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Preface

The intelligent algorithm has become an important research method to solve critical scientific

problems in the engineering field. It has been widely used in the optimal design, structural

simulation, safety monitoring, and safety evaluation of water conservation projects due to its

advantages in regression, classification, clustering, and dimension reduction. Experiments and

numerical simulations are faced with constraints of time and cost in traditional research methods.

With the advancement of sensors and measurement technology, a large amount of safety-monitoring

data has been accumulated in water conservation projects. Intelligent algorithms have become

a powerful tool for monitoring data, mining information, and constructing data associations

quickly and accurately. Combined with traditional computing techniques such as geotechnical

tests, non-destructive testing, and numerical simulation, intelligent algorithms will help us further

understand various laws and mechanisms in water conservation projects, which is of great

significance to improving the safety of water conservation projects and the development level of

human society. Therefore, this special theme will focus on applying intelligent algorithms to water

conservation projects.

Jie Yang, Chunhui Ma, and Lin Cheng

Editors
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Application of Artificial Intelligence in Hydraulic Engineering
Chunhui Ma * , Lin Cheng and Jie Yang

Institute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, China;
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1. Introduction to the Special Issue

Water conservancy projects have always been essential throughout the development of
human society, including the development and utilization of water resources, the construc-
tion and management of water conservancy facilities and flood prevention and control [1].
With the continuous development and popularization of artificial intelligence technology,
its application in water conservancy engineering has been increasingly emphasized. Intro-
ducing artificial intelligence technology can improve the efficiency and precision of water
conservancy projects, lead to the more effective use and protection of water resources, and
enhance the safety and intelligence of water conservancy facilities [2]. The application of
intelligent algorithms in water conservancy engineering has become an important research
area to solve significant scientific problems in the engineering field [3]. Their advantages in
regression, classification, clustering and dimensionality reduction have led to their wide
use in optimization design [4], structural simulations [5], safety monitoring [6] and water
conservancy project evaluations [7]. In traditional research methods, both experiments
and numerical simulations are limited by time and cost. However, with the advancement
of sensors and measurement technology, a large amount of data has accumulated for
use in water conservancy project safety monitoring. Intelligent algorithms have become
a powerful tool for mining information, constructing data associations and monitoring
data quickly and accurately. Combining intelligent algorithms with traditional compu-
tational techniques such as geotechnical testing, nondestructive testing and numerical
simulations has been essential for understanding various laws and mechanisms in water
conservancy projects.

Therefore, this Special Issue of “Water” aims to deeply understand the application
value of intelligent algorithms in water conservancy projects and their important role in
improving a project’s safety and efficiency and to provide new ideas and methods for the
development and progress of these projects. This has great significance for improving the
safety of water conservancy projects and the development of human society.

Since the call for papers was announced in January 2023, 15 original papers have
been accepted for publication after a rigorous peer-review process (contributions 1–15);
these papers can be classified into several areas: data-driven intelligent model studies,
intelligent algorithms for optimal structural design, nondestructive testing (NDT) sen-
sor applicability studies and simulations and experiments for structural characterization.
To better understand this Special Issue, we summarize the highlights of the published
papers below.

2. Overview of the Contributions to this Special Issue

Regarding data-driven intelligent model research, Shao et al. comprehensively ana-
lyze the effects of water level load transfer, rockfill flow and soil properties on settlement
during operation (contribution 1). The original position coordinates are replaced by space
parameters which are more consistent with the deformation characteristics, such as the
elevation of the upper fill, the thickness of the rockfill materials, the distance between the

1



Water 2024, 16, 590

measuring point and the panel, etc. A multi-monitoring point (MMP) model is combined
with the XGBoost model, which has a high prediction accuracy for concrete-faced rockfill
dams (CFRDs). Then, the importance of the selected factors is determined. This work has
a certain reference value for dam safety monitoring. A new method for inverse analyses
of permeability coefficients is proposed by Zhao et al. (contribution 2). They constructed
an inversion sample set of a permeability coefficient using the combination of a finite
element model and orthogonal test design. The random forest (RF) algorithm proxy model
is established, and the Harris Hawk optimization (HHO) algorithm is used to determine
the optimal value of the permeability parameters in the project area. This method is used to
explore and verify the distribution of natural seepage fields in P hydropower stations. An
artificial neural network (ANN) is proposed by Saya et al. (contribution 3) to predict future
water consumption as a function of some environmental parameters, and the Copernicus
Climate Change Service (C3S) is used to determine the water demand trend in the next ten
years. Finally, future consumption is predicted based on the ANN model, the continuity
equation of the tank is solved through integral discretization and the time series of tank
volume changes and the total number of crisis events are obtained, which are used to esti-
mate the optimal capacity of small city reservoirs. In terms of research on structural safety
detection methods, an intelligent detection method for concrete dam surface cracks based
on two-stage migration learning is proposed by Li et al. (contribution 4). First, two-stage
transfer learning across domains and within domains transfers relates domain knowledge
to the target domain so that the model can be adequately trained with small data sets.
Second, the segmentation capability is enhanced using the residual network 50 (ResNet50),
as a UNet model feature extraction network to enhance crack feature information extraction.
Finally, multilayer parallel residual attention (MPR) is integrated into the jump connection
path to improve the focus on critical information for clearer fracture edge segmentation.
This concrete dam surface crack detection method exhibits a high efficiency and accuracy
and a strong robustness. A convolutional neural network (CNN) model is used by Peng
et al. (contribution 5) to achieve accurate segmentation of coarse-grained soil CT images,
exceeding the accuracy of traditional methods and uncovering a new method for soil
particle size analyses. The validity of the CNN model is proven by a three-dimensional
(3D) model reconstructed from segmented images, highlighting its accuracy and potential
for automation in soil particle analyses. New empirical formulas for the ideal particle size
and discount coefficient in coarse-grained soil are also revealed and verified. In terms of
risk analysis and comprehensive model agent evaluation methods, a feedback, rolling and
adaptive operational decision-making mechanism is proposed by Han et al. (contribu-
tion 6). The relationship between the work cycle and multiple time scales is considered
according to the change in time scale and the dynamics of the work process. The risk
transmission mechanisms of urban river ecological governance engineering projects are
examined by Xu et al. (contribution 7). Prediction is combined with operation to adapt to
dynamic changes in multiple time scales during operation. Based on existing research, the
internal mechanism, the influencing factors of risk transmission and the dynamic evolution
process of risk are considered. Based on the theory of infectious disease dynamics and
the susceptible exposure to infection recovery susceptibility (SEIRS) risk transmission
model, a risk transmission delay model of an urban river ecological governance project
under a scale-free network is established. This model provides a basis for the effective
supervision and control of project participants and theoretical support for indirect and
post-event supervision. In-depth literature reviews and brainstorming are used by Xu
et al. (contribution 8) to identify 63 risk elements in urban river ecological management
projects. An expert survey method is used to identify the correlation between risk factors,
and the risk factors are taken as network nodes. Then, the relationships between these
nodes are used as network edges (i.e., paths) to construct a complex network model. The
risk network’s overall characteristic parameters and local characteristic parameters are
analyzed using the network visualization tool. According to the parameter characteristics,
the risk transmission characteristics of urban river ecological governance projects are ana-
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lyzed, and the internal relationship of risk transmission in complex networks is revealed. A
corresponding comprehensive evaluation index system based on interval number theory
is built by Chen et al. (contribution 9). Expert evaluations and the improved analytic
hierarchy process (AHP) are combined to propose a reasonable allocation method for index
weights in addition to a comprehensive evaluation model. Comprehensive evaluation
criteria are formulated. Taking a roller compacted concrete (RCC) dam in China as an ex-
ample, the applicability of the comprehensive evaluation method based on interval number
theory is illustrated.

Regarding the research on intelligent algorithm optimization structure design, a
noise reduction method combining the improved adaptive singular value decomposi-
tion algorithm (ASVD) and the improved complete ensemble EMD with adaptive noise
(ICEEMDAN) is proposed by Wang et al. (contribution 10). A Hankel matrix is constructed
based on collected discrete-time signals. After performing SVD on the Hankel matrix, the
ASVD algorithm automatically selects the practical singular values to filter out most of the
background white noise and retain helpful frequency components with a similar energy in
the signal. Then, the ICEEMDAN is combined with the Spearman correlation coefficient
method to further to filter out residual white noise and low-frequency water flows. Based
on the practically measured vibration signals of a floodgate at a large hydropower station,
the results show that the ASVD-ICEEMDAN method exhibits a good noise reduction
performance and feature information extraction abilities for floodgate vibration signals and
can provide support for operational mode analysis and damage identification for practical
structures under complex interference conditions. The characteristics of low-specific-speed
centrifugal pumps are simulated and analyzed using CFD by Ke et al. (contribution 11) by
considering that the inlet width of the splitter blade is more significant than the inlet width
of the primary blade. The influence of the splitter blade’s geometric parameters on the flow
field is studied in orthogonal experiments, and the geometric parameters of the separator
blade are optimized by using the artificial fish swarm algorithm. Finally, the accuracy of
the algorithm is verified by experiments. This study provides a reference for the shape
selection of splitter blades.

In terms of the applicability study of nondestructive detection sensors, Yu et al. (con-
tribution 12) conduct model tests and quantitative analyses on the leak monitoring per-
formance of a heated temperature sensing cable, and the temperature change curves in
different media are obtained. The ability of the heated temperature sensing cable to identify
leaks in soil media with additional moisture content is verified. Finally, through a field
simulation test at a manganese slag reservoir, it is verified that the cable can be used for
leak monitoring in an actual karst depression reservoir basin. A volumetric meter using
flow control valves that are ordinarily already present in buildings’ hydraulic installations
is proposed by Gonçalves et al. (contribution 13). A system is developed for the electrome-
chanical and thermal characterization of the sensor. Computational simulations of the
sensor are performed in Ansys® (2021R2) software, and the electronic circuit is designed in
LTSpice® (v. 17.0.30.0) software. An artificial neural network is used to estimate the flow
and volume from trapezoidal pulses.

In terms of simulations and tests of structural states, a process model of the impact of
construction load on a reservoir cutoff wall in a reconstruction section of an expressway
is established using FLAC3D two-dimensional and three-dimensional numerical simula-
tion methods by Sun et al. (contribution 14). The stress–strain state of the expressway
reconstruction section and the nearby reservoir cutoff wall is simulated in detail, directly
reflecting the overall deformation of the reservoir cutoff wall and the interaction and dif-
ferential deformation between the wall structures. The influence of the construction load
on the safety and stability of the cutoff wall of the reservoir is evaluated, and various
advanced mechanical behaviors of the cutoff wall are predicted. A simulation method
for the mechanical behavior of tight rock is proposed by Tang et al. (contribution 15) by
combining physical experiments with numerical analyses and considering fluid mechanics.
The validity of the proposed method is verified by comparing the numerical and physical
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results of triaxial shear tests on sandstone under seepage conditions. Based on this verified
method, the stability of the surrounding tight sandstone underground water sealed oil and
gas storage caverns during excavation is analyzed.

3. Conclusions

The guest editors envision that the papers published in this Special Issue will be of
interest to researchers, designers and practitioners for the safety monitoring and manage-
ment of reservoirs and dams and will help identify further lines of research. We also hope
that readers will find the material in this Special Issue both interesting and stimulating as
they explore the application of AI in hydraulic engineering from the perspective of mon-
itoring models, optimization algorithms, nondestructive sensors, numerical simulations
and experiments. The research results and methods introduced in this Special Issue, includ-
ing data-driven models and mechanisms, structural design optimization, nondestructive
testing sensors and structural safety simulations, are of great research significance. These
technological contributions can help related scholars and project managers analyze and
manage the safety of the major structures in reservoir dams.
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Abstract: To address the issue of the vibration characteristic signals of floodgates being affected by
background white noise and low-frequency water flow noise, a noise reduction method combining
the improved adaptive singular value decomposition algorithm (ASVD) and the improved complete
ensemble EMD with adaptive noise (ICEEMDAN) is proposed. Firstly, a Hankel matrix is constructed
based on the collected discrete time signals. After performing SVD on the Hankel matrix, the
ASVD algorithm is used to automatically select the effective singular values to filter out most of the
background white noise and retain the useful frequency components with similar energy in the signal.
Then, ICEEMDAN combined with the Spearman correlation coefficient method is used to further
filter out residual white noise and low-frequency water flows. The noise reduction performance of
this combined method is verified through simulation experiments. Filtered by the ASVD-ICEEMDAN
method, the signal-to-noise ratio of the simulation signal (50% noise level) is increased from 4.417
to 16.237, and the root mean square error is reduced from 2.286 to 0.586. Based on the practically
measured vibration signals of a floodgate at a large hydropower station, the result shows that the
ASVD-ICEEMDAN method exhibits good noise reduction performance and feature information
extraction abilities for floodgate vibration signals, and can provide support for operational mode
analysis and damage identification of practical structures under complex interference conditions.

Keywords: floodgates; vibration signal; noise reduction; ASVD algorithm; ICEEMDAN

1. Introduction

Recently, the safety diagnosis of hydraulic structures using vibration signals under
flood discharge excitation has become one of the hot spots in the research of hydraulic
engineering [1–3]. Due to the long-term effect of huge fluctuating loads of water flow,
floodgates are prone to problems such as excessive amplitudes and even fatigue damage.
Vibration monitoring of floodgates plays a significant role in the safe operation of structures.
However, the collected vibration response signal is usually accompanied by the interference
of background white noise and low-frequency water flow noise [4,5], which makes the
structural vibration feature information easily submerged in noise and greatly affects the
extraction of the vibration information of floodgates. Therefore, effective signal processing
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methods need to be adopted to filter out the noise in the collected signal and retain the
characteristic vibration information of floodgates.

The vibration signal of floodgates is a kind of typical nonlinear and non-stationary
signal [6], which commonly can be processed by methods including wavelet threshold [7,8],
singular value decomposition (SVD) [9–11], empirical mode decomposition (EMD) [12–14],
its improved algorithms [15,16], etc. Among them, EMD and its improved algorithms
automatically decompose a signal into multiple intrinsic mode functions (IMFs) as well as a
residual (RES) based on its own characteristics. Due to the advantages of strong adaptability
and no need for predetermined basis functions [17,18], EMD and its improved algorithms
are widely used to process nonlinear and non-stationary signals. Zhang et al. [19] used
the EMD method to filter high-frequency and low-frequency noise from blasting vibration
signals, achieving principal component extraction of blasting vibration signals. How-
ever, the traditional EMD algorithm is prone to the phenomenon of mode mixing [20],
which makes the IMFs lose their physical significance. In response to this issue, Huang
et al. [21] proposed the ensemble empirical mode decomposition (EEMD) algorithm, which
introduces white noise with a mean of zero to mask the noise of the signal itself through
a multiple-noise-adding process, thereby obtaining more accurate upper and lower en-
velopes and suppressing the mode mixing phenomenon to a certain extent. Li et al. [22]
adopted the EEMD algorithm to filter out the vibration noise of rotating machinery and
successfully extracted the vibration components that reflect the true characteristics of the
system. In addition, due to the problems of residual noise, as well as the low computational
efficiency, in EEMD, Torres et al. [23] proposed the complete ensemble EMD with adaptive
noise (CEEMDAN) method, which adds white noise to each EMD decomposition process,
making the decomposition process complete and greatly reducing signal reconstruction
errors as well as improving the decomposition efficiency. Peng et al. [24] used CEEMDAN
to establish a noise reduction model, retaining key information while successfully filtering
out high-frequency noise in the collected vibration signals. Colombia et al. [25] highlighted
the problem of the weak residual noise and false modes in CEEMDAN; thus, they pro-
posed an improved complete ensemble EMD with adaptive noise (ICEEMDAN) algorithm
that adds IMF components of white noise during each EMD process and introduces the
concept of the average of local means to further improve the CEEMDAN algorithm. Yuan
et al. [26] utilized the ICEEMDAN algorithm to effectively remove random noise and wave
noise of the original signal, obtaining high-precision seabed geomagnetic field data. For
vibration signals of hydraulic structures, EMD and its improved methods are effective at
filtering out low-frequency water flow noise, but are unsatisfactory in filtering white noise.
Therefore, some scholars [27–29] proposed combined noise reduction methods. Among
them, Li et al. [29] combined CEEMDAN and wavelet threshold methods to filter out noise
from the guide wall of a hydropower station. However, the wavelet thresholding method
has drawbacks, such as the difficulty in selecting threshold functions and its inability to
automatically decompose signals. Zhang et al. [27] combined the CEEMDAN and SVD
methods to successfully filter out white noise in the dynamic displacement signals of the
Laxiwa arch dam and to extract key vibration information. However, ordinary SVD [30–33]
denoising methods rely on certain experience to choose effective singular values (ESVs)
rather than automatic selection.

Aiming at the noise characteristics of the collected floodgate vibration signals, a
combined adaptive singular value decomposition (ASVD) and ICEEMDAN noise reduction
method is proposed. Firstly, the discrete time signal is converted into a Hankel matrix. After
performing SVD on the Hankel matrix, the improved hyperparameter ACC method is used
to select ESVs. Via signal reconstruction, a signal with removed background white noise
can be obtained. Secondly, the ICEEMDAN method is used to decompose the signal into
several IMF components, whose center frequencies are arranged from high to low. Effective
IMF components are selected through the correlation coefficient method for reconstruction
to remove low-frequency water flow noise and residual white noise.

7
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The main structure of this paper is as follows: Section 2 introduces the basic principles
of ASVD and ICEEMDAN as well as the process of the combined ASVD–ICEEMDAN
noise reduction method. Section 3 validates the noise reduction performance of the ASVD–
ICEEMDAN method through simulation experiments. In Section 4, this method is applied
to a real-life floodgate structure. Section 5 contains the conclusions of this paper.

2. Basic Principles
2.1. ASVD Noise Reduction

SVD has a strong filtering ability for background white noise, and its principles can be
described as follows: convert a one-dimensional signal X = (x1, x2, · · · , xL) into a Hankel
matrix H:

H =




x1 x2 · · · xc
x2 x3 · · · xc+1
· · · · · · · · · · · ·
xr xr+1 · · · xL


 (1)

The above equation satisfies 1 < c < L and L = r + c − 1. Based on engineering
experience [27,33], in order to achieve good noise reduction effects, the matrix H is usually
constructed as a square matrix or a matrix close to a square matrix. Therefore, the variable
r needs to satisfy Equation (2).

r =

{
L/2, When L is odd;
(L + 1)/2, When L is even.

(2)

Then, the matrix H is decomposed via SVD:

H = UDVT (3)

where U ∈ Rr×r, V ∈ Rr×c, and U and V are both unit orthogonal matrices. D ∈ Rr×c can
be stated as Equation (4).

D =





[diag(σ1, σ2, · · · , σa), 0] , r < c
diag(σ1, σ2, · · · , σa) , r = c
[diag(σ1, σ2, · · · , σa), 0]T , r > c

(4)

where a is the minimum value of m and n; σ1, σ2, · · · , σa are a series of singular values
arranged from large to small, that is, σ1 ≥ σ2 ≥ · · · ≥ σa ≥ 0; and 0 represents a zero
matrix. Then, by setting the singular values representing noise to 0 and reconstructing a
new Hankel matrix, the denoised signal can be obtained by the diagonal averaging method.

In the process of SVD noise reduction, it is a crucial step to select the ESVs. Li et al. [33]
proposed a hyperparameter ACC method after noting the link between the singular values
and the frequency components of the signal, which can be summarized into the following
three points:

(1) Each frequency component of the signal relates to a singular value group consisting
of two adjacent singular values that have small differences between them.

(2) Due to significant energy differences between different frequency components of the
signal, a jump phenomenon is observed between adjacent groups of ESVs.

(3) The energy of white noise is uniformly distributed in the broadband frequency do-
main, which makes the jump phenomenon of singular value inconspicuous.

To sum up, by observing the jump phenomenon between singular values groups, the
singular values group can be judged to represent a useful signal or noise. Due to the first
few singular values relating to the effective signal components and the latter relating to
noise components, at the boundary between the signal and noise, the jumping phenomenon
changes from conspicuous to inconspicuous. In the study of Li et al. [33], singular values
are processed by differencing and normalization (SVDN), so that the change in singular
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values is amplified and the singular value boundary can be found more easily. In addition,
to enhance the adaptability of the algorithm, the hyperparameter ACC (0.1 suggested) is
proposed to automatically select the minimum sequence number that satisfies “acc1 > ACC
and acc2 < ACC”.

However, the frequency components of the vibration signals of floodgates are usually
complex (as shown in Section 4), such as the presence of many frequency components with
similar energy levels, which is not consistent with the second law. In order to explain this
problem and propose an improvement, a simulation signal with white noise is constructed
as follows:





S1(t)= 4 sin(5π t) + 8 cos(6π t) + 10 sin(7π t) + 4 sin(8π t) + 4 cos(9π t)
Noise1(t) = std(S1)× randn[size(S1)]
X1(t) = S1(t) + Noise1(t)

(5)

The noisy signal X1(t) consists of a signal with five frequency components and white
noise. In addition, the first (2.5 Hz), fourth (4 Hz) and fifth (4.5 Hz) frequency components
possess the same energy. After performing SVD on signal X1(t), the top 20 singular values
are shown in Figure 1. Two adjacent singular values of a singular group are connected
by the blue line and the singular groups are connected by red straight lines or dotted
lines in Figure 1. It is obvious that the singular groups from one to five represent the
five most useful frequency components and other singular groups represent the noise
components. After the calculation of SVDN values shown in Figure 2, the hyperparameter
ACC is adopted to select ESVs. According to the ACC threshold (0.1), the number of ESVs
is 4, which is different to the presumed condition of 10 (twice the number of effective
frequencies).
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Figure 1. Change in singular values. (Notes: blue lines and numbers represent singular groups, red
straight lines represent conspicuous jumping phenomenon, dotted lines represents unconspicuous
jumping phenomenon).

By observing Figure 1, we can see that the jump phenomenon can be observed clearly
between singular groups 1 and 2, 2 and 3, and 5 and 6, but it is not obvious between groups
3 and 4 and 4 and 5. Therefore, when the sequence numbers are six and eight, the SVDN
values are lower than the ACC threshold, which results in the wrong selection. However,
the jump phenomenon is still obvious between groups 5 and 6. Thus, an improved hyper-
parameter ACC method is developed according to the upper analysis: select the largest
sequence number that satisfies “acc1 > ACC and acc2 < ACC”.
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The flowchart of this new algorithm is shown in Figure 3, and the process is described
as follows:
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Step 1. Compute the signal length L of the one-dimensional signal X, then construct a
Hankel matrix H according to Equations (1) and (2);

Step 2. Decompose Hankel matrix H via SVD and record singular values from large to
small as σ(1),σ(2), · · · , σ(r).

Step 3. Process the singular values by differencing and normalization.
Step 4. Set the initial value of the iteration variable N = 2 and the hyperparameter

ACC = 0.1.
Step 5. Assign singular values to acc1 and acc2, that is, acc1 = σ(N) and

acc2 = σ(N+2) .
Step 6. Determine whether the condition “acc1 > ACC and acc2 < ACC” is met. When

the condition is met, record and update the variable N; otherwise, proceed to the next step.
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Step 7. Decide whether the condition “N + 3 ≥ r” is met. When the condition is met,
perform the next step; otherwise, set N = N + 2 and jump to step 5.

Step 8. Set the singular values whose sequence numbers are greater than N to 0,
reconstruct the Hankel matrix, and use the diagonal averaging method to obtain the
denoised signal.

2.2. ICEEMDAN Method

Aiming at the problem of weak residual noise and false modes in CEEMDAN, ICEEM-
DAN improves CEEMDAN by changing the way white noise is added and introducing
the concept of local means. Let W(i) (i = 1, 2, · · · , n) represent white noise with zero
mean unit variance; let < · > represent the operator that averages the different signals;
and let Ek(·) represent the kth IMF component after performing EMD on the bracketed
signal. β0, · · · , βk−1 are the parameters controlling the magnitude of the added noise. Let
M(·) represent the local means for the bracketed signals, that is, M(S) = S− E1(S). The
flowchart of the ICEEMDAN algorithm is shown in Figure 4, and the decomposition steps
are presented as follows:
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Step 1. Add n groups of noise β0E1(W(i)) to the original signal X to obtain the noise-
added signal x(i) = x + β0E1(W(i)), and perform EMD on the noise-added signal to obtain
n local means M(x(i)). Then, average the n local means to obtain the first-stage residual
value r1:

r1 =< M(x(i)) > (6)

Step 2. Compute the IMF value IC1 for the first stage:

IC1 = x− r1 (7)

Step 3. Calculate the local means of r1 + β1E2(w(i)) and average them to get the
second stage residual value:

r2 =< M(r1 + β1E2(W(i))) > (8)

Step 4. Calculate the IMF value IC2 for stage 2:

IC2 = r1 − r2 (9)
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Step 5. For k = 3, · · · , K, compute the residual for the kth stage:

rk =< M(rk−1 + βk−1Ek(W(i))) > (10)

Step 6. Calculate the kth IMF value:

ICk = rk−1 − rk (11)

Step 7. Repeat Step 5 to 6 until the signal is less than three extremes, then the last
signal that cannot be decomposed is the RES, and ICEEMDAN is complete.

2.3. Combined ASVD–ICEEMDAN Noise Reduction

In the measured dynamic floodgate vibration signal, the floodgates’ characteristic infor-
mation is usually overwhelmed by the background white noise as well as the low-frequency
water flow noise. Aiming at these two noise characteristics, the ASVD–ICEEMDAN method
is proposed for combined noise reduction. The flow chart is shown in Figure 5, and the
noise reduction steps are as follows:
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where P is the noise level and 2std S（ ） is the standard deviation of 2S ; [ ]2( )randn size S  
represents a white noise with a zero mean, a standard deviation of 1 and a normal distri-
bution. The sampling frequency is 50 Hz, the total sampling time is 10 s, and the noise 
level P is 50%. The time waveform and power spectrum curves of pure signals and noisy 
signals are shown in Figure 6. 
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Figure 5. Flowchart of the ASVD–ICEEMDAN noise reduction method.

Step 1. The original signal X0 is constructed as a Hankel matrix and then decomposed
via SVD to obtain the singular values.

Step 2. The improved hyperparameter ACC method is used to automatically search
ESVs. Then, the new signal X1 can be reconstructed via the ASVD algorithm.

Step 3. Decompose X1 via ICEEMDAN to yield several IMF components whose center
frequencies are arranged from high to low.
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Step 4. Select the effective IMF components based on the Spearman correlation
coefficient [34–36] as in Equation (12)

rs = 1−
6

n
∑

i=1
d2

i

L(L2 − 1)
(12)

where di is the level difference between elements X(i) and Y(i), L is the length of the signal.
The value of rs is between−1 and 1. When the absolute value of rs approaches 1, it indicates
a strong correlation between the two signals; when the absolute value of rs approaches 0,
it indicates a weak correlation between signals. In addition, if the absolute values of rs of
the signal before decomposition and the IMF component are greater than 0.4 [36], the IMF
component can be regarded as an effective IMF component.

Step 5. Reconstruct the effective IMF components to obtain the denoised signal X.

3. Numerical Simulation

To clarify the denoising performance of the ASVD–ICEEMDAN method, a pure
simulation signal S2(t) was constructed in MATLAB R2019a. Furthermore, it is assumed
that the collected signal X2(t) is mixed with low-frequency noise (LN) and white noise
(WN), and the function expression is shown in Equation (13):





S2(t) = 6e−
t
4 sin(3πt) + 8e−

t
3 sin(8πt) + 9e−

t
3 sin(20πt)

Noise2(t) = 4e−
t
4 sin(πt) + P× std(S2)× randn[size(S2)]

X2(t) = S2(t) + Noise2(t)

(13)

where P is the noise level and std(S2) is the standard deviation of S2; randn[size(S2)] repre-
sents a white noise with a zero mean, a standard deviation of 1 and a normal distribution.
The sampling frequency is 50 Hz, the total sampling time is 10 s, and the noise level P is
50%. The time waveform and power spectrum curves of pure signals and noisy signals are
shown in Figure 6.
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After constructing a Hankel matrix for the simulation signal, the SVD operation of the
Hankel matrix is performed to calculate its SVDN values. The top 20 values are shown in
Table 1, and the line graph is plotted in Figure 7.
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Table 1. Top 20 singular values and SVDN values.

Sequence Number 1 2 3 4 5 6 7 8 9 10

Singular value 332.520 327.151 306.594 299.108 260.133 245.444 185.043 156.517 58.924 58.764
SVDN value 0.055 0.211 0.077 0.399 0.151 0.619 0.292 1.000 0.002 0.029

Sequence number 11 12 13 14 15 16 17 18 19 20

Singular value 55.940 55.672 55.038 54.870 52.886 52.711 51.616 51.524 51.410 51.344
SVDN value 0.003 0.006 0.002 0.020 0.002 0.011 0.001 0.001 0.001 0.008
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According to Figure 7, the number of ESVs is computed as 8. Next, the signal is
reconstructed, and the noise reduction result is shown in Figure 8.
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From Figure 8, it can be observed that the signal denoised by ASVD is smoother,
and most of the background white noise in the signal has been filtered out after ASVD
filtering. However, low-frequency strong noise at 0.5 Hz still exists in the filtered signal.
Next, the CEEMDAN and ICEEMDAN methods are used to decompose the pre-filtered
signal, respectively. To ensure that the decomposition results are comparable, the same
initial parameters were used in these two methods: the white noise amplitude is set to 0.2,
the average number of signals is 100, and the maximum iterations number is 1000. The
decomposition results are shown in Figure 9.
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In Figure 9, the signal is decomposed into eight IMFs and a RES by the CEEMDAN
method, while only seven IMFs and a RES are generated via ICEEMDAN, which proves
that ICEEMDAN can reduce the number of invalid components and inhibit the generation
of mode mixing phenomena to a certain extent compared to CEEMDAN.

In addition, to calculate the residual noise of the two decomposition methods, all IMFs
and the RESs are summed and reconstructed, and the signal deviation, RRSE, between the
original signal and the reconstructed signal is calculated via Equation (14):

RRSE =
‖S1 − S2‖
‖S2‖

(14)

where S1 is a vector that sums all IMFs and RESs decomposed by ICEEMDAN or CEEM-
DAN and S2 is the original signal vector. The RRSE value of the CEEMDAN method is
1.90 × 10−16, while that of the ICEEMDAN method is only 1.39 × 10−16, indicating that
the signal decomposed by the ICEEMDAN method has lower residual noise.

To select the effective IMFs to reduce noise, the absolute values of rs of IMF1-IMF7
and RES were calculated and are shown in Table 2. The absolute values of rs of IMF1-IMF4
are all greater than 0.4, while the remaining components are less than 0.4. Therefore, IMF1-
IMF4 were selected for reconstruction, and the signal denoised by ASVD–ICEEMDAN is
shown in Figure 10.
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Table 2. The absolute values of rs of IMF1-IMF7 and RES.

IMF Component Absolute Values of rs IMF Component Absolute Values of rs

IMF1 0.536 IMF5 0.397
IMF2 0.578 IMF6 0.303
IMF3 0.498 IMF7 0.094
IMF4 0.458 RES 0.076
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The noise is almost completely filtered out, and the waveforms of the denoised signal
and the pure signal are rather similar, as shown in Figure 10. To verify the denoising
performance of the combined ASVD–ICEEMDAN method compared with other methods,
the signal-to-noise ratio (SNR) and the root mean square error (RMSE) were calculated via
Equations (15) and (16):

SNR = 10 log




T
∑

t=1
X2

0(t)

T
∑

t=1
(X(t)− X0(t))

2


 (15)

RMSE =

√√√√ 1
T

T

∑
t=1

[X0(t)− X(t)]2 (16)

where T is the sampling number. The calculation results are shown in Table 3. The signal
filtered by the ASVD–ICEEMDAN noise reduction method presents the highest SNR
and the lowest RMSE, proving the superiority of the combined noise reduction method.
The simulation data and MATLAB R2019a script are available at: https://github.com/
RabbitInTheNorth/Noise-reduction-simulation.git (accessed on 9 December 2023).

Table 3. Comparison of evaluation indexes of noise reduction performance of different methods.

Noise Reduction Method
Index

SNR/dB RMSE

Original signal 4.417 2.286
Moving average 5.414 2.038
IIR digital filters 5.544 2.008

ASVD 9.387 1.290
ICEEMDAN 5.711 1.969

ASVD-CEEMDAN 16.104 0.595
ASVD–ICEEMDAN 16.237 0.586
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4. Engineering Example

The studied floodgate is located in the upper reaches of the Hanjiang River, and is a
part of a large-scale hydropower station. The hub project is divided into two parts by a
longitudinal pier in the middle of the river. The left side is the powerhouse dam section,
and the right side is the flood discharge dam section, where there are six holes. From left to
right, the six holes are floodgates 1#~4#, a vertical ship lift (also used as a floodgate), and a
surface hole in the right auxiliary dam. The actual project is shown in Figure 11a.
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Figure 11. Pictures of the project and sensor arrangement: (a) top view of the project, (b) measuring
point layout of hole 2#, (c) data acquisition instrument, (d) dynamic displacement sensor.

During flood discharge operations in the past, the staff of the project found that there
was an obvious vibration phenomenon at the top of the floodgate pier, especially in hole 2#.
To study the influence of flood discharge on the pier structure, a vibration test was carried
out under various working conditions. The sampling frequency of this test was 50 Hz and
the sampling time was 81.92 s. The dynamic displacement sensor layout diagram is shown
in Figure 11, and the parameters of the sensors are shown in Table 4.

Table 4. Performance table of DP seismic low frequency vibration sensors.

Sensor Number Model Range of Frequency Response Sensitivity

1~10 DPS-0.5-15-H 0.5~200 Hz 5 mv/µm

The collected vibration signal was processed by the ASVD–ICEEMDAN method
introduced in Section 3. Due to length limitations, only the process of measuring point
10 under working condition 1 is described. The time waveform and power spectrum curves
of the vibration signal are shown in Figure 12. In the power spectrum figure, there are three
obvious frequency peaks (plotted in orange and red wireframes) and many “small burrs”
(plotted in green wireframes). These “small burrs” represent white noise components,
which would be filtered by the ASVD method. In addition, the main energy of peak 1 is
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within 1 Hz [37,38], which represents low-frequency noise and would be filtered by the
ICEEMDAN method.
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Figure 12. Vibration signal of measuring point 10 under condition 1. (Note: Frame (a) and (b)
represent the local enlarged drawing windows.)

After constructing the Hankel matrix of the signal, the ASVD algorithm was performed,
determining the number of ESVs, which is 68, as shown in Figure 13. Then, the white-noise-
filtered signal was obtained after SVD reconstruction. In order to filter the low-frequency
water flow noise, the signal processed by ASVD was decomposed via ICEEMDAN, and the
decomposition result is shown in Figure 14. After removing the components whose main
frequencies are less than 1 Hz and IMFs whose absolute values of rs are less than 0.4, the
signal was reconstructed. The denoised signals at measuring point 10 under conditions
1 and 2 are shown in Figures 15 and 16, respectively.
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Figure 13. Change in SVDN values of Hankel matrix constructed by vibration signal of measuring
point 10 under condition 1.

In Figures 15 and 16, the white noise and the low-frequency water flow noise are
considerably filtered out. From the power spectrum curves after windowing, it can clearly
be seen that the two-order natural frequencies of the structure under condition 1 are
2.35 Hz and 3.76 Hz, while they are 2.47 Hz and 3.82 Hz under condition 2. The noise
reduction results were compared with the results of the eigensystem realization algorithm
(ERA) modal identification method [37] in Table 5. The maximum error of the two frequency
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identification results is only 1.67%, indicating that the method can filter out the noise of the
floodgate and restore the structural feature information successfully.
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Figure 15. Noise reduction result of measuring point 10 under condition 1. (Note: Frame (a) and (b)
represent the local enlarged drawing windows.)
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Figure 16. Noise reduction result of measuring point 10 under condition 2. (Note: Frame (a) and (b)
represent the local enlarged drawing windows.)

Table 5. Results comparison of ASVD–ICEEMDAN and ERA.

Working Condition Order Suggested Method/Hz ERA/Hz Relative Error */%

Condition 1
1 2.35 2.39 1.67
2 3.76 3.77 0.27

Condition 2
1 2.47 2.43 1.65
2 3.82 3.82 0

Note: * Relative error = |Suggested method value − ERA method value|
ERA method value × 100%.

5. Conclusions

The ASVD–ICEEMDAN combined noise reduction method is proposed to filter back-
ground white noise and low-frequency water flow noise in the vibration signals of a flood-
gate structure. The following main conclusions are drawn through simulation experiments
and an actual engineering case.

(1) An ASVD method is proposed to select effective singular values automatically based
on the relationship between singular values and signal components. It avoids the
uncertainty of manual selection and improves the efficiency of noise reduction.

(2) The ICEEMDAN algorithm can automatically decompose the signal into several IMF
components whose center frequencies are arranged from high to low. Compared
to the CEEMDAN algorithm, ICEEMDAN algorithm performs better in terms of
suppressing mode mixing and reducing residual noise.

(3) The ASVD–ICEEMDAN method successfully filters out white noise and low-frequency
noise in simulated signals, which increases the SNR of the signal (50% noise level)
from 4.417 to 16.237 and reduces the RMSE from 2.286 to 0.586. In the engineering case
study, the ASVD–ICEEMDAN method effectively filters out the noise and accurately
extracts the structural characteristic vibration information, proving it can provide
support in operational modal analyses and damage identification in actual structures.

(4) Vibration signals of discharge structures are mainly affected by white noise and
low-frequency noise; thus, this method has the potential to be extended to other
hydraulic structures under discharge excitation, such as arch dams, gravity dams, and
guide walls.
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Abstract: The risk transmission mechanisms of urban river ecological management engineering
projects are examined in this study. Using the Susceptible Exposed Infectious Recovered Susceptible
(SEIRS) model for risk transmission, a model of risk propagation delay for urban river ecological
management engineering projects on scale-free networks is developed, which takes into account the
effects of risk propagation and delay. We conducted a steady-state analysis of the model and obtained
the basic reproduction number R. When R > 1, the equilibrium point of risk outbreak is stable, and
when R < 1, the equilibrium point of risk disappearance is stable. Numerical simulations of the model
were conducted using the MATLAB2022b to reveal the dynamic propagation patterns of risk in urban
river ecological management engineering projects. The research results show that the steady-state
density of the infected nodes in the network increases with the increase in the effective propagation
rate and the propagation delay time; the propagation delay reduces the risk propagation threshold
in the network and accelerates the occurrence of the equilibrium state of risk outbreak. There is a
correlation between the transmission rate of latent nodes and the transmission rate of infected nodes,
and the effective transmission rate of latent nodes has a greater influence on risk propagation. The
spread of risk in the network can be effectively controlled and mitigated with targeted immunity
for susceptible nodes. This article, based on the theory of complex networks and the mean-field
theory, takes into account the propagation delay and spreading of latent nodes. Building a D-SEIRS
model for risk propagation broadens the research perspective on urban river ecological management
risk propagation.

Keywords: complex networks; ecological management engineering; risk; SRIES model; urban rivers

1. Introduction

The urban river ecological governance project is a relatively complex project. When
construction projects are developed, designed, constructed, and accepted, risks are present
at every stage. The urban river ecological management project’s risk network is a complex
system with complex interactions between the risk factors, forming a complex network
structure [1]. The interaction path between the risk factors provides a path for the spread
of risk in the network. When a risk factor presents a risk state, it may spread the risk
to its associated risk factors through interaction [2]. This will lead to the spread of risks
across the entire network and may have a chain reaction and amplification effect, leading
to the outbreak of risks in projects. It is therefore necessary to study the mechanism of
risk propagation in urban river ecological management projects so that project risks can be
managed and high-quality urban river ecological management projects can be developed
and constructed by the departments involved in the project in a quality manner.

Transmission dynamics is a theoretical approach to the quantitative study of infectious
diseases. It is possible to study the transmission dynamics of complex networks using
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mathematical models of epidemic transmission. At present, research on risk transmission
is attracting extensive attention from scholars in different fields, including information
transmission, internet rumor transmission, financial market risk transmission, corporate
risk transmission, rumor transmission risk, and public opinion transmission risk, in addi-
tion to infectious diseases. Wang et al. [3] proposed the SIRaRu model and demonstrated
that there is a diffusion threshold for all of them in the network and that the network
topology has a significant effect on rumor propagation. Tian et al. [4] designed the super
SIC model and its evolutionary law based on an opinion super network containing social,
environmental, psychological, and opinion sub-networks, drawing on the modeling ideas
of the SIR model and introducing rumor clarifiers. Jeon et al. [5] found that multinational
banks can transfer financial risk from their parent companies to their foreign subsidiaries
through their internal funding markets. Mingyuan et al. [6] used the SIR model as the
basic prototype to construct a transmission model SIR-C applicable to unsafe behaviors
of workers in construction and explored the transmission characteristics and intervention
effects of unsafe behaviors. A model of time-encroaching behavior has been proposed by
He et al. [7], which discusses the propagation of time-encroaching behavior in BA scale-
free networks, ER random networks, NW small-world networks, and WS small-world
networks. This scholars’ research has also linked the spread of rumors to the topological
nature of social networks. An analysis of rumor transmission on small-world networks was
conducted by Zanette [8]. Rumors are spread through pairwise interactions between the
purveyor and others through the crowd. When interacting with another spreader or choker,
the ignorant person may become infected and spread the rumor. SIR reflects the interac-
tions between rumors and has made advances and applications in the field of information
dissemination [9,10]. Since the SIR model was proposed by Kermack and McKendrick in
1927 in their study of the Black Death epidemic in London and its optimization in 1932
with the SIS model [11], researchers have proposed models such as SIRS [12] and SEIR [13].
Lu Miao et al. [14] used a clustering algorithm to cluster the data in the key nodes, based
on which an SIS model was constructed and through which the simulation of the evolution
of public opinion in group social networks was completed. The results of the research show
that the method accurately obtains the number of opinion propagations, search indexes,
and high accuracy evolutionary simulations. By constructing a SEIS model with a defined
latent period, Li et al. [15] demonstrated that the latent endemic equilibrium point is local
and progressive. Yu [16] and Khalkho [17] established the SEIRS model, which is infectious
and rehabilitative during both the incubation and infection periods. An infectious disease
model was developed by Deng and colleagues [18] to study the transmission mechanism
of online mass events.

Domestic and foreign scholars have made a large number of contributions to the study
of risk transfer, as well as infectious diseases. Literature analysis shows that only a few
scholars have applied the infectious disease model to the risk transfer of construction
projects, especially for urban river ecological management. The mechanism of the transmis-
sion of infectious diseases is that the source of the disease enters the susceptible population
through a certain pathway, which in turn spreads among the population, and the infected
person shows different physiological responses depending on his or her immunity [19].
Risk transmission in urban river ecological management projects is similar to infectious
disease transmission. During the project construction process, the project risks are easily
transmitted to the downstream participants, there is a certain latent period before the
project risks occur, and they have been in a hidden state before the risks are revealed. A
complex set of internal and external influencing factors, coupled with a dynamic trans-
mission process, constantly changes the node state, making the project risk transmission
appear complex. The risk contagion SEIRS model constructed by Xiao Qin et al.’s [20]
study on the risk propagation mechanism of amphibious seaplane take-off and landing
safety has implications for the research conducted in this paper. Some of the existing
studies on infectious disease models have been carried out from the perspectives of both
the infectiousness of latency and the delayed nature of risk transmission, respectively. In
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urban river ecological management projects, the impact of infectious latency and delayed
risk transmission on the systemic risk transmission dynamics has not yet been examined.

This article begins by studying the risk evolution in urban river ecological manage-
ment projects. Based on the existing research, it considers the internal mechanism and
influencing factors of risk transmission, as well as the dynamic evolution process of risk.
Using principles from infectious disease dynamics, a project risk transmission model based
on SEIR is established. By solving the transmission threshold, the analysis and simula-
tion examine the impact of the risk delay time and risk infection rate on the project risk
transmission process. This model provides a basis for the effective supervision and control
of project participants and theoretical support for indirect supervision and mid-term and
post-event supervision. Figure 1 depicts the study’s general structure.
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The rest of the paper if organized as follows. The proposed complex network model
is constructed in Section 2 and its characteristics are analyzed. In Section 3, we construct
an SEIE-based risk contagion model for urban river ecological management projects. In
Section 4, the numerical simulations are presented. In Section 5, we discuss the topic.
Section 6 concludes our study.

2. Complex Network of Risks
2.1. Risk Identification

Projects to manage urban rivers ecologically are complex and require high levels of
technology; therefore, the risk points are not only diverse, but the factors are often coupled.
As a result, project implementation risks are also usually uncontrollable and can lead
to large economic losses. The data selected for this paper are mainly obtained from the
following sources.

(1) The CNKI and VIP databases are searched for relevant academic papers published
between 2011–2022 [21–23], from which all the possible risks in urban river ecological
management projects are summarized [24,25].

(2) The list of common problems in the inspection of water conservancy project construc-
tion management (2020, Ministry of Water Resources).
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(3) Accident investigation report of the safety production management platform of con-
struction units.

Based on the literature and social research, this paper establishes a risk factor system
for river ecological management projects from four aspects: project concept [26,27], project
decision [28,29], project preparation [30,31], and project implementation [31,32]. Table 1
displays the findings, which reveal that there are 53 risk factors overall and 4 risk stages in
the index system.

Table 1. River ecological management project risk factors.

Stage Risk 1 Level Risk 2 Level

1 Project concept stage

1 Political Risk
A1 Policy risk

A2 Legal and regulatory risks

2 Economic Risks
A3 Inflation risks

A4 Risk of interest rate changes
A5 Financing risk

3 Natural environmental risks
A6 Hydrological and geological risks
A7 Risk of meteorological conditions

A8 Ecological environment risk

4 Social Risks

A9 Sociocultural risk
A10 Resident negotiated land acquisition risk

A11 Social security situation
A12 Public opinion

2 Project decision stage 5 Project decision risk

A13 Project approval risk
A14 Basic acceptance risk before implementation

A15 Risk of decision-making error
A16 Risk of land change

A17 Risk of incomplete collection of basic data

3 Project preparation phase

6 Bidding risks

A18 Risk of document loss
A19 Risk of improper competition

A20 Information leakage risk
A21 Bid evaluation risk

A22 Normative risk of bidding process

7 Plan and design risks

A23 Risk of qualification of design unit
A24 design schedule lag

A25 There are defects, errors, omissions,
and frequent changes in the design plan

A26 Survey accuracy risk

8 Prepare for risks before construction

A27 Construction site layout
and technical preparation risk

A28 Project contract risks
A29 Risk of insufficient supply of substances

(materials) and materials
A30 Risk of illegal start

4 Project implementation phase

9 Construction personnel risk

A31 Technical water risk
A32 Weak security awareness

A33 Employee qualification risk
A34 Risk of construction personnel slowing down

10 Construction technical risks

A35 (construction) drawings improper design risk
A36 Engineering and technical risks

A37 Construction machinery and
equipment condition risk

A38 Cross operation condition risk
A39 Risk of construction accidents

26



Water 2023, 15, 2622

Table 1. Cont.

Stage Risk 1 Level Risk 2 Level

4 Project implementation phase

11 Construction management risks

A40 Safety management risks
A41 Coordination risks of participating
parties (including technical disclosure)

A42 Rationality of construction organization design
A43 Plan Adjustment and engineering change risk
A44 Contract management and enforcement risks

A45 Risk of organizational structure setup confusion
A46 Manage permission risk

12 Construction duration factor risk
A47 Certification period
A48 Construction period

A49 Risk of construction delay

13 Completion acceptance risk

A50 Risk of file transfer not in place
A51 Quality assessment risk

A52 Audit risk
A53 Risk of cost overruns

2.2. Complex Network Construction and Characterization
2.2.1. Construction of Risk Networks

There are nodes and edges in complex networks that represent the influences and their
interrelationships. In this way, a complex network can be constructed objectively. Empirical
network construction, time series network construction, and correlation coefficient network
construction are common methods of network construction [33]. A questionnaire and other
forms of research and judgment are used in the empirical network-building method to rate
the influencing factors in Table 1. Experts make judgments based on their experience of the
influencing factors. If the experts consider them to be relevant, then they are linked; if not,
then they are not. In this study, empirical network-building is used.

The columns of the risk factor relationship data matrix are the emitters (causes) and
the rows of the matrix are the affected parties (effectors); Relationships are indicated by “1”
when they exist, and by “0” when they do not exist. Let there be n risk nodes in risk element
set A: Ah = (R1, R2, . . . , Rh) is a set of risk factors for the row; Am = (R1, R2, . . . , Rm) is for
the set of risk elements, and bij is the binary relational data. The number of rows in the
matrix is i and the number of columns is j, i = 1, 2, 3, . . . , n, j = 1, 2, 3, . . . , n.

bij = 1. That is, the risk element in row i has an effect on the risk element in column j.
bij = 1 means that the risk element in row i does not affect the risk element in column j.
The expert scoring method was used to determine the risk adjacencies for the urban

river ecological management project (Table 2).

Table 2. Risk factor adjacency matrix.

A1 A2 A3 A4 A5 A6 A7 . . . A47 A48 A49 A50 A51 A52 A53

A1 0 1 0 1 0 0 0 . . . 0 0 0 0 0 0 0
A2 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0
A3 1 0 0 1 0 0 0 . . . 0 0 0 0 0 0 1
A4 0 0 0 0 1 0 0 . . . 0 0 0 0 0 0 1
A5 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0
A6 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0

...
...

...
...

...
...

...
... 0 ...

...
...

...
...

...
...

A47 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0
A48 0 0 0 0 0 0 0 . . . 1 0 1 0 0 0 0
A49 0 0 0 0 0 0 0 . . . 1 0 0 0 0 0 1
A50 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0
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Table 2. Cont.

A1 A2 A3 A4 A5 A6 A7 . . . A47 A48 A49 A50 A51 A52 A53

A51 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0
A52 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0
A53 0 0 1 0 0 0 0 . . . 0 0 0 0 0 0 0

2.2.2. Network Characteristics and Network Visualization

The MATLAB2022b is used to analyze a large amount of network parameter data for
projects, which identifies the key risk factors, as well as the overall characteristics of the
network. The results are presented in Table 3.

Table 3. Overall network parameter characteristics.

Parameter Name Overall Network Parameter Names Overall Network

Number of nodes 53 Network diameter 7
Number of network edges 255 Network average aggregation coefficient 0.2977

Network density 0.0925 Intermediation centrality 0.0331
Network average path 2.5287 Approach centrality 0.3015

Network average 9.6226 Global network efficiency 0.5281

Based on the adjacency matrix, MATLAB2022b is used to generate a risk network
topology diagram for the urban river ecological management project, as shown in Figure 2.
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Degree describes the centrality of nodes in a network and is a simple, but important,
concept. The degree indicates how many other nodes a node is connected to, and the degree
indicates how influential that node is. Based on the directed network definition, degrees
can be categorized into the following three types: in-degree, out-degree, and degree. The
higher the incidence value of a node, the more vulnerable it is to external influences. The
out-degree value can be represented by the number of neighboring edges that the node
connects outwards; the larger the out-degree value of the node, the more likely it is to affect
other nodes. The sum of the in-degree and out-degree is the degree of the node. The degree
value distribution of each risk node in the urban river ecological management project was
calculated and obtained.

According to the degree ranking chart in Figure 3, the nodes with larger degrees are
listed in order as: A2—laws and regulations risk; A49—schedule delay risk; A36—engineering
technology risk; A44—contract management and implementation risk. The risk of each of
these on the other risk factors have a greater impact.
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2.3. Analysis of Risk Propagation and Delay Effects
2.3.1. Propagation Effects

The risks associated with urban river ecological management projects can propagate
from one node to downstream nodes, leading to cascading effects and amplification, ul-
timately impacting the overall construction project quality. Therefore, effective project
risk management should take into account the risk transfer effects. An analysis of the
topological relationships of urban river ecological management project risks has been con-
ducted previously. Risk evolution in urban river ecological management projects exhibits
characteristics of biological contagion, and the transmission behavior between risk factors
is similar to virus diffusion. Firstly, the transmission environment is similar. Viruses are
transmitted in social networks, with “people” as nodes, and the transmission channel is
the contact between people. Moreover, in the process of interaction, the risk factors may
make the risk nodes—which were in a stable state—become potential risk outbreaks or risk
outbreak nodes. Secondly, the propagation process is similar. The propagation of a virus
is carried out through the virus body to its neighbors, who then continue to propagate to
their neighboring nodes, and do not spread across nodes. Risk propagation in urban river
ecological management projects is also the propagation of initial risks to its neighboring
nodes’ risk factors, which eventually leads to outbreaks. Thirdly, the results of propagation
are similar. There are similarities between the propagation characteristics and evolutionary
laws of urban river ecological management projects and the spread of viruses on social
networks, which makes it possible to apply the propagation model of complex networks to
the evolution of risk in urban river ecological management projects.

The SEIR model is frequently used to explain how infectious diseases spread. In
construction projects, this model can be used to describe the process of risk propagation.
The SEIR model consists of four stages: susceptible, exposed, infectious, and recovered. In
construction projects, these states can be interpreted as follows: susceptible—that is, not
affected by the risk but potentially susceptible; exposed—exposed to the risk but negative
effects have not yet occurred; infectious—negative effects of the risk have already appeared,
such as personal injury or property damage; recovered—having recovered from the effects
of the risk and no longer affected by it.

Based on the SEIR model, risk propagation in construction projects can be described
as follows: Initial risk—there may be potential risks in construction projects, such as
engineering quality and safety management. These risks can be considered as “infectious
sources” and become the infectious state. Risk propagation—once the initial risk has a
negative impact, such as an engineering accident or quality issue, these negative impacts
may spread to other personnel or stakeholders, such as project participants, government
regulatory departments, media, etc. These personnel or stakeholders can be considered as
“susceptible” and potentially exposed to the risk of infection. Risk exposure—once other
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personnel or stakeholders come into contact with the negative impact, such as learning
about the occurrence of engineering accidents or quality issues, they are in an exposed
state. At this stage, they have not yet suffered direct negative impacts but may face future
risks. Risk impact—once other personnel or stakeholders are negatively impacted, such
as suffering from the effects of engineering accidents or quality issues, they are in the
infectious state. At this stage, they may face negative impacts such as personal injury and
property damage. Risk management—once the infectious parties are affected by the risks
and recover, they enter the recovered state. At this stage, risk management measures can
help prevent future risks.

2.3.2. Delay Effects

The risks associated with urban river ecological management projects can occur at
any node in the complex network. Risk generation in urban river ecological management
projects is possible, but the interference of other factors can delay it. The delayed effect of
risk in urban river ecological management projects in this paper refers to when the risk
occurs at one or some nodes in the network and is not manifested because the risk outbreak
threshold of other nodes has not been reached or the relevant units have taken temporary
control measures on these nodes so that they are concealed until the risk outbreak. Risks
at certain nodes do not directly characterize themselves or lead to the outbreak of risks at
other nodes, but rather accumulate and eventually lead to the creation of risks. This shows
that risk has a delayed effect.

3. SEIRS-Based Risk Contagion Model for Urban River Ecological Management
3.1. Model Assumptions

Based on the transmission principle of infectious diseases and the risk scale-free net-
work topology characteristics of urban river ecological governance projects, the following
assumptions are made for this study.

Hypothesis 1. The nodes in the scale-free network of urban river ecological management projects
are divided into four categories: susceptible class S, latent class E (already infected with the
risk but not manifested, but with the ability to transmit the risk), infected class I, and immune
class R (the risk is eliminated and has some ability to resist the risk, but cannot always resist
and may still become susceptible); denoting Sk(t), Ek(t), Ik(t), Rk(t) as the densities of the
four classes of individuals in nodes of degree k at time t, and meets Sk(t) + Ek(t) + Ik(t) +
Rk(t) = 1, 0 ≤ Sk(t), Ek(t), Ik(t), Rk(t) ≤ 1.

Hypothesis 2. β, ρ, ε, γ, µ, ν, respectively, denote the probability of conversion of the susceptible
state to the latent state, the probability of conversion of the latent state to the infected state, the
probability of conversion of the infected state to the immune state, the probability of change from
the immune state to the susceptible state, the probability of self-healing of the latent state to the
susceptible state, and the probability of self-healing of the infected state to the susceptible state; all of
the above parameters being constants between 0 and 1.

Hypothesis 3. h1 denotes the infection rate of latent class nodes, h2 denotes the infection rate of
infected class nodes, Θ1(t) and Θ2(t) denote the probability of association of susceptible nodes with
latent class nodes and the probability of association of susceptible nodes with infected class nodes at
moment t, respectively; the above parameters all take values between 0 and 1.

Hypothesis 4. T denotes the delay time of risk contagion in the risk-scale-free networks of the
urban river ecological management project, and it is assumed that the contagion delay time of latent
class nodes and infected class nodes in the network is the same.
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3.2. Construction Based on the SEIRS Model

Based on the above assumptions, the risk propagation SEIRS process for urban river
ecological management projects is shown in Figure 4. A set of differential equations for the
risk contagion delay model for urban river ecological management projects in a scale-free
network model is constructed based on the mean-field theory, as follows.





dSk(t)
dt = −βk[h1Θ1(t) + h2Θ2(t)]Sk(t) + µEk,T(t) + νIk,T(t) + γRk(t),

dEk,0(t)
dt = βk[h1Θ1(t) + h2Θ2(t)]Sk(t)− (µ + ρ)Ek,0,

dEk,1(t)
dt = −(µ + ρ)Ek,1(t) + (µ + ρ)Ek,0,

· · ·
dEk,T(t)

dt = −(µ + ρ)Ek,T(t) + (µ + ρ)Ek,T−1(t),
dIk,0(t)

dt = −(ν + ε)Ik,0(t) + ρEk,T(t),
dIk,1(t)

dt = −(ν + ε)Ik,1(t) + (ν + ε)Ik,0(t),
· · ·
dIk,T(t)

dt = −(ν + ε)Ik,T(t) + (ν + ε)Ik,T−1(t),
dRk(t)

dt = εIk,T(t)− γRk(t),

(1)

where Ek,τ(t)Ik,τ(t) denote the latent and infected nodes of degree k, respectively, at t− τ

moments and satisfies Ek(t) = ∑T
τ=0 Ek,τ , Ik(t) = ∑T

τ=0 Ik,τ .Θ1(t) = ∑n
j=1

jP(j)Ej(t)
〈k〉 , Θ

2
(t) =

∑n
j=1

jP(j)Ij(t)
〈k〉 . Letting the right-hand side of Equation (1) equal zero shows that Ek,0 =

Ek,1 = · · · = Ek,T , Ik,0 = Ik,1 = · · · = Ik,T , so that h = h1Θ1(t) + h2Θ2(t), simplifying
Equation (1) to: 




.
Sk = −βhkSk +

µ
T+1 Ek +

ν
T+1 Ik + γRk,

.
Ek = βhkSk − µ+ρ

T+1 Ek,
.
Ik =

ρ
T+1 Ek − ν+ε

T+1 Ik,
.
Rk =

ε
T+1 Ik − γRk.

(2)
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Figure 4. SEIRS model.

3.3. Immunization Strategy Construction

Assuming that the immunization ratio of susceptible nodes is a, the immunization
strategy is modeled as in Figure 5, a ∈ [0, 1]; with the other parameters defined as before,
the differential equation for the post-immunization system can be expressed as:





.
Sk = −βhkSk − aSk +

µ
T+1 Ek +

ν
T+1 Ik + γRk,

.
Ek = βhkSk − µ+ρ

T+1 Ek,
.
Ik =

ρ
T+1 Ek − ν+ε

T+1 Ik,
.
Rk = aSk +

ε
T+1 Ik − γRk,

(3)

where h = h1Θ1 + h2Θ2. According to the analysis process of the unimmunized contagion
model, the effective contagion rate and steady-state density of the immunized network
can be found in the same way, without going over the solution process here; the contagion
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threshold hc and the steady-state density of infected nodes I1 of the immunized network
are as follows:

hc =
(a + γ)〈k〉

γ(T + 1)〈k2〉 , (4)

I1 =

2ρ

{
mγβ(T + 1)[h1(ε + ν) + h2ρ]

(
e

(ν+ε)(µ+ρ)(a+γ)
mβγ(T+1)[h1(ε+ν)+h2ρ] − 1

)
− (ν + ε)(µ + ρ)(a + γ)

}

mβ[h1(ε + ν) + h2ρ][(ρ + ε + ν)(T + 1)γ + ερ]

(
e

(ν+ε)(µ+ρ)(a+γ)
mβγ(T+1)[h1(ε+ν)+h2ρ] − 1

)2 . (5)
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of the susceptible state to the infected state. Combining the actual situation of the urban 
river ecological management project with expert opinions and research [34], the above pa-
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4. Numerical Simulation
4.1. Initial Model Parameter Setting

Based on the previous assumptions, there is β probability of the conversion of the
susceptible state to the latent state, ρ probability of the conversion of the latent state to the
infected state, ε probability of the conversion of the infected state to the immune state, γ
probability of the conversion of the immune state to the susceptible state, µ probability of
the conversion of the latent state to the susceptible state, ν probability of the conversion
of the susceptible state to the infected state. Combining the actual situation of the urban
river ecological management project with expert opinions and research [34], the above
parameters are assigned the values: 0.4, 0.6, 0.2, 0.1, 0.1, 0.2.

4.2. Model Dynamics Simulation

Considering the characteristics of urban river ecological management projects, project
risks will persist. In this regard, we conducted dynamic analysis of the risk network for
N = 1500, N = 50, and N = 10.

The parameters are as follows:

β = 0.4, ρ = 0.6, ε = 0.2, γ = 0.1, µ = 0.1, ν = 0.2, T = 5, h1 = 0.1, h2 = 0.3, m = 3

From Figure 6a–c, it can be observed that in cases where the network size is 1500, 50,
and 10, respectively, the instantaneous density of different-scale network models eventually
reaches a steady-state density (i.e., parallel to the time axis). Moreover, based on the
simulations conducted above, it can be concluded that as the evolution time of the risk
network increases, the nodes tend to balance within their respective groups. Under these
parameter settings, the equilibrium achieved is a balance of risk outbreak rather than the
disappearance of network risks. This validates the correctness of the stability analysis
of the equilibrium points in Appendix A.1.1; namely, if network risks are not effectively
controlled, risks will persist. The theoretical analyses further support the need for timely
risk control and management by project stakeholders involved in urban river ecological
management projects. Only by doing so can the continuous presence of risks on the network
be prevented, thereby avoiding potential project losses.
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4.3. Dynamic Simulation Analysis of the SEIRS Model
4.3.1. Effect of Delay Time and Network Size on Propagation Thresholds

The above analysis shows that λ =
(

h1(ν+ε)
ρ + h2

)
βρ

(ν+ε)(µ+ρ)
, i.e., the effective conta-

gion rate of risk is influenced by the probability of β, ρ, ε, γ, µ, ν. The infection rates are h1
and h2 for latent and infected nodes.

In this study, the parameters are set as constants to analyze the pattern of the effective
propagation rate with the network size. From λc =

〈k〉
(T+1)〈k2〉 , the propagation threshold

of the security risk evolution network is related to the average degree 〈k〉, 〈k2〉 and delay
time T of the network. When the size of the network is large enough, the average degree
of the network 〈k〉 ≈ 2m, 〈k2〉 ≈ 2m2ln Kc/m, Kc ≈ mN1/2, where Kc is the network, the
maximum value of neutrality, m, is the minimum number of connected edges in the network,
and N is the total number of nodes in the network. The transformation λc =

2
m(T+1)ln N .

It is clear from the previous analysis, and 〈k〉 ≈ 9, that the minimum connected edge
m = 3 in this paper. The relationships between the propagation threshold λc, T, and N are
shown in Figure 7.
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Figure 7a analyzes the variation pattern of the risk propagation thresholds in the
network with the risk contagion delay time for the sizes of the different networks. In
networks of a certain size, the contagion threshold decreases with the increasing delay
time, and when the delay time is sufficiently long, the propagation threshold approaches
zero, indicating that risk contagion delays in the network eventually lead to increased risk
contagion. When the delay time is certain, the propagation threshold varies according to
the size of the network. The larger the network size, the lower the propagation threshold,
which is in line with the propagation characteristics of scale-free networks, and it can
also be obtained that the propagation threshold is almost the same for different sizes of
networks when the delay time is long enough. Urban river ecological management projects
involve a long project cycle and many stakeholders; therefore, in the case of a certain scale
of project risks, the project risks can be detected and dealt with on time according to the law
of the change of the contagion threshold with the delay time in order to avoid the project
risks from not being dealt with on time, resulting in a lower risk contagion threshold and
causing uncontrollable project risk contagion.

According to Figure 7b, the variation patterns of the contagion threshold are shown for
different delay times and network sizes in the urban river ecological management project
risk network. The risk network’s contagion threshold tends to decrease as its network size
increases, and the threshold with a time delay is lower than the threshold without a delay.
Based on the trends, the contagion threshold of the network is almost zero when there
is a time delay and the network is large enough; however, when there is no time delay
and the network is large enough, the contagion threshold drops. However, the structural
characteristics of the network prevent it from dropping to zero. When the network is large
enough, the contagion thresholds for different delay times converge to the same value.

Figure 7a,b show that the marginal change in the project risk contagion threshold with
the delay time is greater than the marginal change with the network size, indicating that
the risk contagion threshold is more sensitive to the risk delay time, i.e., risk delay affects
the contagion threshold more than the network size. Therefore, in the construction process
of urban river ecological management projects, risks are found to be dealt with promptly to
avoid the contagion of the project risks caused by the failure to deal with them promptly.

4.3.2. Effect of Delay Time on Steady-State Density

When the network size N = 1500, the maximum value of the contagion threshold of
the network without delay λc(max) = 0.0912, when the effective contagion rate of risk
λ = h1

2 + 3h2
13 . The relationship between λ and h1 and h2 is shown in Figure 8, where the

intersecting line segments are h1
2 + 3h2

13 = 0.0912.
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In two contexts, with h1 = 0.01, h2 = 0.03, and h1 = 0.1, h2 = 0.3, i.e., λ < λc(max)
and λ > λc(max).

A MATLAB2022b simulation was used to analyze the variation law of the steady-state
density of various nodes in the risk network of engineering projects with a delay time.
Figure 8 shows the specific results.

Figure 9a analyzes the network’s steady-state density with a delay time when h1 = 0.01,
h2 = 0.03, i.e., when the initial effective infection rate is less than the infection threshold.
The density of the susceptible nodes in the network at the initial moment (zero contagion
delay time) is 1, and the steady-state density of the latent, infectious, and immune nodes
is 0. As the delay time of transmission increases, the transmission threshold of the risk
gradually decreases, and it can be seen from Figure 9a that when the delay time is less
than 5, the steady-state density of various nodes does not change, indicating that the
effective transmission rate of the risk is always less than the transmission threshold. When
the delay time is longer than 5, the steady-state density of the susceptible nodes decreases
rapidly, and when the delay time is long enough, the density drops to 0. The steady-state
densities of the latent and infected nodes show an increasing trend and eventually equalize,
and the steady-state density of the latent nodes is close to 0.6, the steady-state density of
the infected nodes is close to 0.3, and the steady-state density of the immune nodes changes
less but shows an overall trend of first increasing and then decreasing to 0. The steady-state
density of the immune nodes is less variable but shows a trend of increasing and then
decreasing until it reaches zero. This indicates that when the delay time is greater than 5,
the risk starts to explode in the network as the effective contagion rate of the risk is greater
than the contagion threshold.
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Figure 9b analyzes how the steady-state density of the network varies with the conta-
gion delay time when h1 = 0.1 and h2 = 0.3, i.e., when the initial effective contagion rate of
risk in the network is greater than the contagion threshold. The steady-state density of the
four types of nodes in the network is approximated to 0.9, 0.03, 0.02, and 0.05 at the initial
moment; when the risk delay effect appears, the risk will be transmitted in the network
regardless of the delay time, resulting in a rapid decrease in the steady-state density of the
susceptible nodes until it reaches 0. The steady-state densities of the latent and infected
nodes increased to 0.68 and 0.31, respectively, and the immune nodes increased and then
decreased rapidly until they approached 0.

In cases where the effective rate of risk transmission is less than the transmission
threshold, a longer transmission delay is required to bring the steady-state density of each
node into equilibrium, and when the effective rate of risk transmission is greater than
the transmission threshold, a shorter transmission delay is required. In cases where the
effective transmission rate is less than the transmission threshold, risk transmission delays
play a greater role than in cases where the effective transmission rate is greater. Different
values of the risk transmission rate for latent and infected nodes affect the steady-state
density at the initial moment, but not at equilibrium. The results provide some theoretical
guidance for the development of risk contagion control strategies for urban river ecological
management projects.

4.3.3. Infection Rate Effects on Steady-State Density

The relationship between the infected nodes, latent nodes, and h1, h2, as well as the
results of the analysis of the above steady-state density over time, show that when the
density of infection is relatively small, the delay time exceeds 5 before infection occurs.
Therefore, in this paper, assuming the delay time T = 5 for risk contagion, a MATLAB
simulation was used to analyze the trend of infected nodes and latent nodes with h1, h2.
Figure 10 illustrates the specific results.
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Figure 10. The relationship between infection node, latent node and h1, h2. (a) Steady-state density
of infected nodes as a function of h1 and h2; (b) Steady-state density of latent nodes as a function of
h1 and h2.

From Figure 10a, it can be seen that when the values of h1 and h2 are small, there is no
significant change in the steady-state density of the infected nodes and because the delay
time is fixed at this time, which indicates that the risk transmission threshold is certain. As
a result, the value of the effective infection rate is small and lower than the propagation
threshold, and the risk cannot spread in the network, so the steady-state density of the
infected nodes will remain at zero. As h1 and h2 increase, the effective infection rate
gradually increases until it exceeds the propagation threshold, and the steady-state density
shows a rapidly increasing trend. The marginal change of the steady-state density of the
infected nodes concerning h1 is greater than that concerning h2; that is, the steady-state
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density of the infected nodes is more sensitive to h1. This result is because h1 has a greater
impact on the infection rate in the expression of the effective infection rate.

Based on Figure 10b, it can be observed that when h1 and h2 have relatively small
values, the steady-state density of the latent nodes does not show significant changes. As
h1 and h2 gradually increase, the pattern of change in the steady-state density of the latent
nodes follows the same trend as the variation of the infected nodes in Figure 10a. Therefore,
it can be concluded that the steady-state density of the latent nodes is more sensitive to
h1. The reason for this result is that h1 has a greater impact on the transmission rate in the
expression of the effective transmission rate.

To further explore the relationship between the steady-state density of the infected
and latent nodes with h1, h2, and T. Taking the delay time T = 0, 10, 20, the variation law of
the steady-state density of the infected and latent nodes with h2 for fixed h1 = 0.01, and the
variation law of the steady-state density of the infected and latent nodes with h1 for fixed
h2 = 0.03, respectively, were analyzed. In Figures 11 and 12, the specific results are shown.
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Figure 11. Steady-state density of infected and latent nodes with h2 for h1 = 0.01. (a) The law of
steady-state density of infected nodes changing with h2;(b) The law of steady-state density of Latent
Nodes changing with h2.
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Figure 11a,b show that when h1 = 0.01, the steady-state densities of the infected node
I and the latent node E increase with the increase in h2. By comparing the cases of the
risk delay being 0, 10, and 20, it is found that the project risk delay leads to an increase
in the steady-state densities of node I and node E. This, in turn, accelerates the spread of
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the project risk within the network. In addition, as the time units of the delay increase, the
growth rate of their steady-state densities also increases.

Figure 12a,b show that when h2 = 0.03, the steady-state densities of the infected node
I and the latent node E increase with the increase in h1. By comparing the cases of the risk
delay being 0, 10, and 20, it is found that the changing pattern of the steady-state densities
of the infected node I and the latent node E concerning h1 is consistent with the pattern
shown in Figure 10. This implies that increasing the value of h1 in the model leads to an
increase in the steady-state densities of the infected node and latent node, indicating that
more individuals are infected or in a latent state in the system.

By comparing the results of Figures 11 and 12, it is observed that when parameter h1
is fixed, the equilibrium steady-state density of the infected node I and the latent node E is
smaller than the result with a fixed parameter h2. This indicates that increasing parameter
h1 is more likely to lead to a risk outbreak in urban river ecological management projects.
The equilibrium steady-state density of both the infected node I and the latent node E
increases as parameters h1 and h2 increase. When one parameter is fixed and the other
parameter is increased, it also leads to an increase in the steady-state density, and the
combined effect of increasing both parameters is more pronounced. Furthermore, the latent
node E exhibits a growth rate faster than the infected node I, and the maximum steady-state
density of the latent node is greater than that of the infected node. This suggests that in
the risk network of urban river ecological management projects, the contagiousness of
the risk factors in the latent period plays a significant role in the entire risk-spreading
process, and the transmission delay accelerates the propagation of risks within the network.
Therefore, when devising risk control strategies for urban river ecological management
projects, stakeholders should pay attention to the contagiousness of the latent nodes and
the delay in risk propagation.

4.3.4. Sensitivity Analysis

Sensitivity analysis is a method used to assess the sensitivity of the model out-
puts to changes in the input parameters. By systematically varying the key parameters
within the model and observing the resulting changes in the output, we can gain insights
into the model’s sensitivity to different parameters, thus enhancing our understanding
of the model’s behavior and predictive capabilities. In sensitivity analysis, the effects
of the model outputs can be observed by changing the values of parameters such as
m, T, β, ρ, ε, γ, ν, µ, h1, h2.

Non-normalized sensitivity formula:

DT
x =

∂T
∂x

(6)

Normalized sensitivity formula:

FT
x =

∂T
∂x
· x

T
(7)

where T is a variable, and x is a variable. In this article, T takes the values of S, E, I, R, and
x takes the values of m, T, β, ρ, ε, γ, ν, µ, h1, and h2. Based on the two formulas above and
taking parameters 3, 5, 0.4, 0.6, 0.2, 0.1, 0.2, 0.1, 0.1, and 0.3, we can obtain the results shown
in the graph.

According to the non-normalized analysis in Figure 13a, the parameters m, T, β, ρ, ε,
γ, ν, µ, h1, h2 have relatively small numerical values overall, but still have some impact on
the nodes S, E, I, R in the model. According to the analysis results in Figure 13b, for node S,
the parameters m, T, β, ρ, ε, γ, ν, µ, h1, h2 have little impact on it. For the latent node E, the
parameters m, T, β, ρ, ε, ν, µ have a negative influence on E, while h1 and h2 have a positive
impact on E. Additionally, as h1 and h2 increase, the risk of the latent node E also continues
to increase. For the infected node I, the parameters m, T, β, ε, ν, µ have a negative impact
on I, while h1 and h2 have a positive impact on I. Similarly, as h1 and h2 increase, the risk
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of the infected node I also continues to increase. Therefore, in the risk evolution study of
urban river ecosystem management projects, it is crucial to strengthen the control of h1 and
h2 as they play a significant role in controlling the spread of risks.
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4.4. Immunization Strategy

Comparing the effective transmission rate after immunization with the effective trans-
mission rate and transmission threshold before immunization, we can see that hc > λc,
indicating that the transmission threshold of the risk transmission model after immuniza-
tion is greater than that before immunization, and the spread of risk in the network can be
controlled to a certain extent, effectively avoiding the risk of transmission.

The steady-state density versus T and a was obtained by substituting β = 0.4, ρ = 0.6,
ε = 0.2, γ = 0.1, µ = 0.1, ν = 0.2, m = 3, h1 = 0.01, and h2 = 0.03 into the expression for
the steady-state density of the infected node after immunization. Analyze the relationship
between I and a when T = 0, 10, 20, 30, 40, 50; I1 and T when a = 0, 0.2, 0.4, 0.6, 0.8, 1. This
study normalized the immune density of the infected nodes after immunization to ensure a
convincing analysis. I in the figure indicates the steady-state density of the infected nodes
before immunization, i.e., the maximum value of the steady-state density of the infected
nodes, and the results of the analysis are shown in Figure 14.
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As can be seen from Figure 14a, the steady-state density decreases as the probability
of the immunization of the susceptible nodes increases, suggesting that enhanced immu-
nization is effective in controlling contagion in the risk network of urban river ecological
management projects. It was observed that the relative value of the steady-state density of
the network is 1 when the immunity probability of the susceptible nodes is zero, at which
point the steady-state density is at its maximum. The relative value of the steady-state
density is equal to the marginal change in the immunity probability of the susceptible node,
indicating that the immunity probability of the susceptible node plays an important role in
the relative value of the steady-state density of the infected node.

As can be seen from Figure 14b, when the immunization probability of the susceptible
nodes is 0, the relative steady-state density of the infected nodes remains at 1, which is
the same as before immunization. When immunizing susceptible nodes with a certain
probability, the higher the immunization probability, the smaller the relative value of the
steady-state density of the infected nodes, and the better the immunization effect when
the delay time is held constant. For a given probability of immunization, the relative
value of the steady-state density first remains constant at 0 and then increases with the
increasing delay time, i.e., the immunization becomes less effective. The reason for this
phenomenon is that after immunizing the nodes in the network, the contagion threshold
of the risk increases. When the delay time is short, the contagion threshold of the risk is
still greater than the effective contagion rate of the network and the risk cannot spread in
the network, so the relative value of the steady-state density remains 0. However, as the
delay time continues to increase, the contagion threshold decreases further until it is less
than the effective contagion rate, at which point the risk will spread in the network, leading
to an increase in the relative value of the steady-state density. The results show that the
immunization of the susceptible nodes can effectively inhibit the spread of risk; in addition,
the effectiveness of immunization can be enhanced by controlling the delay time of the risk
in the network.

The above analysis shows that the immunization of the susceptible nodes can ef-
fectively control the propagation of risks in the risk network of urban river ecological
management projects, and controlling the delay time of risks in the network can strengthen
the immunization effect of the network against risks. Therefore, in the practical work of
risk management for urban river ecological management projects, project participants
can combine the results of the analysis of the topology of the scale-free network for the
evolution of risk in urban river ecological management projects and target immunization
at the nodes with the highest degree values.

5. Discussion

The research results show that the model accurately describes the law of risk prop-
agation in urban river ecological management projects and explains the trend in delay
propagation. By adjusting the values of various parameters in the model and analyzing
the influence of their changes on the proportion of various nodes, the propagation law
of risk in urban river ecological management projects can be derived, which provides a
theoretical basis for preventing and controlling the propagation of project risks. For the
application of the research results in the construction of urban river ecological management
engineering projects, for the nodes of the class of easily infected risk factors, the supervision
of the project needs to be strengthened so that the factors affecting the risks in urban
river ecological management engineering projects are kept within a controllable range,
and the probability of the risk factors that may affect urban river ecological management
engineering projects being transformed into latent or infected states is minimized as far as
possible. For latent category risk factors, through strengthening the risk early warning, the
timely understanding of the risk changes when the early warning signals promptly invokes
the emergency plan control to reduce the risk value of the risk factor to a manageable range
or directly eliminate. The most direct management tools are used to transform the risk
factor into an immune node for the infection category while avoiding the probability of

40



Water 2023, 15, 2622

exposure to this risk factor with the susceptible and latent risk factors and reducing the
number of risk factors transformed into the infection status. The contagiousness of the
risk also needs to be considered along with the latency of the risk, and when adopting an
immunization strategy in a network, the most effective risk control strategy needs to be
developed in conjunction with the latency of the risk.

Applying the SEIR model to urban river revitalization projects enables comprehensive
and objective risk assessment, revealing the mechanisms and patterns of risk transmis-
sion. Establishing a project risk transmission model allows for in-depth research on the
interactions and influences among various stakeholders, providing theoretical support
for risk management and control. In practical applications, the introduction of the SEIR
model can assist managers in effectively addressing the issues of risk transmission, thereby
improving the smooth progress and quality outcomes of the project. Specifically, it provides
the following areas of assistance: (1) Enhanced project risk management: The application
of the SEIR model helps to elevate the level of project risk management. It allows for a
comprehensive and objective assessment of project risks, enabling the timely identification
of and response to potential risks. (2) Improved project schedule and risk control: By ana-
lyzing the risk transmission pathways, speeds, and their impact on the project schedule and
costs, the SEIR model enhances the project’s ability to manage progress and mitigate risks.
It aids in developing effective risk management plans and facilitates timely adjustments
in the schedule and resource allocation. (3) Strengthened coordination and collaboration
among project stakeholders: The introduction of the SEIR model fosters better coordination
and collaboration among project participants. It helps in predicting risk trends, analyzing
the interactions and influences among stakeholders, optimizing resource allocation, and
enhancing the overall coordination and cooperation. This ultimately improves the overall
project outcomes and quality levels.

Although this study focuses on risk propagation in urban river ecological manage-
ment projects, the analytical models and methods used can be applied to risk propagation
research in other domains. Similar SEIRS models and network analysis methods can be
employed to analyze and understand various risk propagation phenomena, such as the
spread of infectious diseases, information dissemination, and influence propagation in
social networks. By adjusting the model parameters and network structures, this approach
can be extended to other domains that exhibit characteristics of risk propagation, including
financial risk propagation, supply chain risk propagation, and aviation safety risk propaga-
tion. The flexibility of these models and methods allows for their application in diverse
contexts and fields, thereby offering the potential for a comprehensive understanding and
management of risk propagation processes.

6. Conclusions

Based on the complex network theory and mean-field theory, this paper develops a
D-SEIRS model to predict risk propagation in urban river ecological management projects.
This model takes into account both the propagation latency and latent node propagation,
thus providing a new perspective on risk propagation. Using a complex network of risks
for urban river ecological management, the network’s overall characteristics and key risk
factors in project risk transfer can be determined. By analyzing the network topologically,
we can identify the risk nodes with high degree values. These risks, including A2, A49, and
A36, significantly affect the other risk variables.

The results of the network stability analysis revealed that when the basic reproduc-
tion number is less than 1, there exists a risk avoidance equilibrium point for urban river
ecological management project risks. There is a global asymptotically stable equilibrium
point at this point. The model exhibits a risk outbreak equilibrium point, which is lo-
cally asymptotically stable, when the basic reproduction number is greater than 1. The
derivation of the steady-state density demonstrates that, under specific parameter settings,
the steady-state densities of various nodes in the risk network of urban river ecological
management projects are influenced by the contagion rates (h1 and h2) and the delay times.
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The simulation results indicate that in a scale-free network of project risks, the presence
of risk is persistent, and the delay in risk propagation leads to a lower risk propagation
threshold within the network, thereby accelerating the spread of the risk. Additionally,
the decrease in the risk transmission threshold within the network, caused by the delay in
risk propagation, facilitates the diffusion of network risks and the emergence of a balanced
state of risk outbreak within the network. Furthermore, the steady-state densities of both
the infected nodes (I) and latent nodes € in the risk network increase with higher effective
transmission rates and longer propagation delay times. Moreover, the transmission rate
of the latent nodes has a greater impact on the steady-state density of the risk nodes. Ac-
cording to the simulations involving the immunization of the susceptible risk nodes in the
network, strengthening the immunity of the susceptible nodes can effectively control risks
in the urban river ecological management network.

The study acknowledges the specific characteristics and limitations influenced by
external conditions in the evolution of risks within urban river ecological management
projects. In risk propagation theory, it is typically assumed that all risk nodes have the same
attributes, meaning they are subject to the same probability of change due to the risk factors.
However, in practical situations, the conditions influencing the risk factors tend to be
complex and diverse. The next research focus is on integrating multidisciplinary knowledge
and leveraging big data analysis techniques to construct more reasonable analytical models.
These models will consider the heterogeneity of the nodes and the external conditions,
ultimately enhancing the effectiveness and accuracy of project risk management.
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Appendix A

Appendix A.1. Equilibrium Point Stability and Steady-State Density Analysis

Appendix A.1.1. Equilibrium Point and Stability of the Model

Risk Aversion Balance Point and Stability

To obtain the equilibrium point, let the right-hand side of the equation in the Equa-
tion (A2) equal 0, and then according to Sk + Ek + Ik + Rk = 1. One can obtain the risk-averse
equilibrium point (1, 0, 0, 0) and the unique risk-burst equilibrium point

(
S∗k , E∗k , I∗k , R∗k

)
, where:

S∗k =
γ(ν + ε)(µ + ρ)

βhk[(ρ + ε + ν)(T + 1)γ + ρε] + γ(ν + ε)(µ + ρ)
,

E∗k =
γβhk(ν + ε)(T + 1)

βhk[(ρ + ε + ν)(T + 1)γ + ρε] + γ(ν + ε)(µ + ρ)
,

I∗k =
γβhkρ(T + 1)

βhk[(ρ + ε + ν)(T + 1)γ + ρε] + γ(ν + ε)(µ + ρ)
,

R∗k =
hkρβε

βhk[(ρ + ε + ν)(T + 1)γ + ρε] + γ(ν + ε)(µ + ρ)
.

42



Water 2023, 15, 2622

Substituting E∗k and I∗k into h gives:

h =

(
h1(ν + ε)

ρ
+ h2

) n

∑
j=1

jP(j)
〈k〉

γβhjρ(T + 1)
βhj[(ρ + ε + ν)(T + 1)γ + ρε] + γ(ν + ε)(µ + ρ)

∆
= f (h). (A1)

Let the function:
F(h) = f (h)− h. (A2)

It follows that the equation F(h) = 0 has a banal solution h = 0, i.e., the risk-free
equilibrium point Sk = 1, Ek = Ik = Rk = 0. At this point, the risk-averse equilibrium
point is (E, I, R) = (0, 0, 0), whose Jacobi matrix is:

J0 =



− µ+ρ

T+1 0 0
ρ

T+1 − ν+ε
T+1 0

0 ε
T+1 −γ


. (A3)

It is known that the characteristic roots are all negative, − µ+ρ
T+1 , − ν+ε

T+1 , −γ. Thus,
according to the theory of differential equations, it is known that there is a risk-averse
equilibrium point (1, 0, 0, 0) of the system and that the equilibrium point is locally asymp-
totically stable.

Risk Outbreak Equilibrium and Stability Analysis

Substituting h = 1 into Equation (A2) gives:

F(1) < 1.

Derivation of Equation (A2) concerning h gives:

F′(h) = f ′(h)− 1

=
(

h1(ν+ε)
ρ + h2

) n
∑

j=1

jP(j)
〈k〉

γ2βjρ(T+1)(ν+ε)(µ+ρ)

{βhj[(ρ+ε+ν)(T+1)γ+ρε]+γ(ν+ε)(µ+ρ)}2 − 1.

The second derivative of Equation (A2) for h gives:

F′′ (h) < 0.

Thus, to obtain the equation F(h) = 0 to have a non-trivial solution on 0 < h < 1,
i.e., the risk burst equilibrium point (E, I, R) = (E∗, I∗, R∗), it must satisfy:

F′(0) > 0.

Hence, we have:

dF
dh

∣∣∣
h=0

=
(

h1(ν+ε)
ρ + h2

) n
∑

j=1

j2P(j)
〈k〉

βρ(T+1)
(ν+ε)(µ+ρ)

− 1

= 〈k2〉
〈k〈
(

h1(ν+ε)
ρ + h2

)
βρ(T+1)

(ν+ε)(µ+ρ)
− 1 > 0

.

The critical conditions are:

〈k2〉
〈k〉

(
h1(ν + ε)

ρ
+ h2

)
βρ(T + 1)

(ν + ε)(µ + ρ)
= 1. (A4)

Let R0 = 〈k2〉
〈k〉
(

h1(ν+ε)
ρ + h2

)
βρ(T+1)

(ν+ε)(µ+ρ)
, then R0 is called the fundamental regeneration

number, and when R0 < 1, the risk vanishes and there exists a risk-averse equilibrium
point (1, 0, 0, 0) and that equilibrium point is locally asymptotically stable. When R0 > 1,
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the risk will be stable after some control and there exists a unique equilibrium point of risk
outbreak

(
S∗k , E∗k , I∗k , R∗k

)
. Substituting the fundamental regenerative number R0 into the

expression for h∗ gives S∗ = 1
R I∗, E∗ = ν+ε

ρ I∗, R∗ = ε
(T+1)γ I∗, at which point the Jacobi

matrix of the equilibrium point of the risk outbreak is:

J∗ =



− (ν+ε)(µ+ρ)R0

(T+1) I∗ − µ+ρ
T+1

(ν+ε)(µ+ρ)R0
(T+1) (S∗ − I∗) − (ν+ε)(µ+ρ)R0

(T+1) I∗
ρ

T+1 − ν+ε
T+1 0

0 ε
T+1 −γ


.

Its characteristic equation can be obtained as:

x3 + ax2 + bx + c = 0, (A5)

of which:

a = (ν+ε)(µ+ρ)R
(T+1) I∗ + µ+ρ

T+1 + ν+ε
T+1 + γ > 0,

b =
[
(ν+ε)(µ+ρ)R

(T+1) I∗ + µ+ρ
T+1

]
ν+ε
T+1 + ν+ε

T+1 γ +
[
(ν+ε)(µ+ρ)R

(T+1) I∗ + µ+ρ
T+1

]
γ

− (ν+ε)(µ+ρ)R
(T+1) (S∗ − I∗) ρ

T+1 > 0,

c = − (ν+ε)(µ+ρ)R
(T+1) (S∗ − I∗) ρ

T+1 γ +
[
(ν+ε)(µ+ρ)R

(T+1) I∗ + µ+ρ
T+1

]
ε

T+1 γ

+ (ν+ε)(µ+ρ)R
(T+1) I∗ ρ

T+1
ε

T+1 > 0.

Therefore, we have:
ab− c > 0.

According to the Routh–Hurwitz stability criterion, the real part of all the characteristic
roots of the characteristic Equation (A5) are all negative, and the theory of differential
equations shows that there is a risk outbreak equilibrium point (S∗, E∗, I∗, R∗) in the system
and that the equilibrium point is locally asymptotically stable. Let λ = β[h1(ν+ε)+h2ρ]

(ν+ε)(µ+ρ)
,

λc =
〈k〉

(T+1)〈k2〉 , where λ is the effective propagation rate of risk in the network and λc is the

risk contagion threshold. It follows that when n→ +∞ , 〈k2〉 → +∞ , λc → 0 , i.e., a very
small contagion rate of risk in a scale-free network can also make risk persistent.

Appendix A.2. Steady-State Density Analysis of the Model

In the scale-free grid, the average degree and degree distribution of the network satisfies:

P(k) = 2m2k−3, 〈k〉 =
∫ +∞

m
kP(k) = 2m, (A6)

where m is the minimum number of connections in the network, substituting Equation (A6)
into h = h1Θ1(t) + h2Θ2(t).

h =

(
h1(ν+ε)

ρ +h2

)

2m

n
∑

k=1

2m2k−1γβhρ(T+1)
βhk[(ρ+ε+ν)(T+1)γ+ρε]+γ(ν+ε)(µ+ρ)

=
(

h1(ν+ε)
ρ + h2

)
mγβhρ(T + 1)×

∫ +∞
m

1
{βhk[(ρ+ε+ν)(T+1)γ+ρε]+γ(ν+ε)(µ+ρ)}k dk.

(A7)

Integrate to obtain:

h =
γ(ν + ε)(µ + ρ)

mβ[(ρ + ε + ν)(T + 1)γ + ρε]

(
e

(ν+ε)(µ+ρ)
[h1(ν+ε)+h2ρ]mβ(T+1) − 1

) . (A8)
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The proportion of infected nodes in the whole network is I = ∑ P(k)Ik(t), where Ik(t)
denotes the proportion of nodes of degree k in the steady-state infected state, combined
with Equations (A6)–(A8), we can obtain I as in Equation (A9). According to Equation (A9),
we can find out the steady-state density of easily infected nodes, latent nodes, and immune
nodes, see Equation (A10).

I = ∑ 2m2k−3 γβhkρ(T+1)
βhk[(ρ+ε+ν)(T+1)γ+ρε]+γ(ν+ε)(µ+ρ)

= 2m2γβhρ(T + 1)
∫ +∞

m
1

{βhk[(ρ+ε+ν)(T+1)γ+ρε]+γ(ν+ε)(µ+ρ)}k2 dk
= 2m2βhγρ(T + 1)

×
(
− h[(ρ+ε+ν)(T+1)γ+ρε]

mγ2(T+1)(ν+ε)(µ+ρ)[h1(ν+ε)+h2ρ]
+
∫ +∞

m
1

γ(ν+ε)(µ+ρ)k2 dk
)

= 2m2βhγρ(T + 1)
×
(
− h[(ρ+ε+ν)(T+1)γ+ρε]

mγ2(T+1)(ν+ε)(µ+ρ)[h1(ν+ε)+h2ρ]
+ 1

γ(ν+ε)(µ+ρ)m

)

= 2mβhρ
(
− h[(ρ+ε+ν)(T+1)γ+ρε]

γ(ν+ε)(µ+ρ)[h1(ν+ε)+h2ρ]
+ (T+1)

(ν+ε)(µ+ρ)

)

=

2ργ



mβ(T+1)[h1(ν+ε)+h2ρ]


e

(ν+ε)(µ+ρ)
[h1(ν+ε)+h2ρ]mβ(T+1) −1


−(ν+ε)(µ+ρ)





mβ[h1(ν+ε)+h2ρ][(ρ+ε+ν)(T+1)γ+ρε]


e

(ν+ε)(µ+ρ)
[h1(ν+ε)+h2ρ]mβ(T+1) −1




2

(A9)

Similarly, we can obtain:




S =

2(ν+ε)(µ+ρ)

mβ(T+1)[h1(ν+ε)+h2ρ]
+


e

(ν+ε)(µ+ρ)
[h1(ν+ε)+h2ρ]mβ(T+1) −1




e

(ν+ε)(µ+ρ)
[h1(ν+ε)+h2ρ]mβ(T+1) −3





e

(ν+ε)(µ+ρ)
[h1(ν+ε)+h2ρ]mβ(T+1) −1




2 ,

E =

2γ(ν+ε)



mβ(T+1)[h1(ν+ε)+h2ρ]


e

(ν+ε)(µ+ρ)
[h1(ν+ε)+h2ρ]mβ(T+1) −1


−(ν+ε)(µ+ρ)





mβ[h1(ν+ε)+h2ρ][(ρ+ε+ν)(T+1)γ+ρε]


e

(ν+ε)(µ+ρ)
[h1(ν+ε)+h2ρ]mβ(T+1) −1




2 ,

R =

2ρε



mβ(T+1)[h1(ν+ε)+h2ρ]


e

(ν+ε)(µ+ρ)
[h1(ν+ε)+h2ρ]mβ(T+1) −1


−(ν+ε)(µ+ρ)





mβ(T+1)[h1(ν+ε)+h2ρ][(ρ+ε+ν)(T+1)γ+ρε]


e

(ν+ε)(µ+ρ)
[h1(ν+ε)+h2ρ]mβ(T+1) −1




2 .

(A10)
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Abstract: Permeability characteristics in coarse-grained soil is pivotal for enhancing the understand-
ing of its seepage behavior and effectively managing it, directly impacting the design, construction,
and operational safety of embankment dams. Furthermore, these insights bridge diverse disciplines,
including hydrogeology, civil engineering, and environmental science, broadening their application
and relevance. In this novel research, we leverage a Convolutional Neural Network (CNN) model to
achieve the accurate segmentation of coarse-grained soil CT images, surpassing traditional methods
in precision and opening new avenues in soil granulometric analysis. The three-dimensional (3D)
models reconstructed from the segmented images attest to the effectiveness of our CNN model,
highlighting its potential for automation and precision in soil-particle analysis. Our study uncovers
and validates new empirical formulae for the ideal particle size and the discount factor in coarse-
grained soils. The robust linear correlation underlying these formulae deepens our understanding
of soil granulometric characteristics and predicts their hydraulic behavior under varying gradients.
This advancement holds immense value for soil-related engineering and hydraulic applications.
Furthermore, our findings underscore the significant influence of granular composition, particularly
the concentration of fine particles, on the tortuosity of water-flow paths and the discount factor. The
practical implications extend to multiple fields, including water conservancy and geotechnical engi-
neering. Altogether, our research represents a significant step in soil hydrodynamics research, where
the CNN model’s application unveils key insights into soil granulometry and hydraulic conductivity,
laying a strong foundation for future research and applications.

Keywords: coarse-grained soil; hydraulic conductivity; computed tomography image segmentation;
convolutional neural network; deep learning

1. Introduction

Coarse-grained soil, defined by particle sizes from 0.075 to 60 mm, is a prevalent
component in natural environments and engineering sites. Its utility as a fundamental
constituent in embankment dams, forming key parts like rockfill zones, inverted filters,
and cushion layers, is particularly noteworthy. The complex granular composition and
variation in particle sizes make coarse-grained soil an interesting yet challenging subject for
understanding permeability characteristics. Furthermore, the hydraulic behavior of coarse-
grained soil greatly affects the stability and safety of structures built upon it, especially in
water conservancy projects. The soil’s permeability substantially dictates its stability, load-
bearing capability, and seepage deformation—vital engineering attributes. Consequently, it
is of paramount importance in the design, construction, and safety during the operation of
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embankment dams. Deepening our understanding of the permeability attributes of coarse-
grained soil and accurately forecasting its hydraulic conductivity, a metric for seepage
capacity, are essential for comprehending and manipulating its seepage behavior. The
implications of these findings extend into various disciplines, including hydrogeology, civil
engineering, and environmental science.

Hydraulic conductivity is traditionally determined via experimental testing or
numerical simulations. Empirical tests, conducted both in laboratories and in field
conditions, offer valuable insights, for instance, the mixed-method [1] investigation of
Nam et al. into the impact of test conditions on the hydraulic conductivity of natural
coarse-grained soils. However, the accuracy of such empirical tests is susceptible to
factors like specimen preparation and boundary conditions [2–8], which demand rigor-
ous operational protocols and equipment. In contrast, numerical simulations leverage
finite or discrete elements to model real-world coarse-grained soils [9–12]. However,
these models often rely on parameters that are experimentally elusive, undermining
their applicability and limiting experimental validation.

Computed tomography (CT) image analysis offers a promising hybrid approach,
combining empirical data with simulation [13–17]. This technique’s efficacy hinges on
accurate CT image segmentation, a process where conventional methods such as the
adaptive threshold [18,19], hysteresis threshold [20], and watershed segmentation [21,22]
methods often fall short when applied to the bulk structures of coarse-grained soils.
Coarse-grained soils necessitate CT image analysis that segments each soil particle in
adjacent stacks, crucial for extracting parameters like particle size and shape factor, which
subsequently inform the study of their impact on hydraulic conductivity. Consequently,
a need exists for more refined methods that can accurately and effectively perform this
complex analysis.

The advent of deep learning models, particularly convolutional neural networks
(CNNs) [23,24], offers a potential solution. By categorizing or labeling each pixel in an im-
age, these models facilitate segmentation into discrete regions or objects. With their inherent
ability to learn intricate features directly from data, CNNs can efficiently manage high-
resolution, multi-scale, and multi-class images. While these models have gained traction in
studying the engineering properties of hydraulic and geotechnical materials, their use has
primarily been on solid materials, such as concrete [25–32] and rock cores [33–37]. Compar-
atively, coarse-grained soils present more complex imaging tasks, necessitating extensive
research into the application of deep learning models to soil CT images, accounting for vari-
ations in particle size distributions, shapes, and materials. This is paramount in tailoring
the model to the unique requirements of coarse-grained soil CT image segmentation.

This paper addresses these research gaps through comprehensive CT scanning and
infiltration tests on coarse-grained soils of varying grain size distributions and porosity.
We study the hydraulic conductivity of blasted coarse-grained soils from the Yalong River
Lianghekou Hydropower Station construction site in China. An initial coarse-grained
soil hydraulic conductivity calculation model is introduced, derived from a simplified
cohesionless soil model and Poiseuille’s law. We propose a CNN-based method for CT
image segmentation, focusing on the unique characteristics of coarse-grained soils. The
model employs a U-net architecture and is guided by a novel loss function incorporating
both grain size and shape perception terms. We verify the accuracy of our segmentation
method against a gold standard image and the known grain size distribution of the coarse-
grained-soil CT image. The results are utilized to devise a prediction formula for hydraulic
conductivity based on CT image analysis. The presented approach offers an efficient,
precise, and intelligent method for studying the permeability characteristics of coarse-
grained soils, promising to significantly impact the optimization of water conservancy
project design and construction.
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2. Materials and Methods
2.1. Hydraulic Conductivity Calculation Model for Coarse-Grained Soil Based on Equivalent
Simplified Model and Poiseuille’s Law

A simplified equivalent model of coarse-grained soil is depicted in Figure 1, which
idealizes the soil as a uniform sphere and abstracts seepage channels as parallel capillaries.
Assuming the total volume and total surface area of the pore channels of the simplified
model are equal to those of coarse-grained soil, the diameter of the pore channels (d0) is
given by [38]:

d0 =
1
β

2
3

n
1− n

de (1)

where de represents the diameter of ideal soil particles; n is the porosity; and β is the particle
shape correction factor of coarse-grained soil.
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Figure 1. Simplified equivalent model of coarse-grained soil.

As depicted in Figure 2, water flow in the single pore pipe of the simplified model
adheres to Poiseuille’s law [39], stating that flow resistance in the pore pipe is inversely
proportional to the fourth power of the pipe radius and proportional to the length of the
pipe and the liquid viscosity coefficient. The average flow velocity of the single pore pipe
(V) is then:

V =
Q
A0

=
gJ
8µ

r2
0 (2)

where Q is the pore pipe’s flow rate, A0 is the pore pipe’s cross-section, g is the acceleration
of gravity, J is the hydraulic gradient, µ is the coefficient of water movement viscosity, and
r0 is the radius of the pore pipe.
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For a coarse-grained soil overflow section A with N0 pore ducts, the actual overflow
area is N0A0, which, when expressed in terms of porosity, can be equated as

nA = NA0 (3)
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nπr2
1 = N0πr2

0 (4)

where r1 is the radius of the coarse-grained soil sample (Figure 1 in Section 2.1).
For a coarse-grained soil simplified equivalent model comprising an Ne ideal

soil particles of diameter de, both the mass of the coarse-grained soil specimen (M1;
Equation (5)) and the total mass of the ideal soil of the simplified equivalent model (Me;
Equation (6)) are equal.

M1 = ρdπr2
1L (5)

Me = Neρe·
4
3

π

(
de

2

)3
=

π

6
d3

e ρeNe (6)

where ρd and ρe are the dry density of coarse-grained soil and the density of the ideal
soil of the simplified equivalent model, respectively, and L is the stacking height of
coarse-grained soil.

The discount factor α represents the degree of loss in the actual seepage channel of
coarse-grained soil caused by pore connectivity and tortuosity, which increases with the
complexity of the pore structure of coarse-grained soil and decreases with an increase in
pore connectivity. The total surface area of the pore channel of the simplified equivalent
model of coarse-grained soil is defined as:

Se = 2πr2
0LN0 = α·4π

(
de

2

)2
N1 (7)

Combining Equations (2)–(7), we obtain the discount factor as

α =
nde

3(n− 1)

√
ngJ
8µV

(8)

Inserting Equation (8) into Darcy’s law [40] V = KJ and simplifying it, we find the
equation for the hydraulic conductivity (K) of coarse-grained soil:

K =
g

72µα2
n3

(1− n)2 d2
e (9)

The difficulty in using Equation (9) to calculate the hydraulic conductivity of coarse-
grained soils is establishing the equations for de and α, which are related to equivalent
particle size and particle shape and pore structure, respectively. The determination of de
and α through tests requires a combined CT scan and constant-head permeability test for
coarse-grained soils. By analyzing CT images, we can obtain the particle size, volume,
and equivalent volume sphere diameter of each particle in the specimen. The hydraulic
conductivity of the specimen can be obtained by substituting the hydraulic conductivity
of the specimen and de into Equation (9). For some coarse-grained soil specimens with a
different particle size distribution and porosity, a series of discount factors can be obtained
by the above method. Further details about the combined CT scan and permeability test
for coarse-grained soils and the method of CT image analysis for coarse-grained soils are
outlined in the following section.

2.2. Materials

The coarse-grained soil used for the experiment was sourced from blasted tuff at the
construction site of the Lianghekou Rockfill Dam, with a grain size ranging between 1
and 20 mm (Figure 3). Located in Sichuan Province, Southwest China, the 295 m high
Lianghekou Rockfill Dam serves as the largest hydropower project in the Tibetan region.
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Figure 3. Materials. (a) Materials used for the tests. (b) The construction site of the Lianghekou
core-wall rockfill dam.

2.3. Laboratory Test

A combination of CT scanning and constant-head permeability tests were carried
out on the coarse-grained soil samples. Initially, the specimens were prepared inside a
resin-made permeameter, conforming to the test numbers and porosities outlined in Table 1,
and following the particle-size distribution curves detailed in Figure 4. The particle-size
distribution curves of each specimen (Figure 4) aligned with the original grading of the
material from the Lianghekou core-wall rockfill dam quarry, with specimen S1 and S7
representing the upper and lower envelopes, respectively. Table 1 lists the minimum
porosity of each specimen under the specified particle size distribution. The specimens,
each cylindrical with a diameter of 10 cm and a filling height of 8.5 cm, totaled 12 in number.

Table 1. Coarse-grained soil sample IDs and porosities.

Sample ID S1 S2 S3 S4 S5 S6

Porosity 40% 30% 40% 40% 38% 35%
Sample ID S7 S8 S9 S10 S11 S12

Porosity 38% 35% 35% 32% 30% 35%
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Figure 4. Particle size distribution of coarse-grained soil specimens.

The non-uniformity coefficient (Cu) and the curvature coefficient (Cc) of the particle
size distribution curve serve as key parameters in evaluating soil grading. A soil grade is
considered good when Cu ≥ 5 and Cc lies between 1 and 3. Conversely, if the soil grading is
poor, it can cause pipe surge phenomena due to the lack of intermediate-sized soil particles.
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The formulae to calculate Cu and Cc are given by Equations (10) and (11), respectively, with
the computation results for each specimen listed in Table 2.

Cu =
d60

d10
(10)

Cc =
d2

30
d10d60

(11)

where, d10, d30 and d60 represent the particle sizes corresponding to the 10%, 30%, and
60% mass accumulation percentages in the particle size distribution curve of the coarse-
grained soil.

Table 2. Non-uniformity coefficient and curvature coefficient of particle size distribution of coarse-
grained soil specimens.

Sample ID S1 S2 S3 S4 S5 S6

Cu 1.65 3.05 3.58 3.66 3.68 3.05
Cc 1.07 1.20 0.80 1.06 0.89 1.29

Sample ID S7 S8 S9 S10 S11 S12
Cu 2.38 3.36 3.52 3.11 2.93 3.45
Cc 1.34 1.11 1.14 1.31 1.27 0.98

All specimens, as per Table 2, displayed Cu values less than 5 and Cc values between
0.80 and 1.34, indicating poor grading across all specimens.

Specimens were prepared in the permeameter and scanned using a diondo d2 indus-
trial high-resolution nano-focus CT machine from Germany. The machine has a spatial
resolution of 96 µm and scans in a bottom-up direction, creating 1333 scanned slices for
each coarse-grained soil specimen. Following this, a constant-head permeability test was
conducted on the specimens, following these steps:

1. A settlement measurement device was installed at the top of the coarse-grained soil
specimens to prevent seepage deformation during the test.

2. Aerated water was used to negate the impact of air bubbles on the percolation volume.
3. Before the test, the specimen was saturated with bottom-up exhaust under a lower

head and soaked for over 8 h to eliminate the influence of non-saturation on the
permeability test results.

4. The test head from the starting hydraulic slope dropped from 0.05 to 0.30, loaded step
by step, with each head level loaded for 20 min before measuring the overflow in the
permeameter and recording it.

5. The next level of head was loaded only when the overflow in the unit time remained
unchanged. This process continued until the test concluded.

2.4. Coarse-Grained Soil CT Image Segmentation Method Based on Convolutional Neural Network

In this research, a convolutional neural network-based CT image segmentation method
for coarse-grained soil is proposed, implemented using a Python program that we wrote
ourselves. The details are as follows:

2.4.1. U-Net Structured Convolutional Neural Network

Ronneberger et al. [41] proposed a novel Convolutional Neural Network (CNN)
named U-Net, a significant advancement in robust and efficient image segmentation. The
unique U-shaped structure of U-Net, reminiscent of an autoencoder but exhibiting unique
characteristics, divides the network into two separate segments. The schematic diagram of
U-Net with an input image resolution of 800 × 800 is shown in Figure 5.
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The first segment, known as the Contracting or Downsampling path (forming the left
side of the ‘U’), comprises dual 3 × 3 convolutions, each succeeded by a rectified linear unit
(ReLU), and a subsequent 2× 2 max pooling operation with a stride of 2 for downsampling.
Notably, each step in this downsampling operation doubles the number of feature channels.
Conversely, the Expansive or Upsampling path (making up the right side of the ‘U’) begins
with an upsampling of the feature map, followed by a 2 × 2 convolution, known as an
“up-convolution”. This up-convolution is concatenated with the corresponding feature
map from the downsampling path and is succeeded by dual 3 × 3 convolutions, each
followed by a ReLU. This innovative design of U-Net provides a streamlined and efficient
process for image segmentation. ‘None’ in Figure 5 indicates that the image at that layer
can have any batch size.

2.4.2. Loss Function

The loss function plays a vital role in CNN-based CT image segmentation. This utility
function quantifies the discrepancy between predicted segmentation results and the actual
or “ground truth” segmentations. Crucially, it allows for model performance evaluation
and guides the optimization process, aiming to minimize this loss function.

The choice of an appropriate loss function is essential. In the context of coarse-grained
soil CT image segmentation, attention is given to the shape and size of particles. Therefore,
the loss function in this code includes shape perception and particle size perception terms.

The shape perception term uses the image similarity index IoU as a judgment metric to
compute the shape similarity between the predicted segmentation and the actual segmentation:

ShapeLoss(A, B) = −IoU (12)
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where A and B represent the masks of the binary segmentation results of the actual image
and the predicted image, respectively, and IoU is the metric for evaluating the similarity
between the actual image and the predicted image. The calculation formula for IoU is:

IoU =
|Predicted ∩ Ground Truth|
|Predicted ∪ Ground Truth| (13)

The particle size perception term’s loss function employs the radius of the equivalent
circle of the target particles in the binary segmentation of the true and predicted images as
a judgment metric:

DiameterLoss(A, B) =
|EqDiameter(A)− EqDiameter(A)|

EqDiameter(A)
(14)

where EqDiameter represents the equivalent circle radius:

EqDiameter =

√
4|S|

π
(15)

where S is the area of the target particle.
The loss function combines the standard cross-entropy loss with the shape-aware and

diameter-aware terms, enabling the loss-functional supervised model to focus on capturing
the shape and size of particles by introducing a weighting factor:

L(y, ŷ, A, B) = CE(y, ŷ) + α·Shapeloss(A, B) + β·DiameterLoss(A, B) (16)

where α and β are weight coefficients that ensure a balance between standard cross-entropy
loss and additional geometric constraints, which are adaptively adjusted by model learning.
CE is the cross-entropy loss function [42]:

CE(y, ŷ) = −sum(y·log(ŷ)) (17)

where y is ground truth image, and ŷ is predicted image.

2.4.3. Workflow of Convolutional Neural Network Segmentation Model

The U-Net CNN workflow designed for the segmentation of coarse-soil CT images
is illustrated in Figure 6. This workflow includes six primary steps: preprocessing,
generating training and validation sets, training the U-Net model, validation, post-
processing, and evaluation.

Stage 1: Preprocessing—initially, anisotropic diffusion filtering is employed to denoise
all CT images of the coarse-grained soil samples. After this, images are resampled to
achieve a pixel resolution of 800 × 800 per CT image, which aligns with computational
memory capabilities. Lastly, all CT images are normalized.

Stage 2: Generating training and validation sets—the VGG Image Annotator (VIA) is
used to create a ground truth image set via annotations, aiding the CNN in distinguishing
between soil particles and pores. The CT images are then divided into a training set (70%
of the images), a validation set (15% of the images), and a testing set (remaining 15%), to
facilitate model training and performance evaluation.

Stage 3: U-net model training—the training set is used to train the U-net model, aiming
to minimize the loss function Equation (16), thereby enabling it to accurately predict the
segmentation of coarse soil CT images.

Stage 4: Validation—the model’s performance is validated during or after the training
process using the validation set to avoid the overfitting of the training data.

Stage 5: Post-processing—post-processing involves assigning a ‘0’ value to pixels
corresponding to particle parts and a ‘1’ value to pore parts in the CT image. This process
results in a binary image output for the segmentation results.
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Stage 6: Evaluation—the model’s performance is evaluated using metrics such as
Intersection over Union (IoU), Precision, Recall, Accuracy, and Specificity, as detailed in
Table 3. If all these parameters exceed 0.95, the training is concluded, and the model, along
with its weight coefficients, is saved. If not, the model returns to Stage 3 for retraining.
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Table 3. Metric to evaluate the performance of model.

Metric Expression [43] Range

IoU IoU = |Predicted ∩ Ground Truth|
|Predicted ∪ Ground Truth|

Metric is between 0 and 1, and
the closer it is to 1, the better

the model performs.

Precision Precision = True Positives
True Positives + False Positives

Recall Recall = True Positives
True Positives + False Negativies

Accuracy Accuracy =
True Positives + True Negativies

Total Predictions

Specificity Speci f icity =
True Negativies

True Negatives + False Positives

To evaluate our model’s effectiveness, we used a set of metrics as detailed in
Table 2. Intersection over Union (IoU) is a key parameter, quantifying the overlap
between predicted and ground truth areas, thus providing insights into its localization
accuracy. Precision measures the model’s ability to avoid false positives, highlighting
the reliability of the model’s positive predictions. Conversely, Recall evaluates the
model’s ability to identify all positive instances, offering insights into its skill in avoiding
false negatives. Accuracy encapsulates overall model performance, defined as the
proportion of correct predictions over the entire dataset, although interpretability may
be impaired in situations with imbalanced datasets. Lastly, we use Specificity to indicate
the model’s skill in correctly identifying negative instances, contributing to minimizing
false alarms. Taken together, these metrics offer a comprehensive evaluation of the
model’s performance, illuminating various aspects of its classification competency.

2.5. Geometric Characterization of Coarse Soil Particles via CT Image Analysis

This section delineates the procedure to build three-dimensional (3D) models of
soil particles following the segmentation of coarse-grained soil CT images using a U-net

55



Water 2023, 15, 2623

structured CNN. Furthermore, it describes the methodology employed to calculate the
major axis, minor axis, volume, and isovolumetric sphere diameter of each particle within
the 3D model. The computational framework comprises two principal components: 3D
modeling and morphological calculations.

Three-dimensional modelling: After segmentation, each binary image slice, where
‘1′ represents soil particles and ‘0′ represents pores, is sequentially stacked to create a
three-dimensional voxel model. A voxel, or volume pixel, represents a point within the 3D
grid of the object, encompassing spatial relationships and physical quantities. Within this
constructed model, each soil particle manifests as a 3D object, discernible by neighboring
voxels designated a value of ‘1′.

Morphological calculations: After the 3D model construction, morphological parameters—
major axis, minor axis, volume, and isovolumetric sphere diameter—are calculated for each
distinct soil particle. The major and minor axes are determined by evaluating the eigenvalues
of the covariance matrix corresponding to the voxel coordinates of the particle—the maximum
eigenvalue aligns with the longest axis (major axis), while the minimum aligns with the
shortest (minor axis). The volume of the particle is ascertained by counting the number of
constituent voxels, and given the isotropic nature of the voxels, this count is multiplied by the
voxel volume. The isovolumetric sphere diameter—corresponding to the diameter of a sphere
with volume equivalent to the particle—is calculated using Equation (18). These computations
enable the extraction of essential morphological parameters from the 3D model, providing
critical insights into the physical characteristics of soil particles. The computed parameters for
each particle can be exported and stored for subsequent analysis.

deq =
3

√
6Vs

π
(18)

where vs. represents the volume of the particle; and deq is the diameter of a sphere with a
volume equivalent to the particle.

In summary, this proposed methodology offers a comprehensive approach, facilitat-
ing the construction of a 3D model of soil particles post-image-segmentation, while also
enabling the calculation of vital particle characteristics. This paves the way for a more
nuanced analysis and interpretation of soil properties.

2.6. Data Analysis

The least squares method is utilized for the linear regression analysis of variables
de, α and k. Additionally, the strength and direction of the linear correlation are assessed
employing the Pearson correlation coefficient.

The least squares method, which is commonly applied for the approximation of
solutions in overdetermined systems—where there are more equations than unknowns—
operates by minimizing the sum of the squares of the residuals. These residuals represent
discrepancies between observed and estimated values, and the method facilitates the
optimal linear fit for a given dataset. The method is implemented through the following
formula [44]:

β1 =
∑ (xi − x)(yi − y)

∑(xi − x)2 (19)

β0 = y− β1x (20)

where n is the number of observations and i is between 1 and n; xi is the independent
variable; yi is the dependent variable; x is the mean of x; y is the mean of y; and β0 and β1 are
defined as the intercept and slope of the coefficients for the least squares line, respectively.
Once β0 and β1 are calculated, the linear regression model (Equation (21)) is utilized to
predict the value of y based on a given x value.

y = β0 + β1x (21)
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In parallel, the Pearson correlation coefficient (R) is employed to quantify the degree
of the linear relationship between pairs of variables. For any pair of random variables,
denoted as (X,Y), with standard deviations σX and σY, and expectations E[X] and E[Y], the
Pearson correlation coefficient is computed by the following formula [45]:

R =
E[(X− E[X])(y− E[Y])

σXσY
(22)

The value of the Pearson correlation coefficient ranges from −1 to 1. A value of
1 implies a strong positive correlation, −1 signifies a strong negative correlation, and
0 indicates no correlation. With this statistical tool, the strength and direction of the linear
relationship between de, α, and k are assessed. The integration of the least squares method
for linear regression and the Pearson correlation coefficient facilitates a robust evaluation
and the characterization of de, α, and k.

3. Results
3.1. Accuracy Verification of CT Image-Segmentation Program Based on Convolutional
Neural Network
3.1.1. Verification of CT Image-Segmentation Accuracy Based on Convolutional
Neural Networks

We present a CNN-based approach designed specifically for CT image segmentation
of coarse-grained soil. The efficacy of this method is evaluated via five crucial metrics:
Intersection over Union (IoU), Recall, Accuracy, Precision, and Specificity. As these metrics
approach a value of 1, it indicates optimal prediction and segmentation accuracy. Higher
values correspond to more precise outcomes of image segmentation, as detailed in Table 3.

Figure 7 visualizes the segmentation results of our validation set alongside a five-
metric evaluation of the ground-truth image. Remarkably, all metrics exceed a value of 0.95
within 300 iterations of the CNN model, demonstrating the robustness of our methodology.
It shows its capability to accurately segment CT images of coarse-grained soil, thereby
meeting the objectives of this study.
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Figure 7. Metrics of test-set CT image segmentation results predicted by the CNN model.

When examining the clarity of segmented images, a pattern emerges: there seems
to be a linear correlation between clarity and the number of CNN model iterations,
resulting in a large oscillation amplitude. The maximum oscillation amplitude can be
attributed to the balance between precision and recall that the CNN model strives to
optimize during segmentation.

As the CNN model iteratively learns and adapts, it improves its ability to distinguish
between true positive and false positive regions in the image, thereby enhancing image
clarity. The increase in clarity over the iterations suggests that the CNN model is not only
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identifying regions of interest but is also refining the precision of their boundaries. The
observed oscillation may serve as an insightful indicator of the model’s learning progress,
signifying an improvement in both accuracy and refinement in identifying and defining
segmented region boundaries.

Our results underscore the effectiveness and potential applicability of our novel CNN-
based method. Given its proficiency in the CT image segmentation of coarse-grained soil, it
opens up exciting opportunities for future research in this field.

3.1.2. Comparison of Segmentation Results between CNN Model and Traditional Methods
for CT Images of Coarse-Grained Soil

Besides quantitative image similarity indicators, we emphasize visual manual inspec-
tion to ascertain the accuracy of CT image segmentation. Manual validation was carried
out on a randomly selected subset comprising 30% of the test set predicted images after the
CNN model training iterations. This was executed alongside the calculation of metrics for
all test-set predicted CT images and their corresponding ground truth images. The results
affirmed the CNN model’s competence in distinguishing coarse-grained soil particles into
separate entities, thereby meeting the analytical criteria for this study.

Due to space limitations, we present two randomly selected CT image segmentation
results predicted by the CNN model. Initially displayed as a binary black and white image,
the CT segmentation result undergoes color representation to enhance the distinction be-
tween adjacent particles. Effective segmentation by the CNN model is, thus, manifested
if adjacent particles exhibit distinct colors. Notably, the assignment of particle colors is
arbitrary and independent of particle size. We also applied adaptive threshold segmenta-
tion [46] and marker-based watershed segmentation [47] methods for comparative analysis
on identical CT images to validate the superiority of our CNN model-based CT image
segmentation approach. Figure 8 showcases the results of CT image segmentation of
coarse-grained soil via the CNN model, adaptive threshold segmentation method, and
marker-based watershed segmentation method.
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Figure 8 shows that the CNN model provides the most precise segmentation, with
particles distinctly defined. In contrast, the adaptive threshold segmentation method
falls short, while the marker-based watershed method yields intermediate results. These
differences primarily stem from the varying capabilities of the three methods in handling
edge pixels of smaller particles in the images.
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The marker-based watershed segmentation algorithm retains a degree of accuracy
due to its adherence to the dilation principle, but it becomes less efficient with an increase
in fine particles and complex pore structures in the CT image. The simultaneous rise in
phase-change areas and the smoothing of pixel intensity distribution leads to the failure of
both the adaptive threshold segmentation method and eigenvalue segmentation method,
due to the diminished edge contrast of fine particles in the image. Although the marker-
based watershed segmentation method outperforms the threshold segmentation method,
the accuracy of its segmentation results falls short of the study requirements.

In contrast, our CNN model leverages deep learning, freeing it from reliance on
image pixel intensity distribution characteristics for segmentation. Instead, it mimics the
process of human truth image segmentation through extensive data training, enabling the
accurate prediction of segmentation outcomes for new images. Therefore, the CNN model’s
segmentation results demonstrate its remarkable efficacy.

3.2. Equivalent Simplified Model of Ideal Particle Diameter in Coarse-Grained Soil
3.2.1. Three-Dimensional Model Reconstruction of Coarse-Grained Soil Based on CT Image
Segmentation Results

Upon segmenting the coarse-grained soil CT images from our twelve samples using
the CNN model, we reconstructed the segmentation results through voxelization to create
corresponding three-dimensional particle models (Figure 9). To confirm the accuracy
of these models and further validate the segmentation accuracy of the CNN model, we
calculated the non-uniformity and curvature coefficients of the particle size distribution
within each model. We then carried out a comparative error analysis against the actual
non-uniformity and curvature coefficients of the respective coarse-grained soil samples,
as listed in Table 2. An error margin of less than 2% proves that the accuracy of the
three-dimensional models meets the research requirements.
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Figure 9. Three-dimensional particle model of coarse-grained soil reconstructed from CT images
segmented using the CNN model.
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Figure 10 illustrates the relative errors in particle size distribution for all the three-
dimensional particle models corresponding to the twelve soil samples. It is apparent
that the relative error between the calculated non-uniformity and curvature coefficients
and their true values for each sample is under the acceptable 2% threshold. This verifies
the high accuracy of the models and not only corroborates the precision of the three-
dimensional models but also reinforces the segmentation accuracy of the CNN model. This
is a significant outcome because it suggests that the CNN model has successfully learned to
recognize and segment different sizes of particles in the soil samples, despite their complex
and variable nature. Therefore, these results reinforce the viability and reliability of using
deep learning models like CNN for soil-particle segmentation and subsequent 3D modeling
in soil studies, thereby broadening the prospects of automating and enhancing precision in
such processes.
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Figure 10. Relative error in the three-dimensional particle models of coarse-grained soil.

3.2.2. Empirical Formula for the Ideal Particle Size of Coarse Soil Particles

An error margin of less than 2% between the 3D models of coarse-grained soil particles,
obtained from CT images segmented via the CNN model, and actual specimens, attests to
the close alignment of geometric parameters from the 3D models—such as the long axis,
short axis, aspect ratio (Φ), and diameter of the equal volume sphere (deq)—with those of
real soil particles. This accuracy satisfies the requirements of our study.

Our data processing reveals a compelling linear relationship between the prod-
uct of deq and Φ (deq × Φ) and the diameter of soil particles. Accordingly, we applied
Equations (18)–(22) to regress the particle size of soil particles, as shown in Figure 11. A
congruent linear relationship appears across all 12 coarse-grained soil specimens. However,
due to space limitations, we only present the linear regression analyses of particle sizes
for specimens S5 and S6. Figure 11 presents the Pearson correlation coefficients of deq × Φ
and the particle size for all specimens, exceeding 0.95 for all specimens except S1, which
displays a smaller particle size range (5–13 mm) compared to the other specimens. This
smaller range results in a slightly lower Pearson correlation coefficient of 0.88; yet, this
figure still denotes a substantial linear correlation between these variables.
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Figure 11. Linear regression results of coarse soil particle size. (a) Linear regression results of particle
size for S5 sample. (b) Linear regression results of particle size for S6 sample. (c) Pearson correlation
coefficient for linear regression of particle size of all samples.

Kozeny and Terzaghi et al. [48–52], from their research on the permeability tests of
cohesionless soils along with theoretical analyses, concluded that the hydraulic conductivity
of cohesionless soils should be represented by the particle diameter d20, corresponding to a
20% cumulative mass fraction. This view is further corroborated by several other studies;
hence, we incorporated this perspective into our research.

In this regard, we performed a linear regression analysis using d20 of the specimen,
with the equivalent particle diameter deq20 corresponding to the 20% cumulative mass
fraction, and the average aspect ratio of the specimen. These parameters are presented in
Table 4. Our results, depicted in Figure 12, establish a strong linear correlation between d20
and the product of deq20 and average aspect ratio, Φ.

Table 4. Characteristic particle size and shape factor of coarse-grained soil samples.

Sample ID S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

deq20 (mm) 6.26 2.71 1.72 2.21 2.01 2.46 3.29 1.19 1.24 2.30 2.90 2.30
Φ 2.31 1.93 2.03 1.95 2.04 1.86 1.99 1.98 2.03 1.93 1.92 2.00

d20 (mm) 10.29 5.20 3.94 4.49 4.16 4.82 6.34 3.66 3.74 4.69 5.48 4.55
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Figure 12. Linear regression results of ideal particle size of coarse-grained soil particles.

The regression line’s intercept and slope in Figure 12 suggest that the ideal equation
for the particle size of the coarse-grained soil aligns with Equation (23). This finding
contributes to a more nuanced understanding of the granulometric characteristics of coarse-
grained soils and provides an empirically derived equation for predicting particle size,
helping to better inform soil-related engineering and environmental applications.

de =
d20 − 2.17

0.57Φ
(23)

where de is the rational particle size of coarse-grained soil, which is equal to the par-
ticle size deq20 corresponding to a cumulative mass percentage of 20% in the diameter
distribution of equal volume spheres; d20 is the particle size corresponding to a cumu-
lative percentage of the coarse soil mass of 20%; and Φ is the average aspect ratio of
coarse-grained soil particles.

3.3. Prediction Formula for Permeability Coefficient of Coarse-Grained Soil Based on
CT Image Analysis
3.3.1. Constant-Head Permeability Test Results

The results from the constant-head permeability tests conducted on coarse-grained
soil specimens are displayed in Figure 13. According to Darcy’s Law (Equation (24)) [40], a
linear relationship exists between the water velocity (V) and the hydraulic gradient (J). This
relationship enables us to calculate the hydraulic conductivity of the specimens, which are
presented in Table 5.

V = KJ (24)

where V is the water flow velocity, J is the hydraulic gradient, and K is hydraulic conductivity.
Upon referring to the characteristic particle size of the coarse-grained soil specimens

from Table 2 and using our empirically derived Equation (9) for estimating the hydraulic
conductivity of coarse-grained soil, we can compute the discount factor (α) for the spec-
imens. These computed values are also enumerated in Table 5. This calculated discount
factor and hydraulic conductivity are essential parameters in understanding and predicting
the behavior of coarse-grained soil under varying hydraulic gradients.
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Figure 13. Permeability test results of coarse-grained soil samples (test water temperature at 20 ◦C).

Table 5. Hydraulic gradient and discount factor of coarse-grained soil samples.

Sample ID S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

K (cm/s) 3.45 2.30 4.58 4.30 5.81 1.37 2.70 2.72 2.62 0.86 0.99 3.04
α 162.29 48.79 39.42 52.27 36.65 77.88 87.99 26.74 28.39 76.80 79.58 48.88

3.3.2. Empirical Formula for Discount Factor

Tables 4 and 5 indicate a distinct trend: as the ideal particle size of the coarse-grained
soil samples increases, there is a concurrent rise in the discount factor. To better define
this relationship, we conducted a linear regression analysis using the least squares method.
As illustrated in Figure 14, the resulting Pearson correlation coefficient is a robust 0.95,
signifying a strong linear correlation between the discount factor and the ideal soil particle
size. Therefore, the empirical formula for the discount factor of coarse-grained soil fitted in
this article is shown in Equation (25).

α = −4.31 + 26.85de (25)
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Figure 14. Regression analysis results of reduction coefficient for coarse-grained soil.

This relationship is deeply rooted in the soil’s granular composition, with the particle
size playing a significant role. A higher concentration of fine particles within a unit
volume of coarse-grained soil invariably augments the tortuosity of water-flow paths. This
labyrinth-like network intensifies the interactions between the water and particles, causing
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greater water loss as it traverses the soil, thereby increasing the discount factor—a measure
of this water loss. Moreover, particle size and distribution have a substantial impact on the
soil’s void ratio, which in turn affects hydraulic conductivity. Typically, larger particles lead
to a higher void ratio and greater pore spaces. Conversely, the presence of fine particles
tends to fill these voids, reducing total pore space and causing an increased tortuosity in
water-flow paths. This elevated tortuosity contributes to a higher reduction coefficient,
necessitating more energy for water to pass through the soil matrix.

While the primary focus of this study lies in examining the influence of particle size
on the discount factor, it is important to acknowledge that the soil’s pore structure has
a fundamental role in this relationship. Future research will explore in greater depth
the specific effects of pore structure parameters on the discount factor, shedding light
on the complex interactions between particle size, pore structure, and water movement
in coarse-grained soils. Such insights will advance our understanding of soil hydro-
dynamics and its implications for a variety of fields, including water conservancy and
geotechnical engineering.

3.3.3. Prediction Formula and Accuracy Verification of Hydraulic Conductivity of
Coarse-Grained Soil

Following the segmentation of coarse-grained soil specimens’ CT images via the CNN
model, we successfully constructed their respective 3D particle models. An examination of
these particle models’ parameters allowed us to derive the empirical Equation (23), which
represents the ideal particle size of coarse-grained soil. Furthermore, through an analysis of
the infiltration tests conducted on coarse-grained soil specimens, we deduced the empirical
Equation (25), illustrating the reduction factor. Integrating Equations (23) and (25) into
our established model for calculating the hydraulic conductivity of coarse-grained soil
(Equation (9)), we derived a predictive formula for coarse-grained soil hydraulic conduc-
tivity, based on CT image analysis, as

K =
g

72µα2 ·
n3

(1− n)2 ·
(d20 − 2.17)2

0.32Φ2 (26)

among which, the discount factor α is

α = −4.31 +
83.91(d20 − 2.17)2

Φ2 (27)

This section aims to probe the precision and applicability of various models for
predicting the hydraulic conductivity of coarse-grained soils. Existing models mainly fall
into two categories. The first type comprises empirical formulae based on pore structure
and particle characteristics, exemplified by the Kozeny–Carman equation [53]. The second
category includes empirical models derived from experimental data and statistical analysis,
such as the Terzaghi [52] and Hazen [54] equations. In this study, we compared our derived
model for predicting the hydraulic conductivity of coarse-grained soils (based on CT image
analysis) against the aforementioned eight formulae. This comparison entailed calculating
the hydraulic conductivity for the coarse-grained soil specimens using each formula, and
subsequently comparing these values against the actual hydraulic conductivities derived
from permeability tests. To assess the predictive performance of these formulae, we utilized
the Pearson correlation coefficient as an evaluation index, with possible values ranging
from −1 to 1. A coefficient closer to 1 indicates a strong positive correlation, while a value
closer to −1 denotes a strong negative correlation. A value near 0 suggests a lack of any
significant correlation.

Table 6 lists the Pearson correlation coefficients between the hydraulic conductivity pre-
dictions from the eight formulae and the actual hydraulic conductivities of the specimens.
As shown in Table 6, our proposed formula for predicting the hydraulic conductivity of
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coarse-grained soil provides the most accurate predictions. It attains a Pearson correlation
coefficient of 0.91 with the actual hydraulic conductivity values.

Table 6. Comparative analysis of the accuracy of various hydraulic conductivity calculation formulae.

Formula Equation (25) KC [53] Terzaghi [52] Hazen [54] Safari [55] Chapuis [56] Cote [57]

K Pearson’s r 0.91 0.70 0.06 -0.01 0.75 0.72 0.28

4. Discussion

Existing methods for determining the hydraulic conductivity of coarse-grained soils
fall into two main categories: experimental methods and numerical simulation methods.
Experimental methods typically utilize a constant-head test to directly measure hydraulic
conductivity [2–8]. However, these methods are often time-consuming and labor-intensive,
with the accuracy of the results heavily reliant on sample preparation and boundary
conditions. Numerical simulation methods, on the other hand, employ finite elements or
discrete elements to mimic actual coarse-grained soils [9–12]. By resolving the fluid flow
equation, the hydraulic conductivity can be calculated. Yet, conclusions drawn from these
methods often lack experimental validation. A more effective approach to predicting the
hydraulic conductivity of coarse-grained soils is to leverage CT image analysis. This method
marries experimental results with simulations, thereby offering a more comprehensive and
accurate evaluation. The accuracy of such predictions hinges on the precision of the CT
image segmentation. However, as coarse-grained soils exhibit bulk structures and their
CT image pixel distributions are complex, the accuracy of traditional image-segmentation
methods often falls short of the research requirements for coarse-grained soils.

This paper presents a novel method for segmenting CT images of coarse-grained
soil using deep learning models. Based on the segmentation results, we created a three-
dimensional particle model of coarse-grained soil and extracted the geometric feature
parameters of the particles. Subsequently, we fitted a prediction formula for the hydraulic
conductivity of coarse-grained soil using CT image analysis. We discovered that the U-Net
convolutional neural network, under the supervision of a specially tailored loss function
with particle size and shape perception terms, can effectively capture the profiles of coarse
soil particles. After adequate training, the network can precisely segment coarse soil.
The formula predicting the hydraulic conductivity of coarse-grained soil, based on CT
image analysis and fitting, reveals a particular pattern in coarse-grained soil’s hydraulic
conductivity when the particle size range remains constant. If the particle size distribution
is uneven, smaller particles can fill in the pores formed within the large particle skeleton,
leading to lower porosity and permeability. For a constant particle size distribution, a larger
aspect ratio of coarse-grained soil (indicating more needle-shaped particles) results in a
smaller discount factor, representing the loss degree of actual seepage channel due to pore
connectivity, and hence lower permeability.

Our results further the research conducted by other scholars through seepage tests [58,59]
and discrete element simulations [60–63], microscopically confirming, based on CT images,
that the hydraulic conductivity of coarse-grained soil primarily depends on the character-
istic particle size d20, porosity, and aspect ratio of the particles. Moreover, our proposed
formula predicting the hydraulic conductivity of coarse-grained soil based on CT image
analysis is more precise, demonstrating a higher value for engineering applications. To our
knowledge, this is the first study predicting the hydraulic conductivity of coarse-grained
soil using CT images segmented based on deep learning models. Taking the practical
implications of our findings into account, the accurate prediction of hydraulic conductivity
of coarse-grained soils using our model presents transformative potential in the field of
water conservancy and geotechnical engineering. Firstly, in embankment dam design, our
approach offers a more precise and reliable method to analyze the granulometric charac-
teristics of the soil, thereby aiding in choosing the right type of soil and understanding its
behavior under various conditions. This ultimately impacts the safety and longevity of the
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dam structure. Secondly, in the context of geotechnical engineering, the understanding
of granular composition and its impact on the tortuosity of water-flow paths can assist
in effective ground water management and the design of structures requiring soil as the
foundational support. With a clearer understanding of soil’s hydraulic behavior, engineers
can better anticipate and mitigate potential issues related to soil stability, water seepage
and deformation under load [64–66].

However, it is important to note some limitations. Although we have accurately seg-
mented the CT images of coarse-grained soils using U-Net convolutional neural networks,
the study of network structure optimization and enhancing learning efficiency remains
unexplored. Future research should aim at optimizing the deep learning model for studying
coarse-grained soil CT images, with a focus on improving learning efficiency.

5. Conclusions

In this study, we innovatively utilized a Convolutional Neural Network (CNN) model
for the accurate segmentation of coarse-grained soil CT images, making significant strides
in soil granulometric analysis. Our approach outperforms traditional methods, revealing
new empirical formulae to comprehend the granulometric characteristics and hydraulic
conductivity of coarse-grained soils, thereby offering fresh insights into soil hydrodynamics.
Some valuable conclusion are as follows:

1. The implementation of the CNN model demonstrates unparalleled precision in the
segmentation of coarse-grained soil CT images, ascertaining the model’s superiority
over traditional segmentation methods. The accuracy of the 3D models reconstructed
from these segmented images corroborates the effectiveness of this approach and
broadens the prospects of automation and precision in soil particle segmentation.

2. We established and validated empirical formulae for the ideal particle size of coarse-
grained soil and the discount factor, both predicated on a robust linear correlation
found in the study. These novel formulae contribute significantly to understanding
the granulometric characteristics of soils and predicting their behavior under various
hydraulic gradients, thus providing valuable insights for soil-related engineering and
hydraulic applications.

3. Our research underlines the strong influence of the granular composition, especially
the concentration of fine particles, on the tortuosity of water flow paths and the
discount factor. These findings highlight the potential of the CNN model in soil
hydrodynamics research and its implications for a variety of fields, including water
conservancy and geotechnical engineering.
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Abstract: This paper proposes a feedback, rolling and adaptive operation decision-making mecha-
nism for coupling and nesting of time scales. It is aimed at the change of time scale and the dynamics
in the operation process, considering the relationship between operation period and multi-time scales.
The key point is to integrate forecasting and operation in order to adapt to the multi-time scales
dynamic change in the operation process. The operation process is divided into different time scales;
forecasting and operation model method libraries are constructed, and the progressive updating and
nesting mechanism are used to realize the process dynamic operation, according to the regulation
period or operation period of the reservoir. Taking the Miyun Reservoir in Beijing, China as the
research object, the operation mechanism is integrated into the operation process, and the complex
forecasting operation and control mechanism are integrated, based on the integrated platform and
using modern information technology. The forecasting and operation method uses classic different
models, which can be selected based on different goals. The forecasting inflow is used as input, and
the output is the water distribution plan, more importantly, the mechanism in the operation process is
the key point. This is a rolling modification of the inflow process in the next stage, and the operation
plan also changes accordingly. The feasibility, effectiveness, rationality and flexibility of the reservoir
dynamic and adaptive operation are verified, so that the reservoir operation is dynamically changing
and adapting to the changing demand. The proposed operation mechanism has scientific value and
guiding significance to improve the reservoir operation theory, and it provides decision support for
the actual reservoir operation and operation business.

Keywords: reservoir forecasting and operation; dynamic process; multi-time scales; integrated platform

1. Introduction

The problem of water scarcity in the 21st century is more and more serious, and
there is a serious imbalance between supply and demand. It is related to the country’s
economy, social development and people’s livelihood. As far as the water resources in
China are concerned, the water resources are unevenly distributed in time and space,
and contradictions in water use are prominent. In the case of serious water scarcity,
the construction of water conservancy projects can redistribute water resources spatially,
effectively alleviate the uneven distribution of water resources in time and space, and also
alleviate the problem of regional water use [1–3]. Therefore, how to make the scientific
and reasonable operation of the reservoir is the key for reservoir regulation, which directly
affects the utilization of water resources. So, it is necessary to carry out research on the
rational use of the reservoir operation.

The dynamic operation problem is a more common problem, which is more in line with
the actual production needs. Many scholars pay attention to its research [4–6]. At present, it
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has become one of the hot spots in the field of operation [7,8]. In essence, the whole process
of reservoir operation is the control of reservoir discharge process in a period of time. It is a
dynamic process. In this process, the inflow of the reservoir is dynamic, and the factors
describing the state of the reservoir (water level, storage capacity, etc.) are also dynamic.
Reservoir operation determines the control strategy or decision of the whole process of
reservoir discharge in the whole dynamic process according to the objectives of the reservoir
operation [9–11]. K.C. Abbaspour [12] applied an attractive procedure for obtaining model
parameters in recent years to estimating hydraulic parameters in a lysimeter experiment.
Stochastic dynamic programming (SDP) has been widely used in reservoir operation
strategy considering runoff uncertainty [13–15]. Dariane [16] used an intelligent water drop
algorithm to solve the reservoir optimal operation model. Ahmed [17] successfully used a
genetic algorithm (GA) to solve the multi-objective reservoir optimal operation problem,
and achieved good optimization results. Moeini [18] used fuzzy dynamic programming
to solve the optimal operation problem of cascade hydropower stations. Afshar [19]
used a particle swarm optimization (PSO) algorithm in the reservoir-group operation.
Sharma S. [20] updated the flood forecast in real time through in-depth research, and
established a set of perfect real-time operation systems in the flood season. At present,
the research on static operation is mature and has practical application. However, a lot
of literature [7,21–25] also pointed out that due to the uncertainty of reservoir operation,
even if the static planned operation obtains optimal results, it will become infeasible due to
random disturbance in actual operation, that is, “the plan can’t keep up with the change”.
Therefore, dynamic operation becomes more and more important.

At present, scholars at home and abroad have carried out a lot of theoretical research
on reservoir operation, and had many achievements. However, the decision making of the
reservoir operation is an extremely complex process. The randomness of inflow runoff, the
multiplicity of reservoir functions, the dynamic and real-time characteristics of the decision-
making process, the limitations of mathematical models and solving technologies and
the complexity of human factors make the reservoir operation problems present obvious
unstructured or semi-structured characteristics. In order to combine the theoretical results
with the actual application, a new reservoir forecasting and operation mechanism that can
take the forecasting and operation as a whole is required in such a complicated setting.
Therefore, considering the relationship between operation period and multi-time scales,
this paper proposes a feedback, rolling and adaptive operation decision-making mechanism
for coupling and nesting of time scales. The reservoir is dynamic during the operation
process, including changes in incoming water, water volume, time scale, and water demand
and so on. The operation plan is also dynamic, as long as there is a change in the real-time
operation plan. Other time scale plans will also change due to the rolling adjustment of
incoming water. The operation plans at different time scales are rolling nested, which is
similar to a chain reaction between different layers.

2. Methodologies
2.1. Main Ideas

According to the existing forecasting mode and operation methods, aiming at the
uncertainty and adaptability of dynamic changes in reservoir forecasting and operation,
this paper studies the dynamic mechanism of reservoir forecasting and operation process.
This mechanism reflects a double-layer adjustment. On the one hand, rolling adjustment
refers to the change in water supply or operation plans at a certain moment, and subsequent
predicted water supply will also change accordingly; nested adjustment refers to the nested
adjustment of forecasting incoming water or operation plans between levels at different
time scales. Based on the whole process of the reservoir operation cycle, the regulation
is closely related to forecasting in the process. Only in each link of the operation process,
mathematical models and methods are used to solve specific problems. The multi-time
scales rolling nested mutual feedback mechanism is constructed in the process of forecasting
and operation. On the visual integrated platform, the mechanism is realized, and a new

71



Water 2023, 15, 2472

paradigm of reservoir forecasting and operation is formed, which provides the scientific
support for reservoir forecasting and operation under changing conditions.

In the process of reservoir operation in the operation period, the dynamic changes
of factors are fully considered, and the forecasting and operation are closely related in
the process. According to the rolling correction of forecast results (long-term, medium-
term, short-term and real-time), the corresponding operation plan is also modified, and
multi-time scales are nested in the operation process. The operation plan is used to guide
the whole process of the operation cycle, and the real-time operation scheme is used to
guide the implementation of operation. In the working process, the operation plan and the
implementation operation scheme are fed back to each other (see in Figure 1).
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During the adjustment cycle, if there is a change in incoming water at a certain moment,
the forecasting of incoming water in the later period will also be reforecasted based on the
latest actual incoming water. When there are new time changes, subsequent forecasting
of incoming water will change and be repeated, which will lead to changes throughout
the entire operation cycle. Forecasting of incoming water at other time scales will also be
reforecasted based on the latest short-term results, and rolling nested reactions will occur.
The operation plan will also be adjusted accordingly.

2.2. Rolling Correction Mechanism Mode

Reservoir forecasting and operation is an uninterrupted process, a continuous calcula-
tion process, and continuous feedback and a rolling correction process. It needs to be able
to continuously provide a rolling forecast of the coming water, and the operation will also
move with it.

It is assumed that the general form of the hydrological forecasting model is as follows:

y = f (x) (1)

where x is the sample data, f (x) is the forecasting model, and it can be any model
of forecasting.

(1) The rolling process of forecast: suppose that the coming water at a certain time t1 is
used to forecast the coming water at the time t2, and {x|x0, x1, · · · , xt} is selected as the
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sample datum of the forecast model, then when it is necessary to forecast the coming
water at the time t3, the sample data increase xt+1 and becomes {x|x0, x1, · · · , xt, xt+1}.
At this time, in order to forecast, a new sample must be used, which can be the same
length as t1. At this time, the sample value x0 which is far away from time t3 is
removed, and the new sample is {x|x1, · · · , xt, xt+1}, thus forming a rolling forecast.

(2) For the rolling process with measured data, it is necessary to revise the previous
forecasting process. The rolling correction principle of forecast in an operation period
is shown in Figure 2. The yellow part represents the historical data, the purple part
represents the measured data, the orange part represents the short-term forecast
results, and the red part represents the whole operation cycle. Suppose that there is
a measured value xt

, at a time t1, it needs to modify the forecasting at time t2, then
the sample changes from the original {x|x0, x1, · · · , xt} to {x|x0, x1, · · · , xt

,}. At this
time, the measured value is added to the sample, and the new sample is used for
subsequent forecasting, so as to modify the forecasting in the process of rolling. In
this way, the measured value can improve the accuracy of forecasting.
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According to the rolling correction mechanism flow shown in Figure 3, suppose
that the value of forecast at t0 in the operation cycle is {Q|Qt1, Qt2, · · ·Qtn}, when there
is a measured value Q1 at t1, the measured value Q1 needs to be added to the forecast
samples, and the rolling correction forecast needs to be carried out again for the subsequent
period. After rolling forecast, the forecast results of the reserved time in the cycle become{

Q
∣∣Q1, Q′t2, · · · , Q′tn

}
. At this time, the operation plan also changes with the change of the

forecast result, and the operation plan has been performing a rolling correction, and the
operation correction result is

{
Z
∣∣Z1, Z2, Z′′3 , · · · , Z′′n

}
. When there is a measured value Q2

at t2, the forecasting samples need to add the measured value Q2 to the forecasting samples,
and the rolling correction forecast needs to be carried out again for the subsequent period.
After rolling forecasting, the forecasting result of the reserved time in the cycle becomes{

Q
∣∣Q1, Q2, Q′t3, · · · , Q′tn

}
. At this time, the operation plan scheme also changes with the

change of forecast, and the operation plan scheme has performed a rolling correction. The
result of operation correction is

{
Z
∣∣Z1, Z2, Z′′3 , · · · , Z′′n

}
and it has been rolling circularly.

At this time, the measured value is added to the sample, and the new sample is used for
subsequent forecasting, so as to roll correction forecasting in the process until the end of
the operation cycle. With the continuous rolling correction of the forecast, the accuracy will
also increase. The operation will change with the change of the incoming water forecast.
The operation plan will be continuously modified to make the dynamic operation plan.
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2.3. Multi-Scale Rolling Nested Mutual Feedback Mode

In this study, a mutual feedback mechanism between multi-time scales operation
scheme and implementation operation scheme is established under the rolling correction
mechanism to adapt to the change of conditions through process change. The working
principle of the mutual feedback mechanism is shown in Figure 4. At the beginning of the
operation cycle, the reservoir is operated according to the predetermined operation plan.
The black arrows refer to the lengths of the time scales, and the dots refer to a long sequence
of time. The yellow part represents historical data, the purple part represents measured
data, the orange part represents short-term forecast results, and the red part represents the
entire scheduling cycle.

(1) According to the actual inflow situation, if the real-time operation in the operation
period is consistent with the operation plan, then at the end of an operation period,
under the rolling nested forecasting mechanism, it is only necessary to judge whether
the forecast sample data are increased. If it is increased, it will be forecasted again,
and then the subsequent operation plan is formulated.

(2) The change in operation conditions leads to a deviation between the operation and
the planned operation during the operation period. If an emergency occurs: an oil
leakage water pollution incident occurs in the downstream of the reservoir, and the
discharge flow needs to be increased for the purpose of diluting pollutants, or in
management of floods, the currently implemented operation plan needs to respond to
changes and make adjustments. After an operation period (as shown in t1 in Figure 4),
because the reservoir does not carry out the operation according to the original plan,
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the follow-up operation of this period will be delayed. The operation plan should
also be changed and reformulated. The actual boundary conditions (i.e., the current
reservoir water level) are fed back to the upper short-term operation. Based on the
rolling forecast results and the new boundary conditions, the operation model is
modified, and the short-term operation plan after t1 period (as shown in the yellow
part of the figure, which is updated after t1 period) is formulated again. The new
operation plan is implemented for the next period (t2 period) and the new operation
plan is implemented in the whole period. According to this method, the operation
period is recursively extended to medium-term operation and long-term operation
until the end of the reservoir operation period.
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2.4. Forecasting and Operation Models

On the basis of existing reservoir forecasting and operation models, forecasting and
operation model method libraries are constructed using information technology to serve
different needs of forecasting and operation (see in Table 1), in order to make rapid cal-
culation and analysis, such as long-term forecasting, mid-term forecasting, short-term
forecasting, single objective operation, multi-objective operation, etc.
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Table 1. Runoff forecast and operation models.

No. Forecasting Models Operation Models

00001 BP DP
00002 GM(1,1) model POA
00003 AR_P model Particle swarm optimization
00004 SVR model Genetic algorithm
00005 XinAnjiang model NSGA-II
00006 Tank madel MOEA/D
00007 NASH unit hydrograph model MOEA/D-AWA

. . . . . . . . .

3. Implementation Means
3.1. Technical Support

(1) Technical basis: The integrated platform is a platform developed based on the National
863 project in China. The platform is designed and constructed according to the
requirements of the water conservancy industry standard of the People’s Republic of
China “technical regulations for water conservancy information processing platform”
(SL538-2011). The comprehensive integration platform can integrate Web information,
XML information, report information, GIS information, statistical graphics, word
documents, PPT and other information, and the user layer is mainly for users with
login permissions to access the platform. The overall framework is shown in Figure 5.
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(2) Technical means: Based on the comprehensive integration platform, this paper uses
the key technologies such as knowledge graph technology [26], component technology,
web service technology, database technology and integrated application technology
to develop and realize the dynamic decision-making system of the forecast operation
process.

3.2. Implementation Process

In this paper, the dynamic decision-making mechanism of reservoir forecasting and
operation process is established. Based on the integrated platform, the system is con-
structed. The hierarchical structure based on the idea of reservoir forecasting and operation
is shown in Figure 6. The business and components are coupled to realize the related
business requirements.
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4. Case Study 
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The topological water network is composed of many nodes, and each node has a
logical relationship and data flow relationship. The business of each node is supported
by the components of the business component layer. Through the mapping relationship
between the two, the components are customized to the nodes, and through the combined
application of business components, the related business of reservoir forecasting and
operation is realized.

4. Case Study
4.1. Study Area

Beijing, Tianjin and Hebei are the main platforms in China that show their strong
vitality and competitiveness in the international economic system. At the same time, the
region only uses 2.3% of the national land area to carry 8% of the population, and also
contributes 10% of the national GDP by using less than 1% of the water. Beijing, Tianjin
and Hebei are one of the regions in China and the world that are most affected by human
activities and one of the regions that have the most difficulty in ensuring water safety, and
with the largest water resources bearing capacity and the highest risk level [27]. Therefore,
it is of great practical significance to study the water resources in this area.

The Miyun reservoir is located 13 km north of Miyun District, Beijing, in the hills of the
Yanshan Mountains. It was built in September 1960. The area is 180 square kilometers, with
a circumference of 200 km around Miyun Reservoir. The Miyun Reservoir is shaped like an
equilateral triangle. The Miyun reservoir has a storage capacity of 4 billion cubic meters
and an average water depth of 30 m, it serves as the largest and only source of drinking
water supply in the capital city of Beijing. The characteristics of the Miyun reservoir are
shown in Table 2. The Miyun Reservoir has two major inflow rivers, namely the Bai River
and the Chao River. In the 30 years after the completion of the Miyun reservoir, it has
generated huge benefits in various directions such as flood control, irrigation, urban water
supply, power generation, fish farming and tourism.
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Table 2. Miyun reservoir characters.

Miyun Reservoir Characters Water Level (m) Corresponding Water Surface Area (km2) Storage Capacity (108 m3)

flood level 158.5 m 183.6 41.9
normal water level 157.5 m 179.33 40.08

flood limit water level 147.0 m 137.54 23.38
dead water level 126.0 m 46.154 4.37

For the accuracy of the forecasting, the historical data of incoming water were selected
from 1990 to 2021 for the forecasting.

4.2. Models Application and System Simulation

The implementation of the rolling correction mechanism in the forecasting and op-
eration process is shown in Figure 7. On the interface, you can see the incoming water
forecasting and rolling forecasting nodes, which are supported by components in the com-
ponent layer. You can see that the following blue line is also the starting condition of rolling
forecasting. Based on the platform and supported by components, the rolling correction in
the operation cycle can be realized on the visual flow chart. All arrows refer to the inflow
and outflow of data flow. The dotted boxes refer to data nodes.
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4.3. Scenario Settings

The whole process of water adaptive regulation and control of the Miyun reservoir
in China is based on the following process: water supply process→ reservoir regulation
process→ pipeline water delivery process→ user water distribution process. Through the
rolling analysis of the “operation” and “distribution” process of each object, the dynamic
adjustment of each link is realized, so as to achieve the process dynamic decision making
of reservoir forecast and operation, and realize the global adaptive regulation.

The realization of the mutual feeding business between the multi-time scales operation
scheme and the implementation operation scheme is shown in Figure 8. On the interface,
we can see that the interface is composed of two parts: the water consumption plan and the
operation scheme. On the business process layer, we can see that there are two-way arrows
between the planned water consumption and the operation scheme, and there are nesting
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and mutual feeding relationships between them. In Figure 8, all arrows refer to the inflow
and outflow of data flow, the red arrow refers to the outflow of results from the normal
process of forecasting operation, and the blue arrow refers to the data flow for feedback
adjustment operation.
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Based on the platform and supported by components, it realizes the rolling nest-
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4.3.1. Scenario 1: Rolling Forecast

The inflow process needs to be forecasted [28–30] according to the historical flow,
and then the forecasted inflow process is compared with the measured inflow in the
hydrological year. The rolling forecasting of the inflow process is realized by selecting
the rolling forecasting time. If you choose the rolling forecast time as June 2015, the flow
before June 2015 is the actual measured value, and the forecast value after that. Then the
forecast is modified by rolling. The change of inflow will also lead to the change of the
reservoir operation plan, so the operation is also in the state of rolling correction. Figure 9
is the rolling forecast of incoming water. In the figure, a comparison was made between the
forecasted flow rate and the flow rate after rolling forecast adjustment. It can be seen that
the flow rate after rolling adjustment is closer to the actual incoming water; therefore, the
accuracy of the forecasting is higher.

4.3.2. Scenario 2: Water Distribution Plan

The operation scheme is based on the operation method library and operation target
library established in advance. The operation method component and operation target
component are customized on the corresponding nodes in the knowledge graph drawn on
the platform. Combined with the actual operation requirements, the operation target and
operation method are selected in the corresponding components to calculate the operation
scheme. Reservoir regulation calculation is carried out according to its characteristic water
level and storage capacity, as well as water level discharge curve and water level storage
capacity curve. The pipeline calculates the water delivery capacity of the pipeline and
generates the pipeline water delivery plan according to the water discharge process of the
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reservoir and the attributes of the pipeline itself. The user generates the user’s planned
water distribution scheme according to the user’s water demand and the pipeline’s water
delivery scheme. The operation scheme and the user’s planned water distribution scheme
are shown in Figure 10. In the figure, a comparison was made between the user planned
water allocation and the recommended water consumption after rolling forecast adjustment.
It can be seen that the recommended water consumption after rolling adjustment is closer
to the actual water use, thus reflecting the applicability of this mechanism.
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4.3.3. Scenario 3: Water Use Plan Inspection

In the process of reservoir operation, it is necessary to conduct interval regulation
inspection on the reservoir operation plan. If the discharge flow is unreasonable, the
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operation regulation can be reselected or the operation range can be recalibrated. If the
result is reasonable, the recommended operation scheme can be generated. Figure 11 shows
the recommended water use scheme generated. The actual water use plan can be verified
by the user planned water distribution plan generated above, and the excess water amount
is expressed by a red bar graph. After the inspection, a recommended water use plan can
be generated. Finally, according to the designated step-by-step over-plan water price as
a reward and punishment mechanism, users will be punished for exceeding the planned
water volume. For users with penalties, they can adjust their next water use plan, and they
need to adjust the incoming water on a rolling basis to achieve dynamic rolling control of
the entire water volume allocation process.
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5. Results and Conclusions

The rolling correction mechanism can form a procedural operation method: in the
whole reservoir operation cycle, the changing factors bring many unknowns to the opera-
tion, and also the actual operation results are not consistent with the planned scenario, and
it is not clear how much the project benefits will play. In the process of operation, the time
period and time scale have a great influence on the forecast operation.

The integration of reservoir forecasting, operation and decision making is realized on
the platform, which can well adapt to the changes of the reservoir and achieve the purpose
of dynamic operation. Through the construction of reservoir forecasting and operation
process dynamic decision-making system, the rationality of the new mechanism is verified
through the application of an example, which provides a new solution and means for
reservoir operation business. In this paper, aiming at the time period change and the
dynamic characteristics in the operation process, a process dynamic forecast operation
mechanism of reservoirs is proposed, which forms a rolling correction mechanism for
forecast operation in the operation period and a multi-scale rolling nested mutual feedback
mechanism. Taking Miyun Reservoir in Beijing as an example, the reservoir process
dynamic forecasting and operation system are carried out based on the integrated platform
and computer technologies. Through the example application, the rationality of the new
mechanism is verified, which provides a new solution and means for reservoir operation.
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The dynamic operation of the reservoir itself is relatively complex. There are a lot of
uncertainties in the operation of the reservoir. The theory and technology involved in the
realization of the dynamic operation of the reservoir are relatively complex, it needs to be
further solved and improved in the follow-up work. In the future, further research in this
area is needed.
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Abstract: The timely identification and detection of surface cracks in concrete dams, an important
public safety infrastructure, is of great significance in predicting engineering hazards and ensuring
dam safety. Due to their low efficiency and accuracy, manual detection methods are gradually being
replaced by computer vision techniques, and deep learning semantic segmentation methods have
higher accuracy and robustness than traditional image methods. However, the lack of data images
and insufficient detection performance remain challenges in concrete dam surface crack detection
scenarios. Therefore, this paper proposes an intelligent detection method for concrete dam surface
cracks based on two-stage transfer learning. First, relevant domain knowledge is transferred to the
target domain using two-stage transfer learning, cross-domain and intradomain learning, allowing
the model to be fully trained with a small dataset. Second, the segmentation capability is enhanced by
using residual network 50 (ResNet50) as a UNet model feature extraction network to enhance crack
feature information extraction. Finally, multilayer parallel residual attention (MPR) is integrated
into its jump connection path to improve the focus on critical information for clearer fracture edge
segmentation. The results show that the proposed method achieves optimal mIoU and mPA of
88.3% and 92.7%, respectively, among many advanced semantic segmentation models. Compared
with the benchmark UNet model, the proposed method improves mIoU and mPA by 4.6% and
3.2%, respectively, reduces FLOPs by 36.7%, improves inference speed by 48.9%, verifies its better
segmentation performance on dam face crack images with a low fine crack miss detection rate and
clear crack edge segmentation, and achieves an accuracy of over 85.7% in crack area prediction.
In summary, the proposed method has higher efficiency and accuracy in concrete dam face crack
detection, with greater robustness, and can provide a better alternative or complementary approach
to dam safety inspections than the benchmark UNet model.

Keywords: dam surface cracks; transfer learning; intelligent detection; small-scale datasets

1. Introduction

Concrete dams are an important infrastructure for developing and utilising hydropower
and water resources in human society, and they play an extensive role in promoting sustain-
able socioeconomic development and ensuring energy security. However, concrete dams
are exposed to atmospheric and water environments for long periods and are subjected
to external effects such as water erosion, temperature changes, dry and wet conditions,
and freezing and thawing [1,2]. Thus, defects inevitably appear on their surfaces [3], with
cracks being the most significant factor threatening dam safety and stability [4]. Cracks not
only exist on dam surfaces but, if left untreated, will also extend to the inside of the dam,
affecting the strength and service life of the dam and eventually causing safety accidents
such as leakage and collapse [5]. Therefore, timely identification and detection of cracks
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on concrete dam surfaces are of great importance in predicting engineering hazards and
ensuring dam safety. Due to the low efficiency and accuracy of manual detection and
the weak adaptability of traditional image segmentation methods, an intelligent detection
method for concrete dam surface cracks based on two-stage transfer learning is proposed,
which can achieve accurate and intelligent dam crack segmentation from unmanned aerial
vehicle (UAV) images.

To identify the safety hazards posed by cracks in concrete dams, early crack detection
was mainly manual, such as inspectors taking a census of cracks through auxiliary tools
such as binoculars [6] or by means of manual hanging baskets close to the dam surface [7].
However, manual detection is costly, susceptible to subjective influences, inefficient and
inaccurate, and dangerous [8]. Recently, researchers have been investigating the role of
dynamic sensor-based crack detection, and together with online singular spectrum analysis
with real-time eigen perturbations can make a great contribution to crack monitoring [9].
Real-time single-sensor online damage monitoring technology based on eigen perturbation
has been rapidly developed. This method can process data online and detect damage in
structures in real time, improve the accuracy of assessing damage by generating new data
through eigen perturbation, and monitor the deformation and direction of cracks in real
time, enabling temporal and spatial advantages in crack identification [10,11]. However,
information also needs to be collected before employing real-time single-sensor and singular
spectrum analysis monitoring based on characteristic perturbations [12,13]. The location
of cracks is found in time and information such as the specific shape and area of cracks is
obtained to better judge the crack hazard level and repair. The greatest difference between
dam surface cracks and other surface cracks is in the spatial distribution. Additionally,
other cracks are mainly located on land, which is more convenient for using instruments
and equipment directly for close-range exclusion. Information related to cracks in dams
can be obtained efficiently and accurately by processing UAV images with computer vision
technology [14,15].

In recent years, crack image segmentation methods based on computer vision have
been researched and can be divided into traditional image segmentation methods and deep
learning semantic segmentation methods [16,17]. Traditional image segmentation methods
mainly use lower-order visual information such as a lower grey value of the crack’s image
pixels than the background [18], image binarization, image filters, and numerical images
to achieve segmentation for crack recognition [19–21]. For example, Talab et al. [22] first
changed an image to a greyscale image and then classified the background and foreground
in the greyscale image using a suitable threshold to segment out the cracks. Zhou and
Liu [23] used a threshold segmentation algorithm to extract concrete cracks, which was
more effective in identifying concrete with no colour difference on the surface. Cho et al. [24]
identified and classified crack candidate pixels, then performed filtering to remove noise,
and finally searched, filled, and thresholded the crack region to detect cracks. Compared
with manual direct detection, traditional image segmentation methods have a certain degree
of safety and feasibility; however, when there is considerable noise in the background, the
method is vulnerable to interference from external factors and segmentation results are not
accurate [25]. Moreover, segmentation methods have more steps for crack detection and
require humans to continuously adjust the parameters to adapt to the segmentation scene.
Thus, with low detection efficiency [26] that cannot meet practical engineering needs in
terms of accuracy and efficiency, an accurate and efficient intelligent crack segmentation
method must be established.

Compared with traditional image segmentation methods based on low-order visual
information, the higher-order visual information used in deep learning semantic segmenta-
tion methods has higher accuracy and robustness [27]. Semantic segmentation algorithms
classify each image pixel by using higher-order visual information to fully consider the
association between each pixel point [28], thus allowing for more efficient and accurate
segmentation of image classes.
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After analysing existing studies, semantic segmentation algorithms are feasible for
crack detection. Jiang et al. [29] proposed a concrete crack image recognition method
based on the UNet model to segment cracks. Then, they used the maximum inner tangent
circle algorithm to calculate crack width. Jian et al. [30] used the DeepLabV3 model to
experiment with the public dataset Crack500, and the test set IoU was 67%, which is less
accurate. However, most studies are based on experimental studies of cracks in housing
buildings, pavement, and bridges using open datasets [31–33], while there are fewer
studies on safe methods for concrete dam crack detection. Tang et al. [34] proposed a visual
crack width measurement method to improve the crack shape estimation efficiency by
simplifying the redundant data in crack images according to an improved image refinement
algorithm and width measurement scheme after crack image segmentation using the UNet
model. Huang et al. [35] proposed an improved DeepLabV3+ network based on hydraulic
concrete crack segmentation but could not solve the application scenario of fine crack
segmentation. Chen et al. [36] proposed A_DCDNet for dam crack detection based on
an FCNN, which possesses efficient detection efficiency, but the model is too coarse for
crack edge segmentation. Wang et al. [37] constructed a dam crack dataset and used the
benchmark model SegNet to achieve dam crack segmentation, but crack leakage occurred.
Cheng et al. [38] proposed an improved U2Net model for embankment crack detection with
good detection accuracy, but the dataset is small and prone to underfitting and inadequate
training if trained directly. Therefore, if the existing methods are directly applied to concrete
dam surface crack detection, the following problems remain: (1) Concrete dam cracks are
still different from cracks in the public dataset in distribution and pixel characteristics; thus,
the public dataset is not suitable as a training dataset for concrete dam crack detection (see
Figure 1). The cracks in the public dataset are more obvious, while the concrete dam cracks
are more obscure, small, and low contrast, so the public crack dataset cannot be directly
expanded into a dam face crack image, which will change the probability distribution of
the training set data and reduce the recognition accuracy and edge segmentation precision.
Additionally, the small sample size in the concrete dam crack dataset will lead to inadequate
model training and missed detection. (2) Concrete dam images have few pixel points
occupied by cracks, while the background takes up the vast majority of the image, resulting
in the model’s inadequate crack information extraction for cracks in the dam face features
and weak segmentation of fine cracks. (3) Cracks in actual projects are more complex, and
existing algorithms have low robustness and pixel accuracy for detecting cracks in concrete
dams due to uneven lighting and the low contrast between cracks and the surrounding
environment, making edge segmentation smooth.
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To solve the above problems and improve concrete dam crack detection efficiency
and accuracy, this paper explores an intelligent detection method for concrete dam surface
cracks based on two-stage transfer learning. A two-stage transfer learning strategy is de-
signed to fully train the model and improve accuracy by using the ResNet50 network as the
backbone feature extraction network to fully extract the dam face crack feature information.
Multilayer parallel residual attention (MPR) is constructed and added to improve the
model robustness and edge segmentation performance. We conducted experiments on a
self-built dam surface crack dataset with UAVs collecting images at 3–10 m from the dam
surface with crack widths between 3 and 20 mm to verify the correctness and feasibility
of the proposed method. Finally, the experimental results show that the mIoU, mPA, and
frames per second (FPS) of the proposed method in this paper are 88.3%, 92.7%, and 36.5,
respectively, showing the best performance in dam surface crack segmentation.

The main contributions of this paper are as follows:

1. An intelligent detection method for concrete dam surface cracks based on two-stage
transfer learning is proposed to share parameters and features through cross-domain
and intradomain learning. The proposed approach can alleviate low segmentation ac-
curacy due to the lack of concrete dam crack datasets that results in inadequate model
training and overfitting and reduce the phenomenon of fine crack miss detection.

2. The ResNet50 network is used as the backbone feature extraction network to enhance
crack feature information extraction by the UNet encoder and improve the ability to
segment fine cracks.

3. The designed multilayer parallel residual attention (MPR) is integrated into its jump
connection path to suppress the interference of extraneous regions on crack segmenta-
tion to improve pixel accuracy and make crack edge contours clearer.

2. Related Work
2.1. Deep Learning-Based Crack Detection

Deep learning currently has two popular directions: object detection methods and
semantic segmentation methods. Usually, two main types of target detection exist: (1) two-
stage detection [40] and (2) one-stage detection [41]. The two-stage detection approach first
generates a fixed-size feature map for each candidate region using a Rol pooling layer and
then obtains the result using bounding box regression, which is computationally intensive,
although the accuracy is high. The one-stage detection method predicts the object class
and bounding box in one step, as the name suggests, with high computational efficiency.
Huang et al. [42] detected cracks in dams by improving YOLOX, and the results achieved
high accuracy. Min et al. [43] proposed an improved YOLOv4 to achieve accurate bridge
crack identification. The object detection method is accurate and efficient, enabling not
only the identification of the type of detection target but also the localization of the target;
however, it lacks the identification of specific contours in the detection target.

Deep learning semantic segmentation focuses on using convolutional neural networks
to understand the real-world objects represented by each pixel in an image, that is, to
segment the different objects in an image at the pixel level so that a specific outline of the
target can be obtained. Since the specific shape and area of cracks are obtained to better
determine the crack hazard level and to repair them, this paper uses semantic segmentation
to conduct research on crack detection in concrete dams. In 2015, the fully convolutional
network (FCN) was proposed [44] to reach a new milestone in image segmentation for deep
learning. FCN uses a softmax function on top of a convolutional layer to classify each pixel
to complete fine image segmentation. FCN cannot use global scene category information,
which will cause feature loss. In the same year, Ronneberger et al. proposed the UNet
model [45] based on the FCN network architecture, which modified the FCN encoder and
decoder to obtain better performance on fewer training data, although the feature extraction
capability is not optimal. Meanwhile, to solve the problem that FCN cannot utilise global
scene information, Zhao et al. proposed the pyramid scene parsing network (PSPNet) [46] in
2017, which enables semantic segmentation models to fully access contextual relationships
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through the pyramid structure. In 2018, Chen et al. proposed a codec structure with
null-separable convolution for image semantic segmentation (DeepLabV3+) [47], which
achieves excellent segmentation results; however, it is computationally intensive and may
lead to long training times. Subsequently, a number of excellent semantic segmentation
models also emerged [48] and were applied to crack segmentation in various scenarios [49].
Liu et al. [50] used the DeepLabV3+ model for crack detection in ageing buildings and
bridges to obtain information on crack changes in buildings. Rill-García et al. [51] trained
an improved fully convolutional neural network (FCNN) on the public CrackForest dataset
and achieved road crack detection but with low segmentation accuracy. Liu et al. [52]
used Swin-UNet to perform experiments on a public fracture dataset, which can obtain
fracture contours efficiently, but with an IoU of 70% and low accuracy. In summary,
although semantic segmentation achieves better performance for crack detection than
traditional image segmentation, targeted optimisation is needed for concrete dam surface
crack detection where cracks are obscure and datasets are lacking.

2.2. Transfer Learning-Based Crack Detection

Deep learning algorithms require large datasets to support training, and insufficient
datasets can seriously affect crack feature extraction and image detection. To address the
lack of datasets limitation, the use of transfer learning is one of the most effective and
practical solutions [53]. Transfer learning is the transfer of knowledge learned from one
domain to another dataset domain; the knowledge is transferred from the source domain,
and the knowledge is given to the target domain. In general, transfer learning can obtain
relatively good test results even with small samples of labelled data [54]. For example,
Fan et al. [3] proposed a transfer learning-based underwater dam crack image segmentation
model that can accurately segment underwater dam crack images with a small dataset.
Li et al. [55] improved crack detection accuracy by sharing model parameters in the source
domain through a transfer learning approach. In theory, transfer learning can be performed
between any domains, but if the pretrained dataset is more relevant to the task target
dataset, then the better the pretrained model for knowledge transfer, the better the a priori
knowledge acquisition for transfer learning will be [56]. Therefore, this paper proposes a
two-stage transfer learning strategy to enable better transfer learning.

2.3. Crack Detection Backbone Network

Concrete dam surface cracks are more obscure and minute, and feature information
extraction is difficult; therefore, it is necessary to make targeted changes to the model back-
bone feature extraction network to enhance the encoder information extraction capability.
The dominant backbone network structures in current crack recognition are AlexNet [57],
VGG [58], and ResNet [59]. Dung and Anh [60] replaced the backbone feature extraction
network of the FCN model with a VGG network. The model achieved a comprehensive
evaluation index, average accuracy of 90%, and can predict concrete cracks more accurately
than the original model. Based on relevant research experience, network depth is crucial
for visual recognition tasks; however, in practical experiments, it has been found that with
the superposition of convolutional and pooling layers, the network learning effectiveness
decreases and the error rate increases [61]. With the introduction of residual networks [59],
it is possible to reach a deeper network level with a low classification error rate. Residual
networks are widely used for this reason. Zhao et al. [62] addressed the low recognition ac-
curacy problem of the UNet model by using ResNet18 as the backbone network to enhance
the feature extraction capability of the network. Xu et al. [63] used the ResNet34 residual
network as a model encoder to better extract crack detail information. Considering the
stronger feature extraction capability of ResNet, this paper replaces the UNet backbone
feature extraction network with ResNet50 to increase the depth of the feature extraction
network and improve the segmentation accuracy of the model.
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2.4. Crack Detection Based on Attention Mechanisms

In computer vision, attention mechanisms can mimic the human visual system, thus as-
signing different weights according to the importance of different content to improve atten-
tion to key information and enhance the network feature representation [64]. Yu et al. [65]
addressed the low accuracy problem of existing deep learning road crack detection methods
and improved the model’s ability to detect cracks by embedding an attention mechanism
in the UNet model. Given the application flexibility of the attention mechanism and the
excellent performance that can be achieved in image processing and inspired by the residual
module [59] and the atrous-spatial pyramid pooling (ASPP) module in DeepLabV3+ [47], an
MPR attention mechanism was designed and integrated into the jump connection path of
UNet to increase the model’s attention to crack feature information, reduce the effect of noise
on crack edge segmentation results, and improve the model’s pixel segmentation accuracy.

3. Proposed Approach
3.1. Model Framework

The UNet model [45], as one of the most commonly used semantic segmentation
models for deep learning, has the advantages of being lightweight and easy to deploy and
can achieve good segmentation results even for small-scale dataset training; therefore, the
UNet model is chosen for concrete dam surface crack detection in this paper. The UNet
model can be divided into two parts: the encoder and the decoder. The encoder is used to
extract features from the input image to gradually obtain higher-order semantic feature
information in the image. The decoder is used to upsample and convolve the input feature
map to gradually recover the image size and the number of feature map channels. Finally,
the classification of pixels in the image is predicted. To enhance the information transfer
between the encoder and decoder, the UNet model is designed with a jump connection so
that the high-resolution shallow information output from the corresponding stage of the
encoder is fed directly to the decoder, supplementing some of the feature information lost
due to downsampling or convolution.

To further improve the segmentation ability and edge recognition accuracy of the
UNet model for obscure and small cracks and to make the segmentation of concrete dam
surface cracks more accurate, the UNet model is improved in this paper; the structure of the
improved model is shown in Figure 2. The specific improvement measures are as follows:
(1) A ResNet50 network is built as the feature extraction network of the UNet model encoder.
The number of network layers and extraction capacity are deepened to fully obtain the
crack feature information through the residual module so that the model can effectively
learn the deep features of the dam face cracks and improve the crack segmentation model
accuracy. (2) MPR attention added to the jump connection layer is designed to enhance
the feature representation of the model by acquiring more semantic information, which
not only suppresses feature responses in irrelevant regions and increases the importance of
effective feature information channels but also allows the network to focus on crack feature
information, complementing the loss of detail and enabling the model to segment the dam
face crack images more accurately.

3.1.1. ResNet50 Backbone Network

Appropriately increasing the network depth can strengthen the feature extraction
ability of the model and obtain more deep semantic information, but some researchers
have found that as the structure of the network model deepens, training becomes increas-
ingly difficult and encounters problems such as disappearing and exploding gradients.
To effectively solve the degradation problem caused by deepening the network while
strengthening crack feature information extraction by the UNet backbone network and
improving crack detection accuracy, the ResNet50 backbone network, shown in Table 1,
is proposed as the UNet encoder in this paper. Each residual module in the ResNet50
network consists of three concatenated convolutional layers of 1 × 1, 3 × 3, and 1 × 1, and
a residual structure is added to retain some of the shallow information, which can prevent
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the model degradation problem due to gradient explosion. The residual module is divided
into 2 types, as shown in Figure 3. If the number of input feature map channels matches
the number of output channels, the residual module is A. If the number of input feature
map channels does not match the number of output channels, the residual structure needs to
perform a 1 × 1 convolution to adjust the number of channels, and the residual module is B.
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Table 1. ResNet50 network structure.

Layer Name Operation Output Size Multiplier

Layer0
Input 5122 × 3

×1Conv7 × 7 2562 × 64
Maxpool 1282 × 64

Layer1
Conv1 × 1 1282 × 64

×3Conv3 × 3 1282 × 64
Conv1 × 1 1282 × 256

Layer2
Conv1 × 1 642 × 128

×4Conv3 × 3 642 × 128
Conv1 × 1 642 × 512

Layer3
Conv1 × 1 322 × 256

×6Conv3 × 3 322 × 256
Conv1 × 1 322 × 1024

Layer4
Conv1 × 1 162 × 512

×3Conv3 × 3 162 × 512
Conv1 × 1 162 × 2048

3.1.2. Multilayer Parallel Residual Attention

MPR is designed to address the problem that cracks in the image provide little informa-
tion and the pixel segmentation accuracy is low. MPR is added to the jump connection so
that the decoder can obtain more important semantic information for learning and increase
the edge segmentation accuracy. The MPR consists of 4 parts (Figure 4): the skip layer, the
1 × 1 convolution layer, the 3 × 3 convolution layer, and the atrous convolution layer with
a dilation rate of 3. The 4 parts perform the convolution calculation in parallel, and the
main codes are shown in Table 2. The skip layer skips the input feature map x and adds it
directly to the output of Fi(x). This step retains the feature information of the previous layer
in the feature map y of the next layer to protect information integrity. The 1× 1 convolution
and 3 × 3 convolution layers allow the model to perform feature learning under multiscale
convolution, extracting deep semantic information and increasing the nonlinear capability
of the model. The cavity convolution layer uses a cavity convolution with a sampling rate
of 3 to give the model a larger perceptual field for the same number of parameters and
computational effort, which helps to improve the missing information problem for crack
edge identification. Finally, the outputs of the four are summed to increase the amount of
crack information in each feature map dimension, thus reducing the influence of irrelevant
feature information on subsequent crack identification results.
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Table 2. MPR main codes.

class MPR (nn.Module):

def __init__ (self, ch_in, ch_out):
Super (FResidual, self).__init__ ()
# first
self.conv = nn.Sequential (

nn.Conv2d (ch_in, ch_out, kernel_size = 3, stride = 1, padding = 1, bias = True),
nn.BatchNorm2d (ch_out),
nn.ReLU (inplace = True)

)
# second
self.skip = nn.Sequential (

nn.Conv2d (ch_in, ch_out, kernel_size = 1, stride = 1, padding = 0),
nn.BatchNorm2d (ch_out),

)
# Third
self.aspp_block1 = nn.Sequential (

nn.Conv2d (ch_in, ch_out, 3, stride = 1, padding = 3, dilation = 3),
nn.ReLU (inplace = True),
nn.BatchNorm2d (ch_out),

)
# Fourth
self.conv2 = nn.Conv2d (ch_in, ch_out, kernel_size = 1, stride = 1, padding = 0)

3.2. Two-Stage Transfer Learning Strategy

Semantic segmentation is a type of supervised learning that requires a large quantity
of labelled training data, which is not easy to obtain on concrete dam surface cracks in
complex environments. The labour cost of acquisition and data labelling is high, and the
lack of datasets easily leads to inadequate model training and low detection accuracy. To
solve the problem of insufficient training data for deep learning, transfer learning methods
have been developed [66]. However, if the difference between two domains is particularly
large, the results obtained by directly adopting the transfer learning method are often
poor. Therefore, this paper designs a two-stage learning strategy for knowledge transfer to
improve the low detection accuracy and poor modelling results on small sample datasets.
The two-stage transfer learning training process is shown in Figure 5. (1) The first stage
is cross-domain-based model knowledge transfer, i.e., sharing model parameters using
the source domain to the target domain. The training results obtained from the PASCAL
VOC 2012 dataset model in the source domain are used as the pretraining model for the
target domain (DatasetA) in the first stage. The parameter information shared between the
source and target domains is found so that DatasetA can be updated with parameters from
the perspective of the algorithm and the model during the training process. This process
avoids network learning from scratch and allows a better mentor model to be obtained in
the second stage. (2) The second stage is based on intradomain feature knowledge transfer,
i.e., mapping features from the source and target domains from the original feature space
to the new feature space. The pretrained model of DatasetA after the first stage of transfer
learning is used as the source domain in the second stage to learn the same information
and knowledge structure from the related domain. Then, the same feature representation
existing in the source domain as in the target domain is migrated to the target domain
(DatasetB) through the transfer learning method. This ensures that the existing labelled
data samples in the source domain can be better utilised for classification training in the
new space and solves the poor accuracy problem caused by the sparse labelled dam face
crack images.

Both phases were trained for 300 generations, but due to the similarity in data, tasks
and models between the first and second phases, a freeze training step was added to the
second phase transfer training to speed up the training efficiency and prevent the weights
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from being corrupted. This means that the backbone network was frozen for the first
150 training generations, only the decoding classifier was trained, and the whole network
was unfrozen for the second 150 training and learning generations. The two-stage transfer
learning strategy reduced the model training time and resulted in a highly accurate and
robust model for intelligent concrete dam surface crack detection.
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4. Experiments and Evaluation Indicators
4.1. Experimental Setup

The experiments in this paper were based on the Ubuntu 18.04 operating system,
the CPU processor was an AMD EPYC7543 32-Core processor, the GPU used a GeForce
RTX3090 graphics card with 24 GB of video memory, and the programming language
was Python 3.8, and CUDA 11.1, the PyTorch 1.8.1 deep learning framework for network
training was used. The specific model training parameters are shown in Table 3.

Table 3. Model training parameters.

Parameters Configuration

Input image size 512 × 512
Batch_Size 8

Epoch 300
Optimiser Adam

Momentum 0.9
Initial learning rate 0.0001

Initial learning rate decay type CosineAnnealingLR
Loss function Cross Entropy Loss

4.2. Datasets

The dataset used for the experiments in this paper has three parts: the PASCAL VOC
2012 dataset, the first stage cross-domain training crack dataset (DatasetA), and the second
stage target domain concrete dam surface crack image dataset (DatasetB). The PASCAL
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VOC 2012 dataset is a public dataset for world-class computer vision challenge image
classification, detection, or semantic segmentation, consisting of 1464 images from the
training set, 1449 images from the validation set, containing 20 categories and 1 back-
ground. DatasetA consists of 2 parts, partly derived from the publicly available datasets
CrackForest [30], SDNET2018 [24], and Aft Original Crack DataSet Second [26], but the
distribution and pixel characteristics of cracks on the concrete dam surfaces are very dif-
ferent from the open source dataset. Therefore, in the 3 publicly available datasets, only
the images with fine and obscure cracks were selected, and those with similarity greater
than 0.7 were excluded to improve the dataset quality; 280 images were finally obtained.
Another part of DatasetA we acquired in actual concrete road cracks, and 700 small crack
images were added to increase the realism of the dataset and make it closer to the actual
engineering context. After the image enhancement algorithm retinex [67], adjustment of
image luminosity, contrast, and spatial variation (random rotation, flip), DatasetA was
expanded to 3152 images and used as the target domain dataset for cross-domain training
in the first phase of the model. The selected open dataset images and road crack images are
shown in Figure 6.

Water 2023, 15, x FOR PEER REVIEW 12 of 23 
 

 

annotated at the pixel level using the LabelMe annotation tool. Finally, DatasetB was ran-
domly divided into a training set and a validation set at a ratio of 8:2. 

    
Figure 6. Images from DatasetA. From left to right, selected CrackForest, SDNET2018, Aft Original 
Crack Dataset. Second, a realistic collection of road cracks. 

4.3. Evaluation Indicators 
To objectively evaluate the performance of different models, typical evaluation met-

rics mean intersection over union (mIoU), mean pixel accuracy (mPA), parameters, and 
floating point operations (FLOPs) are introduced in this paper. Intersection of union (IoU) 
represents the overlap rate between the predicted mask and the actual mask. mIoU is the 
arithmetic mean of the IoU values for each category and assesses whether the overall im-
age segmentation is precise. Pixel accuracy (PA) indicates the proportion of the number of 
correctly segmented pixels, and mPA is the arithmetic mean of each class of PA to assess 
the global accuracy of the model. Parameters measure the number of model parameters, 
FLOPs measure the complexity of the model, i.e., the number of model computations, and 
FPS measures the speed of inference of the model. 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝑘𝑘+1

∑ 𝑝𝑝𝑖𝑖𝑖𝑖
∑ 𝑝𝑝𝑖𝑖𝑖𝑖+∑ 𝑝𝑝𝑖𝑖𝑖𝑖−𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘

𝑖𝑖=0
𝑘𝑘
𝑖𝑖=0

𝑘𝑘
𝑖𝑖=0   (1) 

𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝑘𝑘+1

∑ 𝑝𝑝𝑖𝑖𝑖𝑖
∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖=0

𝑘𝑘
𝑖𝑖=0   (2) 

where k + 1 denotes the category to be predicted plus a background, and pij denotes the 
number of pixels in category i that are predicted to be in category j. Therefore, pii is a 
positive sample, pij is a false negative sample, and pji is a false positive sample. 

5. Results and Discussion 
5.1. Ablation Experiments 

To verify the effectiveness and advancement of the improvement strategies in this 
paper, eight sets of ablation experiments were designed to validate the model under the 
same dataset and experimental environment to verify the impact of different improve-
ment strategies on the concrete dam surface crack extraction accuracy. In Table 4, it can be 
seen that the concrete dam surface crack segmentation performance improved under dif-
ferent strategies. After using ResNet50 as the backbone feature extraction network, mIoU 
and mPA improved by 1.2 and 1.3 percentage points, respectively, compared with the 
UNet model, the model computations were reduced by 64.1 percentage points, and the 
inference speed increased by 128.1 percentage points, indicating that the ResNet50 back-
bone network can obtain more crack feature information and segment the foreground 
crack region more accurately. Additionally, it can reduce the complexity of the UNet 
model and speed up the model inference capability. After the UNet model was embedded 
with MPR attention, mIoU and mPA improved by 1.1 and 1.6 percentage points, respec-
tively, compared to the UNet model. The model’s ability to extract important semantic 
information was enhanced, suppressing some of the useless background feature infor-
mation, improving pixel segmentation accuracy, and making edge details more complete 
but sacrificing detection time. After using the two-stage transfer learning strategy, both 
mIoU and mPA substantially improved, proving that the method can effectively alleviate 

Figure 6. Images from DatasetA. From left to right, selected CrackForest, SDNET2018, Aft Original
Crack Dataset. Second, a realistic collection of road cracks.

The second phase target domain DatasetB is our self-built concrete dam surface crack
dataset, and the DJI Mavic 3 UAV was used to photograph several concrete dams in the
upper Jinsha River in China to obtain concrete dam crack image data. The shooting distance
was 3~10 m and focused on image diversity (different angles, background conditions, light
intensity) with a total of 350 images collected, with crack width between 3 and 20 mm.
To ensure that the dataset can adapt to different complex environments and to make the
model more generalisable and robust, the images were annotated and then expanded using
retinex enhancement, adjusting image luminosity, contrast, and spatial variation to obtain
1393 images.

The intelligent detection method for concrete dam surface cracks in this paper used
supervised learning. To ensure the quality of the dataset and the accuracy of the target
information, both the actual collected images of DatasetA and DatasetB were manually
annotated at the pixel level using the LabelMe annotation tool. Finally, DatasetB was
randomly divided into a training set and a validation set at a ratio of 8:2.

4.3. Evaluation Indicators

To objectively evaluate the performance of different models, typical evaluation met-
rics mean intersection over union (mIoU), mean pixel accuracy (mPA), parameters, and
floating point operations (FLOPs) are introduced in this paper. Intersection of union (IoU)
represents the overlap rate between the predicted mask and the actual mask. mIoU is the
arithmetic mean of the IoU values for each category and assesses whether the overall image
segmentation is precise. Pixel accuracy (PA) indicates the proportion of the number of
correctly segmented pixels, and mPA is the arithmetic mean of each class of PA to assess
the global accuracy of the model. Parameters measure the number of model parameters,
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FLOPs measure the complexity of the model, i.e., the number of model computations, and
FPS measures the speed of inference of the model.

mIoU =
1

k + 1 ∑k
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(1)

mPA =
1

k + 1 ∑k
i=0

pii

∑k
j=0 pij

(2)

where k + 1 denotes the category to be predicted plus a background, and pij denotes the
number of pixels in category i that are predicted to be in category j. Therefore, pii is a
positive sample, pij is a false negative sample, and pji is a false positive sample.

5. Results and Discussion
5.1. Ablation Experiments

To verify the effectiveness and advancement of the improvement strategies in this
paper, eight sets of ablation experiments were designed to validate the model under the
same dataset and experimental environment to verify the impact of different improvement
strategies on the concrete dam surface crack extraction accuracy. In Table 4, it can be seen
that the concrete dam surface crack segmentation performance improved under different
strategies. After using ResNet50 as the backbone feature extraction network, mIoU and
mPA improved by 1.2 and 1.3 percentage points, respectively, compared with the UNet
model, the model computations were reduced by 64.1 percentage points, and the inference
speed increased by 128.1 percentage points, indicating that the ResNet50 backbone network
can obtain more crack feature information and segment the foreground crack region more
accurately. Additionally, it can reduce the complexity of the UNet model and speed up
the model inference capability. After the UNet model was embedded with MPR attention,
mIoU and mPA improved by 1.1 and 1.6 percentage points, respectively, compared to the
UNet model. The model’s ability to extract important semantic information was enhanced,
suppressing some of the useless background feature information, improving pixel segmen-
tation accuracy, and making edge details more complete but sacrificing detection time. After
using the two-stage transfer learning strategy, both mIoU and mPA substantially improved,
proving that the method can effectively alleviate model overfitting and undertraining due
to the lack of a dataset, reduce fragmentation of dam surface cracks, and reduce missed
detections. In the overall analysis, the integrated capacity of the model was optimal after
integrating the three improvements simultaneously. The mIoU and mPA of the proposed
method were 88.3% and 92.7%, respectively, and were 4.6 and 3.2 percentage points higher
than those of the UNet model. The computational volume required by this paper was
36.7 percentage points lower than that of the UNet model, and the inference speed was
48.9 percentage points higher than that of the baseline UNet model. This demonstrates
that the method achieves better concrete dam surface crack segmentation performance.
Although the increase in the number of method parameters in this paper led to an increase
in the memory taken up by the model weights, the size of the memory taken up by the
model had no direct effect on the concrete dam surface crack segmentation in this paper.

5.2. Comparative Trials of Different Attention Mechanisms

To reflect the advantages of MPR attention in this paper, Table 5 shows the experimen-
tal results of different attention mechanisms on model detection ability under the same
experimental environment and dataset. The table shows that SE [68] attention had the least
disturbance on the model inference speed but did not significantly improve model accuracy
and precision. Compared to SE attention, the popular CBAM [69] attention mechanism
achieved a more pronounced improvement to cleft IoU and PA, indicating that convolu-
tional block attention module (CBAM) attention is more capable of extracting fine targets.
The improvement in crack accuracy from adding CA [70] attention was negligible and had
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no significant effect on accuracy. There was a small decrease in accuracy with the addition
of the lightweight ECA [71] model, with a 0.3% decrease in mIoU and a 0.7% decrease
in mPA, indicating that lightweight efficient channel attention (ECA) is less suitable for
fine crack detection and that attention is not always applicable to any scenario. Compared
with other commonly used attention mechanisms, MPR attention, designed in this paper,
is more effective in improving accuracy and precision and is more suitable for detecting
concrete dam surface cracks. Although MPR will have some impact on the inference speed,
the improvement in detection accuracy is undoubtedly more important for better ensuring
dam safety and stability and is, therefore, more cost-effective.

Table 4. Comparison of the ablation experiment results.

Model ResNet50 MPR Transfer Learning mIoU/% mPA/% Parameters/M FLOPs/G FPS

UNet 83.7 89.5 34.5 512.6 24.5
A

√
84.9 90.8 43.9 184.1 55.9

B
√

84.8 91.1 41.5 694.1 17.9
C

√
85.4 91.1 34.5 512.6 24.5

D
√ √

85.4 91.2 71.6 324.0 36.5
E

√ √
87.1 91.7 41.5 694.1 17.9

F
√ √

87.3 91.5 43.9 184.1 55.9
Our

√ √ √
88.3 92.7 71.6 324.0 36.5

Note:“
√

” indicates an improved strategy added to the original UNet model.

Table 5. Results of experiments with different added attention mechanisms (IoU and PA only for the
crack class).

Model IoU/% mIoU/% PA/% mPA/% FPS

UNet 68.0 83.7 79.2 89.5 24.5
UNet + SE 68.4 83.9 81.1 90.4 24.4

UNet + CBAM 68.9 84.2 81 90.4 19.1
UNet + CA 68.0 83.7 79.6 89.7 21.5

UNet + ECA 67.4 83.4 77.9 88.8 24.3
UNet + MPR 70.3 84.8 82.5 91.1 17.9

5.3. Training Trials with Different Transfer Learning Approaches

Table 6 shows the effect of different transfer learning approaches on improving the
segmentation accuracy of the model. It is clear from Table 6 that the cross-domain-based
transfer school approach achieved the lowest improvement in training accuracy for the
target domain, with mIoU and mPA only improving by 0.6% and 0.3%, demonstrating
that if the difference between the 2 domains is large, the pretrained model has little effect
in improving the target domain. Compared with cross-domain transfer, the intradomain
transfer learning approach achieved a more significant improvement in target domain
accuracy, with the IoU and PA of the cracks improving by 1.9% and 1.5%, respectively,
indicating that better target domain learning can be achieved through intradomain feature
knowledge transfer. Compared to single-segment transfer learning, a two-stage transfer
learning approach with cross-domain and in-domain learning was used in this paper for
optimal results. The cross-domain training was first performed on the in-domain DatasetA
through the out-of-domain PASCAL VOC 2012 dataset to avoid training from zero so that
a better in-domain pretraining model was obtained. Then, the pretraining model was
used as the tutor model for the target domain to achieve the best transfer learning effect.
The final IoU and PA of the cracks improved by 5.6% and 2.9%, respectively, indicating
that in transfer learning, in addition to the impact of the difference in data distribution
between the source and target domains on the accuracy improvement, the merit of the
mentor model also has an impact on transfer learning, which also verifies the effectiveness
of the two-stage transfer learning strategy in this paper.
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Table 6. Comparison results of different transfer learning approaches. (IoU and PA only for the
crack class).

Transfer
Learning
Approach

Source Domain
Datasets

Source Domain Model Target Domain Model

mIoU mPA IoU mIoU PA mPA

/ / / / 71.3 85.4 82.7 91.2
Cross-domain training PASCAL VOC 2012 69.5 75.2 72.6 86.0 83.3 91.5
Intradomain training DatasetA 88.7 93.5 73.2 86.4 84.2 91.9

Two-stage
training

PASCAL VOC 2012
+DatasetA 90.2 94.4 76.9 88.3 85.6 92.7

5.4. Crack Segmentation Image Comparison

For a more intuitive analysis and to demonstrate that the proposed method has greater
crack segmentation capability, the concrete dam surface cracks detection results are visu-
alised in this section using the UNet model, UNet + ResNet50, UNet + ResNet50 + MPR,
and the methods in this paper. The visualisation of the crack segmentation for the dif-
ferent models is shown in Figure 7. The selected dam face crack images were complex
and contained obscure, microscopic cracks; therefore, segmentation was challenging. The
UNet benchmark model in Figure 7 roughly extracted the dam face crack contours, but
the extraction was incomplete and weak for fine cracks, leading to serious underidenti-
fication and noise phenomena, and the segmentation of crack edges was smoother and
rougher, with low segmentation accuracy. With the addition of the ResNet50 backbone
network to UNet, the model’s ability to extract features from the image was enhanced,
and the segmentation accuracy improved, allowing the outline of fine cracks to be roughly
extracted. However, there were fractures and noise, and the edge details needed to be
improved. UNet + ResNet50 then added MPR attention to reduce the interference of back-
ground regions on subsequent predictions, focus more on crack regions, and enhance fine
crack extraction, thus improving the accuracy and precision of the model’s crack edge
shape segmentation with clearer contours and a better ability to retain details than the
UNet model, but fragmented segmentation and missed detection were still present. After
combining the three improved strategies, the proposed method achieved the highest degree
of dam face crack segmentation completeness, which was closer to the manual annotation,
and had a strong segmentation ability and robustness for cracks of different scales. These
results show that the two-stage transfer learning strategy can compensate for the under-
segmentation and overfitting phenomenon caused by the small quantity of data and can
effectively improve the missed detection situation caused by thin cracks and few effective
pixel points and process the edge details in a clearer, more detailed, and complete way. The
combined subjective and objective results show that the proposed method exhibits the best
performance in intelligent concrete dam surface crack segmentation and shows greater
robustness in segmenting complex and obscure fine cracks.

5.5. Comparison of Typical Models

Table 7 shows the training evaluation results of this paper’s model with the current
typical semantic segmentation models UNet [28], PSPNet [29], DeepLabV3+ [30], and
SegFormer [31] in the same experimental environment and with the same dataset. From
Table 7, the DeeplabV3+ model had the lowest mIoU and mPA with only 71.6% and
75.0%, respectively, followed by PSPNet, with both models having lower segmentation
values than expected. This indicates that using large networks such as DeepLabV3+
and other models with insufficient sample sizes can easily lead to overfitting. The better
segmentation accuracy of the UNet and SegFormer models shows that these models have
some stable segmentation ability even in small datasets and complex scenarios. Overall, the
accuracy indexes of these methods were optimal, and the IoU and PA of cracks significantly
improved compared with the UNet model before improvement, achieving 76.9% and 85.6%,
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respectively. This indicates that the segmentation accuracy of the improved method for
concrete dam surface cracks is better than the other models and more suitable for concrete
dam surface crack detection.
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Figure 7. Crack segmentation results for different models. From left to right, original, ground truth,
UNet, UNet + ResNet50, UNet + ResNet50 + MPR, our method. (A–E) denote the segmentation of
different dam cracks in different models. The red box reflects a sharper contrast.

Table 7. Comparison of evaluation indicators of different models.

Model
IoU/%

mIoU/%
PA/%

mPA/%Crack Background Crack Background

UNet 68.0 99.4 83.7 79.2 99.8 89.5
PSPNet 52.3 99.2 75.7 62.9 99.7 81.3

DeepLabV3+ 44.1 99.1 71.6 50.2 99.8 75.0
SegFormer 64.5 99.4 81.9 77.6 99.7 88.7

Our method 76.9 99.6 88.3 85.6 99.8 92.7

98



Water 2023, 15, 2082

5.6. Discussion
5.6.1. The Effectiveness of Transfer Learning

Figure 8 shows the change curves of the ablation experimental metrics. It can be
observed that the mIoU and mPA metric values of each experimental model increased with
the increasing number of iterations, and the training loss decreased with the increasing
number of iterations. tThe models that did not use the transfer learning strategy were
trained for 260 iterations before the fluctuation in each metric gradually stabilised. Then,
the mIoU, mPA, and training loss curves were parallel to the X-axis, indicating that the
training could end. The improvement in mIoU and mPA metrics and the decrease in loss
values were evident in the models trained with the transfer learning strategy. mIoU and
mPA increased rapidly in the first 10 phases of the training process and converged smoothly
in the latter phases of the training process, with the corresponding loss values dropping
to much lower values. In summary, with the use of the transfer learning strategy, the
segmentation accuracy of small datasets can be improved through knowledge and feature
sharing, and high accuracy can be achieved in a short training time. Therefore, transfer
learning can be applied not only to detection tasks with small datasets but also to scenarios
with limited computational power for model training to achieve fast training results, reduce
the number of training rounds, and save computational resources.
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5.6.2. Crack Area Pixel Value Prediction

Tables 4, 6 and 7 and Figure 7 show that the proposed method performs best in the
automatic concrete dam surface crack segmentation, with more accurate segmentation of
complex and obscure small cracks, and can accurately and efficiently detect crack location
and shape. This subsection, therefore, performs a pixel-level statistical analysis of the
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cracks obtained from the segmentation of this paper’s method to predict the pixel value
of the image crack area. Table 8 shows the statistical table of crack area prediction of the
proposed method, and the selected images are consistent with those segmented in Figure 7.
In Table 8, it can be seen that the crack area prediction accuracy by the proposed method
reaches more than 85.7%, and the prediction accuracy of relatively obvious crack areas
can reach more than 90%. The test results show that, in addition to the fast and accurate
crack identification and segmentation, the proposed crack segmentation method can also
accurately obtain crack area information. In summary, the UAV images can be fed into the
proposed method to efficiently and accurately identify and segment concrete dam surface
cracks, then the pixel values of the segmented crack areas can be derived, and the actual
area values of concrete dam cracks can be obtained by converting the pixel points to the
actual values [72]. The crack hazard level is judged based on the area obtained, and then
the appropriate material is selected for remediation, enabling better targeted repair during
dam health diagnosis and solving the low manual measurement efficiency and detection
accuracy problems while avoiding material waste.

Table 8. Statistics on the predicted crack area of the model in this paper.

Picture A B C D E

Pixel value
Ground True 78,556 57,768 38,576 45,377 33,107

Our prediction 67,326 52,577 33,304 42,627 32,426
Precision/% 85.7 86.3 97.9 93.9 91.0

5.6.3. Practical Applications

Figure 9a,b gives the results of the dam crack image segmentation without annotation
by the method in this paper. The method effectively detects the general outline and location
of the cracks in the picture and can accurately segment different cracks, which proves the
effectiveness and reliability of the method in this paper for detecting cracks in actual dams.
Figure 9c,d shows the dam crack images with different environmental backgrounds from
DatasetB, and we find that they can also obtain good recognition, probably because the
migration learning process is used in pretraining the weights for crack images of similar
environments, so crack segmentation in other environmental backgrounds also achieves
good robustness.
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5.6.4. Future Work

Table 4 reflects the combined ability of the methods in this paper to reach optimality.
The mIoU and inference speed were improved by ResNet50 as a feature extraction network,
but the improvement in mPA was not significant. The mPA measures the proportion of
pixels correctly segmented by the model, indicating that there is still room for improvement
in the model’s segmentation and edge recognition capabilities. The experiments found that
the mPA improvement was more obvious after adding MPR to the UNet model. Therefore,
the two models were combined, but there was still the fine crack missed detection problem,
which was most likely caused by the small sample size of the dataset, making the model
training insufficient. After the improved UNet model was trained using a two-stage transfer
strategy, a significant reduction in model misses was observed in Figure 5, demonstrating
that transfer learning is very effective in helping to train when using small datasets. The
method ultimately has good inference speed while achieving the highest segmentation
accuracy but also reflects the large number of parameters and the large space occupied by
the method volume, resulting in weak model mobility, which is less suitable for detection
in moving scenes. In the future, the model can be thinned by pruning the convolutional
layers or replacing the model encoder with a lightweight feature extraction network to
reduce the parameters and computations to make the model lightweight so that the model
can also be deployed in mobile and embedded devices such as Jetson.

6. Conclusions

To improve concrete dam surface crack detection efficiency and accuracy, an intelligent
concrete dam surface crack detection method based on two-stage transfer learning is
proposed, which can achieve accurate and efficient UAV concrete dam surface crack image
segmentation. Compared with other typical semantic segmentation models, the proposed
method has the best overall capability and better performance in detecting cracks in
concrete dams.

After training using two-stage transfer learning, the proposed method alleviates the
inadequate training problem caused by small-scale dam crack datasets, reduces the fine
crack miss detection phenomenon, and can achieve high accuracy in shorter training rounds.
Additionally, using ResNet50 as a UNet model feature extraction network can fully extract
crack feature information and improve the model segmentation capability. Finally, adding
MPR to the jump connection path significantly improves pixel accuracy and makes crack
edge segmentation more delicate and complete.

The experimental results show that the mIoU and mPA of the proposed method reach
88.3% and 92.7%, respectively, and the FPS is 36.5. The proposed method has the ability
to segment cracks on concrete dam surfaces more efficiently and accurately and achieves
an accuracy of over 85.7% for predicting the crack area, which can better detect cracks in
dams safely.
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Abstract: Roller Compacted Concrete (RCC) dams are critical infrastructure, playing an important
role in economic and social development. However, dam failure can cause great losses. To mitigate
hazards, studies of methods to deal with the uncertainty involved in the comprehensive evaluation
process of the safety state of RCC dams are hot issues. Interval number theory is applied to quantify
the uncertainty in this study. A comprehensive evaluation indicator system is explored, an approach
to allocating the indicator weight rationally is proposed, and a comprehensive evaluation model is
established. Comprehensive evaluation standards are developed. An RCC dam in China is used
to illustrate the applicability of this comprehensive evaluation method based on interval number
theory. The results indicate that the method and models proposed are suitable for comprehensively
evaluating the safety state of RCC dams and can be used as a new procedure to monitor the safety of
an RCC dam.

Keywords: RCC dams; safety state; comprehensive evaluation; interval number theory; uncertainty

1. Introduction

The concept of RCC dams was proposed by J.M. Raphael from the University of
California, Berkeley, in 1970 [1]. RCC dams consist of concrete placed at a lower water-to-
cement ratio compared with conventional concrete with the aid of compaction equipment
and methodologies typically employed for earth-fill dam construction. This construction
method permits a considerable reduction in the cost and construction time of dams com-
pared not only with traditional concrete dams but also with earth-fill dams. To date, RCC
dams have become the fastest-growing international dams. With the implementation of the
strategy of Western power development and transportation from West to East, increasingly
more RCC dams are under construction or planned to be constructed in China. The working
behavior and safety state of RCC dams not only directly affect the expected benefits of the
water conservation and hydropower projects but also the safety of the lives and property
of people downstream. Therefore, a comprehensive evaluation of the safety state of RCC
dams is of great significance for hazard prevention and mitigation.

The working behavior of RCC dams changes over time under the influence of external
load and environmental changes, with specific reflections in deformation, seepage, insta-
bility, etc. Current research on dam safety evaluation can be classified into two categories:
single indicator evaluation and comprehensive evaluation, including many indicators.
Wang et al. [2] tried to find the leakage path using the tracer technique and evaluated the
dam seepage state with entropy weight-set pair analysis. Chelidze et al. [3] established an
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effective remote monitoring system for dam deformation by connecting terminals, sensors,
and a central processing unit to the monitoring sites through a global system for mobile
communications or general packet radio service modems and obtained a real-time evalua-
tion of the dam deformation state by comparing the monitoring values with the theoretical
values. Li et al. [4] evaluated the dam crack state using a regression coefficient fluctuation
method with a statistical model and catastrophe theory. Haralampos et al. [5] evaluated
the dam strength state using laboratory and in situ tests. Chen [6] studied the dam seismic
safety state evaluation methods, including the dam site-specific ground motion input, im-
proved response analysis, dynamic model test verification, field experiment investigations,
dynamic behavior of dam concrete, and seismic monitoring and observation. Li et al. [7]
evaluated the dam instability state using the strength reserve factor method to simulate the
gradual failure and possibly unstable modes of dams. Xi et al. [8] established a concrete dam
deformation safety prediction model based on deep learning by using the open-source deep
learning framework TensorFlow and the mature convolutional neural network technology
in deep learning theory. Chen et al. [9] evaluated the method of combining radial basis
neural network and kernel principal component analysis to monitor the deformation of
super-high concrete dams. Wang et al. [10] proposed a dynamic matter-element-extension
model which considered the correlation among indicators and established the seepage
safety evaluation model of the dynamic concrete gravity dam. He et al. [11] introduced
the cloud model into a fuzzy comprehensive evaluation model to solve the problems of
fuzziness and randomness in the seepage security risk evaluation index. Yang et al. [12]
applied the point-to-face variable comparison analysis mode to monitor the dam-shaped
variables. Panvalkar et al. [13] applied borehole nuclear logging and tracer techniques to
trace the suspected leakage zones and path through the body of the dam to evaluate the
seepage situation of the dam.

The studies above provide useful tools for dam safety monitoring and evaluation.
However, a single indicator evaluation can reflect only partial information regarding the
dam’s safety state. Comprehensive evaluation with many indicators is necessary for the
overall monitoring of the dam’s safety state. Mirzabozorga et al. [14] evaluated the dam
safety state by combining multi-source in situ information and finite element calculation.
Mata et al. [15] merged the physical quantities measured by the automated monitoring
system of a dam, appropriately weighted, into a new single indicator belonging to any of
two classes (normal behavior and development of a failure scenario). Lokke et al. [16] put
forward a safety evaluation method for concrete gravity dams by building a dam-water-
foundation system with response spectrum analysis. Chiganne et al. [17] demonstrated a
new method for evaluating the flood overtopping failure scenario for embankment dams
with concrete upstream slope protection considering geotechnical, hydraulic, and structural
factors. Bretas et al. [18] presented a numerical model for the safety analysis of gravity dams
based on the discrete element method and evaluated the sliding failure mechanism and the
stress state. Li et al. [19] used the Delphi method combined with grey relational analysis to
select the dominant factors and then selected back propagation neural network combined
with the AdaBoost algorithm to build the dam safety evaluation model. Han et al. [20]
proposed a safety evaluation model of earth-rock dams based on the combination method
of the ideal point and cloud theory model, which can scientifically solve the uncertainty
problem in the safety evaluation of earth-rock dams. Wen et al. [21] determined the
comprehensive evaluation grade of dam safety behavior by using the fuzzy recognition
model combining the subindex evaluation level and comprehensive weight. Shu et al. [22]
proposed a dam safety evaluation model based on interval-valued intuitionistic fuzzy
set and evidence theory for dam safety reliability evaluations, which aimed at the multi-
sources, heterogeneity, and complexity of dam safety evaluation. Li et al. [23] used the
modified moving average-cosine similarity method to quantify the lag effect of operation
indicators and established a comprehensive safety evaluation index system on this basis.
Sang et al. [24] proposed a new method combining an extended cloud model and an
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extended analytic hierarchy process to address the uncertainty problem in the evaluation
of the overall safety trend of dams and the selection of safety trend warning indicators.

These studies on dam safety state evaluation provide powerful technical support for
its operation. However, the construction interfaces of RCC dams make them different from
other types of dams. The structural characteristics of the RCC dam make the construction
layer easy to become a weak surface and the concentrated channel of seepage in the
structure of the RCC dam. However, the current research on the characteristics of the RCC
dam layer mainly focuses on the aspects of the layer strength and interlayer bonding
qualities, while few pieces of research focus on the comprehensive evaluation of the
characteristics of the RCC dam layer. The development of a comprehensive evaluation
method for the safety state of RCC dams considering the specific structural characteristics
of RCC dams and the uncertainty in the evaluation procedure is necessary. Extenics, rough
set, fuzzy theory, gray system theory, attribute mathematics, and set pair analysis are
normally used for dealing with uncertainty problems [25–32]. Each of the methods has its
own advantages and disadvantages. Recently, the interval number theory [33] has shown
advantages in dealing with the uncertainty problem. Therefore, the interval number theory
is applied in this study to handle the uncertainty in the comprehensive evaluation of the
RCC dam safety state considering the construction interfaces. Using interval numbers
rather than natural numbers to describe the evaluation indicators and safety state is more
reasonable and acceptable.

The rest of this paper is organized as follows. Based on interval number theory, the
comprehensive evaluation indicator system is built correspondingly in Section 2, methods
for calculating the interval number weights of these indicators are discussed in Section 3,
and the comprehensive evaluation model is established in Section 4. Then, an RCC dam
in China is utilized as a case study to verify the feasibility of this proposed method in
Section 5. Finally, Section 6 is a summary that concludes this work.

2. Comprehensive Evaluation Indicators
2.1. Comprehensive Evaluation Indicator System

According to the principles of building the indicator system, i.e., scientific and opera-
tional, clearly prior and relatively independent, qualitative and quantitative, and reasonably
hierarchical indicators were determined. As RCC dams are constructed in layers, the in-
terface gap between adjacent layers is larger than in traditional concrete dams. This gap
generates a certain pressure at the interface when compressing the cement concrete, cre-
ating an interface effect. The interface effect is mainly reflected in several aspects: stress
concentration, interface exchange, and overall deformation. Therefore, in addition to the
traditional dam evaluation items, the corresponding interface stresses, displacements, and
other interface characteristics should be considered. We built the evaluation indicator
system shown in Figure 1. The first level is the target level reflecting the safety state of the
RCC dam. The second level is the criterion level, including the deformation, seepage, stress,
and stability state of an RCC dam. The third level is the indicator level constituted by the
displacement of the dam body, the seepage of the dam body, the stress of the dam heel, the
stress of the dam toe, the stress of the dam abutment, the stress of the interfaces, and stabil-
ity against sliding. The fourth level is the basic level, including horizontal displacement,
vertical displacement, the ratio of the interface displacement to the total displacement,
uplift pressure, quantity of leakage, ratio of the interface leakage to the total leakage, range
of tensile stress, the normal vertical stress, the range of compressive stress, the maximum
tensile stress, the maximum compressive stress, the maximum shear stress, stability against
sliding of the dam foundation, stability against sliding of the interface, etc.

107



Water 2023, 15, 2089Water 2023, 15, 2089 4 of 15 
 

 

Safety state of RCC dams

Seepage

Displacement 

of

 dam body

H
o
ri

zo
n
ta

l
d
is

p
la

c
em

e
n
t

Target level

Criterion level

Index level

Basic level 

Gravity dam Arch dam

(First level)

(Second level)

(Third level)

(Fourth level)

Deformation Stress Stability

Seepage

 of 

dam body

Stress

 of 

dam heel

Stress

 of 

dam toe

Stress

 of 

dam

abutment

Stress

 of 

interfaces

Stability

 against 

sliding

V
er

ti
c
al

d
is

p
la

c
em

e
n
t

R
at

io
 o

f 
in

te
rf

a
ce

 t
o
 t

o
a
tl

U
p
li

ft
p
re

ss
u
re

A
m

o
u

n
t 

o
f

le
ak

a
g
e

R
at

io
 o

f 
in

te
rf

a
ce

 t
o
 t

o
ta

l

A
re

a 
o
f

te
n
si

le
 s

tr
es

s

V
er

ti
c
al

 n
o

rm
al

st
re

ss

V
er

ti
c
al

 n
o

rm
al

st
re

ss
A

re
a 

o
f 

c
o
m

p
re

ss
iv

e 
p
re

ss
u
re

V
er

ti
c
al

 n
o

rm
al

st
re

ss

M
a
x
im

u
m

te
n
si

le
 s

tr
es

s

M
a
x
im

u
m

c
o
m

p
re

ss
iv

e 
st

re
ss

A
re

a 
o
f

te
n
si

le
 s

tr
es

s

M
a
x
im

u
m

sh
e
ar

 s
tr

e
ss

S
ta

b
il

it
y

 o
f 

d
a
m

 f
o
u
n

d
a
ti

o
n

S
ta

b
il

it
y

 o
f 

in
te

rf
ac

es

S
ta

b
il

it
y

 o
f 

d
a
m

 a
b

u
tm

en
t

 

Figure 1. Comprehensive evaluation indicator system for the safety state of RCC dams. 
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Figure 1. Comprehensive evaluation indicator system for the safety state of RCC dams.

2.2. Grades of Evaluation Indicators

Considering the guidelines on dam safety evaluation and the practical conditions of
dam operation, we divide the evaluation indicators into five grades. Since some of the
evaluation indicators are qualitative and others are quantitative, the respective grading
methods are described.

2.2.1. Grades of Qualitative Evaluation Indicators

The qualitative indicators are usually graded with the experience of experts. To make
the grades as accurate as possible, site management, design recheck, and construction
review are investigated overall with the aid of professional regulations, relevant standards,
and documents. The grading standards are shown in Table 1.

Table 1. Grading standards for qualitative evaluation indicators.

Grade Site Management Design Recheck Construction Review

I Structural integrity with no obvious
damage and leakage

Strength and seepage meet the
regulation requirement

Construction quality meets
the design requirement fully

II Local damage with a few cracks
or little leakage

Strength and seepage mainly meet the
regulation requirement

Construction quality mainly
meets the design requirement

III Obvious cracks or a few educts with
hidden damage

Some strength and seepage do not meet
the regulation requirement, but the

stability is good

Some construction quality
does not meet the design

requirements

IV Local deep cracks, serious leakage,
obvious educts

Some strengths and seepage severely
do not meet the regulation requirement,

and no measures are taken

Construction quality cannot
meet the design requirement

V Large area with cracks,
increased leakage

Extreme flood or earthquake,
stability fails _

2.2.2. Grading Standards for Quantitative Evaluation Indicators

The quantitative evaluation indicators are also divided into five grades: grades I, II,
III, IV, and V. Grade I: the monitoring data change normally and do not exceed the allowed
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design value or the maximum historical value. Grade II: the monitoring data are close
to or slightly exceed the allowed design value or the maximum historical value, and the
monitoring data of the key positions in the dams are normal. Grade III: The monitoring
data exceed the allowed design value or the maximum historical value, and the monitoring
data for the key position in dams change normally. Grade IV: the monitoring data exceed
the allowed design value or the maximum historical value, and the monitoring data for the
key position in the dams obviously changes. Grade V: the monitoring data heavily exceed
the allowed design value or the maximum historical value, and the monitoring data for the
key position in the dams obviously change.

2.3. Interval Number Expressions of Evaluation Indicators

The interval number, denoted by [A] = [aL, aU ], where aL is the lower boundary of an
interval and aU is the upper bound, represents a range that can describe the uncertainty,
while a point value cannot. Thus, interval number theory is widely used in the uncertainty
problem research field.

2.3.1. Interval Number Expressions of Qualitative Evaluation Indicators

If the interval [0, 1] is used to represent a qualitative evaluation indicator, interval
numbers for the five grades can be obtained by the equal interval partition method usually
used in system engineering. The interval numbers are listed in Table 2.

Table 2. Interval numbers for five grades of qualitative evaluation indicators.

Grade I II III IV V

Interval number [0.8, 1] [0.6, 0.8) [0.4, 0.6) [0.2, 0.4) [0, 0.2)

2.3.2. Interval Number Expressions of Quantitative Evaluation Indicators

The main structural characteristic of the RCC dam is the existence of the layer, which is
different from ordinary concrete dams. The layer influence zone is the weak zone of the RCC
dam, and it is the key to influencing the strength, stability, and seepage of the RCC dam.
The deformation, seepage, stress, and stability of the layer are not only the main reflection
of the characteristics of the layer but are also related to the safe operation of the RCC
dam. Different from qualitative evaluation indicators, quantitative evaluation indicators
are more complicated to grade with interval numbers. From the grading standards of the
quantitative evaluation indicators described above, the interval number expressions of
deformation, seepage, stress, and stability are studied.

(1) Interval number expressions of the deformation indicators

The deformation monitoring data are denoted by y, time by t, the monitoring values
calculated with the deformation monitoring model by ŷ, the standard deviation of the
deformation monitoring model by S, the time effect component of the deformation moni-
toring model by yθ , the first level early warning value of deformation by y1m, the second
level early warning value of deformation by y2m, and the third level early warning value of
deformation by y3m. Thus, the interval numbers of the five grades can be expressed using
these variables. Grade I: y ∈ [ŷ− 2S, ŷ + 2S] and dy/dt < 0. Grade II y ∈ (ŷ + 2S, ŷ + 3S]
or y ∈ [ŷ− 3S, ŷ− 2S], dy/dt < 0, and d2y/dt2 < 0. Grade III: y ∈ [y1m, y2m]. Grade IV:
y ∈ [y2m, y3m]. Grade V: y = y3m.

The deformation feature of RCC dams is different from that of conventional concrete
dams because of the interfaces existing in RCC dams. To display the interface influence,
the ratio of the interface deformation to the total deformation is adopted. The interface
deformation is denoted by yi, and we express the grades as follows through reference to
the available literature [34,35]. Grade I: yi/y ∈[0, 0.1), Grade II: yi/y ∈ [0.1, 0.2), Grade III:
yi/y ∈ [0.2, 0.3), Grade IV: yi/y ∈ [0.3, 0.4), and Grade V: yi/y ∈ [0.4, 1].
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(2) Interval number expressions of the seepage indicators

The seepage monitoring data are denoted by q, time by t, the value calculated with the
seepage monitoring model by q̂, the standard deviation of the seepage monitoring model
by S, the time effect component of the seepage monitoring model by qθ , the designed value
of seepage by qD, and the maximum value of the seepage data series by qm. Thus, Grade I:
q ∈ [q̂− 2S, q̂ + 2S] and dqθ/dt < 0. Grade II: q ∈ (q̂ + 2S, q̂ + 3S] or q ∈ [q̂− 3S, q̂− 2S],
dqθ/dt > 0, and d2qθ/dt2 < 0. Grade III: q ∈ [0, qD] and d2qθ/dt2 = 0. Grade IV: q ≈ [qD]
and d3qθ/dt3 < 0. Grade V: q ∈ [qD, qm] and d3qθ/dt3 = 0.

Similarly, adapting the ratio of the interface seepage to the total seepage, we ex-
press the grades as follows. Grade I: qi/q ∈[0, 0.1), Grade II: qi/q ∈[0.1, 0.2), Grade III:
qi/q ∈[0.2, 0.3), Grade IV: qi/q ∈[0.3, 0.4), and Grade V: qi/q ∈[0.4, 1], where qi is the
interface seepage.

(3) Interval number expressions of the stress indicators

The stress monitoring data are denoted by σ, the designed value of stress by σD, the
compressive stress, tensile stress or shear stress by σp, the maximum value of stress data
series by σm, the stress in the control range by σ(Ω), and the maximum value of stress in the
control range by σ(Ω)m. Assuming the compressive stress is positive, and the tensile stress
is negative, the interval numbers of the five grades can be expressed as follows. Grade I:
σ ∈ [0,σD], Grade II: σ ∈ (σD,σp], Grade III: σ ∈ (σp,σm], Grade IV: σ(Ω) ∈ (σD,σp], and
Grade V: σ(Ω) ∈ (σp,σ(Ω)m].

(4) Interval number expression of the stability indicators

According to the strength reserve coefficient method, the standard of stability safety
coefficient against sliding is Ke ≥ [Ke], where Ke is the safety coefficient in a quasi-elastic
state and [Ke] is the safety coefficient allowed. Considering the water pressure overload, en-
vironmental degradation, and material parameter variation, Ke/[Ke] is adopted to describe
the grades of stability safety. Grade I: Ke/[Ke] ∈ [1, 2], Grade II: Ke/[Ke] ∈ [0.9, 1), Grade
III: Ke/[Ke] ∈ [0.8, 0.9), Grade IV: Ke/[Ke] ∈ [0.7, 0.8), and Grade V: Ke/[Ke] ∈ [0.6, 0.7).

In addition, the stability of interfaces in the RCC dams usually plays an important
part in RCC dam safety. Using the cohesion and friction coefficient to describe the stabil-
ity, we express the grades as follows. Grade I: Ci/C ∈[0.8, 1], Grade II: Ci/C ∈[0.7, 0.8),
Grade III: Ci/C ∈[0.6, 0.7), Grade IV: Ci/C ∈[0.5, 0.6), and Grade V: Ci/C ∈[0, 0.5), where
Ci is the interface cohesion and C is the RCC cohesion. Grade I: fi/ f ∈[0.95, 1], Grade
II: fi/ f ∈[0.9, 0.95), Grade III: fi/ f ∈[0.8, 0.9), Grade IV: fi/ f ∈[0.7, 0.8), and Grade V:
fi/ f ∈[0, 0.7), where fi is the interface friction coefficient and f is the RCC friction coeffi-
cient.

2.4. Normalization Method of the Interval Number Indicators

From the interval number expressions of the evaluation indicators above, we can
see that some indicators have no units, and others have different units. Normalization is
necessary to make all kinds of indicators comparable. There are two main methods for the
normalization of interval numbers: the “interval-point” method and the “interval-interval”
method [36]. The “interval-interval” method is adopted in this study, and the general
expression is

rij = yij/max(yij
1≤j≤m

) (1)

or
rij = yij/min(yij

1≤j≤m
) (2)

where max(yij
1≤j≤m

) = [max(yij
L

1≤j≤m
), max(yij

U

1≤j≤m
)] is the maximum interval,

min(yij
1≤j≤m

) = [min(yij
L

1≤j≤m
), min(yij

U

1≤j≤m
)] is the minimum interval, L means the lower boundary
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of an interval, and U means the upper bound. The maximum interval and the minimum
interval are obtained by interval sequencing based on the possibility degree theory. Let
[A1] = [a1

L, a1
U ] and [A2] = [a2

L, a2
U ]. The relationship between [A1] and [A2] can be

Isolation : a1
U < a2

L or a2
U < a1

L (3)

Overlap : a1
L ≤ a2

L < a1
U ≤ a2

Uor a2
L ≤ a1

L < a2
U ≤ a1

U (4)

or Containment : a1
L ≤ a2

L < a2
U ≤ a1

Uor a2
L ≤ a1

L < a1
U ≤ a2

U (5)

shown visually in Figure 2.
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Let l(Ai) = ai
U − ai

L and l(Aj) = aj
U − aj

L; the possibility degree of [Ai] ≥ [Aj] is

p([Ai] ≥ [Aj]) = max{1−max(
aj

U − ai
L

l(Ai) + l(Aj)
), 0} (6)

simply denoted by pij(i, j = 1, 2, · · · , n), and the possibility degree matrix is

P =




p11 p12 · · · p1n
p21 p22 · · · p21
· · · · · · · · · · · ·
pn1 pn2 · · · pnn


 (7)

Since 0 ≤ pij ≤ 1, pij + pji = 1, i, j = 1, 2, · · · , n, the matrix P is a fuzzy com-
plementary judgment matrix with a sequencing vector ω = (ω1, ω2, · · · , ωn)

T , where

ωi =

n
∑

j=1
pij +

n
2 − 1

n(n− 1)
, i = 1, 2, · · · , n (8)

Thus, the interval can be sequenced by ωi, and the interval number indicators can
be normalized.

3. Interval Number Weights of the Comprehensive Evaluation Indicators

There are three main classes of methods for determining weights: subjective weighting
methods, including expert evaluation, the Delphi method, etc., and objective weighting
methods, including principal component analysis, factor analysis, the analytical hierarchy
process, the entropy method, etc. The rationality of index weight directly affects the
accuracy of comprehensive evaluation. The determination of weight is mainly divided into
subjective methods and objective methods. Using one kind of method alone has a certain
one-sidedness. The subjective method assigns weight according to experts’ subjective
emphasis on indicators, while the objective method determines weight according to data
information. Combining subjective and objective methods can not only give consideration
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to expert experience but also reduce subjective arbitrariness so as to achieve the unity of
subjective and objective weights for indicators.

Combined methods with subjective and objective weighting are more applicable. In
this study, the weights of the comprehensive evaluation indicators are calculated with a
combined method using expert evaluation and the improved analytical hierarchy process.
In addition to the interval number weight, this combined method is used for the first time
to reflect the fuzziness and uncertainty in the comprehensive evaluation.

3.1. Interval Number Weights Obtained by Expert Evaluation

Let n experts evaluate p indicators. The evaluation result of indicator j by expert k is
denoted by [wkj] = [wkj

L, wkj
U ] (1 ≤ k ≤ n, 1 ≤ j ≤ p), shown in Table 3.

Table 3. Data structure of interval number weights obtained by expert evaluation.

Indicator 1 2 · · · p

Expert 1 [w11
L, w11

U ] [w12
L, w12

U ] · · · [w1p
L, w1p

U ]
Expert 2 [w21

L, w21
U ] [w22

L, w22
U ] · · · [w2p

L, w2p
U ]

...
...

...
...

...
Expert n [wn1

L, wn1
U ] [wn2

L, wn2
U ] · · · [wnp

L, wnp
U ]

Expert group [wN1
L, wN1

U ] [wN2
L, wN2

U ] · · · [wNp
L, wNp

U ]

In Table 3, [wNj] = [wNj
L, wNj

U ] means the interval number weight of indicator j
given by the expert group. Since different experts have different experiences, different
weights should be assigned to different experts. Thus, [wNj] is amended as

[wNj] =
n

∑
k=1

ρk×[wkj] (9)

where ρk is the weight to show the degree of importance of expert k.

3.2. Interval Number Weights Obtained by the Improved Analytical Hierarchy Process

The analytical hierarchy process (AHP) is a method to determine the indicator weight
by comparing the degree of importance of each indicator. The process can be divided
into three steps: compare the degree of importance of each indicator, form the comparison
matrix; check the consistency of the comparison matrix; calculate the weight of the indicator.
AHP can be improved by making the comparison matrix consistent using an optimal
transfer matrix, named the improved AHP, which can be used to obtain the weight of the
indicator more quickly and conveniently. The application steps are as follows.

(1) On the basis of the degree of importance of the indicators, form the comparison
matrix B using the reciprocal 1~9 scaling method, shown in Table 4, where bij means the
comparative result of indicator i with indicator j.

Table 4. Reciprocal scale method of 1~9.

Scale 1 3 5 7 9 2, 4, 6, 8

Description degree equally slightly obviously seriously extremely in between

(2) Calculate the transfer matrix C

C = (ln bij)p×p (10)

(3) Calculate the optimal transfer matrix D

D = (dij)p×p (11)
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where dij =
1
p

p
∑

k=1
(ln bik − ln bjk).

(4) Calculate the weight of indicator j

wj =
p

√√√√
p

∏
i=1

edij /
p

∑
j=1

p

√√√√
p

∏
i=1

edij , j = 1, 2, · · · , p (12)

where wj is the weight of indicator j, dij is the difference measure between the eigenvectors
of the function, and p is the length of the eigenvectors.

3.3. Integrated Interval Number Weights Obtained by Combined Methods

Combining the weights obtained by expert evaluation with those by improved AHP,
integrated weights can be obtained.

[wj] = q1[wNj] + (1− q1)[wj] (13)

where 0 < q1 < 1.
Therefore, the integrated interval number weights of indicators can be expressed as

[
→

W] = ([w1], [w2], · · · , [wp]) (14)

where [wi] means the integrated interval number weight of indicator i.
The weights are constrained by ∑ wi = 1, 0 ≤ wi ≤ 1, where i = 1, 2, 3, 4 and wi

refers to the weight of deformation, seepage, stress, and stability.

4. Comprehensive Evaluation Models with Interval Number Indicators and Weights

The comprehensive evaluation interval number [R] can be calculated with the interval

number indicators [
→
A] and weights [

→
W], expressed as

[R] = [
→
A]·[

→
W]

T
(15)

where [
→
A] = [[a1, a2], [a3, a4], [a5, a6], [a7, a8]], with [a1, a2], [a3, a4], [a5, a6] and [a7, a8]

as the interval number indicators of deformation, seepage, stress, and stability, respectively,

[
→

W] = [[w1, w2], [w3, w4], [w5, w6], [w7, w8]], expressing the interval number weights

of those indicators, and [R] = [R1, R2]. R1 and R2 can be obtained by operation of [
→
A]

and [
→

W] through an optimization algorithm. However, in Section 2.3.2, there is more
than one interval number of deformation, seepage, stress, and stability. We can use one
interval number such as [a1, a2] to express the indicator of deformation by combining the
indicators of the same category by expert evaluation. This method can also be used to
process indicators of seepage, stress, and stability.

Once the comprehensive evaluation interval number [R] is calculated, to obtain the
evaluation result of the RCC dam safety state, reasonable evaluation standards should be
set. According to enforcement rules for the hydropower dam safety inspections and some
statistics, the evaluation grades are set as five: I: Normal, II: Almost Normal, III: Mildly
Abnormal, IV: Abnormal, and V: Dangerous, shown in Table 5.

Table 5. Evaluation standards of the safety state for RCC dams.

Safety State Normal Almost Normal Mildly Abnormal Abnormal Dangerous

Grade I II III IV V
Standard [0.8, 1] [0.6, 0.8) [0.4, 0.6) [0.2, 0.4) [0, 0.2)
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In summary, the procedure of establishing the comprehensive evaluation model based
on interval number theory can be shown in Figure 3.
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5. Case Study

To verify the validity and feasibility of this proposed method, an RCC Dam (Figure 4)
located in the Guangxi Zhuang Autonomous Region on the south coast of China was taken
as a case study. This RCC Dam is the most important engineering structure of the Red River
cascade development project used for power generation, flood prevention, and shipping,
with a dam height of 216.5 m.
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Figure 4. An RCC dam.

The orthographic perpendicular lines and inverted perpendicular lines are placed
in the dam body to monitor the dam deformation. Osmometers monitor dam osmotic
pressure; stress and strain gauge groups monitor dam stress. Dam stability is obtained
by stability analysis using the finite element method. Taking the typical block 11#, for
example, its monitoring system (see Figure 5) consists of osmometers UP11-1 and UP11-3;
inverted perpendicular line IP11, orthographic perpendicular lines PL11-3, PL11-2, and
PL11-1; groups of stress and strain gauges S5

11-1, S5
11-2, S5

11-3, and S5
11-4.
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The monitoring data series from 10 October 2006 to 28 August 2009 is studied. First,
the interval number expressions and grades of the indicators are determined using the
above procedure. These parameters are listed in Table 6.

Table 6. Interval number expressions and grades of the indicators.

Item Deformation Seepage Stress Stability

Basic level |y− ŷ| yi/y q/[qD] qi/q σ/[σ] Ci/C fi/ f
Interval number [0, 2S] [0.04, 0.06] [0, 1] [0.13, 0.16] [0, 0.25] [0.6, 0.96] [0.83, 0.97]

Grade I I I II I III~I III~I

Combine the indicators of the same category and normalize them. The interval num-

ber indicators finally are [
→
A] = [[0.86, 0.96], [0.73, 0.9], [0.9, 1], [0.53, 0.92]]. The weights

[
→

W1] calculated by expert evaluation are [[0.1, 0.3], [0.3, 0.4], [0.15, 0.2], [0.3, 0.4]], and the

weights [
→

W2] calculated by improved AHP are [[0.11, 0.13], [0.23, 0.29],
[0.05, 0.07], [0.50, 0.61]]. If q1 in Equation (13) is assumed to be 0.4, the integrated in-

terval number weights [
→
W] are [[0.11, 0.20], [0.26, 0.33], [0.09, 0.12], [0.42, 0.53]]. Finally,

the comprehensive evaluation interval number [R] is calculated by the optimization algo-
rithm as [R] = [0.654, 0.932]. Comparison of this result with the comprehensive evaluation
standards shows that the comprehensive safety state of dam block 11# in this RCC dam is
between “almost normal” and “normal”; in other words, the comprehensive safety grade
is II~I.

Table 6 shows that for single indicator safety evaluation of dam block 11#, the deforma-
tion and stress state grades are both I, the seepage state is II~I, and the stability state is III~I.
The reason the safety grades of seepage and stability are relatively low is that the interfaces
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in dam block 11# weaken its ability for anti-leaking and anti-sliding. The comprehensive
evaluation result provides overall information for decision-makers.

Although we try to make the evaluation of the safety state for RCC dams comprehen-
sive and objective, there is some subjectivity. For example, q1 in Equation (13) is supposed
to be 0.4, which is individually experiential. In addition, the evaluation safety state of dam
block 11# is based on the site monitoring data and the back analysis result with the finite
element method that we can obtain, so more attention is required when performing similar
work. As many as possible of the indicators in Figure 1 are recommended for inclusion,
with the purpose of providing the most reliable evaluation result. Finally, the research
on easy-to-use indicators needs further testing and improvement by validation so that
dam managers can use this procedure conveniently to evaluate and monitor the RCC dam
safety state.

6. Conclusions

RCC dams have become the fastest-growing international dams, and the dam height
has been increasing. Therefore, safety state monitoring and evaluation of RCC dams have
been a major concern. However, RCC dams with a particular structure characteristic of
interfaces behave differently from traditional concrete dams. In addition, the RCC dam
structure is uncertain, non-conservative, and non-linear and consists of an anisotropic
material. Therefore, the safety state evaluation of RCC dams is a hard job with much uncer-
tainty, especially the comprehensive safety state evaluation. In this study, we developed
a comprehensive evaluation method for the safety state of RCC dams based on interval
number theory.

We built a comprehensive evaluation indicator system, developed the interval number
expressions and weights of these indicators, established a comprehensive evaluation model,
and set evaluation standards. In addition, we verified the performance of the proposed
method with an RCC dam in China. The case study shows that this method is efficient
and applicable.

The comprehensive evaluation of the safety state of RCC dams involves many indi-
cators and levels. Uncertainty intersection is inevitable. The analytical techniques and
methods call for more in-depth research.
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Abstract: The paper proposes a method to simulate the mechanical behavior of compact rock consid-
ering hydromechanics by combining physical experiments and numerical analysis. The effectiveness
of the constructed method is validated by the comparison between the numerical and physical results
of triaxial shear experiments on sandstone in seepage conditions. Based on the validated method, the
stability of underground water-sealed oil and gas storage caverns in surrounding compact sandstone
during excavation is analyzed. The main findings are as follows: The intrinsic permeability of com-
pact sandstone has a power function relationship with the porosity; the combination of the porous
media elastic model and the modified Drucker–Prager plasticity model can preciously represent the
mechanical properties of compact sandstone; the proposed method can accurately replicate the hy-
dromechanical response of compact sandstone in seepage conditions; the effects of hydromechanical
effects have significant impacts on the stability of surround compact sandstone during the excavation
of underground water sealed oil and gas storage caverns, which causes the obvious increase in stress,
deformation and plastic deformation zones of the surrounding compact sandstone and remarkable
decrease in the stability safety factor.

Keywords: compact rock; gas permeability; underground storage caverns

1. Introduction

Compact rock is a main media in many engineering applications including under-
ground water-sealed oil and gas storage caverns, coal mining, oil fields, and nucleolar
waste storage caverns [1]. For engineering applications in compact surrounding rock, their
stability is mainly controlled by the mechanical properties of the compact surrounding
rock [2]. In practical engineering facilities, compact rock is inevitably under the effects
of seepage, which has a significant influence on the mechanical properties of compact
rock, causing detrimental impacts on the stability of relevant engineering facilities [3].
Many scholars have conducted research on the impact of fluid flow conditions on the
mechanical properties of compact sandstone and found that fluid flow to some extent
affects the mechanical properties of compact sandstone [4,5]. Thus, it is vital to have a deep
understanding of the hydromechanical response of compact rock.

Conducting physical experiments is an important method to investigate the mechani-
cal characteristics of compact rock, which has been adopted by many researchers [6–10].
However, the existing research mainly focuses on the mechanical characteristics of compact
rock without considering the effects of seepage, and the investigation of the hydromechani-
cal characteristics of compact rock is seldom. This is because compact rock has extra-low
porosity and permeability, and fluid is difficult to permeate through it, causing the high
difficulty and cost to measure the hydromechanical properties of compact rock in laboratory
tests. Additionally, due to the limitation of experimental apparatus dimension, conducting
laboratory tests cannot explore the hydromechanical response of large-scale compact rock.
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Numerical techniques can simulate the mechanical properties of large-scale compact rock
to provide guidance for the reasonable design of practical engineering applications [11–15].
However, currently, numerical research about the hydromechanical response of compact
rock is rare. This is because the relationship between intrinsic permeability and porosity
for compact rock is extremely difficult to determine, which is a necessary parameter to
establish the numerical model that can consider hydromechanics [16–21]. Therefore, it
is necessary to establish a method that can determine the relationship between intrinsic
permeability and porosity for compact rock, which can provide the possibility for the
numerical investigation of the hydromechanical response of large-scale compact rock.

Due to the properties of low permeability and porosity, underground compact rock
is the optimum storage media for oil and gas, with the merits of high leakproofness and
safety, funding and land-saving, etc. [22–24]. In recent years, many underground oil and
gas storage caverns have been constructed in geological formations composed of compact
rock around the world [25–27]. In petroleum engineering, the compact rock around the
underground oil and gas storage caverns is usually in the saturated status via carrying out
artificial water injection to further rise the leakproofness of caverns, aiming for preventing
the leakage of oil and gas [28–31]. For the water-sealed underground oil and gas storage
caverns, when experiencing engineering activities such as excavation of caverns, etc., the
coupling effect between seepage and stress fields of the saturated surrounding compact is
inevitable to occur, which has a significant influence on the stability of underground storage
caverns [32–35]. Thus, correct analysis of the stability for underground water-sealed oil
and gas storage caverns during engineering activities with considering hydromechanics
has remarkable meaning for maintaining the safety of engineering projects.

In this paper, a method is presented for analyzing the hydromechanical properties of
compact sandstone by considering the relationship between the intrinsic permeability and
porosity of these rocks through a combined approach of experiments and numerical simula-
tions. Based on the presented solution, numerical triaxial shear tests on compact sandstone
in seepage conditions are conducted. Through the comparison between the results of nu-
merical and physical triaxial shear experiments, the effectiveness of the established method
to replicate the hydromechanical response of compact sandstone is validated. By using the
validated method, the stability of the large-scale surrounding compact sandstone during
the excavation of underground water-sealed oil and gas storage caverns is analyzed, with
the effects of hydromechanics (permeability, porosity, etc.) on the stability of surrounding
compact sandstone being studied. The research outcomes can provide guidance for the
implementation of the excavation of underground water-sealed oil and gas storage caverns
in compact sandstone.

2. Numerical Modelling
2.1. Seepage Theory

For this paper, Forchheimer seepage law is adopted to carry out the seepage analysis
of compact sandstone, as shown in Equation (1) [36,37]:

k =
kliq(

1 + θ
√

Vw ·Vw
) ks (1)

where, k represents the permeability coefficient (m2); kliq represents the intrinsic perme-
ability (m2) (The function of porosity); ks represents the saturation permeability (m2); θ
represents the velocity coefficient (m−1) (The function of porosity); Vw represents velocity
of fluid (m/s).

According to the mass conservation equation, the fluid flow continual equation is
gained, as shown in Equation (2) [1]:

−
(

∂v
∂x

+
∂v
∂y

+
∂v
∂z

)
= S

∂h
∂t1

(2)
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where, t1 represents time (t); v represents specific discharge (m/s); S represents phreatic
storativity velocity (m−1); h represents water pressure head (m).

It is assumed that the seepage is steady, namely, S equals zero. Thus, the continual
equation for steady seepage is gained, as presented in Equation (3).

∂v
∂x

+
∂v
∂y

+
∂v
∂z

= 0 (3)

After that, the stable seepage equation is deduced, as shown in Equation (4).

∂

∂x

(
kx

∂h
∂x

)
+

∂

∂y

(
ky

∂h
∂y

)
+

∂

∂z

(
kz

∂h
∂z

)
= 0 (4)

where, kx, ky, kz represent the permeability coefficient for materials (m2) along the x, y and
z axis direction (m), respectively.

The permeability of materials is assumed to be isotropic and homogeneous; the Laplace
Equation can be transformed into Equation (5) [38].

∂2h
∂x2 +

∂2h
∂y2 +

∂2h
∂z2 = 0 (5)

The fluid flow occurs mainly in a horizontal plane, and the flow in the third dimension
(i.e., the vertical direction) is negligible or can be assumed to be constant [39]. When the
seepage is two-dimensional, Equation (5) can be presented as in Equation (6)

∂2h
∂x2 +

∂2h
∂y2 = 0 (6)

Finally, Equation (6) is transformed as in Equation (7).

∂

∂x

(
kx

∂h
∂x

)
+

∂

∂y

(
ky

∂h
∂y

)
= 0 (7)

2.2. Constitutive Modelling

Linearization simplifies the mathematical expressions required for the analysis and
makes it easier to solve the governing equations for the system. However, it is important
to note that the linearized model is only valid within the specified range of property
values, and outside this range, the model will not accurately represent the behavior of the
material [40]. In geotechnical engineering, the modified Drucker–Prager model is widely
applied to represent the mechanical properties of geotechnical materials. However, the
modified Drucker–Prager model has a main deficiency that it cannot replicate the non-linear
mechanical properties of materials during the elastic stage [41]. Hence, this paper combines
the porous media elasticity model and the modified Drucker–Prager model to represent
the constitutive relationship for compact sandstone.

2.2.1. Porous Media Elastic Model

The porous media elastic model is adopted to simulate the non-linear mechanical
properties of compact sandstone during the elastic stage in this paper [42]. In this model,
the change of elastic volume (the volume of a material that is able to recover its original
shape after deformation under elastic conditions) is proportioned with the logarithm of
confining pressure:

κ

(1+e0)
ln(

p0 + pel
t

p + pel
t
) = Jel − 1 (8)

where, κ represents logarithmic bulk modulus (MPa), which is an intrinsic property of
a medium that represents its volumetric stiffness; e0 represents initial porosity; p0 represents
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initial confining pressure (MPa); Jel represents the elastic portion of the porosity; pel
t

represents elastic tensile strength (MPa); p represents current confining pressure (MPa),
being defined in Equation (9).

p = −1
3

traceσ = −1
3
(σ11 + σ22 + σ33) (9)

where σ represents stress (MPa); σ11, σ22, σ33 represents the principle stress (MPa).

2.2.2. Modified Drucker–Prager Plasticity Model

Compared with the traditional Drucker–Prager plasticity model, the modified Drucker–
Prager model has an additive cap yield surface [43], which can reflect the yielding of
materials under isotropic compression and control the stress-dilatancy [44]. The failure
surface FS of the model can be written as in Equation (10) [45]

Fs = t− p tan β− d = 0 (10)

where β, d represents friction angle (◦) and cohesion (MPa), respectively; t represents
deviatoric stress (MPa), as shown in Equation (11).

t =
1
2

q[1 +
1
K
− (1− 1

K
)(

r
q
)3] (11)

where K represents the material parameter.

2.3. Hydromechanics Theory
2.3.1. The Effects of Seepage Fields on Stress Fields

It is assumed that seepage fields are varying the seepage body force for compact rock
to impact stress fields. In two-dimensional seepage conditions (assume that the fluid is
incompressible and the material is anisotropic), the seepage body force for compact rock is
proportional to the gradient of the water head, being expressed in Equation (12) [46]:

{
fx

fy

}
=




−rw

∂h
∂y

−rw
∂h
∂y



 =

{
rw Jx

rw Jy

}
f =

√
fx + fy (12)

where f represents seepage body force (N/m3); rw represents the unit weight for fluid
(N/m3); fx, fy represents the component force for seepage body force along the x and y
direction, respectively (N/m3); Jx, Jy represents the water head gradient along the x and y
direction, respectively (m−1).

The finite element method involves dividing the physical domain into many small
geometric shapes, calculating the external loads on each element by numerical integration
using equivalent nodal forces, and converting them into equivalent forces at each node [47].
By utilizing Equation (13), the seepage body force is transformed to equivalent nodal force
in numerical calculation.

{Fs} =
∫

[N]T

Ω

{
fx
fy

}
dxdy (13)

where {Fs} represents the seepage equivalent nodal force (N); [N] is the function of
element shape.

{∆Fs} =
∫

[N]T

Ω

{
fx
fy

}
dxdy (14)

where {∆Fs} represents the increment of seepage equivalent nodal force (N).
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Therefore, the mathematical model for stress fields that can consider the impacts of
the seepage field is obtained, being expressed in Equation (15).





[
kliq

]
{∆δ} = {∆F}+ {∆Fs}, (x, y) ∈ Ω

{δ} = {δ0}, (x, y) ∈ Su

σijnj = T, (x, y) ∈ Sa

(15)

where {∆F} is the increment of nodal load (N); δ represents displacement (m); ∆δ represents
the increment of displacement (m); Su is the known displacement boundary condition; Sa
represents the known stress boundary condition.

2.3.2. The Impact of Stress Fields on Seepage Fields

Stress fields are affecting the porosity of compact rock to impact the seepage field. This
is because the porosity of compact rock is controlled via stress fields, and the porosity can
determine the permeability of compact rock to influence the seepage field. The mathemati-
cal model of a two-dimensional steady seepage field, which can consider the impacts of
stress fields, is presented in Equation (16).





∂
∂x

[
kliq(φ)]

∂h
∂x + ∂

∂y [kliq(φ)
]

∂H
∂y = 0, (x, y) ∈ Ω

H(x, y) = H1(x, y), (x, y) ∈ Γ1

kliq(φ)
∂H
∂n2

= q1(x, y), (x, y) ∈ Γ2

H(x, y) = y, kliq(φ)
∂H
∂n3

= 0, (x, y) ∈ Γ3

(16)

where, φ represents porosity; q1 represents fluid flow (m2/s); H represents the hydraulic
head; Γ1 represents the boundary conditions with known water head (m); Γ2 represents the
boundary conditions with the known fluid flow (m2); Γ3 represents the mixed boundary
conditions, that is to say, h + ∂h

∂t1
α1 = β1, α1, β1 represents constant values related to the

mixed boundary conditions.
As shown in Equation (16), the core of ascertaining the influence of stress fields on

seepage fields is to specify the relationship between porosity and intrinsic permeability
for compact sandstone. As long as the relationship between the permeability and porosity
is ascertained, the mathematical model for describing the hydromechanical properties
of compact sandstone can be specified and the corresponding numerical analysis of the
hydromechanical response of compact sandstone can be conducted.

3. Physical Experiments
3.1. Gas Permeability Experiment
3.1.1. Preparation of Gas Permeability Experiment

To ascertain the relationship between the porosity and intrinsic permeability of com-
pact sandstone, gas permeability experiments on compact sandstone were carried out.
The compact sandstone sample used in the experiment was obtained from Taoyuan Hy-
dropower Station, which is located in Taoyuan County, Changde City, Hunan Province,
China, along the main stream of the Yuanshui River. The sample is a typical tight and
homogeneous sandstone with low porosity and permeability, exhibiting strong mechanical
properties, and the region is situated in the Nan Yue Mountain area with mountainous
and hilly terrain, within the undulating area of Jiangnan Hills. The sandstone was pre-
pared as a cylindrical sample with a diameter of 50 mm × height of 100 mm. The physical
parameters of the dried sample are shown in Table 1.
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Table 1. The parameters for samples.

Number Diameter (mm) Height (mm) Mass (g) Initial Density
(g·cm3)

Initial
Porosity (%)

V-1 49.99 99.09 246.16 2.59 7.19
V-2 50.02 99.90 246.19 2.39 6.99
V-3 50.04 99.90 249.09 2.50 6.99

The permeability of compact sandstone was measured by the permeability test system.
The experimental system consists of a rock core pressure chamber, confining pressure
regulation equipment, seepage pressure regulation equipment, upstream and downstream
gas pressure controlling panels, a pressure monitor and a gas pressure gauge with high
precision. Due to the extra-low permeability of the compact rock, when adopting fluid as
the seepage media, it requires a long duration to penetrate through the compact rock sample,
which may cause experimental errors due to the variation in the external environment
during the long-term tests. Thus, the tests adopted Argon gas as seepage media, and the
permeability for compact sandstone was calculated by using the gas flow method [48].
Additionally, according to the experimental system, the porosity of compact sandstone
under different confining pressures was evaluated by using the volume expansion method.
The specific experiment scheme is listed in Table 2.

Table 2. Experiment scheme.

Number Measured
Properties

Experiment
Method

Gas Seepage
Pressure/MPa

Confining
Pressure/MPa

S-1,
S-2,
S-3

Gas permeability Gas flow method 0.1, 0.2, 0.4, 0.6,
0.8, 1.0, 1.2, 1.4 3, 5, 10, 15, 25, 35

Porosity
Volume

expansion
method

×

3.1.2. Gas Slippage Effect

Utilizing gas as the seepage media to evaluate the permeability of compact rock may
induce the Gas Slippage Effect. It means that in the seepage processes of gas in low-porosity
porous media, due to the collisions between gas molecules and the pore wall, the gas
molecule in pore walls is in motion states to generate the non-Darcy flow (non-linear flows),
causing the measured gas permeability to be greater than the intrinsic permeability [49].
The phenomenon was discovered by Klinkenberg in 1941 through experiments [50]. Some
researchers proposed that the relationship between the gas-measured permeability and
intrinsic permeability can be represented by Equation (17) [51].

k = kliq

(
1 +

b
pc
− a

pc2

)
(17)

where b represents the slippage factor, a represents the secondary slippage factor, and pc
represents seepage pressure (MPa).

As shown in Equation (17), as long as the gas permeability for compact sandstone
in diverse seepage pressure can be obtained, by combining Equation (17), the intrinsic
permeability of compact sandstone can be gained. A detailed analysis is as follows.

3.1.3. The Analysis for Gas Permeability Experimental Results

According to the gas permeability experiment results, the relationship between the
gas permeability of compact sandstone and seepage pressure is drawn in Figure 1. Then,
Equation (17) was used to fit the relationship curves between gas permeability and seepage
pressure to attain the intrinsic permeability of compact sandstone under different confining
pressures. The fitting degree is listed in Table 3.
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Figure 1. The relationships between the gas permeability for compact sandstone and seepage pressure.

Table 3. The fitting degree R2 of Equation (2).

Confining Pressure (MPa) 3 5 10 15 25 35

Fitting Degree (%) 96 94 95 99 96 95

According to Table 3, the fitting results of Equation (17) show that the fitting degrees
under each confining pressure are all higher than 94%, which means that Equation (17)
can describe the Gas Slippage Effect of compact sandstone accurately and the intrinsic
permeability of compact sandstone under different confining pressures that is attained
based on Equation (17) is reliable, as shown in Table 4.

Table 4. Intrinsic permeability of compact sandstone under different confining pressures.

Confining Pressure (MPa) 3 5 10 15 25 35

Intrinsic Permeability (10−17 m2) 15.04 12.95 12.17 9.30 8.90 7.60

According to Figure 2, the intrinsic permeability of compact sandstone reduces with the
rise in confining pressure. Chao [6] established a power model to replicate the relationship
between the intrinsic permeability of compact rock and confining pressure. Thus, in the
paper, the power function model is used to describe the relationship between the intrinsic
permeability of compact sandstone and confining pressure quantitatively, as shown in
Equation (18), and the fitting curve is depicted in Figure 2. The fitting degree and parameter
are shown in Table 5.

kliq = d1e−h1 pc (18)

where d1 and h1 are constants that represent the parameters of the power function model
used to describe the relationship between intrinsic permeability and confining pressure for
compact sandstone.
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Figure 2. Intrinsic permeability for compact sandstone under diverse confining pressures.

Table 5. Fitting degree and parameters of the power function model.

Fitting Degree/R2 d1 h1

96.93 13.68 0.02

According to Table 5, the fitting degree is 96.93%. It means that the power func-
tion model can replicate the relationship between the intrinsic permeability of compact
sandstone and the confining pressure well.

According to the experimental results, the relationship between the porosity of com-
pact sandstone and confining pressure is drawn in Figure 3.
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According to Figure 3, the porosity of compact sandstone reduces with the rise in
confining pressure. Wang proposed that the porosity of compact rock has an exponential
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relationship with confining pressure [52]. Thus, an exponential function model is adopted
to describe the relationship between the porosity of compact sandstone and confining
pressure quantitatively, depicted in Equation (19). The fitting degree and parameter is
listed in Table 6. The fitting curve is shown in Figure 3.

φ = φ0e−ipc (19)

where, φ0 represents the initial porosity of compact rock; i represents a constant.

Table 6. Fitting degree and parameters of the exponential function model.

Fitting Degree/R2 i

97 13.68

Based on Table 6, the fitting degree is 97%, which indicates that the exponential
function model is able to describe the relationship between the porosity of compact rock
and confining pressure preciously. By the combination of Equations (18) and (19), the
relationship between intrinsic permeability and porosity for compact sandstone is obtained,
as shown in Equation (20).

pc =
ln d1

kliq

h1
=

ln φ0
φ

i
(20)

After the simplification of Equation (20), the relationship between the intrinsic perme-
ability and porosity of compact sandstone is expressed in Equation (21).

kliq

d1
= (

φ

φ0
)

h1
i

(21)

According to Equation (21), the intrinsic permeability and porosity of compact sand-
stone is a power function relationship. Based on Tables 5 and 6, the value for parameters
d1, h1, i and φ0 is substituted into Equation (21), as shown in Equation (22).

kliq = 0.313φ2 (22)

Thus, according to the obtained relationship between the porosity and intrinsic perme-
ability of compact sandstone, Equation (22) is substituted into Equation (16) to determine
the impact of stress fields on seepage fields. The mathematical model for a two-dimensional
stable seepage field that can consider the impact of stress fields is presented in Equation (23).





∂
∂x

[
0.313φ2] ∂H

∂x + ∂
∂y [0.313φ2

]
∂H
∂y = 0, (x, y) ∈ Ω

H(x, y) = H1(x, y), (x, y) ∈ Γ1

0.313φ2 ∂H
∂n2

= q(x, y), (x, y) ∈ Γ2

H(x, y) = y, 0.313φ2 ∂H
∂n3

= 0, (x, y) ∈ Γ3

(23)

where H represents the hydraulic head (water pressure) in the seepage field (m), Γ2 repre-
sents the second normal stress difference, and Γ3 represents the third normal stress difference.

The mathematical model for describing the hydromechanical characteristics of com-
pact sandstone is then obtained by combining the mathematical models of stress fields and
seepage fields, as shown in Equation (24).





[K]{∆δ} = {∆F}+ {∆Fs}[
0.313φ2]{H}+ { f } = 0

k = 0.313φ2

(24)
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where, [K] represents the stiffness matrix (N/m2); {∆δ} represents the incremental dis-
placement vector (m); {∆F} represents the incremental force vector (N); {∆Fs} represents
the incremental force vector due to the stress fields represents (N); φ the ratio of the volume
of void space to the total volume of the rock (%); { f } represents the water head distribution
function for seepage fields (m/s2); k represents the permeability of the rock (m2).

3.2. Triaxial Shear Experiment
3.2.1. Numerical Tests

Based on the proposed method for describing the hydromechanical properties of
compact sandstone, Finite Element Method (FEM) numerical triaxial shear experiments
on compact sandstone were carried out. In finite element analysis, meshing is the process
of dividing the solution domain into small discrete elements. The use of meshing can
improve the computational accuracy and efficiency of the model by dividing the large
computation domain into small elements to approximate complex geometries, making
numerical calculations and simulations more feasible [46]. The stress-strain relationship
of compact sandstone is replicated by combining the porous media elastic model and the
modified Drucker–Prager plasticity model. The numerical model parameters are listed in
Table 7. The numerical compact sandstone has a diameter of 50 mm × length 100 mm. On
the top and bottom end, there is a rigid plate fixing on it, respectively. During the numerical
shear stage, the displacement of the bottom rigid plate is fixed, and the upper rigid plate
moves downwards vertically at a certain velocity to simulate the real shearing process in
laboratory triaxial tests. Meanwhile, the central nodal point of the model is used as the
deformation and stress monitoring point. The experimental scheme is listed in Table 8. The
obtained experimental outcomes are depicted in Figure 4.

Table 7. The parameters for the numerical model.

Bulk
Modu-

lus/MPa

Poisson’s
Ratio

Cohesion/
MPa

Friction
Angle/◦

Cap Ec-
centricity

Initial
Yield

Surfaces
Position

Transition
Surface
Position

Flow
Stress
Ratio

Initial
Porosity

/%

Initial
Permea-

bility/m2

Density/
Kg/m3

Logarithmic
Bulk

Modulus

5333 0.25 7.87 53.82 2 0.1 0.02 0.79 6.6 1.4 ×
10−16 2460 0.0133

Table 8. Triaxial shear test scheme.

Test Material Confining
Pressure/MPa

Seepage
Pressure/MPa

Shearing
Rate/MPa/min

Compact sandstone 4, 6, 8 1 0.75

3.2.2. Physical Tests

To verify the applicability of the established method, laboratory triaxial shear tests
on compact sandstone were implemented to verify the correctness of the obtained hy-
dromechanical response of the compact sandstone in the numerical triaxial shear tests. The
physical triaxial shear tests were performed on a static triaxial shear system. This system
consists of a pressure chamber, loading equipment, a voltage stabilizer, fluid pressure and
water pressure systems, and a data acquisition computer system. The largest sample dimen-
sion for the triaxial pressure cell is 50 mm × 100 mm. The largest confining pressure of the
cell is 60 MPa. The range of the imposed axial pressure is 0–100 MPa. In the laboratory tests,
all the experimental parameters and schemes are consistent with those in the numerical
simulation. The axial strain, radial strain and volumetric strain for the rock specimen were
recorded in the shearing process.

128



Water 2023, 15, 2011Water 2023, 15, x FOR PEER REVIEW 11 of 21 
 

 

  
(a) (b) 

 

 

(c)  

Figure 4. The comparison of the numerical and physical triaxial experiment results: (a) Confining 
pressure 4 MPa; (b) Confining pressure 6 MPa; (c) Confining pressure 8 MPa. 

Table 7. The parameters for the numerical model. 

Bulk Mod-
ulus/MPa 

Poisson’s 
Ratio 

Cohe-
sion/MPa 

Friction 
Angle/° 

Cap Eccen-
tricity 

Initial 
Yield Sur-
faces Posi-

tion 

Transition 
Surface 
Position 

Flow Stress 
Ratio 

Initial Po-
rosity /% 

Initial 
Permeabil-

ity/m2 

Densi-
ty/Kg/m3 

Logarith-
mic Bulk 
Modulus 

5333 0.25 7.87 53.82 2 0.1 0.02 0.79 6.6 1.4 × 10−16 2460 0.0133 

  

Figure 4. The comparison of the numerical and physical triaxial experiment results: (a) Confining
pressure 4 MPa; (b) Confining pressure 6 MPa; (c) Confining pressure 8 MPa.

3.2.3. Analysis of Experimental Results

According to the experimental results, the relationship curves between stress and
strain of compact sandstone under diverse confining pressure in seepage conditions are
obtained, and the laboratory experiment results are compared with the results of numerical
simulation, as shown in Figure 4.

Under diverse confining pressure, the relationship between strain and stress of com-
pact sandstone in seepage conditions obtained by the numerical simulation is generally
consistent with that gained in the physical experiments. It indicates that the proposed
solution can describe the hydromechanical response of compact sandstone correctly, which
lays the foundation for the numerical analysis of the hydromechanical properties of large-
scale compact sandstone. It also proves that the combination of the porous media elastic
model and the modified Drucker–Prager model plasticity model is able to represent the
mechanical properties of compact sandstone accurately.

4. Engineering Application
4.1. Numerical Modelling

Mathematical models such as Darcy’s law and more complex models such as dual-
porosity models or flow models are often used to accurately describe the water flow
behavior in compact sandstone, which involves a lot of calculations and simulations. Oil
and gas storage caverns are often constructed underground below the groundwater level,
with the water curtain system being installed above the roofs of the caverns to improve the
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sealing performance and avoid the leakage of oil [53]. This results in the underground oil
and gas storage caverns being surrounded with water during the construction and opera-
tion period, and the seepage effects of water are inevitable to induce the hydromechanical
response of surrounding compact rock and influence the stability of storage caverns. Once
the instability of underground storage caverns occurs, the leakage of oil can cause huge
contamination in the surrounding environment and endanger the health of the public. Thus,
by using the proposed method, the stability of the surrounding compact sandstone during
the excavation of caverns in seepage conditions was numerically analyzed. The numerical
simulation outcomes can provide suggestions for the safe excavation and operation of
underground water-sealed oil storage caverns in surrounding compact sandstone.

A FEM numerical model for the surrounding compact sandstone of underground
water-sealed oil storage caverns was built by adopting the established approach, consid-
ering the effect of gravity. Four storage caverns were excavated during the numerical
simulation, numbered from 1 to 4. The dimension of storage caverns is the same, with
a width of 20 m and a height of 30 m. The anisotropic properties of compact sandstone are
similar at different scales, and the permeomechanical properties are close. Previous studies
have shown that the choice of model scale has exceeded the volume of its representative
elementary unit [54,55]. The geometry, layout and number of the four storage caverns are
shown in Figure 5. A water curtain tunnel is formed at 30 m above the caverns in the model,
which determines the height of the groundwater level. The mechanical characteristics of the
simulated surrounding compact sandstone are replicated by combining the porous media
elastic model and modified Drucker–Prager plasticity model, with the model parameters
listed in Table 7.
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Figure 5. The schematic diagrams for the water-sealed storage cavern (unit: m).

The FEM numerical model is partitioned as 20,009 elements and 30,009 nodes, as
shown in Figure 6. To guarantee computational precision, finer meshes are used around
the caverns. To simulate the actual situation of underground water-sealed oil and gas
storage caverns, the horizontal displacement for the left and right boundary and the
vertical displacement for the bottom boundary of the model is fixed. Meanwhile, the
bottom, left and right boundary of the model is set as impermeable, and the top boundary
for the model is set as permeable, with the pore pressure being 0 kPa. The seepage is
induced by the groundwater, and the groundwater level is located at a height of 30 m above
the roof of caverns. After the excavation of the caverns, the pore water pressure for the
boundary of the caverns and the bottom boundary for the water curtain tunnel is set as
0 kPa. Additionally, around the boundaries of each cavern, eight monitoring points are set
to record the deformation and stress of the surrounding sandstone during the excavation,
numbering from A to F, as shown in Figure 7. The stability of underground water-sealed oil
storage caverns in non-seepage conditions during the excavation stage was also analyzed,
which did not consider the influence of groundwater seepage. For other model parameters
of the numerical models in non-seepage conditions, they are the same as those of the model
in seepage conditions. Additionally, the strength reduction method was applied to acquire
the stability safety factor of underground oil storage caverns in seepage conditions and
in non-seepage conditions, respectively, for analyzing the overall stability of surrounding
sandstone quantitatively. In this model, the instability condition of the strength reduction
method is the mis-convergence of the established numerical models or the formation of
consecutive plastic zones in surrounding rock.
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4.2. The Analysis of Numerical Simulation Results
4.2.1. Deformation Analysis

Based on the outcomes of numerical simulation, the deformation distribution and
deformation vector diagrams of the surrounding compact sandstone of underground
oil storage caverns in seepage conditions and non-seepage conditions are presented in
Figure 8, respectively.

According to Figure 8, in seepage conditions, large deformation mainly occurs around
the boundary of caverns during excavation. The vertical deformation in the top and bottom
boundary of caverns occurs while the horizontal deformation in the side walls takes place.
Additionally, there is obvious deformation in the area above the storage caverns, and the
deformation extended to the top of the model. In comparison, in non-seepage conditions,
the deformation mainly locates at the top and bottom boundary of the caverns, which is
in the vertical direction. There is no obvious deformation in the side walls of the caverns
and the area above the caverns. This indicates that the hydromechanical effect significantly
increases the area of large deformation in surrounding compact sandstone. In practical
underground water-sealed storage caverns, attention and corresponding measures should
be adopted to control the deformation in the boundaries of caverns and the area above
the caverns.
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Figure 8. The deformation diagram: (a) The deformation distribution diagram in seepage conditions;
(b) The deformation distribution diagram in non-seepage conditions.

To analyze the deformation of surrounding rock quantitatively, the average deforma-
tion recorded by different monitoring points in each cavern under seepage and non-seepage
conditions is drawn in Figure 9. In Figure 9, 1 to 4 means the number of caverns.
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As shown in Figure 9, the average deformation recorded by the different monitoring
points around the boundary of caverns in seepage conditions and non-seepage conditions
all rises during the excavation, indicating the excavation has a notable influence on the
deformation of surrounding sandstone. Additionally, in general, the average deformation
in seepage conditions is almost two or three times larger than that in non-seepage conditions
after excavation. It means that hydromechanical effects raise the deformation magnitude of
surrounding compact sandstone remarkably during excavation.

4.2.2. Stress Analysis

According to the outcomes of numerical simulation, the distribution and magnitude of
Mises equivalent stress (Mises equivalent stress is a measure used to describe the strength
and stress state of a material, also known as von Mises stress or Mises stress [56–60]) for
the surrounding compact sandstone in seepage conditions and non-seepage conditions are
shown in Figure 10.
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As shown in Figure 10, in seepage conditions, the stress in the boundaries of caverns
is larger than in other areas of the surrounding compact sandstone during the excavation.
Among the boundaries, the stress in the side walls of caverns is higher than the value in
the top and bottom boundaries. In comparison, in non-seepage conditions, the maximum
stress is located in the middle area between caverns, which is higher than the stress around
the boundaries of the caverns. Overall, the maximum stress of the surrounding compact
sandstone in seepage conditions is higher than that in non-seepage conditions, and at the
same location, the stress in seepage conditions is higher than that in non-seepage conditions.
This demonstrates that hydromechanical effects can increase the stress of the surrounding
compact sandstone during excavation.

To analyze the stress of surrounding rock quantitatively, the average Mises equivalent
stress recorded via using diverse monitoring points around caverns in seepage and non-
seepage conditions are drawn in Figure 11.
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As shown in Figure 11, the average Mises equivalent stress recorded via using diverse
monitoring points in seepage conditions and non-seepage conditions all rises during the
excavation, indicating excavation has a high impact on the stress field for surrounding com-
pact sandstone. Moreover, overall, the Mises equivalent stress in seepage conditions is two
or three times higher than that in non-seepage conditions. It means the hydromechanical
effects raise the stress of surrounding compact sandstone remarkably during excavation.
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4.2.3. Plastic Deformation Analysis

According to the outcomes for numerical simulation, the distribution of plastic zones
in the surrounding compact sandstone in seepage conditions and non-seepage conditions
is demonstrated in Figure 12.
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As shown in Figure 12, in seepage conditions, there are obvious plastic zones in the
surrounding compact sandstone during excavation, mainly concentrating around the side
walls of storage caverns and the water curtain channel. In comparison, in non-seepage
conditions, there is no apparent plastic zone to be observed in the surrounding compact
sandstone. It indicates that hydromechanical effects significantly enlarge the area of plastic
zones surrounding compact sandstone during excavation.

As shown in Figure 13, in seepage conditions, the plastic deformation of the surround-
ing compact sandstone around the caverns gradually increases during the excavation. In
comparison, in non-seepage conditions, the plastic deformation during excavation keeps
stable, without notable rise. Overall, the plastic deformation in seepage conditions is
remarkably larger than that in non-seepage conditions, which means the hydromechanical
effects can evidentially increase the plastic deformation of surrounding compact sandstone
during excavation.

1 
 

 
Figure 13. The average plastic deformation.
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4.2.4. Stability Analysis

By using the strength reduction method, the stability safety factor of the surrounding
compact sandstone (shear strength, tensile strength, etc.) during the excavation of under-
ground oil storage caverns is calculated. The factors are 2.04 in non-seepage conditions
and 1.36 in seepage conditions, which has a notable reduction due to the hydromechanical
effect. Combined with the aforementioned analysis, the hydromechanical effect signifi-
cantly rises the deformation, stress and the area of plastic zones in surrounding compact
sandstone during the excavation of caverns. It indicates the stability analysis from the
adopted hydromechanical method has evident differences compared to the non-seepage
method, and for practical underground water-sealed oil storage caverns, it is suitable to
apply the hydromechanical method to analyze their stability.

5. Discussion

Previous studies on compact sandstone have mainly focused on its mechanical prop-
erties, with little consideration given to the influence of fluid flow. In other words, the
hydromechanical behavior of compact sandstone has rarely been investigated, and the
intrinsic relationship between the permeability and porosity of compact sandstone, which
is a necessary parameter for establishing numerical models that consider fluid mechanics,
is extremely difficult to determine. Therefore, there have been few numerical studies on
the hydromechanical response of compact sandstone. In this paper, a combined approach
of experiments and numerical simulations is employed to propose a method for analyzing
the hydromechanical behavior of compact sandstone.

Based on the findings presented in the paper, it can be concluded that the proposed
method for simulating the hydromechanical behavior of compact sandstone using a combi-
nation of physical experiments and numerical analysis is effective. This was demonstrated
through the comparison of numerical and physical results from triaxial shear experiments
on sandstone under seepage conditions.

Using the validated method, the stability of underground water-sealed oil and gas
storage caverns surrounding compact sandstone during excavation was analyzed. The
results showed that hydromechanical effects have a significant impact on the stability of
the surrounding compact sandstone during excavation. This leads to an increase in stress,
deformation, and plastic deformation zones, as well as a remarkable decrease in the stability
safety factor.

Several important conclusions were drawn from the study. First, the intrinsic per-
meability of compact sandstone has a power function relationship with porosity. Second,
the combination of the porous media elastic model and modified Drucker–Prager plastic-
ity model accurately represents the mechanical properties of compact sandstone. Third,
the proposed method can accurately replicate the hydromechanical response of compact
sandstone under the effect of seepage.

Overall, these findings can be used to guide the implementation of underground
water-sealed oil and gas storage cavern excavations in compact sandstone and highlight
the importance of considering hydromechanical effects in such projects.

6. Conclusions

This paper proposes a solution to describe the hydromechanical properties of compact
sandstone by combing experimental and numerical methods. Then, the effectiveness of
the presented solution is validated by comparing the numerical and physical results of
triaxial shear experiments on compact sandstone under seepage conditions. After that,
the validated solution is adopted to analyze the stability of underground water-sealed oil
storage caverns during excavations with considering the hydromechanical effects.

1. The intrinsic permeability of compact sandstone has a power function relationship
with the porosity;
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2. The combination of the porous media elastic model and the modified Drucker–Prager
model plasticity model is able to represent the mechanical properties of compact
sandstone accurately;

3. The established method can correctly replicate the hydromechanical response of
compact sandstone under the effect of seepage;

4. Hydromechanical effects can significantly increase the stress, deformation and plastic
deformation of surrounding compact sandstone during the excavation of under-
ground oil storage caverns and reduce the stability safety factor remarkably.
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Abstract: The evolution and transfer of risk elements of urban river ecological management projects
are primarily responsible for the difficulty of risk management in these projects. In this paper, we
identify 63 risk elements of urban river ecological management projects using in‑depth literature
reviews and brainstorming. The association among all the risk elements is constructed using an ex‑
pert survey method, and the risk elements are utilized as network nodes. The relationships between
these nodes are then used as network edges (i.e., paths) to construct a complex network model. By
using the network visualization and analysis tool anaconda3, we analyze the overall and local char‑
acteristic parameters of the risk network. The risk transmission characteristics of the urban river
ecological management project are analyzed according to the parameter characteristics to reveal the
inner relationships of risk transmission inherent in the complex network. We use the Jinghe eco‑
logical management project in Jinghe New City to verify the effectiveness of the proposed model.
The study demonstrates that the starting node risk needs to be controlled, and the conduction node
that indirectly triggers risk propagation needs to be cut off to achieve risk prevention and control.
Accordingly, the risk prevention strategy is proposed, namely, paying close attention to the starting
nodes of schedule delay risk, construction cycle risk and cost overrun risk, as well as the conduc‑
tion risk nodes of project complexity risk, quality assessment risk, construction accident risk and
improper drawing design risk. Effective measures should be taken to control the transmission and
occurrence of risks based on these two aspects. The study reveals the network evolution of risk fac‑
tors, which enriches the theory of the risk factor network evolution and evaluation of urban river
ecological management projects.

Keywords: urban river ecological management project; complex network; risk identification; risk
transfer

1. Introduction
With the continuous development of the Chinese economy, the water conservancy

industry is currently in a stage of rapid development. An increasing number of single
and comprehensive water conservancy projects are continuously being constructed and
applied, providing an important guarantee for the social stability and sustained economic
development of the country. Recent statistics indicate that the total cumulative investment
in water conservancy construction reached two trillion Yuan in the “water conservancy
reform and development” “Twelfth Five‑Year Plan” period. During the “Thirteenth Five‑
Year Plan” period, the national water conservancy investment reached 3.58 trillion Yuan,
which increased 57% over the previous “Twelfth Five‑Year Plan” period. The number of
water conservancy projects and investment funds is increasing quickly.
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Compared with conventional engineering, water conservancy projects are character‑
ized by high capital demand, high construction difficulty, long construction periods and
a high impact on the surrounding ecological environment [1]. With the development of
water conservancy project construction, the construction mode is diversified, the construc‑
tion management technology is diversified, the construction management environment is
more complex, and social benefits are more multi‑targeted. All of these risk factors will
inevitably lead to many uncertainties encountered during the construction process of wa‑
ter conservancy projects. These uncertainties are referred to as “risks” [2]. The above‑
mentioned reasons result in various risky accidents in the construction process of water
conservancy projects. Increasingly more attention is paid by researchers to the evalua‑
tion of various risks involved in water conservancy projects [3,4]. Researchers around the
world have applied traditional analysis methods to evaluate the risks inherent in water
conservancy engineering construction projects, including the evidence‑based reasoning
method [5], safety checklist method [6], fuzzy comprehensive evaluation method [7], ac‑
cident tree analysis method [8], cloud model evaluation method [9] and material element
topological evaluation method [10]. These studies primarily focus on the level of risk eval‑
uation research, and there is a lack of research that focuses on the influence relationship
between project risk factors.

Complex network theory can be used to describe realistic systems and reveal the cor‑
relation between objective facts. Recently, researchers from various fields conducted nu‑
merous network topology and empirical statistical applications of actual complex systems
based on constructions of models. For example, Xu et al. [11], Hua and Zheng [12], and
Ma [13] constructed causal models of railroad accidents with complex networks; they high‑
lighted the key factors and the correlation among them by analyzing the statistical char‑
acteristics of complex networks, such as node degree and mediators. Xiao [14] analyzed
the risk evolution process of amphibious seaplane takeoff and landing safety based on
the complex network construction model. Liu [15] constructed an accident causation net‑
work of highways through town sections by complex network theory and analyzed the
network by using the GN algorithm of association division. Meng et al. [16] constructed
an unweighted directed network for a pipeline system leakage evolution system and inves‑
tigated the shortest path of accident risk transmission by analyzing node access degree and
clustering coefficient. Li [17] constructed a DEMATEL‑ISM explanatory structure model
to study the hierarchical structure between causal risk factors and the corresponding com‑
plex network model. There are also productive results of complex networks in the natural
field, social sciences, biology, engineering, etc.

Social Networks: Yao et al. [18] studied network nodes in undirected and directed
graphs using proximity centrality, mesoscopic centrality, node importance and PageRank
as evaluationmetrics. Thesemetrics proved effective for identifying key nodes, confirming
the algorithm’s reliability. Sun et al. [19] used a network evolution game model to simu‑
late the impact of social networks and market environment factors on advertising strate‑
gies in complex social networks. Technology Network: Yu et al. [20] used a scale‑free net‑
work to model the diffusion of electric energy substitution technology. They constructed
an evolutionary game model that incorporated indicators such as the penalty strength of
coal‑fired enterprises, government subsidies and transformation costs. The study analyzed
the impact of various parameters on the diffusion of the technology. Ecological Network:
Williams et al. [21] conducted an empirical study on the topology of the seven largest food
chain networks in the world. They found that with a short average path length, the degree
distribution of the network obeyed a smaller power–law distribution. Moreover, Mon‑
toya et al. [22] and Camacho et al. [23] also obtained similar results. Biological Networks:
Jeong et al. [24] found that all the outgoing and incoming degrees obeyed the curtain–law
distribution in themetabolic systemof 43 living organisms. Fell et al. [25] not only obtained
the curtain–lawdistribution but also found that the corresponding undirected network has
a small‑world property. TransportationNetwork: Yuan et al. [26] identified the vulnerable
points and domains of the complex network from the risk resistance of the urban metro
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network system (UMNS). Liu et al. [27] calculated the complex network characteristics of
a communication network based on the topological characteristics and investigated the
node protection strategies to reduce the occurrence of accidents using centrality analysis.

In the past years, scholars have already studied the problem of risk contagion in en‑
gineering projects and obtained rich results. However, there are difficulties in obtaining
data, uncertainty in determining network structure, the potential impact on model relia‑
bility and prediction accuracy due to assumptions and simplifications, and limitations in
the real‑time application for engineering risk management and decision‑making. From
the perspective of the research paradigm, there is a lack of excavation on the mechanism
of risk contagion generation and evolution, as well as a lack of providing corresponding
interpretation on the mechanism of project risk contagion generation, accumulation and
contagion process. Moreover, from the perspective of the research object, most of the cur‑
rent research focus on project combinations such as computer, technology research and
development or supply chain. To the best of our knowledge, there are few applications
of complex networks in the field of engineering projects, especially in the urban river eco‑
logical management project. Based on the engineering characteristics of the urban river
ecological management project, we applied the complex network to discuss the evolution
of risk in the present paper.

Risk in urban river ecological management projects is the result of multiple risk fac‑
tors interacting with each other. The risk factors show nonlinear change characteristics,
so the complex network is beneficial for analyzing the correlation and interaction between
risk factors and their risk transfer process. In order to solve the risk transmission prob‑
lem of complex engineering projects, it is crucial to investigate the transmission path and
process between risk nodes. Once the correlation between risk nodes in the urban river
ecological management project was generated, it formed a complex network. Therefore, it
is advantageous to employ complex networks to investigate the correlation between risk
elements in urban river ecological management projects. In this study, in the urban river
ecological management project, the risk elements are regarded as network nodes and a
complex network model is constructed to study the inherent laws of risk transmission.
In addition, through the use of network visualization analysis tools, the overall and local
characteristics of the risk network parameters are analyzed, and strategies for controlling
risk transmission are proposed. This method is relatively less commonly used in the appli‑
cation of urban river ecological management projects. Therefore, the novelty of this type
of research lies in providing a new way and method to identify risk elements, evaluate
risk transmission patterns, and formulate risk prevention strategies, which has important
practical significance for risk management in urban river ecological management projects.

The remainder of this paper is organized as follows. The research design andmethod‑
ology are in Section 2. The construction of the risk network is in Section 3. A case study
is presented in Section 4. We present a discussion of the results in Section 5. Finally, we
summarize the study in Section 6.

2. Research Design and Methodology
2.1. Study Design

Brainstorming, reviewing the literature and expert consultation are used to extract
the set of risk factors for urban river ecological management projects and construct a novel
risk relationship model of an urban river ecological management project based on com‑
plex network theory. Firstly, the transfer interaction of risk factors was obtained, the core
nodes and starting nodes in the transfer process were identified, and then the process and
mechanism of risk transfer in the urban river ecological governance project were analyzed
(please see Figure 1 for the conceptual framework diagramof this study). Our results could
provide a useful reference and help organizations to make better decisions to avoid major
damage caused by risks and guarantee the smooth implementation of the project.
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Figure 1. Project risk research framework.

2.2. Risk Node Identification
Risk nodes, as one of the components of complex networks, are the main tools for de‑

scribing the research object. Network nodes refer to the risk elements that occur in urban
river ecological management projects. In this work, we searched relevant academic stud‑
ies from 2011 to 2021 using the CNKI and Vipul databases as the primary data source. We
made a combination of queries based on keywords such as urban rivers [28–30], risk evalu‑
ation [31–33], risk identification [34–36], evolutionary mechanism, risk control [37,38] and
complex network. Based on the principle of project decomposition structure and the cur‑
rent situation of urban river ecological management projects in China, we summarized
all the possible risk elements in these types of projects, counted the frequency of each
risk element, and then filtered and organized them. The risk items with similar mean‑
ings were summarized and organized. Table 1 shows the network nodes of the identified
complex network model by selecting the risk elements with more frequent occurrences.
We obtained the final list of risk elements of urban river ecological management projects
(Table 1).
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Table 1. Risk of river ecological treatment projects.

Stage Level 1 Risk Level 2 Risk

project
plan

1 Political risks
11 Project Approval Risks
12 Government credit risk
13 Legal and regulatory risks

2 Economic risks

21 Funded risk
22 Inflation risk
23 Interest rate change risk
24 Financing risk

3 Natural
environment risks

31 Hydrological and geological risks
32 Meteorological condition risk
33 Natural force majeure risk
34 Ecological environment risk

4 Social risks

41 Social and cultural risks
42 Resident negotiate land acquisition risk
43 Social security risk
45 Public opinion risk
46 Land change risk

5 Project decision risks

51 Risk of basic acceptance before
implementation
52 Decision error risk
53 Approval of work procedure compliance risk
54 Incomplete collection of basic data risk

Project standard
Preparation stage

6 Bidding risks

61 Bidder technical and management risk
62 Project complexity risk
63 Competitive risk
64 Bid evaluation risk
65 Calibration risk
66 Risk of information leakage
67 Risk of bidding documents
68 Contract perfection risk
69 Risk of contract signing deviating from
bidding content
610 Legality risk of contract signing procedure
611 Contract dispute risk

7 Planning and design risks

71 Qualification risk of design unit
72 Design progress lag risk
73 Design has defects, errors, omissions and
frequent changes
74 Improper standard selection
75 Survey accuracy risk

8 Preparation before construction risks

81 Construction site layout and technical
preparation risk
82 Risk of insufficient supply of substances
(materials) and materials
83 Risk of illegal commencement

Project construction stage

9 Construction personnel risks

91 Low technical level
92 Weak safety awareness
93 Qualification risk of employees
94 Risk of slowdown of construction personnel

10 Construction technology risks

101 Risk of improper drawing design
102 Engineering technology risk
103 Risk of construction equipment
104 Risk of cross operation
105 Construction accident risk
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Table 1. Cont.

Stage Level 1 Risk Level 2 Risk

11 Construction management risks

111 Safety management risk
112 Coordination risks of participants
113 Rationality of construction
organization design
114 Plan adjustment and engineering change
115 Contract management and execution risk
116 The organizational structure setting
is chaotic
117 Management authority risk

12 Risk factors of construction period
121 Certificate cycle
122 Construction period
123 Risk of construction delay

Project completion
acceptance stage

13 Quality assessment risk

131 Risk of unqualified project acceptance and
putting into use
132 Risk of file transfer not in place
133 Quality assessment risk
134 Audit risk
135 Cost overrun

2.3. Network Characterization
2.3.1. Overall Network Analysis

The topology of complex networks is complex and irregular. However, it was found
that the overall characteristics of complex networks also exhibit some prevalent character‑
istics. In this study, we analyzed the following three types of indicators for the overall
characteristics of the network.

(1) Network density

The “network density” metric in complex networks refers to the density of intercon‑
nected edges between nodes within the network. It is often applied in social networks to
measure the density of social relationships and their evolutionary trends. The network
density of a network with N nodes and L actual connected edges is:

d(G) =
2L

N(N − 1)
(1)

(2) Average path length

The average path length, denoted by L, is themean value of the shortest path between
any two nodes. The average path length in a small‑world network is the corresponding
order of magnitude of its network size.

L =

∑
i ̸=j

dij

N(N − 1)
(2)

where N is the total number of network nodes, and dij is the shortest distance between
nodes i and j.

(3) Clustering coefficient

The clustering coefficient is an important parameter for measuring the degree of net‑
work grouping. The clustering coefficient of node i in a network represents the ratio of
the number of existing edges Ei to the maximum number of possible edges in the subnet
formed by all nodes directly connected to node i, denoted as Ci. Assuming that node i has
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ki nearest neighbors, then, at most, ki(ki − 1)/2 edges may exist in these nearest neighbors,
and the clustering coefficient of node i can be expressed as:

Ci =
2Ei

ki(ki − 1)
(3)

2.3.2. Local Network
(1) Degree distribution

The degree of a node in a directed network comprises the out‑degree and in‑degree.
The out‑degree of node i is expressed as the number of edges of node i pointing to other
nodes, and the in‑degree of node i is expressed as the number of edges of other nodes
pointing to node i in the network. The degree ki of node i is the sum of the in‑degree kin

i
and out‑degree kout

i of node i. This is defined as:

kin
i = Σn

j=1aji, kout
i = Σn

j=1aji, ki = kin
i + kout

i . (4)

The degree distribution p(k) denotes the probability that a node in the network is
specified at random, and the degree of the node is equal to k. p(k) is defined as the ratio
of the number of nodes of degree k in the network nk to the total number of nodes N

p(k) = nk/N (5)

(2) Medio centricity

The mediator of a node indicates the role of the node within the network. If nodes i
and j, which are not adjacent to each other in a complex network, can be reached by some
mediator node (i.e., if the mediator node m is more active in the network and can serve as
a bridge for the relationship between node pairs), then the role of node m as a mediator
is more important in the network, and its importance can be expressed by the mediator
number Bm. This is defined as

Bm = ∑
i,j∈Ni ̸=j

nij(m)

nij
(6)

where nij is the number of shortest paths between nodes i and j, nij(m) is the number of
times node m appears in all the shortest paths between i and j as a mediator role, and N is
the total number of network nodes.

(3) Proximity centrality

The proximity centrality index refers to the degree of proximity between node i and
other nodes j. If the node i is nearer to other nodes, the dependence of node i on other
nodes to disseminate information becomes less, and the restriction by other nodes becomes
weaker. The proximity centrality of a node is the inverse of the sum of the shortest paths
based on node i to all other nodes j in the network, as in the following equation

C(i) =
1

Σyd(y, x)
(7)

where C(i) represents the proximity centrality of node i, and Σyd(y, x) is the sum of dis‑
tances from node i to all other nodes.

(4) PR value

PageRank (PR) is a comprehensive index that measures the number of internal and
external links and the quality of the links on a web page. The higher the PR value of a web
page, the higher the number of pages linking to it. If a web page is linked by another with a
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high PR value, its PR value increases accordingly. Thus, the nodes with a higher PR value
in the project risk network are more important.

PageRank(pi) =
1 − d

N
+ d ∑

pj∈m(pi)

PageRank(pi)

L(pj)
(8)

(5) Eigenvector centrality

Eigenvector centrality is different from point centrality, where a node with high point
centrality (i.e., with many connections) does not necessarily have high eigenvector central‑
ity because the connections may have low eigenvector centrality. Similarly, high eigenvec‑
tor centrality does not mean that it has high point centrality; it can also have high eigen‑
vector centrality with a small number of important connectors.

Feature vector centrality considers the importance of a node based on both the num‑
ber of its neighboring nodes (i.e., the degree of that node) and the importance of each
neighboring node. Let xi be the important measure of node i, then

EC(i) = xi = c
n
Σ

j=1
aijxj (9)

where c is a proportional constant.

3. Construction of Risk Network
In this section, we construct the risk network. Figure 2 depicts the research method.

Figure 2. Research methodology process.

3.1. Risk Element Relationship Extraction
There is a close relationship between complex networks and risk networks in urban

river management projects. The risk factors in these projects are often interrelated, and
their relationships can be viewed as a complex network. In this complex network, there
are various complex relationships between risk factors, including positive relationships,
negative relationships, nonlinear relationships, etc. These relationships can be expressed
by data, and different types of data are needed to represent them. By studying these re‑
lationships, the interactive relationships between risk factors in urban river management
projects can be revealed, which can lead to the development of more effective risk manage‑
ment strategies.
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The relationship of risk factors in the complex network of risk factors of urban river
ecological management projects is expressed by data, and various relationships need to
be represented by different types of data. Since the number of risk factors in urban river
ecological management projects is large and complex, it is difficult to quantify the precise
relationship with different values. Therefore, this study aimed to analyze the risk transfer
mechanism of urban river ecological management projects, focusing on the causal rela‑
tionship between risks. This network relationship is directional, and binary directional
relationship data were utilized. The expert scoring method was used to collect their judg‑
ments onwhether a correlation between risk elements exists. In this study, 11 experts were
selected, and the “0, 1” method was applied. A larger number of answers were selected to
maximize the risk relationship and obtain the results of the risk relationship elements.

The construction of risk network relationships for urban river ecological management
projects using the expert survey method was established in the following steps.

(1) Formation of a senior expert group

Risk assessment experts from river ecological management construction units and
researchers from universities were invited to form a senior expert group.

(2) Conducting expert consultation activities

A group of 11 experts, all with relevant expertise and experience, were invited to
identify the relationships between engineering risk factors, and 2 rounds of questionnaires
were conducted to obtain the desired results and avoid interference. The expert opinions
were summarized to form the final risk factor relationships.

3.2. Construction of Complex Network Model
The topology of a complex network can be divided into the multi‑core, single‑core,

no‑core, star, lumped line, ring and mesh network. Network topologies such as coreless,
star, and convergence lines cannot fully describe the complex interrelationships and inter‑
actions in a risk network. Coreless networks lack a clear central node, making it difficult
to describe the important core components and key nodes in a risk network. Star and con‑
vergent wire networks lack stability and reversibility, which can easily lead to unstable
and uneven information transmission and integration, and do not fully reflect the charac‑
teristics of risk networks. Therefore, single‑core ring networks have important topological
characteristics, such as a high degree of stability and reversibility. At the same time, single‑
core ring networks have efficient information transfer and integration capabilities and can
effectively describe the relationships and interactions between risk factors. Single‑core ring
networks are better suited to describe the topology and complexity of risk networks than
other types of networks.

In this study, according to the risk factor relationship data matrix defined in Table 2,
columns represent the emitters of the relationship (i.e., causers), while rows represent the
affected parties of the relationship (i.e., effectors). The “1” indicates the existence of the
relationship, while the “0” indicates the non‑existence of the relationship. Let n be risk
nodes in the risk element set A. Let Ah = (R1, R2, · · · , Rh) be the row risk element set and
Am = (R1, R2, · · · , Rm) be the column risk element set, respectively. We denote bij as the
binary relationship data with i, j = 1, 2, · · · , n.

Table 2. Risk relationship matrix of urban river ecological treatment project.

Risk Factor A1 A2 A3 . . . An

A1 0 b12 b13 . . . b1n
A2 b21 0 b23 . . . b2n
A3 b31 b32 0 . . . b3n
︙ ︙ ︙ ︙ 0 b4n
An bn1 bn2 bn3 bn4 0

bij = 1 means that the risk element in row i affects the risk element in column j.
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bij = 0means that the risk element in row i does not affect the risk element in column j.
Since the risk factor cannot be causally related to itself, the risk factor’s impact on

itself is “0”, and the value on the diagonal is “0”. The above data are expressed in the
form of a matrix to derive the risk factor relationship matrix A. Since the relationship
between two risk factors is not necessarily causal, the adjacencymatrix A is not necessarily
symmetric. Therefore, the adjacency matrix A is an asymmetric matrix.

4. Case Study: Application in Jinghe River Management
The Jing River is the mother river of Jinghe New City, and it carries the history of the

community. This ecological environment comprehensive management project is an im‑
portant part of the establishment of the Jinghe New City waterfront landscape belt, which
enhances the cultural quality of the city, strengthens the livable urban environment and
promotes the Jinghe New City developed in high‑speed standards.

In Jinghe New City, the upstream of the Jinghe River flood control and ecological
management project (referred to as the “Jinghe comprehensive management project”) is
about 1.0 km from the Jinghe River Jiyuan Bridge (formerly Xiushi Du Bridge). The down‑
stream of the project is down to the Jinghe River Xiantong railroad bridge. This project
invests 3.8 billion Yuan and includes the Jinghe River embankment construction project,
the JingheRiver beachmanagement and ecological restoration project, and the JingheRiver
outside the ecological protection project.

4.1. Mapping of Risk Network
The social network analysis software is selected to draw and analyze the risk network

diagram. The risk network adjacency matrix is imported into the software to obtain a
visualization of the risk network (Figure 3), where Ri represents the risk element number
and the one‑way arrow indicates the causal relationship existing between the risk elements.

Figure 3. Project risk model.

4.2. Risk Network Parameter Analysis
In this work, we employed the anaconda3 software to analyze a large amount of net‑

work parameter data of an urban river ecological management project. Based on the analy‑
sis of the data for the overall and local networks, we could obtain the overall characteristics
of the network and the key risk factors in the process of project risk transmission. Firstly,
we analyzed the parameters for the overall characteristics of the complex network and
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obtained the basic characteristics of network density, network means path and network
aggregation coefficient of the risk network of urban river ecological management project
with the aid of Equations (1)–(3). The parameters of the local characteristics of the network
were then analyzed. By using Equations (4)–(9), we obtained the network degree and de‑
gree distribution, proximity centrality, intermediary centrality, feature vector centrality
and PR value, respectively. Finally, we obtain the most critical risk initiation nodes and
conduction nodes in the complex network of the project.

4.2.1. Analysis of Overall Network Parameters
(1) Network density

Network density is a parameter used to determine the connectivity between nodes
in a complex network. A higher network density indicated more connected paths among
nodes and stronger network connectivity. In this study, the average network density of the
complex network of urban river ecological management risk was calculated to be 0.2209
by anaconda3 software, indicating that the network is more closely connected.

(2) Clustering coefficient

The clustering coefficient size of a complex network reflects the degree of cluster‑
ing and connectivity of the network. The connectivity and clustering of the network are
stronger in the region where the network clustering is larger. In this study, the average
clustering coefficient of the network was computed by anaconda3 software as 0.5559. The
distribution range of the clustering coefficients of nodes was 0.2408–1.0000, which shows
that the overall clustering and connectivity of the network is at a low level, but the uni‑
form distribution of the clustering coefficients of nodes from the low to the middle level
indicates the existence of small association distribution within the network.

The network nodes with large clustering coefficients have a strong correlation with
their neighboring factors. According to the calculation in the network, construction work‑
ers’ denial risk (95), weak safety awareness (92) and natural force majeure risk (33) cluster‑
ing coefficient values were 1, 0.88 and 0.82, respectively. The clustering coefficient values
were large if the neighboring risk factors also had problems, resulting in a chain effect
caused by the overall project risk. Therefore, in the risk complex network, such nodes
with high clustering coefficients should be controlled to block the occurrence of a chain
reaction in the risk network.

(3) Average path length

The average path length of a network is the average of the shortest path lengths among
all the pairs of nodes within the network. If the average path length of the network is
shorter, the risk nodes need to pass through fewer intermediate nodes, indicating that
the rate of risk propagation in the network is faster. By using the anaconda3 software,
the average path length of the network of the urban river ecological management project
was calculated to be 1.8815. This means that any risk factor within the network needs to
pass through 1.8815 edges on average to cause changes in non‑neighboring other factors.
Therefore, the relationship between risks is relatively “tight”.

(4) Cohesive analysis

Conducting nodal component analysis is the most common method for cohesive sub‑
group analysis. A component analysis is divided into strong component analysis andweak
component analysis. Strong component analysis requires a bidirectional connection be‑
tween any two risk elements within the network. Moreover, weak component analysis
has lower requirements; a one‑way connection between any two risk elements is sufficient.
Therefore, this study applies weak component analysis to analyze the small group coeffi‑
cients and factional indicators of urban river ecological management project risk factors.
The top five small group coefficients are shown in Table 3.
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Table 3. Small groups of risk factors.

Clique Risk Name Size Cohesion Index

Clique74 122, 123, 135, 66, 61, 63, 64, 65 8 2.558
Clique50 122, 123, 135, 32, 31, 33, 75, 105, 114 9 2.418
Clique49 122, 123, 135, 32, 31, 33, 75, 105, 111 9 2.371
Clique4 122, 123, 135,62, 10, 101, 114, 611, 112, 113, 115 11 2.335
Clique51 122, 123, 135, 32, 31, 33, 34 7 2.333

The present study investigated the risk factors associated with urban river ecological
management projects and analyzed the robustness of the risk factions using a K‑cluster
analysis. According to Table 3, the risk factors 122, 123 and 135 demonstrated an overlap in
small groupswith a frequency of 5, indicating their significance as important risks for such
projects. Conversely, some risk factor nodes did not appear in the faction, implying their
relative lack of connection to the overall risk network and their identification as non‑core
factors. For the K‑cluster analysis, the results indicated that a K value of 2 and a group
size of 2 accurately reflected the state of the cohesive subgroups in the risk network of
urban river ecological quality engineering projects. The results of the K‑cluster coefficient
analysis identified three explicit cohesive subgroups in the risk network of the project, as
shown in Table 4.

Table 4. Condensed subgroup analysis of risk factors.

G‑Clique Risk Name Size Density

G‑Clique23 72, 73, 54, 114, 115, 62, 122, 123, 101, 102, 611, 135 12 0.985
G‑Clique24 72, 113, 54, 114, 115, 62, 122, 123, 101, 102, 611, 135 12 0.985
G‑Clique26 112, 113, 54, 114, 115, 62, 122, 123, 101, 102, 611, 135 12 0.985

4.2.2. Network Local Parameter Analysis
(1) Degree and degree distribution

Degree, onemeasure of the centrality of network nodes, is a simple but important con‑
cept for describing individual nodes. A higher degree value of a particular node indicated
more nodes connected to it and a greater influence ability of this node in the network. For
directed networks, the degree is divided into three types, namely, entry degree, exit degree
and degree. The entry degree is the sum of the number of neighboring edges in a node,
and a node with a higher degree of entry is more likely to be influenced by other nodes.
The node out‑degree is the sum of the number of neighboring edges connected outward
from a node, and a node with a larger out‑degree is more likely to influence other nodes.
The sum of in‑degree and out‑degree for the node is referred to as the degree. The degree
values of each node in the urban river ecological management project are obtained by the
anaconda3 software. The degree value is shown in Table 5, and the degree chart is shown
in Figure 4.

Table 5. Risk node degree value.

Node
Number

The Degree
of Input

The Degree
of Output Degree Node

Number
The Degree
of Input

The Degree
of Output Degree

11 12 8 20 105 27 24 51
12 7 7 14 81 12 13 25
13 17 12 29 111 26 19 45
31 14 9 23 41 7 3 10
32 12 7 19 72 12 14 26
34 9 10 19 101 24 20 44
45 9 16 25 114 18 22 40
73 18 16 34 134 10 20 30
75 14 12 26 54 20 19 39
24 5 4 9 71 20 15 35
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Table 5. Cont.

Node
Number

The Degree
of Input

The Degree
of Output Degree Node

Number
The Degree
of Input

The Degree
of Output Degree

42 9 9 18 83 9 13 22
52 5 5 10 93 10 10 20
53 11 8 19 103 9 6 15
43 7 8 15 131 4 8 12
46 5 8 13 132 5 6 11
51 10 21 31 61 14 16 30
68 20 21 41 62 29 26 55
69 23 23 46 67 11 10 21
610 6 6 12 113 14 14 28
611 13 20 33 115 17 16 33
74 14 11 25 133 27 24 51
21 5 3 8 64 14 15 29
22 4 4 8 65 9 6 15
23 4 4 8 66 5 9 14
82 9 4 13 104 11 18 29
135 47 47 94 112 16 11 27
63 10 10 20 116 9 7 16
122 47 50 97 117 7 10 17
123 46 52 98 92 6 5 11
33 10 8 18 94 4 3 7
91 12 14 26 121 2 3 5
102 21 21 42

Figure 4. Cont.
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Figure 4. Degree distribution of project risk network: (a) degree distribution; (b) out‑degree distri‑
bution; (c) in‑degree distribution.

In this study, the nodes with high‑risk out‑degree value and low‑risk in‑degree value
are the starting nodes in the risk transmission process. The control of such nodes should
be increased in the urban river ecological management project to reduce the impact of risk
transmission. The top 10 nodes in this study are the risk of delay, construction cycle, cost
overrun, project complexity, quality assessment, construction accident, contract deviation
from the bidding content, plan adjustment and engineering changes, engineering technol‑
ogy and the risk of basic acceptance before implementation.

The higher entry degree value of a node risk indicated a larger influence by other
nodes. In the complex engineering project risk network constructed, nodes with both risks
out‑degree and in‑degree values are important conduction nodes in the network. Thus,
several nodes with higher out‑degree in the project risk network were selected for further
analysis. The top−10 risk entry degree nodes in the sequence are as follows: construction
cycle, cost overrun, delay risk, project complexity risk, quality assessment risk, construc‑
tion accident risk, safety management risk, improper design risk, contract signing devia‑
tion from the bidding content risk and engineering technology risk.

The nodes with higher degree values in the sequence are schedule delay risk, con‑
struction cycle, cost overrun, project complexity risk, quality assessment risk, construction
accident risk, design schedule lag, safety management risk, improper drawing design risk
and engineering technology risk. These particular types of risks have a more dominating
impact than other risk factors.

(2) Proximity to the center

It is equal to the reciprocal sum of all the paths between the node and other nodes.
The larger the value is, the smaller the sum of the paths from one node to other nodes can
be (i.e., the closer the node is to the center of the network). Therefore, the proximity to the
center of the project risk network is used as the basis for determining whether the node is
the “center of gravity” of the overall network. According to Table 6, the top ten nodes of
proximity to the center are, in order, cost overrun, construction cycle, delay risk, project
complexity risk, construction accident risk, safety management risk, quality assessment
risk, improper design risk, contract signing deviation from the bidding content risk and
design unit qualification risk. These are closest to the center of the risk factor network and
are extremely important in the risk network.
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Table 6. Local parameters of project risk nodes.

Ranking Risk
Name

Near
Centrality

Risk
Name

Intermediary
Centrality

Risk
Name

Centrality of
Eigenvector

Risk
Name

Clustering
Coefficient

Risk
Name Pagerank

1 135 0.81 135 698.31 122 0.29 95 1.00 135 0.05
2 122 0.81 132 600.86 132 0.29 92 0.88 122 0.05
3 132 0.79 122 557.77 135 0.28 33 0.82 132 0.05
4 62 0.63 62 146.86 105 0.22 32 0.77 105 0.03
5 105 0.62 133 115.06 62 0.22 117 0.76 62 0.03
6 111 0.62 69 82.86 111 0.21 93 0.75 111 0.03
7 133 0.61 13 77.95 101 0.20 64 0.74 133 0.03
8 101 0.61 73 73.66 102 0.18 82 0.73 101 0.02
9 69 0.60 105 67.54 133 0.18 112 0.72 102 0.02
10 71 0.59 45 63.70 69 0.17 91 0.71 69 0.02

(3) Intermediation centrality

Intermediation centralitymeasures the size of the transport capacity of nodes in a com‑
plex network. A higher intermediation centrality indicated more influence on the nodes.
Thus, nodes with large intermediary centrality values in the project risk network have a
strong risk transmission capability. As shown in Table 6, the top ten risks are cost overrun,
delay risk, construction cycle, project complexity risk, quality assessment risk, contract
signing deviation from the bidding content risk, laws and regulations risk, design defects
errors, omissions, frequent design case changes, construction accident risk and social opin‑
ion risk.

(4) Eigenvector centrality

Eigenvector centrality is a parameter that measures the influence of a node on the net‑
work and can be used to describe the criticality of a node. A greater eigenvector centrality
of a node in the project risk network indicated that the node in the network is more criti‑
cal. Similar to the degree value, the eigenvector centrality also reflects the importance of
a node to a certain extent. Moreover, it takes into account the importance of the node’s
neighboring nodes and the differences of the neighboring nodes, rather than treating the
neighboring nodes “equally”. This enables it to reflect the actual important nodes of the
risk networkmore objectively. According to Table 6, the top 10 risks are construction cycle,
delay risk, cost overrun risk, construction accident risk, project complexity risk, safetyman‑
agement risk, improper design risk, engineering risk, quality assessment risk and contract
deviation from the bidding content risk.

(5) PR value

The higher PR value of aweb page indicated a higher number of connected pages. Ad‑
ditionally, if a web page is linked by another web page with a high PR value, its PR value
increases accordingly. Thus, nodes with higher PR values in the project risk network have
a stronger risk transmission effect. According to Table 6, the top ten risks are as follows:
cost overrun, construction cycle, delay risk, construction accident risk, project complex‑
ity risk, safety management risk, quality assessment risk, improper drawing design risk,
engineering technology risk and contract signing deviation from the bidding content risk.

4.2.3. Critical Risk Determination
Four indicators are considered to determine the importance of nodes, namely, the

degree value of nodes, proximity to the center, PR value and feature vector centrality. The
top ten risk elements of these indicators in the project risk network are selected and listed
in Table 7. The risk elements with a frequency higher or equal to 3 are identified as key
nodes in the network. The key transmission nodes are judged based on the size of the
outgoing and incoming degree values, the centrality of the characteristic vector and the
PR value. The results are shown in Table 8.
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Table 7. List of the top 10 risk nodes.

Serial Number Degree Near Centrality Feature Vector PageRank

1 132 135 122 135
2 122 122 132 122
3 135 132 135 132
4 62 62 105 105
5 133 105 62 62
6 105 111 111 111
7 72 133 101 133
8 111 101 102 101
9 101 69 133 102
10 102 71 69 69

Table 8. Key nodes of the risk network.

Node Type Node Risk Name Production Stage Judgment Basis

Initial risk node 132 Risk of construction delay Project construction stage Ranking first in terms of exit, third in
terms of entry and first in terms of value

122 Construction period risk Project construction stage The output ranked second, the entry
ranked first and the value ranked second

135 Cost overrun risk Project completion
acceptance stage

The output ranks third, the input ranks
second and the value ranks third

Conduction risk node 62 Project complexity risk Project preparation stage
The output ranks fourth, the PR value
ranks top (fifth), the feature vector (fifth)
and the intermediary centrality (fourth)

133 Quality assessment risk Project completion
acceptance stage

The ranking of degree value, PR value
(seventh), intermediary centrality (fifth)

and proximity centrality (seventh)

105 Construction accident risk Project construction stage

The ranking of degree value is high
(sixth), PR is high (fourth), intermediary
centrality is high (ninth) and close to

centrality (fifth)

111 Safety management risk Project construction stage

The ranking of degree value is high
(eighth), the ranking of PR value is high
(sixth), the ranking of intermediary
centrality is high (fifth) and close to

centrality (seventh))

101 Risk of improper
drawing design Project construction stage

The degree value ranks first (ninth), the
PR value ranks first (seventh), the

centrality of the eigenvector ranks first
(seventh) and the near centrality

ranks eighth

69
Risk of contract signing

deviating from
bidding content

Project preparation stage

The output value ranks high, the PR
value ranks high (tenth), the

intermediary centrality ranks high
(sixth) and the feature vector centrality

ranks high

5. Discussion
In contrast to similar research literature [39,40], in terms of research content, this study

provides amore comprehensive analysis of the risk network of water conservancy projects,
starting from the four stages of water conservancy project construction. In terms of re‑
search methodology, this study adds a cohesive analysis of risk in urban river ecological
management projects based on complex networks, further elaborating the aggregation ef‑
fect of risk factors in risk networks. In terms of findings, the results of this study are par‑
tially consistent with the focused risk nodes obtained from studies in the literature [39,40],
justifying the results of this study.

This study constructs a complex network model and analyzes the overall and local
characteristic parameters of the risk network. Moreover, we analyzed the risk transfer
characteristics of the urban river ecological management project according to the parame‑
ter characteristics, and we also revealed the inner law of risk transfer of the complex net‑
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work in the case of the Jinghe ecological management project in Jinghe New City. The
results can improve the risk management awareness and ability of the main body of the
urban river ecological management project to effectively achieve the goal of risk manage‑
ment. In particular, this paper is based on the case study of the risk of the Jinghe ecological
management project. A detailed analysis of engineering riskmanagement to guarantee the
quality of the project and reduce the occurrence of engineering risks ensures the optimiza‑
tion of the ecological environment of Jinghe, promoting the high‑quality development of
Jinghe and improving the lives of the people.

Firstly, this study enriched the theory and practice of urban river ecological manage‑
ment engineering risk management research. With the rapid development of urban river
ecological management engineering in recent years, it requires a higher level of engineer‑
ing risk management. This paper investigates the urban river ecological management en‑
gineering risk evolution process, and it is meaningful for river management engineering,
risk management theory and multi‑link complex theory. Secondly, it can improve the risk
management level of urban river ecological management project participants. Urban river
ecological management project is extremely complex, involving many management fac‑
tors and technical factors, including personnel, materials, management, environment and
technical methods. Managers need sufficient safety theory and management level. By ex‑
ploring the problem of dynamic engineering risk evolution, this study found the risk links
in the construction process, we controlled the transformation conditions by judging the
important links, and we also replaced the remedial measures after the occurrence of the
risk with preventive management in advance, to improve the management’s emergency
response‑ability to the risk. Thirdly, this study can help the managers of urban river eco‑
logical management understand the law of accident risk evolution by preventing the oc‑
currence of risks and improving engineering economic efficiency. These research results
help managers formulate corresponding preventive measures to reduce the probability of
accidents and increase the economic benefits of enterprises and society.

This study comes with several limitations. The occurrence of the risk and its causes
are complex, and 63 risk points and risk factor data cannot fully reflect the law of urban
river ecological management project risk evolution. Therefore, the model slightly deviates
from reality. It is crucial to expand on existing data in further research and improve the
complex network model to further confirm the research results. Additionally, this study
only considered the static risk network. In the future, we can consider adding the state
of risk nodes and other factors to construct a dynamic risk network model. Moreover, the
network constructed in this study considers the relationship betweennodes as directed and
unweighted, but the relationship between risk elements in engineering practice is more
complex, and the weight of edges should be taken into account in future studies to make
the conclusions more applicable to the actual situation, and the realistic risk network of
complex engineering projects is dynamic and variable, and the risk elements in it may
increase, decrease or change with time, but this study only analyzes the static network
structure, and the dynamic changes of risks can be included in the study afterward.

6. Conclusions
Urban river ecological management projects are typically characterized by large capi‑

tal investment, many involved parties, long construction and operation cycles, and perva‑
sive risk factors. This makes their project risks difficult to control, and the risk of any one
link may lead to the risk of the overall project. Risk prevention and control need to control
direct risks and cut off the transmission path of indirectly triggered risks. This study draws
the following conclusions by constructing a risk factor network, analyzing the statistical
characteristics of the network and comprehensively evaluating the importance of the risk
factors involved.

From the perspective of the risk generation phase, key risks in the project risk network
primarily appear in the second preparation phase and the third project construction phase
phases of the project. They are also the most critical phases of the project, with the longest

155



Water 2023, 15, 2012

time span and the strongest interaction among the parties involved. Therefore, the number
of risk elements in these two particular phases grows extremely fast, and the interaction
among the nodes increases obviously. The analysis demonstrates that schedule delay risk,
construction cycle risk, and project complexity risk are the most important risks in these
two phases, which interact with each other. This shows that they have a key role in the
risk transfer process.

The cost overrun risk in the completion and acceptance stage is also an important
transmission node that cannot be ignored. The high entry value of this risk indicates that
the occurrence of risks in other stages of the project leads to the occurrence of this risk, and
it will also react to other risks.

The risk factor network has complex characteristics, small‑world characteristics and
scale‑free characteristics. It reflects that the interaction among risk factors leads to the oc‑
currence of risk events, and the risk factors have a close and prompt influence on each other.
The risk factors of the conduction node and the starting node within the network have a
dominant position. The results obtained demonstrate that schedule delay risk, construc‑
tion cycle risk and cost overrun risk are the starting risk factors of urban river ecological
management projects. Furthermore, the project complexity risk, quality assessment risk
and construction accident risk have important conduction roles. Therefore, according to
the key nodes of the risk network, searching for approaches to prevent risk generation is
a crucial part of the project risk control work.
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Abstract: The permeability of the natural geology plays a crucial role in accurately analyzing seepage
behavior in the project area. This study presents a novel approach for the inverse analysis of the
permeability coefficient. The finite element model (FEM) combined with orthogonal experimental
design is used to construct a sample set of permeability coefficient inversion. The established random
forest (RF) algorithm surrogate model is applied to determine the optimal values of permeability
parameters in the project area using the Harris hawk optimization (HHO) algorithm. This method
was used to explore and verify the distribution of natural seepage fields for the P hydropower station.
The results showed that the RF model outperformed the classical CART and BP models at each
borehole regarding performance evaluation indices. Furthermore, the water head prediction results
were more accurate, and the RF model performed admirably in terms of prediction, anti-interference,
and generalization. The HHO algorithm effectively searched for the optimal permeability coefficient
of the geology. The maximum value of the relative error of the borehole water head inverted was
1.11%, and the accuracy met engineering standards. The initial seepage field distribution pattern
calculated followed the basic distribution pattern of the mountain seepage field.

Keywords: permeability coefficient; inversion analysis; orthogonal experimental design; RF; HHO

1. Introduction

In recent years, China has built a considerable number of new high dams and large
reservoirs, pumped storage power plants, water transfer projects, and other large-scale
water conservancy projects, encouraging the sustainable and healthy growth of the econ-
omy and society. To ensure the safe construction and normal operation of the project,
it is vitally necessary to master the seepage distribution in the project area. As a result,
numerical simulation methods are commonly employed to judge the seepage properties.
However, this procedure is based on the determination of the permeability coefficient
of the natural stratum [1]. The inversion analysis based on onsite observation data can
more accurately obtain permeability parameters than indoor and in situ experiments [2],
making it one of the most effective ways to determine the permeability coefficients of
materials [3]. Many inversion methods [4–7] have been proposed. However, these classic
methods necessitate many calls to the seepage analysis forward model, which is computa-
tionally time-consuming and inefficient. Therefore, practical approaches must be adopted
to improve the calculation efficiency of inversion methods.

As a method to improve the efficiency of the inversion, surrogate models based
on machine learning algorithms have been widely used in recent years. The response
surface technique [8], radial basis function (RBF) [9], extreme learning machine (ELM) [10],
backpropagation (BP) neural network [11], support vector regression (SVR) [12], multiple
adaptive regression splines (MARS) [13], and others are commonly used as surrogate
models. These models generate learning samples using FEM. Then, the mathematical
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model is used to build the relationship between the permeability coefficient (i.e., input
variable) and the water head (i.e., output variable). This can then be used to replace the
seepage forward model to solve the problem quickly.

Applying the surrogate model can enhance the computational efficiency of the inver-
sion, but its essence remains the standard inversion method of “forward problem inverse
calculation”. The parameters inverted are not optimal and have low accuracy; hence, fur-
ther research into novel seepage inversion theories and methods is required. Chi et al. [9]
studied the inversion of permeability coefficients of the high-core rockfill dam using the
RBF model and the particle swarm optimization (PSO) algorithm. Ni et al. [14] established
a surrogate model based on SVR. They searched for the optimal permeability coefficients of
the partition inverted for the Nuozhadu high-core rockfill dam using the PSO algorithm.
Li et al. [15] established an inversion analysis model based on the relevance vector machine
model and cuckoo search algorithm. They determined the permeability coefficient of each
stratum in the study area. Shu et al. [16] used ELM and an optimization algorithm to
perform a back study on the permeability coefficient of the dam anti-seepage curtain and
determined its optimal value. These studies showed that it is feasible to invert the optimal
values of seepage parameters using an optimization algorithm combined with the surrogate
model, whereby the inversion accuracy is improved.

In the process of nonlinear modeling of the permeability coefficient, the above model
exhibits several problems, including low prediction accuracy, poor robustness, slow con-
vergence speed, limited generalization ability, and quickly falling into a local minimum.
Additionally, the model assumes the medium to be isotropic during inversion, disregarding
the impact of its anisotropy on seepage behavior. Given this, this study introduces the
random forest (RF) algorithm, considers the anisotropic characteristics of the medium, and
constructs a surrogate model for seepage analysis. Then, Harris hawk optimization (HHO)
is introduced to establish a new inversion model that can intelligently optimize the stratum
permeability coefficient and lay the foundation for safety analysis of seepage properties
in the project area. Lastly, the rationality and validity of the model proposed are verified
using an engineering example.

2. Methodology
2.1. Random Forest (RF)

RF [17] is an ensemble learning algorithm widely used for nonlinear regression prob-
lems [18,19]. The algorithm’s core is to use the ensemble learning method (i.e., bootstrap
aggregating) to model the decision tree for each sample set extracted using the bootstrap
method. A single decision tree with overfitting and local convergence problems becomes
multiple “forests”, improving the model’s performance. The implementation steps are
as follows:

Step 1: T training sets S1, S2, . . . , ST are randomly generated using the bootstrap
method. Let the set of samples be S = {x1, x2, · · · , xn}; there is putback from the set of
samples S to draw n times, forming a new set of samples Si (i = 1, 2, . . . , T). The total
samples of Si are the same, but it contains only about 62.3% of samples in the original set.

Step 2: According to each training set Si (i = 1, 2, . . . , T), the corresponding decision
tree models C1, C2, . . . , CT are generated.

Step 3: The corresponding result C1 (X), C2 (X), . . . , CT (X) is obtained for the test set
of samples X using each of the generated decision tree models.

Step 4: The output results of T decision trees are averaged as the result of the
X calculation.

The RF model contains three critical parameters: the number of decision trees Ntree,
the number of random characteristics of node splitting Mtry, and the minimum number
of samples of leaf nodes Nodesize. Generally, compared with Ntree and Mtry, Nodesize has
less impact on the performance and efficiency of the RF model, and the default value is
generally chosen.
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2.2. Harris Hawk Optimization (HHO)

The HHO algorithm is a novel global search algorithm constructed by Heidari et al. [20]
on the basis of the predation patterns of the Harris hawk group and Levy flight charac-
teristics. This algorithm has the characteristics of few adjustment parameters, an optimal
random search path, easy implementation, and high calculation accuracy [21]. It has been
widely applied to mechanical multi-objective optimization [22], dam deformation predic-
tion [23], environmental drought index prediction [24], landslide prediction [25,26], and
other fields. This paper introduces the HHO algorithm to search for the optimal perme-
ability coefficient value. The optimization process consists of the exploration phase, the
transition from exploration to exploitation, and the exploitation phase. The specific process
is described below.

(1) Exploration phase

In this phase, HHO simulates the Harris hawks’ behavior of tracking prey. Their
positions are updated according to Equation (1).

X(t + 1) =
{

Xrand(t)− r1|Xrand(t)− 2r2X(t)| q ≥ 0.5
(Xrabbit(t)− Xm(t))− r3(LB + r4(UB− LB)) q < 0.5

, (1)

where X (t) and X (t + 1) are the positions of hawks in the t-th iteration and t + 1-th iteration,
Xrand (t) is a randomly selected Harris hawk individual, Xrabbit (t) is the current location of
the prey, and r1, r2, r3, r4, and q are random numbers in the range [0, 1]. UB and LB are the
upper and lower bounds of the search space. Xm (t) is the average position of hawks and is
computed as shown in Equation (2).

Xm(t) =
1
N
(

N

∑
i=1

Xi(t)), (2)

where N is the number of Harris hawks, and Xi (t) is the location of each hawk in the
t-th iteration.

(2) Transition from exploration to exploitation

HHO conducts the transition from exploration to exploitation according to the escape
energy of the prey. It is defined as shown in Equation (3).

E = 2E0(1−
t
T
), (3)

where E is the escape energy of the prey, E0 is a random initial energy between (−1, 1), t is
the number of iterations, and T is the maximum number of iterations.

When |E| ≥ 1, the hawks track the prey in different regions, and HHO executes the
exploration phase; when |E| < 1, HHO executes the exploitation phase in the neighborhood
of the solution, and hawks encircle, approach, and attack the prey.

(3) Exploitation phase

In this phase, when |E| ≥ 0.5, the hawks conduct a soft besiege on the prey; when
|E| < 0.5, the hawks conduct a hard besiege on the prey. In addition, the chance of the
prey escaping is measured using r. When r ≥ 0.5, the prey has enough energy to escape;
when r < 0.5, the prey does not have enough energy to escape. Therefore, the hawks have
the following four strategies to catch the prey.

When r ≥ 0.5 and |E| ≥ 0.5, the hawks execute the soft besiege strategy and update
their positions according to Equation (4).

X(t + 1) = Xrabbit(t)− X(t)− E|JXrabbit(t)− X(t)|, (4)

where J is the random jumping strength of the prey in the process of escape, when
J = 2(1− r5), and r5 is a random number in the range (0,1).
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When r ≥ 0.5 and |E| < 0.5, the hawks execute the hard besiege strategy, and their
positions are updated as represented by Equation (5).

X(t + 1) = Xrabbit(t)− E|Xrabbit(t)− X(t)|. (5)

When |E| ≥ 0.5 and r < 0.5, the hawks execute the soft besiege strategy of progressive
rapid dives and update their positions using Equation (6).

X(t + 1) =
{

Y, f (Y) < f (X(t))
Z, f (Z) < f (X(t))

, (6)

where f is the fitness function. Y and Z are obtained using Equations (7) and (8).

Y(t) = Xrabbit(t)− E|J · Xrabbit(t)− X(t)|, (7)

Z = Y + S× LF(D), (8)

where D is the problem dimension, S is a D-dimension random variable, with its elements
being random numbers in the range [0, 1], and LF is the Levy flight function [19].

When |E| < 0.5 and r < 0.5, the hawks execute the hard besiege strategy of progressive
rapid dives, and their positions are updated as described in Equations (9) and (10).

X(t + 1) =
{

Y, f (Y) < f (X(t))
Z, f (Z) < f (X(t))

, (9)

where Y and Z are calculated using Equations (10) and (8).

Y(t) = Xrabbit(t)− E

∣∣∣∣∣J · Xrabbit(t)−
1
N
(

N

∑
i=1

Xi(t))

∣∣∣∣∣. (10)

2.3. Calculation Principle of the Three-Dimensional Stable Seepage Field

According to the continuity equation of water flow, the primary differential Equa-
tion [3] of steady seepage is expressed as shown in Equation (11).

∂

∂x

(
kx

∂H
∂x

)
+

∂

∂y

(
ky

∂H
∂y

)
+

∂

∂z

(
kz

∂H
∂z

)
= 0, (11)

where H is the water head function, and kx, ky, and kz are the permeability coefficients in x-,
y-, and z-directions, respectively.

According to the common boundary conditions [3] and the variational principle,
Equation (11) can be solved using Equation (12).

I(H) =
y

Ω

1
2


kx

(
∂H
∂x

)2
+ ky

(
∂H
∂y

)2
+ kz

(
∂H
∂z

)2
]

dxdydz−
x

S2

qHds⇒ min, (12)

where Ω is the calculation area.
By discretizing the seepage calculation area, the basic finite element equation for

solving a three-dimensional seepage field can be obtained [27] from Equation (12) as shown
in Equation (13).

[K] · {H} = {F}, (13)

where [K] is the overall penetration matrix, {H} is node head array, and {F} is the corre-
sponding flow matrix.
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2.4. The Fitness Function of the RF–HHO Model

The essential purpose of seepage field inversion is to find the optimal combination of
permeability coefficients within a given range. Therefore, the essence of the permeability
coefficient inversion is an optimization problem. This study used HHO to find the optimal
permeability coefficient for the geology, and an inversion model based on RF–HHO was
established. The model’s fitness function was the minimum mean square error (MSE)
between the measured and calculated water head of boreholes, as shown in Equation (14).
The pseudo-code of the RF–HHO model is shown in Algorithm 1.

f = minMSE = min

[
1
q

q

∑
k=1

(Hk − H′k)
2
]

, (14)

where Hk is the measured water head value of the k-th borehole, H′k is the calculated water
head of the k-th borehole, and q is the number of boreholes.

The constraints of the objective function are shown in Equation (15).

s.t. xd
m ≤ xm ≤ xu

m (m = 1, 2, . . . , M), (15)

where xm is the permeability coefficient inverted, xu
m and xd

m are its upper and lower limits,
respectively, and M is the total number of permeability coefficients inverted.

Algorithm 1: Pseudo-code for RF–HHO implementation.

Input: training examples and range of permeability coefficient values
Output: Optimal combination of permeability coefficients for the geology of the project area

Initialize N and T, generate the initial population XN×D, and calculate the fitness value f ;
While t < T

Set Xrabbit as the prey (best location), and update E0, E, and r for each hawk (Xi)
If |E| ≥ 1

Use Equation (1) to update the population;
if |E| < 1

if r ≥ 0.5 and |E| ≥ 0.5
Use Equation (4) to update the population;

if r ≥ 0.5 and |E| < 0.5
Use Equation (5) to update the population;

if r < 0.5 and |E| ≥ 0.5
Use Equation (6) to update the population;

if r < 0.5 and |E| < 0.5
Use Equation (9) to update the population;

end
end

Calculate the fitness value of the new individual, and update their positions and optimal
fitness value;

t = t + 1;
end

2.5. Establishment of a Permeability Coefficient Inversion Model for the Dam Site Area

Using the RF and HHO algorithms, this paper established an inverse model of geology
permeability coefficients. It can intelligently search for the optimal permeability coefficients
of the dam foundation. Figure 1 shows the modeling procedure. The main steps are
as follows:

Step 1: The orthogonal test design method is used to construct the combination
of permeability coefficients. Then, the borehole water head under the corresponding
combination is obtained by FEM. Finally, the inversion sample set is established.
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Step 2: The permeability coefficient is selected as the input variable of the RF model,
and the corresponding borehole head calculation value is selected as the output variable of
the model.
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Step 3: The sample set is split into 80% for training and 20% for testing. Simultaneously,
to eliminate the impact of variable magnitude on the RF model, the sample data are
preprocessed using the normalization Equation (16) to limit the data to [0, 1].

x′m =
xm − xd

m
xu

m − xd
m

, (16)

where x′m is the normalized permeability coefficient value.
Step 4: Tenfold cross-validation is used to determine the optimal parameters Mtry and

Ntree of the RF model. Then, the inversion surrogate model is trained.
Step 5: It is verified whether the accuracy of the surrogate model obtained in Step 4

meets the error threshold. If it meets the standards, the procedure proceeds to the next step.
Otherwise, steps 4 and 5 are repeated.

Step 6: After denormalizing the output results, the surrogate model established is
evaluated using the following statistical indices [18,19,28–30]: mean absolute error (MAE),
mean absolute percentage error (MAPE), root-mean-square error (RMSE), and goodness of
fit (R2). The calculated expressions are shown in Equations (17)–(20), respectively.

MAE =
1
n

n

∑
i=1
|yi − ŷi|, (17)

MAPE =
100
n

n

∑
i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣, (18)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, (19)

163



Water 2023, 15, 1993

R2= 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

, (20)

where yi and ŷi are the measured and predicted values, respectively, y and ŷi are the
averages of the measured and predicted values, respectively, and n is the number of
measured values.

Step 7: When employing HHO to find the optimal permeability coefficients, a new
combination of permeability coefficients is constructed. Their corresponding borehole
head is calculated using the established RF model. If the fitness under this combination
is less than the existing optimal fitness, the existing combination and fitness are update.
Otherwise, the procedure proceeds to step 8.

Step 8: If HHO does not reach the maximum number of iterations, step 7 is repeated.
Otherwise, the current combination and its fitness are updated, along with the final inver-
sion result.

3. Case Study
3.1. Basic Information on the Project Area

The reservoir of P hydropower station is a class III medium-sized reservoir. The
pivotal project is composed of left and right bank water-retaining dam sections, riverbed
overflow dam sections, bottom outlets, and water-intake dam sections. The dam is a
roller-compacted concrete gravity dam with a maximum height of 59.50 m, a crest length
of 217.00 m, and a crest width of 8 m. The normal storage and the design flood level of
the reservoir are 946.5 m, the check flood level is 946.95 m, the total storage capacity is
15.81 × 106 m3, and the backwater length is 6.082 km. The dam is a grade III structure,
the design flood standard is a 50 year return period, and the corresponding peak flow is
808 m3/s; the check flood standard is a 500 year return period, and the corresponding peak
discharge is 2110 m3/s. The seismic design intensity is VII.

The project area is located in a low hill and gully landscape with a high north and
low south terrain; the river valley gully is relatively developed, and its cross-section is
“U”-shaped. The main stratum of the project area is the Triassic Ermaying Formation.
The lithology is mainly gray-green coarse-grained feldspathic sandstone, sandstone mud-
stone interbedding, siltstone, and silty mudstone. The rock stratum is stable and about
200 m thick. The stratum in the project area is divided into a strongly weathered, weakly
weathered, and slightly new strata. The stratum is weakly permeable with good bottom
sealing. The groundwater is mainly bedrock fissure phreatic water and quaternary pore
phreatic water. Both reservoir banks are relatively wide and thick, without a thin watershed
distribution, large structure, and fault distribution. Two groups of conjugate high-angle
shear joints, NWW and NNE, are common, with a fracture spacing of 0.5~2.0 m.

3.2. Establishment of the Finite Element Model

According to the geological survey report and relevant hydrogeological data, a three-
dimensional finite element seepage model in the engineering area was established. The
model’s boundary was determined by the seepage field and the site’s terrain. The sur-
rounding was taken from the mountain watershed, and the thickness of the rock around
the reservoir was not less than 3–5 times the dam height or the excavation span [31,32].
When the distance from the surface was less than five times the excavation span, it was
calculated to the surface to ensure the rationality of the model calculation boundary. The
upstream and downstream boundaries of the established model were 7.90 and 10.01 times
the dam height from the dam site, respectively; the left and right boundaries were 3.79 and
9.29 times the dam height from the midpoint of the dam axis, respectively. Moreover, the
left boundary was along the channel on the left bank of the downstream. Figure 2 shows
the model’s scope, measuring 1284.67 m in length and 1183.87 m in width.
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Figure 2. Calculation scope of seepage inversion analysis model in the project area.

In order to make the calculation model consistent with the actual hydrogeological
conditions in the project area, a detailed simulation of the strata located on both banks
and the river valley was conducted on the basis of the geological profile of the dam axis,
as illustrated in Figure 3. The thickness of the strongly and weakly weathered strata was
13.5 m and 24.2 m on the left bank, 3.9 m and 26.1 m on the river valley, and 3.8 m and
20.6 m on the right bank, respectively. Furthermore, the survey of adits on both banks
revealed the presence of a wide fissure, measuring approximately 8 cm in width, and a
long fissure, roughly 1.0 cm in width, on the right bank. On the left bank, a weak rock belt
composed of sandy mudstone was observed, with a maximum thickness of 5 cm. These
findings were simulated in the study.
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Figure 3. Engineering geological profile of dam axis at dam site.

In conclusion, the calculation model built using ABAQUS is shown in Figure 4. The
bottom elevation of the model was 507.1 m, and the top elevation was the corresponding
surface elevation. The four-node isoparametric element (C3D4P) was used to mesh the
model. The numbers of nodes and units were 54,552 and 300,618, respectively. In the
calculations, the right boundary, the left boundary, and the middle channel of the model
used the measured groundwater level, the corresponding ditch bottom water level, and
the natural river valley level as their constant water head boundaries, respectively; the
upstream, downstream, and bottom were impermeable boundaries.
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The study used the proposed inversion model to invert the dam foundation perme-
ability coefficients of the P hydropower station using the measured water levels from
seven boreholes (i.e., CZK1, CZK2, CZK3, CZK4, CZK5, CZK6, and CZK7) in the natural
seepage field.

3.3. Sample Construction Based on Orthogonal Design

The permeability coefficient of various strata and fractures was an independent vari-
able in the inversion. Since each stratum was mostly sandstone and mudstone interbedded
with uneven lithology, their permeability coefficients were considered anisotropic. Ac-
cording to the geological survey data and combined with general engineering experience,
the range of permeability coefficients was determined, as shown in Table 1, where k1 and
k2 are the tangential permeability coefficient values, and k3 is the normal permeability
coefficient value.

Table 1. Value range of permeability coefficients for each stratum and fracture.

Rock Stratum Measured Range of k1 and k2 (m/s) Measured Range of k3 (m/s)

Strongly weathered stratum [4.32, 9.86] × 10−5 [1.12, 6.57] × 10−5

Weakly weathered stratum [3.57, 9.25] × 10−6 [1.63, 7.49] × 10−6

Bedrock [5.61, 8.94] × 10−7 [1.38, 4.67] × 10−7

Fracture [5.35, 8.58] × 10−6 [1.24, 4.27] × 10−6

Constructing a reasonable permeability coefficient sample is crucial for developing a
surrogate model. To ensure the RF model precision without increasing the workload of finite
element forward analysis, this study adopted the orthogonal design method [33] to arrange
a representative combination scheme of permeability coefficients. Orthogonal tables are
essential to orthogonal test sample preparation. The scheme is generally expressed as Ln
(tc), where L is the orthogonal table, n is the total number of tests, t is the level number of
factors, and c is the maximum number of factors arranged. The four factors of the test were
the permeability coefficients of strongly weathered stratum, weakly weathered stratum,
bedrock, and fracture. Table 2 shows each factor’s nine level numbers. The 81 permeability
coefficient combination schemes were generated by SPSS using the orthogonal table L81
(94). Subsequently, the corresponding water head was determined through finite element
forward analysis, and 81 sets of inversion samples were constructed. A total of 65 groups of
samples (the first 80% of the data) were chosen for training the RF model, while 16 groups
of samples (the remaining 20%) were used for verifying the model.
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Table 2. Values of parameters at different levels based on orthogonal design.

Level

Strongly Weathered
Layer (×10−5 m/s)

Weakly Weathered
Layer (×10−6 m/s)

Bedrock
(×10−7 m/s)

Fissure
(×10−6 m/s)

k1 = k2 k3 k1 = k2 k3 k1 = k2 k3 k1 = k2 k3

1 4.32 1.12 3.57 1.63 5.61 1.38 5.35 1.24
2 5.01 1.80 4.28 2.36 6.03 1.79 5.75 1.62
3 5.71 2.48 4.99 3.10 6.44 2.20 6.16 2.00
4 6.40 3.16 5.70 3.83 6.86 2.61 6.56 2.38
5 7.09 3.85 6.41 4.56 7.28 3.03 6.97 2.76
6 7.78 4.53 7.12 5.29 7.69 3.44 7.37 3.13
7 8.48 5.21 7.83 6.03 8.11 3.85 7.77 3.51
8 9.17 5.89 8.54 6.76 8.52 4.26 8.18 3.89
9 9.86 6.57 9.25 7.49 8.94 4.67 8.58 4.27

3.4. Determination of the RF Model Parameters

The establishment of the RF model relies heavily on setting the optimal Mtry and
Ntree values, as demonstrated in Section 2.1. The variable control method was applied to
analyze and determine RF parameter settings using the sample data from Section 3.3. The
ideal RF parameters were selected using a tenfold cross-validation based on the model’s
least MSE, effectively reducing model unpredictability.

To examine the model’s generalization ability under different Ntree, Mtry was set to
the default value (i.e., one-third of the number of variables), and the Ntree range was
set to [50, 1000] with a step size of 50. Figure 5a depicts the model’s MSE change curve
for different Ntree. It is evident that the model’s MSE stabilized when Ntree reached 400,
indicating that increasing the number of model trees did not significantly affect the model
error when Mtry was fixed. Therefore, to enhance the computational efficiency and ensure
the accuracy of the RF model, this study selected Ntree = 400. Subsequently, the model’s
generalization ability was evaluated under different Mtry levels, with Ntree set to 400 and
Mtry set to [1, 20] with a step size of 1. Figure 5a depicts the model’s MSE change curve for
different Mtry. It shows that the model’s MSE increased gradually with an increase in Mtry,
with the smallest MSE observed at Mtry = 4. Accordingly, Ntree = 150 and Mtry = 4 were
identified as the optimal parameters for the RF model, leading to improved performance
and computational efficiency.
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4. Results and Analysis
4.1. Performance Validation of the RF Model

The study evaluated the ability of the RF model to invert permeability parameters at
borehole CZK1, comparing it to the CART model [18] and BP neural network model [19].
The RF model was configured with parameters Ntree and Mtry set to 400 and 4, respectively;
the CART model was configured with parameters minLeafSize and smoothingK set to
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6 and 20, respectively; the BP model’s hidden layer consisted of seven neurons, and the
maximum number of iterations was set to 200. Figure 6 displays the prediction results of the
RF, CART, and BP models for the borehole water level. Table 3 presents the generalization
ability and forecast accuracy of the three models according to different evaluation indices.
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Table 3. Evaluation indices of prediction results of RF, CART, and BP models at borehole CZK1.

Models
Model Training Model Verification

MAE (m) MAPE (%) RMSE (m) R2 MAE (m) MAPE (%) RMSE (m) R2

RF 0.290 0.031 0.353 0.962 0.255 0.055 0.589 0.879
CART 0.357 0.039 0.416 0.948 0.325 0.070 0.764 0.797
BP 0.385 0.042 0.457 0.937 0.695 0.075 0.827 0.762

Figure 6a shows that the prediction curves of the three models were close to the finite
element calculation curves, and the prediction errors were negligible. However, Figure 6b
illustrates that the overall prediction residuals of the RF model were smaller than those of
the CART and BP models. Table 3 proves that the RF model outperformed the CART and
BP models in all evaluation indices. Notably, the R2 values for the training and test sets
were 0.962 and 0.879, respectively, and other indices also achieved low values, indicating
that the RF model fit was highly significant. Consequently, the prediction accuracy of the
RF model was higher, and the proxy model based on the RF model accurately predicted
the water head of borehole CZK1.

The water heads of boreholes CZK2, CZK3, CZK4, CZK5, CZK6, and CZK7 were
utilized to assess the generalization ability of the RF model. Figure 7 illustrates the water
head prediction results of the RF, CART, and BP models at these boreholes. Table 4 presents
a quantitative evaluation of the prediction results.

Figure 7 indicates that the RF model outperformed the other two models regarding
anti-interference and generalization. Specifically, the RF model’s R2 values at boreholes
CZK2, CZK3, CZK4, CZK5, CZK6, and CZK7 were 0.864, 0.898, 0.896, 0.922, 0.909, and
0.922, respectively, which were superior to those of the CART (R2 = 0.797, 0.818, 0.860, 0.871,
0.869, and 0.903) and BP (R2 = 0.675, 0.802, 0.807, 0.836, 0.844, and 0.868) models, as reported
in Table 4. Moreover, the other statistical indices of the RF model outperformed those of the
CART and BP models, indicating its excellent generalization ability. Overall, the RF model
accurately predicted the water head at all seven boreholes, making it a suitable surrogate
model for inverting engineering seepage parameters with high accuracy and robustness.
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Table 4. Evaluation indices of prediction results of RF, CART, and BP models at different boreholes.

Measuring Points Models
Model Training Model Verification

MAE (m) MAPE (%) RMSE (m) R2 MAE (m) MAPE (%) RMSE (m) R2

CZK2
RF 0.304 0.034 0.366 0.960 0.262 0.058 0.626 0.864
CART 0.366 0.041 0.430 0.944 0.341 0.075 0.764 0.797
BP 0.385 0.043 0.457 0.937 0.844 0.093 0.967 0.675

CZK3
RF 0.339 0.038 0.413 0.948 0.241 0.054 0.543 0.898
CART 0.373 0.042 0.437 0.942 0.338 0.075 0.724 0.818
BP 0.388 0.043 0.449 0.939 0.687 0.077 0.755 0.802

CZK4
RF 0.326 0.035 0.377 0.957 0.252 0.055 0.548 0.896
CART 0.362 0.039 0.405 0.951 0.294 0.064 0.635 0.860
BP 0.419 0.046 0.477 0.931 0.672 0.073 0.745 0.807

CZK5
RF 0.339 0.038 0.379 0.957 0.221 0.049 0.473 0.922
CART 0.362 0.040 0.407 0.950 0.280 0.062 0.609 0.871
BP 0.422 0.047 0.453 0.938 0.633 0.070 0.688 0.836

CZK6
RF 0.350 0.039 0.384 0.955 0.242 0.054 0.510 0.909
CART 0.426 0.047 0.449 0.939 0.285 0.063 0.610 0.869
BP 0.482 0.054 0.516 0.920 0.626 0.070 0.669 0.844

CZK7
RF 0.403 0.044 0.452 0.938 0.224 0.049 0.475 0.922
CART 0.406 0.044 0.424 0.946 0.250 0.054 0.527 0.903
BP 0.471 0.051 0.490 0.927 0.587 0.064 0.617 0.868

4.2. Inversion of Permeability Coefficients Based on the HHO Algorithm

Section 4.1 verified that the constructed surrogate model predicted borehole water
heads well. Utilizing this model, the HHO algorithm was employed in global optimization
within the range of permeability coefficients (i.e., Table 1). The initial number of hawks
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was set to N = 50, the maximum number of iterations was T = 200, and the fitness value
was calculated using the trained RF in Section 4.1. To validate the HHO algorithm’s opti-
mization capacity, classic optimization algorithms such as the genetic algorithm (GA) [34]
and PSO [35] were introduced for comparison. During calculation, the PSO algorithm’s
parameters were set to 100 for the number of particle swarms, 1.5 for the individual learning
factor, 2 for the social learning factor, 1 for the maximum inertia factor, 0.8 for the mini-
mum inertia factor, and 200 for the maximum number of iterations. The GA algorithm’s
parameters were set to 100 for the population size, 0.85 for the generation gap, 0.6 for the
crossover probability, 0.01 for the mutation probability, and 200 for the maximum genetic
algebra. Figure 8 illustrates the convergence process of the HHO, PSO, and GA algorithms
in searching for the optimal solution.
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Figure 8 illustrates that the HHO algorithm exhibited a smoother convergence curve,
a superior initial optimization result, and a faster convergence rate than the PSO and
GA algorithms. The HHO, PSO, and GA algorithms achieved optimal results at the 66th,
96th, and 105th generations, respectively. The convergence rates of all three algorithms
were relatively flat, indicating their strong global search capabilities. However, the HHO
algorithm required fewer initial parameters, with only N and T needing to be determined,
thus simplifying programming. Table 5 presents the optimal permeability coefficient for
each stratum and fracture.

Table 5. Inversion results of permeability coefficient of each stratum and fracture.

Rock Stratum Calculated Value of k1 and k2 (m/s) Calculated Value of k3 (m/s)

Strongly weathered stratum 8.43 × 10−5 5.47 × 10−5

Weakly weathered stratum 7.81 × 10−6 6.14 × 10−6

Bedrock 7.46 × 10−7 3.69 × 10−7

Fracture 7.29 × 10−6 2.87 × 10−6

To confirm the validity of the permeability coefficient obtained, we applied the inverted
permeability coefficients of each stratum and fracture to the FEM. This allowed us to
calculate the water head of each borehole and compare it with the measured water level.
The results are presented in Table 6. The calculation formulas for absolute error e and
relative error er are presented in Equations (21) and (22), respectively:

e = H′ − H, (21)

er =
[
(H′ − H)/H

]
× 100%, (22)

where H′ and H are the calculated and measured water levels of the borehole, respectively.
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Table 6. Comparison of measured and inverted water levels at each borehole.

Borehole Calculated Water Level (m) Measured Water Level (m) Absolute Error (m) Relative Error (%)

CZK1 920.83 928.74 −7.91 0.85
CZK2 905.67 902.24 3.43 0.38
CZK3 899.83 895.97 3.86 0.43
CZK4 922.75 912.62 10.13 1.11
CZK5 904.56 899.64 4.92 0.55
CZK6 898.32 895.84 2.48 0.28
CZK7 921.41 913.51 7.90 0.87

Several studies [3,31,32] suggested that the inverted permeability coefficient is suitable
when e < 10 m and er < 5% at each borehole. Table 6 shows that CZK4 had the highest
absolute error of 10.13 m and the highest relative error of 1.11%, while the remaining
boreholes had minor absolute and relative errors that met the accuracy control requirements.
The disparity between the calculated and measured water level at CZK4 was due to a
decline in the groundwater level caused by the construction of the exploration adit near
the borehole, which resulted in a significant difference between the measured and true
water level for the borehole. Therefore, in future research, the borehole water level must
be corrected near the adit, or one should avoid using similar borehole information before
inversion. However, the disparity between the calculated and measured water level in
the remaining boreholes was slight, indicating that the geological permeability coefficient
inverted was close to its true value, and the seepage properties of the project area calculated
could be used as its natural seepage field distribution. In conclusion, the permeability
coefficients obtained using the RF–HHO model met the project’s requirements for accuracy.
They can be applied to analyze and calculate seepage properties under different situations
during the construction and operation of the project area.

For seepage calculation analysis, X = 591.935 m and Y = 642.335 m in the calculation
model were used as typical profiles, as shown in Figure 2. Figures 9 and 10 show the total
water head and pressure water head distribution calculated for the two profiles. The left
and right banks of the X profile are the upstream and downstream, respectively; the left
and right of the Y profile are the right and left banks, respectively.
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water pressure.

The results indicated that the upstream reservoir area of the initial seepage field
exhibited a higher water head than the downstream area, validating the principle of
seepage supplement from upstream to downstream. The upstream water head line was
distributed more densely, and the hydraulic gradient was relatively large. Similarly, the
water head on the right side of the initial seepage field model was higher than the left side,
indicating the law of seepage supplement from the mountain to the river valley. The water
head line was distributed more densely on the right side, and the hydraulic gradient was
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relatively large. The distribution pattern of the initial seepage field computed aligned with
the pattern revealed by the borehole, which was consistent with the distribution law of
the general mountain seepage field. Moreover, the distribution of the total head and pore
water pressure was essentially reasonable.
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5. Conclusions

The geological permeability coefficient is a critical parameter in hydraulic engineering
for analyzing the safety of three-dimensional seepage fields. However, estimating its actual
value is a challenge due to the interaction of various elements. Therefore, it is crucial
to establish a high-precision model to quickly obtain the permeability coefficient’s “true
value”. In this study, we applied an RF–HHO-based model for permeability coefficient
inversion to the dam foundation of the P hydropower station, which revealed the overall
distribution characteristics of its natural seepage field. On the basis of our research, we can
draw the following conclusions:

(1) The RF model showed promising potential for engineering seepage parameter in-
version. Compared to other models, the RF model’s water level prediction at all
boreholes was closer to the calculated value of the FEM, with its evaluation index
being the smallest, indicating its greater prediction accuracy and generalization ability.
The RF-based surrogate model can replace the FEM for seepage calculation, avoiding
the time-consuming process of FEM seepage calculation and improving the efficiency
of the inversion process.

(2) The HHO algorithm demonstrated remarkable proficiency in conducting global
searches. As evidenced by the convergence curve of parameter optimization, the
HHO method surpassed the PSO and GA algorithms regarding optimization effi-
ciency and initial setting parameters. It could rapidly identify the optimal solution by
determining the population and maximum iterations.

(3) The inversion model constructed provided a solid foundation for the numerical study
of the natural seepage field in the project area. The RF–HHO model successfully
determined the optimal permeability coefficient of the geology for the P hydropower
station, and then calculated the water head for each borehole using FEM. The absolute
and relative errors between the calculated and measured water levels in the borehole
were small. Additionally, the calculated distribution pattern of the initial seepage
field was consistent with the distribution law of the mountain seepage field. These
results indicate that the inversion model was reasonable and met the engineering
requirements for accuracy.

However, it is a deficiency that the study only used single-borehole data modeling
to invert the optimum permeability coefficient for the geology without considering the
linkage between different boreholes. Boreholes are frequently situated near one another and
possess interrelated characteristics that can be utilized for parametric inversion modeling.
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As such, our forthcoming research endeavors will maximize the linkages between the
different boreholes to enhance the current model.
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Abstract: Low specific speed centrifugal pumps typically suffer from low efficiency and severe
backflow; adding optimally structured splitter blades can play a role. In this paper, the distribution
of pressure and velocity in the flow channel is analyzed using CFD simulation for a low specific
speed centrifugal pump. The geometric parameters of the splitter blade are optimized using an
orthogonal test and an artificial fish swarm algorithm; then the optimal splitter blade structure is
obtained. Results showed that the splitter blade not only effectively solves the backflow of the flow
channel and compresses the range of the trailing vortex, but it also alleviates the cavitation at the
inlet of the main blade. When considering the best head, the order of influence of each factor is:
Splitter blade thickness > Splitter blade inlet diameter > Splitter blade inlet width. At this time, the
thickness of the splitter blade is 4.5 mm, splitter blade inlet diameter is 155 mm (0.775) and Splitter
blade inlet width is 23 mm. Through the closed pump experimental system, it is confirmed that
hydraulic performance has been improved.

Keywords: centrifugal pump; splitter blades; CFD simulation; artificial fish swarm algorithm (AFSA)

1. Introduction

Pumping systems consume about 9% of the world’s electricity; therefore, high ef-
ficiency has always been a constant requirement for pump geometry design [1–3]. The
low specific speed centrifugal pump is widely used in small and micro feeding, as well
as conveying occasions, because of its small flow and high head characteristics [4]. How-
ever, due to its narrow channel structure, high disc friction is unsuitable. Therefore, the
low specific speed centrifugal pump should have a special design method suitable for its
characteristics [5].

In order to improve performance, scholars have tried many methods and achieved
good results. Installing splitter blades is the most popular research direction for dealing
with channel diffusion; the principle is to increase the number of blades while reducing
the inlet crowding, which can effectively increase the head and broaden the high efficiency
area [6,7]. The slotting treatment of the blade can also improve the flow channel condition;
the purpose is to make the boundary layer flow more stable by blowing the passive jet. The
improvement brought by the slotted blade is not as good as that of the splitter blade, but
they can be used together. Orthogonal experiments are often used to design slit shapes,
due to their practicality. However, at present, the related research is not sufficient [8–13].
As a slotted blade, the clearance blade cannot increase the head, but it greatly improves
efficiency [14]. For the main blade, the optimized logarithmic spiral line is superior to
other lines, such as the double arc and the B-spline curve [15]. The variation blade with
a maximum thickness of 4% chord length is better than the equal thickness blade [16]. In
order to make the numerical simulation more accurate, scholars have used supercomputers
to calculate the real-time flow field of centrifugal pumps using large eddy simulation (LES),
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and they confirmed that it has more advantages than other Reynolds average methods
(RANS) [17–20]. In addition, in order to ensure the life of the centrifugal pump, leakage,
cavitation and vibration need to be controlled. Cavitation number (pressure difference),
Reynolds number (turbulence level) and thermodynamic parameters (temperature) have a
comprehensive inhibitory effect on hydrodynamic cavitation intensity and spatiotemporal
characteristics [21–24]. There is a strong correlation between cavitation and vibration. After
cavitation occurs, high amplitude vibration begins to appear and concentrates in the range
of 1200∼1400 Hz. Under the same cavitation number, the sound power on the suction side
of the blade is greater than that on the pressure side. With a decrease in cavitation number,
the fluctuating radiation noise of the cavitation volume is the main noise source for the
increased sound power [25–30].

In recent years, with the development of big data and computing power, the innova-
tion and application of algorithms is unprecedented. Scholars have used genetic algorithms,
artificial neural networks and other optimization algorithms to optimize the structural
parameters of centrifugal pumps, and they have achieved good results [31–35]. The artifi-
cial fish swarm algorithm (AFSA) has the advantages of flexibility, fast convergence and
insensitivity to initial parameter settings; it occupies the second application rate of swarm
intelligence algorithms (SI) all year round [36].

In this study of splitter blades, this paper considers the case that the inlet width of
splitter blades is larger than that of main blades for the first time. In this study, Section 2
uses CFD simulation to analyze the characteristics of a low specific speed centrifugal pump.
In Section 3, the influence of the geometric parameters of the splitter blade on the flow field
is studied using an orthogonal test. In Section 4, the artificial fish swarm algorithm is used
to optimize the structure. Finally, the accuracy is verified through experiments. This study
provides a reference for the shape selection of splitter blades.

2. Numerical Method
2.1. Research Model

Figure 1 shows the fluid domain of the low specific speed centrifugal pump used in
this study. The design parameters are shown in Table 1. The impeller specific speed is
42 and the working fluid is liquid water at 25◦. Note that the blade outlet width should
have been calculated by Formulas (1) and (2); however, in the actual production process, in
order to obtain higher head and stronger flow capacity, the blade width is often stretched
as needed. In the numerical model, in order to make the water flow at the impeller inlet
more stable and reduce the influence on the backflow of the blade channel, the length of
the inlet pipe is appropriately extended.

b2= kb
3

√
Q
n

(1)

kb= 0.64kb2

( ns

100

) 5
6 (2)

Table 1. Major Design Parameters.

Parameters Flow
Q
(

m3/h−1
) Head

H (m)
Speed

n (r/min)

value 10 12.5 1440

In Equation (2), kb2 is the correction coefficient of kb, which is related to the form and
specific speed of the pump. So kb2 = 1.536. Calculated b2= 6.1 mm and broadened to 20 mm
in this article.
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2.2. Turbulence Model and Boundary Conditions

The fluid in the centrifugal pump continuously exchanges energy through turbulence.
In the CFD flow field calculation, selecting the appropriate calculation model plays a deci-
sive role in simulation results. In this simulation, the focus is on the external characteristics.
The real-time turbulence development of the internal flow field is not concerned; there-
fore, the steady-state Reynolds average method is selected. Nowadays, the Realizablek − ε
model and the SSTk − ω model are widely used. They can not only adapt to most turbu-
lence conditions, but they also have the advantages of easy convergence. In this paper,
considering the characteristics of the impeller with high speed rotation, RNGk − ε was
selected, as it is more suitable for the separation flow in the near wall region in the high
speed rotating domain [37–39]. The specific expression is as follows:





∂(ρk)
∂t + ∂(ρkui)

∂xi
= ∂

∂xj

[
αkµe f f

∂k
∂xj

]
+ Pk − ρε

∂(ρε)
∂t + ∂(ρεui)

∂xi
= ∂

∂xj

[
αεµe f f

∂ε
∂xj

]
+ C1ε

ε
k Pk − C2ε

ε2

k ρ
(3)

In the formula:
µe f f = µ + µt (4)

µt = ρCµ
k2

ε
(5)

where: Cµ = 0.0845; αk = αε= 1.39; C1ε = 1.42; C2ε = 1.68.
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The inlet boundary condition is the velocity inlet, the set value is 2.76 m/s and the
turbulence intensity is set to 5%. The boundary condition of the outlet is Mass Flow Rate,
which is calculated as 2.78 kg/s according to the pump flow. The impeller center is set as
the rotation origin and the impeller speed is 1440 r/min. The blade and the front and rear
cover plates are set to Rotating Wall; the value is 0 rev/min. The wall motion type of volute
and inlet and outlet extension section is set as static wall, and the shear condition is set as
non-slip wall [40].

2.3. Mesh

The turbulence model affects the separation form of the flow field in the centrifugal
pump. The quality of mesh determines whether the model has the ability to accurately
capture the existence of small vortices and vortex boundaries. In order to balance the mesh
quality and computational efficiency, a mesh independence analysis is carried out. The
results are shown in Figure 2. When the number of meshes increased to the fourth group,
the two indicators gradually stabilized, and the final number of meshes was 7,991,379. The
calculation formula of efficiency is shown in Equation (6).

η =
ρgQH

Mω
(6)
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Figure 2. Mesh independence.

While ensuring the number of meshes, y+ is used to judge whether the mesh of the
wall can accurately reflect the flow of the boundary layer. The definition is:

y+ =
∆yuτ

v
(7)

In the formula, y+ is the distance from the center of mass of the first grid to the wall,
uτ is the friction velocity and v is the kinematic viscosity.

For different turbulence models, the required y+ range is different; the RNGk − ε
model requires 0∼300. The y+ calculated by this model is as shown in Figure 3; basically
below 50, which meets the quality requirements of the near-wall mesh [41,42].
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2.4. Flow Field Analysis

The CFD simulation is carried out on the rated working condition of the centrifugal
pump. Figures 4 and 5 show the pressure and velocity contours inside the flow channel.
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In Figure 4, the pressure of the impeller channel is a positive pressure gradient along
the flow direction. There is an obvious pressure difference between the pressure and the
suction surface. At the same radius of the same blade, the pressure on the pressure surface
is higher than that on the suction surface. Near the tongue, a low-pressure zone appears
at the intersection of the impeller flow channel and the volute base circle, which is the
result of the combined action of diffusion at the outlet of the low specific speed pump flow
channel and backflow at the tongue.

Figure 5 is the velocity contour map of the flow field. In the figure, the fluid at the
outlet of the pressure surface acts violently with the suction surface through the radial
gap, resulting in a backflow phenomenon at the tail of each blade, resulting in different
degrees of vortices, only slightly easing near the tongue. The wake vortex at 1© falls off
completely, hides in the flow channel and occupies the center of the outlet of the flow
channel. The trailing vortex at 2©– 4© is located at the tail of the blade and is continuously
pulled by the outlet fluid of the suction surface. The backflow causes the outlet of the flow
channel to block and consumes a lot of kinetic energy, which reduces the performance of
the centrifugal pump.

The overall flow channel distribution of the model is good, which is consistent with
the actual situation.

The Reynolds number is usually used to determine the flow state of viscous fluids;
it means the ratio of the inertial force to the viscous force. The ideal flow state inside
the impeller should be a stable laminar flow along the flow channel. However, as the
flow develops to the trailing edge, the Reynolds number increases, the thickness of the
laminar boundary layer gradually increases, the flow disturbance begins to develop and
the boundary layer flow becomes unstable. After the transition point, the boundary layer
flow becomes completely turbulent. A coordinate system is established at the entrance of
the main blade; along the impeller from the inlet to the outlet direction is set to the x-axis
positive direction, and perpendicular to the blade direction is set to the y-axis positive
direction, assuming that the steady incompressible fluid, the N − S equation is:





∂u
∂x + ∂v

∂y = 0

u ∂u
∂x + v ∂u

∂y = − 1
ρ

∂p
∂x + v
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) (8)

Ignoring the smaller order of magnitude, Equation (8) is simplified as:

∂u
∂x

+
∂v
∂y

= 0 (9)
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u
∂u
∂x

+ v
∂u
∂y

= −1
ρ

∂p
∂x

+ v
∂2u
∂y2 (10)

0 =
∂p
∂y

(11)

According to Equation (11), the pressure p of the fluid boundary layer does not change
along the y direction. This indicates that the fluid disturbance is caused by the pressure
change in the x-axis direction. In the diffusion process of the flow channel, the x-axis
direction is a negative pressure gradient; that is, in Formula (10), ∂p

∂x < 0. When the
pressure is less than the flow resistance, the flow direction changes and turbulence begins
to develop. This creates conditions for the birth of the wake vortex.

In this paper, short blades are added to the tail of the flow channel, which is intended
to directly block the outlet reflux here and limit the development of the wake vortex.

3. Orthogonal Test
3.1. Experimental Design

The geometric shape of the splitter blade will strongly affect the streamline direction;
therefore, it is necessary to explore its optimal value. In recent years, with the rise of
various new materials, plastic centrifugal pumps have become the best choice in special
scenarios due to their high corrosion resistance and low price. In order to ensure strength,
the components of the plastic centrifugal pump will be thicker than the traditional metal
centrifugal pump, which leads to the additional consideration of the influence of the
blade thickness on the shape of the splitter blade. At the same time, different from the
traditional design, this paper additionally considers the unequal width of the splitter blade
and the main blade. Taking into account the number of experiments and the mastery of
experimental rules, this paper designs sixteen sets of orthogonal experiments with three
factors and four levels. According to the analysis of the flow channel and the structure of the
centrifugal pump blade, the research factors are selected as follows: Splitter blade thickness
S, splitter blade inlet diameter Di, splitter blade inlet width Bi. They are represented by A,
B and C, respectively. The parameters are defined as Figure 6, and the specific values are
shown in Table 2.
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Figure 6. Geometric parameters of splitter blade.

Table 2. Factor Level Table.

Factor
Level A

Thickness S (mm)
B

Diameter Di (Di/D2)
C

Width Bi (mm)

1 4.5 0.625 17
2 6 0.65 19
3 7.5 0.675 21
4 9 0.7 23
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Table 3 is the calculation results of 16 sets of orthogonal tests under rated flow.

Table 3. Orthogonal Experiment Result.

SN A
(S)

B
(Di)

C
(Bi) Head (m) EFF (%)

1 6 0.65 23 14.25 64.95
2 6 0.625 19 15.21 62.50
3 9 0.625 23 13.52 60.03
4 7.5 0.65 17 15.35 63.20
5 7.5 0.625 21 13.56 63.87
6 4.5 0.675 23 15.17 61.96
7 4.5 0.625 17 14.98 57.36
8 4.5 0.7 19 14.35 61.80
9 7.5 0.7 23 13.88 62.23
10 4.5 0.65 21 15.02 63.60
11 9 0.65 19 14.36 61.96
12 9 0.7 21 13.31 62.79
13 6 0.7 17 14.04 60.40
14 7.5 0.675 19 14.69 66.30
15 9 0.675 17 14.96 62.15
16 6 0.675 21 14.35 64.97

3.2. Data Analysis

Figure 7 shows the results of the orthogonal test. Although the factors restrict each
other, in general, adding splitter blades has a very positive effect on the performance
of centrifugal pumps. This is because the splitter blade suppresses fluid separation and
rotating stall, making the flow distribution at the outlet more uniform. Its essence is to
double the number of impellers at the outlet of the impeller, so that the blade has a stronger
control over the flow fluid when the crowding performance is not serious.
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In order to explore the influence of various factors on the external characteristics of low
specific speed centrifugal pumps, extreme difference analysis was performed for different
indicators. The results are shown in Tables 4 and 5.
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Table 4. Head Analysis.

Index
Factor

A B C

K1 14.8825 14.165 14.85
K2 14.45 14.775 14.625
K3 14.35 14.7825 14.05
K4 13.89 13.85 14.0475

R 0.9925 0.9325 0.8025
rank 1 2 3

Table 5. Efficiency Analysis.

Index
Factor

A B C

K1 61.18 60.94 60.7775
K2 63.205 63.4275 63.14
K3 63.9 63.845 63.8075
K4 61.7325 61.805 62.2925

R 2.72 2.905 3.03
rank 3 2 1

In the Table, R is the range; the larger the value, the greater the impact of this factor on
the index. This has important guiding significance for the weight setting in Section 4.

In the exergy table, factor A (thickness S) has a greater impact on the head, and factor C
(inlet width Bi) has a greater impact on the efficiency. It can be seen that as long as the
splitter blade exists, it can play a role in reducing the diffusion of the channel outlet, and it
also limits the continuous elongation of the trailing vortex. However, too thick blades not
only occupy a large number of flow channels to cause blockage, but they also inevitably
lose a lot of momentum when the incoming flow impacts the blades, which limits the
improvement of the centrifugal pump performance. For the inlet width Bi: the appropriate
increase of the inlet width (21mm) can stir more fluid with axial clearance to improve
efficiency. However, when the inlet width is stretched to 23 mm, the whole volute space is
occupied, and the shaft power cannot be fully utilized.

In order to find the best combination of these three factors, intelligent algorithms are
used for further analysis.

4. Artificial Fish Swarm Algorithm Optimization
4.1. Parameter Preparation

Artificial fish swarm algorithm (AFSA) is a two-dimensional swarm intelligence
optimization algorithm that simulates the foraging, clustering and rear-end behavior of
fish swarm. In the actual production scenario, the importance of head is far greater than
efficiency, so this paper takes head as the index, that is, the Y value. X is the value obtained
by weighting three factors. In this paper, the gap between the front wall of the volute and
the blade is only 3 mm, which has little effect on the overall structure; therefore, the smaller
weight is retained. The inlet diameter of the splitter blade is much larger than the thickness
value. In order to balance the influence between the two, the weight of the thickness is set
to be larger than the inlet diameter. At the same time, according to the order of the factors
in Table 4, the weight is set to:

ω = (ω1, ω2, ω3) = (0.5, 0.3, 0.2) (12)
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In order to make the two-dimensional scene wide enough, the inlet diameter Di uses
a numerical form rather than a ratio. All parameters are fitted to a 6th-order Fourier
polynomial (13) using Matlab:

Y = −72.83 + 78.18 × cos(x × 0.6658)− 107.6 × sin(x × 0.6658)
+ 26.11 × cos(2 × x × 0.6658)
− 6.181 × sin(2 × x × 0.6658)
− 6.843 × cos(3 × x × 0.6658)
+ 72.18 × sin(3 × x × 0.6658)
+ 67.71 × sin(4 × x × 0.6658)
− 33.27 × cos(5 × x × 0.6658)
− 149.5 × sin(5 × x × 0.6658)
+ 20.37 × cos(6 × x × 0.6658)
+ 69.39 × sin(6 × x × 0.6658)

(13)

4.2. Parameter Optimization

The AFSA algorithm is not sensitive to the initial value and does not easily fall into
local extremum. In order to describe the behavior of the fish school, relevant parameters
are defined, such as in Table 6.

Table 6. AFSA Parameter Definition.

Parameter Population
Size

Maximum
Iterations

Maximum
Trials

Cognitive
Distance

Degrees of
Crowding

value 50 200 150 0.5 0.518

(1) Foraging behavior: Let the current state of the artificial fish be Xi, and randomly
select a state Xj within its field of view, which is:

Xj = Xi + Rand(Visual) (14)

Rand() is a random number in 0∼1. If the food concentration is Yj > Yi, then go
further in this direction:

Xt+1
i = Xt

i +
Xj − Xt

i∥∥Xj − Xt
i

∥∥ × Rand(Step) (15)

Conversely, reselect Xj to ensure Yj > Yi. If the forward condition is not satisfied after
t attempts, the update state is:

Xt+1
i = Xt

i + Rand(Visual) (16)

(2) Clustering behavior: Let the current state of the artificial fish be Xi, the number of
partners in the neighborhood of the field of view be n f and the center position be Xc. If
Xc × n f < δ × Xi, it indicates that there is more food in the center of the partner and it is
not too crowded, then further to the center position Xc:

Xt+1
i = Xt

i +
Xc − Xt

i∥∥Xc − Xt
i

∥∥ × Rand(Step) (17)

(3) Rear-end behavior: Let the current state of artificial fish be Xi. Detect the best
neighbor Xmax in its neighborhood and the number of partners in the neighborhood of
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Xmax satisfies Yc/n f < δ × Yi, indicating that there is more food near Xmax and it is not too
crowded, then go further in the direction of Xmax:

Xt+1
i = Xt

i +
Xmax − Xt

i∥∥Xmax − Xt
i

∥∥ × Rand(Step) (18)

At the beginning of each round, the algorithm will simulate the clustering and rear-end
behavior at the same time, and it will perform the behavior with higher function value.
If neither behavior can find better results, the foraging behavior is performed. After all
artificial fish complete the action in turn, the position state of the fish group is uniformly
updated. Repeat the cycle until the end of the iteration.

In the process of taking the value, it is restricted by the actual structure of the centrifu-
gal pump, and only part of the value range can be accepted. The constraint conditions are
as follows (19).





4 < S < 10

5.61kD2

( ns
100
)− 1

2 3
√

Q
n < Di < 7.48kD2

( ns
100
)− 1

2 3
√

Q
n

0.47kb2

( ns
100
) 5

6 3
√

Q
n < Bi < 0.81kb2

( ns
100
) 5

6 3
√

Q
n

(19)

In the formula, kD2 and kb2 are related to the form and specific speed of the pump,
which are 1.125 and 1.54, respectively. The final weighted range is 41.4 < x < 57.6. The final
optimization result is shown in Figure 8.
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It can be seen from Figure 8 that the optimal solution X obtained by artificial fish
swarm optimization is 54.18. Although the effect of the other optimal solution, 44.71, is the
same, the larger the X value means the larger the inlet diameter of the model. That is, the
centrifugal pump with the same performance is cast with less material; therefore, the larger
value 54.18 is selected. The three parameters obtained by decoupling are: thickness S is
4.5 mm, inlet diameter Di is 155 mm, inlet width Bi is 23 mm. At this time, the impeller
fluid domain is shown in Figure 9, and the flow channel distribution is shown in Figure 10.

At this time, the external characteristics of the centrifugal pump are further improved:
the head is 16.12 m and the efficiency is 63.45%. The head of 2.781 m and the efficiency of
2.736% are improved compared with those without splitter blades, and the optimization
effect is obvious. Compared with the optimal results of the orthogonal test (group 4:
15.21 m), there are still great advantages. It can be seen that the artificial fish swarm
algorithm with head as the objective function has had a good optimization effect.
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Observe Figure 10. The pressure distribution of the optimized centrifugal pump is
more uniform and the two low-pressure areas at the inlet of the main blade disappear,
which means that the improvement of the flow at the end of the flow channel is beneficial
in alleviating the cavitation at the inlet of the centrifugal pump, which has a positive effect
on improving the service life of the centrifugal pump. At the same time, because the splitter
blade divides the original wide outlet into two, the serious diffusion at the tail of the suction
surface is limited and the outlet reflux has the tendency to be suppressed into laminar
flow. In Figure 10b, the trailing vortex at 2©– 4© almost disappears; the area of the vortex
at 1© is also reduced and the overall basin composed of the impeller and the volute is
well improved.
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5. Experimental Verification

In order to verify the rationality and reliability of the splitter blade, physical experi-
ments were carried out on the model.

Part of the impeller is 3D printed to obtain the object, as shown in Figure 11 (the serial
number marked on the impeller is the experimental serial number, not the corresponding
orthogonal test serial number).
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The closed pump performance test bench is assembled, as shown in Figure 12. The ex-
perimental platform is installed and debugged by the laboratory personnel of the National
Water Pump Engineering Center. The whole system meets the international standards:
�ISO9906: 2000 Rotodynamic pumps. Hydraulic performance acceptance tests. Grades 1
and 2�. The system accuracy can reach the highest accuracy of the corresponding standard;
therefore, the numerical results are acceptable.
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Under rated conditions (1440 r/min; 10 m3/h), the hydraulic performance of the first
three groups of blades and the optimized blades by AFSA was tested many times, and the
results were averaged: The maximum head of the first three groups was 14.23 m and the
head optimized by AFSA was 15.12 m. After reading the voltage and current of the pump
shaft through the control panel, the total efficiency of the test system of the AFSA model is
calculated to be 58.61% using Formula (20). Considering the various losses neglected in the
numerical simulation, the overall performance improvement effect is better.

η =
ρgQH

1000UI
(20)

6. Conclusions

(1) The flow channel of the low specific speed centrifugal pump is simulated and the
reasons for the low efficiency are analyzed: The outlet of the low specific speed pump is
seriously diffused. At the same time, the fluid at the tail of the blade working face does
not enter the volute smoothly, but it interacts with the outlet fluid on the back, forming
a tail vortex, causing the flow channel to block and consume a large amount of fluid
kinetic energy.
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(2) The L16(43) orthogonal table was designed and the orthogonal experiment was
carried out using the geometric parameters of the splitter blade. The results obtained
shower that the thickness of the splitter blade S is too thick, which will cause impact loss
and reduce head. When the inlet diameter Di of the splitter blade is too small, this will
cause inlet crowding and block the flow channel; when the splitter blade inlet width Bi is
larger, although the head is increased, the efficiency is decreased.

Taking the level of the orthogonal table as the range and the results of the orthogonal
test as the original data, the artificial fish swarm algorithm was optimized to obtain the
optimal structural parameters: thickness S is 4.5 mm, inlet diameter Di is 155 mm (0.775),
inlet width Bi is 23 mm. The numerical simulation confirms that the optimized model
of the AFSA algorithm has more advantages. The head is 16.21 m and the efficiency is
63.45%, which is 2.781 m higher than that without splitter blades and 2.736% higher than
that without splitter blades. The optimization effect is obvious, and the cavitation condition
of the main blade inlet is improved.

(3) The closed water pump performance test bench was assembled, and the experi-
mental results show that the external characteristics of the model optimized by the AFSA
algorithm are effectively improved. It is proved that better performance will be achieved
when the inlet width of the splitter blade is larger than that of the main blade, which breaks
the traditional design idea that the two must be consistent.
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Abstract: In the hydraulic construction field, approximated formulations have been widely used for
calculating tank volumes. Identifying the proper water reservoir volumes is of crucial importance in
order to not only satisfy water demand but also to avoid unnecessary waste in the construction phase.
In this perspective, the planning and management of small reservoirs may have a positive impact on
their spatial distribution and storage capacities. The purpose of this study is, therefore, to suggest
an alternative approach to estimate the optimal volume of small urban reservoirs. In particular, an
artificial neural network (ANN) is proposed to predict future water consumption as a function of
certain environmental parameters, such as rainy days, temperature and the number of inhabitants.
As the water demand is strongly influenced by such quantities, their future trend is recovered by
means of the Copernicus Climate Change Service (C3S) over the next 10 years. Finally, based on
ANN prediction of the future consumption requirements, the continuity equation applied to tanks
was resolved through integral-discretization obtaining the time-series volume variation and the total
number of crisis events.

Keywords: application of neural network; hydraulic supply system; urban reservoirs

1. Introduction

Among the topics of sustainable development, water resources and the services they
provide are indicated as the driving forces to create social, economic and financial equity
and, in turn, contribute to alleviate land exploitation and poverty and to improve health,
food and energy production and environmental preservation [1]. In this perspective,
reservoirs assume a key role in water management due to their functions in water supply,
irrigation and soil conservation; industrial and hydropower use; as well as flood protection
and control [2].

Focusing on municipal water use, in the literature, there are several examples of tank
volume calculations that estimate the capacity as the sum of multiple rates [3]. In partic-
ular, water supply systems have been traditionally designed according to deterministic
approaches, specifying tank components for balancing incoming and outcoming flow, fire
protection and emergency storage due to potential interruptions of the supply lines [4].
Most of the available formulations for water storage determination depend on the in-
habitant number and are based on the hypothesis that each user consumes a fixed water
quantity [5].

Water demand, on the other hand, is highly variable, and it is influenced by a
large number of factors due to its dependence on several environmental parameters [6],
including weather conditions and anthropogenic aspects [7–9]. For example, [10] observed
that rainfall, roof area, number of residents as well as rainwater demand strongly influence
tank sizing. It must be considered that, in order to estimate water demand, time series
affected by both weekly and yearly periodicity can be employed [7]. The annual periodicity
strongly relates to weather conditions, while the weekly or seasonal trend can be related to
the fluctuation of non-resident inhabitants.
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Empirical approaches have been frequently adopted to determine the reliability of wa-
ter resources for a municipal water supply system in the light of future demand needs [11].
As well, stochastic methods have been successfully applied to describe the real-time dy-
namics in reservoirs [12] or for analyzing the reliability of municipal storage tanks [4].
Among such approaches, Monte Carlo methods have been frequently used to tackle uncer-
tainty analysis in complex environmental systems.

As indicated by [13], these approaches fully respect the physical constraints, evaluating
the operation constraints in probabilistic terms and allowing the distribution functions and
statistics to be derived through Monte Carlo simulation. Recently, ref. [14] used a Monte
Carlo method to estimate the uncertainty of average monthly streamflow discharge from
a hydrological model in the reservoir system, but other applications can also be found in
sewage systems with optimal pumping requirements [15].

On the other hand, conceptual or physically-based models have been adopted to
determine tank volume and its management rules [16]. For example, ref. [17] developed
a mathematical model for assessing operative policies for a reservoir system based on a
computationally efficient optimization procedure. Modern advancements in computer
technology have led to the development of complex simulation models widely used in
professional practice (i.e., HEC-ResSim [18,19], the WEAP model [20,21] and the CalSim
model [22,23]).

Such models present mathematical bases for estimating tank outflow and storage
combined with empirical operation rule curves based on historical hydrological data,
which are particularly effective in water management tasks [24]. However, such approaches
require professional expertise and high-resolution data about watershed characteristics and
environmental parameters, and these can fail when multiple complex factors or nonlinear
problems have to be faced.

Recently, the advancement in artificial intelligence (AI) has led data-driven models
to become popular tools for defining reservoir operations [25]. AI models, compared to
physically based ones, show significantly faster response, great learning abilities and better
performance in modeling complex formulations. Among AI and machine-learning algo-
rithms, artificial neural networks (ANNs) are black-box models, widely used in several
research areas, including hydrology and hydraulics, and they are applied when it is difficult
to identify the functional relationships between variables [26].

In the literature, several works deal with the application of ANN to water consump-
tion [27–29]. For instance, Walker et al. performed an interesting study using ANN
training for investigating hot water consumption [30]. Ref. [31] applied recurrent neural
networks to simulate the operation of three multi-purpose reservoirs under different flow
regimes—in particular, under extreme floods and droughts—demonstrating their potential
applicability in practical water management, particularly for real-time reservoir operations.

Ref. [32] predicted reservoir volumes using several AI techniques, i.e., (ANN), support
vector regression (SVR) and long short-term memory (LSTM), applying the aforementioned
algorithms to two reservoirs in Turkey and obtaining better performances with ANN and
LSTM models. In addition, ref. [33] compared different soft computing models with
conventional approaches to forecast water consumption using real datasets from South
Africa to understand the effects of the input parameters on the water consumption forecast.

From what is mentioned above, it is clear that the use of ANNs requires a considerable
amount of data both for training and testing. The present study reports the application of
an ANN to a case study in order to estimate the future consumption of the small town of
Torregrotta in Sicily (Italy), using measurements of the consumption flow rate conducted
with the aid of a non-remote flow meter. The main aim of this work was to recover the
optimal volume to be assigned to small urban reservoirs in order to satisfy future water
demand in such a way to also positively impact both the tank spatial distribution and
storage capacities.

The paper is organized as follows. In Section 2, we demonstrate that the consumption
trends depend on the rain events and temperature tendencies. These occurrences are
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related to the high percentage of houses with gardens. Due to the lack of a clear trend
between the environmental parameters and the water consumption, we deemed it necessary
to use an ANN. We obtain the measured water volume as output and the temperature,
the number of rainy days and population as input. After the development of the ANN,
as shown in Section 3.1, the neural network training leads to a good correlation for the
testing and training data.

The future trends of the environmental parameters are successively recovered through
the Copernicus platform, re-sampling data from a yearly scale to a monthly scale by means
of an adaptive function. The obtained values are used as input for training the ANN in
order to obtain future consumption volumes. To predict the tank volume, the monthly
volumes are re-sampled at an hourly scale, by means of the already mentioned adaptive
model functions. Finally, through the resolution of the continuity equation applied to the
tank, imposing a value for the maximum volume, it is possible to obtain the future volume
trend and the total number of hours of crisis. The paper ends with some conclusive remarks.

2. Materials and Methods
2.1. Study Area

The considered case study refers to the town of Torregrotta (Messina, Italy) (Figure 1).
Here, in the past, several crisis events led to shortages in the water supply. The hydraulic
network is served by to two tanks, as identified in Figure 1, where Tank-1 and Tank-2
are connected in series. After several interventions performed on the pipe network, it
was observed that the problem persisted, meaning that the volume of the tanks was no
longer adequate.

Figure 1. Study area and localization of Torregrotta Town (adapted from https://earth.google.com/,
accessed on 30 September 2022).

2.2. Description of the Existing Reservoirs and Water Network

The two above-mentioned reservoirs serve the urban district shown in Figure 1. Both
have the same piezometric head of 68.97 m above sea level. Tank-1 was built between
1972 and 1980 [34], while Tank-2 was built later, in the 2000s, to cope with the increasing
compensation crises. The total volume of both tanks equals 1750 m3, with Tank-1 con-
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tributing 1000 m3 [34]. The water level inside the tanks can reach a maximum depth of
4.50 m. The tanks assume a compensation and reserve function and serve the urban area
throughout the day. Recently, a campaign was made to investigate the flow rates in and
out of the reservoirs as shown in Figure 2 for the period 1–2 January 2001.

Some peaks in the outflow are visible at fixed times of the day, i.e., during morning and
evening, whereas the flow entering the reservoir assumes a random variability. It is worth
pointing out that the tanks are equipped with flow meters that are not remotely controlled;
thus, the hourly data series is rather limited. In order to overcome this limitation, some
adaptive functions are applied in Section 4.2.

Figure 2. Trends of the water flow rates in and out of the tank measured each 120 min [35].

The water network was built right after the reservoirs were completed. It involves
10.187 m of mainly steel pipelines. Following a preliminary analysis performed in the
EPANET environment, assuming the patterns shown in Figure 2 as input, the minimum
piezometric head bearing on the network was estimated to be equal to 44.35 m, while the
maximum reaches 55.37 m during the hour of minimum consumption.

2.3. Data Acquisition

From 1998 to today, the consortium ACAVN [36], which manages the water supply
to the town, surveyed the volumes entering the network, aiming at verifying the taxed
volume. In the present study, these data are used for the calculation of the reservoir volume.
Figure 3 shows the trend of the measured consumption [36].

Figure 3. Monthly water consumption obtained by the surveys in the period 1998–2018 [36].
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In addition, some environmental parameters, such as temperature data, number of
users and number of rainy days per month were also considered, as these factors strongly
influence the water demand. Temperature data, recorded by the weather station located in
Messina (Geophysical Institute) were collected from [37], as they are the longest and most
representative source for this site. Figure 4 shows the trend of the monthly temperatures of
the last 20 years.

Figure 4. Temperature data in the period 1998–2018 (Hydrological Annals, Regione Sicilia, [37],
http://www.sias.regione.sicilia.it , accessed on 30 September 2022).

The population varies over time due to both weekly and monthly variability. Being
a touristic area, the peak of the total users occurs during the month of August, while the
opposite happens during the winter, leading to greater water demand in the summer.
The data relating to users were obtained from the local registry office in combination with
the data collected by Istat [38]. In particular, the number of total users was obtained as
the sum of the resident population and the commuter or touristic population, which was
obtained by an analysis conducted by the local city administration [39]. Figure 5 shows the
trend of the total network users in the investigated period, where the number of commuters
ranges between 1500 and 2000 persons.

Figure 5. Users obtained by the surveys in the period 1998–2018.
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Finally, Figure 6 shows the number of rainy days per month in the investigated period.
It is worth pointing out that, in the present study, a day is considered rainy when the
cumulative precipitation reaches at least one millimeter during the 24 h. This choice is
due according to the Copernicus service, which defines a “dry day” as a day when the
threshold of one millimeter of cumulative precipitation is not exceeded in 24 h [40].

Figure 6. Rainy day monthly surveys in the period 1998–2018.

In order to verify the hypothesis of dependence between water consumption with
the previously mentioned environmental parameters, the correlation matrix in Figure 7,
reports the correlation factors between the water demand with the rainy days per month,
the population and the temperature. It is possible to note that, though being correlated
with water consumption, the previous environmental parameters cannot be expressed with
an analytical function of the first variable.

This leads to considering the possibility to use a neural network approach in order to
forecast the water supply as a function of all the parameters that can influence the water
demand. In the following sections, the possibility to adopt an artificial neural network to
define the water supply for the considered case study will be explored. Data coming from
the trained ANN will serve as a benchmark to obtain the needed tank volume for satisfying
the consumption.

Figure 7. Correlation matrix of parameters and volume consumption.
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3. Development of the ANN Model
3.1. Data Arrangement

The ANN model employed here is a multi-layer perception, i.e., a model comprising
an input layer, hidden layers and an output layer [41]. The input layer allows the environ-
mental parameters influencing the process to be considered. Domestic water usage over
time is obtained as output. The hidden neurons are arranged into hidden layers, whose
configuration depends on the problem to be faced and can be optimized as a function of the
available dataset. In this specific case, the input layers are the three datasets of temperature,
rainy days and population. First, the data were normalized according to the range between
the minimum and maximum values:

x̃ =
x− xmax

xmax − xmin
(1)

where the xmax and xmin are, respectively, the maximum and minimum input values, while
x is the generic input value. x̃ is the normalized value. Similarly, as far as the output
is concerned:

ỹ =
y− ymax

ymax − ymin
(2)

where the ymax and ymin are, respectively, the maximum and minimum output values.
The ỹ is the normalized value.

As mentioned before, in the present study, three input datasets were considered,
specifically, the temperature, the monthly rainy days and the users served, while the total
volume consumed over the month is the output.

3.2. Performance Evaluation

In order to develop the ANN Model, 70% of the N data were used for training and 30%
for testing. Then, the root mean squared error RMSE, the Pearson correlation coefficient r
and the determination coefficient R2 were employed as performance indices of the models,
which are shown and represented in the following.

RMSE =

√
∑N

k=1(Pk − Tk)2

N
(3)

r =
N
(

∑N
k=1 Tk Pk

)
−
(

∑N
k=1 Tk

)
·
(

∑N
k=1 Pk

)
√(

N ∑N
k=1 T2

k −
(

∑N
k=1 Tk

)2)·
(

N ∑N
k=1 T2

k −
(

∑N
k=1 Pk

)2) (4)

R2 =

∣∣∣∣∑N
k=1

(
Tk − T̄k

)
·
(

Pk − P̄k
)∣∣∣∣

2

∑N
k=1

(
Tk − T̄k

)
·
(

Pk − P̄k
) (5)

where P and T are the predicted and target values, the bar indicates the average value,
and S is the total number of training or testing samples. For building the neural network
reported in this section, Tensorflow [42] and Keras [43] libraries were used.

3.3. ANN Efficiency

The efficiency of ANN models depends on the architecture of the neural network
i.e., the number of hidden layers and the number of neurons. A single hidden layer
architecture with a different number of neurons in the hidden layer was adopted for the
ANN model as this structure generally leads to better results. It should be noted that,
for a typical ANN algorithm, it is necessary to optimize the overall ANN structure before
deciding the final number of hidden nodes.

Repeated training and testing should be performed with different ANN structures.
On the one hand, if the number of hidden layers and/or hidden neurons is too high,
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there is a risk of over-fitting [44]; on the other hand, if their number is too low, this leads
to under-fitting [45]. For the previous reasons, each model was run three times; then,
the average values of RMSE, R2 and r were determined for each ANN model. Table 1
shows the performance indices of the ANN models.

Table 1. Performance of the ANN model for different architectures.

Data Training Data Testing
Numbers of Neurons r RMSE m3 R2 r RMSE m3 R2

5 0.824 1423.20 0.732 0.798 1501.80 0.694
8 0.931 1364.22 0.821 0.907 1411.82 0.817
13 0.961 1234.50 0.920 0.947 1253.78 0.947
15 0.908 1345.10 0.897 0.929 1378.90 0.881

As can be seen in the table, selecting the number of 13 neurons can lead to better
results by having the highest values of r and R2 and the lowest RMSE value. Moreover,
the network shows a good correlation between the training and testing data as reported in
the following Table 2.

Table 2. Performance of the ANN model.

Data Training Data Testing
Max Iteration r RMSE m3 R2 r RMSE m3 R2

2000 0.961 1234.50 0.920 0.947 1253.78 0.947

As shown in Figure 8, for the highest y values, the correlation becomes slightly worse,
likely due to the difficulty in estimating the fluctuating population. From what is shown
above, it is possible to confirm that the volumes of consumed water strongly depend
on the temperature, on the days of rain and on the number of users served. This result
was somewhat expected because there is a high percentage of users who live in houses
with gardens or external spaces, as shown in Figure 9; hence, a large amount of water
consumption is necessarily used to feed the green spaces in the hot and drought period.
Furthermore, the habits of users are strongly influenced by temperatures. As shown
in Figure 10, during the summer, a consumption peak is observed, which is due to the
concurrent high number of users and hot temperatures.

Figure 8. Comparison of the performance between the predicted and training data.
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Figure 9. The total garden area supplied by the hydraulic system.

Figure 10. Typical trend of annual water consumption.

Once the ANN is trained, it can be used in order to forecast forthcoming crisis events
of the reservoirs. To this aim, it is particularly important to predict the environmental
parameters accordingly. For population, a fitting interpolation starting from available data
was used, while the other parameters were determined through the Copernicus platform
as detailed in the next section.

4. Prediction of Environmental Variables

For the prediction of future data, a toolbox made available by the Copernicus platform
was used [40]. In particular, the toolbox for biodiversity-climate-suitability was developed
in 2022 with the aim of identifying multiple bio-climate indicators, among which, the tem-
perature and drought days series are also considered [40]. Essentially, the latter quantities
can also be determined for the past in order to be compared with the existing data.

Considering a RCP8.5 scenario [46], such an approach was applied to both rainy days
and temperature for the period 1998–2018 to detect the trends as shown in Figures 11 and 12,
respectively. As well, the temperature and rainy days data are also superimposed on the
same pictures. It is possible to notice from Figures 11 and 12 that there are significant
differences between the observed data and the trends proposed by the RCP8.5 model for
the considered area.

In particular, it is possible to note a strong difference in temperatures, while a better
agreement is shown on rainy days (Figure 12). Such discrepancies can be due to the fact
that the scenario modeled by the Copernicus toolbox refers to a grid with a (1 × 1 km)
resolution. It was, thus, necessary to calibrate the curves proposed by Copernicus with the
data observed at the rainfall station.
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Figure 11. Comparison of rainy days provided by the hydrological annals and the estimate provided
by the Copernicus toolbox.

Figure 12. Comparison of temperature provided by the hydrological annals and the estimate provided
by the Copernicus toolbox.

In order to estimate each quantity, the coefficient π̃, which minimizes the deviation
between the observed data φobse and the model data φmod, was searched:

π̃ ⇒ min
∣∣∣∣
(

φobse − π̃φmod

)2∣∣∣∣ (6)

Figures 13 and 14 show the comparisons between the observed data and the Coper-
nicus estimate with the adoption of parameter π̃. After the calibration, it is possible to
note that the model well describes the observed data, at least in terms of the mean value.
According to such an adaptation, Figures 15 and 16 show the future trends of both rainy
days and temperatures in terms of the median value predicted by the Copernicus-RCP8.5
model, together with the 15th and 85th quantiles.
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Figure 13. Comparison of rainy days provided by the hydrological annals and the calibrated estimate
provided by the Copernicus toolbox.

Figure 14. Comparison of temperature provided by the hydrological annals and the calibrated
estimate provided by the Copernicus toolbox.

4.1. From Yearly to Monthly Water Demand

Once the average yearly trends were recovered, it was necessary to refer such values
to a monthly scale through an adaptive function based on the observed quantities at the
measuring station. The adaptive function was used for data on rainy days, temperatures
and served users. This operation was performed through Equation (7), where γ̃ indicates
the monthly trend of both such quantities.

γ̃ = c̃ + ∑
i

exp
(
− (t− ã)2

b̃

)
· d̃i· (1 + rand(r̃)) (7)
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Figure 15. Future forecast—rainy days.

Figure 16. Future forecast—temperature.

ã and b̃ are calibration coefficients to be obtained starting from the observed data,
while c̃ and d̃ must respect the continuity of the annual data, i.e., the integral of the adaptive
function must return a value congruent with the same prediction of the calibrated Coperni-
cus model (C.C.M.). Moreover, rand(r̃) is a random function that expresses the possible
deviation from the average value Pmean. Finally, r̃ is a numerical interval, depending on
the range of the 85th (P85%) and 15th (P15%) quantiles as predicted by the Copernicus-
RCP8.5 scenario:

r̃ =
(P15% − Pmean)

Pmean
÷ (P85% − Pmean)

Pmean
(8)

Figures 17–19 show the comparisons between the function reported in Equation (7)
and the data observed at the reference station. The Equation (7) model is well suited for data
relating to temperature, while it shows some scatter for data on population and rainy days,
due to the fact that the latter two assume a less regular monthly trend in the observations.
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Figure 17. Comparison between the adaptive function and the observed rainy days. The values are
normalized with respect to the minimum and maximum values as found in Equation (7).

Figure 18. Comparison between the adaptive function and the observed temperature. The values are
normalized with respect to the minimum and maximum values as found in Equation (7).

Regarding the population, we assumed that it will undergo a decrease of 10% in
the next 10 years as stated by the global analysis conducted by Istat [47]. In addition,
the suggested trend on DEMO-Istat [38] on the studied location confirms this tendency.
In particular, for the town of Torregrotta, the decrease began in 2014.

204



Water 2023, 15, 1747

Figure 19. Comparison between the adaptive function and the observed users. The values are
normalized with respect to the minimum and maximum values as found in Equation (7).

All the previously obtained data for the next 10 years were considered as the input
data of the trained network. The results are shown in Figure 20, where the future prediction
of consumption on a 10-year time scale is reported along with the observed data.

Figure 20. Observed and future water consumption up to 2028. The future trend was obtained by
applying the trained ANN.

4.2. From Monthly to Hourly Water Demand

Once the monthly consumption was obtained, it is convenient to switch to hourly
consumption. This procedure is entirely theoretical; therefore, it requires, as inputs, the
existing observations and literature data [48]. Specifically, the first step is to obtain the daily
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consumption qtot.day in 24 h, through a peak shape function that identifies different peak
consumption within a month:

qtot.day = q̃ + φ ∑
i

exp
(
−
(

t− fi
σi

)2)
(9)

where the t is expressed in days, the index i sums over 4, i.e., the number of weeks as well
as the peaks per month. The maximum of qtot.day is reached on Saturday, when the urban
district welcomes worker users coming from the neighboring towns. fi indicates the peak
position, σi represents the extremities at each side of the peak, and q̃ is a term introduced
for sake of continuity.

Essentially, the sum of the monthly consumption must satisfy the prediction of C.C.M.
according to Equation (10):

∫ 30 days

0
qtot.day dt = Vtot month (10)

Based on Equation (10), it is possible to define the previously introduced coefficients
by means of the following system of Equation (11):





φ ' Vtot month
(30 days)· 6.5

q̃ ' Vtot month
(30 days)

·
(

1− α

6.5

)

α = 1

σi = 2

fi = 5.5 + (i− 1) · 5.5

(11)

The results of the mentioned approach are synthesized in Figure 21, where the non-
dimensional daily volume, made non-dimensional by means of the Saturday peak volume,
is plotted.

Figure 21. Graphical representation of function (9).

In the same way, the equation of the hourly consumption trend was obtained, con-
sidering that the peaks occur at 18:00 and at 8:00 [3]. Furthermore, as the inhabitants
of the district total about 7000, the hourly peak coefficient was assumed equal to 3 [3].
The adopted relation is reported below:

qhour = q + ∑
k

γk exp
(
−
(

t− fk
σk

)2)
(12)
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where the t is expressed in hours, and k is the number of peaks per day, equal to 2.
Similarly to Equation (9), Equation (12) must also satisfy compatibility on a daily

scale with qtot.day volumes. Therefore, an integral is imposed that is equal to the total daily
volume (Equation (13)).

qtot.day =
∫ 24 hours

0
qhour dt (13)

The resolution of the previous problem leads to the following solution:




γ1 '
qtot. day· 2.2
(24 hours)

γ2 '
qtot. day· 3
(24 hours)

q '
qtot. day

(24 hours)
·
(

1− α1 + α2

6

)

α1 = 2.1

α2 = 3.5

σ1 = 5

σ2 = 3

f1 = 8

f2 = 18

The results of the mentioned approach are synthesized in Figure 22, where the hourly
volume, normalized by means of its maximum value, is plotted showing the two peaks
as indicated before.

Figure 22. Application of function (12) to recover hourly volumes.

Regarding the water flowing into the reservoir to be sized, it was necessary to assume
that the input volume qin varied randomly around its average value qin av. [49]. To this
aim, it is possible to assume that Tank-1 and Tank-2, being connected in a series, can be
represented as a unique tank with an equivalent volume, equal to the sum of the two. In
this way, qin can be referred to as the equivalent volume. Equation (14) was, thus, applied
to the entire simulated period, while Figure 23 plots the results for a one-month period.

qin = qin av.·
(

1 +
rand1 − rand2

5

)
(14)
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Figure 23. Random function (14) applied to the water flow rate within the tank.

5. Sizing of the Reservoir Volume

The variability of the volumes stored in the equivalent tank V(t) was calculated
through the numerical integration of Equation (15):

V(t) =
∫ τ

0
(qin(t)− qhour(t)) dt (15)

where qhour is the hourly flow determined through Equation (12), qin is the hourly inlet
flow Equation (14), and τ is the time-series length. The physical limit conditions impose a
minimum value of 0 and a maximum equal to the total volume of the equivalent tank VTot
as reported below.





V(ti+1) = V(ti) +
∫ ti+1

ti

(qin − qhour) dt

i f V(ti) < VTot

V(ti+1) = 0 i f V(ti+1) < 0

V(ti+1) = VTot i f V(ti+1) > VTot

(16)

Equation (15) can, thus, be solved through numerical integration at finite
differences, i.e.,

V(ti+1) = V(ti) +

(
qin(ti+1)− qhour(ti+1)

)
· ∆t (17)

The series begins when the tank is full, i.e., V(t0) = VTot; therefore, it is possible to
impose VTot as the initial condition and to evaluate the total crisis hours in the time series
corresponding to the simulated 10 years. The tank crisis hours will be the instants in which
the tank volume equals 0. The results are plotted in Figure 24. Here, the time series of
the volume is shown for a period of 20 days, and the red circle denotes the crisis event
occurring during the selected period.
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Figure 24. Volume trend in m3 in hours. Red circle denotes crisis event.

The same operation was repeated as VTot changed in order to check the number N
of crisis events during the simulated period. As is possible to observe in Figure 25, N
decreases with an exponential law with the increasing of the tank volume. Hence, it is
possible to identify an optimal tank volume once an acceptable number of crisis events is
fixed. In particular, in the present case study, it can be observed that the number of crisis
events tends to remain approximately constant for volumes higher than 2200 m3. This
fact leads us to conclude that the choice of reservoirs larger than this, while also being
uneconomical, does not result in a further reduction of critical episodes.

Figure 25. Reduction in the hours of crisis as a function of the adopted volume of the reservoir.
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6. Conclusions

This paper proposed a new theoretical methodology to calculate the volume of an
urban reservoir serving a civil network. First, data on the consumption, temperature, rainy
days and number of served users were acquired. The future forecast of such environmental
parameters was determined on the basis of the Copernicus service over the next 10 years.
The resulting trends were applied for training an ANN with the aim of recovering the water
consumption as output. Furthermore, through theoretical equations, the monthly flow rate
was transformed into an hourly flow.

Numerical integration of continuity equations applied to reservoirs was then con-
ducted to define the inlet flow. From the obtained results, it can be inferred that the number
of crisis events, identified as the time steps in which the volume of the tank reaches zero,
decreased exponentially toward zero as the reservoir volume increased. However, over a
certain reservoir size, it became ineffective to further increase the volume to reduce the
number of critical episodes. Hence, considering different total volume scenarios, this
approach led to an optimization procedure that allowed the total volume of the reservoir to
be determined once the number of crisis events was fixed.

Compared to other methods already used in the literature, the present approach does
not explicitly consider the volumes required for different needs, such as fire protection, re-
serve or compensation; thus, it is suitable in applications involving small urban reservoirs.
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Abstract: Karst depressions are ideal places for building reservoirs and stacking wastes, but karst
depressions are mostly located in areas with strong karst development, and there is a problem of
karst leakage. The study of karst depression monitoring methods can provide technical support for
the construction of reservoirs in karst depressions, and leakage monitoring technology based on
distributed temperature sensing (DTS) has the clear advantages of a large measurement range, high
precision, continuity, wide distribution, large area, etc. In this paper, a temperature-sensing optical
cable is first used to conduct leakage monitoring tests in different soil media, and the temperature
change curve in different media is obtained, which verifies the feasibility of the heatable temperature-
sensing optical cable to identify leakage in soil media with different moisture contents. Then, for
the heatable distributed temperature-sensing optical cable, the variation law of the temperature
eigenvalues of the sensing optical cable under different seepage velocities is studied using the
layout method wrapped with saturated medium-coarse sand, and the relationship between the
seepage rate and the temperature eigenvalues was analyzed. A regression formula for quantitative
analysis of leakage velocity was established; finally, the manganese slag silo project in Songtao
County in Guizhou Province, China, was used to simulate different leakage conditions on site for
testing, and the data were compared and analyzed to obtain the route under different conditions.
The temperature distribution law of the seepage section verifies the feasibility of the application of
heatable temperature-sensing optical cables in the seepage monitoring of karst depressions.

Keywords: karst depression reservoir basin seepage; distributed temperature sensing (DTS); model
test; phosphorus slag medium; temperature distribution

1. Introduction

Karst depressions are well sealed, and are ideal places for stacking ash, tailings,
waste slag, second-class industrial solids, and hazardous wastes and building reservoirs.
However, karst depressions are located in the karst vertical infiltration recharge area. Once
leakage occurs, such as after building a reservoir, it may cause the reservoir to fail to
store water normally. Waste storage can lead to sewage entering underground rivers
and causing serious environmental incidents. Therefore, research on seepage monitoring
methods for anti-seepage bodies in karst depressions can provide theoretical and technical
support for the resource utilization of karst depressions and has comprehensive social
and economic benefits. Currently, the methods commonly used for monitoring seepage
in karst depressions include pressure pipes, seepage meters [1], and flow measurement
weirs [2]. Common methods for detecting leakage in karst depressions include high-density
resistivity methods [3], capacitive methods, temperature tracing methods [4], transient
electromagnetic methods [5], electrical methods, and ground-penetrating radar methods [6].
These monitoring and detection methods have the common characteristic of not being able
to comprehensively cover the monitored objects and often cannot detect certain locations.
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To improve the accuracy of monitoring and detection, a large number of sensors must be
arranged at a certain density, which is extremely uneconomical. Additionally, the lifespan
of sensors is limited, and it is not possible to maintain good working conditions throughout
the entire lifecycle of the project. As time passes, the sensors will continue to deteriorate,
leading to the inability to obtain effective data in the future.

The present study found that heat can be continuously transmitted through a medium,
thus providing a new tracer quantity for monitoring the seepage flow of the structure.
Among the various temperature tracking methods for seepage monitoring, the distributed
fiber optic temperature sensor (DTS) has attracted the most attention. Aufleger et al. [7,8]
proposed the idea of using distributed optical fibers for long-term online monitoring of
earth–rock embankments and introduced the application of distributed optical fibers in
water conservancy projects in a comprehensive manner, which pointed out the direction for
subsequent research. Li et al. [9] analyzed the feasibility of DTS application in the leakage
monitoring of the Yangtze River embankment. Li [10] developed a multiparameter optical
fiber monitoring system for embankments based on DTS and verified the applicability and
reliability of the monitoring system by analyzing field monitoring data. Wang et al. [11]
introduced the basic principle of DTSs and their application in a concrete face rockfill
dam. The comparison with traditional monitoring methods showed the advantages of this
method. Wei et al. [12] and Qin et al. [13] introduced the application of DTSs in the location
monitoring of leakage in the surrounding joints of concrete face rockfill dams. Tan et al. [14]
verified the effectiveness of optical fiber leakage monitoring technology for core rockfill
dams through dynamic simulation and model tests, which can compensate for the short-
comings of conventional monitoring methods. Harvie et al. [15] conducted an experimental
study on the seepage monitoring method of tailings dams based on DTSs. Wang [16] stud-
ied the sandy soil seepage flow monitoring test based on distributed optical fiber, inferred
that there is a certain linear relationship between leakage and temperature medium, carried
out related research on using optical fiber to determine the location of geomembrane dam-
age, and obtained some beneficial results. Thiele et al. [17] and Artieres et al. [18] combined
distributed optical fibers with anti-seepage geotextiles commonly used in hydraulic engi-
neering to locate and provide early warnings of structural damage through a combination
of leakage detection and strain monitoring. In Vogt et al. [19], the high-precision vertical
temperature distribution profile was obtained through the distributed optical fiber temper-
ature measurement data, the temperature monitoring data were processed by the dynamic
harmonic analysis method, and then the leakage velocity of the river recharge groundwater
was estimated. Beck et al. [20] used two large-scale experimental studies and presented the
results of the field monitoring data analysis of a dam, and DTS-based dam seepage and
piping monitoring methods were introduced. Deng [21] obtained a large amount of test
data by establishing a leakage test model, compiled a program to extract and organize the
massive data, and determined the heating power range by preparing the test. The influence
law of fiber temperature rise was identified. Liu et al. [22] applied distributed optical
fiber temperature measurement technology to monitor the leakage of an underground
diaphragm wall. It was proven through experiments that the use of an external, heatable
optical fiber cable can monitor the temperature difference between the seepage part and
the non-seepage part of the diaphragm wall well, which is the most important part of
the diaphragm wall. Quantitative measurement and precise location of leakage velocity
provide the basis this research. The above studies are mainly based on indoor model tests
and lack in situ test verification. Moreover, most of them are aimed at dam structures and
rarely involve the seepage monitoring of a karst depression reservoir basin.

This paper aims to establish a set of application systems for the leakage monitoring of
karst depression reservoirs based on distributed optical fiber technology to detect leakage
in time and guide repair. This paper first studies the leakage identification effect of a heat-
able temperature-sensing optical cable in media with different moisture contents through
laboratory experiments and verifies the feasibility of the leakage monitoring application of
the heated optical cable when theses temperature changes are small, which is the applicable
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scope of the optical cable in practical applications. The study provides guidance, then car-
ries out a model test and quantitative analysis of the leakage rate monitoring performance
of the heatable temperature-sensing optical cable. Finally, through the field simulation test
of a manganese slag warehouse, it is verified that the heatable optical cable can be used in
the leakage monitoring of an actual karst depression reservoir basin. The application effect
provides a reference for the application of DTSs in seepage field monitoring with small
temperature differences and small flow rates in the future.

2. Principle of Distributed Optical Fiber Leakage Monitoring

As shown in Figure 1, when the incident light quantum in the fiber collides with the
fiber material molecules, an inelastic collision occurs, which is manifested in the generation
of Stokes light with a longer wavelength and anti-Stokes light with a shorter wavelength.
Since anti-Stokes light is more sensitive to the effects of temperature, the DTS system
uses the Stokes light channel as the reference channel and the anti-Stokes light channel as
the signal channel. The ratio of the two can eliminate the fluctuation in the light source
signal As well as fiber bending and other nontemperature factors to acquire temperature
information. The intensity ratio of Stokes light and anti-Stokes light and temperature
satisfies the relationship of Formula (1):

R(T) =
Ia

Ib
=

(
νa

νb

)4
e
−hcν
KT (1)

where R (T) is a function of the temperature to be measured; Ia and νa are the StOx light
intensity and frequency, respectively; I b and νb are the anti-Stokes light intensity and
frequency, respectively; c is the speed of light; ν is the Raman frequency shift; h is Planck’s
constant; K is the Boltzmann constant; and T is the absolute temperature.
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The principle of optical fiber leakage monitoring is the principle of heat dissipation, as
shown in Figure 2. After the copper mesh is heated, the heat will diffuse from the inside to
the outside. Then, the optical fiber monitoring system is used to measure the change in
temperature, and the relationship between the temperature characteristic’s value and the
moisture content during the heating process is used to measure the water field in the soil in
a distributed manner. The thermal conductivity of soil varies with the moisture content.
The higher the moisture content is, the stronger the thermal conductivity. The sensor or
sensing optical cable with a self-heating function is implanted into the soil, and the fixed
power is heated to establish the relationship between the degree of heat diffusion and the
moisture content in the soil, thereby realizing the qualitative and quantitative monitoring
of the moisture content of the surrounding soil. The degree of heat diffusion is represented
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by the temperature characteristic’s value, which is defined as follows: After heating for
a period of time, the measured temperature tends to be stable. A certain characteristic
time interval is selected, and multiple temperature values measured in this time interval
are arithmetically averaged to obtain the temperature average value. Then, the initial
temperature is subtracted to obtain the temperature characteristic value. The higher the
moisture content of the soil is, the better the thermal conductivity. After the external heat
source is provided for heating, the greater the degree of heat diffusion and the greater the
amount of diffusion, the less the temperature can be raised and the smaller the temperature
characteristic value.
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Figure 2. Schematic diagram of heat diffusion in soil after copper mesh is heated.

In the early stage of seepage development, the seepage flow was low, and the soil
moisture content increased, but there was no obvious seepage phenomenon. The moisture
content of the medium near the hidden leakage location will gradually increase with con-
tinuous leakage, and the temperature characteristic values of the optical cable in different
moisture content environments are not the same, so the seepage can be judged by heating
the optical cable and comparing the temperature characteristic value. The occurrence of
leakage events, and the specific location of leakage, can be located. When the leakage has
reached a certain scale, an obvious seepage phenomenon is formed at the leakage location,
and the vicinity of the leakage has been saturated. By heating the optical cable and estab-
lishing the relationship between the flow velocity and the temperature characteristic value,
the mathematical expression of the flow velocity and the temperature characteristic value
is derived. When the temperature characteristic value changes, the corresponding flow
velocity can be obtained according to the corresponding fitting formula to judge the extent
of the leakage. According to the specific situation, the identification and semiquantitative
analysis of the leakage location are formed.

3. Leakage Test of Heatable Temperature-Sensing Optical Cables under Different
Moisture Content Media (Sand, Phosphorus Slag)

The heatable temperature-sensing optical cable selected in this test is a copper mesh
heatable temperature-sensing optical cable. Its outermost layer is a black sheath, the second
layer is a braided copper wire mesh wrapped with Kevlar, and the third layer is an armored
tube with a sheathe and Kevlar fiber inside. The blue cable is multimode 62.5/125, the
white is multimode 50/125, and the red is a single-mode cable. The average resistance
of the optical cable is 0.08 Ω. When the above heatable temperature-sensing optical cable
is not heated, it is regarded as a conventional temperature-sensing optical cable. The
demodulation device is a DTS demodulator (suitable for the 62.5/125 fiber type), and a
temperature compensation box is connected at the same time. The main test equipment
used in the test is shown in Figure 3.
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Figure 3. Test equipment for the leakage monitoring indoor model: (a) Heatable cable structure;
(b) DTS demodulator; (c) Temperature compensation box.

One end of the temperature-measuring cable is connected with the jumper through a
fusion splicer, and the other end of the jumper is connected with the port of the temper-
ature compensation box, as shown in Figure 4a. Then, the other port of the temperature
compensation box is connected to the channel port of the DTS demodulator. One end of the
data communication line is connected to the temperature compensation box, and the other
end is connected to the USB interface corresponding to the DTS host. The copper wires at
both ends of the heatable temperature-sensing optical cable are connected to the DC power
supply through external copper wires to form a heatable loop, as shown in Figure 4b.
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Figure 4. Temperature measurement cable connection: (a) Jumper connection; (b) Copper wire connection.

A pump tube is placed above the leakage position, and the other side of the pump
tube is connected to the peristaltic pump. By controlling the peristaltic pump, the water
flow enters the pump tube and flows out at the leakage position, and the water diffuses
downward in the medium to simulate leakage, as shown in Figure 5a,b. The size of the
acrylic box is 1 m × 0.2 m × 0.2 m, and the optical cable is straightened and buried in the
medium, as shown in Figure 5c. At the same time, holes are also opened at the bottom of
the box, and a permeable cloth is placed to observe whether water seeps during the leakage
test, as shown in Figure 5d.

The test steps are as follows:

(1) Build a test device, fill the acrylic box with the medium, and bury the optical cable in
the box to straighten and fix it;

(2) Before the official start of the test, check all equipment to ensure that it is operating
normally and collecting data synchronously;

(3) Use a hot air gun to heat the medium, observe the real-time temperature data of the
DTS demodulator, and locate the part of the optical cable in the acrylic box. After
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the temperature of the heatable temperature-sensing optical cable has stabilized, a
heating power of 5 w/m was applied to raise the temperature to a steady state. Then,
the peristaltic pump was activated to start the leakage test. The speed of the peristaltic
pump is controlled to 30 rpm, and the temperature curve is observed. After the
temperature drops to a stable state, stop the test.

(4) Process the test data, analyze the overall temperature change curve of the heatable
temperature-sensing optical cable in the test section and the temperature change curve
at the leakage point, and evaluate the identification effect of the heatable temperature-
sensing cable under leakage conditions.
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Figure 5. Leakage monitoring test system: (a) Schematic diagram of the leakage device; (b) The actual
layout of the leakage device; (c) Arrangement of temperature-measuring optical cables; (d) Holes at
the bottom of the device.

We tested the working conditions shown in Table 1 in turn and repeated the test steps.
We analyzed and compared the temperature characteristic values of the optical cable in
different media (sand and phosphorus slag) and the temperature change law of leakage,
evaluated the leakage identification effect of the heatable temperature-sensing optical
cable in dry medium, and analyzed and evaluated the leakage identification effect. The
temperature response law of the heatable optical cable under different moisture contents
was also observed.

Table 1. Model test conditions.

Number Media Type Moisture Content

1

Sand

dry soil
2 8%
3 14%
4 20%
5

Phosphorus slag

dry soil
6 14%
7 24%
8 34% (saturation)
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3.1. Comparison of the Temperature Measurement Results of Different Media in the Dry State

The temperature change curve at the leakage position of the optical cable in the sand
medium is shown in Figure 6. The figure shows that the temperature of the optical cable
changes very little before and after the leakage occurs. Based on this, the heating power
was increased to 10 w/m, and the test was repeated while maintaining the same leakage
conditions. The results are shown in Figure 7. For the fiber optic cable in phosphorus slag
medium, the temperature change curve at the leakage position is shown in Figure 8, and
the heating power is the same as that in the sandy soil, which is 10 w/m.
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Figure 6. Temperature variation curve of the leakage position under a heating power of 5 w/m.
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Figure 7. Temperature change curve under heating power of 10 w/m (dry sand): (a) Test section
temperature distribution curve; (b) Temperature change curve at the leakage position.

It can be seen from Figure 7 that the optical cable is in the dry sand medium, from
the beginning of the simulated leakage to the water seepage at the bottom, and the entire
leakage process is approximately 80 min. Under a heating power of 10 w/m, when leakage
occurs, the temperature at the leakage position drops by approximately 10 ◦C, and the
temperature change gradually becomes slower as the leakage continues. It can be seen
from Figure 8 that when the optical cable is in the dry phosphorus slag medium, under the
heating power of 10 w/m, when leakage occurs, the temperature at the leakage position
remains stable for a period of time before it begins to drop, and the drop is by approximately
12 ◦C. The temperature change gradually slows down as the leakage continues and finally
tends to be stable. However, during the whole process, there was no water leakage at
the bottom, and on the surface of the device, stratification of phosphorus slag and water
appeared, as shown in Figure 9. The reason for this is that after the phosphorus slag
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encounters water, its cohesiveness becomes very high, resulting in poor water permeability.
Eventually, the phenomenon of delamination is formed.
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3.2. Comparison of the Temperature Measurement Results of Different Media in the
Unsaturated State

In the environment of different soil moisture contents, the temperature change curves
of the optical cable under different heating powers are shown in Figures 10 and 11.
Figures 10 and 11 show that the temperature rise law of the optical cable in the unsat-
urated medium also gradually increases first and then gradually stabilizes; the temperature
characteristic values of the optical cable in the unsaturated medium all increase with the
increasing heating power, and the heating is stable. The time is approximately 15 min.
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Figure 10. Temperature variation curve of sandy soil with different moisture contents under different
heating powers: (a) Temperature curve of 8% moisture content; (b) Temperature curve of 14%
moisture content; (c) Temperature curve of 20% moisture content.

The increases in the temperature of sand with different moisture contents and phos-
phorus slag under different heating powers are shown in Tables 2 and 3. The saturated
moisture contents of sand and phosphorus slag were determined to be 24% and 34%, respec-
tively. Table 2 shows that when the heating power is 12 w/m, the increase in temperature of
the optical cable in the sand with an 8% moisture content and with a 20% moisture content
differs by 4.36 ◦C, and there is a significant temperature difference. The minimum heating
power for effectively identifying the leakage of the optical cable is 12 w/m in sandy soil
with an 8% moisture content. When the heating power reaches 20 w/m, the temperature
rise of the optical cable in the sand with a 14% moisture content and 20% moisture content
is only 1.35 ◦C, and there is no obvious temperature difference. This result shows that
under the sandy soil with 14% moisture content, a heating power within 20 w/m cannot
effectively identify the leakage.
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Figure 11. Temperature variation curve of phosphorus slag with different moisture content under
different heating power: (a) Temperature curve of 14% moisture content; (b) Temperature curve of
24% moisture content; (c) Temperature curve of 34% moisture content.

It can be seen from Table 3 that when the heating power is 5 w/m, the increase in
temperature of the optical cable in the phosphorus slag with a moisture content of 14% and
a moisture content of 34% (saturated state) differs by approximately 4.05 ◦C, and there is a
significant temperature difference. The minimum heating power for effectively identifying
leakage is 5 w/m in phosphorus slag with a 14% moisture content. When the heating
power reaches 12 w/m, the increase in temperature of the optical cable in the phosphorus
slag with a 24% moisture content and a 34% moisture content (saturated state) differs by
approximately 2.62 ◦C, and there is a significant temperature difference. The minimum
heating power for effectively identifying the leakage of the optical cable is 12 w/m in
phosphorus slag with a moisture content of 24%.

Table 2. Temperature increase in sandy soil with different moisture contents under different
heating powers.

Heating Power
(w/m)

8% Moisture Content
Temperature Increase (◦C)

14% Moisture Content
Temperature Increase (◦C)

20% Moisture Content
Temperature Increase (◦C)

5 3.10 2.45 2.94
8 7.39 5.29 5.27
10 9.25 6.64 6.60
12 11.03 7.31 6.80
15 13.58 9.08 8.94
18 14.29 11.54 9.90
20 15.52 13.69 12.31
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Table 3. Temperature increase of phosphorus slag with different moisture contents under different
heating powers.

Heating Power
(w/m)

14% Moisture Content
Temperature Increase (◦C)

24% Moisture Content
Temperature Increase (◦C)

34% Moisture Content
Temperature Increase (◦C)

5 8.71 5.92 4.66
8 12.03 8.16 6.66
10 17.06 11.68 9.46
12 18.91 12.90 10.28
15 20.95 14.17 11.48
18 25.22 17.28 13.66
20 27.30 18.84 14.99

4. Monitoring Test and Quantitative Analysis of the Leakage Velocity of the Heatable
Temperature-Sensing Optical Cable
4.1. Test Arrangement and Test Procedure

The test setup used to verify the quantitative analysis capability of leakage monitoring
based on a heatable optical cable is shown in Figure 12. The seepage device is composed
of a leakage box and a water valve, and a peristaltic pump is used to fill the water tank at
a constant speed. The speed of water leakage is controlled by adjusting the water valve.
There are three rows of holes at the bottom of the acrylic box buried in the sand, and a
permeable cloth is placed in the bottom of the acrylic box. An inclined semicircular PVC
pipe is placed below the box, and the measuring cylinder is placed at the end to measure
the flow rate.
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Figure 12. Leakage velocity monitoring test device: (a) The actual layout of the test device; (b) The
schematic diagram of the test device.

The test steps are as follows:

(1) Fill the saturated sand medium in the acrylic box, bury the temperature-sensing
optical cable in the acrylic box, and straighten and fix it;

(2) Connect one end of the optical cable and the jumper together through the fusion splicer,
and connect the other end of the jumper to the port of the temperature calibrator.
The other port of the temperature calibrator can be connected to the channel port of
the DTS demodulator for data communication. Connect one end of the line to the
temperature calibration box and the other end to the USB interface corresponding to
the DTS host;

(3) Connect the copper wires at both ends of the heatable temperature-sensing optical
cable to the DC power supply through external copper wires to form a heatable loop;

(4) Before the simulated leakage starts, check all equipment to ensure that it is operating
normally and collecting data synchronously;

(5) Position the part of the optical cable in the acrylic box, which can be heated by a
thermal drying gun; observe the real-time temperature data of the DTS demodulator
and record the position data;

(6) After the temperature drops to a stable level, turn on the water valve switch and
calculate the flow rate through the volume of water in the measuring cylinder at
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the corresponding time. After the flow rate stabilizes, maintain the flow rate and
apply different heating powers (5–10 w/m). Carry out heating, observe the real-time
temperature data of the DTS demodulator, and stop heating after the temperature
rises to a relatively stable level;

(7) After the temperature drops and stabilizes, change the flow rate by adjusting the
water valve, and repeat step (6);

(8) Analyze the test data, compare and analyze the relationship between different flow
velocities and temperature characteristic values, and establish a semiquantitative
evaluation of leakage velocity.

4.2. Analysis of Test Results

The increases in temperature of the optical cable under different flow rates are shown
in Table 4 and Figure 13. Figure 13 shows that there is an obvious negative correlation
between the leakage velocity and the temperature characteristic value.

Table 4. Temperature characteristic values of different flow rates under different powers.

Heating Power
(w/m)

Flow Velocity v (mm/s)

0.00 2.90 4.60 7.00 10.10 11.78

5 2.36 2.11 2.04 1.89 1.82 1.79

8 3.45 3.30 2.84 2.71 2.66 2.63

10 4.49 4.05 3.93 3.68 3.54 3.49
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To further analyze the correlation between the flow rate and the temperature eigen-
values, the data under three heating powers were fitted, as shown in Figures 14–16.
Figures 14–16 show that polynomial fitting is more in line with the laws of the experi-
mental data. The comparison shows that the quadratic polynomial fitting curve has a high
degree of fitting to the test data and is more reliable.
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5. On-Site In Situ Test

The manganese slag silo project in Songtao County, Guizhou Province, China, was
selected for an on-site simulated leakage test to test the effectiveness of leakage monitoring
using the heatable optical cable in an actual project. As shown in Figure 17, the test area
is a square area of 40 m × 40 m, and the optical cables are arranged along the area in an
S-shape. The test simulates leakage by using a water pump to inject water into the reserved
PE (polyethylene) pipe. The PE pipe is 40 m long and has 6 holes. The length of the heated
optical cable in the test area is approximately 840 m, and the average resistance value is
15 Ω/km.
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During the test, the two types of optical cables (normal type and heating type) are
connected to the equipment, and their normal operation is debugged and checked. As
shown in Table 5, the test of working conditions I~IV is carried out in turn to observe the
variation law of the temperature measurement value and the leakage identification effect
of the two types of temperature-sensing optical cables under the same leakage conditions.

Table 5. Field test conditions.

Condition Number Content

I Heat the cable to a stable temperature with 2 w/m heating power
(the maximum power that the field device can provide)

II Heat the cable at 2 w/m until the temperature stabilizes to
simulate leakage

III Stop heating and wait for the temperature to drop and stabilize, then
reheat the optical cable with 2 w/m heating power to stabilize

IV Simulate leakage again after heating stabilizes

The test results of working Condition I are shown in Figure 18. Due to the power
limitation of the equipment, the overall temperature of the heatable temperature-sensing
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optical cable after heating is only approximately 1 ◦C higher. The test results of working
condition II are shown in Figures 19 and 20. The temperature of the heatable cable drops
significantly at the position of 880–920 m, with a drop of approximately 2–3.22 ◦C, while
the temperature of the ordinary cable also drops at the position of 880–920 m, with a drop
of 1.49–2.35 ◦C, which is 1.49–2.35 ◦C compared to the heatable cable. The temperature
gradient of the heatable cable before and after the leakage is not obvious, mainly because the
heating power is low, resulting in an insignificant heating effect, indicating an insignificant
temperature gradient after leakage occurs, and the reason for the temperature change
in the two optical cables is mainly due to the water temperature. The main reason for
the temperature changes in the two types of optical cables is the temperature difference
between the water and the soil, but it can be seen that the temperature gradient has
expanded by heating.
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Figure 19. Temperature change in the heatable optical cable under working condition II: (a) Tempera-
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The results of working condition III are shown in Figure 21. The temperature change in
the leaking section is larger when the optical cable is heated twice, before and after leaking,
but the temperature change is smaller because the heating effect is not obvious. The results
of Case IV are shown in Figures 22 and 23. Consistent with the results of working condition
II, the temperature dropped significantly at the leakage position. The temperature drop
of the ordinary optical cable was 0.59–1.81 ◦C, while the temperature drop of the heatable
cable reached 1.89–3.82 ◦C. The higher the value is, the better the recognition effect.
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Figure 20. Temperature change in the ordinary optical cable in working condition II: (a) Temperature
distribution along the route; (b) The temperature distribution of the leakage section.
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Figure 22. Temperature change in heatable optical cable under working condition IV: (a) Temperature
distribution along the route; (b) Temperature distribution of leakage section.
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distribution along the route; (b) Temperature distribution of leakage section.

6. Discussion

(1) In the experiment described in this paper, the permeability of phosphorus slag was
worse than that of sand, and its response to leakage events was slower. Therefore,
when laying temperature measurement cables, placing the cables in soil layers with
good permeability or setting permeable soil layers around the cables when burying
them should be considered to enhance their detection accuracy and response speed to
leakage events.

(2) Through the experiments conducted in this study, it was found that the temperature
characteristics of optical cables in sand and slag with different moisture contents
increased with the increase in heating power. Moreover, the temperature increase
in the optical cable at the same power level basically decreased with the increasing
moisture content. Specifically, when the moisture content of the sand medium itself
is less than 8%, leakage occurs, and the minimum heating power for effectively
identifying leakage using the heated optical cable is 12 w/m. When the moisture
content of the sand medium itself is greater than 14%, leakage occurs, and a heating
power within 20 w/m cannot effectively identify the leakage. When the moisture
content of the slag medium itself is less than 14%, leakage occurs, and the minimum
heating power for effectively identifying leakage using the heated optical cable is
5 w/m. When the moisture content of the slag medium itself is between 14% and 24%,
leakage occurs, and the minimum heating power for effectively identifying leakage
using the heated optical cable is 12 w/m. The heating power of the heated optical
cable is directly related to its heating effect. If the heating power is too low, it may
not meet practical needs, and if the heating power is too high, it will result in energy
waste and overheating, which may cause damage to the facility. Currently, scholars
have paid little attention to this issue, and in practical engineering, reasonable heating
power can be selected through indoor model experiments to provide a basis for actual
engineering measurement.

(3) The establishment of a quantitative relationship between seepage velocity and tem-
perature characteristic values is the basis for the quantitative monitoring of seepage.
Currently, research in this field involves conducting measurement experiments in
indoor models and then applying the analysis results of the indoor experimental
data to actual engineering. This paper also adopts a similar approach, and the anal-
ysis of experimental data shows that the quadratic polynomial fitting curve has
high reliability.
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7. Conclusions

Through the experimental study of the feasibility of the heatable temperature-sensing
optical cable in karst depression engineering applications, the following conclusions
were drawn:

(1) The leakage test results of the heatable temperature-sensing optical cable in different
dry and unsaturated media show that the leakage identification effect of the heatable
temperature-sensing optical cable is very obvious, which verifies the feasibility and
precise positioning function of leakage identification of optical cables in dry media.
Because phosphorus slag has worse water permeability than sand, the response speed
to leakage events is slower.

(2) In the unsaturated medium test, the difference in moisture content of the medium
can be identified by heating the optical cable, and increasing the heating power can
increase the identification effect in the range of moisture content identified.

(3) In the semiquantitative identification test of leakage velocity, the temperature charac-
teristic value under different conditions was measured by controlling the flow rate and
heating power. The results showed that there was a significant negative correlation
between leakage velocity and temperature characteristic value. The greater the flow
rate is, the higher the temperature. The smaller the eigenvalue is, the more stable it is.
By comparing the data, the quadratic polynomial fitting curve has high reliability.

(4) The temperature behavior of two types of temperature-sensing optical cables (conven-
tional type and heating type) under the same leakage conditions was studied through
in situ tests. The degree of response of the heatable fiber optic cable to leakage is very
significant, and the result is accurately identifying the location of the leakage.
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Abstract: Dam settlement monitoring is a crucial project in the safety management of concrete face
rockfill dams (CFRD) over their whole life cycle. With the development of an automatic monitoring
system, a large amount of settlement data was collected. To precisely predict the structural health of
dams, a combined multiple monitoring points (MMP) model and a machine learning model has been
developed. In this paper, based on the physical factors of the CFRD, we comprehensively analyzed
the influence of water level load transfer, rockfill rheology and soil properties on the settlement during
the impoundment operation period. Then, we established a space-time distribution model of the
CFRD during its operation period under multiple factors. An extreme gradient boosting (XGBoost)
model was used for fitting prediction, and the model was evaluated using various performance
indicators. The results show that spatial parameters such as the upper filling height, rockfill thickness,
panel-point distance and soil material correlate to the deformation characteristics of the rockfill dam.
Taking the monitoring data of the settlement of the Liyuan CFRD as an example, the new MMP model
was evaluated and used to predict the settlement of the full-section points with higher accuracy,
which has certain application and popularization value for related projects. Then, to evaluate the
contribution of the components of the new MMP model, the SHapley Additive explanation (SHAP)
methods are used to evaluate the importance of the selected factors, and the reasonability of these
factors is verified.

Keywords: multiple measuring points; concrete face rockfill dam; XGBoost; dam settlement monitoring;
factor importance analysis

1. Introduction

Settlement deformation monitoring is a crucial project in the safety management of
concrete face rockfill dams (CFRD) over their whole life cycle [1]. Performing systematic
monitoring and data prediction of the structural state of the dam is beneficial to dam
managers in that it helps them understand and accurately evaluate the running state
of the dam in a timely manner, provide early warnings and implement maintenance
measures [2,3]. With the development of automatic monitoring systems, the number of dam
deformation monitoring sensors has increased greatly. The method of using deformation
data to evaluate dam structure health has gradually changed from a single monitoring
point model to a combination of a multiple monitoring points (MMP) model and a machine
learning (ML) model [4–7]. Therefore, it is of great scientific significance to research a new model
of the settlement of CFRDs to gain control of the overall deformation trends of these dams.

The traditional MMP model has been used to evaluate the deformation of CFRDs.
Sun et al. [8] applied the MMP model to the prediction of settlement displacement during
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the operation period of a CFRD and verified the applicability of the model. However,
the function expression was not improved according to the deformation characteristics of
CFRD, and the continuous influence of rheology and soil compaction on the settlement was
ignored. This is because the traditional MMP model is derived from a simplified model of
the concrete dam, where the concrete dam’s body is assumed to be a rigid structure. A sim-
ple model is not perfectly suitable to represent a CFRD, for a CFRD is a complex of elasticity,
plasticity and viscosity. Given the complicated model factors and modeling, Huang et al. [9]
and Chai et al. [10] used the Back Propagation (BP) algorithm, which is a learning algorithm
based on the gradient descent method and suitable for multilayer neuronal networks, to
replace the combination of a statistical model and MMP model. They also expanded the
sample space using the monitoring data of multiple measuring points to build the corre-
sponding displacement monitoring model and reflect the overall deformation of the dam.
Li et al. [11] and Lu et al. [12] took into account the factors influencing rockfill settlement
and derived the spatiotemporal function expression for the instantaneous and continuous
soil deformation caused by filling during the construction period. However, during the
storage period of the rockfill dam, the settlement displacement is mainly composed of a
water level component and a time component, so it is necessary to further analyze the
influence of hydraulic pressure on the settlement during the operation period based on the
original model [13,14]. Therefore, the expressions of multiple measuring points conforming
to the deformation law of a rockfill dam need to be derived according to the deformation
characteristics of the CFRD.

In the past few decades, machine learning has made great advances to solve problems
in the field of civil engineering, such as predicting the material properties of concrete and
monitoring the health of structures [15]. The artificial neural network algorithm is the
earliest machine learning algorithm [16]. Artificial neural networks are used to predict the
shear strength of concrete beams reinforced by composite materials. Kim and Kim [17]
adopted the artificial neural network method to establish an artificial intelligence prediction
model to predict the relative settlement of the dam top based on the measured settlement
data of 30 faced rockfill dams. Support vector regression was then developed to effectively
solve nonlinear regression estimation problems. Su et al. [18] proposed a method of
optimizing algorithm parameters and input vectors and a new method for updating model
monitoring in real-time based on the dam safety monitoring model based on support vector
machines (SVM), which improved the accuracy of prediction. Furthermore, the Support
Vector Regression (SVR) algorithm is often combined with other algorithms, such as Fuzzy
Logic algorithms (FL) and Genetic Algorithms (GA), etc., to improve the training speed and
prediction accuracy. Marandi et al. [19] predicted the settlement of faced rockfill dams using
a genetic programming algorithm. Moreover, the decision tree algorithm benefits from its
straightforwardness, observability and interpretability, providing a convenient and reliable
solution to the regression problem. Decision tree generation algorithms include the ID3
algorithm, the C4.5 algorithm and the Classification and Regression Tree (CART) algorithm.
The Gradient Boosting Decision Tree (GBDT) is the most representative decision tree
algorithm and is combined with ensemble learning. XGBoost (extreme gradient boosting)
is an ensemble learning method based on the GBDT model optimization proposed by Chen
and Guestrin [20], which can be widely used in machine learning challenges and data
science applications [21]. Lim and Chi [22] adopted the XGBoost algorithm to evaluate the
degree of damage done to a bridge and used the Shapley value to evaluate the influence
of each parameter in the input variable on the predicted results. Shi et al. [23] employed
an XGBoost model to predict the stability of a landslide dam considering missing data
and show that the XGBoost model can improve model accuracy compared with the rapid
evaluation methods widely used at present. Wakjira and his team [24,25] presented a total
of seven ML models, namely kernel ridge regression, K-nearest neighbors, support vector
regression, classification and regression trees, random forest, gradient boosted trees and
XGBoost, to choose the best predictive model for fabric-reinforced, cementitious matrix-
strengthened beams. They show that the XGBoost model is the most accurate model with
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the highest coefficient of determination. Nguyen et al. [26] applied the XGBoost model, an
artificial neural network (ANN) and random forest (RF) to the prediction of the punching
shear resistance of reinforced concrete (R/C) interior slabs without shear reinforcement. Their
results show that the XGBoost model presented the most accurate prediction among all
models, with the coefficient of determination (R2) for the testing dataset being equal to 0.9578.

XGBoost is composed of the integration of several weak learners. The basic idea is
to fit the residual of the previous weak learner’s training by adding new weak learners
and obtaining the predicted score of each sample at the end of the training. Finally, the
predicted scores of all weak learners are added together, namely the predicted value of
the sample. XGBoost has undergone a lot of optimization based on the Boosting model,
which includes: (1) performing second-order Taylor expansion on the objective function,
which improved the model accuracy; (2) adding the regularization term to the objective
function to reduce the complexity and effectively prevent overfitting; and (3) the sample
automatically learning the splitting direction of the missing value to process the missing
value. XGBoost further upgrades Bagging and Boost’s initial integrated algorithm. XG-
Boost also has certain improvements in sample selection, parallel computation and missing
value handling, etc. [27]. Together, these improvements make XGBoost show significant
advantages in computational efficiency and prediction results, making it one of the most
popular algorithms nowadays [26]. Compared with other decision tree algorithms, the
XGBoost algorithm has unique advantages, such as the introduction of penalty functions
and random variables for decision tree structure to reduce the overfitting phenomenon
of the model [24,25,28–31]. At the same time, each decision tree of the XGBoost model
is completely independent, which enables the XGBoost algorithm to have superparallel
computing capabilities [20]. Since the multi-factor MMP model contains discrete char-
acteristic variables and requires precision analysis of the model, we adopt XGBoost to
construct the MMP model.

Factor importance analysis can reflect the reasonability of components of the MMP
model and assist in screening these factors to make the model more robust [18]. Considering
that XGBoost cannot determine what kind of correlations (positive or negative) exist
between these factors and the settlement, we further use the SHAP method to conduct
the factor importance analysis. SHAP is a model interpretation package developed based
on Python that can interpret the output of machine learning models. The basic idea is to
calculate the marginal contribution the factors bring into the model. Then, taking into
account the different marginal contributions of the factor in all cases, the SHAP value is the
contribution value assigned to each factor in the sample. The SHAP method can realize a
visual analysis and explain the value of the model from the characteristic factors [32]. As an
explainable machine learning model, the use of a unified SHAP method was investigated
to explain the predicted response and rank the input factors and their interactions [24,25].

In this paper, the influence of the load transfer of the water level, the flow of the rockfill
body and the characteristics of the soil on the settlement during the operation period are
comprehensively analyzed. The spatial parameters which are more consistent with the
deformation characteristics, such as the upper fill elevation, the thickness of the rockfill
and the distance between the measuring point and the face plate, are used to replace the
original position coordinates. Based on this, the MMP model of the rockfill dam during
the operation period under the action of multiple factors is established. It is proven that
the combined model of the new MMP model and the XGBoost algorithm has a higher
prediction accuracy regarding the CFRD using the actual engineering data. Then, the factor
importance analysis was conducted to figure out the orders of importance of these selected
factors. This work has certain reference values for the safety monitoring of dams.

2. Materials and Methods
2.1. The Multi-Factor and Multi-Monitoring Point Statistical Model

At present, the main statistical model for dam deformation monitoring is hydrostatic-
seasonal-time (HST), which uses the function expression of time, reservoir water level and
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periodic temperature to fit the dam deformation rule. The HST model is presented as the
sum of the water pressure component (δH), temperature component (δS) and time effect
component (δT) [3,11]:

δ(h, t, s) = δH(h, t) + δS(s) + δT(t) (1)

Based on the original HST model, the mathematical expressions of the water pres-
sure component δH, the temperature component δS and the time effect component δT are
improved. The rheological component δε and the material component δm are added.

2.1.1. The Water Level Component δH

The water level component δH is the sum of the water level component of settlement
measurement points δ′h and the pre-reservoir water level component f (h):

δh = δ′h + f (h) = b0 + b1 · Ah1−n · d1

d2
+ b3h (2)

where b0, b1, b2 and b3 are the coefficients of regression; h is the elevation difference between
the water level and the measuring point; d1 is the rockfill thickness; d2 is the distance from
the measuring point to the face panel (Figure 1); h represents the average water levels in the
3 days before the observation date; n is the modulus of elasticity index; and A is a constant.
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2.1.2. The Temperature Component δS

The relationship between the deformation of rockfill body δS and temperature with the
annual periodicity of the freezing period can be expressed by using the periodic function:

δS =
2

∑
i=1

(cos
2πit
365

+ sin
2πit
365

) (3)

where t is the cumulative number of days from the monitoring date to the starting date.

2.1.3. The Time Effect Component δT

According to the monitoring data of the CFRD, the settlement in the late settlement
period tends to converge gradually and eventually becomes stable. The settlement vs.
per unit dam height (the proportion of settlement amount to dam height) has a linear
relationship with the logarithm of time, as follows:

s =
αH′

100
(ln θ − ln θ0) (4)

where α is the regression coefficient; H′ is the height of the dam; θ = t/100; θ0 = the
cumulative number of days since the selected monitoring date/100; and n′ is the soil
porosity at the measurement point.
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2.1.4. The Rheological Component δε

The expression of the rheological component of the dam body should be combined
with the rewritten formula of the vertical compression modulus [33] and the rheological
curve, as shown below:

δε = a0 + a1(1− e−Dt)
γHd1

Erc
(5)

where a0 and a1 are the coefficients of regression; D is the initial relative deformation rate;
γ is the bulk density of the filled rockfill; H is height of filled rockfill above the measuring
point; Erc is the tangential modulus of the rockfill and according to the Duncan–Chang
model; and Erc can be presented as:

Erc = KPa(
σ3

Pa
)n[1−

R f (σ1 − σ3)(1− sin ϕ)

2c cos ϕ + 2σ3 sin ϕ
]2 (6)

where Rf is the failure ratio; σ1, σ3 are the large and small principal stresses, respectively;
c is the cohesion force; ϕ is the friction angle; K is the tangent elastic modulus; and Pa is the
atmospheric pressure.

Then, substituting Equation (6) into Equation (5), we can obtain the expression δε:

δε = a0 + a1(1− e−Dt)A1H1−n · d1 (7)

where n is the elastic modulus index; ξ is the lateral pressure coefficient, and

A1 =
γ1−n

[1− R f (1−ξ)(1−sin ϕ)

2ξ sin ϕ ]
2
· K · ξn

(8)

2.1.5. The Material Component δm

In this paper, three material parameters, namely, the soil porosity at the measurement
point n′, the coefficient of compact permeability k, and the dry density ρ are brought into
the regression analysis according to discrete variables. It is assumed that the functional
relationship between a certain point settlement and its material parameters is as follows:

δm = f (n′, k, ρ) (9)

where f is the regression formula.
To sum up, the statistical model expression of the settlement of the rockfill during the

operation period is established, which is the sum of the above components:

δ = δh + δS + δT + δε + δm = a1(1− e−Dt)A1H1−n · d1 + b1h1−n · d1
d2

+b2(1− e−Dt)h + b3h + c1(ln θ − ln θ0) + d1 f (n′, k, ρ) + α
(10)

It should be noted that the temperature component is very small for the settlement
of the mearing points, so it was not included in the final statistical model. According
to the multi-factor MMP model, it can be found that the settlement deformation of the
rockfill body is related to the three position factors of the upper fill elevation (H), the rockfill
thickness (d1) and the distance from the measuring point to the face panel (d2). These three
parameters can be used to represent the position coordinates of any point in the dam, so they
can be used as variables to represent the spatial position. When the reservoir water level
elevation is fixed, the deformation at different points is also related to the filling material
at the location. These parameters are used to represent the comprehensive influence of
the rockfill crushing characteristics, compression deformation properties or other factors
in different rockfill areas, to explain the reasons for the differences in settlement values at
different measuring points under the same external environmental conditions.
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2.2. XGBoost Model for Multiple Monitoring Points Model

When the XGBoost prediction model of the MMP model for the settlement of CFRD
is established, the input variables are 13 influence factors affecting the settlement, which
are obtained from the statistical model (Equation (10)) of the running period of the rockfill.
For the specific input variables, see Table 1. The output variable is the settlement value
of 12 measuring points in the whole section. To show the superiority of the XGBoost
model, we also perform the prediction using the base learner, which is a classification and
regression tree (CART). A comparison between the performance of the XGBoost model
and the CART model is shown to indicate the necessity of using the XGBoost model over
simpler white box models.

Table 1. Input variable set.

Water Level Component
(δH)

Rheology–Soil Weight
Component (δε)

Time Effect
Component (δT)

Material Component
(δm)

Factors h1−n(d1/d2), h(1− e−Dt)h (1− e−Dt)H1−n ·
d1d1, d2, H, Hd1

ln θ, ln θ0 n′, k, ρ

2.3. Hyperparameter Optimization and Performance Measures

During model training, it is necessary to optimize the hyperparameters in the ma-
chine learning algorithm. Common hyperparameter optimization methods include grid
search [29,34], random search, Bayesian optimization [35], etc. Grid search requires travers-
ing all hyperparameter combinations, which consumes a lot of computational resources,
which are already limited, and model training is slow. The random search method ran-
domly selects different combinations of hyperparameters with great randomness. Bayesian
optimization is a method of automatic adjustment of hyperparameters, which will track the
evaluation results of every combination of hyperparameters tried in the past and form a
probabilistic model. This model is called the “proxy” of the objective function. Before trying
the next set of hyperparameters, the Bayesian optimization method will refer to this proxy
model and select the hyperparameter with the best performance on the proxy function
to evaluate the actual objective function. Compared with grid search and random search,
Bayesian optimization has better performance and can reduce the computing time. In this
paper, the method of Bayesian optimization combined with K-fold cross-validation is used
to optimize the hyperparameters of the model. Using at the hyperparameter values selected
by the Bayesian optimization algorithm, the K-fold cross-validation method was used to
evaluate the performance of the model under the selected combination of hyperparameters.
When the hyperparameters are optimized by Bayesian optimization, the domain space is
the value range of the hyperparameter to be searched, and the objective function is the
evaluation index value of the model’s prediction performance on the verification set using
the current combination of hyperparameters. The specific steps are as follows:

(1) Establish the alternative probability model of the objective function: some hyper-
parameters are randomly generated in the domain space, and K-fold cross-validation is
used to train and evaluate the model. The evaluation results are used to describe the ability
b of these models and the prior data set O = {(a1, b1) . . . , (ak, bk)}. A Gaussian model, GM,
is fitted based on O fitting. (2) Select the hyperparameter with the best performance on the
agent function: find the maximum hyperparameter a′ under GM through the collection
function. (3) Apply the selected optimal hyperparameter to the objective function: the
model is trained and evaluated based on the hyperparameter a′ and K-fold cross-validation,
and the evaluation results are used to describe the ability of the model b′. (4) Update the
proxy model and add (a′, b′) to set O. (5) Repeat steps (2)~(4) until the maximum number
of iterations or running time is reached.

The specific steps of K-fold cross-validation taken to train and evaluate the model are
as follows: (1) Divide the training set into K parts. (2) i (i = 1, 2, . . . , K) is the test set, and
the remaining K − 1 is the training set. K data sets are constructed. (3) For the current
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combination of hyperparameter values, K different models are trained based on the K data
sets in step (2) and test index values are calculated. (4) Calculate the mean value of the K
test index values as the evaluation value of the model’s prediction performance using the
combination of corresponding hyperparameter values.

The XGBoost algorithm has many parameters, and different selections of parameter
will affect the model’s prediction performance. The hyperparameters of the XGBoost model
selected in this paper to be optimized and their implications are shown in Table 2, along
with the range settings of each hyperparameter and the optimal value results under 5-fold
cross-validation. The eta parameter is the shrinkage step size, and the model robustness can
be improved by reducing the weight of each step. The value range is [0.01, 0.3]. Max_depth
is the maximum depth of the decision tree. As the depth of the tree increases, the model will
have a higher grasp of the local factors of the sample. The value range is [3, 10]. Learning_rate
is the learning rate, which affects the speed at which the parameter is updated to the optimal
value. The value range is [0.05, 0.3]. N is the maximum number of iterations or the maximum
number of weak learners, which mainly affects the fitting degree of the model.

Table 2. Parameters of XGBoost Model.

Parameters Value Range Note

eta 0.2 [0.01, 0.3] the shrinkage step size
max_depth 5 [3, 10] the maximum depth of the decision tree

learning_rate 0.1 [0.05, 0.3] the learning rate
N 160 / the maximum number of iterations

The mean absolute error (MAE), mean absolute percentage error (MAPE), root mean
square error (RMSE) and coefficient of determination (R2) of different measurement points are
used as quantitative indicators to evaluate the prediction ability of the model. The calculation
of MAE, MAPE and RMSE and R2 are presented mathematically by Equations (12)–(14):

MAE =
1
N

N

∑
i=1
|yi − ŷi| (11)

MAPE =
1
N

N

∑
i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ (12)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (13)

R2 = 1−

N
∑

i=1
(yi − ŷi)

2

N
∑

i=1
(yi − y)2

(14)

where y and ŷ the target and predicted values respectively, y is the average of the target
values and N is the number of data points.

2.4. Factor Importance Analysis Based on SHAP

The SHAP functions interpret the impact of each factor on the predicted value of
each individual and provide the visible factor importance analysis [36,37]. It is an additive
explanation model constructed by SHAP inspired by cooperative game theory with all
the characteristics treated as “contributors” [38]. For each predicted sample, the model
generates a predicted value, and the SHAP value is the value assigned to each factor in the
sample [39]. The process of this analysis is as follows: Suppose that the ith sample is xi, the
factor j of the ith sample is xij, m is the number of factors in the model, the predicted value
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of the sample is yi, the baseline of the whole model (usually the mean value of the target
variable of all samples) is ybase, and the SHAP value is shown as follows [36]:

yi = ybase + f1(xi1) + f2(xi2) + · · ·+ fi∗j(xij) + · · ·+ fi∗j∗m(xmj) (15)

where f (xij) is the SHAP value of xi, e.g., f (xi1) is the contribution of the first factor in the ith
sample to the final predicted value yi. When f (xi1) > 0, it indicates that this factor increases
the predicted value, showing a positive correlation; otherwise, it indicates that this factor
reduces the predicted value, which is a negative correlation. The new MMP model and the
traditional model have 13 + 11 influencing factors, which are chosen as influencing factors
(see Table 3). The factors of the new MMP model are represented by X series, while the
factors of the traditional model are represented by Y series. It should be noted that all the
factors are independent and have distinct meanings.

Table 3. Influence variables set.

Components from
the MMP Model NO. Factors Components from the

Traditional Model NO. Factors

Water level
component

X1 h1−n(d1/d2)

Water level component

Y1 h

X2 h Y2 h2

X3 (1− e−Dt)h Y3 h3

Rheology–soil
weight component

X4 (1− e−Dt)H1−n · d1

Temperaturecomponent

Y4 sin 2πt
365

X5 d2 Y5 cos 4πt
365

X6 d1 Y6 cos 2πt
365

X7 H Y7 sin 4πt
365

X8 Hd1
Location component

Y8 x

Time effect
component

X9 ln θ Y9 y

X10 ln θ0
Time effect component

Y10 ln θ

Material component

X11 n′ Y11 ln θ0

X12 k Note: Time effect components are same in the two models;
X5(d2) and Y9(y) are the same.X13 r

3. Case Study

We use the actual monitoring data of the Liyuan CFRD to evaluate the feasibility of
settlement prediction using the newly derived MMP model. The Liyuan CFRD is located
in the middle reach of the Jinsha River, Lijiang City, Yunnan Province. The dam began to be
filled in the middle of August 2011, and the main part of the dam was completed at the end
of July 2013. The construction period of the concrete panel was from 28 November 2013 to
28 May 2014, and the water storage began on 10 November 2014. The project’s reservoir
has the capacity for cycle regulation, the normal water level is 1618 m, the dead water level
is 1605 m, and the flood control limit water level is 1605 m (early July to early August). The
maximum dam height of the Liyuan CFRD is 155 m, and the normal water storage capacity
corresponds to 727 million m3.

We use the water level settlement gauge to monitor the settlement of the dam. The
gauges were arranged along the river at a distance of 35 m to obtain the vertical displace-
ment of the dam during the construction period and the operation period (see Figure 2).
There are three monitoring points on the settlement’s maximum cross-section which are
arranged horizontally along a straight line at the right side of the dam at 0 + 223 m. As
shown in Figure 2, most of the measuring points are located in the main rockfill area, and
some of them are located in the secondary rockfill area and the downstream rockfill area.
The arrangement and range of 12 measuring points on the cross-section covers the whole
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section and can reflect the settlement of the whole rockfill dam under external load well,
which is helpful in studying the prediction performance of the new MMP model. The
monitoring data selected for modeling in this paper are from November 2014 to March
2016, that is, the period from the initial storage to the normal water level. The data were
recorded once a week. A total of 924 effective data points can fully reflect the variation
trend of the settlement at the initial stage of the storage operation.
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4. Results
4.1. Prediction Accuracy of the New MMP Model

To verify the prediction accuracy and effectiveness of the new MMP model proposed
in this paper, a full-section deformation prediction model is established for the settlement
of the Liyuan CFRD measured at 12 monitoring points. We select 77 sets of settlement data
from the initial impounding in November 2014 to the normal water level in March 2016 as
samples for the analysis. A total of 924 valid data from 12 measurement points can fully
reflect the variation trend of the initial impounding settlement. The first 67 groups are used
as training data, and the last 10 groups are used as test data. The prediction period is from
July 2015 to March 2016. The period is 8 months. The long-period test set is helpful to
evaluate the prediction performance of the new MMP model.

The predicted residual distribution of the new MMP model is shown in Figure 3. As
can be seen from Figure 3 and Table 4, the normal distribution of the fitting residuals of
the 804 training groups used in the XGBoost model is mainly between −1 mm and 2 mm;
the mean and median of the residuals in the training set are about 1 mm, while the MAE
and RMSE values of each measurement point in the training set are mostly in the fitting
error range of 0–3 mm. The results show that the new MMP model can fit the deformation
of measuring points in the same section well. In the test set, the mean and median of
the residuals of 120 groups were slightly higher than 2 mm, and the prediction errors of
each measurement point were also around 2–3 mm. The difference between the fitting
and predicted residual values were small, indicating that the overall performance of the
XGBoost model was precise and had a good prediction performance.
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Table 4. Settlement fitting and prediction performance analysis of new multiple points monitoring
model.

Measuring Point
Training Set Test Set by XGboost Test Set by CART

MAE
/mm

RMSE
/mm MAPE/% R2 MAE

/mm
RMSE
/mm MAPE/% R2 MAE

/mm
RMSE
/mm MAPE/% R2

V2 3.41 4.18 1.54 0.88 7.31 7.74 2.65 0.85 9.54 8.65 5.88 0.49
V3 1.34 1.57 0.34 0.97 1.95 2.18 0.47 0.94 6.87 8.64 3.76 0.56
V4 2.24 2.58 0.54 0.95 4.00 4.19 0.88 0.93 5.88 6.00 1.56 0.58
V5 1.49 1.92 0.24 0.98 3.17 3.54 0.50 0.92 4.67 4.99 1.09 0.58
V6 0.93 1.37 0.17 0.99 1.35 2.05 0.24 0.96 4.56 3.77 1.88 0.64
V7 1.27 2.02 0.39 0.94 1.97 2.49 0.55 0.92 3.64 5.85 1.55 0.56
V9 2.39 2.86 0.62 0.95 1.77 2.09 0.41 0.93 5.47 6.16 1.2 0.59
V10 1.80 2.23 0.26 0.98 1.67 2.23 0.24 0.95 2.67 4.73 0.89 0.65
V11 2.44 2.68 0.49 0.96 2.14 2.48 0.42 0.93 4.34 4.53 1.14 0.67
V12 0.68 2.04 0.22 0.97 1.22 3.15 0.34 0.94 1.54 3.86 0.39 0.73
V14 1.23 2.22 0.34 0.94 4.12 4.79 1.00 0.90 8.12 8.42 3.55 0.62
V15 0.61 2.46 0.23 0.95 7.08 7.55 2.03 0.85 10.57 10.05 7.89 0.50

We then compared the subsidence obtained from XGBoost model and the CART model.
The prediction accuracy of the two algorithms (XGBoost and CART) can be quantitatively
compared using the data in Table 4. R2 is used to measure the correlation between the
actual value and the predicted value. The larger R2 is, the more accurate the prediction of
the algorithm is. In the test set, only the R2 of XGBoost algorithm is above 0.90, larger than
that of the CART model (around 0.6). This phenomenon shows that the XGBoost algorithm
has a higher prediction accuracy than its base algorithm (CART). The RMSE, MAE and
MAPE are all used to measure the difference between the actual value and the predicted
value. It can be seen that the model’s MAE and RMSE values at each measurement point in
the training set and the test set are smaller than 3 mm, while the RMSE and MAPE of the
test set from the CART algorithms are above 3 mm. The MAPE values of the training set
and test set from the XGBoost algorithm are less than 1%, much smaller than those from
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the CART algorithm, which are mostly higher than 1%. It can be seen that for predicting
the settlement of the CFRD, the predicted value of XGBoost shows the best correlation with
the actual value and the smallest error. This finding demonstrates the superiority of the
XGBoost model and indicates the importance of the use of the XGBoost algorithm.

We also provide a scatter plot of the predicted and actual response values of one
typical monitoring point, V9, in Figure 4. The figure shows that the predicted values of the
settlement of the measuring point continuously increase. This trend is the same for the
measuring value. Furthermore, the prediction accuracy of the XGBoost model is higher
than the CART model. This result is consistent with the MAE, RMSE and MAPE values.
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Figure 4. Predicted values and monitoring values of monitoring point V9 using different algorithms.

All in all, the new MMP model has the best prediction accuracy for measuring points
V9-V10 in the maximum settlement area, and the MAE and RMSE values of the three
measuring points are all about 2 mm. The prediction errors of most measuring points are
within 1.5–3 mm, and the MAPE is also lower than 1%, indicating that the new MMP model
had a good performance in predicting global measuring points. Moreover, the stability of
the model also needs to be assessed in future works.

4.2. Orders of Importance of Factors by SHAP

Figure 5 shows the evaluation results of characteristic values of factors obtained by the
SHAP method. Each row in Figure 5 represents a factor, each point represents a monitoring
sample, and the x-axis represents the SHAP value. A redder color represents a larger value
of the impact factor, and a bluer color represents the smaller the value of the impact factor
itself. It can be seen that the orders of importance of factors of the new MMP point model
are generally higher than those of the traditional model, except for the coordinate Y8. This
finding indicates that the new MMP model is more suitable for predicting the settlement of
CFRDs. It can be intuitively seen from the evaluation results that the newly added spatial
location components X7, X5 and X4 are important contribution factors of the model, and
they are all coupling factors related to the upper fill elevation. In addition, the upper fill
elevation (H) is the most important characteristic factor. The rheological component X4,
which includes the upper fill elevation, makes a great contribution to the model. The new
spatial location also has higher contribution and adaptability than x and y in the traditional
model, indicating that the position component derived from the new MMP model is more
advantageous. Furthermore, points X4 and X8 gradually turn red with the increase in the
SHAP value, indicating that these factors have a positive relationship with the settlement. In
another word, the increase in the upper fill elevation value leads to an increase in settlement
value. The upper fill elevation (X7) and the distance from the measuring point to the panel
(X5) are also positively correlated with the settlement. Interestingly, median values of
features X7 and X5 (represented by a purple color in Figure 5) can have the maximum
contribution value to the settlement. Combined with the characteristic distribution of the
spatial location parameters, the training characteristics of the MMP model can be roughly
inferred, that is, the settlement at the top of the dam and at its foundation is small, the
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settlement at downstream of the dam body is larger, the maximum settlement is about
half of the dam body’s elevation, the settlement at the downstream rockfill area is slightly
larger than that at the upstream side and the predicted value is basically consistent with
the actual deformation.
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From Figure 5, we can further analyze the orders of importance of the water level, time
and temperature components. In the water level component, the significance of X1 (which
represents the transfer effect of water pressure) is higher than that of traditional water
pressure Y1. This indicates that the combination of water pressure and spatial position
can effectively improve the settlement. At the same time, the importance of X1 is also
higher than the mean water level pressure X2 and the rheology–water pressure component
X3, which proves that the hydrostatic load is the main factor of the settlement. Both X9
and X10 rank high because the time component is used to characterize the irreversible
sedimentation over time. The least important component is the temperature component,
as it is shown that Y4–Y7 have little influence on settlement, which basically conforms to
the actual situation that the deformation of the CFRD has little correlation with periodic
changes in temperature.

We further present the mean of the absolute SHAP values for each factor across the
whole dataset in Figure 6. We only present several important factors; the other factors that
have very low SHAP values are not present. The results show that in the MMP model, the
contribution of the factors related to the spatial location (X7 and X5) to the settlement is the
largest, while the contributions of the three traditional BP components of water level (X3),
time and temperature (X9, X10 and other factors not shown in Figure 6), which represent
temporal changes, are somewhat weaker. As a sum of a spatial model and a temporal model,
the settlement of the measuring point consists of the completed settlement reference value
in the filling period and the temporal value in the operating period. The spatial location
component (X7 and X5) and material component (X11) determine the basic settlement,
while the water level (X3) and time component (X9 and X10) affect the temporal variation
in the settlement. Compared with the time series value with a smaller variation range, the
basic settlement at the measuring point accounts for the main part of the settlement value,
often reaching more than 80% of the total settlement. Therefore, in the monitoring data set
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of the full-section measuring points during the study of the water storage operation period,
the spatial component (X7 and X5) and the material component have the largest average
SHAP values contributing to the settlement. Moreover, their contribution is greater than
that of the temporal component (X9 and X10), which also confirms the prediction accuracy
of the MMP model. Furthermore, it is validated that it is necessary to pay attention to the
spatially related variables in the study of the overall dam deformation.
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Two typical single prediction plots using the XGBoost model are shown in Figure 7.
The length and color of the bars in Figure 7 show the degree of significance and direction
(negative or positive) of the effect of each factor, respectively. The base value denotes the
average of the observed response values. The prediction of point V9 on 30 March 2016 is
shown in Figure 7a. The upper fill elevation H (X7) showed the highest effect, followed by
the distance from the measuring point to the panel d (X5). Their values are lower than the
median, and they both have a negative effect on the settlement. This phenomenon is same
with the global SHAP value shown in Figure 5, where the points of X7 and X5 are in blue
and often have a negative SHAP value and thus have a negative effect on the subsidence.
What is more, X9 has the largest positive effect on the subsidence for V9. This is because X9
is related to the monitoring days and has the largest value. The prediction of point V10
on 30 March 2016 is shown in Figure 7b. All factors in Figure 7b show positive influences.
V10 is located in the middle part of the CFRD, and has the largest settlement. Among these
factors, the upper fill elevation H (X7) showed the highest effect. The distance from the
measuring point to the panel d1 (X5) ranks second. This phenomenon is the same with V9.
However, although X5 has a median value, it has the highest SHAP value; this corresponds
to the purple dots of X5 in the large SHAP value areas in Figure 5. Based on the individual
analysis of the MMP model, the prediction process and prediction basis of the model for
each specific sample can be understood. According to the data, the point position has the
largest impact on the subsidence, and the monitoring time also has significant effects.
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Figure 7. Evaluation results of factors based on SHAP values. (a) The prediction of point V9 on
30 March 2016; (b) The prediction of point V10 on 30 March 2016. A redder color represents a larger
impact factor, and a bluer color represents a smaller impact factor.

To sum up, from the feature importance analysis, it can be seen that the contribution of
the influence factors of the newly derived MMP model is better than that of the traditional
variables. The average SHAP value of the spatial component and the material component to the
output settlement is the largest, and the factor contribution is greater than that of the temporal
correlation component, which confirms that the prediction accuracy of the MMP model is closely
related to the spatial location component. In the study of the overall deformation behavior of a
CFRD, it is necessary to pay attention to the spatially related variables.

5. Conclusions

The MMP prediction model is based on the physical cause analysis of a CFRD settle-
ment and the expansion of spatial components. The influence of water level load transfer,
rockfill rheology and soil properties on the settlement during the operation period of
impoundment is comprehensively analyzed, and a space-time distribution model of the
CFRD during the operation period under the action of multiple factors is established. The
XGBoost model was used for fitting prediction, and the model was evaluated by various
performance indicators. Taking the settlement monitoring data of the Liyuan CFRD as
an example, the new MMP model, under the action of multiple factors, can predict the
settlement of full section points with higher accuracy, which has certain application and
popularization value for related projects. From the factor importance analysis, it can be
confirmed that the contribution of the influencing variables of the MMP model to the model
is better than that of the traditional variables. The SHAP value of the spatial component
and the material component to the output settlement value is the largest, and the factor
contribution is greater than that of the time component, which confirms that the prediction
accuracy of the MMP model is closely related to the spatial location component. In the
study of the overall deformation behavior of CFRD, it is necessary to pay attention to
the spatially related variables. Our work elucidates the high prediction accuracy of the
newly established MMP model and provides a benchmark for the investigation of the
safety management of a CFRD over its whole life cycle. Practitioners can predict future
dam deformation based on dam deformation data, obtain the dominant factors and repair
them in advance. However, this MMP and XGBoost model has only been validated on
one CFRD, more data from other CFRDs are needed to test the MMP and XGBoost model.
In addition, this new model was developed from the physical analysis of a CFRD, and
whether or not it is suited for other dams also needs to be investigated in future work.
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Abstract: Because of economic, population, and consumption patterns changes, the use of freshwater
has increased significantly in the last 100 years. Notably, measurement is essential to encourage
water conservation. Thus, the present study aims to evaluate the applicability of a thin-film resistive
sensor (bend sensor) with different coatings for implementation in individualized water measurement
systems. The motivation of this work is to propose a volumetric meter using flow control valves that
ordinarily are already present in a building’s hydraulic installations. Methodologically, the following
are presented: the system developed for the electromechanical and thermal characterization of the
sensor, the sensor computational simulation performed using Ansys® software, and for the electronic
circuit designed in LTSpice® software, the artificial neural network used to estimate the flow and the
volume estimates from the trapezoidal pulses. The results obtained allowed us to assess that, taking
into account the type of coating, the sensor coated with polyester has better behavior for the proposed
hydrometer. In addition, this evaluation allowed us to conclude that the bend sensor demonstrated
its feasibility to be used as a transducer of this novel type of volumetric meter and can be easily
inserted inside a hydraulic component, such as a flow control valve, for example.

Keywords: bend sensor; computational simulation; individual measurement; resistive sensor; volume
measurement; water consumption

1. Introduction

The importance of water is indisputable, directly affecting the social, political, and
economic development of society. Therefore, interest in hydraulic knowledge dates back
to the Egyptian and Mesopotamian civilizations—located near the Tigris and Euphrates
rivers—which used the waters and fertile lands on the banks of these rivers to survive
and were called hydraulic civilizations [1,2]. In turn, in the Indus Valley (currently located
in Afghanistan and part of India and Afghanistan), the Harappa civilization had the
most advanced sanitary systems of the time where all houses had water wells and drains
for sewage disposal [3]. Regarding the Roman Empire hydraulic works, the Proserpina
dam (Mérida) and the Nîmes aqueduct [4] stand out. Posteriorly, with the advancement
of knowledge of hydraulic systems, in the 19th century, hydraulic machines—such as
turbines—and hydroelectric plants began to appear [5]. Finally, with 20th- and 21st-century
computer technology, it is possible to perform computer simulations to predict and analyze
projects in the water sector. With this, we emphasize that the interest in the study and
advancement of technologies in the hydraulic sector is timeless.

In the past, public baths were usual, corresponding to an average daily consumption
per inhabitant of around 750 L [6]. Despite seeming to be an obvious waste, part of this
consumption was used for other purposes—for example, cleaning the villages. Even so,
it indicates a high consumption compared to current figures. According to the National
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Sanitation Information System (SNIS) [7], in Brazil, the average per capita consumption of
water is 152.1 L/inhabitant/day. This difference is related to changes in habits whether
due to the advancement of technologies in the water sector or to greater waste awareness.

In this sense, the importance of monitoring water consumption in urban environments,
especially in large buildings, is clearly observed [8]. This need for control and monitoring
can be evidenced through numerous studies in different areas that aim at more responsible
consumption. Ali et al. [9] presented a study in three manufacturing plants of a leather
chemical industry with strategies to minimize water consumption. Ozturk and Cinperi [10]
also reported a decrease in water consumption in a wool fabric factory. In addition,
Gabarda-Mallorquí et al. [11] showed a study of the hotel industry in Lloret de Mar, a
tourist destination on the Mediterranean coast, which presents results that contribute to
achieving efficient use of water and dealing with changes in water availability.

In general, when comparing the indicators of water losses in the national scene with
the standards of developed countries, which have an average of 15%, it is possible to
observe a supply that still denotes a distance from the technological frontier in terms of
efficiency. According to Oliveira et al. [12], in Brazil in 2018, the rate of losses in distribution
was 38.45%, 0.16% more than in 2017, demonstrating a worsening and pointing to the
urgency of greater efforts to reduce losses.

Therefore, it is necessary to emphasize that potable water losses happen in different
ways, the most common being leaks, thefts, and reading errors or inaccurate readings due
to water meters being very old [12].

Being so, it is essential to use effective procedures, such as monitoring and measuring
water, to encourage its conservation. This can be performed with the aid of hydrometers
that, conceptually, are instruments of measurement and a constant indication of the volume
of water that passes through them. In addition, the building sector in Brazil is increasingly
showing interest and progress in water consumption individual measurements.

Commonly, the measurement of both collective and individual water consumption
is conducted with conventional hydrometers, but their installation for individualization
requires adaptation work in most multifamily buildings. In order for the measurement to be
individualized, it is necessary to install water meters in each branch of the existing columns
(Figure 1a,b). Alternatively, it is necessary to have a place in the common area of the
corridors to position the meters and the installation of specific columns with individualized
water meters for each autonomous unit (Figure 1c). Noting that in the case of buildings
with many floors, the renovation to be carried out is large-scale and very expensive.
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Thus, the availability of a flow and/or volume meter that could be more easily inte-
grated into existing hydraulic installations would contribute greatly to the greater dissemi-
nation of the individual measurement systems (IMSs) in buildings with collective metering
given that individualized measurement provides numerous benefits, both for the owner
and for the condominium, as well as for the development of a sustainable society, as it helps
in saving water, reduces waste, and financially promotes a reduction in the bill, as pointed
out by some case studies identified in the literature [13–15]. For example, the study carried
out by Souza and Kalbusch, 2017 [14] presents a 34% reduction in per capita consumption
of buildings that changes collective measurement to individual measurement.

In this sense, the present research sought to propose and evaluate a new type of hydrom-
eter to promote advances in the study of these water consumption meters, more specifically
for measuring the volume of water consumed in autonomous units of residential buildings.

Thereby, this article aims to research and develop a new methodology for measuring
water consumption using a thin-film resistive sensor. In addition, the proposal is to use valves
(gate valves) commonly present in residential hydraulic systems, consequently dispensing the
need for large-scale work to transform the collective measurement of water consumption into
individual measurement in autonomous unit buildings; that is, there will be savings in the
installation time of individual meters and a faster return on investment due to the installation
of the proposed water meters being on a small scale compared to conventional water meters.

Structurally, this work is organized as follows: Section 2 describes the thin-film resistive
sensor, the proposed hydrometer, and the setup used in the electromechanical and electrothermal
characterizations; the project made in the Ansys® (2021R2) software of the proposed volumetric
meter using the bend sensor; the computer simulation via Ansys® software to obtain the
relationship between the resistance of the sensor and the water flow in a building pipe; and,
still, the electronic circuit simulation via LTSpice XVII® (v. 17.0.30.0) software to obtain a signal
with adequate levels and a good signal-to-noise ratio, that is, a less noisy signal. In addition, the
theoretical foundations of artificial neural networks are also shown. Sections 3 and 4 present the
results obtained and the discussions and recommendations for future work, respectively.

2. Materials and Methods
2.1. Thin-Film Resistive Sensor

The thin-film resistive sensor used in this work, herein called ‘bend sensor’, is a flexible
sensor that varies its electrical resistance, as it is bent. This happens because the sensor
is made by combining a single thin layer of a plastic substrate with a resistive material.
This type of sensor separates this resistive material into several microcracks when it is bent,
which, as a consequence of the bending movement, defines an increase or a decrease in
the material’s electrical conductivity [16], and the radius of curvature or sensor angular
deflection establishes the sensor electrical resistance.

It is worth mentioning that the bend sensor’s basic electrical characteristics are established
according to the resistive material, the substrate, and the type of coating used in its construction.
With respect to the resistive material, typically carbon or polymer elements are used. The
substrate properties, together with the conductive component, define sensor flexibility. Finally,
as for the coating, the bend sensor may not have any type but also might include some type of
coating, for example, silicone rubber, adhesive rubber, polyester, or polyimide. It is important
to highlight that the coating provides chemical and mechanical protection to the sensor [17].

Because the bend sensor has relevant electromechanical properties, the interest of several
researchers is growing. In this way, its application is spread in several areas. Most of the
studies related to the bend sensor are in the health sector, in which this type of sensor is used
for numerous purposes [18–24]. In addition, the thin-film resistive sensor is used for other
functionalities, such as soil monitoring [25,26]. In turn, unlike these other areas, the water sector
does not present many studies using the bend sensor for flow measurement. However, some
studies demonstrate the feasibility and applicability of this type of sensor for this purpose. For
example, Fan et al. [27] employ the sensor to monitor the airflow velocity in real-time, helping
to save energy consumption in a wastewater treatment process; Xu et al. [28] report a way to
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monitor water flow in pipelines using a flexible resistive film; Srinivasan et al. [29] use the sensor
as a cantilever beam to measure the flow for moderate flow applications; and Stewart et al. [30]
developed a velocity sensor using the bend sensor for application in streams.

In summary, these thin-film resistive sensors have various applications in the most
diverse areas, such as medical, aeronautical, automotive, robotics, and even soil studies.
Over the last few years, this type of sensor has attracted a lot of attention from researchers
because it can vary its resistance when flexed, as well as being light, robust, and low cost.
These sensors are easily adaptable in hydraulic systems of autonomous units (residential,
commercial, or mixed) in buildings. In addition, it is possible to design and build interfaces
that result in the effective coupling of electronic components with the bend sensor.

For the development of this study, we used two thin-film resistive sensors from the
manufacturer Flexpoint (Figure 2), each one is 1 inch (24.5 mm) long, 0.28 inches (7.11 mm)
wide, and 0.005 inches (0.127 mm) thick. Of these two sensors, one is coated with polyester
and the other with polyimide.
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The new hydrometer proposal—based on a thin-film resistive sensor for measuring
water consumption in autonomous units—consists mainly of using flow control valves that
are already present in the building’s hydraulic installation.

Thereby, the proposal is to insert the bend sensor into the valve so that it can be
adapted to work as a volumetric meter using the valve’s mechanical structure, especially
the wedge—the component responsible for the release (valve open) and blockage (valve
closed) of the fluid passage. This adaptation is possible because it is feasible to remove the
core from these flow control valve types, enabling the use of these valves that are already
installed in the piping of buildings.

Figure 3 shows a gate-type flow control valve: In Figure 3a, the valve is open (retracted
wedge) with the sensor positioned inside it, allowing the passage and flow measurement,
and in Figure 3b, the valve is closed (wedge obstructing the passage), preventing flow.
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To adapt the valve as a volumetric meter, it is proposed to insert an additional fixed
part (gray part) inside the cover (Figure 4a) to work as a support for the bend sensor to
be positioned inside the valve. In a meter initial proposal and laboratory evaluation, it
is suggested to use epoxy resin for fixing the sensor in this additional part, as this type
of resin is highly resistant and even hardens in water, as was performed in the study by
Xu et al. [28]. However, due to the epoxy resin toxicity, it is necessary to investigate other
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material options to be used to fix the sensor within the proposed volumetric meter idea.
Furthermore, in practical terms, to standardize the proposed gauge model, it would be
necessary to manufacture a wedge with a hole on the side for the gray part to pass through
and an opening in the center to make space for the sensor, as shown Figure 4b.
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Initially, it was necessary to better understand some properties of the bend sensor and
its behavior when flexed at different angles within an exploratory study, which sought to
determine the feasibility of using it to measure water consumption. Thus, two types of
characterizations of thin-film resistive sensors through different methods were made. The
first characterization method sought to evaluate the sensor’s electromechanical behavior,
and the second analyzed its electrothermal characteristics.

For this, a setup was developed and used in both characterizations, containing a Flexpoint
bend sensor, a Keysight U1233A portable digital multimeter, a screw to flex the bend sensor,
a fixed support with a welded nut to guide the screw, a protoboard as a base for the bend
sensor, and a protractor to measure the sensor bending angle. This setup is shown in Figure 5.
Additionally, the same characterizations—electromechanical and thermal—of article [31] were
made but with smaller sensors (1 inch). It should be mentioned that this configuration requires
the operator to manually flex the bend sensor to the required angle and visually position it.
As a result, these measurements are susceptible to parallax errors, so differences in the values
measured in the two characterizations may occur.
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2.2. Ansys Simulation

To computationally analyze the sensor bend flexing caused by the flow of water in
a pipe, it was necessary to carry out a study through a simulation using computer-aided
engineering (CAE) via Ansys® software through a decoupled system. In other words, first,
a simulation was carried out in Fluent Ansys® of the water flow inside a pipe to obtain the
pressure value (Figure 6a) and, after that, another simulation was carried out in Mechanical
Ansys® to obtain the maximum sensor deformation when the pressure calculated in the
previous step is applied (Figure 6b).
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Methodologically, to simulate the water flow through a pipe, a numerical simulation of
computational fluid dynamics (CFD) was performed. The geometry and mesh generation
were completed in SpaceClaim, the flow parameters configuration and the numerical solutions
were performed in Fluent, and the visualization and analysis were conducted in CFD-Post.

With the aim to configure the simulation of water flow, the Reynolds number (Re) was
used according to Equation (1), which is used to determine the flow regime of a given fluid.
This regime can be classified as laminar or turbulent depending on the Reynolds number
(Re). Typically, in internal flows, Re values lower than 2300 are considered laminar flows,
and values higher than 2300 are considered turbulent flows.

Re =
ρUDh

µ
, (1)

where ρ and µ are the fluid and dynamic viscosity, respectively, U is the average fluid
velocity, and Dh is the hydraulic diameter defined by

Dh =
4 A
P

, (2)

where A and P are, respectively, the cross-sectional area and the wetted perimeter in which
the flow occurs.

The velocities used for the flow simulation came from historical data obtained from
measurements performed with an ultrasonic flow meter and a 1 1

2 inch diameter pipe
(typically used in hydraulic systems of autonomous units in residential buildings). These
velocities vary between 0.0502 m/s and 0.5307 m/s. Table 1 presents the data used in the
one-inch-long resistive sensor simulation and data for calculating the Reynolds number.
The fluid used in the simulation was water (µ = 1.003 × 10−3 Pa·s and ρ = 998.2 kg/m3 at
20 ◦C) without considering the air that is commonly present in the pipes.
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Table 1. Data used in the CFD simulation of the bend sensor.

Parameters Value Units

Inner diameter D 1 1
2 inch

0.0381 m
Area A 0.00114 m

Wetted perimeter P 0.1197 m
Hydraulic diameter Dh 0.0381 m

Reynolds number velocity max. 21,992 -
min. 5688

To generate the velocity field and obtain the pressure value, it was necessary to choose
the appropriate flow model for the simulation. For all velocities, the Reynolds number was
higher than 2300, thus configuring a turbulent flow, so the turbulence model used was the
shear stress transport.

Regarding the simulation via Mechanical Ansys®, the sensor was considered analo-
gous to a cantilever beam subjected to a uniformly distributed load q in which the maximum
deflection and the maximum rotation angle occur at the free end of the beam.

Therefore, for the purpose of this study, the method used was finite element analysis.
The geometry generation and the sensor parameters configuration, as well as its dimensions
and the type of coating (polyester with a density equal to 1380 kg/m3, modulus of elasticity
equal to 3.65 GPa, and Poisson’s ratio equal to 0.48 [32]), were performed by the Ansys
Workbench.

On the other hand, to configure the structural simulation, the pressure applied to
the sensor was obtained with the flow simulation. With this, it was possible to know
the maximum deformation corresponding to each speed and, consequently, the sensor’s
maximum deflection angle.

Finally, after obtaining these results and using the regression equation obtained in
the electromechanical characterization (resistance as a function of deflection angle), it was
possible to estimate the resistances for each angle from the simulation (RS).

2.3. LTSpice Simulation

Subsequently, to compose and evaluate the functioning of the proposed water meter, a
computer simulation was carried out in LTSpice® of an electronic circuit responsible for
powering and conditioning the electrical signals, generating an output voltage related to
the flow in the gate valve.

Aiming to perform a simple conversion of deflection to voltage, the bend sensor was
connected to a resistor in a voltage divider configuration. The simplest configuration uses
just two resistors in series (R1 e R2) and an input voltage (Vin), thus generating an output
voltage (Vout) given by

Vout = R2.
(

Vin
R1 + R2

)
, (3)

In general, for the purpose of the given electrical voltage signal to have adequate levels
and a good signal-to-noise ratio, in other words, the lesser effect of background noise on
the signal measurement, it must go through some processes, such as amplification, filtering,
and linearization.

The resistance values (RS = R2) obtained from the simulation performed in the Ansys®

software were used to properly configure the bend sensor circuit. In addition, using the
Solver function of the Excel® (2007) software, another exponential regression (Equation (4))
was performed to obtain a relationship between the simulation resistance (RS) and the flow,
which was calculated by multiplying the flow velocity and the pipe cross-section area.

R
( .
q
)
= R0 + Aeα(

.
q− .

q0), (4)
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where R0 is the initial resistance,
.
q is the instantaneous flow corresponding to the sensor

deflection, and
.
q0 is the initial volumetric flow rate.

In the simulation in LTSpice®, aiming to obtain a voltage signal as a flow function,
a component was created that simulates the bend sensor’s resistive behavior. This com-
ponent was used in the electronic circuit with processes such as offset, linearization, and
amplification. Figure 7 shows how the electronic circuit simulation was performed in this
work: (i) The component that simulates the bend sensor (X1) composes a voltage divider
with R1, thus generating an output voltage signal (in addition, the resistance value R1 from
Figure 7 was chosen to maximize the desired deflection sensitivity range), and (ii) after that,
this signal went through the offset, amplification, and linearization processes. Thus, the
simulation generated an electrical voltage signal as a flow function with adequate levels
and a good signal-to-noise ratio, in other words, with a reduced effect of background noise
on the signal measurement.
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In this way, the complete system provided a circuit output voltage (output variable
Vout) which corresponds to a certain instantaneous flow (input variable controlled by
voltage source V1 in Figure 7).

However, for this research, it is necessary to estimate the flow corresponding to this
electrical voltage, that is, to obtain the relationship between flow and electrical voltage. For
this purpose, the computational intelligence tools called artificial neural networks (ANNs)
were used.

2.4. Inverse Problem Solution

In 1943, the first concepts about artificial neural networks were introduced by Warren
S. Mcculloch and Walter Pitts [33] who proposed a model of artificial intelligence analogous
to the form, behavior, and functions of a biological neuron. In other words, the input signals
and the weights from the artificial neuron correspond, respectively, to the dendrites and the
synapses—which are the connection of a dendrite with the cell body—from the biological
neuron. Furthermore, the stimuli processing is equivalent to the soma function that occurs
in the cell body and the activation function and represents the triggering threshold of the
biological neuron [34].

Basically, it is enough to combine numerous artificial neurons to obtain the so-called
artificial neural networks (ANNs). One of their most relevant purposes is the relationship
between independent (input) and dependent (output) variables, which is determined using
a learning process in which a set of data is provided to the network. Also noteworthy is
the fact that an ANN is a model that does not need to be guided by physical laws; in other
words, its parameters do not need to have any physical meaning [35].

Additionally, ANNs have reduced computational time, high precision, and the abil-
ity to generate nonlinear relationships between the independent and dependent system
variables. Thus, in addition to performing the approximation of functions, ANNs are
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capable of performing pattern recognition, predictions, and image processing, enabling
their application in numerous areas [35], for example, in solar energy systems [36–39].
ANNs are also used for classification and facial recognition [40–42] to create models to
predict the condition of airport pavements [43] and for stock market studies [44–47].

ANNs are also present in research related to water systems, such as in the detection
and recognition of leaks in pipes [48,49]; the assessment of the water quality index in the
Red Sea, Sudan [50] and the Godavari River, India [51]; and in predicting the efficiency of
heavy metal removal from aqueous solutions of biochar systems [52].

In short, these multiple applications are consequences of the artificial neural networks’
various configuration possibilities that can be characterized by the pattern of connections
between the units (structure), the learning method, and the activation function [53].

Regarding structure, ANNs can be classified as single-layer or multilayer feedforward
networks and recurrent networks. Feedforward networks differ from recurrent networks
because they do not have a recurrent loop.

In relation to the learning method, the training model is established by how the
parameters are modified, being able to be supervised, unsupervised, and by reinforcement.
In supervised mode, the input and output data set are known, but the environment is not
known; in other words, the network parameters adjustment is performed by associating
the input signal with an error signal (difference between the output signal desired and
the one provided by the network). In contrast, the unsupervised one does not require the
desired output value from the network—the system collects properties from the patterns
set, grouping them into classes inherent to the data. In contrast, the reinforcement training
system learns to perform a certain task only based on the results of its experience with an
interaction with the environment [54]. Furthermore, it is possible to validate the training
model using several algorithms, for example, cross-validation, which is a standard statistical
tool that uses a different data set from those used to adjust the network parameters; in
other words, the data set is randomly divided into two sets: training—which is subdivided
into estimation (used to select the model) and validation (used to test or validate the
model)—and test [34].

As for the activation function, it can be from several types, the most used being binary
step function, linear function, sigmoid, tanh, ReLU, and radial basis function (RBF).

Thus, in this research, we chose to use a feedforward network with supervised learn-
ing and the radial basis function as the activation function (two layers) because other
adjustments were tested (for example, exponential and polynomial) but had large errors.

In light of what was presented previously about LTSpice® and ANNs, the following
describes what is conventionally called ‘Inverse Problem Solution’: The simulated system
generated a voltage signal from the bend sensor as an output having a flow signal as an
input; however, for this study, the flow must be the output variable. Therefore, the ANN
was used to obtain the volumetric flow rate signal (output) as a voltage function (input).
This training was carried out through Matlab’s (R2019b) ‘newrbe’; function—in which the
input parameters were the electrical voltages simulated by the LTSpice®, and the outputs
were the desired flow rates. With this, it was possible to obtain a trained network that,
when receiving the voltage values, estimates the volumetric flow rate values.

Finally, a volume estimate was made by different means—analytical and numerical
calculation—aiming at a simulated validation of the proposed measurement concept with
the thin-film resistive sensor.

2.5. Simulation of Meter Operation

Assuming that the hydrometer must measure the total volume of water consumed
by an autonomous unit, it is understood that the meter proposed in this work needs to
estimate the volume from the instantaneous flow.

Because of this, it is necessary to consider the reality of residential building pipes given
that water only flows at certain moments, such as when opening a faucet, for example.
Therefore, to validate the simulations performed on the proposed hydrometer based on
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a resistive sensor, two different cases of trapezoidal flow pulses were generated starting
from zero (no water flow in the pipe) and reaching a certain flow value, which depends on
which hydraulic system was activated.

In this research, a water tap—flow curve from the faucet (Figure 8a)—and a conven-
tional shower—flow curve traditional shower (Figure 8b)—both from the manufacturer
Docol, were considered to extract the flow values to generate the trapezoidal pulse. To
approach a more realistic scenario, small fluctuations in the trapezoidal pulse maximum
flow were added, and 15 s faucet activation and 15 min shower using the conventional
shower were considered.
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The configuration of the trapezoidal pulse in the two cases applied considered a
twelve-floor building, and two autonomous units, one on the fourth floor and another on
the eleventh floor. It is worth mentioning that, as each floor is 3 m high, the unit on the
fourth floor has 24 m of water column (mH2O), and the one on the eleventh has 3 mH2O.

For the fourth floor unit, the faucet has a flow of 9.5 L/min (0.57 m3/h), so the
trapezoidal pulse was generated with fluctuations around this flow (Figure 9a), and for the
shower—considering the use of a pressure restrictor as indicated by the manufacturer—the
pulse was generated around the flow of 24 L/min (1.44 m3/h), as shown in Figure 9b.
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Regarding the eleventh floor unit, the faucet trapezoidal pulse is shown in Figure 10a
and has fluctuations around the flow rate of 3 L/min (0.18 m3/h). Whereas, for the same
unit, the traditional shower without restrictor trapezoidal pulse is shown in Figure 10b and
varies around the flow rate of 20.5 L/min (1.23 m3/h).
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Subsequently, these pulses were used in the LTSpice® software (defining the values
of voltage source V1 in Figure 7) to obtain the sensor output voltage signal. With this, the
simulation response of the bend sensor (voltage) towards the hydraulic system activation
(flow) was obtained as a function of time. These voltage values were provided to the trained
artificial neural network to obtain the corresponding volumetric flow rate output values.

Finally, to estimate the volume from these volumetric flow rates found, two calcula-
tions were performed by different means, the first by analytical calculations and the second
by numerical calculations.

The analytical estimate was made from the trapezoidal pulse generated using

∂vol = Qv ∂t→
∫ v

0
(dvol) =

∫ t

0
Qv dt, (5)

where Qv is the volumetric flow that represents the volume (vol) of a fluid that flows
through a section of a pipe in a time interval (t).

The second estimate, in turn, was performed by numerically integrating the flow
values from the neural network using the Matlab software trapezoidal method, resulting in
the volume calculation. Figure 11 presents, in a summarized and schematic way, the steps
that were performed to obtain the volume by the two methods.

It is important to point out that the pressure value from the hydraulic system flow
curve is different from the one from the computer simulation via Fluent Ansys. The first
pressure is called static, which corresponds to the pressure of the water when it is stopped
in the pipe, and, according to the ABNT NBR 5626 standard, in a building installation, a
pressure of 40 mH2O must not be exceeded [55]. On the other hand, the pressure of the
computer simulation is called dynamic, which is when there is the movement of water
in the pipe at the moment when some hydraulic system is activated. Moreover, dynamic
pressure is static pressure minus distributed and localized head losses.
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3. Results

This section presents the resistance behavior of thin film resistive sensors when sub-
jected to angular (electromechanical characterization) and temperature (electrothermal
characterization) variations; simulations in Ansys and LTSpice® software to find a cor-
relation between the sensor resistance and the flow velocity; and finally, a mathematical
formulation for estimating the volume, aiming at the bend sensor application to measure
the volume of water drained in a pipe of autonomous units.

Initially, intending to facilitate the understanding of the organization of the content of
the results, Figure 12 shows a section mapping.

3.1. Bend Sensor Behavior Evaluation
3.1.1. Electromechanical Characterization

This characterization had, as its principal objective, to know preliminarily the characteris-
tics of the sensor resistance variation in relation to its angular deflection and, consequently, to
analyze its behavior. As previously mentioned, two one-inch-long bend sensors with different
coatings—one coated with polyester and the other with polyimide-coated—were analyzed.

As this characterization method made it possible to measure the resistances in the
increment and decrement of the angle, it was possible to obtain the hysteresis curve and
calculate the maximum hysteresis for each sensor bend. The regression equations and
the coefficients of determination (R2) were obtained via Excel® software from the average
resistances (between the values in the increment and decrement of the angle).
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The results for the sensor with polyester coating are shown in Figure 13a. This sensor
presented a maximum hysteresis equal to 3.5% of full scale, an average resistance variation
between 1.40 kΩ and 5.28 kΩ, and the equation R(θ) = 1.306 + 0.03986 e0.0768θ as an
exponential regression with a coefficient of determination (R2) of 0.9988. Figure 13b shows
the results of the 1-inch-long sensor with a polyimide coating. This sensor showed a
maximum hysteresis equal to 13% of the full scale and an average resistance variation
between 3.51 kΩ and 10.65 kΩ, and the equation R(θ) = 3.492 + 0.08506 e0.07374θ as an
exponential regression with the coefficient of determination (R2) of 0.9964.

When considering the change in velocity of the water flow inside a pipe, it becomes
imperative that the proposed hydrometer based on a resistive sensor has the lowest pos-
sible hysteresis value, in other words, the highest agreement between the ‘loading’ and
‘unloading’ curves. Therefore, comparing these results from the electromechanical char-
acterization, the sensor coated with polyester showed better applicability for measuring
water consumption due to having a lower hysteresis value.

On the other hand, given that the proposal is to use the resistive sensor in a pipe to
measure the volume of water, this sensor, in turn, must have characteristics that support this
type of application. Therefore, the sensors were subjected to electrothermal characterization.
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3.1.2. Electrothermal Characterization

The main objective of this characterization was to know and analyze the sensor
resistance variation characteristics when subjected to temperature changes. In the same
way as the electromechanical characterization, two one-inch-long thin film resistive sensors
were evaluated: one with a polyester coating and the other with a polyimide coating. The
sensors characterized were the same for both characterizations.

In this methodology, the curvature angle was fixed, and the sensor resistances were
measured in the temperature increment and decrement. Consequently, it was feasible to
calculate and evaluate the hysteresis concerning the temperature.

First, the polyester-coated bend sensor was characterized. This sensor showed the
same behavior for all angles tested when subjected to climatic chamber heating and cooling.
As the temperature increased, the sensor resistance decreased, and when the temperature
reduced, the resistance increased (Figure 14), noting, thus, a good agreement between the
‘loading’ and ‘unloading’ curves of the sensor.
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Figure 14. Resistance of the polyester-coated bend sensor to temperature variation for deflection
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In the sequence, the other bend sensor characterized was polyimide coated. This
sensor, when submitted to the climatic chamber cycle, presented an irregular behavior
between the tested angles (Figure 15). At a 0◦ angle, when heating, the resistance values
decreased, and during cooling, these values also decreased (Figure 15a). In turn, for angles
of 10◦, 30◦, 50◦, and 60◦, this behavior did not remain. At these angles, as the temperature
increased, the sensor resistance also increased, and during cooling, as the temperature
reduced, the sensor resistance continued to rise (Figure 15b)—thus denoting an irregular
behavior between the sensor ‘loading’ and ‘unloading’ curves.

In light of this result, the same characterization was repeated with an identical sensor,
having obtained the same results as the first, thus confirming the anomalous behavior of
that type of sensor when subjected to the same evaluation conditions.

Thus, the bend sensor with polyester coating showed a more regular and satisfactory
behavior demonstrated by a better agreement between the ‘loading’ and ‘unloading’ curves
when compared to the sensor with polyimide coating. For this reason, the results obtained
from this sensor were plotted, indicating the quantities measured in different ways: from
the three-dimensional point of view (Figure 16a) and the bend sensor resistance responses
concerning the angle for each temperature (Figure 16b).
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In general, when analyzing the results presented, the bend sensor coated with polyester
showed a negative linear relationship between the sensor resistance and the temperature
variation; in other words, the resistance decreases when the temperature increases.

As this sensor has demonstrated a more stable behavior compared to that of polyimide,
as well as a lower hysteresis value in the electrothermal characterization, in terms of
applicability, it shows up as being more viable for measuring water consumption in pipes
of autonomous units of buildings. For these reasons, only the polyester-coated sensor was
used in the Ansys and LTspice® software simulations that follow.

3.2. Computational Simulation
3.2.1. Ansys Simulation

The sensor behavior study was carried out through a computer simulation in Ansys
software to evaluate the applicability of the bend sensor for measuring water consumption
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in autonomous units. The aim was to obtain computationally the sensor deflection angle
caused by the flow of water in the pipe and then calculate the corresponding resistances
using the regression equation found in Section 3.1.1.

Thus, Table 2 presents the results of the interaction of the water flow in the pipeline
with the deflection behavior of the resistive sensor with a polyester coating.

Table 2. Ansys® simulation results with the polyester-coated bend sensor.

v Re Pressure Deformation Deflection Angle RS

(m/s) (Dimensionless) (Pa) (mm) (◦) (kΩ)

0.58 21,992 287 22.92 69 9.25
0.53 19,954 240 19.17 58 4.64
0.47 17,916 189 15.09 45 2.61
0.42 15,878 151 12.06 36 1.95
0.37 13,840 117 9.34 28 1.65
0.31 11,802 81.8 6.53 20 1.49
0.26 9764 57.7 4.61 14 1.42
0.20 7726 34.1 2.72 8 1.36
0.15 5688 19.2 1.53 5 1.35

The velocity used in the flow simulation to obtain the pressure to bend the 1-inch-long
sensor with polyester coating ranged from 0.15 m/s to 0.58 m/s. As a result, this sensor
presented a variation of deflection between 5◦ and 69◦ and resistances (Rs) between 1.35 kΩ
and 9.25 kΩ.

After completing the modeling to obtain the sensor deflection angle curved by the
pressure exerted by the fluid flow inside a pipe, an evaluation more focused on the sensor’s
operational aspect was started. For this purpose, a simulation of the electronic circuit to be
implemented was performed via LTSpice® software.

3.2.2. LTSpice Simulation

As mentioned previously, only the polyester-coated sensor was used. Thus, it is empha-
sized that the principal purpose of computationally simulating the electronic circuit was to
obtain a relationship between the voltage from the bend sensor with the flow of water.

Therefore, considering the sensor to be one-inch-long, Equation (6)—obtained through
the Solver function of the Excel® software—presents the estimated parameters to minimize
the error sum of squares.

R
( .
q
)
= 1.376 + 0.00052 e4.044

.
q, (6)

Thus, Figure 17 presents the resistance response obtained in the simulation via Ansys
(RS) as a function of the flow and the adjustment curve with a coefficient of determination
(R2) of 0.9972.

Given this, the bend sensor circuit was configured with Equation (6), and the gen-
erated signal (X1) passed through the voltage divider (first block of Figure 7), which
transformed the resistance signal into voltage and maximized the deflection sensitivity
range (R1 = 3 kΩ). After that, the signal went through an offset of 0.3145 V (V3), a gain of
16 v/v (1 + R3/R4), and a linearization process (‘linearization’ block in Figure 7). Finally, it
again passed an offset (V4) and a gain (1 + R9/R10) of 1.897 V and 1.769 v/v, respectively.

Once the configuration above was generated with the data obtained from the simu-
lation of the circuit and the conditioners, it was possible to obtain a relationship between
voltage and flow, as shown in Figure 18.

Finally, as previously presented, this relationship between voltage and flow was used
to train an artificial neural network that estimated the instantaneous flow values upon
receiving the voltage values. The network training results for the one-inch-long sensor are
shown in Figure 19.
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Figure 19. Result of training the network to obtain the instantaneous flow corresponding the voltage
of the one-inch-long, polyester-coated bend sensor.
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In this sense, as a hydrometer, conceptually, is an instrument designed for measure-
ment and a continuous indication of the volume of water drained, the meter proposed
in this work needs to indicate volume instead of flow. For this reason, in the next step, a
volume estimate was performed.

3.3. Meter Operation Simulation
3.3.1. Fourth-Floor Autonomous Unit

The simulation results of the thin-film resistive sensor when the faucet is activated
are shown in Figure 20. Figure 20a shows the electrical voltage signal response as a
function of the faucet’s operating time. In turn, Figure 20b presents a comparison between
the trapezoidal pulse generated by the resistive sensor simulation via an artificial neural
network (blue curve) and the faucet flow curve (red dashed curve).
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Figure 20. (a) Sensor response to faucet activation and (b) trapezoidal pulse via the bend sensor
simulation on the ANN (blue curve) and faucet flow curve for the autonomous unit with 24 mH2O
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It is worth mentioning that, for the proposed hydrometer, it is necessary to estimate
the water volume drained during the 15 s activation of the water tap.

Then, as explained in Section 2.5, the volume was estimated by different means from
the flows found. The first method, which was the analytical calculation of the theoretical
trapezoidal pulse (faucet flow curve), resulted in a volume of 0.002314 m3 (2.314 L), and
the second method, which was the numerical calculation of the trapezoidal pulse obtained
via sensor simulation, resulted in 0.002319 m3 (2.319 L) of drained volume.

For the traditional shower activation, the sensor simulation results are shown in
Figure 21. In Figure 21a, the electrical voltage signal response is shown as a function
of the operating time of the conventional shower. Additionally, Figure 21b presents a
comparison between the trapezoidal pulse generated by the resistive sensor simulation via
an artificial neural network (blue curve) and the shower flow curve (red dashed curve).
By the analytical calculation, the volume of water drained during the traditional shower
activation for a 15 min shower was equal to 0.3861 m3 (386.1 L), and by the numerical
calculation, it was equal to 0.3858 m3 (385.8 L).

3.3.2. Eleventh-Floor Autonomous Unit

Concerning water tap activation, the sensor simulation results are shown Figure 22.
Figure 22a shows the electrical voltage signal response as a function of the faucet operating
time. In turn, Figure 22b presents a comparison between the trapezoidal pulse generated by
the resistive sensor simulation via an artificial neural network (blue curve) and the faucet
flow curve (red dashed curve). By analytical calculation, the volume of water drained
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during water tap activation for 15 s was equal to 7.472 × 10−4 m3 (0.07472 L), and by
numerical calculation, it was equal to 7.488 × 10−4 m3 (0.07488 L).
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Figure 21. (a) Sensor response to the activation of the traditional shower and (b) trapezoidal pulse
via the bend sensor simulation on the ANN (blue curve) and traditional shower flow curve for the
autonomous unit with 24 mH2O (dashed red curve).
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Figure 22. (a) Sensor response to faucet activation and (b) trapezoidal pulse via the bend sensor
simulation on the ANN (blue curve) and faucet flow curve for the autonomous unit with 3 mH2O
(dashed red curve).

In turn, the sensor simulation results before the traditional shower activation are
shown in Figure 23. In Figure 23a, the electrical voltage signal response is shown as a
function of the operating time of the shower. Additionally, Figure 23b shows a comparison
between the trapezoidal pulse generated by the resistive sensor simulation via an artificial
neural network (blue curve) and the shower flow curve (red dashed curve). By the analytical
calculation, the volume of water drained during the activation of the shower for a 15 min
shower was equal to 0.3427 m3 (342.7 L), and by the numerical calculation, it was equal to
0.3423 m3 (342.3 L).
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In summary, Table 3 presents the results described in this section.

Table 3. Volume calculation results.

Floor Hydraulic Systems
Volume Estimate (L)

Analytical Numerical

4th
Water tap 2.314 2.319

Traditional shower 386.1 385.8

11th
Water tap 0.07472 0.07488

Traditional shower 342.7 342.3

These results made it possible to compare the volume calculation in two ways (ana-
lytical and numerical). With this, it was possible to perform a simulated validation of the
measurement concept.

4. Discussion and Conclusions

From an extensive exploratory study of a thin-film resistive sensor (bend sensor)
characterization and simulation, the results reveal the feasibility of the proposed volumetric
meter using this type of sensor for volume measurement in autonomous units.

For this, two resistive sensors that were one-inch-long and with different coatings—
polyester and polyimide—were electromechanically and thermally characterized. In general,
the results obtained from the behavior of the polyimide-coated bend sensor, mainly in the
electrothermal characterization, can be considered unexpected because this type of polymer is
classified as ultra-performance; in other words, they are super engineering plastics. Polyimide
is a material that has significant and particular characteristics, such as high thermal stability,
which is one of the main qualities of polyimide, allowing this material to be used for long
periods at temperatures up to 200 ◦C and for a short term at temperatures up to 480 ◦C without
affecting its mechanical behavior [56,57]. Additionally, study [31] corroborates this anomalous
behavior of the polyimide-coated bend sensor because in this article, two two-inch-long
polyimide-coated sensors were electrothermally characterized and showed the same behavior
as the one-inch sensors presented in this article.

Therefore, for the proposed hydrometer, the electrothermal characterization test is
more significant, as it is more similar to the reality of residential building pipes. Conse-
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quently, because of the results from this characterization, the bend sensor with polyimide
coating is unfeasible for measuring the water consumption of autonomous units, as the
water meters must be built with materials resistant to temperature variations between
+1 ◦C and +40 ◦C according to specifications in Brazil by the National Institute of Metrology,
Quality, and Technology (INMETRO) [58]. Therefore, considering the intended proposed
hydrometer application and the two characterizations, the polyester-coated resistive sensor
demonstrated better viability to be used as a transducer.

Concerning the computer simulation, through Ansys, it was fundamental to obtain
the relation of the sensor deflection angle, which is curved by the pressure exerted by the
fluid flow inside a pipe. The 1-inch-long polyester-coated sensor was simulated using a
velocity range between 0.15 m/s and 0.58 m/s. This sensor presented a deflection variation
between 5◦ and 69◦ and resistance (Rs) between 1.35 kΩ and 9.25 kΩ. These velocities are
relevant for piping installation in buildings. In Brazil, for example, the velocity inside the
pipe cannot exceed 3 m/s [55].

Regarding the proposed meter operating principle, an electronic circuit simulation
was made via LTSpice® software. The simulation resulted in an electrical voltage signal
with a larger intensity, a better signal-to-noise ratio, and was as linear as possible as a result
of the amplification and linearization processes. In turn, an artificial neural network was
trained to obtain the instantaneous volumetric flow rates from the electrical voltage signal.
In addition, the results obtained showed promising behavior in the use of these sensors for
the desired application.

In addition, a simulated validation of the measurement concept was made considering
two autonomous units—one on the fourth floor and another on the eleventh floor—and
using two hydraulic systems—a water tap with a 15 s activation and a traditional shower
working for 15 min—to validate the simulations performed and estimate the volume
from the flow rates of the hydraulic systems. For this, two calculations were performed by
different means, the first by analytical calculations and the second by numerical calculations.
These results were very similar, which allowed for validation of the simulations performed
using Ansys and LTSpice® software and the trained artificial neural network. The 1-inch-
long sensor presented a measurement range between 0 m3/h and 3 m3/h (Figure 19). In
addition, according to the simulation results, this sensor proved to be capable of measuring
the flows of the considered hydraulic systems, in other words, demonstrated to be adequate
to work for the application proposed in this research. Furthermore, considering Portaria
INMETRO n◦ 246, from October 17th, 2000 [58], the sensor measurement ranges are relevant
for water meters, as this regulation establishes conditions for water volume meters with a
nominal flow of 0.6 m3/h at 15.0 m3/h.

Finally, it was possible to define the meter concept by inserting the bend sensor inside
the valve so that it can be adapted to work as a volumetric meter. For this, a fixed part was
designed inside the valve cover, as shown in Figure 4 (in Section 2), to work as a support
for the sensor, and for its fixation in this part, the use of epoxy resin was suggested, as it is
highly resistant and hardens even in water, as was performed in the study by Xu et al. [28].
Furthermore, in practical terms, to standardize the proposed meter model, a wedge with a
hole on the side for the passage of the support piece and an opening in the center to allow
space for the sensor needs to be manufactured, as well as shown in Figure 4b. In addition,
still considering the practical aspects, the electrical connection and power source necessary
for the proposed hydrometer to work would be solved by a small battery-powered circuit
installed next to the valve. For this, some technologies allow for increased battery life, for
example, energy harvesting and polling (transmitting data only when new information is
available) [59–62].

In turn, thinking in financial terms and taking into account that the proposed hydrom-
eter will require electronic circuits to measure the voltage, store the readings, and convert
them into water consumption, it was possible to estimate the costs of the work to transform
the collective measurement water into individual measurements using the hydrometer
from this research and a conventional one, as shown in Table 4. These estimates show that
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the works using the water meter proposed in this article are much cheaper when compared
to those using conventional hydrometers.

Table 4. Estimate of the cost of work to the transformation from the collective measurement of water
into individual measurement.

The Transformation from the Collective Measurement of Water into Individual Measurement for a Reasonably Large Building
With Conventional Hydrometer With Proposed Hydrometer

Number of autonomous units 160 160 48
Cost of work (USD) 180,000 32,000 9600

Therefore, the validation of the thin-film resistive sensor applicability as a transducer of
the proposed meter proves to be viable to carry out measurements of the volume of water
drained into pipes in autonomous units using flow control valves that are already present
in the installation building hydraulics. The proposed water meter complies with Portaria
INMETRO n◦ 246 from 17 October 2000 (Brazilian normative document) [58] under the
conditions that the volume meters of cold potable water flowing in a closed pipe must satisfy.

Suggestions for future work to be developed in the continuity of this were proposed:

• The instrumentation of the gate valve through the insertion of the bend sensor inside
it, as well as its adaptation as explained through the incorporation of a fixed part and
a rubber wedge with a hole on the side and an opening in the center replacing existing
wedges;

• To accomplish tests in a hydraulic section to experimentally corroborate the potential of
the bend sensor with a polyester coating to measure water consumption in autonomous
building units and evaluate the sensor’s long-term behavior (useful life);

• To accomplish additional simulations implementing other scenarios, for example,
using flow values lower than those used (leaks), considering air in the pipeline as in
reality;

• To realize several bending cycles evaluating the variation in the behavior of the bend
sensor, thereby assessing the sensor’s reliability for long-term operation.
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Abstract: Relying on the Beijing-Shijiazhuang Expressway widening project near the impervious wall
of a reservoir, this paper uses FLAC3D two-dimensional and three-dimensional numerical simulation
methods to establish the whole process model of the impervious wall of the reservoir affected by the
construction load of the high-way reconstruction section. The stress and strain state of the cut-off
wall in the high-way reconstruction section and the nearby reservoir is simulated in detail, the overall
deformation of the cut-off wall in the reservoir is directly reflected, and the interaction and differential
deformation between the wall structures are reflected. The safety and stability of the cutoff wall of
the reservoir affected by the construction load are evaluated so that various advanced mechanical
behaviors of the cutoff wall can be predicted. Research results show that the horizontal displacement
value of the wall gradually increases from bottom to top, and the maximum value appears at the top
of the wall. The horizontal displacement value of the 1–3 walls is relatively large, with the maximum
value of 22.368 mm, and the horizontal displacement value of the 4–10 walls shows little difference.
This is on account of the gravity of the backfill, the strata in the whole project area having settled,
and the settlement at the bottom of the cut-off wall being 2.542 mm. At the root of the rigid cut-off
wall, the compressive stress concentration occurs, with the maximum value between 1.75 MPa and
2.15 MPa. Due to the size of the structure, the maximum tensile stress of 0.237 MPa appears in the
local area near the guide wall of the rigid cut-off wall, which will not endanger the rigid cut-off
wall because of its small value. The maximum stress in the rigid impervious wall and the plastic
impervious wall are 1.90–2.15 MPa and 1.00–1.12 MPa, respectively. Apart from the small tensile
stress at the connecting guide wall between the rigid cut-off wall and the plastic concrete cut-off wall,
the cut-off wall is under pressure, especially the plastic cut-off wall. Combined with the analysis of
the stress state of the wall, it can be determined that the anti-seepage wall (rigid cut-off wall and
plastic concrete cut-off wall) is stable and safe during the construction period.

Keywords: cut-off wall; monitoring section; numerical simulation; dynamic construction stability

1. Introduction

With the continuous construction and renovation of the surrounding projects of the
reservoir [1,2], the two sides and the top surface of the cut-off wall of a reservoir will be
affected by the construction disturbance of the backfilling project [3–5]. For the upper part
of the upcoming large-scale construction and new load project, whether the original cut-off
wall can still maintain a stable strength [6–8], whether there will be excessive deformation
and damage [9–11], or whether the cut-off function is affected, reduction or loss [12–15]
are important issues that concern reservoir builders and water protection workers. There
are also important issues related to reservoir water storage operations and the safety and
stability of cofferdams [16–18].
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Due to the development of computer performance, the mathematical analysis in rock
mechanics has made great progress [19–22]. Different numerical simulation methods are
obtained based on different mathematical models [23–26], and the finite element method
changed from linear to nonlinear. This development [27–32] has solved a great problem
for rock engineering. With the rapid development of numerical simulation, the academic
community also applied this method to study the impact of the construction around the
cut-off wall more intuitively [33,34]. Fu Z Q et al. [35] used the linear elastic model to
calculate the earth–rock dam and clay concrete cut-off wall of the hydropower station. The
pebble and gravel cover layer in the calculation was used by the Duncan–Chang model and
obtained the linear elastic characteristics and stress-strain of the cut-off wall. Relying on the
Xiongjiagang rock dam project, Han Y [36] established the seepage model of the rock dam
using Geo-studio software and analyzed the mechanism of the stability of the seepage wall
of the dam. Shepherd D A [9] used the Druker–Prager model to carry out the back analysis
and calculation of the measured displacement of the cut-off wall of a hydropower station.
The calculation process involved the soil Poisson’s ratio, density, viscous force, friction,
angle, and other parameters, focusing on back-calculating the elastic modulus parameters
that play a major role. Ma Xiaohua et al. [37,38] studied the influence of the change of
elastic modulus on the cut-off wall by increasing the thickness parameter. Relying on the
reinforcement project of the Hualiangting Reservoir. Ren Xiang et al. [39,40] simulated
the operation process of the dam and analyzed the change rule of the ultra-deep concrete
cut-off wall under the dam stress, water pressure, and foundation constraint conditions.
Chen Xiaolian et al. [41] used the GMS simulation to study the permeability coefficient
and elastic water supply of each aquifer in the research area of a hydropower station in
Sichuan, evaluating the cut-off effect. Liang Yan et al. [42] selected Midas to simulate
and establish the action model of the change of support conditions on the cut-off wall
of the dam foundation of Longkou Station and evaluated the influence of the support
stiffness coefficient on the cut-off wall. Li Mingyuan et al. [43] simulated and predicted the
immersion degree and scope of the calculation area under the normal water storage level of
the Xingan Navigation and Power Project and used cut-off walls and relief well-engineering
measures to control the immersion of the reservoir area to evaluate the difference in the
effect of immersion treatment on the reservoir area under working conditions. Yasushi
Arai et al. [44–46] used three-dimensional simulation to analyze the impact of excavation
construction on wall deformation and discussed the influence of two excavation sequences
and three different wall thicknesses on the results. R. Schafer et al. [47,48] analyzed the
influence of the construction sequence of the cut-off wall on the cut-off wall in a soft soil
foundation in the numerical calculation and simulated the influence of the coupling effect
of groundwater pressure and geo-stress on the wall.

The strength, stability, and deformation of the cut-off wall of the reservoir that has been
built under the influence of large-scale construction and new load in the near and upper
part are important factors affecting the safety and stability of the reservoir. At present,
the academic community mostly focuses on the study of the cut-off performance of the
cut-off wall. Yet, there is little systematic research on this aspect. Based on this, this paper,
relying on the Beijing-Shijiazhuang Expressway widening project near the impervious wall
of a reservoir, uses FLAC3D two-dimensional and three-dimensional numerical simulation
methods to establish the whole process model of the impervious wall of the reservoir
affected by the construction load of the highway reconstruction section. The stress and
strain state of the cut-off wall in the highway reconstruction section and the nearby reservoir
is simulated in detail. The overall deformation of the cut-off wall in the reservoir is directly
reflected, and the interaction and differential deformation between the wall structures
are reflected. The safety and stability of the cut-off wall of the reservoir affected by the
construction load are evaluated so that various advanced mechanical behaviors of the
cut-off wall can be predicted.
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2. Overview of Cut-Off Wall Project

The length of the Jingshi Highway reconstruction project in a section of the reservoir
is about 3094 m. The subgrade reconstruction and widening section of a reservoir area of
Jingshi Highway are closely parallel to the cut-off wall of the west embankment of a storage
reservoir, and the length of the intersection is about 2247 m. The large part is about 114 m
long. The cut-off wall of this part is divided into upper and lower parts. The lower part is
the original plastic concrete cut-off wall, and the upper part is composed of 10 reinforced
concrete walls connected to each other. The joints between the walls are flexible joints,
which allow slight movement between the walls.

To more clearly reflect the mechanical effect of the wall affected by the construction,
the numerical simulation is based on the two typical monitoring sections selected in the
expansion section, as shown in Figure 1 (located at XD0 + 744.000 (the fifth section) and
XD0 + 770.000 (the seven section). Sections 1 and 2 are the main research objects, and
the numerical calculation and analysis are carried out for these 3 typical sections and the
project as a whole. The overall 3D numerical simulation model of the project will include
all the walls of the research object, that is, the first to tenth walls from north to south and
filling soil (enclosing soil) in the vicinity.
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Figure 1. Location layout of monitoring sections and selection of numerical simulation sections.

The construction area is located on the platform of the west embankment of a reservoir,
which belongs to the geological unit of the Xiaoqing River alluvial plain. The terrain of
the site is flat, the ground elevation is about 53.41~55.42 m, slightly inclined from north to
south, and the ground slope is about 1.06‰. The anti-seepage wall of the renovation and
expansion section of Dujiakan is located on the west embankment platform of a reservoir
area, 11 m away from the foot of the slope on the east side of the original Jingshi Expressway.
The anti-seepage wall is 0.60 m thick; the wall depth is 9–12.5 m, 2.5 m into semi-cemented
bedrock at the bottom of the wall.

It is constructed by two drills and one grasping method. The length of the groove
section is 6.2 m and the designed compressive strength of the plastic concrete wall is 2 MPa.
The height of the guide wall of the cut-off wall is 1.0 m, the width of the base is 1.0 m,
and the height is 0.3 m. The thickness of the guide wall above the base is 0.4 m and it will
be poured with C15 reinforced concrete. Plastic concrete anti-seepage walls have been
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pre-constructed. The rigid anti-seepage wall that will be heightened later is also made
of C15 reinforced concrete, the wall thickness is 0.6 m, the wall height is 9–11 m, and the
design compressive strength is 15 MPa. The structure between the plastic concrete cut-off
wall and the rigid cut-off wall is shown in Figure 2a. The average reinforced concrete wall
is 12 m, and each wall is constructed separately. Flexible joints are used between the two
walls. The joint structure is shown in Figure 2b.

Figure 2. Schematic diagram of the cut-off wall structure. (a) Schematic diagram of the interface
between reinforced concrete wall and plastic concrete wall. (b) Schematic diagram of joints between
rigid cut-off walls.
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3. Construction Plan and Calculation Model
3.1. Construction Plan

The simulation analysis shall consider the actual construction process of the project as
much as possible. For this reason, the specific construction scheme is given.

(1) Construction scheme of the cut-off wall:
The construction plan of the cut-off wall is mainly divided into two parts. First, the

original plastic concrete cut-off wall of the lower part adopts the traditional underground
continuous wall construction method, that is, pouring concrete after continuous mechanical
groove formation. Second, the upper reinforced concrete wall adopts a formwork pouring
form. Considering the safety of the wall, the reinforced concrete wall is divided into upper
and lower parts and completed step by step, as shown in Figure 3.

The detailed construction method of the cut-off wall is as follows:

1. Determine the construction position: according to the design drawings, set out the
baseline of the cut-off wall;

2. Construction guide wall: The guide wall earthwork is excavated along the baseline
by trench sections. The excavation depth is based on the wall elevation of each trench
section. Support the formwork and pour C15 concrete. The finished guide wall should
be at the same height as the surrounding ground surface to facilitate the subsequent
movement of the punching and grabbing machinery;

3. Mechanical grooving: Use a punching machine to grab the wall groove section in the
guide groove between the guide walls. The length of the groove section is strictly
controlled within the specification requirements. Mud is used to protect the hole wall
to prevent collapse;

4. Construction of plastic concrete wall: The plastic concrete wall is poured with C2
concrete. The pouring process should be coordinated with the mechanical groove to
ensure the quality of the wall at the joint. It is advisable to use a conduit to facilitate
the pouring;

5. Construction of reinforced concrete wall: The reinforced concrete wall is located on
the surface, and the concrete label is C15. According to the design size of the wall, the
wall formwork is divided into grooves, the rigid cage is bound, and the concrete is
poured.

(2) Subgrade construction scheme of Dujiakan toll station:

1. Subgrade backfill both sides of cut-off wall at the same time, the thickness of each
layer of fill is about 0.5 m. The thickness after compaction is about 0.3 m;

2. Both sides of the subgrade and impervious wall shall be compacted. Small equipment
or manual tamping is used for narrower areas. Large-scale equipment or rolling
equipment is used for relatively wide areas.
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Figure 3. Step-by-step construction of rigid cut-off walls. (a) Construction of the lower wall. (b) Con-
struction of the upper wall.

3.2. Calculation Model

Since the difference in the longitudinal direction of the project is not obvious, consider
each monitoring section as a plane strain problem to establish a two-dimensional calculation
model. The stress-strain state of the Dujiakan reconstruction and extension section of the
Beijing-Shibai Expressway and the related reservoir cut-off wall is simulated in detail.
The 3D model mainly shows the overall deformation of the project, considering the joints
and conduction between reinforced concrete walls. The impact of the size effect of walls
and other structures reflects the interaction and differential deformation between wall
structures. The fifth section (1 section) and the seventh section wall (2 section) were selected
as the research objects in the analysis.

3.2.1. Monitor the Geometric Dimensions of Section Models 1 and 2

The monitoring sections 1 and 2 were located at the fifth trusses and seventh trusses
of the wall, respectively. The same calculation model was used for the analysis because
of the same geometrical size, backfilling process, and material parameters. The reinforced
concrete wall top elevation is 59 m, with a height of 10 m. The plastic concrete wall has a
depth of 11.5 m.

The horizontal distance between the slope line of the original Jingshi subgrade and
the wall is 11 m, and the model is 116 m long, 2 m wide, and 49.5 m high. The construction
sequence consists of pouring reinforced concrete→ backfilling 0→ backfilling 1 and back-
filling 2 at the same time→ excavating and laying the main rainwater pipe→ backfilling
3→ backfilling 4, the geometric models of sections 1 and 2 are shown in Figure 4a. Moni-
toring1, 2 cross-section model grid division, the positional relationship between backfill
soil, and cut-off wall are shown in Figure 4b to monitor the relationship between backfill
soil and the cut-off wall in sections 1 and 2.

3.2.2. Geometric Dimensions of 3D Cut-Off Wall Model

The 3D model contains all the walls of the research object, from north to south. They
are the 1st to 10th wall. The model is 88.1 m long, 114 m wide, and 32 m high. The
angle between the 3rd and 4th wall intersections is 174◦. The elevation of the top of the
reinforced concrete wall is 59 m. Walls 1–3 are 12 m high and walls 4–10 are 10 m high. The
elevation of the bottom line of the plastic concrete wall is 37.5 m, of which the height of
the 1st–3rd walls is 9.5 m. The height of the tree is 11.5 m. The construction sequence is
initial ground stress balance→ construction of plastic concrete walls→ construction of
reinforced concrete walls→ backfilling 0→backfilling 1 and backfilling 2 simultaneously
→ backfilling 3→backfilling 4, as shown in Figure 5a using the grid division of the 3D
model. Figure 5b shows the overall grid division of the cut-off wall in the model.
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The main construction of this project consists of the filling and rolling process of the
embankment of the Jingshi Expressway. Considering the change of the backfilling soil’s
physical parameters during the rolling process, the deformation characteristic parameters
(bulk modulus, shear modulus) are simulated by the Duncan–Zhang Et-Kt model. As the
rolling progresses, the bulk modulus and soil weight gradually increase, so the backfilled
soil will have a large displacement at the initial stage of rolling, which is consistent with
the actual rolling process.

Displacement constraints are used on each side of the two-dimensional model to limit
the boundary horizontal displacement: the bottom surface is a fixed boundary to limit
displacement; the top surface and slope are free boundaries; the contact surface element is
added between the reinforced concrete wall and the soil.

The backfill soil shall be backfilled sequentially according to the actual construction
conditions, and the backfill thickness of each small step shall be 0.3 m, considering the
rainwater pipeline construction process during the backfill period. The four sides of the
3D model adopt displacement constraints to fix their horizontal displacement: the bottom
surface boundary is fixed to limit the displacement in three directions; the top surface is a
private boundary. Compared with the two-dimensional model, the construction process of
the backfill is simplified, the thickness of each layer of backfill is 1 m, and the construction
impact of the rainwater pipeline is ignored.
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In the simulation of the rolling process, according to the actual rolling effect, the
process of soil density as it gradually increases is used for simulation. In the process of
carrying out the analysis, the density of the soil material is determined according to the
instant depth of the fill until it reaches the maximum value (target density) and the rolling
process ends.
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4. Dynamic Construction Stability Analysis of Cut-Off Wall
4.1. Analysis of Deformation Law

The deformation analysis includes the overall deformation and the cut-off wall de-
formation. It mainly focuses on the study of the deformation of the cut-off wall and the
surrounding soil with the construction change. The rigid cut-off wall is taken as the initial
state when it is completed, that is, the deformation of the wall and the stratum in the
subsequent diagrams are all caused by the backfilling construction.

Figure 6 respectively shows the cloud diagrams of the final displacement changes in
the analysis domain after the construction of the cut-off wall of the reservoir. The maximum
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displacement of the analysis domain occurs in the backfill area, the maximum horizontal
displacement is 634.171 mm, the maximum vertical displacement is 1602.385 mm, and the
maximum displacement is 1675.820 mm.
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Figures 7–9 show the cloud images of the deformation laws of the two monitoring sec-
tions and the cut-off walls at the monitoring sections and the comparison of the deformation
laws of the two monitoring sections.
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It can be seen from the cloud image analysis of the deformation comparison of the
2 monitoring surface shown in Figures 8 and 9 that the deformation trends during construc-
tion are basically consistent. From the analysis of the overall displacement nephogram, it
can be concluded that the maximum displacement in the horizontal direction occurs on the
upper part of the backfill soil outside the wall, and the maximum vertical displacement
occurs at the filling soil on the road. The combined displacement is mainly affected by the
vertical displacement. Influenced by displacement, the maximum value also appears at the
position where the roadside fill is close to the cut-off wall (Table 1).

Table 1. Comparison of the maximum deformation of the soil in the filling area of the monitoring surface.

Deformation Type Displacement (m)
Monitoring Surface

1 2

Horizontal 0.6303 0.6292
Vertical 1.6040 1.6025

Combined 1.6775 1.6759

Figure 10 shows the overall deformation contours of cut-off walls during construction.
From the analysis of the overall deformation, it can be seen that horizontal deformation of
the plastic cut-off wall is much smaller than that of the rigid cut-off wall, with a maximum
difference of more than two orders of magnitude. The vertical displacement takes place
from top to bottom. Gradually decreasing, the settlement at the top is about twice as much
as that at the bottom.

The deformation trend of the wall can be divided into three stages as the construction
steps proceed. The first stage: Fill on both sides of the wall, but the width of the fill on
the outside of the reservoir is large. Then the wall is subject to the lateral constraint of the
original reservoir embankment and the whole wall is inclined to the inside of the reservoir.
The second stage: There is a large amount of fill in the inner side of the reservoir. Due to
the gravity effect of the unilateral soil accumulation, the overall inclination of the wall has
recovered. At this stage, the wall tends to move towards the outer side of the reservoir. The
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third stage: The construction stage of the Beijing-Shijiazhuang Expressway subgrade. Due
to the soil piling work outside the reservoir, the wall began to tilt towards the inside of the
reservoir (Table 2).

From the analysis of Figure 11, it can be seen that the horizontal plane deformation
trend of the three-section cut-off wall is similar. As the construction progresses, the wall
tends to displace toward the side of the reservoir as a whole. The horizontal displacement
decreases from top to bottom, but it does not decrease nonlinearly or linearly. The horizontal
deformation of the plastic concrete wall is small, as can be seen from the comparison curve
analysis of its change in value given in Figure 11. The horizontal deformation law of the
plastic wall of section 1 and section 2 is similar, with the maximum horizontal displacement
occurring at the top. Figure 11 shows that the horizontal deformation of the cut-off wall
is greatly affected by the construction, that is, the backfilling and rolling process of the
surrounding soil. For example, whether it is a plastic cut-off wall or a rigid cut-off wall,
after the completion of backfill 4, a large amount of rebound occurred.
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Figure 10. The overall deformation of cut-off wall. (a) horizontal displacement of cut-off wall.
(b) vertical displacement of cut-off wall.
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Table 2. Comparison of displacement and settlement of cut-off wall at different monitoring sections.

Position of Displacement
Monitoring Section

1 2

Horizontal displacement of the top of the rigid cut-off wall (m) 0.01801 0.01732
Horizontal displacement of the top of the plastic cut-off wall (m) 0.001704 0.001588

Top Settlement of Plastic cut-off wall (m) 0.004966 0.004932
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Figure 11. Horizontal displacement change of cut-off wall at monitoring section. (a) Monitoring 1
section cut-off wall. (b) Monitoring 2 section cut-off wall.

Figure 12 shows that as the construction progresses, the vertical displacement grad-
ually increases from the lower of the wall upwards, and the vertical deformation of the
upper rigid cut-off wall is slightly larger than that of the lower plastic cut-off wall. The
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maximum vertical deformation of the cut-off walls on the three monitoring surfaces is
around 6 mm.
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Figure 13 shows the displacement distribution pattern at the joints of cut-off walls. 
For the cut-off walls in the study section, the structural dimensions and backfilling meth-
ods of the first to third walls are the same. The fourth to tenth walls are also similar to 
each other. It can be seen from the displacement cloud map that the horizontal displace-
ment of the first three walls is relatively large, so there is a displacement discontinuity at 
the joint between the third and fourth walls. The difference gradually decreases from the 
top to the bottom of the wall. The bottom gradually decreases and is almost zero at the 
root of the wall, and the displacement difference at the top is about 1.314 mm. 

Figure 12. Vertical displacement variation of cut-off wall. (a) Monitoring 1 section cut-off wall.
(b) Monitoring section 2 cut-off wall.

Figure 13 shows the displacement distribution pattern at the joints of cut-off walls. For
the cut-off walls in the study section, the structural dimensions and backfilling methods
of the first to third walls are the same. The fourth to tenth walls are also similar to each
other. It can be seen from the displacement cloud map that the horizontal displacement of
the first three walls is relatively large, so there is a displacement discontinuity at the joint
between the third and fourth walls. The difference gradually decreases from the top to the
bottom of the wall. The bottom gradually decreases and is almost zero at the root of the
wall, and the displacement difference at the top is about 1.314 mm.
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According to the structure of the wall joints (Figure 14), a certain friction force needs 
to be overcome when the walls are displaced, and then the wall displacement has a certain 
joint effect. There is also discontinuity of displacement between the five sections (moni-
toring 1 section wall), which is mainly because the length of the 4th section wall is only 10 
m, which is shorter than other walls. The large deformation of the third section is caused 
by the connection. The friction of the seam implicates the deformation of the fourth wall. 
In addition, the filling soil on both sides of the third wall will also have a certain degree 
of influence on the deformation of the fourth wall. 

 

Figure 14. Schematic diagram of maximum stress area of cut-off wall. 

From the above analysis, it can be seen that, as construction progresses, the defor-
mation state of the cut-off wall shows a relatively stable change trend, and the defor-
mation of the reinforced concrete wall is slightly larger than that of the plastic concrete. 
The maximum horizontal offset of the rigid wall is 2.191 mm, while that of the plastic wall 

Figure 13. Horizontal displacement of wall near corner.

According to the structure of the wall joints (Figure 14), a certain friction force needs to
be overcome when the walls are displaced, and then the wall displacement has a certain joint
effect. There is also discontinuity of displacement between the five sections (monitoring
1 section wall), which is mainly because the length of the 4th section wall is only 10 m,
which is shorter than other walls. The large deformation of the third section is caused by
the connection. The friction of the seam implicates the deformation of the fourth wall. In
addition, the filling soil on both sides of the third wall will also have a certain degree of
influence on the deformation of the fourth wall.
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Figure 14. Schematic diagram of maximum stress area of cut-off wall.

From the above analysis, it can be seen that, as construction progresses, the deforma-
tion state of the cut-off wall shows a relatively stable change trend, and the deformation of
the reinforced concrete wall is slightly larger than that of the plastic concrete. The maximum
horizontal offset of the rigid wall is 2.191 mm, while that of the plastic wall is only about
0.3 mm, which will not affect the structural stability of the wall. The simulation shows that
the deformation of the cut-off wall is greatly affected by the dynamic construction on both
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sides. In the early stage of construction, the wall tends to shift towards the reservoir side
and then reaches the maximum value of about 26 mm. Until the massive filling stage at the
reservoir side takes place and due to the influence of the filling pressure at the reservoir
side, the existing wall is offset slightly. The final offset of the rigid cut-off wall at the end of
the project remained at about 21 mm. The maximum vertical deformation of the cut-off
wall is about 6 mm.

4.2. Analysis of Stress Distribution Law

Figure 15 shows the overall stress distribution in the analysis area after construction.
It can be seen from the stress diagram analysis that the maximum principal stress occurs
in the filling area, and the large stress value is only about 1.155 Mpa. It can be seen from
Figures 16–18 of the stress distribution law of the monitoring surface that the maximum
principal stress is below 1.5 Mpa, and maximum contact stress of 0.16 Mpa appears in the
local area of the rigid cut-off wall close to the guide wall, but the value is small and will not
endanger the rigid cut-off wall. The maximum shear stress on the ZX plane of the cut-off
wall is only about 0.26 Mpa, and it is located in the lower area of the rigid cut-off wall.
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(b) Minimum principal stress nephogram. (c) YZ in-plane shear stress nephogram.
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Figure 19 shows that the maximum compressive stress mostly occurs at the lower
part of the rigid cut-off wall, and the stresses in the lower part of the first to third piles are
slightly greater than those of the walls at other positions. The main reason is that the filling
layer in the area is thicker than other parts. The maximum stress on the rigid cut-off wall is
between 1.5–2.6500 MPa, and the maximum stress on the plastic cut-off wall is between
0.5600–1.5 Mpa, both of which are within the safe range. The shear stress distribution in
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the ZX plane is also larger than the cut-off walls at the second and third walls, and the
maximum shear stress is about 0.27 MPa.
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Figure 19. Schematic diagram of overall stress distribution of the cut-off wall. (a) Nephogram of
maximum principal stress. (b) Minimum principal stress nephogram. (c) Nephogram of shear stress
in YZ plane of the cut-off wall.

Figures 20–22 shows the stress distribution of the cutoff wall section at different
monitoring surfaces. The maximum pressure of the rigid cut-off wall is 1.4302 MPa. The
maximum pressure of the plastic cut-off wall is within 1.200 Mpa, which is smaller than
that of the rigid cut-off wall. Apart from the tensile stress of less than 0.237 MPa occurring
at the connecting guide wall between the rigid cut-off wall and the plastic concrete cut-off
wall, the cut-off wall is basically under compression, especially the plastic cut-off wall.
There is a stress concentration phenomenon in the upper part of the cross-shaped structure
(guide wall) of the wall, that is, there is a large bending moment there, but there is no
strong stress concentration in the lower part of the cross-shaped structure. It shows that
the guide wall at the lower part of the cross-shaped structure plays a very good supporting
role, offsetting some of the harmful bending moments that are unfavorable to the safety of
the plastic concrete wall.
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Based on the above stress analysis, it can be seen that the overall stress on the cut-off
wall gradually decreases from the bottom to the top, and the overall stress on the cut-off
wall is slightly greater than that of the surrounding strata. This is not only related to the
load it bears, but also to its own load. This is on account of the material properties. There
is a phenomenon of compressive stress concentration at the rigid cut-off wall root, but its
maximum value is only between 1.5–2.0 Mpa, which is far less than the material strength
of the rigid cut-off wall of 15 Mpa. Due to the structural size, the maximum tensile stress
of 0.237 Mpa appears in the local area near the guide wall of the rigid cut-off wall, but
the value is small, which will not endanger the rigid cut0off wall. The shear stress in the
ZX plane of the cut-off wall is slightly higher than that of the surrounding filling area,
its maximum value is only about 0.3 Mpa, and it is located at the lower part of the rigid
cut-off wall. The shear stress in the plastic cut-off wall is a lower order of magnitude. The
maximum stress on the cut-off wall is generally below 1.5 Mpa, which is compressive stress.

The maximum stresses in the lower part of the first to third parts are slightly larger
than that of the walls at other positions, and the local stress on the plastic cut-off wall in this
area is also greater than that of the plastic cut-off wall in other areas. Their magnitudes are
small, and the maximum stress in the rigid cut-off wall and plastic cut-off wall is between
1.5–2.65 Mpa and 0.56–1.5 Mpa, respectively. The shear stress distribution in the ZX plane
is also present at the second and third walls. It is larger than other cut-off walls, and the
maximum shear stress is only about 0.30 Mpa.

Apart from the small tensile stress at the connection guide wall between the rigid
and the plastic concrete cut-off walls, the cut-off wall is in a state of compression. This is
especially true for the plastic cut-off wall. Therefore, both the reinforced concrete wall and
plastic concrete wall meet the design strength during construction. The guide wall plays an
effective role in supporting the plastic cut-off wall. In conclusion, the dynamic construction
effect has little influence on the strength of the cut-off wall, and the maximum stress is
within the design range. Therefore, the rigid and the plastic cut-off wall are in a safe and
stable state.

5. Conclusions

In this paper, through back analysis and simulation, the mechanical action of the
whole construction process on a reservoir west dike cut-off wall and the mechanical
effect produced by the cut-off wall have been obtained. The following main results and
conclusions have been obtained:

• The deformation trend of the wall can be divided into three stages as the construction
steps proceed. The first stage: Fill on both sides of the wall, but the width of the fill
on the outside of the reservoir is large, and the wall is subject to the lateral constraint
of the original reservoir embankment. The whole wall is inclined to the inside of the
reservoir. The second stage: There is a large amount of fill in the inner side of the
reservoir. Due to the gravity effect of the unilateral soil accumulation, the overall
inclination of the wall has recovered. At this stage, the wall tends to move towards
the outer side of the reservoir. The third stage: due to the soil piling work outside
the reservoir during the construction stage of the Beijing-Shijiazhuang Expressway
subgrade, the wall began to tilt towards the inside of the reservoir;

• In the process of filling construction, the whole impervious wall shows a tendency to
tilt towards the inner side of the reservoir. The horizontal displacement value of the
wall gradually increases from bottom to top, and the maximum value appears at the
top of the wall. The horizontal displacement value of the 1–3 walls is relatively large,
with the maximum value of 22.368 mm, and the horizontal displacement value of the
4–10 walls does not differ greatly. The largest difference in the horizontal displacement
of the cu-off wall occurs at the joint between the third and fourth walls, and between
the fourth and fifth walls, with the maximum difference of 1.314 mm;

• During the filling construction, due to the gravity of the backfill, the strata in the
whole project area have settled, and the settlement at the bottom of the cut-off wall is
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2.542 mm. The settlement characteristics of the rigid cut-off wall and plastic concrete
cut-off wall are different. The settlement value of the rigid cut-off wall does not change
along the wall height and its value is about 5.3 mm (the second) and 4.7 mm (the fifth
and seventh). The settlement value of the plastic concrete wall shows a clear gradient
along the elevation direction and its value changes evenly between 2.5–5.3 mm (the
second) and 2.5–4.7 mm (the fifth and seventh).

• The horizontal displacement of the cut-off wall is mainly caused by the asymmetry of
the fill on both sides. The fill pressure directly affects the horizontal displacement (incli-
nation) of the reinforced concrete wall and then drives the horizontal displacement of
the plastic concrete at the lower part through the structural involvement. The analysis
shows that the guide wall has a great clamping effect on the deformation of the plastic
cut-off wall, which makes the horizontal displacement between the rigid cut-off wall
and the plastic cut-off wall interact and creates a nonlinear relationship. The vertical
displacement of the cut-off wall is mainly caused by a compression deformation of
the lower stratum under the action of structural gravity. On account of the elastic
modulus of the plastic concrete wall material and the small surrounding stratum, the
change is relatively obvious during the compression process, while the compression
amount of the reinforced concrete wall itself is very small. Its settlement deformation
is mainly the vertical movement of the rigid body with the settlement deformation of
the plastic cut-off wall;

• The stress on the cut-off wall decreases gradually from bottom to top, and its stress
value is slightly larger than that of the surrounding strata. At the root of the rigid
cu-toff wall, the compressive stress concentration occurs, with the maximum value
between 1.75 MPa and 2.15 MPa. Due to the size of the structure, the maximum tensile
stress of 0.237 MPa appears in the local area near the guide wall of the rigid cut-off
wall, which will not endanger the rigid cut-off wall because of its small value. The
maximum shear stress in the ZX plane of the cut-off wall is only about 0.236 MPa,
which is located in the lower part of the rigid cut-off wall. The shear stress in the
plastic cut-off wall is one order of magnitude lower. The maximum stress on the plastic
cut-off wall is generally below 1.5 MPa, and it is compressive stress;

• The maximum compressive stress occurs at the lower part of the rigid impervious wall,
and the stress at the lower part of the first to the third is slightly greater than that of
the wall at other locations. The local stress on the plastic impervious wall in this area is
also greater than that of the plastic impervious wall in other areas, and their values are
small. The maximum stress in the rigid impervious wall and the plastic impervious
wall are 1.90–2.15 MPa and 1.00–1.12 MPa, respectively. The shear stress distribution
in the ZX plane is also greater than that of the cut-off wall at other locations in the
second and third walls, and the maximum shear stress is only about 0.236 MPa;

• Apart from the small tensile stress at the connecting guide wall between the rigid
cut-off wall and the plastic concrete cut-off wall, the cut-off wall is basically under
pressure, especially the plastic cut-off wall. During the construction process, the
deformation of the backfill soil on both sides of the wall is relatively large, while
the deformation of the whole wall is in a relatively small range, without obvious
differential deformation. Combined with the analysis of the stress state of the wall, it
can be determined that the anti-seepage wall (rigid cut-off wall and plastic concrete
cut-off wall) is stable and safe during the construction period.
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