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Preface

We are pleased to present the “"Mathematical Methods in Applied Sciences” Special Issue of
Axioms, which includes 17 meticulously selected articles and an editorial. This collection explores a
wide range of topics in applied mathematics, encompassing both pure mathematical methods and
their applications across various scientific disciplines.

The articles featured in this Special Issue cover several pivotal fields, including mathematical
methods and analysis, statistical methods, natural language processing, neural networks, numerical
methods, and fuzzy systems. Each contribution offers unique insights and advancements, reflecting
the dynamic and interdisciplinary nature of contemporary mathematical research.

The primary objective of this Special Issue is to provide a platform for scholars to publish
their recent work, enabling them to delve deeper into a variety of complex problems and propose
innovative solutions through mathematical approaches. By bringing together diverse perspectives
and cutting-edge research, we aim to enhance our collective understanding of these critical areas and
stimulate further developments in applied mathematics.

We extend our gratitude to the authors for their exceptional contributions and to the reviewers
for their diligent efforts in ensuring the high quality of this Special Issue. We hope that readers
will find these articles both informative and inspiring and that they will serve as a valuable
resource for researchers and practitioners alike, sparking new ideas and collaborations in the field of

applied mathematics.

Nuno Bastos, Touria Karite, and Amir Khan
Editors
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Nuno R. O. Bastos 1-2* and Touria Karite 3
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1. Introduction

In this editorial, we introduce “Mathematical Methods in Applied Sciences”, a Special
Issue of Axioms comprising 17 articles. These articles delve into various mathematical
methods and emerging trends in applied sciences, spanning from theoretical explorations
to practical applications. While covering diverse topics, particular emphasis is placed on
fields such as mathematical methods and analysis, statistical modeling, natural language
processing, neural networks, inverse problems, numerical methods, and fuzzy systems. The
primary objective of this Special Issue is to provide a platform for scientists and researchers
to showcase their work in optimization, optimal control theory, biomathematical studies,
population dynamics, network problems, and reinforcement learning, as well as machine
learning and deep learning, thereby enhancing our understanding of the world.

2. Overview of the Published Papers

This Special Issue contains 17 papers that were accepted for publication after a rigorous
review process.

In contribution 1, A. Khanfar et al. present an analytic solution to the Stefan problem,
a mathematical model describing the phase change of a material with a moving boundary,
considering nonlinear temperature-dependent thermal parameters and a heat source term.
The authors establish the existence and uniqueness of the solution in scenarios both with
and without a heat source. They then determine lower and upper bounds for solutions of
the problem under different conditions. Remarkably, the lower bounds closely align with
numerical solutions, suggesting their utility as approximate analytic solutions.

In contribution 2, K. S. Sultan et al. present the derivation of L-moments for several
distributions, including logistic, generalized logistic, doubly truncated logistic, and doubly
truncated generalized logistic distributions. They introduce new axioms and identities,
Received: 7 May 2024 including recurrence relations specific to L-moments derived from these distributions.
Accepted: 8 May 2024 They also establish general recurrence relations applicable to L-moments derived from
Published: 15 May 2024 any distribution.

In contribution 3, M. A. Zaitri et al. introduce an analytical solution for the time-optimal
control problem during the induction phase of anesthesia, aligning closely with results ob-
tained via the shooting method. The authors employ a pharmacokinetic/pharmacodynamic
(PK/PD) model for propofol infusion, proposed by Bailey and Haddad in 2005. The study
evaluates this solution by comparing it with the existing literature using the Pontryagin
minimum principle and numerical simulations in MATLAB. The results indicate a sim-
conditions of the Creative Commons _1larity between the newly proposed analytical method and the shooting method, with
Attribution (CC BY) license (https://  the advantage of the former being independence from unknown initial conditions for the
creativecommons.org/licenses /by / adjOint variables.

40/).

Citation: Bastos, N.R.O.; Karite, T.
Mathematical Methods in Applied
Sciences. Axioms 2024, 13, 327.
https://doi.org/10.3390/
axioms13050327

Copyright: © 2024 by the authors.
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In contribution 4, X. Hu and H. Ren address reliability estimation using the inverse
Weibull distribution with intuitionistic fuzzy lifetime data. They extend fuzzy set theory
concepts to derive intuitionistic fuzzy conditional density, likelihood function, and condi-
tional expectation. Both maximum likelihood and Bayesian estimations, employing the
EM algorithm and gamma priors, respectively, are explored. Monte Carlo simulations
favor Bayesian estimation, validated by real data, offering precise reliability estimates for
intuitionistic fuzzy lifetime data in scientific analysis.

In contribution 5, H. S. Bakouch et al. explore count data analysis using the two-
parameter Bernoulli-Poisson-Lindley distribution, obtained through convolution of Bernoulli
and Poisson-Lindley distributions. Statistical properties such as moments, survival func-
tions, and parameter inference via maximum likelihood are investigated. Simulation
exercises assess estimation effectiveness, followed by application to real datasets. Ad-
ditionally, a flexible count data regression model is constructed based on the proposed
distribution, illustrated with practical examples.

In contribution 6, L. C. Chen and K. H. Chang introduce a corpus assessment method
crucial for Natural Language Processing (NLP), especially pertinent in contexts like COVID-
19 information retrieval. Traditional approaches based on single parameters, such as key-
ness value, are deemed inadequate. To address this limitation, the authors propose an
extended Analytic Hierarchy Process (AHP)-based approach, considering multiple parame-
ters (keyness, frequency, and range) simultaneously. Empirical validation using COVID-19
research articles confirms the effectiveness of this approach, offering improvements in
refining corpus data, multi-parameter consideration, and integration of expert evaluation.

In contribution 7, G. Singh et al. propose a new Laplace variational iterative method
for solving (2+1)-D and (3+1)-D Burgers equations, employing a combination of modified
variational iteration method and Laplace transform. This method transforms the differential
problem into algebraic equations via Laplace transform, and iteratively solves them using
the modified variational iterative approach. The technique enables both numerical and
analytical solutions for the Burgers equations, validated through three specific examples,
demonstrating its effectiveness.

In contribution 8, F. Al Basir et al. devise an integrated pest management model for
crop pest control, utilizing periodic application of biopesticide and chemical pesticides.
Theoretical analysis yields a periodic solution for pest eradication, ensuring boundedness
of system variables. Optimization aims to find the most effective pesticide concentration
and application frequency. Employing Floquet theory and small amplitude perturbation
method, the study establishes local and global stability of pest eradication periodic solution.
Numerical comparisons validate integrated pest management’s superiority over single
controls, with analytical results illustrated through simulations.

In contribution 9, A. F. Jameel et al. propose a novel approach to solve and analyze
two-point fuzzy boundary value problems in fractional ordinary differential equations
(FFOBVPs). FFOBVPs describe complex phenomena with uncertainty, making exact or close
analytical solutions challenging, particularly for nonlinear problems. The study extends
the optimal homotopy asymptotic method (OHAM) to handle FFOBVPs, incorporating
fuzzy sets theory and fractional calculus principles. Fuzzification and defuzzification
transform fuzzy problems into solvable crisp ones. The method'’s efficiency and accuracy
are demonstrated through solving and analyzing linear and nonlinear FFOBVPs at various
fractional derivatives, showcasing its viability for fuzzy analysis.

In contribution 10, R. Alotaibi et al. investigate constant-stress accelerated life tests
with test units following the XLindley distribution, employing maximum likelihood and
Bayesian estimation methods based on progressively Type-II censored samples. They
derive point and interval estimations of model parameters and reliability indices under
normal operating conditions. Bayesian estimates are calculated using the Markov chain
Monte Carlo algorithm with the squared error loss function. A performance simulation
illustrates the proposed methodology, with application to two real-life accelerated life test
cases. Numerical outcomes suggest the superiority of the Bayesian estimation method,
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particularly in evaluating XLindley parameters and reliability measures, under constant-
stress accelerated life tests with progressively Type-II censoring.

In contribution 11, A. J. Fernandez presents guaranteed-coverage and expected-
coverage tolerance limits for Weibull models, addressing situations where extreme sample
values are censored or disregarded due to data collection restrictions or outliers. Both un-
conditional and conditional tolerance bounds are discussed, particularly when the smallest
observations are discarded. The paper also explores determining the minimum sample
sizes for setting Weibull tolerance limits from trimmed data with fixed numbers or propor-
tions of trimmed observations. Step-by-step procedures for optimal sampling plans are
outlined, with numerical examples provided for illustration.

In contribution 12, L. Han et al. address the challenge of solving the dynamic Sylvester
equation (DSE) in noisy environments using neural networks. While the original zeroing
neural network (OZNN) performs well in noise-free settings, it struggles in noisy condi-
tions. An integral-enhanced zeroing neural network (IEZNN) improves noise handling, but
lacks speed. To overcome these limitations, an accelerated double-integral zeroing neural
network (ADIZNN) is proposed, designed to resist linear noise and accelerate conver-
gence. Theoretical proofs confirm the convergence and robustness of the ADIZNN, while
simulation experiments demonstrate its superior convergence rate and noise resistance
compared to OZNN and IEZNN. Additionally, chaos control experiments with a sine
function memristor chaotic system highlight the ADIZNN's superior performance in terms
of accuracy and error reduction.

In contribution 13, A. Freitas et al. investigate the relationship between meteorological
variables and dengue transmission during the 2019 outbreak in the Dominican Republic.
Using generalized linear mixed modeling, they analyze weekly dengue incidence rates,
finding that temperature and rainfall impact outbreaks with a delay of 2-5 weeks, conducive
to mosquito breeding conditions. The study employs a backward-type selection method to
identify influential variables, noting variations in lag correlations across provinces. These
findings provide critical insights for healthcare authorities to prepare and manage dengue
outbreaks effectively.

In contribution 14, D. Karaoulanis et al. highlight the significance of fractional deriva-
tives in modeling anomalous diffusion in brain tissue, linked to diseases like Alzheimer’s,
multiple sclerosis, and Parkinson’s. The accumulation of proteins in axons and discrete
swellings contribute to neurodiseases. To model voltage propagation in axons, a fractional
cable geometry is adopted, although the absence of a fractional differential geometry based
on well-known fractional derivatives poses questions. The A-fractional derivative (A-FD)
is introduced as the unique fractional derivative generating differential geometry for model-
ing the human neural system’s intricate parts. Examples are provided to draw meaningful
conclusions, aiding medical and bioengineering scientists in combating brain diseases.

In contribution 15, S. Pakzad et al. emphasize the significance of surface quality in
wooden product manufacturing, necessitating a comprehensive understanding of cutting
parameters’ impacts on wood. Response surface methodology is employed to design
experiments and analyze the effects of feed rate, spindle speed, step over, and depth of
cut on beech wood surface quality. Mathematical models are derived for the parameters
and surface roughness. Optimal machining parameters are determined to enhance surface
quality, reducing roughness by up to 4.2 um. Notably, the feed rate exhibits the most
significant impact on surface quality among the machining parameters.

In contribution 16, M. S. Concha-Aracena et al. introduce a theorem demonstrating
the generation of density functions from moments of the standard normal distribution,
leading to a family of models. Different random variable domains are achieved through
transformations, exemplified by transforming the second-order moment to create the Alpha-
Unit (AU) distribution, characterized by a single parameter o« (AU(x)€[0, 1]). Properties
of the AU distribution are presented, along with estimation methods for the o« parameter.
Monte Carlo simulations confirm the statistical consistency and robustness of the estimators.
Real-world applications demonstrate the competitiveness of the AU model, especially for
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data with a range greater than 0.4 and extremely heavy asymmetric tail, compared to other
commonly used unit models.

In contribution 17, A. Hussain et al. delve into biomedical image reconstruction,
particularly focusing on functional near infra-red spectroscopy (fNIRs), a non-invasive
imaging technology using near infra-red light. Image reconstruction involves solving both
forward and backward problems to deduce the image’s optical properties from measured
boundary data. Researchers employ various numerical methods to tackle these challenges.
This study highlights the latest advancements in numerical methods for solving forward
and backward problems in fNIRs, offering insights into physical interpretations, state-of-
the-art numerical techniques, and toolbox descriptions. A comprehensive discussion on
numerical solution approaches for the inverse problem in fNIRs is provided, shedding light
on this evolving field.

Funding: This work was supported by CIDMA (Center for Research and Development in Mathe-
matics and Applications) and is funded by the Fundacao para a Ciéncia e a Tecnologia, I.P. (FCT,
Funder ID = 50110000187) under Grants https://doi.org/10.54499/UIDB/04106/2020 and https:
//doi.org/10.54499 /UIDP /04106 /2020.
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Abstract: In the field of biomedical image reconstruction, functional near infra-red spectroscopy
(fNIRs) is a promising technology that uses near infra-red light for non-invasive imaging and re-
construction. Reconstructing an image requires both forward and backward problem-solving in
order to figure out what the image’s optical properties are from the boundary data that has been
measured. Researchers are using a variety of numerical methods to solve both the forward and
backward problems in depth. This study will show the latest improvements in numerical methods
for solving forward and backward problems in fNIRs. The physical interpretation of the forward
problem is described, followed by the explanation of the state-of-the-art numerical methods and the
description of the toolboxes. A more in-depth discussion of the numerical solution approaches for
the inverse problem for fNIRs is also provided.

Keywords: image reconstruction; functional near infra-red spectroscopy; forward problem; inverse
problem; numerical methods

MSC: 81-10; 65L03

1. Introduction

Neuroscientists have proposed several imaging modalities to comprehend and study
the anatomical and functional aspects of the human brain. Magnetic resonance imag-
ing (MRI), computerized tomography (CT), magnetoencephalography (MEG), electroen-
cephalography (EEG), functional magnetic resonance imaging (fMRI), and Fourier-domain
near-infrared spectroscopy (fNIRs) are some of the most well-known imaging methods.
fNIRs is a relatively recent non-invasive neuroimaging technology that uses near infrared
light with frequency ranges between 650 and 900 nanometers to evaluate the optical char-
acteristics of the brain tissues. In the near-infrared part of the electromagnetic spectrum,
the most important optical absorbers are the oxygenated (HbO) and deoxygenated (HbR)
hemoglobin’s found in brain tissue.

The location of the source and detector, as well as the equipment used, affect NIR light
measurements. In the context of source or detector probes, the measurement of NIR light
is regarded as a measurement of transmission or reflectance. It is possible to measure the
transmission by positioning the source and detector in the opposite direction if the NIR
light is bright enough. However, only biological tissues like hands and arms can be used
with this technique. The source and detector probes are typically arranged on the same side
of the measuring instrument when measuring reflectance. Currently, three techniques can
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be used to simulate how light moves through tissue: time-domain (TD), frequency-domain
(FD), and continuous wave (CW) (Figure 1) [1-5].
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Figure 1. Visual representation of the case (c) continuous wave, case (b) frequency domain, and case
(a) (adapted from Ref. [6]).

TD systems illuminate tissues with incredibly brief light pulses, which are widened
and attenuated as they travel through the tissue. Detectors in time-resolved devices capture
the temporal distribution of photons as they leave the tissue. The optical properties of
the tissue can be figured out by looking at the shape and size of this distribution [3]. In
FD systems, the light that comes in is changed in amplitude at a frequency between tens
and hundreds of megahertz. Both the change in amplitude and the change in phase with
respect to the signal that came in are measured. By using both data formats, it is possible
to get unique information about the optical properties of tissues, such as the absorption
and scattering coefficients [4]. The simplest and least expensive approach is CW mode. It
makes use of a light source that is modulated at a frequency lower than a few tens of hertz
or one that has a constant amplitude. It only examines the light’s amplitude attenuation
after it has contacted biological tissues. Therefore, attenuation effects due to light scattering
and absorption cannot be separated. It, however, has the highest signal-to-noise ratio. The
most common modality is this one [5].

In fNIRs, the scalp is covered with an Optode montage, a spatially distributed ar-
rangement of sources and detectors that emit and detect near-infrared light. The HbO and
HbR) hemoglobin found in brain tissue are the two most prominent optical absorbers in
the near-infrared range of the electromagnetic spectrum, respectively. The result of this
conversion is that variations in hemoglobin concentration ([HbO] and [HbR]) at a single
location can be derived from differences in optical density (OD) detected at two or more
wavelengths. It is common practice to use a modified version of the Beer-Lambert Law
(mBLL) when calculating these changes.
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Mathematically, the procedure of image reconstruction entails reconstructing the
optical properties using the experimentally measured boundary data and can be thought of
as consisting of two parts: developing a forward model of light propagation and obtaining
an inverse solution to the forward problem (Figure 2). The forward problem tries to estimate
the boundary data at the position of the detector based on the distribution of the optical
properties inside the object. This means making an estimate of the sensitivity matrix as
absorption changes at each location in the head or trying to predict the optical flux density
at the detectors based on a geometric model with optical parameters like source-detector
location and functionality. The inverse problem is based on the same general equation as
the forward problem. However, the goal is to dissect the vector of intracranial phenomena
that can explain the vector of observed scalp values, given a specific sensitivity matrix.

IForward Prubleml l Inverse Problem I

7”7
Distribution
of sources

Distribution
of sources
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Scattered
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Figure 2. A graphical representation of the forward and inverse problems (adapted from Ref. [7]).

This review is being done to learn more about the basic ideas behind the forward and
inverse problems in fNIRs. For researchers who are new to the subject, it is designed to
provide insight into the most up-to-date methods for tackling the problem and the types
of toolboxes currently being used. It is also meant to give the reader a good idea of the
best ways to solve the inverse problem in fNIRs so that the reader can understand these
methods thoroughly.

The following is the flow of the paper; it begins with the fundamental concepts of mod-
eling light transport through biological tissue as a forward problem, which are discussed
in detail. The available methods and toolboxes that were applied to simulate the forward
problem were thoroughly investigated. The review also includes an in-depth discussion of
the inverse problem and a detailed explanation of various available image reconstruction
methods. Aside from that, the paper offers a comparison of several algorithms as well as
conclusions and recommendations.

2. Mathematical Modeling of Light Transport in Biological Tissue as Forward Problem

The radiative transport equation (RTE), which is based on the idea that energy stays
the same as light moves through a volume element of a medium with an absorber and
scattered light, accurately describes how light moves through biological tissue. The RTE in
the TD is expressed as [8,9],

+QV + ua(r) + u(r) }I(r, O, t) = ps(r) An dQP(r, Q-Q)I(r, Q) +q(r, Q, t) (1)

here I(r, ), t) described as the energy radiance or light intensity as a function of position
r(x,y,z), Q) is defined as angular direction with zenith and azimuth angles, and time t. The
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absorption and scattering coefficients are represented by p, () and ps(r), respectively. The
velocity of light in a turbid medium is denoted by ¢(r), and the light source is denoted
by q(r,Q, t). Moreover, P(r, Q-Q) is the scattering phase function, which determines the
probability that a photon travelling in a direction () will be scattered in that direction ()
during a scattering event. And P is normalised to the value of 1.

_ ’ 1

dQP(r,Q-Q) = / P(cosf)dcosd = 1 )
Jamr J-1

As the sprinkling phase function, the Henyey—Greenstein function is widely used as

follows:
2

P@QO):%; 1-50) 5 3)
{14350 - 230:0}

where g(r) denotes the anisotropy factor, which ranges from —1 (full backscattering) to +1
(full forward scattering) and anything between 0 (isotropic scattering).

A numerical solution to the RTE is challenging since it is an integrodifferential equation,
and the computational complexity for numerical solutions is exceedingly high. On the other
hand, the diffusion equation (DE) assumes that radiance in a medium that is optically thick
and has multiple scattering is almost entirely isotropic. The DE can be calculated using the
diffusion approximation to the RTE. The following equation shows the TD and DE:

W@(r,t) —V-k(r)VO(r,t) + pa(r)®(r, t) = q(r, t) 4)
where ®(r,t) denotes the fluence rate as estimated by [, dQI(r,Q,t), x(r) is denoted
as diffusion coefficient as determined by 1/3(pa(r) + (1 — g)us(r)), and g(r,t) signifies
the light source as calculated by [, dQq(r, ), t) and the reduced scattering coefficient is
defined as (1 — g)us = pis.

Similarly, RTE in terms of FD and CW is given as follow [10]:

C(r)at<1>(r,w) —Vk(r)VO(r,w) + pa (r)®(r,w) = q(r, w) ®)
The fluence rate with modulated frequency w from the light source ¢(, w) in a medium
at the same frequency is denoted by ®(r,w). In an FD, the frequency w # 0, whereas in
a CW instrument, the frequency is equal to zero. In the fNIRs context, the DA equation
is generally nonlinear, so it can be linearized as given in [11] and then used to perform
the Rytov approximation [12]. When performing functional brain imaging, the absorption
coefficient is assumed to be proportional to hemoglobin change, whereas the scattering co-
efficient is supposed to be constant. So, under these assumptions, the Rytov approximation
can be formulated as [13]
y=Ax (6)

where A denotes the sensitivity matrix as determined by the absorption proportion within
the brain, y is the difference in log-ratio between the optical density recorded before and
after blood flow, x denotes the change in absorption coefficient.

3. Methods for Forward Model Simulation

The methods used to solve the forward problem are discussed in this section. The
forward problem, in general, considers the modeling of light propagation from sources to
sensors across the head. The solutions to this problem can be divided into three categories.
(i) Analytical techniques (ii) Numerical techniques (iii) Stochastic techniques.
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3.1. Analytical Methods

The term “Green’s function approach” generally refers to the analytical method. The
solution can be visualized using Green’s function, which is defined as follows when the
source is represented as a spatial and temporal delta function: First and foremost, one must
ascertain their own GI functions. Following that, Green’s functions can be used to create
more general solutions. In homogeneous media, the convolution of these Green’s functions
with the source term yields the full fluence rate solution, which is simple to compute.

Equation gives the most basic analytical solution for TD-DE for an infinitely homoge-
neous medium [14],

o= (e .
(47Dct)? 4Dct

where r is the distance from the origin to a point impulse source. The authors [15] first used
the mirror image source method to find analytical solutions for TD-DE for semi-infinite and
slab media with a zero-boundary condition. The pulsed laser source systems (TD systems)
are close enough to the source that they can be calculated with convolution methods [16].

Even in modern times, Green’s function approach is most commonly used to find
solutions to the DE in regular geometries [15,17]. For instance, researchers [17] came up
with ways to solve an endless cylinder by putting in a source line that goes on forever.
Also, they used Green’s function method to solve the DE for a point source in several
regular geometries. In addition, authors [18] Using a series expansion method, solved
the DE for concentric spheres. In a separate piece of work, authors [19] solved the DE in
the CW, frequency, and time domains using the Green’s function approach with extended
boundary conditions for a multiple-layered finite cylinder. These solutions were obtained
by solving the equation for a multiple-layered finite cylinder. In addition, researchers [20]
provided a CW solution for a point source that made use of the extrapolated boundary
conditions in cylindrical coordinates. Finally, by employing a number of different integral
transformations, Liemert and Kienle were able to derive specific solutions for the DE [21]
when it was applied to a homogeneous and turbid medium with a point source.

In recent research, Erkol et al. [22] have derived analytical solutions to the DE in
two and three dimensions for the steady state CW case in a cylindrical media. In this
case, a Dirac function with different strengths is used to model the light source. To get
the Green’s function for the Robin boundary condition, an integral method is used. This
method is extremely adaptable, allowing the implementation of any boundary condition
(i.e., not limited to the Robin boundary condition). This is also applicable to other regular
geometries, like spherical. Because finding solutions to the DE at the boundary is the
primary focus of their study, this method is perfectly suited for determining the DOI in
homogeneous or nearly homogeneous environments.

Theoretically, analytical solutions could be a direct and accurate way to get light to
travel, but the complexity of biological tissue makes it hard to make analytical solutions.
The analytical solutions of the RTE and the DA are faster to calculate, but they can only
be used for certain specific geometries with values that are almost all the same inside.
Therefore, numerical methods are usually used to solve the RTE and the DA models. The
critical constraint in its applicability is that the solutions are only available for simple
homogeneous geometries [17], which induces severe modeling errors by providing a
poor approximation [23]. In some cases, it has been possible to get these solutions for
time-domain DE, like slab media [24].

3.2. Numerical Methods

In diffuse optical imaging, numerical methods are often used because they are good
at simulating how light moves through realistic, complex geometries as well as different
types of media. Numerical solutions for the forward model can be found using the partial
differential equation, which can be solved in a variety of ways. The finite difference method

10
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(FDM), the finite volume method (FVM), the boundary element method (BEM), and the
finite-element method (FEM) are all examples of this.

3.2.1. Finite Difference Method

In the finite difference method, the medium is broken up into small pieces using a
regular grid, and complex shapes are made around the points inside the grid. Points with
absorption values in the thousands are assigned outside of the required form. It has been
demonstrated that this method produces more accurate results than other methods such
as Monte Carlo and analytic solutions [25]. However, because the FEM is so simple to
use when dealing with complex geometries, the FDM is rarely used in DOT applications.
However, it has been used to determine the dispersion of light in the human brain and the
cranium of a rat [26,27]. This method has been employed in the literature: for additional
details, read the following studies [28-30].

3.2.2. Finite Volume Method

In a way like the finite element and finite difference methods, the FVM calculates
values at discrete points within a meshing geometry. In this way, both approaches compute
values. The element (in a cell center formulation) is known as a volume of control, or VC
for short, in FVM. This is a distinct region of space in which the PDEs will be integrated.
During this step of the process, you will be evaluating the volumetric sources as well as
the surface fluxes that flow into and out of VC. In order to convert the surface integral
into volume integrals, it will be necessary to make use of Gauss’ theorem. Interpolation
functions that are the same, like the FDM method, or almost the same, like the Laplace
equation, are used to get close to surface derivatives. The name of the method comes from
the fact that each node in the mesh takes up a relatively small amount of space.

The primary advantage of this method over FDM is that it does not require the use of
structured grids. Additionally, the effort that would have been required to transform the
provided mesh into a structured numerical grid internally may be completely avoided. In
the same way as with FDM, the approximation that is reached results in a discrete solution;
however, the variables are often positioned at the centres of the cells rather than at the
nodal points. This is not always the case, however, as there are also approaches that centre
on the face of the volume. Interpolation is used to determine the values of field variables at
locations other than storage locations (such as vertices). This is the case regardless.

The finite volume technique is used a lot in optical tomography reconstructions [31,32],
because it uses less energy than other methods. It takes a long time to run [33], despite
the fact that it has a high level of mesh flexibility, which is necessary for modelling com-
plex shapes.

3.2.3. Boundary Element Method

The BEM has evolved as a viable alternative mathematical technique over the last
twenty years. Because it just necessitates surface discretisation and hence is less computa-
tionally expensive. BEM is like FDM and FEM in that it calculates values at discrete points
for solving PDEs. The simplicity of this method is derived from the fact that it meshes
only the boundary of the body rather than the full domainIn DOT, the BEM uses Green’s
second identity to describe the field via its integral on the surface, i.e., photon density and
fluxes. In large-scale geometries [34-39], it outperforms FEM in terms of performance,
but it cannot predict light propagation in complicated heterogeneous domains accurately.
This is attributed to the complex nature of the boundaries encountered between the tissue
interfaces. The hybrid or coupled BEM-FEM method has also been employed. It shows
that, compared to analytical solutions, the meshing task can be made easier and the size of
the problem can be reduced while the model’s correctness is kept.

The BEM is better than the FEM because you don’t have to break up the area you're
looking at into smaller pieces. Instead, you only need to know the area’s edges. As a result,
meshing effort is reduced, and system matrices are smaller. However, the BEM has some

11
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disadvantages over the FEM; the BEM matrices are fully populated with complex and
frequency-dependent coefficients, which reduces the solution’s efficiency. Furthermore,
singularities may occur in the solution, which must be avoided [6].

3.2.4. Finite Element Method

In optical imaging applications [40—-46] with irregular boundaries, FEM is one of the
most common ways to solve the DE. FEM is a mathematical method for approximating
boundary values and making absorption spectra and optical flux for a given distribution of
absorption and diffusion coefficients. The method employs a collection of basis functions
on a mesh, also known as interpolation functions, to convert the PDE into a system of
differential equations in finite-dimensional space [41]. As a result of its ability to handle ir-
regular geometries [47], it has been utilized to solve both the RTE and DE models [41,48,49].
As a result, numerical solutions are required. Because of its ease in handling complex
geometries and modeling boundary effects, the FEM is more versatile than other methods,
including the finite difference method. The FEM is a variational method that uses a family
of finite-dimensional basis functions to approximate the solution.

Researchers like the FEM because it uses a piecewise representation of the solution in
terms of certain basis functions. The computational domain is broken up into smaller areas
called “finite elements”, and the solution for each element is built from the basis functions.
The typical method for obtaining the actual equations is to restate the conservation equation
in weak form, write the field variables in terms of the basis functions, multiply the equation
by the appropriate test functions, and then integrate over an element. Because the FEM
solution is expressed in terms of specific basis functions, it is much better known than the
FDM or FVM solutions. This can be a double-edged sword because the selection of basis
functions is critical, and boundary conditions may be more difficult to formulate. Again, a
system of equations (usually for nodal values) is obtained and must be solved in order to
obtain a solution.

3.3. Stochastic Methods

The Monte-Carlo (MC) simulation is the most widely used stochastic approach for
modeling photon transport through tissue. It is used with random-walk or Markov-chain
models to provide the best results. A photon’s or a photon packet’s propagation across a
medium can be simulated using MC models, which helps make the process more efficient.
This process is accomplished by tracing the photon’s passage through the medium and
modeling each event the photon meets sequentially. More than two decades ago, it became
a standard method for simulating light transport in tissues because of its versatility and
rigorousness in dealing with turbid fluids with complicated structures.

The MC method entails the following steps: In the first step, voxels representing
various types of tissues are first divided into three-dimensional tissue geometry. In the
second step, the optical properties of each voxel, such as scattering and absorption, are
allocated to each voxel in the second step. The third step is to “inject” a photon at a specific
location on the surface of this shape. The photon’s movement is accomplished in the fourth
step through probabilistic scattering and absorption as it travels through tissue. Repeat
steps 3—4 hundred or even millions of times to figure out how much fluence (photon weight)
and how far each tissue type has travelled through it [50].

Interest in using MC to calculate the forward model for optical tomography has
resurfaced in recent years, thanks to the combination of efficient MC formulations with
improved processing capacity and geometrical complexity [51,52].

4. Types of Toolboxes for Forward Model Simulation

There is a wide variety of software/toolboxes available to simulate forward problems
that are currently in use. Some of them are listed and explained in greater detail below.

12
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4.1. MCML

Due to its user-friendliness, Researchers [50] first introduced the programming tool
known as MC simulation for light propagation in multi-layered tissue (MCML) in planner
geometry, which is still widely used today. The multilayer model was greatly simplified.
The simulation geometry was set by the number of layers and the thickness of each
layer. Each layer represented a homogeneous part of the simulated medium. The MCML
simulation code is written in ANSI C, which is a standard programming language. Figure 3
shows the main steps of the MCML simulation process, which are explained and shown
in [53].

:

initialize photon

L
R ad

generate step size
v
move photon
v
update absorption
and weight

scatter and
change direction

Figure 3. Fundamental steps of MCML technique (adapted from Ref. [53]).

4.2. NIRFAST

The Near-infrared Frequency-domain Absorption and Scattering Tomography (NIR-
FAST) program is a FEM-based technique developed by the National Institute of Standards
and Technology in 2009 [54], and this software is offered free of charge. In this package,
many MATLAB.m files are produced and executables are included, which the user can
customise to incorporate the programme into their measurement apparatus (Figure 4, for
details, see [54]). NIRFAST requires that a finite element mesh be provided before any
simulation can be started. The user’s responsibility is to provide this mesh, which can be in
either 2D or 3D format. NIRFAST cannot produce a mesh on its own. The DE is changed
into a set of linear equations that can be solved on a finite element grid. A finite element
mesh represents the flux rate at each node.

13
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Figure 4. Fundamental steps of the NIRFAST technique for the forward problem (adapted from
Ref. [54]).

NIRFAST has been shown to work well for geometries with a single boundary condi-
tion, especially when the boundary condition is a modified Robin (or Type III) in which air
is assumed to surround the simulation region (as implemented in NIRFAST), also known
as a Neumann boundary condition. NIRFAST has been developed for 2D and 3D and is
widely used for FEM analysis in forward models with image reconstruction. It is available
for free via the following URL link: http://newton.ex.ac.uk/research/biomedical /hd/
NIRFAST.html (accessed on 5 October 2022).

4.3. TOAST++

To tackle DOT’s forward and inverse problems, Martin Schweiger and Simon R.
Arridge [55] developed an efficient open-source software framework that some researchers
are using. Originally built in C++, it was later rewritten as a toolbox that includes a set of
MATLAB routines and PYTHON code, which is now available. This software suite contains
libraries for computation of sparse matrices, finite-element, alternative numerical modeling,
nonlinear inverse, MATLAB and, python bindings, and visualization tools (see Figure 5).
This toolbox offers parallel matrix assembly and solver capabilities for distributed and
shared memory architectures and graphics processor platforms, which enable scalability
on distributed and collective memory architectures. In this way, researchers can quickly
design analysis tools without worrying about developing the low-level sparsity matrix and
finite-element subroutines beforehand.

14
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Figure 5. Libraries for Toast++ technique for forward model simulation (adapted from Ref [55]).

4.4. MCX/MMC

Qiangian Fang created open-source MC simulators called Monte Carlo eXtreme (MCX)
and Mesh-based Monte Carlo (MMC) in 2009 [56]. These simulators are two of the most
advanced Monte Carlo programs available today, and researchers use them to simulate
light propagation as photons across complex biological tissues [56,57]. Binary executable
software was used to develop the first versions of MCX and MMC. Because of MATLAB’s
popularity among academic researchers, MEX variants such as MCXLAB, MMCLAB, and
voxel-based MC (vMC) have been developed to make it more user-friendly for scien-
tists. These open-source MC programs are essential resources for academics and students
interested in modeling light interaction in tissue and comprehending fundamental the-
ories [58,59]. Figure 6 depicts the basic steps of the MCX simulation process for the

forward problem.
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Figure 6. Basic steps of MCX technique (adapted from Ref. [56]).

4.5. ValoMC

Based on the MC method, Leino et al. [60] made ValoMC, an open-source program.
With this software package, you can solve problems like the number of photons in the
computing domain and their presence at the domain boundary. It is a useful tool for
researchers because it can simulate complex measurement geometries with different light
sources, intensity-modulated light, and optical parameter distributions that change in
different places. Also, the interface for MATLAB (The Math Works Inc., Natick, MA) is
made to be easy to use and to let users set up and solve problems quickly. The code for the
software simulation is written in C++, and the Open MP parallelization library is used to
make it work in multiple places at once. Visit the website at https:/ /inverselight.github.
io/ValoMC/ (accessed on 5 October 2022) and click on the “Download” button to get
the software.

In the last few years, many ways to solve the forward problem have been written
about. Table 1 provides an overview of these methods.
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Table 1. Details about the various methods and types of toolboxes/software used for the simulation
forward problem in fNIRs measurements.

. . Simulation
References Forward Simulation Method Software/Toolbox Data Type
B. W. Pogue et al., 1995 [61] FDM N/A N/A
M. A. Ansari et al., 2014 [62] BEM N/A N/A
Dehghani, Hamid, et al., 2009 [54] FEM NIRFAST Breast model data
Yalavarthy, Phaneendra K. et al.,
2007-2008 [7,63,64] FEM N/A Phantom
Brigadoi, Sabrina, et al., [65] FEM Toast++ Real resting-state data
Chiarelli, Anto[r;160] M, et al., 2016 FEM NIRFAST Phantom
Lu, Wengqji, Daniel Lighter, and L .

Tain B. Styles. 2018 [67] FEM NIRFAST Realistic simulation data
Machado, A., et al., 2018 [68] MC MCX Realistic simulation data
Yu, Leiming, et al., 2018 [58] MC MCX Phantom

Jiang, Jingjing, et al., 2020 [69] MC and FEM MCX and Toast++ Silicon phantom
experiment
Fu, Xiaoxue, and John E. Richards. L .
2021 [70] MC MCX Realistic simulation data
Cai, Zhengchen, et al., 2021 [71] MC MCX Realistic
Mazumder, Dibbyan, et al., 2021 MC MCX Realistic simulation data

[72]

5. Inverse Problem

In image reconstruction, the inverse problem is figuring out where the changes in
absorption along the path of the diffuse light are. This can be done by using the relationship
between the scalp and the law of propagation. In order to solve the image reconstruction
problem, the forward model must be turned around, which can be written as the linear
underdetermined inverse problem when there is noise.

y=Ax+vy ®)

7 is the noise present in the data and A is the Jacobian/sensitivity matrix.

The Jacobian matrix shows the relationship between how sensitively light intensity is
measured on the surface of the head and the optical properties of the head itself. The image
reconstruction problem requires the direct inversion of the Jacobian/sensitivity matrix,
which makes it a highly underdetermined and poorly posed problem. Because of the ill-
conditioning of the system, regularization techniques must be employed to obtain a reliable
solution. In the literature, several image reconstruction methods for the solution of inverse
problems have been developed. Regularization-based methods and Bayesian estimating
methods, which are two fundamental methodologies, have dominated the literature for a
very long time.

6. Methods for Inverse Problem Solution

The various methods employed to solve the inverse problem (Equation (2)) will be ex-
plained in further detail in this section. Among these methods are back projection, singular
value decomposition (SVD), truncated singular value decomposition (tSVD), lease square
QR decomposition (LSQR), regularized lease square QR decomposition (rLSQR), minimum
norm estimate (MNE), weighted minimum norm estimate (WMNE), low-resolution electro-
magnetic tomography (LORETA), L1-norm, hierarchical Bayesian (HB) as MAP estimate,
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expectation-maximization (EM), maximum entropy on the mean (MEM), and Bayesian
model averaging (BMA).

The basic formulation of the inverse methods for the solution of {NIRs is given in the
section. These methods are also described in terms of their mathematical form. According
to the previously published literature, the performance of the inverse methods is thoroughly
explained. The comparison is being made using a variety of parameters, including sparsity,
spatial resolution, localization error, image quality, root mean square error, and quantitative
and qualitative reconstructions, among other things.

6.1. Back Projection

Back projection is the inverse technique of projection. While projection aims to extract
data from an image, back projection seeks to extract the image from the data calculated
during the projection process. As a result, the back-projection process accepts as input
the results matrix returned by the projection process, as well as all data related to the
projection process that may be beneficial in completing the process. The BP method in
image reconstruction is more straightforward and consists of back projecting the boundary
measurements in the sensitivity matrix in the following manner [61,62]

xgp = Aly )

This method assumes that the sensitivity matrix is orthogonal in a broad sense (for
example, that it is an estimate of its pseudo-inverse), which is not always the case. Never-
theless, this method has been employed in the literature [62-64] even though it typically
overestimates the amplitude when multiple measurements are taken simultaneously.

Back projection is better than other iterative methods because it makes images faster
with less processing power. But it can be hard to know how much oxygen is in the blood
or to use breast mammography as a screening tool when there isn’t enough quantitative
information. Also, most diagnostic imaging techniques used today, like MRI and CT scans,
use only qualitative information to make important diagnoses, like finding tumors and
where they are. Back propagation is also efficient in terms of computing, but it has a low
spatial resolution, which makes it hard to tell apart multiple objects that absorb light.

6.2. Singular Value Decomposition (SVD) and Truncated Singular Value Decomposition (tSVD)

The SVD and its hybrid version, the tSVD, try to find the pseudo-inverse of the sensi-
tivity matrix while ignoring the smallest singular values that cause numerical instability
(this solution will show the main contribution of the sensitivity matrix) [65].

Consider U’ and V' to be the i-th column vectors of U and V correspondingly, the SVD
decomposition as a decomposition of A into rank one matrices as

n . .
A=Y ouvT
i=1
U and V are orthonormal column vectors correspondingly, while o; are the nonnegative
singular values (in descending order); If the inverted form of the solution is multiplied by
the boundary measurements, the solution is found as follows:

iT

XSVD/ISVD = Y 4y UTiyv (10)

As the literature shows, Gupta, Saurabh, et al. [66] compare the SVD method to

the Levenberg-Marquard method. SVD is computationally efficient and is applied to

experimental data. Furthermore, prior information is used in conjunction with SVD by

Zhan, Yuxuan, et al. [67] to significantly improve the crosswalk between the retrieved

parameter. On the other hand, the tSVD solution is known for reconstructed images that
are blurry [65].
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6.3. Least Square by QR Decomposition (LSQR) and Regularized LSQR (rLSQR)

The LSQR method by Paige and Saunders [68] and its hybrid version, the rLSQR
method, are both based on Tikhonov regularization, but they also add a term that makes
the method more regular. The mathematical formulation for LSQR and rLSQR is given
under [69]:

‘ 2 2
XLSQR/rLSQR = ngm{ ly — Ax|” + allx = Xinitial| } (11)

As opposed to the previous technique, this one does not require that the matrix A
be saved; rather, it requires that one matrix-vector product with A and one matrix-vector
product with AT be assessed for each iteration.

The LSQR was presented by Prakash, Jaya, and Phaneendra K. Yalavarthy [70] in
comparison to the regularized minimum residual approach (MRM). Compared to the MRM
method, the LSQR method outperforms it in terms of computational time, the number of
iterations, and image quality. It is applied to experimental data obtained from gelatine
phantoms. Furthermore, C. B. Shaw et al. [71] demonstrate the computational efficiency and
effectiveness of the LSQR using a simulated blood—vascular phantom experiment. Both
quantitative and qualitative reconstructions benefit from the LSOR technique. However,
hybrid algorithms, which incorporate the variation and modification of least square image
reconstruction algorithms, have been developed and used in the literature [72-74].

6.4. Minimum Norm Estimate (MNE) and Weighted Minimum Norm Estimate (WMNE)

MNE is the most common inverse method. It was created to solve the inverse prob-
lem of MEG, and the norm solution is used to find the location of the EEG source. The
mathematical formulation for MNE is given as under:

xune = argmin{ ||y — Ax|* + af| x|} (12)
Similarly, the WMNE can be written as follow:
xwane = argmin{ [y — Ax||” + a||Wx|} (13)

The MNE solution, like tSVD, is known for producing scattered and blurry reconstruc-
tion images [75].
6.5. Low-Resolution Electromagnetic Tomographt (LORETA)

LORETA was initially created and used to locate EEG sources by Pascual-Marqui et al. [76].
LORETA has been used as a regularization method for fNIRs, which also considers L2-norm
formulation as described for the MNE method by incorporating the Laplacian operator [11].
The mathematical formula for LORETA is given as follows:

xtorera = argmin{ [ly — Ax|* + a||Lx||”} (14)

It is possible to interpret it as a weighted form of the MNE solution that aims to achieve
maximum smoothness across space. Despite this, it continues to generate results with a
vast spatial extent.

6.6. L1-Norm

L1-norm method has been developed and applied for EEG/MEG localization problem.
The mathematical formulation for the L1-norm is given as under:

x11norm = argmin{ |y — Ax| + a|x||' } (15)

19



Axioms 2023, 12, 326

The L1-norm method has been demonstrated to have improved noise tolerance quali-
ties and enhanced convergence features. It has also been shown to make solutions to other
linear estimating problems more L1-norm sparse.

According to Habermehl, Christina, et al. [65], the L1-norm delivers the best results on
experimental data (Gelatine cylindrical phantom that simulates breast tissues) compared
to LO, L2, tSVD, and wMNE. Additionally, it demonstrates that the incorporation of the
sparse algorithm into the procedure has the potential to improve accuracy. Meanwhile,
the inclusion of sparsity in the Ip norm minimization (0 < p < 1) as presented by Prakash,
Jaya, et al. holds promise in improving the image quality compared to the LO-norm
method [77,78]. The results of a numerical experiment conducted by S. Okawa et al. [79]
demonstrate that Ip sparsity regularisation improves spatial resolution. In addition, it
describes how the reconstructed region is affected by the value of p. A lower p-value
suggests that the target is highly localized.

Another image reconstruction approach is Bayesian estimation, which relies on a
probabilistic model of observations and constraints called the likelihood function and prior
distribution.

6.7. Hierarchical Bayesian as MAP Estimate

HB approach was initially developed and applied for the MEG localization prob-
lem [80]. In this method, observation and regularization are described as hierarchical
probabilistic models. The HB estimation method uses an ARD prior to introduce the reg-
ularization parameter at each voxel position, which controls the degree of penalty. The
basic formulation of the HB method for fNIRs is presented here (see [81] for detailed
information).

i.  Considering the measurement noise y as a Gaussian distribution N(0, v) and the
forward problem as a probabilistic model as

P(y/x) ~ N(Ax, v) (16)

where v is the covariance matrix.

ii. Assuming the data prior distribution and likelihood function as logP(x/y) and
logP(x/C) respectively.

iii. Computation of the posterior distribution of the unknown as

xpap = argmax{logP(x/y) + logP(x/C)} 17)
where C anatomical prior image.
P(x,y, 0, 9) = P(y/x)P(x/6, 0)P(0)P(9) (18)

iv. By applying the variational Bayesian (VB) method, the posterior could be written as
variational free energy

P(x, y, 0, 9)

0@, 0, 9) )d,Bdudx (19)

F(Q(, €, 9) = [ tx, 6, o)og
with
Qlx, 6, 8) = Q(x)Q(O)Q(?)

image by maximizing the free energy, providing the reconstruction, and applying the
Bayes rule to the posterior distribution.

In contrast to more traditional ways of regularizing, the idea of using Bayesian regu-
larization to solve fNIRs has only been around for a short time. In a Bayesian paradigm,
where all unknowns are thought of as random variables, the prior density is what is
thought about the solution before the facts are considered. As a result, in conventional
regularization, the prior functions similarly to the penalty term. The traditional Tikhonov
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regularized solution and the Bayesian maximum a posteriori (MAP) estimate have a well-
established relationship, with classes of penalty functions and priors favoring similar types
of solutions [82].

The HB algorithm for fNIRs has been proposed and used to make the changes in
blood flow in the cortex and scalp less random and smoother. Using phantoms to test
the performance and improve the accuracy of depth and spatial resolution [83]. Recent
research by Shimokawa, Takeaki, et al. [83] provides the HB method with an ARD prior
for fNIRs, as well as the inclusion of the two-step method. The sensitivity-normalized
Tikhonov regularisation is utilised in the initial step of the process to locate a preliminary.
In the second step, the result is refined through applying the hierarchical Bayesian estimate
method. Furthermore, in another study, T. Shimokawa et al. [84] provide the HB method
with Laplacian smooth prior to spatially variant Tikhonov regularization. This study
include Two-layer phantom experiments, as well as the inclusion of MRI-based head-
model simulations, are carried outBased on the results of that experiment, the proposed
algorithm estimates the smooth, superficial activity in the scalp while also assessing the
deep, localized activity in the cortical region. T. Aihara et al. also used the HB method to
estimate spontaneous changes in cortical hemodynamic [85], in contrast to the task-related
changes discussed in [86] for fMRI data. P. Hiltunen et al. [87] used the Bayesian and EM
methods, as well as Tikhonov regularisation, in another study. Estimates of both the spatial
organisation and the physical parameters can be obtained concurrently by using a Bayesian
technique with a Gaussian prior. The reconstructed images’ contrast is improved by the
algorithm that was proposed, which has a high degree of spatial precision.

6.8. Expectation-Maximization (EM)

The Expectation-Minimization (EM) method for fNIRs sense was developed and
employed by Cao et al. [88], and the mathematical description of the EM method can be
described as follows:

By incorporating misplaced data and maximising the comprehensive penalised log-
likelihood estimator, the maximum penalised log-likelihood estimator (MPLE) can
be obtained.

_ ly — Ax|]? 1
xEMargmax{ Y- allx]| (20)

The EM procedure generates a sequence of approximations x* by alternating two
phases (as shown below) until some stopping requirement is fulfilled.

> E-step given the observed data y and the current estimate 3, the conditional anticipa-
tion of the whole log-likelihood could be computed as

2
ko ok BT Ak
* =t 5 A (y Ay) @1)

>  M-step: Update the estimated value of xk
Xkl = argmax{—”y — )2 —2(520¢Hx||1} (22)

Equation can be explained separately for each element x;‘ Hlas

= argmax{fy%JrZylxl 7252a||xH1} (23)
x; is the element. It can be resolved using the soft threshold technique.

6.9. Maximum Entropy on the Mean (MEM)

The MEM method was first introduced by [89], and it has since been utilised and
rigorously analysed in the context of EEG/MEG source imaging research [90,91]. MEM is
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not a new statistical method in the traditional sense, but rather a novel stochastic approach
that leads to deterministic methods when some discretization step trends toward zero.
Cai et al. [92] recently employed and evaluated the MEM approach to solving the inverse
problem of f{NIRs reconstruction.

Consider the variable x as an arbitrary variable with the probability distribution
dP(x) = P(x)dx then the unique solution dP(x) could be attained as

dP*(x) = argmaxgp(x)ec,, (So(dP(x))) (24)
where S, (dP(x)) is the Kullback-Leiber divergence or v-entropy of dP(x) and define it as

Zié;i)dp () = - / f(x) log (f(x))do(x) (25)

So(dP(x)) = —/xlog<

dv(x) is the prior distribution, the MEM solution from the gradient of free energy F, is
obtained as follows?
xmem = VeFo(E) = ATAF (26)

where A* = argmax, D(A), with the cost function D(A) = ATy — F,(ATA) — %/\TV(V)T)L

6.10. Bayesian Model Averaging

The fundamental concept of BMA theory, which was initially developed and applied
to MEG/EEG, is a mixture of Bayesian hierarchical models that can be used to estimate
highly parameterized models [93]. Using Bayesian inference (BI) assumptions based on the
given model or data (prior probability distribution), BMA may be used to construct the
posterior distribution for quantities of interest [94]. The following is the basic mathematical
description of BMA for fNIRs image-based model reconstruction (see [11] for additional
information) and is given in more detail below:

i.  Consider the basic assumption of the Bayesian formulization of the given problem as
a normal probability density function as

p(y/x,¢) = N(Ax, ¢)

where ¢ represents as hyperparameters which is unknown [11].
ii.  The estimation of the parameter as the first level of inference using the Bayes theorem
is described as the posterior probability density function a

py/x, ¢, Hp(x/ ¢, Hy)
Jp(y/x ¢, Hop(x/ ¢, Hi)de

where H, represents as k-th model which is to be considered for the given problem.
iii. ~The estimation of the hyperparameters as 2nd level of inference is describing as the
posterior probability density function as

p(y/ ¢, H)p(9/Hy)
H,) =
plo/y. He) I p(y/ e, He)p(e/H)dg

iv.  The estimation of the model as the third level of inference as the posterior probability
density function

(x/y, ¢, Hy) =

p(y/Hy)p(Hy)
Hyly) = ———+
P = Ty H)p g
v.  Lastly, marginalizing the first, second, and third level of inference as posterior pdf as
pasy)= [ Py HOp(H) = Tep(e/y Hop(H) @)
or k
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This procedure considers all possible solutions for every model (using 1st and 2nd
level of inference) and averages weighted by each model’s posterior model probability
(PMP).

Furthermore, J. Tremblay et al. [11] applied the BMA for fNIRs and their results show
that in terms of localization error, ROI, and RMSE, the BMA produces better results.

7. Conclusions

fNIRs is a practical approach due to their portability, little interference in magnetic
and electrical fields, hyper-scanning, ease of use for neonates, and the fact that they require
no ongoing maintenance. As a result of the rapid development of fNIRS devices and
analytic toolboxes and its findings’ reliability in various fields, the fNIRs approach can
be considered a versatile and promising instrument. In fNIRs, the image reconstruction
problem is divided into two parts: the model used to predict light distribution in tissue
(the forward problem) and the method used to estimate the optical properties of the
domain in tissue (the inverse problem). In order to achieve correct image reconstruction,
it is essential to do accurate forward model simulation and develop methods to address
inverse problems.

Concerning how to solve the problem, many researchers have used and presented
a wide range of methods, such as toolboxes. FEM and MC are the two most advanced
forward model simulation technologies today. Various toolboxes are being built and put
into operation to improve the accuracy and efficiency of the forward model simulations.
Regarding forward models, NIRFAST for FEM and MCX for the MC method are the most
often used and developed software packages up to this moment.

When it comes to the solution of the inverse problem, the inverse methods such as
back projection, SVD, tSVD, LSQR, rLSQR, MNE, WMNE, LORETA, I1-norm, HB as a MAP
estimate, EM, MEM, and BMA, have been employed thusly. According to the research,
while considering inverse methods, it is vital to consider factors such as computational time,
localization ability, localization error, energy error, system complexity, improved resolution,
and improved image quality, among others. According to the research reviewed above,
when numerous measurements are collected at the same time, the back-projection method
gives an overestimation of the amplitude. The SVD, tSVD, LSQR, and rLSQR methods are
all efficient in terms of computational resources. On the other hand, the L1-norm and Ip
regularisation approaches have been found to be sparser than the other inverse methods,
which is a positive development.

Incorporating priors into the inverse approach improves image quality and spatial
accuracy. For this reason, the HB method has been employed in the literature and has
produced satisfactory outcomes. Based on the prior information, the EM method for
fNIRs has been used to increase the image quality and resolution by incorporating sparsity
regularisation into the image. Furthermore, in terms of localization error, ROI, and RMSE,
the BMA produces better results. Recently the MEM method has been used for f{NIRs, and
it has been proven to be more accurate and robust than both MNE and wMNE.

Considering the preceding, it is evident and apparent that, while the methods em-
ployed thus far have produced satisfactory results, continuous improvement in inverse
problem solutions is ongoing. As a result, it may be possible to utilize the inverse method,
which incorporates the sparse algorithm and prior information, to improve image quality
and reduce localization error.
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Abstract: This paper presents an important theorem, which shows that, heading from the moments of
the standard normal distribution, one can generate density functions originating a family of models.
Additionally, we discussed that different random variable domains are achieved with transformations.
For instance, we adopted the moment of order two, from the proposed theorem, and transformed
it, which enabled us to exemplify this class as a unit distribution. We named it as Alpha-Unit
(AU) distribution, which contains a single positive parameter & (AU(a) € [0,1]). We presented its
properties and demonstrated two estimation methods for the « parameter, the maximum likelihood
estimator (MLE) and uniformly minimum-variance unbiased estimator (UMVUE) methods. In order
to analyze the statistical consistency of the estimators, a Monte Carlo simulation study was carried
out, in which the robustness was demonstrated. As a real-world application, we adopted two sets
of unit data, the first regarding the dynamics of Chilean inflation in the post-military period, and
the other one regarding the daily maximum relative humidity of the air in the Atacama Desert. In
both cases presented, the AU model is competitive, whenever the data present a range greater than
0.4 and extremely heavy asymmetric tail. We compared our model with other commonly used unit
models, such as the beta, Kumaraswamy, logit-normal, simplex, unit-half-normal, and unit-Lindley
distributions.

Keywords: asymmetry accommodation; rates and proportions; single-parameter distribution; unit
distribution; water monitoring

1. Introduction

Statistical methodology plays an important role in quantitative methods, given the
hypothesis testing and inferential procedures. Nonetheless, the comparison across features
is given based on a generated function estimated from the data information. Most often,
mild suppositions are assumed, which compromises the generalization of the results.

Under the perspective of statistical generalization (inferential method), some chal-
lenges are found for bounded distribution estimation. For instance, the confidence interval,
which is often adopted from the maximum likelihood estimation approach and asymptotic
supposition, is also assumed. Specially, interval estimation can be seen as the parameter
space domain.

One exemplification is the case in which bounded information data are observed and,
nonetheless, normality is commonly assumed to be true. This is the case of proportion/rate
data, which are double bounded in the lower limit equal to zero and upper limit equal
to one. Relative humidity is an example of this scenario in which every decision-making
should be € [0,1] [1,2], or rates commonly used in the fields of finance, economics and
demography, to number a few.
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In the case of rates and proportions processes, as well as other processes whose vari-
ables of interest assume values in the range (0,1), there is a well-represented class of
models, the unit distributions family, which deals with this type of double-bounded data.
Among the many existing unit distributions, it is noteworthy mentioning the power distri-
bution, beta distribution [3], Kumaraswamy distribution [4], unit-logistic distribution [5],
simplex distribution [6], unit-Weibull distribution [7,8], unit-Lindley distribution [9], unit-
half-normal distribution [10], unit log-log distribution [11], modified Kumaraswamy and
reflected modified Kumaraswamy distributions [12], unit-Teissier distribution [13], unit
extended Weibull families of distributions [14], lognormal distribution [15], unit folded
normal distribution [16], Marshall-Olkin reduced Kies distribution [17], and unit-Chen
distribution [18].

Despite the applicability of the unit distributions in double-bounded variables, another
important fact is that the interval estimation for the parameter may also be limited in a
domain (like positive real number). In the face of it, we also presented an inferential
alternative through the delta method.

This study starts with a presentation of an important theorem that changes from a
modification of the standard normal distribution into a class of density functions that can be
seen as a unit. Then, as an exemplification, a second moment case was chosen to illustrate
the usefulness of this class of probabilistic models. This class of distributions shows to be
competitive for high-frequency data with range greater than 0.4, important to real-world
applications, whereas a classical unit distribution fails [19]. Additionally, two different
data sets were selected to illustrate the adjustment of the proposed model. The first one is
related to the Chilean inflation (ultimate post-military era), and the second one comes from
the driest area of the planet (excluding the north and south poles).

This paper is structured in four parts. Section 2 presents the proposed one-parameter
unit distribution. In Section 3, the inferences for the distribution parameter adopting the
uniformly minimum-variance unbiased estimator (UMVUE) and maximum likelihood
estimator (MLE) as point estimators, as well as interval estimations, are discussed. A
simulation study is also presented in this section. In Section 4, two real data sets are used
to illustrate the proposed methodology, one from the Chilean inflation in the post-military
period, and other one from the relative humidity water monitoring in the Atacama Desert.
Finally, Section 5 lists the conclusions of this study. Nevertheless, before moving on into
the described structure, a wide class of models that can be generated in many different
random variable supports is presented. Therefore, a theorem is elicited and, as a special
case, the whole paper will consider an order two for exemplification of this powerful class
of distributions.

Motivation

The normal (or Gaussian) distribution is very important to the history of statistics, and
numerous modifications to this distribution have been proposed in the literature [20,21].
An interesting fact related to the normal distribution is that its even moments can be used
to generate new distributions, which is the case presented below, through a definition
and a result embodied in a theorem that accounts for the characterization of these new
distributions.

Definition 1. A random variable B is said to be distributed according to a Bimodal Normal (BN)
distribution of order k, that is, B ~ BN(k) (discussed in [22]), if its probability density function
(PDF) is given by

Flb k) = %b%(b), beR,

in which ¢(-) is the PDF of the standard normal distribution, ¢ = H§:1(2]’ —1) and k =
{1,2,3,...}.
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This class of distributions is always bimodal, which means that the observed modes
move away from each other when the order k increases (as depicted by Figure 1).

15
100
10 20 20 10 0 10 20

Figure 1. Density function of the BN distribution by varying the parameter k (displayed at the top of
each chart).

20 1o 0 10 20 20 -0 0
b

It is noteworthy mentioning that transformations derived from the BN (k) distribution
may lead to other domains of interest, e.g., the unit domain. For example, let B ~ BN(k),
then a scale parameter «, the transformation «|B| € RT, and then the transformation
e=*IBl € [0,1]. Thus, the stochastic characterization of a BN (k) distribution can be obtained
according to the following theorem.

Theorem 1. Let Wy and W, be independent random variables, in which Wy is such that P(Wy =
1) =P(Wy = —1) = 1/2and Wy ~ x3 ;. Then,

Wi/ Wa ~ BN(k). ¢))

So, this theorem is mainly motivated by the result that shows that if X ~ BN(k), then
X%~ X%k +1- The entire demonstration is presented in Appendix A.

2. The Model

In this section, a new unit distribution, named Alpha-Unit, which presents a single
parameter, «, is discussed. Its stochastic representations (probability density and cumulative
distribution functions), moments (including mean and variance), moment-generating
function, and how to generate pseudo-random numbers from it will be presented. Moreover,
a proposal of statistical control chart for unit data based on the Alpha-Unit distribution
will also be shown.

The Alpha-Unit density is originated from the general theorem (Theorem 1), by
considering k = 1. Moreover, it represents the second moment of the standard normal
distribution and, later, transformed its domain. However, as k increases, the concentration
of the distribution intensifies and other densities could be obtained.

Properties and Characterization

Definition 2. (Alpha-Unit distribution). A random variable X follows an Alpha-Unit (AU)
distribution with parameter o > 0, that is, X ~ AU(«), if its PDF is given by

Fe(x | @) 2<M>2¢<M>, 0<xr<l. o)

T\ o« o

Remark 1. If X ~ AU(«), then its PDF is unimodal.
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Proof. The maxima of the AU distribution are studied, to which the criterion of the first
derivative is first considered:

dfx(x|a) iln(x)q)(ln(x)) {2 In(x) [In(x)]* 1

dx T oxa? o« o

By solving algebraically for x, we obtain:

<a2+ n4+8n2)
e\ ? @)

( 02— v/at 1842 )
e : (ii)

By working algebraically, it can be seen that this is only true for (ii), and is a global
maximum, given that the solution is in between 0 and 1. Therefore, the AU distribution is
unimodal. [

Proposition 1. If X ~ AU(«), then its r-th order moment is given by

24
2

2
EX' = 28(7) [(1 + r2a2> (1—®(ra)) — mzp(m)],
in which ®(-) is the cumulative distribution function (CDF) of the standard normal distribution.

Proof. From the definition of the r-th order moment, we have:
1 1 2 /In(x)\? [In(x)
] r _ r_= —\"/ —\"7
E[X]f/o xfx(x|oc)dx7/0 xxoc( " ) <p< " )dx. (3)

By changing the variables:

u=1lln(x) = e"=x

du = D}—xdx = wae'du =dx

then substituting into Equation (3) and developing algebraically, we obtain:

2

a2 (u—ar)
2

2 0,1
2 / U ———=e
J—co 27

E[X"] =2e .

Then, by making another change of variables: i = u — ar, dh = du; and replacing
these expressions in the previous equation, we have:

(X =2 W22 /ﬂxr L )2 1
=22 +ar
—o0 ( V21

=2e 2 /7‘” (hz + 2har + a2r2> ¢(h)dh

2
e 5 dh

22 [ = - -
— 203 (/ wpyn-+20r [ ng(nan+ a7 [

&r
4)(h)dh>.
By solving the integrals, we get to:
2,2
E[X'] =22 [zxnp(zxr) + (1 —®(ar)) — 2arg(ar) + a®r*(1 — (1)(061’))].

Then, by solving algebraically, we go down to the expression of Proposition 1. [
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Out of Proposition 1, we obtain the mean and variance of the AU(a) model as it
follows:

E[X] = 2¢% [(1+02)(1 - @(a)) - ap(w)],
Var[X] = E[x?] — (E[X])?
2 2 2
= 2¢ [(1 +4a2)(17<1>(20<))72a4)(2a)] — 4" [(1+0¢2)(17<1>(0<))7a47(a)] .

Remark 2. As an illustration, Figure 2 displays the generated asymmetry and kurtosis based on
the chosen « parameter of the AU distribution.

001 04 05
08 1 18
24 15 300

0.00 025 050 075 100 000 025 050 075 100 0.00 025 050 075 1.00
X

Figure 2. Density function of the AU distribution by varying the parameter « (displayed at the top of
each chart). Whereas B ~ BN(1) — B2 ~ X%, then the AU model was generated from X = e2IBl,

Proposition 2. If X ~ AU(«), then its CDF is given by

Fy(x | a) = 2@(#) 72(M>¢<ln(’c)>.

o 19

Proof. By definition, the CDF is:

P |w) = [ %Cnf)ﬂ(%)dt @

By making the change of variables:

u=-—= = "=t

du=Ldt = we"du =dt

of
then substituting into Equation (4) and reducing expressions algebraically, we get to:

In(x)
Fx(x|zx)=2/

—o00

w2 (u)du.
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By calculating the integral, we find:
In(x)/a In(x)/a
Fx(x|a) = 2{—1{(17(14)‘7 +/ ¢(u)du}

AL o)

Then, by multiplying and commuting, we get to the expression of Proposition 2. [

Additionally, if X denotes the monitored variable, then the PDF of X is given by (2).
Also, consider that the probability of false alarm (known as type I error) is 7t. Thus, we
get to:

P(X <LCL |a) =P(X > UCL | &) = 1t/2,

in which « is the in-control process parameter (that is, the parameter that controls the
quality characteristic based on the in-control state), and LCL and UCL are the lower and
upper control chart limits, respectively. Given the CDF Fx(x | a), then the quantile function
of X is defined by Q(p | a) = Fy'(p | #), 0 < p < 1, which can be obtained by setting to
zero and solving (numerically) for x the following equation:

o(2)-(L() 5 woerr

Following [23], the control limits and centerline (CL) of the proposed control chart for
unit data based on the AU distribution or, simply, AU control chart, are given by

LCL = Q(7t/2 | w), CL=E[X | «], UCL=Q(1-mn/2|uw),
in which Q(.) is the quantile function of the AU(«) distribution.

Proposition 3. If X ~ AU(«), then its moment-generating function (MGF) is given by
K2a?

Pt ] a) = zé %e(T) [(1 + kzzxz) (1 - ®(ka)) — kuap(kzx)].

Proof. By definition, the MGF is:

px(t |0 =B = [ e“i(@)qu(m)dx. ®

xa\ « o
By making the following change of variables:

In(x)

u=— = e =x

du=Ldx = aedu=dx
then substituting and simplifying into Equation (5), we get to:

e

Px(t]a) = 2‘/;000 elte )2 p(u)du

0 0 tkeuak
:2'/—001(;) T uqu(u)du.
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Working algebraically, we obtain:

oo tk 2212

0 1 —(u;ak)z
wX(t‘a)ZZkZZ:OFe(T) /muz\/ﬂe< >d1/l

By making the following change of variables: i = u — ak, dh = du; then substituting
it into the previous equation, we get to:

—ak

ox(t]a) =2 %e(%) / (h + ak)2p(h)dh.
k=0 """

—o0

Then, by solving the integral and adjusting algebraically, we get to the expression of
Proposition 3. [

The pseudo-code presented in Algorithm 1 describes the important steps for the
generation of random (in fact, pseudo-random) numbers from the AU(«) distribution.
Further proofs are attached under Appendix B.

Algorithm 1 Random number generation from the AU(a) model.

Step 1. Generate a random number x; ~ )(%,

Step 2. Generate a random number u ~ Uniform(0,1). If u < 1/2, set v = /Xy;
otherwise, v = —,/x1.

Step 3. Based on the numbers obtained, generate y = «|v|, in which a is a (positive) scale
parameter and |v| follows a Bimodal Half-Normal (BHN) distribution.

Step 4. Conclude with the number generated by Step 3 as a negative power of base e,
thatis, x = e ¥ = eIl € [0,1].

Step 5. Repeat Steps 1-4 n times to obtain a random sample of size 1 from the AU(«x)
model.

3. Inference

In this section, the parameter estimation adopting the UMVUE and MLE approaches
are discussed. At first, it will be demonstrated that the UMVUE can be obtained straight-
forwardly, since the proposed AU distribution is part of the exponential family. Later, the
MLE will also be discussed, which will help to estimate not only the point estimation of the
« parameter, but also the interval estimation. We enrolled the reasoning considering the
asymptotic convergence in distribution of the parameter estimator, as well as adapted a
transformation that ensures that the interval of the parameter will always be on its domain
(the delta method). The delta transformation procedure will enable the correct inferences
and the standard error calculation associated with the parameter estimate. Later on, a
simulation study to illustrate these theoretical results is presented.

3.1. UMVUE through the Exponential Family

Many of the distributions used in statistics belong to the exponential family, thereby
implying in a considerable advantage over other models that do not belong to this family.
Such an advantage is significantly declared when it comes to calculating the statistic T(X)
of a random sample X = (Xy,Xa,..., X,). Next, it is shown that the proposed AU(«)
distribution belongs to this family.

A random variable X is said to belong to the one-parameter exponential family if its
associated PDF f(- | 6) can be written in the form of:

f(x]6) = exp{c(6)T(x) +d(6) + S(x)}-
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Let X ~ AU(a), then the PDF of X can be written in exponential form as it follows:

X2

2
flx]a) = exp{*ﬁ[ln(x)]z —3In(a) +ln<M> }
Then, X belongs to the one-parameter exponential family if we define:

1 1 2
(o) = ——, T(x) = [In(x)]?, d(e) = =31In(a), S(x) =In [In)[* .
202 XV 27
Let x = (x1,x2,...,%,) be an observation (or realization) of the random sample
X =(Xy,X,...,Xn), with X; ~ AU(a), fori = 1,2,...,n. Then, the joint PDF presented
in exponential form is

n n 1 : 3
flxla)= eXp{—;«z Ylin() = 3uin(a) + Zﬂ“(“% ) }

from which it can be concluded that the statistic T(X) = Y [In(X;)]? is sufficient and
complete, once the AU distribution is part of the exponential family.

Proposition 4. Let X = (X3, Xo,...,Xy) be a random sample, with X; ~ AU(x), for i =
1,2,...,n,and T(X) = Y, [In(X;)]> Then,

1
W, = pT(X) ~ X3

2
Proof. If G = {m&x) ] , then G ~ x2. Thus, n independent and identically distributed

samples of G will have the sum of n )(%, which will result in a chi-squared distribution with
degrees of freedom equal to 37, that is, x3,, since

19 o

=P(—ay/g <In(X) <ayg) =P(In(X) < ay/g) —P(In(X) < —ay/g)
=1-P(In(X) < —ay/g) =1- JP(X < e’“\/g) —1-TFy (fwg),

Fo(g) =P(G < g) = P([h‘(x)r < g) —p(-ve< " < g)

so,
fe(g) = ngg(g) = fx (e’”‘\/g) (efa g) (%)
2 - 2 »
:ote_”‘\/§< D;\/g> ‘P( D:/g>e Jg%
- %(\/@2 \/127{6—“@2 _ \/%gl/Z exp(—g/2) = 2.
|

Proposition 5. Let X = (X3, Xo,...,Xy) be a random sample, with X; ~ AU(x), for i =
1,2,...,m,and T(X) = ¥, [In(X;)]> Then,

is an unbiased estimator of a.
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Proof. First, remember that if X ~ Gamma(a, b) distribution, then E[X] = 1;%:;

the « parameter is observed to be squared, it will be necessary to apply it to find an unbiased

estimator. So, considering the random variable W,}/ 2 (with W, as defined in Proposition 4),
it follows that:

. Since

r(3 41
E[(w,)?] - 21(/2?{))
S0,
1727 T(2+1
o[ (re0) ] - i)
repva]
E T(X)r<32:+;>] =
S(X)
O

Remark 3. Considering the two previous propositions and resorting to the Lehmann-Scheffé
theorem, one can conclude that S(X) is UMVUE for «.

3.2. Estimation using the Maximum Likelihood Method

Let x = (x1,x2,...,X,) be a realization of the random sample X = (X1, Xo,...,Xy)
taken from the AU(a) distribution. Then, the log-likelihood function is given by

L5t ().

£(a) = constant — 3nIn(x) — X, In(x;) + 257 In(In(x;)) — 27

The MLE of #, i.e., @, is found by solving the following equation:

dl(u 3n 1
d(a = =t ﬁz?zl[ln(xi)}z =0,

n 1/2
Q- {31:1‘1““(""”2} .

On the other hand, the second derivative of /(«) evaluated at « = @ is negative,
therefore concluding that @ is MLE for «.
It is known that, under certain regularity conditions,

resulting

Vi@ —a) 2 N(o,rl(a)),

in which I(a) = 715[512((;‘) = .

A two-sided 100(1 — 71)% confidence interval for a can be calculated by

{&le_n/z \/Var[a], @ +z1_/2 \/Var[&]}, (6)

in which z, is the g-th percentile of the standard normal distribution. The variance of & can

be approximated by the inverse of the observed Fisher information, as

2

o

Var[a] =I'@) = —.
arfd] = 17'(@) = ¢
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Since w is a positive value and we cannot guarantee that the lower limit of the inter-
val (6) is positive, we resort to the delta method to remedy such situation. For this, we
define the function g : [0,00) — R as g(a) = In(«), and knowing that

2
Vii(g(® -~ g(@) N<o,11<a) )] )

we can, then, obtain an approximate two-sided 100(1 — 71)% confidence interval for «
through

_ Z1_n/2 (3
wexp (7 ) , . 7)
) sl

3.3. Simulation Study

In order to illustrate the presented inferences for the estimation of the AU distribution,
the MLE versus the UMVUE are compared (via simulation study) in this subsection. More-
over, we considered the scenarios in which the parameter « = {0.1,0.3,0.5,0.7,1.1,1.5},
considering sample sizes n = {100,200,500}, through the Monte Carlo method with
N = 1000 repetitions. This entire procedure took into account the random number genera-
tor for the AU(a) distribution shown in Algorithm 1. All analyses carried out in this study
adopted the open-source R software [24].

For the performance comparison of the proposed estimators (MLE and UMVUE), since
the true parameter value is known, the bias and mean squared error (MSE) metrics were
adopted, and they are defined, respectively, as it follows:

Z

1N 1Y
Bias(a) = NZ((»*&) and MSE (« NZ(a,fzx

in which @; is the estimate for a in the i-th iteration (point estimation). Additionally, based
on the asymptotic results presented in this study, we also calculated the 95% confidence
interval (CI) length by adopting the delta method from Equation (7) (interval estimation).
That is, it analyzed the average of all the upper limits of the 95% confidence interval, as
well as the average of all the lower limits, and then calculated their difference.

Table 1 presents the obtained average estimates (AVE) of the & parameter, for each
sample size n, as well as the corresponding bias, MSE and 95% CI length (this last one only
for MLE) results.

The asymptotic convergence of the MLE towards the robustness is noticed as the
sample size increases. In addition, both MLE and UMVUE'’s bias and MSE are small and
tend to decrease as 1 gets larger. On the other hand, the CI length also decreases as the
sample size increases.

Finally, regarding the robustness of the estimators, the difference between the MLE and

UMVUE estimates was taken, considering each different sample size . Then, the interquartile

range (IQR) was calculated per sample size group. That is, IQR (i) ( (i L>E - DC]SI\’/}VUE’ e,

zx]<M"QE o?]g&VUE, . ,0(61<\23E - ‘x()I(.IN}VUE)’ in which ni = {100,200,500} and «; = {a; =
0.1,ap = 0.3,...,a46 = 1.5}. For instance, the IQR for n = 100 was 0.00053, whereas for
n = 200 and n = 500, it went down to 0.00025 and 0.00012, respectively. This points out,
in short, that as the sample size gets larger, the error range gets smaller, regardless of the

value of the a parameter.
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Table 1. AVE, bias, MSE and 95% CI length (only for MLE) for the proposed estimators (MLE and
UMVUE) of the single parameter («) of the AU distribution, considering different sample sizes ().

MLE UMVUE

n I3

AVE Bias MSE CI Length AVE Bias MSE
100 0.1 0.0998 —0.0002 1.6930 x 10~° 0.0160 00999  —82264 x 107° 16165 x 107°
200 0.0999 —9.8758 x 1075 8.7306 x 107 0.0113 0.0999 —5.7124 x 10— 8.7314 x 10°°
500 0.0999  —3.3400 x 10°°  3.5542 x 10~° 0.0071 0.1000 1.3327 x 107° 3.5555 x 10°°
100 03  0.299% —0.0004 0.0002 0.0480 0.2999  —8.0656 x 10~° 0.0002
200 0.2997 —0.0003 7.8575 x 102 0.0339 0.2998 —0.0002 7.8582 x 1075
500 0.2999  —1.0020 x 107> 3.1987 x 10~° 0.0214 0.3002 0.0002 3.0979 x 10~°
100 0.5  0.4994 —0.0006 0.0004 0.0800 0.4999 —0.0001 0.0004
200 0.4997 —0.0003 0.0002 0.0565 0.4997 —0.0003 0.0002
500 0.4999 —1.6700 x 1075 8.8855 x 10~° 0.0357 0.5000 6.6637 x 107° 8.8888 x 107°
100 07 0.6992 —0.0008 0.0008 0.1120 0.6998 —0.0002 0.0008
200 0.6993 —0.0007 0.0004 0.0791 0.6996 —0.0004 0.0004
500 0.6999  —2.3380 x 10~° 0.0001 0.0501 0.7000 9.3291 x 107° 0.0001
100 1.1 1.0987 —0.0013 0.0020 0.1760 1.0997 —0.0003 0.0020
200 1.0989 —0.0011 0.0010 0.1244 1.0994 —0.0006 0.0010
500 1.0999  —3.6741 x 1075 0.0004 0.0787 1.1001 0.0001 0.0004
100 1.5 14983 —0.0017 0.0038 0.2400 1.4996 —0.0004 0.0038
200 1.4985 —0.0015 0.0019 0.1696 1.4991 —0.0009 0.0019
500 14999  —5.0101 x 10~° 0.0008 0.1073 1.5002 0.0002 0.0007

4. Real-World Exemplifications

In this section, two applications adopting the AU distribution with real-world issues
are exemplified. The first case is related to the dynamics of the Chilean inflation in the
post-military dictatorship period. The second case pertains to the relative humidity of the
air in the northern Chilean city of Copiap6 (Atacama region).

The Chilean inflation data are recorded annually, whose values considered the range
from 1992 to 2021. These are based on the period after the military dictatorship of 1973-1990.
It was analyzed the dynamics of the inflation data (in %), which were standardized by
min-max transformation, resulting in a unit response variable (value between zero and
one). The years 1990 and 1991 were excluded, since they are considered to be a period of
transition. Then, the total amount of observations was of 30 years (from 1992 to 2021).

On the other hand, the relative air humidity data cover the period from February 2015
to October 2022, with a one-hour recording format (104,415 observations). Then, this data
set was transformed into daily maximum observation (6226 observations).

4.1. Chilean Inflation (Post-Military Era)

Figure 3 presents the dynamics of the Chilean inflation in the post-military dictatorship
period, demonstrating stability between the years of 1999 and 2008. The right panel displays
the time series of inflation, in which time is measured in years, from year 1 (1992) to year
30 (2021). The left panel depicts the accumulation of the values throughout the time series,
in which a predominant trend is shown around 0.1 of the inflation rate.

Once the empirical dynamics of these data was analyzed, the most common unit
distributions, presented in the statistical literature, were fitted. The upper panel of Figure 4
illustrates the histogram for the inflation data, in which it is compared with different
fitted densities based on the MLE: AU, beta (BE), Kumaraswamy (KUM), logit-normal
(LOGITNO), simplex (SIMPLEX), unit-half-normal (UHN), and unit-Lindley (ULINDLEY).
The lower panel of the same figure presents the fitted CDFs superimposed to the empirical
CDF (ECDF).
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Figure 3. Chilean inflation in the period 1992-2021 (post-military era). The histogram on the left
presents a skewness of the data. The dynamics is represented in the right panel, in which a disturbance
(outlier) is observed in the year 2008 (observation #17).
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Figure 4. Estimated densities superimposed to the histogram (top-chart), and estimated CDFs
superimposed to the ECDF (bottom-chart) (Chilean inflation data).

In order to quantify the performance of the fitted models, the Akaike Information
Criterion (AIC) [25] and the Bayesian (or Schwarz) Information Criterion (BIC) [26] were
analyzed. The obtained results (see Table 2) indicated the AU model as the best-fitted
model to this data set. In addition, it is possible to make an inference about the average
of the phenomenon, that is, the expectation of the AU(@ = 1.2059) model, resulting in
E[Xnflation] = 0.1948. In other words, the average Chilean inflation, in post-military era, is
of 19.49%.

In the following subsection, it is illustrated the performance of the AU model when
adopting a high-frequency data set originated from the relative humidity from a city located
in the Atacama Desert.
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Table 2. Parameter estimates, AIC and BIC values (Chilean inflation data). S.E. = standard error.

Model Parameter Estimate (S.E.) AIC BIC

AU () & = 1.205943 (0.008079) —47.89 —46.49
ji = 0.185857 (0.000496)

BE(y,0) @ = 0.314688 (0.001304) —44.58 —41.78
i = 1.370127 (0.045522)

KUM(y, ) = 7.968427 (7.750459) —43.63 —40.83
i = 0.150323 (0.000457)

LOGITNO(1, 0) & — 0916938 (0.014013) —46.23 —43.43
i = 0.182462 (0.000584)

SIMPLEX (1, 0) 5 2854833 (0.135834) —4317 —40.37

UHN(0) & = 0.413894 (0.002855) —33.62 3.2

ULINDLEY (1) i = 0.186834 (0.000575) —41.99 —40.58

4.2. Water Monitoring in Air Humidity

The hydrological regime of the main rivers of Atacama is characterized by ice sources:
water flows from the peaks following the melting of snowfall, glaciers, and permafrost
located in the upper parts of the Andes range. In the context of climate change, it is,
therefore, essential to understand the hydrological cycle of these regions, in order to set up
a sustainable management policy to them. Understanding the hydrological cycle requires
the implementation of tools for forecasting river flows, relative humidity, groundwater
reservoirs, or any other water-related quantity monitoring, which inevitably demands an in-
depth knowledge with respect to the physical phenomena that rule the entire hydrological
cycle and, more precisely, the complex interaction between atmosphere, climate, landforms,
ice, snow and river flows.

Additionally, a unique phenomenon called Camanchaca happens, which consists in
a fog passing by the Copiap¢ city, recurrent only between midnight to around 10 a.m.
Here, we demonstrate the variation of the relative humidity of Copiap6 city, proposing
a methodology that can be efficient, adjustable to these data. Using the daily maximum
relative humidity, six different unit distributions were compared: AU, BE, KUM, LOGITNO,
SIMPLEX, and UHN, as shown in Figure 5.

After comparing the commonly used unit models, we demonstrate the advantage
of fitting the AU model over others (visually). Table 3 confirms the best fit of the AU
model, based on information criteria (AIC and BIC), as well as depicts the estimation of the
parameter(s) of each model.

Table 3. Parameter estimates, AIC and BIC values (relative air humidity data).

Model Parameter Estimate (S.E.) AIC BIC
AU() @ = 0.1092 (3.1902 x 10~7) —14,023.49 —14,016.76
il = 0.8476 (1.2027 x 107°)
BE(y, o) & — 02410 (41119 x 10-9) —13,927.89 —13,914.41
7i = 9.4004 (0.0141)
KUM(y, o) & — 2.3882 (0.0019) —13,605.90 —13,592.43
#l = 0.8693 (3.1376 x 107°)

LOGITNO(, o) & — 1.2299 (12148 x 10-4) —7600.43 —7586.95
SIMPLEX i = 09735 (1.2959 x 1076) 2,477.1 2,490.61
MPLEX (y, 0) & = 94.0480 (0.7103) 32477.13 32,490.6

UHN(0) 7 =99.9900 (6.5334 x 1077)  5,101,018,733.13 5,101,018,739.86
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Figure 5. Estimated densities superimposed to the histogram (top-chart), and estimated CDFs
superimposed to the ECDF (bottom-chart) (relative air humidity data).

After obtaining the parameter estimate for «, the AU model (best-fitted model) was
used to construct a Statistical Process Control (SPC) chart [27], by calculating a tolerance
upper-lower bound. Moreover, the Highest Density Interval (HDI) was adopted, consider-
ing a confidence degree of 99%, to monitor the daily maximum relative humidity records
(as displayed by Figure 6).

Bl b b

02
0 1000 2000 32000 4000 5000 6000

Index
Observed Variable 193 (3.196) points out of confidence interval,

99% confidence interval
+  Outof the confidence interval

Figure 6. SPC control chart, considering a 99% of tolerance based on the AU model fitted to the
daily maximum relative humidity of Copiap6 city, Chile, from 1 February 2015 to 4 October 2022.
It is observed that 193 days (3.1%) presented anomaly values (out-of-control signals). The obtained
control limits were: LCL = 68.56% and UCL = 97.73%.
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The expected daily maximum water relative humidity is of 84.23% (based on the fitted
AU model). The obtained control limits, considering a confidence (or tolerance) level of
99%, were: LCL = 68.56% and UCL = 97.73%. Thus, the control chart based on the AU
model (AU control chart) is another exciting and valuable alternative to some well-known
SPC tools, which enlightens the forecasting and opens new doors to discuss extreme events
in the Atacama water particles monitored by probabilistic reasoning.

5. Conclusions

This study showed the competitiveness of the developed Theorem 1 (Equation (1)),
which enables for a great class of distributions that belong all to the exponential family.
As an exemplification, we adopted the special case for k = 1, which is equivalent to the
moment of order two of the standard normal distribution, and after some transformations,
we developed the Alpha-Unit (AU) distribution. Also, we dedicated to the unit range,
given the importance of this stochasticity representation.

Unit distributions are useful for values that oscillate between zero and one, such as
fractions, proportions and rates, among others, or for a set of values in which there is
a minimum or maximum limitation, resorting to standardization through the min-max
transformation. Most distributions of this type come from transforming a random variable
with certain distribution so that it takes values between zero and one, as in the case of
unit-Lindley distribution [9], which comes from the Lindley distribution [28,29].

There are numerous studies based on (e.g., unit) distributions, by extending a model
and applying it to several areas [11,14,16]. In this study, we introduced and showed the
competitiveness of the AU distribution, especially for data with a range greater than 0.4,
or which present high asymmetry and low decay. Further studies shall investigate this
hypothesis in a wider amount of data sets (through different sorts of wide data range).
Additionally, an implementation of this model adopting hierarchical estimation and spatio-
temporal dependence would be useful for forecast/predictable problems.
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Appendix A

This appendix shows the proof that for a random variable
X~BN(K) = X~
Then,

Fra(x) = P(X? <x) = P(—v¥ < X < vx) =2P(X < V&) - 1=2F (V) — 1.
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It follows that

fra(x) = 2fX(ﬁ)

11 x)* X ! 71 ) %1 ! e 3,
avs ~cVITeVRI = I 1(2171)(f)

Knowing that F(ZkT‘H) ]_[ _1(2j - 1) o7 then

2k—1
1 a1 NG T
fo(x) = ki.x%zl e 2= 7”19(/2726_7
IT_1(2j - 1) V2 zkr(ZkTJrl>2 N
1 B
= X e .
2k+1 2k+1
r(# )2

Therefore, X2 ~ ng 1

Besides that, complementation can be taken into account by saying that, considering
Wa ~ X34 and P(W; = £1) = 1/2, then B = Wy/W, ~ BN(k).

Letb > 0, then

Fz(b) = P(B < b) (wl\ﬁ < b)
P(Wl\/Wzg bW, = 1)1}D(w1 =1) +[P>(w1\/W2g bW, = 71>IP(W1 =-1)

(1) VW < b)1 +P((~1)VW; < b>1

Since b > 0, then ]P’(( \/Wz<b> =1:
_P(M< b) %—IP’(\W2| < b2> ; :]P’(—bz <W, < bz)%+%

d[pces)-2(x= )]+ - Be(x <)+ 3 - 3n() 45
Therefore, i

folb) = dFSZEb) _ %fx(bz)% — by (bz) _ br(zml)zn;l(bz)”‘;llebz
2
I*(Zszrll)ZZkZHbZk_le_z -~ \FW];—]DZszke—%
) S
! L o v 7#"4;(;;).

Analogously, it is proved for b < 0.

Appendix B

The proposed theorem (Theorem 1) will be illustrated considering k = 1, to show the
origin of the random numbers that generate the AU distribution.

Proposition Al. If X ~ BN(1), then fx(x) = x2¢(x) is a bimodal density function.
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Proof. If fx(x) is bimodal, it would have two maxima, to which the first and second
derivative criteria would be applied:

dfx(x) _,

dx =

d(x2¢(x
00 ) + 22— (3)] = 259(x) ~ 2p(x) = 39(5) (2 - ) =0
Then, it can be seen that the solutions for the previous equation would be: x; = 0,
X2 = V/2, x3 = —/2. Hence, by applying the second derivative criterion:

d* fx (x)

i <0 =

A=) o) (2 22) 4 2l-xp(] (2 - 22) + xp(a)(~20).

Reducing algebraically, we get to:

4 fx (x)
dx?

= ¢(x) <2 — 52 + x4) <0.

The only solutions that satisfy the previous inequality are: x, = V2, X3 = —V2.
Therefore, there are two maxima and the BN distribution is bimodal.
|

Definition A1 (Bimodal Half-Normal distribution). Let Y ~ BN(1). If Q = «|Y|, witha > 0,
then we say that Q is distributed according to a Bimodal Half-Normal (BHN) distribution with
parameter «, and we denote it by Q ~ BHN(a).

Proposition A2. If Q ~ BHN(a), then the PDF of Q is given by

folg 1) = 2(1) (1), 450
Proof. Since Q = a|Y|, with Y ~ BN(1), then
Fog) =P(Q=<q) =Pl =g =P(-T <y ) —op(v<T) 12 (1) -1,

Hence, by deriving the previous expression, one has that

o =25 ()5 = £ (0) 0(3)
O
Proposition A3. If Q ~ BHN(«), then
X =e9~ AU(n).
Proof. Let X = ¢ 2,0 < x < 1, then

Fx(x) =P(X < x) = IP’(e’Q < x) =P(—Q < In(x)) = P(Q > — In(x))
=1-P(Q < —1In(x)) =1— Fo(—In(x)).
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By deriving the previous expression, we have:

Fx () :fQ(_ln(x))% = g(*ln(X)>2¢<fln(X)>l _2 <ln(x)>2¢<ln(x)>.

X oax

o o o o o
O
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Abstract: The surface quality of wooden products is of great importance to production industries.
The best surface quality requires a thorough understanding of the cutting parameters’ effects on the
wooden material. In this paper, response surface methodology, which is one of the conventional
statistical methods in experiment design, has been used to design experiments and investigate the
effect of different machining parameters as feed rate, spindle speed, step over, and depth of cut on
surface quality of the beech wood. The mathematical model of the examined parameters and the
surface roughness have also been obtained by the method. Finally, the optimal machining parameters
have been obtained to achieve the best quality of the machined surface, which reduced the surface
roughness up to 4.2 (um). Each of the machining parameters has a considerable effect on surface
quality, although it is noted that the feed rate has the greatest effect.

Keywords: optimization; response surface method; surface roughness; machining parameters

1. Introduction
In recent years, the wood industry has gained significant attention for its applications
in various industries and because the wood and its products are very important in industrial
Citation: Pakzad, S; Pedrammehr,S;  production. The surface roughness, as the main parameter of surface quality, is among the

Hejazian, M. A Study on the Beech requirements for quality production. The examination of the methods conducive to achieve
Wood Machining Parameters the optimal cutting parameters for the minimum surface roughness of wooden products is
Optimization Using Response one of the vital research issues that fill the gap existing in the literature in this respect.

Surface Methodology. Axiorns 2023, Fujiwara et al. [1] have investigated the surface roughness of Japanese oak and beech
12,39. https://doi.org/10.3390/ that were polished with different sandpapers, and after paying attention to the distribution
axioms12010039 of the respective area the peaks of the roughness profile were checked. Usta et al. [2] have
Academic Editors: Nuno Bastos, studied the effect of the number of grater knife blades, feed speed and depth of cut on
Touria Karite and Amir Khan the surface roughness of Acacia locust and European oak in the planning process. The

samples have been tested with two and four blades, feeding speed of 5 and 9 (m/min)
and cutting depth of 1, 2 and 4 (mm), respectively. It should be noted that under the same
conditions, Acacia Locust has a smoother surface than European oak. They found that the
surface roughness decreases by reducing the feed speed and depth of cut and increasing
the number of grater blades. The lowest surface roughness in the experiment with the
highest number of grater blades (4 blades), feed rate of 5 m per minute and cutting depth of

v 1 (mm) is achieved. Hernandez et al. [3] have investigated the effect of cutting width and
Copyright: © 2022 by the authors.  height on the surface quality of black spruce timber in the process of turning the trunk into
Licensee MDPI, Basel, Switzerland. ~ lumber. So that the spindle speed and feed rate are kept constant, surface roughness tests
This article is an open access article  have been performed in two conditions of summer and winter temperature and different
distributed under the terms and  cutting width and height. Finally, they obtained the suitable surface quality in summer
conditions of the Creative Commons  temperature where the width and height of cut of the black spruce was less. Kilic et al. [4]
Attribution (CC BY) license (https:// have evaluated the effect of different machining techniques on the surface roughness of

creativecommons.org/licenses/by / beech and spruce wood. They designed a test to consider the characteristics of sawn and
4.0/).

Received: 23 November 2022
Revised: 18 December 2022

Accepted: 21 December 2022
Published: 29 December 2022

Axioms 2023, 12, 39. https:/ /doi.org/10.3390/axioms12010039 46 https:/ /www.mdpi.com/journal /axioms



Axioms 2023, 12, 39

sanded surfaces with 60 and 80 sandpapers. Pinkowski et al. [5] have studied the effect of
cutting angle and feed rate on the surface roughness of different woods in the planning
process. They performed experiments with four different cutting angles of the blade, four
different feed rates, and constant rotational speed. They found that surface roughness
decreases with decreasing cutting angle and surface roughness increases with increasing
feed rate. The optimal cutting angle is 40 degrees. Moreover, the surface area decreases
with increasing wood density. Extensive research [6-10] has been conducted to investigate
cutting parameters on different woods in the planning process. Koch et al. [11] have studied
the effects of feed rate and spindle rotational speed on two types of wood and MDF in
the CNC milling process. They used the factorial method in the design of the experiment
and found that a smoother surface was obtained by increasing the rotational speed of the
spindle and decreasing the feed rate. Bal and AKCAKAYA [12] have studied the effect of
step over, feed rate, and cutting depth on fiber surface roughness in the CNC machining
process. They performed experiments on two cutting depths of 2 and 6 (mm), step over
of 40, 60, and 80% of the tool diameter, feed rate of 3, 5, 7 (m/min) and a constant spindle
speed of the spindle. They found that the feed rate and surface roughness increase with
increasing the depth of cut. In the design of traditional experimental methods, only one
factor was considered as a variable and other factors were constant. In this method, due to
the existence of one variable, the effects between the variables are not studied and the full
effect of the variables on the response is not displayed. In addition, to do the project in the
mentioned method, many tests are needed, which leads to an increase in time and cost as
well as an increase in the consumption of materials. To overcome this problem, the response
surface methodology (RSM) was proposed by Box and Wilson for optimization studies [13].
RSM is a mathematical tool that determines the relationship between a set of responses and
independent variables. An important aspect of RSM is design of experiments, commonly
known as DOE. This strategy was originally developed to fit experimental models but
can also be used for numerical experiments. DOE’s goal is to select the points where the
response should be evaluated. The test design can have a great impact on the accuracy of the
estimation and the cost of constructing the response surface model. Rao and Murthy [14]
have studied the effect of cutting parameters on the surface roughness and workpiece
vibrations using experimental design methods including the RSM in the drilling process.
Moreover, Hazir and Koc [15] have investigated the optimization of cutting parameters in
the CNC process of Lebanese Cedar and European black pine with the aim of minimum
surface roughness using RSM. Extensive research [16-19] has been done on modeling and
optimization of cutting parameters to achieve the desired surface roughness by using the
RSM method.

This research has been conducted to determine the effective parameters in machining
of beech wood to achieve the best surface quality. Afterwards, the effect of machining
parameters such as feed rate, spindle speed, cutting depth, and step over on beech wood
surface roughness have been studied. Finally, Optimization modeling has been performed
under RSM, and the mentioned parameters have been optimized to achieve the minimum
surface roughness of the workpiece.

2. Materials and Methods

Woodworking with CNC technologies is an integral part of the woodworking industry,
and there are various methods to achieve the desired smooth surface that is important in
high-performance machining and high-quality production. In this section, the workpiece
material and the utilized CNC machine and tool are introduced. The conditions and
methods of testing and machining and the optimization method are also explained.

2.1. Test Materials and Conditions

The wood used in this research is beech wood, which is widely used for wooden
products due to its stable internal structure, high density and good compressive strength
performance. The physical and mechanical properties of beech wood have been studied in
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recently published literature [20-22]. Here, the details for the under-study wood mechanical
properties are listed in Table 1. Pieces of this wood with dimensions of 10*30 (cm) and a
thickness of 15 (mm) in the radial direction have been prepared for testing. The machine
used for milling is a three-axis cartesian CNC with a Mach3 control system. The zigzag
strategy has been used for the end milling of the desired surface in ArtCAM software. Here,
the end mill series used are ARDEN 214, which are ideal for high volume end mills with
medium feed rates due to their hard materials and diamond crystal structure. The end mill
tool code 214,214 has a working height of 12 (mm) and a diameter of 20 (mm) with two
tungsten carbide teeth.

Table 1. Mechanical properties of under study beech wood [21].

Bending Elasticity P?::lll: 1 Grain Parallel Grain Parallel Grain Normal Impact
Strength Modulus C . Shear Strength Tensile Strength Tensile Strength Bending
ompression
99.01 (MPa) 11,224 (MPa)  57.05 (MPa) 10.47 (MPa) 131.15 (MPa) 3.71 (MPa) 11.081 (KJ/m?)

2.2. Experimentation

As the response surface method is one of the common statistical methods in the design
of experiments, in the present study Design-Expert software and the response surface
method have been used to design the experiments and analyze the results. In this method,
the variables affecting the response and the minimum and maximum limits are determined,
and based on these limits and the model the test matrix is designed. One of the main
advantages of this method over the full factorial method is the reduction in the number of
experiments while the number of variables is high, which reduces the costs and time of
the research. The three main types of response surface methods are the central composite,
Box Benken, and Dehlert models, in which the central composite model used in this paper
is more valid than the others [23]. Work piece material, machine tool type, and geometric
factors may be varied during machining [24]. Required surface quality can be attained
by proper machining parameters selection. Here, in a milling condition with the given
factors for the machine tool and work piece material, surface quality can be determined and
improved depending on the geometric factors’ selection which includes feed rate, cutting
speed, step over, and depth of cut [25-27]. The effective variables considered on the surface
roughness method and their minimum and maximum values are presented in Table 2.

Table 2. Minimum and maximum input data.

Parameter Maximum Minimum
Depth of cut (mm) 10 4
Feed rate (mm/s) 55 30
Spindle speed (rpm) 15,000 9000
Step over (mm) 7.75 5.25

By importing the data listed in Table 1 into the Design-Expert environment and using
the central composite model for the response surface method, the test conditions have been
designed according to the Table 3. The total number of experiments can also be obtained
by the following equation:

N =2k 4 2k 1)

where N is the total number of experiments and k is the number of independent variables.

48



Axioms 2023, 12, 39

Table 3. Experimental test conditions.

No. Step Over (mm) Spindle Speed (rpm) Feed Rate (mm/s)  Depth of Cut (mm)

1 7.75 9000 30 10
2 7.75 12,000 40 10
3 7.75 15,000 50 10
4 7.75 9000 35 8
5 7.75 12,000 45 8
6 5.25 12,000 55 8
7 5.25 15,000 55 8
8 7.75 15,000 45 8
9 6.5 15,000 45 8
10 525 9000 50 6
11 6.5 12,000 55 6
12 7.75 15,000 55 6
13 7.75 12,000 30 6
14 5.25 12,000 40 6
15 6.5 15,000 50 6
16 7.75 9000 40 6
17 7.75 9000 30 6
18 7.75 15,000 40 6
19 7.75 15,000 55 4
20 6.5 12,000 45 8
21 7.75 15,000 55 4
22 6.5 15,000 30 6
23 5.25 12,000 50 6
24 7.75 12,000 45 6

Surface roughness can be measured by tracing the probe across the workpiece surface.
The arithmetical mean of the absolute values of the profile deviations, Ra, is a vertical
parameter that shows the average roughness of a surface. After performing 24 designed
tests the average roughness parameter (Ra) has been measured using a TIME 3202 digital
roughness meter according to ISO 4287 standard [28], which uses five sampling lengths for
Ra measurement. Figure 1 shows the machining process and average surface roughness
measurement.

B %

P

- |
L ee——
... ... W
R e W

L Bes—
L —
D | =eesm———
T
pamm—— |
e —
———

I oo cranstu

_ I —a.
[ S
e ——

(b)
Figure 1. (a) CNC machining of beech wood; (b) surface roughness measurement.

2.3. Response Surface Analysis

Response surface analysis is known as a time and cost economic method that makes it
easy to identify the outlier data. This method has been adopted in various fields of study,
and particularly in manufacturing research works [29-38]. Since the adjusted coefficient
of determination R? represents the accuracy of the estimation concerning the roughness
regression, it should be more than 90% to achieve the appropriate relation. Table 4 shows
R? coefficient values for different equations. The value of this coefficient in the cubic
equation is 100%, and it indicates the high accuracy of the estimated equation which has
been utilized in this study.
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Table 4. Regression models validation.

Regression Model Adj—R? Valid

Linear

Ry (pm) = ag + ay f + apn + aza + ays 0.4480

Linear + 2 factor interaction

Ra(um) = ag + a1 f + agn + aza + ags + asfn + agna + azas + agsf 0.5732
+agfa+ ajpns
Quadratic
Ry(um) = ap+ a1 f + aon + aza + ass + 115f2 + agn? + aya® + ags? 0.4278

+agfn + aygna + ayas + aypsf + ajzfa + ayans

Cubic
Ro(um) = ag+ayf + agn + aza + azs + asf2 + agn® + aya® + ags>
“+agfn + ajgna + ayas + apsf + ajgfa + ajans
Far15f° + a16n® + a176° + a1g5° + aroafn + axafs 1 X
“+ayans + ax fns + az3u2f + ap40%n + ags5a2s
+u26uf2 + ayyan? + apgas? + a29f2n + u30f25
+az1 fn? + a fs? + azyns? + azgn’s

2.4. Variance Analysis

ANOVA (analysis of variance) is a statistical analysis used to determine the model’s
suitability. Table 5 shows the results of ANOVA for the third-order equation of Ra, where
the p-value shows the significance of each coefficient. If the p-value becomes less than 0.05 it
indicates the coefficient’s significance and importance. Considering Table 5, all parameters
of a third-order equation, including the third power of the parameters, are presented in the
estimated equation. The total p-value of the equation is 0.0014, and therefore the estimated
model is valid. The estimated coefficient of each parameter is also shown on the general
model, which has the greatest effect on the feed rate that is equal to 31.47.

Table 5. Analysis of variance results.

Parameter p-Value Predicted Coefficient
Constant 22.26
Linear
a 0.0031 10.75
f 0.0016 31.47
n 0.0013 —11.24
s 0.0012 9.88
Quadratic
a? 0.0072 2.80
f? 0.0015 15.89
n? 0.0012 1.93
52 0.0016 2.04
2 Factor interaction
af 0.0026 19.51
an 0.0012 —11.87
as 0.0015 7.04
fn 0.0017 —9.14
fs 0.0012 10.44
ns 0.0015 —5.62
afn 0.0015 —8.44
afs 0.0014 7.62
ans 0.0022 1.58
fns 0.0014 —5.08
a’f 0.0061 2.31
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Table 5. Cont.

Parameter p-Value Predicted Coefficient
2 Factor interaction
a*n 0.0075 -141
af? 0.0021 10.83
fn 0.0048 -1.10
Total 0.0014 (Significant)

3. Results and Discussions
3.1. The Effect of Different Machining Parameters on Surface Roughness of Beech Wood

The effect of different machining parameters on surface roughness of other work-
piece materials has been studied in several research works. In the literature [39-41] it
was reported that the control parameters having the most effect on surface quality are the
spindle speed, feed rate and depth of cut rate, and that better surface quality was obtained
at higher spindle speeds, lower feed rates and depth of cut. In this study similar results
have been obtained for the effect of spindle speed, feed rate, and depth of cut on surface
quality of the beech wood. Particularly, the step-over effect on the surface roughness has
been investigated in this study.

Figure 2 shows the effect of machining parameters on surface roughness. According
to Figure 2a, which presents the effect of spindle speed on surface roughness, when the
spindle speed increases the surface roughness increases as well. Moreover, this figure
shows that the surface roughness increases with the increase in cutting depth. Figure 2b
shows the effects of feed rate and surface roughness on cutting depth, where it is seen
that if the feed rate increases the surface roughness increases, and with the increase in
the cutting depth the surface roughness also increases. Figure 2c also shows the effects of
cutting depth and surface roughness on step over. It can also be obtained from this figure
that increasing the depth of cut leads to an increase in surface roughness. Significantly,
with the increase in the step over, the surface roughness continues to increase.

Figure 2d illustrates the effects of spindle speed and surface roughness on the step
over. As the spindle speed increases the surface roughness increases. With an increase in
step over the surface roughness increases as well. Figure 2e shows the effects of step over
and surface roughness on to the feed rate, and it is apparent that the step-over increase
leads to the surface roughness increase. Per Figure 2f that presents the effects of spindle
speed and surface roughness on feed rate, one can understand that the higher spindle
speed or feed rate results in the higher surface roughness increases.

3.2. Parameter Optimization

The focus of the present work is to reduce the surface roughness of the workpiece to
achieve the desired surface quality. Optimal machining parameters can be used to minimize
the desired workpiece surface roughness. Table 6 shows the optimal machining parameters
that are obtained here using the response surface method.

Table 6. Goal and optimized value of parameters.

Parameter Goal Description Optimized Value

. I ;
Depth of cut Maximum ncrease in 10
production rate

Increase in

Feed rate Maximum . 66.262
production rate
Spindle speed In range 15,000
Step over In range 5.25
Surface roughness Minimum Increase m product 4.2
quality
Desirability 0.812
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Figure 2. Effect of machining parameters on surface roughness: (a) effects of spindle speed and depth
of cut on surface roughness; (b) effects of feed rate and depth of cut on surface roughness; (c) effects
of depth of cut and step over on surface roughness; (d) effects of spindle speed and step over on
surface roughness; (e) effects of step over and feed rate on surface roughness; (f) effects of spindle

speed and feed rate on surface roughness.

By analyzing the results obtained from the optimization, the optimal value of Ra can
be obtained based on the estimated model. This value is equal to 4.2 (um) (Figure 3). As
the desirability value approaches 1, a better optimization result will be obtained.
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Figure 3. Effect of machining parameters and graphical analysis for surface roughness and desirabil-
ity: (a) spindle speed and feed rate on desirability; (b) spindle speed and feed rate on roughness;
(c) feed rate and thickness on desirability; (d) feed rate and thickness on roughness; (e) feed rate and
step over on desirability; (f) feed rate and step over on roughness.

The optimized results’ ramps are illustrated in Figure 4. The red bullets represent the
optimized values and the blue bullet represents how well the surface quality increased. The
relevant bar graph of desirability for the machining condition, replies, and the combined
desirability of 0.812 is presented in Figure 5 that shows the overall desirability of all the
parameters and the response.
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Figure 4. The graphs for optimal parameter ramp’s function and combined optimization.
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Figure 5. Desirability bar graph for combined optimization.

3.3. Model Validation

To validate the proposed model, the estimated surface roughness value and the value
obtained from the model measurement have been compared here. Table 7 shows the
estimated and measured values in different model conditions. According to this table
the measured and estimated values are equal or have a slight difference with each other.
Therefore, the estimated model has enough accuracy to calculate surface roughness based
on different machining parameters (feed rate, spindle speed, depth of cut, step over).
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Table 7. Comparison of surface roughness values measured and predicted by the model.

Roughness Roughness
Condition 95 % PI High 95 % PI Low Std Dev Predicted Value
Measured Value
by Model

1 8.52612 8.44988 0.003 8.488 8.488
2 7.38712 7.31088 0.003 7.349 7.349
3 5.25612 5.17988 0.003 5218 5.218
4 6.70112 6.62488 0.003 6.663 6.663
5 7.06512 6.98888 0.003 7.027 7.027
6 7.63512 7.55888 0.003 7.597 7.597
7 592112 5.84488 0.003 5.883 5.883
8 6.95712 6.88088 0.003 6.919 6.919
9 6.79412 6.71788 0.003 6.756 6.756
10 7.53112 7.45488 0.003 7.493 7.493
11 7.84812 7.77188 0.003 7.81 7.81

12 8.01412 7.93788 0.003 7.976 7.976
13 5.27812 5.20188 0.003 524 524

14 7.52612 7.44988 0.003 7.488 7.488
15 6.78812 6.71188 0.003 6.75 6.75

16 9.03112 8.95488 0.003 8.993 8.993
17 8.02412 7.94788 0.003 7.986 7.986
18 5.10712 5.03088 0.003 5.069 5.069
19 7.87251 7.80649 0.002598 7.838 7.8395
20 7.08212 7.00588 0.003 7.044 7.044
21 7.87251 7.80649 0.002598 7.841 7.8395
22 421112 4.13488 0.003 4.173 4.173
23 7.46212 7.38588 0.003 7.424 7.424
24 6.30112 6.22488 0.003 6.263 6.263

4. Conclusions

This research mainly focuses on parameters investigation and optimization to achieve
the best surface quality for the machined beech wood. The effect of machining parameters
on the surface roughness of a piece of beech wood was investigated. RSM method is used
to design experiments and the results are analyzed using Design-Expert. The studied
parameters were optimized to achieve the minimum surface roughness. The summary of
the obtained results is as follows:

e  The roughness of surface decreased with decreasing feed rate. Changes in surface
roughness due to the feed rate changes at high load depth, low spindle speed, and
high step were very significant. Moreover, the surface roughness increased with an
increasing pitch;

o The surface roughness increased with increasing the depth of cut. At this step, changes
in surface roughness were very noticeable due to the changes in cutting depth, low
spindle speed and high feed rate. In addition, as the spindle speed decreased, the
surface roughness increased accordingly. Changes in surface roughness due to changes
in spindle speed at high depth of cut, step over, and feed rate were very noticeable;

e  The third-order mathematical model was modeled by the response surface method to
estimate surface roughness based on machining parameters (feed rate, spindle speed,
depth of cut and step by step). ANOVA showed that the greatest effect on surface
roughness was related to the feed rate.

Finally, the optimal parameters for minimizing the surface roughness were obtained
by the response surface method. Feed rate 66.262 (mm/s), spindle speed 15000 (rpm),
cutting depth 10 (mm) and pitch 5.25 (mm). Moreover, the best surface roughness was
obtained 4.2 (um).

The results of the proposed model for the estimated surface roughness value were
evaluated by the value obtained from the model measurement. The measured and esti-
mated values are equal or have a slight difference. Finally, it can be concluded that the

55



Axioms 2023, 12, 39

model has a good accuracy to predict surface roughness based on different machining
parameters. As RSM allows investigating the influences of multiple factors and their inter-
actions on one or more response variables, for future works this method can be applied to
other factors influential on surface quality, and can even be employed to investigate the
effects of the mentioned parameters on other response variables such as tool wear. This
produces high-precision machining and high-quality wooden products. The study can also
be continued on other wood types to study the product cost and quality. This, moreover,
clearly shows the applicability and significance of the method in other studies in terms of
economical cost, time, and any other limitations.
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Abstract: Fractional derivatives can express anomalous diffusion in brain tissue. Various brain
diseases such as Alzheimer’s disease, multiple sclerosis, and Parkinson’s disease are attributed to the
accumulation of proteins in axons. Discrete swellings along the axons cause other neuro diseases.
To model the propagation of voltage in axons with all those causes, a fractional cable geometry has
been adopted. Although a fractional cable model has already been presented, the non-existence
of fractional differential geometry based on the well-known fractional derivatives raises questions.
These minute parts of the human neural system are modeled as cables that function with a non-
uniform cross-section in the fractional realm based upon the A-fractional derivative (A-FD). That
derivative is considered the unique fractional derivative generating differential geometry. Examples
are presented so that fruitful conclusions can be made. The present work is going to help medical
and bioengineering scientists in controlling various brain diseases.

Keywords: human neural network; axons; dendrites; A-fractional derivative

MSC: 92B20; 53Z16; 26A33

1. Introduction

Fractional calculus (FC) is a mathematical procedure with global characteristics de-
manded by many scientific fields, from mechanics (Drapaca et al. [1], Di Paola et al. [2],
Carpinteri et al. [3]) to economics, and from medicine and biology (Magin [4]) to physics
(Hilfer [5], West et al. [6]), so that mathematical procedure expresses non-locality, generating
in addition non-uniform geometry. Eringen [7] has already presented non-local theories
in physics and mechanics applied to micro and nanoparticles and mechanics. He states
that problems in micro or nano fields should be considered in the context of non-local
theories. To be more precise, fractional calculus is based on fractional derivatives (FD),
mainly Riemann-Liouville, Grunwald-Letnikov, and Caputo (Kilbas et al. [8], Podlubny [9]).
Of course, many other fractional derivatives are applied in the scientific field, such as Riesz,
Miller-Ross, Hadamard, Caputo Fabrizio, and Atangana-Baleanu fractional derivatives,
to name a few. The main advantage of all these derivatives is their non-local behavior
in space as well as in time. That means fractional calculus appeals to global phenomena
and not local ones (Podlubny [9]). However, these derivatives are not derivatives in the
mathematical sense. Indeed, they do not satisfy the fundamental perquisites of differential
topology to correspond to differentials generating geometry (Chillingworth [10]). Therefore,

Copyright: © 2023 by the authors.
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their use, although very fruitful in results, is questionable. Replacing derivatives in differ-
ential equations with relative fractional derivatives is unjustifiable from the perspective of
mathematical accuracy; therefore, one cannot develop a sound theory or model based on
those derivatives.

On the other hand, the A-fractional derivative tackles that problem best. That deriva-
tive, introduced in 2018 (Lazopoulos [11]), aspires to provide a way out of the dead end
that fractional derivatives face. Along with the A-transform (A-T) and A-space (A-S), that
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derivative transforms the initial fractional differential equation (FDE) into an ordinary
equation in A-space and then transfers the results of A-space to the initial space, using a
special transform formula. Therefore, the solution of the ordinary transformed equation is
developed in A-space, where all topological perquisites are satisfied and then transferred
back to the initial space.

Dendrites and axons are the building blocks of the human neural system. They carry
electric signals to each other, thus allowing the neural system to work harmoniously. Their
behavior is not local but mainly global, making them truly appealing to fractional calculus.
Hence, the model of the electric potential is discussed in the present article concerning the
dendrites and axons of the human neural network, where it is supposed that the behavior
of the system has non-local dependence due to the microphysics of the electric neural
network. To accomplish that, we model dendrites and axons as cables. Therefore, we focus
on the solution for the coaxial cylindrical cable problem (the radius of the cable R = Ry
is constant), where the fractional derivatives in the corresponding differential equation
are thought to be the ones defined by K. Lazopoulos et al. [11]. According to A-fractional
analysis, we make the necessary transformation of the equation to A-space with the normal
derivatives, resulting in a solution for the voltage in A-space, thus solving the problem.

This article is structured thus: In Section 2, a brief description of the behavior of
A-fractional derivative, A-space, and A-transformation is given. In Section 3, the role of
fractional calculus in the study of dendrites and axons as cables is described. Finally, a
discussion is made in Section 4, and conclusions are drawn.

2. Foundations of A-Fractional Derivative, A-Transform, and Dual A-Space

To study fractional calculus, there are many thought-provoking books that the inter-
ested reader can refer to; Kilbas et al. [8], Podlubny [9], Samko et al. [12], Oldham [13], and
Mainardi [14] are some very intriguing propositions. Nevertheless, we will summarize
some essential points of FC to present them to the reader briefly.

Let us assume Q) = [«,b] (—o0 < & < b < 00) to be a finite interval on the real axis. The
left and right Riemann-Liouville fractional integrals are then defined by (Kilbas [8]):

_ 1)
N0 = L G )
b
S = g [ Lt @

with v (0 <y < 1) being the order of fractional integrals and I'(x) = (x — 1)! (I'(y) is called
Euler’s Gamma function). Furthermore, since 0 <y < 1 applies, the Riemann-Liouville
(RL) Fractional Derivatives are defined by (Kilbas [8]):

REDIf(x) = (R f(x) ®
and
REDTf(x) =~ (R f(x) @

where Equation (3) defines the left and Equation (4) the right Fractional Derivatives. More-
over, the fractional integrals with the corresponding Riemann-Liouville FDs are related by
the equation:

REDY (MHIF ) = () ®)
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The Riemann-Liouville Fractional Derivative is also essential to our methodology
since A-Derivative is defined as the fraction of two such derivatives (see Lazopoulos [10]):

dRLL 1A .
ADYf(r) = DU () _ g afL () ©
o RLDTx dkélj]’”x dRET 1=7x

X

It is clear that RED7 f(x) is the Riemann-Liouville Derivative of F(X), as described in
FC (Equations (4) and (5)), and RLT ;77 f(x) is the Riemann-Liouville fractional integral of
the real fractional dimension. In this article, 0 <y < 1 is considered (see Samko et al. [12],
Podlubny [9]).
A-transform consists of defining new variables and functions in A-space using
the transformation
F(X) = I3 f(x(X)) @)

for functions F(X) and
X=,"x 8)

for variables x.

F(X) and X then belong to A-space, and from there, they can form A-derivative
(Equation (6)) and A-fractional differential equations (A-FDE). These equations in A-space
have ordinary form; therefore, they can be treated conventionally, satisfying all perquisites
of differential topology and allowing a proper geometry to be formed. The solution H(X)
of the A-FDE is then transferred to the initial space using the formula

h(x) = 5Dy "H(X(x)) ©)
(where h(x) is the solution in the initial space).

3. A-Fractional Calculus Studying Dendrites and Axons

Dendrites and axons transfer potential electric signals of potential V. We model these
minute parts of the neural system using fractional calculus and assume that these are
cables of constant radius Rj. Since the phenomenon is non-local, fractional derivatives
are most suitable to describe this phenomenon. A-fractional derivative (introduced by
K.A. Lazopoulos in 2018 (Lazopoulos [11])) is used to model the electric current passing
through these building blocks of the neural system while A-transform and A-space are also
participating. The equation that governs the voltage of the electric current inside the cable
is (Lopez et al. [15])

V(x,t)  do 02V (x,t)
o A oxiom

where d is the constant diameter of the cable, V(x,t) is the voltage of the current passing
through the cable, where Cy; denotes the specific membrane capacitance, r;, denotes the
longitudinal resistance and ijop, is the ionic current per unit area into and out of the cable. In
the passive cable case, namely when ijon = V/ry;, with 1y the specific membrane resistance,
we have this equation processed geometrically in Lopez et al. [15], so the final cable equation
can be extracted:

V(s t) 1 3({1 S)BV(s,t)> V(s t) 1)
ot r.Cym fozn d6./detg(,s) 9 0s rMCum

where s is the length of the cable, 0 is the angle in the cross-section of the cable, a(s) is the

cross-sectional area of the cable, and g(6,s) is the metric of the cable. It is important to stress

that this equation was solved using the Caputo derivative in Lopez et al. [15].

Cm (10)
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36

V(t.s) (mV)

According to the Lazopoulos approach, we make the necessary transformation of the
equation to A-space with the ordinary derivatives, resulting in the following solution for
the voltage in A-space (Lopez et al. [15]):

2
A [ rL-CtMm LA A0
VAT \ . 2Ry T . r-C 12
(T.5) olo 2-m-Ro-T ¢ ! e (12)

where T, S is the time and arc length of the cable in A-space. They are connected with the
ones in real space with the relations for fractional order y:

t=[[B=7) 7,5 = [[3—7)-S|=7 (13)
Following [15], the other parameters in Equation (12) are constants and take the values

cp = 0.001F/ em?, 7y = 3000 - Q- ecm?2, 7, = 100- Q- cm Ry
=10"%*em, V) =13 x10°V,lj = 0.13cm

Firstly, we will examine the case where the values of arc lengths S in A-space are
constants. In order to find the values of the voltage V(t,s) in the initial space, we impose
the following inverse transformation:

A
V(ts) =501 (VA1) = ﬁ .%/()t(:/f%dr (14)

The results for voltage V(t, s) for various values of s and fractional order vy in real
space are shown in Figures 1-4. In these figures, we can see that as the value of arc length s
increases, we shift the voltage’s maximum to higher time values. We believe this delay in
maximum response is expected due to increased cable length. Also, for the same reason,
we have a decrease in the maximum value of voltage and broadness of the voltage curve as
the arc length s increases, denoting an inertial behavior across the cable.

5 X 1072 Solution in Real-Space
T T T T T
—~=1, 5=0.01
—~=0.9, s=0.01584
4 +=0.8, §=0.023357 -
—~=0.7, $=0.032587
sl ]
oL ]
] ]
0
-1 | | I 1 ! -
0 0.2 04 0.6 0.8 1 1.2 14 16 1.8 2
t (sec)

Figure 1. The voltage V(t,s) for various values of fractional order y and corresponding values of s in
real space (S = 0.01).
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x1074 Solution in Real-Space

7 T T T

I I
—+=1,5=0.02
—+=0.9, 5=0.029745

1=0.8, 5=0.041618
—1=0.7, $=0.055541

- 1 1 1 1 1 1 !
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

t (sec)

Figure 2. The voltage V(t,s) for various values of fractional order y and corresponding values of s in

real space (S = 0.02).

«10° Solution in Real-Space
25 T T T T T
—9=1,5=0.04
—~=0.9, 5=0.055858
2+ 7=0.8, 5=0.074154

—=0.7, 5=0.094661

V(t,s) (mV)

-05 1 1 1 1 1
0 0.2 04 0.6 0.8 1 1.2 14 1.6 1.8 2

t (sec)

Figure 3. The voltage V(t,s) for various values of fractional order y and corresponding values of s in

real space (S = 0.04).

Finally, we must mention that in all cases of arc length values, the decrease of fractional
order y gives greater maximum values in voltage and reverses the polarity of the resulting
voltage (from positive values to negative ones) as time passes.

Now, we will examine the voltage VA(T,S) (Equation (12)) as a two-variable function in
A-space. In order to transform it to the initial space, we will use the following formula of in-
verse transformation for both t and s, according to K. Lazopoulos’ [11] fractional approach:

_ RLy1=72 (RLyl=71 (1/A _ 1 d 1 d s VAz,q)
V(t,s) ="D, ?(’kDs (V. (T,q)))—m E/o (t—r)l_"yz(%/o (s—q)1_71dq)dT (15)

where the relation gives V2 (1,q):

rep TB=1)g* 21 2-7y
rLoem TB—7) - E e
VA T, Vil 12/ e 2Rp(T@=)*t7 12 o e TG-12) 16
(T.4) = Volo 2-7-Ro- 1272 (16)
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Here, the fractional orders (y,,y1) for the inverse transformation are different for time
tand arc length s. Figures 5-11 present the voltage V(t,s) in real space for various values of
fractional orders. The constants in Equation (16) take the same values as in Equation (12).

. <1078 Solution in Real-Space

I I
—~=1, 5=0.08
—=0.9, 5=0.10489

4=0.8, 5=0.13213
—~=0.7, 5=0.16134

t (sec)

Figure 4. The voltage V(t,s) for various values of fractional order y and corresponding values of s in
real space (S = 0.08).
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Figure 5. The voltage V/(T,S) in A-space as a function of time T and arc length S.
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Voltage in Real Space for 72=O.8 and 'y1=0.9 D
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Figure 6. The voltage V(t,s) in real space as a function of time and arc length s, for fractional orders
v =0.8and y; =0.9.
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Figure 7. The voltage V(t,s) in real space as a function of time and arc length s, for fractional orders
v2=0.8and y; =0.7.
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Figure 8. The voltage V(t,s) in real space as a function of time and arc length s, for fractional orders

v2 =0.8 and y; =0.5.
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Figure 9. The voltage V(t,s) in real space as a function of time and arc length s, for fractional orders

v2 =0.6and y; =0.9.
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Figure 10. The voltage V(t,s) in real space as a function of time and arc length s, for fractional orders
Y2 =0.6 and y; =0.7.
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Figure 11. The voltage V(t,s) in real space as a function of time and arc length s, for fractional orders

Y2 =0.6 and y1 =0.5.

Based on Figures 5-11, we can indeed conclude that as the fractional order for time
t (v2) or arc length s (y1) decreases, the maximum value reached by the voltage V(t,s)
increases. Also, in all cases, we have a change in the polarity of the voltage (positive to
negative) along the cable. Finally, we can observe that as fractional order for time t (y;) or
arc length s (y1) decreases, we have non-zero voltage values for higher values of arc length
s (longer cable).
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4. Conclusions

Dendrites and axons are modeled as cables using fractional calculus. The voltage
potential is transferred from A-space to the initial space. During this procedure, many
interesting conclusions can be addressed, such as the high influence of the length of the
cable s and the critical impact of the fractional order. More precisely, an increasing s results
in the increase of voltage, while the decrease in fractional order also increases the voltage.
The present work is addressed to medical and bioengineering researchers for controlling
the evolution of various brain diseases, refs. [16-19].
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Abstract: Dengue is a vector-borne disease that is endemic to several countries, including the Do-
minican Republic, which has experienced dengue outbreaks for over four decades. With outbreaks
growing in incidence in recent years, it is becoming increasingly important to develop better tools to
understand drivers of dengue transmission. Such tools are critical for providing timely information
to assist healthcare authorities in preparing human, material, and medical resources for outbreaks.
Here, we investigate associations between meteorological variables and dengue transmission in the
Dominican Republic in 2019, the year in which the country’s largest outbreak to date ocurred. We
apply generalized linear mixed modelling with gamma family and log link to model the weekly
dengue incidence rate. Because correlations in lags between climate variables and dengue cases
exhibited different behaviour among provinces, a backward-type selection method was executed to
find a final model with lags in the explanatory variables. We find that in the best models, meteoro-
logical conditions such as temperature and rainfall have an impact with a delay of 2-5 weeks in the
development of an outbreak, ensuring breeding conditions for mosquitoes.

Keywords: dengue; Dominican Republic; climate variables; lags; generalized linear mixed models

MSC: 92B15; 62P10; 62]12

1. Introduction

Dengue is one of the most significant mosquito-borne diseases to threaten human
populations, particularly in tropical and subtropical regions. The number of dengue cases
reported to the World Health Organization (WHO) has increased sharply from less than
0.5 million in 2000 to 5.2 million in 2019, and the number of dengue-induced deaths
increased from 960 in 2000 to 4032 in 2015 [1], leading WHO to name dengue as one of
the ten biggest threats to global health in 2019 [2]. Given the global increases in dengue in
recent years, it is increasingly important to develop tools to better understand drivers of
dengue transmission and to predict future outbreaks.

One country where dengue has long been endemic is the Dominican Republic. In the
past decade, however, dengue outbreaks have grown in incidence, with the 2019 outbreak
being the largest outbreak in the country to date [3,4]. In fact, 2019 was the year in which
the WHO recorded the highest number of global dengue cases ever to occur within a
year [1], suggesting that dengue in the Dominican Republic is mirroring global trends.

Axioms 2023, 12, 150. https:/ /doi.org/10.3390/axioms12020150 68

https:/ /www.mdpi.com/journal /axioms



Axioms 2023, 12, 150

In an exploratory analysis of dengue in the Dominican Republic, Iutis et al. [3] showed
there is no single meteorological, demographic or geographic factor that affects the inci-
dence rate of dengue. They instead suggest that a combination of different factors could
be responsible for increases in dengue cases. Among these factors is climate, which plays
a very important role in dengue transmission and in the life cycle of the mosquitos that
transmit dengue virus. For example, it is well known that the mosquito must have certain
meteorological conditions to survive and reproduce [5,6]. Herein, we aim to characterize
relationships between dengue cases and meteorological variables such as temperature, hu-
midity, and precipitation by considering the 2019 outbreak of dengue in multiple provinces
of the Dominican Republic. It is important to study not only the impact of climate variables
on dengue transmission, but also lags between dengue cases and these variables because
there are inherent lags in the dengue transmission process that arise from the mosquito life
cycle. To that end, we also explore the relevance of time between meteorological conditions
and reported dengue incidence by studying lags between climate and dengue variables.

By using 2019 dengue case data collected by hospitals in geographically distinct ar-
eas of the Dominican Republic, we implement gamma generalized linear mixed models
(gamma-GLMM) to model relationships between dengue incidence rate and climatic vari-
ables, such as temperature, humidity, and precipitation. We emphasize here that 2019
is an important year in the evolution of dengue in the Dominican Republic and globally
because the highest number of dengue cases ever reported both in the country and globally
was in 2019 [1], and an investigation such as the present one will contribute to a better
understanding of the drivers of this large outbreak.

This paper is organized as follows. First, we review literature of recent research on
dengue. In Section 3, we introduce the response variable and discuss possible explanatory
variables. We analyze the effect of lags between variables by studying correlations between
the response variable and the meteorological variables with delays. Section 4 describes
the gamma-GLMM method implemented for this study. In Section 5, we present two
regression models and their results and discuss implications for modelling the weekly
dengue incidence rate. Finally, in Section 6, we present some conclusions and directions for
future work.

2. Literature Overview
2.1. Disease Transmission

Dengue virus is transmitted to humans by female mosquitoes, mainly of the species
Aedes aegypti and Aedes albopictus. There are four strains of the dengue virus, and people
can be infected with the virus more than once [7]. Infection in humans begins when an
infectious female mosquito bites a human and injects dengue virus from one strain into
the blood of the human host. Then the dengue virus develops and causes symptomatic or
asymptomatic infection in humans. Symptoms of the disease can range from mild forms
such as sudden fever, severe headache, nausea, vomiting, myalgia, and skin erythema,
to more severe forms including dengue hemorrhagic fever and dengue shock syndrome.
Severe dengue can cause death due to plasma leakage, fluid accumulation, severe bleeding,
and respiratory failure [1].

On average, dengue infection persists for approximately 2 weeks [8]. The infected
person has permanent immunity to the strain of dengue virus that caused the illness and
temporary immunity to the other three strains. It should be noted that, in many cases,
a second infection with a different strain of dengue virus can lead to a more virulent
form of the disease [9]. Dengue virus transmission depends on four factors: the presence
of the virus, the human host, the mosquito vector, and the suitability of environmental
conditions [10]. With regard to environmental conditions, the transmission of the dengue
virus is influenced by several factors, such as temperature, precipitation, relative humidity,
and rapid urbanization [1].
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2.2. Disease Control

To date, there are no effective antiviral therapies and the only treatment is to control
the symptoms with medication. Vaccination is a measure of reduced effectiveness because
currently there is only one licensed dengue vaccine which has several limitations. In partic-
ular, it can only be administered to people between 9 and 45 years old who have already
been infected with one of the dengue viruses [1,11]. Vector control is the only available
strategy against dengue.To this end, it is possible to implement measures including the use
of insecticides and educational campaigns. Although insecticides have been effective in
controlling dengue, increasing trends in mosquito-borne diseases may indicate an increase
in insecticide resistance or ineffectiveness in controlling dengue transmission. Therefore, it
is of great importance to understand mechanisms of resistance and the susceptibility of
the mosquitoes to insecticides in order to develop more effective Aedes mosquito-control
methods [12]. Educational campaigns are of great importance in preventing and controlling
the spread of dengue. It is very important that the population recognize the symptoms
of dengue, to be aware of the importance of having medical treatment in case of severe
dengue, and to know how to control populations of the Aedes mosquito. In [13] the authors
concluded that the population of Sri Lanka in 2019 has better awareness of dengue preven-
tion compared to awareness of dengue mortality and dengue management. This study on
knowledge, attitudes, and practices regarding dengue fever identified as a weak point the
patient awareness of the patient’s role in the management of dengue and identification of
warning signs that precede hospitalization. If dengue hemorrhagic fever is detected early,
the mortality is 2-5% but is can increase to 20% if there is no immediate treatment.

2.3. Dengue Modelling

Simulation models are useful for understanding the drivers and spread of dengue and
for helping to understand the efficacy of potential control methods. Many simulation model
studies use dynamical models based on ordinary differential equations [14-16]. However,
in general, these models do not describe the effects that arise from delays between drivers
and reported cases. There are inherent delays in the dengue transmission cycle that arise
from the mosquito life cycle, the incubation period of the pathogen in the mosquito, and the
incubation period of the pathogen in humans. Delay differential equations can model
delayed effects because these models take into account not only the present time but
also the past. For instance, in [10], the authors developed a model involving delayed
(deterministic) differential equations that predicts locations of mosquito occurrence with
a high accuracy, and the model realistically replicates mosquito population dynamics.
The model depends on environmental drivers (temperature, precipitation, photoperiod,
latitude, day of year) and human population density, and was tested with data from the
Aedes albopictus mosquito, the most common dengue vector in Asia. By using this model,
the authors analyzed the risk of dengue transmission in mainland China and concluded that
temperature plays a key role in dengue outbreaks. Based on a dengue virus transmission
model with maturation delay for mosquito production and seasonality, in [17] it is also
found that the temperature change causes periodic oscillations of dengue fever cases.

Other usual approaches in the literature to investigate relationships between climatic
factors and dengue incidence are based on regression models where overdispersion, which
is often observed in dengue datasets, is taken into consideration. For instance, applying
negative binomial regression models with climatic, spatial, cyclical and seasonal features
as explanatory variables, ref. [18] found that precipitation, air pressure and climatic season
significantly affected dengue transmission in Sri Lanka during the study period (2017-2019).
In [18], all the variables were calculated with zero lags. In [19] a generalized additive model
also considering a negative binomial distribution for the dengue cases (but adjusted for
seasonality) was built by using climatic features with lags of 0-10 weeks and correlations
were determined via Spearman’s coefficient test. The model revealed that the relative
humidity (with a lag of 1 week), minimum temperature (with a lag of 10 weeks) and wind
(with a lag of 4 weeks) are associated with dengue cases in Asuncién, Paraguay. These
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authors, however, did not evaluate the fitting of the proposed model to their data. In [20],
generalized linear mixed models are fitted to the number of dengue cases and allow for
specific effects for different data groupings. Concretely, negative binomial regression mod-
els, with random effects related to the localization (city), the time period (year), and their
interaction (city:year) are constructed to describe the associations between the dengue
cases reported in 20 cities in the Brazilian state of Goids. Spearman’s correlation test is
also used to identify which lags in climate factors are more correlated with cases. The au-
thors conclude that weekly precipitation, minimum temperature, maximum temperature,
and relative humidity are positively associated with dengue cases, with lags of 10,10,10,
and 6 weeks, respectively.

Another way to analyse dengue data is based on stochastic models. For instance,
in [21], discrete time-space stochastic SIR-SI models (susceptible-infective-recovered for
human populations; susceptible-infective for vector populations) were adapted from their
deterministic analogs in order to estimate the relative risk for dengue disease mapping in
Malaysian states during the years 2008-2009. The authors concluded that all the states have
similar patterns of expected relative risk for all epidemiological weeks.

Concerning the modelling of dengue datasets from the Dominican Republic, we
highlight [22] where a generalized linear model was fitted to the cumulative reported
cases for each outbreak between 2012 and 2018. In that work, the authors concluded that
emerging dengue outbreaks were robust to climatological and spatiotemporal conditions,
indicating that constant surveillance is necessary to prevent future outbreaks. In addition,
they showed that reported dengue cases occurred mainly in the 0-15 year age group,
indicating that the older age groups had higher levels of immunity. However, the effect of
a time delay is not considered in this study.

In this work, we study the dependence of the dengue incidence rate in the Dominican
Republic in 2019 on delayed meteorological characteristics (temperature, rainfall, and hu-
midity) by using gamma regression models with a normal random effects structure. The
random effect is determined by geographical area (namely, the provinces) which means,
in a broader sense, the modelling is conditioned to the geographical conditions of each
considered area. To account for delays in transmission of dengue that arise from timing
the mosquito life cycle that may be climate-dependent, we analyze relationships between
dengue case data and independent meteorological variables at different times (consider-
ing lag time). For the selection of the lags, cross-correlation analysis (conditional to each
province) and simple gamma regressions (one for each meteorological variable and lag)
will be discussed and used to identify significant lag periods which will then be included
in the final multiple regression model.

3. Material
3.1. Geographical Area and Period of Time

This study focuses on dengue cases reported in 2019 in the Dominican Republic when
a total of 20,230 dengue cases were reported corresponding to 195.3 cases per 100,000 in-
habitants. The Dominican Republic is a Caribbean country on the eastern two-thirds of
the Island of Hispaniola. Divided into 31 provinces plus one autonomous district (Distrito
Nacional, to which we refer hereafter as one of the provinces for simplicity), the coun-
try’s estimated population in 2019 was over 10.3 million people, with the metropolitan
area of Santo Domingo comprising 32% of the total population [23]. The country largely
experiences a tropical climate for most of the regions.

Epidemio