)

with

V =

⎛⎜⎜⎝
0 0.9085 0.0720 −0.0058
0 −0.3141 0.9377 −0.0266
0 −0.1898 −0.3395 −0.9996
1 −0.1997 0.0187 −0.0014

⎞⎟⎟⎠ (50)
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and

D(τ) =

⎛⎜⎜⎝
exp−0.4560 τ 0 0 0

0 exp−0.9419 τ 0 0
0 0 exp−0.0451 τ 0
0 0 0 exp−0.0024 τ

⎞⎟⎟⎠. (51)

System (37) takes the form {
x1(t f ) = 14.518,
x4(t f ) = 3.4,

(52)

and has no solutions. Thus, Strategy 1 is not feasible.

Strategy 3: Let u(t), t ∈ [0, t f ], be the control defined by

u(t) =

{
106.0907 mg/min if 0 ≤ t < tc,
0 if tc < t ≤ t f .

(53)

The trajectory x(t) associated with this control u(t) is given by

x(t) =

⎧⎪⎨⎪⎩
t∫

0
exp(A(t − s))BUmaxds if 0 ≤ t ≤ tc,

exp(A (t − tc)) x(tc) if tc < t ≤ t f ,
(54)

where

exp(A (t − tc)) = V D(t − tc)V−1. (55)

To calculate the switching time tc and the final time t f , we have to solve the nonlinear
system (52) with the new condition

tc < t f . (56)

Similarly to Section 4.1, all numerical computations were performed with MATLAB R2020b
using the command solve to solve Equation (52). The obtained minimum time is equal to

t f = 1.8397 min, (57)

with the switching time
tc = 0.5467 min. (58)

Strategy 5: Let u(t), t ∈ [0, t f ], be the control defined by the relation

u(t) =

⎧⎪⎨⎪⎩
106.0907 mg/min if 0 ≤ t < tc1,
0 if tc1 < t < tc2.
106.0907 mg/min if tc2 < t ≤ t f ,

(59)

where tc1 and tc2 are the two switching times. The trajectory x(t) associated with control (59)
is given by

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t∫
0

exp(A(t − s))BUmaxds if 0 ≤ t ≤ tc1,

exp(A (t − tc1)) x(tc1) if tc1 < t ≤ tc2,

exp(A (t − tc2)) x(tc2) +
t∫

tc2

exp(A(t − s))BUmaxds if tc2 < t ≤ t f .

(60)
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To compute the two switching times tc1 and tc2 and the final time t f , we have to solve the
nonlinear system (52) with

0 ≤ tc1 ≤ tc2 ≤ t f . (61)

It turns out that System (52) subject to Condition (61) has no solution. Thus, Strategy 5 is
also not feasible.

Strategy 7: Let u(t), t ∈ [0, t f ], be the control defined by the relation

u(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
106.0907 mg/min if 0 ≤ t < tc1,
0 if tc1 < t < tc2.
106.0907 mg/min if tc2 < t ≤ tc3,
0 mg/min if tc3 < t ≤ t f ,

(62)

where tc1, tc2, and tc3 are the three switching times. The trajectory x(t) associated with
Control (62) is given by

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

t∫
0

exp(A(t − s))BUmaxds if 0 ≤ t ≤ tc1,

exp(A (t − tc1)) x(tc1) if tc1 < t ≤ tc2,

exp(A (t − tc2)) x(tc2) +
t∫

tc2

exp(A(t − s))BUmaxds if tc2 < t ≤ tc3,

exp(A (t − tc3)) x(tc3) if tc3 < t ≤ t f .

(63)

To compute the three switching times tc1, tc2, and tc3 and the final time t f , we have to solve
the nonlinear system (52) with

0 ≤ tc1 ≤ tc2 ≤ tc3 ≤ t f . (64)

It turns out that System (52) subject to Condition (64) has no solution. Thus, Strategy 7 is
also not feasible.

In Figures 2 and 3, we present the solutions of the linear system of differential
Equation (40) under the optimal control u(t) illustrated in Figure 4, where the black curve
corresponds to the one obtained by the shooting method, as explained in Section 3.2, while
the blue curve corresponds to our analytical method, in the sense of Section 3.3. In addition,
for both figures, we show the controlled BIS Index, the trajectory of fast states correspond-
ing to the optimal continuous infusion rate of the anesthetic u(t), and the minimum time t f
required to transition System (40) from the initial (wake) state

x0 = (0, 0, 0, 0)

to the fast final (anesthetized) state

xeF = (14.518, 3.4)

in the shortest possible time. The minimum time t f is equal to t f = 1.8397 min by the
shooting method (black curve in Figure 2), and it is equal to t f = 1.8397 min by the
analytical method (blue curve in Figure 3).

By using the shooting method, the black curve in Figure 4 shows that the optimal con-
tinuous infusion rate of the induction phase of anesthesia u(t) is equal to 106.0907 mg/min
until the switching time

tc = 0.5467 min.

Then, it is equal to 0 mg/min (stop-infusion) until the final time

t f = 1.8397 min,
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Figure 2. The state trajectory, controlled BIS index, and trajectory of the fast states corresponding to
the optimal control u(t) of Figure 4, using the shooting method.

Figure 3. The state trajectory, controlled BIS index, and trajectory of the fast states corresponding to
the optimal control u(t) of Figure 4, using the analytical method.
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Figure 4. The optimal continuous infusion rate u(t) of the induction phase of anesthesia, as obtained
by the shooting and analytical methods.
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By using the analytical method, the blue curve in Figure 4 shows that the optimal con-
tinuous infusion rate of the induction phase of anesthesia u(t) is equal to 106.0907 mg/min
until the switching time

tc = 0.5467 min.

Then, it is equal to 0 mg/min (stop-infusion) until the final time

t f = 1.8397 min.

We conclude that both methods work well and give similar results. However, in general,
the shooting method does not always converge, depending on the initial conditions (46).
To obtain such initial values is not an easy task since no theory is available to find them.
For this reason, the proposed analytical method is logical, practical, and more suitable for
real applications.

5. Conclusions

The approach proposed by the theory of optimal control is very effective. The shooting
method was proposed by Zabi et al. [15], which is used to solve the time-optimal control
problem and calculate the minimum time. However, this approach is based on Newton’s
method. The convergence of Newton’s method depends on the initial conditions, being
necessary to select an appropriate initial value so that the function is differentiable and the
derivative does not vanish. This implies that the convergence of the shooting method is
attached to the choice of the initial values. Therefore, the difficulty of the shooting method
is to find the initial conditions of the adjoint vectors. Here, the aim was to propose a
different approach, which we call “the analytical method”, that allows to solve the time-
optimal control problem for the induction phase of anesthesia without such drawbacks.
Our method is guided by the selection of the optimal strategy, without the need to choose
initial values and study the convergence. We claim that our method can also be applied to
other PK/PD models, in order to find the optimal time for the drug administration.

In the context of PK/PD modeling, the challenges associated with uncertainties in
plant model parameters and controller gains for achieving robust stability and controller
non-fragility are significant [24]. These challenges arise from factors like inter-individual
variability, measurement errors, and the dynamic nature of patient characteristics and drug
response. Further investigation is needed to understand and develop effective strategies
to mitigate the impact of these uncertainties in anesthesia-related PK/PD models. This
research can lead to the development of robust and non-fragile control techniques that
enhance the stability and performance of anesthesia delivery systems. By addressing
these challenges, we can improve the precision and safety of drug administration during
anesthesia procedures, ultimately benefiting patient outcomes and healthcare practices. In
this direction, the recent results of [25] may be useful. Moreover, we plan to investigate
PK/PD fractional-order models, which is a subject under strong current research [26]. This
is under investigation and will be addressed elsewhere.
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Abstract: In this paper, we derive the L-moments for some distributions, such as logistic, generalized
logistic, doubly truncated logistic, and doubly truncated generalized logistic distributions. We also
establish some new axioms and identities, including recurrence relations satisfied by the L-moment
from the underlying derivations. In addition, we establish some new general recurrence relations
satisfied by the L-moment from any distribution.
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1. Introduction

Order statistics play an important role in the statistical inference of parametric and
nonparametric statistics, estimation theory, and hypothesis testing. Order statistics have
also found important applications, including life testing, reliability theory, characterization,
statistical quality control, detection of outliers, analysis of censored data, goodness-of-fit
tests, single image processing, and many other fields. Order statistics received attention
from numerous researchers, among them Arnold et al. [1] and David and Nagaraja [2]. For
a detailed discussion on the moments of order statistics, one can refer to [3].

Like other statistical moments, L-moments characterize the geometry of distributions,
summarization, and description of theoretical probability distributions (observed data sam-
ples), estimation of parameters and quantiles of probability distributions, and hypotheses
testing for probability distributions. L-moments are directly analogous to that and have
similar interpretations as the moments. This makes L-moments conceptually accessible to
many potential users.

Hosking [4] has defined the L-moments as based on linear combinations of differences
in the expectations of order statistics, which are based on powers (exponents) of differences.
They can be defined for any random variable whose mean exists. Hosking [5] concludes
that “L-moments can provide good summary measures of distributional shape and may be
preferable to moments for this purpose”. Sillitto [6] has introduced population L-moments
as alternatives to the classical population central moments determined by the population
distribution. Greenwood et al. [7] have introduced probability weighted moments, which
are an alternative statistical “moment” that, like the moments, characterize the geometry
of distributions and are useful for parameter estimation. Karian and Dudewicz [8] have
studied the method of L-moments in some of their examples, where the overall performance
appears comparable to the overall performance of the percentile method, where the method
of percentiles and the method of L-moments are related in the sense that they both are
based on order statistics.

Sahu et al. [9] have described regionalization procedures for hydrological and clima-
tological assessment of ungauged watersheds, where different techniques together with
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L-moments are being utilized by many researchers and hydrologists for almost every
extreme event, viz., extreme rainfall, low flow, flood, and drought. Domański et al. [10]
have presented an application of L-moment statistics and the respective L-moment ratio
diagrams to assess control performance, in particular, in terms of control system sustain-
ability. In addition, the evolution in their performance over time is depicted visually.
L-moment diagrams are common in extreme event analysis and are considered a very
powerful tool in this field at the regional level. Anderson [11] has shown that the results
of L-moments and L-moment ratios were less sensitive than traditional moments for the
Barabási–Albert, Erdös–Rényi, and Watts–Strogratz network models when his research
centered on finding the statistical moments, network measures, and statistical tests that are
most sensitive to various node degradations for these three different network models. Fal-
lahgoul et al. [12] have developed and applied a novel semiparametric estimation method
based on L-moments. Unlike conventional moments, L-moments are linear in the data and
therefore robust to outliers. Additionally, an extensive empirical analysis of portfolio choice
under nonexpected utility demonstrated the effectiveness of the L-moment approach.

In this paper, we display the L-moments and the sample L-moments, some of their
general properties, and how to use the sample L-moments to develop the method of L-
moments for estimating the parameters that are described in Section 2. In Section 3, we
establish general recurrence relations between L-moments for any distribution. Next, we
derive the exact explicit expressions for L-moments of underlying distributions, namely,
logistic distribution, generalized logistic distribution, doubly truncated logistic distribution,
and doubly truncated generalized logistic distribution in Section 4. Then, in Section 5, we
establish some recurrence relations by L-moments from specific distributions. Finally, we
provide our conclusions in Section 6.

2. L-Moments

In this section, we present the definitions of the probability weight moments, L-
moments, and L-moment ratios. Next, we establish some properties of L-moments and
L-moment ratios.

2.1. Population of L-Moments

The probability weighted moments of a random variable X with a pdf f (x), cdf F(x),
and quantile xu are defined by the expectations as

Mp,r,s = E
[
Xp(F(X))r(1 − F(X))s] = ∫ 1

0
xp

uur(1 − u)sdu,

where p, r, and s are integers. The most common probability weighted moment is

βr = M1,r,0 = E
[
X(F(X))r] = ∫ 1

0 xu urdu = 1
r+1 E[Xr+1:r+1] for r = 0, 1, 2, . . ., (1)

where

E[Xr:n] = μr:n =
∫ ∞
−∞ x fr:n(x)dx

=
∫ ∞
−∞ xCr:n[F(x)]r−1[1 − F(x)]n−r f (x)dx,−∞ < x < ∞, Cr:n = n!

(r−1)!(n−r)! ,
(2)

gives the single moments for order statistics of Xr:n, 1 ≤ r ≤ n, n = 1, 2, 3, . . . (see [1]).
Landwehr et al. [13–15] have considered the L-moments as beginning with the statisti-

cal needs for researchers of surface-water hydrology with an interest in floods and extreme
rainfall hydrology. Historically, L-moments were developed from probability weighted
moments. The core theory of L-moments for univariate applications was unified in the
late 1980s to early 1990s. Hosking [16] has confirmed that probability weighted moments
(or L-moments) are sometimes more popular than maximum likelihood because of their
good performance for small samples. Additionally, L-moments can serve as a good choice
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for the starting values in the iterative numerical procedure required to obtain maximum
likelihood estimates.

Hosking [4] has unified discussion and estimation of distributions using L-moments
and used particular ratios of them as measures of skewness and kurtosis. They can
be defined for any random variable whose mean exists. Hosking has also defined the
theoretical L-moments from rth-shifted Legendre polynomials:

λr =
∫ 1

0
xu P∗

r−1(u) du for r ≥ 1, (3)

where
P∗

r−1(u) = ∑r−1
k=0 p∗r−1,kuk, (4)

p∗r−1,k = (−1)r−1−k
(

r − 1
k

)(
r − 1 + k

k

)
. (5)

is the shifted Legendre polynomial (see [17]) and xu is a quantile function. The first few
L-moments are

λ1 = E[X] =
∫ 1

0 xu du,
λ2 =

∫ 1
0 xu × (2u − 1) du,

λ3 =
∫ 1

0 xu × (6u2 − 6u + 1) du,
λ4 =

∫ 1
0 xu × (20u3 − 30u2 + 12u − 1) du.

The L-moment ratios of X are the quantities

τr = λr/λ2 for r = 3, 4, 5, . . .,

satisfying |τr| < 1. Note that τ3 = λ3/λ2 is called L-skewness and τ4 = λ4/λ2 is called
L-kurtosis. The L-moments λ1 and λ2 and the L-moment ratios τ3 and τ4 are the most
useful quantities for summarizing probability distributions. The most important property is
that if X and Y are random variables with L-moments λr and λ∗

r , respectively, and suppose
that Y = aX + b, then,

λ∗
1 = aλ1 + b,

λ∗
r = (sign a)r|a|λr, r ≥ 2,
τ∗

r = (sign a)rτr, r ≥ 3.

Hosking [5] concludes that “L-moments can provide good summary measures of
distributional shape and may be preferable to moments for this purpose”. Royston [18]
and Vogel and Fennessey [19] have discussed the advantages of L-skewness and L-kurtosis
over their classical counterparts.

The system of linear equations relating L-moments λr to probability weighted mo-
ments βr can be obtained (see [20]) for r ≥ 0 as follows:

λr+1 = ∑r
m=0 p∗r,m βm. (6)

The first four L-moments in terms of probability weighted moments are

λ1 = β0,
λ2 = 2β1 − β0,
λ3 = 6β2 − 6β1 + β0,
λ4 = 20β3 − 30β2 + 12β1 − β0.

Note that λ1 = E[X] is the L-location or the mean of the distribution, while λ2 is a
measure of the scale or dispersion of the random variable X, so λ2 is the L-scale.

261



Axioms 2023, 12, 928

2.2. Sample L-Moments and Method of L-Moments

For any distribution with finite means, Hosking [4] defined the sample L-moments λ̂r
as follows:

λ̂r =
1

r
(

n
r

)∑n
i=1

(
∑r−1

j=0 (−1)j
(

r − 1
j

)(
i − 1

r − 1 − j

)(
n − i

j

))
xi:n,

where x1:n ≤ x2:n ≤ . . . ≤ xn:n are the sample order statistics. We see that the statistic λ̂1 is
the sample mean, the sample L-scale λ̂2 is half Gini’s mean difference (see [21]), λ̂3 is used
by Sillitto [6] as a measure of symmetry and by Locke and Spurrier [22] to test for symmetry,
and λ̂4 is used by Hosking [4] as a measure of kurtosis. The rth sample L-moment ratios
are the following quantities (see [23]):

τ̂r = λ̂r/λ̂2 , r = 3, 4, 5, . . . .

Note that τ̂3 = λ̂3/λ̂2 is a measure of skewness, and τ̂4 = λ̂4/λ̂2 is a measure of
kurtosis. These are, respectively, the sample L-skewness and sample L-kurtosis. The
quantities λ̂1, λ̂2, τ̂3, and τ̂4 are useful summary statistics for a data sample. They can be
used to identify the distribution from which a sample was drawn and applied to estimate
parameters when fitting a distribution to a sample by equating the sample and population
L-moments (see [24]).

From a random sample of size n, obtained from a probability distribution, the method
of L-moments (LMOMs) is to equate the L-moments of the distribution to the sample
L-moments such that λr = λ̂r for the p number of unknown parameters is chosen for a
distribution (see [25]).

3. General Relationships Based on L-Moments

The moments of order statistics have acquired considerable interest in recent years
and, in fact, have been tabulated quite extensively for many distributions. Many authors
have investigated and derived several recurrence relations because one could list the
following four main reasons why these recurrence relations for the moments of order
statistics are important:

1. They reduce the number of direct computations greatly;
2. They usefully express the higher order moments of order statistics in terms of the

lower order moments and hence make the evaluation of higher order moments easy;
3. They are very useful in checking the computation of the moments of order statistics;
4. Results can be used for characterizing the distributions.

Now, for the same main reasons in the moments of order statistics, Hosking [26] has
studied the recurrence relations between trimmed L-moments with different degrees of
trimming, and he found the relation between trimmed L-moments and L-moments.

In order to establish new general recurrence relations between the L-moments, we
need to review the most important lemmas that are necessary later in the theorem:

Lemma 1. If

Pn(x) =
1
2n ∑[n/2]

k=0 (−1)k
(

n
k

)(
2n − 2k

n

)
xn−2k,

where [n
2

]
=

{ n
2 , n even,

n−1
2 , n odd.
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is the Legendre polynomial (see [27]) of degree n = 0, 1, 2, . . . for x ∈ [−1, 1] and P∗
n (x) is the

shifted Legendre polynomial of degree n = 0, 1, 2, . . . . on the interval [0, 1] in Equation (4), we
then have

d
dx

P∗
n (x) = 2P′

n(2x − 1) where P′
n(x) =

d
dx

Pn(x). (7)

The shifted Legendre polynomial satisfies the following recurrence relations, n = 0, 1, . . . .. ,

P∗
n+1(x) = P∗

n (x)− 2
n + 1

(1 − x)∑n
i=0 (2i + 1)P∗

i (x), (8)

and
P∗

n+1(x) = 2 ∑n
i=0 (2i + 1) q∗i+1(x)− P∗

n (x). (9)

where
q∗i+1(x) =

∫ x

0
P∗

i (t)dt = ∑i
k=0

1
k + 1

p∗i,kxk+1 for i > 0,

is the integrated shifted Legendre polynomial.

Proof. To prove (7), by compensating x for (2x − 1) in the differentiation of the Legen-
dre polynomial

P′
n(x) =

d
dx

Pn(x) = ∑[(n−1)/2]
r=0 (2n − 4r − 1)Pn−2r−1(x),

(see [28]) and use P∗
n (x) = Pn(2x − 1) (see [23]), we obtain

P′
n(2x − 1) =

d
dx

Pn(2x − 1) = ∑[(n−1)/2]
i=0 (2n − 4i − 1)P∗

n−2i−1(x). (10)

By the comparison between the differentiation of shifted Legendre polynomials,

d
dx

P∗
n (x) = 2∑[(n−1)/2]

i=0 (2n − 4i − 1)P∗
n−2i−1(x),

(see [29–31]) and P′
n(2x − 1) in (10), we can express the relationship (7).

To prove (8), we have the recursive formula for Legendre polynomials (see [28]) for
n = 0, 1, 2, . . . .,

Pn+1(x) = Pn(x)− 1
n + 1

(1 − x)∑n
i=0 (2i + 1)Pi(x), (11)

and then compensate x for (2x − 1) in (11) and use P∗
n (x) = Pn(2x − 1) (see [23]).

Now, for Equation (9), by bringing a recursive formula for Legendre polynomials
(see [28]) for n = 0, 1, 2, . . . ., this relates the polynomials and their derivatives to each other
as follows:

P′
n+1(x) = ∑n

i=0 (2i + 1)Pi(x)− P′
n(x), (12)

where we compensate x to (2x − 1) in (12), use P∗
n (x) = Pn(2x − 1) (see [23]) and (7);

we have,
d

dx
P∗

n+1(x) = 2∑n
i=0 (2i + 1)P∗

i (x)− d
dx

P∗
n (x), (13)

and afterward integrating both sides with respect to t from t = 0 to t = x in (13).
Hence,

P∗
n+1(x)− P∗

n+1(0) = 2∑n
i=0 (2i + 1)

∫ x

0
P∗

i (t)dt − (P∗
n (x)− P∗

n (0)), (14)

and using that P∗
n (0) = (−1)n∀n = 0, 1, 2 . . . . (see [23]). �
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Theorem 1. Let X be a continuous random variable with cdf u = F(x) and quantile function xu;
0 ≤ u ≤ 1. Then, L-moments λr satisfy the following recurrence relations:

λr+2 =
2r + 1
r + 1

(2Ar+1 − λr+1)− r
r + 1

λr, r = 0, 1, . . . .., (15)

λr+2 = λr+1 − 2
r + 1∑r

i=0 (2i + 1)(λi+1 − Ai+1), r = 0, 1, . . . .., (16)

λr+2 = 2(2r + 1)Br+1 + λr, r = 1, 2, . . . .., (17)

λr+2 = 2∑r
i=0 (2i + 1) Bi+1 − λr+1, r = 0, 1, . . . .., (18)

where Ar+1 = ∑r
k=0 p∗r,kβk+1, Br+1 = ∑r

k=0
1

k+1 p∗r,kβk+1, and p∗r,k are in (5) and βk+1 is in (1).

Proof. For (15), we have a recurrence relation between shifted Legendre polynomials for
n = 0, 1, 2 . . ., (see [29–31]):

P∗
r+1(u) =

2r + 1
r + 1

(2u − 1)P∗
r (u)−

r
r + 1

P∗
r−1(u), r = 0, 1, . . . ..,

By multiplying both sides by xu and integrating over u, we obtain

λr+2 =
2r + 1
r + 1

[
2
∫ 1

0
uP∗

r (u)xudu − λr+1

]
− r

r + 1
λr. (19)

Then,

∫ 1

0
uP∗

r (u)xudu =
∫ 1

0
u

(
r

∑
k=0

p∗r,kuk

)
xudu =

r

∑
k=0

p∗r,k

∫ 1

0
uk+1xudu =

r

∑
k=0

p∗r,kβk+1 = Ar+1. (20)

using (20) in (19), the proof is complete. For (16), the same technique as the method of proof
for (15) is used, but begins by using (8).

Now, also for (17) and (18), they have the same technique as the method of proof, begun
by using the recurrence relation between shifted Legendre polynomials for n = 0, 1, 2 . . .,
(see [29–31]):

2(2n + 1) q∗n+1(x) = P∗
n+1(x)− P∗

n−1(x),

and (9), respectively, and multiplying both sides by xu and integrating over u. �

All Equations (15)–(18) in Theorem 1 are equal to λ2, λ3, . . . ., those given equations
relating λr to βr obtained by Zafirakou-Koulouris et al. [20] in (6).

4. L-Moments from the Logistic Distributions

In this section, we present some statistical distributions, like logistic, generalized
logistic, doubly truncated logistic and doubly truncated generalized logistic with their first
four implicit L-moments. Then, we derive the LMOMs for the unknown parameters from
these distributions.

4.1. L-Moments of the Logistic Distribution

The pdf of a logistic distribution with the location parameter ζ (the mode, median,
and mean) and scale parameter α is reported by Balakrishnan [32] and Walck [33]:

f (x) =
1
α

e−( x−ζ
α )[

1 + e−( x−ζ
α )

]2 ,−∞ < x < ∞,−∞ < ζ < ∞, α > 0,
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and the cdf is

F(x) =
1

1 + e−( x−ζ
α )

,−∞ < x < ∞,−∞ < ζ < ∞, α > 0.

For 0 < u < 1, the quantile is

xu = ζ + α ln
(

u
1 − u

)
,−∞ < ζ < ∞, α > 0.

The mean of the logistic distribution is E[X] = ζ. The random variable of standard
logistic Z can be obtained by putting ζ = 0 and α = 1.

The rth probability weighted moment in (1) can be obtained by (see [34])

βr =
ζ

r + 1
+

α

r + 1
[ψ(r + 1) + γ] =

1
r + 1

[ζ + α[ψ(r + 1) + γ]], r = 0, 1, 2, . . . ,

where γ = −ψ(1) = 0.577216 is Euler’s constant and ψ(·) is the digamma function, which
is defined as

ψ(r) = Γ′(r)
Γ(r) = d

dr ln Γ(r), r �= 0,−1,−2, . . . .,

and Γ(.) is a gamma function. Thus, the first four βr can be computed as follows:

β0 = ζ, β1 =
ζ + α

2
, β2 =

ζ

3
+

α

2
and β3 =

ζ

4
+

11α

24
,

where ψ(1) = −γ, ψ(2)= 1 − γ , ψ(3) = 3
2 − γ and ψ(4) = 11

6 − γ. Then, the first four
L-moments in (6) are given as (see [34])

λ1 = β0 = ζ, λ2 = 2β1 − β0 = α, λ3 = 6β2 − 6β1 + β0 = 0, τ3 = λ3
λ2

= 0,
λ4 = 20β3 − 30β2 + 12β1 − β0 = α

6 and τ4 = λ4
λ2

= 1
6 .

(21)

The L-moment estimators for location parameter ζ and scale parameter α can be
obtained from the first and second L-moments (λ1, λ2) in (21) as

ζ̂ = λ̂1 and α̂ = λ̂2. (22)

4.2. L-Moments of the Generalized Logistic Distribution

The generalized logistic distribution has three parameters and is thus fit to the mean,
scale, and shape of a data set. The pdf and cdf of the generalized logistic distribution are
given, respectively, for −∞ < ζ < ∞ and α > 0, as reported by Burr [35] and Asquith [25]:

f (x) = 1
α

[
1−δ

(
x−ζ

α

)] 1
δ
−1

[
1+

[
1−δ

(
x−ζ

α

)]1/δ
]2 ,−∞ < x ≤ ζ + α

δ if 0 < δ < 1,

, ζ + α
δ ≤ x < ∞ if − 1 < δ < 0,

and
F(x) = 1

1+
[
1−δ

(
x−ζ

α

)]1/δ ,−∞ < x ≤ ζ + α
δ if 0 < δ < 1,

, ζ + α
δ ≤ x < ∞ if − 1 < δ < 0.

For 0 < u < 1, the quantile is

xu = ζ +
α

δ

[
1 −

(
1 − u

u

)δ
]

,−∞ < ζ < ∞, α > 0, δ �= 0.
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The random variable of the standard generalized logistic Z can be obtained by putting
ζ = 0 and α = 1. The first four moments, k = 1, 2, 3, 4 of the standard generalized logistic
random variable are as follows (see [3]):

E
[

Zk
]
=

1
δk ∑k

j=0

(
k
j

)
(−1)jβ(1 − jδ, 1 + jδ), |δ| < 1

k
.

where β(1 − jδ, jδ + 1) is the beta function and can be defined by the integral

β(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt, a, b > 0.

Now, we derive the first moment for the order statistics of the standard generalized
logistic random variable.

Lemma 2. The moments of order statistics in (2) of the standard generalized logistic random
variable Zj:n are

μj:n =
1
δ

(
1 − Γ(j − δ)Γ(n − j + 1 + δ)

Γ(j)Γ(n − j + 1)

)
, − 1 < δ < 1. (23)

Proof. The jth moment of order statistics is

μj:n = E[Zj:n] =
∫

z fj:n(z)dz = n!
(j−1)!(n−j)!

∫
z[F(z)]j−1 f (z)[1 − F(z)]n−jdz

= n!
(j−1)!(n−j)!

1∫
0

zuuj−1(1 − u)n−jdu

= n!
(j−1)!(n−j)!

1
δ

∫ 1
0

(
uj−1(1 − u)n−j − uj−1−δ(1 − u)n−j+δ

)
du

= n!
(j−1)!(n−j)!

1
δ (β(j, n − j + 1)− β(j − δ, n − j + δ + 1)),

after some simplification, we obtain the required result. �

Note that:

• By letting n = j = 1 in Lemma 2, we deduce the first moment established for a
standard generalized logistic distribution.

• By letting the shape parameter δ → 0 in Lemma 2, we deduce the moment of order
statistics of the standard logistic distribution (see [36]):

μr:n = E[Zr:n] = ψ(j)− ψ(n − j + 1), j = 1, 2, . . . , n. (24)

Now, the rth, r = 0, 1, 2, . . . , probability weighted moment in (1) for generalized logistic
distribution can be stated as follows:

βr = (ζ + αμr+1:r+1)/(1 + r) = 1
r+1

(
ζ + α

δ

)− α
δ β(r + 1 − δ, δ + 1)

= 1
r+1

(
ζ + α

δ

)− α
δ β(1 − δ, δ + 1) (1−δ)(r)

Γ(r+2) , − 1 < δ < 1,

where

(1 − δ)(r) =
Γ(1 − δ + r)

Γ(1 − δ)
= ∏r

i=1(i − δ),

are rising factorials.
Therefore, the L-moments in (6) are (see [25])

λ1 =
(
ζ + α

δ

)− α
δ β(1 − δ, δ + 1), λ2 = αβ(1 − δ, δ + 1), λ3 = −αδβ(1 − δ, δ + 1), τ3 = −δ,

λ4 = 1+5δ2

6 αβ(1 − δ, δ + 1) and τ4 = 1+5δ2

6 .
(25)
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The L-moments estimators for location parameter ζ, scale parameter α, and shape
parameter δ can be obtained from the first and second L-moments (λ1, λ2) and L-skewness
τ3 (τ3 = λ3/λ2 is a function of δ only) in (25), which are measures of location, scale, and
skewness, respectively, as

ζ̂ = λ̂1 −
α̂

δ̂

(
1 − β(1 − δ̂, δ̂ + 1)

)
, α̂ =

λ̂2

β(1 − δ̂, δ̂ + 1)
and δ̂ = −τ̂3. (26)

4.3. L-Moments of the Doubly Truncated Logistic Distribution

The standard doubly truncated logistic distribution has been extended by Balakrishnan
and Rao [3] with pdf:

f (z) =
1

P − Q
e−z/(1 + e−z)

2, Q1 ≤ z ≤ P1,

and with cdf (see [32]):

F(z) =
1

P − Q

[
1

1 + e−z − Q
]

, Q1 ≤ z ≤ P1,

where Q and 1 − P (0 < Q < P < 1) are given by

P = F(P1) and Q = F(Q1),

where F(·) is given in the standard logistic distribution. Then,

Q1 = log
(

Q
1 − Q

)
and P1 = log

(
P

1 − P

)
.

The quantile is

zu = log
[

u(P − Q) + Q
1 − [u(P − Q) + Q]

]
, 0 < u < 1.

The first moment of Z is given by

E[Z] =
PP1 − QQ1 + log

[
1−P
1−Q

]
P − Q

.

Note that by letting Q → 0 and P → 1 , we deduce the first moment for the logistic
distribution, which is equal to zero.

Next, we find the first four L-moments for the doubly truncated logistic distribution.
In the following lemma, we derive the moment of order statistics of the random variable
from a doubly truncated logistic distribution.

Lemma 3. The moment of order statistics from the doubly truncated logistic distribution is given
by, for j = 1, 2, . . . , n,

μj:n = n!
(j−1)!(n−j)!

n−j
∑

i=0

(
n − j

i

)
(−1)i(−Q)i+j−1

(P−Q)i+j

[
PP1 − QQ1 + log

[
1−P
1−Q

]]
+ n!

(j−1)!(n−j)!

n−j
∑

i=0

i+j−1
∑

l=1

(
n − j

i

)(
i + j − 1

l

)
(−1)i(−Q)i+j−1−l

(P−Q)i+j(l+1)

×
[

Pl+1P1 − Ql+1Q1 + log
[

1−P
1−Q

]
+

l−1
∑

s=0

1
s+1

(
Ps+1 − Qs+1)].

(27)
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Proof. The jth moment of order statistics is

μj:n = E
[
Zj:n

]
= n!

(j−1)!(n−j)!

P1∫
Q1

z[F(z)]j−1 f (z)[1 − F(z)]n−jdz

= n!
(j−1)!(n−j)!

P1∫
Q1

z
[

1
P−Q

[
1

1+e−z − Q
]]j−1

[
1

P−Q
e−z

(1+e−z)2

]
×
[
1 −

[
1

P−Q

[
1

1+e−z − Q
]]]n−j

dz

= n!
(j−1)!(n−j)!

n−j
∑

i=0

i+j−1
∑

l=0

(
n − j

i

)(
i + j − 1

l

)
(−1)i(−Q)i+j−1−l

(P−Q)i+j I1,

(28)

where

I1 =

P∫
Q

log
(

t
1 − t

)
tldt =

1
l + 1

⎡⎣Pl+1 log
(

P
1 − P

)
− Ql+1 log

(
Q

1 − Q

)
−

P∫
Q

tl

1 − t
dt

⎤⎦, (29)

substituting (29) into (28), we obtain

μj:n = n!
(j−1)!(n−j)!

n−j
∑

i=0

(
n − j

i

)
(−1)i(−Q)i+j−1

(P−Q)i+j

[
P log

(
P

1−P

)
− Q log

(
Q

1−Q

)
− I2

]
+ n!

(j−1)!(n−j)!

n−j
∑

i=0

i+j−1
∑

l=1

(
n − j

i

)(
i + j − 1

l

)
(−1)i(−Q)i+j−1−l

(P−Q)i+j(l+1)

×
[

Pl+1 log
(

P
1−P

)
− Ql+1 log

(
Q

1−Q

)
− I3

]
,

(30)

where

I2 =

P∫
Q

1
1 − t

dt= − log(1 − t)|t=P
t=Q = − log(1 − P) + log(1 − Q), (31)

and

I3 =

P∫
Q

tl

1 − t
dt = −

l−1

∑
s=0

P∫
Q

ts +

P∫
Q

1
1 − t

dt = −
l−1

∑
s=0

1
s + 1

(
Ps+1 − Qs+1

)
− log(1 − P) + log(1 − Q). (32)

Finally, by substituting (31) and (32) in (30) and doing some simplification, we obtain
the required result. �

Note that:

• By letting n = j = 1 in Lemma 3, we deduce the first moment established for the
doubly truncated logistic distribution.

• Furthermore, letting Q → 0 and P → 1 in Lemma 3 and using Proposition 1 as
follows, we deduce the single moments order statistics for the logistic distribution
established in (24).

Proposition 1. Let j = 1, 2, . . . n and n − j a non-negative integer. Then,

n−j

∑
i=0

(
n − j

i

)
(−1)i 1

i + j
=

(j − 1)!(n − j)!
n!

,

n!
(j − 1)!(n − j)!

n−j

∑
i=0

(
n − j

i

)
(−1)i 1

i + j
ψ(i + j) = ψ(j)− ψ(n − j + 1)− γ

where γ is Euler’s constant.
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Proof. For the first equation, we proceed by induction on n. As n = 1, it is 1 = 1, and
the proposition immediately follows. Assume now the proposition for n and observe that,

since
(

n + 1 − j
i

)
=

(
n − j

i

)
+

(
n − j
i − 1

)
, then for n + 1 it holds:

n−j+1

∑
i=0

(
n − j + 1

i

)
(−1)i 1

i + j
=

n−j

∑
i=0

(
n − j

i

)
(−1)i 1

i + j
−

n−j

∑
i=0

(
n − j

i

)
(−1)i 1

i + 1 + j
.

The hypothesis of induction yields

n−j

∑
i=0

(
n − j

i

)
(−1)i 1

i + j
=

(j − 1)!(n − j)!
n!

,

and
n−j

∑
i=0

(
n − j

i

)
(−1)i 1

i + 1 + j
=

j!(n − j)!
(n + 1)!

= j
(j − 1)!(n − j)!

(n + 1)!
.

Therefore, the proposition is proved.
Now for the second equation, we proceed by induction on n. As n = 1, it is ψ(1) = −γ,

and the proposition immediately follows. Assume now the proposition for n and observe

that, since
(

n + 1 − j
i

)
=

(
n − j

i

)
+

(
n − j
i − 1

)
, then for n + 1 it holds:

(n+1)!
(j−1)!(n−j+1)!

n−j+1
∑

i=0

(
n − j + 1

i

)
(−1)i 1

i+j ψ(i + j)

= (n+1)!
(j−1)!(n−j+1)!

n−j
∑

i=0

(
n − j

i

)
(−1)i 1

i+j ψ(i + j)

− (n+1)!
(j−1)!(n−j+1)!

n−j
∑

i=0

(
n − j

i

)
(−1)i 1

i+1+j ψ(i + 1 + j).

The hypothesis of induction yields

(n + 1)!
(j − 1)!(n − j + 1)!

n−j

∑
i=0

(
n − j

i

)
(−1)i 1

i + j
ψ(i + j) =

n + 1
n − j + 1

(ψ(j)− ψ(n − j + 1)− γ),

and

(n+1)!
(j−1)!(n−j+1)!

n−j
∑

i=0

(
n − j

i

)
(−1)i 1

i+1+j ψ(i + 1 + j)

= 1
n−j+1 + j

n−j+1 (ψ(j)− ψ(n − j + 1)− γ),
(

by using ψ(1 + j) = ψ(j) + 1
j

)
.

Therefore, we perform some simplification by using 1/(n − j + 1) = ψ(n − j + 2)−
ψ(n − j + 1), and obtain the required result. �

Lemma 4. The L-moments for the doubly truncated logistic distribution are given by

λ1 =
PP1−QQ1+log

[
1−P
1−Q

]
P−Q , λ2 =

P−Q−PP1Q+PQQ1−(−1+P+Q) log
[

1−P
1−Q

]
(P−Q)2 ,

λ3 = 1
(P−Q)3

(
2(−1 + Q)Q + P

(
2 + Q2(P1 − Q1)

)
+ P2(−2 + P1Q − QQ1)

+
(
2 + (−3 + P)P − 3Q + 4PQ + Q2) log

[
1−P
1−Q

])
,

λ4 = 1
6(P−Q)4

(
Q(−30 + (45 − 16Q)Q) + P3(16 − 6P1Q + 6QQ1)

+6P
(
5 + Q2(−7 − P1Q + QQ1)

)
+ 3P2(−15 + 2Q(7 − 3P1Q + 3QQ1))

−6(−1 + P + Q)
(
5 + P2 + (−5 + Q)Q + P(−5 + 8Q)

)
log

[
1−P
1−Q

])
.

(33)
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Proof. The rth, r = 0, 1, 2, . . ., probability weighted moments are obtained easily by the
Lemma 3 as

βr =
P1∫

Q1

z[F(z)]r f (z)dz =
1∫

0
zuurdu = 1

1+r μr+1:r+1,

= (−Q)r

(P−Q)r+1

[
PP1 − QQ1 + log

[
1−P
1−Q

]]
+ 1

(P−Q)r+1

r
∑

l=1

(
r
l

)
(−Q)r−l

(l+1)

[
Pl+1P1 − Ql+1Q1 + log

[
1−P
1−Q

]
+

l−1
∑

s=0

1
s+1

(
Ps+1 − Qs+1)],

and by using (6), the proof is completed. �

The L-moment estimators for location parameter ζ and scale parameter α of the
random variable of doubly truncated logistic X = αZ + ζ can be obtained from the first
and second L-moments (λ1, λ2) in (33) and using the linear transformation as

ζ̂ = λ̂∗
1 − α̂λ1 and α̂ =

λ̂∗
2

λ2
. (34)

where λ̂∗
1 and λ̂∗

2 are the sample L-moments of X.

4.4. L-Moments of the Doubly Truncated Generalized Logistic Distribution

The doubly truncated standard generalized logistic pdf

f (z) = 1
P−Q

(1−δz)
1
δ
−1[

1+(1−δz)1/δ
]2 , Q1 < z < P1 < 1

δ if 0 < δ < 1,

, 1
δ < Q1 < z < P1 if − 1 < δ < 0,

with cdf

F(z) = 1
P−Q

[
1

1+(1−δz)1/δ − Q
]

, Q1 < z < P1 < 1
δ if 0 < δ < 1,

, 1
δ < Q1 < z < P1 if − 1 < δ < 0,

where Q and 1 − P (0 < Q < P < 1) are given by

P = F(P1) and Q = F(Q1),

where F(·) is given in the standard generalized logistic distribution. Then,

Q1 =
1
δ

[
1 −

(
1 − Q

Q

)δ
]

and P1 =
1
δ

[
1 −

(
1 − P

P

)δ
]

.

The quantile is

zu =
1
δ

[
1 −

[
1 − [u(P − Q) + Q]

u(P − Q) + Q

]δ
]

, 0 < u < 1.

The kth, k = 1, 2, 3, 4, moment of Z is

E[Zk] =

∑k
j=0(−1)j

(
k
j

)
[β(P; 1 − jδ, jδ + 1)− β(Q; 1 − jδ, jδ + 1)]

δk(P − Q)
, |δ| < 1

k
.
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where β(· ; 1 − jδ, jδ + 1) is the lower incomplete beta function and can be defined by the
variable limit integrals

β(x; a, b) =
∫ x

0
ta−1(1 − t)b−1dt, 0 ≤ x ≤ 1, a, b > 0.

Note that by letting Q → 0 and P → 1 , we deduce the moment for the generalized
logistic distribution. Furthermore, by letting the shape parameter δ → 0 , we deduce the
mean of the standard doubly truncated logistic distribution.

Now, we are about to find the first four L-moments for the doubly truncated general-
ized logistic distribution. In the following lemma, we derive the first moment for the order
statistic of the random variable from a doubly truncated generalized logistic distribution.

Lemma 5. The moments of order statistics from the doubly truncated generalized logistic distribu-
tion are given by, for j = 1, 2, . . . , n,

μj:n = 1
δ

[
1 − n!

(j−1)!(n−j)!

n−j
∑

i=0

i+j−1
∑

l=0

(
n − j

i

)(
i + j − 1

l

)
(−1)i(−Q)i+j−1−l

(P−Q)i+j

×[β(P; 1 − δ + l, 1 + δ)− β(Q; 1 − δ + l, 1 + δ)]

]
, |δ| < 1.

(35)

Proof. The jth moment of order statistics

μj:n = E
[
Zj:n

]
= n!

(j−1)!(n−j)!

P1∫
Q1

z[F(z)]j−1 f (z)[1 − F(z)]n−jdz

= n!
(j−1)!(n−j)!

1∫
0

zuuj−1(1 − u)n−jdu = n!
(j−1)!(n−j)!

1
δ [I1 − I2],

(36)

where

I1 =

1∫
0

uj−1(1 − u)n−jdu = β(j, n − j + 1), (37)

and

I2 =
1∫

0
uj−1(1 − u)n−j

[
1−[u(P−Q)+Q]
[u(P−Q)+Q]

]δ
du

=
n−j
∑

i=0

i+j−1
∑

l=0

(
n − j

i

)(
i + j − 1

l

)
(−1)i(−Q)i+j−1−l

(P−Q)i+j

×[β(P; 1 − δ + l, 1 + δ)− β(Q; 1 − δ + l, 1 + δ)], |δ| < 1.

(38)

Substituting (37) and (38) in (36), we obtain (35) and thus complete the proof. �

Note that:

• By letting n = j = 1 in Lemma 5, we deduce the first moment established for the
doubly truncated generalized logistic distribution.

• Furthermore, by letting Q → 0 and P → 1 in Lemma 5 and using Proposition 2, we
have the single moments order statistics established in (23) from the generalized
logistic distribution.

• By letting the shape parameter δ → 0 in Lemma 5, we deduce the first moment for the
order statistic of the random variable from the doubly truncated logistic distribution
in Lemma 3.
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Proposition 2. Let j = 1, 2, . . . n and n − j a non-negative integer. Then,

n!
(j − 1)!(n − j)!

n−j

∑
i=0

(
n − j

i

)
(−1)iβ(i + j − δ, 1 + δ) =

Γ(j − δ)Γ(n − j + 1 + δ)

Γ(j)Γ(n − j + 1)
,

where |δ| < 1.

Proof. We proceed by induction on n. As n = 1, it is β(1 − δ, 1 + δ) = Γ(1 − δ)Γ(1 + δ),
and the proposition immediately follows. Assume now the proposition for n and observe

that, since
(

n + 1 − j
i

)
=

(
n − j

i

)
+

(
n − j
i − 1

)
, then for n + 1 it holds:

(n+1)!
(j−1)!(n−j+1)!

n−j+1
∑

i=0

(
n − j + 1

i

)
(−1)iβ(i + j − δ, 1 + δ)

= (n+1)!
(j−1)!(n−j+1)!

n−j
∑

i=0

(
n − j

i

)
(−1)iβ(i + j − δ, 1 + δ)

− (n+1)!
(j−1)!(n−j+1)!

n−j
∑

i=0

(
n − j

i

)
(−1)iβ(i + 1 + j − δ, 1 + δ).

The hypothesis of induction yields

(n + 1)!
(j − 1)!(n − j + 1)!

n−j

∑
i=0

(
n − j

i

)
(−1)iβ(i + j − δ, 1 + δ) =

n + 1
n − j + 1

Γ(j − δ)Γ(n − j + 1 + δ)

Γ(j)Γ(n − j + 1)
,

and
(n+1)!

(j−1)!(n−j+1)!

n−j
∑

i=0

(
n − j

i

)
(−1)iβ(i + 1 + j − δ, 1 + δ)

= j
n−j+1

Γ(1+j−δ)Γ(n−j+1+δ)
Γ(1+j)Γ(n−j+1) ,

(by using Γ(1 + j − δ) = (j − δ)Γ(j − δ) and Γ(1 + j) = jΓ(j))
= j−δ

n−j+1
Γ(j−δ)Γ(n−j+1+δ)

Γ(j)Γ(n−j+1) ,

therefore, we perform some simplification by using

(n − j + 1 + δ)Γ(n − j + 1 + δ)/(n − j + 1)Γ(n − j + 1)= Γ(n − j + 2 + δ)/Γ(n − j + 2),

and we obtain the required result. �

Lemma 6. The first four L-moments for doubly truncated generalized logistic distribution are

λ1 = 1
(P−Q)δ [(P − Q)− (β(P; 1 − δ, 1 + δ)− β(Q; 1 − δ, 1 + δ))],

λ2 = 1
(P−Q)2δ

[(P + Q)(β(P; 1 − δ, 1 + δ)− β(Q; 1 − δ, 1 + δ))

−2(β(P; 2 − δ, 1 + δ)− β(Q; 2 − δ, 1 + δ)) ],
λ3 = 1

(P−Q)3δ

[−(P2 + 4PQ + Q2)(β(P; 1 − δ, 1 + δ)− β(Q; 1 − δ, 1 + δ))

+6(P + Q)(β(P; 2 − δ, 1 + δ)− β(Q; 2 − δ, 1 + δ))
−6(β(P; 3 − δ, 1 + δ)− β(Q; 3 − δ, 1 + δ)) ],

λ4 = 1
(P−Q)4δ

[(
P3 + 9P2Q + 9PQ2 + Q3)(β(P; 1 − δ, 1 + δ)− β(Q; 1 − δ, 1 + δ))

−12
(

P2 + 3PQ + Q2)(β(P; 2 − δ, 1 + δ)− β(Q; 2 − δ, 1 + δ))
+30(P + Q)(β(P; 3 − δ, 1 + δ)− β(Q; 3 − δ, 1 + δ))
−20(β(P; 4 − δ, 1 + δ)− β(Q; 4 − δ, 1 + δ)) ].

(39)

and using the above L-moments, we can obtain τ3 and τ4.
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Proof. By applying Lemma 5, βr becomes:

βr =
P1∫

Q1

z[F(z)]r f (z)dz =
1∫

0
zuurdu = 1

1+r μr+1:r+1

= 1
δ

⎛⎜⎜⎝ 1
r+1 −

∑r
l=0

(
r
l

)
(−Q)r−l(β(P;1−δ+l,1+δ)−β(Q;1−δ+l,1+δ))

(P−Q)r+1

⎞⎟⎟⎠, |δ| < 1.

Since βr is given as

β0 = 1
δ

[
1 − 1

P−Q (β(P; 1 − δ, 1 + δ)− β(Q; 1 − δ, 1 + δ))
]
,

β1 = 1
δ

[
1
2 − 1

(P−Q)2 (−Q[β(P; 1 − δ, 1 + δ)− β(Q; 1 − δ, 1 + δ)]

+[β(P; 2 − δ, 1 + δ)− β(Q; 2 − δ, 1 + δ)])],

β2 = 1
δ

[
1
3 − 1

(P−Q)3

(
Q2[β(P; 1 − δ, 1 + δ)− β(Q; 1 − δ, 1 + δ)]

−2Q[β(P; 2 − δ, 1 + δ)− β(Q; 2 − δ, 1 + δ)]
+[β(P; 3 − δ, 1 + δ)− β(Q; 3 − δ, 1 + δ)])],

β3 = 1
δ

[
1
4 − 1

(P−Q)4

(−Q3[β(P; 1 − δ, 1 + δ)− β(Q; 1 − δ, 1 + δ)]

+3Q2[β(P; 2 − δ, 1 + δ)− β(Q; 2 − δ, 1 + δ)]
−3Q[β(P; 3 − δ, 1 + δ)− β(Q; 3 − δ, 1 + δ)]
+[β(P; 4 − δ, 1 + δ)− β(Q; 4 − δ, 1 + δ)])].

and by using (6), the proof is completed. �

If we denote λr in (39) by λr(δ), then the L-moments estimators for location parameter
ζ, scale parameter α, and shape parameter δ of the random variable of doubly truncated
generalized logistic X = αZ + ζ can be obtained from the first and second L-moments
(λ1(δ), λ2(δ)) and L-skewness τ3(δ)(τ3(δ) = λ3(δ)/λ2(δ)) in (39) and using the linear
transformation, which are measures of location, scale, and skewness, respectively, as solved
numerically in the three systems of the nonlinear equations:

ζ̂ = λ̂∗
1 − α̂λ1

(
δ̂
)
,α̂ =

λ̂∗
2

λ2
(
δ̂
) , and τ̂∗

3 = τ3
(
δ̂
)
. (40)

where λ̂∗
1 and λ̂∗

2 are the sample L-moments of X and τ̂∗
3 is the sample L-moment ratios.

5. Particular Relationships Based on L-Moments

In this section, we establish some particular recurrence relations between the L-
moments satisfying for logistic, generalized logistic, doubly truncated logistic, and doubly
truncated generalized logistic distributions that enables computation and allows for evalu-
ation of all the L-moments λr(r ≥ 2), starting from λ1 in a simple recurrent manner, where
the calculation of L-moments in the traditional way of greater degrees depends on special
functions that need more mathematical calculations and special programs.

The following lemma is important throughout the results in this section.

Lemma 7. For r = 0, 1, 2, 3, . . . , the relation between the L-moments in (3) and moments of order
statistics in (2) are

μr+1:r+1 = (r + 1)∑r
i=0 cr,iλi+1, (41)

and
μ1:r+1 = (r + 1)∑r

i=0 (−1)icr,iλi+1, (42)
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where the coefficients cr,i are given as

cr,i = (2i + 1)
∫ 1

0
urP∗

i (u) du = (2i + 1)∑i
k=0 p∗i,k

1
r + k + 1

, i = 0, 1, 2, . . . , (43)

and p∗r,k is given in (5).

Proof. The function ur, which is sequence integrable on [0, 1], may be expressed in terms of
P∗

i (u) as (see [37])
ur = ∑r

i=0 cr,iP∗
i (u),0 ≤ u ≤ 1.

Multiplying both sides by xu and integrating over u, we obtain

1∫
0

xuurdu = ∑r
i=0 cr,i

1∫
o

xuP∗
i (u)du,

then (41) is proved.
The function (1 − u)r, which is sequence integrable on [0, 1], may be expressed in

terms of P∗
i (1 − u) as (see [37])

(1 − u)r = ∑r
i=0 cr,iP∗

i (1 − u), 0 ≤ 1 − u ≤ 1,

by using the property of a shifted Legendre polynomial function from Hetyei [38]:

(−1)iP∗
i (−u) = P∗

i (u + 1),

then,
P∗

i (1 − u) = P∗
i (−u + 1) = (−1)iP∗

i (u).

So, we have
(1 − u)r = ∑r

i=0 (−1)icr,iP∗
i (u).

Again, multiplying both sides by xu and integrating over u, we obtain

1∫
0

xu(1 − u)rdu = ∑r
i=0 (−1)icr,i

1∫
o

xuP∗
i (u)du,

then (42) is proved. �

5.1. Relations for Logistic Distribution

In this subsection, we establish recurrence relations satisfied by L-moments from a
logistic distribution.

Lemma 8. For r = 1, 2, . . . ., then the L-moments from standard logistic distribution satisfy

λr+1 =
1

(r + 1)(−1)rcr,r

[
∑r−1

i=0 (−1)i(−(r + 1)cr,i + rcr−1,i)λi+1 − 1
r

]
. (44)

where λ1 and c. , . are given in (21) and (43), respectively.

Proof. The recurrence relation of order statistics from standard logistic distribution follows
(see [3]):

μ1:r+1 = μ1:r −
1
r

, r ≥ 1,
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Substituting from (42), we have

(r + 1)∑r
i=0 (−1)icr,iλi+1 = r∑r−1

i=0 (−1)icr−1,iλi+1 − 1
r

.

Therefore,

(r + 1)(−1)rcr,rλr+1 = −(r + 1)∑r−1
i=0 (−1)icr,iλi+1 + r∑r−1

i=0 (−1)icr−1,iλi+1 − 1
r

= ∑r−1
i=0 (−1)i(−(r + 1)cr,i + rcr−1,i)λi+1 − 1

r ,

by simplifying the resulting expression, we obtain the relation. �

5.2. Relations for Generalized Logistic Distribution

In this subsection, we establish recurrence relations satisfied by L-moments from a
generalized logistic distribution.

Lemma 9. For r = 1, 2, . . . ., then the L-moments from standard generalized logistic distribu-
tion satisfy

λr+1 =
1

(r + 1)(−1)rcr,r

[
∑r−1

i=0 (−1)i(−(r + 1)cr,i + (r + δ)cr−1,i)λi+1 − 1
r

]
. (45)

where λ1 and c. , . are given in (25) and (43), respectively.

Proof. The recurrence relation for the single moments of order statistics follows (see [3]):

μ1:r+1 =

(
1 +

δ

r

)
μ1:n −

1
r

, r ≥ 1,

Substituting from (42), we have

(r + 1)∑r
i=0 (−1)icr,iλi+1 =

(
1 +

δ

r

)
r∑r−1

i=0 (−1)icr−1,iλi+1 − 1
r

.

Therefore,

(r + 1)(−1)rcr,rλr+1 = −(r + 1)∑r−1
i=0 (−1)icr,iλi+1 +

(
1 + δ

r

)
r∑r−1

i=0 (−1)icr−1,iλi+1 − 1
r

= ∑r−1
i=0 (−1)i(−(r + 1)cr,i + (r + δ)cr−1,i)λi+1 − 1

r ,

by simplifying the resulting expression, we obtain the relation. �

Letting the shape parameter δ → 0 in Lemma 9, we deduce the recurrence relation for
L-moments from the standard logistic distribution in Lemma 8.

5.3. Relations for Doubly Truncated Logistic Distribution

Recurrence relations for doubly truncated logistic distribution are given by Lemma 10
in this subsection.

Lemma 10.

λ2 = (1 − B)λ1 − AP1 − D1 (46)

and for r ≥ 2,

λr+1 = 1
(r+1)(−1)rcr,r

[
∑r−2

i=0 (−1)i[−(r + 1)cr,i + rBcr−1,i + (r − 1)Acr−2,i]λi+1

+(−1)r−1[−(r + 1)cr,r−1 + rBcr−1,r−1]λr + Dr

]
,

(47)
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where λ1 and c. , . are given in (33) and (43), respectively, and

A =
P2

P − Q
, B =

(2P − 1)
P − Q

, and Dm = − 1
P − Q

(
Q1Q2 +

1
m

)
f or m ≥ 1. (48)

Proof. First, before beginning the proof, denote that

P2 = P(1 − P)/(P − Q) and Q2 = Q(1 − Q)/(P − Q),

and we simplify the following recurrence relations (see [3]):

μ1:2 = Q1 +
1

P − Q
[P2(P1 − Q1) + (2P − 1)(μ1:1 − Q1)− 1],

for n ≥ 2,

μ1:n+1 = Q1 +
1

P − Q

[
P2(μ1:n−1 − Q1) + (2P − 1)(μ1:n − Q1)− 1

n

]
.

Note that by letting Q → 0 and P → 1 , we have the recurrence relation for the single
moments of the standard logistic distribution, so that we can rewrite them as

μ1:2 = AP1 + Bμ1:1 + D1, (49)

and for n ≥ 2:
μ1:n+1 = Aμ1:n−1 + Bμ1:n + Dn, (50)

where A, B, and Dm are given in (48).
Now, to prove (46), we have (49), which gives

μ1:1 = λ1, (51)

and μ1:2 can be found as follows by using (42):

μ1:2 = 2∑1
i=0 (−1)ic1,iλi+1 = λ1 − λ2, (52)

So, by substituting (51) and (52) into (49), it reduces to

λ1 − λ2 = AP1 + Bλ1 + D1.

By ordering this equation, we obtain the relation in (46).
Now, the second equation in the lemma can be proved by using (50), where we can

find μ1:r−1, μ1:r and μ1:r+1 by using (42), as follows:

μ1:r−1 = (r − 1)∑r−2
i=0 (−1)icr−2,iλi+1, (53)

μ1:r = r∑r−1
i=0 (−1)icr−1,iλi+1 = r(−1)r−1cr−1,r−1λr + r∑r−2

i=0 (−1)icr−1,iλi+1, (54)

μ1:r+1 = (r + 1)∑r
i=0 (−1)icr,iλi+1

= (r + 1)(−1)rcr,rλr+1 + (r + 1)(−1)r−1cr,r−1λr + (r + 1)∑r−2
i=0 (−1)icr,iλi+1.

(55)

Upon substituting (53), (54), and (55) in (50) and simplifying the resulting expression,
we obtain the relation given in (47). �

Note that by letting Q → 0 and P → 1 in Lemma 10, we obtain the simple recurrence
relations between L-moments of logistic distribution in Lemma 8.
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5.4. Relations for Doubly Truncated Generalized Logistic Distribution

In this subsection, we establish the recurrence relation for single moment order statis-
tics from the standard doubly truncated generalized logistic distribution in Lemma 11.
Then, recurrence relations for the doubly truncated generalized logistic distribution be-
tween the L-moments are given by Lemma 12.

Lemma 11. For n ≥ 2,
μ1:n+1 = Aμ1:n−1 + Bnμ1:n + Dn, (56)

and
μ1:2 = AP1 + B1μ1:1 + D1, (57)

where

A =
P2

P − Q
, Bm =

1
P − Q

[
(2P − 1) +

δ

m

]
, and Dm = − 1

P − Q

(
Q1Q2 +

1
m

)
for m ≥ 1. (58)

Proof. For n ≥ 1, denoting that

P2 = P(1 − P)/(P − Q) and Q2 = Q(1 − Q)/(P − Q),

let us consider the characterizing differential equation for the doubly truncated generalized
logistic population as follows:

(1 − δz) f (z) = (1 − 2Q)F(z)− (P − Q)[F(z)]2 + Q2
= (1 − P − Q)F(z) + (P − Q)F(z)[1 − F(z)] + Q2,

and
f1:n(z) = n f (z)[1 − F(z)]n−1, Q1 < z < P1,

then,

1 − δμ1:n

= n
[
(1 − P − Q)

P1∫
Q1

F(z)[1 − F(z)]n−1dz+(P − Q)
P1∫

Q1

F(z)[1 − F(z)]ndz

+Q2

P1∫
Q1

[1 − F(z)]n−1dz

]
,

(59)

By integrating by parts, treating 1 for integration, and the rest of the integrands for differ-
entiation, we obtain

1 − δμ1:n = n[(1 − P − Q)(μ1:n−1 − μ1:n) + (P − Q)(μ1:n − μ1:n+1) + Q2(μ1:n−1 − Q1)], (60)

The relation in (56) follows simply by rewriting (60).
Relation (57) is obtained by setting n = 1 in (59) and simplifying. �

Note that:

• By letting the shape parameter δ → 0 in Lemma 11, we deduce the recurrence relations
established in (49) and (50) for the single moments of order statistics from the doubly
truncated logistic distribution.

• By letting Q → 0 and P → 1 , we deduce the recurrence relations for the generalized
logistic distribution, established in the proof of Lemma 9.

Lemma 12.

λ2 = (1 − B1)λ1 − AP1 − D1, (61)
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and for r ≥ 2,

λr+1 = 1
(r+1)(−1)rcr,r

[
∑r−2

i=0 (−1)i[−(r + 1)cr,i + rBrcr−1,i + (r − 1)Acr−2,i]λi+1

+(−1)r−1[−(r + 1)cr,r−1 + rBrcr−1,r−1]λr + Dr

]
,

(62)

where λ1 and c. , . are given in (39) and (43), respectively, and A, Br, and Dr are given in (58).

Proof. This lemma has the same proof method that we used in Lemma 10, but by taking
(56) and (57) to prove (61) and (62), respectively. �

Note that:

• By letting Q → 0 and P → 1 in Lemma 12, we have the recurrence relations between
L-moments established in Lemma 9 from generalized logistic distribution.

• By letting the shape parameter δ → 0 in Lemma 12, we obtain the recurrence relations
between L-moments of the doubly truncated logistic distribution in Lemma 10.

The results in Lemmas 8–12 can be applied in different fields that have actual data sets
from the logistics and generalized logistics distributions. These include network analysis
(see [11]), statistical inference, (see [39,40]), and rainfall modeling (see [41]).

6. Conclusions

In this paper, the L-moments are derived for some distributions, such as logistic,
generalized logistic, doubly truncated logistic, and doubly truncated generalized logistic.
Methods of estimation by L-moment are used to obtain the unknown parameters for logistic,
generalized logistic, doubly truncated logistic, and doubly truncated generalized logistic
distributions. Finally, some new recurrence relations based on L-moment are established
and used for calculating the higher moments, where sometimes calculating the moments
of order statistics for certain distributions may not be explicit, so recurrence relations are
used to calculate higher order moments using lower order moments to reduce the risk of
approximation in numerical calculations, which is very helpful. In the future, theoretical
results can be utilized in several directions, such as the process of estimating unknown
values using the modified moments method, and to some applications for linear moments,
especially in electrical engineering, architecture, natural sciences and network analysis.
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Abstract: The analytic solution for a general form of the Stefan problem with nonlinear temperature-
dependent thermal parameters and a heat source the term is obtained. We prove the existence and
uniqueness of the solution to the problem in the absence of a heat source (β = 0), and in the presence
of a heat source β(x) = exp(−x2). Then, we establish lower and upper bounds for the solutions
of the homogeneous equation and the nonhomogeneous equation, for different values of δi and γi.
It was found that the lower bounds exhibit an excellent alignment with the numerical solutions of
the homogeneous and nonhomogeneous equations, so the lower bounds can serve as approximate
analytic solutions to the problem. This is a generalization to the open problem proposed by Cho and
Sunderland in 1974 and also generalizes the problem proposed by Oliver and Sunderland in 1987, in
addition to the problems investigated recently.

Keywords: Stefan problem; nonlinear thermal parameters; modified error function; lower- and
upper-bound solutions

MSC: 80A22; 35R35; 35R37; 35R45

1. Introduction

Moving (or free) boundary problems deal with modeling the processes with a phase-
change phenomenon that occurs naturally and industrially, such as the diffusion of oxygen,
ice melting, or the vaporization of liquids. In these types of problems, when the phase
change occurs, the boundary starts to move, from which the name of these problems comes.
To model these moving boundaries, a Stefan condition is needed to describe that moving
boundary, and consequently, these problems are usually referred to as “Stefan problems”
[1,2]. These problems have a deep connection with heat transfer theory since they tend
to model phase-change problems due to melting or liquidation processes. The scientific
studies concerning these problems have significantly increased in the last two decades
due to the high importance and demands of describing and analyzing many industrial
and physical processes, see, for example, [3–16]. The classical Stefan problems deal with
constant thermal parameters (thermal conductivity and specific heat) for the substances,
but due to the recent developments in technology and science, researchers realized that
models that described temperature-dependent parameters would be more realistic. In 1978,
Cho and Sunderland [1] investigated the nonlinear problem:(

(1 + δy)
dy
dx

)′
+ 2x

dy
dx

= 0, 0 < x < ∞, y(0) = y(∞) = 1 (1)

with a linear thermal conductivity, and they obtained a numerical solution, which was
defined as the modified error function ϕδ, where δ is the thermal coefficient of the thermal
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Axioms 2024, 13, 14

conductivity 1 + δy, and y represents the temperature distribution. They also proposed
the problem

d
dx

[
(1 + δy + γy2)n dy

dx

]
+ 2x

dy
dx

= 0, x > 0, y(0) = 0, y(∞) = 1 (2)

as a generalization of (1).
Oliver and Sunderland [2] investigated a model similar to (1) where thermal conduc-

tivity and specific heat are linear functions of temperature. No existence and uniqueness
theorems were established in the preceding two articles, which has motivated subsequent
researchers [3–9] to establish the existence and uniqueness theorems for the solutions to
such problems. In particular, the authors in [3] proved the existence and uniqueness of the
modified error function for small values of δ > 0. The general case δ > −1 was investi-
gated and established in [4]. In [5], the authors investigated problem (2), with a nonlinear
thermal conductivity of the form (1 + δy + γy2)n, where δ > −1 and γ > −1. Existence
and uniqueness theorems for the solution were obtained, and the solution was obtained in
the following form:

ϕδ,γ = C
x∫

0

1
Ψ(η)

exp

⎛⎝−2

η∫
0

ξ

Ψ(ξ)
dξ

⎞⎠dη. (3)

This solution was called: “the modified error function of two parameters”, because it
can be viewed as a generalization to the modified error function obtained by [1,3], when
γ = 0, and to the classical error function when δ = γ = 0. As shown in [5], the solution
ϕδ,γ shares some properties with the classical error function.

The present paper aims to investigate the problem

d
dx

[
(1 + δ1y + γ1y2)n dy

dx

]
+ 2x(1 + δ2y + γ2y2)m dy

dx
= β(x), 0 < x < ∞ (4)

together with the following two sets of conditions:

y(0) = 0, y(∞) = 1, (5)

and
y(0) = 1, y(∞) = 0, (6)

where δi > −1, i = 1, 2 are constants that influence the nonlinearity of the problem,
γi ≥ 0 describes the impact of temperature-dependent thermal parameters and n, m ≥ 1
determines the degree of nonlinearity in the problem and influences the behavior of the
material and the characteristics of the phase transition. The term β(x) is an external heat
source that represents a source or sink term.

This new problem presents a Stefan problem characterized by the nonlinear ther-
mal conductivity of the form (1 + δ1y + γ1y2)n and a nonlinear specific heat of the form
(1 + δ2y + γ2y2)m. In principle, the thermal conductivity and specific heat of a material are
connected with the internal energy of the molecule, and so to link specific heat to tempera-
ture is a more natural and realistic form of modeling. Recent studies have shown that the
thermal properties of substances show nonlinearity behavior concerning temperature. This
leads to several important applications to nonlinear heat conduction problems, such as non-
linear optical crystals [17–19], Lazer welding experiments [20], friction stir welding [21],
and the resistance spot welding process, which is important for the automotive indus-
try [22]. The authors in [21] formulated a three-dimensional thermal diffusion equation to
model friction stir welding, which involves complex heat transfer and moving heat courses
since thermal conduction becomes a transient process. The authors used the thermal con-
ductivity and specific heat defined as a cubic function of temperature and they observed
a good agreement between the experimental results and the models. In [22], the authors
constructed a three-dimensional electromechanical model, where the thermal parameters
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were determined for high-speed thermography. Furthermore, in [23], the author derived
a nonlinear differential equation of thermal conductivity phenomenologically, which is
important in self-organization processes. In addition, the temperature evolution dynamics
were analyzed in the nonstationary case, and consequently, the thermal conductivity was
given as a square function and a cubic of the function of thermal conductivity. In [24], the
authors developed a procedure for regenerators with the temperature-dependent specific
heat of the fluid, and they observed that a constant specific heat model is not adequate
except for special cases. In [25], the authors assumed the specific heat capacity of a carbona-
ceous substance to be a polynomial of degree 4. Also, other research assumed the nonlinear
specific heat for an Earth mineralogical model [26], for coal [27,28], for liver tissue [29], and
for steroid thermal models [30]. It is for this reason that representing thermal parameters as
nonlinear functions of temperature become of vital importance to physical and industrial
applications and has caused a great deal of interest in recent research.

The nonhomogeneous term β ∈ C1(R+) represents the so-called volumetric heating
source. As proposed by E.P. Scott [31], this type of source term is important in studying
freeze-drying processes using microwave energy technology to speed up the process. Scott
proposed the following form for the source term: β(η) = K

t e−(η+d)2
, where the similarity

η =
x

2a
√

t
, K and d are physical parameters, and t is a temporal variable that refers to the

time required to track the progression of the absorption. This function reflects the rapid
decrease in the heating effect with distance and time. As noted in [31], this function helps
understand the absorption between dried and frozen regions and facilitates the analytical
solution of the problem. Several papers have investigated the solution of the Stefan problem
for heat sources with constant thermal parameters [32–35] and temperature-dependent
thermal parameters [36–39]. The existence of solutions has been established, and explicit
solutions have been obtained for particular cases.

The purpose of this paper is two-fold: the first goal is to establish an existence and
uniqueness theorem for Pr. (4)–(5) with no source term, i.e., β = 0. Then, an analytic solution
to the problem is provided in addition to lower and upper bounds. It can be seen that
the solution obtained here reduces to ϕδ,γ when δ2 = γ2 = 0. This implies that Pr. (4)–(5)
generalize all the problems proposed by the preceding papers [1–5], and the solution
generalizes the error function ϕδ,γ. The second goal is to provide an analytic solution in
addition to lower and upper bounds to Pr. (4)–(5) and Pr. (4)–(6) when β(x) = e−kx2

, k > 0,
which was adopted in [39]. The paper is organized as follows: In Section 2, we present a
preliminary analysis of the homogeneous problem. In Section 3, we obtain the lower and
upper bounds of the solution for Pr. (4)–(5) when β(x) = 0. In Section 4, the existence of
the solution is established. In Section 5, we also establish the lower and upper bounds
of the solution for Pr. (4)–(6) with β(x) = e−kx2

, k > 0. In Section 6, we explore various
numerical results and we conclude with useful remarks.

2. Analytic Treatment

First of all, we give a generalization to (Theorem 2 in [3]). Note that the following
theorem is an important tool in the proof of the lower and upper bounds of the solution to
Pr. (4)–(5).

Theorem 1. The solution y of Pr. (4)–(5) when β(x) = 0 can be expressed by

y = C
∫ x

0

1
Ψ1(η)

exp
(
−2

∫ η

0

ξΨ2(ξ)

Ψ1(ξ)
dξ

)
dη, 0 ≤ x < ∞, (7)

where Ψ1(x) = (1 + δ1y + γ1y2)n, Ψ2(x) = (1 + δ2y + γ2y2)m and

C =

[∫ ∞

0

1
Ψ1(x)

exp
(
−2

∫ x

0

ξΨ2(ξ)

Ψ1(ξ)
dξ

)
dx
]−1

. (8)
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Proof. Rewrite Equation (4) as

d
dx

[
Ψ1(x)

dy
dx

]
+ 2x

Ψ2(x)
Ψ1(x)

[
Ψ1(x)

dy
dx

]
= 0. (9)

Setting Φ(x) = Ψ1(x) dy
dx gives

dΦ(x)
dx

+ 2x
Ψ2(x)
Ψ1(x)

Φ(x) = 0. (10)

Solving Equation (10) in Φ(x), we obtain

Φ(x) = C exp
(
−2

∫ x

0

ηΨ2(η)

Ψ1(η)
dη

)
, (11)

where C is an unknown constant. Hence,

y′ = C
Ψ1(x)

exp
(
−2

∫ x

0

ηΨ2(η)

Ψ1(η)
dη

)
. (12)

Now, integrating (12) from 0 to x, taking into account that y(0) = 0, we obtain (7).
The constant C can be determined by using the second boundary condition y(∞) = 1 to
obtain (8).

Remark 1. When γi = 0, i = 1, 2, δ2 = 0 and n = m = 1, this reduces to (Theorem 2 in [1]).

3. Lower and Upper Bounds of the Solution y

Now, we establish lower and upper bounds of the solution y for different values of
δi > −1 and γi ≥ 0, i = 1, 2. Please note that all bounds involve the error function.

Another remark that we shall need is

Remark 2. Since 0 ≤ y ≤ 1 [1,2], we can assert for γi ≥ 0, i = 1, 2 that

• If δi ≥ 0, then 0 ≤ δiy ≤ δi. So 1 ≤ 1 + δiy + γiy2 ≤ 1 + δi + γi;
• If −1 < δi < 0, then δi ≤ δiy ≤ 0. So δi + 1 ≤ 1 + δiy + γiy2 ≤ 1 + γi;
• If δ1 ≥ 0 and −1 < δ2 < 0, then 1 ≤ 1 + δ1y + γ1y2 ≤ 1 + δ1 + γ1 and δ2 + 1 ≤

1 + δ2y + γ2y2 ≤ 1 + γ2;
• If −1 < δ1 < 0 and δ2 ≥ 0, then δ1 + 1 ≤ 1 + δ1y + γ1y2 ≤ 1 + γ1 and 1 ≤ 1 + δ2y +

γ2y2 ≤ 1 + δ2 + γ2.

In view of these, we have 1 + δiy + γiy2 > 0, i = 1, 2 for γi > 0 and δi > −1.

We are now ready to give a theorem on the lower and upper bounds of the solution y.

Theorem 2. If y ∈ C2[0, ∞) is a solution of Pr. (4)–(5) when β(x) = 0, then there are upper and
lower bounds of the solution y(x) such that

y1(x) ≤ y ≤ y2(x) for δi ≥ 0, i = 1, 2, 0 ≤ x < +∞, (13)

y3(x) ≤ y ≤ y4(x) for − 1 < δi < 0, i = 1, 2, 0 ≤ x < +∞, (14)

y5(x) ≤ y ≤ y6(x) for δ1 > 0, −1 < δ2 < 0, 0 ≤ x < +∞, (15)

y7(x) ≤ y ≤ y8(x) for − 1 < δ1 < 0, δ2 > 0, 0 ≤ x < +∞, (16)
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = C
√

π

2(γ1+δ1+1)n
√

(γ2+δ2+1)m
erf
(√

(γ2 + δ2 + 1)mx
)

, 0 ≤ x < ∞,

y2 =
C
√

(γ1+δ1+1)nπ
2 erf

(
x√

(γ1+δ1+1)n

)
, 0 ≤ x < ∞,

y3 =
C
√

π(δ1+1)n

2(γ1+1)n
√

(γ2+1)m
erf
(√

(γ2+1)m√
(δ1+1)n

x
)

, 0 ≤ x < ∞,

y4 =
C
√

π(γ1+1)n

2(δ1+1)n
√

(δ2+1)m
erf
(√

(δ2+1)m√
(γ1+1)n

x
)

, 0 ≤ x < ∞,

y5 = C
√

π

2(γ1+δ1+1)n
√

(γ2+1)m
erf
(√

(γ2 + 1)mx
)

, 0 ≤ x < ∞,

y6 =
C
√

(γ1+δ1+1)nπ

2
√

(δ2+1)m
erf
( √

(δ2+1)m√
(γ1+δ1+1)n

x
)

, 0 ≤ x < ∞,

y7 =
C
√

(δ1+1)nπ

2(γ1+1)n
√

(γ2+δ2+1)m
erf
(√

(γ2+δ2+1)m√
(δ1+1)n

x
)

, 0 ≤ x < ∞,

y8 =
C
√

(γ1+1)nπ

2(δ1+1)n erf
(

x√
(γ1+1)n

)
, 0 ≤ x < ∞,

(17)

where

2√
(γ1 + δ1 + 1)nπ

≤ C ≤ 2(γ1 + δ1 + 1)n
√
(γ2 + δ2 + 1)m

√
π

for δi ≥ 0, i = 1, 2, (18)

2(δ1 + 1)n
√
(γ2 + 1)m√

π(γ1 + 1)n
≤ C ≤ 2(γ1 + 1)n

√
(γ2 + 1)m√

π(δ1 + 1)n
for − 1 < δi < 0, i = 1, 2, (19)

2
√
(δ2 + 1)m√

(γ1 + δ1 + 1)nπ
≤ C ≤ 2(γ1 + δ1 + 1)n

√
(γ2 + 1)m

√
π

for δ1 > 0, −1 < δ2 < 0, (20)

2(δ1 + 1)n√
(γ1 + 1)nπ

≤ C ≤ 2(γ1 + 1)n
√
(γ2 + δ2 + 1)m√

(δ1 + 1)nπ
for − 1 < δ1 < 0, δ2 > 0. (21)

Proof. The proof of this theorem requires the use of the inequalities that appear in Remark
2. A simple computation leads to

1
(γ1 + δ1 + 1)n ≤ 1

Ψ1
≤ 1 and 1 ≤ Ψ2 ≤ (γ2 + δ2 + 1)m, for δi ≥ 0, i = 1, 2, (22)

1
(γ1 + 1)n ≤ 1

Ψ1
≤ 1

(δ1 + 1)n and (δ2 + 1)m ≤ Ψ2 ≤ (γ2 + 1)m, for − 1 < δi < 0, i = 1, 2, (23)

1
(γ1 + δ1 + 1)n ≤ 1

Ψ1
≤ 1 and (δ2 + 1)m ≤ Ψ2 ≤ (γ2 + 1)m, for δ1 ≥ 0, 1 < δ2 < 0, (24)

and

1
(γ1 + 1)n ≤ 1

Ψ1
≤ 1

(δ1 + 1)n and 1 ≤ Ψ2 ≤ (γ2 + δ2 + 1)m for − 1 < δ1 < 0, δ2 ≥ 0. (25)

Substituting (22)–(25) into (7), we obtain

C
(γ1 + δ1 + 1)n

∫ x

0
e−(γ2+δ2+1)mξ2

dξ ≤ y ≤ C
∫ x

0
e
− ξ2

(γ1+δ1+1)n dξ for δi ≥ 0, i = 1, 2, (26)
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C
(γ1 + 1)n

∫ x

0
e
− (γ2+1)m

(δ1+1)n ξ2

dξ ≤ y ≤ C
(δ1 + 1)n

∫ x

0
e
− (δ2+1)m

(γ1+1)n ξ2

dξ for − 1 < δi < 0, i = 1, 2, (27)

C
(γ1 + δ1 + 1)n

∫ x

0
e−(γ2+1)mξ2

dξ ≤ y ≤ C
∫ x

0
e
− (γ2+1)m

(γ1+δ1+1)n ξ2

dξ for δ1 ≥ 0,−1 < δ2 < 0, (28)

and

C
(γ1 + 1)n

∫ x

0
e
− (γ2+δ2+1)m

(δ1+1)n ξ2

dξ ≤ y ≤ C
(δ1 + 1)n

∫ x

0
e
− ξ2

(γ1+1)n dξ for − 1 < δ1 < 0, δ2 ≥ 0, (29)

which gives the desired inequalities.
Substituting (22)–(25) into (8), we obtain (18)–(21) and the proof is complete.

Similarly, we also have the following estimations for the derivative y′.

Theorem 3. For Pr. (4)–(5) when β(x) = 0, there are upper and lower bounds of y′ such that
we have

z1(x) ≤ y′ ≤ z2(x) for δi ≥ 0, i = 1, 2, 0 ≤ x < +∞, (30)

z3(x) ≤ y′ ≤ z4(x) for − 1 < δi < 0, i = 1, 2, 0 ≤ x < +∞, (31)

z5(x) ≤ y′ ≤ z6(x) for δ1 ≥ 0, −1 < δ2 < 0, 0 ≤ x < +∞, (32)

z7(x) ≤ y′ ≤ z8(x) for − 1 < δ1 < 0, δ2 ≥ 0, 0 ≤ x < +∞, (33)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 = C
(γ1+δ1+1)n e−(γ2+δ2+1)mx2

, 0 ≤ x < ∞,

z2 = Ce
− x2

(γ1+δ1+1)n , 0 < x < ∞,

z3 = C
(γ1+1)n e

− (γ2+1)m

(δ1+1)n x2

, 0 ≤ x < ∞,

z4 = C
(δ1+1)n e

− (δ2+1)m

(γ1+1)n x2

, 0 ≤ x < ∞,

z5 = C
(γ1+δ1+1)n e−(γ2+1)mx2

, 0 < x < ∞,

z6 = Ce
− (γ2+1)m

(γ1+δ1+1)n x2

, 0 < x < ∞,

z7 = C
(γ1+1)n e

− (γ2+δ2+1)m

(δ1+1)n x2

, 0 ≤ x < ∞,

z8 = C
(δ1+1)n e

− x2
(γ1+1)n , 0 < x < ∞.

(34)

Proof. Theorem 3 follows immediately by incorporating (22)–(25) into (12) as in the proof
of Theorem 2.

4. Existence and Uniqueness of the Solution

In this section, the following theorem (Theorem 3, see [40]) is an important tool in the
proof of our result.
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Theorem 4. (Theorem 3 in [40]) For the given boundary value problem{
v′′ = h(x, v, v′), 0 < x < ∞,

−αv(0) + βv′(0) = r, v(∞) = 0,
(35)

where α > 0, β ≥ 0 and r is a given constant. If h(x, v, p) is continuous and satisfies the
following conditions:

1. There is a constant M ≥ 0 such that vh(x, v, 0) ≥ 0 for | v |> M;
2. There are functions A(x, v) > 0 and B(x, v) > 0, which are bounded when v varies in a

bounded set and if | h(x, v, p) |≤ A(x, v)p2 + B(x, v);
3. There is a continuous function ϕ such that ϕ(x) → 0 as x → ∞ and | v(x) |≤ ϕ(x) for

0 ≤ x < ∞.

Then, this boundary value problem has at least one solution in C2[0, ∞).

Also, our main result makes use of the following fundamental lemma:

Lemma 1. 1. Pr. (4)–(5) with β(x) = 0 can be converted into the nonlinear boundary value
problem {

u′′ + f (x, u, u′) = 0, 0 < x < ∞,
u(0) = δ1

2γ1
, u(∞) = 1 + δ1

2γ1
,

(36)

where

f (x, u, u′) = 2γ1n
u

γ1u2 + α1
(u′)2 + 2x

(
γ2(u + σ)2 + α2

)m

(γ1u2 + α1)n u′, (37)

u = y + δ1
2γ1

, αi = 1 − δ2
i

4γi
, i = 1, 2 and σ = δ2

2γ2
− δ1

2γ1
.

Further,

δ1

2γ1
≤ u(x) ≤ 1 +

δ1

2γ1
, 0 ≤ x < ∞. (38)

2. Pr. (4)–(5) with β(x) = 0 can also be converted into{
v′′ = g(x, v, v′), 0 < x < ∞,

v(0) = −1, v(∞) = 0,
(39)

where g(x, v, v′) is continuous and defined on [0, ∞)× [−1, 0]×R by

g(x, v, v′) = −2γ1n
(v+1+ δ1

2γ1
)

γ1(v+1+ δ1
2γ1

)2+α1
(v′)2 − 2x

(
γ2

(
v+1+ δ2

2γ2

)2
+α2

)m

(γ1(v+1+ δ1
2γ1

)2+α1)n
v′,

(40)

where v = u − 1 − δ1
2γ1

.
3. For the given BVP (39), there are functions A(x, v), B(x, v) > 0, which are bounded when v

varies in a bounded set [−1, 0] such that

| g(x, v, p) |≤ A(x, v)p2 + B(x, v). (41)

Proof. 1. By writing the nonlinear terms 1 + δiy + γiy2, i = 1, 2 of Pr. (4) in the form

1 + δiy + γiy2 = γi(y2 +
δi
γi

y +
1
γi
) = γi(y +

δi
2γi

)2 + 1 − δ2
i

4γi
, γi > 0, i = 1, 2, (42)
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the nonlinear differential equation of Pr. (4) becomes

d
dx

[(
γ1(y +

δ1

2γ1
)2 + α1

)n dy
dx

]
+ 2x

(
γ2(y +

δ2

2γ2
)2 + α2

)m dy
dx

= 0, (43)

where αi = 1 − δ2
i

4γi
, i = 1, 2. Thus,

d
dx

[(
γ1(y +

δ1

2γ1
)2 + α1

)n d
dx

(y +
δ1

2γ1
)

]
+ 2x

(
γ2(y +

δ2

2γ2
)2 + α2

)m d
dx

(y +
δ1

2γ1
) = 0. (44)

Using the change of variable

u = y +
δ1

2γ1
. (45)

Equation (44) becomes

d
dx

[(
γ1u2 + α1

)n du
dx

]
+ 2x

(
γ2

(
u +

δ2

2γ2
− δ1

2γ1

)2
+ α2

)m
du
dx

= 0, 0 < x < ∞. (46)

Hence,

d
dx

[(
γ1u2 + α1

)n du
dx

]
+ 2x

(
γ2(u + σ)2 + α2

)m du
dx

= 0, 0 < x < ∞, (47)

where σ = δ2
2γ2

− δ1
2γ1

. Therefore,

(
γ1u2 + α1

)n d2u
dx2 + n

(
γ1u2 + α1

)n−1
(

2γ1u
(

du
dx

)2
)
+ 2x

[
γ2(u + σ)2 + α2

]m du
dx

= 0. (48)

Consequently,

d2u
dx2 + 2γ1n

u
γ1u2 + α1

(
du
dx

)2
+ 2x

(
γ2(u + σ)2 + α2

)m

(γ1u2 + α1)
n

du
dx

= 0. (49)

2. The second part of this lemma follows from the first one.
3. Since v′(x) = u′(x) = y′(x), from the upper bounds of y′(x), we have

v′(x) ≤ Ce
− x2

(γ1+δ1+1)n for δi ≥ 0, 0 ≤ x < ∞, (50)

v′(x) ≤ C
(δ1 + 1)n e

− (δ2+1)m

(γ1+1)n x2

for − 1 < δi < 0, 0 ≤ x < ∞, (51)

v′(x) ≤ Ce
− (γ2+1)m

(γ1+δ1+1)n x2

for δ1 ≥ 0,−1 < δ2 < 0, 0 ≤ x < ∞ (52)

and

v′(x) ≤ C
(δ1 + 1)n e

− x2
(γ1+1)n for − 1 < δ1 < 0, δ2 ≥ 0, 0 ≤ x < ∞. (53)
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Thus,

| g(x, v, v′) | ≤ 2γ1n
(v+1+ δ1

2γ1
)

γ1(v+1+ δ1
2γ1

)2+α1
(v′)2

+2xCe
− x2

(γ1+δ1+1)n
[γ2(v+1+ δ2

2γ2
)2+α2]

m

γ1(v+1+ δ1
2γ1

)2+α1]n
,

(54)

where δi ≥ 0, i = 1, 2,

| g(x, v, v′) | ≤ 2γ1n
(v+1+ δ1

2γ1
)

γ1(v+1+ δ1
2γ1

)2+α1
(v′)2

+2x C
(δ1+1)n e

− (δ2+1)m

(γ1+1)n x2 [γ2(v+1+ δ2
2γ2

)2+α2]
m

[γ1(v+1+ δ1
2γ1

)2+α1]n

(55)

for −1 < δi < 0,

| g(x, v, v′) | ≤ 2γ1n
(v+1+ δ1

2γ1
)

γ1(v+1+ δ1
2γ1

)2+α1
(v′)2

+2xCe
− (γ2+1)m

(γ1+δ1+1)n x2 [γ2(v+1+ δ2
2γ2

)2+α2]
m

[γ1(v+1+ δ1
2γ1

)2+α1]n

(56)

for δ1 ≥ 0, − 1 < δ2 < 0 and

| g(x, v, v′) | ≤ 2γ1n
(v+1+ δ1

2γ1
)

γ1(v+1+ δ1
2γ1

)2+α1
(v′)2

+2x C
(δ1+1)n e

− x2
(γ1+1)n

[γ2

(
v+1+ δ2

2γ2

)2
+α2]

m

[γ1(v+1+ δ1
2γ1

)2+α1]n

(57)

for δ2 ≥ 0 and −1 < δ1 < 0.
Hence, for δi ≥ 0, we have

A(x, v) = 2γ1n
(v + 1 + δ1

2γ1
)

γ1(v + 1 + δ1
2γ1

)2 + α1
(58)

and

B(x, v) = 2xCe
− x2

(γ1+δ1+1)n
[γ2

(
v + 1 + δ2

2γ2

)2
+ α2]

m

[γ1(v + 1 + δ1
2γ1

)2 + α1]n
. (59)

For −1 < δi < 0, we have

A(x, v) = 2γ1n
(v + 1 + δ1

2γ1
)

γ1(v + 1 + δ1
2γ1

)2 + α1
(60)

and

B(x, v) = 2x
C

(δ1 + 1)n e
− (δ2+1)m

(γ1+1)n x2 [γ2(v + 1 + δ2
2γ2

)2 + α2]
m

[γ1(v + 1 + δ1
2γ1

)2 + α1]n
. (61)

For δ1 ≥ 0 and −1 < δ2 < 0, we have

A(x, v) = 2γ1n
(v + 1 + δ1

2γ1
)

γ1(v + 1 + δ1
2γ1

)2 + α1
(62)
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and

B(x, v) = 2xCe
− (γ2+1)m

(γ1+δ1+1)n x2 [γ2(v + 1 + δ2
2γ2

)2 + α2]
m

[γ1(v + 1 + δ1
2γ1

)2 + α1]n
. (63)

For −1 < δ1 < 0 and δ2 ≥ 0, we have

A(x, v) = 2γ1n
(v + 1 + δ1

2γ1
)

γ1(v + 1 + δ1
2γ1

)2 + α1
(64)

and

B(x, v) = 2x
C

(δ1 + 1)n e
− x2

(γ1+1)n
[γ2(v + 1 + δ2

2γ2
)2 + α2]

m

[γ1(v + 1 + δ1
2γ1

)2 + α1]n
. (65)

When v varies in a bounded set [−1, 0], we have

| A(x, v) | ≤ 2γn + nδ1, | B(x, v) | ≤ 2C[γ2(1 +
δ2

2γ2
)2 + α2]

m, δi ≥ 0 (66)

| A(x, v) | ≤ 2γn + nδ1, | B(x, v) | ≤ 2C
[γ2(1 +

δ2
2γ2

)2 + α2]
m

(γ1 + 1)n , − 1 < δi < 0 (67)

| A(x, v) | ≤ 2γn + nδ1, | B(x, v) | ≤ 2C[γ2(1 +
δ2

2γ2
)2 + α2]

m, δ1 ≥ 0, − 1 < δ2 < 0, (68)

| A(x, v) | ≤ 2γn + nδ1, | B(x, v) | ≤ 2C
[γ2

(
1 + δ2

2γ2

)2
+ α2]

m

(γ1 + 1)n , − 1 < δ1 < 0, δ2 ≥ 0. (69)

Thus, we are now ready for the existence theorem.

Theorem 5. Pr. (39) has at least one solution v in C2[0, ∞).

Proof. By Lemma 1, the function g(x, v, v′) defined by (40) satisfies the first condition of
Theorem 4 (Theorem 3 in [40]). To see this, note for v′ = 0, there exists a constant M ≥ 0
when v varies in a bounded set [−1, 0] such that vg(x, v, 0) = 0 for | v |≥ M. Further-
more, the second condition of Theorem 4(Theorem 3 in [40]) holds, that is, | g(x, v, p) |≤
A(x, v)p2 + B(x, v), where A(x, v) > 0 and B(x, v) > 0 are two bounded functions for
different values of δi > −1 and γi ≥ 0, i = 1, 2 (see (66)–(69)). It remains, therefore, only to
prove the third condition of Theorem 4 (Theorem 3 in [40]), that is, there is a continuous
function ϕ(x) such that ϕ(x) → 0 as x → ∞ and | v(x) |≤ ϕ(x) for 0 ≤ x < ∞.
Indeed, from the upper bounds of y(x), if we choose, for example,

C =
2√

(γ1 + δ1 + 1)nπ
for δi ≥ 0, (70)

C =
2
√
(δ1 + 1)n

√
(γ2 + 1)m

√
π

for − 1 < δi < 0 i = 1, 2, (71)

C =
2
√
(γ2 + 1)m√

(γ1 + δ1 + 1)nπ
for δ1 > 0, −1 < δ2 < 0, (72)
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C =
2(δ1 + 1)n√
(γ1 + 1)nπ

for − 1 < δ1 < 0, δ2 > 0 (73)

and in view of v(x) = y − 1, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(x) ≤ ϕ(x) = −1 + erf
(

x√
(γ1+δ1+1)n

)
, δi ≥ 0, 0 ≤ x < ∞,

v(x) ≤ ϕ(x) = −1 + erf
(√

(δ2+1)m√
(γ1+1)n

x
)

, −1 < δi < 0, 0 ≤ x < ∞,

v(x) ≤ ϕ(x) = −1 + erf
( √

(γ2+1)m√
(γ1+δ1+1)n

x
)

, δ1 > 0, −1 < δ2 < 0, 0 ≤ x < ∞,

v(x) ≤ ϕ(x) = −1 + erf
(

x√
(γ1+1)n

)
, δ1 > 0, −1 < δ2 < 0, 0 ≤ x < ∞.

(74)

This means that there exists a continuous function ϕ(x) such that v(x) ≤ ϕ(x), where

ϕ(x) → 0 as x → ∞ for δi ≥ 0, −1 < δi < 0, i = 1, 2, 0 ≤ x < ∞. (75)

Therefore, the function g(x, v, v′) satisfies the conditions of Theorem 4 (Theorem 3 in [40]).
Consequently, Pr. (39) has at least one solution v(x).

Uniqueness of the Solution

Theorem 6. If g(x, v, p) is monotone increasing in v for each fixed x ∈ [0, ∞) and p ∈ R. Then,
the boundary problem Pr. (39) has at most one solution v in C2[0, ∞).

Proof. In proving the uniqueness of the solution, we make use of the following important
result [40]:
If g(x, v, v′) is monotone increasing in v, then the boundary value on a finite interval{

v′′ = g(x, v, v′), 0 < x < b,
v(0) = σ1, v(b) = σ2

(76)

has at most one solution.
The rest of the proof is similar to the proof of the uniqueness of the solution of our result
(see Pr. (2) in [5]).

5. The General Problem: Nonhomogeneous Equation

Now, we investigate the general problem.

5.1. Pr. (4)–(5) with β(x) = e−kx2
, k > 0

For the general problem{
d

dx

[
(1 + δ1y + γ1y2)n dy

dx

]
+ 2x(1 + δ2y + γ2y2)m dy

dx = β(x), 0 < x < ∞,
y(0) = 0, y(∞) = 1,

(77)

where β(x) = e−kx2
, k > 0, we have

Theorem 7. The solution y of Pr. (77) can be expressed by

y =
∫ x

0

1
Ψ1(η)

exp
(
−2

∫ η

0

ξΨ2(ξ)

Ψ1(ξ)
dξ

)[∫ η

0
β(ξ) exp

(
2
∫ ξ

0

tΨ2(t)
Ψ1(t)

dt
)

dξ

]
dη

+D
∫ x

0

1
Ψ1(η)

exp
(
−2

∫ η

0

ξΨ2(ξ)

Ψ1(ξ)
dξ

)
dη, (78)
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where

D =
1 − ∫ ∞

0
1

Ψ1(x) exp
(
−2

∫ x
0

ξΨ2(ξ)
Ψ1(ξ)

dξ
)[∫ x

0 β(ξ) exp
(

2
∫ ξ

0
tΨ2(t)
Ψ1(t)

dt
)

dξ
]
dx∫ ∞

0
1

Ψ1(x) exp
(
−2

∫ x
0

ξΨ2(ξ)
Ψ1(ξ)

dξ
)

dx
. (79)

Proof. Proceeding as in the proof of Theorem 1, we have

dΦ(x)
dx

+ 2x
Ψ2(x)
Ψ1(x)

Φ(x) = β(x). (80)

Solving Equation (80) in Φ(x), we obtain

Φ(x) = exp
(
−2

∫ x
0

ξΨ2(ξ)
Ψ1(ξ)

dξ
)[∫ x

0 β(ξ) exp
(

2
∫ ξ

0
tΨ2(t)
Ψ1(t)

dt
)

dξ
]

+D exp
(
−2

∫ x
0

ηΨ2(η)
Ψ1(η)

dη
)

, (81)

where D is a constant of the integral. Hence,

y′ = 1
Ψ1(x) exp

(
−2

∫ x
0

ξΨ2(ξ)
Ψ1(ξ)

dξ
)[∫ x

0 β(ξ) exp
(

2
∫ ξ

0
tΨ2(t)
Ψ1(t)

dt
)

dξ
]

+ D
Ψ1(x) exp

(
−2

∫ x
0

ηΨ2(η)
Ψ1(η)

dη
)

. (82)

Integrating (82) from 0 to x and taking into account that y(0) = 0, we obtain (78).
The constant D can be determined using the second boundary condition y(∞) = 1 to
obtain (79).

For the lower and upper bounds of the solution y of Pr. (77) for different values of
δi > −1 and γi ≥ 0, i = 1, 2, the following theorem follows immediately by incorporating
the inequalities (22)–(25) into (78) as in the proof of Theorem 2.

Theorem 8. If y ∈ C2[0, ∞) is a solution of Pr. (77), then there are upper and lower bounds of the
solution y(x) such that

w1(x) ≤ y ≤ w2(x) for δi ≥ 0, i = 1, 2, 0 ≤ x < +∞, (83)

w3(x) ≤ y ≤ w4(x) for − 1 < δi < 0, i = 1, 2, 0 ≤ x < +∞, (84)

w5(x) ≤ y ≤ w6(x) for δ1 > 0, −1 < δ2 < 0, 0 ≤ x < +∞, (85)

w7(x) ≤ y ≤ w8(x) for − 1 < δ1 < 0, δ2 > 0, 0 ≤ x < +∞, (86)

where
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1 = D
√

π

2(γ1+δ1+1)n
√

(γ2+δ2+1)m
erf

(√
(γ2 + δ2 + 1)mx

)
+

√
π

2(γ1+δ1+1)n
√

k− 1
(γ1+δ1+1)n

∫ x
0 e−(γ2+δ2+1)mη2

erf
(√

k − 1
(γ1+δ1+1)n η

)
dη, k > 1

(γ1+δ1+1)n ,

w2 =
D
√

(γ1+δ1+1)nπ
2 erf

(
x√

(γ1+δ1+1)n

)
+

√
π

2
√

k−(γ2+δ2+1)m

∫ x
0 e

− 1
(γ1+δ1+1)n x2

erf
(√

k − (γ2 + δ2 + 1)mη
)

dη, k > (γ2 + δ2 + 1)m,

w3 =
D
√

π(δ1+1)n

2(γ1+1)n
√

(γ2+1)m
erf

(√
(γ2+1)m√
(δ1+1)n

x
)

+
√

π

2(γ1+1)n
√

k− (δ2+1)m

(γ1+1)n

∫ x
0 e

− (γ2+1)m

(δ1+1)n η2

erf
(√

k − (δ2+1)m

(γ1+1)n η
)

dη, k > (δ2+1)m

(γ1+1)n ,

w4 =
D
√

π(γ1+1)n

2(δ1+1)n
√

(δ2+1)m
erf

(√
(δ2+1)m√
(γ1+1)n

x
)

+
√

π

2(δ1+1)n
√

k− (γ2+1)m

(δ1+1)n

∫ x
0 e

− (δ2+1)m

(γ1+1)n η2

erf
(√

k − (γ2+1)m

(δ1+1)n η
)

dη, k > (γ2+1)m

(δ1+1)n ,

w5 = D
√

π

2(γ1+δ1+1)n
√

(γ2+1)m
erf

(√
(γ2 + 1)mx

)
+

√
π

2(γ1+δ1+1)n
√

k− (δ2+1)m

(γ1+δ1+1)n

∫ x
0 e−(γ2+1)mη2

erf
(√

k − (δ2+1)m

(γ1+δ1+1)n η
)

dη, k > (δ2+1)m

(γ1+δ1+1)n ,

w6 =
D
√

(γ1+δ1+1)nπ

2
√

(δ2+1)m
erf

( √
(δ2+1)m√

(γ1+δ1+1)n
x
)

+
√

π

2
√

k−(γ2+1)m

∫ x
0 e

− (δ2+1)m

(γ1+δ1+1)n η2

erf
(√

k − (δ2 + 1)mη
)

dη, k > (δ2 + 1)m,

w7 =
D
√

(δ1+1)nπ

2(γ1+1)n
√

(γ2+δ2+1)m
erf

(√
(γ2+δ2+1)m√

(δ1+1)n
x
)

+
√

π

2(γ1+1)n
√

k− 1
(γ1+1)n

∫ x
0 e

− (γ2+δ2+1)m

(δ1+1)n η2

erf
(√

k − 1
(γ1+1)n η

)
dη, k > 1

(γ1+1)n ,

w8 =
D
√

(γ1+1)nπ

2(δ1+1)n erf
(

x√
(γ1+1)n

)
+

√
π

2(δ1+1)n
√

k− (γ2+δ2+1)m

(δ1+1)n

∫ x
0 e

− 1
(γ1+1)n η2

erf
(√

k − (γ2+δ2+1)m

(δ1+1)n η
)

dη, k > (γ2+δ2+1)m

(δ1+1)n .

Further, the constant D satisfies

D1 =

[
1 −

√
π

2
√

k − (γ2 + δ2 + 1)m

∫ ∞

0
e
− 1

(γ1+δ1+1)n x2

erf
(√

k − (γ2 + δ2 + 1)mη

)
dη

]

× 2√
(γ1 + δ1 + 1)nπ

, (87)

D2 =

⎡⎣1 −
√

π

2(γ1 + δ1 + 1)n
√

k − 1
(γ1+δ1+1)n

∫ ∞

0
e−(γ2+δ2+1)mη2

erf

(√
k − 1

(γ1 + δ1 + 1)n η

)
dη

⎤⎦
× 2√

π
(γ1 + δ1 + 1)n

√
(γ2 + δ2 + 1)m, (88)
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D3 =

⎡⎣1 −
√

π

2(γ1 + 1)n
√

k − (δ2+1)m

(γ1+1)n

∫ ∞

0
e
− (γ2+1)m

(δ1+1)n η2

erf

(√
k − (δ2 + 1)m

(γ1 + 1)n η

)
dη

⎤⎦
×2(γ1 + 1)n

√
(γ2 + 1)m√

(γ1 + δ1 + 1)nπ
, (89)

D4 =

⎡⎣1 −
√

π

2(δ1 + 1)n
√

k − (γ2+1)m

(δ1+1)n

∫ ∞

0
e
− (δ2+1)m

(γ1+1)n η2

erf

(√
k − (γ2 + 1)m

(δ1 + 1)n η

)
dη

⎤⎦
×2(δ1 + 1)n

√
(δ2 + 1)m√

π(γ1 + 1)n
, (90)

D5 =

[
1 −

√
π

2
√

k − (γ2 + 1)m

∫ x

0
e
− (δ2+1)m

(γ1+δ1+1)n η2

erf
(√

k − (δ2 + 1)mη

)
dη

]

× 2
√
(δ2 + 1)m√

(γ1 + δ1 + 1)nπ
, (91)

D6 =

⎡⎣1 −
√

π

2(γ1 + δ1 + 1)n
√

k − (δ2+1)m

(γ1+δ1+1)n

∫ ∞

0
e−(γ2+1)mη2

erf

(√
k − (δ2 + 1)m

(γ1 + δ1 + 1)n η

)
dη

⎤⎦
× 2√

π
(γ1 + δ1 + 1)n

√
(γ2 + 1)m, (92)

D7 =

⎡⎣1 −
√

π

2(δ1 + 1)n
√

k − (γ2+δ2+1)m

(δ1+1)n

∫ x

0
e
− 1

(γ1+1)n η2

erf

(√
k − (γ2 + δ2 + 1)m

(δ1 + 1)n η

)
dη

⎤⎦
× 2(δ1 + 1)n√

(γ1 + 1)nπ
(93)

and

D8 =

⎡⎣1 −
√

π

2(γ1 + 1)n
√

k − 1
(γ1+1)n

∫ x

0
e
− (γ2+δ2+1)m

(δ1+1)n η2

erf

(√
k − 1

(γ1 + 1)n η

)
dη

⎤⎦
×2(γ1 + 1)n

√
(γ2 + δ2 + 1)m√

(δ1 + 1)nπ
. (94)

5.2. Pr. (4) – (6) with β(x) = e−kx2
, k > 0

{
d

dx

[
(1 + δ1y + γ1y2)n dy

dx

]
+ 2x(1 + δ2y + γ2y2)m dy

dx = β(x), 0 < x < ∞,
y(0) = 1, y(∞) = 0,

(95)

where β(x) = e−kx2
, k > 0,

Theorem 9. The solution y of Pr. (95) can be expressed by

y = 1 +
∫ x

0

1
Ψ1(η)

exp
(
−2

∫ η

0

ξΨ2(ξ)

Ψ1(ξ)
dξ

)[∫ η

0
β(ξ) exp

(
2
∫ ξ

0

tΨ2(t)
Ψ1(t)

dt
)

dξ

]
dη

+E
∫ x

0

1
Ψ1(η)

exp
(
−2
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where
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E = −
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. (97)

Similarly, for the lower and upper bounds of the solution y of Pr. (95) for different
values of δi > −1 and γi ≥ 0, i = 1, 2, the following theorem follows immediately by
incorporating the inequalities (22)–(25) into (96).

Theorem 10. If y ∈ C2[0, ∞) is a solution of Pr. (95), then there are upper and lower bounds of
the solution y(x) such that

v1(x) ≤ y ≤ v2(x) for δi ≥ 0, i = 1, 2, 0 ≤ x < +∞, (98)

v3(x) ≤ y ≤ v4(x) for − 1 < δi < 0, i = 1, 2, 0 ≤ x < +∞, (99)

v5(x) ≤ y ≤ v6(x) for δ1 > 0, −1 < δ2 < 0, 0 ≤ x < +∞, (100)

v7(x) ≤ y ≤ v8(x) for − 1 < δ1 < 0, δ2 > 0, 0 ≤ x < +∞, (101)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Further, the constant D satisfies

E1 ≤ E ≤ E2 for δi ≥ 0, i = 1, 2, (102)

E3 ≤ E ≤ E4 for − 1 < δi < 0, i = 1, 2, (103)

E5 ≤ E ≤ E6 for δ1 > 0, −1 < δ2 < 0, (104)

E7 ≤ E ≤ E8 for − 1 < δ1 < 0, δ2 > 0, (105)

where
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6. Numerical Results

6.1. Homogeneous Case

We used the capabilities of the robust Maple software for the rigorous numerical
validation and developed an intuitively navigable program, featuring straightforward
statements tailored to address boundary value problems (BVPs.).

Our program, based on the Maple software, possesses the capability to identify the
nature of the problem at hand and autonomously select the most appropriate algorithm for
its resolution.

In particular, we implemented the mid-defer method, an advanced midpoint tech-
nique that incorporates enhancement schemes. Among these enhancement schemes, the
Richardson extrapolation method emerged as the fastest choice [41–43], while deferred
corrections excelled in handling complex problems due to their lower memory usage.
Furthermore, this method exhibited proficiency in addressing end-point singularities, a
challenge that the trapezoidal scheme often struggles with.

The utilization of the continuation method is of paramount importance in minimizing
global error while determining the optimal number of maximum mesh points. This numer-
ical technique has been rigorously tested and proven effective in previous studies [44,45].

In Figure 1, we depict a comparative analysis involving the numerical solution and
the lower solution for the first scenario and different values of (n = 1, m = 2) and
(n = 2, m = 1), where δi ≥ 0, plotted against the independent variable x. This evalua-
tion was conducted for a specific set of parameters: δ1 = 0.1; δ2 = 0.5; γ1 = 0.5; γ2 = 1, and
the constant C was specifically assigned a value of C = 4 for both cases.

The lower bound, which was chosen to conform to the condition C1 ≤ C ≤ C2 in this
particular case, exhibited a remarkable alignment with the numerical solution.

Figure 1. The numerical solution and the lower bound of Pr. (4)–(5) for a specific parameter set,
namely, δ1 = 0.1; δ2 = 0.5; γ1 = 0.5; γ2 = 1, and with the constant C set to C = 4. Left panel
n = 1, m = 2. Right panel n = 2, m = 1. The solid line corresponds to the numerical solution and the
dash-dotted line corresponds to the lower bound.

Figure 2 illustrates a comparative analysis involving the numerical solution and the
lower solution y3(x) for two distinct scenarios: one with (n = 1, m = 2) and another with
(n = 2, m = 1), all under the constraint that −1 < δi < 0. The plotted data are presented
against the independent variable x.

297



Axioms 2024, 13, 14

This investigation utilized a specific parameter set: δ1 = −0.1, δ2 = −0.5, γ1 = 0.5,
γ2 = 1. In both cases, a constant value of C was employed, with C taking the values 2.6
and 3.2, respectively. It is noteworthy to highlight that the lower bound y3(x) was in good
accordance with the numerical solution for small values of the independent variable, i.e.,
x ≤ 1 when the constant C was thoughtfully chosen to adhere to the condition C3 ≤ C ≤ C4
within this context. However, for larger values of x ≥ 1, the numerical results indicate a
rapid convergence of the solution in the first case.

We additionally present a plot of the lower bound, denoted by

y1(x) =
C
√

π

2(γ1 + δ1 + 1)n
√
(γ2 + δ2 + 1)m

erf
(√

(γ2 + δ2 + 1)mx
)

,

(indicated by the dashed blue line), which was carefully selected with an appropriate
constant value, C, ensuring that y1(∞) � 1. The selected lower bound, i.e., y1(x) to satisfy
the condition y1(∞) � 1 in this context, displayed a striking agreement with the numerical
solution in the second case and can be considered as a good approximation.

Figure 2. The numerical solution and the lower bound of Pr. (4)–(5) for a specific parameter set,
namely, δ1 = −0.1; δ2 = −0.5; γ1 = 0.5; γ2 = 1. Left panel n = 1, m = 2, and C = 2.6. Right panel
n = 2, m = 1, and C = 3.2. The solid line corresponds to the numerical solution and the dash-dotted
line corresponds to the lower bound. The dashed blue line represents the lower bound y1(x) with
C ≈ 2.222, which can be chosen from y1(∞) � 1.

Figure 3 presents a comparative examination involving the numerical solution and
lower solution y5(x) for two distinctive scenarios: one characterized by (n = 1, m = 2)
and the other by (n = 2, m = 1). These scenarios were subject to specific constraints:
−1 < δ2 < 0 and δ1 > 0. The plotted data are displayed as a function of the independent
variable x.

We employed a parameter configuration for this analysis: δ1 = 0.1; δ2 = −0.5; γ1 = 0.5;
γ2 = 1. Notably, both cases were governed by constant values of C = 2.5 and C = 3.5,
respectively.

It is worth emphasizing that the lower boundary, carefully chosen to adhere to the
condition C5 ≤ C ≤ C6 in this context, exhibited a remarkable alignment with the numerical
solution for small values of the independent variable x � 1.

We include a graph showing the lower bound, denoted by y1(x) (represented by the
dashed blue line). This approximate solution was carefully chosen with a constant value,
C, to ensure that y1(∞) � 1. It is worth noting that the chosen approximate solution,
i.e., y1(x), satisfies the condition y1(∞) � 1 in this context, and it showed an excellent
agreement with the numerical solution in the third case.
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Figure 3. The numerical solution and the lower bound of Pr. (4)–(5) for a specific parameter set,
namely, δ1 = 0.1; δ2 = −0.5; γ1 = 0.5; γ2 = 1. Left panel n = 1, m = 2, and C = 2.5. Right panel
n = 2, m = 1, and C = 3.5. The solid line corresponds to the numerical solution and the dash-dotted
line corresponds to the lower bound. The dashed blue line represents the lower bound y1(x), which
can be chosen from y1(∞) � 1.

Figure 4 shows a comparative analysis involving the numerical solution and lower
solution y7(x) for two distinct scenarios: one characterized by (n = 1, m = 2) and the
other by (n = 2, m = 1). These scenarios were subject to specific constraints: δ2 > 0 and
−1 < δ1 < 0. The data plotted are represented as a function of the independent variable x.

In this analysis, we utilized a parameter setup characterized by δ1 = 0.1; δ2 = −0.5;
γ1 = 0.5; γ2 = 1. It is important to note that the first case had a constant of C = 3.7, while
the second case had C = 3.9.

It is noteworthy that the lower bound, thoughtfully chosen to satisfy the condition
C7 ≤ C ≤ C8 in this context, exhibited a remarkable alignment with the numerical solution
for small values of x � 1.

We, again, include a graph that clearly shows the lower bound, denoted by y1(x),
which is represented by the dashed blue line. This approximate solution was meticulously
chosen with a constant value, C, to ensure that y1(∞) � 1. It is crucial to note that the
selected approximate solution, i.e., y1(x), satisfied the condition y1(∞) � 1 in this context,
and it exhibited an outstanding agreement with the numerical solution in the fourth case.

Figure 4. The numerical solution and the lower bound of Pr. (4)–(5) for a specific parameter set,
namely, δ1 = −0.1; δ2 = 0.5; γ1 = 0.5; γ2 = 1 and C = 3.7. Left panel n = 1, m = 2 and C = 3.7.
Right panel n = 2, m = 1, and C = 3.9. The solid line corresponds to the numerical solution and the
dash-dotted line corresponds to the lower bound. The dashed blue line represents the lower bound
y1(x), which can be chosen from y1(∞) � 1.

Based on the previous results, an interesting observation can be made regarding the
numerical and approximated solutions. For small values of the independent variable x � 1,
the numerical solution and the approximated solution, obtained using the lower bound
with a carefully chosen constant C, exhibited perfect agreement. However, for large values
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(x � 1), a slight deviation between the solutions was noticeable. Nevertheless, it is worth
noting that the numerical solutions converged rapidly to unity. Furthermore, the first
lower-bound solution y1(x) aligned well with the numerical solution when the constant C
was suitably chosen such that y1(∞) � 1. This approximated solution can be considered
the best approximation and called the limit superior to the lower bounds.

6.2. Nonhomogeneous Case

Now, we consider the nonhomogeneous Pr. (4)–(5) in the fourth case with the source
term β(x) = e−kx2

, where k > 0. We restricted our exploration to two cases, i.e., δi > 0 and
−1 < δi < 0.

Figure 5 shows a comparative analysis involving the numerical solution and lower
solution y7(x) for two distinct scenarios: one characterized by (n = 1, m = 2) and the other
by (n = 2, m = 1). These scenarios were subject to specific constraints: δ2 > 0 and δ1 > 0.
The data plotted are represented as a function of the independent variable x.

In this analysis, we utilized a parameter setup characterized by δ1 = 0.1; δ2 = 0.5;
γ1 = 0.5;γ2 = 1. It is important to note that both cases had a constant of D = 3.9, and
k = 6.5 such that k � sup(k1, k2), where k1 = 1

(γ1+δ1+1)n and k2 = (γ2 + δ2 + 1)m.
For x � 1, the numerical solution aligned remarkably well with the lower bound

w1(x), where D was chosen to satisfy D1 ≤ D ≤ D2.

Figure 5. The numerical solution and the lower bound of Pr. (4)–(5) and β(x) = e−kx2
for a specific

parameter set, namely, δ1 = 0.1; δ2 = 0.5; γ1 = 0.5; γ2 = 1. Left panel n = 1, m = 2. Right panel
n = 2, m = 1. The constants D and k were chosen to be D = 3.9 and k = 6.25 for both cases. The solid
line corresponds to the numerical solution and the dash-dotted line corresponds to the lower bound
w1(x).

Figure 6 displays a comparison between the numerical solution and the lower solution
w3(x) for two different situations. One scenario is characterized by (n = 1, m = 2) while
the other is characterized by (n = 2, m = 1). Both scenarios had specific constraints:
−1 < δ2 < 0 and −1 < δ1 < 0. The data plotted are a function of the independent
variable x.

In our analysis, we used the following parameter setup: δ1 = −0.1, δ2 = −0.5,
γ1 = 0.5, and γ2 = 1. It is worth noting that both cases had a constant of D = 1.9 and
D = 3.9, respectively. The constant k was chosen to be k = 6.5 such that k � sup(k3, k4),
where k3 = (δ2+1)m

(γ1+1)n and k2 = (γ2+1)m

(δ1+1)n . When x � 1, the numerical solution was in good
agreement with the lower bound w3(x). We chose D to satisfy D3 ≤ D ≤ D4. To make
things clearer, we include a graph that shows the lower bound, represented by the dashed
blue line and denoted as
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with k > 1
(γ1+δ1+1)n .

We carefully selected this approximate solution to ensure that w1(∞) � 1, using a
constant value of D. It is important to note that the chosen solution, w1(x), closely matched
the numerical solution.

Finally, we explore the nonhomogeneous problem (4)–(6), in addition to the source
term β(x) = e−kx2

, where k > 0. We limited our analysis to two cases, i.e., δi > 0 and
−1 < δi < 0.

Figure 7 displays a comparison between the numerical solution and the lower solution
v1(x), v3(x) for two different situations, respectively. The first scenario was characterized
by δi > 0, while the second was characterized by −1 < δi < 0. Both scenarios had specific
constants: n = 1, m = 2. The data plotted are a function of the independent variable x. The
dashed blue line in the right panel represents the good approximation of the solution v1(x)
such that v1(x) ≈ 1.

Figure 6. The numerical solution and the lower bound for boundary problem (4) with boundary
conditions (5) and β(x) = e−kx2

for a specific parameter set, namely, δ1 = 0.1; δ2 = 0.5; γ1 = 0.5; γ2 =

1. Left panel n = 1, m = 2 and D = 1.9. Right panel n = 2, m = 1 and D = 3.9. The constant k
was chosen to be k = 6.25 for both cases. The solid line corresponds to the numerical solution and
the dash-dotted line corresponds to the lower bound w3(x). The dashed blue line represents the
approximate solution w1(x) with the suitable choice of the constant D such that w1(x) ≈ 1. The
dashed blue line represents the lower bound w1(x) with w1(∞) � 1.

Figure 7. The numerical solution and the lower bound for boundary problem (4) with boundary
conditions (6) and β(x) = e−kx2

for a specific parameter set, namely, δ1 = 0.1; δ2 = 0.5; γ1 = 0.5;
γ2 = 1 (left panel) and δ1 = −0.1; δ2 = −0.5; γ1 = 0.5; γ2 = 1 (right panel). In both cases n = 1, m = 2.
The constants E and k were chosen to be E = −1. and k = 6.25 for both cases. The solid line
corresponds to the numerical solution and the dash-dotted line corresponds to the corresponding
lower bound v1(x), v3(x), respectively. The dashed blue line in the right panel represents the good
approximation that is chosen as v1(x) such that n1(x) ≈ 1.

Throughout the previous instances, solely the lower bounds exhibited a notable
approximation to the numerical solution. We omitted the upper bounds due to their lack of
this advantageous alignment. This outcome aligned with our expectations as the upper
bounds were characterized by functions displaying exponential growth.

However, justifying the selection of initial constants (C and D) in approximate solu-
tions for homogeneous and nonhomogeneous equations to ensure their alignment with
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numerical solutions can be approached using various methods. Initially, confirming that
the initial or boundary conditions specified in the approximate solutions correspond with
those utilized in the numerical solutions is essential. Subsequently, adjusting the constants
C and D is necessary to meet these conditions. Additionally, conducting an error analysis
between the analytical solution (using initial constants C and D) and the numerical solution
is crucial. The aim here is to minimize the error by adjusting the values of C and D, striving
for the closest agreement between both solutions. Moreover, verifying that the assumptions
and constraints utilized in deriving the approximate solutions are consistent with those
inherent in the numerical method is vital. Adjusting C and D accordingly helps maintain
coherence between the models. These aspects were all considered in our analysis and the
selection of constants adhered to these principles.

7. Conclusions

The Stefan problem with nonlinear thermal conductivity and specific heat properties
was thoroughly explored. This study employed lower- and upper-bound techniques to
establish the existence and uniqueness of the theorem, addressing both homogeneous and
nonhomogeneous scenarios. Additionally, a detailed numerical analysis was conducted,
yielding a highly accurate approximation solution. Moreover, the alignment between the
lower bound and the numerical solution, achieved through a suitable selection of the
constant, confirms the validity of the chosen bounding techniques. This agreement not
only validates the reliability of these techniques in delineating the system’s response but
also offers valuable insights into the behavior of the solution to the problem. Addition-
ally, it acts as a confirmation of the efficacy of the employed analytical methods. Such
methodologies pave the path for the investigation of analogous challenges in forthcoming
research endeavors. Understanding and interpreting solutions to the nonclassical Stefan
problem holds paramount significance in material design, thermal management, and pro-
cess optimization—making it an essential aspect across the scientific, engineering, and
technological domains.
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