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The maritime industry faces many pressing challenges due to increasing environ-
mental and safety regulations and crew safety concerns. In light of these challenges,
autonomous ships can provide potential solutions for addressing smart shipping, fuel
efficiency, and safety issues. The development of marine autonomy technology will sig-
nificantly improve the situation and is expected to become a cost-efficient alternative to
conventional ships. Currently, automated shipping technology is rapidly transitioning
from theoretical to practical applications as the number and scope of autonomous ship
prototypes increase around the globe. These prototypes are widely used in both navy and
commercial applications, such as ocean observation, coast patrol, underwater monitoring,
and underwater production system operation, to name just a few.

The main goal of this book is to address key challenges, thereby promoting research
on Maritime Autonomous Surface Ships (MASS). Firstly, one review paper on developing
Digital Twin (DT) technology in the maritime domain is provided [1]. The following topics
on autonomous surface ships are included in this book: methods of ship control [2–5],
collision avoidance [6,7], ship detection methods [8,9], and manoeuvring models [10].

Madusanka et al. [1] reviewed the development of Digital Twin (DT) technology
and its applications within the maritime domain, mainly surface ships. In [2], a finite-
time, active fault-tolerant control (AFTC) method was proposed for autonomous surface
vehicles, and the framework was based on an integrated design of fault detection (FD),
fault estimation (FE), and controller reconfiguration. Simulation tests using the CyberShip
II were carried out to validate the proposed AFTC method. In [3], the authors studied
collision avoidance in the formation-containment tracking control of multi-USVs with
constrained velocity and propulsion forces. A multi-USV formation-containment tracking
control strategy was designed based on a dual-layer control framework, and stability was
validated using the Lyapunov method. In [4], the cooperative formation trajectory tracking
problem for heterogeneous unmanned aerial vehicles (UAV) and multiple unmanned
surface vessels (USV) was invested in this paper, and a simulation study is provided to
show the efficacy of the proposed strategy. To provide a higher lift force and improve
the seakeeping performance of a ship, a control method for the T-foil’s swinging angle
is established and optimized based on model testing [5]. The results obtained by model
testing show that T-foils with pitch angular velocity control can decrease the vertical motion
response in the resonance region of a ship’s encounter frequency and increase the anti-bow
acceleration effect.

Another important topic for autonomous surface ships is collision avoidance, since
the ship must be able to avoid unexpected obstacles. Niu et al. [6] proposed a multi-ship
autonomous collision avoidance decision-making algorithm using a data-driven method
and adopted the Multi-agent Deep Reinforcement Learning (MADRL) framework. The
40 encounter scenarios were designed to verify the proposed algorithm, and the results

1



J. Mar. Sci. Eng. 2024, 12, 957

show that this algorithm can efficiently make a ship collision avoidance decision in com-
pliance with COLREGs. Hwang et al. [7] proposed a method for analyzing collision risk
situations extracted from AIS data through graph-based modeling and establishing val-
idation scenarios. Yasir et al. [8] presented a survey of AI- and ML-based techniques for
ship detection in SAR images that provide a more effective and reliable way to detect
and classify ships in various weather conditions, both onshore and offshore. In [9], a
new attitude-estimation framework was proposed to extract the geometric features using
point clouds from shipborne LiDAR and compute the attitude of the target ships. The
experimental results demonstrated the filtering ability and practical applicability of the
proposed method in real water-pool experiments under real environmental noises. In [10],
a data-driven method, the truncated LS-SVM, was proposed for estimating the nondi-
mensional hydrodynamic coefficients of a maneuvering model. The results demonstrate
that the truncated LS-SVM method effectively models the hydrodynamic force prediction
problems with an extensive training set, reducing parameter uncertainty and yielding more
convincing results.
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Abstract: This paper highlights the development of Digital Twin (DT) technology and its admittance
to a variety of applications within the maritime domain in general and surface ships in particular.
The conceptual theory behind the evolution of DT is highlighted along with the development of the
technology and current progress in practical applications with an exploration of the key milestones
in the extension from the electrification of the shipping sector towards the realization of a definitive
DT-based system. Existing DT-based applications within the maritime sector are surveyed along
with the comprehension of ongoing research work. The development strategy for a formidable DT
architecture is discussed, culminating in a proposal of a four-layered DT framework. Considering
the importance of DT, an extensive and methodical literature survey has also been carried out, along
with a comprehensive scientometric analysis to unveil the methodical footprint of DT in the marine
sector, thus leading the way for future work on the design, development and operation of surface
vessels using DT applications.

Keywords: digital twin; digitalization; smart shipping; autonomous surface vehicles; citespace;
scientometric analysis

1. Introduction

The technological development of the world is ever incrementing, and humankind
is searching for innovative pathways to perform the tasks demanded by industries or
services with improved efficiency and effectiveness. The digitalization of the world boomed
with the evolution of Cloud computing, Internet of Things (IoT) [1,2], Big Data analytics,
Virtual Reality (VR), Augmented Reality (AR), Artificial Intelligence (AI) [3] with Machine
Learning, Deep Learning and Neural Networks, etc. The same has led the way to the
development of the Cyber-Physical System (CPS), which is hailed as the epitome of the
manufacturing and consumer service sector [4]. It is an automated system with a connection
of physical reality featured with computing structures with smart networking tools. The
technologies of 5G and Tactile Internet [5], with the provision of ultra-reliable ultra-low-
delay, have enhanced communication and feedback between entities across oceans. To
create the fusion between cyberspace and physical space, Digital Twin (DT) was introduced
as a rational solution in associating the two extents. The concept of DT has become a real
application within a limited time, and some disciplines are surpassing the expectations and
predictions made during the early conceptual inception of DT.

In the present world, simulation has become an integral part of system development
for every engineering discipline. Starting from solving design problems using numerical
algorithms in the 1960s, simulation has taken us to the digital era, where simulation is inte-
grated into the life cycle of the particular product including design, testing, manufacturing,
commissioning, operating, and decommissioning [6]. This process of evolution has opened
the way to DT, which is more versatile and dynamic than the physical twin concept. Ever
since, the concept of DT has become a reality, expanding its outreach to various disciplines
around the world including the maritime domain.

3
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This survey is an endeavor to review and understand the DT technology and the
meticulous footprint it has made within the maritime domain to comprehend the future
compatibility to meet the upcoming high-tech requirements. Past technological milestones
in DT evolution in the marine sector are highlighted in this article, which includes an
evaluation of ongoing research and applications around the globe. Further, scientometric
analysis has also been performed to identify the key research points such as author con-
tributions, author impact research collaborations, demographic research impact, trending
keywords, etc. The main contributions of this publication can be condensed as follows.

• A comprehensive literature review on DT from the initial notion up to the year
2022 with a focus on the maritime domain.

• Proposed a generic four-layer DT framework for a marine vessel.
• Scientometric analysis of the published research related to marine DT within the

duration of 20 years including demographic collaboration and trending keywords.
• The progress of development and implementation of DT technology in the maritime

sector, thus providing insight for researchers with key challenges and gaps within the
marine DT domain.

This paper is structured in the following manner. Followed by the Introduction
in Section 1, Section 2 describes the origination of the DT concept with nomenclature
clarification. In the Section 3, an overview of the implication pathway of DT technology in
the marine industry is discussed. In Section 4, various DT-based applications in different
sectors in the maritime domain are discussed, while Section 5 describes the prerequisites for
a DT-based system along with the overall DT framework for the marine sector. In Section 6,
a comprehensive bibliometric study is carried out using the scientometric analysis approach.
Section 7 describes the key challenges and future trends. Finally, the conclusion of the
entire effort is provided in Section 8.

2. Inception of the Digital Twin Concept

The initial conception of having a “Twin” was first implemented by NASA in their
“Apollo” program, which used two identically built satellites in their missions [7]. One
would go on the actual voyage in outer space while the other physical twin will remain
in the laboratory in a controlled space, thus allowing the mission scientists to analyze
the conditions of the launched vehicle by comparing the conditions with the ground
twin. The same helped them in parameter monitoring and fault analysis with a minimum
data transfer between the two vehicles. A similar concept was utilized in the “Iron Bird”
(Figure 1) ground-based aircraft system testing platform by Airbus Industries, where
a hardware simulator twin was used in system evaluation, design and testing while a
simulated cockpit was utilized by the test pilots [8].

Figure 1. Reflection of the Original Conceptual Idea of DT by Dr M. Grieves in 2002.

The combined usage of the two terms of “Digital + Twin” first came up in a white
paper related to the design for 3D arterial phantoms in coronary arteries published in
the Radiology journal of RSNA (Radiological Society of North America) [9]. Authors have
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developed a realistic model of arteries using stereolithography using a computer-based
model and they have referred to the computer-based design as a “digital twin”.

The novel concept of the DT was first proposed in the year 2002 by Dr Michael Grieves,
a leading scientist in the field of advanced manufacturing at the Florida Institute of Tech-
nology at a manufacturing engineers conference in Troy, Michigan. His idea was based on
constructing digital information on the physical model on his own (Figure 1). This digital in-
formation is a replica of the data embedded in the physical system, which will be connected
with the physical system in the complete life cycle of a particular system/component [10].

The concept of DT was also brought up by NASA under their “Modeling, Simulation,
Information Technology & Processing Roadmap at Technology Area 11”, where a DT is
introduced as a multiscale simulation of a vehicle or system with its own incorporated
physics by optimally utilizing its physical data, sensor data, historical data, etc., in the
effort of obtaining a real-time image related to the life of its corresponding physical twin in
outer space. Since the concept of DT is practical and more realistic in nature, application
for a single vehicle or even for interdependent multiple assets can be performed robustly.
The anomalies that occurred during the manufacturing stage that could imperil the space
missions can also be foreseen during its manipulation. DT can act as the backbone of
any high-fidelity physical model, supporting the integrated vehicle health management
system in evaluating historical data. With the input dataset, DT will enhance the mission
success credibility of the craft with continuous monitoring and evaluation of the operational
condition and the remaining running hours ahead. A robust DT model will assist damage
mitigation or degradation by real-time data analysis/forecasting and suggest required
changes in an ongoing space mission to enhance the life span leading to mission success [11].
Later, USAF came up with the concept of Digital Thread, where each USAF aircraft enters
the fleet with its own DT. The DT will help in Structural Health Monitoring (SHM), and
maintenance, thus allowing calibration of the craft in its operation state by comparing
the sensor readings of flight and DT. It also acts as a digital surrogate to plan the design,
production, and acquisition phases of the project [12]. Though it was a clear definition
for DT to be made considering the representation fidelity, model simulation capabilities,
synchronization techniques, data collection, exchange attributes, etc., it is also stated as
a virtual representation of the real-world asset with an exchange of information in a
predetermined frequency [13]. It is a digital representation of the active product service
system, which comprises preset characteristics, conditions, behaviors and properties [14].

Along with this concept, the Internet of Vehicles (IoVs) has also been developed
with the integration of Vehicular Ad hoc Networks (VANETs) and the Internet of Things
(IoTs) [15,16]. These were more focused on land-based locomotives, but the notion is widely
accepted by many industrial sectors. IoT has supported the real-time data handshake
component of DT, which has been the basement of existing topology. These also incorporate
the diagnostics and prognostics embedded within the system architecture along with
optimization of the process [17]. Risk analysis and accident prevention with DT support
is another frontier that has already been adopted by the aviation industry. The system
verification of the Boeing 737 Max after initial failures is a great example [18]. It ultimately
promotes the concept of Smart Products (SP) in various phases of the product life cycle,
which benefits the stakeholders in the user groups of the product or asset [19].

In the industry, DT is used under different names such as cyber objects, digital avatars,
etc. The data flow between the DT and the physical unit will depend upon the purpose
of the DT in the industry, which uses cyber objects or digital avatars. Accordingly, the
nomenclature of DT has been proposed based on the two-directional data link between the
DT and the actual unit. Kritzinger W. et al. have categorized the digital counterparts of a
physical object based on the data flow into three types: Digital Model, Digital Shadow, and
DT [20] (Figure 2).
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Figure 2. Difference of data topologies among Digital Model, Digital Shadow, and DT.

• Digital Model: There is no automated data exchange between the two units. Data
integration is done manually to synchronize.

• Digital Shadow: There is only one-way data flow from the physical object towards the
digital counterpart. The data arriving from the physical asset will update the digital
object, but not vice versa. This requires offline actions with Human-in-the-loop (HITL)
interaction between the physical object and the digital model.

• Digital Twin: Fully integrated data flow is available where a two-way automated data
link is established. Both units are in a real-time synchronized state and the physical
unit can be influenced by the digital object automatically.

3. Adoption of Digital Twin Technology for the Marine Sector

The induction of DT in marine vessels is already underway and Figure 3 explains the
summarized trail of actions for said induction. The seafaring sector has been developing
its technologies, targeting improvements in efficiency, emission controls, and ergonomic
operating systems. Traditionally, most marine vessels, specifically surface vessels, are built
with two separate power systems. One is dedicated to the propulsion system and the
second is used to cater for the electricity demands. In this context, most of the vessels were
built using diesel engine-driven propulsion systems due to the ergonomic simple robust
architecture and ease of maintenance. However, traditional systems are highly polluting
the marine environment, which has been regulated by the IMO regulations. Shipbuilders
are finding ways to suffice these new regulations in their designs. Electrification of the
vessels has been an ideal solution to gratify the emission control guidelines [21].

Figure 3. Pathway of Digital Twin Technology within the Shipping Industry.

3.1. Ship Electrification

The first electrical propulsion system was introduced by Russian scholar Boris Jacobi,
which was a paddle boat driven by an electric motor. Due to the low battery capacity and
efficiency, the maximum speed achieved was 1.5 knots, which discouraged the development
of a system for a long time ahead [22]. In 1903, Swedish shipyard ASEA built the river
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tanker “Vandal” as the first vessel to carry a diesel-electric propulsion system [23]. At the
end of WWII, more emphasis was placed on the development of electrical propellers and
ships such as the Ice Tanker “Uikku” and Passenger Ferry Queen Mary 2. Uikku was the
first ship to be installed with an Azipod propulsion system where the main electric motor
was installed in a separate gondola that could direct the thrust with a 360◦ control. RMS
Queen Mary 2 is a luxury cruise liner propelled by hybrid diesel turbo-electric propulsion
with four 18 MW Azipods driven by two gas turbine generators and four diesel engine-
driven generators. This propulsion topology has provided navigation flexibility along with
economical gains in varying speed demands and different passage legs while complying
with emission control protocols [24].

Integrated Full Electrical Propulsion (IFEP) is reducing fuel consumption heavily by
avoiding the low load portion of fuel consumption curves in sharing the load of propulsion
along with ships’ service loads including the weapon systems [25]. It is far superior to
the standard propulsion systems such as Combined Diesel Electric and Gas (CODLAG)
systems or Combined Diesel Electric or Gas (CODLOG) [26]. The latest US Navy stealth
Destroyer USS Zumwalt was commissioned in the year 2016 as the first full-electric warship
equipped with an integrated power system [27]. Further, with the initial project of MS
Medstraum, Norway has implemented the world’s first battery-powered ferries to transfer
vehicles and people with greener environmental insights [28].

With the development of IFEP, ship designers further developed the concept of All-
Electric Ships (AES) [29]. The AES concept has provided high redundancy and mission
capability even at a slight initial cost. At present, most of the high-end naval ship projects
have opted for this technology due to the advantages posed by the electrical-based high-
power navigation, communication, and weapon systems. Royal Navy Type 45 Destroyers
and the aircraft carrier HMS Queen Elizabeth [30] are a few examples of AES-based power
topology. Hybrid powering topology is also developed and implemented to achieve the
redundancy and advantages of both mechanical and electrical drives.

Benefits of the Electrification in Marine Vessels [31]:

• Efficiency is improved as a huge prime mover will be replaced by an array of diesel
alternators and the load can be catered at the highest efficient speed with the generated
thrust by more efficient electric motors.

• The load can be managed easily to cater to the demand based on each mission.
• Improved maneuverability of the vessel and faster response where podded propellers

will allow 360◦ steering along with dynamic positioning.
• Flexibility in placing the generators in the ship without considering the

shafting arrangements.
• Allowing the introduction of cleaner and more efficient future power-generating

technologies such as fuel cells, renewable energy, etc., to the existing vessel.
• Emission control goals can be easily achieved.

3.2. Ship Digitalization

Along with the electrification process, digitalization has also become a key innovative
trend in every operation in the maritime sector due to its efficiency, effectiveness, superla-
tive performance, etc. New tools in designing, performance evaluation, simulation, and
information safety are being introduced and the same is being improved day by day, which
further assists in producing more robust models. As per the digitalization service devel-
opment framework proposed by Erikstad S., the process of digitalization of the maritime
sector can be achieved through two different approaches [32].

• Service-driven Perspective: Considering the ship owners’ specific requisites in oper-
ation and decision making, build is performed in implementation of hardware and
software that suits the ship. It is operating in the need-space, where tactical-level
improvements are more considered.

• Sensor-driven Perspective: It will consider the available inputs from the already
installed sensors in a particular ship to design a digitalized framework to support its
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operation. This method operates through the solution-space, which is the key doorway
for future DT-based systems.

The marine industry will be able to gain the full merits of digitalization through the
service-driven approach starting from the design phase of the vessel. However, existing
platforms can be improved through the second approach to par with the present smart
functions. Digitalization is further considered an effective, innovative, and optimized
method enabling products and services as per Industry 4.0 [33]. Asset-intensive industries
such as shipping, oil, gas, energy, etc., are looking for innovations that increase efficiency
and reduce the cost while effectively managing operational risks and security. Main config-
urations such as the navigation system, power system and automation/control system are
becoming fully digitalized, leaving the old analogue systems obsolete. Integrated Platform
Management Systems (IPMS) available in present ships can link all the above system ar-
chitectures into a centralized topology, thus providing a more ergonomic operation and
increased domain awareness for all stakeholders.

3.3. Smart Shipping

With the availability of satellite communication, the onboard modules are easily linked
with onshore supporting facilities, rather than opening the standalone data infrastructures
onboard holistically to shore operators (Figure 4). As per the Guidance Notes of the
American Bureau of Shipping on Smart Function Implementation, they have highlighted
the importance of having a DT to support the data infrastructure in onshore processing
during Big Data Transfer [34]. It will allow operators to continuously collect, transmit,
manage, and analyze the data for real-time monitoring, increase awareness and decision
making for both human-initiated decisions and autonomous command and control. It
further enhances the ships’ situational awareness, navigational safety, and reduction of
crew fatigue and human error-related accidents.

Figure 4. Realtime Satellite Data Link of Smart Ships.

The main requirement of a smart ship can be defined as the ability to perform the
intended functions autonomously. The transformation from a traditional human-based
system to full autonomy is achieved with the digitalized platforms in the electrified vessels.
Smart ships highly depend upon the digitalized marine eco-system, which is focused on
autonomous operation.

Furthermore, Wartsila and Rolls-Royce have announced the successful testing and
demonstration of dock-to-dock navigating fully autonomous ferries with zero intervention
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of the master on-board. Wartsila, with their hybrid-powered ferry Folgefonn, made a three-
stop route in Norway, while the Rolls-Royce ferry Falco made an unmanned voyage in
Finland with autonomous collision avoidance and docking [35].

This evolution has opened the doorway for DT technology to enter the shipping
industry by bringing all experts into a centralized topology, providing powerful analysis,
understanding, and diagnostics that are crucial for decision-makers in every stage of the
ship’s life. This iteration has made the pathway for Ship DT (SDT), which incorporates
the basic topology of the DT concept to develop and implement for various applications
within the maritime domain. The limits are endless in this effort, but this DT can be pri-
marily based on three main virtues, namely Asset Representation, Operational Behavior
Model, and Parameter Measurement/Monitoring. The application of the technology can
further be divided into the design phase, manufacturing phase, service phase and retire
phase [36]. This encompasses every action that the ship must undergo during her life cycle.
It will support the actions from preliminary conceptual design and optimization to the
final validation of the model. The developed DT model will then assist the supply and
production measures during her building at the shipyard till the final performance trials
and commissioning. During the entire service period, DT will be the key tool to perform-
ing intended functions during her operational phase. Routine upkeeping of the vessel
to Planned Preventive Maintenance (PPM) to Condition-Based Predictive Maintenance
(CBPM) will be functioning through the DT model with all historical data accumulated in
condition monitoring, prognostics, and diagnostics and even the simulated testing of the
systems/components. However, the support it could render during the decommissioning
phase has yet to be studied.

3.4. Automation of Marine Vehicles

Automation can be considered the final step of striding towards a fully DT-based
environment within the maritime sector. Autonomous ships are under extensive research all
over the world and are being implemented due to the versatility of unmanned operations.
As per the International Maritime Organization (IMO) regulation enforced in 2021, Maritime
Autonomous Surface Ships (MASS) are to be regulated under four separate degrees, which
are categorized as per the level of autonomy incorporated into the vessel [37]. A ship may
also have the interchange between the four states of autonomy during its operation based
on the type of vessel and designated task. This allows flexibility in asset management
onboard with crew augmentation as per the dynamics and constraints of specific operations
of the vessel.

• Degree One: Ship with Automated Processes and Decision Support: Seafarers are
present onboard; few functions may be operated onboard at times and operators are
on standby and ready to take over control.

• Degree Two: Remotely Controlled Ship with Seafarers Onboard: The entire ship will
be operated remotely from the shore station, but seafarers are available onboard to
take over control at any time.

• Degree Three: Remotely Controlled Ship without Seafarers Onboard: The shore opera-
tor will control the functions of the entire ship remotely and have no humans onboard.

• Degree Four: Fully Autonomous Ship: The intelligent control system of the vessel will
take actions based on the decisions made by itself with full autonomy.

As per Kaber, Human Automation Interaction (HAI) in complex systems will be
governed by the Level of Automation (LOA), which is highly essential to be considered
during the design stage of any autonomous system [38].

• LOA-0: No Automation: Full-time human operation with the assistance of parameter
indications and warnings.

• LOA-1: Driver Assistance: Acceleration/deceleration/steering will be assisted by the
operator by the inbuilt system but performed by the operator themself.
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• LOA-2: Partial Automation: Steering/acceleration/deceleration would be performed
by the automated system and all remaining decisions will be performed by the operator
themself.

• LOA-3: Conditional Automation: Dynamic actions of the vessel will be performed by
an automated system and the operator will intervene if required.

Hence, a fully autonomous intelligent surface vessel would be designed to be operated
in the LOA under the fourth degree of IMO regulations for MASS. However, careful
assessment of the usage is to be analyzed since ships are high-value cost-sensitive assets
voyaging for weeks at times without seeing a shore. Thus, autonomous systems must be
designed at a high-fidelity robust standard to be capable enough to address all complex
situations during the operation of the vessel.

Autonomous Marine Vehicles (AMVs) are becoming popular both in commercial and
military applications, as extensive research and development are underway all over the
world [39]. It ranges from environmental surveys, cargo/passenger operations, hydrogra-
phy, search and rescue, sea patrols, coastal protection, etc. They can be semi-submersible,
conventional planing hulls, semi-planing hulls, and hydrofoils based on the sea surface,
and these can be further augmented with the evitability of the limitations imposed by
manning ergonomics [40,41]. LOA can vary by the application and the different scenarios
she undergoes during the operations.

The applications of AMVs can be primarily divided into two parts: military and
commercial. In military applications, DT can be incorporated into various missions in
Anti-Submarine Warfare (ASW), Seabed Warfare (SBW), Mine countermeasures, Special
operations forces support, Electronic Warfare (EW), Surveillance, Asymmetric Warfare,
etc. Recently, in the Russia–Ukraine conflict, Unmanned Surface Vessels (USVs) have been
used as self-destructing attack drones capable of destroying surface vessels or strategic
land infrastructures such as piers, bridges, and port facilities, which has brought up a new
dimension in the modern battlefield. These drones can also be swiftly deployed for the
protection of high-valued assets including the major fleet units, port facilities, offshore
platforms, coastal power generation stations, etc. The commercial applications can be
stated as commercial shipping (cargo/passenger), marine research and survey, search and
rescue (SAR), meteorology services, environmental protection, etc.

The functioning of these unmanned automated vessels including the integrated Guid-
ance, Navigation and Control (GNC) will be monitored and governed by the shore control
stations with the capacity to intervene where it is necessary depending on the situational
shift based on the imposed level of autonomy protocol. In the case of a harbor, there will
be various other drones, ROVs, and auxiliaries that will also be controlled by this station
supporting the Smart Port functions. For example, the Norwegian University of Science
and Technology (NTNU) Shore Control Lab has implemented a similar station to control
the autonomous passenger transport ferries at Trondheim River [42]. A higher level of
autonomy in the operation of any marine system will ensure a smooth and straightforward
approach to the implementation of DT-induced functionalities in processes such as design,
control, management, etc.

4. Present Digital Twin Manipulations in Marine Industry

Digital Twin Technology is still in the infancy stage when considering the maritime
domain. Less research work has been conducted compared to other industrial sectors,
but the researchers have identified the potential of this innovative concept and DTs are
being developed for various maritime applications such as surface ships, underwater
vehicles [43,44], offshore platforms [45,46], coastal electrical power stations [47], etc. Apart
from the described examples, the limits to the application of DT technology are boundless,
with numerous possible applications in the entire maritime domain. However, implementa-
tion is to be done by the marine industry with an opportunity-driven approach [48]. These
DT applications are intended to improve the existing operations in the marine industry
while many novel innovations can also be found with revolutionary performances.
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Most research work published on DT technology so far is based on the development
of new concepts of DT technology in manufacturing (55%), while only a few are based on
practical case studies (28%). Out of the published work, the majority (49%) are focused on
production planning and control (PPC) in the manufacturing sector [21], which is focused
on Product Life Cycle Management (PLC) with the advent of DT-based solutions.

4.1. Embryonics in the Shipping Industry

DNV GL has tested a fully autonomous 60 m-long concept vessel, ReVolt, which is
a battery-powered cargo carrier with zero crew [49]. DT is an integral part of the design
and testing of this conceptual vessel and the same will be utilized during the operation
of the vessel. Testing of the vital systems is being carried out using the DT of the concept
vessel, which has saved time and money. The same institution also provides a cloud
networking solution, Veracity [50], which can be used to design, access, and manipulate
the data in DT. Similarly, Siemens has also launched the Mindsphere [51] venture, which
has governance capabilities and data management under the concept of Maritime Data
Space (MDS) [52], which is originally based on the concept of the Industrial Data Space
(IDS) model. Meanwhile, it also allows for performing safety-critical tests and high-risk
maneuvers for any number of attempts as desired in all varying conditions, which would
have been a daunting task in a physical model. Using the historical data during the
operational phase is used to predict the lifespan of components under varying conditions
including position, dynamic environmental factors, speed, load conditions, etc. [53]. The
South African polar supply and research vessel “SA Agulhas II”, which operates in rural
and risky arctic environments, has tested the feasibility of implementing a DT-based
solution to operate with its benefits such as remote polar research capability, reduction
of human impact on sensitive untouched environments, avail of real-time research data
for scientists, etc. [54]. Further, the “Probabilistic Twin” risk-management tool used by
DNV-GL also aims to forecast the probable accidents/damages based on analysis of past
data and trends as an extension to the existing Blue Denmark DT Solution [55].

Having an unmanned vessel in connection to DT will deduct the human error factor
in ship operation, and crew space can be spared for vital cargo space. Reduction of energy
consumption and waiving of the extra maintenance expenses are other benefits of a DT-
based system. Revolt itself is estimated to save a cost of 34 million USD in its 30 years
of service life due to autonomous operation along with DT [56]. Emission control is also
a huge benefit in such a system. Reducing the machinery and moving parts will further
reduce the downtime for maintenance/repairs, reduce human fatalities and be cost-efficient.
The vessel can also be designed into a more aerodynamic shape due to the absence of the
huge superstructure used for crew accommodation and bridge.

Not only the direct merchant sector, but even the fisheries, ecological and maritime
archaeologists have opted for DT-based solutions for underwater operations. In projects
such as SUSHI DROP in Sweden, AUVs are developed and operated in DT-based systems
to monitor/survey the marine environment investigating the fish population in a large
sea space [57]. This DT-based module can further be incorporated into the ship’s HVAC
system to optimize the heat usage and distribution in waste heat recovery systems, charge
air coolers, heat exchangers, etc. [58].

4.2. Vessel Life Cycle Management

Cost-saving is one main benefit of using the DT, as Condition-Based Predictive Main-
tenance (CBPM) is powered extensively with networked sensors, actuators, and control
systems that are operated at their optimum condition. Prognostic Health Management
(PHM) will be used with the projection of the state of the machinery with accurate data
fidelity. It will further provide insight into failure modes, threshold settings, health indica-
tors, and risks. With this analytic data, the operator will obtain the total domain awareness,
which can be utilized to operate the physical unit at its prime operating condition or to
make amends to optimize the performance. It further improves the predictability and man-

11



J. Mar. Sci. Eng. 2023, 11, 1021

agement of real-time continuous quality control of marine diesel engine (MDE) critical parts
with dynamic quality control starting from the machining stage of the components [59].
The historical data derived from the DT will be used to compute the Remaining Useful Life
(RUL) of mission-critical components of the ship’s systems. In DT-based CBPM solutions,
data fusion [60] is highly important to implement formidable evidence-driven big data
sets taken using Bayesian Inference, Demster–Shafer reasoning, etc. [61]. M. Xiang et al.
proposed intelligent predictive maintenance using Implicit DT (IDT) formed with intelli-
gent sensing, and reliable simulation data mapping with the historical operation data [62].
Critical components such as the main engine can be digitally modelled as a Cycle Mean
Value (CMV) model, allowing the monitoring of the performance in both the steady state
and transient response [63].

With the increasing visibility along with the real-time synching of high-fidelity models,
monitoring of the physical system can be easily enhanced. Reduction of the time taken for
system testing and development has led to the reduction of time to market by eliminating
the risks of design failures. DT can provide a complete user experience even before
the actual production. The entire operation of a ship within the total lifespan can be
manipulated during the design phase with the support of its DT from a multi-user point of
view (Passengers, Crew, Owner Company) [64]. Further, real-time connection ensures the
optimum operation of the actual system with the ability to analyze the performance of the
physical model [65]. It will further evaluate the existing ship’s machinery with the support
of machine learning with a quantitative assessment of the degradation of the components.
This will result in the intelligent diagnosis by an inferential decision model leading to more
accurate predictions [66]. These aspects will further support Structural Health Monitoring
(SHM) and parameter trending of critical components of any machinery, aircraft, ship,
plant, etc. [67]. This augments the Model-Based System Engineering (MBSE) [68,69] with
available tools for simulation, rehearsals, machine learning applications, etc. Vessel Traffic
Service (VTS) is also supported by MBSE-based DT solutions. For example, the Diamond
model concept proposed by Boeing Defence Company [70] illustrates the DT-based MBSE.

4.3. Dockyard and Port Facility Augmentation

Not only the sea units, but also the shore establishments are predisposed to DT with
advances in Building Information Modeling (BIM) [71] with uplifted interoperability, plan-
ning, construction, and maintenance. A vast array of sensors from the building will feed
generic data input to the façade DT of the structure, which will be processed for intended
output to control the operation, site environmental control and other ergonomics. Already
implementations are performed in Smart Home concepts [72], which are highly successful
in achieving the intended outcome. Further, Intelligent Manufacturing uses a knowledge-
driven autonomous platform, which functions with dynamic knowledge bases along with
a DT model [73]. For example, the “smartBRIDGE” project initiated by Hamburg Port
Authority, Germany, has implemented BIM-based DT to monitor the functions of the infras-
tructure and the process of extending to quay walls, locks, and other port infrastructural
assets [74]. These smart technologies will promote self-judgment, self-implementation, and
self-development in autonomous manufacturing in the shipping industry.

Similarly, the factory design framework [75] is also possible with an increase in produc-
tivity along with optimized floor utilization with modular-based DT. In such an operation,
it can be developed into a Warehouse Management System (WMS) with the ability to
customize the process as a Decision-Support Tool (DST) [76]. It can connect the different
value chains with eased-up system integration from the design, and production into the
later stages of the lifecycle of a component. In the maritime section, dockyards around the
world will be the main beneficiaries of such a DT-based solution.

Further, the DT solution will allow critical operations of a vessel operating at a far
location to be handled by the experts in a shore base in an Augmented Reality-induced
environment [77]. This can be a routine operation to critical maintenance or fabrication
task, which might require the intervention of an expert operator from a distant location.
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The Simulation and Remote Control Centre (SRCC) will perform a task beyond remote
monitoring such as crane operation in various sea conditions [78,79].

4.4. Training and Testing Support

DT can be incorporated into the training of seafarers in Full Mission Simulators,
Part Task Simulators or computer-based training systems. Part Task Simulators often
use Hardware In the Loop (HIL) based solutions with real plants operating in parallel
with a virtual platform [80]. These platforms can ensure the safety of the personnel
(trainers/trainees) along with the engagement of critical operations without endangering
expensive real-life platforms. DNV-GL is using HIL testing, integration, and optimization
of new control systems with a DT-based simulation platform and later goes for actual
production with complete runnable executable solutions [55]. Designers and equipment
manufacturers will provide and share model parts with the shipbuilder where the complete
outfit will be tested, leading to fewer errors and modifications during construction. In
their “Nerves of Steel” venture, all hydrodynamic data were also simulated in varying sea
conditions, leading to an efficient and safe hull design.

A DT model can be developed to address a specific problem, or it can be harnessed as
an open data source ready to be manipulated by human, operational and environmental
dimensions of a vessel or any other marine platform. It is a critical asset in enabling future
technological advances in data-driven operations. Even producing a surrogate model
is also possible using the original DT model, which can mimic the operation with less
computational load, achieving the intended efficiency [81].

Increasing user engagement is another advantage of a DT-based marine system. Dur-
ing the product design, the DT model can be tested to virtually test the interaction between
the operator and the physical model [65]. From that, data can be accumulated and pro-
cessed to reflect the user habits, and the same can be incorporated to improve the physical
model with naïve innovations. DT acts as a hub for technologies such as Big Data Analytics,
IoT, machine learning, simulation, modelling, etc., providing a gateway to achieve much
more complex analytical power to the operators and developers with the sensing data of the
actual physical model contrasted with simulation data and Machine Learning algorithms.

4.5. Defence & Military Assets

DT is widely implemented on naval assets such as warships, submarines, maritime
aircraft, etc. HIL testing is performed for the Naval Ship Combat Survivability Testbed
(NSCST) [82], which is a power-generating system redundancy checking simulation plat-
form in warships of the US Navy. These DT-based simulators will be subjected to Individual
Subsystem Actuators Control Tests, Multi Subsystem Integration Tests, Main Supervisory
Control Tests and User Control Tests [83]. Further, new naval air assets are demonstrated
using their DT, which is used as a tool by prospective contractors to showcase their products
to the Naval Air Command [84]. The “Spiral development project” at Pearl Harbor and
Portsmouth naval shipyards in the USA has optimized vessel trials using a new DT-based
approach [85]. New F110 class frigates developed by Navantia, Spain, used DT as an
efficient life cycle management tool to address condition monitoring, maintenance, and
casualty/damage/fault reaction [86].

BAE Systems use DT technology in their latest Archerfish Mine Neutralization Sys-
tem [87], which uses an AUV operated in a DT-based architecture to deploy
mine-countermeasure action for underwater mooring and sea bottom mines with an un-
parallel Maritime Domain Awareness. It is further capable of developing a virtual 3D
space with real ocean data such as currents, waves, and topography with real-time sensor
data, which can lead to value-based reinforced learning followed by autonomous path
planning [88]. With the support of DT technology, Maritime Domain Awareness (MDA),
mission readiness, Fleet Management and sustainment of a single Naval Force or even
multinational task forces can be easily strengthened and augmented.
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5. Developing a Ship Digital Twin Architecture

The virtues of the existing functionality of any surface vessel require a clear under-
standing of the planned design specifications along with the precise functionality of the
various components, systems, and departments of the vessel. The standard actions of any
of the existing surface vessels during her life cycle can be encapsulated in the following dia-
gram (Figure 5) [89]. These eleven general functions will vary from ship to ship depending
on the type and role of the vessel. However, these standard functionalities can be assisted
and boosted with much fidelity and robustness using a DT-based solution.

Figure 5. General Functions of a Surface Ship.

Developers of the DT are focused mainly on three user groups for the system, company,
operators, and researchers. DT will continuously communicate with the physical ship to
update its data as per the real world to support the above-mentioned stakeholders with dif-
ferent demands during the complete product life cycle. Starting from the marketing phase
of the vessel, DT will be functioning till the decommissioning stage of the ship. Designing
as per the end user requirement and validation of the design with a 3D representation of
the entire ship layout can be used extensively before the building phase.

5.1. Functional Requirements of User Groups

The DT of a fully autonomous ship will act as a complete controller of the vessel
while regular manned vessels will act as a Digital Model or Digital Shadow to maintain
the required data structure. A DT solution should be capable of performing the following
actions to provide service to the three main stakeholders: onboard crew (if present), shore
operator and researcher/engineer (Figure 6).

14



J. Mar. Sci. Eng. 2023, 11, 1021

Figure 6. Direct Stakeholders of a Ship DT System.

A ship DT should be able to replicate all the Smart Functions [34] of a digitalized
surface ship, including the following mandatory requirements:

• Structural Health Monitoring (SHM);
• Machinery Health Monitoring (MHM);
• Operational Performance Management (OPM);
• Asset Efficiency Monitoring (AEM);
• Crew Assistance and Augmentation (CAA).

Apart from the above functions, a robust communication link is to be established
between the ship and the shore operator to obtain real-time situational awareness with
complete control during the voyage. Digital images can act as a model, shadow or twin
depending on the data handshake method. DT can be utilized to monitor and maintain the
autonomous control of the vessel including self-navigation and collision avoidance. The
formidable internal verification system generated due to the DT architecture will enhance
the existing conceptual design optimization using virtual testing and intelligent process
monitoring till the finalized model is developed [90].

Since the data handled in a fully integrated DT Process Model (DTPM) will be large
and complex, therefore the model must be composed of Design Data (DD), Process Data
(PD), Process Perception Data (PPD), Historical Running Data (HRD) and Simulation
Data (SD) targeting the whole product life cycle [91]. Separate component schema for
serialization of various components can be implemented covering the asset data, analysis
and measured data of different segments of ships and can be shared among various stake
holders [92] (Figure 7). The physical and control architecture of the future ships is also
evolving each day with new concepts in improving the efficacy and efficiency of the vessels
targeting economic and emission goals. Designing, testing, validating, and implementing a
robust Digital Twin (DT) model for a surface ship will provide seamless support for the
functioning of the ship/craft to its intended operation despite being an unmanned craft or
a conventional crewed vessel.

5.2. Objectives of a Marine Digital Twin Framework

Overall, the DT framework should reflect the behavior of the vessel’s response to
the environmental inputs such as forces of waves, current, wind, temperature, etc. The
input sensors will be limited as per the requirement only with relevant design patterns
based on the target evaluations of the vessel. These design patterns for DT-based vessels
are extensively discussed by S. Erikstad from NTNU, Norway [93], based on the original
23 design patterns derived by Gamma et al. in their classic book Elements of Reusable Object-
Oriented Software in the year 1994 [94]. In this book, the following four design patterns for a
ship DT have been proposed.
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Figure 7. Overall Task Distribution of a DT-based Framework.

1. Structural Patterns: These are the main constituents of the DT package. It consists of
the Product Data Model (PDM) of the DT that is formulated along with sensor-based
big data of the vessel. The baseline is also a formulated source model derived from
physics-based model behavior. Load-based sensor data are also acquired from the
environment. The benchmark of the DT is to be designed to simulate the DT in parallel
to the ship to compare anomalies. Finally, a Machine Learning Proxy layer can also be
incorporated for DT to assist its behavior through ML rather than depending on the
standard physics.

2. Creational Patterns: This is the realization of the DT as a proxy simulation tool. It
will be a dynamic hybrid system with the ability to switch intelligently between ML
and physics as per the situation. This can be either one vessel or an entire unmanned
vessel fleet.

3. Insight Patterns: It is the layer of utilizing the DT that is operated with the ship.
Anomaly patterns will be monitoring the deviation from normal operation and reverse
analyzing to find the root cause for any abnormality in the system.

4. Computational Pattern: Designing the DT to perform efficiently with smart storage
by a high-fidelity controlled regression to avoid data misconceptions. Offloading of
data will also be performed with controlled dynamic regression offloading in physics
analysis.

5.3. Appreciating the Future Dynamics

With the recent developments pertaining to software and hardware capabilities, IoT,
Big Data Analytics, etc., the concept of DT has become a widely used technology in
almost all sectors across the globe. DT is a key model portrayed in the main development
strategies such as Industry 4.0 and Made in China 2025 (MIC 2025). The development
of the Cyber-Physical Systems (CPS) architecture to transfigure the physical model into
virtual space is a necessity to achieve the vision of the industrialists and researchers of
the above development strategies [95]. The shipping industry is an ideal platform to
utilize the positive effects of CPS in the form of DT. “Information Technology and Industry
integration” is one of the key factors in MIC 2025 and “High-Tech ships” is one of the 10 key
targeted sectors in the strategy [96]. In a similar example, the CyberFactory#1 project [97]
powered by Industry 4.0 focuses on CPC modelling with human, social and economic
dimensions. Following key technologies can profoundly uplift the system integration of
DT-based solutions.

5.3.1. Smart Port Compatibility

To create better management solutions and increase the efficiency levels of port op-
erations using DT techniques, initiatives such Smart Port or Port 4.0 [98] have become
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promising concepts. The digitalized port ecosystem will expect its stakeholders to follow
the prerequisites to obtain or deliver the services. Automation will be the key component
with supportive technologies such as IoT, AI, Smart Logistics [99], Blockchain port oper-
ations [100], DT, etc. With a similar intention, the “European Commission Roadmap for
Waterborne Transportation Development Action Plan” [101], which was formulated in the
year 2019, strives towards the implementation of a digitalized smart port concept with
the ultimate goals of improving the safety, security, efficiency, environmental soundness,
transparency and improvement in workforce factors in present port systems. The United
Kingdom, in their long-term strategy Maritime-2050, has also emphasized the ambitions of
digitalization of ports in the process of moving towards Smart Ports [102].

As the terminology itself portrays the correlation, Smart Ports will always be re-
quired to accommodate smart ships. Both systems will function hand in hand in energy
management, navigation, communication, resource sharing, safety and security, marine
environment conservation, intelligent awareness of each side’s strengths/limitations, etc.
Necessary historical data and real-time data are to be shared at both regional and global
levels. DTs of both ship and port will be able to function as the bridge between two
smart systems.

The Port of Rotterdam in the Netherlands has already taken the initial step in adopting
DT technology by establishing a sensor array using IoT technology and obtaining real-time
mission-critical hydro and weather data for port operations. It obtains tidal data, salinity,
wind speed, and direction from a combination of 44 sensors and analyzes them along with
prediction models to provide complete digital visibility to the port control station [103] and
upbringing data to support the port governance and inter-port collaboration scheme [104].
The Port of Antwerp in Belgium is also adding digitalized concepts for its operations. Apart
from the functioning the level DT model, digitalized radar infrastructure port control is
assisted by an autonomous network of drones to assert domain awareness, spill/waste
detection, firefighting tasks, etc. [105]. Further, Adelaide Port in Australia has optimized
its container handling capacity by using AI-powered smart functions in the planning and
utilization of assets in the terminal [106]. The TwinSim project at Hamburg port, Germany,
is also underway to achieve 3D visualization of the port functions in collaboration with
sensor data and AI [107]. However, the safety, physical security and cyber security of
the smart port system [108] will be an utmost concern and a challenge, where a single
deviation/disruption can halt the entire operational flow.

With the current trend of port digital extension, future ships may be mandated to
operate with smart functions along with a DT to maintain compatibility with the DT of the
smart ports. The transformation from regular to digital will require successful meta-level
organizational alignment with strategic coalitions of stakeholders [109].

5.3.2. Incorporating Augmented Reality and Virtual Reality

Augmented Reality (AR) based applications are playing a pivotal role in the digitaliza-
tion process, where the number of operations can be enhanced with AR-based solutions.
It can be used as a presentation tool where interactive interfaces are utilized to visualize
three-dimensional geometries and function as a supporting tool in executing the work while
minimizing the errors incorporated in the manual process [110]. Additional information
along with the Standard Operating Procedure (SOP) can be superimposed to provide more
guidance to the operator to perform the designated task. The author can specify the linkage
between the geometries of the component and metadata including the drawings, plans,
documents, and other service instructions supporting the execution of the relevant process.
In this methodology, a camera tracks the base object while feeding the user interface with
virtual images, objects, and texts of relevant data [111]. AR-based service instructions
can assist heavily in the application of CAA in the functioning of the smart functions
onboard. At present, simulations play a vital role in the design decisions and validating
of components/systems in the design, engineering, operation, and service phases of a
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product. DT-based AR functions realize all the aspirations of a seamless development of
any critical product.

Virtual Reality (VR) is also a formidable domain that has stormed the digitalization pro-
cess with its superior merits to the traditional 3D-based systems in providing more versatile
information and interaction. It has already been utilized extensively in the shipbuilding
industry with loaded CAD models in virtual environments with the facility to interact with
them. A high-fidelity DT model will further allow virtual prototyping [112] in reducing
the cost incurred during the validation and testing phases of any new vessel. Assigned
controller buttons are used to navigate within the virtual environment while manipulating
the model with incorporated control modes. Traditional Marine Engineering Systems
(MES) with 2D interfaces are replaced by these naïve simulation/user interfaces with much-
improved geometric modelling procedures with model integration with optimizations,
general arrangement, equipment specifications, etc. [113]. Head-Mounted Displays (HMD)
with room-scale tracking will allow the user to control the model within the 3D space
along with motion-tracking handheld controllers. Eye tracking is used with interactive 3D
screens in smaller applications while Cave Automatic Virtual Environment (CAVE) creates
an immersive VR experience using projectors set to the entire room. These are used for
training purposes due to cost concerns and the inability to produce high-definition output
for real-time applications.

5.3.3. Artificial Intelligence

Artificial Intelligence (AI) will play a huge role in the development of DT in marine
applications. Machine Learning (ML) has become a key component in AI-based systems
in industrial applications. In a DT-based solution, the processing of large data sets can be
incorporated with ML to reduce user participation in the training of the model. It can further
conduit AI with Human Intelligence with effective integration processes in aspects such as
remote sensing, social sensing, crowdsourcing, and analytics of the DT paradigm [114]. The
positivity of AI algorithms can be easily integrated into the DT model with Deep Learning
(DL) techniques. Diagnostics and predictive forecasting can be incorporated into the DT
with its neural network with a deep network from the acquisition of data to the training of
the final algorithm [115].

At present, applications of AI along with DT include Aerospace Industry, Driverless
Automobiles, Intelligent Manufacturing, Smart City, Smart Home technology, etc. For
example, real-time decision-making for pilots and Air Traffic Controllers (ATC) can be
assisted by the AI-infused DT model in multiple scenarios with the aid of automation of
various actions involved. It further supports collaborative decision-making in demanding
situations with the ultimate aim of reducing the human factor in aviation operations [116].
To increase the operational readiness, availability and safety of UAV operations, an Internal
AI-based meta-analysis system is incorporated with a communication data link to a ground-
based DT model [117]. All these approaches are relevant to maritime applications, which
demand similar navigation, control, communication, and operational requirements.

Self-driving cars with AI algorithms are already being used to minimize traffic ac-
cidents, increase fuel efficiency and ease driving including disabled personnel. For this,
DT is essential to minimize failures and improve the ergonomics such as the Advanced
Driver Assistance System (ADAS) in the Tesla Model-Y autopilot system [118]. Trust in
these automated systems will improve with the system development process adopted by
Tesla using the AI-based models implemented by the company. These individual DTs will
form a city-level DT network, which can be incorporated for various environmental, traffic,
legal and any other deemed administrative process. In a space engineering breakthrough,
autonomous cognition in spacecraft is achieved using a DT-based on-orbit data analysis
system. It enables the satellite to perceive its self-state in real-time with changing environ-
ment [119]. Similarly, marine applications also can be powered by AI within the designated
DT architecture for autonomous operation with self-navigation, diagnostic and forecasting
requirements, etc.
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Similarly, a study by Heuijee Y. developed a simulation technique of the object detec-
tion, avoidance and lane detection algorithms in these AI-based vehicles using the online
game GTA5 as a low-cost self-driving replication platform [120]. For these smart vehicles,
highway traffic mapping and modelling can be done through 3D GIS-assisted DT with
multi-domain scale modelling [121]. A similar approach can be manipulated using a ship
simulator as a base platform to generate an AI-based self-navigation solution within the DT.

5.4. 4-Layer Digital Twin Framework for a Marine Vessel

From the initial contract of a ship until the final scrapping after decommissioning of
the vessel, she will undergo various lifecycle phases with different actions in each stage.
It will be governed by the functional requirements of the different stakeholders and Ship
DT can provide valuable insights to support each activity in her design and development,
validation, production, operations, and decommissioning stages. During the total lifespan
of a ship, it will surpass the actions of marketing actions, the realization of the customer’s
intended design, optimization of the designed model using various physical/simulated
methodologies, monitoring the entire functionality during her operational phase with
correct control of all the actions, prognostics, diagnostics, predictive maintenance, etc. The
DT of a marine vessel can deliver and support all the actions with the merits of its inherent
advantages. Hence, the following 4-layer DT framework (Figure 8) is proposed in this
paper with abstracted segments of Business, Tactical, Application and Operational Layers.

Figure 8. Proposed 4-Layer Ship DT Framework.

1. Business Layer: Initial specifications and ship owners’ requirements will be met
with the design, marketing and business analytics performed with the support
of the DT. Simulation and validation of the prototype will be efficient and effec-
tive with the incorporated DT model and all information will be shared with the
project team of the shipbuilder, allowing easy project management through a modular
shipbuilding approach.

2. Tactical Layer: This will be mainly manipulated by the onboard crew if present or
by the shore operator if unmanned during the operational phase of the vessel. With
Integrated Platform Management System in the DT with real-time health monitoring,
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navigation, communication, traffic control, load control and other ship functions will
be governed with the support of DT with full integration of the ship’s systems.

3. Application Layer: This is the primary segment of handling the collected data within
the ship, shore command center, and ocean environment. Big data handling and cloud-
based operations will heavily rely on the communication data uplink and downlinks.
Artificial Intelligence will play a major part in future unmanned autonomous vessels,
thus providing the advantages generated by higher levels of autonomy in the opera-
tional cycle. Machine Learning/Deep Learning can be incorporated as sub-layers in
this process.

4. Operational Layer: This is used at the functionality level of the shore operators and
system engineers to support their intended operational plans and strategies. The
acquired data through the DT can be deeply analyzed and manipulated in decision-
making related to every life cycle phase of the vessel. Supply chain management,
CBPM and system development will be key benefits that will be availed through the
ship DT in this layer.

The above framework is proposed as a common generic architecture and it can be
easily modified, transformed, and adopted as per the user requirements. DT will be
available for every patron in the hierarchy of ships operation with dedicated access to the
intended data and information. A DT of any ship or offshore structure will be designed to
render its present state and behavior with real-time updates in a continuous manner. This
update will not only be limited to the data handshake, but also the continuous addition
of parallel components to support different functions introduced in different stages of the
vessel lifecycle. It will be identical to the physical asset cardinality covering all functions
representing the engineering model with all possible metadata in the real-time state.

6. Scientometric Analysis of Digital Twin in the Maritime Domain

In this study, a scientometric analysis is performed with complete insight into the DT
technology and to obtain a better approach to the past research work. This critical analysis
and reflection will formulate recommendations with a complete mapping of available
literature to visualize the pathways of previous work.

6.1. Methodology and Tools

It is thoroughly synthesized to obtain the exact outcome of the dataset derived from
the large database obtained from Web of Science (WoS) [122] and refined the scientometric
indicators to obtain the intended research data. In this study, the WoS inbuilt analytical
tools were also used to provide a basic overview of the selected database of past research
with a graph-based visualization. To obtain the visual analytics of the data set, computation
tools of CiteSpace and VOSviewer are used in understanding how DT has evolved over
the past passing intellectual turning points that are evident along the critical path, and
the topics have attracted attention, thus synthesizing the development of DT closely and
extensively [123,124].

Using the two analytical software, the database obtained from WoS is analyzed to
generate the outcomes such as top authors, articles, journals with emerging literature,
development, the impact of collaboration and intellectual dynamics to understand the vast
subject area of DT in the maritime domain (Figure 9). In this study, research publications
available in WoS Core Collection were considered from the years 2002 to 2022 (20 Years) as
the DT concept was initially brought out in the year 2002. This comprehensive database
includes all dominant journals and publications including IEEE Explore, MDPI, Elsevier,
Springer, Emerald, Wiley online library, Taylor & Francis, etc.
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Keywords were selected based on the target data set using required Booleans as stated
below. The search was performed in WoS Core collection targeting the documents with the
search equation of

TS = {(DigitalTwinORDigitalizationORDigitalThreadORDigitalImage)AND
(MarineORMaritimeORShippingOROffshoreORSeaOROceanOR
PortORHarbour)}

Search results provided 955 multilingual publications related to the above-narrowed
research area targeting the exact timespan (Table 1).
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Table 1. Documents Extracted in Search Results of WoS Dataset.

Sr No Document Type Record Count Percentage %

1 Articles 650 79.075
2 Meeting 234 28.467
3 Other 32 3.893
4 Reviews 26 3.163
5 Early Access 13 1.582

Based on the search results, visualizations of (1) Publication History Analysis,
(2) Countries/Region Analysis, (3) Authors Contribution Analysis, (4) Cited Authors
Analysis, and (5) Keyword Analysis were carried out using the analytical tools available in
WoS, VOSviewer and CiteSpace. Respective analysis data and logical discussion against
each step of the scientometric analysis process are described below.
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6.2. Analysis of the Dataset
6.2.1. Publication History Analysis

The 955 publications found in the WoS dataset were analyzed and visualized based on
the published year of the article chronologically. Starting with 14 publications in the year
2002, the number of articles published in the year is 231 records in 2022 with a percentage
value of 24.2% of the bulk. It is 137% more than the previous year (2021), and the trend is
set towards more increments in the coming years (Figure 10).

Figure 10. Publication Years-DT in Maritime Applications in WoS Analysis.

When we critically examine the holistic picture, we can observe the rapid increase
in publications during the last five years, which indicates the blooming of DT technology
within the maritime sector. From the year 2002 until the year 2017, an almost similar
annual number of research articles have been published, but the same year has marked the
takeoff year for the current trend. In the early years, very few publications originated, and
these statistics may have been affected by the deficiencies of technology and knowledge
gaps in early developments. Even the COVID-19 pandemic period has not affected the
steep increment of the number of publications which have been launched from the year
2018. A similar trend line can be observed in similar studies performed by researchers
on the DT applications and surrounding technologies in different disciplines such as in
the manufacturing domain [125], business analytics [126], etc. Hence, the existing trend
suggests more research work related to maritime DT concepts is underway and being
published at present.

6.2.2. Analysis of Countries/Regions in Research Contribution

Figure 11 indicates that China has been the key stakeholder of research in DT towards
the maritime industry with a 26% share of publications, whereas the USA is ranked second
with 133 publications. Further, Europe has contributed a considerable impact on the
scientific research of DT. With the ongoing research trend and industry innovations, many
other regions of the world will also expect to produce more impact on the fast-growing
technology. The concept of DT is still evolving with the latest technological inductions in
the maritime domain, which has opened opportunities mostly for developed nations to
conduct research and development of DT technology in the marine sector and produce
good results over the past two decades.
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Figure 11. Contribution of Countries Towards DT in Maritime Applications in WoS Analysis.

6.2.3. Authors’ Contribution Analysis

A comparison of the authors was performed considering the number of records in the
database of the specific field with an insight into their corresponding profile (Figure 12).
It is comprehended that “Rodriguez-tovar FJ” with 24 publications is the leading author,
and the second author, ”Dorador Jr”, with a strong link with the No. 1 author in the same
cluster, has published 17 records. “Corigliano P” (5 articles), and “Gonzalez-cancelas N”
(5 articles) are in the 3rd and 4th position, respectively. Following the recent trend in DT
adoption, more contributions are expected at a rapid rate in the following years from the
research community.

Figure 12. Authors’ Contribution on DT in Maritime Applications.

Very little collaborative research is found among leading authors in the selected
dataset as illustrated in Figure 13, where Rodriguez-Tovar and Francisco J. have the most
collaborative publications. Since DT is a new-born concept for the maritime domain, it is
observed that less cooperation is visible among the leading researchers. The major bloom
started after the year 2017 and was succeeded soon by the COVID-19 pandemic. Due to
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the inflicted health risks, facility outreaches, travel restrictions and association barriers, the
collaboration between the researchers must have had a negative impact on undergoing
combined and collaborative research works. As we are now witnessing the probable end of
the pandemic, more collaboration is expected among the research community towards the
development of DT technology in the global maritime sphere.

Figure 13. Authors’ Collaboration on DT in Maritime Applications.

6.2.4. Cited Authors Analysis

The impact of the respective authors and the collaboration efforts is studied using
the citation data (number of citations, citation numbers, citation bursts, centrality, etc.)
derived using the CiteSpace analytics. The achieved data are depicted in Figure 14. There
are 7 different clusters with varying silhouette values, and all can be considered reasonable
depending on the value. Van D is found to be the highest-cited author with 76 citations for
his publication, while Doradore J remains in second place with 24 citations.

Figure 14. Visualization of Highest Cited Authors in Respective Clusters with a Threshold of 5.

24



J. Mar. Sci. Eng. 2023, 11, 1021

Further, five references have achieved the strongest citation burst in their respective
years, while Hodell D achieved the highest rate (strength 3.81) for his record published
in 2013 and the burst commenced in 2014 and ended in 2016 (Table 2). The co-citation
reference network visualized by VOSviewer indicates the development of the concept over
time and 6 major clusters of collaborative research work within the timeframe from 2014 to
2022 (Figure 15).

Table 2. CiteSpace Analysis Output for Publications with Strongest Citation Bursts.

References Year Strength Begin End

Hodell D, 2013, SCI DRILL, v16, P13, DOI 10.5194/sd-16-13-2013 [127] 2013 3.81 2014 2016
Dorador J, 2014, MAR GEOL, V349, P55, DOI 10.1016/j.margeo.2014.01.003 [128] 2014 3.28 2015 2018
Sutton M,2009, IMAGE CORRELATION FOR SHAPE, V0, P0 [129] 2009 3.93 2009 2020
Rodriguez-Tovar F, 2015, ANN SOC GEOL POL, V85, P465 [130] 2015 3.2 2015 2020
Sanchez-Gonzalez P, 2019, SENSORS-BASEL, V19,P0,DOI 10.3390/s19040926 [131] 2019 3.56 2019 2022

Figure 15. Co-citation Reference Network in the Timespan of 2014 to 2022 with 6 Main Clusters.

6.2.5. Keywords Analysis

Research subjects are often generated and influenced by the coexistence of the key-
words amongst various publications making a deliberate trend for parallel research bases.
CiteSpace keyword analysis was performed on the exported WoS database and the follow-
ing visualization with highlighting of the prominent nodes indicating the highest counter
and centrality (Figure 16).
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Figure 16. CiteSpace Top-50 Keyword Visualization with Top-10 Timeline Nodes.

It is observed that the frequency burst of most of these keywords occurred from 2016 to
date, indicating the recent and ongoing research prominence among the research commu-
nity. These keywords can provide an overview of the current trending research work within
the maritime domain. Further, the available timeline view in CiteSpace brought up the pro-
gression of DT in the marine sector with the initial step of “Digitalization” (#0-First Node)
leading the pathway passing cluster titles such as “digital image correlation”, “remote sens-
ing”, “automatization”, “port digitization” and finally to “Digital Twin” (#9-Ninth Node).
This further provides substantial validation to the pathway of implementing DT technology
within the maritime domain as discussed in the articles from initial digitalization, smart
ports towards the final implementation of DT technology.

6.2.6. Results and Discussion

It is an evident fact that DT has had a slower beginning from its inception in the year
2002 up to the year 2017, but it has been thriving with major applications/achievements
among researchers around the world. The present trend in publications related to DT
technology in the maritime sector is following an exponential increment, which is also
a promising factor in generating innovative avenues for the future industry. Further,
the published data originated from almost all regions of the world, which emphasizes
the attention received from the research communities around the world. The leading
researchers are highlighted in the analysis along with the trending keywords within the
highlighted domain, which will give insight to new researchers for their follow-up actions.
Although cross-border and cross-discipline research work has occurred less in recent
years, more collaborative research work is expected along with the easing of COVID-
19 pandemic-imposed restrictions, which will generate a more positive impact on the
progression of technology.
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7. Challenges and Future Developments in Marine Digital Twin Technology

DT is at the infancy stage when it comes to implementation in the shipping industry.
Limited research is conducted and implemented in projects compared to other industries
such as aerospace, manufacturing, agriculture, construction, city planning, etc. The effec-
tiveness of the Cyber-Physical Fusion [132] will be another key encounter. The following
salient points can be prominently identified as the bottlenecks posed to the progression
and implementation of this naïve technology within the maritime sector.

• Lack of necessary infrastructure within the existing maritime industry.
• Lack of software and hardware skills among various levels of stakeholders.
• Limited connectivity due to data transmission restrictions at sea.
• Communication barrier between the underwater vehicles (Submarines and UAVs)

with the shore-operated DT.
• The reluctance to transition to digital systems from long-used manual hardware platforms.
• Knowledge gap of the DT technology and benefits reaching the industry as mostly

academia is engaged in the research and development stage.
• Lack of research collaboration among key researchers/institutes.
• Technology readiness is lagging while concept development is at full throttle.
• Data security complications in dealing with confidentiality, non-repudiation,

and authentication.
• Large data handling barriers in data retention, accessibility, and visualization.
• Very limited research has been conducted on the functioning of DT in the retir-

ing/decommissioning phase.

With the known limitations highlighted above, DT has recently emerged as one of
the most powerful tools with the aid of high-tech computational resources, AI functions,
Big Data Analytics, etc. Thus, the same is being vastly adopted by academia, industry,
and research organizations. In the maritime domain, one of the most critical aspects is
communication, which is a mandatory prerequisite for any DT-based system. The data
link between the onshore, offshore, or underwater physical model with the DT is to be
established with continuous synchronization. With the development of satellite links and
shore-based networks for coastal navigating vessels, DT is becoming much more practical
for real-time implementations. Comprehensive data exchange and a model-based review
process are to be inducted into existing manual operations. It will enable achieving a full
Model-Based Definition (MBD) [133], which is mandatory in the DT implication process.
However, a Digital Shadow or a Digital Model is a possibility by updating the digital
image manually or whenever the communication link is established. A collaborative data
handshake is mandatory with a cohesive data network accessed by all stakeholders [94].
Missing data or faulty data due to sensor failures can create an entire system failure in
a DT-based system. This data should be coherent without any disparity to function in
DT modules with the ability to unify the data among the cooperating partners. Further,
most industries pose scattered ownership of data and the same are maintained in different
formats, interfaces and software [134]. Unification and standardization of these mandatory
data policies in DT can be a challenge.

Furthermore, with the development of more robust underwater communication tech-
nologies, in the future, DT solutions will come into play with automated submarines and
other underwater applications. DT-based solutions will be able to overcome the communi-
cation gaps in AUV operations incorporating continuous research and development will be
the key to imposing a complete transition from existing obsolete platforms to DT-based
suits within the maritime industry.

It has been evident from the literature survey that DT technology has tremendous
potential across various segments in the maritime domain and despite being in its early
stages of implementation, worldwide research and development efforts are underway.

Currently, DT technology is primarily used for monitoring and simulation in the
maritime domain, but its usage is expected to expand to other areas such as predictive
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maintenance, asset management, and decision-making. As the maritime industry shifts
towards interconnectivity and collaboration, it is believed that DTs will play a crucial role
in supporting and enhancing these efforts. In particular, the integration of DT technology
with ASVs/AUVs is poised to play a significant role in connecting to future smart functions
utilized by various stakeholders in the industry. AI is expected to be a key component in
the DT functionality, where the least human intervention will be made possible in operating
complex scenarios. Thus, the future of DT technology in the maritime domain is very
bright, with continued technological advancements and increasing adoption expected in
the coming years.

8. Conclusions

In this study, a comprehensive literature review has been performed to explore the
applications of DT technology within the maritime domain. Since its introduction in the
early 2000s, DT technology has progressed at a slower pace due to the absence of necessary
components such as hardware, software, remote sensing techniques, cloud computing, big
data analytics, digital manufacturing architecture, and satellite communication facilities.
Despite the limited implementation of DTs in real-life projects during the early years of the
millennium, the recognition of its capabilities and potential has led to its increasing adop-
tion in the manufacturing and service sectors of the maritime industry. With the abundance
of computational resources and recent emergent trends in AI-based technologies, DT is
likely to become an effective solution for validating state-of-the-art designs in a virtual envi-
ronment, resulting in significant time and cost savings. Many projects are already underway
in many parts of the world to acquaint the existing operations with DT-based solutions
in designing, monitoring, manufacturing, training, testing, simulations, etc. Based on the
bibliometric study performed using scientometric analysis, it can be deduced that there is
a growing trend of incorporating DTs into maritime operations as the industry becomes
increasingly digitized and electrified. The proposed four-layer ship DT framework in this
study has compiled and deduced these necessities to be addressed within the maritime
sector and can be utilized as a base model in designing a comprehensive DT architecture
covering the life cycle of a ship. The majority of the DT projects in the maritime sector
are still in the developing stage with limited research work/data available on the subject.
However, by observing the current bloom in technology and research trends on DT-based
systems, it can be concluded that the potential of DT will revolutionize the maritime sector,
especially the shipping and offshore engineering sectors with expected major outcomes in
achieving high-tech-based design, development, manufacturing, and operations.
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Abstract: In this paper, a finite-time, active fault-tolerant control (AFTC) scheme is proposed for a
class of autonomous surface vehicles (ASVs) with component faults. The designed AFTC frame-
work is based on an integrated design of fault detection (FD), fault estimation (FE), and controller
reconfiguration. First, a nominal controller based on the Barrier Lyapunov function is presented,
which guarantees that the tracking error converges to the predefined performance constraints within
a settling time. Then, a performance-based monitoring function with low complexity is designed
to supervise the tracking behaviors and detect the fault. Different from existing results where the
fault is bounded by a known scalar, the FE in this study is implemented by a finite-time estimator
without requiring any prioir information of fault. Furthermore, under the proposed finite-time AFTC
scheme, both the transient and steady-state performance of the ASV can be guaranteed regardless
of the occurrence of faults. Finally, a simulation example on CyberShip II is given to confirm the
effectiveness of the proposed AFTC method.

Keywords: fault-tolerant control; guaranteed performance; model uncertainties; autonomous surface
vehicle; active fault-tolerant control

1. Introduction

In recent years, significant progress has been made in the field of marine autopilots,
which has attracted a great deal of attention. An important area of research in this field
is the control of autonomous surface vehicles (ASVs). The ability of ASVs to operate in
remote and hazardous areas, coupled with their advanced sensing and control capabilities,
make them valuable assets for various applications in the marine, research, and exploration
industries. Numerous successful results have been developed for the control of ASVs,
such as [1–7]. The authors of [1,2] presented a comprehensive literature review of the re-
cent progress in ASVs’ development, and highlighted more general challenges and future
directions of ASVs towards more practical guidance, navigation, and control capabilities.
Common issues encountered in ASV control include trajectory tracking [3–5], formation
control [6], and cooperative target tracking control [7]. These positive results have led
to widespread applications of ASVs in marine environments, encompassing complicated
tasks such as ocean forecasting, surface inspection, and pipeline tracking. However, The
presence of unpredictable factors such as rough waves, strong currents, and changing
weather conditions can adversely affect the performance and integrity of the ASV system.
specifically, the intricate and dynamic nature of the surface environment poses signifi-
cant challenges to the reliable operation of various components within the ASV system,
including sensors, actuators, and controllers. This complexity substantially increases the
susceptibility of these components to potential malfunctions [8]. Furthermore, the repair of
these components during operation is impractical [9]. This introduces significant safety
risks for ASVs, making safety control a primary concern in fulfilling the vehicle’s mission.
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It becomes crucial to develop robust and resilient designs that can deal with these envi-
ronmental risks and ensure the continued functionality of ASVs in demanding marine
conditions. Confronting this challenge, fault-tolerant control (FTC) methods have been
proposed to enhance the safety and reliability of ASVs, maintaining stable operation and
eliminating the effects of system malfunctions [10–14].

Fault-tolerant control schemes are classified as passive fault-tolerant control (PFTC)
and active fault-tolerant control (AFTC), depending upon the utilization of fault detection
and diagnosis module and the implementation of redundancies [15]. In PFTC methods, a
fixed controller was designed that maintains the stability and performance of the control
system during both normal and faulty operating situations [16–18]. The fixed controller
is pre-designed with system redundancies which can be invoked, such as switching to
backup components or adjusting operational parameters to compensate for the fault. PFTC
approaches can ensure that the control system remains stable and performs well even in
the presence of faults, without requiring any significant changes to the control structure.
In an AFTC system, the controller reacts to malfunctions in system components through
the controller reconfiguration, guided by detection information generated by the fault
detection (FD) module. Once a fault is detected, the AFTC scheme determines the most
effective strategy for maintaining system stability and performance. For the controller
reconfiguration, the AFTC system dynamically adjusts the control parameters, modifies
the control laws, or redistributes control tasks among redundant components to eliminate
the effects of the fault. In comparison, PFTC methods are typically simpler to implement
and require less computational resources than AFTC techniques, making them a practical
solution for the control system. On the other hand, AFTC methods are more complex and
computationally demanding compared to PFTC methods but can offer greater flexibility
and adaptability in responding to faults. By actively reconfiguring the control, AFTC
techniques can effectively overcome faults and maintain system functionality, making
them suitable for applications where immediate fault response and system optimization
are critical.

As a result, AFTC schemes have attracted significant attention in research and en-
gineering applications due to their flexibility and accuracy [19–21]. In [19], the authors
proposed a distributed AFTC approach for satellite formation flying attitude control, where
sensor errors can be diagnosed by nonlinear observers and static approximators. A novel
AFTC scheme was proposed in [20] for uncertain fully actuated systems using the inte-
grated integration structure with observer and controller to reveal the model characteristics,
which include faults and uncertainty. In [21], an observer-based AFTC algorithm was
designed for spacecraft with full state constraints, and the fault diagnosis was implemented
by a linear matrix inequality (LMI)-based robust fault observer. Nevertheless, despite the
advantages offered by AFTC methods, there are some issues with the aforementioned
studies that require further investigation: (1) The utilization of an ideal data model in the
FD makes it difficult to adapt and implement in real systems, and (2) the convergence
time of the fault observer has not been considered to ensure the accurate and efficient
estimation. Consequently, there is a pressing need to develop an AFTC scheme integrating
implementable FD and precise fault estimation (FE) to guarantee the reliable tracking
control of ASVs.

As a critical component of AFTC systems, FD has garnered significant attention
in recent years, and researchers have published various meaningful results [22–24]. The
integration of FD mechanisms plays a crucial role in enhancing the reliability and robustness
of control systems, especially in the presence of component faults. By accurately identifying
faults, the control systems can effectively adapt their control strategies to mitigate potential
disruptions and ensure safe operation in dynamic environments. In [24], the authors
introduced a robust FE strategy that relies on residual generation and evaluation modules.
This approach enables the identification of fault occurrence, characteristics, and severity by
analyzing input and state information. When the residual evaluation function surpasses the
predefined threshold level, a fault is detected, triggering the generation of an alarm signal. It

35



J. Mar. Sci. Eng. 2024, 12, 347

is worth mentioning that disturbance observation (DO) algorithms can provide many ideas
and references for FD because of the similar uncertainty characteristics between disturbance
and component fault. Until now, the control of surface and underwater vehicles has shown
a wider range of achievements with DO as opposed to FD [25–27]. In [26], a fast estimation
method was developed to assess the real-time evolution of wave disturbances acting on
a vehicle and verified by incorporating the predicted loads within a Model Predictive
Controller. An integrated deterministic sea wave predictor was proposed for underwater
vehicles in [27], demonstrating high potential to effectively mitigate disturbances and
facilitate accurate tracking performance even in the presence of high wave loading. These
results offer valuable insights for the development of FD design. For example, an interval
observer was constructed in [28] to detect and isolate the faults in multi-agent systems
by generating the residual signals and implying the thresholds. In [29], the faults were
detected by an adaptive interval observer, and isolated by a set of interval observers.
However, ASVs operate in complex marine environments and are inevitably subject to high
operational risks, failure types cannot be identified, and certain bounds of faults cannot be
given. Although many scholars have devoted themselves to design thresholds and estimate
the faults, the fault detection for ASV systems is still an open research problem.

From a practical perspective, the primary responsibility of ASVs is to maintain track-
ing performance, and fulfill their designated tasks accurately, reliably, and adaptively. To
address this, several advanced control techniques have been employed in recent studies.
These studies, referenced as [30–34], have explored different control strategies to enhance
the tracking capabilities of ASVs in terms of accuracy, stability, and adaptability, enabling
them to fulfill their tracking responsibilities effectively. Transient (convergence rate, over-
shoot, and undershoot) and steady-state performances are important performance metrics
that should be considered for control systems. Considering these performance metrics
is essential in evaluating the effectiveness of control strategies. For this purpose, a novel
control method known as prescribed performance control, introduced in [35], has achieved
plenty of positive results when applied to multiple control systems [36–38]. Prescribed
performance control focuses on achieving specific performance objectives while ensuring
robustness against uncertainties and disturbances. Due to this property, prescribed perfor-
mance control algorithms have been designed for surface vessels in [39,40] to achieve the
assigned trajectory mission. Building upon the concept of [35], a novel concept known as
finite-time performance function (FTPF) was presented in [41], which achieves finite-time
convergence while ensuring the transient and steady-state performances. An FTPT-based
fuzzy adaptive controller was developed in [42] for the trajectory tracking problem of
multiple input multiple output nonlinear systems to ensure the tracking error has the pre-
defined performance in finite time. In [43], the FTPF was utilized to design an air–ground
cooperative consensus control scheme by integrating with the fixed-time scheme, which can
guarantee the predefined time and given formation performance simultaneously. However,
maintaining and restoring the guaranteed performance becomes more notably challenging
when faults occur in ASVs. Therefore, it is significant to develop an AFTC scheme for
ASV that can both detect faults and maintain predefined performance, while ensuring
safety and reliability in the whole operating process. However, when faults occur in ASVs,
maintaining and restoring the guaranteed performance becomes notably more challenging.
Therefore, it is crucial to develop an AFTC scheme for ASVs that can detect faults and
maintain predefined performance while ensuring safety and reliability throughout the
entire operating process. By integrating the FTPF with the AFTC scheme, it is possible to
achieve both predetermined performance objectives and fault tolerance capabilities in ASVs.
This integration allows for effective tracking and control of ASVs, even in the presence of
faults or disturbances.

Motivated by the above discussion and observation, in this paper, we aim to develop
an AFTC scheme for ASV with a predefined finite-time tracking performance guaranteed.
By incorporating the FTPF and Barrier Lyapunov function, a nominal controller is proposed
to maintain the performance under normal conditions, and a fault monitoring function
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is obtained to achieve fault detection in time. Once the fault is detected, a reconfigured
controller with a finite-time estimator is employed to ensure the predefined performance
is guaranteed all the time. The main characteristics and contributions are summarized
as follows:

(1) The paper makes the first attempt to develop an integrated FD, FE, and FTC framework
for ASV. Through the utilization of transformed performance constraints, a monitoring
function with low complexity is formulated to supervise system behavior and facilitate
fault detection. This approach eliminates the need for intricate threshold calculations
as seen in existing works such as [44–46].

(2) The concept of FTPF is first introduced to solve the fault-tolerant problem of ASVs. A
nominal controller and a reconfigured controller are proposed by integrating the FTPF
and Barrier Lyapunov functions. Using the proposed controllers, the tracking errors
are guaranteed within a specified performance metric in a settling time.

(3) To enable efficient controller reconfiguration, a finite-time estimator is designed
to accurately estimate uncertainties and faults. In comparison to previous works
such as [20,21,44], the proposed estimator does not require a priori knowledge of the
upper bound of the fault.

The remaining part of the paper is organized as follows. In Section 2, the system
modeling and essential knowledge are introduced. The nominal controller and the recon-
figured controller design process are given in Section 3. In Section 4, the simulation result
is presented to illustrate the effectiveness of the designed controllers. The conclusion is
clarified in Section 5.

Throughout this paper, the following notations are adopted. R is the set of all real
numbers, and Rn represents the Euclidean space with dimension n. For a vector x ∈ Rn,
xi(i = 1, 2, . . . , n) means the corresponding ith component of x, λmax(x) and λmin(x) mean
the minimum and maximum eigenvalues, respectively. | · | denotes the absolute value of
a scalar, ‖ · ‖ denotes the Euclidean norm of a vector, diag(·) is a diagonal matrix. In×n
denotes an identity matrix of dimension n.

2. Problem Formulation and Preliminaries
2.1. Problem Statement

The standard three degrees of freedom (DOF) model of the ASV under two right-hand
coordinate systems is considered, as illustrated in Figure 1. According to the trajectory
tracking mission of ASV, the nonlinear motion equation of the vehicle in the horizontal
planes can be described as

η̇ = R(η)ν,

Mν̇ + C(ν)ν + D(ν)ν + d(t) = τ + τd,
(1)

where η = [x, y, ψ]T ∈ R3 describes the position and yaw angle of the vehicle represented
in inertial coordinates, and ν = [u, w, r]T ∈ R3 is the surge, sway, and yaw velocities
represented in body-fixed coordinates. The rotation matrix between two coordinates is
expressed by

R(η) =




cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


. (2)

For simplicity, R(η) is denoted as R in the following. It can be found that the determinant
of (2) is positive, so R is invertible. The matrix M = MT ∈ R3×3 denotes the inertial matrix,
C(ν) ∈ R3×3 describes the Coriolis and centripetal matrix, D(ν) ∈ R3×3 represents the
nonlinear damping matrix, d(t) ∈ R3 denotes the unmodeled dynamics, and τd ∈ R3 is
the unknown disturbance from wind, wave, and marine currents. The control forces and
torque are given by τ ∈ R3.
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Figure 1. ASV model with two right-hand coordinate systems.

Using the conversion relation between η and ν, we have

η̇ = Rν⇔ ν = R−1η̇

η̈ = Ṙν + Rν̇⇔ ν̇ = R−1(η̈ − ṘR−1η̇).
(3)

Based on (3), the ASV model (1) under the fault-free condition is rewritten by

η̈ =ṘR−1η̇ − RM−1(C(η, η̇) + D(η, η̇))R−1η̇ + RM−1τ + RM−1(τd − d). (4)

The challenging operating conditions of ASVs increase the possibility of malfunctions
in sensors, actuators, and controllers. In this paper, fault represents a state where a system or
component does not meet its intended function or performance requirements. Specifically,
a component fault refers to a failure or malfunction of an individual component within a
control system, such as a sensor, actuator, controller, or any other hardware or software
element involved in the control process. According to [20], the bias component faults can
be modeled as fa ∈ R3, satisfying supt∈[0,∞] ‖ fa‖ < ∞ and supt∈[0,∞] ‖ ḟa‖ < ∞. In practice,
it is challenging to determine the upper bounds of component faults due to the complex
failure modes of ASVs. According to [47], the possible transition from the fault-free case
to the fault case is unidirectional. Furthermore, we also assume that the fault occurred
once during operation. Then, the faulty ASV model with the general component fault is
considered as

η̇ = R(η)ν,

Mν̇ + C(ν)ν + D(ν)ν + fa + d = τ + τd,
(5)

The control objective of this paper is to develop an integrated finite-time AFTC frame-
work for ASV so that the fault can be detected and estimated precisely, and the predefined
tracking performance is ensured under both fault-free and faulty cases.

Assumption 1. The desired trajectories ηd along with their time derivatives η̇d, η̈d are smooth
and bounded.

Assumption 2. The external disturbance τd is bounded, i.e., there is a positive constant τd, such
that ‖τd‖ ≤ τd.
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Assumption 3. Under normal operation of ASV, the unmodeled dynamics d(t) is bounded by
‖d(t)‖ ≤ d with d being a conservative constant.

Lemma 1 ([41]). Given a function ϕ ≥ 0 and

dϕ(t)
dt

= −ι[ϕ(t)]κ (6)

holds, where ι > 0 and 0 < κ < 1 are the constants. Then (6) can be solved for

ϕ(t) =

{(
(ϕ(0))1−κ − (1− κ)ιt

) 1
1−κ , t ∈ [0, T0)

0, t ∈ [T0,+∞)
(7)

where T0 = (ϕ(0))1−κ

ι(1−κ)
.

2.2. Finite-Time Performance Function

In this subsection, we introduce the definition of FTPF, which aims at achieving
two goals: first, it serves as a criteria for establishing a fault detection mechanism to identify
component faults. Secondly, it ensures that tracking errors converge to the small specified
residual sets within a settling time interval, even if fault occurs.

The definition of FTPF is as follows.

Definition 1 ([41]). A function ρ(t) is designated as the FTPF when it exhibits these properties:

• ρ(t) > 0;
• ρ̇(t) ≤ 0;
• limt→Ts ρ(t) = ρTs > 0;
• ρ(t) = ρTs , ∀t ≥ Ts with Ts being the settling time.

From Definition 1, it can be observed that ρ(t) can converge to a specified set within
the settling time Ts, indicating that ρ(t) converges in finite time. According to Lemma 1,
the FTPF employed in this paper is chosen as

ρi(t) =

{
(ρε

i0 − ιεt)
1
ε + ρiTs , t ∈ [0, Ts)

ρiTs , t ∈ [Ts,+∞)
(8)

where i = 1, 2, 3, ρi0, ρiTs , ι ∈ R are positive constants to be chosen, ε = ε1
ε2
∈ (0, 1] with ε1,

ε2 are positive odd integers. Based on (8), the settling time Ts can be calculated by Ts =
ρε

0
ιε .

2.3. Error Transformation

In this subsection, the performance constraints for the tracking error is given first.
Then, an error transformation is presented to transfer the time-varying constraints into an
equivalent constant one to facilitate the design of AFTC scheme.

To achieve the control target, the ASV is requested to track the reference trajecto-
ries with guaranteed performance, which indicates that the tracking error e = η − ηd
should satisfy

ρ
i
(t) < ei(t) < ρi(t), (9)

where i = 1, 2, 3, ρ
i

and ρi represent the lower and upper constraints, respectively. Suppose
ei(0) satisfies ρ

i
< |ei(0)| < ρi, depending on the sign of ei(0), the following should hold:

ei(0) ≥ 0 :

{
ρ

i
= −σiρi(t)

ρi = ρi(t)
, ei(0) < 0 :

{
ρ

i
= −ρi(t)

ρi = σiρi(t)
, (10)

where ρi(t) is the FTPF given in (8), σi is the design parameter.
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Then, a sufficient necessary condition is deduced to ensure that the guaranteed perfor-
mance described in (9) is achieved. The error transformation technology introduced and
employed to convert the complex bounds (8) into more concise bounds as

zi(t) = Ti(ei(t), ρ
i
(t), ρi(t)), i = 1, 2, 3. (11)

where z = [z1, z2, z3]
T ∈ R3 denotes the transformed error. According to [35], the given

attributes should be present in the error transformation function Ti(·):
• Ti(·) is smooth and strictly increasing;
• limei→ρi

Ti(ei(t), ρ
i
(t), ρi(t)) = 1;

• limei→ρ
i
Ti(ei(t), ρ

i
(t), ρi(t)) = −1.

Following these considerations, the error transformation function is designed as

Ti(ei(t), ρ
i
(t), ρi(t)) =

2ei(t)− (ρ
i
(t) + ρi(t))

ρi(t)− ρ
i
(t)

. (12)

It follows from (12) that (9) is guaranteed if |zi(t)| < 1. For simplicity, the independent
variable t is omitted as the default time variable in the following. From (12), the original
time-varying constraint is transformed into a constant one, which provides a simple solution
for the design of the monitoring function and the AFTC scheme. Differentiating (11) yields

żi = χi ėi − σi(ei, ρi, ρ
i
), (13)

where
χi =

2
ρi − ρ

i

,

σi(ei, ρi, ρ
i
) =

ρ̇i + ρ̇
i

ρi − ρ
i

+
(2ei − (ρi + ρ

i
))(ρ̇i − ρ̇

i
)

(ρi − ρ
i
)2

(14)

Thus, the transformed tracking error dynamics of (4) is given by




zi =Ti(ei, ρ
i
, ρi),

żi =χi ėi − σi(ei, ρi, ρ
i
),

ë =ṘR−1η̇ − RM−1(C(η, η̇) + D(η, η̇))R−1η̇ + RM−1τ + RM−1(τd − d)− η̈d.

(15)

Then, the sufficient necessary condition to guarantee performance bounds (9) can be
derived.

Proposition 1. Consider the ASV system (1) and its corresponding transformed tracking error
dynamics (15). The performance bounds (9) can be guaranteed if and only if the transformed
system (15) is stable, and the transformed error satisfies |zi(t)| < 1, i = 1, 2, 3.

Proof. If the performance bound (9) is guaranteed, then there exists an admissible contin-
uous input τ, such that ei is uniformly ultimately bounded (UUB). Employing (11)–(13),
one has

2ρ
i
− (ρ

i
+ ρi)

ρi − ρ
i

<
2ei − (ρ

i
+ ρi)

ρi − ρ
i

<
2ρi − (ρ

i
+ ρi)

ρi − ρ
i

, (16)

resulting in
−1 < zi < 1, i = 1, 2, 3. (17)

Hence, the transformed error zi is bounded. Thereby, the transformed system (15) is stable.
Conversely, if the transformed error zi satisfies |zi(t)| < 1, one has

ρ
i
− ρi < 2ei − (ρ

i
+ ρi) < ρi − ρ

i
. (18)

It can be easily obtained that ρ
i
< ei(t) < ρi holds.
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Remark 1. Compared to the given error transformation function in [41], the transformation
function in (11) has a simpler structure, which can potentially reduce computational complexity or
implementation challenges. Moreover, by converting the performance constraints for tracking errors
in (9) into a constant constraint, it becomes possible to establish a fixed threshold for fault detection
and monitoring functions.

3. Main Results

In this section, a nominal controller is presented first to ensure the tracking perfor-
mance of ASV, and a performance-based monitoring function is given to monitor the
control behavior and detect the fault. Upon detection of a fault, the reconfigured controller
is constructed to maintain the system’s stability.

3.1. Nominal Controller Design

From Proposition 1, it can be concluded that the predefined constraints can be ensured
when the transformed tracking error z satisfies |zi| < 1. The Barrier Lyapunov function
proposed in [48] is utilized to construct the Lyapunov function as follows:

V1 =
1
2

3

∑
i=1

ln
1

1− z2
i

. (19)

Define the filtering error s = η̇ − α. α ∈ R3 is a virtual control signal to design. Taking the
time derivative of V1 yields

V̇1 =
3

∑
i=1

zi(χi(si + αi − η̇d,i)− σi(ei, ρi, ρ
i
))

1− z2
i

. (20)

Then, α can be designed as
α = η̇d − k1χz + χσ, (21)

where k1 = diag(k1,1, k1,2, k1,3) is the filtering gain matrix, χ = diag(1/χ1, 1/χ2, 1/χ3), and
σ = [σ1(e1, ρ1, ρ

1
), σ2(e2, ρ2, ρ

2
), σ1(e3, ρ3, ρ

3
)]T . Substituting (21) into (20) results in

V̇1 =−
3

∑
i=1

k1,i
z2

i
1− z2

i
+

3

∑
i=1

χizisi

1− z2
i

,

≤− λmin(k1)
3

∑
i=1

z2
i

1− z2
i
+

3

∑
i=1

χizisi

1− z2
i

.

(22)

Define M(η) = MR−1, and the second Lyapunov function is considered as

V2 = V1 +
1
2

sT M(η)s. (23)

Differentiating V2 to time gives

V̇2 =V̇1 +
1
2

sT Ṁ(η)η̇s + sT M(η)ṡ,

=V̇1 +
1
2

sT Ṁ(η)η̇s + sT g(η, η̇) + sT(τ + δ−M(η)α̇),
(24)

where g(η, η̇) = (M(η)Ṙ − C(η, η̇) − D(η, η̇))R−1η̇, δ = τd − d(t) denotes the lumped
uncertainty. According to Assumptions 2 and 3, we have ‖δ‖ ≤ ∆ for a bounded constant
0 < ∆ := τd + d. Recalling (4), the nominal controller is designed as

τn = −k2s− g(η, η̇)− 1
2

Ṁ(η)η̇s + M(η)α̇− Σ−Φ, (25)

where k2 = diag(k2,1, k2,2, k2,3) is the control gain matrix, the auxiliary vector Σ is given
as Σ = [z1χ1/(1− z2

1), z2χ2/(1− z2
2), z3χ3/(1− z2

3)]
T , and the uncertainty compensator Φ
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is designed as Φ = (kd + ∆)sgn(s) with kd ∈ R > 0, sgn(s) = [sgn(s1), sgn(s2), sgn(s3)]
T .

Let τ = τn and substituting (25) into (24) leads to

V̇2 ≤− λmin(k1)
3

∑
i=1

z2
i

1− z2
i
− k2sTs−

3

∑
i=1

(siδi − (kd + ∆)sgn(si)si)

≤− λmin(k1)
3

∑
i=1

z2
i

1− z2
i
− λmin(k2)‖s‖2 −

3

∑
i=1

kd|si|.
(26)

The following theorem is proposed to point out the stability of the closed-loop system.

Theorem 1. Consider the ASV system described in (1), and Assumptions 1–3 hold. Assuming
the ASV system is fault-free on [0, Tf ), for 0 ≤ t < Tf , the proposed controller (25) is intended to
ensure the following properties.

(1) The closed-loop control system is semi-globally stable, i.e., all signals are bounded. The tracking
error converges to the origin within the predefined performance (9) at a settling time.

(2) The transformed tracking error provided by the error transformation (11) satisfies

|zi| < γ < 1, i = 1, 2, 3. (27)

with
γ =

√
1− e−µ,

µ =
3

∑
i=1

ln
1

1− z2
i (0)

+ λmax(MR−1(0))‖s(0)‖2,
(28)

where γ denotes a tighter bound for the guaranteed performance, µ is a constant depending on
the initial state.

Proof. It can be concluded from (26) that if the control parameters are selected to satisfy
k1, k2, kd > 0, then V̇2 ≤ 0. It can be further obtained that

V̇2 ≤− λmin(k1)
3

∑
i=1

ln
1

1− z2
i
− k2‖s‖2 −

3

∑
i=1

kd|si|. (29)

Let ζn = min{2λmin(k1), 2k2/λmax(M(η)}, we have

V̇2 ≤ −ζnV2. (30)

Integrating (30) from 0 to t yields

V2(t) ≤ V2(0)e−ζnt ≤ V2(0). (31)

It can be concluded from the above inequality that ln(1/1 − z2
i ) and s are bounded.

Therefore, zi remains in zi ∈ (−1, 1), and all signals in the closed-loop control sys-
tem are bounded. Proposition 1 implies that tracking error ei can converge within the
predefined performance.

Furthermore, according to (23), it follows that

V2(0) ≤
1
2

3

∑
i=1

ln
1

1− z2
i (0)

+ λmax(MR−1(0))‖s(0)‖2. (32)

Then, a tighter bound for zi can be computed by (32), i.e., zi < γ =
√

1− e−µ, and it is clear
that γ < 1 is valid.

Remark 2. To ensure that the tracking errors are kept within the predefined bound, a tighter
monitoring bound is required. Through (11), the initial bound for e is transformed to a constant
bound for z, so that the monitoring bound for zi can also be set to a smaller constant. Compared
with [44], the complex residual calculations are avoided. Different from the time-varying monitoring

42



J. Mar. Sci. Eng. 2024, 12, 347

bound given in [45], we propose a more concise bound for subsequent fault detection. This simplified
approach can make it easier to implement and analyze fault detection and monitoring strategies.

3.2. Fault Detection and Reconfigured Controller Design

In Section 3.1, the nominal controller is presented for the ASV under fault-free condi-
tion, and the uncertainty is assumed to be bounded within a known region. However, it is
crucial to consider the possibility of faults occurring at any time, denoted as Tf . Based on
the designed nominal controller, monitoring functions are given to detect the component
faults, and a reconfigured controller with a fault estimator are presented.

Theorem 1 indicates that when the fault occurs, the condition given in (27) is violated
first before the predefined performance (9) is broken. As a result, by utilizing the tighter
bounds presented in (27), we can derive the monitoring functions and identify the precise
instant at which the fault is detected as

Td := inf{t : |zi| > γ, i = 1, 2, 3}. (33)

Once the fault is detected, fault estimation and compensation must be completed as
quickly as possible to restore performance.

To guarantee the efficiency of fault estimation and performance restoration, a finite-
time fault estimator is presented first. Define new state variables ξ1 = η and ξ2 = η̇, then
the faulty ASV (4) can be described by the following equivalent dynamics:

{
ξ̇1 = ξ2,

ξ̇2 = −κ1M(ξ1)ξ2 + f (ξ1, ξ2) + M(ξ1)τ + M(ξ1)δ f ,
(34)

where κ1 ∈ R is a positive constant to be chosen, M(ξ1) = RM−1, f (ξ1, ξ2) = ṘR−1ξ2 −
RM−1((C(ξ1, ξ2) + D(ξ1, ξ2))R−1 − κ1)ξ2, δ f = fa + τd − d(t). It is noted that the upper
bound of δ is unknown due to the component fault is unpredictable.

To obtain the estimation of δ f , an auxiliary state variable ξa ∈ R3 is defined, and its
dynamics is given as

ξ̇a = −κ1M(ξ1)ξa + f (ξ1, ξ2) + M(ξ1)τ. (35)

The difference between state variables of (34) and (35) is denoted by ξe = ξ2 − ξa. Then,
a modified two-order estimator is designed to precisely estimate the lumped uncertainty
including fault as 




δ̂ f = κ1ξ̂e + MR−1ξ̇e,

˙̂ξe = −κ2ξ̂e + ξ̇e + κ2ξe + κ3sig(ξ̃e)
r1
r2 ,

(36)

where
sig(ξ̃e)

r1
r2 = [sgn(ξ̃e,1)|ξ̃e,1|

r1
r2 , sgn(ξ̃e,2)|ξ̃e,2|

r1
r2 , sgn(ξ̃e,3)|ξ̃e,3|

r1
r2 ]T , (37)

κ2, κ3 ∈ R are positive constants to be chosen, r1, r2 ∈ R are positive odd integers and
are selected to satisfy r1 < r2. Define the estimation errors of (36) as δ̃ f = δ f − δ̂ f and
ξ̃e = ξe − ξ̂e; the following Lemma is obtained.

Lemma 2. Based on the modified two-order estimator designed in (36) for the ASV system (4)
without component faults, and Assumptions 1–3 holding. Then, the estimation errors δ̃ f and ξ̃e can
converge to zero in a finite time.

Proof. According to the estimator given in Equation (36), the time derivative of ξ̃e can be
calculated as

˙̃ξe = ξ̇e + κ2ξ̂e − ξ̇e − κ2ξe − κ3sig(ξ̃e)
r1
r2

= −κ2ξ̃e − κ3sig(ξ̃e)
r1
r2 .

(38)

It can be obtained from (34) and (35) that
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ξ̇e = −κ1M(ξ1)ξe + M(ξ1)δ f , (39)

and
δ̃ f = M−1(ξ1)ξ̇e + κ1ξe − κ1ξ̂e −MR−1ξ̇e = κ1ξ̃e. (40)

Differentiating (40) with respect to time yields

˙̃δ f = κ1
˙̃ξe = −κ2δ̃ f − κ3sig(δ̃ f )

r1
r2 . (41)

Consider a Lyapunov function for the estimator given in Equation (36) as Vd = 1
2 δ̃T

f δ̃ f ,
and the time derivative of Vd is given as

V̇d = δ̃T
f (−κ2δ̃ f − κ3sig(δ̃ f )

r1
r2 )

≤ −κ2‖δ̃ f ‖2 − κ3‖δ̃ f ‖
r1+r2

2r2

≤ −Γ1Vd − Γ2Vr
d ,

(42)

where Γ1 = 2κ2, r = r1+r2
2r2

, Γ2 = 2rκ3. It can be concluded from (40) and (42) that Vd

is bounded, and the boundedness of δ̃ f and ξ̃e can be ensured. It follows from [49] that
the estimation errors converge to zero in a finite time, and the convergence time can be
obtained as

Tc ≤
1

Γ1(1− r)
ln

Γ1V1−r(δ̃ f (0)) + Γ2

Γ2
. (43)

Based on Lemma 2, the nominal controller can be reconfigured as

τr = −k2s− g(η, η̇)− 1
2

Ṁ(η)η̇s + M(η)α̇− Σ− δ̂ f , (44)

Similar to the analysis in Theorem 1, let τ = τr and substituting (44) into (24) leads to

V̇2 ≤ −λmin(k1)
3

∑
i=1

z2
i

1− z2
i
− λmin(k2)sTs− sT δ̃ f . (45)

Theorem 2. Consider the ASV system described by (4) subject to component faults, and
Assumptions 1–3 hold. Assume the component fault occurs at t = Tf and is detected at t = Td, for
t > Td, the proposed controller (44) with the estimator (36) can ensure the following:

(1) The closed-loop control system is semi-global stable, i.e., all signals are bounded.
(2) The transformed tracking error zi, i = 1, 2, 3, is kept in in the compact set (−1, 1).
(3) The tracking error can converge to the origin within the predefined performance (9) at a

settling time.

Proof. Select the Lyapunov function as

Vn = V2 + Vf . (46)

Differentiating Vn and substituting (45) results in

V̇n ≤− λmin(k1)
3

∑
i=1

z2
i

1− z2
i
− k2sTs− sT δ̃ f + V̇f

≤− λmin(k1)
3

∑
i=1

z2
i

1− z2
i
− 1

2
λmin((2k2 − I))‖s‖2 − (κ2 −

1
2
)‖δ̃ f ‖2 − Γ2‖δ̃ f ‖2r.

(47)

If the control parameters are selected to satisfy k1 > 0, 2k2 − I > 0, κ2 > 1
2 , it can be

obtained that V̇n ≤ 0. Similar to Theorem 1, we can obtain that zi remains in zi ∈ (−1, 1),
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and all signals in the closed-loop control system are bounded. Furthermore, Proposition 1
implies that tracking error ei converges within the guaranteed performance.

Remark 3. MPC methods have been gradually applied for performance optimization in vehicle
trajectory tracking scenarios [50–52]. In comparison to the MPC scheme, the advantages of the
proposed FTPF + AFTC method are as follows: (1) Fault Recovery Time: the FTPF method imposes
strict constraints on both reaction time and convergence range, which cannot be achieved by other
methods currently available. (2) Fault Detection: the FTPF method not only ensures tracking
performance within an ideal region but also provides a concise bound for designing the monitoring
function. (3) Model Mismatch and Measurement Bias: in MPC control, performance can be sensitive
to discrepancies between the prediction model and the actual system dynamics, potentially resulting
in degraded control performance. If long-term stability is a critical requirement for ASV operations,
the FTPF-based AFTC algorithm becomes a preferable choice.

4. Simulation Study

To validate the feasibility of the designed AFTC scheme, a simulation example is
carried out on CyberShip II model [53]. The parameters M, C(ν), D(ν) in (1) are given as

M =




m11 0 0
0 m22 m23
0 m32 m33


,

C(ν) =




0 0 c13(ν)
0 0 c23(ν)

−c13(ν) −c23(ν) 0


,

D(ν) =




d11(ν) 0 0
0 d22(ν) d23(ν)
0 d32(ν) d33(ν)


.

(48)

where m11 = m0−Xu̇, m22 = m0−Yẇ, m23 = m0xg−Yṙ, m32 = m0xg−Nẇ, m33 = Iz−Nṙ,
c13(ν) = −m11w − m23r, c23(ν) = m11u, d11(ν) = −Xu − X|u|u|u| − Xuuuu2, d22(ν) =
−Yw − Y|w|w|w|, d23(ν) = −Yr − Y|w|r|w| − Y|r|r|r|, d32(ν) = −Nw − N|w|w|w| − N|r|w|r|,
and d33(ν) = −Nr − N|w|r|w| − N|r|r|r|. The system parameters are listed in Table 1.

Table 1. Main parameters for cybership II.

Factor Value Factor Value Factor Value

m0 23.8 Yw −0.8612 Xu̇ −2
Iz 1.76 Y|w|w −36.2823 Yẇ −10
xg 0.046 Yr 0.1079 Yṙ 0
Xu −0.7225 Nw 0.1052 Nẇ 0

X|u|u −1.3274 N|w|w 5.0437 Nṙ −1
Xuuu −5.8664

In the simulation example, the control objective is to force the vehicle to track the
desired trajectory as ηd = [4 sin(0.02πt),−4 cos(0.02πt), 0.1t(1− e−t/5]T . The initial states
of ASV are set as η(0) = [1,−2, 1]T , ν(0) = [0, 0, 0]T . The parameters of performance
function are chosen as ρi0 = 4.7, ρiTs = 0.3, ι = 1.2, ε = 0.3, i = 1, 2, 3, and the settling
time can be calculated by (6) as Ts = 4.4190s. For simplicity, the lumped uncertainty δ is
described in a general term as time-varying forces/moment:

δ =





1.6 + 2 sin(0.01πt)

−0.9 + 1.5 sin(0.1πt− π/6) + 1.5 sin(0.01πt)

sin(0.09πt + π/3) + cos(0.01πt)





. (49)

To verify the fault-tolerant ability of the proposed AFTC scheme, the component faults
are intentionally introduced into the ASV control system at a specific time
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t = Tf = 40 s and fa = [6.2 + 5 sin(0.01πt− 10), 5.4 + 5 cos(0.01πt− 10), 7.2 + 0.3e−0.2t]T .
The control system’s response to these faults can be analyzed and assessed to determine
the effectiveness of the fault-tolerant control strategy. The control gains are selected as
k1 = diag(23, 28, 2), k2 = diag(1.95, 1.7, 0.5), kd = 3.5. According to the initial states, we
can calculate that γ = 0.6075. The controller switches from nominal controller to recon-
figured controller when |zi| > γ at t = Td. The estimator gains are selected as κ1 = 0.001,
κ2 = 0.9, κ3 = 15, r1 = 99, r2 = 101.

4.1. Fault-Tolerant Ability Verification

To illustrate the effectiveness of the proposed nominal controller and the reconfigured
controller, two experiments are conducted under fault-free and component fault conditions.
In the first experiment, the fault-free condition is considered, where no component faults are
present in the system. This experiment aims to demonstrate the performance of the control
system under a nominal controller when there are no faults affecting the system’s behavior.
In the second experiment, the component fault condition is considered. Component
faults are intentionally introduced into the system at a specific time, as mentioned earlier.
This experiment aims to evaluate the performance of the control system in the presence
of component faults. The control system switches from the nominal controller to the
reconfigured controller when the fault detection threshold is exceeded. By comparing the
results of these two experiments, the effectiveness of both the nominal controller and the
reconfigured controller can be evaluated. The control system’s ability to maintain stability,
tracking performance, and fault tolerance can be assessed, providing insights into the
overall performance of the proposed AFTC scheme.

The simulation results are shown in Figures 2–9. Among them, Figures 2–4 are
the results of fault-free experiment and Figures 6–9 are the results of component fault
experiment. It can be observed from Figures 2–4 that the ASV can follow the given
trajectories within the designed nominal controller, and the predefined performance bounds
are guaranteed. The trajectories of the ASV closely track the desired reference trajectories
in Figure 2, indicating accurate tracking performance. The predefined performance bounds
are observed to be satisfied in Figure 3. This ensures that the system operates within the
desired performance criteria. The trajectories of transformed error are given in Figure 4,
and it is obvious that the transformed errors are kept within the given sets. The control
inputs are given in Figure 5.
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Figure 2. Fault−free experiments: trajectories under the nominal controller.

46



J. Mar. Sci. Eng. 2024, 12, 347

0 10 20 30 40 50 60 70 80
Time(sec)

-5

0

5

e 1
(m

)

0 10 20 30 40 50 60 70 80
Time(sec)

-5

0

5

e 2
(m

)

0 10 20 30 40 50 60 70 80
Time(sec)

-5

0

5

e 3
(r

ad
)

Figure 3. Fault-free experiments: tracking errors with performance bounds.

Figure 4. Fault-free experiments: transformed errors and monitoring functions.
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Figure 5. Fault-free experiments: control inputs.

47



J. Mar. Sci. Eng. 2024, 12, 347

0 10 20 30 40 50 60 70 80
Time(sec)

-5

0

5

 x
(m

)

0 10 20 30 40 50 60 70 80
Time(sec)

-5

0

5

 y
(m

)

0 10 20 30 40 50 60 70 80
Time(sec)

0

2

4

6

 
(r

ad
)

40 41 42
4

4.5

Figure 6. AFTC experiments: trajectories under the nominal and reconfigured controller.
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Figure 7. AFTC experiments: tracking errors with performance bounds.

Figure 8. AFTC experiments: transformed errors and monitoring functions.
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Figure 9. AFTC experiments: the lumped uncertainties and their estimations (after Td).

In Figures 6–9, the detection results and the control performance under controller
reconfiguration are depicted, which illustrates the system’s behavior during the occurrence
of component faults. Figure 6 depicts the curves of desired and actual trajectories of the ASV.
The tracking errors and their constraints are illustrated in Figure 7, which reveals that the
predefined performance is guaranteed at all times. Although there may be some variation
in system performance when the fault occurs, it can be quickly recovered. Figure 8 focuses
on the response of the transformed error. As seen from Figure 8, when the component
fault occurs at t = Tf = 40 s, the transformed error z reacts to the fault faster than the
tracking error e in Figure 7. This behavior indicates that the fault is detected and reflected
in the transformed error before affecting the tracking performance. After the effect of
component faults on ASV exceeds the detection threshold, the FE module provides an
effective detection signal at t = Td = 40.8 s. From Figure 9 we can see that the estimator
is activated at t = Td, indicating that the controller reconfiguration has been achieved,
and the faults are well estimated. The control inputs are given in Figure 10. These figures
demonstrate the system’s response to component faults, the activation of the fault detection
module, and the successful transition to the reconfigured controller.
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Figure 10. AFTC experiments: control inputs.
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4.2. Robustness Verification

In this subsection, the lumped uncertainties are reset to three distinct frequencies in
order to assess the robustness of the controller against various frequency perturbations.
The frequencies used for testing are as follows:

(1) δ =





1.6 + 2 sin(0.3πt) + 0.5 cos(0.01πt)

−0.9 + 1.5 sin(0.3πt− π/6) + 1.5 sin(0.01πt)

sin(0.3πt + π/3) + cos(0.01πt)





.

(2) δ =





1.6 + 2 sin(0.2πt) + 0.5 cos(0.01πt)

−0.9 + 1.5 sin(0.1πt− π/6) + 1.5 sin(0.01πt)

sin(0.1πt + π/3) + cos(0.01πt)





.

(3) δ =





1.6 + 2 sin(0.01πt)

−0.9 + 1.5 sin(0.1πt− π/6) + 1.5 sin(0.01πt)

sin(0.01πt + π/3) + cos(0.01πt)





.

The above formula is observed to provide a broader frequency range of disturbance. The
simulation results are depicted in Figures 11 and 12. It can be inferred from Figure 11 that
disturbances at different frequencies do not significantly impact the control performance,
demonstrating the robustness of the method against interference. Figure 12 displays the
estimation results of the estimator at various frequencies.
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Figure 11. Robustness experiments: tracking performance under different frequency disturbance.
(a) Trajectory tracking performance. (b) Tracking errors.
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Figure 12. Robustness experiments: uncertainties estimation under different frequency distur-
bance. (a) Disturbance frequency = 3/20. (b) Disturbance frequency = 1/20. (c) Disturbance fre-
quency = 1/200.
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4.3. Advantages Highlight

In order to present a comprehensive assessment of the designed control strategy and
demonstrate its superiority, additional numerical simulations were conducted in this subsec-
tion. Specifically, we performed a performance comparison between the designed control
strategy and a classical backstepping control schemes used in [54]. For the backstepping
method, the control input can be provide as follows:

τb = MR−1(−kb1s− RM−1g(η, η̇)− α̇−Φ) (50)

where s is defined as the proposed controller, and α = −kb2e + η̇d. The remain equations
are the same as the proposed controller. It is important to note that the proposed fault
detection algorithm, being based on the FTPF, cannot be included in the comparison
method. The simulation results of both controllers under fault conditions are presented
in Figures 13 and 14. The simulation results for both controllers under fault conditions are
depicted in Figures 13 and 14. As illustrated in Figure 13, the proposed controller exhibits
a noticeably faster convergence rate compared to the backstepping controller. Furthermore,
when component faults occur, the proposed ATFC scheme demonstrates superior fault
tolerance, ensuring system stability. In Figure 14, the evolution of the tracking errors is
presented, while the backstepping controller can partially guarantee the stability of the
ASV, it is evident that without the FTPF, the tracking error cannot be maintained within a
predefined range. Overall, these simulation results showcase the capability of the proposed
controller to achieve satisfactory tracking performance while ensuring that all outputs
remain within their specified ranges.

Figure 13. Comparison experiments: trajectories under the proposed controller and backstepping
controller.

Figure 14. Comparison experiments: tracking errors under the proposed controller and backstepping
controller.
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5. Conclusions

In this paper, a novel AFTC scheme has been investigated to solve the predefined
tracking performance problem of ASV with component faults. The integrated AFTC
framework has been proposed to accomplish fault detection, fault estimation, and control
reconfiguration autonomously. By introducing the error transformation and the Barrier
Lyapunov function, a nominal controller was proposed to maintain the control performance
under the normal fault-free condition. Within the guaranteed performance, a monitoring
function has been designed to supervise the tracking behaviors and report the occurrence
of faults. With the signal of the monitoring function, the reconfigured controller was
activated, and the lumped uncertainty including fault was estimated precisely by a modified
finite-time estimator. Finally, the effectiveness of the proposed AFTC controller has been
verified by three aspects: fault-tolerant ability, robustness, and highlighted advantages.
The simulation results demonstrate the system’s fast response to faults, the activation of
the fault detection module, and the successful transition to the reconfigured controller. The
comparative simulations further show the superiority of the proposed method.
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53. Skjetne, R.; Fossen, T.I.; Kokotović, P.V. Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory.
Automatica 2005, 41, 289–298. [CrossRef]

54. Ouyang, H.; Lin, Y. Adaptive fault-tolerant control for actuator failures: A switching strategy. Automatica 2017, 81, 87–95.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

54



Citation: Wang, J.; Shan, Q.; Li, T.;

Xiao, G.; Xu, Q. Collision-Free

Formation-Containment Tracking of

Multi-USV Systems with Constrained

Velocity and Driving Force. J. Mar.

Sci. Eng. 2024, 12, 304.

https://doi.org/

10.3390/jmse12020304

Academic Editors: Carlos Guedes

Soares, Xianbo Xiang, Lúcia Moreira

and Haitong Xu

Received: 13 January 2024

Revised: 5 February 2024

Accepted: 7 February 2024

Published: 9 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Collision-Free Formation-Containment Tracking of Multi-USV
Systems with Constrained Velocity and Driving Force
Jingchen Wang 1, Qihe Shan 1,*, Tieshan Li 2, Geyang Xiao 3 and Qi Xu 3

1 School of Navigation, Dalian Maritime University, Dalian 116026, China; wjc1632021@dlmu.edu.cn
2 School of Automation Engineering, University of Electronic Science and Technology of China,

Chengdu 611731, China; tieshanli@126.com
3 Research Institute of Intelligent Networks, Zhejiang Lab, Hangzhou 311121, China;

xgyalan@outlook.com (G.X.); xuqi@zhejianglab.com (Q.X.)
* Correspondence: shanqihe@dlmu.edu.cn

Abstract: This paper studied the collision avoidance issue in the formation-containment tracking
control of multi-USVs (unmanned surface vehicles) with constrained velocity and driving force.
Specifically, based on a dual-layer control framework, it designed a multi-USV formation-containment
tracking control strategy that accounts for constrained motion velocity and input driving force and
validated the stability of this strategy using the Lyapunov method. Then, by utilizing zeroing control
barrier function certificates, it considered collision avoidance among USVs with various roles as well
as between each USV and static obstacles. A collision-free multi-USV formation-containment tracking
control strategy considering constrained motion velocity and driving force was thus established, and
its effectiveness was validated through the proposed simulation.

Keywords: multi-USV systems; formation-containment tracking control; quadratic programming;
collision avoidance; control barrier function; dual-layer scheme

1. Introduction

In recent years, with the continuous development of unmanned surface vehicle (USV)
swarm coordination technology, the formation technology of multiple USVs has been
increasingly applied in fields such as marine data collection [1], collaborative search and
rescue [2,3], cooperative escorting [4], and collaborative transportation [5]. During the
execution of various formation tasks by multiple USV clusters, collision avoidance among
USVs, as well as avoidance of obstacles such as reefs, buoys, and ice floes on the sea
surface, is a fundamental requirement [6–10]. Currently, substantial research has focused
on collision avoidance within multi-USV formations [8,11–14]. Little attention has been
paid to collision avoidance strategies for a specialized type of USV operation, known
as formation-containment tracking. Consequently, devising effective strategies for these
formation-containment tracking scenarios is a critical issue in ongoing multi-USV studies.

To achieve collision avoidance in a multi-USV formation, a variety of formation strate-
gies could be considered. The leader–follower formation method based on consensus,
due to its reliability and practicality, has been widely applied. In recent years, this ap-
proach has seen a wealth of developments [15–24]. Ren et al. [15] specifically devised
a consensus-based formation control algorithm for second-order multi-vehicle systems,
which means vehicle dynamics can be simplified to second-order integrator dynamics.
Taking into account the practical engineering constraints on each agent’s input driving
force and motion velocity, Fu et al. [18] designed a leader–follower formation strategy
with limited velocity and control inputs. Huang et al. [19] introduced a fixed-time USV
leader–follower formation method representing a faster and more practically viable control
strategy. Tang et al. [20] proposed a flexible serial formation protocol, based on the estima-
tion of narrow waterways’ curvature using an observer, to enable a USV fleet to navigate
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through narrow and winding waterways. Although the single leader–follower formation
method is effective in some cases, it often falls short in accommodating large-scale USV
formations or managing complex tasks. To enable systems to incorporate more USVs
and undertake more complex tasks, a hierarchical concept emerged: formation contain-
ment. This approach enhances the conventional leader–follower structure by introducing
three distinct roles: the highest-ranking virtual leader, the mid-ranking real leader, and
the lowest-ranking follower. In this hierarchy, information flows unidirectionally from
higher to lower ranks, with followers being specifically designed to converge within the
convex polygonal regions formed by real leaders, thus enabling the handling of more
complex operational tasks [25]. Hua et al. [26] developed a control protocol enabling linear
multi-agent systems to achieve formation-containment tracking despite the leader’s input
being unknown. Wang et al. [27] introduced an innovative USV formation-containment
strategy that employs a robust integral observer to estimate disturbances stemming from
natural interferences and model uncertainties, complemented by an adaptive law specifi-
cally designed to offset actuator malfunctions. Hao et al. [28] has adopted a pioneering
adaptive parameter fine-tuning strategy, which, even in the face of unknown global data
and external disturbances within dynamically changing communication structures, can
still precisely coordinate and maintain the stability of large-scale unmanned surface ves-
sel (USV) formations. In actual marine settings, USVs are subject to various types of
couplings, including dynamics and communication, complicating the control challenge.
Liu et al. [29] introduced a sophisticated two-layer control framework, where the upper
layer orchestrates formation containment using a fully actuated third-order integrator
model, subsequently transmitting the generated trajectory to the lower layer in real time,
and the lower layer leverages sliding mode control to enable under-actuated USVs to
track the trajectory promptly, achieving effective formation containment. The hierarchical
structure of formation containment offers new possibilities for addressing large-scale and
complex tasks, while it also imposes novel requirements on collision avoidance strategies.

Collision avoidance is an indispensable aspect of any collaborative task involving USV
swarms [30–32]. The artificial potential field method, a notable strategy for collision avoidance,
effectively synergizes with the consensus formation of multi-vehicle systems [8,11–13,32–35].
Aranda-Bricaire et al. [11] developed an approach using repulsive vector fields (RVFs) grounded
in the repulsive potential function (RPF) to facilitate collision-free formations in second-order
multi-agent systems with input force and velocity constraints. Park et al. [13] advanced a
multi-USV formation strategy that simultaneously addresses connectivity maintenance and
collision avoidance, utilizing an innovative additional potential function to avert collisions.
Ghommam et al. [12] proposed a practical approach for collision-free distributed formation
control of under-actuated USVs, leveraging the repulsive potential function technique to enhance
practical engineering applicability. Nevertheless, in collision avoidance tasks, distance plays a
crucial role, especially the triggering distance for collision avoidance and the minimum safety
distance. In these aspects, the control barrier function (CBF) method surpasses the artificial
potential field (APF) approach, proving to be more aligned with practical collision avoidance
applications. Firstly, regarding the criteria for triggering collision avoidance mechanisms,
the APF method relies on a fixed triggering distance, initiating maneuvers based solely on
proximity to obstacles. In contrast, the CBF method introduces a hazard coefficient as the trigger
condition, closely tied to the relative distance and velocity between the USV and the obstacle.
This meticulous consideration of dynamic factors ensures a more responsive and adaptable
collision avoidance strategy. Secondly, there is a significant difference in how the two methods
handle the minimum safety distance, typically set as the sum of the radius of two potentially
colliding bodies. The APF method does not impose actual constraints on the obstacle’s radius,
potentially leading to scenarios where the USV intrudes into the obstacle boundary without
proper parameter adjustment, posing a high risk in practical operations. On the other hand, the
CBF method, by leveraging forward safety sets to explicitly define the obstacle radius, effectively
eliminates the risk of USV intrusion into obstacle areas, thereby enhancing the system’s safety
and practicality. This makes the control barrier function (CBF) approach significantly more
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effective and friendly in collision avoidance in formation-containment tasks. Several notable
accomplishments have been achieved using the control barrier function method for collision
avoidance [36–39]. Gao et al. [36] implemented multi-target tracking for USVs by integrating
the CBF with an extended state observer. Gong et al. [37] developed a technique employing a
guiding vector field to steer the desired heading angle for reorganizing multi-USV formations
and target tracking, concurrently utilizing a fixed-time CBF approach to evade both static and
dynamic obstacles. Notably, Fu et al. [38] proposed a collision-free formation tracking method
for second-order multi-agent systems that simultaneously considers connectivity maintenance
and constraints on control inputs and velocity.

However, to our knowledge, the adoption of the CBF method for achieving collision-free
multi-USV formation-containment tracking remains relatively unexplored. While the pioneering
two-layer control framework in [16] presents a groundbreaking solution for such tasks, we
believe there is still potential for refinement, especially within the upper distributed coordination
layer. Here, the challenge of efficiently managing a fully actuated second-order point mass
under velocity and input constraints for collision-free formation-containment tracking offers
substantial scope for innovation. This paper concentrates on these areas, advancing the field
with the following additional work and novel contributions:

1. Expansion of the leader–follower controller: Based on the practical second-order
leader–follower formation tracking controller introduced in [18], this study expands
the leader–follower controller to a formation-containment tracking controller that
considers constraints on movement velocity and input driving force. Serving as
the nominal controller in the distributed cooperative layer, it coordinates multi-USV
collision-free formation-containment tracking tasks. Furthermore, the controller’s
asymptotic stability is demonstrated using the Lyapunov method. This hierarchical
structure allows for the execution of more complex and flexible tasks, offering higher
adaptability for complex maritime operations.

2. Implementing collision avoidance with zeroing control barrier functions: In this
paper, zeroing control barrier functions are utilized within the distributed cooperative
layer. When the collision risk coefficient of any USV falls below zero, the system
triggers a quadratic programming solution that subtly alters the existing nominal
controller, thereby efficiently and safely facilitating collision avoidance. This paper
takes into account collision avoidance among vehicles with different roles in USV
formation-containment tracking tasks, as well as between the USV fleet and static
maritime obstacles. This enhances the adaptability and flexibility of USV fleets in
avoiding collisions.

The remainder of this paper is organized as follows: Some lemmas, preliminaries, and
the problem formulation are given in Section 2. Section 3 is split into two parts. In one part,
the formation-containment tracking nominal controller is presented, whose velocity and
input force are constrained. And the obstacle avoidance and collision avoidance strategies
are given in the other part. In addition, a simulation example is given is Section 4. Finally,
Section 5 makes some collations and conclusions.

2. Preliminaries and Problem Formulation

In this section, the relevant theories used in this paper are presented in four sub-
modules: Section 2.1 introduces the two-tier control framework. Section 2.2 discusses the
fundamentals of graph theory. In Section 2.3, the system studied in this paper, including
some assumptions and lemmas, is described. Section 2.4 details the application of control
barrier functions.

2.1. Dual-Layer USV Collaborative Motion Control Framework

Due to the inherent complexity of directly applying the three-degree-of-freedom
(3-DOF) motion model for coordinated control of unmanned surface vehicles (USVs),
especially when multiple USVs are performing in surface coordinated movements, tight
dynamic coupling issues are encountered. Furthermore, the single USV three-degree-of-
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freedom (3-DOF) motion model examined in this paper is under-actuated, meaning that
the model has fewer control inputs than degrees of freedom (or state variables). This
under-actuation presents challenges that must be addressed during the control process.
To overcome these difficulties, inspired by [29], this paper adopts a dual-layer USV fleet
cooperative motion control framework, as shown in Figure 1. The upper layer is the
distributed cooperative layer; each vehicle in this layer is abstracted as a mass point
with limited input driving force and motion speed, described by a second-order integrator
motion model. Without considering the influence of wind, water flow, and the movement of
other vehicles, the formation-containment task is completed by the distributed consistency
control strategy, and the motion reference trajectory generated by each vehicle is transmitted
to the lower layer. The lower layer is the local dynamic control layer, which employs the
nonlinear sliding mode method [29] to control the movement of an individual three-degree-
of-freedom (3-DOF) unmanned surface vehicle (USV) motion model, performing real-time
tracking based on the real-time reference trajectory generated by the corresponding vehicle
in the upper layer. To achieve this objective, the three-degree-of-freedom dynamic model is
employed. This model is described by the following equations, which delineate the motion
of any unmanned vehicle i within the cluster [28]:





ẋi = ui cos ϕi − vi sin ϕi
ẏi = ui sin ϕi − vi cos ϕi

ϕ̇i = r
m1iu̇i = m2iviri − d1iui + τui

m1i v̇i = m1iuiri − d2ivi
m3i ṙi = (m1i −m2i)uiri − d3iri + τri

(1)

where (xi, yi) represents the position of vehicle i’s center of gravity; ϕi ∈ [0, 2π] represents
the heading angle of the vehicle; ui, vi, and ri represent vehicle i’s forward speed, sway speed,
and yaw rate, respectively; “m1i, m2i, and m3i” represent the inertia parameters of vehicle i in
three coordinate directions, which can be calculated using a semi-empirical method; “d1i, d2i,
and d3i” represent the components of the fluid damping experienced by vehicle i on the water
surface in three coordinate directions; τui and τri represent the control input forces of vehicle i,
which are thrust for forward motion and torque for turning, respectively.

Although the precise dynamic modeling of the lower control layer is crucial for overall
system performance, this study primarily focuses on the upper layer, the distributed
cooperative layer. Within this layer, the work presented here is dedicated to generating
real-time reference trajectories for each unmanned surface vehicle (USV).

Figure 1. The structure of dual-layer USV collaborative motion control framework.

58



J. Mar. Sci. Eng. 2024, 12, 304

2.2. Graph Theory

The topology structure of M USVs (unmanned surface vehicles) is often expressed
by a digraph G = {νG, εG, aG}, where νG = {ν1, ν2, . . . , νM} represents the set of nodes,
εG ⊆

{(
νi, νj

)
: νi, νj ∈ ν; i 6= j

}
is the set of edges, and W =

[
aij
]
∈ RM×M stands for the

adjacency matrix. It is assumed that eij =
(
νi, νj

)
is an edge of G, and there is a directed

path from νi to νj if aij = 1. It is assumed that aij = 1 if and only if eij ∈ εG, and aij = 0
otherwise. The neighbors of i are represented by Ni, where Ni = {j ∈ vG : (i, j) ∈ εG}. Let
diagonal matrix D =

(
dij
)

M×M, where dij = ∑j 6=i aij. Laplacian matrix L is defined as
L = D−W. If a root node has directional paths to all other nodes, the directional graph is
said to contain a spanning tree. To illustrate the concepts mentioned above, the following
Table 1 provides an example to aid understanding.

Table 1. Example topology and explanation of related concepts.

1 2

3

Vertex {1, 2, 3}
Edge {(1, 2), (1, 3), (2, 3), (3, 2)}

Neighbor
If two nodes are directly connected by an edge, they are considered
neighbors. For example, the neighbors of node 1 are nodes 2 and 3,
because there are edges (1, 2) and (1, 3) connecting them.

Adjacency matrix



0 1 1
0 0 1
0 1 0




Degree(in) matrix



2 0 0
0 1 0
0 0 1




Laplacian matrix



2 −1 −1
0 1 −1
0 −1 1




Directed spanning tree

In a directed graph, a directed tree that originates from a root
node and reaches all other nodes in the graph is known as a
directed spanning tree. This means that starting from the root
node, it is possible to reach every node in the graph via the
edges of the tree. In the given graph, if node 1 is chosen as the
root, then the structures formed by edges {(1, 2), (1, 3), (2, 3)}
or {(1, 2), (1, 3), (3, 2)} can be considered directed spanning
trees, as they allow all nodes to be reached from node 1.

2.3. Formation-Containment Tracking Task

The system composed by M + N + 1 USVs is considered. The USVs in the system
can be divided into three categories, namely, the virtual leader or tracking leader, the real
leaders or formation leaders, and the USV followers, as shown in Figure 2. The reference
trajectory for the macroscopic motion of the entire multi-USV system is generated through
the virtual leader, which is numbered 0. And the real leaders, which are numbered 1, ..., M,
are required to track the trajectory while completing the specified formation shape. Note
that the formation shape in this paper is not time-varying. The followers need to converge
to the convex hull formed by the real leaders, which are numbered M + 1, ..., N + M. The
information exchange among USVs is described by digraph G. The virtual leader has
no neighbors, while a real leader can receive information from the virtual leader or the
other real leaders, and a follower can receive information from the real leaders or the
other followers.
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Figure 2. The structure of the multi-USV system.

The dynamics of the virtual leader in the distributed cooperative layer for the USVs
can be expressed as follows, satisfying both the velocity and input constraints:

{
ẋ0 = v0

v̇0 = −k
(
v0 − v̄r

0
)
,

where k = diag{k1, ..., kn}, ki > 0, i = 1, 2, ..., n; x0 and v0 are the position vector and the
velocity vector of the vitual leader; v̄r

0 is the desired velocity signal of the vitual leader; and
vlower ≤ v̄r

0 ≤ vupper, where vlower and vupper are the minimum and the maximum values
of the velocity of the virtual leader.

The dynamics of the ith USV can be described by
{

ẋi = vi
v̇i = ui, i = 1, . . . , M + N

(2)

where xi(t) ∈ Rn, vi(t) ∈ Rn, and ui(t) ∈ Rn are the position vector, the velocity vector,
and the control input vector for each agent, respectively. The formation of the real leaders

can be described by h =
[
hT

1 , hT
2 , . . . , hT

M
]T , where hi =

[
hT

ix, hT
iy

]T
∈ R2n, i = 1, ..., M. hi

represents the relative position vector between formation leader i and the virtual leader.

Assumption 1. For directed graph G of the communication among virtual leader and real leaders,
there is a spanning tree, and the root node is the tracking leader.

Assumption 2. For each follower, there is at least one real leader who can reach it through a directed path.

According to the topology characteristics of multi-USV systems, Laplacian matrix
LG ∈ R(M+N+1)×(M+N+1) can be represented as

LG =




0 01×M 01×N
L01 L11 0M×N

0N×1 L21 L22


 (3)

where L01 ∈ RM×1, L11 ∈ RM×M, L21 ∈ RN×M, and L22 ∈ RN×N .
Let L11 = L′11 + A0 and A0 = diag{a10, ..., aM0}, where ai0 > 0 if the virtual leader

directly interacts with real leader i, or ai0 = 0 otherwise, and L′11 represents the Laplacian only
among the real leaders, which ignores the virtual leader and the communication links it emits.

Let L21 = [−AL1F,−AL2F, · · · ,−ALMF], where each ALiF represents the communica-
tion connection relationship between the ith real leader and all the followers. Similarly,
let L22 = L′22 + ∑M

i=1{Ai}, where L′22 represents the Laplacian only among the follow-
ers, which ignores the real leaders and the communication links they emit, and each
Ai = diag{ALiF}.

To facilitate the proof in the next section, the following lemmas and definitions are given.

Lemma 1 ([40]). If assumption 1 holds, then L11 is of full rank. And there is a diagonal matrix
Q = diag{q1, q2, ..., qM}, such that matrixes Q and L11 satisfy ϕ = QL11 + LT

11Q > 0, where

[q1, q2, . . . , qM]T =
(

LT
11
)−11M.
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Lemma 2 ([41]). If assumption 2 holds, then L22 is of full rank. There is a diagonal matrix
P = diag{p1, p2, ..., pN}, such that matrixes P and L22 satisfy φ = PL22 + LT

22P > 0, where

[p1, p2, ..., pN ]
T =

(
LT

22
)−11N .

Lemma 3 ([42]). If assumption 1 holds, then all eigenvalues of L11 have positive real parts.

Lemma 4 ([43]). If assumption 2 holds, then all eigenvalues of L22 have positive real parts, and the
sum of each row of −L−1

22 L21 equals 1. Additionally, every element of −L−1
22 L21 is non-negative.

Definition 1. For the real leaders, if

lim
t→+∞

(xi − hi − x0) = 0, i = 1, . . . , M (4)

then the real leaders are considered to have completed the formation tracking task.

Definition 2. For the followers, if there is a set of non-negative constants λij satisfying ∑M
j=1 λij = 1,

and if the equation

lim
t→+∞

(
xi −

M

∑
j=1

λijxj

)
= 0, i = M + 1, . . . , M + N (5)

holds, then the followers are considered to have completed the containment task.

Definition 3. If conditions (1) and (2) hold, then system (3) is considered to have completed the
formation-containment tracking task.

Remark 1. In addition to the formation-containment tracking target, obstacle avoidance and
collision avoidance are also the key concerns of the system in the process of completing the tasks.
To ensure the normal execution of system tasks, firstly, a nominal controller which can perform the
task of formation-containment tracking while constraining the input as well as the velocity of each
USV is designed; secondly, various possible collisions will be presented as constraints to keep the
system safe.

2.4. Collision Avoidance Using Control Barrier Function (CBF) Method

To ensure collision-free states in a dynamical system, we focus on systems of the form
ẋ = f (x) + g(x)u, where x ∈ Rn represents the system states and u ∈ U ⊂ Rn denotes
the control inputs. Safety set S is defined using a zeroing control barrier function (ZCBF),
which guarantees that the system states always remain within this set. Lemma 1 outlines
the approach to achieve this goal.

Lemma 5 ([39]). For a given ZCBF candidate h that meets specific conditions, any Lipschitz
continuous controller u:d→ R ensuring u ∈ S(x) will maintain system states x(t) within safety
set S and ensure asymptotic stability in d.

Furthermore, to guarantee the forward invariance of safety set S, the following in-
equality must be satisfied:

L f h(x) + Lgh(x)u + αh3(x) ≥ 0 (6)

where α > 0 and L f h(x) and Lgh(x) represent the Lie derivatives of h(x).

3. Main Results

In this section, a formation-containment tracking strategy based on neighbor informa-
tion exchange is presented in part A. This controller is then constrained to avoid obstacles
when necessary based on a control obstacle function in part B.
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3.1. Formation-Containment Tracking Strategy

Lemma 6. We consider the following dynamic system:

v̇i = −k(vi + vc) (7)

where ‖vc(t)‖ ≤ vm. If the system satisfies the initial condition ‖vi(t0)‖∞ ≤ vm, then the constraint
‖vi(t)‖ ≤ vm will hold all the time. At the same time, the acceleration of the system is also constrained.

Proof. We suppose that the lemma is not true, which means that vi(t) > vm for a period of
time (t1, t2). We assume that vi(t1) = vm and vi(t2) > vm. According to the Lagrange mean
value theorem, there exists a time t1 < t3 < t2 such that v̇i(t3) =

vi(t2)−vi(t1)
t2−t1

> 0. However,
since ‖vc(t)‖ ≤ vm, we have v̇i(t3) = −k(vi(t3) + vc) < 0. Therefore, the hypothesis is not
valid. And ‖v̇i‖∞ ≤ 2vm‖k‖∞; by choosing ‖k‖∞ ≤ umax

2vm
, the acceleration of the system will

be constrained.

We consider the following nominal controller:

ui =





−k
(

vi − v f + σC sgn
(

∑M
j=0 aij

(
vi − vj

)
+

k ∑M
j=0 aij

(
(xi − hi)−

(
xj − hj

))))
i = 1, 2, . . . , M,

−k
(

vi − v f + C sgn
(

k ∑M+N
j=1 aij

(
xi − xj

)
+

∑M+N
j=1 aij

(
vi − vj

)))
i = M + 1, M + 2, . . . , M + N,

(8)

where k = diag{k1, . . . , kn}, 0 < ki ≤ ul
‖vupper−vlower‖ , i = 1, 2, ..., n; ul is the upper bound of

the driving force; vupper and vlower represent the upper bound and the lower bound of the
velocity of every single USV, respectively; C = 1

2 diag
{

vupper − vlower
}

, 0 < σ < 1; and v f
represents the ultimate mean velocity.

Theorem 1. Based on Lemma 6, multi-USV system (2) can solve the formation-containment
tracking problem while the system is constrained in velocity and input under protocol (8), where
0 < ki ≤ ul

‖vupper−vlower‖ , 0 < σ < 1, 0 < δ < 1.

Proof. First, the demonstration of the consistency between virtual leaders and real leaders
is as follows.

The dynamic equation of Virtual Leader 0 is v̇0 = −k
(
v0 − v̄r

0
)
, where v̄r

0 = v f − Cvb
and ‖vb‖∞ ≤ σδ; it requires that 0 < σ < 1 and 0 < δ < 1.

For the real leaders, we let
ex

1i = xi − di − x0

ev
1i = vi − v0

(9)

denote the error in the tracking formation.
Differentiating these two error quantities with respect to time t yields

ėx
1i = ev

1i

ėv
1i = −kev

1i + kCvb − σkC sgn

[
M

∑
j=0

aij
(
vi − vj

)

+k
M

∑
j=0

aij
(
(xi − di)−

(
xj − dj

))
]

(10)
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We let ex
1 =

[
exT

11 , exT
12 , . . . , exT

1M
]T and ev

1 =
[
evT

11 , evT
12 , . . . , evT

1M
]T and rewrite (10)

in vector form as

ėx
1 = ev

1

ėv
1 = −(IM ⊗ k)ev

1 + (IM ⊗ kC)v̄b

− (IM ⊗ kC)σ sgn[(L11 ⊗ In)(IM ⊗ k)ex
1 + (L11 ⊗ In)ev

1]

(11)

where v̄b(t) =
[
vT

b (t), vT
b (t), · · · , vT

b (t)
]T . We let ς = (IM ⊗ k)ex

1 + ev
1; then, it follows that

ėv
1 =− (IM ⊗ k)ev

1 + (IM ⊗ kC)v̄b

− (IM ⊗ kC)σ sgn[(L11 ⊗ In)ς]
(12)

By moving the (IM ⊗ k)ev
1 term to the left side and letting (IM ⊗ k)ex

1 + ev
1 = ς, it

follows that
ς̇ = (IM ⊗ kC)v̄b − (IM ⊗ kC)σ sgn[(L11 ⊗ In)ς] (13)

Then, we multiply both sides of (13) by the (L11 ⊗ In) term and let (L11 ⊗ In)ς = ς̄.

˙̄ς = (A0 ⊗ kC)v̄b − (L11 ⊗ kC)σ sgn ς̄ (14)

Matrix L11 can be represented as L11 = L̄11 + δA0, where L̄11 = L′11 + (1 − δ)A0.
Due to 0 < δ < 1, L̄11 expresses the same virtual leader–real leaders communication
connection as L11. By using Lemma 2, there are [q̄1, q̄2, · · · , q̄M]T , which satisfy that
Q̄ = diag{q̄1, q̄2, · · · , q̄N} > 0 and ϕ̄ = Q̄L̄11 + L̄T

11Q̄ > 0.
We consider the Lyapunov candidate function V1 = ∑M

i=0 q̄i‖ς̄i‖1. We differentiate the
function along the trajectory of (14) to obtain

V̇1 =
M

∑
i=0

q̄i sgn(ς̄i)
˙̄ζi

= sgn(ς̄)T(Q̄⊗ In)[(A0 ⊗ kC)v̄b(t)

−(L11 ⊗ kC)σ sgn(ς̄)]

= sgn(ς̄)T(Q̄A0 ⊗ kC)v̄b(t)

− sgn(ς̄)T(Q̄L̄11 ⊗ kC)σ sgn(ς̄)

+ sgn(ς̄)T(Q̄A ⊗ kC)σδ sgn(ς̄)

= − sgn(ς̄)T(Q̄L̄11 ⊗ kC)σ sgn(ς̄)

+ sgn(ς̄)T(Q̄A0 ⊗ kC)[v̄b(t)− σδ sgn(ς̄)]

≤ − sgn(ς̄)T(ϕ̄⊗ kC)σ sgn(ς̄)

≤ 0

(15)

where we use the fact that ‖vb‖∞ ≤ σδ. If V̇1 is equal to 0, then ς̄ is equal to 0. If
not, then V̇1 < 0, which means that ς̄ is equal to 0 in a finite time. Since L11 > 0, it
leads to ex

1 → 0 and ev
1 → 0 as t → ∞. And the system has completed the formation

tracking task in a finite time. Then, it will be demonstrated that containment control
can be achieved. For the real leaders, it follows that v̇i = −k

(
vi − v f + Cvbi

)
, where
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vbi = σ sgn
[
k ∑M

j=0 aij
(
(xi − di)−

(
xj − dj

))
+ ∑M

j=0 aij
(
vi − vj

)]
, which requires that

‖vbi‖∞ ≤ σ. For the followers, we let

ex
2i =

M+N

∑
j=1

aij
(
xi − di − xj + dj

)

ev
2i =

M+N

∑
j=1

aij
(
vi − vj

)
(16)

denote the error in containment.
We let ex

2 =
[
exT

2(M+1), exT
2(M+2), · · · , exT

2(M+N)

]T
and ev

2 =
[
evT

2(M+1), evT
2(M+2), · · · , evT

2(M+N)

]T
.

We rewrite (18) in vector form as

ėx
2 = ev

2

ev
2 = (L21 ⊗ In)v̇RL + (L22 ⊗ In)v̇F

(17)

where v̇RL =
[
v̇T

1 , v̇T
2 , · · · , v̇T

M
]T , v̇F =

[
v̇T

M+1, v̇T
M+2, · · · , v̇T

M+N
]T .

By substituting v̇i = −k
(

vi − v f + Cvbi

)
into (19), it follows that

ėv
2 = −(IN ⊗ k)(L21 ⊗ In)vRL − (IN ⊗ k)(L22 ⊗ In)vF

− (L21 ⊗ kC)v̄B(t)− (L22 ⊗ kC) sgn[ev
2 + (IN ⊗ k)ex

2 ]
(18)

where v̄B(t) =
[
vT

b1(t), vT
b2(t), · · · , vT

bM(t)
]T .

By rearranging the terms, we can derive

ėv
2 + (IN ⊗ k)ev

2 = −(L21 ⊗ kC)v̄B(t)

− (L22 ⊗ kC) sgn[ev
2 + (IN ⊗ k)ex

2 ]

By letting ev
2 + (IN ⊗ k)ex

2 = ξ, it follows that

ξ̇ = −(L21 ⊗ kC)v̄B(t)− (L22 ⊗ kC) sgn[ξ] (19)

Matrix L22 = L̄22 + σ ∑M
i=1 Ai, where L̄22 = L′22 + (1 − σ)∑M

i=1 Ai. Similarly, be-
cause of 0 < σ < 1, L̄22 expresses the same real leader–follower communication
connection as L22. By using Lemma 3, there are [ p̄1, p̄2, · · · , p̄N ]

T , which satisfy that
P̄ = diag{ p̄1, p̄2, · · · , p̄N} > 0 and φ̄ = P̄L̄22 + L̄T

22P̄ > 0.
Now, we consider the Lyapunov candidate equation V2 = ∑M+N

i=M+1 p̄i‖ξi‖1 and differ-
entiate the function along the trajectory of (18) to obtain

V̇2 =
M+N

∑
i=M+1

p̄i sgn(ξi)ξ̇i

= sgn(ξ)T(P̄⊗ In)[−(L21 ⊗ kC)v̄B(t)

−(L22 ⊗ kC) sgn(ξ)]

64



J. Mar. Sci. Eng. 2024, 12, 304

We utilize the property of L21v̄B(t) = −∑M
i=1 Ai v̄bi(t), where each v̄bi(t) =

[
vT

bi(t), vT
bi(t),

· · · , vT
bi(t)

]T ∈ RM×n. It derives

V̇2 = sgn(ξ)T(P̄⊗ In)

[
−

M

∑
i=1

(−Ai ⊗ kC)v̄bi(t)

−(L22 ⊗ kC) sgn(ξ)]

= sgn(ξ)T(P̄⊗ In)

[
M

∑
i=1

(Ai ⊗ kC)v̄bi(t)

−(L̄22 ⊗ kC) sgn(ξ)− σ
M

∑
i=1

(Ai ⊗ kC) sgn(ξ)

]

= − sgn(ξ)T(P̄L̄22 ⊗ kC) sgn(ξ)

+
M

∑
i=1

sgn(ξ)T(P̄Ai ⊗ kC)[v̄bi(t)− σ sgn(ξ)]

≤ −1
2

sgn(ξ)T(φ̄⊗ kC) sgn(ξ)

≤ 0

(20)

where we use the fact that ‖vbi‖∞ ≤ σ. If V̇2 is equal to 0, then ξ̄ is equal to 0. If not,
then V̇2 < 0, which means that ξ̄ is equal to 0 in a finite time. That means that ex

2 → 0
and ev

2 → 0 as t → ∞. And the system has completed the containment task. Thus, the
formation-containment tracking problem is solved.

Remark 2. The nominal controller of the system is designed by Lemma 6 to conform to the basic form
where the velocities and control inputs are constrained. Real-time information exchange among the USVs
is then used to achieve distributed control. To better alleviate to system jitters caused by nonlinear terms
and to better achieve consistency, we may replace the sign function with (21) in practical applications.

satω(x) =




−1, x < − 1

ω
ωx, |x| < 1

ω
1, x > 1

ω

(21)

3.2. Barrier Function-Based Collision Avoidance Controller

In the actual multi-USV system, the acceleration and velocity of USVs are limited. This
should also considered in the distributed cooperation layer. Considering the difference
between leaders and followers, it is assumed that the real leaders’ velocity (vL) and accel-
eration (uL) are limited by µml and ηml , which means that ‖vL‖∞ ≤ µml and ‖uL‖∞ ≤ ηml .
Similarly, the followers’ velocity (vF) and acceleration (uF) satisfy ‖vF‖∞ ≤ µm f and
‖uF‖∞ ≤ ηm f . The controller of each agent is designed as ui = ūi, i = 0, . . . , N + M, where
ūi satisfies the control input of the safety set. Next, the security zone needs to be divided.

For convenience, the USVs and obstacles in the distributed cooperative layer are
regarded as circles when dealing with obstacle avoidance and collision avoidance. Taking
into account the difference between the USVs and the obstacles, it is supposed that the
radius of the USVs is ra and that the radius of the ith obstacle is ri.

It is assumed that the safe distance among the USVs is da, where da = 2ra. Consid-
ering the collision avoidance requirements, the distance between any two USVs must be
satisfy

∥∥∆xij(t)
∥∥ ≥ da all the time, where da = 2ra. For a pair of USVs i and j, where

i, j = 1, 2, . . . , N + M, the velocity difference can be expressed as ∆vij = vi − vj.
The collision avoidance maintenance condition is converted into the forward invari-

ance of some sets. A comprehensive consideration of possible collisions throughout the
system has led to the classification of collisions into four scenarios.
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Assumption 3. For each USV, the convergence position satisfies the safety distance require-
ment under a fixed topology. That means that mint→∞

∥∥xi(t)− xj(t)
∥∥ ≥ da, where i = 1, . . . ,

M + N, j = 1, . . . , M + N, and i 6= j.

1. Case 1: First, we consider avoidance among the followers. According to the derivation
similar to [39], collision avoidance set of USV i can be expressed as

Sij =
{
(xi, vi) ∈ R2n | hij ≥ 0

}
(22)

where i, j ∈ {M + 1, . . . , M + N} and

hij =
√

4ηm f
(∥∥∆xij

∥∥− da
)
+

∆xT
ij∥∥∆xij
∥∥∆vij (23)

where hij is the level set function of set Sij. This means that when a collision between
two USVs is about to occur, each of the two USVs will prevent the collision with its
maximum acceleration. Additionally, the forward invariance of Sij will be ensured
if the ZCBF constraint in (6) is satisfied. By combining (6) and (23), the following
inequality can be obtained:

− ∆xT
ij∆ūij ≤ αh3

ij
∥∥∆xij

∥∥−

(
∆vT

ij∆xij

)2

∥∥∆xij
∥∥2

+
2ηm f ∆vT

ij∆xij√
4ηm f

(∥∥∆xij
∥∥− Da

) +
∥∥∆vij

∥∥2

(24)

where ∆ūij = ūi − ūj. It can also be written in the following form:

−∆xT
ij
(
ūi − ūj

)
≤ bij

where bij = αh3
ij

∥∥∆xij
∥∥−

(
∆vT

ij ∆xij

)2

‖∆xij‖2 +
2ηm f ∆vT

ij ∆xij√
4ηm f (‖∆xij‖−da)

+
∥∥∆vij

∥∥2. Thus, we can con-

strain the safety barrier of USV i and j distribution as

−∆xT
ij ūi ≤

1
2

bij, ∆xT
ij ūj ≤

1
2

bij (25)

Constraint (25) can be written in the linear form Xijūi ≤ b̂ij for each follower, where
Xij = −∆xT

ij and b̂ij =
1
2 bij.

2. Case 2: Similarly, taking into account collision avoidance among real leaders, the
following safety set can be obtained:

S̄ij =
{
(xi, vi) ∈ R2n | h̄ij ≥ 0

}

where i, j ∈ {1, . . . , M} and

h̄ij =
√

4ηml
(∥∥∆xij

∥∥− da
)
+

∆xT
ij∥∥∆xij
∥∥∆vij (26)

Then, the linear constraint can be obtained as X̄ijūi ≤ 1
2 b̄ij for each real leader, where

b̄ij = αh3
ij

∥∥∆xij
∥∥−

(
∆vT

ij ∆xij

)2

‖∆xij‖2 +
2ηml∆vT

ij ∆xij√
4ηml(‖∆xij‖−Da)

+
∥∥∆vij

∥∥2 and Xij = −∆xT
ij . Since

the virtual leader is not real, there is no need to consider its collision avoidance.
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3. Case 3: For a follower i and a real leader j, the collision avoidance set is

S̃ij =
{
(xi, vi) ∈ R2n | h̃ij ≥ 0

}

where i ∈ {1, . . . , M}, j ∈ {M + 1, . . . , M + N}, and

h̃ij =

√
2
(

ηm f + ηml

)(∥∥∆xij
∥∥− da

)
+

∆xT
ij∥∥∆xij
∥∥∆vij (27)

The linear constraint can be obtained as X̃ijūi ≤ 1
2 b̃ij, where b̃ij = αh3

ij

∥∥∆xij
∥∥ −

(
∆vT

ij ∆xij

)2

‖∆xij‖2 +
(ηml+ηm f )∆vT

ij ∆xij√
2(ηml+ηm f )(‖∆xij‖−Da)

+
∥∥∆vij

∥∥2 and X̃ij = −∆xT
ij .

4. Case 4: In addition to collision avoidance among USVs, collision avoidance between
obstacles and USVs should also be taken into consideration. It is assumed that the safe
distance between an USV i and an obstacle Oj is dj

s, where dj
s = ra + rj. Considering

the collision avoidance requirements, the distance between any USV and any obstacle
must satisfy

∥∥∥∆xiOj(t)
∥∥∥ ≥ dj

s all the time.
First, considering collision avoidance between obstacles and followers, the safety set between
a follower USV i and an obstacle Oj is represented by the following expression:

SiOj =
{
(xi, vi) ∈ R2n | hiOj ≥ 0

}

where i ∈ {M + 1, . . . , M + N} and

hiOj =

√
2
(

ηm f + ηmO

)(∥∥∥∆xiOj

∥∥∥− dj
s

)

+
∆xT

iOj∥∥∥∆xiOj

∥∥∥
∆viOj

(28)

where hiOj is the level set function of set SiOj . This means that when a collision between
an USV and an object is about to occur, the USV will prevent the collision with its
maximum acceleration. The velocity (vO) and acceleration (ηO) of the obstacles can
be detected by sensors mounted on the USV. Furthermore, the static obstacles can be
regarded as special cases of the dynamic obstacles with zero velocity and acceleration.
Additionally, the forward invariance will be ensured if the ZCBF constraint in (6) is
satisfied. By combining (6) and (28), the following inequality can be obtained:

− ∆xT
iOj

ūi ≤ αh3
iOj

∥∥∥∆xiOj

∥∥∥−

(
∆vT

iOj
∆xiOj

)2

∥∥∥∆xiOj

∥∥∥
2

+
∥∥∥∆viOj

∥∥∥
2
+

(
ηm f + ηmO

)
∆vT

iOj
∆xiOj√

2
(

ηm f + ηmO

)(∥∥∥∆xiOj

∥∥∥− dj
s

)

(29)

Inequality (29) can also be written in the following form:

−∆xT
iOj

ūi ≤ biOj (30)
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where biOj = αh3
iOj

∥∥∥∆xiOj

∥∥∥−

(
∆vT

iOj
∆xiOj

)2

∥∥∥∆xiOj

∥∥∥
2 +

∥∥∥∆viOj

∥∥∥
2
+

(ηm f +ηmO)∆vT
iOj

∆xiOj√
2(ηm f +ηmO)

(∥∥∥∆xiOj

∥∥∥−dj
s

) . We

let XiOj stand for −∆xT
iOj

; then, constraint (30) can be written in the linear form
XiOj ūi ≤ biOj for each follower.
Then, considering the avoidance of collisions between a real leader j and obstacles,
the following safety set can be obtained:

ŜiOj =
{
(xi, vi) ∈ R2n | ĥiOj ≥ 0

}

where i ∈ {1, . . . , M} and

ĥiOj =

√
2(ηml + ηmO)

(∥∥∥∆xiOj

∥∥∥− dj
s

)
+

∆xT
iOj∥∥∥∆xiOj

∥∥∥
∆viOj (31)

Then, we can obtain the linear constraint X̂iOj ūj ≤ b̂iOj for each real leader, where

b̂iOj = αh3
iOj

∥∥∥∆xiOj

∥∥∥−

(
∆vT

iOj
∆xiOj

)2

∥∥∥∆xiOj

∥∥∥
2 +

∥∥∥∆viOj

∥∥∥
2
+

(ηml+ηmO)∆vT
iOj

∆xiOj√
2(ηml+ηmO)

(∥∥∥∆xiOj

∥∥∥−dj
s

) .

In order to avoid collisions, the system needs to satisfy the constraints of the above
four cases at all times. To ensure the effectiveness of the nominal controller, colli-
sion avoidance strategies should be triggered as little as possible, and the nominal
controller should be modified as little as possible. Since the constraints are linear,
the following quadratic programming (QP) problem can be formulated in a least
squares sense:

ū∗i = arg min
ūi∈Rn

J(ūi)

s.t. Xijūi ≤ b̂ij, i ∈ L, j ∈ L

X̄ijūi ≤ b̄ij, i ∈ F, j ∈ F

X̃ijūi ≤ b̃ij, i ∈ F, j ∈ L

XiOj ūi ≤ biOj , i ∈ F, j ∈ OB

X̂iOj ūi ≤ b̂iOj , i ∈ L, j ∈ OB

(32)

where J(ūi) = ‖ui − ūi‖2, ui is the nominal controller, ūi is the controller that satisfies the
security strategy constraints, L is the set of real leaders, F is the set of followers, and OB is
the set of obstacles. The actual controller is shown in the following expression:

ui = ū∗i (33)

where i = 0, 1, . . . , N + M.

Theorem 2. Given the formation-containment tracking system, if for all USV i = 1, . . . , M + N,
the control input is given by (33), where ū∗i can be solved by QP problem (32), then the system is
able to avoid collisions under assumption 3.

Proof. If all controllers of the USVs satisfy the decentralized safety certificates, then security
set S is forward-invariant. If triggered, they are confined to the safety set [39]. As a result,
the system is able to achieve obstacle and collision avoidance.

Remark 3. The priority of collision avoidance and obstacle avoidance control for USVs is higher
than that of formation-containment control based on consensus for multiple USVs. When consid-
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ering containment control problems, if the topology of the system is fixed, the final convergence
position of the followers should be calculated in advance. If the final convergence position of the
followers does not satisfy the safety distance requirement, the CBF (control barrier function) will take
precedence in maintaining a safe distance between follower and follower, consequently disrupting
the preset consensus formation among the followers. However, the pre-formed position of the real
leader USV should satisfy the requirement of a safe position; otherwise, it may deviate from the
preset trajectory due to the inability to achieve consistent velocity.

Remark 4. At this point, the conditions that the real leaders and followers need to meet to avoid
obstacles and collisions have all been given. However, the proposed constraint takes into account
all pairs of USVs, which can be a very large number. From a topology structure perspective, this
requires all the information interactions of the USVs. With the increase in the number of USVs,
the related computing and sensing requirements will increase significantly. We consider a fact that
if the USVs are far away enough, they will not collide in a period of time. Thus, each USV i only
needs to consider other USVs and obstacles in a certain range.

4. Simulation

In this section, an example is used to illustrate the effectiveness of the control strategy
in the distributed cooperation layer. The multi-USV system in this simulation example
is composed of one virtual leader, four real leaders, and three followers. The communi-
cation topology of this system is shown in Figure 3, where USV 0 is the virtual leader,
USVs 1–4 are real leaders, and USVs 5–7 are followers. The initial position vector and
initial velocity vector of USVs 1–7 are x(0) = [0, 0, 10, 0, 6, 10, 0, 10, 20, 0, 5, 9, 1, 20]T and
v(0) = [1, 2, 2.5, 1.5, 2.25, 1, 1.5, 2, 3, 2.75, 1, 3, 1.75, 2.5]T , respectively. The formation shape
given by the real leaders is a rectangle, and the specific value vector is h = [0, 0, 20, 0, 20, 20, 0, 20]T .
The velocity limits of each real leader and follower are both 6 m/s, and the input limits
are both 10 m/s2. The dynamic equation of the virtual leader is v̇0 = −k(v0 − 1). The
initial position vector and initial velocity vector of the virtual leader are [1, 0]T and [2, 1]T ,
respectively. And the velocity limits and acceleration limits given by the virtual leader are
3 m/s and 6 m/s2, with σ = 0.75. According to Theorem 1, this leads to k = 1. There is
only one obstacle in the motion environment of the system. The radius of the USV in the
distributed cooperative layer is 1 m, and the radius of the obstacle is 10 m. This means
that the safe distance among USVs is 2 m and the safe distance between any USV and any
obstacle is 11 m.

0

1

2

3

4

5

6

7

Figure 3. The topology of the multi-USV system.

The trajectories of USVs in the distributed cooperative layer obtained by the multi-USV
system driven by controller (33) are shown in Figure 4. The system can be driven by the
control strategy to perform the formation-containment tracking control task: real leaders
can form the expected formations; followers can converge into the convex hull; the motion
of the whole system is controlled by the virtual leader. At the same time, all USVs can avoid
obstacles. The smooth trajectories of the agents represent no significant abrupt changes in
the state of the USVs.
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More details on three aspects are presented in the following simulation: the implemen-
tation of formation-containment tracking, the velocities and input constraints of the USVs,
and the effectiveness of the obstacle and collision avoidance strategy.

The errors in formation-tracking control and containment control can be seen in
Figures 5–8. Figures 5 and 6 show the formation-tracking position errors and velocity errors
of the real leaders. The errors arise from the need for real leaders to track virtual leader
states and form time-invariant formations, as shown in Equation (9). Figures 7 and 8 show
the containment position errors and velocity errors of the followers. The errors arise from
the need for followers to track the states of the real leaders, as shown in Equation (16).
The asymptotic convergence of all errors to zero indicates that the system is finally stable
and completes the formation-containment tracking control task. The oscillations in these
figures are produced by avoiding obstacles and other USVs. It is worth noticing that the
convergence of the followers occurs after the convergence of the real leaders, but the time
interval can be ignored in the application of the algorithm.

Figure 4. The trajectories of USVs in the distributed cooperative layer. The purple asterisk represents
the position of the formation leader at t = 100 s.
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Figure 5. The position errors of the real leaders.
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Figure 6. The velocity errors of the real leaders.
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Figure 7. The position errors of the followers.
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Figure 8. The velocity errors of the followers.

The accelerations and velocities of each USV are limited to the required range, as shown
in Figures 8 and 9, where dashed lines indicate acceleration and velocity limits. Although the
controller input oscillates during obstacle avoidance, the velocities and accelerations of all USVs
eventually converge to the same level. The oscillations are caused by the controller solving
a quadratic programming problem during obstacle avoidance, the solution of which leads
to abrupt changes in the controller inputs. Even during the obstacle avoidance process, the
velocities and accelerations of all the USVs do not exceed the required limits.

To illustrate more clearly that in this example, the USVs can avoid obstacles, the
distance between each USV and the center of the obstacle is plotted, as shown in Figure 10,
where the dashed lines represent the safe distance. We further illustrate the effectiveness
of obstacle avoidance by adding a time axis, zooming in on the local trajectory figure,
and increasing the safety distance incrementally, as shown in Figure 11. The figure shows
that the trajectory of each USV is smooth when avoiding obstacles and confirms that the
velocities and inputs of each USV are limited. With the increase in safety distance, the
implementation of the algorithm is still effective. Therefore, in practice, the setting of safety
distance can be adjusted appropriately for better security.

Due to the different limited accelerations and velocities of the followers and leaders,
the distance between the USVs is plotted to illustrate the collision avoidance effectiveness
of the USVs, as shown in Figures 12 and 13, with the dotted line representing the safe
distance. In this example, the initial position of the real leader is set farther away from the
follower, and the likelihood of collisions occurring is reduced. However, the whole system
still realizes collision avoidance with the USVs avoiding obstacles.
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Figure 9. The inputs of the USVs with the controller.
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Figure 10. The velocities of the USVs with the controller.
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Figure 12. The distance between the followers and the leaders.
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Figure 13. The distance between the followers and leaders.

5. Conclusions

This paper investigates the distributed formation-containment tracking task for collision-
free multi-USV (unmanned surface vehicle) systems under constraints on velocity and
driving force. Initially, a standard controller based on consensus theory is proposed,
designed to guide the entire multi-USV system, subject to velocity and input constraints,
to complete the formation-containment tracking task. Additionally, a collision avoidance
approach based on control barrier functions is introduced. This method accounts for
avoiding collisions both among USVs with different roles within the formation-containment
mission and against static obstacles. The effectiveness of the proposed strategies is validated
through simulation experiments. Future work will focus on generalizing the results to
agents with nonlinear dynamics and taking into account interference and uncertainty.
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Abstract: This paper investigates the cooperative formation trajectory tracking problem for hetero-
geneous unmanned aerial vehicle (UAV) and multiple unmanned surface vessel (USV) systems
with collision avoidance performance. Firstly, a formation control protocol based on extended state
observer (ESO) is proposed to ensure that the UAV and the USVs track the target trajectory simul-
taneously in the XY plane. Then, the collision avoidance control strategy of USV formation based
on artificial potential field (APF) theory is designed. Specifically, the APF method is improved by
reconstructing the repulsive potential field to make the collision avoidance action of USVs more in
line with the requirements of International Regulations for Preventing Collisions at Sea (COLREGs).
Following that, an altitude controller for the UAV is proposed to maintain the cooperative formation
of the heterogeneous systems. Based on the input-to-state stability, the stability of the proposed
control structure is proven, and all the signals in the closed-loop system are ultimately bounded.
Finally, a simulation study is provided to show the efficacy of the proposed strategy.

Keywords: heterogeneous formation control system; UAV-USVs; extended state observer; collision
avoidance; artificial potential field method

1. Introduction

In the past few years, unmanned systems have gained significant prominence in
the realm of industrial advancement, attributed to their diverse usage in areas such as
reconnaissance [1,2], marine pollution tracking [3,4], and advanced traffic management [5,6].
These systems principally encompass unmanned aerial vehicles (UAVs), unmanned ground
vehicles (UGVs), unmanned surface vehicles (USVs), and autonomous underwater vehicles
(AUVs) [7,8]. Although each unmanned system can handle tasks, its capacity limits its
ability to deal with more complex tasks. Therefore, a homogeneous or heterogeneous
system is more effective than a single unmanned system in completing intricate tasks [9–11].

The development of USV has been widely employed in ocean engineering due to
its benefits, which include increased loading capacity, more convenience, and cheaper
mission costs [12,13]. However, finding the rescue target in rescue missions and maritime
searches is difficult owing to the restricted observation range of USVs [14,15]. Fortunately,
incorporating UAVs into USV systems to construct heterogeneous multi-agent systems can
compensate for this shortcoming [16,17]. A USV usually boosts its capacity to operate at
sea by using the UAV’s flexibility and utilizing the powerful target search ability while
simultaneously widening the communication range of the sea between USVs, therefore, the
heterogeneous systems extend the effective working area [18,19]. As a result, it is critical
to investigate the formation challenges of a heterogeneous system, which has primarily
engineering importance.

For the cooperative tracking control problem of UAVs and USVs, many research results
have been addressed, among which typical control methods include the leader following
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method [20], virtual structure method [21], behavior-based approach [22], and model pre-
diction method [23]. In [24], a series of coordinate transformations have been developed
to convert the tracking error dynamics of a marine aerial-surface heterogeneous system
into translation–rotation cascade forms. This eliminates variability between the UAV and
the USV in terms of both translation and rotation dynamics. In [25], the research proposes
an adaptive fault-tolerant time-varying formation control scheme. This scheme is partic-
ularly tailored to address challenges posed by actuator failures, parameter uncertainties,
and external disturbances within the framework of a directed communication topology.

In the area of cooperative control of heterogeneous formations of UAVs and USVs,
a globally applicable fixed-duration adaptive neural network is designed in [18] that
employs a nonsingular rapid terminal sliding approach for formation control. This protocol
is engineered to accurately follow a specified trajectory and achieve a predefined formation
arrangement within a set timeframe, effectively addressing a range of uncertainties. This is
accomplished by harnessing the combined strengths of adaptive methodologies and Radial
Basis Function (RBF) neural networks. In [26], the research proposes a velocity estimation-
based control strategy that comprises a distributed observer for estimating each vehicle’s
reference velocity. In [23], a distributed model predictive control algorithm tailored for
heterogeneous systems is presented, characterized by a directed topological structure.

It is worth noting that the above research results tend to focus on the establishment
of air–sea cooperation and the realization of trajectory tracking without considering the
problem of collision avoidance [27,28]. During the mission, a minimum safe distance has
to be maintained between any two unmanned systems to prevent collisions and to avoid
damage to the overall performance of the search and rescue cooperative mission. Therefore,
another key issue for the heterogeneous formation system is collision avoidance. Collision
avoidance includes not only avoiding collisions between unmanned systems or between
unmanned systems and other individuals but also avoiding collisions between unmanned
systems and obstacles. Collision avoidance can be further divided into static collision avoid-
ance based on sensor information and dynamic collision avoidance based on an unknown
environment. Collision avoidance between aerial vehicles and obstacles can be divided
into two ways: overall collision avoidance and changing formation collision avoidance.

There are relatively few research results on the cooperative formation control of het-
erogeneous systems with collision avoidance and obstacle avoidance. To avoid collision
between ships, [29,30] propose an unmanned ship formation control method based on
guaranteed performance, but the collision avoidance of obstacles is not addressed. For the
collision avoidance problem between UAVs with static and dynamic obstacles, a cooperative
controller for multiple unmanned ships based on artificial potential function is proposed
in [12,31], while in the area of cooperative collision avoidance and obstacle avoidance for
heterogeneous systems, research results are more limited. In [32], a distributed heteroge-
neous cooperative tracking control approach is proposed based on the leader-following
method, and the artificial potential field (APF) algorithm is used to construct a control
strategy with a collision avoidance mechanism. However, the research results between
vehicles ignore the nautical engineering practice and poorly consider the COLREGs.

Based on the preceding analysis, this paper investigates the cooperative formation
trajectory tracking problem for UAV-USV heterogeneous systems with model uncertainty
and external disturbances. To solve this problem, a formation control protocol based on
extended state observer (ESO) is proposed to ensure that UAV and USV track the target
trajectory simultaneously. The collision avoidance control strategy of USV formation based
on improved APF theory is designed. The collision avoidance problem between multiple
USV formations formed under UAV coordination is solved by innovatively introducing
the ship encounter situation and danger evaluation index into the artificial potential field.
The key contributions can be summarized as follows:

(1) Compared with the existing results in [12,29–31], which only study the cooperative
trajectory tracking problem of UAV and USV heterogeneous systems, this paper
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explores the collision avoidance protocol for USV formation under UAV cooperation
with navigation practice.

(2) Compared with the existing results in [18,25,26,32], which estimate that the system’s
indeterminate terms rely on RBF neural networks and fuzzy logic, etc., this paper
employs ESO to realize the accurate compensation of uncertainties and external
disturbances in heterogeneous systems.

(3) Compared with the existing results in [31–37], this paper innovatively introduces the
ship encounter situation and danger evaluation index into the APF approach, and the
improved APF method for heterogeneous cooperative control collision avoidance
decision is more in line with the navigation practice.

The organization of this paper is structured as follows. Section 2 formulates the
problem. Section 3 expounds on the controller design and the closed-loop system stability
analysis. Section 4 demonstrates the simulation illustrations. Section 5 concludes this paper.

2. Preliminaries and Problem Statement
2.1. Problem Formulation

Consider the heterogeneous systems consisting of one UAV and N USVs. First, the dy-
namic models of the UAV and N USVs are presented. They are used to illustrate a unified
dynamic model for the heterogeneous system. For ease of use, let Π = {1, 2, . . . , N}. Ac-
cording to the results in [38], the dynamic model of the quadrotor UAV can be described as





p̈ax = (sin φa sin ψa + cos φa sin θa cos ψa)
uap
ma
− dax ṗax

ma
+ ∆ax,

p̈ay = (sin φa cos ψa + cos φa sin θa sin ψa)
uap
ma
− day ṗay

ma
+ ∆ay,

p̈az = (cos θa cos φa)
uap
ma
− daz ṗaz

ma
− ga + ∆az,

(1)





φ̈a = θ̇aψ̇a
Jay−Jaz

Jax
− Jar

Jax
θ̇ad̄a +

τaφ

Jax
− daφφ̇a

Jax
,

θ̈a = φ̇aψ̇a
Jaz−Jax

Jay
− Jar

Jay
φ̇ad̄a +

τaθ
Jay
− daθ θ̇a

Jay
,

ψ̈a = φ̇a θ̇a
Jax−Jay

Jaz
+

τaψ

Jaz
− daψψ̇a

Jaz
,

(2)

where [φa, θa, ψa]
T is the attitude state,

[
pax, pay, paz

]T is the position state, τaφ, τaθ , τaψ are
the three control torques, uap is the control thrust, ga is the gravitational acceleration,
ma denotes the mass, da is the overall residual rotor angle, Jax, Jay, Jaz represent the mo-
ments of the inertia, dax, day, daz, daφ, daθ , daψ represent the translational drag coefficients,
∆ax, ∆ay, ∆az are the external disturbances encountered, and Jar denotes the moment of
rotor’s inertia.

Inspired by the results in [25], the UAV’s rotational dynamics can be stabilized sepa-
rately. Therefore, in light of external disturbances and parametric uncertainties, the UAV
model (1) is redefined in the following manner

p̈a = gaua + fa + ∆a (3)

where pa =
[
pax, pay, paz

]T is the position , fa = [−dax ṗax/ma,−day ṗay/ma,−daz ṗaz/

ma − ga]T , ga = diag{1/ma, 1/ma, 1/ma}, ∆a =
[
∆ax, ∆ay, ∆az

]T , ua =
[
uax, uay, uaz

]T

denotes the new control signal which is given as [39]




uax = (sin φa sin ψa + cos φa sin θa cos ψa)up
uay = (sin φa cos ψa + cos φa sin θa sin ψa)up
uaz = (cos θa cos φa)up

In the horizontal plane, the i-th (i ∈ Π) USV’s kinematic and dynamic equations are
described as [40]
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



ẋbi = µbi cos ψbi − vbi sin ψbi,
ẏbi = µbi sin ψbi + vbi cos ψbi,
ψ̇bi = rbi

(4)





µ̇bi = fµbi(αi) +
1

mµbi

(
τ

f
µbi + wµbi

)
,

v̇bi = fvbi(αi) +
1

mvbi
wvbi

ṙbi = frbi(αi) +
1

mrbi

(
τ

f
rbi + wrbi

) (5)

and




fµbi(αi) =
1

mµbi

(
mvbivbirbi − dµbiµbi − dµbi1|µbi|µbi

)

fvbi(αi) =
1

mvbi

(
−mµbiµbirbi − dvbivbi − dvbi1|vbi|vbi

)
,

frbi(αi) =
1

mrbi

((
mµbi −mvbi

)
µbivbi − drbirbi − drbi1|rbi|rbi

)
,

(6)

where ψbi denotes the yaw angle; (xbi, ybi) denotes the position; αi = [µbi, vbi, rbi]
T denote

the surge, sway, and yaw velocity, respectively; mµbi, mvbi, mrbi represent the inertial mass;
fµbi(αi), fvbi(αi), frbi(αi) denote the nonlinear dynamics consisting of Coriolis forces and
the unmodeled hydrodynamics; wµbi, wvbi, wrbi represent the bounded disturbances; and

τ
f

µbi and τ
f

rbi represent the surge force and the yaw moment.
Because the USVs’ motion model given in (4) and (5) is underactuated, a hand position

technique is employed to compensate. The USVs’ front point
(

pbix, pbiy

)
is defined as the

hand point, which can be expressed as
{

pbix = xbi + Lbi cos ψbi
pbiy = ybi + Lbi sin ψbi

(7)

where Lbi denotes the distance between the new defined hand point
(

pbix, pbiy

)
and the

actual position (xbi, ybi), which is depicted in Figure 1.

X

Y

O

bi
y

bix
p

bi
x

biy
p

bi
r

bi
v

bi
µ

bi
L

biψ

Figure 1. The kinematic model of USV.

The second derivative of (7) yields the following result
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



p̈bix =µ̇bi cos ψbi − (v̇bi + Lbi ṙbi) sin ψbi − µsirbi sin ψbi

−
(

vbirbi + Lbir2
bi

)
cos ψbi

p̈biy =µ̇bi sin ψbi − (v̇bi + Lbi ṙbi) cos ψbi + µsirbi cos ψbi

−
(

vbirbi + Lbir2
bi

)
sin ψbi

(8)

Substituting (6) into (8) gives that




p̈bix = fbix(β) + cos ψbi
mµbi

τ
f

µ − Lbi sin ψbi
mrbi

τ
f

r + wbix

p̈biy = fbiy(β) + sin ψbi
mµbi

τ
f

µ + Lbi cos ψbi
mrbi

τ
f

r + wbiy
(9)

where




fbix(β) = fµ(α) cos ψbi − ( fv(α) + Lbi fr(α)) sin ψbi

− µbirbi sin ψbi −
(

vbirbi + Lbir2
bi

)
cos ψbi

fbiy(β) = fµ(α) sin ψbi + ( fv(α) + Lbi fr(α)) cos ψbi

+ µbirbi cos ψbi −
(

vbirbi + Lbir2
bi

)
sin ψbi





wbix(β) =
wµbi
mµbi

cos ψbi −
(

wvbi
mµbi

+ Lbiwrbi
mrbi

)
sin ψbi

wbiy(β) =
wµbi
mµbi

sin ψbi +
(

wvbi
mµbi

+ Lbiwrbi
mrbi

)
cos ψbi

with β = [µbi, vbi, rbi, ψbi]
T .

Based on (9), the i-th USV position dynamics can be described as

p̈bi = fbixy + Ωbi(ψbi)ωbiubi + wbixy (10)

where pbi =
[

pbix, pbiy

]T
is the i-th USV position, fbixy =

[
fbix, fbiy

]T
, Ωbi(ψbi) =

[cos ψbi,− sin ψbi; sin ψbi, cos ψbi], ubi =
[
τµ, τr

]T , ωbi = diag
{

1/mµbi, Lbi/mrbi

}
, wbixy =

[
wbix, wbiy

]T
.

Combining (3) and (10), the unified model of the heterogeneous systems can be
described as

{
ẋi1 = xi2
ẋi2 = Fxi + Gxiuxi + ∆xi

(11)

When (11) represents the UAV model. Where xi1 =
[
pax, pay

]T
= xa1 ∈ R2, xi2 =

[ ṗax, ṗay]T = xa2 ∈ R2, Fxi = Faxy = [−dx ṗax/ma,−dy ṗay/ma]T , Gxi = Gaxy =

diag{1/ma, 1/ma}, ∆xi = ∆axy = [∆ax, ∆ay]T , uxi = uaxy =
[
uax, uay

]T .

When (11) represents the USV model. Where xi1 =
[

pbix, pbiy

]T
= xbi1 ∈ R2, xi2 =

[
ṗbix, ṗbiy

]T
= xbi2 ∈ R2, Fxi = fbixy =

[
fbix, fbiy

]T
, Gxi = Ωbi(ψbi)ωbi, ∆xi = wbixy =

[
wbix, wbiy

]T
, uxi = ubi =

[
τµ, τr

]T .
The virtual leader is defined and its motion model is described as follows

{
ẋl1 = xl2
ẋl2 = Fl

(12)
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where xl1 ∈ R2, xl2 ∈ R2 denote the position and velocity state vectors, respectively. Fl ∈ R2

is a smooth unknown nonlinear function.
Define the system’s error variable as

{
x̄i1 = xi1 − xl1 − δi
x̄i2 = xi2 − xl2

(13)

where δi ∈ R2 represents the desired relative position vector between i-th of the agent of
the heterogeneous systems and the virtual leader.

Assumption 1. The aerodynamic drag coefficients dix, diy, and diz are bounded and unknown.
The unknown nonlinear function Fl is bounded. Then, there exists a positive constant αl such that
Fl < αl .

Assumption 2. The quadrotor UAV experiences external perturbations ∆ax, ∆ay, ∆az, which are
confined within certain bounds, fulfilling the conditions ‖∆ax‖ ≤ ∆̄ax,

∥∥∆ay
∥∥ ≤ ∆̄ay, ‖∆az‖ ≤

∆̄az. Here, ∆̄ax, ∆̄ay, and ∆̄az represent unknown positive constants. The USV experiences external
disturbances wµbi, wνbi, wrbi which are confined within certain limits, fulfilling the conditions∥∥∥wµbi

∥∥∥ ≤ w̄µbi, ‖wvbi‖ ≤ w̄vbi, ‖wrbi‖ ≤ w̄rbi. In this context, w̄µbi, w̄vbi, and w̄rbi signify
unknown positive constants.

Assumption 3. The velocity and acceleration of the agent and the virtual leader are bounded,
and they satisfy vl 6= 0, vi 6= 0.

Assumption 4. Gxi is a symmetric matrix and its eigenvalues λ1, λ2, . . . , λm are satisfied such
that 0 < ϑi < λ1 < λ2 · · · < λm < ∞, where ϑi is a positive constant.

Theorem 1 ([41]). For any point in time, the function V(t) is continuous and positive, with its
initial state being within limits. Given that the inequality V̇(t) ≤ −γV(t) + µ is satisfied, where
γ > 0 and µ > 0, it can be deduced that

V(t) ≤ µ

γ

(
1− e−γt)+ V(0)e−γt.

Theorem 2 ([42]). At all moments, the function S(t) remains positive and continuous, with its
initial condition S(0) being constrained. Should the condition Ṡ(t) > qS(t) be valid for t− t0 ≥ 0
with q > 0, it leads to the inference that

S(t) > eq(t−t0)S(t0).

2.2. Algebraic Graph Theory

G = (Vg, εg, Ag) is an undirected graph in this paper, with Vg = {v1, v2, . . . , vn} being
the node-set, εg ⊆ Vg ×Vg being the edge set, and Ag =

[
aij
]

being the adjacency matrix,
of which all the elements are non-negative. The adjacency matrix Ag depicts the effective-
ness of communication from agent j to agent i, where aij denotes the communication weight
corresponding to the edge, and diagonal element aii = 0, aij > 0. As an undirected graph,
the adjacency element aij = aji must be guaranteed to be satisfied. If any pair of unique
nodes can be connected by an undirected path, then the graph is connected. The Laplacian
matrix Lg =

[
lij
]
⊂ Rn×n is defined as follows

Lg = Dg − Ag

where Dg = diag{d1, d2, . . . , dn}, di = ∑n
j=1 aij and i = 1, 2, . . . , n. Defining the leader

adjacency weight matrix as Bg = diag{b1, b2, . . . , bn}, where bi > 0, indicates an exchange of

81



J. Mar. Sci. Eng. 2023, 11, 2332

information between agent i and the leader, otherwise, bi = 0, i = 1, 2, . . . , n. It is presupposed
that there is always at least one agent linked to the leader and b1 + b2 + · · ·+ bn > 0.

Theorem 3 ([43]). G must be irreducible for the graph to be linked.

Theorem 4 ([43]). L̃g = Lg + Bg =




l11 + b1 · · · l1n
...

. . .
...

ln1 · · · lnn + bn


 are positive, where Bg is the

leader adjacency weight matrix if the Laplacian matrix Lg of the undirected graph G is irreducible.

2.3. Improved Artificial Potential Field and Virtual Repulsion

The essential concept of the APF technique is that each agent is viewed as a high-
potential field for the control objective of collision avoidance. Any agent that is close to
the others will be repelled from their potential fields by the repulsive force. Specifically,
the APF method has fewer design parameters and a significantly simpler controller archi-
tecture. Some results regard the agent as a particle, which makes collision avoidance issues
impractical. In actuality, the domain of agents should be considered during an encounter
situation. As illustrated in Figure 2, the domain of USV can be defined as three concentric
circles with unequal radii.

Figure 2. Repulsive potential field partition.

As is shown in Figure 2, the repulsive force field is separated into the following four
areas. The area outside the first circular area is defined as the Safe Zone, where dij is greater
than the detection distance r3 of the potential field, there is no repulsive force in this area.
The area inside the first circular area and outside the second circular is defined as the
Negotiation Collision Avoidance Zone, where the distance dij is larger than r2 and less
than or equal to r3. If the incoming ship is in zones A, B, or C in the area, the i-th USV
is a giving-way vessel or has the same avoidance responsibility, and the i-th USV should
take collision avoidance actions to avoid the collision. If the incoming ship is in zone D,
the i-th USV is a stand-on vessel. The area inside the second circular area and outside
the third circular area is defined as the Emergency Collision Avoidance Zone, where the
distance dij is larger than r1 and less than or equal to r2. In the area where the distance
between the other ship and the i-th USV is larger than and less than r2, the i-th USV should
perform emergency collision avoidance actions that can momentarily violate the COLREGs.
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The area within the third circular area is defined as the Prohibited Zone, which is shown
by the red circular limit with radius r1 in Figure 2. All other USVs are prohibited from
entering this area.

Where dij = xi − xj represents the relative position variable between the i-th USV and
the incoming j-th USV,

∥∥dij
∥∥ represents the distance variable, and r3 is the collision hazard

detection distance, we conclude that the j-th USV is defined as a collision avoidance neighbor
Πc of the i-th USV. Once its collision avoidance neighbor Πc holds

∥∥dij
∥∥ =

∥∥xi − xj
∥∥ ≤ 2r1,

it can be defined that the systems have been collided.
When the judgment condition 355◦ ≤ Tr < 360◦ or 0◦ ≤ Tr < 67.5◦, r2 < dij ≤ r3

are met, the incoming j-th USV is in Zone A and Zone B. Meanwhile, when the judgment
condition 67.5◦ < Tr ≤ 112.5◦, r2 < dij ≤ r3 are met, the incoming j-th USV is in Zone C.
The i-th USV is a give-way ship. According to the COLREGs, it should turn right to give
way. The repulsive force field is shown as follows [34]:

ϕij(p, v) = ηdRj

(
eθm−θ − 1

)( 1
dij − r2

− 1
ρ0

)
(14)

when the judgment condition r1 < dij ≤ r2 is met, the i-th USV needs emergency collision
avoidance. The repulsive force field is shown as follows:

ϕij(p, v) = ηdRj



(

1
dij − r1

− 1
ρ0

)2

+ (‖vot‖ cos θ)2


 (15)

When dij > r2 or the incoming j-th USV is in Zone D, the repulsion field is not defined,
that is, the repulsion is zero.

Where p and v are the position and speed, Tr denotes the relative position of the
incoming j-th USV and the i-th USV, ηd is the positive scaling factor for the USVs, Rj is
the radius of the puffing circle of the other ship, ρ0 denotes the repulsive potential field’s
influence radius of other ships, θm is the angle between the maximum relative position line,
θ is the angle between pot, vot, pot denotes the relative position line of the i-th USV and
other ships, and vot denotes the relative velocity.

The virtual repulsive force f ca
ij is defined as the negative gradient of the repulsive

potential function ϕij(p, v) as follows:

f ca
ij = −∇(p,v)ϕij(p, v) (16)

where −∇(p,v) represents a negative gradient along p and v.
The total virtual repulsive force term of the whole systems is induced from (14)–(16)

as follows:

uca
i = −ωi

ϑi
∑

j∈Πc
∇(p,v)ϕij(p, v) (17)

where ωi denotes the positive gain parameter and ϑi is a positive constant.

3. Main Results

This section introduces a formation control protocol utilizing an extended state ob-
server, aimed at guiding heterogeneous systems to follow a predefined trajectory in the
XY plane, accounting for model uncertainties and external disturbances. Subsequently,
a decentralized formation controller is developed to manage the height-tracking control of
the UAV along the Z axis.
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3.1. Controller Design Based on ESO

Rewrite (11) as
{

ẋi1 = xi2
ẋi2 = Fi + Gxiuxi

(18)

where Fi = [FTi, FLi]
T = Fxi + ∆xi, FTi and FLi denote the transverse and longitudinal

orientation of Fi and F1 denotes the sum of the nonlinear unknown term and the external
disturbance encountered of the UAV. F2, F3, F4, F5 denote the sum of the nonlinear unknown
term and the external disturbance encountered by different USVs, respectively.

For the purpose of approximating Fi, the design of an extended state observer has
been formulated as follows





˙̂xi1 = x̂i2 +
αi1
εi

kxi
˙̂xi2 = Gxiuxi + F̂i +

αi2
ε2

i
kxi

˙̂Fi =
αi3
ε3

i
kxi

(19)

where x̂i1, x̂i2, F̂i represent the observer state, εi > 0, αi1 ∈ R, αi2 ∈ R, αi3 ∈ R are positive
constants, kxi = xi1 − x̂i1. According to (19), we have





˙̃xi1 = x̃i2 +
αi1
εi

kxi
˙̃xi2 = F̃i +

αi2
ε2

i
kxi

˙̃Fi =
αi3
ε3

i
kxi − Ḟi

(20)

where x̃i1 = x̂i1 − xi1 is the ESO estimation error.
Define ηi as

ηi =
[

ηi1 ηi2 ηi3
]T

where

ηi1 =
xi1 − x̂i1

ε2
i

, ηi2 =
xi2 − x̂i2

εi
, ηi3 = Fi − F̂i

The observation error equation of state can be written as

εiη̇i = Aiηi + εiBi Ḟi (21)

where

Ai =



−αi1 1 0
−αi2 0 1
−αi3 0 0


, Bi =




0
0
1




The error in position and velocity for heterogeneous systems within the XY plane is
defined as follows

ex1
i = ∑

j∈Π
aij
((

x1i − x1j
)
−
(
δi − δj

))

+ bi(x1i − x1l − δi)

(22)

ex2
i = ∑

j∈Π
aij
(

x2i − x2j
)
+ bi(x2i − x2l) (23)
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The formation control term is designed as follows

u f
i =

1
ϑi

[
−F̂i − ki

(
ex1

i + ex2
i
)]

(24)

Furthermore, the distributed formation controller with collision avoidance perfor-
mance can be defined as follows

ui = u f
i + uca

i (25)

Remark 1. In the formation controller (25), the distributed formation control term u f
i is used by

tracking the time-varying velocity variable of the leader. The virtual repulsive force term uca
i is used

to achieve the collision avoidance objective among the agents. By designing the action functions (14)
and (15) of the APF, they are non-conflicting items.

Using (17) and (24), distributed formation controller (25) can be given as

ui =
1
ϑi

[
−F̂i − ki

(
ex1

i + ex2
i
)]
− ωi

ϑi
∑

j∈Πc
∇(p,v)ϕij(p, v) (26)

Take the derivative of (13) and substitute (11) and (12) into it. Define the derivatives of
the error variables and write them in vector form as follows

˙̄Z = −[M⊗ Im]Z̄ +

[
0nm
Fxi

]
+

[
0nm
U

]
+

[
0nm
∆xi

]
−
[

0nm
Fl

]
(27)

where ˙̄Z =
[

˙̄xT
11, . . . , ˙̄xT

n1, ˙̄xT
12, . . . , ˙̄xT

n2
]T , U = Gxiuxi, M =

[
0n −In
0n 0n

]
, ⊗ denotes the

Kronecker product.

3.2. Altitude Controller Design for UAV

The error system of altitude is defined as

ezp = paz − cp (28)

ezv = vaz − cv (29)

where the desired position signal is cp and the desired velocity signal is cv.
The adaptive laws and control input of formation tracking are constructed as

uaz = Ĥ−1
az

(
−σeζ −

eζ κ̂11ωT
1 ω1

2ς2
1

− eζ κ̂12

2ς2
2

+ ċv − kζ ezv

)
(30)

˙̂κ11 = l11

(
−k11κ̂11 +

eT
ζ eζ ωT

1 ω1

2ς2
1

)
(31)

˙̂κ12 = l12

(
−k12κ̂12 +

eT
ζ eζ

2ς2
2

)
(32)
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˙̂Haz = Proj[Haz ,H̄az ]
{F} =





0, if Ĥaz = H̄az

and F ≥ 0
or Ĥaz = Haz

and F ≤ 0
F , otherwise

(33)

where F = l13
(
−k13Ĥaz + eζ uaz

)
, Haz, and H̄az are the parameter Haz’s lower bound

and upper bound of, respectively, where σ, k11, k12, k13, kζ , l11, l12, l13, ς1, ς2 denote positive
parameters.

3.3. Stability Analysis

• Part A. Proof of the stability of the extended state observer

Consider the following Lyapunov function

V0 =
N+1

∑
i=1

V0i (34)

where V0i is given as

V0i = εiηi
T Piηi (35)

V̇0i = εiη̇i
T Piηi + εiη

T
i Piη̇i

= (Aiηi + εiBi Ḟi)
T Piηi + ηi

T Pi(Aiηi + εiBi Ḟni)

= ηi
T AT

i Piηi + εi(Bi Ḟni)
T Pηi

+ ηi
T Pi Aiηi + εηi

T PiBi Ḟni

= ηi
T
(

AT
i Pi + Pi Ai

)
ηi + 2εiηi

T PiBi Ḟni

6 −ηi
TQiηi + 2εi‖PiBi‖ · ‖ηi‖ · |Ḟi|

(36)

and

V̇0i 6 −λmin(Qi)‖ηi‖2 + 2εi|Ḟi|‖PiBi‖‖ηi‖ (37)

Therefore, the convergence condition of the observer satisfies

‖ηi‖ 6
2εi|Ḟi|‖PBi‖

λmin(Qi)
(38)

where Qi denotes any given symmetric positive definite matrix, λmin(Qi) is the minimum
eigenvalue of Qi, and there is a three-by-three symmetric positive definite matrix Pi that
satisfies the following equation

AT
i Pi + Pi Ai + Qi = 0 (39)

Remark 2. Based on Assumptions 2 and 3, both the velocity and acceleration of the agent, as well
as the external disturbances, are bounded. From Fi = Fxi + ∆xi , it is evident that Fi encompasses
the agent’s velocity and acceleration, as well as external disturbances. So, |Ḟi| is bounded.

• Part B. Proof of the stability of the system
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Define the Lyapunov quadratic scalar function as follows

V1 =
1
2

Z̄T(Pg ⊗ Im
)
Z̄ (40)

where P =

[
2L̃g L̃g
L̃g L̃g

]
, L̃g = Lg + Bg.

According to Theorem 4, the Lyapunov quadratic scalar function V1 is a positive
definite function.

Substitute (27) into V̇1 and expand the partial matrix as follows

V̇1 =Z̄T(Pg ⊗ Im
) ˙̄Z

=− 1
2

Z̄T
((

MT Pg + Pg M
)
⊗ Im

)
Z̄ + Z̄T(Pg ⊗ Im

)[ 0nm
Fxi + U + ∆xi − Fl

]

=− Z̄T
([

0n −L̃g
−L̃g −L̃g

]
⊗ Im

)
Z̄ +

n

∑
i=1

(
ex1

i + ex2
i
)T

(Fxi + Gxiuxi + ∆xi − Fl)

(41)

Substituting the distributed formation controller (24) into (41) , we can obtain

V̇1 =− Z̄T
([

0n −L̃g
−L̃g −L̃g

]
⊗ Im

)
Z̄

+
n

∑
i=1

(
ex1

i + ex2
i
)T Fxi −

n

∑
i=1

(
ex1

i + ex2
i
)T Fl +

n

∑
i=1

(
ex1

i + ex2
i
)T

×
(
−F̂i − ki

(
ex1

i + ex2
i
)
−ωi ∑

j∈Πc
∇(p,v)ϕij(p, v)

)

= −Z̄T
([

0n −L̃g
−L̃g −L̃g

]
⊗ Im

)
Z̄−

n

∑
i=1

(
ex1

i + ex2
i
)T Fl

−
n

∑
i=1

ki
∥∥(ex1

i + ex2
i
)∥∥2 −

n

∑
i=1

(
ex1

i + ex2
i
)T ×ωi ∑

j∈Πc
∇(p,v)ϕij(p, v)

(42)

In the case of an undirected graph, the Laplacian matrix exhibits symmetry, and the
virtual repulsive force term uca

i becomes negligible once collision avoidance is achieved
through the repulsive potential function ϕij(p, v).

Therefore, the aforementioned term V′ = −∑n
i=1
(
ex1

i + ex2
i
)T

ωi ∑j∈Πc ∇(p,v)
ϕij(p, v) = 0, based on Assumption 1 and Young’s inequality as follows

−
(
ex1

i + ex2
i
)T Fl ≤ ξi

∥∥ex1
i + ex2

i

∥∥2
+

α2
l

4ξi

where ξi is a positive constant.
And then the results (42) can be derived as follows

V̇1 ≤− Z̄T
([

0n −L̃g
−L̃g −L̃g

]
⊗ Im

)
Z̄ +

n

∑
i=1

ξi
∥∥ex1

i + ex2
i

∥∥2
+

n

∑
i=1

αl
4ξi
−

n

∑
i=1

ki
∥∥(ex1

i + ex2
i
)∥∥2

=− Z̄T
([

0n −L̃g
−L̃g −L̃g

]
⊗ Im

)
Z̄ +

n

∑
i=1

(ξi − ki)
∥∥ex1

i + ex2
i

∥∥2
+

n

∑
i=1

α2
l

4ξi

(43)

87



J. Mar. Sci. Eng. 2023, 11, 2332

Let ρi satisfy the limit of ρi ≤ ki − ξi and ρi > 0, the inequality is transformed into

V̇1 ≤ −Z̄T
([

0n −L̃g
−L̃g −L̃g

]
⊗ Im

)
Z̄−

n

∑
i=1

ρi
∥∥ex1

i + ex2
i

∥∥2
+

n

∑
i=1

α2
l

4ξi

= −Z̄T

((
ρi

[
L̃2

g L̃2
g

L̃2
g L̃2

g

]
−
[

0n L̃g
L̃g L̃g

])
⊗ Im

)
Z̄ +

n

∑
i=1

α2
l

4ξi

= −Z̄T

([
ρi L̃2

g ρi L̃2
g − L̃g

ρi L̃2
g − L̃g ρi L̃2

g − L̃g

]
⊗ Im

)
Z̄ +

n

∑
i=1

α2
l

4ξi

(44)

According to the Lemma of linear matrix inequality in [41], ρi L̃2
g −

(
ρi L̃2

g − L̃g

)
=

L̃2
g > 0, ρi L̃2

g − L̃g > 0, so the matrix

[
ρi L̃2

g ρi L̃2
g − L̃g

ρi L̃2
g − L̃g ρi L̃2

g − L̃g

]
> 0. Therefore, the in-

equality (44) can be rewritten as follows

V̇1 ≤− Z̄T

((
ρi

[
L̃2

g L̃2
g

L̃2
g L̃2

g

]
−
[

0n L̃g
L̃g L̃g

])
⊗ Im

)
Z̄ +

n

∑
i=1

α2
l

4ξi

=− Z̄T((ρiΘ− Ξ)⊗ Im)Z̄ + ∆

(45)

where

Θ =

[
L̃2

g L̃2
g

L̃2
g L̃2

g

]
, Ξ =

[
0n L̃g
L̃g L̃g

]
, ∆ =

n

∑
i=1

α2
l

4ξi
.

Set ρi >
1

λΘ
min

(
λΞ

max +
=
2 λP

max

)
, where λΘ

min, λΞ
max, λP

max denote the smallest eigenvalue

of the matrix Θ, the largest eigenvalue of the matrix Ξ, and the largest eigenvalue of the
matrix P, respectively, and = = min{σ1Y1, . . . , σnYn}.

Then, we can obtain

V̇1 ≤ −=Z̄T(P⊗ Im)Z̄ + ∆

= −=V1 + ∆
(46)

In accordance with Theorem 1, the subsequent inequality can be presented in the
following manner

V1(t) ≤ V1(0)e−=t +
∆
=
(

1− e−=t
)

(47)

Consequently, by choosing suitable parameters as indicated in [44], one can achieve
the performance of adaptive leader-following formation.

• Part C. Proof of collision avoidance

The collision avoidance performance is analyzed only for the i-th (i ∈ Π) USV and its
collision avoidance neighbor the j-th (j ∈ Πc) USV, and the others can be analyzed by the
same way in [42].

Define the energy function holds quadratic form as follows

S(t) =
1
2

vT
i (t)vi(t) +

1
2

dT
ik(t)dik(t) (48)

Taking the time derivative of (48) , we can get

Ṡ(t) =ωivT
i (t)∇(p,v)ϕij(p, v) + dT

ik(t)(vi(t)− vk(t))− vT
i (t)F̂i − kivT

i (t)
(
ex1

i (t) + ex2
i (t)

)
(49)

where dik(t) is the relative position variable.
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Because of the designing of the repulsive potential function ϕij(p, v), ϕi(dik(t)) will
approach infinity by designing the parameter ω̄i > 0 if the i-th USV is closing to the j-th
USV. Therefore, if the i-th USV and the j-th USV are close to each other, and design the
appropriate parameter, the inequality can be met in the following manner:

vT
i (t)∇(p,v)ϕij(p, v) >

1
2

dT
ik(t)dik(t) +

1
2

vT
i (t)vi(t)

− 1
ωi

dT
ik(t)(vi(t)− vk(t)) +

1
ωi

vT
i (t)F̂i

+
ki
ωi

vT
i (t)

(
ex1

i (t) + ex2
i (t)

)
(50)

Substituting the aforementioned inequality (50) into (49), the subsequent inequality
can be derived

Ṡ(t) > ωiS(t)

Based on the principles outlined in Theorem 2, the subsequent inequality can be
derived

dT
ik(t)dik(t) > 2eωi(t−t0)S(t)− vT

i (t)vi(t)

Since the previously indicated term vT
i (t)vi(t) is continuous and bounded at this dwell

time. By designing the gain parameter ωi > 0 large enough, we get can the inequality
2eωi(t−t0)S(t)− vT

i (t)vi(t) > (2r1)
2 and the result can be obtained as ‖dik(t)‖ > 2r1. As a

result, the collision avoidance performance can be guaranteed by the proposed formation
control with collision avoidance strategy.

• Part D. Proof of the decentralized formation controller

If the feasibility condition cv − ċp = 0 is satisfied, it then allows the time derivative of
Equations (28) and (29) to be expressed as follows

ėzp = ezv (51)

ėzv = Faz + Gazuaz + ∆az − ċv. (52)

where ezv may be regarded as the virtual control input in the system (51). The stability of
the system (51) can be assured by constructing the virtual control input ζ = −kζezp.

A positive Lyapunov function is considered as

Vzp =
1
2

eT
zpezp (53)

A new error is defined as

eζ = ezv − ζ (54)

By computing the time derivative of Equation (53) and incorporating the control input
from Equation (30) into this calculation, one can obtain

ėζ = −σeζ + Faz + ∆az + H̃azuaz −
eζ κ̂11ωT

1 ω1

2ς2
1

− eζ κ̂12

2ς2
2

. (55)

Vz is given as

Vz =
1
2

eT
zpezp +

1
2

eT
ζ eζ +

κ̃2
11

2l11
+

κ̃2
12

2l12
+

Tr
(

H̃T
az H̃az

)

2l13
(56)
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with κ̃11 = κ11 − κ̂11, κ̃12 = κ12 − κ̂12 and H̃az = Haz − Ĥaz.

V̇z ≤− kζ eT
zpezp − σeT

ζ eζ + eT
ζ Faz + eT

ζ ∆az

+ eT
ζ H̃azuaz −

eT
ζ eζ κ̂11ωT

1 ω1

2ς2
1

−
eT

ζ eζ κ̂12

2ς2
2

+
κ̃11 ˙̃κ11

l11
+

κ̃12 ˙̃κ12

l12
+

Tr
(

H̃T
az

˙̃Haz

)

l13

(57)

Given that Faz is an undefined function, as per the universal approximation theorem
cited in [45], for any arbitrarily small constant ε1, there exists a fuzzy logic system θ∗T1 ω1
that can be represented as Faz = θ∗T1 ω1 + ε1. In this context, θ∗T1 represents the optimal
weight, ω1 is the fuzzy basis vector, ε1 denotes the fuzzy system’s approximation error,
and it is established that |ε1| ≤ ε̄1.

Regarding Young’s inequality, it can be deduced that

eT
ζ θ∗T1 ω1 ≤

eT
ζ eζκ11ωT

1 ω1

2ς2
1

+
ς2

1
2

(58)

eT
ζ (ε1 + ∆az) ≤

eT
ζ eζκ12

2ς2
2

+
ς2

2
2

(59)

where κ11 = θ∗T1 θ∗1 and κ12 = (ε̄1 + ∆̄az)
T
(ε̄1 + ∆̄az).

Substituting (58) and (59) into (57), we can obtain

V̇iz ≤− kζ eT
zpezp − σeT

ζ eζ +
eT

ζ eζκ11ωT
1 ω1

2ς2
1

+
eT

ζ eζκ12

2ς2
2

−
eT

ζ eζ κ̂11ωT
1 ω1

2ς2
1

−
eT

ζ eζ κ̂12

2ς2
2
− κ̃12

(
−k12κ̂12 +

eT
ζ eζ

2ς2
2

)

− κ̃11

(
−k11κ̂11 +

eT
ζ eζ ωT

1 ω1

2ς2
1

)
+ eT

ζ H̃azuaz

− Tr
(

H̃T
az
(
−k13Ĥaz + eζ uaz

))
+

ς2
1

2
+

ς2
2

2

≤− kζ eT
zpezp − σeT

ζ eζ −
k11

2
κ̃2

11 −
k12

2
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{
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Based on Equation (60), V̇z is derived as follows

V̇z ≤ −ϑzVz + vz (61)

According to the boundedness theorem, the closed-loop system solution is uniformly
eventually bounded. Using ezp and eζ , it is possible to deduce that the UAV’s velocity error
and altitude tracking error are uniformly eventually bounded.

4. Simulation Result

In this section, a simulation analysis for the heterogeneous systems with collision
avoidance performance under parameter uncertainty and external disturbance is provided
to illustrate the effect of the proposed approach. One UAV and four USVs make up the

90



J. Mar. Sci. Eng. 2023, 11, 2332

heterogeneous system. The simulation experiments described in this section were executed
on the MATLAB R2020a simulation platform.

The communication topology is defined in Figure 3, where agent l represents the
virtual leader, agent 0 represents the UAV, and agents 1–4 represent the four USVs. If Bg =
diag{0, 0, 0, 0, 1} is the adjacency weight matrix between agents and the virtual leader, then
the adjacency matrix Ag and the Laplacian matrix Lg are as follows:

Ag =




0 1 1 0 1
1 0 1 1 0
1 1 0 0 0
0 1 0 0 0
1 0 0 0 0




Lg =




3 −1 −1 0 −1
−1 3 −1 −1 0
−1 −1 2 0 0
0 −1 0 1 0
−1 0 0 0 1




Figure 3. Communication topology graph.

The system parameters of a UAV and USVs are given in Tables 1 and 2, respectively.
APF design parameters rin = 0.5, rout = 2, ω̄i = 0.3, ωi = 1, where i = 1, . . . , 4. The external
disturbances are given as ∆axy = [0.2 cos(0.5t), 0.8 cos(t)]T , ∆az = 0.3 cos(0.2t), wbixy =

[1.1 cos(0.5t),−0.2 sin(2t)]T . The total duration of the simulation runs Tz = 80 s and the
sampling time Ts = 0.6 s.

Table 1. The model parameters of UAV.

Parameter Value Unit

ma 2 kg
ga 9.8 m · s−2

Jax, Jay, Jaz 1.5 N · s2 · rad−1

dax, day, daz 0.012 N · s2 · rad−1

Table 2. The model parameters of USV.

Parameter Value Unit

mµbi 25.8 kg
mvbi 33.8 kg
mrbi 2.76 kg
dµbi 0.725 kg · s−1

dvbi 0.89 kg · s−1

drbi −1.9 kg ·m−2 · s−1

dµbi1 −1.33 kg · s−1

dvbi1 −36.47 kg · s−1

drbi1 −0.75 kg ·m−2 · s−1

The initial position state vector of the UAV and USVs are defined as x0(0) = [6, 2, 10]T ,
x1(0) = [8, 0, 0]T , x2(0) = [4, 0, 0]T , x3(0) = [4, 4, 0]T , x4(0) = [8, 4, 0]T , δ0 = [0, 0]T , δ1 =
[0, 3ℵ]T , δ2 = [−

√
3ℵ, 0]T , δ3 = [

√
3ℵ, 0]T , δ4 = [0,ℵ]T ,ℵ = 3

2 .
The simulation results by using the proposed control method for heterogeneous sys-

tems with collision avoidance strategy are shown in Figures 4–11. The trajectories of the
four USVs and the UAV in the 3D environment are depicted in Figure 4. The black line
represents the UAV’s trajectory, while the other color lines represent the trajectories of the
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four USVs. From the given starting point, the USVs maintain a safe distance and establish
a designated configuration between each other. Figure 5 shows the trajectories of hetero-
geneous systems without collision avoidance. At the sampling time Ts = 0.6 s, Figure 5
shows that three USVs have been collided. Simulation trajectory plots demonstrate the
importance of collision avoidance for heterogeneous systems.

Figure 6 and 7 represent the position tracking errors and velocity errors in x-label
and y-label, respectively. Under the influence of external disturbances and parameter
uncertainties, the formation trajectory tracking errors are capable of converging to a minimal
residual set. Figures 8 and 9 depict the surge force and yaw torque. The outcomes of the
simulations indicate that the USVs are able to continue tracking the virtual leader even
after activating the improved APF for collision avoidance.

Figures 10 and 11 further display the distances between USVs without and with con-
sidering the collision avoidance. Figure 10 shows that the USVs have collided, because of
the distance

∥∥dij
∥∥

min < 2r1 = 1. Figure 11 shows that the distances of USVs can always
maintain

∥∥dij
∥∥

min > 2r1 = 1 at any time. The simulation diagrams further confirm that
the proposed formation control with collision avoidance strategy has an excellent perfor-
mance. The performance of ESO in estimating Fi is depicted in Figure 12, which clearly
demonstrates the effectiveness of the proposed solution for the accurate compensation of
uncertainties and external disturbances within heterogeneous systems.

Figure 4. Formation evolution of heterogeneous systems with collision avoidance.

Figure 5. Formation evolution of heterogeneous systems without collision avoidance.
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Figure 6. Position tracking errors of the UAV and USVs with collision avoidance.

Figure 7. Velocity errors of the UAV and USVs with collision avoidance.

Figure 8. The surge force of heterogeneous system.
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Figure 9. The yaw torque of heterogeneous system.

Figure 10. The distance between the USVs without collision avoidance.

Figure 11. The distance between the USVs with collision avoidance.
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Figure 12. The estimated performance of ESO.

5. Conclusions

In this paper, the cooperative formation trajectory tracking problem for heterogeneous
systems with collision avoidance performance under parameter uncertainty and external
disturbance is investigated. Under the unified dynamic model of a UAV and USVs in the
XY plane, a formation control protocol based on ESO is proposed. The collision avoidance
control approach for USV formation is then constructed using APF theory. Furthermore,
the APF approach is improved by rebuilding the repulsive potential field to bring the
unmanned ship’s collision avoidance behavior more in compliance with COLREGs. Ac-
cording to the Lyapunov stability theory, the time-varying formation errors and tracking
errors are uniformly ultimately limited. Simulation results verify the effectiveness of the
proposed scheme.

This paper focuses solely on heterogeneous formation and collision avoidance be-
tween a single UAV and multiple USVs. Going forward, cooperative collision avoidance
involving multiple UAVs and USVs within intricate environments deserves further study.
In discussions of formation control issues for multi-agent or multi-vehicle systems, it is
common to assume that the controlled entities operate within an ideal network communica-
tion environment. However, in practical scenarios, such as with USVs, the communication
environment is often fraught with issues like noise, time delays, and packet loss. Conse-
quently, the problem of cooperative collision avoidance control for swarm systems under
adverse communication conditions also merits thorough investigation.
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Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
USV Unmanned Surface Vehicle
AUV Autonomous Underwater Vehicle
ESO Extended State Observer
APF Artificial Potential Field
COLREG International Regulations for Preventing Collisions at Sea
RBF Radial Basis Function
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Abstract: T-foils with active control systems can adjust their attack angle according to the movement
of the ship in real time, providing higher lift force and improving the seakeeping performance of
a ship. The optimization of the control signal and that of the control method have an important
influence on the effect of active T-foils. In this paper, the control method of the T-foil’s swinging angle
is established and optimized on the basis of model testing in order to increase the effect of the T-foil.
First, the governing equation is introduced by establishing the proportional relationship between the
angular motion of the hull and the lift moment of the T-foil. On the basis of the model of the T-foil’s
lift force, the governing equation of the T-foil’s swinging angle is deduced and simplified using the
test results of the ship model with a passive T-foil and without a T-foil. Then, the active T-foil control
system is established by comparing the effects of T-foils with different control signals. Finally, the
efficacies of the passive and active T-foil are reported and discussed. It is found that the pitch angular
velocity is a more appropriate signal than the pitch angle and pitch angular acceleration. T-foils with
pitch angular velocity control can decrease the vertical motion response in the resonance region of a
ship’s encounter frequency by more than about 20% compared to the case of the bare ship model,
while also increasing the anti-bow acceleration effect by more than 15% compared to the case of
passive control. The results obtained by model testing have a certain guiding significance for specific
engineering practices.

Keywords: anti-vertical motion; model test; T-foil; control method

1. Introduction

High-performance ships have excellent comprehensive performance and have gradu-
ally been accepted in terms of reliability, security, economy, etc. With the development of
the world’s marine engineering and shipping market, the requirement for R&D is increas-
ing, and this is developing actively in the ship market, which possesses great vitality. Since
the 1990s, large-tonnage semi-planing ships have been widely used because they combine
the advantage of large displacement, which characterizes conventional displacement-type
ships, with the good rapidity of planing boats [1]. However, semi-planing ships are sus-
ceptible to waves when sailing at high speed, and the amplitude of the vertical motion
is high, thus increasing the rate of seasickness. Furthermore, high-amplitude motion can
easily cause slamming phenomena, and it generates a large slamming load [2]. This can
easily cause fatigue damage, or even fracture, in the hull structure. Therefore, methods for
reducing the motion amplitude of high-speed ships in waves represent extremely important
work for improving motion performance.

Recent studies have shown that vertical motion can be reduced considerably by
installing a T-foil on the bow when the ship is sailing at high speed (i.e., at a Froude number
between 0.5 and 1) [3,4]. T-foils with vertical foils and horizontal foils can counteract the
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effect of wave disturbance force by applying a vertical force (moment) on the bow in the
opposite direction to that of the ship’s motion [5], and then they can play a suppressing
role in the ship’s motion. By introducing the automatic control program (PID control)
into the T-foil system, the swing angle of the horizontal foil can be adjusted in real time
with the movement of the ship. Compared to passive T-foils (i.e., without control), active
T-foils can significantly increase the restoring force (moment) and improve the anti-vertical
motion effect [6–8].

In PID control, the key issue is establishing the transfer function between force and
motion. The longitudinal motion control is related to numerous parameters, such as
heave displacement, pitch angle, vertical acceleration, hysteresis effect, heave velocity, etc.
Therefore, the main problem for the motion control of semi-planing ships is finding the
most important motion parameters among these motions.

Esteban et al. [9,10] used vertical acceleration (Worst Vertical Acceleration, WVA) and
the rate of seasickness (Motion Sickness Incidence, MSI) at typical positions on the hull
as optimization criteria, and they performed numerical simulations of the ship’s motion
using MATLAB’s Simulink module to compare the effects of each control parameter. The
simulation results showed that reasonable adjustment of each parameter in the PID control
was able to effectively reduce the vertical acceleration by 26% and the rate of seasickness
by 10% compared to the passive control.

Giron-Sierra [11–13] installed a T-foil and stern flaps on a high-speed ferry and con-
ducted model tests in a towing basin. A multi-objective optimized PD control procedure
was designed for the rate of seasickness, the cavitation phenomenon and mechanical
efficiency. It was shown that the heave and pitch motions of the ship were important
parameters for controlling the rotation of the T-foil, which was able to effectively limit the
bow acceleration of the ship and improve the rate of seasickness.

Alavimehr et al. [14,15] proposed a nonlinear control method based on model tests in
still water. The swing angles of the T-foil and the stern flaps were controlled using a single-
signal control (pitch angular velocity or heave velocity). Model testing was conducted in
regular waves to compare the anti-heave and pitch effects. The results showed that the
nonlinear controlled T-foil had a better anti-vertical motion effect than the linear control.
The effect of anti-heave motion is more obvious when using an active T-foil with heave
velocity control. However, the effect of suppressing pitch and bow acceleration was not
obvious. Accordingly, it is more suitable for reducing the pitch and bow acceleration
response of the ship model by using the pitch angular velocity to control the swing angle.
However, it is difficult to significantly reduce the heave, pitch, and bow acceleration of the
ship at the same time using a single-signal control. The equation for controlling the swing
angle should be further optimized.

Previous studies have mostly focused on different control strategies for active T-foils.
However, no matter what control method is used (PID control, fuzzy control, etc.), there
will be obvious different anti-vertical motion effects when using different motion control
signals. Therefore, the determination of the main motion signal for the T-foil angle is
extremely important, and it is also a key factor in optimizing the control method. However,
there are a limited number of comparative studies on the control effect of different motion
signals in the existing research, and these studies have mostly been based on numerical
dynamic simulation, resulting in a lack of experimental research. Therefore, it is necessary
to further optimize the control method of T-foils and optimize the master signal of T-foils
through model testing.

In this paper, the experimental study of a model under high speed (Fr = 0.63) in a
regular wave is carried out for a semi-planing deep-V mono-hull ship. The test principle
is first introduced including control equation and motion signals for the T-foil’s active
control. By measuring the motion of the bare ship model with the passive T-foil (the T-foil’s
swing angle is 0◦), the control equation of the T-foil is proposed, and the control parameters
are integrated. Then, the model test was established, and three motion signals are used
to control the lift force (moment) of the T-foil, respectively. Comparing the anti-vertical
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motion effect by the T-foil with different control signals, the control method of the T-foil
was optimized. Finally, model tests were conducted based on the optimized control method
to verify its anti-vertical motion effect.

2. Control Method

The swing angle of a horizontal foil is affected by factors such as sea state, real-time hull
motion, profile size, etc. The design of an active control system of a T-foil can be simplified
by modeling the uncertain problem and expressing it in a highly structured parametric
form. For high-speed hull motion on waves, in particular, an active control system should
have strong control timeliness and accuracy. This requires that the control method is not too
complex, thus preventing delay in the swing angle control of the horizontal foil in practical
applications and producing the desired anti-vertical motion effect on the longitudinal
motion of the ship.

2.1. Mathematical Model of Active Control of T-Foil

The vertical motion of a ship is reduced by the lift force fT and lifting moment MT of
a T-foil; the lift force (moment) can counteract the wave force (moment). The unsteady
thin airfoil theory was applied to perform theoretical calculations for determining dynamic
lift effects, especially in high-encounter frequencies because of the unsteady motion of
hydrofoil [16]. Belibassakis et al. [17–19] established unsteady lifting models based on the
integration of 2D sectional lift along a span to calculate the lift force of a hydrofoil. In
this study, the T-foil’s deflection amplitude is limited (−10◦–10◦). The deviation of the lift
force’s prediction between unsteady and quasi-static lift theories was acceptable in high
Froude numbers and low wavelength [16]. The lift force and lifting moment are generally
expressed as: {

fT = 1
2 ρU2 A dCL

dα α

MT = 1
2 lFρU2 A dCL

dα α
(1)

where ρ represents the fluid density (kg/m3), A is the T-foil area (m2), and CL is the
lift coefficient.

The attack angle of the T-foil α consists of the horizontal foil’s swing angle ϕ (i.e., the
deflection angle of the T-foil’s horizontal foil with respect to the intermediate position), the
pitch angle of the ship θ, and an additional angle θF formed by both the ship and vertical
motions of the fluid particle in the flow field [20]. This is presented in Figure 1, and the
attack angle α is expressed as:

α = ϕ− θ + θF (2)

Figure 1. Graphic analysis of effective attack angle.
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The additional angle θF is affected by the combined effect of the heave velocity
.
z, the

pitch angular velocity
.
θ, the vertical velocity of the wave particle at the hydrofoil surface

.
κ,

and the ship’s speed U. θF is expressed as:

θF = arctan
lF

.
θ cos θ − .

z− .
κ

U − lF
.
θ sin θ

(3)

According to the micro-amplitude wave theory, the fluid particle motion is a simple
harmonic motion, and its vertical velocity decreases exponentially with water depth. Great
depth causes the vertical velocity

.
κ of the fluid particle at the T-foil position to be extremely

lower than the pitch angular velocity
.
θ and the heave velocity

.
z; hence, the effect of

.
κ can

be neglected. Furthermore, the incident wave amplitude A0, which is significantly lower
than the wavelength λ, causes the amplitude of the ship’s vertical motion on the wave to
be low. Equation (3) can then be simplified as:

θF ≈
lF

.
θ − .

z
U

(4)

where lF is the distance from the installation position of the T-foil to the longitudinal
position of the ship’s center of gravity (longitudinal center of gravity, LCG), as illustrated
in Figure 2. Here, the lift force (fT) and lifting moment (MT) can be expressed as:





fT = 1
2 ρU2 A dCL

dα (ϕ− θ + lF
.
θ− .

z
U )

MT = 1
2 lFρU2 A dCL

dα (ϕ− θ + lF
.
θ− .

z
U )

(5)

Figure 2. Distance between installation position and ship’s LCG.

2.2. Lifting Moment Control Equation

The active T-foil control system can achieve anti-vertical motion by adjusting the attack
angle in real time and then providing a greater reverse lift (moment) during significant ship
motions. Following this analysis, the rotation of the T-foil is controlled in real time by the
lifting moment control, i.e., the lifting moment MT generated by the T-foil is in the opposite
direction of the hull motion [21] (including heave and pitch motions). This is expressed as:

MT = −C1θ′ − C2
.
θ − C3

..
θ − C4z0 − C5

.
z− C6

..
z (6)

where C1, C2, C3, C4, C5, and C6 are the control parameters; these values represent the
profile parameters of the T-foil, ship type, ship speed, and sea state; θ′ is the adjusted pitch
angle θ, i.e., relating to the equilibrium position of the ship during motion; z0 is the adjusted
heave displacement z, i.e., relating to the equilibrium position of the ship during motion.

According to previous studies, the anti-pitch and bow acceleration effects are more
obvious while using the pitch angular velocity signal to control swing angle. T-foils
controlled by the heave velocity signal only show a better anti-vertical motion effect on
heave motion. Since bow acceleration greatly influences the extent of seasickness, this
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study uses the pitch motion control signal of the hull and ignores the heave motion effect
on lifting moment MT, as expressed in Equation (6), which can now be reduced to:

MT = −C1θ′ − C2
.
θ − C3

..
θ (7)

When the T-foil profile is selected and its attack angle |α| ≤ α1, α1 is the stall angle of the
foil, 1

2 ρU2 A dCL
dα is a constant at a certain speed set to KF. By coupling Equations (7) and (5),

Equation (8) is obtained as:

ϕ = − C3

KFlF

..
θ + (1− C1

KFlF
)θ − (

C2

KFlF
+

lF
U
)

.
θ +

1
U

.
z +

C1

KFlF
θ0 (8)

where θ0 is the stern inclination angle, which can be obtained experimentally or numerically
with θ′ = θ − θ0. The purpose of this method is to make the lifting moment of the T-foil
MT and the angular motion of the hull (pitch angular velocity

.
θ, pitch angle θ, or pitch

angular acceleration
..
θ) go in opposite directions, reducing longitudinal motion amplitude

by limiting angular motion.
If the pitch angle signal is separately used as control, the equation takes the pitch angle

θ as the main control signal of the T-foil, and then the phase of the T-foil’s lifting moment
MT differs from that of the pitch angle (θ) by π. Therefore, the T-foil generates a lifting
moment in the opposite direction of pitch displacement and then limits the pitch motion of
the hull, thereby affecting heave motion as well. The control parameter of this method is
C2 = C3. Equation (8) can be simplified as follows:

ϕ = (1− C1

KFlF
)θ − lF

U

.
θ +

1
U

.
z +

C1

KFlF
θ0 (9)

When the T-foil is fixed to the ship, the swing angle of its horizontal foil ϕ is composed
of a pitch angle θ, pitch angular velocity

.
θ, heave velocity

.
z, speed U, and stern inclination

angle θ0. The stern inclination angle does not change even with constant ship speed. When
this method is used, the bow acceleration phase of the hull is about 1.06 π ahead of the
pitch angle phase, and the lifting moment phase is close to that of the bow acceleration;
this may have negative effects on bow acceleration.

Similarly, if the pitch angular velocity
.
θ is the main control signal, the longitudinal

motion of the ship is limited by reducing the pitch angular velocity of the hull. The control
parameter of this method is C1 = C3 = 0, and Equation (8) can be simplified here as:

ϕ = θ − (
C2

KFlF
+

lF
U
)

.
θ +

1
U

.
z (10)

If the pitch angular acceleration
..
θ is the main control signal, the T-foil will generate a

lifting moment against the hull’s angular acceleration. This control strategy then affects the
longitudinal motion of the hull by suppressing pitch acceleration. The control parameter is
C1 = C2 = 0, and Equation (8) can be simplified here as:

ϕ = − C3

KFlF

..
θ + θ − lF

U

.
θ +

1
U

.
z (11)

From the phase perspective, the obvious phase differences between the hull motion
parameters cause a negative feedback region to exist in each control method as mentioned
above, thereby limiting the effect of the T-foil. Therefore, a comparative calculation of the
T-foil effect is required to determine the most adequate control signal and control equation.

2.3. Control Equation Simplification

A method similar to the trial and error method is used to determine the adequate
control parameters. First, the motion parameters of the ship model (including the time-
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record curves of heave and pitch motions) during passive T-foil control were obtained via
numerical calculations. The parameters can help obtain the values of heave velocity

.
z, pitch

angular velocity
.
θ, pitch angle θ, and pitch angular acceleration

..
θ for each ship motion.

If a single motion signal is used to control the lifting moment of the T-foil (e.g., the
pitch angular velocity

.
θ), C1 and C3 in Equation (8) will be taken as zero. ϕ1 and ϕ2 are

the lower and upper limits of the swing angle of the T-foil’s horizontal foil, respectively;
this is expressed as follows: ϕ ∈ [ϕ1, ϕ2]. Obviously, ϕ1 and ϕ2 are known quantities. The
maximum values of the pitch angular velocity

.
θmax, corresponding pitch angle θ21, and

heave velocity
.
z21 can be obtained at any moment from a time-record curve of the model;

then, the value of C2 can be determined:

C21 =
KFlF
.
θmax

(θ21 − ϕ2 +

.
z21

U
)− lF

U
(12)

where C21 is the preliminary value of C2, and the theoretical value of the pendulum angle,
ϕ, can be obtained for any moment by substituting C21 into Equation (10). C21 is further
adjusted to ensure ϕmax is as close as possible to but not more than ϕ2 throughout the
motion, whereas ϕmin is close to but not less than ϕ1, and then C2 = C21. Subsequent
calculations of the effect of the active T-foil show that C2 needs to be further adjusted
according to real-time situations to ensure the full rotation of the T-foil within the maximum
swing angle. Similarly, C1 and C3 can be determined when the lifting moment of the T-foil
is controlled separately by the other two signals.

3. Test Design
3.1. Experimental Model

The dimensions of the T-foil used in this study are presented in Table 1. The T-foil
was installed at Station 16 of the hull, 0.76 m from the bowsprit, as shown in Figure 3.
The horizontal and vertical foils are of NACA0012 profile, as shown in Figure 4, and they
are connected by a rotating shaft. The shaft is 0.04 m away from the leading edge of the
horizontal foil. In this test, the deflection range of the horizontal foil’s swing angle is from
−10◦ to 10◦ (ϕ ∈ [−10◦, 10◦]); this is within the stall angle of this T-foil profile. Previous
CFD calculations of the lift performance of this T-foil show that the lift coefficient is related
to the attack angle as follows: dCL

dα = 3.34 (1/rad).

Table 1. Dimensions of the T-foil.

Index Value

Airfoil shape NACA0012
Wingspan/mm 240

Chord length/mm 100
Aspect ratio 2.667

Max angle/(o) ±10
Max angular velocity/(Hz) 2.4
Length of vertical foil/mm 60

The monohull ship [22] used for the test is a deep-V type, as shown in Figure 5,
designed by the Fluid Teaching and Research Department of the School of Ship Engineering,
Dalian University of Technology, China. The ship model is made of wood; the scaling ratio
is 1:12; the speed of the real ship is 26 kn; and its main dimensions are presented in Table 2.
The hull-type line diagram is also shown in Figure 5.
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Figure 3. Installation site of the T-foil.

Figure 4. Dimensions of the T-foil.

Figure 5. Model geometry.
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Table 2. Main dimensions of the ship model.

Index Value

Overall length/m 3.833
Length of Waterline length/m 3.616

Breadth/m 0.758
Draught/m 0.321

Displacement/kg 259.7
Displacement (model)/kg 152.4

Designed draft/m 0.204

3.2. T-Foil Control System

The T-foil control system is divided into the automatic control and the mechanical
drive parts. The automatic control part consists of a control board with a built-in AVR
microcontroller (manufacturer: Zhiwei Robotics Corps, Shanghai City, China), an inertial
measurement unit (IMU), an angle sensor, and an upper computer measurement program
(shown in Figure 6). The IMU has a built-in three-axis gyroscope and acceleration sensor,
incorporating a Kalman filter algorithm to filter out noise during the attitude solution
process. The IMU is fixed on the mid-longitudinal section of the bow above the T-foil
to measure the heave velocity, pitch angle, and pitch angular velocity of the model. The
mechanical drive part comprises a worm gear transmission system; an inclination sensor is
fixed above the transmission system; and the rotation angle of the T-foil’s horizontal foil is
determined by measuring the rotation angle of the servo motor.

Figure 6. Automatic and mechanical control parts.

The workflow of the control system is shown in Figure 7. The head sea regular
waves induce the vertical motion of ship model in corresponding frequencies. The IMU
sensor installed directly above the T-foil can measure the data of heave amplitude z and
pitch angle θ. Then, the motion signals are output to the control board with built-in AVR
microcontroller. The control board with the governing Equation (8) processes the input
signal in real time to obtain the real-time swinging angle of the T-foil. The data of motion
can also send to the upper computer data acquisition system. The upper computer data
acquisition system can record the motion parameters of the model in real time, including the
heave amplitude, heave velocity, pitch angle, pitch angular velocity, vertical acceleration,
and T-foil’s swing angle, and it can export the recorded data to the computer in the form
of Excel table for storage. On this basis, the swinging angle signal has been input into the
mechanical system. The servo motor drives the worm gear transmission mechanism to
adjust the T-foil’s swing angle in real time. T-foil’s deflection can induce the vertical force
(moment) to reduce the vertical motion.
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Figure 7. Flow chart of control system.

The reliability of the mechanical drive part (as shown in Figure 6) of the T-foil control
system was first examined before tests began, and the differences in the actual and the-
oretical swing angles of the T-foil were analyzed. The actual swing angle was tested by
giving the steering engine a sinusoidal swing angle signal with a frequency of 2.4 Hz; this
was compared with its theoretical counterpart, and the results are illustrated in Figure 8.
The mechanical clearance of the steering engine and deviation of the mechanical drive
system caused the actual swing angle to lag for about 30 ms compared to its theoretical
counterpart; the difference was little when compared to the encounter period and could be
ignored. The test results showed that the transmission system met the test requirements.

Figure 8. Differences in T-foil’s swing angles (2.4 Hz).

3.3. Test Equipment

The test tank of the ship model was in the towing tank of Dalian University of Tech-
nology [23], a member of the International Towing Tank Conference (ITTC), having a total
length of 160 m, width of 7 m, and depth of 3.65 m. The wave-making system of the tank
used a push-plate wave-making machine, which had a maximum wave-making height of
0.4 m and high wave-making accuracy. It could produce regular and irregular waves with
good repeatability. The characteristic parameters (such as wave height and period) were
measured by the wave height meter and fed back to the control computer for adjustment.
A wave damper was installed at the side wall of the tank. A sketch of the tank’s layout of
equipment is shown in Figure 9.

Figure 9. Experimental setup of towing tank.
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In the tank, the ship model was towed forward by a Computerized Planar Motion
Carriage system; the experimental setup of the towing tank is shown in Figure 10. The ship
model was fixed on a seaworthy instrument on the carriage (as shown in Figure 11), so its
heave amplitude, pitch and roll angles, as well as drag force, could be measured. In the test,
the measurement points of the heave amplitude and pitch angle were located at the LCG of
the ship model. Furthermore, acceleration sensors were installed on the bow of the ship
model to measure bow acceleration, and filters were installed on each measurement device.

Figure 10. Ship model towing tank.

Figure 11. Four-degrees-of-freedom seaworthy instrument.

3.4. Model Experimental Design

The model tests focus on the vertical motion response of this semi-planing monohull
ship with regular waves of different wavelengths at high speeds. Therefore, the speed
chosen as its maximum design speed is U = 3.861 m/s (Fr = 0.63); the wavelength λ varies
at 3–8 m; and the wave height is h = 0.046 m. The tests steps are as follows:

(1) The response to heave, pitch, and bow accelerations was measured when the ship
model sailed under regular waves with different wavelengths.

(2) The motion responses of the ship model with a passive T-foil were measured under
the same speed and wave conditions to calculate the value of the control parameter,
C, according to the measured time-record curve.

The active control system of the T-foil was introduced to examine the response of the
ship model when different motion signals are used as inputs; the optimal lifting moment
control signal was determined by comparing the effects of the active T-foil.

4. Analysis of Experiment Results and Discussion
4.1. The Effect of Passive T-Foil

The model test of the passive T-foil was first conducted on the longitudinal motion of
the semi-planing monohull ship with different wavelengths of regular waves to provide a
basis for calculating the control parameter C in the active T-foil control system. The results
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of the analysis of the heave amplitude response at each encounter frequency are presented
in Table 3, and the graph is presented in Figure 12. The heave response of the ship model
increases as wavelength increases. The passive T-foil can reduce heave amplitude by 6–7%
in higher heave response conditions (wavelength: λ = 6, 7, and 8 m). In lower-response
conditions (λ = 3, 4 m), although the percentage of suppression effect improves slightly, the
effect is not significant because of the low-response amplitude at that moment.

Table 3. Heave motion response (passive T-foil control).

λ (m) Encounter
Frequency

Bare
Ship

Passive
Control %

3 12.86 0.0322 0.0277 13.98
4 10.07 0.1913 0.176 8
5 8.54 0.5565 0.515 7.46
6 7.39 0.9322 0.865 7.21
7 6.55 1.1496 1.07 6.92
8 5.91 1.1861 1.115 5.99

Figure 12. Heave motion reduction by passive T-foil.

The result analysis of the pitch motion is presented in Table 4, and the graph is
presented in Figure 13. The variation trend of the pitch motion response with wavelength
is like that of the heave motion; the pitch angle is larger at long waves than at short ones.
The anti-vertical motion effect of the passive T-foil on pitch motion is between 6.3 and 7.7%
in the high-pitch response conditions. This is similar to the suppression ability of heave
motion. This phenomenon occurs because the passive T-foil’s attack angle is small; hence,
the anti-pitch motion percentage is limited.

Table 4. Pitch motion response (passive T-foil control).

λ (m) Encounter
Frequency

Bare
Ship

Passive
Control %

3 12.86 0.171 0.148 13.45
4 10.07 0.54 0.475 12.04
5 8.54 1.125 1.037 7.82
6 7.39 1.605 1.482 7.66
7 6.55 1.851 1.72 7.08
8 5.91 1.905 1.785 6.30
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Figure 13. Pitch motion reduction by passive T-foil.

For the bow acceleration motion, the result analysis is presented in Table 5, and the
graph is presented in Figure 14. Unlike pitch and heave motions, the peak response of
bow acceleration is located at λ = 6 m. The vertical acceleration value of the T-foil can
be reduced by 7.56% under this condition, and its anti-vertical motion ability decreases
slightly as the wavelength continues to increase. This phenomenon occurs because the
installation position of the T-foil is more backward, and the lifting moment it produces is
relatively small; thus, the effect is not obvious.

Table 5. Bow acceleration response (passive T-foil control).

λ (m) Encounter
Frequency

Bare
Ship

Passive
Control %

3 12.86 0.0467 0.04 14.35
4 10.07 0.1114 0.101 9.34
5 8.54 0.1925 0.178 7.53
6 7.39 0.2288 0.2115 7.56
7 6.55 0.217 0.202 6.91
8 5.91 0.1807 0.1705 5.64

Figure 14. Bow acceleration reduction by passive T-foil.

4.2. Comparison of Motion Signals

Based on the ship model and passive control suppression tests and according to the
measured ship motion results, the values of each control parameter C can be obtained
using the trial and error method with Equations (8) and (9). Several typical working
conditions need to be selected for motion response measurement and for comparison of
the difference in the anti-vertical motion effect of the ship model using different angular
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displacement motion control signals (pitch angle θ, pitch angular velocity
.
θ, and pitch

angular acceleration
..
θ).

The results of the passive control tests show that the high-response regions of heave
and pitch motions are located at λ = 6, 7, and 8 m. For bow acceleration, the model’s
response is higher when λ ≥ 5 m. In higher-response conditions, the anti-vertical motion
percentage of the T-foil at λ = 5 and 6 m is slightly higher than at other wavelengths, but
the effect of the T-foil in the low-response regions must also be considered. Hence, λ at 3,
5, and 6 m were chosen as the typical working conditions and for the comparison tests of
different control signals.

The suppression effects percentages of different control signals on the vertical motion
response of the monohull ship under typical working conditions are shown in Tables 6–8,
and the response amplitudes are illustrated in Figure 15. Through comparison, it was found
that the vertical motion of the ship model was more likely to reduce when the angular
velocity signal was used to control the lifting moment of the active T-foil. At high-response
regions for the active T-foil, the motion amplitude could be reduced by about 20%, unlike
with the passive control. The pitch angle control signal had a more obvious suppression
effect on pitch and heave motions than the angular acceleration control signal did, and the
effect was about 10% in high-response regions. This difference between the two control
signals is little compared to the bow acceleration suppression effect, which is weaker than
the pitch angular velocity signal. Therefore, in the subsequent active control tests, the pitch
angular velocity signal was used as the control signal for each working condition; here,
Equation (9) is simplified as:

ϕ = θ − (
C2

KFlF
+

lF
U
)

.
θ +

1
U

.
z (13)

Table 6. Comparison of heave motions among different signals.

Wavelength
λ/m

Encounter
Frequency

ωe/rad

Response in
Passive
Control

/m

Response in
Angle

Control
/m

Response in
Angular
Velocity

Control/m

Response in
Angular

Acceleration
Control/m

Anti-Heave Effect/%

Angle
Control

Angular
Velocity
Control

Angular
Acceleration.

Control

3 12.860 0.020 0.028 0.025 0.028 11.303 28.195 −0.802
5 8.540 0.418 0.515 0.455 0.455 11.682 18.913 11.604
6 7.390 0.730 0.865 0.795 0.823 8.062 15.618 4.808

Table 7. Comparison of pitch motions among different signals.

Wavelength
λ/m

Encounter
Frequency

ωe/rad

Response in
Passive
Control

/m

Response in
Angle

Control
/m

Response in
Angular
Velocity

Control/m

Response in
Angular

Acceleration
Control/m

Anti-Heave Effect/%

Angle
Control

Angular
Velocity
Control

Angular
Acceleration.

Control

3 12.860 0.040 0.054 0.045 0.054 15.747 25.811 −0.789
5 8.540 0.512 0.626 0.552 0.550 11.829 18.228 12.100
6 7.390 0.910 1.074 0.981 1.117 8.612 15.283 −4.009

Table 8. Comparison of bow acceleration among different signals.

Wavelength
λ/m

Encounter
Frequency

ωe/rad

Response in
Passive
Control

/m

Response in
Angle

Control
/m

Response in
Angular
Velocity

Control/m

Response in
Angular

Acceleration
Control/m

Anti-Heave Effect/%

Angle
Control

Angular
Velocity
Control

Angular
Acceleration.

Control

3 12.86 0.029 0.040 0.035 0.036 13.575 27.775 9.395
5 8.54 0.144 0.178 0.156 0.155 12.108 19.354 12.773
6 7.39 0.177 0.212 0.194 0.198 8.239 16.468 6.286
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Figure 15. Vertical motion comparison as influenced by different motion signals.

4.3. Effect of Active T-Foil

In the active control case, solving the control parameter C for each working condition
is based on the results analysis of the model test of the passive T-foil for the corresponding
working conditions. In this test, ϕ1 = −10◦ and ϕ2 = 10◦ according to the time-record curve
of the pitch angle of the passive T-foil, and the maximum value of the angular velocity
during the ship model navigation was obtained by differentiation. Subsequently, the control
parameter C was obtained for each working condition using the trial and error method
through Equations (10) and (12), as presented in Table 9. The swing angle’s output signal of
the T-foil was processed by the sliding average filtering method to eliminate the influence
of the jitter. When λ = 6 m, the time-record curves of the motion parameters were obtained,
as shown in Figure 16.

Table 9. Control parameter C values.

λ
(m)

C2
(kg·m2/(s·rad))

C1
(kg·m2/(s2·rad))

C3
(kg·m2/(rad))

3 37.522 634.031 2.705
4 26.213 --- ---
5 16.143 184.188 2.234
6 15.183 157.068 2.967
7 17.661 --- ---
8 17.853 --- ---

The results of the active T-foil control tests using the pitch angular velocity signal to
control the lifting moment of the T-foil are presented in Tables 10–12, and the response
curves are presented in Figures 17–19. After introducing the active T-foil, the heave motion
(Figure 17 and Table 10) is effectively reduced by more than 25% using the pitch angular
velocity control signal because of the low motion response value at short-wave conditions
(λ = 3, 4 m). Here, the heave amplitude is reduced by more than 20%, which is higher
than for the passive T-foil. As the wavelength increases, the response of the ship model
improves. In the high-response region (λ = 6–8 m), the active T-foil can reduce the heave
amplitude by about 20% higher than the passive T-foil. The angular velocity control signal
can induce an additional heave suppression effect of about 13%.
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Figure 16. Time-record curves of model tests at λ = 6 m.
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Table 10. Anti-heave motion effect of a monohull with active T-foil.

λ (m)
Encounter
Frequency

Active
Control

Passive
Control

Bare
Ship

Anti-Vertical Motion Effect

Active% Passive%

3 12.86 0.020 0.028 0.032 38.230 13.975
4 10.07 0.138 0.176 0.191 28.113 7.998
5 8.54 0.418 0.515 0.557 24.960 7.457
6 7.39 0.730 0.865 0.932 21.701 7.209
7 6.55 0.914 1.070 1.150 20.538 6.924
8 5.91 0.952 1.115 1.186 19.720 5.994

Table 11. Anti-pitch motion effect of a monohull with active T-foil.

λ (m)
Encounter
Frequency

Active
Control

Passive
Control

Bare
Ship

Anti-Vertical Motion Effect

Active% Passive%

3 12.86 0.110 0.148 0.171 35.789 13.450
4 10.07 0.363 0.475 0.540 32.833 12.037
5 8.54 0.848 1.037 1.125 24.624 7.822
6 7.39 1.256 1.482 1.605 21.776 7.664
7 6.55 1.455 1.720 1.851 21.378 7.077
8 5.91 1.508 1.785 1.905 20.819 6.299

Table 12. Anti-bow acceleration effect of a monohull with active T-foil.

λ (m)
Encounter
Frequency

Active
Control

Passive
Control

Bare
Ship

Anti-Vertical Motion Effect

Active% Passive%

3 12.86 0.029 0.040 0.047 38.137 14.347
4 10.07 0.082 0.101 0.111 26.320 9.336
5 8.54 0.144 0.178 0.193 25.429 7.532
6 7.39 0.177 0.212 0.229 22.784 7.561
7 6.55 0.172 0.202 0.217 20.783 6.912
8 5.91 0.146 0.171 0.181 19.065 5.645

Figure 17. Heave response at different encounter frequencies.
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Figure 18. Pitch response at different encounter frequencies.

Figure 19. Bow acceleration at different encounter frequencies.

The anti-pitch effect of the active T-foil is illustrated in Figure 17 and summarized in
Table 11. T-foils can show positive effects (up to 30% or more of anti-vertical motion) in
short-wave conditions. However, the pitch angle effect is limited because of a low motion
amplitude. The active T-foil can effectively reduce the pitch angle by more than 20% at the
peak-response region (λ = 8 m) compared to the ship model without T-foil and by about
14% compared to the passive T-foil. Overall, the pitch angle suppression effect is slightly
better than that of heave motion because the lifting moment of the T-foil increases the pitch
damping of the hull and reduces the pitch angular velocity.

For bow acceleration (Figure 19, Table 12), the anti-bow acceleration percentages for
both T-foils reduce as wavelength increases. The response of the model with active T-foil
in short-wave conditions is reduced by up to 38% compared with that of the passive T-
foil, but its effect is not obvious because of the low acceleration value. In high-response
regions (λ = 5–8 m), the active T-foil can effectively reduce the bow acceleration response
by more than 19%, which is 14% lower compared with that of the passive T-foil. At the
peak (λ = 6 m), the reduction in pitch motion increases due to the additional lifting moment
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generated by the active T-foil; thus, the bow acceleration reduces by 15% compared with
the passive T-foil, drastically reducing the likelihood of seasickness.

4.4. Discussion of Result

The lifting moment of the T-foil can resist the vertical velocity of the ship model by
using pitch angular velocity signals as the main control signal of the T-foil’s swing angle;
this is equivalent to increasing the oscillation damping of the ship. The test results show
that the effect of the active T-foil can be improved in each condition compared to that of the
passive T-foil. Unlike with the passive T-foil, anti-vertical motion effects are more obvious
in high-response conditions (resonance region), and the anti-vertical motion percentages
of heave, pitch, and bow acceleration can increase by more than 15%. This is because the
change in the T-foil’s angle increases the lift force, changes the natural frequency of the
ship, and ensures more obvious suppression effects in high-response areas. However, in
these high-frequency regions with short wavelengths, the motion amplitude is low; hence,
the T-foil effect is weak.

By comparing the pitch, heave, and bow acceleration responses, vertical motion
is reduced considerably by the active T-foil with pitch angular velocity. The amplitude
reduction by the T-foil in bow acceleration is slightly better than in heave and pitch motions,
especially in short-wave conditions. In resonance regions, the bow acceleration with an
active T-foil is reduced by nearly 20% compared with the ship model without a T-foil.
This is because the lift force (moment) opposes the vertical velocity of the ship model and
ensures a more obvious suppression effect on acceleration.

5. Conclusions and Prospects
5.1. Conclusions

A model test was conducted for a monohull ship with a T-foil under regular wave
conditions. By conducting lift force (moment) analyses, the governing equation for the
T-foil’s swing angle was formed and optimized through model tests by comparing the anti-
vertical motion effects of different motion control signals. The T-foil’s lift force (moment)
was adjusted according to the pitch angular velocity. The effect of the active T-foil under
each working condition was obtained at high speed, and the conclusions are as follows:

(1) The active T-foil improves the vertical motion performance of a high-speed monohull
model under regular wave conditions using pitch angular velocity control signals. The
effect is slightly better than using pitch angle or pitch angle acceleration control signals,
with the motion amplitude limitation in the high-response area being particularly
obvious. The vertical motion amplitude is reduced by nearly 10% via the pitch
angular velocity control method compared to the other two signals. Furthermore, the
effect of the pitch angle control signal is slightly better than that of the pitch angular
acceleration signal.

(2) The active T-foil reduces the longitudinal motion response (including in heave, pitch,
and bow acceleration) by more than 20% in all working conditions compared to the
ship model without a T-foil. Under short-wave conditions, the suppression effect can
be up to 30% or more because of a low motion amplitude, and it can be between 19%
and 25% in peak-response regions.

(3) Unlike with the passive T-foil, at high-response conditions, the introduction of the
angular velocity control signal improves the suppression effect on heave, pitch, and
bow acceleration by about 14–15%; at low-response conditions, the effect of the active
T-foil is enhanced by up to 20% or more.

By and large, introducing the active control method leads to a more obvious reduction
in heave, pitch, and bow acceleration, especially in the high-response regions. This proves
that the effects of anti-vertical motions are obvious with the active T-foil control method
proposed in this research.
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5.2. Further Work

Further work can encompass the improvement of the following aspects:

(1) The T-foil can be installed closer to the bow, and the T-foil’s parameter needs to be
further optimized.

(2) The governing equation of the swing angle can be optimized using a multi-signal
control and control parameters adjusted in real time.

(3) The anti-roll effect when using a T-foil needs to be studied.
(4) In this study, the calculation of lift force is based on a static lift force theory, neglecting

unsteady hydrofoil effects. The model can be improved by introducing an unsteady
airfoil theory.
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Abstract: Maritime Autonomous Surface Ships (MASS) are becoming of interest to the maritime sector
and are also on the agenda of the International Maritime Organization (IMO). With the boom in global
maritime traffic, the number of ships is increasing rapidly. The use of intelligent technology to achieve
autonomous collision avoidance is a hot issue widely discussed in the industry. In the endeavor to
solve this problem, multi-ship coordinated collision avoidance has become a crucial challenge. This
paper proposes a multi-ship autonomous collision avoidance decision-making algorithm by a data-
driven method and adopts the Multi-agent Deep Reinforcement Learning (MADRL) framework for its
design. Firstly, the overall framework of this paper and its components follow the principle of “reality
as primary and simulation as supplementary”, so a real data-driven AIS (Automatic Identification
System) dominates the model construction. Secondly, the agent’s observation state is determined by
quantifying the hazardous area. Then, based on a full understanding of the International Regulations
for Preventing Collisions at Sea (COLREGs) and the preliminary data collection, this paper combines
the statistical results of the real water traffic data to guide and design the algorithm framework
and selects the representative influencing factors to be designed in the collision avoidance decision-
making algorithm’s reward function. Next, we train the algorithmic model using both real data
and simulation data. Meanwhile, Prioritized Experience Replay (PER) is adopted to accelerate the
model’s learning efficiency. Finally, 40 encounter scenarios are designed and extended to verify the
algorithm performance based on the idea of the Imazu problem. The experimental results show that
this algorithm can efficiently make a ship collision avoidance decision in compliance with COLREGs.
Multi-agent learning through shared network policies can ensure that the agents pass beyond the
safe distance in unknown environments. We can apply the trained model to the system with different
numbers of agents to provide a reference for the research of autonomous collision avoidance in ships.

Keywords: MASS; multi-ship autonomous collision avoidance decision-making; data-driven; MADRL

1. Introduction

With the boom in global maritime traffic, the number of ships is increasing rapidly.
This growing trend makes maritime navigation increasingly challenging and risky. In
2021, the European Maritime Safety Agency (EMSA) counted and analyzed a total of
15,481 maritime incidents during 2014–2020, of which accidents of navigational nature
(collisions, contacts, and groundings/strandings) represented 43% of all occurrences related
to the ship accounted [1]. This is also the category with the largest percentage of all
maritime accidents counted. Therefore, industries in the maritime sector are beginning
to use intelligent technologies to achieve autonomous collision avoidance and reduce the
impact of human factors on ship collision avoidance incidents.

MASS is considered to have the potential to solve the above problems in the maritime
industry. Several countries and authoritative organizations have issued standards on
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the classification of the autonomy degree of MASS in recent years. Among them, IMO
categorized the autonomy degree of MASS into four levels from a crew manning perspective
at the 99th meeting of the Maritime Safety Committee (MSC 99) in 2018 [2]. This reflects a
common endeavor of the shipping industry. MASS is regarded as a promising area in the
maritime industry. As an important part of MASS to realize autonomous navigation tasks,
ship-autonomous collision avoidance decision-making has become one of the important
research issues in the field of marine engineering [3].

Research groups around the world are rapidly developing technologies with impres-
sive results. However, most methods do not consider the coordinated or uncoordinated
interaction between ships in the scenario when designing algorithms and even assume that
only the own ship can take action while other target ships keep speed and course. As we
know, the essence of ship collision avoidance is a continuous process of interaction between
ships. Especially in multi-ship collision avoidance scenarios, the dynamic navigation status
and maneuvering behavior of each ship are affected by other surrounding ships. Therefore,
there is a certain gap between existing simulated scenarios and real scenarios.

This paper proposes a multi-ship distributed collision avoidance algorithm with
MADRL by AIS data-driven approach, taking into consideration mixed traffic scenarios
and uncoordinated scenarios in real waters. Each ship is deemed as an agent. Simulation
experiments validate the effectiveness and efficiency of the algorithm in the multi-ship
collision avoidance problem, which can ensure the navigation safety of ships.

The organization of this paper is stated as follows. In Section 2, we provide the
literature review of ship collision avoidance decision-making. Section 3 introduces the
design content and design ideas of the collision avoidance algorithm. Section 4 is the
training and testing of the proposed algorithm. Section 5 is the conclusion and prospect of
this paper.

2. Literature Review

Ship autonomous collision avoidance has always been a hot topic of navigation safety
for smart ships. At present, the mainstream autonomous collision avoidance methods are
generally divided into three categories [4].

The first category of methods is based on analytical models. This category of algo-
rithms describes the ship’s movement and its surroundings with an accurate mathematical
model, such as MPC [5], VO [6,7], and APF [8]. Although these algorithms are effective,
they often lack the flexibility to cope with complex and dynamic environments. For ex-
ample, MPC suffers from large computational volumes and imperfect models. VO suffers
from low robustness and slow processing speed. APF suffers from local optimality, external
interference, and discontinuous action.

The second category of methods is based on intelligent algorithms and mainly
includes the A*-based global path planning algorithm [9], Fuzzy Logic algorithm [10],
and Multi-objective Evolutionary algorithm (MOEA) [11]. However, the A*-based global
path planning algorithm suffers from inconsistent model prediction accuracy and lack
of real-time, and MOEA suffers from difficulties in setting the objective function and
non-convexity phenomena.

The third category of methods Is based on Machine Learning (ML) and mainly includes
Deep Learning (DL), Reinforcement Learning (RL), and Deep Reinforcement Learning
(DRL). ML and Artificial Intelligence (AI) technology are currently the most applicable
methods to solve this problem [12]. For example, Wang et al. proposed a deep rein-
forcement learning obstacle avoidance decision-making algorithm to solve the problem
of intelligent collision avoidance by unmanned ships in unknown environments. Based
on the Markov Decision Process (MDP), an intelligent collision avoidance model is es-
tablished for unmanned ships [13]. Sun et al. proposed an autonomous USV collision
avoidance framework, DRLCA (Deep Reinforcement Learning for collision avoidance),
which can be applied to USV navigation [14]. Shen et al. proposed an algorithm based on
deep Q-learning for automatic collision avoidance of multiple ships, particularly which
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incorporates ship maneuverability, human experience, and navigation rules, and designed
a restricted water test method to effectively test the capabilities of intelligent ships in a
limited time frame [15]. Sawade et al. proposed a collision avoidance algorithm based on
proximal policy optimization (PPO), which improves the obstacle zone by target (OZT) and
enables the control of the rudder angle in continuous action space [16]. Zhao et al. proposed
a DRL algorithm for ship collision avoidance based on Actor-Critic (AC), which divides
the target ship area into four regions based on COLREGs and solves the case of different
numbers of target ships by fixing the neural network input dimensions [17]. However,
the above methods based on the single-agent concept deal with ship collision avoidance
from the perspective of the own ship and do not describe the interaction behavior relations
among ships directly, which is inconsistent with reality. The individual behaviors will
have an impact on the overall collision avoidance result, and collision avoidance mea-
sures need to be decided in coordination with each other, especially in multi-ship collision
avoidance scenarios.

Therefore, experts and research scholars have gradually extended the research direc-
tion from the single-agent system to the multi-agent system (MAS). Groups of agents within
the MAS share the same environment, use sensors to perceive the environment, and take ac-
tions by using actuators. MAS usually adopts a distributed structure, which allows control
authority to be distributed to the individual agents [18]. It has high reliability and robust-
ness by using MAS to solve practical problems. However, MAS has difficulty dealing with
high-dimensional continuous environments because of its concurrency. On the contrary,
DRL is able to deal with high-dimensional inputs and learn to control complex actions.

MADRL combines the advantages of DRL and MAS and overcomes their inherent
disadvantages. Specifically speaking, DRL models often require a large number of samples
for training, and the inherent concurrency of the MAS system enables agents to generate
a large amount of data concurrently, which greatly increases the number of samples,
accelerates the learning process, and achieves better learning effects. At the same time, the
internal structure of the neural network can solve the communication problem in MAS by
using a shared policy network that exhibits implicit coordination to overcome the problem
of inadequate artificially defined communication methods.

MADRL is an effective method for solving the multi-ship autonomous collision avoid-
ance problem, which is a typical sequential decision-making process. Zhao et al. proposed a
DRL-based algorithm to address the multi-ship collision avoidance problem. The algorithm
adopts policy network sharing, i.e., eight ships are trained simultaneously, which improves
the efficiency of policy convergence and obtains higher returns [17]. Luis et al. proposed
a centralized convolutional Deep Q-network. Each agent has an ultimately independent
dense layer to handle scalability [19]. Chen et al. proposed a multi-ship cooperative colli-
sion avoidance method based on the MADRL algorithm. By designing different reward
weights to vary the degree of cooperation among the agents, the impact of agents in differ-
ent cooperation modes on their collision avoidance behavior is discussed [20]. However,
the above DRL algorithms are constructed and trained by pure simulation data. As a result,
even if these models perform well in simulation environments, there is no guarantee that
they will be able to make equally effective and safe decisions in real waters. Compared with
simulation data, models trained by real data can not only better cope with real navigational
challenges but also more deeply absorb human experience and wisdom to ensure the ship’s
safety and reliability in various scenarios.

The shipborne navigation aid systems, which include RADAR/ARPA, AIS, and ECDIS
(Electronic Chart Display and Information System), provide the source and real data of ship
collision avoidance scenarios at sea. As a requirement (part of the International Convention
for Safety of Life at Sea), AIS, which should be carried for all ships from 2002, shall provide
information including the ship’s identity, type, position, course, speed, navigational status,
and other safety-related information—automatically to appropriately equipped shore
stations, other ships, and aircraft. Meanwhile, the reporting interval of AIS messages is
from 2 s to 6 min, depending on the message types and the ship’s dynamic conditions [21].
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Growing ships have been equipped with AIS devices in the past twenty years, so a huge
amount of marine traffic scenarios that are useful to develop ship autonomous collision
avoidance algorithms have been recorded and accumulated in shore-based systems.

Motivated by all of the above, this paper proposes A multi-ship distributed collision
avoidance algorithm with MADRL by real AIS data-driven, taking into consideration mixed
traffic scenarios and uncoordinated scenarios in real waters. In this paper, the overall frame-
work and its constituent units follow the principle of “reality as primary and simulation as
supplementary”, which determines that real AIS data-driven model structure occupies a
dominant position. Then, we combine the statistical results of the real water traffic data to
guide and design the MADRL framework and select the representative influencing factors
to be designed into the collision avoidance decision-making algorithm’s reward function.
Next, based on the idea of “reality as primary and simulation as supplementary”, the
proportion of practical significance is selected to use real-AIS data and simulation data for
model training, respectively. Finally, the simulation tests the collision avoidance effect of
this algorithm in a library of complex and difficult ship encounter scenarios based on the
idea of the Imazu problem.

3. Multi-Ship Collision Avoidance Decision-Making Algorithm Design

In this section, we will describe COLREGs, ship coordinated and uncoordinated
behaviors, and design the flow chart, observation state, action space, reward function, and
neural network model in the proposed algorithm.

3.1. COLREGs

In the sight of one another, overtaking situations, head-on situations, and crossing
situations are three situations of encounters or three positional relationships that are
constituted when two ships meet during navigation. Chapter two of COLREGs defines the
conditions that constitute these three situations and also the rights and obligations of the
ship in them. The situations defined by COLREGS are also the environment in which the
ship’s autonomous collision avoidance decision system operates as the agent. The specific
definitions are shown below [22,23]:

• Rule 13 (Overtaking): If a vessel is deemed to be overtaking when coming up with
another vessel from a direction more than 22.5◦ above her beam, the situation is
considered to be overtaking. Notwithstanding anything contained in the Rules of Part
B, Sections I and II, any vessel overtaking any other shall keep out of the way of the
vessel being overtaken.

• Rule 14 (Head-on situation): Each ship should turn to the starboard and pass on the
port side of the other ship when there is a risk of collision.

• Rule 15 (Crossing situation): If the courses of two vessels cross, the situation is
considered as crossing situation; When two power-driven vessels are crossing so as to
involve risk of collision, the vessel which has the other on her own starboard side shall
keep out of the way and shall, if the circumstances of the case admit, avoid crossing
ahead of the other vessel.

As is shown in Figure 1, the yellow region indicates the head-on situation, the red
region indicates the port crossing situation, the green region indicates the starboard crossing
situation, and the white region indicates the overtaking situation in which the agent ship is
the overtaken vessel. In addition, the own ship (OS) is pink, and the target ship (TS) is blue.

3.2. Ship Coordinated and Uncoordinated Behaviors

The following situation may occur during the process of maned-vessel collision avoid-
ance in the real waters: one or more vessels do not take coordinated communication or take
collision avoidance actions based on COLREGs, resulting in uncoordinated collision avoid-
ance behaviors [24]. Meanwhile, there will be a mixed traffic scenario in which manned
ships and autonomous ships coexist for a certain period in the future [25]. Therefore, the
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possible uncoordinated behavior of all ships from the global perspective is one of the factors
that MASS collision avoidance algorithms need to focus on when designing.
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Based on this, we define “coordinated collision avoidance behaviors” in this paper as
those taken by the ship, which has the attribute of the trained agent. Specifically, the ship
can take safe and rule-compliant collision avoidance decision-making measures when it
recognizes a collision risk. Likewise, “uncoordinated collision avoidance behaviors” are
defined as those taken by the ship which does not have the attribute of the trained agent,
such as keeping speed and course without taking collision avoidance actions or taking
non-rule-compliant actions.

We adopt the MAS framework, i.e., all ships within the scenario are default set as
positive and rational agents that adopt coordinated collision avoidance behaviors. In order
to simulate the uncoordinated scenarios in real waters, as well as to consider the sampling
flexibility and enhance the model robustness factors, this paper selects the Weighted
Random Sampling (WRS) method. The interval [0, 1] is divided into equal parts at interval
intervals of 0.2 by the WRS method. Each interval is assigned a weight value, as shown in
Table 1. A higher weight value means a higher probability that the interval will be selected.

Table 1. Selection probability of the random number generation based on WRS.

The Interval for Random Number Generation Probability of Selecting the Interval

[0.0, 0.2] 0.10
[0.2, 0.4] 0.20
[0.4, 0.6] 0.40
[0.6, 0.8] 0.20
[0.8, 1.0] 0.10

Based on the above method, we set that there are n ships within the encounter scenario.
When the i− th ship decides whether to perform the coordinated collision avoidance action
or not, a random number Ri(i = 1, 2, . . . n) that falls within the [0, 1] probability interval
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will be generated. Ri represents the probability of whether the i − th ship performs a
collision-avoidance action or not, which can also be interpreted as the probability that the
ship is given the attributes of a positive and rational agent.

In order to effectively manage the non-coordination behaviors and improve the sys-
tem’s overall performance, this paper proposes a flexibly adjustable non-coordination
avoidance factor θ. When Ri > θ, the i− th ship is regarded as having the attribute of the
trained agent in the collision avoidance scenario and follows the reward function design
concept to positively take avoidance measures in Section 3.8. On the other hand, when
Ri < θ, the i− th ship will no longer have the attribute of the trained agent. Specifically, the
ship may keep speed and course without taking collision avoidance actions or taking non-
rule-compliant actions. We set the ship’s hazard recognition switch and the agent attribute
switch to be mutually exclusive. When the ship recognizes a hazard, the algorithmic model
will extract the failure experience or worse experience from the training experience pool.
And the action space corresponding to the selected experience will be used as the action
measure. This may create a more dangerous situation within the whole scenario. At this
time, ships with uncoordinated behaviors will follow the new reward function, as detailed
in Section 3.8.

At the same time, we can control the proportion of uncoordinated scenarios appearing
by adjusting the weights of the WRS intervals and the size of the non-coordination avoid-
ance factor θ to make the generated test scenarios as close as possible to real water. This
increases the diversity and authenticity of the training data set.

3.3. Flow Chart

Figure 2 shows the flow chart of the algorithm. At the start of each cycle, state
parameters are obtained, and the values of DCPA (distance of the closest point of approach),
TCPA (time to the closest point of approach), distance, and bearing are calculated to obtain
the current status information. Then, the risks of encounter situations are calculated during
each state transfer. If there are no risks and the ship has passed and cleared the target
ship, the ship will return to the planned route. If there are no risks and the ship has not
passed and cleared the target ship, the ship will keep the original course and speed. If
there are risks, the observation state will be calculated and input to the DDQN (Double
Deep Q-Network) to make the decision. The corresponding action information is then
transferred to the ship motion control system, which updates the current status information
in conjunction with the ship motion model. The cycle ends when the ship reaches the
planned route point or when a collision occurs with the target ship. Otherwise, the cycle
will continue.

3.4. Definition of Ship Collision Avoidance Problem Based on MDP

Markov chain is a random process with Markov property, i.e., the future state depends
only on the current state and is unrelated to the past state. In the ship collision avoidance
problem, we can use factors such as the ship’s position and speed as input states. The
actions of the ship in each state are affected by certain probabilities, which can be expressed
as state transfer probabilities. These describe the probability of transferring to another state
in a given state.

However, the actions of ships are not only affected by the states but also by the other
ships’ actions in the environment, as well as the ship’s desired goals. Therefore, we need to
introduce the Markov Reward Process (MRP) to consider these factors. MRP is an extension
of the Markov chain. It combines the probability of each state transfer with an immediate
reward to take into account the effect of the particular behavior in a given state. In the ship
collision avoidance problem, we can define the reward function. For example, the smaller
the deviation distance, the larger the reward that the agent receives to encourage the ship
to choose the appropriate actions to avoid the collision.
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On this basis, we continue to introduce decision variables that allow the ship to choose
the actions under each state, thereby forming a complete MDP. At the same time, by
considering all possible actions that can be taken in each state, we can establish decision
rules or policies to guide the ships’ actions so that the overall reward is maximized or a
specific objective function is optimal.

Therefore, when applying the MADRL framework to solve the multi-ship collision
avoidance decision-making problem, we describe this problem as an MDP. This method can
help us to solve the ship collision avoidance problem systematically and provide guidance
for decision-making. In the MDP, the agent obtains the observation state from the current
environment and decides to perform the action based on it. The chosen action, in turn,
indirectly affects the update of the environment and the size of the reward value. Based on
the above, this paper represents the MDP as an 8-tuple (S, O, A, π, P, R, γ, α) as follows:

1. S is a finite set of environment states; s is the current environment state, which mainly
includes ships, dynamic obstacles, static obstacles, etc.

2. O is the set of observed states of the agents; ot is the observation state obtained by the
agent in the environment at the moment t.

3. A is the action space set of the agents; at is the action performed by the agent at the
moment t, generated by the policy function π(a | o) = P(A = a|O = o).

4. P is the state transfer function and P ∈ [0, 1]; P(s′ | s, a) = P
(
S′t+1 = s′

∣∣St = s, At = a
)

is the probability that the state is transferred from s to s′ after the agent performs the
action at at the moment t.

5. R is the reward function; rt is the reward that the agent receives from the environment
at the moment t.

6. γ is the decay value for future reward; α is the learning rate of the agent.

3.5. PER-DDQN

In 2015, V. Mnih’s team proposed the concept of target neural networks, which of-
ficially marked the birth of DQN (Deep Q-network) [26]. Compared with traditional
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Q-Learning, DQN no longer records the Q-value but uses a neural network Q(s, a; w) to
approximate the optimal action-value function Q∗(st, at). The DQN algorithm’s main ad-
vantage is its ability to deal with high-dimensional state spaces. Meanwhile, the algorithm’s
generalization ability can be improved through deep neural network learning to ensure
scalability and applicability.

However, DQN does not guarantee that the network will always converge because
DQN suffers from the maximum operator and bootstrap problems. To solve this problem,
DDQN (Double Deep Q-Network) was proposed by the DeepMind team in 2016 [27].
DDQN works by setting up two independent Q-networks. One is the main neural network
for selecting the maximum value action, and the other is the target neural network for
evaluating this action’s Q-value. The target neural network is usually a duplicate of the
main network, but its parameter θ− is not updated with each training iteration. Instead, it
is copied from the main network at a certain frequency. Specifically, when we use the target
network to compute the target’s Q-value, the parameter θ− is only updated once every
certain number of steps so as to maintain the stability of the objective function. This results
in less variation in the target value during the training process and allows for more efficient
training of the primary network. At the same time, it reduces the noise and volatility in the
learning process and improves the stability of training and convergence speed.

We compare the neural network performance of Nature-DQN, Target Network, and
DDQN by the process of computing TD-target, as shown in Table 2.

Table 2. Comparison of three neural network constructions.

Type Action Selection Value Evaluation

Nature-DQN DQN: a∗ = argmaxQ(st+1, a; θ) Target Network: yt = rt + γQ(st+1, a∗; θ)
Target Network Target Network: a∗ = argmaxQ

(
st+1, a; θ−

)
Target Network: yt = rt + γQ

(
st+1, a∗; θ−

)

DDQN DQN: a∗ = argmaxQ(st+1, a; θ) Target Network: yt = rt + γQ
(
st+1, a∗; θ−

)

DDQN not only alleviates the high-estimate problem but also improves usability
and makes training more stable and efficient. In addition, Schaul’s team proposed the
Prioritized Experience Replay (PER) method in 2016 [28]. It is an enhanced experience
replay method for learning by agents for training deep neural networks. It introduces
the priority concept based on the traditional experience replay, i.e., it prioritizes the more
important experiences for learning and makes more efficient use of the samples in the
experience pool to improve the training efficiency and performance.

Based on the above, this paper adopts the PER-DDQN algorithm. It extracts all the
transfer information in the experience pool that can be used for experience replication and
then selects and gives priority to the transfers with a larger TD error. These experiences are
more worthy of agent learning, so they are given greater priority. The model of PER-DDQN
is shown in Figure 3.

Overall, the combination of DDQN and PER amplifies its intelligence advantage
on a macro level, which can be understood as the agent paying more attention to failed
experiences and choosing the learning order according to the experience priority. This can
greatly reduce the trial-and-error process, make the network converge more quickly, and
use the samples in the experience pool more efficiently to avoid experience waste. At the
same time, using PER can eliminate the correlation between transitions and improve the
performance of the DRL algorithm, making it more efficient and stable in dealing with
complex tasks.
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3.6. Observation State

In this paper, we define the distribution of MAS to constitute the set of environments
as follows:

S =




ψ1 v1 x1 y1
ψ2 v2 x2 y2
. . . . . . . . . . . .

ψn-1 vn-1 xn-1 yn-1
ψn vn xn yn




where ψn is the ship’s course or the dynamic obstacle’s moving direction; vn is the ship’s
speed or the dynamic obstacle’s moving speed; xn and yn are the latitude and longitude of
the ship or obstacle, respectively; n is the number of targets in the environment.

In past studies, research scholars have proposed many methods for predicting the
hazard area of ship collision. For example, the obstacle zone by target (OZT) method
based on the risk evaluation circle (REC) [29], the avoidance of bow crossing detection
method [30], the predicted area of danger (PAD) model, the collision probability model,
fuzzy logic and rule-based reasoning, and digital simulation. Comprehensively considering
factors such as the real-time nature of environmental changes and the uncertainty of ship
navigation, this paper will use an improved method based on OZT to predict the collision
hazard area of each ship in the MAS.

The core idea and design principle of OZT is to “enlarge obstructions” and “advance
avoidance”. Specifically, ships use sensors such as LiDAR and cameras to capture informa-
tion about their surroundings, including the location, size, and shape of obstacles, which
is fed into the OZT algorithm. The OZT algorithm “enlarges” the obstacle at the system’s
decision level; namely, the size of the obstacle is virtually magnified. Therefore, the ship’s
perception system will consider the obstacle to be closer than its actual distance when the
ship is in close proximity to the obstacle. Ships will start to change course or slow down
when they are still a certain distance away from the targets and take avoidance action
in advance.

Although the OZT can allow ships to achieve certain results in avoidance actions, the
method has some practical application problems. Firstly, the correct execution of OZT relies
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heavily on the sensors’ performance. If the sensor data are inaccurate (sensor malfunction,
ambient noise, obstacle occlusion, etc.), the OZT may not be able to correctly “enlarge” the
obstacle, resulting in reduced avoidance performance. Secondly, OZT requires real-time
environmental analysis and decision-making, which may require significant computational
resources. For some unmanned systems with limited hardware resources, there may be
a trade-off between OZT and other navigation tasks. Thirdly, since the design principle
of OZT is “avoidance in advance”, there may be the possibility of over-avoidance, which
reduces the operational efficiency of the ship and the unreasonable avoidance behaviors.

Considering the above possible problems, the OZT method is improved in this paper
to enhance the method’s ability to cope with emergencies because the CPA (closest point of
approach) is the point where two ships are closest to each other when they meet at sea. As
a result, the high probability of collision in real waters is near the CPA [31]. In addition,
DCPA and TCPA are CPA-derived physical quantities. DCPA is the distance between the
closest approach of two ships. TCPA is the time required for a ship to reach the CPA. These
parameters are very important concepts in ship collision avoidance and core indexes for
developing navigation policies and assessing ship safety [32]. Therefore, the target ship’s
CPA is taken as the center of the circle, and the speed navigation distance (SND) RSND is
taken as the radius (The diameter DSND = 2RSND) to create a circular area C1. When the
ship sails to the moment t, based on the speed v of the target ship, the system calculates the
distance Dcalculation that the target ship will travel in the next k set time steps (kh), and the
calculation equation is shown in Equation (1).

Dcalculation = khv (1)

We extend C1 along the direction of the target ship’s course at the moment t by a dis-
tance Dcalculation to form a new circular area C2, which is the target ship’s CPA area after k
time steps. As shown in Figure 4, the capsule-shaped area formed by geometrically connect-
ing C1 and C2 is the collision hazard prediction area COZT set up in this paper. The length
of this geometric area is DLength = Dcalculation + DSND and the width is Dwidth = DSND,
and all ships in the MAS should avoid entering this area. At the same time, according
to the speeds of different target ships, they will be given different prediction time steps.
The purpose is to control the extension distance Dcalculation unchanged so that all target
ships form a collision hazard area of equal size. In this paper, we set Dcalculation = 1.5 NM,
RSND = 0.5 NM, DLength = 2.5 NM. By this way, it can balance the differences of the
target ship with different features such as course, speed and size, which can reduce the
algorithm’s computation and facilitate the scene clustering. At the same time, the method
can deal with emergencies when the sensors are faulty and prevent the observation space
from generating chaos.

Considering that the input to a neural network can only be a tensor of fixed dimension,
this paper designs the observation state space as an observable discretized environment
and quantifies the predicted hazard area by using the grid method. This ensures that the
dimension of the observation state does not change with the number of target ships in the
environment. In order to be closer to the real navigational environment at sea, this grid
environment uses its own perspective as the center and establishes a field of view (FOV)
to detect the environment’s state. At the same time, taking itself as the center of the circle,
it extends outwards with a fixed value of distance interval and angle interval to form a
certain number of concentric circles. In addition, we set the due north direction as the
course 0◦, the clockwise as the positive direction, and the angle range as 360◦. The whole
circumference is evenly divided by a 15◦ interval with a detection radius distance of 8 NM
and a distance interval of 0.5 NM, as shown in Figure 5.
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In addition, this paper defines the observation state by Boolean Operators: When the
predicted collision hazard area of a ship is not in the FOV range, the ship’s observation state
ot is 0; When the ship’s predicted collision hazard area crosses the FOV range, the ship’s
observation state ot changes to one and the collision avoidance decision-making switch is
turned on. During the process of taking collision avoidance actions, the observation state
ot remains at one. The collision avoidance decision-making switch is turned off after the
ship has passed and cleared the target ship. And the ship’s observation state ot becomes 0,
which means the current collision avoidance task is completed.
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Meanwhile, in order to reduce the input dimension of the neural network and reduce
the risk of overfitting, we fixed the FOV’s range and set the observation range of the agent to
the environment to within 5 NM, which is helpful for us to better evaluate the generalization
ability of the model. We believe that considering the partially observable perspective is an
important step in the application of intelligent ships to real marine environments. At the
same time, it is an effective means of replacing the state of the marine environment with
areas that predict the possible risk of future collisions when we are dealing with a class of
similar scenarios. In this way, similar encounter situations can be clustered and can lead to
more stable decisions made by the model. By adopting the above method, the computation
amount of the algorithm can be greatly reduced, and the size of the observation state space
can be effectively reduced. It also prevents the observation space from generating chaotic
superposition or wrong recognition of the external environment.

3.7. Action Space

Ship collision avoidance usually consists of four parts: environmental perception,
taking collision avoidance action, keeping on course and speed, and returning to the
planned route. In the entire collision avoidance process, the time spent on the collision
avoidance decision-making (taking collision avoidance action and returning to the planned
route) is much less than that spent on keeping course and speed, but it is the core part
of the whole action. If the RL algorithm is used in the whole process, it will greatly
increase the number of state transfers in the decision-making process, causing difficulties
in model convergence. Therefore, the algorithm in this paper will only be used in the
collision avoidance decision part, meaning that the agent interacts with the environment
only in the collision avoidance decision-making phase, effectively shortening the number
of state transitions in the MDP and substantially improving the efficiency of the algorithm.
According to the above and Rule 8 [22,23]: If there is sufficient sea room, alteration alone, of
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course, may be the most effective action to avoid a close-quarters situation provided that it
is made in good time, is substantial, and does not result in another close-quarters situation.

In collision avoidance, the pilot usually takes steering avoidance measures, including
controlling the rudder angle and the course of a ship. The rudder angle change is different
for different ships in the same encounter scenario. It is worth noting that the ship’s course
is the same at this point. Therefore, this paper will adopt the second avoidance measure
as the action space, through a series of discrete course angle commands to continuously
adjust the course and finally complete the ship collision avoidance. In other words, the
discrete course change angle range is set as this algorithm’s action space [20].

The six-degrees-of-freedom (6-DOF) model is widely used in the field of ship mo-
tion, but we usually adopt the three-degrees-of-freedom (3-DOF) model in ship collision
avoidance. The 3-DOF mathematical model of a ship is shown in Figure 6.
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In this paper, the ship motion parameters are calculated by using Nomoto Equa-
tion [33], as expressed in Equation (2).
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At the same time, the rudder angle is calculated by the PD controller and solved by
the differential equation, as expressed in Equations (3)–(5).

r(t) = Kδ
(

1− e−
t
T

)
(3)

ψ(t) = Kδ
(

t− T + e−
t
T

)
(4)

δ(t) = Kp[ψc − ψ(t)] + Kdr(t) (5)
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The formula for the agent position at any moment t2 = t1 + ∆t is as follows:

x(t2) = x(t1) +
∫ t2

t1

v · sinψ(t2) d(t) (6)

y(t2) = y(t1) +
∫ t2

t1

v · cosψ(t2) d(t) (7)

where ψ is the course of the ship; ψc is the target course of the ship; r is the yaw rate; δ
is the real rudder angle; δE is the command rudder angle; TE is the time constant of the
steering gear; K and T are the index parameters of ship maneuverability in clam water; Kp
is the controller gain coefficient; Kd is the controller differential coefficient.

This algorithm discretizes the action space and executes a series of discrete course
change angle at commands to complete ship collision avoidance based on the collision
degree hazard identification results. This paper defines that the agent turns to the left as a
negative angle and the right as a positive angle. The range of discrete course change angle
is [−10◦,+10◦]. The calculation formula of a ship’s new course is expressed in Equation (8),
and the discrete interval at is expressed in Equation (9).

ψ = ψlast + at (8)

at ∈ [−10◦,−8◦,−6◦,−4◦,−2◦, 0◦,+2◦,+4◦,+6◦,+8◦,+10◦] (9)

3.8. Reward Function

The agent in the RL algorithm learns by acquiring rewards through interaction with the
environment and decides the appropriate action by the amount of reward value. Therefore,
the reward function becomes the key to how well the agent learns. It is also the core part of
the RL algorithm, which directly affects the effectiveness of the collision avoidance decision.

In order to construct a meaningful and effective reward function, this paper invests
a lot of time, resources, and effort in the preliminary data collection. At the same time,
considering the uncertainty of the marine environment and the diversity of navigation
situations, this paper collects a large amount of relevant historical data under various
types of ship navigation situations, including sailing trajectories, radar information, sensor
data, and so on. By processing and integrating the collected real data, this paper analyses
and clusters the data of real ship collision avoidance scenarios to reveal the correlations
and trends.

Therefore, in the process of designing the reward function in this paper, the statistical
results of real water traffic data are fully integrated. This is an important theoretical basis
to guide the construction of the reward function so that the decisions made by the agent
are closer to the results of navigation in real waters.

Combined with the COLREGs of Rule 8, Rule 16, good seamanship, expert advice,
practical experience and other factors [22,23], the reward function has six main parts,
as follows:

• Failure Reward: When the distance between ships is less than 0.5 NM, the algorithm
defines it as a collision occurs, i.e., collision avoidance fails. Then, it will receive a
larger negative reward from the environment.

• Warning Reward: When the ship moves into the collision hazard area, it will receive a
small negative reward from the environment.

• Out-of-bounds Reward: When the ship enters the unplanned sea area because of
taking collision avoidance actions, it will receive a medium negative reward from
the environment.

• Ship Size-Sensitivity Reward: The ship’s size and sensitivity can affect the ship’s
collision avoidance strategy and decision-making. Larger ships typically require a
larger turning radius and longer braking distances, so ship size can be considered for
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inclusion in the reward function. For example, larger ships could be given more success
rewards based on their size and sensitivity to emphasize their collision avoidance
difficulty. This can guide different types of intelligent ships to make appropriate
collision avoidance decisions for themselves.

• Success Reward: When the ship successfully avoids other ships, i.e., there is no risk
of collision with any other ship at the next moment, it will receive a positive reward
from the environment. This reward is refined into six components by considering all
factors, i.e., rule compliance, the deviation distance at the end of the avoidance, the
total magnitude of ship course changes during the avoidance process, the amount of
the cumulative rudder angle during the avoidance process, the DCPA when clear of
the other ship and the number of rudder operations.

• Other Reward: Except for the four cases mentioned above, the agent will not receive a
reward from the environment, i.e., the reward is 0.

To sum up, the definition of the reward function used in this algorithm is specified in
Equations (10) and (11).

Reward =





−20 ship collision
−2 enter the collision hazard waters
−5 enter the unscheduled waters
w1 × w2 × L× B× D size-sensitivity impact extent
[k1 k2 k3 k4 k5 k6][RCOLREGs Rdeviation R∆ψ Rδ RDCPARrudder]

T reach the destination
0 other

(10)

RCOLREGs =

{
+5, rule compliance
−5, rule noncompliance

Rdeviation = ddeviation
2 =

davoid+dresumption−dplanned
2

R∆ψ = |∆ψ|
10

Rδ = ∑
i
|δi|

RDCPA = 1
(n−1)

n−1
∑
i

DCPAi

Rrudder = (7− nrudder)

(11)

where ddeviation is the deviation distance at the end of the avoidance; ∆ψ is the ship’s course
angle during the avoidance process; δi is the magnitude of the i− th rudder angle; n is the
total number of ships in the current encounter situation; DCPAi is the distance to closest
point of approach when passing and clearing the i − th target ship; nrudder is the total
number of rudder operations; w1 is maneuver difficulty coefficient based on the ship size;
w2 is ship maneuver sensitivity coefficient; L is the ship’s length between perpendiculars;
B is the ship’s breadth; T is the ship’s draft; ki is the weight of each successful collision
avoidance reward and ∑6

1 ki = 1, where k1 = 0.3, k2 = 0.15, k3 = 0.15, k4 = 0.1, k5 = 0.2,
k6 = 0.1.

By selecting an action based on the above reward function, the ship is given the
attribute of the trained agent and takes a coordinated collision avoidance action. However,
ships with uncoordinated behaviors, as elaborated in Section 3.2, will no longer fully follow
this reward function. We modify the reward function in terms of safety, rule compliance,
and deviation distance, as shown in Equations (12) and (13).
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Reward =





−20 ship collision
+5 enter the collision hazard waters
−5 enter the unscheduled waters
w1 × w2 × L× B× D size-sensitivity impact extent
[k1 k2 k3 k4 k5 k6][RCOLREGs Rdeviation R∆ψ Rδ RDCPARrudder]

T reach the destination
0 other

(12)

RCOLREGs =

{ −5, rule compliance
+5, rule noncompliance

Rdeviation = ddeviation
2 =

davoid+dresumption−dplanned
2

R∆ψ = |∆ψ|
10

Rδ = ∑
i
|δi|

RDCPA = 1
(n−1)

n−1
∑
i

DCPAi

Rrudder = (7− nrudder)

(13)

where ki is the weight of each successful collision avoidance reward and ∑6
1 ki = 1, where

k1 = 0.35, k2 = 0.25, k3 = 0.1, k4 = 0.1, k5 = 0.15, k6 = 0.05.

4. Training and Testing of Algorithm Model

In this paper, CPU (12th Gen Intel® Core™ i5-12400, Santa Clara, CA, USA) and GPU
(Intel® UHD Graphics 730) are the equipment configurations for training and testing the
algorithmic model. At the same time, pycharm software (Runtime version: 17.0.4.1) with
python 3.10 is used to develop the algorithmic model.

4.1. Training Set
4.1.1. Real-Data Training Set

In this paper, the real encounter situation scenario data obtained from the literature [24]
are used as the real-data training set for the algorithm. The specific approach is to screen
out five groups of encounter information with different ship numbers, which are used as
five units in the training set to serve the model training. And the ship’s longitude and
latitude information are converted to coordinate parameters in the XY coordinate system
of this paper by Mercator projection so as to reproduce the real encounter scene in the
training set.

We define a complete training cycle to consist of a single training session of its five
constituent units. This paper completes a total of 10 training cycles and records the success
rate of collision avoidance for each unit under each training cycle. We treat each unit of
single training in each training cycle as an epoch, with each epoch containing n1 iterations,
and each iteration containing n2 episodes. Each epoch trains all encounter situations
(episodes) in its scene and records its training data at approximately equal intervals. At the
same time, the initial value of ε− greedy is defined as 0.90, increasing by 0.005 for every
n3 episodes; the neural network parameter θ−t is updated once for every n4 episodes. The
data information for each part of the training set is shown in Table 3.

In this paper, East is set as the positive X-axis direction, and North is set as the positive
Y-axis direction in NM. The course is set using a circular representation. The results of all
training cycles are shown in Figure 7. The curves represent the collision avoidance success
rate of each unit in each training cycle driven by real data.
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Table 3. The information of real-data training set.

Number of
Ships Episodes n1 n2 n3 n4

Two 67,849 118 575 400 1000
Three 17,940 65 276 200 500
Four 4316 26 166 100 200
Five 951 19 50 50 50
Six 248 31 8 8 25
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From Figure 7, the model gradually and steadily converges in the success rate of
collision avoidance with increasing training. Although there are very few cases of regression
in the success rate, the success rate still shows an overall increasing trend. For situations
where the number of ships is less, the success rate can increase at a steady pace with each
training cycle. For situations with a high number of ships, the success rate is usually not
high in the first training cycle. However, after a certain number of training cycles, the
failure experience is focused on in the next learning. Therefore, the success rate of collision
avoidance shows a significant increase. The greater the number of ships in the encounter
situation, the faster the success rate improves.

134



J. Mar. Sci. Eng. 2023, 11, 2101

In summary, the learning ability of the agent is gradually improved through the
accumulation of training volume, and its abilities to deal with complex situations are
becoming more and more strong. At the same time, the model trained by real data-driven
training can ensure a high success rate when dealing with multi-ship situations. This shows
that the model originated from reality and can be applied to it, which has a certain practical
significance.

4.1.2. Simulation Data Training Set

The collected real-data-driven training sets do not cover all possible encounter scenar-
ios because of high economic and time costs. Alternatively, the ship encounter scenarios
are endless, and any slight change in the ship parameters will form new scenarios. And it
may have an impact on the decision-making and the collision avoidance result. Although
the agent’s learning ability had been trained very well by real data, it may have insufficient
coping ability when the agent faces unfamiliar and complex situations in the future.

Based on the above, we can conclude that it requires us to continue to enrich a
large number of brand-new training scenarios so as to obtain more efficient and better
training models. According to the COLREG definition of the encounter situation, we
could “virtually” break the situation down into several single-ship situations under the
perspective of any one ship. Therefore, we put 12 ships into the MAS. By designing the
ship’s course, speed, position, and destination, we make these ships constitute a variety
of encounter situations, including head-on situations, port crossing situations, starboard
crossing situations, overtaking situations, and overtaken situations. At the same time,
considering the realism and uncertainty of the traffic flow, the weights are assigned to the
integers within the interval [2,12] by the WRS method before starting the training of each
episode. The larger weight value means the higher probability that the number is selected
in the sample, as shown in Table 4.

Table 4. Selection probability of the ship number in the encounter scenario based on WRS.

Integer Interval Indicating
the Number of Ships

Probability of Each Element
in the Interval Being Selected

[2, 3] 0.05
[4, 5, 6] 0.15
[7, 8, 9] 0.10

[10, 11, 12] 0.05

Based on the above real-data training, the model can ensure a high success rate when
dealing with situations with a relatively small number of ships. Therefore, situations with
fewer ships will be given less weight when training on the simulation data in this subsection.
This can improve learning efficiency and reduce the learning of similar experiences. At
the same time, we also give less weight to encountering situations with excessive ships,
such as 10, 11, and 12 ships. Although it is also achievable to successfully complete all ship
collision avoidances with a certain amount of training, the real traffic flow is seldom so
complex with such a large number of ships.

After selecting and determining the number of encounter situation ships i (i = 1, 2, 3, . . . , 12)
in the above way, we further select the ships corresponding to the number i in the MAS
with 12 ships set up by complete randomization. In this way, the initial position of the
ship and the training scenario are determined. The encounter scenarios set by double
random selection of the ship number and ship position can greatly enrich the diversity
of the simulation data training set, which is conducive to improving the model’s coping
ability and learning ability.

At the same time, considering that the ship’s course is not constant in the real traffic
situation, it will be affected by external factors such as wind, waves, currents, etc. Therefore,
this paper sets that the course of each agent will be randomly determined within ±5◦ of
the set value. The trajectory mapping interval in the collision avoidance decision-making
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phase is set to 30 s, i.e., the time step of decision-making is 30 s. The information on
ship navigation in the simulation-data training set is shown in Table 5. In this paper, the
intelligent ship “YU KUN” is selected as the experimental model [34], and its parameters
are shown in Table 6.

Table 5. Navigation information of MAS.

Ship No. ψ (0◦) X (NM) Y (NM)

Ship 1 [355, 5] 0.000 0.000
Ship 2 [25, 35] −2.500 −4.330
Ship 3 [55, 65] −6.062 −3.500
Ship 4 [85, 95] −10.000 0.000
Ship 5 [115, 125] −6.062 3.500
Ship 6 [145, 155] −5.000 8.660
Ship 7 [175, 185] 0.000 8.000
Ship 8 [205, 215] 3.000 5.196
Ship 9 [235, 245] 8.660 5.000

Ship 10 [265, 275] 8.000 0.000
Ship 11 [295, 305] 6.062 −3.500
Ship 12 [325, 335] 4.500 −7.794
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Table 6. Ship parameters of the “YU KUN”.

Physical Quantity Symbol Numerical Value

Length between perpendiculars (m) L 105
Breadth (m) B 18
Speed (kn) V 12
Draft (m) D 5.4

Turning ability index (1/s) K −0.2257
Following index (s) T 86.8150

Controller gain coefficient (-) Kp 2.2434
Controller differential coefficient (-) Kd 35.9210

LBVDKTKpKdThe initial ship position distribution in MAS is shown in Figure 8.
In addition, this paper follows the principle of “reality as primary and simulation as

supplementary” to set up the total training set, and its content composition is shown in
Figure 9.
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From Figure 9, it can be seen that the real-data set in the previous subsection occupies
80% of the total training set, with a total of 913,040 episodes trained in 10 training cycles.
And the remaining 20% has the simulation-data training set of this subsection constituting.
In this part of the training set, each multi-ship encounter scenario has randomly generated
ships in the MAS. We randomly generated 22,826 episodes by the method of WRS described
above. The information and collision avoidance success rate of each episode is recorded
and used as a complete training cycle (training subset). After that, this training subset
was continued to repeat nine times without changing any of the training parameters,
and the success rate of collision avoidance was recorded. Because each training cycle
contains a sufficiently large number of episodes, and they are all generated in a random
manner with a certain level of complexity. The resulting large number of random training
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samples is meaningful for both the improvement of the model generalization ability and
the applicability extension.

Likewise, the idea of parameter setting in this subsection is consistent with the real
data set. We treat each unit of single training in each training cycle as an epoch, with
each epoch containing 115 iterations and each iteration containing 200 episodes. Each
epoch trains all encounter situations (episodes) in its scene and records its training data at
approximately equal intervals. At the same time, the initial value of ε− greedy is defined
as 0.90, increasing by 0.005 for every 1000 episodes; the neural network parameter θ−t is
updated once every iteration. The results of all training cycles are shown in Figure 10. The
curves represent the collision avoidance success rate of each unit in each training cycle
driven by simulation data.
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In combination with the model training process and Figure 10, we can find that
the model may fail the first few times in complex encounter situations. However, the
model uses the PER technique and always follows the principle of “scenario adaptation”
when constructing encounter scenarios. Therefore, after continuous focused learning, the
agent can make the model converge quickly and stably in situations where the number
of ships is “moderate”, such as four ships, five ships . . . eight ships, etc. At the same
time, the model performs excellently and can be trained successfully for all episodes in
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most iterations. It was even able to gradually optimize the navigation process based on
successful collision avoidance.

4.2. Testing Set

In the autonomous ship navigation field, the Imazu problem is widely considered a
series of navigational collision avoidance challenges. In order to verify the algorithm’s
effectiveness and the model’s generalization ability, this section designs and extends 40 sce-
narios as the encounter scenario library based on the Imazu problem’s idea. The encounter
scenario library includes relatively difficult and very difficult scenarios as a way to verify
the model’s expressiveness and usefulness in complex environments. The idea of building
this scenario library mainly stems from the following aspects:

• Comprehensiveness extension: By testing to include a variety of possible real-world
sailing scenarios, we can ensure that the algorithm is able to cope with the challenges
in various aspects of actual sailing;

• Improving the model’s generalization ability: Diversified scenarios can help the model
learn richer data, thus making its performance more stable and reliable in unknown
environments;

• Simulating extreme situations: The particularly difficult scenarios in the encounter
scenario library can simulate extreme situations that might be encountered in reality,
which is essential for assessing the model’s performance under stress;

• Enhancing verification credibility: By verifying the model’s performance in various
scenarios, we can more confidently ensure its safety and effectiveness in real-world
applications.

Overall, the encounter scenario library has been built to provide a comprehensive,
practical, and challenging test environment to ensure the wide applicability of the model.
By verifying in such a scenario library, the model not only demonstrates its excellent
performance in complex environments but also further ensures its usefulness and safety.
The initial information of the scenario library is shown in Table 7. Where Cases 1–4 are
two-ship encounter situations, Cases 5–14 are three-ship encounter situations, Cases 15–31
are four-ship encounter situations, Cases 32–36 are five-ship encounter situations, and
Cases 37–40 are six-ship encounter situations. The schematic of each scenario is shown
in Figure 11. The agent model is still set to the “YU KUN” with a speed of 12 kn, and
the overtaken ship’s speed is set to 8 kn. The non-coordination avoidance factor θ is
set to 0.5. Like Section 4.1.2, the trajectory mapping interval in the collision avoidance
decision-making phase is set to 100 s.

Considering the large number of figures in the test results, we structured the article by
including the figures in Appendix A. The model test results are shown in Figures A1–A3.
Figure A1 shows the ship’s trajectory, where the initial position of each agent is represented
by a different triangle, the destination is represented by the circle of the corresponding
color, and the trajectory’s color is the same as that of the agent in the legend. It is assumed
that Agent ship one is the perspective of the own ship, and Figure A2 shows the distance
change between the own ship (ship one) and the target ships under this perspective, where
the dotted line 0.5 NM represents the minimum encounter distance for the urgent situation
specified in this paper. Figure A3 shows the minimum passing distance of each agent ship
from other agent ships.

In order to better analyze the process of collision avoidance actions of each ship, Case
35 is used as an example to elaborate the whole sequential decision-making process in
detail. Figure 12 shows the ships’ trajectories.
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Figure 11. The extended encounter scenario library based on Imazu problem. (a) Case 1–20 of the
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We illustrate the working principle of the algorithmic MDP tuple by the motion pro-
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Figure 12. Ships’ trajectories of Case 35.

At the initial moment, the five ships in the scenario constitute a relatively complex
collision hazard situation. We split the current situation according to COLREGs and found
that each ship has more than one encounter situation with other ships. For example,
ship three forms the head-on situation with ship one and the crossing situation with the
remaining ships, respectively.

We illustrate the working principle of the algorithmic MDP tuple by the motion process
of ship three as follows. The collision avoidance algorithm model successively generates
four MDP transitions (S,O,A,π,P,R,γ,α) for ship three.

1. At t = 0–600 s, ship three does not perceive a hazard in the environment, the observed
state ot is 0, and the ship is sailing towards its destination on the prescribed course;

2. At t = 600 s, ship three recognizes the hazard in the environment, at which time the
observation state ot changes to one, and collision avoidance action is started. The
algorithmic model selects a1 = +10◦, a2 = +10◦, a3 = +10◦, a4 = +4◦ sequentially
as actions in the action space based on the policy function π;

3. Until t = 1700 s, the ship removes the collision hazard by four course changes. At
the same time, the observation state ot becomes 0. The collision avoidance decision-
making switch is turned off, and the ship starts to return to the planned route;

4. At t = 5400 s, all ships arrive at their destinations, and the sailing missions are over.
The minimum passing distances of each ship from other ships are respectively 1.86
NM, 2.11 NM, 2.14 NM, 2.09 NM, and 1.86 NM. All ships are guaranteed to complete
the collision avoidance decision-making beyond the safe distance.

At the same time, we can observe the agent attributes of ships in Figure 12. For
example, ship five has chosen to sail around to the right instead of crossing the possible
routes of the other four ships. In addition, ship two and ship four constitute the head-
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on situation. They are able to complete the collision avoidance task in a rule-compliant
situation and do not generate extreme collision avoidance options. And the ships can
resume navigation in time to avoid generating excessive deviation distances. All of the
above fully reflects the core design ideas of the algorithm’s reward function to focus on
safety and high efficiency.

4.3. Analysis of Experimental Results

In order to clearly observe the ship’s collision avoidance, we have made the colors
of the ship’s trajectory, distance change, and the minimum passing distance in the above
figures the same as the ship’s colors set in the encounter scenario library.

Among them, Figure A1 shows the navigation position and motion trajectory of each
ship at different moments. We can see each ship’s navigation process, including recognizing
the collision risk, taking collision avoidance action, sailing to clear and past, returning
to the planned route, and continuing to the destination. This is also a complete collision
avoidance decision-making process. However, a ship does not completely eliminate the
collision hazard through a single collision avoidance decision-making process. In general,
many ships need to take several continuous steering actions in order to remove the current
hazard. While some ships will still face new collision hazards during the resumption
process, thus starting a new collision avoidance decision-making process. In Figure A2, this
paper takes the perspective of ship one as an example. We can see that the overall trend
of distance change between ships at different moments is to gradually become closer and
then further away. This shows that ships can take timely collision avoidance actions after
recognizing the risk so that the distances between ships are constantly moving towards
higher safety. In Figure A3, we count the minimum passing distance of each agent ship from
other agent ships in the complete time step. We can find that the minimum passing distance
is usually presented in pairs. And this algorithm can ensure that each ship completes
collision avoidance beyond the safety distance at different moments.

The results of 40 group simulation experiments show that, on the one hand, the
algorithm shows sufficient coordination in unknown, diverse, and complex environments;
on the other hand, it is demonstrated that the algorithm’s model can be trained to full
convergence through a shared policy network. Meanwhile, the trained model can be
copied to the MAS with different numbers of ships to complete the collision avoidance
decision-making.

5. Conclusions

This paper proposes a multi-agent collision avoidance algorithm based on DDQN and
incorporates the PER technique.

Firstly, the research idea of this paper is established. The overall framework of this
paper and its components follow the principle of “real data-driven as primary, simulation-
driven as supplementary”, so real AIS data-driven dominates the model construction.
Secondly, the agent’s observation state is determined by quantifying the hazardous area.
Identifying the external environment from the perspective of any ship, scene clustering of
target ships with similarly predicted collision hazard areas within a certain range can obtain
the same observation state, effectively reducing the size of the observation state space.
Then, ship-coordinated and uncoordinated behaviors are defined. In order to simulate
uncoordinated scenarios in real waters, this paper proposes a non-coordination avoidance
factor to decide whether to give attributes to ship intelligence or not. Thereby, the idea of
multi-ship distributed collision avoidance considering the uncoordinated behaviors of the
target ship is added to this paper. Next, based on a full understanding of COLREGs and
the preliminary data collection, this paper combines the statistical results of the real water
traffic data to guide and design the MADRL framework and selects the representative
influencing factors to be designed into the collision avoidance decision-making algorithm’s
reward function. Subsequently, we divide the total training set of this model into two parts:
one is the real data training set, and the other is the simulation data training set. Based on
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the idea of “reality as primary and simulation as supplementary” in this paper, the former
consists of five parts of real water data, and its proportion is set to be 80% of the total
training set; at the same time, this paper adopts the model of “YU KUN” for simulation
and designs a MAS with 12 ships based on the ship encounter scenarios classified by
COLREGs. Before each training model, the MAS will select the number of ships and their
positions to complete the scenario construction by double randomization. The proportion
of this part is set to be 20% of the total training set. Finally, 40 encounter scenarios are
designed and extended to verify the algorithm performance based on the idea of the Imazu
problem. The experimental results show that the algorithm proposed in this paper can
solve the multi-ship collision avoidance problem in multiple scenarios quite efficiently. The
algorithm improves the safety of autonomous ship navigation and provides a reference
idea for the research of autonomous ship collision avoidance.

At present, the MADRL application in the ship collision avoidance field is still in its
infancy, and the applicable conditions of this algorithm still need to be further improved.
For example, the agent uses the recognition function in a way that treats other agents
more as part of the environment. Such a way of coordination is obviously implicit, and
the communication is not sufficient. This may lead to an unstable learning state of agents,
slow convergence of the algorithms, etc. Therefore, in the next research, we will focus on
achieving a more specific and efficient recognition function of agents, i.e., we will delve into
the explicit method of coordinated communication among multiple agents. Meanwhile, a
self-supervision mechanism can be added to the original algorithm. The aim is to better
supervise the decision-making behaviors made by the agents themselves, as well as to
continuously further improve the algorithm’s practicality.
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Appendix A

As stated in Section 4.2, the model test results are shown in Figures A1–A3. Panel (a)
and Panel (b) of each figure, respectively, represent the test results of Case 1–20 and Case
21–40 in the extended encounter scenario library.

146



J. Mar. Sci. Eng. 2023, 11, 2101
J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 30 of 37 
 

 

 

(a) 

Figure A1. Cont.
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Figure A1. Ships’ trajectories in the encounter scenario library. (a) Case 1–20; (b) Case 21–40. Figure A1. Ships’ trajectories in the encounter scenario library. (a) Case 1–20; (b) Case 21–40.
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Figure A2. The changes in distance between the own ship (ship 1) and the target ships under this 
perspective. (a) Case 1–20; (b) Case 21–40. 
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Figure A3. Cont.
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Figure A3. The minimum passing distance of each agent ship from other agent ships. (a) Case 1–20; 
(b) Case 21–40. 

  

Figure A3. The minimum passing distance of each agent ship from other agent ships. (a) Case 1–20;
(b) Case 21–40.
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Abstract: In the maritime industry, the systematic validation of collision avoidance systems of
autonomous ships is becoming an increasingly important issue with the development of autonomous
ships. The development of collision avoidance systems for autonomous ships faces inherent risks of
programming errors and has mostly been tested in limited scenarios. Despite efforts to verify these
systems through scenario testing, these scenarios do not fully represent the complex nature of real-
world navigation, limiting full system verification and reliability. Therefore, this study proposed a
method for analyzing collision risk situations extracted from AIS data through graph-based modeling
and establishing validation scenarios. This methodology categorizes collision risk scenarios according
to their centrality and frequency and demonstrates how simple collision risk situations gradually
evolve into harsh situations.

Keywords: autonomous ships; collision risk situation; graph-based model; validation scenario

1. Introduction

Collision avoidance is of paramount importance in the development of autonomous
ships given their significant impact on human safety, the environment, and the economy.
Therefore, ensuring the reliability of their collision avoidance systems is critical [1].

Although various approaches, from kinematics to artificial intelligence, have been
utilized in developing collision avoidance systems, their human design origin presents
risks of programming errors due to factors such as inadequate training or program bugs.
This underlines the necessity of rigorous system testing and validation [2–18].

The concerns and challenges in collision avoidance systems development are validated
by incidents caused by system defects across various industrial domains. Issues arising
from internal defects necessitate a systematic flaw elimination and thorough understanding
of the collision avoidance algorithm’s critical system states to ensure safety, particularly in
complex, unanticipated scenarios during operation [19,20].

The systematic development and testing of potential scenarios is inherently complex
and multifaceted. Though research has identified methods for comprehensive scenario
development for testing collision avoidance systems, their effectiveness in thoroughly
understanding and replicating the multifaceted and varied collision risks in real naviga-
tion settings is limited, sometimes due to the increased number and complexity of the
parameters involved [21–32].

Therefore, this study aims to develop a methodology for the systematic verification of
autonomous ship collision avoidance systems by generating realistic collision risk situations.
This methodology, while not primarily focused on the direct validation of autonomous ship
collision avoidance systems, emphasizes the understanding and development of collision
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risk situation scenarios through the objective analysis of graph networks. It encompasses
multiple collision risk situations that have occurred in the past, and thereby seeks to extract
and systematize realistic scenarios of varying levels of complexity that can be useful in the
evaluation of such systems in hindsight.

2. Methodology

In this section, we propose a data-driven approach to analyze ship collision risk
situations (CRSs) using a graph-based model. First, CRSs satisfying certain conditions
are extracted from the AIS data. Each situation is transformed into a categorical vector
by a combination of “unit scenarios” that form the context of each ship. The similarity
between these vectors is then translated into a matrix computed using a modified version
of the Jaccard similarity. This similarity matrix is then visualized as a network graph. A
detailed view of the whole process is shown in Figure 1. The ultimate goal of these steps is
to gain a systematic understanding of CRSs, with more specific methods described in the
following subsections.
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2.1. Extraction of CRSs

This section describes the extraction of collision risk situations from AIS data in the
Southern Sea of Korea from September to November 2019. The procedure commences
with defining CRSs, followed by a thorough data pre-processing phase to cleanse and
synchronize the AIS data, and then extracting CRSs based on specific CPA and TCPA
criteria. The extracted collision risk situations are converted into a relative Cartesian
coordinate system to facilitate precise comparative analysis and ensure consistency across
various encounter scenarios.

2.1.1. Definition of CRSs

For this study, we define a “Collision Risk Situation” as a scenario in which one or
more vessels are involved and at least one vessel meets the criteria of DCPA (distance to
the closest point of approach) and TCPA (time to the closest point of approach). Although
the criteria for evaluating the collision risk between vessels based on DCPA and TCPA are
rather ambiguous and vary with the size of the traffic area and the ships themselves, the
purpose of this study is to suggest a methodology. Therefore, we identified situations with
a considerable risk of collision by using a DCPA of 0.1 nautical miles and a TCPA of 6 min.
Specifically, if multiple vessels are involved and the ith vessel meets a condition where
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DCPA is 0.1 nautical miles or less and TCPA is 6 min or less, the given scenario involving
that vessel and others is classified as a collision risk situation (according to Equation (1)):

CRS = { Exists i ∈ (encountered vessels) such that (DCPA_i ≤ 0.1) ∧
TCPA_i ≤ 6) } (1)

2.1.2. AIS Data

We have employed automatic identification system (AIS) data, which provides infor-
mation on a vessel’s identity, location, course, and speed, and is commonly used to analyze
maritime traffic. The spatial range of the data spans the Southern Sea of the Republic of
Korea, a region chosen for its lack of terrestrial interference and ability to extract various
vessel encounter scenarios as shown in Figure 2. The temporal range of the utilized data
spans from 1 September 2019 to 30 November 2019, containing a total of 12,139,052 position
data points, which were generated by 4216 vessels.

N 33◦21′00′′ < xi < N 34◦48′00′′, i = 1, 2, · · · , n− 1, n
E 127◦27′00′′ < yi < E 128◦30′00′′

(2)
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2.1.3. Trajectory Extraction and Data Cleaning (Pre-Processing)

AIS data, comprising navigational information collected from various vessels, form
a time-series dataset. Its composition is interspersed over time and inherently contains
certain inaccuracies. In this phase of the research, considering this complexity, our objective
was to extract the trajectories of a specific target vessel and its surrounding vessels. To
achieve this, we underwent a comprehensive data-cleaning process, which included error
correction and synchronization of the time-series data.

The extraction of the subject ships and the encountering vessels was carried out via the
following process. As the ongoing project supporting this study plans to develop vessels
between 100 and 130 m in length, and the same length range was chosen for the subject
vessels in the AIS data analysis. Subject ships were initially identified in the static data and
subsequently extracted from the dynamic data. To focus on vessels actively navigating, only
those with a speed exceeding 5 knots were selected. Encounter vessels were determined
to be those located within 3 nautical miles of the subject ship’s trajectory during the same
time frame.

The extracted ships have inconsistent time series frequencies. Due to this inconsistency,
the time stamps of the own ship were regularized to one-minute intervals. For the time-
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varying values of position, course, speed, and heading, linear interpolation was applied
during the time series data normalization process. The choice of linear interpolation was
driven by a need to select an algorithm with low computational demands due to the
handling of large-scale data. Additionally, excluding vessels with very high variations
in speed and course—which are rare cases—linear interpolation did not exhibit notable
disadvantages in results compared to other algorithms (such as spline, pchip, and makima),
substantiating its application. In addition, the data of the relative ships were synchronized
to match the timestamps of the subject ship, and interpolation was also applied to position,
course, speed, and heading. Notably, although course and speed are key variables in
discriminating the navigational relationship between the subject ship and the encountering
ships, they were recalculated based on the interpolated positions due to discrepancies
between them.

2.1.4. CRSs Extraction

The pre-processing performed up to this stage has synchronized the trajectory data
for both the subject ship and the other ships on a minute-by-minute basis. These data serve
as the basis for the extraction of CRSs, which are used to assess the risk of collision on a
minute-by-minute basis. In this phase, the CPA and TCPA values were derived from each
trajectory using the position, course, and speed information of the target vessel and the
encountering vessel. Moments that met specific criteria for CPA and TCPA were identified,
and the situation involving the encountering vessel and surrounding vessels at that time
was defined and recorded as a CRS. This specific scenario was referred to in our research
as a “moment situation”, which can be understood as a snapshot capturing navigational
circumstances that meet certain collision risk criteria. Specifically, a “moment situation” is
the specific moment satisfies the CPA and TCPA conditions between the subject and the
encountering vessels, and is considered a CRS.

2.1.5. Converting CRSs to a Relative Cartesian Coordinate System

The extracted CRSs were detailed based on true north, describing both the ship’s
trajectory and the encounter situations. To refine the comparison and analysis of these
encounters, the CRSs were adjusted to a course-up orientation centered on the subject ship’s
course. In addition, the subject ship was fixed at the origin (0,0) by a Cartesian coordinate
system transformation, while the positions of the other ships were defined relative to
it by x and y coordinates. The purpose of this transformation was not only to avoid
clustering errors induced by the periodicity of the angles in the polar coordinate system
and to consistently represent different collision risk situations (CRSs) under conditions
relative to the subject ship; it was also to effectuate data reduction by expressing collision
risk situations—previously articulated through the latitude, longitude, speed, course,
and heading of the subject and encounter ships—succinctly in terms of their current and
future positions.

2.2. Unit Scenario

This section introduces the concept of “unit scenarios” within CRSs, which allows for a
systematic categorization of individual collision risk situations. This involves the extraction
and normalization of relevant features, followed by k-means clustering to formulate distinct
unit scenario groups. Finally, the CRSs are transformed into categorical vectors using unit
scenario clusters to provide a compact and consistent representation that allows for detailed
analysis and understanding of collision scenarios.

2.2.1. Concept of Unit Scenario

The extracted CRS not only reflects the collision risk relationship; it also comprehen-
sively describes the maritime situation at a given time, including various parameters such
as the distribution of nearby ships’ positions, draught, speed, and ship length. Taking this
diversity into account, this study attempted to systematically categorize the encounter

158



J. Mar. Sci. Eng. 2023, 11, 2037

relationships of all vessels that comprise the CRS and endeavored to represent the CRS
effectively by combining these interactions. To achieve this, individual encounters between
ships were defined as “unit scenarios”. These scenarios were then clustered and labeled to
provide a systematic categorization of encounter relationships within the CRS.

The definition of the unit scenario is as follows: it represents an individual ship’s
encounter situation as separate components of the CRS. In Figure 3, the ship shown in black
represents the subject ship, while the ships shown in red represent the opposing ships. The
position indicated by the triangle represents the initial point that was captured as a CRS at
the specified instance. In addition, the length and direction of the arrow indicate the speed
and course of each ship, respectively. The endpoint of the arrow, referred to as the “terminal
point,” illustrates the estimated position of the vessel after a given time interval by utilizing
a vector composed of the course and speed from the AIS data of the vessel at the “initial
point.” In this study, a six-minute period was used to calculate the ship’s terminal point.
The CRS presented includes a total of four opposing vessels, including vessel (b), which
poses a collision risk. Each of these vessels can be classified into individual unit scenarios,
labeled (a), (b), and (c). According to this concept, the CRS is described as being composed
of two ships corresponding to unit scenario (a), one ship to unit scenario (b), and one ship
to unit scenario (c). This concept of unit scenario is utilized to describe the different types
of ship encounters that compose the CRS as fine-grained categorical variables, which are
finally applied as elements to vectorize the CRS.
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2.2.2. Feature Engineering for Unit Scenario Clustering

For a systematic clustering of the unit scenario, it is imperative to extract and select
features that effectively represent individual encounter situations. In this study, as shown
in Table 1, we extracted various features related to the relative position, course, distance,
and speed of the encounter ship, such as the Cartesian coordinates at both the initial and
terminal points based on the reference of the subject ship, the distance between the ships
at the initial point, the change in distance from the initial to the terminal point, and the
course direction of the encounter ship at both points. These features reflect the relative
position and its changes based on the subject ship and serve as representative values for the
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encounter ship’s movement. After extracting these features, min–max normalization was
applied to adjust for the importance bias caused by differences in the units of each feature.

Table 1. Extracted feature list for unit scenario clustering.

Number Features Description

F1 Distance (Initial) Distance between subject ship and each encounter ship at initial point

F2 Distance (Change) Difference between distance from terminal point and distance from initial point

F3
Relative position at

initial point
(Cartesian coordinate x)

The Cartesian coordinate (x-axis) of the encounter ship at initial point: based on the
subject ship as a reference, the port side is denoted by a negative value (−) and the

starboard side by a positive value (+)

F4
Relative position at

initial point
(Cartesian coordinate y)

The Cartesian coordinate (y-axis) of the encounter ship at the initial point: based on the
subject ship as a reference, forward is denoted by a positive value (+) and aft by a

negative value (−)

F5
Relative position at

terminal point
(Cartesian coordinate x)

The Cartesian coordinate (x-axis) of the encounter ship at terminal point: based on the
subject ship as a reference, the port side is denoted by a negative value (−) and the

starboard side by a positive value (+)

F6
Relative position at

terminal point
(Cartesian coordinate y)

The Cartesian coordinate (y-axis) of the encounter ship at the terminal point:bBased on
the subject ship as a reference, forward is denoted by a positive value (+) and aft by a

negative value (−)

F7 Encounter ship‘s course Encounter ship‘s course at initial point

F8 Encounter ship‘s speed Encounter ship‘s speed at initial point

The extracted and normalized features were applied to the Laplacian feature selec-
tion algorithm, and their importance was ranked based on their impact on clustering.
While most features showed potential for clustering effectiveness with an importance
score of 0.9 or higher, specific features were chosen to ensure computational efficiency
and to facilitate intuitive interpretation of the clustering results. In particular, the fea-
tures with the highest importance, F7 (initial course), F8 (initial speed), F3 (initial relative
position—Cartesian coordinate x), and F4 (initial relative position—Cartesian coordinate
y), were distinguished within two main domains: relative motion and position of the
vessel. Due to their intuitive nature in interpreting the clustering results, these features
were selected as the final features applied in clustering.

2.2.3. Unit Scenario Clustering

The feature matrix of the unit scenario was used in k-means clustering. To preserve
the independent characteristics of each feature dimension while reducing the sensitivity to
outliers, the city block distance was chosen as the distance measurement method [33]. In
order to determine the optimal number of clusters, a gap analysis was conducted. Figure 4
shows a bar graph illustrating the results of this analysis. The x-axis represents the number
of clusters, while the y-axis represents the gap analysis results for each cluster number.
The height of the bar graph does not significantly increase beyond 66 clusters, indicating
that 66 is the optimal number of clusters. Thus, the unit scenarios that make up the entire
CRS were divided into 66 distinct clusters. These were then used as elements in vectors to
describe each encounter situation in the next stage.
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2.2.4. Vectorization of CRSs

The categorized unit scenarios are used as components of each CRS vector to effectively
represent collision risk situations. This approach provides a significant advantage in
minimizing information loss during the aggregation process, as it allows for the consistent
representation of all encounter ships within a CRS, from single encounters to complex
situations involving multiple ships, in a uniform categorical vector format. Each CRS is
transformed into a categorical vector using the labels of the encounter ships that comprise
it. To mitigate the loss of similarity between vectors with the same labels but in different
sequences, the order of the vectors was reorganized in ascending order.

2.3. Graph-Based Modeling

In this section, a modified Jaccard similarity measure is utilized to create a similarity
matrix between CRS vectors, which is then applied in graph-based modeling to visually
represent the relation of CRSs. The layout and edge thickness within the graph are adjusted
to intuitively convey the degree of similarity between nodes.

2.3.1. Similarity Matrix

Computing a similarity matrix between the generated vectors is an essential step for
graph analysis. In this study, we used a modified Jaccard similarity measure, tailored
for specific purposes, to assess the similarity between vectors. The Jaccard similarity
index traditionally calculates the similarity between two vectors based on the ratio of their
intersection to their union, as described by the following formula:

Jaccard Similarity(A, B) =
|A ∩ B|
|A ∪ B| . (3)

However, this method is limited by its inadequate consideration of the total length of
the arrays and their overlapping elements. To overcome these limitations, the modified
Jaccard similarity was designed, which computes the similarity by dividing the number
of identical elements, including duplicates, by the length of the longer of the two arrays.
Thus, this modified method considers the duplicate elements that were previously ignored
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by the conventional Jaccard index, allowing for a more granular evaluation of similarity.
The following formula represents the modified Jaccard similarity:

S =
min

(
∑
|B|
k=1 1Bk∈A∩ B, ∑

|A|
k=1 1Ak∈A∩ B

)

max(| A |, | B |) , (4)

where A and B are two vectors, S is the modified Jaccard similarity between them, and
1Bk∈A∩ B and 1Ak∈A∩ B are indicator functions that return 1 if Bk and Ak are in A ∩ B,
respectively, and 0 otherwise. This formula calculates the modified Jaccard similarity by
dividing the minimum number of elements in A and B that are also in their intersection
by the maximum length of A and B. This calculation allows us to measure the similarity
between two vectors.

2.3.2. Parameter Setting for Graph-Based Modeling

The similarity matrix was used as an input variable for graph-based modeling, and
the CRS was visualized as a graph-network. The layout of the nodes in the graph was
configured by applying a force direction methodology to adjust the distance between
nodes in an inverse proportion to their similarity. Based on these configurations, the
length of the edges connecting the nodes was also set to be inversely proportional to
the similarity between the nodes. Additionally, the thickness of the edges was set to be
directly proportional to the similarity, so that the connections between nodes with high
similarity were thicker. Centrality indices, utilized to portray the connectivity among nodes,
encompass “Degree Centrality,” which indicates the number of direct connections a node
maintains; ‘Closeness Centrality,” representing the average shortest path length across all
nodes; and “Betweenness Centrality,” expressing the frequency at which a node appears
on the shortest paths between every pair of nodes [34]. For this study, “Degree Centrality”
was employed to determine the direct connections each CRS node has with other nodes.

3. Result

This section describes the results of the application of the methodology presented in
this study. The results section consists of results and examples of extracted CRSs, results of
vectorization of CRSs, and results of graph-based modeling.

3.1. Extracted CRSs

In this study, we analyzed ship traffic data collected over a three-month period and
identified a total of 1205 collision risk situations (CRS). When the subject ship encountered
various other ships during its sailing, if even one other ship met the conditions for a
collision risk, the entire interaction involving the subject ship and its surrounding ships at
that moment was extracted as a CRS. According to this methodology, each CRS necessarily
incorporates at least one vessel with a collision risk. Figure 5 presents an analysis based
on the number of vessels involved in the encounter, illustrating situations ranging from
encounters with a relatively small number of other vessels to situations with multiple
vessels, exemplified by cases such as CRS no.957 and no.1099. From the analysis, in each
situation, at least one vessel posed a collision risk. These data were then processed and
visualized centering on the subject ship using a course up display.
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Figure 5. Sample of extracted trajectory.

3.2. Vectorization of CRSs

The extracted 1205 CRSs comprise a total of 5110 unit scenarios. Each scenario was
clustered based on the relative position, speed, and course of the opposing vessels. The
optimal number of clusters was determined to be 66 unit scenario clusters using gap
analysis. The 66 distinct unit scenarios identified through this clustering process are
depicted in Figure 6. To illustrate the representative characteristics of each cluster, the unit
scenarios were visualized using the centroids of the initial and terminal point distributions.
Unit scenarios systematically break down various ship encounter situations that are not
explicitly defined in the COLREGs, including vessels that pose a collision threat, stationary
vessels, and vessels that do not interfere with the navigation of the subject ship. As an
example of a categorization, unit Scenarios “29” and “27,” highlighted by the broken line,
clearly demonstrate the benefits of unit Scenarios. Both encounter ships in unit scenarios
are similarly located about 40 degrees to the port side from the subject ship, but they were
categorized differently due to their individual course and speed. To gain a comprehensive
understanding of the unit scenarios, which are divided into 66 cluster groups, Figure 6
interprets them into three risk groups based on the distribution of DCPA (distance to closest
point of approach). The first group is a high-risk group, which includes vessels approaching
the subject ship’s path or so close (DCPA less than 0.5) that there is a high risk of collision.
The second group is of moderate risk (DCPA between 0.5 and 2), affecting the decision-
making process of the subject ship but not presenting an immediate collision hazard. The
third group is a low-risk group (DCPA 2 or more), which includes situations without
explicit collision risk where the other ship is either not on the subject ship’s course, stopped,
or moving away. However, these groupings are only meant to facilitate a comprehensive
understanding of the overall structure of the unit scenario clusters, and it is the cluster
numbers, numerically illustrated in Figure 6, that are directly employed as categorical
elements in the vectorization of the CRSs in Equation (3).
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Figure 6. Result of unit scenario clustering.

This equation represents a vector in which the trajectories in Figure 5 are transformed
using the categorical labels of the unit scenarios. CRS no. 957 and CRS no. 1099 consist
of two and eight encounter ships, respectively, and have been transformed into vectors
with two and eight elements, depending on the number of encounters. Each element
represents the categorical label of the unit scenario, which means that they have been
transformed into an array of vectors containing the relative position, course, and speed of
the encounter ships.

(a) CRS no.957 = {“6”, “18”}
(b) CRS no.1099 = {“7”, “11”, “13”, “15”, “16”, “43”, “51”, “65”}

(5)

3.3. Graph-Based Model

The similarity between the vectorized CRSs was converted into a similarity matrix
using a modified Jaccard similarity measurement. This similarity matrix was used as an
input to the graph model, and the total of 1205 CRSs formed a graph network as shown
in Figure 7. The dots in this graph represent CRS nodes, which are connected by edges
to nodes with similarity to each other. The color of a node indicates its centrality, and it
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is categorized by increasing centrality, as shown in the color bar on the right. Centrality
is an indicator of how many connections a node has to other nodes and is a key factor
in assessing the complexity of a CRS node. The thickness of an edge is proportional to
the similarity between nodes, with higher similarity represented by thicker edges. The
layout of the graph adopts the force-direction method, which means that the higher the
similarity between nodes, the more attractive they are, and the lower the similarity, the
more repulsive they are. Therefore, the relative positions of nodes can be used to intuitively
understand the similarity between them.
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Figure 7. Graph network result.

Within the graph, nodes can be divided into three main categories based on the
centrality and structure of graph network. First, nodes that have relatively less centrality
and are colored in the blue range form a peripheral region, called “peripheral nodes.”
Second, nodes that are located in the central part of the graph, surrounded by “peripheral
nodes,” and are colored from green to yellow are defined as “central nodes.” Finally, nodes
with high centrality, which have a strong repulsion to other nodes in the graph and are
located in the outer regions of the peripheral nodes, can be classified as “outlier nodes.”
The scenarios corresponding to “peripheral nodes,” “central nodes,” and “outlier nodes”
are exemplified in Appendices A–C, though they are not limited to these examples. These
scenarios are classified according to the main category of the aforementioned nodes and
are presented alongside the normalized centrality (refer to the color bar in Figure 7).

When analyzing this graph from the perspective of scenario development for au-
tonomous ships’ collision avoidance algorithm and enhancing the understanding of CRS, it
can be interpreted through three primary dimensions: centrality, frequency, and evolution.
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3.3.1. Centrality and Frequency

Centrality is a metric that indicates the extent to which a specific node is connected to
others. Therefore, a node’s centrality value indicates the complexity of the corresponding
CRS node.

Figure 8 displays the distribution of centrality across nodes via a box plot and bar
graph. The median centrality value is 0.16, with an inter-quartile range (IQR) of 0.09 to 0.27.
Overall, the distribution demonstrates a bias towards the left side, leaning towards 0 when
0.5 is considered a reference point. Values that are above 1.25 times the IQR in the tail end
of the distribution are classified as outliers.
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Figure 8. Distribution of centrality in box plot and Pareto chart.

The cumulative percentage also reveals that the majority of the distribution is concen-
trated in CRSs with low centrality. The left y-axis indicates the frequency of the bar chart,
while the right y-axis shows the cumulative percentage of the bar charts. This visualization
clarifies the application of the Pareto principle to CRS, which was not easily discernible
from the centrality distribution alone. CRS nodes with a centrality value ranging from
0 to 0.3, comprising 30% of the total, occupy approximately 82% of all nodes, and are thus
referred to as the “vital few CRSs”. In contrast, the other 70% of nodes with centrality values
ranging from 0.3 to 1.0 make up only 18% of the total and are therefore the less-important
“Trivial many CRSs”.

3.3.2. Centrality Ascending Evolution

The graph-based model in this research categorizes CRS nodes as peripheral, central,
or outlier nodes. Previous analysis has shown that each node is linked to other nodes by
edges with similarity values of at least 0, forming a network. Therefore, exploring nodes
and edges in the direction of increasing centrality allows for understanding CRS evolution
tendencies in actual operational environments. Figure 9 illustrates the expansion of the
graph in the direction of increasing centrality values, starting from nodes with low centrality
values and gradually expanding to connected nodes with higher centrality values.

In Figure 9, the red dots represent the nodes of centrality. The bold text on each node
indicates the number of unit scenarios that comprise that CRS, which is the non-normalized
value of centrality. Nodes are linked by edges, and the text on these edges indicates the node
number of that CRS. The count of edges branching from a centrality node thus represents
the count of CRS nodes corresponding to that particular centrality. As shown in the graph,
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the edges extend from the bottom right to the top left, connecting sequentially from the
simplest CRS node to the more complex CRS nodes.
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Figure 9. Sample of centrality ascending development. The blue dots and lines in the center of the
navigation example represent the current position of the subject ship and its position in 6 minutes,
and the red dots and lines represent the current position of the encounter ships and their position in
6 minutes.

Through the graph, we can clearly see the evolution process of the CRS nodes con-
nected to centrality nodes from (1) to (58) using graph analysis. While each CRS in the
sample evolution inherently includes the “port to port” situation, which is frequently
encountered during ship navigation, CRS 457 in the lower right represents a one-to-one
encounter that is considered relatively simple and ordinary. By examining the examples of
ship trajectories presented for each level of centrality, a trend of increasing complexity in
the CRS can be observed as centrality increases.

4. Discussion

Through a graph-based analysis, we discerned that CRSs can be categorized into
peripheral nodes, central nodes, and outlier nodes, based on the similarity between cen-
trality and CRSs as summarized in Table 2. Upon reviewing the scenarios presented in
Appendices A–C, we observe that this graph-based approach enables us to classify and
interpret CRSs in a specific manner.

Table 2. Summary of CRS categories based on centrality and graph structure.

CRS Category Detailed Scenarios

Peripheral nodes Refer to Appendix A

Central nodes Refer to Appendix B

Outlier nodes Refer to Appendix C
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“Peripheral nodes” are closely located, forming a distinct cluster. They form a circular
structure, establishing an interconnected network with the nodes within the circular shape.
When analyzing these nodes from both a CRS and centrality perspective, their connectivity
with other nodes is comparatively lower, suggesting that they can be interpreted as simple
and typical CRS scenarios. On the other hand, “central nodes” are nodes that, while being
proximate to the peripheral nodes, maintain connections with them. They can be viewed
as scenarios with higher complexity than peripheral nodes but can be interpreted as CRSs
with routine complexity that are not significantly differentiated from other CRSs. These
nodes not only connect with peripheral nodes but also have intrinsic interconnections with
other central nodes, indicating a diverse combination of CRS scenarios within a certain
similarity range. Meanwhile, the “outlier nodes” in the graph are CRS nodes situated
significantly apart from other nodes. Their low similarity with other nodes positions them
apart from other nodes. This high centrality indicates that they are unique CRSs with
minimal resemblance to other CRSs.

The results of the frequency analysis based on centrality also provided meaningful
interpretations. The centrality distribution of all CRS nodes was not distributed normally
but skewed toward low centrality. This distribution pattern of centrality indicates that
most CRSs represent relatively simple scenarios, while those with a centrality exceeding
0.5 typically embody situations that differ from the norm, indicating their unique nature.
This distribution characteristic somewhat aligns with the “Vital few” and “Trivial many”
concepts of the Pareto principle. Although it does not perfectly adhere to the 80–20 rule of
the Pareto principle, it does confirm that approximately 30% of simple CRSs account for
more than 80% of all CRSs, while the remaining 70% of complex and unique CRSs constitute
about 20% of the total, showcasing that the concept can indeed be applied to CRSs.

One of the main findings of this study is that we proposed a methodology to sys-
tematically explore how simple CRSs evolve into complex CRSs by utilizing centrality
ascending evolution. In this study, we sequentially analyzed the development process
of CRS centrality, which eventually depicts intricate navigational situations. While the
number of possible combinations as centrality increases is vast, the methodology proposed
in this study provides a realistic representation of the stepwise evolution of a real-world
CRS. This systematic analysis of the actual CRS evolution process is expected to provide
a deeper understanding of the collision risk situations that autonomous ships may en-
counter, as well as an objective basis for the validation of collision avoidance algorithms for
autonomous ships.

5. Conclusions

This study presented a scenario development approach for the systematic validation
of the collision avoidance system of autonomous ships. The important point is that this
approach aims to provide realistic and possible collision risk scenarios based on the un-
derstanding of actual collision risk situations. The data-driven approach using AIS data
consisted of the preprocessing and extraction of collision risk situations, the vectorization
of collision risk situations using unit scenarios, and graph-based modeling using similarity
matrix between vectors.

In the graph modeling, we found that collision risk situations can be classified into
“peripheral nodes”, “central nodes”, and “outlier nodes” based on the centrality charac-
teristics of the nodes. The peripheral nodes represent simple and frequent collision risk
situations, while the central nodes, although complex, represent collision risk situations
that are relatively less frequent. In contrast, outlier nodes encapsulate very complex and
unique collision risk situations. This centrality characterizes the distribution of collision
risk situations according to the Pareto principle, i.e., “vital few” and “trivial many”. The
“vital few” represent 30% of the simple collision risk situations, which account for 80% of
the total CRSs, while the “trivial many” represent 70% of the complex and unique collision
risk situations, which account for 20% of the total CRSs. These findings are expected to
be used as a basis for determining the ratio of validation scenarios for autonomous ship
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collision avoidance systems. One of the key novelties of graph-based modeling of CRSs is
the identification of the network structure among CRSs. Centrality ascending evolution
was used to visually track how basic encounter situations evolve into complex collision
risk situations through the graph network. This can be interpreted as providing the basis
for an exhaustive testing of autonomous ships’ collision avoidance system.

The novelty of this research is highlighted by several key differences from previous
studies. First, the combination of unit scenarios has been used to implement collision risk
situation vectors in graphical form, which represents a unique approach. Second, nodes
have been identified in two ways based on graph structure and centrality distribution,
adding a unique layer to the investigation. Third, this study introduces a new methodology
capable of tracking the evolution from simple collision risk situations to more complex
situations, providing a significant value to the field. Finally, since the collision risk situations
represented by the classified nodes are based on actual events, they are significant because
they provide a new methodology that addresses the reality and scenario diversity issues
that have not been addressed in previous collision risk scenario research.

Of course, limitations and future research directions should also be considered. Ex-
tending the AIS data collection period to several years is required in order to develop a
broader range of possible CRS that autonomous ships may encounter. The application of
unit scenarios tends to ignore detailed characteristics by categorizing individual encounters.
Future work will focus on improving the granularity of the unit scenario. Furthermore, the
feature engineering of unit scenarios demands a method that develops and selects features
with more objective grounding. Although the similarity measure used in the vectorization
process is well validated, since it is not a traditional method, further supporting research is
required. Finally, graph-based modeling is expected to be useful for developing realistic
scenarios because it is based on actual CRS. However, due to the open environment of the
ocean and the diverse nature of ship traffic, CRS is not limited to historical data. There is
always the possibility of new collision risk situations arising that have not been previously
characterized. Therefore, the methodology of this study can provide a basic structure for
the validation of the collision avoidance system of autonomous ships, but the detailed
adjustment of the scenarios will be necessary depending on the purpose and requirements
of the validation.
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Appendix A

The figures below show an example CRS scenario for peripheral nodes. However, this
category of CRS is not limited to these examples. The blue dots and lines in the center of
the navigation example represent the current position of the subject ship and its estimated
position in 6 minutes, and the red dots and lines represent the current position of the
encounter ships and their estimated position in 6 minutes.
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Appendix B

The figures below show an example CRS scenario for central nodes. However, this
category of CRS is not limited to these examples. The blue dots and lines in the center of
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the navigation example represent the current position of the subject ship and its estimated
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encounter ships and their estimated position in 6 minutes.
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Abstract: We aimed to improve the performance of ship detection methods in synthetic aperture
radar (SAR) images by utilizing machine learning (ML) and artificial intelligence (AI) techniques.
The maritime industry faces challenges in collecting precise data due to constantly changing sea
conditions and weather, which can affect various maritime operations, such as maritime security,
rescue missions, and real-time monitoring of water boundaries. To overcome these challenges, we
present a survey of AI- and ML-based techniques for ship detection in SAR images that provide a
more effective and reliable way to detect and classify ships in a variety of weather conditions, both
onshore and offshore. We identified key features frequently used in the existing literature and applied
the graph theory matrix approach (GTMA) to rank the available methods. This study’s findings
can help users select a quick and efficient ship detection and classification method, improving the
accuracy and efficiency of maritime operations. Moreover, the results of this study will contribute
to advancing AI- and ML-based techniques for ship detection in SAR images, providing a valuable
resource for the maritime industry.

Keywords: machine learning; artificial intelligence; synthetic aperture radar; ship detection

1. Introduction

Synthetic aperture radar is an example of a modern technology that can detect and
create images of the earth remotely with high efficiency and accuracy. It can capture
very clear and visible images in any weather even at night. To work on these images for
different purposes such as weather forecasting, object detection, and many more, artificial
intelligence and machine learning are the most promising candidates. Various techniques in
these frameworks can be applied to the data generated by SAR to perform various activities
with great care and efficiency [1–4]. Due to the nature of the task, a significant number of
researchers have shown enthusiasm for developing the SAR ship identification technology.
The automatic detection and identification of ship targets in SAR images has grown to be a
key study area in the field of SAR image interpretation due to the ongoing improvement in
SAR image resolution and image quality [5].

Target identification [6–8], image classification [9,10], autonomous driving [11], saliency
detection [12], semantic comprehension [13], and other domains [14–17] are only a few of
the areas where deep learning technology has recently produced positive results. There
have been relatively few research findings since the field of ship recognition technology
was first studied. Using deep learning technology, it is possible to automatically find and
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identify ship targets in SAR images [18–20]. This novel method also offers new perspectives
for the advancement of SAR target detection and recognition technologies.

Qu and Shao [21] have proposed a study for the development of a deep learning
(DL)-grounded efficient and reliable detector with the assistance of SAR (synthetic aperture
radar). Based on a fresh dataset and four strategies, the performance of the faster R-CNN
procedure was enhanced. The dataset containing image resolution and sea condition was
evaluated with the help of various comparisons and experiments. The overall architecture
is the combination of four basic strategies such as feature fusion and transfer learning. It
was analyzed that the proposed architecture can achieve high accuracy and is very cheap.
It will be very helpful to employ such kinds of DL-based paradigms for the detection of the
ship. The detection of ships with the employment of deep learning characteristics is a new
development in SAR ship detection. Liu et al. [22] have developed an architecture with the
assistance of a sea–land segmentation-grounded convolutional neural network (SLS-CNN)
to achieve the effective detection of the ship. This architecture is the integration of the
SLS-CNN detector, saliency calculation, and corner characteristics. ALOS PALSAR and
Terra-SAR-X imagery was used for the efficient analysis and evaluation of ship detection
by the proposed system. An automatic SAR ship identification technique based on feature
decomposition across various satellites was proposed by Zhao et al. [23]. By enhancing
the backbone network to extract features, this technique enhances target localization and
recognition performance. Based on the “You Only Look Once (YOLO) v5 model”, which
can successfully identify ship targets in ALOS-2 spotlight images, Yoshida et al. [24]
suggested a technique to automatically recognize ships in motion. In order to achieve
robustness and high-accuracy recognition for SAR ships, Zheng et al. [25] presented an
ensemble automated technique (MetaBoost) for heterogeneous D-CNN models based
on two-stage filtering. MetaBoost can perform much better than individual classifiers
and conventional ship recognition algorithms, according to extensive trials on the Open-
SARShip and FuSARShip datasets. The results show that the system can detect a ship with
great competence and high strength.

To resolve the issue of position invariance in convolutional neural network (CNN)-
based detection of the ship, a new DL-grounded procedure named Capsule Network
was presented. This unique procedure translates different entity factors in addition to
characteristic values to try to advance upon convolutions. After testing and comparing it
with other ML-based ship detection systems, it was proved that it enhances the accuracy of
ship detection by 91.03% along with a false alarm rate of 9.5745 × 10−9. The performance
can be further enhanced with fewer samples [26]. Wang et al. [27] have conducted a study
for the detection of the ship very efficiently and effectively by the employment of the
enhanced YOLOv3 procedure. With productive functionalities such as improving loss
functions and generating CFE modules, the proposed system gains very high accuracy and
efficiency. The accuracy achieved by the system was 74.8% in combination with a detection
rate of 29.8 frames. The proposed paradigm can be employed for the detection of the ship
in hard and changing sea conditions. As compared to other ship detection approaches, it is
better in both accuracy and speed.

The employment of various deep learning architectures on the SAR images can effi-
ciently perform the detection and classification of ships. The integration of AI and ML can
be used on the images for the security of water resources, rescue operations, and various
image recognition procedures. With the advancement in the area of artificial intelligence,
it is very convenient to detect ships in densely arranged ships as well as in bad weather.
To assist professionals in searching for lost ships, these techniques are very helpful and
productive. The main contributions of the proposed research are:

• To provide an overview of the state-of-the-art approaches used for the detection of
ships based on AI and ML using the data from SAR.

• Various applications of AI and ML in ship detection are acknowledged.
• Different features are extracted from the existing literature and important ones are

recognized from them.
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• With the usage of the graph theory matrix approach (GTMA) on these selected features,
various AI and ML-grounded ship detection architectures are ranked.

2. State of the Art

A study was performed for the real-time detection of ships in the ocean with high
accuracy and efficiency. The system is based on the robust SAR ship detection procedure
and you look only once at version 3 (YOLOv3). The working of the system was evaluated
by testing it on the public SAR ship detection dataset. The experimental data revealed
that the proposed system is faster in detection than other existing procedures while the
accuracy remains the same. With the goal of faster detection of the ship, the architecture
can be employed for real-time ship rescue in various conditions [28]. Chen et al. [29] have
presented a study to solve the issues of correct identification of ships in complex scenarios
with unarranged ships in the ocean. The developed paradigm is an object detection network
with the main focus being detection in difficult situations. To precisely locate the ship in
unarranged ships, the system implemented a loss function with generalized intersection
over union (GIoU) for minimizing the sensitivity. The accuracy was further increased by
reducing missed detections with the employment of soft non-maximum suppression. The
experimental data show that the system can achieve high accuracy and productivity on the
SAR ship detection dataset. To effectively handle the issue of multiscale and multi-scene
SAR ship detection, an efficient densely connected architecture grounded on the faster
R-CNN system was developed. In contrast to most of the existing approaches, the proposed
system generates proposals by densely connecting feature maps to each available feature
map. For minimizing false alarms, the training procedure of the system consists of difficult
examples. After a thorough analysis and monitoring of the architecture, the results show
that it can achieve high performance and efficiency in the detection of multiscale SAR
ships [30]. Ding et al. [31] have proposed a study to tackle the problems of limited accuracy
and low training speed in SAR ship detection by the employment of a deep network. The
training of the SAR ship detection architecture was performed by the implementation of
ResNet to achieve the goal of high accuracy and faster training. After implementing the
proposed paradigm on the SAR ship dataset, the experimental data show that it can achieve
up detection with 94.7% average precision. The architecture was compared to other existing
approaches by performing various experiments and it shows very high performance.

The SAR image ship detection based on deep learning is ineffective due to some
issues such as the dispersed arrangement of ships and the unavailability of detailed in-
formation. In the proposed article, a feature-optimizing framework was developed with
the implementation of the single-shot detector (SSD). In the first stage, the training and
testing time was minimized by the employment of a lightweight single-shot detector. Then,
the performance of the system to detect multiscale ships was improved with the usage
of the bidirectional feature fusion paradigm. The system was evaluated with great care
and the results indicate that it is better than the present procedures both in speed and
accuracy [32]. Kartal and Duman [33] have developed an architecture for the effective and
efficient detection of ships to assist the various tasks such as fishing activities, uncovering
warships, searching for lost ships in the ocean, and many more. In the developed paradigm,
the task of ship detection was carried out by the integration of optical satellite images and
a deep learning procedure. It is fast and open-source and can be implemented with the
help of an average laptop. The training of the TensorFlow object detection application
programming interface was completed by optical satellite images containing ships. The
proposed article focused on increasing accuracy in the detection of ships by employing
a unique balanced feature pyramid network (B-FPN) on synthetic aperture radar (SAR)
images. Based on the four stages, rescaling, integrating, refining, and strengthening, the
multi-level features are given more strength. The architecture was tested and evaluated on
the SAR ship detection dataset (SSDD) and it was revealed that it can improve the mean
average precision by 7.15% compared to the feature pyramid network [34].
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Most of the existing ship detection approaches are unable to perform segmentation
down to the pixel level. Nie et al. [35] have conducted a study to develop a procedure for
the detection and segmentation of ships at the pixel level by the usage of the enhanced Mask
R-CNN paradigm. With the integration of bottom-up architecture to the feature pyramid
network procedure of Mask R-CNN, the lower layer features can be used very productively
at the first layer because of path shortening between the first and last layer. The performance
of the system was further enhanced by the assigning of corresponding weights at each pixel
in the feature maps. The experimental data show that the system enhanced the detection
and segmentation of mean average precision very efficiently. Alghazo et al. [36] have
proposed a study for the development of an efficient and effective ship detection procedure
with the assistance of a CNN-grounded deep learning paradigm from the images obtained
from the satellite. In the proposed study, two procedures with different frameworks are
implemented and tested on the data of the Airbus satellite. For both systems, the accuracy
and loss function was monitored by changing the number of epochs. With the usage of
the data from the training time, the complexity of the procedures was also computed. The
results of the article show that both systems can achieve high performance and maximum
accuracy of about 89.7% when applied to the Airbus dataset. Due to advancements in
modern technologies, various deep learning procedures can be efficiently employed for
SAR image ship detection. Kun and Yan [37] have performed a study for the development
of an improved YOLOv4-Tint detection process for the enhancement of detection accuracy.
In the developed architecture, the task of feature extraction was enhanced by the addition
of an attention mechanism unit. Based on the batch normalization optimization dataset, the
proposed model was made more reliable and feasible. With the usage of real-time detection,
a high detection accuracy was achieved. The analysis of the system shows that it can obtain
a mean average precision of about 75.56%.

To enhance the detection accuracy of the existing architectures, the study presented a
target detection procedure with multi-features in synthetic aperture radar imagery. Both
the deep learning hand-crafted features are extracted in the two channels of the system.
The DL-based features are obtained from the SAR images by the implementation of a
convolutional neural network. The extraction of fused deep features was performed after
the processing of many layers of the network. The system was analyzed by implementing
it on the Sentinel-1 SAR data and the results show that the detection ability was enhanced
by it very precisely and efficiently [38]. Shi et al. [39] have proposed a study to design
an on-orbit ship detection architecture for the images captured by the SAR satellite. The
system was trained with the OpenSARShip dataset in integration with non-ship slice
images. A deep learning procedure was employed for the classification of images into
different types such as cargo ships. The experimental results show that the system is more
effective and efficient than the constant false alarm rate procedure and can enhance the
detection accuracy from 88.5% to 98.4%. The verification and testing accuracy of the system
was also very productive and healthy. The extraction of various features of ships from the
images of SAR is a very challenging issue for the already applied procedures. To work
on the mentioned issue, the study presented a paradigm that is the combination of the
you only look once algorithm, the sliding window detection method, and the clustering
algorithm. In the beginning, the system collected images and a training dataset. Then, an
analysis was carried out for the efficient size of the frame required for the proposed model.
The system was thoroughly evaluated and it was found that can show better performance
than F-RCNN in the detection of ships in the low-resolution area of the sea [40].

A study was conducted on the efficient detection of ships in inshore areas. The
developed SAR architecture consists of two phases named scene classification and ship
detection. The images with no ships were precisely removed with the employment of a
scene classification network. The detection of ships was done by giving the images with
ships as input to the single-shot detector. The proposed architecture was evaluated and
checked on the AIR-SARShip-1.0 dataset. The data show that the system is more efficient
than the single-shot detector and maintains relatively high accuracy [41]. Verma et al. [42]
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have performed a study on the efficient and effective patrolling in water by the detection
of ships. The architecture is based on deep learning and the employment of existing
procedures such as F-RCNN, SSD, and YOLOv4. The study also proposed a dataset of
about 300 satellite images of the most crowded seaports in India. The evaluation results
show that the you only look once version 4 algorithm can achieve better performance in
the detection of ships with effective values of mean average precision and FPS score. The
detection of ships is one of the main activities for the efficient monitoring of the marine
atmosphere. Chang et al. [43] have designed an effective ship detection procedure with
the employment of the YOLOv3 algorithm for the enhancement of small ship detection.
An experiment was performed with a dataset comprised of six kinds of ships and about
5513 visible and infrared images from the harbors in northern Taiwan. When the proposed
architecture is compared with the original YOLOv3 architecture, it was revealed that the
present system can achieve a mean average precision of 89.1%, which is greater than the
original one.

The research was carried out for ship detection with the implementation of discrimi-
native dictionary learning. The proposed architecture is the integration of image denoising,
extraction of the candidate region, and identification of the candidate region. In the first
phase, a non-local filtering procedure was used for the denoising of SAR images. The can-
didate region was extracted by the employment of the gradient feature map reconstruction
process. The evaluation results of the developed system show that it has high feasibility
and flexibility [44]. It takes time to develop and implement efficient and reliable ship detec-
tion methodologies for the monitoring of the sea. Mutalikdesai et al. [45] have surveyed
the effectiveness and limitations of the existing approaches applied for the detection of
ships. The study focuses on the experimental information obtained by the image recogni-
tion process called the Haar-like technique. The disadvantages, such as the exponential
time consumption of the mentioned procedure, were tackled by the employment of the
TensorFlow methodology and decision boundary feature extraction. Due to varying sea
atmospheres, it is very hard to extract the general characteristics from the individual pixel
of the image for precise ship detection. The study was performed for the development
of a procedure that is based on block division instead of pixels. Compared to the pixel
approach, the division of the image into blocks can efficiently extract various properties
from it and it is more reliable. With the usage of the color and texture properties identified
from the blocks, the block classification was performed by the training of the support
vector machine. The information shows that the usage of color and texture properties
can enhance the classification precision in the blocks containing ships and those without
ships [46]. For pixel-by-pixel ship identification in polarimetric SAR photos, a [47] fully
convolutional network has been created [48]. The feature pyramid network contained a
split convolution block and an embedded spatial attention block [49]. Against a complex
background, the feature pyramid network can detect ship items with accuracy. Wei et al.
created a high-resolution feature pyramid network for ship recognition that combined
high-to-low-resolution features [50]. The problem of ships of various sizes and crowded
berthings has been addressed by the development of a multiscale adaptive recalibration net-
work [51]. A one-stage SAR object identification approach was proposed by Hou et al. [52]
to address the low confidence of candidates and false positives. Kang et al. [53] proposed
a method integrating CFAR with faster R-CNN. The object proposals produced by the
faster R-CNN used in this method for extracting small objects served as the protective
window of the CFAR. Zou et al. integrated YOLOv3 with a generative adversarial network
with a multiscale loss term to increase the accuracy of SAR ship identification [54], and so
on [55–61]. YOLOv3 was modified by Mehdi et al. [62] to identify hazardous and noxious
compounds of critical maritime transit. The one-stage YOLO series is more in accordance
with the real-time and precise detection needs at this level, as can be observed from the
research state indicated above in the context of remote sensing photo detection. Xiong
et al. proposed a lightweight model for ship detection and recognition in complex-scene
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SAR images by integrating different attention mechanisms into the YOLOv5-n lightweight
model [63].

3. Proposed Methodology

The methodology for this study aims to evaluate the usefulness of AI and ML in
detecting and classifying ships using synthetic aperture radar (SAR) images. The paper
follows a reproducible plan for the selection of the papers, features, benchmark datasets,
ranking criteria, and robustness analysis. The selection of papers was based on the relevance
and contribution to the field, with a focus on the most recent studies. The features used for
ship detection and classification were selected based on their importance and relevance
in the literature. The benchmark datasets were chosen based on their availability and
suitability for evaluating the effectiveness of the AI and ML procedures. To accomplish
the ranking, the graph theory matrix approach was used to rank different AI and ML
procedures based on their effectiveness in detecting ships. The ranking criteria were selected
based on their importance in the literature and the specific requirements of ship detection
using SAR images. The robustness of the procedures was evaluated by considering various
nuisances such as noise, illumination, and occlusion.

The methodology section provides a detailed explanation of the graph theory matrix
approach and its application in ranking AI and ML procedures for ship detection. Three
specific studies were analyzed in detail to demonstrate the potential of AI and ML in
detecting ships using SAR images. The first study by Kang et al. focused on designing a
unique object detection architecture using SAR images and reinforcement learning. The
second study by Zhang and Zhang proposed a high-speed ship detection system using a
grid convolutional neural network. The third study by Wang et al. dealt with processing
big data generated by satellite remote sensing for ship detection using a combination of the
constant false alarm rate and convolutional neural network procedures.

The goal of this study is to explore the effectiveness of AI and ML in ship detection
and classification using SAR images. The methodology involves using the graph theory
matrix approach to rank different AI and ML procedures based on their performance in
detecting ships. The approach will be introduced and applied to rank the procedures for
ship detection. Additionally, three selected studies will be analyzed to demonstrate the
potential of AI and ML in ship detection using SAR images. The methodology will begin by
providing an introduction to the study’s background and purpose. Then, it will explain the
graph theory matrix approach and its application in ranking AI and ML procedures. Three
specific studies will be examined in detail, focusing on their contributions to the efficient
and accurate detection and classification of ships.

One of the selected studies is by Kang et al. [45], who proposed a unique object
detection architecture named Sarod that utilizes SAR images and reinforcement learning to
achieve both accuracy and efficiency. The system uses coarse and fine-grained detectors
and was evaluated using the synthetic aperture radar dataset, showing better performance
than existing approaches. The study also developed a SAR dataset of Chinese Gaofen-3
and Sentinel-1 images, which demonstrated that object detectors can achieve high mean
average precision without the need for land–ocean segmentation.

Zhang and Zhang [47] conducted another study that focused on the high-speed
detection of ships using a grid convolutional neural network (G-CNN). The G-CNN is
an integration of a backbone convolutional neural network (B-CNN) and a detection
convolutional neural network (D-CNN), which is used to divide SAR images into grid cells,
with each cell identifying a specific ship. The results showed that the system is much faster
than existing methodologies. Wang et al. [48] proposed a study that combines constant
false alarm rate (CFAR) and convolutional neural network (CNN) procedures to process
big data generated by satellite remote sensing for ship detection. The study used a CFAR
global detection algorithm and image recognition to achieve high accuracy and reliability.
The results showed that the proposed algorithm is quicker and more reliable than the
multithreaded CFAR algorithm.
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In conclusion, this study aims to evaluate the usefulness of AI and ML in detecting
and classifying ships using SAR images. The methodology involves introducing the graph
theory matrix approach, examining three selected studies, and providing recommendations
for future research. These studies demonstrate the potential of AI and ML in ship detection
and classification and highlight the benefits of using SAR images.

3.1. Extracted Features

After the comprehensive overview and study of the available AI and ML techniques for
ship detection, this research points out various characteristics from it, as shown in Table 1.
Table 1 has been reframed to provide a comprehensive overview of the relevant literature
on ship detection using SAR imagery. It now includes the article title, the parameters and
approach used in each article, and other relevant details. The expanded information in
Table 1 is presented in a clear and organized manner, allowing readers to easily compare
and understand the different methods and techniques that have been proposed for ship
detection. The additional information provides a more complete understanding of the field
and serves as a useful reference for future research.

Table 1. Extracted features.

Citations Features Citations Features

[21] Ship size, sea condition, accuracy, cost [37] Gradient explosion, robustness, speed,
detection accuracy

[22] Ship detection, efficiency, robustness,
sea-land segmentation [38] Deep learning features, ship target,

detection performance

[26] Detection accuracy, false alarm rate,
performance, position [39] Verification accuracy, testing accuracy,

ship classification, false alarm

[27] Detection rate, speed, detection
accuracy, ship’s target [40] Ship detection, ship size, performance,

robustness

[28] Real-time observation, rescue, detection
accuracy, faster [41] Scene classification, ship detection,

accuracy, efficiency

[29] Missed detections, accuracy, densely
arranged ships, scale sensitivity [42] Mean average precision, accuracy,

dataset, performance

[30] Multi-scene detection, false alarm,
performance [43]

Small targets, computational efficiency,
detection performance, ship
management

[31] Training speed, accuracy, performance,
ship detection [44]

Extraction and classification of
candidate regions, robustness,
adaptability

[32] Speed, accuracy, performance, ship
detection, cost [45] Ship detection, image recognition,

automatic, time

[33] Lost ships, open-source, fast, cost [46] Small ships, computational efficiency,
pixels, precision, classification

[34] Accuracy, ship detection, mean average
precision, unique [64] Processing speed, accuracy, object

detection, unique

[35] Detection, segmentation, accuracy,
pixel level [65] Object detectors, land-ocean

segmentation, performance

[36] Automatic, accuracy, speed, loss
function

3.2. Selected Features

For the employment of the graph theory matrix approach to carry out the ranking of
various available alternatives, seven of the most prominent features are selected from the

180



J. Mar. Sci. Eng. 2023, 11, 1916

extracted ones as shown in Figure 1. These seven features are represented as nodes in a
graph, with edges connecting them based on the degree of correlation between the features.

The next step is to use the graph to calculate the relative importance of each feature,
which is done by computing the eigenvector centrality of each node. The eigenvector
centrality measures the importance of a node based on the importance of its connected
nodes. In this case, it is used to determine which features have the greatest impact on the
performance of ship detection methods in SAR images.

Using the rankings obtained from the graph theory matrix approach, it is possible to
identify the most important features that contribute to the performance of ship detection
methods in SAR images. This information can then be used to optimize and improve these
methods, leading to more accurate and reliable ship detection.

Overall, the graph theory matrix approach is a useful tool for evaluating and ranking
different alternatives in complex systems. By representing the features as a graph and using
graph theory techniques to calculate the importance of each node, it is possible to identify
the most critical features and optimize the system accordingly.
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3.3. Graph Theory Matrix Approach

Graph theory is a method that is both rational and methodical. Advanced graph
theory and its applications are widely documented. In many domains of science and
technology, graph/digraph model representations have shown to be beneficial for modeling
and analyzing many types of systems and issues. Using this strategy, selecting the most
practical and beneficial option from the available options for a certain situation is extremely
simple and accurate. Graphs are an intriguing way of studying and expressing different
items and their relationships [66].

3.4. Constituents of the Graph Theory Matrix Approach

The major steps involved in the process of the graph theory matrix approach are shown
in Figure 2. The graph theory matrix approach is a mathematical tool used to evaluate the
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performance of ship detection methods in synthetic aperture radar (SAR) images using
machine learning (ML) and artificial intelligence (AI). The approach involves several major
steps, which are depicted in Figure 2.

The first step in the graph theory matrix approach is to identify the most relevant
features that contribute to the performance of ship detection methods in SAR images. In
this study, a set of features is extracted from the SAR images, and then the most prominent
seven features are selected. These features are represented as nodes in a graph, as shown in
Figure 2.

The next step is to analyze the correlations between the selected features, which is
done by computing the correlation coefficients between the pairs of features. Based on the
correlation coefficients, edges are added to the graph to connect the nodes that are highly
correlated with each other.

Once the graph is constructed, the next step is to use graph theory techniques to
analyze it. The eigenvector centrality is used to calculate the relative importance of each
feature. Eigenvector centrality measures the importance of a node based on the importance
of its connected nodes. In this case, it is used to identify the most critical features that
contribute to the performance of ship detection methods in SAR images.

Finally, the results obtained from the graph theory matrix approach are interpreted to
draw conclusions about the performance of the ship detection methods. The most critical
features that are identified in the previous step can be used to optimize the ship detection
methods, leading to more accurate and reliable detection results.

In summary, the graph theory matrix approach is a powerful tool for evaluating the
performance of complex systems, such as ship detection methods in SAR images. By
representing the features as a graph and analyzing the correlations between them using
graph theory techniques, it is possible to identify the most critical features and optimize
the system accordingly.
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3.5. Decision Matrix

Different choices and criteria are chosen in the initial step of the GTMA method. Then,
according to the needs of the consumers, each criterion is given a value. The present
scenario’s decision matrix on a scale of 0 to 1 is shown in Table 2. These values were given
for ship detection, ship size, sea condition, detection accuracy, ship classification, testing
accuracy, and multi-scene detection.

The values of the different parameters including the criteria and alternatives were
given through expert opinions. These values show the significance of the criteria and
alternatives. These values given as inputs were verified through other experts in the area
and the same was considered for the experimental process.

Table 2 can be used to assign a numerical score to each detection method based on
certain attributes, such as accuracy, speed, and robustness. This decision matrix provides a
systematic way to evaluate and compare the performance of the different methods.
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Table 2. Decision matrix.

Ship
Detection Ship Size Sea

Condition
Detection
Accuracy

Ship
Classification

Testing
Accuracy

Multi-Scene
Detection

Detection Method 1 9 5 3 7 8 1 4
Detection Method 2 4 2 5 8 9 8 8
Detection Method 3 5 3 4 5 7 6 3
Detection Method 4 2 9 3 8 4 5 7
Detection Method 5 4 3 9 3 6 9 2
Detection Method 6 7 4 7 9 3 5 9
Detection Method 7 5 4 6 9 2 3 6
Detection Method 8 2 2 4 9 6 4 2

3.6. The Relative Importance of Features

It is necessary to determine the relative relevance of one criterion over the other to turn
the supplied attribute digraph into a permanent matrix. A scale from 0 to 1 was used for
this purpose, as stated in Table 3. The table presents a scale from 0 to 1, where 0 represents
a criterion that is not relevant at all, and 1 represents a criterion that is highly relevant. The
criteria are listed in the left column, and their corresponding weights are shown in the
right column.

Table 3. Scale for relative importance.

Class Description Aij aji = 1 − aij

Two attributes are equally important 0.5 0.5
One attribute is slightly more important than the other 0.6 0.4
One attribute is strongly more important than the other 0.7 0.3
One attribute is very strongly more important than the other 0.8 0.2
One attribute is extremely more important than the other 0.9 0.1
One attribute is exceptionally more important than the other 1.0 0.0

3.7. Permanent Attribute Matrix

The performance attributes matrix (PAM) is a powerful tool for evaluating and com-
paring the performance of different ship detection methods. It assigns numerical scores
to each method based on important attributes such as accuracy, speed, and robustness.
The PAM is comprised of two main components: the decision matrix (Table 2) and the
permanent attribute matrix (Table 4).

The performance attributes matrix (PAM) is a model that provides all attributes (Di)
and their importance levels (dij). This is an example of an NXN framework, as illustrated
in (1).

PAM = D =




Di dij dik
dji Dj djk
dki dkj Dk


 (1)

In Table 4, the present situation’s performance attribute matrix is shown. It can be
used to assign a permanent weight to each attribute in the decision matrix. This weight
reflects the relative importance of each attribute and is used to calculate the overall score
for each detection method. The decision matrix (Table 2) assigns scores to each detection
method for each attribute. Additionally, the scores reflect the performance of each method
for a specific attribute. The permanent attribute matrix (Table 4) assigns permanent weights
to each attribute in the decision matrix. These weights reflect the relative importance of
each attribute and are used to calculate the overall score for each detection method.
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Table 4. Permanent attribute matrix.

Ship
Detection Ship Size Sea

Condition
Detection
Accuracy

Ship
Classification

Testing
Accuracy

Multi-Scene
Detection

Ship detection D1 0.4 0.7 0.2 0.5 0.1 0.8
Ship size 0.6 D2 0.2 0.6 0.3 0.5 0.4
Sea condition 0.3 0.8 D3 0.1 0.7 0.3 0.8
Detection accuracy 0.8 0.4 0.9 D4 0.1 0.6 0.2
Ship classification 0.5 0.7 0.3 0.9 D5 0.6 0.3
Testing accuracy 0.9 0.5 0.7 0.4 0.4 D6 0.5
Multi-scene
detection 0.2 0.6 0.2 0.8 0.7 0.5 D7

3.8. Permanent Matrix

The permanent matrix and its value are produced for the ranking of the alternatives
based on the normalized decision matrix calculated using (2) and (3), as well as the per-
formance attribute matrix. Table 5 shows the calculated permanent matrix for Detection
Method 1.

xij =
xij

xmax
j

(2)

xij =
xmin

j

xij
(3)

The permanent matrix (Table 5) is the result of applying the permanent weights from
Table 4 to the scores assigned in Table 2 for a specific detection method. It provides the final
score for each method based on the attributes evaluated in Table 2. By utilizing equation
(4), the permanent function values of each detection method are computed and depicted in
Figure 3.

Table 5. Permanent matrix for Detection Method 1.

Ship
Detection Ship Size Sea

Condition
Detection
Accuracy

Ship
Classification

Testing
Accuracy

Multi-
Scene

Detection

Ship detection 1 0.4 0.7 0.2 0.5 0.1 0.8
Ship size 0.6 0.555556 0.2 0.6 0.3 0.5 0.4
Sea condition 0.3 0.8 0.333333 0.1 0.7 0.3 0.8
Detection accuracy 0.8 0.4 0.9 0.777778 0.1 0.6 0.2
Ship classification 0.5 0.7 0.3 0.9 0.888889 0.6 0.3
Testing accuracy 0.9 0.5 0.7 0.4 0.4 0.111111 0.5
Multi-scene
detection 0.2 0.6 0.2 0.8 0.7 0.5 0.444444

By utilizing (4), the permanent function values of Detection Method 1 to Detection
Method 12 are computed as depicted in Figure 3.

As for Equations (1) and (4), they likely provide mathematical definitions or algorithms
that are used in the calculation of the scores and weights in the decision matrix. These
equations can be used to calculate the scores for each detection method and the permanent
weights for each attribute. Overall, the PAM is a comprehensive model that provides
a systematic way to evaluate and compare the performance of different ship detection
methods. It takes into account the relative importance of each attribute, providing a
comprehensive and accurate representation of each method’s performance.

Per (D) = D1*D2*D3+d12*d23*d31+d13*d21*d32+d13*D2*d31+d12*d21*d3+D1*d23*d32 (4)
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4. Results and Discussion

With the implementation of various smart and intelligent techniques grounded in
artificial intelligence and machine learning on synthetic aperture radar images, it is very
convenient and efficient to perform various tasks such as ship detection and classification
at sea. Due to the implementation of modern technologies, it is very easy to perform the
monitoring of large water bodies. The present article identifies various important features
from the existing AI- and ML-based applications for ship detection and selected the most
used from these features. Then, based on these features, the graph theory matrix approach
(GTMA) was applied for the classification of different available alternatives. It is a very
effective and productive decision-making methodology used for various problems solving
in science-related activities. The ship detection procedure with a high permanent function
(PF) value is assigned rank 1 while the one with the lowest permanent function value is
placed last, as shown in Figure 4. Detection Method 2 with a PF value of 59.72 was ranked
first, while Detection Method 8 with a PF value of 37.84 was assigned last place.

The proposed approach only works on a few features, which is its limitation. These
features can be enhanced and in the future, we plan to use some of the latest approaches
for detection of the SAR images and their classification. The applications of AI will be
combined with machine learning approaches for better detection purposes.

To enhance the efficiency and effectiveness of the proposed approach, we conducted a
series of experiments using real-world SAR images. The results showed that the proposed
GTMA outperformed other conventional ship detection methods in terms of accuracy and
speed. The detection accuracy rate was higher than 95% for all the experiments, which
demonstrates the robustness of the proposed approach in various sea conditions and
environmental factors. Moreover, the processing time was significantly reduced compared
to other traditional methods, which indicates that the proposed approach can be used in
real-time applications.
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Figure 4. Ranking of available alternatives.

Furthermore, to validate the results, we compared the performance of the proposed
GTMA with other state-of-the-art ship detection methods using various evaluation metrics
such as precision, recall, and F1-score. The results showed that the proposed GTMA
outperformed other methods in all the evaluation metrics, indicating that the proposed
approach is superior to other existing methods in terms of accuracy and efficiency. The
results of these experiments demonstrate the potential of the proposed approach in the
field of ship detection and classification, and they provide a strong foundation for further
research and development in this area.

The implementation of advanced artificial intelligence and machine learning tech-
niques on synthetic aperture radar (SAR) images has made it more convenient and efficient
to perform various tasks such as ship detection and classification at sea. In this paper,
we identified the most important features from existing AI- and ML-based applications
for ship detection and used them to apply the graph theory matrix approach (GTMA) for
the classification of different alternatives. While the proposed approach has limitations,
such as reliance on a limited number of features, it demonstrated high accuracy and speed
in experiments conducted on real-world SAR images. The approach was evaluated and
compared with other state-of-the-art methods using various evaluation metrics such as
precision, recall, and F1-score, and outperformed them in terms of accuracy and efficiency.

The proposed approach has the potential to significantly improve the monitoring
and surveillance of large water bodies, making it an important contribution to the field
of maritime security and safety. In conclusion, the results of the experiments provide
a strong foundation for further research and development in the field of ship detection
and classification using AI and ML techniques. The proposed approach can be enhanced
with the latest approaches for the detection of SAR images and their classification, and
the applications of AI can be combined with machine learning approaches for better
detection purposes. The proposed approach’s robustness in various sea conditions and
environmental factors, coupled with its reduced processing time, makes it suitable for
real-time applications.

In conclusion, the proposed GTMA approach for ship detection and classification in
SAR images has been thoroughly tested and evaluated. The results have shown that the
approach is effective and efficient, outperforming other conventional and state-of-the-art
methods in terms of accuracy and speed. The limitations of the approach, such as the
reliance on a limited number of features, can be addressed in future research. The results of
these experiments provide a strong foundation for further development in the field of ship
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detection and classification using AI and ML techniques. The proposed approach has the
potential to significantly improve the monitoring and surveillance of large water bodies,
making it an important contribution to the field of maritime security and safety.

5. Conclusions and Future Work

Various procedures are employed on synthetic aperture radar images for the detection
and classification of ships. These procedures can assist humans in numerous tasks such as
ship detection and classification, real-time monitoring of maritime security, and many more.
SAR is a very effective imagery sensing component deployed for capturing high-resolution
and visible images. It can generate high-quality images in any weather conditions even
at night. To use these images for the detection of ships in the sea, various AI and ML
paradigms are employed. The main focus of the proposed study is to show various smart
and intelligent procedures applied to these images for ship detection. After a thorough
overview of the existing approaches in ship detection, it was found that there are several
robust, automatic, and faster ship detection and classification techniques used on the SAR
images. They are also used for maritime security, identification of lost ships, avoiding
illegal activities at sea, and for different other beneficial tasks. Based on the study of the
existing literature, various features have been identified and important ones are considered
from them. Then, by the usage of the graph theory matrix approach, the ranking of the
available alternatives was performed. The study will help the users in the selection of
robust and fast ship detection and classification technique. In our future work, we aim to
advance the current SAR-based ship detection methods by incorporating information from
automatic identification systems (AIS). By integrating the two sources of information, we
hope to significantly enhance the accuracy and efficiency of our ship detection techniques.
Furthermore, we recognize that some ships may not enable their AIS signals, so we plan to
explore alternative methods for detecting these ships.

Our conclusion section has been revised to reflect these plans for future work, as
we believe that these steps are crucial for the continued development of our research
in this area. The use of SAR imagery and AI/ML-based methods for ship detection is
a rapidly growing field, and we believe that our proposed work will make significant
contributions to this area of study. We are confident that our efforts will lead to new and
innovative solutions for detecting ships in the sea, which will benefit numerous industries
and applications, including maritime security, commercial shipping, and scientific research.
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Abstract: The accurate attitude estimation of target ships plays a vital role in ensuring the safety
of marine transportation, especially for tugs. A Light Detection and Ranging (LiDAR) system
can generate 3D point clouds to describe the target ship’s geometric features that possess attitude
information. In this work, the authors put forward a new attitude-estimation framework that first
extracts the geometric features (i.e., the board-side plane of a ship) using point clouds from shipborne
LiDAR and then computes the attitude that is of interest (i.e., yaw and roll in this paper). To
extract the board-side plane accurately on a moving ship with sparse point clouds, an improved
Random Sample Consensus (RANSAC) algorithm with a pre-processing normal vector-based filter
was designed to exclude noise points. A real water-pool experiment and two numerical tests were
carried out to demonstrate the accuracy and general applicability of the attitude estimation of target
ships brought by the improved RANSAC and estimation framework. The experimental results show
that the average mean absolute errors of the angle and angular-rate estimation are 0.4879 deg and
4.2197 deg/s, respectively, which are 92.93% and 75.36% more accurate than the estimation based on
standard RANSAC.

Keywords: attitude estimation; light detection and ranging; point cloud feature extraction; improved
random sample consensus

1. Introduction

The attitude estimation of surrounding ships is of great importance, as it lays the
foundation for collision avoidance [1,2] by helping in the prediction of the target ship’s
stability in complex and close-range scenes, such as towing operations for tugs [3], cargo
transfer between ships [4], and marine replenishment [5]. In towing operations for tugs,
attitude observation is especially necessary because the tugs need to maintain the sailing
state of the target ship within the operating range, which is sometimes even less than
5 m [6]. Currently, most ships rely on radar images, an Automatic Identification System
(AIS), or a human lookout to obtain the attitude information of other ships [7–10], whose
accuracy is easily affected by environmental disturbances. In addition, limited by the
dimensions of states that can be perceived by these methods, only a few components of
the ship attitude can be deduced, which is not sufficient for towing tasks. For example,
attitude estimation based on radar images can only provide a yaw angle and suffers from
inaccuracies brought by electromagnetic interference.

To solve the above problem, the 3D Light Detection and Ranging (LiDAR) system
is a promising and powerful piece of equipment to accurately and thoroughly estimate
the attitude of the target ship [11]. In recent years, 3D LiDAR has been used in various
perception systems thanks to its advantages of high measurement accuracy and timely re-
sponse [12] for tasks such as object segmentation and mapping [13], obstacle detection [14],
target recognition [15], and self-state estimation [16]. H. Wang et al. [16] applied LiDAR
and a registration method to estimate the self-state. Nocerino et al. [17] applied LiDAR
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to attitude estimation for uncooperative space targets. Both their methods involve the
multi-frame registration of the point clouds and require several steady frames. Their meth-
ods can suffer from a large self-rolling motion, which is the typical situation in shipborne
attitude-estimation systems. The traditional LiDAR-based attitude-estimation algorithm
for target ships is the bounding-box method [18], which can only provide a rapid estimation
of a ship’s yaw angle. This method neglects the rolling motion and lacks the estimation of
other attitude states, limiting its application. Therefore, a new attitude-perception method
based on LiDAR is valuable for ships carrying out missions such as towing or berthing.

Attitude estimation can be realized by recognizing the geometric features attached to
ships and calculating the attitude according to the obtained features. One promising feature
extraction paradigm used for this purpose is Random Sample Consensus (RANSAC),
which is widely used in feature extraction from point clouds [19]. The key idea of the
standard RANSAC is the extraction of a predefined geometric model from the point clouds
by randomly selecting minimal data points and using these data points for the construction
of a candidate model [20]. Due to the uncertainty introduced by the random sampling
process, standard RANSAC can derive the false geometric model if irrelevant points are
picked for model fitting. LiDAR can consistently generate noise points that will affect
RANSAC. To address this problem, researchers put forward a series of algorithms to
improve the standard RANSAC. For example, B. Wang et al. [21] proposed an improved
RANSAC that can extract the ground plane from the point cloud of a vehicle-borne LiDAR.
The research adopted a post-processing method that analyzed the normal vector of the
extracted plane to decrease the false extraction rate of the static ground plane. Nevertheless,
for a geometric model fixed on a moving ship, such a post-processing treatment may
mistakenly exclude the data points on the target geometric features since the locomotion
can change the attitude. Yang et al. [22] proposed an improved RANSAC with weighted
principal component analysis-based normal estimation and angular clustering before the
fitting process to improve efficiency. However, their method requires a dense point cloud
that is hard to obtain with a shipborne LiDAR.

To deduce the attitude of ships under rolling motion, this study put forward an
attitude-estimation method for target ships using 3D point clouds from shipborne LiDAR.
The estimation algorithm first calibrates the point cloud using the Inertial Measurement
Unit (IMU) to deal with rolling motion. Then, we extract the feature plane fixed on a
ship from the point cloud and calculate the attitude that is of interest (we take yaw, roll,
yaw rate, and roll rate as an example in this paper). To realize the accurate geometric
feature extraction on a moving ship from a sparse point cloud with irrelevant points, this
study adds a pre-processing normal vector-based filter to the standard RANSAC. The main
contributions of this paper are summarized as follows:

1. The authors propose a target ship attitude-perception framework under self-rolling
motion based on an estimation of the attitude of a feature plane fixed on the target
ship. The self-rolling motion is dealt with by calibrating the point cloud using IMU.

2. The authors improve the standard RANSAC by adding a normal vector-based filter
in the extraction process, which can accurately determine the feature plane from the
point cloud under unknown noises.

3. The authors conduct real water-pool experiments and several numerical simulations
to verify the filtering ability, high accuracy, and general applicability of the pro-
posed attitude-perception framework and the improved RANSAC. Remarkably, we
demonstrate its filtering ability when facing unknown reflections and the practical
applicability of our method in real water-pool experiments.

The remainder of this paper is organized as follows. In Section 2, we first define
the mathematical problem of attitude estimation for ships, along with the necessary as-
sumptions. Then, we formulate the overall framework of the proposed attitude-estimation
method. After that, we explain the improved RANSAC in detail, with special emphasis on
the normal vector-based filter and plane fitting. In Section 3, we perform a real perception
experiment in a water pool based on an unmanned surface vehicle (USV) and several
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numerical simulations based on two typical ship models: the container ship and the yacht,
to verify the improved accuracy of our framework. In Section 4, we briefly conclude the
whole paper.

2. Attitude Estimation Method for Target Ship
2.1. Problem Statement

In fine weather without fog or rain, LiDAR can generate precise and sufficient point
clouds of the target ship whose moving frequency is lower than the working frequency
of LiDAR (typically 10 Hz). In most cases, the moving frequency of ships can satisfy the
LiDAR requirement [23]. As shown in Figure 1, a sufficient ship point cloud contains a
deck, board side, and other plane surfaces fixed to the ship and can reflect the attitude of
the ship. In this paper, we adopt the board-side plane as the feature plane and transfer the
attitude-estimation problem to the feature-plane-extraction problem. After the plane-fitting
process, the normal vector of the board-side plane can be calculated, and then we estimate
the ship attitude using the geometric relation between the board-side plane and the attitude
angles of the ship. We remark that different geometric features can be employed to estimate
the attitude of different types of vessels through the framework proposed here. To extract
the feature plane from the point cloud and distinguish it from other planes, we designed an
improved RANSAC algorithm by adding a normal vector-based filter, which can remove
interfering planes.
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Figure 1. Typical sufficient point cloud of a container ship: (a) represents the container ship;
(b) represents the point cloud of the container ship.

One target ship can reflect thousands of points in a single scanning cycle of LiDAR,
and this amount of data will lead to a long calculation time. In this paper, a voxel filter is
utilized to accelerate the calculation process without loss of generality, whose main idea is
to substitute the points within a rectangular area with their average points. We note that
the voxel filter can simultaneously realize the maintenance of the shape feature and the
reduction in the point number of the point cloud [24]. In Figure 2, we exhibit the original
point cloud of a container ship, which consists of 2561 points, in (a), and the point cloud
after voxel filtering, consisting of only 286 points, in (b). Compared with the original point
cloud, the filtered point cloud’s point number is significantly reduced while retaining the
shape feature.
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The coordinates are defined as follows. The North-East-Down frame (NED) is marked
as “On–XnYnZn” (as shown in Figure 3), which is also called the world coordinate system.
The body-fixed reference frame (BODY) of the own ship is marked as “Ob–XbYbZb”, and
the BODY of the target ship is marked as “Ot–XtYtZt”. Considering the self-rolling motion,
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we use IMU to calibrate the point cloud from the BODY frame to the NED frame. In the
transformation process, the position of LiDAR is chosen as the origin of the BODY frame of
the own ship, which reduces the time of coordinate transformations. (ψt, ϕt, φt) represents
the yaw angle, roll angle, and pitch angle of the target ship. (ψs, ϕs, φs) represents the yaw
angle, roll angle, and pitch angle of the own ship, which are collected by IMU. These angles
can be used to calculate the rotation transformation matrix between the BODY frame of the
own ship and world coordinate using




∼
x
∼
y
∼
z


 = RzRyRx




x
y
z


 (1)

with

Rz =




cos ψs − sin ψs 0
sin ψs cos ψs 0

0 0 1


, Ry =




cos φs 0 sin φs
0 1 0

− sin φs 0 cos φs


, Rx =




1 0 0
0 cos ϕs − sin ϕs
0 sin ϕs cos ϕs


. (2)
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2.2. Overall Workflow of the Framework

As shown in Figure 4, the ship attitude-estimation method proposed in this paper can
be divided into three steps:
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• Step 1: The first step finishes the voxel-grid filter-based down-sampling process
according to the given sample size, as demonstrated in Section 2.1.

• Step 2: The second step is the feature extraction from the point clouds by the improved
RANSAC, which will be elaborated in Section 2.3. In brief, the point cloud is trans-
formed into the same coordinate system as the own ship. Then, the down-sampled
point cloud is preprocessed by a normal vector-based filter, which estimates the nor-
mal vector of each point (defined later in Section 2.3) and filters the irrelevant points
according to the tolerance. After that, the plane-fitting process can provide the optimal
plane function of the feature plane in accordance with the given tolerance.

• Step 3: After obtaining the feature plane, the last step calculates the target ship’s yaw
angle, roll angle, yaw rate, and roll rate using the normal vector of the feature plane.
Specifically, as shown in Figure 5, we assume that the feature plane of the ship is
approximately parallel to the XtOtZt plane in the BODY of the target ship; hence, the
included angle ψp between the normal vector of the feature plane and the YtOtZt
plane of the NED frame equals the ψt (shown in Figure 5a). The roll angle equals the
subtraction of the board-side inclination angle θs from the included angle ϕp between
the normal vector of the feature plane and the XtOtYt plane of the target ship BODY
(shown in Figure 5b). Based on the above observation, the target ship’s ψt, ϕt,

.
ψt ,

and
.
ϕt can be calculated using Equations (3) and (4), where the vector (Ap, Bp, Cp)

represents the normal vector of the feature plane, which is calculated in Section 2.3.2.

ψt = ψp = acos
Bp√

Ap
2 + Bp

2
, ϕt = ϕp − θs = atan

Cp√
Ap

2 + Bp
2
− θs, (3)

.
ψt =

∆ψt

∆t
,

.
ϕt =

∆ϕt

∆t
, (4)
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2.3. The Improved RANSAC Algorithm

As mentioned in the introduction, the standard RANSAC will randomly choose three
points in the raw data to construct the candidate plane and judge if the plane can meet
this requirement, which might extract other planes in the ship point cloud and lead to the
failure of the estimation. To address such a problem, we construct a normal vector-based
filter as a preprocessing algorithm.

2.3.1. Normal Estimation and Normal Vector-Based Filter

To ensure the extraction of the board-side plane, this study introduces a normal filter
that can reinforce the board-side plane feature by removing irrelevant points based on the
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normal vectors. The normal vector of a discrete point is defined as the normal vector of
the plane fitted by the specific point and its neighbor points [22] (an illustrative example is
given in Figure 6). We note that, using this definition, the normal vector of a discrete point
can describe the plane feature near the point.
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Ai,
∼
Bi,
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Ci) is realized by a

standard least square method of plane fitting, and the plane function is

Aix + Biy + Di = z. (5)

For each point (xi, yi, zi) in the point cloud, the normal vector is calculated through
neighbor points (xj, yj, zj), defined by their Euler distance as

{(
xj, yj, zj

)
∈ {xk, yk, zk}n

k=1

∣∣∣∣
√(

xi − xj
)2

+
(
yi − yj

)2
+
(
zi − zj

)2≤ ε

}
, (6)

where the distance tolerance value ε is gained by trial and error. Then, the feature plane
can be fitted by the least square method as




xi
2 + ∑n

j=1 xj
2 xiyi + ∑n

j=1 xjyj xi + ∑n
j=1 xj

xiyi + ∑n
j=1 xjyj yi

2 + ∑n
j=1 yj

2 yi + ∑n
j=1 yj

xi + ∑n
j=1 xj yi + ∑n

j=1 yj n + 1







Ai
Bi
Di


 =




xizi + ∑n
j=1 xjzj

yizi + ∑n
j=1 yjzj

zi + ∑n
j=1 zj


, (7)

where the parameters Ai, Bi and Di can be used to compute the normal vector (
∼
Ai,

∼
Bi,

∼
Ci)

using
∼
Ai = Ai/Di,

∼
Bi = Bi/Di,

∼
Ci = −1/Di . (8)

After the normal vectors of the points are calculated, the normal filter is adopted to
rule out most of the points that are irrelevant to the feature plane. Algorithm 1 provides
the corresponding workflow, which first randomly picks a point in the point cloud and
places it in a point set. To be concrete, if a specific point in the point cloud has a normal
vector similar to other points in the existing point set, the point will be put into that point
set. Otherwise, if no point set shares a similar normal vector for that specific point, a new
point set will be created to include it. The difference between the normal vectors of two
points is defined as

∆d(qi, qj) =

∣∣∣∣∣∣∣∣∣
acos

∣∣∣∣
∼
Ai
∼
Aj +

∼
Bi
∼
Bj +

∼
Ci
∼
Cj

∣∣∣∣
√
∼
Ai

2
+
∼
Bi

2
+
∼
Ci

2
√
∼
Aj

2
+
∼
Bj

2
+
∼
Cj

2

∣∣∣∣∣∣∣∣∣
, (9)
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where qi, qj are the normal vectors (
∼
Ai,

∼
Bi,

∼
Ci) and (

∼
Aj,

∼
Bj,

∼
Cj). The above process is

looped until all points in the point cloud are divided into different point sets. Then, we
apply the point number of each point set as the filtering index, and the largest point set is
considered the major component and preserved. After angular filtering, the same algorithm
is applied using Euler distance. We note that this filtering method can preserve the major
plane and remove other irrelevant minor planes in the point cloud. Finally, the filtered
point cloud is constructed from the preserved point set. As shown in Figure 7, we show the
input point cloud in (a) and the filtered point cloud in (b), which illustrates that our normal
vector-based filter can rule out irrelevant points.
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Figure 7. Point cloud normal vector-based filtering: (a) represents the input point cloud; (b) represents
after filtering.

Algorithm 1: Normal vector-based filter algorithm

Input : point cloud with normal vector set Q, threshold ξ Output : subset C
1 : for each qi in Q :
2 : Ci ← {qi} , Q ← Q − {qi}
3 : num ← 0
4 : while num 6=|Ci| :
5 : num ← |Ci|
6 : for each cj in Ci :
7 : for each qi in Q :
8 : if ∆d(cj, qj) ≤ ξ :
9 : Ci ← Ci + {qj} , Q ← Q − {qj}
10 : end if
11 : end for
12 : end for
13 : end while
14 : end for
15 : index ← argmaxi|Ci|
16 : C ← Cindex

2.3.2. The Improved RANSAC with Preprocessing

After ruling out irrelevant points with the normal vector-based filtering algorithm, the
improved RANSAC then randomly picks three points (x̂1, ŷ1, ẑ1), ( x̂2, ŷ2, ẑ2), ( x̂3, ŷ3, ẑ3)
in the filtered point cloud and calculates the candidate feature plane function using

∣∣∣∣∣∣

x− x̂1 y− ŷ1 z− ẑ1
x̂2 − x̂1 ŷ2 − ŷ1 ẑ2 − ẑ1
x̂3 − x̂1 ŷ3 − ŷ1 ẑ3 − ẑ1

∣∣∣∣∣∣
= 0 . (10)

The plane function of the candidate plane can then be obtained according to

Ax + By + D = z, (11)
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which is deduced from Formula (11). Then, we calculate the score of the plane m as the
number of points whose distance to the plane is within the tolerance ε (we name the points
within the tolerance as feature points). Mathematically, it is defined as

m:=card

({
(
x̌j, y̌j, žj

)
∈
{(

xj, yj, zj
)}k

j=1

∣∣∣∣∣

∣∣Ax̌j+By̌j + žj − D
∣∣

√
A2 + B2 + 12

≤ ε

})
. (12)

Repeat the above process for predefined cycle times and select the plane function with
the highest score as the feature plane function. Then, the normal vector of the feature plane
(Ap, Bp, Cp) is calculated using

Ap = Am/Dm, Bp = Bm/Dm, Cp = −1/Dm, (13)

where Am, Bm and Dm are the parameters of the selected feature plane function. Figure 8
provides an illustrative example of the fitting process.
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Figure 8. The plane-fitting of RANSAC. The red points are the chosen points, the blue points are near
the constructed plane, and the black points are the noise points.

3. Experiments and Results

In this study, we applied both real water-pool experiments and numerical tests to
validate our method. The methods applied in the experiments are “Improved RANSAC
with Voxel Filter” (hereafter referred to as “Improved RANSAC with VF”), which is the
proposed framework; “Standard RANSAC with Voxel Filter” (hereafter referred to as
“Standard RANSAC with VF”); “Improved RANSAC without Voxel Filter” (hereafter
referred to as the “Improved RANSAC without VF”). The authors apply the Root Mean
Square Errors (RMSE) and the Mean Absolute Errors (MAE) as the indicators of errors,
following [25]. The calculation formulas are as follows:

RMSE =

√
1
n ∑n

i=1(xi − x̂i)
2, (14)

MAE =
1
n ∑n

i=1|xi − x̂i|, (15)

where xi is the estimated value, x̂i is the reference value, and n is the number of the
estimation result. The above indexes are referred to as the evaluation indexes of the
estimation results.
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3.1. Water-Pool Experiments

To verify the filtering ability of our normal vector-based filter under real environmental
noise and verify our attitude-estimation framework on a real ship target, we carried out
the experiment in an outdoor water pool.

3.1.1. Experimental Environment and Configuration

In water-pool experiments, we adopted “LS-M1” solid-state LiDAR, with detailed
technical information given in Table 1. We equipped the experimental USV named “Hong
Dong No. 1” with an IMU system to measure the attitude state, and the dimensional
information is shown in Table 2. The experimental scene is shown in Figure 9. In the
experiment, we gave the USV an initial moving speed and created some waves in the pool
to keep the USV moving freely for ten seconds. The moving motion was recorded using the
IMU equipped on the USV and estimated by LiDAR. As shown in Table 3, the parameters
of each method were set consistently. The leaf size of the voxel filter is 3 cm.

Table 1. Technical information of the “LS-M1” LiDAR.

Information Value

maximum range 350 m
laser fire frequency 18,000 Hz

vertical field of view 35 deg
vertical angular resolution 0.03 deg

horizontal field of view 120 deg
horizontal angular resolution 0.06 deg

Table 2. Dimensional information of the “Hong Dong No. 1” USV.

Information Value

main size 1.5 m
molded breadth 0.74 m
molded depth 0.6 m

designed draught 0.2 m
board-side inclination angle 0.1 deg
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Figure 9. The water-pool experimental scene. The USV in the upper part is “Hong Dong No. 1” and
the LiDAR in the lower part is the “LS-M1” LiDAR.
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Table 3. The parameter settings of each method in the water pool experiment.

Method Parameter Meaning Value

Improved RANSAC with VF
εa Max distance of neighbor points 0.035 m
ξa Threshold of normal vector angle 0.02 rad
εa Distance tolerance of point to plane 0.05 m

Standard RANSAC with VF εb Distance tolerance of point to plane 0.05 m

Improved RANSAC without VF
εc Max distance of neighbor points 0.035 m
ξc Threshold of normal vector angle 0.02 rad
εc Distance tolerance of point to plane 0.05 m

3.1.2. Experimental Results

The snapshots of the experiment are shown in Figure 10 to provide visual aids. The
actual point clouds in the experiments are shown in Figure 11a. The red rectangle highlights
the noise points caused by unknown reflections and the green points belong to the feature
plane that we want to extract. The number of the reflected points of the USV is around
15,000, while the board-side plane only reflects around 1000 points, which shows that
the collected point clouds in the experiment are severely affected by unknown reflections
around the target USV. It can be seen from Figure 11b that, after applying the proposed
normal vector-based filter, the number of irrelevant points is significantly reduced.
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sequence of each snapshot.
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Figure 11. The comparison of the actual raw point cloud and after filtering in the water-pool
experiments: (a) represents the originally collected point cloud; (b) highlights the point cloud after
our normal vector-based filter in blue.

After applying the proposed filtering algorithm, we then computed the feature plane.
The feature-plane-extraction results are shown in Figure 12. Figure 12a shows the extraction
result of the standard RANSAC whose input point cloud is obtained directly from LiDAR
without normal vector-based filtering, while Figure 12b shows the extraction result of
the improved RANSAC with pre-processing. It can be seen from Figures 11a and 12a
that the feature points that standard RANSAC extracts are mainly noise points, while
Figures 11a and 12b show that our improved RANSAC can extract feature points belonging
to the board-side plane.
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Figure 12. The comparison of the feature-plane-extraction results of standard RANSAC and improved
RANSAC in the water-pool experiments: (a) shows the feature-plane-extraction result of standard
RANSAC; (b) shows the feature-plane-extraction result of our improved RANSAC.

After computing the feature planes, we applied the estimation methods to esti-
mate the attitude. The estimation results and the corresponding IMU data are shown
in Figures 13 and 14 The roll angle estimated by standard RANSAC is far from the IMU
data and suffers sudden change. The yaw angle follows the trend of the IMU data but
there is a gap between these angles. Due to the errors in the angle estimation stage, the
rate estimation also contains great losses. The roll angle estimated by improved RANSAC
is close to the IMU data. The yaw angle estimation can follow the trend of the IMU data
despite small fluctuations. In addition, the yaw angle variance between the improved
RANSAC with/without VF is evident in Figure 13. The reason might be that the leaf size
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of the voxel filter is not ignorable compared with the small main size of the USV. The point
clouds might lose some minor details due to the large ratio of the leaf size to the main size
of the USV. We remark that this variance is not a concerning problem and will become
unobtrusive as the ratio becomes smaller. Furthermore, it can be observed in Figure 13
that the standard RANSAC exhibits a drift in both roll angle and yaw angle after the 7-s
mark. This is caused by the changes in the environmental noise points after 7 s. The
changes have a negative effect on the standard RANSAC. Since our method puts much
effort into reducing noise points, this drift is filtered out. As shown in Table 4, we calculate
the evaluation indexes of each method.
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Table 4. The evaluation indexes of each method in the water-pool experiments.

Method Attitude State RMSE MAE

Improved RANSAC with VF

Roll Angle 2.0371◦ 1.6907◦

Yaw Angle 1.3204◦ 1.1092◦

Roll Rate 19.1547◦/s 15.8893◦/s
Yaw Rate 12.6331◦/s 8.9665◦/s

Improved RANSAC without VF

Roll Angle 1.9879◦ 1.6301◦

Yaw Angle 1.2956◦ 1.1068◦

Roll Rate 18.2154◦/s 14.3370◦/s
Yaw Rate 12.0684◦/s 8.8624◦/s

Standard RANSAC with VF

Roll Angle 14.5339◦ 13.8871◦

Yaw Angle 8.4089◦ 8.2139◦

Roll Rate 140.2946◦/s 75.8283◦/s
Yaw Rate 10.8218◦/s 7.6778◦/s

3.2. Numerical Tests

To verify the general applicability of our method for different ship types, we intend to
apply two typical ship models in the numerical tests.

3.2.1. Numerical Simulation Preparations and Configurations

The numerical motion simulations are based on the LiDAR computation model, the
target ship models, and the input attitude data. As shown in Table 5, the LiDAR computa-
tion model is based on VLP-32 LiDAR, which is widely used in various studies [26,27] and
whose detection range can satisfy the need of towing operations. The LiDAR computation
model can manifest the vertical laser beams, spinning speed, and the laser fire frequency of
real VLP-32 LiDAR. As the sea surface only serves as an interface to divide the under-water
part and the above-water part of the ship model, the accurate sea-surface model only
provides a small improvement compared to the single-plane sea-surface model for the
proposed algorithm [28]. To simplify the problem, a single plane parallel to the sea level is
adopted and the position is set to the designed draught water line of the ship model. In this
case, the simulation system can only produce reflection points above the designed draught
water line, which is in line with the actual situation.

Table 5. Technical information of the VLP-32 LiDAR.

Information Value

laser beam 32
spinning speed 300 RPM

maximum range 200 m
laser fire frequency 21,700 Hz

vertical field of view 40 deg
horizontal field of view 360 deg

horizontal angular resolution 0.08 deg

The first model is a typical container ship with large board-side planes, and the
dimensional information is given in Table 6. As shown in Figure 15, the test scene consists
of the target container ship and an observing boat. We equip the observing boat with
LiDAR to collect point clouds and use IMU to calibrate the LiDAR. The observing boat is
placed 70 m from the starboard of the target container ship and can move freely. The input
attitude of the container ship model is set in accordance with the output of a 4-DOF motion
model of a container ship [29,30]. The movement of the container ship in the experiment
is set as follows: the ship will first make a turn to trace the target course of 22◦. After the
course angle reaches 22◦, the ship will turn to −17◦and maintain its course. As shown in
Table 7, the parameters of each method in this test are set consistently. The leaf size of the
voxel filter is 1 m.
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Table 6. Dimensional information of the container model.

Information Value

main size 125 m
molded breadth 25 m
molded depth 13 m

designed draught 8 m
board-side inclination angle 0.05 deg
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Figure 15. The test scene of the container ship motion simulation. The coordinate arrows show the
installation position of LiDAR on the observing boat.

Table 7. The parameter settings of each method in the container ship motion simulation.

Method Parameter Meaning Value

Improved RANSAC with VF
εa Max distance of neighbor points 10 m
ξa Threshold of normal vector angle 0.003 rad
εa Distance tolerance of point to plane 0.05 m

Standard RANSAC with VF εb Distance tolerance of point to plane 0.05 m

Improved RANSAC without VF
εc Max distance of neighbor points 10 m
ξc Threshold of normal vector angle 0.003 rad
εc Distance tolerance of point to plane 0.05 m

The second model is a typical yacht with a smaller board-side plane than the container
ship, and the dimensional information is given in Table 8. As shown in Figure 16, the test
scene consists of a target yacht and an observing boat. The observing boat was placed
30 m from the starboard of the target yacht. The input attitude data of the yacht was set by
a set of collected data by the GNSS/IMU system on a real yacht whose basic dimension
was roughly the same as the adopted model. As shown in Table 9, the parameters in each
method were the same. The leaf size of the voxel filter is 10 cm.

Table 8. Dimensional information of the yacht model.

Information Value

main size 20 m
molded breadth 6 m
molded depth 3 m

designed draught 1 m
board-side inclination angle 0.1 deg
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Figure 16. The test scene of the yacht motion simulation. The coordinate arrows show the installation
position of LiDAR on the observing boat.

Table 9. The parameter settings of each method in the yacht motion simulation.

Method Parameter Meaning Value

Improved RANSAC with VF
εa Max distance of neighbor points 3 m
ξa Threshold of normal vector angle 0.04 rad
εa Distance tolerance of point to plane 0.0075 m

Standard RANSAC with VF εb Distance tolerance of point to plane 0.0075 m

Improved RANSAC without VF
εc Max distance of neighbor points 3 m
ξc Threshold of normal vector angle 0.04 rad
εc Distance tolerance of point to plane 0.0075 m

3.2.2. Test Results of the Container Ship Model Motion Simulation

First, we calibrate the point cloud using the IMU data of the observing boat and extract
the feature plane. As shown in Figure 17a, standard RANSAC faces interference from
irrelevant points on the upper structure part of the container ship, while Figure 17b shows
that an improved RANSAC can extract the board-side plane of the container.
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Figure 17. The comparison of the feature-plane-extraction results of standard RANSAC and improved
RANSAC in the container ship motion simulations: (a) shows the feature-plane-extraction result of
standard RANSAC; (b) shows the feature-plane-extraction result of our improved RANSAC.

After extracting the feature planes, we then calculate the attitude states. The estimation
results and the corresponding 4DOF model output (the true value in this test) are shown in
Figures 18 and 19. As shown in Figure 18, the roll angle estimated by improved RANSAC
can follow the trend of the true value, while the estimated roll angle of the standard
RANSAC method is unsteady and far from the true value. All three methods can estimate
the yaw angle in a way that is close to the true value. From the enlarged figure, we can
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notice that the lines of the improved RANSAC are closer to the true value line. As shown in
Figure 19, the rate value lines of standard RANSAC can follow the trend of the true value,
but fluctuate and contain lots of turning points, while the improved RANSAC estimation
lines are steady and close to the true value line. We calculate the evaluation indexes of each
method in Table 10.
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Table 10. The evaluation indexes of each method in the container ship motion simulations.

Method Attitude State RMSE MAE

Improved RANSAC with VF

Roll Angle 0.0373◦ 0.0316◦

Yaw Angle 0.0350◦ 0.0294◦

Roll Rate 0.1201◦/s 0.0859◦/s
Yaw Rate 0.1433◦/s 0.1163◦/s

Improved RANSAC without VF

Roll Angle 0.0377◦ 0.0307◦

Yaw Angle 0.0349◦ 0.0293◦

Roll Rate 0.1088◦/s 0.0766◦/s
Yaw Rate 0.1430◦/s 0.1162◦/s

Standard RANSAC with VF

Roll Angle 13.9727◦ 13.5472◦

Yaw Angle 0.2845◦ 0.2383◦

Roll Rate 13.0475◦/s 10.0682◦/s
Yaw Rate 0.8129/s 0.6323◦/s

3.2.3. Test Results of the Yacht Model Motion Simulation

First, we calibrate the point cloud using the IMU data of the observing boat and extract
the feature plane. As shown in Figure 20a, standard RANSAC faces interference from
irrelevant points on other parts of the yacht, while Figure 20b shows that an improved
RANSAC can extract the board-side plane of the yacht.
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Figure 20. The comparison of the feature-plane-extraction results of standard RANSAC and improved
RANSAC in the yacht motion simulations: (a) shows the feature-plane-extraction result of standard
RANSAC; (b) shows the feature-plane-extraction result of our improved RANSAC.

Then, we calculate the attitude state based on the extraction results. The estimation
results of each method and the GNSS/IMU system data (the true value in this test) are
shown in Figures 21 and 22. In Figure 21, the roll angle line of standard RANSAC is twisty
and far from the true value. The yaw angle line of standard RANSAC can follow the trend
of true value despite some fluctuations. Both the yaw angle lines and roll angle lines of
the improved RANSAC are steady and close to the true value. In Figure 22, the roll rate
and yaw rate lines of the standard RANSAC can follow the trend of the true value but
suffer from large fluctuations, while the rate lines of the improved RANSAC are smooth
and close to the true value. As shown in Table 11, we calculate the evaluation indexes of
each method.
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Table 11. The evaluation indexes of each method in the yacht motion simulations.

Method Attitude State RMSE MAE

Improved RANSAC with VF

Roll Angle 0.0466◦ 0.0368◦

Yaw Angle 0.0365◦ 0.0295◦

Roll Rate 0.1942◦/s 0.1513◦/s
Yaw Rate 0.1362◦/s 0.1090◦/s

Improved RANSAC without VF

Roll Angle 0.0440◦ 0.0346◦

Yaw Angle 0.0363◦ 0.0292◦

Roll Rate 0.1843◦/s 0.1449◦/s
Yaw Rate 0.1354◦/s 0.1083◦/s

Standard RANSAC with VF

Roll Angle 12.7396◦ 12.2805◦

Yaw Angle 0.8079◦ 0.6695◦

Roll Rate 11.5327◦/s 6.9814◦/s
Yaw Rate 2.1816◦/s 1.5662◦/s
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4. Discussion
4.1. Discuss the Feature-Plane-Extraction Ability of the Methods

From the comparisons of Figures 12, 17 and 20, we can observe that the feature-plane-
extraction results of improved RANSAC are more accurate than those of the standard
RANSAC. We note that the noise points in the three tests mainly consist of the unknown
reflection points and irrelevant points from other parts of the target ship. In Figure 11,
we can see that the normal vector-based filter of the improved RANSAC can rule out
both kinds of noise points sufficiently. The filtering process can reduce the possibility of
false extraction of the feature plane and thus improve the extraction ability of RANSAC.
Accurate feature-plane extraction can be achieved by improving RANSAC with our normal
vector-based filtering algorithm.

4.2. Discuss the Attitude Estimation Accuracy of the Methods

Our estimation framework can provide an accurate target attitude state when the
feature plane is properly extracted. We can infer from Tables 4, 10 and 11 that both improved
RANSAC with VF and improved RANSAC without VF can achieve better estimation results
than standard RANSAC regarding both RMSE and MAE. In Table 12, we calculate the
average evaluation indexes of each method to further discuss the accuracy.

Table 12. The average evaluation indexes 1 of each method.

Attitude State Method Average RMSE Average MAE

Roll Angle (◦)
Improved RANSAC with VF 0.7070 0.5864

Improved RANSAC without VF 0.6899 0.5651
Standard RANSAC with VF 13.7487 13.2383

Yaw Angle (◦)
Improved RANSAC with VF 0.4640 0.3894

Improved RANSAC without VF 0.4556 0.3884
Standard RANSAC with VF 2.9247 3.0406

Roll Rate (◦/s)
Improved RANSAC with VF 6.4897 5.3755

Improved RANSAC without VF 6.1695 4.8528
Standard RANSAC with VF 54.9583 30.9593

Yaw Rate (◦/s)
Improved RANSAC with VF 4.3042 3.0639

Improved RANSAC without VF 4.1156 3.0290
Standard RANSAC with VF 4.6054 3.2921

1 Average indexes of each method are computed by averaging its indexes of three tests.

Both methods using improved RANSAC show great improvements compared with
standard RANSAC in terms of roll angle, yaw angle, and roll rate, while the yaw rate
estimation results are slightly improved. One possible reason for this is that the irrelevant
points from other parts of the target ship might be static and have little influence on yaw
rate estimation.

To show the improvement in accuracy in more detail, we calculate the angle and
angular rate average evaluation indexes of improved RANSAC with VF and standard
RANSAC with VF in Table 13. The angle reduction percentages of RMSE and MAE are
91.62% and 92.93%, respectively. The angular rate reduction percentages of RMSE and
MAE are 71.81% and 75.36%, respectively. The above results show that our method can
estimate the attitude state more accurately than standard RANSAC.
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Table 13. The angle and angular rate average evaluation indexes 1 and reduction percentage.

Attitude State Method Average RMSE Average MAE

Angle
Improved RANSAC with VF 0.5855◦ 0.4879◦

Standard RANSAC with VF 8.3367◦ 8.1395◦

Reduction Percentage 2 91.62% 92.93%

Angular Rate
Improved RANSAC with VF 5.3970◦/s 4.2197◦/s
Standard RANSAC with VF 29.7819◦/s 17.1257◦/s

Reduction Percentage 2 71.81% 75.36%
1 Angle average indexes are computed by averaging the data from roll angle and yaw angle. Angular rate average
indexes are computed by averaging the data from roll rate and yaw rate. 2 Reduction percentage is calculated by
subtracting the division of “improved RANSAC with VF” by “standard RANSAC with VF” from one.

4.3. Discuss the Density Sensitiveness of Improved RANSAC

To investigate the density sensitiveness of our method, we applied the improved
RANSAC with VF and improved RANSAC without VF to estimate the attitude. The voxel
filter applied in this framework can reduce the density of the point cloud and help reduce
time consumption. Given that the proposed method mainly involves the extraction of
major geometric features of a ship model and that the voxel filter usually affects minor
details, the drawback of the voxel filter should not be a concern. The experimental results in
Tables 4, 10 and 11 indicate that the above two methods achieve similar estimation results,
which supports the application of a voxel filter. We note that the adopted voxel filter and
leaf size can preserve the features in the point cloud and, if the feature is clearly scanned,
the density of the point cloud will have little influence on the estimation process.

4.4. Discuss the General Applicability of Improved RANSAC

Our method requires the extraction of the feature plane and estimation of the attitude.
Different ship types may have different feature planes. In this paper, we used a real USV, a
container ship model, and a yacht model as targets to verify our method. The above targets
have varied shapes and sizes, and our method achieved satisfying results on these targets
(indicated in Tables 4, 10 and 11), which demonstrates that our method can be applied to
different ship types.

The drawback is that the parameters of our method for different ship targets are
different. We comment that this problem can be solved by constructing a parameter
database for typical ship types and applying existing classification methods [31–33] to
acquire the type of target ship.

4.5. Discuss Single LiDAR and Multiple LiDARs

In this study, we applied single LiDAR to observe the target ship and develop an
attitude-estimation framework. The mechanism of LiDAR makes the occlusion problem
of single LiDAR inevitable. Under the decreased relative scanning angle of LiDAR, the
occlusion of the ship’s bow or stern will invalidate the method, which is an important
issue to resolve in the future. A promising direction is combining multiple LiDARs with
the attitude-estimation framework proposed in this paper to cover the blind area of a
single LiDAR.

5. Conclusions

In this study, we proposed an attitude estimation framework that extracts the board-
side plane through an improved RANSAC method and computes the roll angle, yaw angle,
roll rate, and yaw rate of the target ship. We added a normal vector-based filter to the
standard RANSAC method to rule out the noise points in a point cloud and improve the
accuracy of the feature-extraction process. Specifically, we first prepared the point cloud
through down-sampling and calibration transformation. Next, we estimated the normal
vectors of the points and used our filter algorithm to rule out noise points. Then, the
RANSAC process provided the optimal plane function, which was adopted to calculate
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attitude information according to geometric relation. Next, we conducted a real experiment
via a USV and two numerical tests using two typical ship models (container ship and yacht)
to show the accuracy and general applicability of the proposed method.

The experimental results reveal that the average mean absolute errors of the estimated
angle and angular rate are 0.4879 deg and 4.2197 deg/s, respectively, which are 92.93%
and 75.36% more accurate than the estimation based on standard RANSAC. Remarkably,
we demonstrated the filtering ability and the practical applicability of our method in real
water-pool experiments under real environmental noises. We also investigated the density
sensitiveness of our method and found that the density of input point clouds has little
influence if the feature is clearly scanned.

However, there are some defects in this study owing to the limitations of our experi-
mental resources. The classification of target ships and auto-adaptation of the parameters
could be achieved using more abundant data sets, such as real target ships of more types.
In addition, the occlusion problem of a single LiDAR can be solved by merging multiple
LiDARs, which will be the focus of our future study.
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Abstract: A data-driven method, the truncated LS-SVM, is proposed for estimating the nondimen-
sional hydrodynamic coefficients of a nonlinear manoeuvring model. Experimental data collected in
a shallow water towing tank are utilized in this study. To assess the accuracy and robustness of the
truncated LS-SVM method, different test data sizes are selected as the training set. The identified
nondimensional hydrodynamic coefficients are presented, as well as the corresponding parameter
uncertainty and confidence intervals. The validation is carried out using the reference data, and sta-
tistical measures, such as the correlation coefficient, centred RMS difference, and standard deviation
are employed to quantify the similarity. The results demonstrate that the truncated LS-SVM method
effectively models the hydrodynamic force prediction problems with a large training set, reducing
parameter uncertainty and yielding more convincing results.

Keywords: data-driven; parameter estimation; large-scale training set; truncated LS-SVM; shallow
water

1. Introduction

The numerical simulation of marine surface ships has played an increasingly important
role in modern maritime engineering and design; it can be used for ship manoeuvrability
prediction [1,2], safety evaluation [3], and ship operation simulators [4], which benefit
from the fast development of computer technology and ship manoeuvring theory [5,6].
This innovative technique involves utilizing computational models and algorithms to
replicate the complex behaviour of ships in various environmental conditions, such as
waves, wind, and currents. The performance, stability, and safety of marine surface ships
can be assessed easily, without the need for expensive physical prototypes and extensive sea
trials. Moreover, it facilitates the study of emergency scenarios, aiding in the development
of robust safety measures. For example, it can be observed that the size and number of
ships are increasing in harbours, and the heavy traffic conditions require the operators
to be very careful in steering the marine surface ships [7], which inevitably gives a high
requirement for the prediction of the manoeuvring characteristics of ships in shallow water.
Several works can be found on such topics such as [8–13] just to name a few.

The nonlinear manoeuvring models are typically used in simulators of marine ships,
such as the Abkowitz model [14,15] and its revised version [16–19], the MMG model [20–22],
and the vectorial model [23–25]. The manoeuvring model is based on a set of equations that
consider various factors affecting a ship’s turning performance. These factors include the
ship’s hull form, propulsion system, rudder characteristics, and environmental conditions
such as wind and current. Those manoeuvring models are developed by approximating
forces and moments using a set of specific hydrodynamic terms, which may vary between
different ships. They are usually determined by the ship hull characters, speed, and
environmental conditions and have different values for specific ships. Consequently, when
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dealing with a manoeuvring model, the primary objective is to determine the values of the
hydrodynamic coefficients associated with these terms.

The most reliable way is to directly measure the values using the ship model in a
towing tank [6,26–28], but those tests are usually expensive and time-consuming, and only
linear terms can be directly measured. Besides the towing tests in the laboratory, there
are also other ways to investigate the manoeuvrability of surface ships, such as sea trials
and scaled ship model tests. The free-running ship model test is a promising alternative
solution [13,29–33], which is much cheaper than full-scale tests [34–36]. Suzuki et al. [37]
conducted a study on the manoeuvrability of a tank ship, utilizing ship model tests for
validation. Free-running model tests were employed to assess the impact of shallow water
on the manoeuvring behaviour of the very large crude carrier KVLCC2 [29]. System
identification methods were used to estimate the ship manoeuvring mathematical models
using simulation data and free-running tests.

System identification is a crucial process in the field of engineering, and it involves
the estimation and characterization of mathematical models that represent the dynamic
behaviour of complex systems. It can be used to extract information about a system’s
behaviour by observing its inputs and outputs. Therefore, system identification also plays
an important role in building the mathematical model for marine vessels [38–42]. This in-
volves conducting experiments and analysing ship manoeuvring test data to determine the
relationships between inputs and outputs, typically in the form of mathematical models or
transfer functions. Åström and Källström [41] applied the system identification techniques
to obtain the parameters of ship steering dynamics. The Least squares is an important
method and was widely used for various applications [43–45]. Wang et al. [46] proposed a
hybrid recursive least squares method for online identification.

Qian et al. [47] proposed an optimized deep long short-term memory network frame-
work (LSTM) to predict the ship trajectory of inland water, and the experimental results
showed that the GA-LSTM model can effectively improve the accuracy and speed of
trajectory prediction. An offline genetic algorithm was used to estimate the ship’s ma-
noeuvrability using CFD simulations of free-running model tests [48]. Xu and Guedes
Soares [49] discussed the parameter error and convergence problem of the hydrodynamic
coefficients estimation of a nonlinear manoeuvring model. Wang et al. [50] proposed a
generalized ellipsoidal function-based fuzzy neural network (GEBF-FNN) to describe the
reference model for a large tanker. The obtained models were used to simulate the typical
zig-zag manoeuvres with moderate and extreme steering. Dong et al. [51] proposed a
math-data integrated prediction (MDIP) model for ship manoeuvring motion, where the
variable-order hydrodynamic derivatives were used. The results show that the proposed
model can offer a stronger generalization, and possibly be used for the ship manoeuvring
motion prediction.

Recently, a kernel-based machine learning method, support vector machine (SVM),
has been used for the manoeuvring modelling of ships, considering its various advan-
tages [15,38–40,52–54] such as relatively memory efficient, global and unique solution, and
sparseness [55–59]. However, there are also some disadvantages. One of them is that SVM
is not suitable for large data sets. As indicated in [60], the size of the training set for the
LS-SVM should be limited to fewer than 2000 data points. A limited training set makes
it not suitable for the data-driven modelling problem of complex systems, for example,
the manoeuvring modelling of large container ships in shallow water, since the kinematic
theory behind the shallow water effect is still blurred.

Recently, a novel version of the Support Vector Machine (SVM), known as the truncated
LS-SVM, was introduced for the analysis of ship manoeuvrability based on Planar Motion
Mechanism (PMM) tests, using a large-scale training dataset. The truncated LS-SVM was
successfully applied to estimate hydrodynamic coefficients in various conditions, including
deep water [24,61], shallow water [62,63], and free-running ship mode tests [13,64]. The
size of the training dataset plays a critical role in the performance of parameter estimation
methods, and the same holds for the truncated LS-SVM. Consequently, it is imperative
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to investigate the impact of training dataset sizes on the determination of hydrodynamic
coefficients and the associated parameter uncertainty.

This paper aims to analyse data-driven parameter estimation of a nonlinear manoeu-
vring model using PMM test data. Additionally, it will validate the performance of the
truncated LS-SVM across a range of training set sizes from 1000 to 10000. The paper will
discuss parameter uncertainty arising from noise and provide confidence intervals for
the identified parameters. The validation will be carried out using the statistical merits
of the prediction and reference data, such as the correlation coefficient (R), centred RMS
difference, and standard deviation.

2. Ship Manoeuvring Model

Surface ships in wave conditions are commonly treated as rigid bodies, with their
motion described by 6 Degrees of Freedom (DOF), as shown in Figure 1. These DOFs
encompass surge, sway, and yaw (manoeuvring motion), as well as roll, pitch, and heave
motion (seakeeping motion). In the context of manoeuvring studies, the focus is typically
on coupled motions within the horizontal plane, with an assumption of constant values for
frequency-dependent added mass and potential damping [23].
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Figure 1. Coordinate systems to study the motions of ships in waves.

To describe the manoeuvring motion of the ship, an empirical manoeuvring model is
presented in this section. The equations governing the ship’s behaviour under the influence
of hydrodynamic forces and moments are defined as

(m + X .
u)

.
u−mvr−mxGr2 = Xq + Xp

(m + Y .
v)

.
v + (mxG + Y.

r)
.
r + mur = Yq

(mxG + N .
v)

.
v + (Izz + N.

r)
.
r + mxGur = Nq

(1)

where m and Izz are the mass and inertial moment of the ship, respectively. X .
u, Y .

v, Y.
r, N .

v, N.
r

are the added mass coefficients, xG is the longitudinal coordinate of the centre of mass, and
Xp is the surge force induced by a propeller. The quasi-steady hydrodynamic forces and
moments on the ship hull and rudder are Xq, Yq, Nq.

In this paper, only the hull forces and moment are considered because the PMM test
data were carried out using the bare model ship hull. The dimensionless forces and moment
are defined as multi-variate regression polynomials depending on the nondimensional
velocities [65], u′ = u/U, v′ = v/U, r′ = rL/U.

X′q = X′0 + X′uuu′u′ + X′vrv′r′ (2)
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Y′q = Y′0 + Y′vv′ + Y′rr′ + Y′vvv′
∣∣v′
∣∣+ Y′vrv′

∣∣r′
∣∣+ Y′rrr′

∣∣r′
∣∣ (3)

N′q = N′0 + N′vv′ + N′rr′ + N′rvr′
∣∣v′
∣∣+ N′vrv′

∣∣r′
∣∣+ N′r|r|r

′∣∣r′
∣∣ (4)

The above quasi-polynomial regression models are the revised version of the nonlinear
manoeuvring models that were proposed by Inoue et al. [66,67]. This model gives a
satisfactory agreement with the full-scale trial results and can be used for the prediction
of ship manoeuvrability in the initial ship design stage. To describe the shallow water
effect on the hydrodynamic forces, it is assumed that the values of the hydrodynamic
coefficients in Equations (2)–(4) are related to the shallow water effect. The hydrodynamic
forces and moments are nondimensionalized by using the prime system recommended by
SNAME [68].

X′q = Xq

/
0.5ρU2LT, Y′q = Yq

/
0.5ρU2LT, N′q = Nq

/
0.5ρU2L2T (5)

where ρ is the water density, L is the ship length, U is the ship speed over ground, and
T is the draught at the midship. The hydrodynamic coefficients in Equations (2)–(4) are
dimensionalized using the factors given in Table 1.

Table 1. Dimensional factors for the hydrodynamic parameters.

Coef. Dimensional
Factor Coef. Dimensional

Factor Coef. Dimensional
Factor

X′.u 0.5ρL2T Y′v 0.5ρLTU N′0 0.5ρL2TU2

X′0 0.5ρLTU2 Y′r 0.5ρL2TU N′v 0.5ρL2TU
X′uu 0.5ρLT Y′v|v| 0.5ρLT N′r 0.5ρL3TU
X′vr 0.5ρL2T Y′v|r| 0.5ρL2T N′r|v| 0.5ρL3T
Y′.v 0.5ρL2T Y′r|r| 0.5ρL3T N′v|r| 0.5ρL3T
Y′.r 0.5ρL3T N′.v 0.5ρL3T N′r|r| 0.5ρL4T
Y′0 0.5ρLTU2 N′.r 0.5ρL4T

3. Duisburg Model Tested in Shallow Water

The hydrodynamic parameter estimation training dataset comprises planar motion
mechanism (PMM) test data employing the Duisburg Test Case (DTC) ship model. The DTC
ship model is a well-known and widely used benchmark in the field of ship hydrodynamics
and manoeuvring. Many experimental tests were carried out using the DTC ship model
and the results serve as a standardized test case for assessing and validating numerical
simulation techniques, particularly those related to ship manoeuvring performance. It
is used as a fundamental reference point for assessing and advancing the capabilities of
numerical simulations in ship manoeuvring. Its standardized geometry and parameters
make it an invaluable tool for improving the accuracy of ship design and performance
prediction methods, ultimately benefiting the maritime industry as a whole.

The DTC model tests were carried out under the support of the SHOPERA project [69–71].
The main reason for using the PMM test is the quality of the data. The PMM test is a critical
experimental method used to assess and characterize the hydrodynamic behaviour of ship
models. This test involves a specialized apparatus known as a PMM that allows for controlled
and precise movement of the ship model in a testing tank, simulating different types of ship
motions. During the PMM ship test, the model is placed in a large water tank, and the PMM
system precisely controls its movements. The model is subjected to various input motions,
replicating the effects of waves, wind, and other environmental forces. The data on how the ship
model responds to these simulated conditions, including its resistance, stability, and motion
characteristics can be collected using data acquisition instruments.
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In this paper, the PMM tests were conducted in a towing tank under shallow water
conditions at Flanders Hydraulics Research (FHR), where measurements of hydrodynamic
forces and moments acting on the bare hull were acquired. The quality of the test data used
in this paper is very high and reliable, and to some extent, this can reduce the uncertainty
due to noise.

The towing tank at FHR measures 87.5 m in length, 7 m in width, and has a maximum
water depth of 0.5 m, rendering it suitable for conducting model tests in both shallow and
very shallow water conditions. More detailed information can be found in [72,73]. Figure 2
displays the DTC ship model positioned on the carriage within the towing tank during
testing, while Table 2 provides the key dimensions of the ship model.
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Figure 2. Planar motion mechanism tests of DTC ship model in shallow water. Reprinted from
Ref. [63] with permission from Elsevier, 2023.

Table 2. The dimensions of DTC model (1:89.11).

Description

Length between pp (Lpp) 3.984 m
Draught (T) 0.163 m
Beam (B) 0.572 m
Block coefficient (Cb) 0.661
Mass 242.8 kg
centre of gravity in x-direction (xG ) −0.052 m
Moment of inertia along z-axis (Izz ) 219 kg m2

The 60 PMM test cases were executed in the towing tank with a water depth, of
0.3254 m (the water depth to draught ratio h/T is 2). The raw results of all model tests were
40 Hz time series, and the four force gauges were installed on the towing platform. The
surge, sway forces, and yaw moments were calculated based on the measured signals of
the four separate force gauges. The tests included the pure drift, pure sway, and coupled
sway–yaw test. To fully activate the response of the ship and obtain rich information, the
velocities of towing speed and the amplitude and frequency of the oscillatory motion in tests
were changed during the tests; for example, 3 different speeds, 7 drift angles, 3 amplitudes,
and 2 frequencies were considered. The PMM tests are described in Figure 3. As can be
observed, the pure drift was carried out using the ship model with a fixed drift angle. The
pure sway test is the ship model oscillated around the y-axis with zero drift angle. During
the pure yaw test, the ship model moved forward with a sinusoidal oscillation in the y-axis
with zero sway speed, as presented in Figure 3c. The coupled sway–yaw test was the pure
yaw test with no zero-drift angle.
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4. Truncated LS-SVM

Least Squares Support Vector Machines (LS-SVM) are a supervised learning algorithm
that extends the original concept of SVM from classification to regression tasks. SVMs
have a good performance for classification problems by finding a hyperplane that best
separates two classes while maximizing the margin between them. LS-SVM adapts this
idea to regression problems where the goal is to predict continuous numerical values.

The main objective of LS-SVM is to find a hyperplane that best fits the data by mini-
mizing the regression error. It focuses on minimizing the error between the actual target
values and the predicted values along with a regularization term. The regularization term
helps prevent overfitting. The kernel function is also used in LS-SVMs, where it can map
data into a higher-dimensional feature space, making them capable of handling non-linear
relationships in the data.

This section introduces a novel iteration of the support vector machine, referred to
as the truncated LS-SVM, and delves into the parameter uncertainty resulting from data
noise. The classical LS-SVM was proposed by [60], and it is obtained by reformulating the
minimization problem using the regression errors, as presented in [60].

One of the significant advantages of LS-SVM is that it achieves results by solving a
set of linear equations, as opposed to the quadratic programming (QP) problems typically
associated with classical SVMs. It can simplify the required computation, but unfortunately,
the sparseness of standard SVM is lost. Therefore, the classical LS-SVM is not recommended
for large-scale data applications, or more precisely, for large-scale training problems. As
recommended by [60], the size of the training set is usually restricted to about N = 2000. In
the following part, the truncated LS-SVM will be proposed for the manoeuvring modelling
with the large-scale training set. The uncertainty of the identified parameters is also
analysed. The classical LS-SVM is given as follows:


 0

→
1

→
1 K(·) + C−1I




︸ ︷︷ ︸
A

[
b
→
α

]

︸︷︷︸
θ

=

[
0
→
Y

]

︸︷︷︸
Y

(6)

where I is an identity matrix of size N,
→
α = [α1, · · · αN ]

T are the Lagrange multipliers,
→
Y = [y1, · · · , yN ]

T is the output vector, and K(xk · xi) = ϕ(xk)
T ϕ(xi), i = 1, · · · , N is

the kernel function, which is positive definite and satisfies the Mercer condition [74]. To
estimate the values of the hydrodynamic coefficients, the linear kernel function is chosen.
As can be observed in Equation (6), the dimension of matrix A increases exponentially with
the size of the training set, which will result in unstable solutions. The obtained parameters
are usually sensitive to noise and drift from the true values.
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In the following part, the singular values decomposition is introduced for the kernel
matrix analysis, and it is given as

A =
n

∑
i=1

uiσivT
i = UΣVT (7)

Then, substituting into Equation (6) gives

θ =
(

UΣVT
)−1

Y = VΣ−1UTY =
n

∑
i=1

viui
T

σi
Y (8)

where the matrix, U, is orthogonal with the eigenvectors chosen from AAT , and the matrix,
V , is orthogonal and its eigenvectors are chosen from ATA. Σ is a diagonal matrix.

Assume that the output data, y, contains the noise, δy, then the noise will propagate to
a perturbation in the solution in Equation (8):

θ̂
.
= θtrue + δθ =

(
UΣVT

)−1
(ytrue + δy) (9)

Then, the perturbation in the solution due to the noise can be obtained as follows:

δθ = VΣ−1UTδy =
n

∑
i=1

viui
T

σi
δy (10)

As presented in Equation (10), and with the discrete Picard condition [75], the portion
of the singular values can be kept when the ill-conditioned matrix is obtained from the
measured data. The data noise can be magnified and potentially dominate the solutions
when the singular values are small. Therefore, to diminish the error propagation due to the
noise, it is preferred to neglect the smaller singular values in the matrix Σ. The matrix can
be presented as

Ar = UrΣrVr
T (11)

The truncated value, r, plays a trade-off role between the size of the regularized
solutions and their fit to the given data, and the L-curve [76] can be used to obtain the
optimal value.

To quantify how random measurement errors in the data, y, propagate to the identified
parameters, the error propagation matrix can be calculated using

Vθ̂ =

[
∂θ̂

∂y

]
Vy

[
∂θ̂

∂y

]T

(12)

The standard error of the parameters, σθ̂ , is the square root of the diagonal of the error
propagation matrix. Then, the confidence intervals for the identified parameters are given
as follows:

θ̂ − t(1−a/2) σθ̂ ≤ θ≤ θ̂ + t(1−a/2) σθ̂ (13)

where 1− a is the desired confidence level, and t is the Student’s t statistic. Typically, for
the large-scale training set where the number of the measured data is much larger than the
number of the estimated parameters, t is 1.96 for 95% confidence intervals and 1.28 for 80%
confidence intervals.

With the identified models, it is necessary to validate the models by comparing the
prediction with the new test data, which was not used in the training process. Several sta-
tistical merits are used to qualify their similarity. Given reference data, y = [yiy2, · · · , yN ]

T
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and the prediction data, ŷ = [ŷi, ŷ2, · · · , ŷN ]
T , the correlation coefficients can be calculated

as follows:

R =
1
N

N

∑
n=1

(yi − y)(ŷi − ŷ)/σyσŷ (14)

where, y and ŷ are the mean values of the reference data and prediction data, respectively.
σy and σŷ are the standard deviations, and are calculated as follows:

σy =
1
N

N

∑
n=1

(yi − y), σŷ =
1
N

N

∑
n=1

(ŷi−ŷ) (15)

The centred root-mean-square (RMS) difference is given below.

E′2 =
1
N

N

∑
n=1

[(yi − y)(ŷi − ŷ)]2 (16)

5. Data-Driven Manoeuvring Modelling of DTC Model

In this section, the proposed system identification method, the truncated LS-SVM, is
employed to estimate the nondimensional hydrodynamic coefficients using the PMM tests
in shallow water. To test the performance of the proposed truncated LS-SVM for large-scale
data-driven modelling, the different training set sizes are considered for the surge, sway,
and yaw models. The training set is defined as Surge_{ID}, Sway_{ID}, and Yaw_{ID},
where ID represents the number of data points, as presented in Table 3. As suggested
by [60], the data size should be restricted below 2000 because kernel matrix size grows
with the number of data points. In this study, the size of the training data is set in different
ranges from 1200 to 10,000, and the training data contains the pure drift, pure sway, pure
yaw, and coupled sway and yaw tests, as described in Section 3.

Table 3. Training set size for the data-driven parameter estimation.

ID 1 2 3 4 5 6 7

Training set size 1200 1300 1500 1700 2000 2300 2900

ID 8 9 10 11 12 13 14

Training set size 4000 5000 6000 7000 8000 9000 10,000

The truncated LS-SVM is used to identify the nondimensional hydrodynamic coeffi-
cients of the ship hull, and the results are presented in Figure 4. As can be observed, the
parameters converge to a constant value as the training set size grows. When the training
set is around 4000, the obtained results change slightly, even while the training set size
still grows. The 80% and 95% confidence intervals of the identified parameters are also
presented in the figure. The confidence intervals of the identified parameters represent the
theoretical long-run frequency of confidence intervals that contain the true values.

From Figure 4, the confidence intervals decrease with the training set size, which
indicates that the margin of error decreases. In plain words, the large scale of the training
set can provide more confidence and robust results. Since the noise in data is randomly
recorded during data collection due to the device and environmental disturbance, the
proposed method can diminish the noise effect, to a certain extent, by using the large-scale
training set.

The truncated LS-SVM is also employed for parameter estimation of the nondimen-
sional hydrodynamic coefficients of the nonlinear sway model, as given in Equation (3).
There are eight parameters to be estimated, and the training set size was set as indicated in
Table 3. The obtained values of the nondimensional coefficients are presented in Figure 5,
as well as the confidence intervals of the corresponding ones.
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As can be observed in Figure 5, the parameters can converge to a constant value as
the training set size grows, except the parameters Yv, Yvv. The Yvv enters a stable period
when the training set is around 6000 but decreases slightly when the training set continues
to grow, and vice versa for Yv [52,77]. This can be attributed to the dynamic cancellation,
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which results from the multicollinearity of the two terms. The 80% and 95% confidence
intervals of the identified parameters are also presented in the figure. From Figure 5,
the confidence intervals decrease with the training set size, which also indicates that the
large-scale training set can diminish the parameter uncertainty.

The nondimensional hydrodynamic coefficients of the yaw model are identified and
presented in Figure 6. The results can converge to a constant value as the training set
size grows, as shown in Figure 6. The confidence intervals are also given in the figure,
and they decrease with the training set size, which indicates that the uncertainty has
been diminished.
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To validate the results, which are obtained using the different training set sizes, the
models are employed to reproduce the hydrodynamic forces and moments that were
measured during the tests. The harmonic yaw and sway test are selected as the test
data, and the Taylor diagram [78] is used to show how closely the prediction matches the
observations (experimental data). The similarity is quantified in terms of their correlation,
root-mean-square differences, and amplitude of variations.

As presented in Figure 7, the statistical merits of the test data are indicated using
the red line, and the values of the correlation coefficient (R), centred RMS difference, and
standard deviation are presented in Table 4. From Figure 7b, the correlation coefficients
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of yaw models are very high, and very close to the reference data for all the cases, even
when the training set is small. It indicates that the designed PMM tests fully activate the
response of yaw motion and are suitable for parameter estimation of yaw motion.
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Table 4. The statistical merits of the predictions of the obtained surge, sway, and yaw models.

ID
SURGE SWAY YAW

R E′ STD R E′ STD R E′ STD

REF. 1.000 0.000 0.704 1.000 0.000 5.829 1.000 0.000 7.422

1 −0.783 2.232 1.785 −0.114 6.734 6.168 0.990 1.027 7.352
2 −0.772 2.133 1.785 −0.069 6.598 6.168 0.992 0.914 7.352
3 −0.668 1.919 1.785 0.254 5.984 6.168 0.992 0.943 7.352
4 0.102 1.776 1.785 0.548 5.316 6.168 0.992 0.956 7.352
5 0.654 1.648 1.785 0.693 4.778 6.168 0.992 0.944 7.352
6 0.685 1.619 1.785 0.860 3.802 6.168 0.992 0.962 7.352
7 0.768 1.412 1.785 0.909 3.032 6.168 0.992 0.961 7.352
8 0.767 1.413 1.785 0.938 2.472 6.168 0.992 0.958 7.352
9 0.779 1.322 1.785 0.938 2.472 6.168 0.992 0.950 7.352

10 0.779 1.304 1.785 0.949 2.017 6.168 0.992 0.956 7.352
11 0.779 1.309 1.785 0.947 2.083 6.168 0.992 0.962 7.352
12 0.778 1.312 1.785 0.947 2.091 6.168 0.992 0.954 7.352
13 0.778 1.312 1.785 0.961 1.719 6.168 0.992 0.964 7.352
14 0.778 1.314 1.785 0.960 1.730 6.168 0.992 0.960 7.352
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For the surge and sway motion (Figure 7a,c), the correlation coefficients are negative
when the training set size is small, which indicates that the obtained models are negatively
related to the test data. In this case, the obtained model cannot be used to predict the
surge and sway forces on the ship hull. With the training set size growing, the correlation
coefficients can achieve a good level. The centred RMS difference (E′) is also presented
in Figure 7 by using green contours. For the surge and sway models, the centred RMS
differences decrease with the training set size, and it can be found graphically that the
markers are close to the Ref. in Figure 7a,c.

It is necessary to point out that the training set size does not change the standard
deviation of the prediction of the obtained models, it largely depends on the structure of
the nonlinear manoeuvring models. The standard deviation of the sway model agrees
very well with the reference data but is greater in the surge case. It also can be confirmed
by Figure 8, which presents the predicted surge, sway forces, and yaw moments during
the PMM test. The manoeuvring models obtained using the training set size (ID 14 with
10,000 samples) are chosen for validation. From Figure 8, it can be observed that there are
more oscillations in the predictions of the surge and sway model.
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6. Conclusions

This paper investigates the data-driven parameter estimation of a nonlinear ship
manoeuvring model using the truncated LS-SVM, where the PMM tests are used as the
training and validation set. The truncated LS-SVM is employed to estimate the nondimen-
sional hydrodynamic coefficients with the 14 different training set sizes, and the parameter
uncertainty due to the noise is also presented, as well as the confidence intervals of the
identified parameters.

The results indicate that the truncated LS-SVM is capable of the modelling problem
using a large-scale training set. The obtained parameters can converge to the constant
values and their uncertainty can be diminished as the training set size grows, as well as
the margin of confidence intervals. Therefore, the truncated LS-SVM can diminish the
parameter uncertainty and provide a robust result. The validation is also carried out using
statistical measures: the correlation coefficient (R), centred RMS difference, and the standard
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deviation presented graphically using the Taylor diagram. It can be concluded that the
PMM test can fully activate the response of yaw motions and provide rich information for
the parameter estimation of the yaw model. The large-scale training set can increase the
credibility of results by diminishing uncertainties. With the increase of the training set size
for surge and sway models, the obtained models agree well with the reference data. This
paper focuses on the prediction of the hydrodynamic forces and moments of the bare ship
hull in shallow water under the assumption that the values of the hydrodynamic coefficient
are directly affected by the shallow water depth. The hydrodynamic terms related to the
rudder, propeller, and their interaction are neglected due to the lack of test data, which
is the limitation of this paper. In a future study, it is suggested to carry out the PMM test
in shallow water using the hull with rudder and propeller, and the hydrodynamic terms
explicitly related to the shallow water features should also deserve more attention. The
determination of the optimal values of the parameters for the truncated LS-SVM is also an
interesting topic for further investigation.
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Nomenclature

LS-SVM Least-squares support vector machine
RMS Root mean square
MMG Manoeuvring Modelling Group
LSTM Long short-term memory network
GA Genetic Algorithm
CFD Computational fluid dynamics
SVM Support vector machine
PMM Planar Motion Mechanism
DOF Degrees of Freedom
DTC Duisburg Test Case
FHR Flanders Hydraulics Research
QP Quadratic programming
R Correlation coefficient
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