
mdpi.com/journal/remotesensing

Special Issue Reprint

Remote Sensing Image 
Classification and  
Semantic Segmentation 

Edited by 

Jiaojiao Li, Qian Du, Jocelyn Chanussot,  

Wei Li, Bobo Xi, Rui Song and Yunsong Li



Remote Sensing Image Classification
and Semantic Segmentation





Remote Sensing Image Classification
and Semantic Segmentation

Editors

Jiaojiao Li

Qian Du

Jocelyn Chanussot

Wei Li

Bobo Xi

Rui Song

Yunsong Li

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester



Guest Editors

Jiaojiao Li

Xidian University

Xi’an

China

Qian Du

Mississippi State University

Starkville

USA

Jocelyn Chanussot

University Grenoble Alpes

Grenoble

France

Wei Li

Beijing Institute of

Technology

Beijing

China

Bobo Xi

Xidian University

Xi’an

China

Rui Song

Xidian University

Xi’an

China

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of the Special Issue, published open access by the journal Remote Sensing (ISSN

2072-4292), freely accessible at: https://www.mdpi.com/journal/remotesensing/special issues/

KVCSC58HQ0.

For citation purposes, cite each article independently as indicated on the article page online and

using the guide below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-1365-0 (Hbk)

ISBN 978-3-7258-1366-7 (PDF)

https://doi.org/10.3390/books978-3-7258-1366-7

© 2024 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https://creativecommons.org/licenses/by-nc-nd/4.0/).



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Shuaiying Zhang, Lizhen Cui, Zhen Dong and Wentao An

A Deep Learning Classification Scheme for PolSAR Image Based on Polarimetric Features
Reprinted from: Remote Sens. 2024, 16, 1676, https://doi.org/10.3390/rs16101676 . . . . . . . . . 1

Wenjie Du, Zhiyong Fan, Ying Yan, Rui Yu and Jiazheng Liu

AFMUNet: Attention Feature Fusion Network Based on a U-Shaped Structure for Cloud and
Cloud Shadow Detection
Reprinted from: Remote Sens. 2024, 16, 1574, https://doi.org/10.3390/rs16091574 . . . . . . . . . 20

Ruixing Chen, Jun Wu, Ying Luo and Gang Xu

PointMM: Point Cloud Semantic Segmentation CNN under Multi-Spatial Feature Encoding and
Multi-Head Attention Pooling
Reprinted from: Remote Sens. 2024, 16, 1246, https://doi.org/10.3390/rs16071246 . . . . . . . . . 39

Lei Hu, Xun Zhou, Jiachen Ruan and Supeng Li

ASPP+-LANet: A Multi-Scale Context Extraction Network for Semantic Segmentation of
High-Resolution Remote Sensing Images
Reprinted from: Remote Sens. 2024, 16, 1036, https://doi.org/10.3390/rs16061036 . . . . . . . . . 58

Dongdong Xu, Zheng Li, Hao Feng, Fanlu Wu and Yongcheng Wang

Multi-Scale Feature Fusion Network with Symmetric Attention for Land Cover Classification
Using SAR and Optical Images
Reprinted from: Remote Sens. 2024, 16, 957, https://doi.org/10.3390/rs16060957 . . . . . . . . . 80

Zibo Guo, Kai Liu, Wei Liu, Xiaoyao Sun, Chongyang Ding and Shangrong Li

An Overlay Accelerator of DeepLab CNN for Spacecraft Image Segmentation on FPGA
Reprinted from: Remote Sens. 2024, 16, 894, https://doi.org/10.3390/rs16050894 . . . . . . . . . 100

Haitao Xu, Tie Zheng,Yuzhe Liu, Zhiyuan Zhang, Changbin Xue and Jiaojiao Li

A Joint Convolutional Cross ViT Network for Hyperspectral and Light Detection and Ranging
Fusion Classification
Reprinted from: Remote Sens. 2024, 16, 489, https://doi.org/10.3390/rs16030489 . . . . . . . . . 126

Ningwei Wang, Haixia Bi, Fan Li, Chen Xu and Jinghuai Gao

Self-Distillation-Based PolarimetricImage Classification with Noisy and Sparse Labels
Reprinted from: Remote Sens. 2023, 15, 5751, https://doi.org/10.3390/rs15245751 . . . . . . . . . 146

Ziquan Wang, Yongsheng Zhang, Zhenchao Zhang, Zhipeng Jiang, Ying Yu, Li Li

and Lei Zhang

SDAT-Former++: A Foggy Scene Semantic Segmentation Method with Stronger Domain
Adaption Teacher for Remote Sensing Images
Reprinted from: Remote Sens. 2023, 15, 5704, https://doi.org/10.3390/rs15245704 . . . . . . . . . 171

Qingwei Sun, Jiangang Chao, Wanhong Lin, Zhenying Xu, Wei Chen and Ning He

Learn to Few-Shot Segment Remote Sensing Images from Irrelevant Data
Reprinted from: Remote Sens. 2023, 15, 4937, https://doi.org/10.3390/rs15204937 . . . . . . . . . 190

Yihui Ren, Wen Jiang and Ying Liu

A New Architecture of a Complex-Valued Convolutional Neural Network for PolSAR
Image Classification
Reprinted from: Remote Sens. 2023, 15, 4801, https://doi.org/10.3390/rs15194801 . . . . . . . . . 211

v



Wanying Song, Xinwei Zhou, Shiru Zhang, Yan Wu and Peng Zhang

GLF-Net: A Semantic Segmentation Model Fusing Global and Local Features for
High-Resolution Remote Sensing Images
Reprinted from: Remote Sens. 2023, 15, 4649, https://doi.org/10.3390/rs15194649 . . . . . . . . . 238

Xuan Xiong, Xiaopeng Wang, Jiahua Zhang, Baoxiang Huang and Runfeng Du

TCUNet: A Lightweight Dual-Branch Parallel Network for Sea–Land Segmentation in Remote
Sensing Images
Reprinted from: Remote Sens. 2023, 15, 4413, https://doi.org/10.3390/rs15184413 . . . . . . . . . 257

Lili Fan, Jiabin Yuan, Xuewei Niu, Keke Zha and Weiqi Ma

RockSeg: A Novel Semantic Segmentation Network Based on a Hybrid Framework Combining
a Convolutional Neural Network and Transformer for Deep Space Rock Images
Reprinted from: Remote Sens. 2023, 15, 3935, https://doi.org/10.3390/rs15163935 . . . . . . . . . 283

Chaoyan Zhang, Cheng Li, Baolong Guo and Nannan Liao

Neural Network Compression via Low Frequency Preference
Reprinted from: Remote Sens. 2023, 15, 3144, https://doi.org/10.3390/rs15123144 . . . . . . . . . 306

Qing Liu, Yongsheng Dong, Zhiqiang Jiang, Yuanhua Pei, Boshi Zheng, Lintao Zheng

and Zhumu Fu

Multi-Pooling Context Network for Image Semantic Segmentation
Reprinted from: Remote Sens. 2023, 15, 2800, https://doi.org/10.3390/rs15112800 . . . . . . . . . 326

Shiyao Duan, Jiaojiao Li, Rui Song, Yunsong Li and Qian Du

Unmixing-Guided Convolutional Transformer for Spectral Reconstruction
Reprinted from: Remote Sens. 2023, 15, 2619, https://doi.org/10.3390/rs15102619 . . . . . . . . . 341

Su Rina, Hong Ying, Yu Shan, Wala Du, Yang Liu, Rong Li and Dingzhu Deng

Application of Machine Learning to Tree Species Classification Using Active and Passive
Remote Sensing: A Case Study of the Duraer Forestry Zone
Reprinted from: Remote Sens. 2023, 15, 2596, https://doi.org/10.3390/rs15102596 . . . . . . . . . 361

Zheng Zhang, Fanchen Liu, Changan Liu, Qing Tian and Hongquan Qu

ACTNet: A Dual-Attention Adapter with a CNN-Transformer Network for the Semantic
Segmentation of Remote Sensing Imagery
Reprinted from: Remote Sens. 2023, 15, 2363, https://doi.org/10.3390/rs15092363 . . . . . . . . . 381

Efrain Padilla-Zepeda, Deni Torres-Roman and Andres Mendez-Vazquez

A Semantic Segmentation Framework for Hyperspectral Imagery Based on Tucker
Decomposition and 3DCNN Tested with Simulated Noisy Scenarios
Reprinted from: Remote Sens. 2023, 15, 1399, https://doi.org/10.3390/rs15051399 . . . . . . . . . 398

Min Yuan, Dingbang Ren, Qisheng Feng, Zhaobin Wang, Yongkang Dong, Fuxiang Lu

and Xiaolin Wu

MCAFNet: A Multiscale Channel Attention Fusion Network for Semantic Segmentation of
Remote Sensing Images
Reprinted from: Remote Sens. 2023, 15, 361, https://doi.org/10.3390/rs15020361 . . . . . . . . . 426

Yuqi Dai, Tie Zheng, Changbin Xue and Li Zhou

SegMarsViT: Lightweight Mars Terrain Segmentation Network for Autonomous Driving in
Planetary Exploration
Reprinted from: Remote Sens. 2022, 14, 6297, https://doi.org/10.3390/rs14246297 . . . . . . . . . 447

Ziquan Wang, Yongsheng Zhang, Zhenchao Zhang, Zhipeng Jiang, Ying Yu, Li Li and Lei Li

Exploring Semantic Prompts in the Segment Anything Model for Domain Adaptation
Reprinted from: Remote Sens. 2024, 16, 758, https://doi.org/10.3390/rs16050758 . . . . . . . . . 466

vi



Zhong Dong, Baojun Lin and Fang Xie

Optimizing Few-Shot Remote Sensing Scene Classification Based on an Improved Data
Augmentation Approach
Reprinted from: Remote Sens. 2024, 16, 525, https://doi.org/10.3390/rs16030525 . . . . . . . . . 478

Manuel Silva, Gabriel Hermosilla, Gabriel Villavicencio and Pierre Breul

Automated Detection and Analysis of Massive Mining Waste Deposits Using Sentinel-2 Satellite
Imagery and Artificial Intelligence
Reprinted from: Remote Sens. 2023, 15, 4949, https://doi.org/10.3390/rs15204949 . . . . . . . . . 495

Li Sun, Huanxin Zou, Juan Wei, Xv Cao, Shitian He, Meilin Li and Shuo Liu

Semantic Segmentation of High-Resolution Remote Sensing Images Based on Sparse
Self-Attention and Feature Alignment
Reprinted from: Remote Sens. 2023, 15, 1598, https://doi.org/10.3390/rs15061598 . . . . . . . . . 511

vii





About the Editors

Jiaojiao Li

Jiaojiao Li (S’16-M’17-SM’24) received the B.E. degree in computer science and technology, M.

S. degree in software engineering, and Ph.D. degree in communication and information systems

from Xidian University in 2009, 2012, and 2016, respectively. She was an exchange Ph.D. Student

of Mississippi State University, supervised by Dr. Qian Du. She is currently an Associate Professor

and Doctoral supervisor with the school of Telecommunication, Xidian University, China. Her

research interests include hyperspectral remote sensing image analysis and processing and pattern

recognition.

Qian Du

Qian Du (S’98–M’00–SM’05) received a Ph.D. degree in electrical engineering from the University

of Maryland, Baltimore County, Baltimore, MD, USA, in 2000. She is currently a Bobby Shackouls

Professor with the Department of Electrical and Computer Engineering, Mississippi State University,

Starkville, MS, USA. Her research interests include hyperspectral remote sensing image analysis and

applications, pattern classification, data compression, and neural networks.

Jocelyn Chanussot

Jocelyn Chanussot received the M.Sc. degree in electrical engineering from the Grenoble Institute

of Technology (Grenoble INP), France, in 1995, and the Ph.D. degree from the Université de Savoie,
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Abstract: Polarimetric features extracted from polarimetric synthetic aperture radar (PolSAR) images
contain abundant back-scattering information about objects. Utilizing this information for PolSAR
image classification can improve accuracy and enhance object monitoring. In this paper, a deep
learning classification method based on polarimetric channel power features for PolSAR is proposed.
The distinctive characteristic of this method is that the polarimetric features input into the deep
learning network are the power values of polarimetric channels and contain complete polarimetric
information. The other two input data schemes are designed to compare the proposed method. The
neural network can utilize the extracted polarimetric features to classify images, and the classification
accuracy analysis is employed to compare the strengths and weaknesses of the power-based scheme.
It is worth mentioning that the polarized characteristics of the data input scheme mentioned in this
article have been derived through rigorous mathematical deduction, and each polarimetric feature
has a clear physical meaning. By testing different data input schemes on the Gaofen-3 (GF-3) PolSAR
image, the experimental results show that the method proposed in this article outperforms existing
methods and can improve the accuracy of classification to a certain extent, validating the effectiveness
of this method in large-scale area classification.

Keywords: polarimetric synthetic aperture radar (PolSAR); reflection symmetric decomposition (RSD);
data input scheme; land classification; polarimetric scattering characteristics

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) is able to acquire comprehensive
polarization information of land targets, and it can actively detect targets in all-weather and
all-day conditions. Compared to single- and dual-polarized images, PolSAR images contain
a significant amount of back-scattering information about the objects [1]. Currently, PolSAR
classification methods mainly include polarization feature-based approaches, statistical
distribution characteristics of PolSAR data, and deep learning classification methods [2–7].

A large number of scholars have conducted in-depth research on PolSAR classification
and achieved good results. The method mainly adopts polarization decomposition to
extract the polarization scattering information of the targets and further classify them based
on these features. Cloude et al. have undertaken a lot of work on PolSAR classification [8,9].
C. Lardeux et al. [10] used a support vector machine (SVM) classifier to extract polarization
features from PolSAR images of different frequencies and perform classification using these
features. Dickinson et al. [11] classified targets in multiple scenarios using polarization
decomposition. Yin et al. [12] addressed the issue of insufficient information extraction for
temporal polarization spatial features in existing models by using the Vision Transformer
3D attention module to classify multi-temporal PolSAR images, effectively addressing the
aforementioned issues. Similarly, Wang et al. [13] also used ViT networks to achieve effec-
tive classification of PolSAR images. Hua et al. [14] proposed using a 3D residual module

Remote Sens. 2024, 16, 1676. https://doi.org/10.3390/rs16101676 https://www.mdpi.com/journal/remotesensing1
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to extract information from PolSAR images. These methods also combine the extracted
polarization features with deep learning to achieve the classification of PolSAR images.

The classification method based on statistical features of PolSAR images mainly uti-
lizes the difference in statistical characteristics of target objects to classify different targets
in the images. Lee et al. [15] used polarization decomposition and unsupervised classifi-
cation based on a complex Wishart classifier to classify PolSAR images. Silva et al. [16]
used the minimum random distance and Wishart distribution to segment the targets in
PolSAR images. Chen et al. [17] used the method of polarimetric similarity and maximum–
minimum scattering features to improve the accuracy of classification. Wu et al. [18] used a
domain-based Wishart MRF method to classify PolSAR images and produced good results
compared with other methods. Dong et al. [19]. proposed the copula-based joint statistical
model to extract polarization features and use it for PolSAR image classification. Statistical
methods can analyze land features in the data dimension and achieve image classification,
but many parameters still need to be manually determined in advance, which brings a
significant workload to research.

Although the above methods have achieved good results, they are all based on pixel-
level classification, ignoring the relationship between the classified pixels and their neigh-
borhoods. Liu et al. [20] used the information from the center pixel as well as the surround-
ing neighborhood pixels, combined them into superpixels, and used them as the smallest
classification unit to classify PolSAR images, resulting in better classification outcomes.

Many researchers have studied the polarization decomposition method, and some
famous algorithms include Pauli decomposition [8], SDH decomposition [21], Freeman
decomposition [22], Yamaguchi decomposition [23], and reflection symmetrical decompo-
sition (RSD) [24]. Van Zyl decomposition [25], H/A/Alpha decomposition [9], Huynen
decomposition [26], Cameron decomposition [27], and Krogager decomposition [21] are
also commonly used. These polarization decomposition algorithms have been applied to
PolSAR land cover classification by relevant researchers. Nie et al. [28] utilized 12 polariza-
tion features obtained from Freeman–Durden decomposition, Van Zyl decomposition, and
H/A/Alpha decomposition and achieved good classification results on limited samples
using an enhanced learning framework. Wang et al. [2] applied the Freeman–Durden
decomposition method and used a feature fusion strategy to classify PolSAR images of
the Flevoland region. Ren et al. [29] utilized polarization scattering features obtained from
T-matrix, Pauli decomposition, H/A/Alpha decomposition, and Freeman decomposition.
Zhang et al. [30] applied the RSD method to extract polarimetric features from Gaofen3 im-
ages and obtained good results. Quan [31] proposed two polarimetric features—scattering
contribution combiner (SCC) and scattering contribution angle (SCA)—for unified scatter-
ing characterization of manmade targets. The method achieved the physical optimization
of scattering modeling. He also proposed a fine polarimetric decomposition method and
derived several products to finely simulate the scattering mechanisms of urban buildings,
which can also fulfill its use for effective surveillance [32].

Deep learning methods extract information about land targets through a certain
number of network layers and utilize deep-level features extracted from the targets to
classify objects in the image. Compared to traditional classification methods or machine
learning, deep learning can more fully exploit the scattering characteristics inherent in
land targets. In PolSAR data analysis, deep belief networks [33], stacked autoencoders [34],
generative adversarial networks [35], convolutional neural networks [36,37], and deep
stacked networks have achieved tremendous success [38–40]. Deep learning is a hierarchical
learning method, and features extracted through this method are more discriminative [41].
Therefore, it demonstrates excellent performance in PolSAR image classification and target
detection [42–49]. It has also led scholars to use various convolutional neural networks
for the classification and information extraction of PolSAR images [50–54]. Liu et al. [55]
proposed the active complex value convolutional wavelet neural network, and the Markov
random fields method was proposed to classify PolSAR images, extracting information from
multiple perspectives and achieving high-precision image classification. Yang et al. [56].
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proposed a polarization direction angle composite sequence network, which extracts phase
information from nondiagonal elements through real and complex convolutional long
short-term memory networks. The network performance is better than that of existing
convolutional neural networks based on real or complex numbers. Chu et al. [57] proposed
a two-layer multi-objective superpixel segmentation network, with one layer used to
optimize network parameters and the other layer used to refine segmentation results
can achieve excellent segmentation results without obtaining prior information. These
studies all demonstrate that the application of deep learning in the field of PolSAR is
very successful. Considering the advantages of deep learning in extracting deep features
from images and automatically learning parameters, drives us to use convolutional neural
networks in this paper.

The PolSAR image contains multiple polarimetric characteristics and raw information
about objects. Adopting an appropriate polarimetric decomposition method could extract
features that represent objects, which benefits subsequent neural networks in classifying
those features. Through existing research, it has been found that the most commonly used
data input scheme is the 6-parameter data input scheme [58–60]. This method uses the
total power of polarization, the two main diagonal elements of the polarimetric coherence
matrix (T-matrix), and the correlation coefficient between the non-main diagonal elements
of the matrix. Although this data input scheme has achieved good classification of objects
using improved neural networks, some parameters do not have clear physical meanings
at the polarimetric feature level, and from the perspective of polarimetric information
content, it is not complete. This prompts us to seek a data input scheme that can have
physical interpretability and a more complete utilization of polarimetric information at the
polarimetric feature level.

This article presents a PolSAR deep learning classification method based on the power
values of polarimetric channels. It mainly utilizes horizontal, vertical, left-handed, and
right-handed polarization, as well as other equivalent power values of different polarimetric
channels, as input schemes for the neural network. This data input scheme is essentially
a combination of polarimetric powers. The channels are equivalent to each other and
represent power values under different polarization observations, and their addition and
subtraction operations have clear physical meanings. Three polarimetric data input schemes
were used, and then these polarimetric features were input into the neural network model
to classify objects.

The main goals of this study were, therefore, (1) to provide a method for PolSAR image
classification based on polarimetric features through deep learning neural networks; (2) to
examine the power of classical CNNs for the classification of back-scattering similar ground
objects; (3) to investigate the generalization capacity of existing CNNs for the classification
of different satellite imagery; (4) to explore polarimetric features which are helpful for
wetland classification and provide comparisons with different data input schemes; (5) to
compare the performance and efficiency of other two schemes. Thus, this study contributes
to the CNN classification tools for complex land cover mapping using polarimetric data
based on polarimetric features.

2. Method

A deep learning classification scheme for PolSAR images based on polarimetric fea-
tures, which mainly includes data preprocessing, polarization decomposition, polarization
feature normalization, a data input scheme, and neural network classification.

2.1. Polarization Decomposition Method Based on Polarimetric Scattering Features

Target decomposition is a primary approach in polarimetric SAR data processing,
which essentially represents pixels as weighted sums of several scattering mechanisms.
In 1998, scholars Anthony Freeman and Stephen L. Durden proposed the first model-
based, non-coherent polarimetric decomposition algorithm [22], hereinafter referred to
as the Freeman decomposition. The initial purpose of the Freeman decomposition was
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to facilitate viewers of multi-view SAR images in intuitively distinguishing the major
scattering mechanisms of objects.

The Freeman decomposition is entirely based on the back-scattering data observed by
radar, and its decomposed components have corresponding physical meanings. Therefore,
it later became known as the first model-based, non-coherent polarimetric decomposition
algorithm. The introduction of the Freeman decomposition was pioneering at that time.
After the proposal of the Freeman decomposition, as scholars extensively utilized and
further researched it, they found three main issues with the decomposition method: the
overestimation of volume scattering components; the presence of negative power com-
ponents in the results; and the loss of polarization information. Through research, it was
discovered that these three problems are not completely independent. For example, the
overestimation of volume scattering components is one of the reasons for the existence of
negative power values in subsequent surface scattering and double bounce components,
and the loss of polarization information is also one of the reasons for the inappropriate
estimation of power values of the volume scattering component.

In 2005, Yamaguchi et al. proposed the second model-based, non-coherent polarimet-
ric decomposition algorithm [23]. This algorithm includes four scattering components,
hereinafter referred to as the Yamaguchi algorithm. The Yamaguchi decomposition in-
troduced helical scattering as the fourth scattering component, breaking the reflection
symmetry assumption of the Freeman decomposition. This expansion made the algorithm
applicable to a wider range of scenarios and achieved better experimental results in urban
area analysis. The improved volume scattering model proposed by Yamaguchi opened
up the research direction in enhancing the performance of model-based, non-coherent
polarimetric decomposition algorithms through improving the scattering model. Both
of the above points were pioneering work. However, the Yamaguchi algorithm did not
provide a theoretical basis for selecting helical scattering as the fourth component, and
according to their paper, the selection of helical scattering was based more on the compari-
son and preference of multiple basic scattering objects. The main innovative aspect of the
Yamaguchi decomposition focused on the scattering model itself, while no improvements
were made to the decomposition algorithm itself. It still followed the processing method of
the Freeman decomposition. Although the algorithm showed better experimental results,
issues such as the overestimation of volume scattering, negative power components, and
the loss of polarization information still persisted [24].

Compared to classical polarization decomposition methods such as Freeman decom-
position and Yamaguchi decomposition, the reflection symmetric decomposition [24,61] has
the advantage of obtaining polarization components with non-negative power values; the
decomposed results can completely reconstruct the original polarimetric coherent matrix,
and the decomposition aligns strictly with the theoretical models of volume scattering,
surface scattering, and double scattering. Therefore, in this paper, we chose this method to
extract the polarization features of targets from PolSAR images. The reflection symmetric
decomposition (RSD) is a model-based incoherent polarization decomposition method
that decomposes the polarimetric coherent matrix (T) into polarization features such as
the power of the surface scattering component (PV), the power of the double scattering
component (PS), and the power of the volume scattering component (PD). The value range
of these three components is [0, +∞).

2.2. Vertical, Horizontal, Left-Handed Circular, Right-Handed Circular Polarization Methods

Currently, radar antennas primarily use two types of polarization bases: linear polar-
ization and circular polarization. Typical linear polarization methods include horizontal
polarization (H) and vertical polarization (V), and circular polarization methods include
left-handed circular polarization (L) and right-handed circular polarization (R).

When a polarimetric radar uses linear polarization bases, this method first transmits
horizontally polarized electromagnetic waves and uses horizontal and vertical antennas for
reception. It then transmits vertically polarized electromagnetic waves and uses horizontal
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and vertical antennas for reception again. In the case of a single-station radar, the back-
scattering alignment convention (BSA) is usually used, and the transmitting and receiving
antennas use the same coordinate system. In this coordinate system, the Z-axis points
towards the target, the X-axis is horizontal to the ground, and the Y-axis, along with the X-Z
plane, forms a right-handed coordinate system pointing towards the sky. This coordinate
system corresponds well to the horizontal (H) and vertical (V) polarization bases. In this
case, the Sinclair scattering matrix can be abbreviated as:

S =

[
SHH SHV
SVH SVV

]
(1)

Upon satisfying the reciprocity theorem, the polarization coherency matrix T is derived
post multi-look processing, eliminating coherent speckle noise:

T =
〈

kkH
〉
=

⎡⎣ T11 T12 T13
T∗

12 T22 T23
T∗

13 T∗
23 T33

⎤⎦ (2)

Among them,

k =
1√
2

⎡⎣SHH + SVV
SHH − SVV
SHV − SVH

⎤⎦ (3)

where k represents the scattering vector of the back-scattering S-matrix in the Pauli basis,
and the superscript H denotes the Hermitian transpose. <•> represents an ensemble aver-
age. The T-matrix is a positive semi-definite Hermitian matrix, which can be represented
as a 9-dimensional real vector [T11, T22, T33, Re(T12), Re(T13), Re(T23), Im(T12), Im(T13),
Im(T23)]. Tij represents the element in the i-th row and j-th column of the T-matrix. Re(Tij)
and Im(Tij) represent the real and imaginary parts of the Tij element, respectively.

The Sinclair matrix can be vectorized using the Pauli basis ψP, which can be expressed
as follows:

ψP =

{√
2
[

1 0
0 1

]
,
√

2
[

1 0
0 −1

]
,
√

2
[

0 1
1 0

]
,
√

2
[

0 −j
j 0

]}
(4)

The scattering vector ψP under the Sinclair matrix is:

K4P =
1√
2

[
SHH + SVV SHH − SVV SHV + SVH j(SHV − SVH)

]T (5)

For single-polarization radar, under the condition of satisfying the reciprocity theorem,
the above equation becomes:

KP =
1√
2

[
SHH + SVV SHH − SVV 2SHV

]T (6)

Therefore, in single-channel single-polarization SAR data, the polarimetric scattering
characteristics of the target in the Pauli basis are represented by the polarimetric coherence
matrix as follows:

T3×3 =
〈

KPK∗T
P

〉
=

1
2

⎡⎢⎢⎢⎣
〈
|SHH + SVV|2

〉 〈
(SHH + SVV)(SHH − SVV)

∗〉 〈2(SHH + SVV)S∗
HV〉〈

(SHH − SVV)(SHH + SVV)
∗〉 〈

|SHH − SVV|2
〉

〈2(SHH − SVV)S∗
HV〉〈

2SHV(SHH + SVV)
∗〉 〈

2SHV(SHH − SVV)
∗〉 〈

4|SHV|2
〉

⎤⎥⎥⎥⎦ (7)

In the equation, * denotes conjugation, T represents transpose, <·> represents ensemble
averaging. Thus,

(T11 + T22)

2
+ Re(T12) = |SHH|2 = H(T12) (8)

5
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(T11 + T22)

2
− Re(T12) = |SVV|2 = V(T12) (9)

In other words, the real part of the T12 element information can be represented by the
power values of the horizontal and vertical polarization channels. In the equation above,
H(.) and V(.) are channel representation methods used in this paper. Similarly, for T13, T21,
and T23, the following four channel representation methods can be obtained.

(T11 + T33)

2
+ Re(T13) = H(T13) (10)

(T11 + T33)

2
− Re(T13) = V(T13) (11)

(T22 + T33)

2
+ Re(T23) = H(T23) (12)

(T22 + T33)

2
− Re(T23) = V(T23) (13)

Therefore, through equation substitution, we equivalently replace the elements in the T
matrix. This can, to some extent, be represented by the horizontal and vertical polarization
power components to represent the real part elements in the T-matrix. Similarly, we are
also looking for a polarization power method that can represent the imaginary elements
in the T-matrix. Under a circular polarization basis, the scattering matrix under the same
method can be defined as follows:[

ELS
ERS

]
=

[
SLL SLR
SRL SRR

][
ELI
ERI

]
(14)

For a single-station radar, under the condition of satisfying the reciprocity theorem
(SLR = SRL), electromagnetic waves can be converted between a linear polarization basis
and a circular polarization basis [62]. This enables the conversion of the scattering matrix
between the linear polarization basis and circular polarization basis as well. The specific
derivation process can be found in [63], and here only the results are given as follows:

⎡⎣ SLL√
2SLR
SRR

⎤⎦ =

⎡⎢⎢⎣
1
2

j√
2

− 1
2

1√
2

0 1√
2

1
2 − j√

2
− 1

2

⎤⎥⎥⎦
⎡⎣ SHH√

2SHV
SVV

⎤⎦ (15)

Based on Formulas (6) and (14), the corresponding transformation formula between
circular polarization basis and Pauli vector is as follows:

⎡⎣ SLL√
2SLR
SRR

⎤⎦ =

⎡⎢⎣0 1√
2

j√
2

1 0 0
0 1√

2
− j√

2

⎤⎥⎦KP (16)

Then, [
SLL
SRR

]
=

1
2

[
SHH − SVV + j2SHV
SHH − SVV − j2SHV

]
(17)

By changing the two Equations (16) and (17), we can obtain the following form:[
SHH SHV
SVH SVV

]
= SLR

[
1 0
0 1

]
+

SRR

2

[
1 j
j −1

]
+

SLL

2

[
1 −j
−j −1

]
(18)
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KP = SLR

⎡⎣
√

2
0
0

⎤⎦+
SRR√

2

⎡⎣0
1
j

⎤⎦+
SLL√

2

⎡⎣ 0
1
−j

⎤⎦ (19)

From the above equation, it can be inferred that the transformation from horizontal
and vertical polarization to circular polarization can also be considered as a process of
decomposing the scattering matrix into certain correlation terms. This means that the
Sinclair matrix could be decomposed into components such as plane waves, left-handed
helices, and right-handed helices, and SLR, SRR, SLL correspond to the phase and power
levels of each constituent.

Therefore, it can be inferred the following equations:

(T11 + T22)

2
+ Im(T12) = |SLL|2 = L(T12) (20)

(T11 + T22)

2
− Im(T12) = |SRR|2 = R(T12) (21)

Thus, the imaginary part of the T12 element information can be represented by the
power values of the left-hand and right-hand polarization channels, where L(.) and R(.) are
also the channel representation methods used in this article. Similarly, for T13, T23, four
channel representation methods can be obtained as follows:

(T11 + T33)

2
+ Im(T13) = L(T13) (22)

(T11 + T33)

2
− Im(T13) = R(T13) (23)

(T22 + T33)

2
+ Im(T23) = L(T23) (24)

(T22 + T33)

2
− Im(T23) = R(T23) (25)

Therefore, through equation substitution, we equivalently replace the elements in
the T matrix. This can, to some extent, be represented by the left-hand and right-hand
polarization power components to represent the imaginary part elements in the T-matrix.

From the above derivation process, it can be seen that the new classification scheme
first uses the power values of the horizontal, vertical, left-hand, and right-hand polarization
channels. The other channels following also essentially represent power values of a certain
polarization channel; that is to say, the elements in the T matrix are equivalently represented
using polarization power features, and the input elements have actual physical meanings.
Moreover, the combination of the mentioned channels can fully invert all elements of the
T-matrix, making it comprehensive from the perspective of polarization information.

2.3. Input Feature Normalization and Design of Three Schemes

Before inputting these polarizing features into the neural network, it is necessary to
normalize these physical quantities to meet the requirements of the network input. In the
T-matrix, the total polarized power is converted into a physical quantity in units of dB.
For polarized power parameters T11, T22, T33, PS, PD, PV, they are all divided by Span to
achieve normalization.

Based on the existing literature and corresponding polarized power values, this paper
designs three deep learning polarization data input schemes. First, the decomposed PS,
PD, PV with reflection symmetry, and the normalized P0 (10log10Span) were used as the
data input Scheme 1. The elements in Scheme 1 were all based on the characteristics
of polarization power and contained the main polarization information of the terrain
objects. Therefore, this input scheme was used as the basic one. Then, according to
references [58–60], the correlation coefficients between channels T12, T23, T23, as well as the
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non-normalized P0 (NonP0) of the T matrix, were used as the research Scheme 2, where the
correlation coefficients between channels are defined by Formulas (26)–(28).

coeT12 = |T12|/
√

T11 · T22 (26)

coeT13 = |T13|/
√

T11 · T33 (27)

coeT23 = |T23|/
√

T33 · T22 (28)

In this data input scheme, except for NonP0, the value range of the other five pa-
rameters is between 0 and 1. Finally, a total of 16 parameters, including P0, T12, T23, T23,
H(T12), H(T13), H(T23), L(T12), L(T13), L(T23), V(T12), V(T13), V(T23), R(T12), R(T13), R(T23),
were used as data input Scheme 3, where P0 had been normalized. The other channels
were normalized by dividing them by P0, as they represent the power values of specific
polarization channels. The three data input schemes are shown in Table 1.

Table 1. List of three polarization data input schemes.

Scheme Parameters Polarization Features

1 4 P0, PS, PD, PV

2 6 NonP0, T22, T33, coeT12, coeT13, coeT23

3 16 P0, T12, T23, T23, H(T12), H(T13), H(T23), L(T12), L(T13), L(T23),
V(T12), V(T13), V(T23), R(T12), R(T13), R(T23)

At the same time, the data distribution of the three research schemes was also statis-
tically analyzed. Except for the NonP0 polarization feature of Scheme 2, the polarization
characteristics of the other schemes were distributed in the range [0, 1]. In order to have a
visual understanding of the polarization feature distribution of each data input scheme,
we conducted a histogram analysis of the polarization feature distribution, as shown in
Figures 1–3.

 

Figure 1. Histogram of polarization feature distribution for data input Scheme 1. (a) P0; (b) PS; (c)
PD; (d) PV.
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Figure 2. Histogram of polarization feature distribution for data input Scheme 2. (a) NonP0; (b) T22;
(c) T33; (d) coeT12; (e) coeT13; (f) coeT23.

Figure 3. Histogram of polarization feature distribution for data input Scheme 3. (a) P0, (b) T11,
(c) T22, (d) T33, (e) H(T12), (f) H(T13), (g) H(T23), (h) L(T12), (i) L(T13), (j) L(T23), (k) V(T12), (l) V(T13),
(m) V(T23), (n) R(T12), (o) R(T13), (p) R(T23).

9
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Through the experiment, we obtained the distribution histogram of P0 and clas-
sified features of four experimental images. We discovered that P0 was distributed at
[−30 dB, 0 dB]. We obtained the distribution histogram of ground objects and discov-
ered that it was also distributed at [−30 dB, 0 dB]. Therefore, the selected value range
distribution was appropriate, and no new categories were introduced.

2.4. Experiment and Pre-Processing

After obtaining the high-resolution Gaofen-3 Level 1A QPSI data, additional data
were required for radiometric calibration. The method for radiometric calibration can be
found in the Gaofen-3 user manual [64]. Due to inherent speckle noise in the data, an
appropriate filtering method was necessary to remove the speckle, reducing its impact on
subsequent classification. Compared to traditional filtering methods, the non-local means
filtering method [65] considers the influence of neighboring pixels, making it more effective.
Therefore, this paper selected this method to denoise the PolSAR images. The polariza-
tion coherence matrix data and all polarization characteristic parameters of the reflection
symmetry decomposition were obtained by processing the data using the polarization
decomposition production algorithm mentioned in reference [24,62].

2.5. Classification Process of Polarization Scattering Characteristics Using Deep Learning

In this paper, based on the scattering mechanism, the polarization characteristics were
classified into three different input schemes. Then, these three research schemes were
inputted into a network model to extract the features of the objects. Finally, a Softmax
classifier was used to obtain the classification results at the end of the network. The
Figure 4 is a flowchart of the entire experimental process, in which different colored CNN
architectures represent the extracted polarization features of different schemes. After the
experiments, it was found that when the network window size was 64 × 64, various
research schemes could achieve the best classification results. Therefore, this experiment
selected samples of this size for experimentation. The sample dimension sizes input into
the neural network were 64 × 64 × 4, 64 × 64 × 6, and 64 × 64 × 16, respectively.

The entire process of this algorithm is shown as follows (Algorithm 1).

Algorithm 1: A deep learning classification scheme for PolSAR image based on polarimetric features

Input: GF-3 PolSAR images.
Output: Predict label Ytest {y1, y2, . . . , ym}
1: Processing GF-3 PolSAR images.
2: Polarimetric decomposition.
3: Extract polarimetric features.
4: Feature normalization.
5: Three schemes are proposed based on the previous studies and scattering mechanisms.
6: Randomly select a certain proportion of training samples (Patch_Xtrain: {Patch_x1, Patch_x2, . . . , Patch_xn},
the remaining labeled samples are used as validation samples
7: Inputting Patch_xi into CNN.
for i < N do

the train one time.
If good fitting, then

Save model, and break.
else if over-fitting or under-fitting, then

Adjust parameters include, i.e., learning rate, bias.
End
8: Predict Label: Y = Softmax (Patch_Xtrain)
9: Test images are input to the model and predict the patches of all pixels.
10: Do method evaluation, i.e., Statistic OA, AA, and Kappa coefficient.

10
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Figure 4. Data processing flowchart.

3. Experimental and Result Analysis

In this section, high-resolution PolSAR images of the Yellow River Delta area, which
have undergone field surveys, were used to verify the effectiveness of the proposed ap-
proach. All experiments were conducted on an i7-10700 CPU (Intel, Santa Clara, CA,
USA)and RTX 3060 Ti GPU (NVIDIA, Santa Clara, CA, USA).

3.1. Study Area and Dataset

GF-3 has a quad-polarized instrument with different modes. In this article, we used
high-resolution QPSI imaging mode PolSAR images (spatial resolution is 8m) of the Yellow
River Delta area (Shandong, China) for the experiment (displayed in Figure 5). There are
several classical types in this area, such as nearshore water, seawater, spartina alterniflora,
tamarix, reed, tidal flat, and suaeda salsa. Restricted by historical resources, we chose four
images of this area. The training and validation sets were selected from three different
images taken during the same quarter in this region, specifically on 14 September 2021
and 13 October 2021. The test image was taken on 12 October 2017. We used unmanned
aerial vehicle (UAV) images (displayed in Figure 6), which were shot in September 2021,
combined with empirical knowledge, for marking targets to guarantee the accuracy of the
labeled training datasets.
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Figure 5. Study area location and its corresponding image.

 

Figure 6. UAV images of ground objects. (a) Nearshore water; (b) Seawater; (c) Spartina alterniflora;
(d) Suaeda salsa; (e) Tamarix; (f) Reed; (g) Tidal flat.

In this study, we classified seven species according to the survey results: nearshore
water; seawater; spartina alterniflora; tamarix; reed; tidal flat; and suaeda salsa. We labeled
these targets from numbers 1 to 7, respectively. We randomly selected 800 samples of each
category for training and 200 for validation. The details are shown in Table 2.

Table 2. Samples distribution.

Images
Nearshore

Water
Seawater

Spartina
Alterniflora

Tamarix Reed Tidal Flat Suaeda Salsa

20210914_1 500 400 1000 500 500 500 500
20210914_2 500 200 0 0 0 500 0

20211013 0 400 0 500 500 0 500
Total 1000 1000 1000 1000 1000 1000 1000

12



Remote Sens. 2024, 16, 1676

3.2. Classification Results of the Yellow River Delta on AlexNet

In order to quantitatively evaluate the accuracy of the three data input schemes for
classification and to avoid random results, in this paper, five independent experiments
were conducted on AlexNet for each data input scheme. The overall accuracy of each
classification was calculated for each experiment (the results were arranged in descending
order, with the highest overall accuracy being the maximum value), as well as the average
accuracy of the overall classification for the five experiments and the Kappa coefficient to
evaluate the classification results. Both the accuracy of individual land cover classes and
the Kappa coefficient were calculated based on the results with the highest overall accuracy.

From the classification results, obviously, it can be seen that when using Scheme 3 for
polarized data input, both the highest overall accuracy and average overall accuracy were
higher compared to the other two schemes, with values of 86.11% and 78.08%, respectively.
We believe this is because Scheme 3 contains more polarization information than the other
two schemes. The overall accuracy and Kappa coefficient of five independent experiments
stayed at a relatively high level, showing the stronger robustness of Scheme 3.

It is worth noting that for the tidal flat, Scheme 2 and Scheme 3 performed poorly,
with accuracies of 49.3% and 44.6%, respectively. This indicates that these two schemes did
not contain polarization parameters that effectively represent the scattering characteristics
of the tidal flat, resulting in low classification accuracy for this land cover. We also guess
that tidal flats are unique ecosystems because the water cover changes intermittently with
the tidal phase, which may also lead to low accuracy. It can also be seen from the table that
the accuracy of the tamarix in Scheme 1 was lower than the other two schemes, only 40.1%,
while the recognition accuracy of Scheme 2 and Scheme 3 reached 100%. This indicates
that our proposed method can extract more information from PolSAR images, which is
beneficial for improving the overall land use classification accuracy.

For Scheme 2, both the tidal flat and suaeda salsa had low classification accuracies
of 49.3% and 50.8%, respectively. For Scheme 1, the classification accuracies for each land
cover were lower than the other two schemes due to the limited number of polarization
features. This indicates that neither of these two schemes effectively contained polarization
information of classified features beyond a certain extent, which means that the polarization
characteristics of these two schemes in terms of data input were incomplete.

In Scheme 3, the polarized features inputted into the deep learning network were the
power values of the polarization channels. These channels were equivalent and contained
all the polarization information using equivalent polarization power values. Apart from
intertidal zones, high classification values were achieved for the other six land cover
types. This indicates that using equivalent polarization power values can effectively
distinguish most land cover types. However, strictly speaking, the polarization information
in this scheme still cannot effectively differentiate classified land cover types, and overall
classification accuracy needs further improvement. The classification accuracy and overall
accuracy of land features for various schemes are shown in Table 3.

Table 3. The classification accuracy of their polarization input schemes on AlexNet.

Classification Accuracy
Input Scheme

Scheme 1 Scheme 2 Scheme 3

Nearshore water 83.4 96.8 100

Seawater 98.7 96.9 99.60

Spartina alterniflora 87.0 96.8 93.3

Tamarix 40.1 100 100

Reed 50.4 94.5 68.50

Tidal flat 61.8 49.3 44.6

Suaeda salsa 98.2 50.8 96.8
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Table 3. Cont.

Classification Accuracy
Input Scheme

Scheme 1 Scheme 2 Scheme 3

Indepent experiments
Overall Accuracy

74.23 83.59 86.11

71.36 81.41 81.53

70.41 77.83 77.04

68 73.66 73.73

67.84 68.87 71.99

Average Overall Accuracy 70.368 77.072 78.08

Kappa coefficient 0.6993 0.8085 0.8380

We also classified the entire test image, and it is easy to see that the classification result
of Scheme 3 was better than the other two schemes. From the overall classification effect,
Scheme 3 was also better than the other two schemes in terms of the number of classified
objects and the classification effect between different categories.

From the classification maps, we can see that spartina alterniflora, tamarix, and
reed were easily classified in Scheme 3. In the other two schemes, there were some
misclassification phenomena, which indicates that compared to Scheme 3, the polarization
information carried cannot distinguish these wetland vegetation types very well.

The classification results of the entire image are shown in Figure 7.

Figure 7. The classification results of the three research schemes on AlexNet. GF-3 Data (a) Pauli
pseudo-color map. (b) Ground truth map. Classification results of (c) Scheme 1, (d) Scheme 2,
(e) Scheme 3.
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3.3. Classification Results of the Yellow River Delta on VGG16

To further verify the above conclusion, we also conducted comparative experiments
on three schemes through VGG16. Similar to the testing results on AlexNet, when using
VGG16 to test three data input schemes, there were still situations where the classification
accuracy of certain land objects was low. In Scheme 1, the reed classification accuracy was
26.1%, and the tamarix accuracy was 40.2%. In Scheme 2, the tidal flat accuracy was only
28.5%, while in Scheme 3, the reed accuracy was 44.7%, and the tidal Flat accuracy was
58.3%. This indicates that none of these three schemes could fully classify the selected
features beyond a certain extent, but in terms of overall classification accuracy and Kappa
coefficient, Scheme 3 was still better than the other two schemes, and it was relatively
complete in carrying polarization features.

Overall, Scheme 3 showed better classification performance than the other two schemes.
Except for reeds and tidal flats, the classification accuracy of the other five land cover types
remained consistently high. The classification accuracy of Tamarix reached 100%, and the
classification accuracy of other land features was also above 94.1%. At the same time, the
highest overall classification accuracy and average overall classification accuracy were also
superior to the other two schemes, indicating that Scheme 3 had relatively more complete
polarization information prior to inputting it into the network model.

Scheme 2 slightly underperformed Scheme 3 in the classification accuracy of suaeda
salsa, with an accuracy of only 66.2%. Particularly, Scheme 2 struggled to classify tidal flats
well, with a classification accuracy of only 28.5%. The polarization information contained
in Scheme 2 cannot effectively characterize these two types of ground objects, resulting in
relatively low classification accuracy. Instead, Scheme 1, which included surface scattering
and volume scattering components, effectively characterized the scattering characteristics
of tidal flat and suaeda salsa. Therefore, the effect of Scheme 1 was better than that of
Scheme 2.

For Scheme 1, the overall land cover classification accuracy was lower compared to the
other two schemes, mainly due to the limited number of polarimetric feature parameters,
which failed to effectively represent the classified area in the input network model. The
specific classification accuracies are shown in Table 4.

Table 4. The classification accuracy of their polarization input schemes on VGG16.

Classification Accuracy
Input Scheme

Scheme 1 Scheme 2 Scheme 3

Nearshore water 89.3 95.7 95.6

Seawater 99.4 97.7 99.7

Spartina alterniflora 87.6 96.6 95.9

Tamarix 40.2 98.5 100

Reed 26.1 93.8 44.7

Tidal flat 73.2 28.5 58.3

Suaeda salsa 100 66.2 94.1

Indepent experiments overall accuracy

73.69 82.43 84.04

72.8 82.21 83.57

69.7 81.44 82.07

68.66 79.44 81.54

67.6 77.53 80.11

Average overall accuracy 70.49 80.61 82.266

Kappa coefficient 0.6930 0.7950 0.8138
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Similarly, we also displayed the classification results of the entire image. The results
of the three data input schemes on VGG16 are shown in Figure 8. From Figure 8, it
can be observed that the classification results of Scheme 3 were still the best among the
three schemes.

Figure 8. Classification results of three research schemes on VGG16. GF-3 Data. (a) Pauli pseudo-
color map; (b) Ground truth map. Classification results of (c) Scheme 1, (d) Scheme 2, (e) Scheme
3.

When using VGG16 for classification, the classification results of each scheme were
clearer overall than when using AlexNet, and the clustering effect of each feature was better.

4. Conclusions

In this paper, a deep learning-based classification scheme for PolSAR images using po-
larimetric scattering features was proposed through rigorous mathematical derivation. This
scheme utilized a combination of polarimetric power features, ensuring that each channel
represented power values and was equivalent to other channels. Each channel possessed
practical physical meanings and clear mathematical significance. Experimental results
demonstrated that compared to the 6-parameter and 4-parameter data input schemes,
the proposed scheme had more comprehensive information and achieved higher classi-
fication accuracy. The proposed scheme was validated on the GF-3 dataset and showed
performance improvement. However, for the classification of certain land objects, this
approach lacked sufficient accuracy, and there were situations where the information was
not comprehensive enough.

In future work, more comprehensive data input schemes will be explored.
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Abstract: Cloud detection technology is crucial in remote sensing image processing. While cloud
detection is a mature research field, challenges persist in detecting clouds on reflective surfaces like
ice, snow, and sand. Particularly, the detection of cloud shadows remains a significant area of concern
within cloud detection technology. To address the above problems, a convolutional self-attention
mechanism feature fusion network model based on a U-shaped structure is proposed. The model
employs an encoder–decoder structure based on UNet. The encoder performs down-sampling to
extract deep features, while the decoder uses up-sampling to reconstruct the feature map. To capture
the key features of the image, Channel Spatial Attention Module (CSAM) is introduced in this work.
This module incorporates an attention mechanism for adaptive field-of-view adjustments. In the up-
sampling process, different channels are selected to obtain rich information. Contextual information
is integrated to improve the extraction of edge details. Feature fusion at the same layer between
up-sampling and down-sampling is carried out. The Feature Fusion Module (FFM) facilitates the
positional distribution of the image on a pixel-by-pixel basis. A clear boundary is distinguished using
an innovative loss function. Finally, the experimental results on the dataset GF1_WHU show that
the segmentation results of this method are better than the existing methods. Hence, our model is of
great significance for practical cloud shadow segmentation.

Keywords: cloud shadow segmentation; convolution neural network; attention mechanism; feature
fusion; deep learning

1. Introduction

With the decade-long development of remote sensing technology, the Gaofen series
of satellites has formed a “three-high” observation system with high spatial, temporal,
and spectral resolution [1], which uses sensors to acquire images by obtaining information
about the Earth over long distances. In the remote sensing image, the cloud shadow area
is an important identification; through the identification of the cloud shadow position
in the image, we can obtain the visible light, infrared rays, and other information on
the ground, used to monitor the cloud coverage, the type of cloud, and the direction
of cloud movement. This provides meteorologists and weather forecasters with critical
data to help them predict the weather more accurately. However, merely identifying
the location of cloud cover is insufficient. The presence of cloud shadows can obstruct
analysis in precision agriculture and other fields, leading to biases in the results. Therefore,
applications of cloud shadow detection are increasingly widespread in meteorological
forecasting, environmental monitoring, and natural disaster detection. The cloud detection
technology [2] is inadequate; thus, utilizing cloud and cloud shadow detection technology
to accurately detect cloud cover from remote sensing images is a crucial preprocessing
step for most satellite imagery. In this paper, we propose a segmentation algorithm for
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separating the three components of clouds, cloud shadows, and background in remote
sensing images.

Traditional cloud shadow segmentation methods can be broadly categorized into
the following five types: 1. thresholding-based methods; 2. morphology-based methods;
3. statistical-based methods; 4. texture feature-based methods; and 5. machine learning-
based methods. The thresholding method uses various physical methods, such as AVHRR
and NIR images, to set feature thresholds such as luminance, chromaticity, etc., to detect
the cloud shadows in the image. Early on in this research, people used fixed thresholds to
distinguish clouds from other parts. For instance, Saunders and Kriebel [3] processed the
NOAA-9 dataset over a week by determining thresholds for a range of physical parameters
including cloud-top temperatures, optical depths, and liquid water content. While the fixed
threshold method is straightforward and user-friendly, it lacks the adaptability needed to
accommodate various meteorological conditions, lighting scenarios, geographical regions,
and times of day. Additionally, it often necessitates manual threshold adjustments, which
pose numerous shortcomings and limitations. Later, many researchers proposed improve-
ments by using dynamic thresholding for cloud detection [4–7]. The dynamic thresholding
method adjusts thresholds based on environmental conditions through the construction
of diverse physical models, thereby enhancing the accuracy of automatic cloud analysis.
However, for complex cloud and feature types, this method can be challenging to apply
to the background, and it also incurs significant computational costs. Secondly, the mor-
phological method based on set theory proposes a series of operations, such as expansion,
erosion, open and close operations, and hit–hit–miss transformations for images. Danda
and Xiang Liu et al. [8,9] constructed skeleton features to help analyze the morphology
of the cloud and thus separate it from other regions by using a gray-level morphological
edge extraction method. Moreover, Tom et al. [10] established a common method based on
morphological data to create an efficient computational paradigm for the combination of
simple nonlinear grayscale operations such that the cloud detection filter exhibits spatial
high-pass properties, emphasizes cloud shadow regions in the data, and suppresses all
other clutter. A series of methods regarding morphology are more effective for the case
of blurred cloud edges and complex shapes, but they are difficult to apply directly to
multispectral images. Thirdly, statistical methods use various statistical and analytical tools
to establish regression equations for differences in reflectance, brightness, or temperature
between picture pixels in satellite data to detect clouds. For example, Amato et al. [11]
used PCA and nonparametric density estimation applied to the SEVIRI sensor dataset,
and Wylie et al. [12] combined time-series analyses of more than 20 years of polar-orbiting
satellite cloud data to predict future cloud trends. However, since the sample data used
in regression models are historical, this type of method is not widely used and is limited
to specific times and regions. Fourthly, the texture feature method identifies cloudy and
non-cloudy regions by extracting the texture features of images. For example, Abuhussein
et al. [13,14] conducted segmentation by analyzing the GLCM (Gray-Level Co-occurrence
Matrix) to capture spatial relationships and covariance frequencies between pixels of vary-
ing gray levels in the image. This process enables the extraction of crucial information
regarding the image texture. Reiter and Changhui et al. [15–17] completed segmentation by
using the wavelet transform to detect texture features and edge information in the image at
different spatial scales and to decompose the cloud image into details at different scales to
obtain local and global features of the cloud, while Surya et al. [18] used a clustering algo-
rithm to group texture regions similar to the cloud shadow. This method works better for
texture-rich cloud shadow images. To overcome the limitations of the first four traditional
methods, machine learning algorithms are proposed to realize cloud shadow segmentation
by training classifiers. Support vector machines, random forests, and neural networks
are typical classifiers. For instance, Li et al. [19] proposed a classifier based on support
vector machines to detect clouds in images, while Ishida et al. [20] quantitatively guided
the support vector machines with the help of classification effect metrics to improve the
feature space used for detecting cloud shadows and to reduce the frequency of erroneous
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results. Fu et al. [21] combined the ensemble thresholding method and random forest
for the FY-2G image set to improve the meteorological satellite cloud detection technique,
and Jin et al. [22] established a BP neural network backpropagation model for the MODIS
dataset, which improved the learning model to a certain extent. Although these methods
are indeed more effective, they necessitate manual feature engineering to select suitable
labels for training and testing a large volume of data annotations. Furthermore, the quality
of the model is directly influenced by the features selected.

To overcome the shortcomings of manual feature engineering, deep convolutional
neural networks (CNN) gradually emerged; a variety of convolutional neural networks
were proposed for remote sensing image segmentation tasks, and semantic segmentation
algorithms based on deep learning began to gradually become mainstream. Long et al. [23]
first proposed a fully convolutional neural network, FCN, for semantic segmentation
in 2015, which can directly realize end-to-end pixel-by-pixel classification. Mohajerani
et al. [24] applied the FCN network to the remote sensing image Landsat dataset cloud
detection technique in 2018, which dramatically improved the efficiency of the target
classification of remote sensing images; however, the results obtained were still not fine
enough and not sensitive enough for the detailed parts of the image. Since then, there has
been a surge in deep learning networks, with numerous CNN frameworks continuously
being proposed. In 2015, Badrinarayanan et al. [25] introduced SegNet, a segmentation
network based on an encoder–decoder structure, utilizing up-sampling with the unpooling
operation. Subsequently, in 2019, Lu et al. [26] adapted the SegNet network model for cloud
recognition in remote sensing images. Their approach improved the accuracy of cloud
recognition by preserving positional indices during the pooling process, thus retaining
image details through a symmetrical parallel structure. Although it demonstrated some
ability in cloud–snow differentiation, its training time was found to be excessively long
and inefficient. In 2016, Chen et al. [27] designed an inflated convolutional network called
DeepLab, aimed at expanding the sensory field by introducing voids in the convolutional
kernel. DeepLab enhances the robustness of image segmentation. However, it imposes
specific requirements on the size of the segmented target. It excels in segmenting fore-
ground targets within the general size range. Nonetheless, when faced with extreme size
variations in the target, such as very small or very large targets, DeepLab exhibits poor
performance and suffers from segmentation instability. In 2015, Ronneberger et al. [28]
proposed the UNet image segmentation network, named because the network framework
is shaped like the letter U. The contextual information is fused through feature splicing
in the channel dimension during the up-sampling process to achieve a more fine-grained
segmentation, which is suitable for highly detailed segmentation tasks. In 2017, Zhao
et al. [29] designed a pyramidal scene parsing network structure, PSPNet, which integrates
contextual information from different regions, applies convolutional kernels of different
sizes, and employs a multi-scale sensory field to efficiently combine local and global cues.
In 2022, Zhang et al. [30] proposed a dual pyramidal network, DPNet, inspired by PSPNet.
This multi-scale feature captures features of the image from different scales, thus enhancing
the network’s capability in feature extraction, but it also incurs greater computational cost,
making training and prediction slower.

Although existing CNNs perform better in remote sensing image segmentation tasks,
there is still a general problem: due to the down-sampling nature of the convolutional
operation, the network is prone to lose critical detail information during feature extraction
and scale reduction, which leads to many problems, such as inaccuracy and blurred
edges in segmentation results. Many studies have demonstrated that combining low-level
and high-level semantic information can significantly improve model performance [31].
However, traditional feature fusion methods are usually too simple and do not pay enough
attention to edge information and image features to effectively restore lost information,
especially for tasks with complex backgrounds, which may lead to missed detection of
fine targets and edge blurring. To address these challenges in semantic segmentation,
we propose a new approach for cloud shadow segmentation—an attention mechanism
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feature fusion network based on the UNet framework. The encoder–decoder architecture
of UNet effectively extracts and restores feature information across various scales, making
it particularly suitable for smaller-scale datasets. Therefore, we adopt this U-shaped
network structure as our baseline and integrate the channel attention mechanism and
spatial attention mechanism module into it. This integration allows for adaptive attention
to different channels of the image and feature map information, with the goal of enhancing
the fine detection of cloud shadows. The addition of the new feature fusion module can
effectively fuse the low-level and high-level features, restore the lost information, and
segment the fine features more accurately in such a complex context as the cloud shadow
segmentation task. The AFMUNet network framework is shown in Figure 1. After inputting
the image, the high-level image features are initially extracted through down-sampling.
Subsequently, during the up-sampling process and enhancement of feature map resolution,
we progressively enhance the receptive field adaptively and employ different channel
operations. In addition, the feature fusion module is utilized in each layer to integrate
contextual information more accurately and fuse low-level and high-level information.
Furthermore, an innovative loss function is employed during the training process, and
classification results are outputted after multiple samplings. Through the combined effect
of the above modules, the detection accuracy of our network was substantially improved.
The main contributions of this paper’s work are as follows:

• An integrated module of channel space attention mechanism, suitable for cloud
shadow segmentation tasks within a U-shaped structure, is proposed. This model
facilitates dynamic adjustment of feature map weights, enhancing the ability to capture
crucial image features and thereby improving segmentation accuracy.

• The feature fusion operation of the original network is updated, which helps to
better understand the target and background in the image, segment the image using
information from different scales, and deal with cloud shadow targets of different
sizes and shapes.

• An innovative weighted loss function is developed for the dataset, which improves
the accuracy of model learning and optimizes the model performance to some extent.

• A network that integrates the above three features and combines them with a feature
extraction network is proposed to segment high-resolution remote sensing images.

Figure 1. Attention mechanism feature fusion network framework based on U-shaped structure.

2. Methodology

Since the purpose of the cloud–shadow segmentation task is to match labels on a pixel-
by-pixel basis on an image to distinguish between clouds, cloud shadows, and backgrounds,
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the task can be regarded as a semantic segmentation task for triple categorization. Recently,
CNNs have achieved great success in the field of computer vision, especially in image
segmentation tasks. As pointed out in Section 1, due to the diversity of cloud layers,
irregular shapes, and variations in lighting conditions and shooting locations, cloud shadow
segmentation tasks often require highly accurate models to cope with these complexities.
Nevertheless, traditional machine learning algorithms may face challenges in meeting the
stringent accuracy demands of cloud shadow segmentation tasks, particularly in scenarios
involving snowy mountainous terrain or under low-light conditions [32]. When dealing
with the cloud shadow segmentation task, we need an efficient network structure that can
fully capture the detailed features of clouds while preserving the surface information. To
fulfill this requirement, we choose the UNet structure as the backbone network framework,
which is appropriately modified to incorporate CSAM and FFM improvement modules
to further improve the performance of the model in capturing the complex structure and
irregular shape of cloud shadows.

2.1. UNet—A Network Based on Encoder–Decoder Architecture (Related Work)

UNet is a classical deep-learning architecture especially suited for image segmentation
tasks. It is designed as an encoder–decoder structure with special skip connections to better
capture features and details at different scales in segmentation tasks. The following are the
main features and working principles of UNet:

1. Encoder Part: The encoder part of UNet consists of multiple convolutional layers
that gradually halve the size of the feature map while increasing the number of feature
channels. This helps to extract high-level feature representations of the image and capture
semantic information at different scales. The encoder part usually includes operations such
as convolutional layers, pooling layers, etc.

2. Jump concatenation: UNet introduces jump concatenation to concatenate the fea-
ture maps of the encoder with the feature maps of the decoder to include more detailed
information in the decoder. This helps to overcome the problem of information loss that
may be introduced by pooling operations and improves the performance of the segmenta-
tion model.

3. Decoder Part: The decoder part of UNet consists of multiple convolutional and
up-sampling layers that gradually recover the spatial resolution of the feature map through
operations such as inverse convolution. The decoder part restores the low-resolution
feature map to the size of the original input image through the up-sampling operation and,
at the same time, performs feature extraction through the convolution operation.

4. Output Layer: The output layer of UNet is usually a convolutional layer whose
output is a segmentation mask indicating the class or segmentation result of each pixel in
the image. The number of channels in the output layer is usually equal to the number of
categories in the task.

The UNet architecture has achieved excellent performance in a variety of fields, such as
medical image segmentation, remote sensing image analysis, and automated driving, where
it can efficiently capture semantic information and details in an image while maintaining
high resolution. In our study, only the basic architecture of UNet is retained, based on
which innovations and modifications are made.

2.2. CSAM (Channel Spatial Attention Module)

To better understand the key features and structures in an image and to improve
the segmentation of complex scenes, we introduce the attention mechanism. The concept
of attention mechanism originated in the field of natural language processing. It serves
to emphasize words at different positions within an input sentence, thereby facilitating
improved translation into the target language [33,34]. For instance, in machine translation,
the attention mechanism helps the model focus on relevant parts of the input sentence when
generating each word of the translation. This allows for more accurate and contextually
appropriate translations, especially in cases where the input sentence is long or complex.
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Similarly, in text summarization, the attention mechanism aids in identifying important
sentences or phrases to include in the summary, resulting in more concise and informative
summaries. Now, we apply it to image semantic segmentation tasks to help process image
information more efficiently by focusing attention on key regions in the image while
suppressing irrelevant information. This is an approach that mimics the human visual
and cognitive system, which is similar to how the human cerebral cortex achieves efficient
analysis by focusing on specific parts when processing image and video information
in complex scenes. In general, the attention mechanism can be categorized into four
dimensions—channeling, spatial, temporal, and branching [35]—which play different roles
in different computer vision tasks.

As shown in Figure 2 below, we add the CSAM module to the basic structure of
UNet after the end of each sample in the up-sampling phase, which skillfully combines the
channel and spatial attention mechanisms. For a given feature map, the CSAM module is
capable of generating feature map information in the channel and spatial dimensions [36]
and multiplying them with the original input feature map to perform adaptive feature ad-
justment and correction. Eventually, the CSAM module outputs feature maps, adjusted by
the attention mechanism, with stronger semantic information and adaptability. This module
enhances our ability to focus on the channel information of the image during cloud shadow
segmentation tasks, thereby improving cloud perception and segmentation accuracy.

Figure 2. Channel space attention mechanism module.

2.2.1. CAB (Channel Attention Block)

CAB is an important component of the CSAM module. It focuses on weighting
attention given to the channel dimensions in the feature map [37,38]. The goal of the
channel attention mechanism is to enhance the attention given to different channels by
dynamically adjusting the weights between channels. This is crucial to improve the model’s
ability to perceive different features in the image. The CAB module works as follows:

The steps of the CAB module are shown in Figure 3 below. Step 1: Firstly, the input
feature map Fin is subjected to global average and maximum pooling operations, and the
input information is compressed and downgraded to obtain two 1 × 1 average pooled
features, Fc

avg, and maximum pooled features, Fc
max. Step 2: Then, they are fed into a

weight-sharing two-layer neural network, MLP. Step 3: Finally, the MLP output features
are subjected to an element-by-element summation operation, which is applied to the input
feature map after activation by the Sigmoid function to generate the final Channel Attention
Feature, Mc. The above computational process is expressed as Equation (1), shown below:

Mc(Fin)= σ(MLP(AvgPool(Fin)) + MLP(MaxPool(Fin)))

= σ(W1(W0(Fc
avg)) + W1(W0(Fc

max)))

σ(x)= sigmoid(x) =
1

1 + e−x

(1)

where σ(·) is the sigmoid function and W0/W1 represents the weights of the hidden/output
layer. The parameters of W0 and W1 are shared in MLP.
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Figure 3. Channel attention block.

Attention weights on the channel dimensions, indicating the contribution of different
channels to the final feature representation, were generated by CAB, and these weights
were applied to the original input feature map to generate features for the input spatial
attention mechanism module. Channel-level feature tuning is achieved by weighting each
channel’s features. This means that the model can better focus on the channel features that
are important to the task at hand, improving the representation of semantic information.

2.2.2. SAB (Spatial Attention Block)

Unlike CAB, the SAB module focuses on the spatial dimension of the feature map. Its
goal is to enhance the focus on different regions in the image by adjusting the weights of dif-
ferent spatial locations to improve the model’s perception of global contextual information.
The SAB module works in Figure 4 as follows:

Figure 4. Spatial attention block.

Step 1: First, the feature map output from the CAB module is used as the input
of this module, Fin, and global maximum pooling and average pooling are done on the
channel dimensions; then, these two results are used in a splicing operation. Step 2: Next,
a 7 × 7 convolution kernel is chosen to perform a convolution operation on the splicing

26



Remote Sens. 2024, 16, 1574

result, and the channel dimensions are reduced to 1. Step 3: Finally, after the Sigmoid
activation function maps the weights between 0 and 1 to represent the order of importance
of each position, these spatial attention weights are applied to the inputs to generate the
feature map of the spatial channel attention mechanism, Ms. The above computational
process is expressed as Equation (2), shown below.

Ms(Fin) = σ( f 7×7([AvgPool(Fin); MaxPool(Fin)]))
= σ( f 7×7(Fs

avg; Fs
max))

(2)

where 7 × 7 is the kernel of convolution. This size performs better than others.
SAB generates attention weights in the spatial dimension through a series of con-

volutional operations and activation functions that indicate the contribution of different
locations to the final feature representation. This means that the model can better focus on
key regions in the image, thus improving the perception of global contextual information.
The SAB module helps us to more accurately capture the contours and structure of objects
in tasks such as semantic segmentation.

2.3. FFM (Feature Fusion Module)

The introduction of the FFM module [39–41] plays a key role in the process of feature
fusion of information from different feature maps obtained from deeper and shallower
layers when jump connections in the original network structure are involved. The FFM
module allows us to efficiently fuse features of different scales and resolutions in order to
capture the complex structure and irregular shapes of cloud shadows.

The steps of the FFM module are depicted in Figure 5. Step 1: Accept two feature
maps with different resolutions from the encoder and decoder sections as input. Step
2: Perform a series of operations such as splicing, convolution, and so on, to fuse them
into an enhanced hybrid feature map, which strengthens the representation of the hybrid
features and makes them more suitable for subsequent processing. Step 3: Perform a global
averaging of the hybrid feature map pooling to reduce the spatial dimension to 1 × 1
to obtain global channel statistics. Step 4: Introduce two consecutive 1 × 1 convolution
operations via Relu and Sigmoid activation functions in order to enhance the nonlinearity
and show the importance of each channel. Step 5: Multiply the channel attention weights
with the element-by-element hybrid feature map obtained from Step 2 to perform the
mul operation to obtain a weighted feature map. Step 6: Finally, the weighted feature
map obtained from Step 5 is subjected to element-by-element add-sum operation with the
hybrid feature map obtained from Step 2, to produce the final fused feature map. The
above computational process is expressed as Equation (3), shown below.

Fconv = Conv(Concat(F1, F2))
α = relu( f 1×1(AvgPool(Fconv)))

MF(F1, F2) = Fconv + Fconv ⊗ σ( f 1×1(α))
relu(x) = max(0, x)

(3)

where Fconv is the fusion of the input from shallow and deep layers and α represents the
enhanced nonlinear result as an intermediate variable.

The FFM module is a well-designed feature fusion mechanism that effectively inte-
grates feature maps from shallow and deep layers by means of utilizing channel comple-
mentarity, adaptively adjusting the weights of the channel features dynamically to better
fuse information from different scales and semantic levels. This innovative fusion module
offers an effective tool for our research and improves the performance of the capture and
segmentation tasks of feature statistics.
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Figure 5. Feature fusion module.

2.4. Loss Function

The loss function is an important component in various segmentation network models
based on deep learning [42]. It is used to measure the difference between the prediction
and true values of the network and guide the model to make more accurate predictions. In
the segmentation task, the reasonable selection, optimization, and innovation of the loss
function can enhance the learning process of the model to achieve better segmentation
results [43] as well as portability and application to other networks; thus, the study of the
loss function selection is particularly important. The commonly used loss functions [44]
are as follows:

1. Cross Entropy Loss Function

L = − 1
N

N

∑
i=1

N

∑
j=1

[yij log(pij) + (1 − yij) log(1 − pij)] (4)

where N denotes the number of samples, and M denotes the number of categories. As
the most commonly used loss function in image segmentation, which can be used in a
large number of semantic segmentation tasks, the cross-entropy loss can help the network
to correct categorization of the pixels after judging how good or bad the model is for
the dataset.

2. Weighted Cross-Entropy Loss Function

Lw = − 1
N

N

∑
i=1

N

∑
j=1

[wjyij log(pij) + (1 − yij) log(1 − pij)] (5)

Despite being similar to the cross-entropy loss function, multiplying all positive
samples by a coefficient for weighting allows the model to focus more on a smaller number
of samples, thus mitigating the problem of the imbalanced number of categories.

3. Focal Loss

LF = − 1
N

N

∑
i=1

N

∑
j=1

[(1 − pij)yij log(pij) + pij
γ(1 − yij) log(1 − pij)] (6)

In addition to the imbalance in the number of samples from different categories, the
problem of imbalance in the number of easily recognized samples and hard-to-recognize
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samples is often encountered, and the Focal Loss can help the network to better deal with
the imbalance in the distribution of samples.

4. Dice Loss

LD = 1 − 2|X ∩ Y|
|X|+ |Y| (7)

where |X ∩ Y| is the intersection between samples X and Y, |X| represents the number of X
samples, and |Y| stands for the number of Y samples.

Unlike the weighted cross-entropy loss function, the Dice Loss does not require
category reweighting; it calculates the loss directly from the Dice coefficients, which can
help the network better handle overlaps and boundaries between categories.

5. IOU Loss

LI = 1 − |X ∩ Y|
|X ∪ Y| (8)

where |X ∪ Y| depicts the union between samples X and Y.
The IOU loss measures how similar the predicted segmentation results are to the true

segmentation, and it helps to optimize the spatial consistency of the segmentation.
In summary, since the cloud shadows in the image are prone to overlap, and it is

desired to distinguish the boundary between the two more accurately, L and LD are selected
in this experiment for proper weighting to derive an innovative loss function applicable to
the task of the dataset in this paper.

Loss = α · L + β · LD (9)

From Table 1, it is evident that the last row, which utilizes different weight propor-
tions in the loss function weighted combination, achieves the best performance. This
finding aligns with our initial conjecture. The Dice Loss effectively distinguishes be-
tween overlap regions and boundaries, aiding in completing the classification task more
effectively. Moreover, continuous training is essential for further enhancing the model’s
classification accuracy.

Table 1. Effect of different combinations of weight coefficients on segmentation results.

α β MPA (%) MIoU (%)

0.2 0.8 65.93 58.69
0.3 0.7 71.97 58.79
0.4 0.6 77.04 65.77
0.5 0.5 76.59 65.07
0.6 0.4 81.86 78.22
0.7 0.3 87.32 86.30
0.8 0.2 96.88 93.02

3. Experimental Analysis

3.1. Dataset

To further validate the generalization performance of the proposed model, we em-
ployed the GF1_WHU cloud shadow dataset created by Li et al. [45] as a generalization
dataset. This dataset utilizes high-resolution GF-1 Wide Field of View (WFV) images with a
spatial resolution of 16 m and covers four multispectral bands, spanning from visible to
near-infrared spectral regions. The dataset consists of 108 GF-1 WFV 2a-level scene images,
manually labeled by experts in remote sensing image interpretation at the SENDIMAGE
laboratory of Wuhan University. These images encompass five main land cover types,
including water, vegetation, urban areas, snow and ice, and barren land, representing
different regions worldwide. During the model training process, we cropped the images
to 256 × 256 pixels, removing black borders and unclear images, resulting in a total of
5428 images used for training and 1360 images for validation and testing, to evaluate the
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model’s training results, detection accuracy, and generalization performance. To illustrate
the dataset effectively, we selected images from different scenes, as shown in Figure 6.

Figure 6. Examples from GF1_WHU Wuhan University cloud shadow dataset: (a) water; (b) vegeta-
tion; (c) snow; (d) ice; (e) barren.

Each original image is captured by three channels of RGB: white represents clouds,
gray represents cloud shadows, and black is the background. In addition, to prevent
overfitting and to enhance the robustness of the model, we also augmented the dataset by
randomly flipping, clipping, rotating, scaling, and panning the images as well as adding
noise interference to the images.

3.2. Experimental Details

In this section, using the Legion Y740 laptop sourced from Lenovo in Beijing, China,
we harness PyTorch 2.0 to train and test all models on its GeForce RTX 2080Ti graphics
card based on the dataset introduced in the preceding dataset section. This comprehensive
evaluation aims to assess the efficiency and accuracy of our proposed network model for
cloud shadow segmentation. Through a series of ablation experiments and comparison
experiments, we thoroughly evaluated our model from both qualitative and quantitative
perspectives [46,47]. The quantitative metrics pixel accuracy (PA), precision (PC), recall
(RC), mean intersection over union (MIoU), reconciliation average (F1), and frequency
weighted intersection over union (FWIoU) are calculated as follows:

PA =
TP + TN

TP + TN + FP + FN
(10)

PC =
TP

TP + FP
(11)

RC =
TP

TP + FN
(12)

MIoU =
TP

TP + FP + FN
(13)

F1 =
2 × PC × RC

PC + RC
(14)

FWIoU =
TP + FN

TP + FP + TN + FN
× TP

TP + FP + FN
(15)

In Equations (10)–(15) above, TP represents true positives, which correspond to the
number of pixels correctly identified as positive samples. Similarly, FP denotes false
positives, indicating the number of pixels incorrectly classified as positive samples. TN
refers to true negatives, representing the number of pixels accurately identified as negative
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samples. Lastly, FN signifies false negatives, indicating the number of pixels incorrectly
classified as negative samples.

In this section, we provide a comprehensive evaluation of our proposed algorithm,
verifying the efficiency and sophistication of our algorithm for the task of remote sensing
image change detection through ablation experiments and comparison experiments. Our
experiments are conducted on the GF1_WHU dataset, with an initial learning rate of 0.001.
The number of samples used in each round is 4, the number of training samples is 5428,
the number of training times is 150, and the quantitative metrics used are PR, RC, MIoU
and F1.

3.3. Ablation Experiment

In conducting the ablation experiments, changes in the results are observed by censor-
ing part of the network architecture and testing the effect of different modules on the whole
model. Since UNet is the basic framework of our network, UNet is used as the starting
point for comparison, where we use metrics such as PA, RC, F1, and MIoU to evaluate
the performance of the model. As can be seen in Table 2 below, the combination of all
components achieves the optimization of the model’s performance.

Table 2. Performance comparison of different combinations of modules in the model.

Method PA (%) RC (%) PC (%) F1 (%) MIoU (%)

UNet 95.27 89.72 93.24 92.03 91.30
UNet + CSAM 96.48 (↑) 94.32 95.02 93.41 92.89
UNet + FFM 95.32 94.83 93.62 91.82 91.33

UNet + CSAM + FFM 96.93 (↑) 95.82 94.97 93.75 93.21
UNet + CSAM + FFM + Loss

AFMUNet (Ours) 97.12 96.03 93.21 93.90 93.42

The arrow means this kind of combination improves the performance of model. The bold indicates the highest
value in the column.

In order to enhance deep feature extraction, alleviate information loss resulting from
constant down-sampling, and effectively capture multi-scale contextual information, as
indicated by the ablation results of the deep feature sampling process, the CSAM Attention
Mechanism Module proves beneficial for information recovery to capture detailed infor-
mation. Additionally, the FFM module aids in better integrating contextual information,
facilitating the fusion of features from different scales. Table 2 demonstrates a significant im-
provement in model performance following the introduction of these modules. Notably, the
introduction of the Feature Fusion Module alone does not yield substantial improvements
to the original model.

3.4. Comparison Experiment

In this experiment, the core of the cloud–shadow segmentation task is semantic seg-
mentation, so our proposed network is compared with other semantic segmentation algo-
rithms. PA, FWIoU, F1, and MIoU are selected as the evaluation metrics to comprehensively
evaluate the performance of the model, as shown in Table 3.

From the comparison results of different methods in the experimental setting in
Table 3, it can be seen that our proposed algorithm outperforms the current traditional
segmentation methods in all five metrics and is also basically better than the latest methods.
Among all the networks considered, SegNet and FCN8 exhibit the poorest performance in
terms of the metrics evaluated. While the metrics of the other models show improvement
over successive iterations, they still fall short of the performance achieved by the models
proposed in this paper. According to Table 3, we found that the above methods can
achieve high-precision segmentation of cloud shadow datasets; to further visualize the
effectiveness of our methods, Figure 7 shows the visualization experiment results of cloud
shadow segmentation.
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Figure 7. Comparison of visualization results for different models: (a) the original image; (b) the
corresponding label; (c) the prediction of UNet; (d) the prediction of PSPNet; (e) the prediction of
SegNet; (f) the prediction of HRNet; (g) the prediction of the proposed AFMUNet.

Figure 7 shows the visualization effect of different methods for image segmentation in
the cloud shadow dataset. Eight examples are selected to demonstrate the segmentation
effect. It can be observed that the proposed method is more accurate for cloud segmentation,
especially in the segmentation of the edge region of the cloud. However, the performance
is poor for cloud shadows and thin or unclear clouds. The segmentation effect of the Segnet
model is relatively rough, the edge information is incompletely obtained, and too much
information is lost in the feature extraction stage. It can be found from Figure 7 that it
does not perform well at the boundary of the cloud and loses a lot of shape-striped feature
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information. When the texture is slightly complex, PSPNet cannot completely segment the
boundary of clouds and cloud shadows. HRNet, on the other hand, slightly improves the
effect compared to the above two models, with more delicate processing of the edges, but
still has shortcomings compared to our model. UNet is a classic segmentation network
known for its superior performance in training on smaller datasets and producing smoother
segmentation edges. However, it still requires improvement in processing details. Our
model addresses this limitation to some extent, effectively recognizing cloud and cloud
shadow boundaries while enhancing detail processing. Nonetheless, further refinement
is needed to effectively handle very low light or thin cloud bodies. In summary, from a
qualitative point of view, our method performs better in different environments compared
with other methods, which proves the importance and effectiveness of the model proposed
in this paper.

Table 3. Results on GF1_WHU dataset testing set.

Method PA (%) MPA (%) MIoU (%) F1 (%) FWIoU (%)

SegNet 94.80 93.90 88.28 90.77 90.16
UNet 96.33 95.49 91.32 93.21 92.80

FCN8s 95.20 94.84 90.58 92.92 92.36
PSPNet 96.51 95.78 91.76 93.89 93.31

DANet [48] 94.82 94.13 89.25 91.70 91.32
DeepLab V3Plus 96.27 95.42 91.18 93.11 92.56
BiseNet V2 [49] 95.76 94.85 90.27 92.34 91.87

HRNet [50] 96.87 95.73 92.02 93.93 93.40
SP_CSANet [51] 97.33 96.01 91.34 93.12 92.63

CDUNet [52] 97.21 96.53 93.33 95.03 94.58
AFMUNet (Ours) 97.40 96.62 93.28 95.10 94.43

In order to better illustrate the model generalization and effectiveness of the model
in the face of different environmental backgrounds, as shown in Figure 8 above, we chose
vegetation, land, desert, barren, and snowy mountainous areas for model testing. For the
images in the green vegetation environment in the first group, all are able to segment the
general outline of the clouds well, but the details in the middle and background overlapping
region are poor, and our model segments the edges of the clouds and the boundary well. In
the second group, PSPNet, SegNet, and HRNet perform poorly for the shallow, scattered,
and complex clouds, while UNet shows some improvement and recognizes the information
of some thin clouds but still demonstrates a large deficiency compared to our model. By
observing the third and fourth sets of images, it is not difficult to find that our model
smoothly distinguishes the neighboring regions of clouds and cloud shadows and handles
the edge information more naturally compared with other models. When confronted with
remote sensing images containing significant noise interference, the performance of UNet,
SegNet, and HRNet models is deemed insufficient. Instances of omission and misdetection,
such as in the snowy mountain zones depicted in the comparative images, are observed.
These models encounter challenges in accurately distinguishing between ice, snow, and
clouds. Although the PSPNet segmentation effect offers some improvement, the texture
features of the clouds are lost, and the boundary cannot be clearly reflected. None of the
aforementioned models are suitable for the challenging task of cloud shadow segmentation
across diverse and complex environments. In contrast, the algorithm proposed in this
paper adeptly addresses cloud shadow segmentation in various situations and scenarios.
By optimizing deeper features and leveraging the enhanced channel and feature fusion
capabilities enabled by the spatial attention mechanism module, our algorithm effectively
recovers high-definition remote sensing images.
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Figure 8. Fine comparison of different models in different contexts: (a) the original image; (b) the
corresponding label; (c) the prediction of UNet; (d) the prediction of PSPNet; (e) the prediction
of SegNet; (f) the prediction of HRNet; (g) the prediction of the proposed AFMUNet. (Red boxes
indicate better segmentation results, while green boxes segment poorer results).

To further analyze our algorithm, we compared the segmentation results of different
types of clouds, as shown in Figures 9 and 10. It can be observed that our proposed model
performs well in segmenting both thin and thick clouds, effectively delineating the overall
contours of the clouds and shadows and clearly distinguishing them from the background.
However, upon comparing the third row on the left with the second row on the right, it
is evident that AFMUNet exhibits superior segmentation performance for thick clouds
compared to thin clouds. Thick clouds only lose some fine texture details, while thin clouds
tend to lose fragmented point cloud and shadow information during segmentation.
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Figure 9. Results of thin cloud segmentation: (a) the original image; (b) the corresponding label; (c) the
prediction of the proposed AFMUNet. (Red boxes indicate noteworthy edge details of the result).

Figure 10. Results of thick cloud segmentation: (a) the original image; (b) the corresponding label;
(c) the prediction of the proposed AFMUNet. (Red boxes indicate better segmented edge details).
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4. Conclusions

In remote sensing images, the accurate segmentation of cloud shadow regions is of
great practical significance for practical tasks such as meteorological prediction, environ-
mental monitoring, and natural disaster detection. In this paper, an attention mechanism
feature aggregation algorithm is proposed for cloud shadow segmentation, fully leveraging
the advantages of convolutional neural networks in deep learning. UNet is selected as the
backbone network, an innovative loss function is employed, and two auxiliary modules,
CSAM and FFM, are introduced. Our proposed model initiates constant down-sampling
to extract high-level features. Adaptive improvement of sensory fields and selection of
different channel operations are introduced during each up-sampling process to increase
the resolution of feature maps, enabling the acquisition of rich contextual information. This
facilitates the accurate fusion of low- and high-level information within each layer’s feature
fusion module, ultimately restoring the classification and localization of high-resolution
remote sensing images. Compared with previous deep learning and segmentation methods,
our approach achieves significant improvement in accuracy in cloud shadow segmenta-
tion tasks. Experiments demonstrate the remarkable noise resistance and identification
capabilities of this method. It accurately locates cloud shadows and segments fine cloud
crevices in complex environments, while also producing smoother edge segmentation.
Particularly noteworthy is its performance in the task of identifying thick clouds. However,
there are still some shortcomings in cloud shadow segmentation: (1) under the influence of
light, some inconspicuous cloud seams may be incorrectly segmented into other features
and thus recognized as background; (2) refinement is still needed for the segmentation
of thin clouds to capture the fragmented information of cloud shadows; (3) to be better
adapted to practical applications, in the future, we also need to appropriately compress
and simplify the model while maintaining the accuracy and reduce the segmentation result
time to improve the training speed of the network. In the future, augmented learning
can be implemented by incorporating a pre-training phase into the model, aiming to en-
hance segmentation accuracy and reduce training time. Additionally, efforts will be made
to explore its application in other domains, including river segmentation and medical
tumor segmentation.

Author Contributions: Conceptualization, Z.F.; methodology, W.D. and Z.F.; validation, W.D., Y.Y.
and R.Y.; writing—original draft preparation, W.D. and J.L.; writing—review and editing, Y.Y.;
visualization, J.L.; supervision, R.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data and the code of this study are available from the correspond-
ing author upon request (001163@nuist.edu.cn). The data are not publicly available due to restrictions
(e.g., privacy, legal or ethical reasons).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Xiong, J.H.; Wu, H.; Gao, Y.; Cai, S.; Liang, D.; Yu, W.P. Ten years of remote sensing science: NSFC program fundings, progress,
and challenges. Natl. Remote Sens. Bull. 2023, 27, 821–830. [CrossRef]

2. Mahajan, S.; Fataniya, B. Cloud detection methodologies: Variants and development—A review. Complex Intell. Syst. 2020, 6,
251–261. [CrossRef]

3. Saunders, R.W.; Kriebel, K.T. An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote
Sens. 1988, 9, 123–150. [CrossRef]

4. Hutchinson, K.D.; Hardy, K.R. Threshold functions for automated cloud analyses of global meteorological satellite imagery. Int. J.
Remote Sens. 1995, 16, 3665–3680. [CrossRef]

5. Xiong, Q.; Wang, Y.; Liu, D.; Ye, S.; Du, Z.; Liu, W.; Huang, J.; Su, W.; Zhu, D.; Yao, X.; et al. A cloud detection approach based on
hybrid multispectral features with dynamic thresholds for GF-1 remote sensing images. Remote Sens. 2020, 12, 450. [CrossRef]

6. Derrien, M.; Farki, B.; Harang, L.; LeGléau, H.; Noyalet, A.; Pochic, D.; Sairouni, A. Automatic cloud detection applied to
NOAA-11/AVHRR imagery. Remote Sens. Environ. 1993, 46, 246–267. [CrossRef]

36



Remote Sens. 2024, 16, 1574

7. Clothiaux, E.E.; Miller, M.A.; Albrecht, B.A.; Ackerman, T.P.; Verlinde, J.; Babb, D.M.; Peters, R.M.; Syrett, W.J. An evaluation of a
94-GHz radar for remote sensing of cloud properties. J. Atmos. Ocean. Technol. 1995, 12, 201–229. [CrossRef]

8. Danda, S.; Challa, A.; Sagar BS, D. A morphology-based approach for cloud detection. In Proceedings of the 2016 IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 80–83. [CrossRef]

9. Liu, X.; Shen, J.P.; Huang, Y. Cloud automatic detection in high-resolution satellite images based on morphological features. In
Proceedings of the Eleventh International Conference on Graphics and Image Processing (ICGIP 2019), Hangzhou, China, 12–14
October 2019; SPIE: Bellingham, WA, USA, 2020; Volume 11373, pp. 159–166. [CrossRef]

10. Tom, V.T.; Peli, T.; Leung, M.; Bondaryk, J.E. Morphology-based algorithm for point target detection in infrared backgrounds. In
Proceedings of the Signal and Data Processing of Small Targets 1993, Orlando, FL, USA, 12–14 April 1993; SPIE: Bellingham, WA,
USA, 1993; Volume 1954, pp. 2–11. [CrossRef]

11. Amato, U.; Antoniadis, A.; Cuomo, V.; Cutillo, L.; Franzese, M.; Murino, L.; Serio, C. Statistical cloud detection from SEVIRI
multispectral images. Remote Sens. Environ. 2008, 112, 750–766. [CrossRef]

12. Wylie, D.; Jackson, D.L.; Menzel, W.P.; Bates, J.J. Trends in global cloud cover in two decades of HIRS observations. J. Clim. 2005,
18, 3021–3031. [CrossRef]

13. Abuhussein, M.; Robinson, A. Obscurant Segmentation in Long Wave Infrared Images Using GLCM Textures. J. Imaging 2022, 8,
266. [CrossRef]

14. Shao, L.; He, J.; Lu, X.; Hei, B.; Qu, J.; Liu, W. Aircraft Skin Damage Detection and Assessment from UAV Images Using GLCM
and Cloud Model. IEEE Trans. Intell. Transp. Syst. 2023, 25, 3191–3200. [CrossRef]

15. Reiter, P. Cloud Detection Through Wavelet Transforms in Machine Learning and Deep Learning. arXiv 2020, arXiv:2007.13678.
16. Gupta, R.; Panchal, P. Cloud detection and its discrimination using Discrete Wavelet Transform in the satellite images. In Pro-

ceedings of the 2015 International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, India,
2–4 April 2015; pp. 1213–1217. [CrossRef]

17. Changhui, Y.; Yuan, Y.; Minjing, M.; Menglu, Z. Cloud detection method based on feature extraction in remote sensing images.
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 40, 173–177. [CrossRef]

18. Surya, S.R.; Rahiman, M.A. Cloud detection from satellite images based on Haar wavelet and clustering. In Proceedings of the 2017
International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2), Chennai, India, 23–25 March 2017;
pp. 163–167. [CrossRef]

19. Li, P.; Dong, L.; Xiao, H.; Xu, M. A cloud image detection method based on SVM vector machine. Neurocomputing 2015, 169, 34–42.
[CrossRef]

20. Ishida, H.; Oishi, Y.; Morita, K.; Moriwaki, K.; Nakajima, T.Y. Development of a support vector machine based cloud detection
method for MODIS with the adjustability to various conditions. Remote Sens. Environ. 2018, 205, 390–407. [CrossRef]

21. Fu, H.; Shen, Y.; Liu, J.; He, G.; Chen, J.; Liu, P.; Qian, J.; Li, J. Cloud detection for FY meteorology satellite based on ensemble
thresholds and random forests approach. Remote Sens. 2018, 11, 44. [CrossRef]

22. Jin, Z.; Zhang, L.; Liu, S.; Yi, F. Cloud detection and cloud phase retrieval based on BP neural network. Opt. Optoelectron. Technol.
2016, 14, 74–77.

23. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 2015; pp. 3431–3440.

24. Mohajerani, S.; Krammer, T.A.; Saeedi, P. Cloud detection algorithm for remote sensing images using fully convolutional neural
networks. arXiv 2018, arXiv:1810.05782.

25. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

26. Lu, J.; Wang, Y.; Zhu, Y.; Ji, X.; Xing, T.; Li, W.; Zomaya, A.Y. P_SegNet and NP_SegNet: New neural network architectures for
cloud recognition of remote sensing images. IEEE Access 2019, 7, 87323–87333. [CrossRef]

27. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef]
[PubMed]

28. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Proceedings, Part III 18. Springer International Publishing: Berlin/Heidelberg, Germany, 2015;
pp. 234–241. [CrossRef]

29. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

30. Zhang, Z.; Yang, S.; Liu, S.; Cao, X.; Durrani, T.S. Ground-based remote sensing cloud detection using dual pyramid network and
encoder–decoder constraint. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–10. [CrossRef]

31. Tsotsos, J.K. Analyzing vision at the complexity level. Behav. Brain Sci. 1990, 13, 423–445. [CrossRef]
32. Ding, L.; Xia, M.; Lin, H.; Hu, K. Multi-level attention interactive network for cloud and snow detection segmentation. Remote

Sens. 2023, 16, 112. [CrossRef]
33. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 2014, 27.

[CrossRef]

37



Remote Sens. 2024, 16, 1574

34. Hu, K.; Li, Y.; Zhang, S.; Wu, J.; Gong, S.; Jiang, S.; Weng, L. FedMMD: A Federated weighting algorithm considering Non-IID
and Local Model Deviation. Expert Syst. Appl. 2024, 237, 121463. [CrossRef]

35. Guo, M.-H.; Xu, T.-X.; Liu, J.-J.; Liu, Z.-N.; Jiang, P.-T.; Mu, T.-J.; Zhang, S.-H.; Martin, R.R.; Cheng, M.-M.; Hu, S.-M. Attention
mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [CrossRef]

36. Liu, Y.; Shao, Z.; Hoffmann, N. Global attention mechanism: Retain information to enhance channel-spatial interactions. arXiv
2021, arXiv:2112.05561.

37. Hu, K.; Zhang, D.; Xia, M.; Qian, M.; Chen, B. LCDNet: Light-weighted cloud detection network for high-resolution remote
sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4809–4823. [CrossRef]

38. Ji, H.; Xia, M.; Zhang, D.; Lin, H. Multi-supervised feature fusion attention network for clouds and shadows detection. ISPRS Int.
J. Geo-Inf. 2023, 12, 247. [CrossRef]

39. Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Bisenet: Bilateral segmentation network for real-time semantic segmentation.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 325–341.

40. Hu, K.; Zhang, E.; Dai, X.; Xia, M.; Zhou, F.; Weng, L.; Lin, H. MCSGNet: A Encoder–Decoder Architecture Network for Land
Cover Classification. Remote Sens. 2023, 15, 2810. [CrossRef]

41. Wang, Z.; Xia, M.; Weng, L.; Hu, K.; Lin, H. Dual encoder-decoder network for land cover segmentation of remote sensing image.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 2372–2385. [CrossRef]

42. Wang, Q.; Ma, Y.; Zhao, K.; Tian, Y. A comprehensive survey of loss functions in machine learning. Ann. Data Sci. 2020, 9, 187–212.
[CrossRef]

43. Hu, K.; Weng, C.; Shen, C.; Wang, T.; Weng, L.; Xia, M. A multi-stage underwater image aesthetic enhancement algorithm based
on a generative adversarial network. Eng. Appl. Artif. Intell. 2023, 123, 106196. [CrossRef]

44. Ma, J. Segmentation loss odyssey. arXiv 2020, arXiv:2005.13449. [CrossRef]
45. Li, Z.; Shen, H.; Li, H.; Xia, G.; Gamba, P.; Zhang, L. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide

field of view imagery. Remote Sens. Environ. 2017, 191, 342–358. [CrossRef]
46. Ren, H.; Xia, M.; Weng, L.; Hu, K.; Lin, H. Dual Attention-Guided Multiscale Feature Aggregation Network for Remote Sensing

Image Change Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 4899–4916. [CrossRef]
47. Jiang, S.; Dong, R.; Wang, J.; Xia, M. Credit card fraud detection based on unsupervised attentional anomaly detection network.

Systems 2023, 11, 305. [CrossRef]
48. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154.
49. Yu, C.; Gao, C.; Wang, J.; Yu, G.; Shen, C.; Sang, N. Bisenet v2: Bilateral network with guided aggregation for real-time semantic

segmentation. Int. J. Comput. Vis. 2021, 129, 3051–3068. [CrossRef]
50. Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep high-resolution

representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3349–3364. [CrossRef]
51. Qu, Y.; Xia, M.; Zhang, Y. Strip pooling channel spatial attention network for the segmentation of cloud and cloud shadow.

Comput. Geosci. 2021, 157, 104940. [CrossRef]
52. Hu, K.; Zhang, D.; Xia, M. CDUNet: Cloud detection UNet for remote sensing imagery. Remote Sens. 2021, 13, 4533. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

38



Citation: Chen, R.; Wu, J.; Luo, Y.; Xu,

G. PointMM: Point Cloud Semantic

Segmentation CNN under Multi-

Spatial Feature Encoding and Multi-

Head Attention Pooling. Remote Sens.

2024, 16, 1246. https://doi.org/

10.3390/rs16071246

Academic Editor: Andrzej Stateczny

Received: 7 February 2024

Revised: 29 March 2024

Accepted: 29 March 2024

Published: 31 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

PointMM: Point Cloud Semantic Segmentation CNN under
Multi-Spatial Feature Encoding and Multi-Head
Attention Pooling

Ruixing Chen 1, Jun Wu 1,*, Ying Luo 1 and Gang Xu 2

1 School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541000,
China; 19081001006@mails.guet.edu.cn (R.C.); luoying@guet.edu.cn (Y.L.)

2 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201,
China; xugang@nimte.ac.cn

* Correspondence: wujun@guet.edu.cn

Abstract: For the actual collected point cloud data, there are widespread challenges such as semantic
inconsistency, density variations, and sparse spatial distribution. A network called PointMM is
developed in this study to enhance the accuracy of point cloud semantic segmentation in complex
scenes. The main contribution of PointMM involves two aspects: (1) Multi-spatial feature encoding.
We leverage a novel feature encoding module to learn multi-spatial features from the neighborhood
point set obtained by k-nearest neighbors (KNN) in the feature space. This enhances the network’s
ability to learn the spatial structures of various samples more finely and completely. (2) Multi-head
attention pooling. We leverage a multi-head attention pooling module to address the limitations of
symmetric function-based pooling, such as maximum and average pooling, in terms of losing detailed
feature information. This is achieved by aggregating multi-spatial and attribute features of point
clouds, thereby enhancing the network’s ability to transmit information more comprehensively and
accurately. Experiments on publicly available point cloud datasets S3DIS and ISPRS 3D Vaihingen
demonstrate that PointMM effectively learns features at different levels, while improving the semantic
segmentation accuracy of various objects. Compared to 12 state-of-the-art methods reported in the
literature, PointMM outperforms the runner-up by 2.3% in OA on the ISPRS 3D Vaihingen dataset,
and achieves the third best performance in both OA and MioU on the S3DIS dataset. Both achieve a
satisfactory balance between OA, F1, and MioU.

Keywords: point cloud semantic segmentation; CNN; multi-spatial feature encoding; multi-head
attention pooling

1. Introduction

Compared to 2D images, three-dimensional point clouds obtained using 3D scanners
and depth sensors (such as LiDAR and RGB-D cameras) can more comprehensively and
intuitively express the spatial relationships between various targets in the scene. They
have been widely utilized in various industries, including 3D modeling [1], autonomous
driving [2], and metaverse [3], and natural resource surveys [4]. Point cloud semantic
segmentation is a crucial supporting technology for understanding and analyzing 3D
scenes [5]. However, due to the spatiotemporal complexity, the irregular distribution of
terrain surfaces, and the non-uniformity and disorder of point clouds themselves, achieving
high-precision point cloud semantic segmentation in large-scale complex scenes remains an
extremely challenging task. Designing point cloud semantic segmentation convolutional
neural networks with end-to-end output capability and adaptability to various scenarios
has become a current research focus [6], which can be broadly categorized into two types:
indirect and direct methods. Our approach belongs to the latter.
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An indirect semantic segmentation network needs to preprocess the original point
cloud into a 2D/3D grid structure to leverage mature image-based CNNs for tasks such as
object classification and semantic segmentation. For instance, WhuY4 [7] and NANJ2 [8]
design CNNs to extract multiscale local features from projection view of point clouds. On
this basis, they calculate category probabilities for each point and construct a decision tree
to guide subsequent retraining. Individuals such as GERDZHEV [9] utilize convolutional
kernels of varying scales to capture contextual information and aggregate feature informa-
tion at different scales to obtain segmentation results. GFNet [10] employs bidirectional
alignment and the propagation of complementary information to learn geometric informa-
tion between different projection views. AGNet [11] introduces attention pooling on the
basis of traditional graph neural network (GNN) to score feature importance. GaIA [12]
autonomously learns crucial regions of point clouds based on graphical information gain
and applies it to semantic segmentation tasks. However, a considerable amount of geo-
metric structure, orientation, and other spatial relation information of target objects are
lost during the point cloud projection process. Therefore, the point cloud semantic seg-
mentation networks under multi-view projection are sensitive to changes in viewpoint and
anomalies caused by occlusion. Represented by PVCNN [13], VoxSegNet [14], PVCL [15],
and MPVConv [16], voxel-based 3D convolutional neural networks can effectively learn
3D spatial information and context-dependent relationships of point clouds. However, the
sparsity and uneven density of point clouds can generate a large number of empty grids,
resulting in low computational efficiency and high memory usage.

Direct point cloud semantic segmentation network learns features straightforwardly
from 3D point clouds without the need to pre-process them into 2D/3D grids. Remarkable
works have been carried out by PointNet [17] and PointNet++ [18] in solving the challenges
of large-scale point cloud network computing through farthest point sampling (FPS). How-
ever, overly independent point operations in the networks hinder the capture of local spatial
structures. To address this issue, PointSIFT [19], inspired by the SIFT operator, encodes the
features in eight directions in the XYZ space to overcome the limitation of PointNet++ in
restricting its k-nearest neighbor search to the same direction. However, this method is
exceptionally sensitive to the orientation information of objects. PointWeb [20] aggregates
local point cloud information through an adaptive feature adjustment module. HPRS [21]
develops an adaptive spherical query module to simultaneously capture global features
and finer-grained local features. MappingConvSeg [22] conducts spherical neighborhood
feature learning at each downsampling layer, enhancing the network’s ability to capture
complex geometric structures. Zhao et al. [23] introduces dynamic convolution filters
(DFConv) and an improved semantic segmentation (JISS) module into JSNet [24]. Overall,
these networks aggregate neighborhood information and multiscale features through local
feature encoding, resulting in improved segmentation accuracy compared to the original
PointNet++. However, the feature encoding methods of such networks primarily consider
position and point spacing, with limited attention to the spatial scale information of points.

Different from the PointNet++ series, direct point cloud segmentation networks based
on graph convolution treat each point as a node in the graph and form directed edges with
neighboring points. The challenge of obtaining such networks lies in how to construct
appropriate point-to-point relationships and the advantages lie in their ability to aggregate
target structural features while maintaining translation invariance in a three-dimensional
space. Representative works in this category include KVGCN [25], GCN-MLP [26], RG-
GCN [27], DDGCN [28], and PointCCR [29]. Some researchers attempt to learn fine-grained
point cloud features by introducing self-attention mechanisms in networks. For example,
Hu et al. [30] combine self-attention mechanisms with a random sampling algorithm to
design the RandLA-Net network. Du et al. [31] add a dense convolutional linking layer
on the basis of RandLA-Net for a more comprehensive learning of geometric shapes. LG-
Net [32] achieves learning of global context information through a global correlation mining
(GCM) module. Yin et al. [33], based on geometric structure and object edge integrity,
design a local feature encoding network using rapid point random sampling. In order to
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enhance a network’s ability to learn local features, Deng et al. [34] proposed PointNAC by
introducing a point-pair feature encoding pattern and Copula correlation analysis module,
and Wu et al. [35] developed PointConv by introducing a novel weight calculation as
well. Yan et al. [36] designed an Adaptive Sampling Module and Local-Nonlocal (L-NL)
Module based on attention mechanisms to mitigate noise and outliers that could disrupt
the network’s learning of local features. Zarzar et al. [37] designed PointRGCN for better
extraction of topological structures from point clouds, employing feature encoding and
aggregating context information in the form of graphs. Inspired by the breakthroughs of
Transformer models in Natural Language Processing (NLP) tasks, Zhao et al. [38] applied
Point Transformer and self-attention mechanisms to various point cloud classification
and segmentation tasks, achieving excellent performance. Although the aforementioned
networks have shown advantages in certain category-targeted segmentation tasks, they still
struggle to achieve high overall segmentation accuracy (OA) and average joint intersection
(MIoU) scores at the same time.

Generally speaking, compared to indirect point cloud segmentation methods, direct
methods are more effective in utilizing information and are easier to capture fine-grained
local features for precise segmentation. However, existing feature encoding patterns in
networks only utilize relatively independent information, such as point absolute positions,
point-to-point distances, and direction vectors, to express spatial structures, making it
difficult to effectively extract detailed features from complex scenes. On the other hand,
existing networks typically use the maximum pooling process for feature conveying. But
this process may discard the local details of point cloud samples, making it difficult for the
network to effectively distinguish points in different categories. In response to the above
issues, this article developed a network called PointMM for the high-precision semantic
segmentation of 3D point clouds. The contributions in the paper lie in two aspects, as
outlined below.

Firstly, addressing the limitation of existing network feature encoding methods that
only consider one-dimensional features between sampled points and their neighboring
points, this paper leverages a multi-spatial feature encoding module by computing angles
between point distances and normal vectors, and encoding point coordinates, distances,
directional vectors, and point relationships, thereby enhancing the network’s capability to
learn the spatial structures of various samples more finely and completely.

Secondly, addressing the drawback of the pooling process based on symmetric func-
tions that may discard a significant amount of detailed feature information, especially the
information loss of minority class samples in 3D scene datasets under long-tailed distribu-
tion, this paper leverages a multi-head attention pooling module to score and aggregate
features at different levels, thereby enhancing the network’s ability to transmit information
more comprehensively and accurately.

2. Our Method

2.1. Network Overview

The FPS typically employed in direct point cloud semantic segmentation networks
is a “uniform” point cloud sampling method that can lead to information loss, especially
for samples of the minority class. On the other hand, existing point cloud semantic seg-
mentation networks tend to have a “unidirectional” learning process from the sampled
central point to its neighboring points, which is not conducive to learning the fine local
structures of point clouds. Additionally, the pooling process in existing point cloud seman-
tic segmentation networks tends to retain the maximum values of local features, hindering
the transmission of fine spatial information. This not only affects the effective learning of
various sample features but also has an impact on overall segmentation accuracy to some
extent. To address these issues, we use Balanced Class Sampling (BCS) to perform full
sampling of minority class samples and downsampling of majority class samples in sub
regions, and assign initial values to the sampled samples. When all points are sampled
(given initial values) for learning, we reset all initial value information to zero and cycle this
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process until the set maximum batch is reached. The BCS module ensures that each class of
sample points is learned by the network. Meanwhile, this article combines multi-spatial
feature learning and multi-head attention pooling into PointNet++, and builds a network
called PointMM, as shown in Figure 1.

Figure 1. PointMM network structure. (The thin arrow represents the flowchart of the network
framework, while the thick arrow indicates the various components of the downsampling layer).

PointMM mainly consists of four parts: the Balanced Class Sampling (BCS) module,
the downsampling layer incorporating multi-spatial feature encoding and multi-head
attention pooling, the up sampling layer, and the fully connected layer. Firstly, the training
samples V are obtained using BCS, and each sampling center point vi and its neighborhood
points vi,k are extracted based on FPS and feature KNN. At this point, we obtain a point
cloud of dimensions N × K × D, where N is the number of sampling center points, K
is the number of neighborhood points, and D is the dimensionality of the point cloud
containing coordinate and attribute information. Then, the sampling points and their
neighborhood points are passed through the multi-spatial feature encoding module to
obtain features ηi of dimensions N × K × 13. Subsequently, the features ηi are input into
the multi-head attention pooling module, which integrates neighborhood features through
pooling operations to generate a larger receptive field and more global feature vector MP(Fi).
It is worth noting that we set up four downsampling layers, so the number of attention
heads for each layer is 2n (n ∈ [1, 4]). The initial input to the downsampling layer in this
paper is a point cloud of dimensions N × K × D, and the number of sampled points in each
subsequent layer is multiplied by 4−n (n ∈ [1, 4]), where n represents the downsampling
layer. Additionally, the output of the downsampling layer is feature maps of dimensions
N/4 × 64, N/16 × 128, N/64 × 256, and N/256 × 512. Meanwhile, the upsampling
results are cascaded with corresponding downsampling levels using 3D interpolation
and skip connections to effectively fuse low-level to high-level features. Finally, a fully
connected layer is utilized to establish the transformation relationship between point cloud
features and label results. It should be noted that unlike PointNet++ using FPS for the
indiscriminate downsampling of large-scale point cloud data, we have designed BCS to
perform a complete sampling of minority class samples and downsampling of majority
class samples, ensuring that the network learns each class as well as possible through the
sampling points.

2.2. Multi-Spatial Feature Encoding

The feature encoding in existing point cloud semantic segmentation networks is
often based on point positions and point-to-point distances. However, this relatively
independent feature information is insufficient to represent the complex relationships
within the neighborhood system. In addition, the use of k-nearest neighbors (KNN) in
Euclidean space to extract neighborhood points tends to be limited to the same direction,
preventing the comprehensive expression of spatial topological structures for a given
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point [39]. Inspired by RPM-Net [40] using the PPF encoding method [41] to further
enhance the learning of local spatial relationships in point clouds, this article builds a local
spatial feature encoding module, as shown in Figure 2, to comprehensively understand
and capture spatial relationships in the local context as much as possible.

Figure 2. Multi-Spatial Feature Encoding module.

In Figure 2, the input point cloud is denoted as V = {ni|i = 1, . . ., N}, where N is
the number of points, and ni = [vi, ri] ∈ R3+d represents the combination of coordinate
information vi and attribute information ri. To save computational costs, point cloud V
is first subjected to feature extraction using the PointNet encoding method [17]. Then, in
the feature space, neighborhood point sampling is performed using k-nearest neighbors
(KNN). On this basis, the neighboring points vi,k that are searched are more likely to
belong to the same object category as the central point vi or are on the edges between
categories. Therefore, obtaining neighborhood points through feature space KNN helps the
network learn the feature information of the sampled points’ categories while increasing the
distinctiveness of inter-class features. However, the feature encoding method of PointNet
has limited capabilities in representing point cloud topological structures and spatial scales.

To further enhance the network’s learning capabilities for point clouds, spatial fea-
ture encoding is applied to the sampled points and their neighborhood points using the
following formula:

ηi = αi⊕βi (1)

αi = Si × (1 + Si
T) + ∑K

k = 1, k �=i (Si − Si,k) × [−MLP(Si,k − Si)], Si = P(vi), Si,k = P(vi,k) (2)

βi = MLP(vi,k⊕
√

(vi − vi,k)2⊕(vi − vi,k)⊕F(vi, vi,k)) (3)

F(vi, vi,k) = (∠(mi,(vi − vi,k))⊕∠(mi,k,(vi − vi,k))⊕∠(mi, mi,k)) (4)
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In Formula (1), αi and βi correspond to the dual-direction feature encoding of the
sampling center and neighborhood spatial structure features mentioned in Figure 2. In
Formula (2), P(·) generates the sampling point features Si and neighborhood point features
Si,k based on the PointNet encoding method [17] and then incorporates them into αi for
enhancing the sampling point features. The calculation formula for αi consists of three
parts: 1. Si × (1 + Si

T) represents self-enhancement of the sampling point features. 2.
(Si − Si,k) signifies the mutual relationship between each neighborhood point feature and
the sampling point feature. They are multiplied and accumulated together to achieve the
learning of enhanced sampling point features. 3. −MLP(Si,k − Si) first calculates the impact
factors of each neighborhood point feature on the sampling point feature and projects
them through a multi-layer perceptron. Formula (1) can be analyzed from a force field
perspective, where each Si,k in the local space exerts a force on Si. Gravity attempts to pull
Si closer to Si,k while repulsion pushes them apart. The strength of the force is determined
by −MLP(Si,k − Si), and the direction is determined by (Si − Si,k). They adaptively learn
through the difference between the two feature vectors. Therefore, αi fully integrates the
interrelationship between each neighborhood point and the sampling point, which can
better describe the feature of neighborhood correlation. Formula (3) performs feature
encoding based on the Euclidean distance

√
(vi − vi,k)2 between the sampling point and

neighborhood point, the directional vector (vi − vi,k), the 4D point pair feature F(vi, vi,k)),
and the spatial positional information of the neighborhood points. Formula (4) calculates
F(vi, vi,k)) using the 4D point pair feature encoding method from RPM-Net [42]. In this
context, mi and mi,k represent the normal vectors of the sampling point and neighborhood
point, and the inverse trigonometric function ∠(·,·) is used to calculate the angles between
various vectors. Through Formulas (1) to (4), we not only consider the interactions between
points but also describe the scale and topological structure of the sampling point’s spatial
environment through point distances, point normal vectors, and their angles.

2.3. Multi-Head Attention Pooling

Existing networks commonly utilize max pooling to aggregate neighborhood features
for generating global feature vectors with larger receptive fields [18]. It is noteworthy that
the information transmission capacity of max pooling is not only limited by the size of the
pooling window but also involves a non-parametric downsampling process that results in
the loss of a significant amount of information. The literature [43,44] introduces attention
mechanisms to score features and aggregates them based on their importance, thereby
enhancing the network model’s ability to transmit local fine-grained structural information.
Furthermore, the literature [45] embeds the Transformer model into point cloud semantic
segmentation networks to improve the network’s ability to capture dependencies between
local point clouds and efficiently transmit feature information. Inspired by the above
literature, this paper introduces a multi-head attention mechanism during the pooling stage
to enhance the network model’s capability to capture local salient structures from various
samples. The overall structure is illustrated in Figure 3.

Figure 3. Multi-head attention pooling module.
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We concatenate multi-spatial features with their corresponding attribute features, and
after passing through multiple convolutional layers, we can obtain the following multi-head
attention pooling results:

MP(Fi) = ∑(Fi,1, Fi,2, . . ., Fi,h)·Hi (5)

In Formula (5), ∑(·) denotes the concatenation of information Fi,h learned from different
heads of attention mechanisms, followed by fusion using the learned parameters Hi from
the network. The computation process for each head of attention mechanism is derived
from its self-attention scores and self-feature aggregation, expressed by the following
formula:

Fi,h = [SoftMax((fi,hT × fi,h)/
√

C) + 1] × fi,h, fi,h = [g(ηi)⊕g(ri)]h (6)

In Formula (6), SoftMax refers to the normalized exponential function, C is the number
of output channels, g(·) is a 1 × 1 convolution, and [·]h represents the feature division
according to h heads. In comparison to the max-pooling downsampling output pattern that
retains predominant features, the pooling method in this paper not only utilizes attention
mechanisms to emphasize fine-grained features of the point cloud’s spatial structure but
also reduces the loss of various sample features during information transmission through
the aggregation of features based on multi-head attention scores.

3. Results

3.1. Experimental Environment and Evaluation

The proposed network is deployed on a deep learning workstation with NVIDIA GPU
TiTAN XP 12G, Ubuntu 18.04 operating system and PyTorch1.10.0. The key parameters for
the network were set as follows: batch size = 16, momentum = 0.9, decay steps = 300,000,
decay rate = 0.5, optimizer: Adam, learning rate = 0.001, max epoch = 100, point number
= 4096, the number of KNN = 32, and the radius of KNN = 0.1 × 2n (n ∈ [0, 3]). The
performance evaluation of the network in this study was conducted using three metrics:
balanced F score (F1 score), mean of class-wise intersection over union (MIoU), and overall
point-wise accuracy (OA). The specific formulas for calculating these metrics are as follows:

F1 = 2pii/∑k
j=0 (pij + pji), MIoU = (1/k)∑k

i=0 pii/(∑k
j=0 pij + ∑k

j=0 pji − pii), OA = pii/p (7)

In the above equations, ‘k’ represents the number of classes in the dataset. ‘pii’ stands
for the number of point clouds correctly predicted for class ‘i’; ‘pij’ represents the number
of point clouds belonging to class ‘j’ but predicted as class ‘i’, while ‘pij’ represents the
number of point clouds belonging to class ‘i’ but predicted as class ‘j’. The F1 and MIoU
metrics produce values within the range of 0 to 1, with values closer to 1 indicating better
segmentation results for class ‘i’. On the other hand, OA is an overall segmentation
evaluation metric for the model. It calculates the ratio of correctly labeled point clouds to
the total number of point clouds in the model, where ‘p’ represents the total number of
points in the point cloud model. This section may be divided by subheadings. It should
provide a concise and precise description of the experimental results, their interpretation,
as well as the experimental conclusions that can be drawn.

3.2. Semantic Segmentation of S3DIS Dataset

In this section, we conducted experiments to validate the effectiveness of PointMM
using the publicly available 3D point cloud semantic segmentation indoor dataset, S3DIS.
The S3DIS dataset comprises six areas from three different buildings, totaling 271 individual
rooms. In each scene, every point corresponds to a fixed label, and these labels belong
to 13 different categories such as ceiling, floor, wall, door, and others. The distribution of
point clouds for each category within areas 1 to 5 is presented in Table 1.

In Table 1, the categories “ceiling”, “floor”, and “wall” constitute the majority class
samples, while “clutter” represents the intermediate class samples (just slightly more than
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the sample mean but less than the majority class samples). The remaining categories belong
to the minority class samples. Within the minority class samples, there are five categories
“window”, “column”, “beam”, “board”, and “sofa” with an extremely low number of
point clouds. Therefore, the segmentation task based on the S3DIS dataset not only faces
challenges related to large data volume and high scene complexity but also involves an
extremely imbalanced long-tailed distribution issue.

Table 1. Aera1~5 dataset introduction (%).

Class Number Proportion Class Number Proportion

ceiling 5,721,636 21.6 table 715,205 2.7
floor 5,138,877 19.4 chair 953,606 3.6
wall 6,887,155 26.0 sofa 105,956 0.4
beam 317,869 1.2 Bookcase 1,456,898 5.5

column 397,336 1.5 board 264,890 1.0
window 529,781 2.0 clutter 2,595,927 9.8

door 1,403,920 5.3 All 26,489,056 100

3.2.1. Ablation Experiment

We aim to validate the effectiveness of the modules proposed in this paper. Point
spatial coordinates along with their RGB information are used as input features to the
network. For training samples, regions 1 to 5 of the dataset are utilized. Specifically,
experiments were conducted based on PointNet++ with the addition of multi-head attention
pooling (+MHP), multi-spatial feature encoding (+MSF), and a comprehensive evaluation of
all modules combined, as shown in Table 2. Additionally, Table 3 presents the segmentation
results of these modules in region 6. Meanwhile, the training time of each module during a
single epoch is shown in Table 4.

Table 2. Each module introduction.

Name Module

PointNet++ Baseline
+MHP Multi-head attention pooling
+MSF Multi-spatial feature encoding
ALL PointMM

Table 3. Segmentation results of each module on the S3DIS dataset (Area-6) (%).

Module MIoU OA Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board Clutter

Baseline 70.2 87.7 93.0 97.3 74.8 68.7 43.2 77.8 78.9 72.4 76.8 41.9 58.7 66.2 63.2
MHP 73.3 90.7 91.4 97.9 76.9 68.0 46.5 72.6 79.2 75.3 83.6 63.2 64.7 65.3 67.8
MSF 78.0 92.7 93.3 97.2 80.6 76.4 59.5 73.5 83.8 74.5 83.5 76.8 68.5 77.0 69.7
ALL 80.4 94.0 94.6 97.8 82.7 76.2 52.9 77.5 83.6 77.8 86.6 83.7 79.1 76.9 75.8

Table 4. The training of each module per epoch (seconds).

Module Training Duration for One Epoch

Baseline 233.3703
+MHP 1104.0414
+MSF 681.2939
ALL 1604.5551

Table 3 indicates that, compared to the baseline MIoU (approximately 70.2%), when
the model only considers the MHP, the segmentation accuracy of most categories improves,
except for ceiling, beam, board, and window. The reason lies in the fact that the baseline,
using max-pooling modules for downsampling and feature transmission, results in the loss
of a considerable amount of detailed information during the network training process. As a
result, the network tends to sacrifice the segmentation accuracy of minority classes to ensure
the overall segmentation accuracy with a majority class bias. The MHP module captures
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feature information at different levels through a multi-head attention mechanism and
aggregates the features extracted by the network through weighted pooling, ensuring the
complete preservation of feature information for various samples. On the other hand, the
combination of the MSF module with the baseline leads to improvements of 7.9% and 5% in
MIoU and OA, respectively. This demonstrates that the MSF module’s ability to search for
similar neighborhoods, learn the salient structural features of sampled point neighborhoods,
and transmit crucial information is superior to the baseline. When both modules are loaded
onto the baseline, except for the beam, column, window, door, and board, which did
not achieve the best results, the segmentation accuracy for all other categories is optimal.
The overall segmentation accuracy and MIoU also achieve the best results at 94% and
80.4%, respectively. Among the five categories that did not achieve the best results, only the
accuracy of the column fluctuates the most, with the differences for the other four categories
being only 0.1–0.3% from the optimal accuracy. This is because the column is spatially close
to the wall, and their structures and spectral features are highly similar. On the other hand,
the column surface is usually relatively smooth and structurally simple, with corresponding
point cloud coordinates being relatively regular and a strong spectral feature consistency.
The multi-head attention mechanism for modeling the geometric multi-spatial features of
the target space does not achieve significant improvement in the accuracy of point clouds
with regular arrangement (simple structure). This ultimately leads to confusion between
the two in the neighborhood point search and feature learning stages. It should be noted
that the wall belongs to the majority of targets, so its accuracy is not easily disturbed by the
column, while the column belongs to the minority class targets, so its accuracy fluctuates
more significantly. Usually, it is challenging for a semantic segmentation CNN to achieve
optimal OA and MIoU simultaneously, as it tends to sacrifice minority class targets to
achieve the overall optimal segmentation accuracy (OA). On the other hand, focusing on
the learning features of minority class targets may lead to overfitting and limit overall
segmentation accuracy. The PointMM in this article achieved an acceptable balance on the
IoU of various class samples, while improving overall accuracy by 6.3%.

It is worth noting that the MSF module fully learns the local fine-grained structural
features of the diluted point cloud from two aspects: the inter-point relationship αi and
the neighborhood spatial topology structure βi. Meanwhile, the MHP module scores
and aggregates features based on different heads of attention, allowing the network to
consolidate the segmentation accuracy of the majority class targets while also considering
learning minority class targets. On the other hand, according to Table 4, the training time
for each epoch in the baseline is the shortest, only 233 s. Due to the more complex feature
encoding in the MSF module, its duration is almost three times longer than the baseline.
At the same time, as the number of downsampling layers increases, the computational
complexity of the MHP module increases exponentially, resulting in a duration of 1104 s.
When both modules are stacked on the baseline, PointMM shows the maximum duration
(1604 s).

To demonstrate the effects of the ablative experiments more intuitively on each module
in this paper, segmentation results from three different scenes in region 6 are selected for
display, as shown in Figure 4. The three columns of segmentation results in Figure 4, from
left to right, correspond to lounge, hallway, and office. The gray boxes in each image
indicate areas of segmentation errors for comparison. Each row in Figure 4, from top to
bottom, represents the segmentation results of the baseline, baseline with the MHP module,
baseline with the MSF module, PointMM, and ground truth. Observing the images on the
left side of Figure 4, it can be observed that due to the significant similarities in geometric
structure, spatial location, and spectral information between wall and column, door, clutter,
and window, the baseline misclassifies wall as door, window, and column. MHP, through
multi-head attention pooling, fully preserves the features of various samples, correctly
segmenting the wall at the corner of the room, but still missegments some parts of the
wall as door and window. This is because MHP can only ensure the effective transmission
of various sample information by pooling, but cannot extract significant features of local
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geometric structures. MSF, based on the original data preprocessing, effectively captures
fine-grained structural features of points in space, greatly reducing the phenomenon of
missegmenting the wall as other targets. However, MSF still missegments a small portion
of the wall as clutter and door. PointMM, which combines the advantages of MHP and
MSF, essentially achieves the correct segmentation of the wall, with only a small portion of
the point cloud missegmented as a door at the corner of the two wall surfaces. On the other
hand, in the left gray box of the baseline, there is also mutual missegmentation between
sofa, table, and clutter. With the integration of each module, the segmentation accuracy
in this local area gradually improves. For the various types of targets in the right gray
box with sparse distribution or extremely low data volume, the baseline can only correctly
segment some chairs, while the rest of the categories are segmented incorrectly. MHP,
based on the baseline, achieves the correct segmentation of tables and clutter. MSF, based
on the baseline, achieves the correct segmentation of chairs as much as possible. PointMM,
based on MHP and MSF, completes the correct segmentation of all targets, with only a
small amount of missegmentation in the edge area.

Figure 4. Segmentation results of each module.
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In the hallway scene depicted in Figure 4, the wall, door, and clutter exhibit highly
similar spectral information, contour structures, and spatial positions. The baseline mis-
segments a significant amount of the wall in the left gray box as column, clutter, and door,
while completely missegmenting the wall in the right gray box as column. MHP, employing
the original feature encoding approach, learns various sample information, significantly
reducing the missegmentation of the wall as column in the left gray box, while correctly seg-
menting half of the wall in the right gray box. MSF comprehensively learns the geometric
relationships between sampled points and their neighboring points, leading to a substantial
reduction in the missegmentation of the wall as column in the right gray box. PointMM, on
the other hand, is capable of accurately identifying the aforementioned targets, achieving
segmentation results highly consistent with the annotated data. PointMM only exhibits
a small amount of missegmentation in the region where door, wall, and clutter intersect
(left gray box), as well as an extremely small amount of missegmentation as column in the
corner formed by the two wall surfaces.

In the third column of Figure 4, an office scene containing 13 categories is depicted. Due
to the close connection between the open door and the bookcase, both of which are wooden
structures with approximate spectral information, the baseline exhibits missegmentation at
the border junction of these two objects. Similarly, the baseline missegments the wall as a
board and missegments the column as a wall. MHP and MSF both show varying degrees
of missegmentation between the door and bookcase in the left gray box, with both also
missegmenting some boards as walls. PointMM achieves segmentation results close to
the ground truth in the region where the door meets the bookcase and in the board area,
except for missegmenting some columns as walls in the right gray box. The experimental
results in Figure 4, combined with the segmentation accuracy from Table 3, reveal that the
combination of multi-head attention pooling and the adaptive spatial feature encoding
module significantly enhances the model’s ability to describe features of various sample
types. Additionally, PointMM proves effective in handling targets with complex local
geometric or spectral features. On the other hand, the S3DIS dataset contains instances of
objects of the same class sparsely and discretely distributed in the scene. In this context,
the introduced neighborhood point search module based on feature KNN demonstrates
clear advantages in capturing the ability of the same class point clouds. By integrating
various amounts of sample information through feature KNN and thoroughly learning
their neighborhood salient structural features, the network model’s semantic segmentation
capability is effectively improved under conditions of sparse point cloud density and
complex local structures.

3.2.2. Six-Fold Cross-Validation

This section of the experiment aims to demonstrate the learning capability and gener-
alization of the method proposed in this paper on the entire dataset. The proposed method
is subjected to a standard six-fold cross-validation experiment on the S3DIS data set, and
it is compared with 12 currently popular and classical deep learning methods for point
cloud semantic segmentation. The evaluation metrics for each method, including overall
accuracy (OA) and mean intersection over union (MIoU), are presented in Table 5.

From Table 5, it can be observed that the proposed method achieves the highest MIoU
for ceiling, floor, window, table, chair, and clutter, with values of 95.4%, 97.5%, 66.5%,
73.0%, 84%, and 69.5%, respectively. These values are higher than the second highest by
0.9%, 0.2%, 0.3%, 2.2%, 7.6%, and 9.2%. The MIoU for door and bookcase ranks second,
with values of 73.9% and 68.1%, lower than the first by 2.7% and 6.8%, respectively. Wall
ranks third in MIoU, while beam’s MIoU ranks fifth, and column, sofa, and board all rank
sixth, placing them at a moderate level among the listed literature network models.

GSIP [46] proposed a method based on PointNet that performs downsampling on a
per-room basis, significantly reducing computational costs. However, this network loses a
considerable amount of detailed information, resulting in an OA and MIoU of only 79.8%
and 48.5%, respectively. HPRS [21] has a feature encoding pattern that is too singular,
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limiting its applicability to large-scale complex indoor scenes, resulting in an OA and
MIoU of only 84.7% and 61.3%. MCS [22] introduced MappingConv based on the spherical
neighborhood feature learning pattern, showing a noticeable improvement over HPRS in
accuracy. However, this method only optimizes the feature encoding of the downsampling
layer and does not consider the promoting effect of the self-attention mechanisms in deep
learning, resulting in an OA and MIoU of only 86.8% and 66.8%.

Table 5. Semantic segmentation accuracy on S3DIS dataset.

Method GSIP HPRS MCS KVGCN RGGCN LG-Net JSNet++ KPConv RandLA-Net BSH-Net PointNAC PointTr Ours

OA 79.8 84.7 86.8 87.4 88.1 88.3 88.7 - 88.0 90.5 90.9 90.2 90.4
Miou 48.5 61.3 66.8 60.9 63.7 70.8 62.4 70.6 70.0 66.1 67.4 73.5 70.7

Ceiling 91.8 92.7 92.4 94.5 94.0 93.7 94.1 93.6 93.1 - - - 95.4
Floor 89.8 94.5 95.8 94.1 96.2 96.4 97.3 92.4 96.1 - - - 97.5
Wall 73.0 76.3 79.5 79.5 79.1 81.3 78.0 83.1 80.6 - - - 81.1
Beam 26.3 30.1 55.8 53.4 60.4 65.2 41.3 63.9 62.4 - - - 59.5

Column 24.0 25.5 43.6 36.3 44.3 51.8 32.2 54.3 48.0 - - - 38.8
Window 44.6 63.1 59.6 56.8 60.1 66.2 52.0 66.1 64.4 - - - 66.5

Door 55.8 61.8 63.4 63.2 65.9 69.7 70.0 76.6 69.4 - - - 73.9
Table 55.5 65.6 67.3 64.3 70.8 69.1 69.9 57.8 69.4 - - - 73.0
Chair 51.1 69.3 70.2 67.5 64.9 75.1 72.7 64.0 76.4 - - - 84.0
Sofa 10.2 47.0 63.1 54.3 30.8 63.9 37.9 69.3 60.0 - - - 53.3

Bookcase 43.8 56.1 59.3 23.6 51.9 63.5 54.1 74.9 64.2 - - - 68.1
Board 21.8 60.1 61.8 43.1 52.6 66.0 51.3 61.3 65.9 - - - 58.6
Clutter 43.2 55.1 56.2 53.2 56.4 58.4 60.2 60.3 60.1 - - - 69.5

KVGCN [25] aggregated local–global context features to achieve a higher OA (87.4%)
than GCN. However, it overlooks the impact of minority class features on MIoU (60.9%).
The OA (88.0%) of RandLA-Net [30] was only at a moderate level, even if a random
sampling strategy was used to increase the chances of capturing minority class samples.
Although KPConv [47] achieves the best segmentation accuracy for the two categories of
sofa and bookcase with extremely low point cloud counts, it overly focuses on minority
class sample features, leading the model into an overfitting state, causing a substantial
decline in segmentation accuracy for ceiling and floor. While LG-Net [32] achieved good
results in regions with high similarity for features such as column, beam, and wall, like
KPConv, it overly focuses on certain features and leads to a loss in overall segmentation
accuracy. Instead, RGGCN [27], BSH-Net, PointNAC, and JSNet++ [23] overly emphasize
the features of majority class targets and lose competitiveness in MIoU. Point Transformer
achieved the best MIoU (73.5%) and ranking fourth in OA (90.2%). Overall, the introduction
of MSF in this paper addresses the dilution of majority class samples, thereby improving
the feature extraction and learning efficiency of the network model for all samples. MHP
assigns attention scores to features extracted by MSF at different levels (heads) and clusters
various features based on attention scores. These two components enable PointNAC to
achieve impressive performance, ranking third both in OA (90.4%) and MIoU (70.7%).

3.2.3. The Experiments of Sampling Points and Neighborhood Points

To further validate the feature learning capabilities of the proposed network at different
sampling densities, this section conducts experiments with different numbers of sampled
points, specifically 2048, 4096, 8192, 16,384, and 32,768 points. Additionally, we compare
our PointNet++, RandLA-Net, and the proposed method, and the MIoU scores for each
model are shown in Figure 5.

From Figure 5, it can be observed that the performance of RandLA-Net is entirely
dependent on the density of the sampled points. When the point density is not higher than
4096, RandLA-Net’s segmentation performance is significantly inferior to PointNet++ and
the approach proposed in this paper, with a maximum MIoU of only 65.1%. In contrast,
when the number of sampled points is 2048, the proposed method exhibits a remarkable
improvement, surpassing PointNet++ by 10.2%. Even when the number of sampled points
is increased to 32,768, the proposed method still achieves an improvement of 8.7%. This
indicates that the network model in this paper can effectively learn features from sparse
point clouds through the MSF module, while MHP emphasizes the importance of the main
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features in the feature pooling stage through attention scores. On the other hand, as the
number of sampled points in RandLA-Net gradually increases, its network MIoU also
grows, eventually reaching 78.5%. However, comparing RandLA-Net with the network
proposed in this paper, it is evident that the MIoU difference for RandLA-Net within the
sampled point range is 18.1%, while the difference for this paper’s network is only 0.4%.
This indicates that the network in this paper has a stronger feature learning capability on
point clouds with uneven density distribution compared to RandLA-Net.

Figure 5. The MIoU of different sampling densities based on area 6.

To further investigate the influence of different numbers of neighboring points on
the network’s feature learning capability, this section conducts experiments using varying
numbers of neighboring points, including 8, 16, 32, and 64. Additionally, we compare
the OA of Euclidean k-nearest neighbors (KNN) and feature KNN, as shown in Figure 6.
From Figure 6, it can be observed that the maximum difference in overall accuracy (OA)
for feature KNN is 1.6%, while for spatial KNN it is 1.9%. Moreover, in terms of the
segmentation accuracy with 32 neighboring points, feature KNN outperforms spatial KNN
by 1.1%. This clearly demonstrates that the neighborhood points extracted by feature
KNN are closer in category to their sampling center points, thereby enhancing the network
model’s ability to distinguish between points belonging to different classes.

Figure 6. The OA of different neighborhood points based on area 6.

51



Remote Sens. 2024, 16, 1246

3.3. Semantic Segmentation of Vaihingen Dataset

The International Society for Photogrammetry and Remote Sensing (ISPRS) Vaihingen
3D Semantic Labeling Challenge dataset consists of five training areas and two testing
areas. The dataset comprises a total of 1,181,017 points. The original 3D point cloud data
is composed of nine categories of objects, including power line, car, facade, and hedge.
Each point within the dataset contains both 3D coordinates and RGB information. The
distribution of points among these object categories, along with their respective proportions,
is presented in Table 6.

Table 6. Details of Vaihingen 3D dataset.

Model Power Line Car Facade Hedge
Impervious

Surface
Low

Vegetation
Roof Shrub Tree

Training-N 546 4614 27,250 12,070 193,723 180,850 152,045 47,605 135,173
Training-P 0.072% 0.612% 3.615% 1.601% 25.697% 23.989% 20.168% 6.315% 17.931%
Testing-N 600 3708 11,224 7422 101,986 98,690 109,048 24,818 54,226
Testing-P 0.146% 0.900% 2.726% 1.803% 24.770% 23.970% 26.486% 6.027% 13.170%

From this table, it is evident that, the Vaihingen 3D dataset similar to the S3DIS dataset,
it also exhibits a highly imbalanced long-tail distribution. Specifically, objects such as trees,
building roofs, low vegetation, and road surfaces represent the majority class samples,
while power lines, cars, and hedges are extremely rare minority class samples with very
few points. Since the Vaihingen 3D dataset is a large-scale outdoor scene dataset, the
minority class samples are highly likely to be lost during sub-area partitioning and FPS
sampling. To address this issue, in the training data sampling phase, our network first
performs full sampling for minority class point clouds, then downsamples the majority
class point clouds, and finally employs the BCS module to assign values to point clouds of
various categories. Additionally, in this section, we compare our method with 11 recently
published outdoor point cloud semantic segmentation methods, using the F1 score and OA
as standard metrics for all categories, as shown in Table 7.

Table 7. Segmentation effects of different methods (%).

Model
Power
Line

Car Facade Hedge
Impervious

Surface
Low

Vegetation
Roof Shrub Tree OA

Average
F1

HDA 64.2 68.9 36.5 19.2 99.2 85.1 88.2 37.7 69.2 81.2 63.1

DPE 68.1 75.2 44.2 19.5 99.3 86.5 91.1 39.4 72.6 83.2 66.2
NANJ2 62.0 66.7 42.6 40.7 91.2 88.8 93.6 55.9 82.6 85.2 69.3

BSH-NET 46.5 77.8 57.9 37.9 92.9 82.3 94.8 48.6 86.3 85.4 69.5
PointNAC 52.9 76.7 57.5 41.1 93.6 83.2 94.9 50.5 85.2 85.9 70.6
Randla-Net 68.8 76.6 61.9 43.8 91.3 82.1 91.1 45.2 77.4 82.1 70.9

D-FCN 70.4 78.1 60.5 37.0 91.4 80.2 93.0 46.0 79.4 82.2 70.7
Dance-Net 68.4 77.2 60.2 38.6 92.8 81.6 93.9 47.2 81.4 83.9 71.2
GACNN 76.0 77.7 58.9 37.8 93.0 81.8 93.1 46.7 78.9 83.2 71.5
GANet 75.4 77.8 61.5 44.2 91.6 82.0 94.4 49.6 82.6 84.5 73.2
GraNet 67.7 80.9 62.0 51.1 91.7 82.7 94.5 49.9 82.0 84.5 73.6

PointMM 60.6 77.3 62.3 37.0 93.5 84.0 96.1 57.8 86.4 87.7 72.7

From Table 7, it is evident that, compared to other network models on the Vaihingen 3D
dataset, PointMM achieves the best OA, ranks third in average F1 score, with a difference of
only 0.9% from the top average F1 score. The proposed method excels in the segmentation
accuracy of the façade, roof, shrub, and tree categories, with only a lower segmentation
accuracy for power line and hedge. One reason for this is the extremely sparse point cloud
count and low geometric feature saliency of these two classes. For instance, the power
line consists of sporadic non-continuous line segments distributed on the roof, resembling
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outliers similar to the roof. As a result, PointMM is likely to confuse power line with the
roof during the feature KNN step. However, employing an encoding method with the
capability of extracting local fine-grained features in the feature KNN stage, as GACNN [44]
does, would not only increase computational costs but also focus too much on extremely
scarce minority class targets, restricting the overall OA (83.2%).

Nevertheless, methods such as DPE [48] and HAD [49] sacrifice the segmentation
accuracy of other land cover types to enhance the segmentation accuracy of majority
classes, particularly impervious surfaces. Their performance in OA and average F1 score
needs improvement. NANJ2 [8] projects 3D point clouds onto 2D images and utilizes
a mature CNN network to learn target features. This method effectively improves the
segmentation accuracy of hedge, low vegetation, and shrub. However, the process of
multi-view projection results in the loss of a significant amount of local spatial structure
information, making it challenging to further improve the average F1 score (69.3%) and
OA (85.2%). D-FCN [50], similar to the former, focuses on learning minority class targets,
resulting in an improvement in the average F1 score (70.7%) but a loss in OA (82.2%).

While the random sampling of Randla-Net improves the network’s ability to capture
features of minority class samples, it hampers the model’s comprehensive learning of
majority class sample features, especially in the scenarios involving spatial overlap and
high feature similarity among impervious surface, shrub, tree, and low vegetation. As
a result, the overall segmentation accuracy is compromised, reaching only 82.1%. The
learning ability of BSH-Net [34] for features of minority class samples is weak, result-
ing in an unsatisfactory average F1 score (69.5%). PointNAC builds upon the BSH-Net
framework by introducing a 4D point pair feature encoding scheme, thereby enhancing
the segmentation accuracy of the network. DANCE-Net [51] acknowledges the impor-
tance of elevation-remote features but has weak segmentation capabilities for hedge and
shrub with overlapping low-level features. Therefore, this method fails to achieve further
breakthroughs in OA (83.9%) and average F1 score (71.2%). GANet [52] and GraNet [42]
introduce attention mechanisms on top of GCN to enhance the network’s ability to learn
local fine-grained structural features, obtaining the second and first average F1 scores,
respectively.

Overall, for large-scale outdoor scenes with point cloud data, the proposed method
not only effectively learns spatial scale information and intra-class semantic information for
various samples through adaptive spatial feature encoding but also achieves a satisfying
balance between OA and average F1 score by efficiently transmitting multi-level feature in-
formation through multi-head attention pooling. On the other hand, in Figure 7, we present
the visualization results of PointNet++, NANJ2, BSH-Net, and the proposed method.

In Figure 7, the first row of images shows the segmentation results of ground truth
and the four methods in the testing area. The second to sixth rows display visualizations
of local areas, with segmentation errors marked by red circles. Observing the images in
the first column of Figure 7, it can be seen that, except for PointMM, the other methods
all to some extent misclassify car as roof. Additionally, except for PointMM, the other
methods misclassify facade points as tree and roof, while PointMM only misclassifies a
small portion of facade points as roof and tree. This strongly indicates that our method
outperforms the other three methods in terms of the selection of sampling center points
and their neighborhood points, as well as feature learning capabilities.

Comparing the images in the second column of Figure 7 with the data in Table 7, it
can be observed that only NANJ2 and PointMM correctly segment the power line within
the left red box. The right red box contains roof, low vegetation, and tree. In this context,
our method’s segmentation results closely resemble the ground truth dataset. However,
BSH-Net misclassifies the roof as a car, NANJ2 misclassifies low vegetation as impervious
surface, and PointNet++ exhibits all of the above-mentioned misclassification cases. This
demonstrates the effectiveness of our method in learning the spatial scale, positional
information, and neighborhood relationships of the point clouds.
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Figure 7. Segmentation results of different methods. (The red circle represents the incorrectly
segmented area).

Further examination of the images in the third column of Figure 7 reveals that this area
is mainly composed of three categories of low-level features: low vegetation, tree, and shrub.
These features are similar and spatially close to each other. In the left red box, only PointMM
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incorrectly classifies a few parts of tree as shrub, while the other methods misclassify some
shrub as roof. On the other hand, in the right red box, all four methods misclassify some
shrub as roof. However, PointMM correctly segments tree for the most part, while BSH-
NET completely misclassifies shrub as tree, and NANJ2 and PointNet++ misclassify half of
the tree as shrub. Overall, our method achieves good segmentation performance on the
Vaihingen 3D semantic segmentation dataset and maintains consistency with the ground
truth in areas with overlapping and stacked features of various land cover types.

4. Conclusions

Although the PointNet++ series of networks consider information about sampled
points and their neighborhoods, as well as local–global context information, they often
lack attention to the topological structure information of the categories to which the sam-
pled points belong. The proposed PointMM overcomes these limitations by extensively
leveraging the topology information of the category to which the sampled points belong
through feature KNN. It searches for neighborhood points belonging to the same category
as the sampled point, focusing on more detailed spatial relationships, scales, and coordinate
information. Additionally, the use of multi-head attention pooling ensures the maximal
preservation of features for various sample points. This method effectively enhances the
network’s ability to learn fine-grained features of various sample categories from complex
scenes. Compared to the literature mentioned in this paper, although PointMM achieved
the best OA, the second-best MIoU, and the third-best average F1 score on both the indoor
S3DIS dataset and the outdoor Vaihingen 3D dataset, it requires high computation and
longer training time. Theoretically, adding the multi-head attention mechanism to the
multi-spatial feature encoding module will help extract more accurate features from intra-
class neighborhood points, which has not been discussed in this article. Future work will
delve into this topic and test the proposed network on a larger scale and in more scenarios.
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Abstract: Semantic segmentation of remote sensing (RS) images is a pivotal branch in the realm of RS
image processing, which plays a significant role in urban planning, building extraction, vegetation
extraction, etc. With the continuous advancement of remote sensing technology, the spatial resolution
of remote sensing images is progressively improving. This escalation in resolution gives rise to
challenges like imbalanced class distributions among ground objects in RS images, the significant
variations of ground object scales, as well as the presence of redundant information and noise
interference. In this paper, we propose a multi-scale context extraction network, ASPP+-LANet, based
on the LANet for semantic segmentation of high-resolution RS images. Firstly, we design an ASPP+

module, expanding upon the ASPP module by incorporating an additional feature extraction channel,
redesigning the dilation rates, and introducing the Coordinate Attention (CA) mechanism so that it
can effectively improve the segmentation performance of ground object targets at different scales.
Secondly, we introduce the Funnel ReLU (FReLU) activation function for enhancing the segmentation
effect of slender ground object targets and refining the segmentation edges. The experimental results
show that our network model demonstrates superior segmentation performance on both Potsdam
and Vaihingen datasets, outperforming other state-of-the-art (SOTA) methods.

Keywords: high-resolution remote sensing images; semantic segmentation; ASPP module; local
attention network model; activation function

1. Introduction

Remote sensing (RS) images can be used to observe natural and artificial phenomena
on the Earth’s surface. In the field of RS, semantic segmentation of high-resolution RS
images entails a pixel-level classification task where the objective is to assign a semantic
label to each pixel in the image [1]. These semantic labels mean different ground objects.

Recently, RS images have achieved spatial resolution at the centimeter scale, empow-
ering the discernment of minute details and targets within high-resolution RS imagery.
The challenge of semantic segmentation in RS images persists due to issues such as re-
dundant information, noise interference, misclassification of tiny targets, and insufficient
smoothness in the edges of ground objects. To solve this problem, this paper proposes a
multi-scale context network ASPP+-LANet based on LANet, which improves the segmenta-
tion performance of ground object targets at different scales and refines the edges of ground
object targets.

The rapid progress of deep neural networks, especially Convolutional Neural Networks
(CNNs), has greatly advanced semantic segmentation in RS images. In 2015,
Long et al. [2] first proposed the concept of Fully Convolutional Networks (FCNs), an encoder-
decoder structure network, which used an anti-convolutional layer instead of the fully con-
nected layer in traditional CNNs. In the same year, the Unet network was introduced by
Ronneberger et al. [3], featuring a U-shaped encoder–decoder architecture with inter-layer
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skip connections. In 2017, the SegNet network was proposed by Badrinarayanan et al. [4],
which implemented an encoder–decoder structure. The key innovation was situated in the
decoder, where instead of using deconvolution for upsampling, pooling indices were uti-
lized to conduct non-linear upsampling during the respective encoder’s max-pooling steps.
The mentioned networks all employed an encoder–decoder structure with robust feature
extraction capabilities. Nevertheless, without further refinement, the direct connection be-
tween shallow texture information and deep semantic information causes underutilization
of feature information, leading to insufficient discrimination between shallow information
and deep information. To address these issues, a multi-scale feature extraction module
was introduced into the convolutional network by researchers. In 2017, the Pyramid Scene
Parsing Network (PSPNet) was introduced by Zhao et al. [5], which proposed the Pyramid
Pooling Module (PPM) to aggregate diverse regional contexts. In addition, Chen et al. [6–9]
successively proposed DeepLab series networks for extracting multi-scale contextual fea-
tures. Among them, based on DeepLab v3 [8], a decoder structure was added to DeepLab
v3+ [9], which integrated the low-level features of the encoder output with the high-level
features of the Atrous Spatial Pyramid Pooling (ASPP) output. Furthermore, attention
mechanisms have been extensively employed in semantic segmentation networks. In 2020,
a Local Attention Network (LANet) was proposed by Ding et al. [10], introducing a patch-
level-based attention mechanism for extracting contextual information. Two approaches
were suggested for enhancing the feature representation: the chunked attention module
enhances the embedding of contextual information, while the attention embedding module
enriches the semantic information of the underlying features by embedding the local focus
of the high-level features. The differences in physical information content and spatial
distribution are effectively addressed, the disparities between high-level and low-level
features are bridged, and significant success in the field of remote sensing image segmenta-
tion is achieved. Due to these excellent features, we chose it as our benchmark network.
In 2021, Li et al. [11] proposed a Multi-Attention Network (MANet), which designed a novel
linear-complexity kernel attention mechanism to alleviate the computational demands of
attention. In 2023, a novel three-branch network architecture, PIDNet, was proposed by
Xu et al. [12]. PIDNet comprises three branches designed to parse detailed, contextual,
and boundary information. Additionally, boundary attention is employed to facilitate the
fusion of detailed and contextual branches.

In recent years, the Vision Transformer (ViT) [13] has demonstrated remarkable perfor-
mance in the field of RS image segmentation due to its powerful self-attention-based global
context modeling capability [14–18]. Among them, in 2022, Wang et al. [18] proposed the
UnetFormer network for real-time urban scene segmentation in RS images. An efficient
global–local attention mechanism known as the Global–Local Transformer Block (GLTB)
was implemented by the network to integrate both global and local information within the
decoder. A lightweight transformer-based decoder was developed using GLTB and Feature
refinement head, which aimed to enhance the network’s capability to extract multi-scale
contextual features and effectively improve the network’s segmentation performance in
semantic segmentation of RS images. In 2022, Zhang et al. [19] proposed a hybrid deep
neural network, Swin-CNN, combining a transformer and a CNN. The model follows an
encoder–decoder structure. A novel universal backbone dual transformer is employed
in the encoder module to extract features, thus aiming to enhance long-range spatial de-
pendency modeling. The decoder module leverages some effective blocks and successful
strategies from a CNN-based remote sensing image segmentation model. In the middle of
the framework, spatial pyramid pooling blocks based on depthwise separable convolutions
are applied to obtain multi-scale context.

As previously noted, the incorporation of multi-scale and attention modules into the
semantic segmentation network of RS images has been shown to effectively enhance the
network’s segmentation performance. Accordingly, we designed a new ASPP+ module
by augmenting an additional feature extraction channel to the ASPP module, redesigning
the dilation rates, and introducing the CA mechanism [20], thereby effectively enhancing
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the network’s segmentation capability. The utilization of parallel dilated convolutions has
been found to enhance the receptive field and capture target features of varying scales.
Additionally, the incorporation of the attention module allows the model to prioritize
meaningful features and acquire contextual information more effectively. Furthermore,
we introduced the FReLU activation function [21] to enhance the network’s generalization
capability, filter out noise and low-frequency information, and retain more higher-frequency
information so as to effectively improve the segmentation performance of slender ground
object targets and refine the segmentation edges.

In conclusion, the main contributions of this paper include the following three aspects
as follows:

(1) We propose a multi-scale context extraction network for semantic segmentation of
high-resolution RS images, ASPP+-LANet, by improving the LANet structure, which
effectively tackles the issue of unclear segmentation in various-sized ground objects,
slender ground objects, and ground object edges. By adding a new multi-scale module,
the segmentation accuracy of ground objects at different scales has been improved.
By introducing the activation function, the segmentation accuracy of slender ground
objects and ground object edges has been improved.

(2) We designed a novel ASPP+ module to effectively enhance the segmentation accuracy
of ground objects at different sizes. This module adds an additional feature extraction
channel to ASPP. In addition, we redesigned its dilation rates and introduced the CA
mechanism. The attention mechanism can focus on more meaningful areas, improving
the overall segmentation progress.

(3) We introduced the FReLU activation function. By integrating it with the LANet
network, the performance of ASPP+-LANet has been improved. The activation
function can filter out noise and low-frequency information and retain more higher-
frequency information so as to effectively enhance the segmentation accuracy of
slender ground objects and ground object edges.

2. Materials and Methods

2.1. Materials

In this paper, we design a series of comparative experiments using Potsdam and
Vaihingen from the ISPRS dataset [22] in order to evaluate our proposed method.

2.1.1. Potsdam Datasets

The Potsdam dataset consists of 38 images, each with a size of 6000 × 6000 pixels
and a spatial resolution of approximately 5 cm [23]. In the Potsdam region, there are six
land cover classes, as shown in Figure 1: impervious surfaces, buildings, low vegetation,
trees, cars, and clutter/background. The clutter/background class primarily includes water
bodies and objects defined as outside the designated classes, which are typically irrelevant
semantic objects in urban scenes. To ensure sufficient experimental data, the dataset was
preprocessed prior to the experiments, involving image cropping and data augmentation.
The images were uniformly cropped into 512 × 512 pixels and subjected to horizontal and
vertical flipping for data augmentation. After filtering out images with problematic labels,
the dataset was divided into training, validation, and testing sets in a 6:2:2 ratio.

Figure 1. Partial example plot of the Potsdam dataset.
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2.1.2. Vaihingen Datasets

The Vaihingen dataset consists of a total of 33 images, each of which has a varying size,
with an average dimension of 2496 × 2064 pixels and a spatial resolution of approximately
9 cm [23]. The label categories and color representations are the same as those in the Pots-
dam dataset, as shown in Figure 2. Prior to the experiments, the images were cropped into
512 × 512 pixels and augmented by horizontal and vertical flips. After filtering out images
with problematic labels, the dataset was split into a training set with 6020 image blocks, a
validation set with 2006 image blocks, and a test set with 2052 image blocks.

Figure 2. Partial example plot of the Vaihingen dataset.

2.2. Methods

In this section, we provide a comprehensive overview of the proposed network model,
ASPP+-LANet. Firstly, we present a concise summary of the network structure, highlighting
the general motivation and structure. Subsequently, we explore the intricacies of two pivotal
modules: the ASPP+ module and the FReLU activation function. Through the examination of
these components, we aim to present a thorough understanding of the ASPP+-LANet network.

2.2.1. Overall Network Structure

We propose a multi-scale context extraction network for semantic segmentation of
high-resolution RS images, ASPP+-LANet, as illustrated in Figure 1. Like LANet [10], our
network is built upon the FCN framework [2] and employs the pre-trained ResNet50 [24]
as the backbone network. It consists of two parallel branches for high-level and low-level
feature extraction, incorporating multiple feature extraction and enhancement modules
within these branches.

There are two motives in this paper: (1) improving the segmentation performance of
ground object targets at different scales and (2) enhancing the segmentation effect of slender
ground object targets and refining the segmentation edges. To achieve these goals, we added
two independent modules to the LANet network: (1) the ASPP+ module, which facilitates
the fusion of multi-scale features; (2) the FReLU activation function [21], which enhances the
network’s generalization ability, and filters out noise as well as low-frequency information.

Specifically, we integrated the FReLU activation function into the activation layer
at the residual module of the backbone network ResNet50 and added an ASPP+ mod-
ule on the high-level feature extraction branch, as indicated by the green dashed box in
Figure 3. In the branch of high-level feature extraction, the high-level features generated by
ResNet50 extract multi-scale contextual information through the ASPP+ module and then
enhance their feature representation through the Patch Attention Module (PAM) [10]. In
the low-level feature extraction branch, the low-level features generated by convolution
are first feature-enhanced by the PAM, and then the semantic information of the low-level
features is enriched by embedding the local focus of the high-level features through the
Attention Embedding Module (AEM) [10], which enables the low-level features to en-
hance the high-level semantic without losing spatial information. Ultimately, the features
produced by the upper and lower parallel branches are merged to derive our conclusive
segmentation output.
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Figure 3. Overall structure of the ASPP+-LANet network.

2.2.2. ASPP+ Module

In RS images, challenges such as imbalanced ground object classes and significant
variations in ground object scales exist. In such scenarios, it is difficult to extract target
features only by a single scale. To address this issue, the paper proposes an improved
multi-scale context extraction module, ASPP+, with the structure shown in Figure 4. It
mainly consists of two components: the first component is the parallel dilated convolution
multi-scale feature extraction module, employing five parallel dilated convolution branches
to capture feature information of different scales; the second component is the global feature
and context extraction module, taking charge of acquiring global feature and contextual
information. Ultimately, the output features from both components are concatenated to
form a multi-scale feature map.

Figure 4. ASPP+ module structure.

In Figure 4, the orange box represents dilated convolutions with different dilation
rates, where except for the first convolution kernel with a size of 1 × 1, the remaining
four convolution kernels are all 3 × 3. Additionally, they have a stride of 1 and no
padding. The Image Pooling module performs global average pooling. CA [20] refers
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to the Coordinate Attention module. “Concat” represents the operation of concatenating
features. By concatenating the output features from these two parts, the model achieves
the functionality of multi-scale context feature extraction. The dilated convolutions with
different dilation rates improve the receptive field and capture target features at different
scales. The attention module allows the model to focus more on meaningful features and
acquire contextual information.

(1) Parallel Dilated Convolution Multi-Scale Feature Extraction

Parallel convolution can alter the receptive field of the convolutional kernel, acquiring
the feature information of different scales. However, multiple parallel convolutions can
increase the number of parameters and computational complexity of the network. Inspired
by the ASPP module [9], using extended convolution instead of standard convolution can
obtain feature information at different scales while reducing the number of parameters and
computational complexity.

While the replacement of dilated convolutions has played a significant role, the setting
of the dilation rate remains a challenge. The consecutive use of the same dilation rate in
atrous convolutions will result in discontinuity of the convolution kernel, leading to a “grid
effect”, as shown in Figure 5a. On the other hand, a reasonable dilation rate, as depicted
in Figure 5b, not only avoids the loss of relevant information but also captures the target
context of different scales [25]. According to the literature [25], the dilation rate should
follow the following principles:

(a) 

(b) 

Figure 5. Schematic diagram of the “grid effect” [25]. (a) The “grid effect” in atrous convolutions.
(b) Reasonable combination of dilation rates in atrous convolutions.

(a) The combination of dilation rates should not have a common factor greater than 1, as
it would still lead to the occurrence of the “grid effect”.

(b) Assuming that dilation rates corresponding to N convolutional kernel sizes k × k of
atrous convolutions are [r1, . . . , ri, . . . , rn], it is required that Equation (1)
satisfies M2 ≤ k.

Mi = max[Mi+1 − 2ri, Mi+1 − 2(Mi+1 − ri), ri] (1)

where ri represents the dilation rate of the i-th atrous convolution and Mi represents
the maximum dilation rate for the i-th layer of atrous convolution, with a default
value of Mn = rn.
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Therefore, this paper follows the aforementioned design principles and obtains a set
of most appropriate dilation rates (1, 2, 4, 8, 12) through several comparative experiments
(detailed experimental procedures described in Section 3.3.4), which significantly enhances
the segmentation performance of ground object targets at different sizes.

Additionally, to enhance the model’s generalization ability, we incorporate batch
normalization and ReLU activation functions [26] after each convolutional layer. Finally,
we connect the five parallel dilated convolution branches to form the parallel dilated
convolution multi-scale feature extraction module, as depicted by the blue dashed box in
Figure 4. The expression is represented as:〈

C1
1×1(X)·Cd

3×3(X)
〉

, d = 2, 4, 8, 12 (2)

where 〈·〉 represents feature concatenation, which refers to each feature being spliced along
the channel dimension. C1

1×1 denotes a 1 × 1 convolution with a dilation rate of 1. Cd
3×3

represents a 3 × 3 convolution with a dilation rate of d. X denotes the input feature.

(2) Global features and contextual information extraction

Global feature extraction refers to the generalization and integration of features from
the entire feature map to obtain global contextual information. The global feature and
context extraction module, as illustrated by the orange dashed box in Figure 4, begins
by performing global average pooling on the input feature. It then utilizes a CA module
to emphasize meaningful features, thereby capturing global contextual information. The
expression can be represented as:

CA(GAP(X)) (3)

where CA(·) represents Coordinate Attention. GAP(·) denotes Global Average Pooling. X
represents the input features.

In conclusion, based on the aforementioned information, we can obtain an improved
multi-scale context extraction module, referred to as the ASPP+ module. Its overall repre-
sentation is illustrated by Equation (4).〈

C1
1×1(X)·Cd

3×3(X)·CA(GAP(X))
〉

, d = 3, 6, 12, 18 (4)

where 〈·〉 represents feature concatenation, which refers to the concatenation of each feature
along the channel dimension. C1

1×1 denotes a 1 × 1 convolution with a dilation rate of 1.
Cd

3×3 represents a 3 × 3 convolution with a dilation rate of d. X denotes the input feature.
CA(·) represents Coordinate Attention. GAP(·) denotes Global Average Pooling.

2.2.3. FReLU

In RS images, there always exists interference from noise and low-frequency infor-
mation, which makes it challenging for existing image semantic segmentation networks
to achieve satisfactory results for slender and limbic ground object targets. Activation
functions, on the other hand, play a crucial role in enhancing network generalization, filter-
ing out noise and low-frequency information, and preserving high-frequency information,
which can help resolve this issue. Therefore, this paper conducted comparative experi-
ments with different activation functions on the LANet network (detailed in Section 3.3.5),
and the results indicate that incorporating FReLU into the LANet network yields the
best performance.

This paper focuses on improving the bottleneck residual module within the ResNet50
backbone network, as illustrated in Figure 6. The activation functions in each convolu-
tional layer of the bottleneck module are replaced with FReLU. Similar to ReLU [27] and
PReLU [28], FReLU utilizes the max() function as a simple non-linear function. Whereas
ReLU is defined as y = max(x, 0) and PReLU as y = max(x, px), FReLU adds a negligible
spatial condition overhead and extends the conditional part to a two-dimensional condition
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that depends on the spatial context of each pixel, as illustrated in Figure 7. It can be repre-
sented as y = max(x, T(x)), where T(·) denotes the two-dimensional spatial representation.
The function definition of FReLU is as follows:

f
(
xc, i, j

)
= max

(
xc, i, j, T

(
xc, i, j

))
(5)

T
(
xc, i, j

)
= xw

c, i, j· pw
c (6)

where (i, j) represents the pixel position in two-dimensional space; c denotes the c-th
channel; T

(
xc,i,j

)
represents the two-dimensional condition; xw

c,i,j denotes the parameterized
pool window centered on the input pixel of the nonlinear activation function on the c-th
channel at position (i, j) in two-dimensional space; and pw

c represents coefficients that are
shared by this window in the same channel.

Figure 6. BottleNeck structure of ResNet50.

Figure 7. Schematic diagram of FReLU.

High-resolution RS images often exhibit complex backgrounds, leading to challenges
in achieving accurate semantic segmentation, especially for slender and limbic ground
object targets. FReLU, by incorporating spatial context information as a non-linear function
condition, possesses superior contextual capturing capabilities. It effectively filters out
noise and low-frequency information while preserving high-frequency details. The results
show that FReLU can significantly improve the segmentation effect of slender ground
objects and refine the segmentation edges.

3. Experiments and Results

In this section, we conducted a series of comparative experiments and ablation studies
to validate the effectiveness of our proposed method. Initially, we delineated three evalua-
tion metrics utilized for quantitative analysis. Following that, we furnished comprehensive
details regarding the network’s parameter configurations and experimental setups. Subse-
quently, we performed comparative experiments with other SOTA methods to assess and
compare the performance of our proposed network. Additionally, we conducted ablation
studies to evaluate the performance of our network under various configuration settings.
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We analyzed the experimental results in terms of segmentation accuracy, visual effects, and
ablation studies. Ultimately, to bolster the credibility of our experiments, we conducted an
investigation into the optimal dilation rate for the ASPP+ module. Furthermore, we under-
took experiments to evaluate the performance differences of various activation functions
on the baseline network, LANet.

3.1. Evaluation Criteria

To quantitatively evaluate the efficacy of our proposed method, this paper utilizes
three evaluation metrics for comprehensive comparison and analysis: Pixel Accuracy (PA),
F1 Score (F1), and Mean Intersection over Union (MIoU). The formulas for these metrics
are as follows:

PA refers to the proportion of correctly predicted pixels of a certain category to the
total number of pixels.

PA =
TP + TN

TP + TN + FP + FN
(7)

F1 takes into account both the precision and recall of a classification model and enables
it to be seen as the harmonic mean of precision and recall.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(10)

MIoU refers to the average Intersection over Union (IoU) of each class in the dataset.

IoU =
TP

TP + FP + FN
(11)

MIoU =
1
n

n

∑
i=1

IoU (12)

where TP stands for True Positive, indicating the number of pixels in the predicted results
that belong to a certain class and are indeed of that class; FP stands for False Positive,
signifying the number of pixels in the predicted results that belong to other classes but are
mistakenly classified as that class; TN stands for True Negative, depicting the number of
pixels in the predicted results that belong to other classes and are indeed of other classes;
FN stands for False Negative, referring to the number of pixels in the predicted results
that belong to a certain class but are mistakenly classified as other classes. n represents the
number of classes. i represents the i-th class.

3.2. Implementation Details

In this article, our network and other comparative networks are implemented in the
PyTorch deep learning framework, and experiments are conducted on a 64-bit Windows
10 system server. The server is equipped with an Intel Core i9-12900k CPU (3.20 GHz),
128 GB of memory, and an NVIDIA GeForce RTX 4090 graphics card.

During the training process, referring to some model [18] and synthesizing our hard-
ware and our experimental results, the experimental parameters were set as follows: the
batch size was set to 6, the learning rate was set to 0.025, the total epochs was set to 400,
the momentum was set to 0.9, adaptive moment estimation optimizer (Adam) [29] was
used to optimize our model, and stochastic gradient descent (SGD) was employed for the
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optimization training. Additionally, a “poly” learning rate decay strategy was utilized to
dynamically adjust the learning rate using the following expression:

l = lini

(
1 − e

emax

)0.9
(13)

where l represents the current learning rate, lini stands for the initial learning rate, e denotes
the current training epoch, and emax refers to the maximum number of training epochs.

3.3. Experiment Results
3.3.1. Segmentation Precision Analysis

To validate the efficacy of our proposed method, we conducted comparisons with sev-
eral classical network models, including UNet [3], SegNet [4], DeepLab V3+ [9], LANet [10],
MANet [11], UnetFormer [18], and Swin-CNN [19] on the Potsdam and Vaihingen datasets.
The evaluation metrics for each method are presented in Tables 1 and 2. The tables clearly
demonstrate that LANet’s experimental results outperform classical semantic segmentation
networks such as UNet, SegNet, and so on. Nonetheless, the utilization of a single-scale
feature extraction approach in LANet results in diminished segmentation performance
when confronted with ground object targets of varied sizes. Consequently, we implemented
enhancements to LANet by integrating the ASPP+ module and the FReLU activation func-
tion. This integration effectively enhances the segmentation performance for ground object
targets at different scales, as well as slender ground objects and ground objects’ edges.

Table 1. Segmentation accuracy of different methods on the Potsdam dataset.

Method Parameters(M) PA/% F1/% MIoU/% Kappa

UNet 17.27 92.66 78.08 71.35 0.9492
SegNet 29.45 92.61 77.61 70.84 0.9491

DeepLab V3+ 21.94 90.00 72.24 64.17 0.8913
LANet 23.81 93.29 78.77 72.29 0.9496
MANet 35.86 92.06 76.89 69.86 0.9256

UNetFormer 11.28 91.23 75.01 67.51 0.9138
Swin-CNN 66 94.56 81.68 76.62 0.9521

ASPP+-LANet 27.46 95.53 82.57 77.81 0.9552

Table 2. Segmentation accuracy of different methods on the Vaihingen dataset.

Method Parameters(M) PA/% F1/% MIoU/% Kappa

UNet 17.27 98.03 81.83 79.53 0.9637
SegNet 29.45 96.82 80.21 76.77 0.9433

DeepLab V3+ 21.94 92.77 73.31 67.33 0.8721
LANet 23.81 97.55 80.82 77.77 0.9465
MANet 35.86 98.08 81.81 79.55 0.9677

UNetFormer 11.28 96.73 80.08 76.52 0.9429
Swin-CNN 66 97.98 81.66 78.86 0.9625

ASPP+-LANet 27.46 98.24 81.99 79.83 0.9689

As shown in Table 1, our proposed method, ASPP+-LANet, achieves the following
performance metrics on the Potsdam dataset: PA reaches 95.53%, F1 reaches 82.57%, and
MIoU reaches 77.81%, which is improved by 2.24%, 3.80%, and 5.52%, respectively, com-
pared to the baseline LANet network. Furthermore, our method demonstrates superior
performance compared to existing semantic segmentation networks. This notable per-
formance can be attributed to two key factors. Primarily, our proposed ASPP+ module
enhances the network’s ability to extract multi-scale features by setting appropriate dilation
rates, thereby effectively improving the segmentation accuracy for ground object targets
of different sizes. Moreover, the introduction of the FReLU activation function filters out
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noise and low-frequency information while preserving high-frequency information, thereby
improving segmentation performance for slender and limbic ground object targets.

As shown in Table 2, our proposed method, ASPP+-LANet, achieves the following
performance metrics on the Vaihingen dataset: PA reaches 98.24%, F1 reaches 81.99%,
and MIoU reaches 79.83%, which is improved by 0.69%, 1.17%, and 2.06%, respectively,
compared to the baseline LANet network. Furthermore, our method demonstrates superior
performance compared to existing semantic segmentation networks.

3.3.2. Renderings Analysis

To better highlight the feasibility of the proposed method in this paper, we selected six
representative test targets for analysis on the Potsdam and Vaihingen datasets. Addition-
ally, we conducted a subjective visual comparison analysis among the classical semantic
segmentation methods, as illustrated in the figure below.

By comparing the visualization results on the Potsdam dataset, as shown in
Figures 8 and 9, it can be observed that our proposed method achieves superior segmenta-
tion accuracy on ground object targets of different scales compared to other comparative
methods. Additionally, Figures 10 and 11 demonstrate that our proposed method achieves
superior segmentation accuracy on slender ground objects and ground object edges com-
pared to other comparative methods. Moreover, Figures 12 and 13 reveal that our proposed
method outperforms other comparative methods in terms of missing detections and false
detections. The above experimental results validate the efficacy of our proposed ASPP+-
LANet model. After integrating the ASPP+ module and the FReLU activation function,
there was indeed a noticeable improvement in the segmentation performance of ground
object targets at varying scales in the Potsdam dataset. Moreover, it also enhances the
segmentation effect for slender ground object targets, refining the segmentation edges.
These results demonstrate the effectiveness of our approach.

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 8. Visual comparison of semantic segmentation for small object features on the Potsdam
dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet, (g) MANet,
(h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet. The colors represent the same types of ground
object as shown in Figure 1, and the same applies to other similar images.

By analyzing the visualization results on the Vaihingen dataset, as shown in
Figures 14 and 15, it can be observed that our proposed method achieves superior segmen-
tation accuracy on ground object targets of different scales compared to other comparative
methods. Additionally, Figures 16 and 17 demonstrate that our proposed method achieves
better segmentation accuracy on slender ground objects and ground object edges compared
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to other comparative methods. Moreover, Figures 18 and 19 reveal that our proposed
method outperforms other comparative methods in terms of missing detections and false
detections. The above experimental results validate the effectiveness of our proposed
ASPP+-LANet model. After integrating the ASPP+ module and the FReLU activation
function, there was indeed a noticeable improvement in the segmentation performance of
ground object targets at varying scales in the Vaihingen dataset. Moreover, it also enhances
the segmentation effect for slender ground object targets, refining the segmentation edges.
These results further demonstrate the effectiveness of our approach.

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 9. Visual comparison of semantic segmentation for large object features on the Potsdam
dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet, (g) MANet,
(h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet.

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 10. Visual comparison of semantic segmentation for slender ground objects features on the
Potsdam dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet,
(g) MANet, (h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet.
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(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 11. Visual comparison of semantic segmentation for limbic ground objects features on the
Potsdam dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet,
(g) MANet, (h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet.

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 12. Visual comparison of semantic segmentation for the missing detection of object features in
the Potsdam dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet,
(g) MANet, (h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet.

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 13. Visual comparison of semantic segmentation for the false detection of object features in
the Potsdam dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet,
(g) MANet, (h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet.
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(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 14. Visual comparison of semantic segmentation for small object features on the Vaihingen
dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet, (g) MANet,
(h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet.

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 15. Visual comparison of semantic segmentation for large object features on the Vaihingen
dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet, (g) MANet,
(h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet.

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 16. Visual comparison of semantic segmentation for slender ground objects features on the
Vaihingen dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet,
(g) MANet, (h) UNetFormer, (i) Swin-CNN, (j) ASPP+-LANet.
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(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 17. Visual comparison of semantic segmentation for limbic ground objects features on the
Vaihingen dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet,
(g) MANet, (h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet.

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 18. Visual comparison of semantic segmentation for the missing detection of object features in
the Vaihingen dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet,
(g) MANet, (h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet.

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 19. Visual comparison of semantic segmentation for the false detection of object features in
the Vaihingen dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet,
(g) MANet, (h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet.
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3.3.3. Ablation Experiments Analysis

To effectively capture detailed features from high-resolution RS images and overcome
the technical challenges in accurately segmenting ground object targets at various scales,
we propose the ASPP+ module. Building upon the ASPP module, the ASPP+ module adds
a feature extraction channel, redefines the dilation rates, and introduces CA mechanisms,
thereby effectively improving the segmentation performance of ground object targets at
different scales. Moreover, in order to enhance the segmentation performance of slender
ground object targets and refine the segmentation edges, we replaced the activation func-
tion on the backbone network (ResNet50) with FReLU. This alteration assists in filtering out
noise and low-frequency information while preserving more high-frequency information,
thereby further improving the segmentation accuracy of RS images. We conducted corre-
sponding ablation experiments to individually verify the effectiveness of the ASPP module,
ASPP+ module, and FReLU activation function. The results of the ablation experiments on
the Potsdam and Vaihingen datasets are presented in Tables 3 and 4.

Table 3. Results of ablation experiments on the Potsdam dataset.

Method PA/% F1/% MIoU/%

LANet 93.29 78.77 72.29
LANet + ASPP 93.71 79.46 73.29

LANet + ASPP+ 93.86 79.80 73.75
LANet + FReLU 95.22 82.05 77.06
ASPP+-LANet 95.53 82.57 77.81

Table 4. Results of ablation experiments on the Vaihingen dataset.

Method PA/% F1/% MIoU/%

LANet 97.55 80.82 77.77
LANet + ASPP 97.77 81.31 78.65

LANet + ASPP+ 97.80 81.42 78.79
LANet + FReLU 97.76 81.30 78.59
ASPP+-LANet 98.24 81.99 79.83

According to Table 3, it can be observed that the inclusion of the ASPP module leads
to improvements in all performance metrics compared to the baseline network, LANet.
Furthermore, by further refining the ASPP module, we were able to achieve even more
significant enhancements in the performance metrics compared to the initial inclusion of the
ASPP module. By incorporating the FReLU activation function, significant improvements
can be observed in all performance metrics compared to the baseline network, LANet.
Finally, by integrating the ASPP+ module and the FReLU activation function into the
LANet network, we further improved the overall performance metrics. The metrics such
as PA, F1, and MioU reached 95.53%, 82.57%, and 77.81% respectively. Compared to the
baseline network, LANet, there were increases of 2.24%, 3.80%, and 5.52% in PA, F1, and
MioU, respectively.

According to Table 4, it is evident that the addition of the ASPP module leads to
improvements in all metrics compared to the baseline LANet. Subsequent modifications
made to the ASPP module result in slight enhancements in the metrics compared to the
initial implementation. Furthermore, the inclusion of the FReLU activation function leads
to improvements in all metrics compared to the LANet baseline. However, it is worth
noting that the improvement achieved by incorporating FReLU is not as significant as that
observed in the Potsdam dataset. This discrepancy could be attributed to the presence
of a higher number of RS images related to narrow streets in the Potsdam dataset, a
characteristic absent in the Vaihingen dataset. Finally, by integrating the ASPP+ module
and FReLU activation function into the LANet network, we further enhanced the overall
performance metrics. The metrics, including PA, F1, and MioU, reached 98.24%, 81.99%,
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and 79.83%, respectively. Compared to the baseline LANet, there were improvements of
0.69%, 1.17%, and 2.06% in PA, F1, and MioU metrics, respectively.

In addition, to further visually represent the impact of each module in the ablation
experiments on the results of semantic segmentation, we present the visualization of
the core component ablation experiments of our method on the Potsdam and Vaihingen
datasets, as shown in Figures 20 and 21. Among them, the first and second rows are used
to verify the efficacy of large object detection and small object detection, respectively. From
the figures, it can be observed that incorporating the ASPP+ module into LANet improves
the detection performance for ground object targets of different scales, surpassing both
LANet alone and the results of incorporating the FReLU activation function in LANet.
The third and fourth rows are used to evaluate the detection performance of slender and
limbic ground object targets. The figures demonstrate that integrating the FReLU activation
function into LANet enhances the detection of slender and limbic ground object targets,
outperforming both LANet alone and the results of incorporating the ASPP+ module in
LANet. Thus, we can conclude that the efficacy of our integration of the ASPP+ module
and FReLU activation function in LANet has been validated.

       

       

       

       
(a) (b) (c) (d) (e) (f) (g) 

Figure 20. Visual comparisons of the ablation experiments conducted on the Potsdam dataset:
(a) Image, (b) Grond Truth, (c) LANet, (d) LANet + ASPP, (e) LANet + ASPP+, (f) LANet + FReLU,
(g) ASPP+-LANet.

       

       

       

       
(a) (b) (c) (d) (e) (f) (g) 

Figure 21. Visual comparisons of the ablation experiments conducted on the Vaihingen dataset:
(a) Image, (b) Grond Truth, (c) LANet, (d) LANet + ASPP, (e) LANet + ASPP+, (f) LANet + FReLU,
(g) ASPP+-LANet.
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3.3.4. Dilation Rates Analysis of ASPP+ Module

The ASPP+ module is a fusion of the enhanced ASPP [9] module and the CA [20]
module. This fusion facilitates the efficient extraction of multi-scale semantic features in RS
images. Due to the addition of an extra feature extraction channel in ASPP, as the backbone
network performs feature extraction, the resolution of the feature maps gradually decreases.
The combination of (1, 6, 12, 18) is not optimal for effectively extracting multi-resolution
feature maps. Insufficient utilization of smaller dilation rates hinders the segmentation
capability of small targets, resulting in weaker segmentation ability of the network for
ground object targets at different scales. Therefore, it is necessary to readjust the dilation
rates of the atrous convolution. Considering our two distinct datasets, to avoid redundant
experiments, we exclusively conducted the experimentation on the Potsdam dataset for
readjusting the dilation rates. In order to effectively extract multi-scale contextual features
and enhance the segmentation performance for ground object targets of varying scales, this
paper follows the guidelines outlined in Section 2.2 to determine rational dilation rates. To
this end, we devised five groups of experiments with different dilation rates for comparison
within the ASPP+-LANet network, which comprise of (1, 2, 4, 6, 8), (1, 2, 4, 8, 12), (1, 3, 6,
12, 18), (1, 3, 8, 16, 18), and (1, 3, 8, 18, 24). The experimental results are presented in Table 5.
According to the evaluation metrics obtained from different combinations of dilation rates,
the experiment achieved optimal results when the dilation rates were (1, 2, 4, 8, 12). This is
because such dilation rate settings are well-suited for feature extraction of ground object
targets at different scales in the Potsdam dataset. When the dilation rate is too large or too
small, it adversely affects the effectiveness of feature extraction.

Table 5. Comparative experiments with different dilation rates of ASPP+ on the ASPP+-LANet.

Dilation Rate PA/% F1/% MIoU/%

(1, 2, 4, 6, 8) 95.50 82.51 77.74
(1, 2, 4, 8, 12) 95.53 82.57 77.81

(1, 3, 6, 12, 18) 95.47 82.39 77.60
(1, 3, 8, 16, 18) 95.46 82.51 77.74
(1, 3, 8, 18, 24) 95.51 82.52 77.73

3.3.5. Comparative Analysis of Activation Functions

In order to validate the effectiveness of the FReLU activation function, this paper
conducted experimental comparisons of different activation functions on the benchmark
network, LANet. Considering the availability of two datasets, to avoid redundant experi-
ments, we exclusively performed activation function comparisons on the Potsdam dataset.
The results are summarized in the following table.

As depicted in Table 6, among the numerous activation functions examined, the
incorporation of the FReLU activation function into the baseline LANet network yielded
the most favorable segmentation results on the Potsdam dataset. The evaluation metrics,
including PA, F1, and MIoU, exhibited remarkable values of 95.22%, 82.05%, and 77.06%,
respectively. These findings highlight the superiority of the FReLU activation function in
enhancing the segmentation performance, specifically for RS tasks.

Table 6. Experimental Comparisons of Different Activation Functions on the LANet Network.

Activation Function PA/% F1/% MIoU/%

LANet + LeakyReLU [26] 93.34 78.73 72.31
LANet + PReLU [28] 94.37 80.65 74.94

LANet + ELU [30] 90.23 72.58 64.83
LANet + Mish [31] 89.99 73.50 65.74

LANet + DY-ReLU [32] 94.10 80.26 74.40
LANet + FReLU 95.22 82.05 77.06

75



Remote Sens. 2024, 16, 1036

4. Discussion

According to the ablation experiments, the improved model effectively improves the
accuracy of building extraction, as indicated in Tables 3 and 4. Moreover, from the first
and second plots of Figures 20 and 21, we can see that our proposed network performs
outstandingly well in segmenting large ground object targets as well as small ground object
targets. In addition, the segmentation effect of the effect map with the ASPP module alone
is much better than that of the effect map with FReLU alone, which indicates that the ASPP
module can indeed effectively improve the segmentation effect of ground object targets
at different scales. This is due to the fact that ASPP is a multi-scale module, which can
effectively enhance the network’s ability to extract multi-scale contexts. From the third
and fourth plots of Figures 20 and 21, we can see that our proposed network performs
outstandingly well in segmenting slender ground object targets and ground object edges.
However, the segmentation effect of the effect map with the ASPP module alone is much
lower than that of the effect map with FReLU alone, which indicates that the FReLU module
can indeed effectively improve the segmentation effect of the slender ground object targets
and ground object edges. This is because FReLU is able to filter noise and low-frequency
information and retain more high-frequency information, while slender ground object
targets, as well as ground object edges, mostly belong to high-frequency information.

Regarding the ASPP+ module, we conducted detailed experiments on its dilation
rate settings, as shown in Section 3.3.4. We found that the setting of the dilation rate
is not the larger or smaller as being better for different sizes of feature targets; larger
segmentation targets can be segmented by convolutional kernels with larger dilation rates;
on the contrary, smaller targets can be segmented by convolutional kernels with smaller
dilation rates. Therefore, the dilation rate should be set reasonably and appropriately in
order to make the segmentation targets of different sizes achieve effective feature extraction.

Regarding the selection of the activation function, we also conducted detailed exper-
iments on it, as shown in Section 3.3.5. The activation function can enhance the general-
ization ability of the network, filter noise and low-frequency information, and retain more
high-frequency information, which can effectively improve the performance of the network.
However, different activation functions do not improve the performance of the network in
the same way; therefore, in this paper, the activation functions proposed in recent years
are compared and tested, and the most suitable activation function for the network in this
paper is derived.

In order to improve the robustness of the model, in this paper, we use the data
enhancement method to perform operations such as random flipping on the Potsdam and
Vaihingen datasets. We also discuss the impact of the data enhancement method on the
semantic segmentation results and, based on the analysis in Figures 22 and 23, it can be
seen that the use of the data enhancement method improves the combined performance
metrics over the non-use of the data enhancement method on both semantic segmentation
datasets, provided that all other conditions remain consistent. This further indicates that
data enhancement is one of the factors that improve the semantic segmentation results of
the method proposed in this paper.
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Figure 22. Effect of data augmentation on semantic segmentation results for the Potsdam dataset.

 

Figure 23. Effect of data augmentation on semantic segmentation results for the Vaihingen dataset.

5. Conclusions

In this paper, we propose a multi-scale context extraction network for semantic seg-
mentation of high-resolution RS images, ASPP+-LANet, aiming to fully capture the rich
characteristics of ground object features. Firstly, we design a new ASPP+ module, expand-
ing upon the ASPP module by incorporating an additional feature extraction channel and
redesigning the dilation rate, which effectively improves the segmentation effect of ground
object features at different scales by controlling the size of the dilation rate. Furthermore,
the CA mechanism has been introduced to extract meaningful features and acquire con-
textual information. The FReLU activation function has been incorporated to enhance the
segmentation effect of slender ground object targets and refine the segmentation edges.
Therefore, on the Potsdam and Vaihingen datasets, ASPP+-LANet achieves superior seg-
mentation performance for ground object targets at different scales, as well as slender and
limbic ground object targets.

Nevertheless, certain limitations of our current approach must be acknowledged,
especially concerning the influence of shadows on the segmentation accuracy of buildings,
vegetation, and other objects, as well as the segmentation boundaries of non-smooth objects.
Changes in the color of objects like buildings and vegetation can be induced by shadows. To
address this issue, a more precise color division is required to distinguish between shadows
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and actual objects, aiming to enhance accuracy levels. Furthermore, in the detection of
non-smooth object edges, there is a need to enhance the network’s capability to identify
small target objects. This is crucial as object edges with jagged features can be perceived as
tiny targets.

In the future, we will explore better methods to achieve higher accuracy and ef-
ficiency in RS image segmentation tasks. Firstly, we will be more specific in dividing
the colors to distinguish the shadows from the actual objects; secondly, we will use the
lightweight module to better optimize the network model and improve the network model
segmentation efficiency and segmentation accuracy to solve the non-smooth ground objects
edges problem.

Author Contributions: Conceptualization, L.H. and X.Z.; funding acquisition, L.H.; investigation,
X.Z. and L.H.; methodology, X.Z. and L.H.; project administration, L.H. and S.L.; software, X.Z. and
J.R.; writing–original draft, X.Z., L.H., S.L. and J.R.; writing–review and editing, L.H., X.Z. and J.R.
supervision, L.H.; All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 61662033.

Data Availability Statement: This data can be found here: https://www.isprs.org/education/
benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx and https://www.isprs.org/education/
benchmarks/UrbanSemLab/2d-sem-label-vaihingen.aspx, all accessed on 15 October 2022.

Acknowledgments: The authors would like to thank the editor and the anonymous reviewers who
provided insightful comments on improving this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Xu, S.; Pan, X.; Li, E.; Wu, B.; Bu, S.; Dong, W.; Xiang, S.; Zhang, X. Automatic Building Rooftop Extraction from Aerial Images via
Hierarchical RGB-D Priors. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7369–7387. [CrossRef]

2. Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

3. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Proceedings, Part
III 18, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241.

4. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

5. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

6. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets
and fully connected crfs. arXiv 2014, arXiv:1412.7062.

7. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolu-
tional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef]
[PubMed]

8. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017,
arXiv:1706.05587.

9. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic
Image Segmentation. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; Ferrari, V.,
Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer: Cham, Switzerland, 2018; pp. 833–851.

10. Ding, L.; Tang, H.; Bruzzone, L. LANet: Local Attention Embedding to Improve the Semantic Segmentation of Remote Sensing
Images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 426–435. [CrossRef]

11. Li, R.; Zheng, S.; Zhang, C.; Duan, C.; Su, J.; Wang, L.; Atkinson, P.M. Multiattention Network for Semantic Segmentation of
Fine-Resolution Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5607713. [CrossRef]

12. Xu, J.; Xiong, Z.; Bhattacharyya, S.P. PIDNet: A Real-Time Semantic Segmentation Network Inspired by PID Controllers. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023;
pp. 19529–19539.

13. Xu, M.; Wang, W.; Wang, K.; Dong, S.; Sun, P.; Sun, J.; Luo, G. Vision Transformers (ViT) Pretraining on 3D ABUS Image and
Dual-CapsViT: Enhancing ViT Decoding via Dual-Channel Dynamic Routing. In Proceeding of the IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), Istanbul, Turkiye, 5–8 December 2023; pp. 1596–1603.

78



Remote Sens. 2024, 16, 1036

14. Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H.; et al. Rethinking Semantic Segmentation
from a Sequence-to-Sequence Perspective with Transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 6881–6890.

15. Strudel, R.; Garcia, R.; Laptev, I.; Schmid, C. Segmenter: Transformer for Semantic Segmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 7242–7252.

16. Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic
Segmentation with Transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090.

17. He, X.; Zhou, Y.; Zhao, J.; Zhang, D.; Yao, R.; Xue, Y. Swin Transformer Embedding UNet for Remote Sensing Image Semantic
Segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4408715. [CrossRef]

18. Wang, L.; Li, R.; Zhang, C.; Fang, S.; Duan, C.; Meng, X.; Atkinson, P.M. UNetFormer: A UNet-Like Transformer for Efficient
Semantic Segmentation of Remote Sensing Urban Scene Imagery. ISPRS J. Photogramm. Remote Sens. 2022, 190, 196–214. [CrossRef]

19. Zhang, C.; Jiang, W.; Zhang, Y.; Wang, W.; Zhao, Q.; Wang, C. Transformer and CNN Hybrid Deep Neural Network for Semantic
Segmentation of Very-High-Resolution Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4408820. [CrossRef]

20. Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 13708–13717.

21. Ma, N.; Zhang, X.; Sun, J. Funnel Activation for Visual Recognition. In Proceedings of the European Conference on Computer
Vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 351–368.

22. Rottensteiner, F.; Sohn, G.; Gerke, M.; Wegner, J.D.; Breitkopf, U.; Jung, J. Results of the ISPRS Benchmark on Urban Object
Detection and 3D Building Reconstruction. ISPRS J. Photogramm. Remote Sens. 2014, 93, 256–271. [CrossRef]

23. Lyu, Y.; Vosselman, G.; Xia, G.S.; Yilmaz, A.; Yang, M.Y. UAVid: A Semantic Segmentation Dataset for UAV Imagery. ISPRS J.
Photogramm. Remote Sens. 2020, 165, 108–119. [CrossRef]

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

25. Wang, P.; Chen, P.; Yuan, Y.; Liu, D.; Huang, Z.; Hou, X.; Cottrell, G. Understanding Convolution for Semantic Segmentation. In
Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March
2018; pp. 1451–1460.

26. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models. Proc. ICML 2013, 30, 3.
27. Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. J. Mach. Learn Res. 2011, 15, 315–323.
28. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification.

In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.
29. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
30. Clevert, D.; Unterthiner, T.; Hochreiter, S. Fast and Accurate Deep Network Learning by Exponential Linear Units (elus). arXiv

2015, arXiv:1511.07289.
31. Misra, D. Mish: A Self Regularized Non-monotonic Activation Function. arXiv 2019, arXiv:1908.08681.
32. Chen, Y.; Dai, X.; Liu, M.; Chen, D.; Yuan, L.; Liu, Z. Dynamic Relu. In Proceedings of the European Conference on Computer

Vision, Online, 23–28 August 2020; pp. 351–367.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

79



Citation: Xu, D.; Li, Z.; Feng, H.; Wu,

F.; Wang, Y. Multi-Scale Feature

Fusion Network with Symmetric

Attention for Land Cover

Classification Using SAR and Optical

Images. Remote Sens. 2024, 16, 957.

https://doi.org/10.3390/rs16060957

Academic Editor: Andrea Garzelli

Received: 10 January 2024

Revised: 23 February 2024

Accepted: 6 March 2024

Published: 8 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

Multi-Scale Feature Fusion Network with Symmetric Attention
for Land Cover Classification Using SAR and Optical Images

Dongdong Xu 1,*, Zheng Li 1,2, Hao Feng 1,2, Fanlu Wu 1 and Yongcheng Wang 1

1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130033, China; lizheng20@mails.ucas.ac.cn (Z.L.); fenghao21@mails.ucas.ac.cn (H.F.);
flwu@ciomp.ac.cn (F.W.); wangyc@ciomp.ac.cn (Y.W.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: xudongdong@ciomp.ac.cn

Abstract: The complementary characteristics of SAR and optical images are beneficial in improving
the accuracy of land cover classification. Deep learning-based models have achieved some notable
results. However, how to effectively extract and fuse the unique features of multi-modal images for
pixel-level classification remains challenging. In this article, a two-branch supervised semantic seg-
mentation framework without any pretrained backbone is proposed. Specifically, a novel symmetric
attention module is designed with improved strip pooling. The multiple long receptive fields can
better perceive irregular objects and obtain more anisotropic contextual information. Meanwhile,
to solve the semantic absence and inconsistency of different modalities, we construct a multi-scale
fusion module, which is composed of atrous spatial pyramid pooling, varisized convolutions and
skip connections. A joint loss function is introduced to constrain the backpropagation and reduce
the impact of class imbalance. Validation experiments were implemented on the DFC2020 and
WHU-OPT-SAR datasets. The proposed model achieved the best quantitative values on the metrics
of OA, Kappa and mIoU, and its class accuracy was also excellent. It is worth mentioning that the
number of parameters and the computational complexity of the method are relatively low. The
adaptability of the model was verified on RGB–thermal segmentation task.

Keywords: land cover classification; SAR and optical images; attention mechanism; multi-scale
feature fusion; semantic segmentation

1. Introduction

Semantic segmentation refers to pixel-level annotations and different types of objects
can be distinguished in segmented maps. It is a more refined task than classification
and detection, and has been widely developed in assisted driving, geological detection
and medical image analysis, among other scenarios. In particular, in Earth observation
(EO) missions, land use and land cover (LULC) classification has become a key link in
remote sensing (RS) data interpretation. Such classification results are already used for
crop monitoring, urban development planning, disaster response and other tasks [1,2].
However, most of the common segmentation methods are based on unimodal RS images [3],
which are insufficient for complex scene representation [4]. Spectral confusion or noise
interference often affects the accuracy of classification. With the continuous development of
sensors and imaging techniques, it becomes slightly easier to acquire multi-modal remote
RS images of the same region simultaneously [5]. More comprehensive information about
land cover can be acquired, further meeting the needs of advanced vision tasks. Optical
images such as multi-spectral and hyperspectral images are still the primary data used for
remote sensing classification [6]. The spatial resolution of these images is high, and more
details of ground objects can be preserved. However, the imaging process is often disturbed
by weather factors, especially frequent occlusion by clouds and fog. This is the drawback
of catoptric imaging. In contrast, radar devices such as synthetic aperture radar (SAR)
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generate images by continuously transmitting microwaves and using scattered echoes. They
are not easily disturbed and can almost work in all-day and all-weather conditions [7,8].
Therefore, SAR images can provide structural and electromagnetic scattering information
but suffer from severe speckle noise, resulting in lower resolution [9]. It is easy to see
that optical and SAR images are obviously complementary. Some objects that are difficult
to recognize in a unimodal image might be clearly identified in another modal image.
Therefore, the joint use of multi-modal image data is beneficial in improving the accuracy
of land cover classification [8,10].

The joint application of optical and SAR images for semantic segmentation has been of great
interest. The multi-modal classification methods can be roughly grouped into two categories,
which are conventional machine learning and deep learning methods [2,11]. In the first category,
support vector machines (SVMs) [12], conditional random fields (CRFs) [13], random forest
(RF) [14], K-nearest neighbors (KNNs) [15] and other nonparametric approaches have been
applied to classification tasks [16]. The above methods have achieved some classification
accuracy. However, due to their weak feature extraction ability and insufficient high-dimensional
information representation, they cannot obtain better classification results. Recently, deep
neural networks with powerful feature extractors have shown great advantages in multi-modal
classification tasks [17–19]. These methods can be subdivided according to the fusion level of
the inherent information. Pixel-level fusion exists in early networks. Original pixels are fed
to the multi-layer perceptron to aggregate the predictions [7]. The contextual information and
the correlation between pixels are ignored. Decision-level fusion is applied in the late stage
and depends on the results of several methods. The drawback is that the multi-dimensional
features from different modalities are not considered [2]. At present, intermediate feature-level
fusion, which focuses on the extraction and transformation of semantic features, is a research
hotspot. The most dominant methods to effectively obtain and fuse the multi-modal information
from optical and SAR images are the two-branch end-to-end segmentation models without
weight-sharing [2,3,5,7,9,20]. These supervised methods have received the most attention and
are constantly improving. The attention-based MCAM [2] module, the SACSM [3] module,
the SaC [7] module and the SEPP [9] module have been used for salient feature extraction.
Employed fusion strategies include the gate methods of GHFM [5] and CRGs [9], the cross-
fusion method reported in [1], etc. Other optimizations with respect to pre-processing and
loss functions are also considered. The ultimate goal is to realize the representation and
complementary utilization of high-dimensional semantic features of different modalities. The
supervised methods can achieve high accuracy, but they rely on registered images with semantic
labels when training and testing. In reality, we may not obtain usable optical images immediately
or there may be only a single unimodal image available at a time. This could lead to a rapid
degradation of multi-modal classification performance. To this end, semantic knowledge
distillation has been introduced for knowledge transfer and aggregation [21,22]. To address
the scarcity of labeled data, some researchers have adopted self-supervised learning to realize
joint segmentation with SAR and multi-spectral images [23–25]. In addition, with the further
innovation of deep learning frameworks, graph convolution networks [26] and transformers [27]
are gradually emerging in LULC classification tasks.

As described above, although the supervised two-branch models have some con-
straints, they are of important research significance for the joint classification of multi-
modal SAR and optical images. After analysis and comparison, we think that there are still
several challenges to be overcome. First, multi-modal semantic features are not effectively
extracted. Attention modules [2,3,7,9] with square convolution kernels are defective for the
representation of irregular objects. Anisotropic contextual information should be further
integrated. Secondly, the fusion strategies for multi-scale features need to be improved.
Existing methods [1,5,9] usually focus on high-level features, while low-level features and
other complementary information are ignored. The semantic inconsistency of different
modalities cannot be mitigated. Thirdly, multi-modal registered datasets with SAR and
optical images for multi-class segmentation are extremely scarce [2,24,25]. The generaliza-
tion and adaptability of the models have to be considered. Finally, the network structures
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have become gradually complicated to obtain higher classification accuracy. It is worth
thinking about how to ensure the performance of the models with as few parameters and
computation as possible.

The work of this paper is aimed at the situation and existing difficulties, and the main
contributions are summarized below.

1. We propose a multi-modal segmentation model for the classification of optical and
SAR images. It is an end-to-end network (SAMFNet) based on a multi-layer symmetric
attention module and multi-scale feature fusion module. There are no other pretrained
backbones in the framework.

2. A novel symmetric attention module is constructed with strip pooling. Multiple long
receptive fields help to obtain more complementary and contextual information from
the two branches. Atrous spatial pyramid pooling, varisized convolutions and skip
connections are tactfully combined to fuse the multi-scale and multi-level semantic features.

3. The proposed model achieves the best numerical and visual results on two available
datasets. The applicability of the model is proven on another RGB–thermal segmen-
tation task. The designed network is relatively lightweight, and the computational
costs and parameters are low, considering its classification accuracy.

2. Materials and Methods

2.1. Data Preparations

The SEN12MS is a curated dataset composed of dual-polarimetric SAR, multi-spectral
images and MODIS (Moderate-Resolution Imaging Spectroradiometer)-derived land cover
maps [28]. The first two are from Sentinel-1 and Sentinel-2. Multi-modal data were collected
from regions of interest around the world with four seed values. There are 180,662 image
patches in total with a size of 256 × 256. The ground sampling distance (GSD) of the original
data can reach 10 m, but the land cover maps with labeled classes are at a lower resolution
of 500 m. They are relatively crude for specific classification or detection tasks. In the
2020 IEEE GRSS Data Fusion Contest [29], the source images are the same as SEN12MS,
and some high-resolution (10 m) labels were semi-manually generated for validation based
on the original MODIS maps. As a result, 6114 image patches with high-resolution labels
were obtained to construct the DFC2020 dataset. Figure 1 shows visual examples of the
DFC2020 data.

Figure 1. Source images and labels of DFC2020 [29]. (a) SAR images of Sentinel-1. (b) Optical images
of Sentinel-2. (c) Low-resolution semantic labels. (d) High-resolution semantic labels.
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As to WHU-OPT-SAR [2], there are 100 pairs of SAR and optical images from GF-3
and GF-1 with a size of 5556 × 3704. The imaging areas are all in Hubei Province, and the
resolutions of source images and labels were unified to 5m. Figure 2 shows two examples
of WHU-OPT-SAR data.

Figure 2. Source images and labels of WHU-OPT-SAR [2]. (a) RGB images of GF-1. (b) NIR images
of GF-1. (c) SAR images of GF-3. (d) Semantic labels.

In order to train the model on these two datasets under a unified framework, the
pre-processing of the data should be carried out in advance. Firstly, the number of images
in WHU-OPT-SAR is small, but the image size is quite large. Therefore, augmentation was
performed by cropping with a proper stride. Then, tens of thousands of patches with a size
of 256 × 256 were obtained. Secondly, the number of channels of the multi-modal inputs
needs to be consistent. Single-channel gray SAR images and four-channel (RGB and NIR)
optical images were adopted. Since the multi-spectral images of DFC2020 have 13 bands,
B4, B3, B2 and B8 were chosen to combine the corresponding RGBN inputs. Furthermore,
flipping and scaling at multiple scales were also executed when importing the training data
to improve the generalization capability of the model. Other details are presented in the
subsequent experiments.

2.2. Attention Mechanisms for SAR and Optical Image Classification

In complex scenes, semantic segmentation networks usually face challenges such as
information redundancy and poor relevance. In order to overcome these problems, over the
years, researchers have introduced several attention mechanisms to the semantic segmenta-
tion models. They are able to extract more salient features adaptively, so the performances
of diverse networks are effectively promoted [30–33]. For the joint classification of SAR and
optical images, methods with attention mechanisms can be mainly classified as two types.
Some methods are built with channel attention [3], spatial attention [34] or their combined
block modules [7], such as CBAM [35]. By introducing these mechanisms, the models are
able to learn the importance of channels and regions of the source images automatically.
They pay more attention to the target itself and ignore the contents that are detrimental to
the classification task. The multi-scale information is also focused [36,37]. Other methods
are based on self-attention [2,9,16]. The essence of the self-attention mechanism is to per-
form a mapping from a query to a sequence of key-value pairs. The correlations between
the matrices are adequately calculated. Its advantage lies in the ability to establish global
dependencies and capture internal correlations of features.

In fact, increasing the receptive field is the main purpose of the attention-based seman-
tic segmentation methods. Self-attention can establish long-range dependencies, but such
methods require large memory for complex matrix calculations. Dilated convolution [38]
and global/pyramid pooling [39,40] have also been used to improve the receptive field,
but they are both confined to the square convolution kernels [41]. To this end, strip pooling
(SP) with two-cross long kernels has been proposed for salient feature extraction, which
can be seen as an effective attention mechanism [41–43]. Encoders with strip pooling are
able to probe the input feature maps through long windows so that objects with irregular
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shapes are easy to process and more anisotropic contextual information in complex scenes
can be obtained. In view of the above advantages, this paper introduces the use of pooling
into multi-modal semantic segmentation to solve the problems of detail errors and class
confusion in land cover classification.

2.3. Proposed SAMFNet
2.3.1. Framework of the SAMFNet

The proposed SAMFNet (Figure 3) is a concise end-to-end model, and the two inputs
are single-channel SAR images and four-channel optical images. The symmetric attention
extraction module (SAEM) is embedded at the medial axis of the network. It can extract and
supplement distinguishing features to each convolutional group of the two branches for
subsequent calculations. With the deepening of the network layers, features obtained by the
attention mechanism are gradually refined. More contextual information can be gathered
for feature encoding. Atrous spatial pyramid pooling (ASPP) [38] and convolutions with
varisized kernel sizes are combined as the multi-scale semantic extraction module (MSEM)
to obtain more high-level features. To complement more low-level features, skip connec-
tions are added to realize information transmission from shallow layers to deep layers.
Then, the multi-level semantic features are concatenated and upsampled for decoding. The
encoding and decoding processes of the proposed structure are relatively simple, but the
performance of the network is pretty good. Meanwhile, the SAEM and MSEM can be
replaced flexibly if other better feature extraction modules are explored.

Figure 3. The framework of the proposed SAMFNet. n represents the number of channels.

2.3.2. Symmetric Attention Extraction Module

The SAEM designed in this paper is inspired by the multi-modal transfer module
(MMTM) [44]. The reason it is called symmetric attention is that the inputs of this module
are the multi-modal features from the two branches. Then, the obtained salient features
are fed back to the original branch. Figure 4 shows the detailed form of the module.
The transformation process is annotated with symbols.

The leftmost part of the figure shows preliminary feature convolution with 1 × 1
kernels, halving the number of the concatenated channels. Fin1 and Fin2 represent the inputs
from the two branches. FB is the basic feature map, which is actually a four-dimensional
tensor. A single-channel and two-dimensional map with a size of H × W is taken as an
example for explanation of the pooling process.

FB = Conv(Fin1, Fin2) (1)
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Figure 4. The structure of the symmetric attention extraction module.

It can be seen that four strip pooling branches (two average pooling and two max
pooling) were designed for feature representation. The map is compressed into a single row
or column after pooling. More global information is obtained through these long receptive
fields. After each pooling, strip convolution with a specific kernel is performed for further
feature transformation. Then, the single row or column features are expanded to a size of
H × W. Fs1, Fs2, Fs3 and Fs4 are acquired as the outputs of strip pooling.

Fs = Exp(Conv(Pool(FB))) (2)

The Fs1 and Fs2 are fused, then activated to obtain the final feature maps after average
strip pooling. Similarly, the Fs3 and Fs4 are combined to obtain the feature maps after max
strip pooling. Then, they are concatenated, and the feature weights (Fw) are acquired after
convolution and nonlinear computation. At last, element-wise multiplication operations
between FB and Fw are implemented to calculate the ultimate highlighted feature (FA) maps
after the attention extraction module.

Fw = Sigmoid(Conv(ReLU(Fs1 + Fs2), ReLU(Fs3 + Fs4))) (3)

FA = FB ⊗ Fw (4)

The unique advantage of strip pooling is that the long-range dependencies can be es-
tablished easily. Average and max pooling with row and column transforms are introduced
together, so land objects with different shapes and scales can be portrayed more accurately.
Simultaneously, the particular strip forms can also remove unnecessary connections be-
tween feature maps, which greatly reduces the computational complexity compared to
other attention-based algorithms.

2.3.3. Multi-Scale Semantic Extraction Module

After multiple groups of convolution transformation and salient feature extraction,
high-level features of SAR and optical branches can be built. In fact, multi-scale information
is essential for accurate semantic segmentation and other computer vision tasks. Many
researchers have focused on this topic. Figure 5 shows the specific structure of the designed
MSEM module.
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Figure 5. The structure of the multi-scale semantic extraction module.

In the figure above, FH represents the concatenated result of the high-level features from
the two branches. ASPP [38] and its variants have been widely adopted in segmentation
tasks. They employ several dilated convolutions with different sampling rates to obtain
multi-scale information. Such changes allow the network to utilize larger receptive fields
without using regular pooling. They can also reduce information loss. The receptive fields
are adjusted when setting different dilation rates, and corresponding multi-scale features are
easily acquired. The rate group [6, 12, 18] was used in this MSEM module. FP1 represents
the features calculated by the normal convolution group (Conv + BN + ReLU), while FP2,
FP3 and FP4 are obtained by the dilated convolution group. FP5 is acquires by the pooling
group and upsampling. Then, the feature maps of the five branches are concatenated together.
The following convolution group is used to reduce the number of channels to the single
branch. It should be noted that we performed an interpolation behind the convolution to
maintain consistency with the size of low-level features from shallow layers.

The bottom half of the figure is called the multi-scale convolution kernel (MSCK)
module. In the four branches, four different convolution kernels are used to extract specific
features. Fk1, Fk2, Fk3 and Fk4 are constructed with increasing receptive fields. This helps
to capture richer multi-scale information and can solve the problem of features of diverse
ground objects not being distinctly distinguished in complex scenes. The convolution
and interpolation operations are also executed to obtain the FMSCK, which has the same
tensor form as ASPP. At the end of the module, FASPP and FMSCK represent the high-
level features. FL2−SAR and FL2−OPT from the second convolutional group of multi-modal
branches represent the low-level features. Then, they are combined in sequence to build
the final multi-scale semantic feature maps (FS). So far, we have completed the feature
encoding process of SAR and optical images.
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2.3.4. Decoding Process

Compared with feature encoding, the decoding process of semantic segmentation
is relatively simple. The common methods use multiple groups of convolutions and
interpolations to restore the features to the size of original inputs.

In Figure 6, FUP1 is acquired directly through the first pair of convolution and in-
terpolation transformation. In the proposed method, in order to better realize feature
mapping between the multi-modal inputs and the output, the low-level features (FL1−SAR
and FL1−OPT) after the first convolutional group of dual branches are added through skip
connections. Therefore, more foundational information can be utilized, which is beneficial
to improve the classification accuracy. FUP2 represents the results of the second inter-
polation. FMap is achieved after the final convolution operation. N represents the total
number of classes of ground objects. Finally, FMap is used to facilitate the calculation of the
confusion matrix.

Figure 6. The structure of the decoder.

2.3.5. Joint Loss Function

In semantic segmentation tasks, pixel-level classification needs to be achieved, so the
corresponding pixel-level loss functions are used to constrain network training. However,
a single loss function usually cannot describe the segmentation result objectively and compre-
hensively. The introduction of multiple functions to form a joint loss function [7,15,21] has
been proven to be conducive to obtaining better numerical and graphic results. In this article,
fully considering the multi-modal characteristics of the input images and the complexity of
the classification scenes, the following three loss functions are combined.

L = LCE + LFocal + LSIoU (5)

where LCE represents the cross-entropy loss, which has been widely adopted in image
segmentation and other classification tasks. LCE is defined as follows:

LCE = − 1
N

N

∑
n=1

ynlog(pn) (6)

where yn and pn denote the label and the predicted output of image n, respectively. N
is the total number of inputs for computation. The definitions of the symbols in the
following formulas are the same. The loss focuses on pixel-level information and inevitably
ignores the spatial consistency between prediction regions. This may lead to scattered and
discontinuous segmentation regions when the amount of different samples is unbalanced.
Some researchers proposed using the focal loss (LFocal) [45] to address this class imbalance
problem. LFocal is defined as follows:
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LFocal = − 1
N

N

∑
n=1

α(1 − pne−yn)γynlog(pn) (7)

where α denotes the conditioning weight of the positive samples. The exponent γ is the
decay factor of LCE. These two hyperparameters are adjusted to balance the positive
and negative samples. Moreover, the IoU loss [46] is also taken into account. IoU is the
intersection over union. It can be seen as an acknowledged metric for evaluating the
effectiveness of object detection and segmentation algorithms. The IoU loss is able to better
constrain the similarity between the segmentation results and the true segmentation labels.
The soft IoU loss (LSIoU) additionally adds softmax to the predicted output for smoothing.
LSIoU is defined as follows:

LSIoU = − 1
C

C

∑
c=1

N
∑

n=1
yn pn

N
∑

n=1
(yn + pn − yn pn)

(8)

where C is the total number of classes. It has been proven that the joint loss function can
balance the various optimization objectives and achieve better segmentation results.

3. Results

The experiments are presented in detail in the following subsections. More specific
analysis of the images and numerical results are provided.

3.1. Experimental Settings

The experiments reported in the article were all performed on a server with two
RTX3090, and the GPU memory was 24 GB. Pytorch (1.13) on an Ubuntu (18.04) system was
used to build the network framework. The Adam optimizer was adopted for parameter
updating, and the weight decay was 0.0001. The step size and the gamma of StepLR are
30 and 0.1. The basic learning rate was set to 0.001. To keep the image sizes consistent, all
the inputs of the two datasets were cropped to 256 × 256. The batch size for training was
set to 32. Limited by the capabilities of the server, the image size and batch size were set
to 128 × 128 and 4 when TAFFN was implemented. A total of 6114 pairs of images of the
DFC2020 dataset and 29,400 pairs of the WHU-OPT-SAR dataset were obtained. The ratio
of the training set to the testing set was 4:1.

3.2. Evaluation Metrics

The segmentation results should be evaluated more accurately, so overall accuracy
(OA), Kappa coefficient (Kappa) and mean intersection over union (mIoU) were used for
numerical measurements. OA focuses on how well all samples are classified. Kappa is
used for consistency checking which can also measure the classification accuracy. mIoU is
the average of the ratio of the intersection and union of the true and predicted pairs for
each class. It can be seen as a standard metric for semantic segmentation. The formulas of
the above three metrics are defined one by one as follows:

OA =

K
∑

i=1
pii

K
∑

i=1

K
∑

j=1
pij

× 100% (9)
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pe =

K
∑

i=1
(

K
∑

j=1
pji ×

K
∑

j=1
pij)

(
K
∑

i=1

K
∑

j=1
pij)2

(10)

Kappa =
(OA − pe)

(1 − pe)
× 100% (11)

mIoU =
1
K

K

∑
i=1

pii
K
∑

j=1
pij +

K
∑

j=1
pji − pii

× 100% (12)

where K is the total number of classes. It is equal to the width of the confusion matrix. pij
is the amount of pixels in class i predicted as class j. Higher values of the three metrics
indicate better results.

3.3. Experimental Analysis

In order to illustrate the feasibility of the proposed method, DeeplabV3+ [47], DenseA-
SPP [48], DANet [30], CCNet [31], TAFFN [34] and MCANet [2] were selected for com-
parison. Among them, the attention mechanism is not introduced in DeeplabV3+ and
DenseASPP. They mainly perform semantic feature transformation through dense connec-
tions and ASPP. Different attention methods are separately introduced in the remaining four
methods for salient feature extraction. The codes used for validation are mainly provided
by the authors or codebase. For the sake of fairness, the data loader, training process and
loss function of these methods are consistent with the proposed method.

3.3.1. Experiments on DFC2020 Dataset

Comparative experiments were implemented on DFC2020, and the numerical results,
including the accuracy of each class, are listed in Table 1. As shown in the last row,
the proposed model achieved the best numerical results on OA, Kappa and mIoU among all
the compared methods. These three metrics increased by 3.4%, 4.2% and 7.3%, respectively.
The reasons for the better results lie in the following aspects. In the stage of feature encoding,
the series-wound symmetric attention module on the central axis is a contributing factor.
The horizontal and vertical receptive fields are conducive to acquiring and transmitting
multi-size contextual information. The gradually refined features are then fed back to
each branch for secondary learning. Another important point is the integration of multi-
scale features. This improves the semantic understanding of images. Both the enhanced
high-level features and the shallow low-level features from the two branches are used to
fuse the final output of the encoder. All these lay the foundation for decoding accurate
segmentation maps. In a word, the effective extraction and interaction of complementary
features are key to improving the numerical metrics. CCNet obtained suboptimal OA
and Kappa values. The recurrent criss-cross attention focuses on full-image contextual
information, but the mIoU is low. Partly because the number of parameters is large, it is
difficult to train a stable network on a smaller dataset. MCANet performed well on all
three metrics. The multi-modal cross-attention module and feature fusion module were
introduced together to retain more features. DeepLabV3+ and DANet achieved similar
results. They benefit from the use of ASPP and dual attention, respectively. The values
of DenseASPP were slightly lower. The special structure with dense connections needs
more data to optimize the weights. As to TAFFN, due to its high computational complexity,
the existing server cannot support training when the images are large. Therefore, both
experimental calculations and classification maps are based on the central part of the
images (128 × 128). The image size of other methods is 256 × 256. Therefore, the results
may be improved if the server has enough capacity. The comparison of parameters and
computation is explained in the Section 4.
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Meanwhile, the proposed method can also achieve maximum classification accuracy
for each land cover target. This is particularly prominent in the classification of shrubland,
grassland and barren. These three objects have many interaction areas with other objects
(shrubland and forest, grassland and forest, and barren and cropland). They can be
segmented more accurately because the multi-modal complementary information and
high-level semantic features are all taken into account by the proposed method. From the
numerical analysis, we can see that the proposed model has certain advantages.

The source images and classification maps of diverse models are demonstrated in
Figure 7. Different land covers are distinguished by colors. The four selected groups of
typical images contain all the categories. In the first group, in addition to the large area of
forest and grassland in the label image, the meandering water body and its surrounding
scattered wetland and cropland are the focuses of segmentation. DeepLabV3+ and DANet
can mainly segment the obvious target area, and the degree of fine classification is not
enough. In the image of DenseASPP, there are confusions between forest and grassland,
wetland and water. The proposed method, MCANet and CCNet achieve better results.
In the latter three groups of images, the interactions between different ground objects are
more serious. In the second group, the proposed method, CCNet and DenseASPP work
well. As to MCANet, large areas of wetland are misclassified as cropland. The superiority
of the proposed model is more obvious in the third group. The forest and shrubland are
almost mixed into one class in DeepLabV3+, DenseASPP, DANet and MCANet. At the
same time, the distribution of barren is not well reflected. In the last group, all kinds of
ground objects can be well reflected by MCANet and the proposed method. The accuracies
of forest and barren need to be improved in other methods. The four segmentation images
of TAFFN can generally reflect different classes of ground objects, but there are some
obvious misclassified areas.

Table 1. Experimental results on DFC2020 dataset (Optimal values are in bold).

Models
Class Accuracy

OA Kappa mIoU
Forest Shrubland Grassland Wetland Cropland Built-Up Barren Water

DeepLabV3+ 0.8802 0.5803 0.6421 0.5638 0.8410 0.8320 0.4996 0.9890 0.8297 0.7920 0.6106
DenseASPP 0.8115 0.4729 0.7517 0.5612 0.7774 0.8911 0.4681 0.9866 0.8109 0.7706 0.5831

DANet 0.8856 0.5513 0.6617 0.5593 0.8257 0.8347 0.4367 0.9881 0.8267 0.7882 0.6022
CCNet 0.9159 0.5784 0.7330 0.5985 0.8290 0.8407 0.4398 0.9723 0.8419 0.8070 0.5028
TAFFN 0.9137 0.1022 0.4898 0.3616 0.7219 0.8258 0.0230 0.9904 0.7491 0.6897 0.4439

MCANet 0.8880 0.5655 0.7372 0.5541 0.8149 0.8699 0.3978 0.9927 0.8374 0.8018 0.6127
Proposed 0.9291 0.6324 0.8247 0.6257 0.8423 0.8922 0.5890 0.9956 0.8763 0.8492 0.6853

We can see that the obtained numerical results are basically consistent with the results
of the classification maps. Generally, the proposed method and CCNet achieved the best
performances. The segmented maps are closer to semantic labels. On the contrary, the forest
and cropland accuracy of DenseASPP, the wetland and barren accuracy of MCANet and
the grassland accuracy of DeepLabV3+ and DANet are relatively low. All these drawbacks
are well reflected in the final classification maps.
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Figure 7. Land cover classification maps of different models on DFC2020. (a) Optical images. (b) SAR
images. (c) Semantic labels. (d) DeepLabV3+. (e) DenseASPP. (f) DANet. (g) CCNet. (h) TAFFN
(128 × 128). (i) MCANet. (j) Proposed SAMFNet.
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3.3.2. Experiments on WHU-OPT-SAR Dataset

The WHU-OPT-SAR dataset is larger than DFC2020 and is more imbalanced. The rel-
evant numerical results are listed in Table 2. The proposed model also obtained the best
results on OA, Kappa and mIoU and achieved excellent performance in class accuracy.
Except the OA of DenseASPP and TAFFN, the overall numerical results of these methods
are somewhat reduced compared with the first dataset. The increase in data helps to
optimize weights and can better leverage the advantages of dense connections and ASPP.
Although the number of parameters of TAFFN is small, the computational complexity
is very high. More data means more accurate inference. Therefore, the performance of
these two methods was improved. CCNet still obtained suboptimal values of OA and
Kappa, and the mIoU was also acceptable. DenseASPP obtained a suboptimal mIoU value
and exceeded the results of MCANet. The values of DeepLabV3+ and DANet were slightly
lower. The results of TAFFN can be improved with the proper setting of parameters and a
large amount of computation.

For class accuracy, only the value of villages of the proposed method was slightly lower
(−0.0015) than MCANet. The classification effects on water, road and other land use types
were more excellent. This is attributed mainly to the efficient extraction and fusion of multi-
modal salient features and multi-scale contextual information. These objects are linear,
curving or scattered. The improvement of their accuracy is conducive to fine segmentation.

Table 2. Experimental results on WHU-OPT-SAR dataset (Optimal values are in bold).

Models
Class Accuracy

OA Kappa mIoU
Farmland City Village Water Forest Road Others

DeepLabV3+ 0.8277 0.7636 0.6289 0.7777 0.8988 0.5420 0.3132 0.8180 0.7427 0.4786
DenseASPP 0.8290 0.7632 0.6560 0.8088 0.8998 0.5433 0.3307 0.8251 0.7532 0.4912

DANet 0.8255 0.7632 0.6246 0.7856 0.8952 0.4970 0.2860 0.8158 0.7397 0.4726
CCNet 0.8370 0.7527 0.6380 0.8175 0.8990 0.5613 0.2913 0.8268 0.7551 0.4908
TAFFN 0.7951 0.7298 0.4018 0.7146 0.8681 0.1424 0.0005 0.7622 0.6598 0.3602

MCANet 0.8269 0.7367 0.6713 0.8039 0.8990 0.5423 0.3003 0.8225 0.7497 0.4837
Proposed 0.8379 0.7645 0.6698 0.8257 0.9025 0.5865 0.3646 0.8334 0.7652 0.5049

Figure 8 shows the semantic segmentation results of different methods on WHU-OPT-
SAR. We also used four groups of images of complex scenes for comparison. In the first
group, the intersecting roads, scattered water and villages are hard to classify. The results of
DenseASPP, CCNet, MCANet and the proposed method are relatively good. DeepLabV3+
and DANet are not accurate enough to describe the scattered regions and boundaries
between different classes. In the second group, since the characteristics of cities and villages
are similar, the results of DenseASPP and MCANet are somehow affected, so parts of city
regions are regarded as villages. The proposed method and CCNet achieved preferable
segmentation. In the third group, the distribution of objects in the source image is more
complex. In the forest, there are pairwise interactions among water, farmland and villages,
and there are multiple intersecting roads. The roads and water are not well-represented
by DeepLabV3+ and DANet. Other methods work well in this scenario. In the last group,
the roads, cities and villages are densely distributed, and water crisscrosses farmland.
The ground objects are reflected more accurately by MCANet and the proposed method.
For TAFFN, objects like narrow roads, similar villages and cities and irregular water cannot
be reflected well in multiple groups of images. We can see that the numerical results and
the classification maps of this dataset are also matched.

After the experimental analysis on the two datasets, it can be seen that the proposed
model behaves well both on numerical results and classification maps. Meandering water,
scattered villages and intersecting roads are all well segmented. More importantly, there
are rarely large areas of misclassification or missing objects. The method has strong
adaptability in complex scenes with various ground objects. The proposed framework,
feature extraction strategies and joint loss function do play a big role in classification.
The ablation experiments are explained in detail in the next section.
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Figure 8. Land cover classification maps of different models on WHU-OPT-SAR. (a) Optical images.
(b) SAR images. (c) Semantic labels. (d) DeepLabV3+. (e) DenseASPP. (f) DANet. (g) CCNet.
(h) TAFFN (128 × 128). (i) MCANet. (j) Proposed SAMFNet.

93



Remote Sens. 2024, 16, 957

4. Discussion

4.1. Computational Complexity

To further illustrate the efficiency of different methods, the number of parameters and
the amount of computation are counted in Table 3. When training the network, growing the
parameters increases the space complexity of the model. Devices with large video memory
are needed. The amount of computation determines the execution time. It depends on the
computing power of the GPU, so there are requirements for the flops of the hardware chip.
We assume that for all models, the inputs are the coupled SAR and optical images with a
size of 256 × 256. The values obtained under the two datasets are very close, since only
the number of output channels of the last layer is different. For parameters, the proposed
method is only inferior to TAFFN. There are no other pretrained backbones like ResNet or
VGGNet added to the proposed model. It should be noted that although TAFFN has few
parameters, its computational complexity is relatively high. Once the batch size increases,
it is difficult for general GPUs to meet the requirements of flops. CCNet and MCANet
performed well in the previous experimental analysis, but the number of parameters was
indeed large. As to computation, although the flops of DeepLabV3+ and DANet are smaller,
it is difficult for them to achieve desirable outcomes. The result of the proposed model
is suboptimal. The computational complexity of CCNet and MCANet is relative high.
In summary, the parameters and computational costs of the proposed method are low, and
we can also obtain the best segmentation results. This will greatly improve the practicability
of the model.

Table 3. Comparison of parameters and computation.

Models Params FLOPs Input Tensor

DeepLabV3+ 39.05 M 13.25G

SAR:
[1,1,256,256]

OPT:
[1,4,256,256]

DenseASPP 35.39 M 39.40G
DANet 47.45 M 14.41G
CCNet 70.95 M 79.99G
TAFFN 0.31 M 33.13G

MCANet 85.93 M 102.39G
Proposed 19.60M 28.78G

4.2. Analysis of Different Attention Mechanisms

In this subsection, CBAM [35], SP [41] and the designed SAEM are compared under
the unified framework proposed in Figure 3. Only part of the attention mechanism is
different. In CBAM, the attention module consists of channel attention and spatial attention.
Conventional max pooling and average pooling are used for feature transformation. In the
original SP, only strip average pooling is introduced to generate the long receptive fields.
We added two more branches with strip max pooling to SP. Then, multi-dimensional
feature superposition, fusion and conversion were implemented to obtain more contextual
information. From the numerical results in Table 4, we can see that SP performed slightly
better than CBAM. The proposed model with SAEM achieved the best results on the three
metrics, which were basically 1% higher.

Figure 9 further illustrates the effect of different attention mechanisms through three
groups of classification maps. In the first group, although all three models obtained good
classification results, the proposed method can describe the distribution of grassland more
accurately. In the second group, the water is the focus to be classified, and it is clearly
delineated by the proposed method. In the last group, the scattered barren are clearly
classified by the proposed method, while the other two models only focus on large area. It
can be seen that the designed SAEM is conducive to salient feature extraction and improves
the fineness of segmentation.
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Table 4. Comparison of attention mechanisms.

Models OA Kappa mIoU

Att-CBAM 0.8658 0.8363 0.6640
Att-SP 0.8680 0.8390 0.6681

Proposed-SAEM 0.8763 0.8492 0.6853

Figure 9. Land cover classification maps on DFC2020. (a) Optical images. (b) SAR images.
(c) Semantic labels. (d) Att-CBAM. (e) Att-SP. (f) Proposed-SAEM.

4.3. Analysis of Multi-Scale Feature Extraction

Multi-scale semantic information is very important for image segmentation. The de-
signed MSEM combines the ASPP [38] and convolutions with different kernels (MSCK)
to obtain high-level features. We want to verify the effect of the two parts. Three cases of
contrast experiments were carried out. Modules with ASPP or MSCK and with both were
compared. It should be noted that the number of feature maps outputted by the original
MSEM module is 256 channels. Therefore, when implementing the above two experiments,
the output of each part was also adjusted to 256 channels. In Table 5, the validation values
of the first two experiments are close, but the model with joint modules is superior. This
set of experiments proves that the combination of multi-scale information is helpful to
improve the classification accuracy.

Table 5. Comparison of multi-scale modules.

Cases
Multi-Scale Module

OA Kappa mIoU
ASPP MSCK

1 � - 0.8734 0.8456 0.6784
2 - � 0.8724 0.8441 0.6739
3 � � 0.8763 0.8492 0.6853

4.4. Analysis of the Joint Loss Function

The joint loss function used in this paper contains three loss terms. LCE is used as
the basic loss to constrain and guide the training process. Therefore, it was retained in all
experiments. LFocal is a commonly used loss function to solve class imbalance. LSIoU can
further smoothly update the gradients, which, in turn, reduces oscillation during training.
Then, there are four combinations for comparison (LCE, LCE + LFocal , LCE + LSIoU and
LCE + LFocal + LSIoU). Table 6 shows the results of models with different compositions of
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losses. We can see that the model with only LCE can help to obtain good accuracy. The joint
application of LFocal or LSIoU can effectively improve the segmentation effect, but only one
of them is insufficient. The joint loss function with the three terms achieved the best results.
In follow-up research, we are going to learn other losses or adjust the proportion of each
loss to achieve better constraints.

Table 6. Comparison of loss functions.

Cases
Loss Function

OA Kappa mIoU
LCE LFocal LSIoU

1 � - - 0.8691 0.8404 0.6730
2 � � - 0.8738 0.8460 0.6781
3 � - � 0.8736 0.8455 0.6758
4 � � � 0.8763 0.8492 0.6853

4.5. Application in Other Multi-Modal Segmentation Tasks

In order to show the applicability of the proposed method, supplementary experiments
were carried out on the MFNet dataset [49]. This RGB–thermal dataset consists of 1569 pairs
of RGB and thermal images and has been applied in autonomous driving systems. It should
be noted that the number of pixels of each class is unbalanced, and there is a large amount
of unlabeled pixels. Since the number of classes and the channels of the multi-modal images
are inconsistent with the previous datasets, the inputs and the size of confusion matrix
need to be modified accordingly when executing the proposed model. Figure 10 shows
the segmentation maps of four urban scenes. The first two were taken during daytime,
and the others were taken at nighttime. The results of MFNet were generated by the demo
code provided by the author. It can be seen that the proposed method can achieve better
classification results. Both color cones and bumps can be clearly segmented. Meanwhile,
numerical metrics were also compared. The class accuracy and mIoU of the proposed
method reached 0.8144 and 0.6912, respectively, which are both higher than the optimal
values of the original MFNet. The proposed model does have a certain application potential
in other multi-modal segmentation tasks.

Figure 10. Urban scene segmentation maps on the RGB–thermal dataset. (a) RGB images. (b) Thermal
images. (c) Semantic labels. (d) MFNet. (e) Proposed SAMFNet.
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5. Conclusions

In this paper, we proposed a two-branch semantic segmentation network for land
cover classification with multi-modal optical and SAR images. The numerical results
and segmentation maps demonstrated various advantages of the proposed method. First,
the novel symmetric attention mechanism with multiple long receptive fields can extract
more contextual information. Objects with different shapes in the original images are per-
ceived well. Secondly, multi-scale semantic fusion is implemented to enrich complementary
information. High-level features extracted by dilated and varisized convolutions and low-
level features from shallow layers are all considered and integrated together. Thirdly,
a symmetrical structure and multiple plug-and-play modules were adopted to build the
model. It has strong flexibility and adaptability. This was verified on an RGB–thermal
dataset. Furthermore, the computational complexity of the proposed model is relatively
low, and high classification accuracy was achieved. All these advantages prove the effec-
tiveness of the method. However, the current research still depends heavily on the labeled
dataset. In the future, we will deeply explore the implementation of semi-supervised and
weakly supervised methods and study a lightweight network so that the model can be
applied to more practical scenarios.
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Abstract: Due to the absence of communication and coordination with external spacecraft, non-
cooperative spacecraft present challenges for the servicing spacecraft in acquiring information about
their pose and location. The accurate segmentation of non-cooperative spacecraft components in
images is a crucial step in autonomously sensing the pose of non-cooperative spacecraft. This pa-
per presents a novel overlay accelerator of DeepLab Convolutional Neural Networks (CNNs) for
spacecraft image segmentation on a FPGA. First, several software–hardware co-design aspects are in-
vestigated: (1) A CNNs-domain COD instruction set (Control, Operation, Data Transfer) is presented
based on a Load–Store architecture to enable the implementation of accelerator overlays. (2) An
RTL-based prototype accelerator is developed for the COD instruction set. The accelerator incorpo-
rates dedicated units for instruction decoding and dispatch, scheduling, memory management, and
operation execution. (3) A compiler is designed that leverages tiling and operation fusion techniques
to optimize the execution of CNNs, generating binary instructions for the optimized operations.
Our accelerator is implemented on a Xilinx Virtex-7 XC7VX690T FPGA at 200 MHz. Experiments
demonstrate that with INT16 quantization our accelerator achieves an accuracy (mIoU) of 77.84%,
experiencing only a 0.2% degradation compared to that of the original fully precision model, in
accelerating the segmentation model of DeepLabv3+ ResNet18 on the spacecraft component images
(SCIs) dataset. The accelerator boasts a performance of 184.19 GOPS/s and a computational efficiency
(Runtime Throughput/Theoretical Roof Throughput) of 88.72%. Compared to previous work, our
accelerator improves performance by 1.5× and computational efficiency by 43.93%, all while con-
suming similar hardware resources. Additionally, in terms of instruction encoding, our instructions
reduce the size by 1.5× to 49× when compiling the same model compared to previous work.

Keywords: image semantic segmentation; instruction set architecture (ISA); field programmable gate
array (FPGA); spacecraft component images

1. Introduction

Recently, the exploration of deep space has gained extensive support from various
countries and enterprises [1]. Vision-based Artificial Intelligence (AI) applications are
crucial for current and upcoming space missions, such as automation navigation systems
for collision avoidance [2], asteroid classifications [3], and debris removal [4]. One no-
table application of these technologies is the accurate recognition of spacecraft feature
components in images [5]. In scenarios where the target spacecraft lacks sensors or com-
munication capabilities, such as during debris removal operations [6], it is desirable to
implement an object recognition payload that can segment spacecraft component images

(SCIs) obtained from visual sensors to locate the target object of interest.
As a fundamental problem in computer vision, semantic segmentation aims to assign

semantic labels (class labels) to every pixel in an image. Early segmentation algorithms
relied on handcrafted feature matching [7,8], but these methods have been shown to exhibit
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poor generalization and stability. In recent decades, deep learning methods based on
convolutional neural networks (CNNs) have become the mainstream approach for almost
all vision tasks, including semantic segmentation [9]. Compared to previous methods,
CNNs exhibit higher reliability in the presence of noisy interference or previously unseen
scenarios [6]. Therefore, CNNs are now being applied to recognize space targets from
spacecraft images, which are more susceptible to interference than natural images from
common datasets such as COCO [10,11]. Several studies have demonstrated the promis-
ing performance of CNNs-based approaches for spacecraft component image semantic
segmentation [10].

However, the CNN deployment on resource-constraint embedded hardware systems
onboard also poses significant challenges due to their compute-intensive and memory-
intensive characteristics. Typically, CNN-based approaches can be delineated into two
distinct phases: the training phase and the inference phase. During the training phase, a
CNN model learns to discern the relationships between input data and their corresponding
labels. Through iterative processes, the CNN refines its parameters, progressively improv-
ing its ability to capture task-relevant features. Upon completion of the training phase,
the CNN model is prepared for the inference phase, during which it generates predictions
for new unseen data. As the parameters remain fixed once the training is complete, the
training phase can be performed offline at a data center on the ground. The key challenge
lies in efficiently implementing inference for CNNs using onboard hardware, a crucial
aspect in deploying CNN-based semantic segmentation approaches onboard.

Field Programmable Gate Arrays (FPGAs) with high parallelism and reconfigurabil-
ity are widely employed in exploration missions [12]. For instance, onboard science data
processing systems like Spacecube, based on the Xilinx Virtex family of FPGAs, have been
utilized to implement data processing requirements for robotic servicing [12]. In this paper,
we design an accelerator on an FPGA to aid processor acceleration CNNs computation for
the SCIs segmentation task in a space scene.

Several studies have investigated the deployment of CNNs for semantic image seg-
mentation onto FPGAs. Shen et al. proposed a model called LNS-Net [13] based on
U-Net [14] for lung nodule segmentation and accelerated this CNN model on four Xilinx
VCU118 FPGAs using a proposed mapping scheme that took advantage of the massive
parallelism. Bai et al. designed RoadNet-RT [15], a lightweight CNN segmentation model
for road scenarios, and implemented an accelerator for this model on a Xilinx ZCU102
FPGA to perform inference with an 8-bit quantized model.

In addition to the networks-specific custom accelerators, some studies have explored
overlay accelerators. Liu et al. designed an efficient custom deconvolution (DeCONV)
architecture and designed a U-Net CNN accelerator to support the acceleration of semantic
segmentation tasks on FPGAs [16]. They later optimized this architecture and proposed
a unified processing engine to address the problem of convolution (CONV) and DeConv
modules not being able to share computational resources. The optimized architecture
shows remarkable performance on remote sensing image segmentation tasks [17]. Wu et al.
proposed a reconfigurable FPGA hardware accelerator for various CNN-based vision
tasks including semantic segmentation [18]. They implemented diverse operator modules
including CONV, depthwise convolution (DwCONV), and others, and proposed efficient
data flow scheduling and processing schemes under the constraint of limited computing
resources. The evaluation results showed that the accelerator can efficiently accelerate the
semantic segmentation model ENet [19], which is common for embedded devices.

Most of the previous works have either designed U-Net-specific accelerators on FPGAs
or evaluated U-Net on FPGA-based CNNs domain-specific accelerators. While U-Net’s
Encoder–Decoder architecture addresses the issue of missing low-level features, its en-
coder network lacks a component that captures multi-scale features, leading to a loss
of contextual information. To overcome this limitation, the Pyramid Scene Parsing Net-
work (PSPNet) [20] was proposed, which leverages different downsample rates of pooling
followed by CONV operations to extract abundant multi-scale semantic features. Further-
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more, The DeepLabV3 [21] introduced an Atrous Spatial Pyramid Pooling (ASPP) module,
which reduced the feature response loss caused by down and up samples in PSPNet con-
verting the Pooling-CONV-Upsample operation to an Atrous CONV. The computational
principle of Atrous CONV is shown in Figure 1, and it can be seen that adjusting the rate
can achieve convolution with a larger receptive field without increasing the convolution
kernel parameters and computational effort. The convolution with different receptive fields
facilitates the capture of features at various scales.

Figure 1. The computational principle of atrous convolution. (* denotes a set of multiply-accumulate
(MAC) operations. Dark red, purple, and blue represent 3 different convolutional kernel parameters
and the output feature maps of the corresponding channels, respectively. Green represents the input
feature maps of the involved operations).

DeepLabV3+ [22] extended DeepLabV3 by adding a decoder to refine the segmentation
result, allowing it to take into account multi-scale contextual information and low-level sharper
boundaries information through the ASPP module and Encoder–Decoder structure. Table 1
compares the accuracy and complexity of the aforementioned CNNs on our SCIs dataset. It
can be seen that DeepLabv3+ has better accuracy at lower complexity instead.

Table 1. The structures used in different CNN segmentation algorithms (backbone is VGG16) and the
complexity and accuracy of the SCIs set of each algorithm. (SCIs dataset consists of 8833 spacecraft
simulated images, including 5 feature component types [23]).

Model U-Net [14] PSPNet [20] DeeplabV3 [21] DeeplabV3+ [22]

Structure E-D ASPP ASPP ASPP and E-D

Parameter (M) 24.89 139.82 19.44 19.56

Complexity (GOPS) 112.76 40.82 42.64 48.42

Accuracy (mIoU) 65.15 53.66 61.47 81.62

For the acceleration of the Deeplabv3+ model, Morì et al. devised a hardware-aware
pruning method based on genetic algorithms to reduce model operations and parame-
ters [24]. Furthermore, they implemented an overlay CNN accelerator on an Intel Arria
10 GX1150 FPGA platform, evaluating its acceleration performance with the DeepLabv3+
ResNet18 model. Im et al. designed a DT-CNN ASIC accelerator [25] supporting variant
convolution based on 65 nm CMOS technology. This accelerator efficiently accelerates
dilated and transposed convolution by skipping redundant zero computations. The acceler-
ation performance of ENet, Deeplabv3+, and FCN [9] models was also evaluated. However,
these efforts are still lacking in terms of acceleration efficiency and model adaptation.

This paper aims to map a DeepLabv3+ CNN onto a flight-like hardware FPGA for the
purpose of a semantic SCIs segmentation task. There are two main challenges involved in
this process: (1) Accelerators that are specifically designed for certain CNN models require
FPGA reconfiguration when switching to other models, a process which is not practical for
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onboard scenarios. (2) The extensive intermediate results generated by the complicated
skip-connection of the Encoder–Decoder structure must be cached in the limited on-chip
SRAM or require additional external memory access, posing a significant challenge for a
resource-constrained onboard FPGA.

To address these challenges, this paper presents a comprehensive flow for mapping
CNNs onto FPGAs as is illustrated in Figure 2. To decouple the hardware architecture from
the specific CNN model structure, we designed a customized instruction set architecture
called COD (Control, Operation, and Data transfer). During the offline stage, we quantized
and tiled the model parameters, and converted and compiled the computation graph to
generate COD instruction sequences. (processes: � and �) At this stage, we employed a
quantization method that effectively halved the model size (32 bits to 16 bits) while incur-
ring an accuracy loss of less than 0.5%. Our proposed COD instruction set and compiler
have a 1.5× to 49× size reduction compared to previous work, and a 26% reduction in
DRAM accesses compared to the primitive design. During the online stage, we design the
hardware accelerator architecture corresponding to the COD and implement it on the Xilinx
Virtex-7 VX690T FPGA to achieve the task of segmentation of SCI images. (process: �) The
performance and computational efficiency of our accelerator was 1.5× and 43.93% higher
than previous work, respectively, with a 5.1× increase in energy efficiency compared to an
NVIDIA RTX 2080Ti GPU.

Figure 2. The overview of the mapping flow.

The main contributions of this work are as follows:

1. To facilitate network replacement and decouple the accelerator micro-architecture
from a specific network, we propose a COD instruction set based on load–store. This
enables re-compiled instruction sequences to overlay the accelerator without the need
for hardware re-burn.

2. We propose an accelerator micro-architecture based on a COD instruction set, which
contains an instruction decoder and dispatch unit, data scheduler unit, and unified
Execution Unit (EU). The first two guarantee the coarse-grained parallel data transfer
based on dependency of instructions. The unified EU for CONV and Atrous CONV
ensures the fine-grained parallel data operation leveraging spatial and temporal data reuse.

3. We develop a compiler for COD instruction generation to convert the computational
graph of an input CNN model into a sequence of COD instructions and produce
corresponding binary signals. The compiler was designed to incorporate tiling and
operation fusion techniques, aimed at optimizing the execution of the CNN.

4. We implemented our accelerator on the Xilinx VC709 development board with an
XC7VX690T FPGA chip, which is commonly used on spacecraft. Our accelerator runs
at 200 MHz and achieves a performance of 184.19 GOPS/s and a detection accuracy
(mIoU) of 77.84% for the SCI dataset when accelerating the Deeplabv3+ ResNet18
CNN model.

The remaining parts of this paper are organized as follows: Section 2 introduces the
preliminaries about CNNs and DeepLabv3+. Section 3 describes the COD instruction set.
The accelerator micro-architecture is proposed in Section 4. Section 5 presents optimization
strategies for instruction sequence compilation. Section 6 presents our experimental results
in the SCIs segmentation task. Finally, Section 7 concludes this paper.
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2. Deeplab CNN Preliminaries

The flow of SCIs segmentation using DeepLabv3+ is illustrated in Figure 3. It em-
ploys a classical CNN backbone and ASPP as the encoder module to capture multi-scale
high-level features, and a simple decoder to merge detailed low-level features. In the
encoder, operations that involve ‘Rate’ refer to atrous convolution operations, where ‘Rate’
determines the dilation rate. Our overlay accelerator supports all the basic operations
involved in the CNN-process depicted in Figure 3.

Figure 3. Overview of the DeepLabV3+ semantic SCIs segmentation. (Green and red areas are
antenna and panel components, respectively, in the result image).

Below, we provide a brief explanation and mathematical notation for these operations.
In the following notations, X and Y represent the input and output tensors, respectively,
having shapes of (Ci, Wi, Hi) and (Co, Wo, Ho), where w stands for width, h for height, and
c for the number of channels in the feature maps.

Convolution: It takes as inputs a set of nonlinear functions of spatially nearby re-
gions of outputs from the prior layer, which are multiplied by weights and added with
bias. (The input to first layer is a tensor of image pixels.) It is equationally described in
Equation (1) [26].

Y = Conv(X)W,b = X ⊗ W + b (1)

The tensors W(wk, hk, ci, co) and b(co) represent the weight and bias parameters for
the convolution operation, respectively, acquired through training. Here, wk denotes kernel
width, hk denotes kernel height, ci represents the number of input feature map channels,
and co indicates the number of output feature map channels.

Atrous (Dilated) Convolution: Its operation mode functions in the same manner as
standard convolution, but with the addition of a dilation rate that adjusts the receptive
field (the size of the region of the input feature map that produces each output element)
without increasing the number of convolution parameters.

Max Pooling: This operation is a commonly used convex function for downsampling.
Its mathematical representation is given by Equation (2) [26].

Y = Maxpool(X) → yi,j,k = max
(p,q,k)∈�ijk

(xp,q,k) (2)

yi,j,k represents the values at the (i, j, k) position within the Y, while xp,q,k denotes the
values at the (p, q, k) position within the X. �ijk signifies the sliding window region in
which y aligns with the input tensor X where the pooling operation is executed.

Element-Wise Addition: It is the operation of summing two identically shaped ten-
sors by position and is commonly used for residual structures and feature fusion. Its
mathematical representation is given by Equation (3) [26].

Y = X1 + X2 → yw,h,c = x1 w,h,c + x2
w,h,c (3)
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Upsampling (Nearest Interpolation): It is the operation to expand the feature resolu-
tion. Its mathematical representation is given by Equation (4) [26].

Y= Upsamples(X) → yi,j,k = x[i/s],[j/s],k (4)

The variable s represents the upsampling factor. Additionally, x[i/s],[i/s],k specifies the
value located at the nearest position in the input tensor X corresponding to the position
(i, j, k) of the output tensor Y.

ReLU/LeakyReLU: It is an activation function placed after a convolution.
Concatenation: It is a tensor concatenation operation. It is equationally described in

Equation (5) [26].
Y = Concate(X1, X2, . . . Xn) (5)

X1 ,X2 , . . . Xn ,Y are tensors of the same shape in w and h dimensions and Y comes
from the concatenation of X1 ,X2 , . . . Xn along the c-dimension.

Batch Normalization: Batch Normalization (BN) is commonly used following a con-
volution layer to improve model training [27]. The operations of BN can be expressed using
Equation (6).

Y= BN(X) → y = γ
x − μ√
σ2 + ε

+ β (6)

Here, γ is the scaling factor and β is the shift factor, both of which are learnable
parameters used to adjust the normalized scale and mean, respectively. μ and σ2 represent
the mean and variance of the input X calculated during training, with ε being a small
constant for numerical stability.

In the sequel, we will show the data path of the aforementioned basic operations for
their spatial or temporal parallel compute. Meanwhile, their instruction coding and the
parallelism schedule between operations will also be described in detail.

3. COD Instruction Set Architecture

Our accelerator does not rely on fixed data scheduling based on a specific network
(SN) [28]. Instead, it drives the data stream by reading and executing instructions, effec-
tively decoupling the hardware micro-architecture from the SN by Instruction Set Archi-

tecture (ISA). As shown in Figure 4, when the network is replaced, our overlay accelerator
only requires re-compiling the computing graph to the new instruction sequence. However,
for an SN accelerator, a new hardware micro-architecture (RTL or HLS code) based on the
new network must be designed and the FPGA re-burned, which is an inefficient task in
a space environment. Hence, we propose a novel ISA called COD in this section, which
integrates three types of instructions for control, operation, and data transfer, covering all
the CNN basic operations discussed in Section 2.

Figure 4. Workflow for SN accelerator versus overlay accelerator.

3.1. Control Flow

The Instruction Set (IS) refers to the vocabulary of commands that is understood by
a specific hardware architecture. A control logic structure is employed in the hardware
to facilitate an explicit Control Flow (CF), with the IS being decoded as a crucial signal in
the CF that controls the sequential execution of tasks. Therefore, prior to discussing the IS
design, it is imperative to clarify the CF of our accelerator.
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Our accelerator follows a load–store architecture, wherein the CF schedules the data
from memory to the Execution Unit (EU) and subsequently manages the storage of results
from the EU back to the memory. It is evident that the efficacy of data storage and load
represents a significant bottleneck in the overall performance of this architecture [29].
However, there is a large gap between the memory-intensive characteristics of CNNs
and the insufficient on-chip memory resources of FPGAs. Full avoidance of external
memory(DRAM) access is unfeasible. Figure 5 shows the memory footprint of intermediate
results and convolution kernels in each layer of the DeeplabV3+ CNN model. It can be seen
that the memory space requirement of some layers even exceeds 5 MB, while for FPGAs
commonly used on satellites, most of their on-chip memory resources (SRAM) are below
7 MB, such as the Xilinx XC7VX690T 6.6 MB and XC7K325T 3.2 MB.

Figure 5. The memory footprint of DeeplabV3+ ResNet18 CNN model with INT16 quantization
(Input shape: 256 × 256 × 3).

For minimizing DRAM access, we designed a dynamic memory hierarchy (DMH), as
shown in Figure 6. If the intermediate results of a layer can be stored in the on-chip buffer,
then the storing of DRAM on this layer and the reading of DRAM on the next layer can be
skipped. Of course, the selection of a branch path depends on the signal decoded from the
instruction. We can substantially reduce the consumption of external communications via
optimizing instruction compilation in certain on-chip buffer space constraints. For example,
if we have a 1 MB on-chip buffer, for the network shown in Figure 5, there will be 30 layers
that do not require storing feature maps by external memory.

Figure 6. The control flow of our load–store architecture.
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3.2. COD Instruction Set

IS is a collection of control information in CF. Instruction length and granularity are
the two main factors that impact the performance of ISs. Prior specialized ISs developed
for CNN domains can be broadly classified into two categories based on their execution
granularity, as illustrated in Table 2.

Fine-grained ISs such as Cambricon [30] and OPU [31] feature instructions with a fixed
length and separate instruction parsing and control units in their hardware architecture.
Such ISs typically require a group of instructions to execute an entire load–compute–store
flow with higher execution parallelism per instruction. However, fine-grained ISs can
lead to complex CFs with numerous branch paths, necessitating careful consideration
of instruction dependencies by both the relevant compiler and hardware control logic
to ensure the correct execution of instruction sequences. As a result, fine-grained ISs
require more FPGA logic resources for command control, which is not friendly to resource-
constrained flight-FPGAs. Therefore, we opt for a concise coarse-grained IS, similar to
SLC [32] and Xilinx DPU [33,34], to identify the CF.

Table 2. Comparison of some previous CNN-domain instruction sets.

Cambricon [30] SLC [32] DPU [33,34] OPU [31] COD (Ours)

Year ISCA16 TRTS18 TCAD19 TVLSI20 2024

Hardware ASIC FPGA FPGA FPGA FPGA

Instruction
length

64 bit 128 bit 128 bit/192 bit 32 bit 256 bit

Instruction
granularity

Fine Coarse Coarse Coarse Coarse

We analyze all data transmissions in CF and design a Data Transfer Instruction (DTI) to
identify the data transfer path. In the case of the access branch in DMH, we design a Control
Instruction (CTI) to schedule the data flow. Furthermore, we design an Operation Instruction
(OPI) to specify the parameters of the EU runtime. Together, CTI, OPI, and DTI form a 256-bit
COD instruction. The number of bits and information details occupied by each instruction
type are illustrated in Figure 7a. We introduce each instruction type as follows:

Figure 7. Overview of the COD ISA and prototype accelerator.

DTI: The DTI consists of four loading instructions (ELW, ELF, ELR, OLF) and one
storing instruction (SR). ELW, ELF, and ELR handle the loading of weight, Feature Map
(Fmap), and Residual data from DRAM to the on-chip buffer, respectively. The Residual
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contains data from Fmap that needs to skip some layers during delivery. These data are
not involved in the convolution operation and are moved to the on-chip Addition FIFO for
the element-wise addition operation. The OLF instruction is used to load Fmap from the
on-chip buffer to the EU. The SR instruction is used to store the result data derived from
the EU to Memory (DRAM or on-chip buffer).

CTI: CTI is the branch control command mentioned in Section 3.1. To control three DTI
instructions that may access DRAM, we have designed three selector instructions: Jumping
ELW (JW), Jumping ELF (JF), and Jumping ELR (JR). Additionally, we have designed the
Jumping Store (JS) instruction to handle the situation where the result may store FIFO in
EU. Furthermore, a 1-bit interrupt instruction has been designed to remind the host of the
timing of reading the result.

OPI: The relevant operations in CONV, ACT (ReLU), QUANT (Quantization), POOL,
and Upsample instructions are identified by their parameters. The QUANT instruction con-
tains parameters related to bias and partial sum in addition to the quantization parameters.

3.3. COD Work Flow

We integrated CTI, OPI, and DTI into a single 256-bit COD very long instruction word
(VLIW) and designed its decoder and parallel EU in the accelerator. In a typical VLIW
superscalar processor, the compiler explicitly specifies the control dependencies between
instructions. However, CNN inference with forwarding propagation in layers has a clear
layer order. Therefore, we design a fixed depth pipeline at the accelerator micro-architecture
level to ensure the sequential execution of all instruction types to reduce the complexity of
the compiler. The execution flow of instructions, as shown in Figure 7b, indicates that CTIs
act as decision nodes that determine the path for each execution branch. In the loading data
stage, ELW, ELF, and ELR do not have dependencies on each other, and they are executed
concurrently, sharing DRAM bandwidth in our accelerator. In the computation and data
storing stage, OPIs and SR are also executed by a parallel pipeline. The parallel architecture
of the accelerator is described in Section 4.

4. Prototype Accelerator

In this section, we present our prototype accelerator for COD, which comprises a
series of instruction decode and dispatch units, a memory management unit (MM Unit),
and an EU. The micro-architecture is illustrated in Figure 7c.

The workflow of the accelerator is as follows: During the preliminary stage, the
instruction sequence generated by the compiler, the quantized weight, and the image are
sent from the host to an on-chip buffer or DRAM using I/O DMA with AXI4 bus protocol.
The accelerator subsequently operates through six major instruction pipeline stages, namely,
fetching, decoding, issuing, memory accessing, execution, and writing back. The CF and
Data Flow (DF) of these stages are depicted in Figure 7c. The instruction counter (IC)
fetches instructions sequentially from the buffer and passes them to the decoder until
an interrupt signal is received. The decoder disassembles COD VLIW into DTIs, CTIs,
and OPIs using a bit-wise approach. OPIs are issued directly to the EU, while DTIs are
transmitted to the MM Unit via the scheduler and the issue unit. The issue unit synchronizes
the transfer status to the scheduler while issuing DTI to the MM Unit. Memory accessing,
execution, and writing back form a coarse-grained parallel pipeline that is controlled by
the scheduler. Additionally, we have designed a spatial parallel fine-grained execution
pipeline to accelerate the OPIs in EU.

4.1. Control Logic

In the instruction pipeline of serial execution, as depicted in Figure 8a, two execution
bottlenecks, caused by communication and computation, have to be endured. However, in
the domain of CNNs, computation does not rely on global data, as the output of each com-
putation is only related to the data corresponding to the sliding windows. Consequently,
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we designed a Coarse-Grain Temporal Pipeline (CTP) at the instruction level to enable the
simultaneous execution of DTIs and OPIs in a single clock cycle.

To guarantee proper instruction execution, we categorize the dependencies of DTIs
and OPIs into three levels: independent, partially dependent (p-dependent), and globally
dependent (g-dependent). Table 3 illustrates how instruction X depends on instruction
Y. When an instruction is independent of another instruction, the execution of the former
does not need to take into account the execution process of the latter. When an instruction
is p-dependent on another instruction, it has to wait for the latter to be executed for a
certain amount of time before it can be executed (signal is generated and distributed by
the scheduler). When an instruction is g-dependent on another instruction, it must wait
for the latter to be executed before it can be executed. Subsequently, based on the COD
instruction workflow and the dependencies, we design an instruction execution CTP, as
shown in Figure 8b. The ELoad stage contains the ELW, ELR, and ELF instructions; the
OLoad stage contains the OLF instruction; the Compute stage contains the CONV, ACT,
QUANT, POOL, and UPSAMPLE instructions, and the SR stage contains the SR instruction.

Figure 8. The temporal parallel instruction pipeline.

Table 3. Dependency table between DTIs and OPIs.

X
Y

ELW(R) ELF OLF OPIs SR

ELW(R) / independent independent independent independent
ELF g-dependent / independent independent independent
OLF g-dependent p-dependent / independent independent
OPIs g-dependent p-dependent p-dependent / independent
SR g-dependent p-dependent p-dependent p-dependent /

In our implementation strategy, weights and residuals are preloaded into the on-chip
buffer, so all other instructions are g-dependent on the ELW and ELR instructions. These
two instructions, on the other hand, have no dependency on each other and are executed
simultaneously through multiple ports of the MM Unit. After ELW(R) is executed, feature
maps start to be loaded while OPIs and SRs are executed one after another. Figure 8b shows
the timing diagram of the instruction execution CTP for four typical cases. Case 0 is the case
when JW, JR, and JF are 0. After the ELF instruction has loaded a certain amount of data,
the subsequent stages are executed in parallel one after another. The Eload stage is jumped
in case 1, and the SR stage is jumped in case 2. Different from the communication-bound in
the previous three cases, the execution of computation-bound occurs in some instruction
species with high data reuse, as shown in case 3.

To ensure the correct execution of CTP, we designed a multi-port shared DRAM
bandwidth MM Unit and a scheduler, as illustrated in Figure 9. Four on-chip buffers and
external memory DRAM are interconnected via AXI crossbar and are uniformly addressed
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between each memory. Each on-chip buffer is implemented with dual-port block RAM,
writing data through AXI port and reading data through native port. Multiple AXI ports
provide support for accessing data from different banks of DRAM, ensuring the concurrent
execution of DTIs. Moreover, our MM Unit not only receives DTIs from the Issue unit, but
also synchronizes the instruction execution process to the scheduler through the Issue unit.
The scheduler will proceed to read the subsequent COD instruction only after all DTIs have
been executed.

Figure 9. Memory Management Unit (MM Unit).

4.2. Execution Logic

In addition to the instruction-level parallelism enabled by CTP, there are further
opportunities for parallelism in numerical operations pertaining to OPIs. In this section,
we propose an EU capable of performing the parallel computation of OPIs, utilizing both
spatial and temporal parallelism methodologies.

Spatially Parallel Structure (SPS): The CONV is computed as described in Section 2.
We exploit the Co-dimensional irrelevance of the CONV result Y(Fout) to design a SPS that
enables parallel computation of 1-POC (Parallel Output Channel) channels. The choice of
parallelism POC determines the hardware architecture design, which we determine in this
paper based on burst transmission width and data quantization width. Our accelerator con-
nects to the DRAM via AXI4 channels, where each channel typically supports 64 bytes per
cycle through burst transmission mode in state-of-the-art FPGA platforms [35]. In addition,
our data format is 16 bit. Thus, to match the access speed of the AXI4 bus (64 Bytes/cycle),
we must implement 32 (64 Bytes/16 bits) computations per clock cycle, which we choose
as our POC.

Figure 10 illustrates the SPS of the EU, where we use 16 spatially parallel FTPs
(0–15 lines) to process each of the 32 output channels of Fout. To exploit this feature more
effectively, we operate the DSP48 at twice the clock frequency of the system. Meanwhile,
we design two sets of LUTRAM for each FTP to cache weight, which matches the DSP48.
In this way, each FTP can perform two output channels at the system clock frequency,
effectively saving DSP48 resources. The ELW instruction drives the weight fetch unit to
load two weights into LUTRAMs in each FTP along the Co dimension before the OPIs
start executing. With the execution of OPIs in CTP, Fin is broadcast to 16 FTPs, and the
32 channels of Fout are computed in parallel.

Fine-grain Temporal Pipeline (FTP): Opportunities for parallelism arise for each
input channel that the FTP is responsible for, as the multiplication operations within each
kernel sliding window are uncorrelated. In Figure 10, we employ 32 cascaded DSP48s to
form a 1D systolic array, creating a computational pipeline for parallel computation of
1-PIC (Parallel Input Channel) channels. Subsequently, two quant units and two pool units,
collectively forming a FTP, follow this array. Once the FTP is established, it can handle the
computation of two output channels within each system clock cycle (100 MHz).
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Figure 10. The overview of the execution unit.

Algorithm 1 presents the computational flow of the pipeline with K = 1 and S = 1
for Fin(32, 4, 4), illustrating the operations at each clock cycle for each level of DSP. It is
observed that the pipeline is established and one Fout can be output for each clock cycle after
31 cycles. The implementation of 1024 MACs (Multiply Accumulate) operations utilizes
63 clock cycles, resulting in a 16-fold efficiency improvement over a naive serial design.

Algorithm 1 CONV Operation Pipeline

Input: Fin(32,4,4), W(2,32,1,1)
//Due to K = 1, the indexes of the 3rd and 4th dimensions of W are omitted in the
following description

Output: Fout(2,4,4)
Clock Cycle 00: DSP L0: W[0][0] × Fin[0][0,0] = P0,0;
Clock Cycle 01: DSP L0:W[1][0] × Fin[0][0,0] = P1,0;

DSP L1: P0,0 + W[0][1] × Fin[1][0,0] = P1,1;
Clock Cycle 02: DSP L0: W[0][0] × Fin[0][0][1] = P2,0;

DSP L1: P1,0 + W[1][1] × Fin[1][0][0] = P2,1;
DSP L2: P1,1 + W[0][2] × Fin[2][0,0] = P2,2;

......
// Pipeline setup
Clock Cycle 31: DSP L0:W[1][0] × Fin[0][3,3] = P31,0;

......
DSP L31: P30,30 + W[0][31] × Fin[31][0,0] = Fout[0][0,0];

Clock Cycle 32: DSP L1:P31,0 + W[1][0] × Fin[1][0,0] = P32,1;
......

DSP L31: P31,30 + W[1][31] × Fin[31][0,0] = Fout[1][0,0];
......

Clock Cycle 62: DSP L31 P61,30 + W[1][31] × Fin[31][3,3] = Fout[1][3,3];

As shown in Figure 10, to ensure the accuracy of FTPs data fetching, weight and
Fmap caches are designed separately. Two sets of weight caches composed of LUTRAM
are allocated for each FTP, and the two sets of cache alternate in inputting weight for
DSP during operation. To reuse the Fmap, 16 FTPs share 32 Fmap caches, where each
cache stores one channel of Fin, and five line buffers alternate write reads, broadcasting
the correct Fmap to all FTPs. For atrous CONV, unnecessary rows in the Fmap fetch unit
and unnecessary columns in the line buffers are skipped by the read logic, enabling the
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atrous CONV to share the same FTP as the CONV. Moreover, a temporary cache logic is
incorporated after the systolic array, which is used to accumulate the result of multiple
clock cycles to support the instruction of kernel size greater than 1. The intermediate result
of the array is accumulated and stored in a reg type variable, and the result is output when
the count reaches the size of the kernel (W). For instance, when K = 3, the output of the
array is summed with the data from Reg and the result is re-stored in Reg until the ninth
output completes the sum.

Following the convolution unit, we designed the Quant, Pool, and Upsample units to
execute other OPI instructions. The Quant unit is shown in Figure 11a. First, it quantizes
the input data from 48 bits to 16 bits by performing a bit shift operation. The exact shift
parameter, denoted as Fl, is determined by parsing the Quant instruction. Additionally,
this instruction defines the operation mode of the Add Partial Sum (Psum) module. There
are three modes: (1) When the input data represents the final result, it is directly fed into
the next module. (2) When the data is an intermediate result (IR) and corresponds to
the first tile, it is stored in the Psum FIFO. (3) Subsequent tiles read the data of Psum
FIFO and accumulate it. (More details about tiling will be discussed in Section 5.2). The
final result of the convolution is then directed to the Add bias and ReLU modules for
the corresponding logical operations. Following this, there is an Element-Wise Addition
module. It functions similarly to the Add Psum module, with the key difference being
that the Addition FIFO can also be initially loaded with data via the ELR instruction. This
feature is useful when dealing with situations where the amount of residual data exceeds
the FIFO capacity. Finally, the result of the upsample is sent to the MM Unit to execute the
RS instruction.

Figure 11. The overview of the Quant and Pool units.

5. COD Compiler

We develop a specialized compiler based on the COD encoding rule to translate high-
level language CNN computation graphs into a COD instruction sequence composed of
binary digits that the accelerator can understand and execute. Additionally, we perform
optimizations, including BN folding and fixed-point quantization, on the input CNN before
compiling it. Figure 12 depicts the entire process of deploying a CNN received from a DL
framework into our accelerator. After optimization, the fixed-point weights, computation
graph prototxt (CGP), and quantization information files are sent to the compiler. In the
tiling phase, the CONV layers of the CGP are divided into multiple sub-blocks to fit the
FTP mentioned in Section 4, and the weights are rearranged according to the tiling rules.
In the fusion phase, the operations of other layers are merged into each sub-block. In the
assembly phase, the COD instruction information is converted into binary digits. All COD
instructions are arranged to form the instruction sequence corresponding to the input CNN.
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Figure 12. The workflow of the compiler.

5.1. Optimizations

BN Folding: The coefficients γ, σ, ε, β, and μ in the BN operation described in Equation (6)
are explicitly determined during the inference stage. When we substitute Equation (1) into
Equation (6), it results in Equation (7), representing the convolution merge BN operation. This
equation can be simplified to Equation (8). It is evident that the computational pattern in
Equation (8) is the same as that used in convolution. Therefore, BN folding can be achieved by
modifying the weight and bias of the CONV layer to incorporate the BN coefficients, resulting
in new weight Ŵ and new bias b̂ as shown in Equations (9) and (10). This technique eliminates
the need for computing BN, thereby reducing the inference time.

y = γ
(Wx + b)− μ√

σ2 + ε
+ β (7)

y =
γW√
σ2 + ε

x +
γ√

σ2 + ε
(b − μ) + β (8)

Ŵ =
γW√
σ2 + ε

(9)

b̂ =
γ√

σ2 + ε
(b − μ) + β (10)

Data Quantization: Our post-training quantization scheme is based on the fusion of
methods proposed in [36,37]. It involves a linear mapping of integers x to floats x̂ using
Equation (11).

X f ≈ X̂i = 2− fl · Xi (11)

where − fl and X̂i represent the fraction length parameter and the floating point value from
the de-quantization of Xi, respectively. Substituting the original CONV Equation (1) each
term with (11), we can obtain the full integers CONV Equation (12).

ôi =
2− fl x · 2− flw

2− fl o ∑ xi · wi +
2− fl b

2− fl o
bi (12)

The fraction length parameter fl is pre-computed offline on the calibration set using
the method proposed in [37], as shown in Equation (13).

arg max ∑ cos(ôi, o f ) (13)

The resulting array of quantization information, consisting of fl for each layer, is fed
to the compiler, and these parameters are compiled into Quant instructions. At runtime,
only a simple shift operation is required in the Quant unit.
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5.2. Tiling

Tiling Rule: The tiling rule presented in Equation (14) and Figure 13a slices the CONV
operation into sub-blocks along the Ci and Co dimensions to fit the parallelism capability
of the accelerator. The parameter Sn represents the total number of sub-blocks, which is
determined by the amount of parallelism in the Ci and Co dimensions, i.e., PIC and POC,
respectively.

Sn = �Ci/PIC� · �Co/POC� (14)

To ensure that the size of data scheduled by an instruction does not exceed the on-chip
buffer capacity, the tiling rule can be extended to consider the H dimension as well. The
parameter Th determines the height of each sub-block, and it should satisfy the constraint
in Equation (15), where C(GlobalBuffer) represent the size of the on-chip buffer. This
constraint guarantees that the feature map of each sub-block can fit into the on-chip buffer.

Th × W × PIC < C(GlobalBuffer) (15)

However, it is unnecessary to perform K dimensional tiling of weights since the on-
chip buffer of weights typically has sufficient capacity to cache the weight data tiled in
the Ci and Co dimensions. Therefore, the tiling rule presented in Figure 13a only slices the
CONV operation along the Ci and Co dimensions.

Figure 13. CONV Tiling and Data layout.

Data Layout: To optimize the utilization of the 64 bytes of data accessed from the AXI4
channel per clock cycle via burst mode, a specific data layout must be designed, which differs
from the generic DL framework. As illustrated in Figure 13b, a classic DL framework like
Caffe arranges data in a three-dimensional tensor based on the channel (C), height (H), and
width (W). However, for Atrous CONV, this arrangement leads to numerous non-contiguous
data accesses, thereby wasting the bandwidth of the AXI4 bus. To avoid this issue, we propose
a NHWC[x] scheme based on NHWC, as depicted in Figure 13c. In this scheme, the tensor is
sliced along the C dimension based on the maximum amount of data accessed in one burst
(T). The sliced block is then arranged in order, with the HWC order used within each block.
Since the design of tiling unifies T and the POC and PIC, the 64 bytes of data accessed in one
burst precisely contain the data needed for all FTPs.

5.3. Fusion and Assembler

To minimize unnecessary data movement, we integrate the Quant ReLU, Pool, and
Upsample operations into the sub-block CONV operation and execute them in parallel in
the FTP of our accelerator. The parameters of these fused-operations are combined to form
the OPI information for each sub-block. Using this OPI information, we generate DTI and
CTI, with the main objective being to find the optimal data scheduling path that minimizes
the latency of the load–store process. The load-related DTIs depend on SR instructions
in the previous layer of the instruction sequence. To reduce the external memory load
(ELoad) as much as possible, the SR instruction address is directed towards the on-chip
cache address, as illustrated in Figure 8b case 1, 2, 3.
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The assembler is responsible for converting the COD instruction information generated by
each fused-operation into binary digits, based on the encoding format described in Section 3.2.
When switching between different CNNs, our accelerator can simply overlay a new COD
instruction sequence into the instruction buffer, without the need to re-burn the FPGA.

6. Experiments

The workflow of our accelerator is illustrated in Figure 2. In the offline phase, we
employ PyTorch for model training and quantification. Subsequently, the compiler gen-
erates instruction sequences and rearranged weights based on Fls and CGPs. During the
runtime phase, the Host PC transmits instructions, weight files, and preprocessed images
to the external DRAM of the FPGA via the PCIe bus. The accelerator initiates the CNN
inference process, and upon completion, the Host PC retrieves the inference results from
the DRAM. It should be noted that this work focused on accelerating the CNN process, and
other operations such as image preprocessing and result display were implemented on the
CPU. Further reports and details of the evaluation are provided below.

In this section, we conduct experiments based on the aforementioned process. Initially,
we train and quantize the segmentation model using PyTorch 1.11.0 and the CUDA 11.3
toolkit on an NVIDIA RTX 3090 GPU. Next, we developed the proposed compiler in C++
to transform the CGP into a sequence of COD instructions. Lastly, we implement the
prototype accelerator on a Xilinx VC709 development board with a XC7VX690T FPGA. All
the accelerator hardware modules are developed using Verilog HDL. The accelerator is
synthesized and implemented with Vivado 2018.3.

6.1. SCIs Segmentation

Dataset: In this subsection, we evaluate the performance of our segmentation models
on two datasets.

Satellite Dataset [5]: This dataset consists of 3117 images collected from the internet,
all having a consistent resolution of 1280 × 720. It is divided into training (2516 images)
and test subsets (600 images). The dataset includes three main feature component types:
Body, Solar Panel, and Antenna.

SCIs Dataset [23]: This newly created dataset contains 8833 simulated spacecraft
images, with 7061 images designated for training and the remaining 1772 for testing.
The dataset spans 26 different image resolutions, ranging from 90 × 82 to 1015 × 1015.
It encompasses 16 diverse spacecraft types and five crucial feature component types: Panel,
Antenna, Thruster, Optical load, and Mechanical arm. This dataset closely aligns with the
actual segmentation needs of space scenes, setting it apart from the Satellite Dataset.

Preprocessing and Hyperparameters: For all images, we apply uniform resizing to
256 × 256 both during training and inference. Additionally, for the training set, we employ
standard data augmentation techniques, including random scaling (0.5, 2.0), random
horizontal fliping, and normalization.

The training hyperparameters are as follows: the learning rate schedule “poly” pol-
icy [38] and initial learning rate 0.005, weight decay of 1 × 10−4, number of iterations
20,000, batch size of 32, and cross-entropy loss type. Hyperparameters without mentioned
task-related training were adopted from the CNN’s base model.

Benchmark: We configure six benchmark CNN models for the SCIs segmentation
task, based on the Deeplabv3 series of algorithms. These models consist of two head
networks: Deeplabv3+ [22] and DeepLabv3 [21], paired with three backbone networks:
VGG16 [39], ResNet18 [40], and SqueezeNet1.1 [41]. The head network with ASPP module
has dilation rates of 1, 2, 4, 6. Table 4 displays the model sizes and complexities. The GOPS
(Giga-operations) column in the table represents the number of operations (multiplication
or addition operations) included in each model.
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Table 4. The model size and complexity of the DeeplabV3 series model on the satellite dataset.

Model Backbone
Model Size (MB) Complexity

FP32 INT16 (GOPS)

DeepLabv3 VGG16 77.96 38.88 42.64

DeepLabv3 ResNet18 63.72 31.86 11.06

Table 4. Cont.

Model Backbone
Model Size (MB) Complexity

FP32 INT16 (GOPS)

DeepLabv3 SqueezeNet1.1 21.80 10.90 2.84

DeepLabv3+ VGG16 78.24 39.12 48.42

DeepLabv3+ ResNet18 64.16 32.08 17.18

DeepLabv3+ SqueezeNet1.1 22.28 11.14 9.28

Segmentation Result: We employed both mIoU (mean Intersection over Union) and
PA (Pixel Accuracy) [42] metrics to assess the segmentation accuracy of the six models
across the two datasets, as demonstrated in Table 5. Figure 14 shows a visualization of
the segmentation result obtained using the Deeplabv3+ ResNet18 model. To reduce the
computational complexity and memory footprint of these models, we adopt an INT16
quantization scheme, as discussed in Section 5.1. We observe that the quantized models
achieve almost the same accuracy as the original float (FP32) models, with accuracy degra-
dation ranging between −0.14 and +0.09 for the mIOU on the Satellite dataset and between
−0.5 and +0.54 on the SCI dataset. The degradation in quantification accuracy typically
arises from two sources: clipping error and rounding error, which are mutually exclusive.
Retaining a larger quantitation range, such as the maximum and minimum values, reduces
clipping error to zero but significantly increases rounding error, especially when quantify-
ing activations. Activations, having more outliers than weights, are particularly susceptible
to this effect. The EasyQuant quantitation framework [37] used in this paper iteratively
retains the quantitation parameters with the highest cosine similarity between the inverse
quantized data and the original data during the quantitation process. This implies that
the clipping range of quantization may not strictly follow the maximum and minimum
of the data, leading to some outliers not being considered within the quantization range.
Consequently, outliers in the quantized activation for each layer may have a comparatively
lesser impact on forward propagation. In fact, these outliers may not always have a positive
effect on the final accuracy, since in cases where the outliers are noise, the quantized model
may bring unexpected accuracy gains, as is the case for some models in Table 5. However,
these marginal gains are also influenced by the convergence degree of the model. When the
model is trained with more rounds of higher accuracy, the noise in the forward propagation
is reduced, and consequently, this accuracy gain may be diminished as well.
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Figure 14. Result on the SCI image based on our model (DeepLabv3+ ResNet18): input image (top)
and segmentation result (bottom). Green, blue, and red areas are antenna, mechanical arm, and panel
components, respectively.

Table 5. The accuracy of the DeeplabV3 series model.

Satellite Dataset

Model

Accuracy

mIoU PA

FP32 INT16 FP32 INT16

DeepLabv3 VGG16 67.32% 67.31% 95.12% 95.12%

DeepLabv3 ResNet18 60.57% 60.66% 93.30% 93.33%

DeepLabv3 SqueezeNet1.1 54.93% 54.98% 91.31% 91.34%

DeepLabv3+ VGG16 67.46% 67.32% 95.50% 95.50%

DeepLabv3+ ResNet18 62.63% 62.71% 93.99% 94.01%

DeepLabv3+ SqueezeNet1.1 56.06% 56.05% 92.47% 92.49%

SCIs Dataset

DeepLabv3 VGG16 69.72% 69.42% 99.00% 99.00%

DeepLabv3 ResNet18 64.06% 63.56% 98.86% 98.84%

DeepLabv3 SqueezeNet1.1 61.09% 61.63% 98.70% 98.70%

DeepLabv3+ VGG16 81.62% 81.65% 99.56% 99.55%

DeepLabv3+ ResNet18 78.04% 77.84% 99.45% 99.43%

DeepLabv3+ SqueezeNet1.1 74.14% 74.36% 99.35% 99.35%

6.2. Accelerator Performance Analysis

In this subsection, we provide information about the implementation details of the
accelerator and then analyze its performance. Considering the model complexity, we focus
on Deeplabv3+ ResNet18 and SqueezeNet1.1 for model acceleration in this subsection.

Implementation Details: Table 6 displays the parameters and resource utilization of
our prototype accelerator. The global buffer is 1 MB implemented by BRAM resource for
caching intermediate feature maps. The weight buffer is distributed adjacent to each DSP,
and we configure two 64 B LUTRAM caches for each DSP, which allows our DSP to operate
at two times the system clock frequency. This design allows the EU using 512 DSP resource
to achieve the computational efficiency of 1024 multiplier and adder equivalents.
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Table 6. Parameters and resource utilization of our accelerator.

Parameters of Our Accelerator

Buffer

Global Buffer 512 KB

Weight Buffer 64 KB (1024 × 64 B)

Bias Buffer 16 KB

Instruction Buffer 79 KB (32 B × 2500)

Operation Operations in EU 512 (32 × 16) multipliers and adders

Bus AXI bus width 512 bits

Data Width 16 bits (fixed point)

Resource Utilization

Resource LUT FF LUTRAM DSP BRAM

Used 198,262 185,839 42,097 519 724

Total 433,200 866,400 174,200 3600 1470

Utilization 45.77% 21.45% 24.17% 14.42% 49.25%

Reducing External Memory Access: Enhancing energy efficiency and throughput can
be achieved by reducing off-chip data movement and enhancing EU utilization [24]. The
DMH introduced in Section 3.1 effectively utilizes the on-chip buffer and minimizes DRAM
accesses. To illustrate, we consider the DeepLabv3+ ResNet18 model as an example, which
we compiled into 2424 COD instructions. A comparison of DRAM accesses between our
COD CF and the primitive CF case is presented in Figure 15. In the primitive CF, DRAM
accesses involve inputs, output feature maps, and weights. (Thanks to our instruction
buffer, we can cache all instructions on-chip.) The DMH structure of the COD control
flow avoids DRAM accesses for intermediate feature maps by directly caching them in the
on-chip Global Buffer. For the DeepLabv3+ ResNet18 model, we achieve an impressive 26%
reduction in DRAM accesses overall. Notably, in the most efficient RES1 layer, we achieve
a remarkable 95% reduction in DRAM accesses. These savings in access time contribute to
the high performance of our accelerator.

Figure 15. The comparison of external memory access between primitive control flow and our COD
control flow on the DeepLabv3+ ResNet18 model.
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Performance Analysis: To evaluate the performance of our accelerator, we employed
a roofline model [29], as depicted in Equation (16), where the TTR represents the Theoretical
Roof Throughput. This model considers both memory and compute bottlenecks, providing
a valuable representation of the hardware performance.

P =

{
β · I, I < Imax
TTR, I ≥ Imax

(16)

Within the equation, P represents performance, measured in throughput (GOPS/s,
Giga-operations per second). Additionally, β corresponds to DRAM access bandwidth
(GB/s, Giga-bytes per second), I denotes operation density (OPS/Byte, operations per
byte), and Imax signifies the point of intersection between computational and bandwidth
bottlenecks, calculable using Equation (17).

Imax =
TTR

β
(17)

Furthermore, Theoretical Roof Throughput (TTR) of hardware is calculated according
to Equation (18), where MACnum represents the number of MAC units (DSP48E1) in
hardware and f is the working clock frequency of MAC units. To convert the unit of
operations from MACs (multiply-accumulate operations) to OPS (multiplication or addition
operations), it is necessary to multiply by a factor of 2.

TTR = MACnum × 2 × f (18)

The TTR of our accelerator is calculated at 207.6GOPS/s (519 × 200 × 2), while actual
testing revealed a bandwidth (β) of approximately 6.7 GB/s. To assess the accelerator’s
runtime performance, we added a global clock cycle counter and a Xilinx ILA (Integrated
Logic Analyzer) IP into the design. When the accelerator is running, the ILA can be
triggered to view the counter number based on the instruction address and state machine
ID, and the delay of each stage can be calculated based on the running clock frequency and
the clock cycle number. The actual performance of the accelerator can then be calculated
from the operations and delays. Utilizing roof throughput data and runtime performance
data, we constructed the roofline model for our accelerator, as illustrated in Figure 16.

Figure 16. The roofline model of our accelerator.
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In the figure, the dotted line illustrates the hardware acceleration limit of our acceler-
ator. The bandwidth bottleneck is highlighted in red, and the computational bottleneck
is depicted in green. Scattered dots represent the acceleration performance of each layer
in the DeepLabv3+ ResNet18 model. Closeness of the dots to the bounding line indicates
higher hardware utilization. The primitive CF case represents a scenario where all layer
data is fetched from DRAM. Our COD CF reduces unnecessary DRAM accesses, bringing
our performance closer to the boundary.

In total, we achieved model acceleration with a latency of 93.27 ms and a performance
of 184.19 GOPS/s, representing 88.72% of the TTR. This indicates that 88.72% of the clock
cycles are effectively utilized for computation.

6.3. Comparison with Related Works

In this subsection, we compare the efficiency of our COD instructions and acceler-
ator with prior research in terms of instruction set coding and computational efficiency,
respectively.

Instruction Coding Efficiency Comparison: Despite our COD ISA having a 256-bit
word length for a single instruction list, our scheme maintains excellent coding efficiency
due to the high parallelism strategy of our hardware accelerator. Table 7 provides an
instruction size comparison between our COD instructions and previous works for the
same CNN models.

Table 7. Comparison of total instruction size for different accelerators.

Model
Instruction Size (KB) Reduction

RateSLC [32] IUU [43] LIS [44] Ours

VGG-11 1620 270 — 33 49/8.2/—

VGG-16 2650 450 106 54 49/8.3/1.9

VGG-19 — 600 108 73 —/8.2/1.5

The hardware parallelism for IUU [43] and SLC [32] is limited to 64 (PIC, POC = 8).
This parameter is directly correlated with the number of instructions because the CONV
operation is sliced according to this parameter, with each tiling requiring one instruction to
drive it. In contrast, our COD accelerator features a parallelism of 1024 (PIC, POC = 32),
enabling us to encode the same model with fewer instructions. As a result, our COD
reduces the instruction size by a factor of 8× compared to IUU [43] and 49× compared
to SLC [32], respectively. LIS [43] is a lightweight instruction set that supports dilated
convolution and mixed-precision operands. However, its execution depends on a RISC-V
processor, requiring the inclusion of a 96 KB program within the instructions. In contrast,
our instruction parsing unit and instruction encoding are co-designed, making our in-
structions independent of RISC-V or other processors for execution. As a result, our COD
reduces the instruction size by a factor of 1.9× and 1.5× compared to LIS [43].

While instructions constitute a relatively small amount of data compared to weights
and feature maps, it is crucial to consider the constraints of bandwidth and storage resources
in space applications.

Computational Efficiency Comparison: Table 8 presents a performance comparison
of our accelerator with previous CNN-based image segmentation accelerators. The “—”
in the table indicates that the accelerator did not report that parameter or performance.
Computational Efficiency reflects how efficiently the accelerator utilizes computational
resources and is calculated as Performance divided by TTR. Note that in the comparison
we uniformly use the number of DSPs used to denote the MACnum in the TTR. The
model abbreviations in the table represent DLV3P-X (DeepLabv3+ Xception [45]), DLV3P-B
(DeepLabv3+ ResNet18), and DLV3P-C (DeepLabv3+ SqueezeNet1.1).
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Table 8. Comparison with previous image segmentation accelerators.

Liu et al. [16]
in TRETS 2018

Wu et al. [18]
in TCASI 2022

Bai et al. [15]
in TCASI 2020

Im et al. [25]
in TCASI 2020

Morì et al. [24]
in DAC 2022

Ours

Accelerator
Type Overlay Overlay SN Overlay Overlay Overlay

Model U-Net ENet RoadNet-RT DL3P-X DL3P-B DL3P-B DL3P-C

Platform Xilinx
XC7Z045

Intel Arria
10

Xilinx
ZCU102

65 nm
CMOS Intel Arria 10 Xilinx XC7VX690T

Frequency
(MHz) 200 200 250 200 189.81 148.44 200

Precision 16-bit 8-bit 8-bit 8-bit 16-bit 16-bit

DSPs used 900 607 1560 — 690 1362 519

Performance
(GOPS/s) 107.00 200.31 * 331.00 65.23 ** 117.31 183.3 184.19 159.48

Computational
Efficiency

(GOPS/s/TTR)
29.72% 82.5% 42.43% — 44.78% 45.33% 88.72% 76.82%

* The data calculated based on the computational efficiency and used DSP in [18]. ** The data calculated based on
the latency and model architecture in [25].

Morì et al. introduced a hardware-aware pruning method using a genetic algo-
rithm [24], effectively reducing the complexity of the benchmark model DL3P-B. However,
when accelerating the original model, our accelerator outperforms theirs with similar re-
source consumption. In the acceleration of the DL3P-B model, our computational efficiency
is 43.93% better than that of their accelerator. In addition to [43], Im et al. designed the
DT-CNN accelerator [25], which also supports the ASPP structure of DeepLabv3+. We
obtained a performance of approximately 65.23 GOPS/s for DT-CNN when accelerating
the DL3P-X model based on the delay and network structure parameters they provided.
Compared to this, our accelerator achieves higher performance.

In addition to the DeepLabv3+ model, we also compared other similar segmentation
task models. Bai et al. introduced a lightweight road segmentation model, RoadNet-RT [18],
and implemented an SN-type model accelerator on a ZCU102 FPGA with an acceleration
performance of 331GOPS/s. However, it consumes more computational resources, resulting
in lower computational efficiency. In comparison, our computational efficiency is 46.29%
higher than [18]. Wu et al. proposed an efficient accelerator [18] supporting multiple
convolution types. For the semantic segmentation task, they accelerated the ENet model,
achieving a performance of 200.31 GOPS/s and a computational efficiency of 82.5%. Our
accelerator outperforms theirs with a 6.22% higher computational efficiency compared
to [18]. Liu et al. [16] designed a custom architecture for DeCONV in the U-Net model and
implemented the image segmentation task at 107 GOPS/s. We outperform them with a
performance that is 77.91 GOPS/s higher and a computational efficiency that is 59% higher.

Comparison with Other Overlay Accelerators: In addition to addressing semantic
segmentation tasks, more previous accelerators are catered to more fundamental assign-
ments, including classification. Consequently, to gauge the efficiency of our accelerator in
comparison to previous overlay accelerators, we assess both the processing efficiency and
resource consumption of the classical VGG-16 model, as summarized in Table 9.

Compared to fpgaConvNet [46], our work uses less computational resources and
achieves higher performance. Compared to Angel-eye [47], we use similar LUT resources
and achieve similar performance, but our DSP usage is significantly reduced and the over-
all computational resource efficiency is improved by 8.51%. While we may not possess
a performance advantage compared to Caffeine [48] and FlexCNN [49], our work uses
far fewer resources. In fact, we demonstrate a resource efficiency improvement of 15.16%
and 19.80% compared to Caffeine [48] and FlexCNN [49], respectively. Furthermore, given
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that Xilinx’s Vitis AI tool employs 8-bit quantization, the Xilinx B4096 DPU [34,50] exhibits
reduced LUT resource consumption. However, its computational resource efficiency is
comparatively lower at 57.59%, potentially attributed to multi-core DDR sharing. In con-
trast, our work boasts a more substantial efficiency improvement at 30.82%. The DPU’s
inference performance is sourced from the official Xilinx document [34], while its resource
consumption data is extracted from the official document [50].

Comparison with GPU (Graphics Processing Unit): In addition to FPGAs, GPUs are
a prevalent hardware platform for CNN acceleration. In Table 10, we present a comparison
of the acceleration performance between our accelerator and a GPU. It is evident that the
GPU, equipped with more computational resources and higher frequencies, demonstrates
faster processing speeds, but it also brings higher power consumption. Considering energy
efficiency as a crucial metric for onboard computing platforms, our dedicated accelerator
showcases a noteworthy 5.1× improvement in energy efficiency when performing SCI
segmentation tasks compared to a general-purpose GPU.

Table 9. Performance and computational efficiency comparison with previous overlay accelerators.
(Model: VGG 16, Image Size: 224 × 224).

fpgaConvNet [46] Caffeine [48] Angel-Eye [47]
Xilinx B4096
DPU [34,50] *

FlexCNN [49] COD(Ours)

Platform Zynq Z045 XC7VX690T Zynq Z045 ZCU102 Alveo U250 XC7VX690T

Precision 16-bit 16-bit 16-bit 8-bit 16-bit 16-bit

Frequency
(MHz) 125 150 150 281 241 200

Batch Size 1 1 1 3 1 1

DSPs used 900 2833 780 1926 4667 519

LUTs used 218,600 350,892 182,616 111,798 682,732 198,262

Performance
(GOPS/s) 155.81 488.00 187.80 623.10 1543.40 183.54

Computational
Efficiency

(GOPS/s/TTR)
69.25% 73.25% 80.26% 57.59% 68.61% 88.41%

* Xilinx DPU’s VGG16 model contains fully connected layers, whereas the other work in the table contains
only convolutional layers. It is worth noting that the convolutional layer accounts for 99.6% of all computation
in VGG16.

Table 10. Energy efficiency comparison with GPU (Model: DL3P-C, Image Size: 256 × 256).

Platform RTX 2080 Ti GPU XC7VX690T FPGA

Framework Pytorch-GPU -

Frequency (MHz) 1635 200

External Memory 11 GB GDDR6 4 GB DDR3

Speed (Frames/s) 39.6 17.2

Power (W) 250 21 *

Energy Efficiency
(Frames/s/W) 0.16 0.82

* The power consumption is measured from the board using a power meter during FPGA inference.

7. Conclusions and Future Work

This paper introduces an innovative workflow for deploying DeepLabv3+ CNN
onto FPGAs, comprising a tailored COD instruction set, an RTL-based overlay CNNs
accelerator, and a specialized compiler. Our accelerator was implemented on a Xilinx Virtex
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XC7VX690T FPGA at 200 MHz. In our experiments, the accelerator achieved an accuracy
of 77.84% with INT16 quantization, exhibiting only a 0.2% degradation compared to the
fully precision model on the SCIs dataset. Notably, the accelerator delivered a performance
of 184.19 GOPS/s with a computational efficiency of 88.72%. In contrast to prior work, our
accelerator exhibited a 1.5× performance improvement and a remarkable 43.93% boost in
computational efficiency. Moreover, our COD instruction set demonstrated a substantial
reduction in size, ranging from 1.5× to 49× when compiling the same model compared to
previous methodologies.

The experiments presented in this paper are conducted on the ground. The PC serves
as the analog source for sending and receiving data, while the FPGA development board
functions as the implementation platform for the accelerator, performing CNN inference
computations. For deployment in the actual space environment, it also is essential to
consider engineering experiments, including mechanical tests, high- and low-temperature
tests, radiation resistance tests, etc., to verify the reliability of the accelerator.

Random bit-bias feature faults (RBFFs) [51] caused by single and multiple event upsets
is an issue to be considered during the migration of our design to an actual hardware
platform in a space environment. From an architectural design perspective, the impact of
the radiation environment on the accelerator can be mitigated through the implementation
of logical redundancy. In subsequent work, we will add parity bits to the COD instruction
and use the triple modular redundancy (TMR) approach to increase the fault tolerance
of instruction set execution in hardware. Moreover, different CNN models have different
tolerances for RBFF, and due to our overlay design we can explore highly fault-tolerant
CNN models for deployment without redesigning the hardware.
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Abstract: The fusion of hyperspectral imagery (HSI) and light detection and ranging (LiDAR) data
for classification has received widespread attention and has led to significant progress in research
and remote sensing applications. However, existing common CNN architectures suffer from the
significant drawback of not being able to model remote sensing images globally, while transformer
architectures are not able to capture local features effectively. To address these bottlenecks, this paper
proposes a classification framework for multisource remote sensing image fusion. First, a spatial and
spectral feature projection network is constructed based on parallel feature extraction by combining
HSI and LiDAR data, which is conducive to extracting joint spatial, spectral, and elevation features
from different source data. Furthermore, in order to construct local–global nonlinear feature mapping
more flexibly, a network architecture coupling together multiscale convolution and a multiscale vision
transformer is proposed. Moreover, a plug-and-play nonlocal feature token aggregation module
is designed to adaptively adjust the domain offsets between different features, while a class token
is employed to reduce the complexity of high-dimensional feature fusion. On three open-source
remote sensing datasets, the performance of the proposed multisource fusion classification framework
improves about 1% to 3% over other state-of-the-art algorithms.

Keywords: hyperspectral; LiDAR; fusion classification; transformer; feature fusion

1. Introduction

Hyperspectral sensors are capable of capturing images in dozens or hundreds of
narrow bands, thereby combining spectral and spatial information effectively. With their
unique spectral spatial combination structure, they are suitable for a wide range of applica-
tions, such as agriculture, aerospace, mineral exploration, etc. [1–3]. Hyperspectral image
classification technology aims to assign a class label to each pixel, which can effectively
improve the interpretation perception of hyperspectral images. With advancements in
sensor capability, more types of optical data can be acquired, such as LiDAR elevation
images, synthetic aperture radar (SAR), panchromatic images, and infrared images [4–6],
to name a few. Meanwhile, to improve the perception of hyperspectral images, combining
different source data for joint classification is a straightforward and effective method [7,8].
Hyperspectral images reflect the material spectral information of objects, but different
objects of the same material cannot be accurately distinguished from spectral information.
Typically, a concrete pavement and a concrete roof in a captured image share the same
spectral profile but have significant differences in spatial elevation features. In this study,
the elevation information from LiDAR is aggregated with hyperspectral images to aid in
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classification and to reduce the aforementioned phenomenon of homospectral dissimilarity
by utilizing the accurate height information from LiDAR [9].

In early research on hyperspectral image fusion classification, various machine-
learning-based approaches proved to be successful, including support vector machines
(SVMs) based on kernel function theory [10], logistic regression (LR) [11], and random for-
est algorithms (RF) [12]. Despite the excellent classification performance of these machine
learning methods, they rely heavily on hand-designed features and fall short in the ability
to extract deep features from hyperspectral images.

Since the advent of deep learning (DL) in the last decade, deep-learning-based clas-
sification techniques for hyperspectral image fusion have evolved rapidly [13]. Deep-
learning-based methods improve the understanding of remote sensing images by learning
the internal patterns of the data samples and mining the deep feature representation of
the data [14]. Likewise, deep learning networks have demonstrated powerful advantages
over traditional methods in many visual tasks. Representative deep learning frameworks
include recurrent neural networks (RNNs) [15], convolutional neural networks (CNNs) [16],
long short-term memory (LSTM) networks [17], etc. In particular, CNNs are commonly
employed in hyperspectral image processing tasks owing to the kernel acceptance field.
Furthermore, the field of hyperspectral image fusion classification has also experienced the
rapid development of deep learning technology based on convolutional neural networks. Li
et al. proposed a dual-branch network [18], which uses different branches to extract features
from hyperspectral images and LiDAR images and enhances the ability to extract features
from different sources. On this basis, the hierarchical random walk network (HRWN) [19]
utilizes the random walk algorithm to fuse the dual-branch features, which improves the
fusion effect and efficiency. In addition, Hong et al. designed the Couple CNN network [20],
which employs a spatial–spectral two-branch parameter sharing strategy to reduce the
semantic difference between the spatial–spectral features extracted from different sources
and to reduce the difficulty in fusing HSI and LiDAR image features. The hashing-based
deep metric learning (HDML) proposed by Song et al. employs an attention approach with
metric learning loss and also achieved excellent classification performance [21].

However, deep classification networks suffer from network degradation, especially
when dealing with high-dimensional hyperspectral data [22]. In the classification task, too
deep a network structure leads to feature dispersion and incomplete feature extraction,
thus reducing the classification accuracy. To address this problem, several studies have
employed attention mechanisms to restrict features and reuse features from different layers
to prevent feature degradation. Typically, the FusAtNet [23] network extracts features
from hyperspectral and LiDAR data using multilayer attention modules, then merges the
extracted features, resulting in excellent classification performance. And Li et al. proposed
the Sal2RN network and designed a feature-forward multiplexing module to fully integrate
features from different levels and overcome the problem of deep feature degradation [9].
Additionally, the convolutional network still suffers from a defect that prevents it from
effectively representing global features, and the fixed-size convolutional kernel limits its
ability to model global features. To counter this challenge, Yang et al. creatively proposed
the cascaded dilated convolutional network (CDCN) in their work [24], which utilizes the
stacked dilated convolution method to extend the receptive field of the convolution kernel
and to realize the interaction of features at different scales. And the CDCN enhances the
performance of the network when it comes to classification.

Recently, transformer architectures have become the backbone of many vision tasks,
and vision transformers have demonstrated a powerful performance in a variety of remote
sensing tasks [25]. Compared to CNN-based networks, the vision transformer architecture
can deal with the long-range dependency problem among data and better model the contex-
tual information of the data [26]. The transformer achieves global image modeling through
data slice embedding and self-attention mechanisms [27]. As a revolutionary paradigm for
hyperspectral image classification, SpectralFormer introduces the transformer architecture
network for the first time and adopts additional class tokens for feature representation [28].
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For the purpose of enhancing the feature aggregation ability of transformer networks, many
methods combine convolution with the characteristics of transformers in an effort to further
improve the accuracy of hyperspectral fusion classification. For instance, DHViT [29]
incorporates convolution and a vision transformer into its LiDAR and hyperspectral feature
extraction branches, which significantly enhances the robustness of the network. However,
for the hyperspectral patch input paradigm [30], the above ViT-based network can only
simulate the correlation between the current patch sizes and still lacks much feature inter-
action between different scales to effectively perceive the spatial diversity in the complex
geographic environment, which greatly affects the final performance of fusion classification.
Furthermore, the vanilla feature fusion method mostly performs feature concatenation,
ignoring the differences between different source features [31,32]. Specifically, the spectral,
spatial, and elevation features are spliced in the channel dimension, and there are semantic
differences among different features, which cannot effectively improve the fusion perfor-
mance [33]. For the purpose of reducing the feature drift between different modalities, a
more flexible fusion method should be developed to improve the efficiency of utilizing
multisource features.

To address the above challenges, this paper proposes a fusion hyperspectral and
LiDAR classification architecture based on convolution and a transformer. The proposed
multibranch interaction structure captures features from three perspectives: spectral, spatial,
and elevation. This improves the effectiveness of the feature extraction network. Specifically,
our research focuses on analyzing both hyperspectral and LiDAR images simultaneously.
The transformer network framework combining multiscale convolution with multiscale
cross-attention is proposed for joint feature extraction. Finally, a multiscale token fusion
strategy is used to aggregate the extracted features. Overall, the main contributions of this
paper are summarized as follows:

(1) We propose a multisource remote sensing image classification framework that inte-
grates multiscale feature extraction with cross-attention learning representation based
on spectral–spatial feature tokens. This approach greatly improves the joint classifi-
cation performance, outperforming state-of-the-art (SOTA) methods with advanced
analytical capabilities.

(2) To consider the differences in spatial scale information of different classes, we propose
a Multi-Conv-Former Block (MCFB), a backbone feature extractor that combines
convolutional networks with multiscale transformer feature extraction. This strategy
skillfully captures complex edge details in HSI and LiDAR images and identifies the
spatial dependencies of multiscale transformer features, which facilitates the mining
of more representative perceptual features from different scales.

(3) We design a Cross-Token Fusion Module (CTFM) to maximize the fusion of HSI
and LiDAR feature tokens through a nonlocal cross-learning representation. This
strategy elevates shallow feature extraction to deep feature fusion, enhances the
synergy among multisource remote sensing image data, and realizes more cohesive
information integration.

The remainder of this article is organized as follows. Section 2 introduces the related
work in the research field, Section 3 introduces the network structure proposed in this paper
in detail, Section 4 demonstrates the experimental setup and analysis, Section 5 discusses
the results, and Section 6 concludes this paper.

2. Related Work

Within remote sensing image fusion classification, researchers have explored numer-
ous approaches to improve the accuracy and efficiency of multisource data integration.
These developments, from traditional to advanced algorithms, mark considerable progress
in addressing the complexities of multisource data fusion classification. Zhang et al. [34]
proposed the Adaptive Locality-Weighted Multi-source Joint Sparse Representation model
for multiple remote sensing data fusion classification. The method employs an adaptive
locality weight, calculated for each data source, to constrain sparse coefficients and address
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the instability in sparse decomposition, thereby enhancing the fusion of information from
various sources. Although the sparse representation yields better fusion performance, the
need for sparse optimization solving during fusion leads to its low efficiency, which may
limit the application of sparse representation fusion methods. Considering the differences
in data structure between HSI and LiDAR and the presence of non-negligible noise in
remotely sensed images, the two data sources are more suitably fused at the feature level
or decision level for delicate scene classification tasks. Rasti B et al. [35] proposed an
orthogonal total variation component fusion method. This method employs extinction pro-
files to extract spatial and elevation information from HSI and LiDAR features. However,
simple concatenation or stacking of high-dimensional features may lead to the Hughes
phenomenon during the feature-level fusion [36]. In order to solve this problem, most
studies utilize principal component analysis (PCA) to reduce the HSI data dimension-
ality [37]. Liao et al. [38] employed a SVM to classify spectral features, spatial features,
elevation features, and fusion features separately and then, based on the results of the four
classifications, to complete the decision-level fusion through the weighted vote. Although
traditional methods such as the above can achieve effective fusion of features, they rely on
efforts to design suitable extractors, which are otherwise prone to local differences due to
mismatches between images from multiple sources.

Deep learning can extract high-level semantic features from data end to end, achieving
more accurate classification results [39]. Xu et al. [18] proposed a novel two-tunnel CNN
framework for extracting spectral–spatial features from HSI. A CNN with a cascade block
was designed for feature extraction from other remote sensing data. The spatial and spectral
information of the HSI data was extracted using two-tunnel CNN branching, whereas the
spatial information of the other source data was extracted using cascaded network blocks.
Although the dual-branching network can extract information separately, it overlooks the
complementarity between multiple source images, which may lead to poor classification
performance after feature fusion.

Recent innovations in transformer architectures have opened new avenues in remote
sensing image processing. The ViT [25] introduces a groundbreaking approach to image
recognition by adapting attention mechanisms, treating images as sequences of patches. It
applies the transformer encoder directly to these sequences, preceding traditional convolu-
tional layers. Based on these architectures, DHViT [29] and FusAtNET [23] have introduced
remote sensing data processing changes by incorporating the transformer architecture.
DHViT’s innovation lies in its architecture that utilizes the powerful modeling capability of
long-range dependencies and strong generalization ability across different domains of the
transformer network, based exclusively on the self-attention mechanism. In comparison,
FusAtNET employs a dual-attention-based spectral–spatial multimodal fusion network,
which effectively utilizes a “self-attention” mechanism in HSI and a “cross-attention” mech-
anism using LiDAR modality. This approach allows for extracting and fusing spectral
and spatial features, improving fusion classification. Additionally, the HRWN [19] intro-
duced a two-branch CNN structure to extract spectral and spatial features. After that, the
predictive distributions and pixel affinities of the two-branch CNNs act as global prior
and local similarity, respectively, in the subsequent hierarchical random walk layers. This
model improves boundary localization and reduces spatial fragmentation in classification
maps to improve classification performance. However, despite their advancements, these
transformer-based methods face challenges such as potential overfitting from augmented
feature dimensionality and lack of research on the interactive perception of different modal
remote sensing data information, which may cause performance degradation.

3. Methodology

In this section, the proposed fusion classification network is reviewed in detail, and
the innovations are presented separately.
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3.1. Overall Network Framework

The overall network framework of the proposed method is shown in Figure 1. In
contrast to traditional methods, this paper innovates a multibranch interactive feature
extraction structure to avoid the disadvantages of the separate extraction of each branch
of the multibranch network and adopts an interactive feature extraction method in the
extraction of LiDAR elevation information and hyperspectral spatial information. And an
additional spectral feature extraction branch is added to carry out the spectral information
modeling of hyperspectral data. To be specific, due to the high channel dimension of
hyperspectral images, it is necessary to reduce the dimensions of the data. In this paper,
principal component analysis is utilized to reduce the dimensions of the original data.
For the hyperspectral image X ∈ RH×W×D, where D is the number of dimensions of the
original data, there are X = [X1, X2, X3, ..., XD]. Where Xj(1 ≤ j ≤ D) represents the data
value at each channel, the zero-centered data X̃ are first obtained by de-meaning.

Figure 1. The overall network framework of the proposed algorithm, in which the multiple data flow
processes are spectral feature extraction, spatial feature extraction, and LiDAR elevation feature extrac-
tion. In the figure, “T” represents the class token, and “concat” is the feature concatenation operation.

To decompose the covariance matrix using singular value decomposition (SVD) [40],
we need to construct and solve the following symmetric matrix:

M = (VΣTUT)(UΣVT) = VΣT(UTU)ΣVT = VΣTΣVT , (1)

M′
= (UΣVT)(VΣTUT) = UΣ(VTV)ΣTUT = UΣΣTUT . (2)

The matrix V is the matrix of eigenvalues corresponding to the original data X; take the first
C eigenvalues to form the matrix P; then, the data after dimension reduction are Xh = PX.

For the hyperspectral image input Xh as well as the LiDAR elevation input Xl , the
patch partition strategy is first to divide them into Xh

i ∈ Rr×r×C and Xl
i ∈ Rr×r×1, where

r is a hyperparameter representing the size of the input patch and C is the number of
channels for hyperspectral image dimensionality reduction. For the spatial part, we use the
Multi-Conv-Former Block (MCFB) for feature extraction, and in this block, we process both
hyperspectral spatial information and LiDAR elevation information:

Fspa = Γ{Xh
i , Xl

i}, (3)
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where Fspa represents the final spatial feature output, and Γ represents the MCFB feature
extraction module processing. The structure of this module will be explained in detail in
the next section.

For spectral dimension feature extraction, we adopt the ViT network with an additional
class token as the feature extractor, unlike the traditional ViT network; the pixel values
within different patches are divided in the embedding part, according to the data values of
different channel dimensions. The specific process is as follows.

First, for the hyperspectral data Xh, we divide them into a number of patches along
the channel dimension, denoted as X

spe
i , and then, we have

Xh = {X
spe
1 , X

spe
2 , . . . , X

spe
i }, 1 ≤ i ≤ C. (4)

After each set of patches is embedded by feature mapping, an additional set of class tokens
of the same scale is added as the input data for subsequent feature extraction:

S = {ξ(X
spe
i )||Ti}. (5)

In the formula, ξ represents the feature-mapping operation, which aims to map the channel
dimension data and convert the spatial features, and Ti represents the additional class token,
which is a vector of random initial values and is constantly updated with the learning of
the network to represent the category information of the group of features. The subsequent
linear transformations used for self-attention feature extraction are denoted as Wq, Wk,
and Wv:

Q = S · Wq, K = S · Wk, V = S · Wv. (6)

To summarize, the self-attention layer can be represented as follows:

Fspe = Attention(Q, K, V) = so f tmax(
QKT
√

d
). (7)

The extracted features in this part are denoted as Fspe. Then, Fspa and Fspe penetrate
the proposed Cross-Token Fusion Module for feature fusion to generate a more robust
feature output.

Output = σ(Φ(Fspa, Fspe)), (8)

where Φ represents the proposed CTFM method, and σ represents the classification
head output.

3.2. Multi-Conv-Former Feature Extraction

The CNN architecture lacks global modeling capability, and the transformer architec-
ture lacks local spatial feature extraction capability. In this section, the proposed Multi-
Conv-Former feature extraction module will be introduced in detail. This module includes
a hierarchical multiscale convolution as a shallow feature extraction network and a multi-
scale cross-attention feature extraction module for multiscale features. The combination
of the two structures improves the feature sensing capability and the robustness of the
extracted features. Specifically, the overall process is as follows.

For hyperspectral image input Xh and LiDAR elevation input Xl , two-dimensional
convolution is first used for multiscale feature extraction. In this work, three levels of
multiscale feature output are used to achieve spatial size reduction and channel-scale
high-dimensional mapping. The initially selected patch input size is 11 × 11. In the first
stage, two consecutive convolutional layers are used with kernel sizes of 7 × 7 and 3 × 3
and a padding size of 1. At the same time, Batch Norm is applied for normalization. In
both the second and third stages, two consecutive convolutional layers are of size 3 × 3,
with padding size 1. The final feature sizes of the three scales obtained are Xs1 ∈ R1×1×256,
Xs2 ∈ R3×3×128, and Xs3 ∈ R7×7×64. It is worth noting that a global averaging pooling layer
is employed after each layer for sizing. Finally, depth-separable convolution is utilized
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to map the extracted hierarchical multiscale features and transform them into data input
patterns for the transformer architecture.

Qi, Ki, Vi = PointWise(DepthWise(Xsi)), i = 1, 2, 3. (9)

Similar to the spectral branching operation, class tokens are added to the feature embedding
for each scale. After that, the multiattention mechanism is used to extract features at
different scales.

headn = Attention(Qi, Ki, Vi), 1 ≤ n ≤ h, (10)

Fi = MultiHead(Qi, Ki, Vi) = Concat(head1, head2, . . . , headh), (11)

where Fi denotes the feature output of Conv-Former, whose dimensions are consistent with
the input dimensions.

After extracting the features at different scales by multiple attention, in order to
reduce the complexity of subsequent fusion, we choose the previously added learnable
class tokens for feature representation. The randomly generated Tcls at the time of input
embedding is continuously updated with network training and has the ability to represent
features. Therefore, we utilize this Tcls alone for subsequent processing. Finally, class
tokens of different scales are concatenated along the channel dimension to generate the
final classification token T f us.

T f us = {Tl1||Tl2||Tl3}, (12)

where the symbol || represents the concatenation operation along the channel dimen-
sion. The subsequent T f us is passed through the data stream as an input to the feature
fusion module.

3.3. Cross-Token Fusion Module

In this subsection, we introduce the token fusion method. Ordinary fusion strategies
are fused in the channel dimension, ignoring the distinction between features from diverse
sources and modalities. Based on the different classes of markers extracted in the feature
extraction part, we design the nonlocal token fusion module, which models the relationship
between diverse sources, reduces the intra-class variance, and avoids the phenomenon of
excessive differences in the features of various modalities.

The specific flow of the proposed Cross-Token Fusion Module is shown in Figure 2.
Specifically, for the Tspe and T f us extracted previously, linear transformations are used
to obtain linear mappings Query(Q), Key(Q), and Value(V). For different features, we
denote the spectral feature as Qspe, Kspe, and Vspe and the spatial fusion feature as Q f us,
K f us, and V f us. Unlike the traditional self-attention mechanism, the values of the two
types of features are exchanged in order to realize the attentional interaction between
different features. After that, a convolution with a kernel size of 1 × 1 is adopted for linear
transformation. This operation is denoted as the Conv Flow. The Conv Flow is used for the
two obtained groups of Q, K, and V values. Matrix multiplication is then performed on K

and Q to obtain the self-attention matrix ξ. This process can be described as follows:

ξspe = Kspe · Qspe, (13)

ξ f us = K f us · Q f us. (14)

Next, multiply the mixed attention matrix with the extracted V features to obtain the
attention-enhanced mixed features.

Ospe = V f us · So f t(ξspe) + Tspe, (15)
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Of us = Vspe · So f t(ξ f us) + T f us, (16)

where Ospe and Of us denote the spatial and spectral feature outputs of the spatial feature
modulation enhancement, respectively. The final feature outputs are concatenated along
the channel dimension:

Output = {Ospe‖Of us}, (17)

where ‖ is a concatenation operation that joins the features from the Cross-Token Fusion in
the channel dimension to obtain the final output features, which are then processed by the
classification header of the fully connected layer for the final output.

Figure 2. The structure diagram of the Cross-Token Fusion Module.

4. Experiments and Analysis

Three publicly available multisource remote sensing datasets were employed to evalu-
ate the performance of the proposed network experimentally. First, a description of the
selected datasets employed in the experiment is provided. An elaboration on the specific
experimental settings follows this. Then, the ablation experiments performed on the roles
and functionalities of different modules within the proposed framework are described.
Finally, the experimental outcomes underscore the superior performance of the proposed
framework relative to existing techniques.

4.1. Data Descriptions

In order to evaluate the effectiveness of the proposed network framework, three
datasets containing HSI and LiDAR data were selected for the experiments: Houston2013,
Trento, and MUUFL. Table 1 details the names of land-cover categories, the number of
training samples, and the number of test samples for these datasets.

(1) Houston2013 Dataset:

The Houston2013 dataset, sourced from the 2013 IEEE GRSS Data Fusion Contest, en-
compasses the University of Houston campus and its adjoining regions [41]. The Compact
Airborne Spectrographic Imager collected the HSI, and the NSF-funded Center for Airborne
Laser Mapping captured the LiDAR. The dataset’s dimensions stand at 349 × 1905 pixels,
boasting a spatial resolution of 2.5 m. The HSI data feature 144 spectral bands spanning a
wavelength range of 0.38 to 1.05 μm. For the same region, the LiDAR data for the identical
region comprise a single band. This scene contains fifteen different classes of interest. To
enhance clarity and comprehensive understanding, Figure 3 shows supplemental visual
depictions, including a pseudo-color composite of the HSI data, a grayscale rendition of
the LiDAR data, and an associated ground-truth map.
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Figure 3. Houston dataset. (a) Pseudo-color composite image based on bands 59, 26, and 18 for HSIs.
(b) Grayscale image for LiDAR-based DSM. (c) Ground-truth map.

Table 1. Training and test sample numbers for Houston2013, Trento, and MUUFL.

Houston2013 Dataset Trento Dataset MUUFL Dataset

No. Class Name Training Test Class Name Training Test Class Name Training Test
1 Healthy grass 198 1053 Apple trees 129 3905 Trees 100 23,146
2 Stressed grass 190 1064 Buildings 125 2778 Mostly grass 100 4170
3 Synthetic grass 192 505 Ground 105 374 Ground surface 100 6782
4 Trees 188 1056 Woods 154 8969 Dirt 100 1726
5 Soil 186 1056 Vineyard 184 10,317 Road 100 6587
6 Water 182 143 Roads 122 3052 Water 100 366
7 Residential 196 1072 Building shadow 100 2133
8 Commercial 191 1053 Building 100 6140
9 Road 193 1059 Sidewalk 100 1285

10 Highway 191 1036 Yellow curb 100 83
11 Railway 181 1054 Cloth panels 100 169
12 Parking lot1 192 1041
13 Parking lot2 184 285
14 Tennis court 181 247
15 Running track 187 473

Total 2832 12,197 Total 819 29,395 Total 1100 52,587

(2) Trento Dataset:

The Trento dataset, captured over a rural landscape in southern Trento, Italy, was
sourced using the AISA Eagle hyperspectral imaging system [35,42]. This system is
equipped with the AISA Eagle sensor, which captures 63 spectral bands across a wavelength
spectrum of 0.42 to 0.99 μm. Complementing the HSI, LiDAR data were gathered using
the Optech Airborne Laser Terrain Mapper (ALTM) 3100EA sensor, represented in a single
raster format. This dataset spans 600 × 166 pixels, maintaining a spatial resolution of 1 m
and containing six different classes of interest. For visualization and analytical purposes,
Figure 4 shows a pseudo-color composite of the HSI data, a grayscale representation of the
LiDAR data, and an associated ground-truth map, respectively.
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(3) MUUFL Dataset:

The MUUFL Gulfport dataset was captured over the Gulf Park campus of the Uni-
versity of Southern Mississippi in November 2010 by the reflective optics system imaging
spectrometer sensor [43]. The HSI was collected by the ITRES Compact Airborne Spectro-
graphic Imager (CASI-1500) sensor, and the ALTM sensor captured LiDAR data. Initially,
the HSI imagery incorporated 72 bands, but the first and last 4 bands were excluded due to
noise considerations, leading to 64 bands. The LiDAR component comprises 2 elevation
rasters with a 1.06 μm wavelength. Both modalities are coregistered, rendering a dataset
dimension of 325 × 220 pixels, with a spatial resolution of 0.54 m × 1 m. There are eleven
different classes of interest in this scene. Figure 5 shows the HSI data, LiDAR imagery, and
the corresponding ground-truth map, respectively.

Figure 4. Trento dataset. (a) Pseudo-color composite image based on bands 20, 16, and 4 for HSIs.
(b) Grayscale image for LiDAR-based DSM. (c) Ground-truth map.

Figure 5. MUUFL dataset. (a) Pseudo-color composite image based on bands 30, 20, and 10 for HSIs.
(b) Grayscale image for LiDAR-based DSM. (c) Ground-truth map.

4.2. Experimental Settings

Four widely used quantitative metrics were computed to measure the classification
performance of the proposed methodology compared to other existing models. These met-
rics include the overall accuracy (OA), average accuracy (AA), Kappa coefficient (Kappa),
and per-class accuracy. A superior score for these indicators signifies enhanced classifica-
tion accuracy. To eliminate the bias caused by random initialization factors of framework
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parameters in learning-based models, each experiment was repeated ten times to obtain
the average value of each quantitative metric.

Experimentation was conducted on a desktop PC with an Intel Core i9-12900 processor,
2.40 GHz CPU, 64 GB RAM, and an NVIDIA GeForce RTX 3080 GPU. All experiment
operations were facilitated using the PyTorch framework version 2.0.

4.3. Parameter Analysis

The classification performance and the training process are closely related to sev-
eral hyperparameters, which were analyzed, including the patch size, reduced spectral
dimension, attention heads, multiscale spatial feature extraction, and learning rate. In
the following experiments, the settings and tuning of hyperparameters depended on the
training dataset. Specifically, after setting the hyperparameters, the model was trained
using the training dataset, and then the performance of the network on the test dataset
was evaluated.

(1) Patch Size:

The patch size refers to the size of a small square area for HSI or LiDAR data input,
denoted as r. Other hyperparameter values were fixed when evaluating the effect of r.
Then, r was selected from a candidate set {9, 11, 13, 15, 17} to evaluate its effect. Since the
Multi-Conv-Former Block module combines maximum pooling with convolutional layers
to accomplish multiscale feature extraction, the network cannot achieve multiscale effects
if the patch size is less than 9. Based on our empirical study, the features extracted by
various values of r yield different classification performances. Figure 6a shows the Kappa
coefficient of the proposed network framework at different patch sizes. As can be seen,
when r is set to 11, the optimal Kappa is achieved in the three datasets.

(a) (b) (c)

(d) (e) (f)

Figure 6. Influence of different parameters on the Kappa coefficient. (a) Patch size. (b) Reduced
spectral dimension. (c) Spectral feature extraction module attention heads. (d) Multiscale cross-
attention spatial feature extraction module attention heads. (e) Multiscale spatial feature extraction.
(f) Learning rate.
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(2) Reduced Spectral Dimension:

Reduced Spectral Dimension means using the SVD method to reduce the spectral
dimension and extracting only the first c principal components. c was selected from a candi-
date set {20, 25, 30, 35, 40} to evaluate its effect. Figure 6b shows the Kappa coefficient of the
proposed network framework at different reduced spectral dimensions. This trend shows
that as c increases, the Kappa value initially increases and then decreases. When the spectral
dimension equals 30, the proposed network can achieve the best classification results.

(3) Attention Heads:

Both the spectral feature extraction module and the multiscale cross-attention spatial
feature extraction module utilize the multihead attention mechanism, and the attention
heads are represented by h and n, respectively. Multihead attention is employed to learn
the correspondences between different representational subspaces, where each head cor-
responds to an independent subspace of feature representation. Therefore, the number
of attention heads can affect the capacity of the transformer to represent features and,
thus, the classification performance. Figure 6c,d shows the changes in Kappa with h and
n on the three datasets, and the candidate set of attention heads is {2, 4, 6, 8, 10, 12}. The
experimental results show that the reasonable h and n are 6 and 4, respectively.

(4) Multiscale Spatial Feature Extraction:

The multiscale spatial feature extraction technique is employed in the backbone net-
work to capture the complex unstructured edge details of different target classes. Three
levels of downsampling of spatial dimensions are performed on HSI and LiDAR images.
The multistage downsampling ratios are (s1× s1), (s2× s2), and (s3× s3). Since maximum
pooling and convolutional layers are used by multiscale feature extraction, s1, s2, and s3 are
selected from the candidate set {(1, 3, 7), (2, 4, 9), (1, 5, 11), (2, 5, 10)} to evaluate the effect
of different spatial scales. Figure 6e shows the Kappa coefficient of the proposed network
framework at different scales of spatial feature. It is obvious that the Kappa value reaches
the optimum when the multispatial feature sizes are s1 = 1, s2 = 3, and s3 = 7.

(5) Learning Rate:

The learning rate L is a critical hyperparameter that controls the speed at which the
objective function converges to the local optimum. In the experiments, the learning rate
was methodically searched for in a candidate set: {1 × 10−5, 3 × 10−5, 1 × 10−4, 3 × 10−4,
1 × 10−3, 3 × 10−3}. The experimental results obtained by setting different values of L are
shown in Figure 6f. It can be observed that the optimal learning rate is 1 × 10−3.

4.4. Ablation Analysis

(1) Ablation Analysis of Different Modal Data Inputs

Two experimental frameworks were established to analyze the impact of different
source data inputs on the model classification performance. The first experiment only used
HSI data as an input, while the second was limited to LiDAR data input. The experimental
results are shown in Table 2. HSI data can be used to distinguish targets of different
materials, while LiDAR data provide rich spatial domain elevation information, enhancing
the characterization of scenes in HSI. The comparison of OA, Kappa, and AA on the three
datasets shows that the backbone network proposed in this paper based on multisource
data fusion has a better classification performance. These experimental results confirm that
customized fusion networks can effectively utilize information from multisource data to
improve classification performance.
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Table 2. Ablation analysis of different modal data inputs.

Cases
Houston2013 Trento MUUFL

OA Kappa AA OA Kappa AA OA Kappa AA

HSI 89.51% 0.8866 90.94% 95.37% 0.9386 95.22% 89.42% 0.8630 91.18%
LiDAR 58.04% 0.5480 60.24% 89.25% 0.8564 79.68% 54.31% 0.4414 59.78%

HSI + LiDAR 93.10% 0.9251 93.65% 98.67% 0.9822 98.28% 91.41% 0.8869 90.96%

(2) Ablation Analysis of Multiscale cross-attention Spatial Feature

The proposed spatial feature extractor module, Multi-Conv-Former Block, injects
texture features from HSI and LiDAR at three scales (i.e., 1 × 1, 3 × 3, and 7 × 7 spatial
downsampling resolutions). To demonstrate the advantages of the backbone network at
multiple spatial scales, we conducted an ablation study, and the results are shown in Table 3.
Note that the first three rows of the table are equivalent to using usual feature extraction
methods when using single-scale spatial features. From Table 3, it can be seen that, when
multiscale spatial feature extraction is utilized, the classification performance is improved,
as when injecting the 7 × 7 spatial scale feature into the backbone for the Houston2013
dataset. Furthermore, as seen from the last row of Table 3, the classification performance is
best when we implement three different spatial scales for the backbone. Specifically, the
utilization of multiscale feature extraction has resulted in a noteworthy improvement in
the overall classification accuracy of the backbone network. The improvement ranges from
a minimum of 0.22% to a maximum of 3.20% across the three datasets compared to the
feature extraction backbone network that solely relied on a single scale. This finding high-
lights the potential of multiscale feature extraction in enhancing the backbone network’s
classification accuracy.

Table 3. Ablation analysis of multiscale spatial feature scale.

Case Houston2013 Trento MUUFL

1 × 1 3 × 3 7 × 7 OA Kappa AA OA Kappa AA OA Kappa AA

� - - 90.41% 0.8959 90.74% 97.98% 0.9731 96.98% 89.26% 0.8596 89.93%
- � - 92.54% 0.9137 92.75% 97.53% 0.9669 93.97% 89.52% 0.8633 90.80%
- - � 92.88% 0.9140 92.46% 95.47% 0.9401 94.75% 89.85% 0.8676 90.59%
� � - 91.53% 0.9080 92.64% 97.82% 0.9709 95.08% 90.21% 0.8707 88.10%
� - � 93.08% 0.9237 93.19% 98.17% 0.9814 98.00% 89.89% 0.8680 90.23%
- � � 92.48% 0.9183 93.22% 98.62% 0.9816 93.83% 89.72% 0.8691 90.63%
� � � 93.10% 0.9251 93.65% 98.67% 0.9822 98.28% 91.41% 0.8869 90.96%

(3) Ablation Analysis of Feature Fusion

To fully utilize and fuse the spectral and spatial information, a Cross-Token Fusion
Module combines cross-attention and is designed to learn spectral and multiscale spatial
features. This section evaluates the impact of the Cross-Token Fusion Module within our
proposed classification network. The baseline module for this analysis is established by
omitting the Cross-Token Fusion Module and instead employing a simple cascaded ap-
proach. The baseline employs a cascade-based feature flattened and concatenated network.
Table 4 lists the classification performance experimental results of using two different fusion
modules. The proposed model exhibits a significant improvement in comparison to the
baseline network, particularly on the Houston2013 dataset. The performance of the model
is reflected in the observed OA gain of 3.76%, K gain of 0.0401, and AA gain of 3.42%. The
proposed model can combine shallow features with deep features, effectively integrate
the spectral and multiscale spatial feature information of HSI and LiDAR, enhance the
collaboration between multisource remote sensing impact data, and significantly improve
the classification results.
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Table 4. Ablation analysis of feature fusion.

Cases
Houston2013 Trento MUUFL

OA Kappa AA OA Kappa AA OA Kappa AA

Baseline 89.34% 0.8843 90.23% 98.35% 0.9780 97.04% 90.27% 0.8710 89.31%
Proposed 93.10% 0.9251 93.65% 98.67% 0.9822 98.28% 91.41% 0.8869 90.96%

4.5. Classification Results and Analysis

Comparative experiments were conducted to evaluate the effectiveness of the pro-
posed model. For this purpose, several representative classification methods were selected,
including classical methods such as CNN-PPF [44] and 3DCNN [45]. The two-branch
CNN network [18], known for its ability to process both spectral and spatial information
simultaneously, was also included. Additionally, ViT [25] and SpectralFormer [28] were
integrated to highlight the superior performance of the proposed network. These models
are based on advanced transformer architecture. Finally, advanced fusion and classification
networks such as Couple CNN [20] and HRWN [19] were incorporated to evaluate multi-
source fusion models extensively, ensuring a comprehensive assessment against current
state-of-the-art methodologies.

(1) Quantitative Results and Analysis

The OA, Kappa, AA, and per-class accuracy of the proposed method and each com-
parative method are reported in Tables 5–7 for the Houston2013, Trento, and MUUFL
datasets, respectively. The optimal results are highlighted in bold in each table, while the
second best results are underlined. The values of the evaluation indicators clearly show
that the proposed framework outperforms comparison methods, often reporting results
with higher accuracy.

Table 5. Classification performance obtained using different methods for the Houston2013 dataset.

No. CNN-PPF 3D CNN Two-Branch Couple CNN HRWN ViT Spectral Former Proposed

1 83.00% 98.30% 83.10% 82.43% 85.31% 82.72% 81.86% 82.34%
2 84.12% 98.68% 84.87% 84.87% 83.79% 80.45% 100.00% 93.70%
3 100% 99.53% 100% 99.80% 99.05% 99.60% 95.25% 99.60%
4 88.54% 94.30% 92.14% 92.06% 92.30% 92.42% 96.12% 98.58%
5 100% 98.82% 97.73% 100% 100% 97.73% 99.53% 99.81%
6 97.20% 89.45% 68.53% 97.20% 97.28% 95.80% 94.41% 100%
7 83.40% 79.89% 87.33% 92.91% 89.33% 74.44% 83.12% 76.40%
8 46.25% 82.41% 70.75% 96.01% 93.74% 42.55% 76.73% 94.11%
9 84.04% 79.36% 84.51% 84.99% 88.66% 65.25% 79.32% 93.77%

10 56.37% 84.96% 62.64% 67.47% 86.17% 50.77% 78.86% 90.73%
11 80.08% 72.32% 76.47% 98.57% 92.75% 71.44% 88.71% 97.34%
12 87.42% 80.55% 91.26% 96.15% 96.47% 56.00% 87.32% 99.71%
13 82.81% 89.73% 8.12% 84.91% 91.93% 64.21% 72.63% 78.60%
14 100% 99.74% 100% 100% 100% 100% 100% 100%
15 98.94% 99.34% 98.93% 99.58% 100% 98.52% 100% 100%

AA(%) 84.81% 89.82% 82.70% 91.79% 90.47% 78.13% 88.91% 93.65%
OA(%) 81.69% 88.54% 80.42% 90.58% 89.67% 74.36% 88.01% 93.10%
Kappa 0.803 0.8761 0.8124 0.8978 0.8828 72.43 0.8699 0.9251

Concretely, Table 5 shows that for the Houston dataset, the OA, Kappa, and AA
values of the proposed framework were 93.10%, 0.9251, and 93.65%, respectively, which
are competitive in the HSI and LiDAR joint classification task. Furthermore, the proposed
framework outperformed other state-of-the-art methods such as Couple CNN, HRWN,
and SpectralFormer. Specifically, the proposed framework achieved a classification average
accuracy that was 1.86% higher than Couple CNN. Additionally, it outperformed HRWN
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and SpectralFormer by 3.18% and 4.74%, respectively. The proposed network integrates
multiscale convolution with cross-attention, effectively addressing the limitations of global
modeling and local feature extraction. As a result, the network can simultaneously extract
spatial features from diverse sources and capture the delicate edge intricacies of the object
under scrutiny. For instance, in Table 5, the Houston2013 datasets No. 9 and No. 10
represent “road” and “highway”, respectively. The proposed model achieves per-class
classification accuracy of 93.77% and 90.73% for these two datasets, which is significantly
higher than other methods.

Table 6. Classification performance obtained using different methods for the MUUFL dataset.

No. CNN-PPF 3D CNN Two-Branch Couple CNN HRWN ViT Spectral Former Proposed

1 88.34% 82.27% 86.88% 94.66% 95.20% 87.62% 88.83% 93.95%
2 81.49% 81.04% 77.19% 85.08% 84.72% 81.29% 66.62% 82.09%
3 77.25% 67.58% 83.57% 77.04% 72.93% 59.99% 71.73% 88.60%
4 93.57% 85.64% 95.71% 97.45% 98.20% 82.73% 88.47% 96.76%
5 88.90% 83.00% 94.55% 86.18% 85.35% 80.12% 84.21% 90.18%
6 99.18% 91.34% 61.20% 100% 100% 84.97% 92.62% 99.73%
7 90.06% 86.12% 83.54% 95.59% 94.33% 79.79% 86.45% 87.29%
8 81.12% 71.94% 94.79% 96.16% 92.82% 82.88% 83.37% 95.44%
9 72.14% 71.39% 63.97% 74.86% 64.36% 71.67% 74.24% 74.32%

10 80.72% 91.73% 54.22% 96.39% 85.54% 97.59% 89.16% 93.98%
11 97.63% 95.89% 94.08% 99.41% 97.63% 95.86% 96.45% 98.22%

AA(%) 86.40% 82.54% 80.87% 90.44% 88.28% 82.24% 83.83% 90.96%
OA(%) 85.53% 79.32% 86.95% 91.17% 89.32% 81.23% 83.24% 91.41%
Kappa 0.8122 0.7364 0.8301 0.8745 0.8589 0.7564 0.7818 0.8869

Table 7. Classification performance obtained using different methods for the Trento dataset.

No. CNN-PPF 3D CNN Two-Branch Couple CNN HRWN ViT Spectral Former Proposed

1 97.13% 99.22% 91.45% 99.13% 89.29% 87.35% 96.08% 99.64%
2 92.12% 90.50% 97.83% 95.43% 91.22% 81.21% 95.86% 99.28%
3 98.93% 97.90% 92.48% 99.73% 83.72% 96.79% 95.99% 98.93%
4 99.10% 97.05% 98.31% 99.51% 98.08% 97.42% 97.99% 100.00%
5 96.71% 94.09% 99.86% 98.84% 100% 74.66% 95.25% 98.57%
6 68.32% 79.48% 83.08% 93.25% 87.27% 69.95% 57.76% 93.28%

AA(%) 94.14% 93.04% 96.19% 98.19% 95.55% 84.57% 92.37% 98.28%
OA(%) 92.05% 93.86% 93.84% 97.24% 91.60% 83.70% 89.82% 98.67%
Kappa 0.9216 0.9183 0.9419 0.9758 0.9403 0.7844 0.8982 0.9822

The proposed framework has demonstrated promising results for the MUUFL dataset,
achieving an OA of 91.41%, Kappa of 0.8869, and AA of 90.96%, as presented in Table 6.
These results indicate a slight advantage over the Couple CNN method. However, the
classification results of the advanced HRWN method are unsatisfactory, with an overall
accuracy that is more than 2% lower than that of the proposed method. This lower per-
formance can be attributed to the spatial features, which may cause overfitting or even
misclassification of the image under limited training sample conditions. However, the
adjacent intervals of different land cover classes within MUUFL images are relatively small,
and the distribution of the same land cover class needs to be more scattered, which may
lead to highly mixed pixels in the boundary areas, thus complicating classification. This
problem caused each method to obtain a low level of accuracy when classifying the No. 9
class, “sidewalks”, in the MUUFL dataset.

As for the Trento dataset, Table 7 shows that the proposed method not only pro-
duces the highest OA (98.67%), Kappa (0.9822), and AA (98.28%), but also most of the
classes surpass other methodologies in terms of classification accuracy (e.g., “Apple Trees”,
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“Buildings”, “Woods”, “Roads”). The above results directly indicate that multiscale feature
extraction using a cross-learning representation based on spectral–spatial feature labeling
can significantly improve the classification performance.

(2) Visual Evaluation and Analysis

The classification maps obtained by various comparison methods and the proposed
method using the MUUFL, Houston2013, and Trento datasets are presented in Figures 7, 8 and 9,
respectively. The proposed method exhibits more distinct boundaries compared to other
methods, indicating its superior classification performance. This observation is consistent
with the overall accuracy results of the quantitative analysis.

Figure 7. Classification maps using different methods on the Houston2013 dataset. (a) CNN-PPF
(81.69%). (b) 3D CNN (88.54%). (c) Two-Branch (80.42%). (d) Couple CNN (90.58%). (e) HRWN
(89.67%). (f) ViT (74.36%). (g) SpectralFormer (88.01%). (h) Proposed (93.10%). (i) Ground-truth map.

Figure 8. Classification maps using different methods on the Trento dataset. (a) CNN-PPF (92.05%).
(b) 3D CNN (93.86%). (c) Two-Branch (93.84%). (d) Couple CNN (97.24%). (e) HRWN (91.60%).
(f) ViT (83.70%). (g) SpectralFormer (89.82%). (h) Proposed (98.67%). (i) Ground-truth map.
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Specifically, the proposed method is more accurate in classifying irregularly distributed
small scene features because it employs the Multi-Conv-Former Block to extract multiscale
spatial features. For instance, in Figure 8, the strip distribution terrain in the Trento
dataset No. 6 is shown in blue, which represents “Roads”. The classification boundary
of the proposed model is significantly better than the remaining models. On the right
side of Figure 7, the long strip-shaped terrain in the Houston2013 dataset No. 11 is
represented in purple, representing “Railway”. The classification completeness of the
proposed model is significantly better than the remaining models. Certain classifications
within the remaining datasets also manifested analogous visual outcomes. However,
the proposed model requires further improvement in accurately classifying extensive
continuous features. For instance, in the Trento dataset, a small section of the No. 5
“vineyard” that is depicted in green is wrongly classified as “apple trees” or “ground”. To
address this issue, the design of the shallow CNN needs to be carefully considered.

Figure 9. Classification maps using different methods on the MUUFL dataset. (a) CNN-PPF (85.53%).
(b) 3D CNN (79.32%). (c) Two-Branch (86.95%). (d) Couple CNN (91.17%). (e) HRWN (89.32%).
(f) ViT (81.23%). (g) SpectralFormer (83.24%). (h) Proposed (91.41%). (i) Ground-truth map.

5. Discussion

While remote sensing hyperspectral data capture abundant spectral information, it can
be challenging to differentiate between ground objects with similar spectral characteristics.
However, LiDAR data can offer additional context to overcome this challenge. This paper
explores the structural relationships between various data types and proposes a feature-
level fusion technique that blends HSI and LiDAR data. This innovative approach enables
us to extract and fuse features efficiently, significantly improving the classification accuracy.

Our research proposed a novel joint convolutional cross-ViT framework for HSI and
LiDAR data fusion classification. The proposed framework was tested for classification
accuracy on three publicly available datasets, as reported in Tables 5–7.

(1) Our study compared the proposed framework with several state-of-the-art methods,
including Coupled CNN, HRWN, and SpectralFormer. According to Tables 5–7,
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the proposed model shows superior classification accuracy compared to the other
models. The Houston2013 dataset has the most classes of interest, and each class is
spatially dispersed. However, the proposed framework effectively captures complex
edge details from three perspectives (spectral, spatial, and elevation) by adopting the
multibranch interaction structure of MCFB, achieving good classification accuracy.
For the MUUFL dataset, the spatial complexity of class distribution may lead to
misclassification. As a result, the proposed model only slightly outperformed the
other methods on this dataset. The Trento dataset features easily distinguishable
contours for each class; thus, our framework and others show notable classification
accuracy. However, our framework uses CTFM to maximize the fusion of HSI and
LiDAR feature tokens through a nonlocal cross-learning representation. This strategy
significantly enhances the synergy among multisource remote sensing image data,
elevating shallow feature extraction to deep feature fusion and enhancing the efficacy
of feature extraction. As a result, our framework outperforms others in terms of
classification accuracy.

(2) The difference in the classification accuracy of the proposed model on the Hous-
ton2013, Trento, and MUUFL datasets can be attributed to the unusual characteristics
of each dataset. The urban and semi-urban environments in the Houston2013 and
MUUFL datasets pose more complex classification challenges to the classification
model than the rural Trento dataset. The Trento dataset exhibits higher performance
metrics, primarily due to its data characteristics and land cover distribution. As
illustrated in Figure 8, each class in the Trento dataset exhibits a more blocky and
concentrated distribution pattern. In contrast, the Houston2013 dataset, shown in
Figure 7, contains 15 different classes that are spatially dispersed, and the MUUFL
dataset, depicted in Figure 9, contains 11 classes that are more messy and intertwined,
making the classification task more difficult. Moreover, these datasets have specific
differences in spatial resolution and spectral quality. With its multiscale feature ex-
traction, the proposed algorithm effectively utilizes spatial and spectral features of
varying scales, showing adaptability to different datasets. This approach allows
the algorithm to maintain high classification accuracy across various environments,
especially in datasets with complex urban structures.

(3) Although the proposed framework performs well in HSI and LiDAR data fusion
classification, its computational complexity still needs to be improved. The data
processing approach, which combines the MCFB and the CTFM, effectively improves
classification accuracy but requires substantial computational resources. This chal-
lenge points to our future work focusing on optimizing the network architecture to
enhance the model’s usability in processing remote sensing images.

6. Conclusions

In this paper, a multisource fusion classification paradigm for hyperspectral and
LiDAR images is proposed, which achieves excellent classification accuracy. In order
to solve the chronic defect of CNN architecture that lacks global modeling capability,
this work designed the excellent Multi-Conv-Former Block to combine the advantages of
convolutional and transformer architectures and, at the same time, introduces a multiscale
structure so that the network perceives the global–local joint information at different scales,
which improves the classification accuracy. In addition, in order to further improve the
feature fusion effect of multisource information, this work designed a Cross-Token Fusion
Module feature fusion architecture, which uses the nonlocal structure to fuse the features
of different modalities, and the lightweight category token used for fusion reduces the
complexity of the high-dimensional features, improves the fusion efficiency, and at the
same time provides more robust features for the final classification. Overall, the fusion
classification network proposed in this paper achieves excellent classification performance
on three publicly available hyperspectral datasets, proving the effectiveness and innovation
of this method.
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Abstract: Polarimetric synthetic aperture radar (PolSAR) image classification, a field crucial in remote
sensing, faces significant challenges due to the intricate expertise required for accurate annotation,
leading to susceptibility to labeling inaccuracies. Compounding this challenge are the constraints
posed by limited labeled samples and the perennial issue of class imbalance inherent in PolSAR image
classification. Our research objectives are to address these challenges by developing a novel label
correction mechanism, implementing self-distillation-based contrastive learning, and introducing
a sample rebalancing loss function. To address the quandary of noisy labels, we proffer a novel
label correction mechanism that capitalizes on inherent sample similarities to rectify erroneously
labeled instances. In parallel, to mitigate the limitation of sparsely labeled data, this study delves
into self-distillation-based contrastive learning, harnessing sample affinities for nuanced feature
extraction. Moreover, we introduce a sample rebalancing loss function that adjusts class weights
and augments data for small classes. Through extensive experiments on four benchmark PolSAR
images, our approach demonstrates its effectiveness in addressing label inaccuracies, limited samples,
and class imbalance. Through extensive experiments on four benchmark PolSAR images, our
research substantiates the robustness of our proposed methodology, particularly in rectifying label
discrepancies in contexts marked by sample paucity and imbalance. The empirical findings illuminate
the superior efficacy of our approach, positioning it at the forefront of state-of-the-art PolSAR
classification techniques.

Keywords: label correction; self-distillation contrastive learning; sample rebalancing; polarimetric
synthetic aperture radar (PolSAR) image classification

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) is an advanced and important remote
sensing technique owing to its distinctive ability to transmit and receive electromagnetic
waves across various polarization modes [1]. This unique capability enables PolSAR to
provide richer information on the scattering properties of Earth’s surface. Consequently,
PolSAR image classification, which is oriented towards categorizing image pixels into
corresponding terrain classes, becomes instrumental for a spectrum of applications ranging
from sea monitoring and agriculture to geological mapping and strategic governmental
decisions [2]. PolSAR image classification has evolved, leading to diverse methodologies
categorized into three main types: (1) physical-scattering-mechanism-based methods [2–4],
(2) statistics-based methods [5,6], and (3) machine-learning-based methods [7–10]. Deep
learning, with its superior feature representation, has significantly advanced PolSAR image
classification [11].

However, PolSAR classification faces challenges, particularly noisy and sparse labels.
These distortions misguide the model to assimilate noise patterns instead of the authentic
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features. Limited annotations further challenge model accuracy and generalization. This
paper seeks to unravel the following conundrum: How to improve the accuracy and
robustness of the DNN-based PolSAR image classification method in a weak label scenario,
i.e., with noisy and sparse labels?

Addressing noisy labels has engendered the inception of two predominant method-
ologies [12–14]. The first strategy focuses on the identification and purgation of these
erroneous labels prior to model training [15,16]. This rectification can be accomplished
through manual scrutiny, clustering, or the deployment of outlier detection algorithms.
The alternative approach pivots towards the direct training of noise-robust models on
corrupted datasets [17,18]. This necessitates the modification of the conventional loss
function, accounting for the noisy labels. Ensemble learning, epitomized by methodologies
like bootstrapping [19], self-training [20], and co-teaching [21], emerges as a robust tool.
Such strategies harness the predictive prowess of an array of models, thereby refining
overarching performance.

The field of image processing has traditionally seen a surge of research focusing
on mitigating the challenges posed by noisy labels. In the specific domain of PolSAR
image classification, the investigation into noisy labels remains comparatively nascent.
Ni et al. [22] pioneered an insightful difference distribution diagram, articulating the intrin-
sic probability of a training sample being untainted. This probabilistic assessment paved
the way for distinguishing clean labels from their noisy counterparts. Further innovation
was heralded by Hou et al. [23] through their generative classification framework, adeptly
tackling both the predicaments of unfaithful limited labels and the perturbations intro-
duced by outliers in PolSAR pixels. Nevertheless, contemporary algorithms harbor intrinsic
limitations. In contexts enriched with labels, eliminating detected noisy labels might not
inflict significant harm. Yet, in scenarios marked by label paucity, such removal intensifies
the small-sample dilemma, leading to potential algorithmic performance deterioration.
Furthermore, an evident lacuna remains, as these methodologies overlook the potential
leverage that can be garnered from the inherent similarity between training samples, which
is quintessential for labeling.

To address these challenges, our research introduces a relabeling mechanism. This
endeavor is grounded in the pivotal assertion that the discriminative model features
extracted from neighboring samples with the same label play a vital role in driving the
relabeling mechanism’s efficacy.

Parallelly, the PolSAR image classification domain grapples with the issue of label
scarcity. With the progress of deep learning, many PolSAR image classification meth-
ods [24–28] have been proposed to alleviate this problem. Semisupervised learning [29–31]
ambitiously seeks to optimize classifier generalization, leveraging both labeled and un-
labeled data. Active learning [11,32], in its quest, adopts a selective approach to acquire
salient samples for labeling, aiming for maximized learning efficiency. Transfer learn-
ing [33,34], drawing from affluent source domains, endeavors to uplift the performance
in target domains characterized by data scarcity. Reinforcement learning [35,36], albeit
less prevalent in PolSAR terrains, adopts a unique perspective, emphasizing sequential
decision making and reward maximization.

Venturing into a distinct trajectory, self-supervised learning [20,24,25] exploits the
data’s inherent properties to formulate alternative guidance signals, often involving pre-
text tasks for model training. This paradigm notably circumvents the label reliance in
semisupervised learning, human intervention in active learning, domain-specific insights
in transfer learning, and environmental interactions in reinforcement learning. However,
self-supervised learning’s capability to harness the intrinsic label information positions it
advantageously, enabling nuanced feature extraction. Such prowess is manifested through
its “pseudolabel” generation, correlating closely with true labels, and thus fostering mean-
ingful data interpretations without extensive manual annotations [24].

Contrastive learning, as an important branch of self-supervised learning, while achiev-
ing commendable success in natural image classifications, remains scarcely explored within
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the domain of PolSAR images. TCSPANet, as delineated by [37], integrates a dual-stage
methodology: Initially, TCNet, rooted in contrastive learning, facilitates unsupervised
representation learning. Subsequently, a subpatch attention encoder (SPAE), structured
upon the transformer paradigm, models the context within patch samples. In a distinct
approach, Zhang et al. [26] introduced the PolSAR-specific contrastive learning network
(PCLNet). This network employs an unsupervised pretraining phase, anchored on in-
stance discrimination [38], to harness valuable representations from unlabeled PolSAR data.
Further, the self-supervised PolSAR representation learning (SSPRL) method [25] draws
inspiration from the accomplishments of BYOL [19]. It is pertinent to note the following
differences: TCSPANet operates through a bifurcated framework encompassing TCNet
and SPAE, PCLNet capitalizes on an instance-discrimination-based pretraining phase, and
SSPRL deploys a twin network structure alongside positive pairs, aiming for optimal
efficiency across varied domains.

DINO [39] distinguishes itself by leveraging an exponential moving average (EMA)
and central updates to fortify knowledge distillation. Unlike SSPRL, DINO uses EMA to
seamlessly integrate the parameters of the online network with its target counterpart, an
innovation that curtails parameter oscillation, thereby augmenting model stability. Within
the DINO architecture, the teacher model’s output serves to refine a center vector, which
subsequently modulates the teacher model’s results. This innovative step considerably
bolsters the training efficacy of the student model. Recognizing its potential, we meld
it into our framework, aiming to address the persistent issue of limited PolSAR-labeled
data availability.

A pivotal concern in real-world datasets is the unequal distribution of object types,
culminating in sample imbalance challenges. This imbalance frequently translates to
suboptimal performance for minority classes. To address this, our research introduces a
novel Self-Distillation-Based Correction Strategy (SDBCS), which integrates a label cor-
rection strategy, a sample rebalancing loss function, and data augmentation targeted for
minority classes, enhancing overall classification accuracy. Our research proffers three
pivotal contributions:

(1) We propose a new method using a feature distance matrix to correct label inaccuracies.
This matrix, derived from contrastive learning principles, helps identify and rectify
mislabeled samples by analyzing pixel similarities.

(2) We explore self-distillation learning to overcome the scarcity of labeled data in PolSAR.
This approach utilizes inherent sample similarities for discriminative representation
and achieves effective results, even with limited labels.

(3) Our strategy includes a rebalancing loss function and a data augmentation method for
minority classes, significantly improving classification accuracy for minority classes.

2. Literature Review

2.1. Noisy Label Correction

The challenge of noisy labels in deep learning has become particularly critical in
recent times. Models trained on noisy datasets can become susceptible to suboptimal
representations, causing degraded performance in subsequent tasks. Addressing the noisy
label issue, the research community has primarily focused on two solutions: (1) methods
that train noise-resilient models directly on corrupted datasets and (2) methods that detect
and rectify noisy labels before model training.

The former strategy involves modeling noise patterns directly, employing techniques
such as robust loss functions [40,41], and noise corrections via noise transition matrices [15].
For instance, Ma et al. [18] developed a loss function that augments the resilience of DNNs
against noisy labels. However, these methods often falter in the face of intricate noise
patterns. Conversely, the latter strategy, gaining traction in recent years, particularly
emphasizes sample selection. While some early approaches focused on curtailing the
influence of noisy samples by training on selected clean subsets [42,43], more contemporary
methods exploit semisupervised learning techniques [44]. Nonetheless, these techniques
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frequently rely on assumptions about noise patterns, which can be detrimental if real-world
noise deviates from these assumptions.

The intricacy of labeling PolSAR data, given the specialized expertise it demands,
cannot be underestimated. This involves conferring precise class labels to specific pixels or
regions within a PolSAR image, thereby setting the stage for frequent mislabeling. Such
mislabeling, i.e., noisy labels, will inevitably undermine model performance. Notably, the
differential distribution diagram delineated by [22] offered insights into clean sample prob-
abilities, assisting in discerning between clean and noisy labels. Hou et al. [23] tackled the
quandary of unreliable limited labels using a blended generative classification framework,
wherein both labeled and unlabeled pixels were harnessed to derive high-level features.

2.2. Label Scarcity Problem with Contrastive Learning

PolSAR image classification, powered by supervised CNNs, has shown notable success.
Yet, amassing large labeled datasets is both costly and time-intensive. Furthermore, limited
training data can lead to model overfitting and reduced generalization. Given these issues,
recent efforts, including label scarcity learning [45,46], aim to extract meaningful knowledge
from minimal labeled samples. Specifically, methods under label scarcity learning, such as
those cited, either harness learned optimization [47] or execute a feed-forward pass [48–50]
without weight modifications. However, the methods employing a feed-forward pass often
necessitate intricate inference protocols, reliance on RNN architectures, or task-specific
fine-tuning [51,52].

Remarkable advancements in unsupervised representation learning have been real-
ized via the advent of contrastive learning methodologies. By juxtaposing positive and
negative samples in a self-supervised fashion, these strategies seek to derive salient data
representations. For instance, the InstDisc [38] technique was the first to innovate a discrimi-
nation task, leveraging a memory bank to accumulate negative samples, thereby creating an
expansive and consistent dictionary. Meanwhile, methods like CPC v1 [53], CMC [54], and
MoCo v1 [55] have offered a multitude of contrasting and clustering tasks. Grill et al. [19]
introduced BYOL, which employs one view’s extracted feature to predict the feature of
another view from the same instance, utilizing a momentum-based moving average for
updating both encoder and representation. Yet, for all their success, contrastive learning
techniques still grapple with achieving pinnacle accuracy on certain downstream assign-
ments, particularly when benchmarked against supervised methods. Building upon prior
successes, DINO emerged as a proposed solution to address these challenges, showcasing
enhanced quality in learned representations. Notably, Caron et al. [39], drawing inspiration
from BYOL, introduced several innovative techniques to elevate the performance metrics
of self-supervised learning strategies.

Despite the evident potential of contrastive learning in generic image classification,
its application remains conspicuously underrepresented in PolSAR imagery. Noteworthy
explorations by Cui et al. [37] and Zhang et al. [25,26] have begun harnessing the merits of
methods such as SimCLR, InstDisc, and BYOL for self-supervised PolSAR representation
learning. These trailblazers proposed an avant-garde, self-supervised PolSAR representa-
tion learning paradigm, underscoring the potential synergy between contrastive learning
and PolSAR imagery, especially in scenarios punctuated by label paucity.

To summarize, despite the widespread use of deep learning in PolSAR image clas-
sification, its effectiveness heavily relies on extensive annotations. This study aims to
bridge the noticeable gap in applying contrastive learning within the PolSAR context. Our
work differentiates itself by introducing a label correction strategy that utilizes inherent
similarities among training samples to correct erroneous labels, which effectively solves
the dilemma of noisy labels. Furthermore, we integrate self-distillation-based contrastive
learning and a sample rebalancing loss function into an integrated framework, remarkably
improving the classification performance on the PolSAR dataset, which presents label
scarcity and class imbalance challenges.
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3. Methodology

3.1. Overview of Our Method

In the subsequent sections, we delineate our methodology, beginning with the estab-
lishment of pertinent notations, followed by an exposition of the proposed framework.
Given a PolSAR image, the PolSAR feature data are represented as X ∈ RH×W×D, where
H and W are the height and width of the PolSAR image, respectively, and D signifies the
dimension of the chosen raw feature vector. The objective of our approach is to allocate a
class label to each pixel in the image.

Figure 1 encapsulates the architecture of our proposed model, integrating modules for
self-distillation-based feature extraction, label correction, and classification. Our approach
commences with a finite set of randomly chosen pixels possessing noisy labels. In the
initial phase, a convolutional neural network (CNN) is trained employing self-distillation-
based deep representation learning. Following this, a global distance matrix is constructed,
facilitating the identification of pixels bearing the highest resemblance for each sample.
The labeling process then ensues, wherein labels are attributed based on the prevalence
of a particular label within each cohort of similar pixels. Conclusively, to address class
imbalances, a sample rebalancing loss function is introduced, which duly modulates the
weights designated to varying classes, thereby refining classification accuracy.

Figure 1. The proposed methodological pipeline encompasses three distinct modules: self-distillation-
based feature extraction, label correction, and classification.

3.2. Raw Feature Extraction

We initiate by procuring the unprocessed polarimetric attributes, serving as the foun-
dational input for our methodology. The resultant 6D feature set, symbolized as RF-i for i in
the range 1 to 6, is derived from the complex coherency polarimetric matrix T, constructed
using the Pauli basis of the PolSAR scattering matrix [56]. These attributes encapsulate
critical information about the scattering mechanisms and are crucial for effective PolSAR
image analysis.

As illustrated in Table 1, within this 6D feature set, RF-1 represents the total polarimet-
ric power, known as SPAN (SPAN = T11 + T22 + T33), expressed in decibel units. This feature
provides a baseline measure of the total reflected energy, fundamental in understanding
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the overall scattering characteristics of the observed scene. RF-2 and RF-3 symbolize the
normalized power ratios of T22 and T33, respectively. In the coherency matrix T, T22, and
T33 represent the power received in different polarization channels, such as horizontal–
horizontal (HH) or vertical–vertical (VV), depending on the orientation of the PolSAR
system. These elements are essential for analyzing the scattering behavior of different
surface types in PolSAR imagery. By normalizing these power values against the SPAN, we
obtain a relative measurement that is more robust to variations in absolute signal strength.
RF-4 to RF-6 denote the relative correlation coefficients linked to the cross-polarization
components T12, T13, and T23. These coefficients measure the degree of correlation between
different polarimetric channels, providing insights into the geometrical and dielectric prop-
erties of the scattering targets. They are particularly useful in distinguishing various surface
types and man-made structures, which often exhibit unique polarimetric signatures.

Table 1. Raw polarimetric features employed in the proposed method.

Designation Description

RF-1 = 10log10(SPAN) Polarimetric total power in decibel
RF-2 = T22

SPAN Normalized ratio of power T22

RF-3 = T33
SPAN Normalized ratio of power T33

RF-4 = |T12|√
T11·T22

Relative correlation coefficient of T12

RF-5 = |T13|√
T11·T33

Relative correlation coefficient of T13

RF-6 = |T23|√
T22·T33

Relative correlation coefficient of T23

The necessity of this raw feature extraction process stems from its capability to con-
vert complex and multidimensional PolSAR data into a format that is interpretable and
applicable to machine learning algorithms. Features like T22 and T33 help in understanding
the scattering behavior of different surfaces, crucial for accurate image classification. The
feature extraction process thus translates PolSAR data into a form that machine learning
algorithms can more effectively process and analyze. The selection of these particular
features is informed by their established effectiveness in extracting meaningful information
from PolSAR data, as highlighted in the existing literature [57]. These features assist in
distinguishing different surface types and physical properties in the observed area, en-
hancing the classification accuracy. By employing these specific features, our approach not
only capitalizes on the intrinsic properties of PolSAR data but also significantly enhances
the potential for precise and robust classification outcomes. The scaling of RF-2 through
RF-6 to the interval [0, 1] ensures uniformity in feature magnitude, which aids the learning
algorithm in effectively processing and interpreting the data. This methodical approach to
feature extraction lays a solid foundation for the subsequent machine learning processes,
enabling our model to more accurately interpret and classify the intricate patterns inherent
in PolSAR imagery.

3.3. Self-Supervised Learning with Knowledge Distillation

As we navigate through the challenges instigated by noisy labels and a scant quan-
tity of labeled samples, we explore avant-garde techniques to bolster the discriminative
prowess of our model. The presence of label noise and limited labeled samples present
a dichotomy; while we require robustly discriminative features for label correction and
subsequent classification, using these labels directly for learning might culminate in procur-
ing misleading discriminative features. Enter contrastive learning, which offers a resolute
solution by gleaning more illuminative supervised signals from raw unlabeled PolSAR
data in an unsupervised fashion. To amplify the discriminative capacity of the model, we
enlist knowledge distillation methodologies. At its core, knowledge distillation conceives a
streamlined student model and hones it through the mentorship of a superior-performing
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teacher model. The quintessence of this paradigm lies in transmitting knowledge from the
teacher to the student, optimizing performance.

Our approach heralds a more kinetic interaction between teacher and student mod-
els. This synergy is materialized by gauging the disparity between the outcomes of the
student and teacher models. This ushers in our feature extraction technique based on
self-distillation contrastive learning. In the subsequent sections, we delve deep into aspects
encompassing pretraining tasks, loss functions, and the architecture of the encoder and
self-distillation module.

3.3.1. Pretext Task and Loss Function

In traditional supervised learning, models are honed to discern the intricate relation-
ships between input data and their associated output labels, necessitating the availability
of class information. Diverging from this paradigm, we propose an approach grounded in
instance discrimination tasks. Within this framework, a neural network is self-supervised,
training itself on two distinct data augmentation views. This methodology capacitates the
network to concurrently project two variant views of an identical sample to a congruent rep-
resentation space while projecting views from distinct samples to separate representation
spaces. The inherent advantage is that the samples intrinsically act as their own supervisors,
obviating the need for manual labeling. This strategy paves the way for harnessing vast
repositories of unlabeled PolSAR images. Furthermore, by pretraining this network, we
establish a deep feature network that is transferable. The network exhibits strong discrimi-
native feature extraction capabilities, facilitating accurate label correction. Additionally, it
adeptly addresses the small-sample challenges often encountered in classification tasks.

Figure 1 illustrates our proposed self-distillation contrastive learning model tailored
for PolSAR data. This model is architecturally segmented into two networks: a student
network, gθs , and a teacher network, gθt , visually discernible through orange and green
modules, respectively. Both these networks, characterized by their respective parameters
θs and θt, are intrinsically structured into three foundational components: an encoder, a
projection head, and a predictor. Upon the sequential processing through these components,
each network computes a probability distribution over Q dimensions, respectively denoted
as Ps and Pt. Within the framework of our self-distillation contrastive learning approach,
the designed loss function plays a pivotal role. It serves to nudge the neural networks
into aligning similar instances in close proximity within the feature representation space,
while simultaneously pushing apart dissimilar instances. This strategic configuration
aids in fostering the extraction of robust discriminative features. A key element in this
mechanism is the temperature parameter, denoted as τs > 0, which dictates the acuteness
of the distribution contour of Ps as

Ps(x)(i) =
exp

(
gθs (x)(i)

τs

)
∑Q

k=1 exp
(

gθn (x)(k)
τs

) (1)

In a parallel fashion, the temperature parameter τt governs the sharpness of Pt. To
harmonize these distributions, we adopt a strategy of minimizing the cross-entropy loss
concerning the parameters θs of the student network, all the while maintaining the teacher
network gθt in a static state. The objective function can be formally expressed as

min
θs

H(Pt(x), Ps(x)) (2)
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where the relationship H(a, b) = −a log b holds true. We generate a set of views, V, from
the PolSAR images, where views x1 and x2 are two randomly augmented views. Our
primary pursuit is encapsulated in the minimization of the loss, articulated as

min
θs

∑
x∈{x1,x2}

∑
x′∈Vx′ �=x

H
(

P, P
(
x′
))

(3)

To refine the parameters θs, we employ the stochastic gradient descent method, target-
ing the minimization of Equation (3).

3.3.2. Architecture of Encoder and Self-Distillation Module

In light of the aforementioned principles, we architected a network for self-distillation
contrastive learning. The encoder in our model incorporates the VGGNet-8 structure,
serving as a convolutional feature extractor designed for processing input images. It is
composed of three convolutional blocks, each containing two layers that use 3 × 3 convolu-
tional kernels, followed by a ReLU activation function and 2 × 2 max-pooling, effectively
capturing and processing image features. In parallel, the projection head transforms the
input feature vectors into a lower-dimensional space through dense layers, enabling the
learning of more compact yet abstract data representations while preserving crucial feature
information. Additionally, the predictor utilizes a fully connected layer to map these feature
vectors into Q dimensions. This dimensionality reduction is achieved using a softmax
activation function, which calculates the probability distribution across various classes,
ensuring an effective and efficient classification process.

During the training regime, neither network updates its parameters based on labeled
data. An input image, denoted as x, undergoes random augmentations to yield two distinct
variants, x1 and x2. Subsequently, these variants are independently channeled into both
the student and teacher networks. It is imperative to note that while these networks archi-
tecturally mirror each other, they possess unique parameters, thus fostering independent
learning and nuanced data comprehension. To achieve consistent representations, the
output of the teacher network is centralized by computing its mean over the entire batch,
subsequently normalizing these features across individual samples. Both networks yield an
M-dimensional feature vector, which undergoes further normalization via a temperature-
regulated softmax operation across its dimensions. The congruence between the feature
vectors from the student and teacher networks is ascertained using a cross-entropy loss.
This loss function measures the discrepancy between the predicted probability distributions
of the two networks. By striving to minimize this loss, we compel the networks to generate
analogous representations for equivalent input samples, thus enhancing the knowledge
transfer from the teacher to the student. It is paramount during training to restrict the flow
of gradients solely to the student network. To achieve this, we deploy a stop-gradient opera-
tor on the teacher network, ensuring its immunity from external updates and guaranteeing
that only the student network receives iterative refinements.

Our methodology presents a notable divergence from traditional knowledge distilla-
tion practices, especially in its approach to temperature scaling. Conventionally, the teacher
temperature parameter is held invariant throughout the training, serving to temper the
fluctuations in its output probabilities. In contrast, our approach harnesses a temperature
scheduling mechanism that methodically diminishes the temperature of the teacher model
as training advances. The initiation phase employs a heightened temperature to ensure a
robust training foundation, which is progressively tapered to bolster the distillation impact.
By refashioning the teacher model’s knowledge, manifested as soft targets or feature repre-
sentations, we aim to effectively shepherd the student’s learning trajectory. Furthermore,
we introduce a mechanism for updating the center vector based on the outputs of the
teacher model. This innovation not only enhances knowledge distillation but also marks a
distinction from traditional methodologies.

Unlike the conventional approach of initializing the teacher network by directly
copying the student network’s weights, our strategy crafts the teacher network based on
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antecedent iterations of the student network. This process is refined using the nuances of the
exponential moving average, as demonstrated by the following rule: θt ← λθt + (1 − λ)θs.

As training ensues, we adopt a λ value that commences at 0.996 and ascends, tracing
a cosine trajectory until it culminates at unity. Consequently, in the nascent stages, the
teacher network’s parameters gravitate swiftly toward their student counterparts. Yet, as
the training journey evolves, this adaptation pace decelerates, culminating in a poised
equilibrium. This meticulously crafted strategy strikes a harmonious balance between
maintaining the stability of the teacher network and optimizing its directive potency
on the student network’s representations. To encapsulate, our proposed self-distillation
contrastive learning method undergoes cyclical refinements, capitalizing on variances
between views to adeptly mediate the knowledge transference between the student and
teacher constructs. The outcome of this innovative methodology is the adept extraction of
discerningly potent features, leading to a marked enhancement in model proficiency.

4. Enhancing Classification Accuracy

In this section, we address two pivotal aspects of classification accuracy: label cor-
rection and addressing class imbalance. The label correction module corrects mislabeled
instances, while our class imbalance strategy ensures a fair representation of all classes.
This dual approach is crucial for the precise categorization of PolSAR data, where both label
quality and balanced class representation significantly impact the classifier’s performance.

As illustrated in Figure 2, our proposed label correction strategy capitalizes on the
inherent affinities among training samples to amend erroneously assigned labels. Within
this strategy, the backbone network of a contrastive learning framework is employed to
distill features and create a comprehensive distance matrix encompassing all training
samples. For each pixel, we then identify its top-K nearest samples, based on the predefined
distance metric. The label that exhibits the highest frequency among these nearest samples
is then designated to the pixel under consideration. This approach adeptly harnesses
representational affinities to ameliorate the classification of incorrectly labeled instances.

Figure 2. The label correction procedure can be delineated as depicted in this figure. Initially, a global
distance matrix is constructed to discern pixels demonstrating the paramount similarity to individual
samples. Subsequent to this step, the label for each pixel is determined based on the predominant
label within its associated cluster of similar pixels.

Consider a scenario wherein a sample, erroneously labeled under a non-Stembean cate-
gory, requires rectification, given that its ground truth designation is Stembean. Assuming a
top-K threshold of 6, the six proximal samples in the feature space relative to this label are
selected. The distribution among these reveals 1 Grass label, 5 Stembean labels, and no other
categories. As a result, the Stembean category emerges with a probability of 0.83, surpassing
the stipulated threshold for label correction. Consequently, the label is rectified to Stembean.
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To better understand the pseudocode of our label correction algorithm presented in
Algorithm 1, it is essential to define some key variables used within it. The total pixel count
is denoted as N, calculated as H × W, where H and W represent the height and width,
respectively. We denoted the set of labeled pixel pairs as L = {(x1,t1),(x2,t2), . . . ,(xn,tn)},
where X and Y represent the data and label parts of L, respectively, and n is significantly
smaller than N. Within this context, M denotes the total number of classes. The label of each
sample xi corresponding to the one-hot label vector yi is expressed as li = argj[yi(j) = 1] ∈
{1, . . . , M}. The objective of our approach is to allocate a class label yi to each pixel i, where
i ∈ {1, 2, . . . , n}. Algorithm 1 delineates the pseudocode of our advanced label correction
algorithm, which intakes both original features and augmented image labels. The primary
objective of this module is to redress noisy labels. Its foundational architecture, denoted as
f , is sculpted through self-distillation rooted in contrastive learning. For brevity, we define
fi as the representational feature of the sample xi. p fi

is the projection head derived from p f ,
which exemplifies the encoder’s prowess in capturing intricate, high-dimensional features.
Additionally, p f is employed to construct a K-Nearest Neighbors Classifier (KNNC) kq,

with kqi
Δ
= kq

(
p fi

)
representing its predictive vector.

Algorithm 1: Label Correction Algorithm

1 Input:

(X ,Y)
n represents the size of the training set
Sample relabelling threshold θs
Max epochs E
p f represents the feature extractor
YE is a list of elements denoted by Ye

2 Output:

The clean label of Y
1: Data augmentation on small classes:
2: for i = 1 to n then

3: Extract feature
4: end for

5: for i = 1 to n then

6: for j = 1 to n then

7: Calculate similarity between each representation: Equation (4)
8: end for

9: for e = 1 to E then

10: for i = 1 to n then

11: Measure of consistency ci: Equation (6)
12: if ci < θs then

13: lr
i is likely to be wrong

14: else

15: yr
i ← lr

i
16: end if

17: YEi = yr
i

18: end for

19: for j = 1 to E then

20: Yj = Maxj
n
∑

i=1
YEj

21: end for

The affinity between the representations p fi
and p fj

of samples xi and xj is articulated
as sij, where both i and j iterate from 1 to n. The cosine similarity is computed as
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sij =
p f

T
i p fj∥∥∥p fi

∥∥∥
2

∥∥∥p fj

∥∥∥
2

(4)

This remains our measure of choice. The index set for the S-nearest neighbors of
sample xi in X , predicated on this similarity, is denoted as Ni. For every sample xi, the
normalized label distribution is computed as

k′qi
=

1
S ∑

n∈Ni

yr
n (5)

A subsequent balanced version, kqi ∈ RM, adjusts for the label distribution π =
N
∑

i=1
yir

inherent to the dataset, with kqi = π−1k′qi
, where π−1 comprises the inverse of π’s entries,

compensating for potential sample selection biases arising from class imbalances.
For each specific sample, we ascertain instances manifesting maximal similarity using

their respective distance metrics, and based on these proximate samples, we proceed to
refine the associated labels. For every pixel, the foremost top-K nearest samples delineated
by the designated distance metric are identified. We introduce a consistency metric, repre-
sented as ci, which gauges the congruence between sample label lr

i = arg max jyr
i (j) and

the prediction sourced from KNNC:

ci =
kqi

(
lr
i
)

maxjkqi(j)
(6)

This metric is derived by dividing the value of the distribution kqi corresponding to
the label lr

i by its predominant peak max jkqi(j). A pronounced ci value for a given sample
xi insinuates a consensus among its neighboring samples in favor of its prevailing label
lr
i , suggesting its likely accuracy. Applying a threshold θs to ci, a pristine subset (Xc,Y r

c )
is derived. By default, we utilize θs = 0.65, implying that a sample xi is deemed pristine
when the consensus, as reflected in kqi, among its neighbors corroborates its extant label yr

i .
In light of limited labeling, we propose a data augmentation strategy that capitalizes

on the original features and labeled image pairs. Specifically, our approach adopts an offline
data augmentation technique tailored for underrepresented or minor-category samples,
ensuring that transformations are conducted on the training data prior to their introduction
into the label correction module. Historically, popular data augmentation methodologies
have included translation, image flipping, rotation, and cropping, as corroborated by Her-
nandez et al. [58] and Wong et al. [59]. In alignment with these practices, we implement five
cardinal data augmentation operations, represented as AUG-i (where i ∈ 1, . . . , 4): AUG-1
denotes horizontal flipping, AUG-2 implies a 90° clockwise rotation, AUG-3 indicates a
180° clockwise rotation, and AUG-4 pertains to a 270° clockwise rotation. Subsequently,
each training image patch pair, (xi, yi) ∈ (X ,Y), where i ∈ 1, 2, . . . , n, is extended into
a series of eight image patch pairs. These include (xi, yi), (xR90

i , yi), (xR180
i , yi), (xR270

i , yi),
(xF

i , yi), (xFR90
i , yi), (xFR180

i , yi), and (xFR270
i , yi). The subsequent seven pairs in this se-

quence correspond to transformations driven by the operations AUG-1 through AUG-4.
With the refined labels in place, the primary objective of the classification module

is the categorization of PolSAR data. A projection head is utilized within this module,
projecting the representations gleaned from the network onto a dimensionality defined by
the class number. This is mathematically represented as

di(�x) =
exp

(
�WT

i �x +�bi

)
M
∑

j=1
exp

(
�WT

j �x +�bj

) (7)
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Here,�x is the output of the projection head, with �WT• and�b• representing the associated
weight and bias, respectively. Furthermore, to effectively confront sample imbalance,
we introduce a rebalancing loss, denoted as LCACE, encapsulated in Equation (5). The
foundational loss function employed is the categorical cross-entropy [60], LCCE. The
derivation of LCACE necessitates averaging two error magnitudes, both of which are scaled
by the categorical weight W.

LCACE = −W × [LCCE(�y, y)], (8)

Here, W is formulated as [ 1
N1

, 1
N2

, . . . , 1
NM

]T . In this equation, −→y symbolizes the
predicted label, y stands for the ground truth label, and Nk represents the count of labels in
the kth class.

5. Experimental Results

In this section, we provide a rigorous evaluation of our proposed method on four
PolSAR datasets, both from quantitative and qualitative perspectives. We initially detail the
experimental datasets and our chosen parameter settings in Section 5.1. In Section 5.2, an
ablation study is presented to highlight the significance of the four pivotal components of
our method: self-distillation backbone, noise label correction approach, sample rebalancing
loss function, and augmented dataset.

For clarity, we elucidate that the classification average accuracy (AA) for a class is
the proportion of accurately classified pixels for that class to the total pixels of the class,
whereas the overall accuracy (OA) refers to the proportion of all correctly classified pixels
in the entire image to the overall pixels in the image. Data with the highest accuracy are
highlighted in bold for emphasis.

5.1. Experimental Data and Parameter Setting

Figure 3 offers visual insights, and Table 2 presents a summary of the PolSAR images
employed in our experiments. The first dataset is composed of L-band four-look PolSAR
data, captured by the NASA/JPL AIRSAR system over the Flevoland region, the Nether-
lands, in August 1989, whose PauliRGB image is portrayed in Figure 3(a1). Spanning an
area of 750 × 1024 pixels, it offers a resolution of 6.6 m in the slant range and 12.1 m in the
azimuth direction. The dataset delineates 15 distinct land cover classes, as illustrated in
Figure 3(a2), with color codings that represent the legend of the ground truth map. The
number of pixels for each class is listed as below: Water (12,671), Barley (7156), Peas (9111),
Stembean (6103), Beet (10,050), Forest (14,822), Bare soil (3078), Grass (6269), Rapeseed (12,690),
Lucerne (9477), Wheat 1 (17,283), Wheat 2 (10,591), Wheat 3 (21,300), Building (476), and Potato
(15,292). For model training, a random subset comprising 1% of the labeled samples is
utilized. We then proceed to extract image patches of dimensions 12 × 12 × 6, where
12 × 12 signifies the window size and 6 represents the channel count.

Table 2. Summary of PolSAR datasets.

Dataset Size Spatial Resolution (m) Bands Classes

Flevoland (Dataset 1) 750 × 1024 6.6 × 12.1 L-band 15

Oberpfaffenhofen 1300 × 1200 1.5 × 1.8 L-band 3

Flevoland (Dataset 2) 1020 × 1024 6 × 12 L-band 14

San Francisco 1800 × 1380 3 to 100 C-band 5

Our second dataset, as illustrated in Figure 3(b1), comprises an E-SAR L-band image,
which covers a 1300 × 1200 pixel area in the Oberpfaffenhofen region, Germany. This
dataset includes several distinct land categories, with the number of pixels for each as
follows: Build-up areas (333,955), Wood Land (265,516), and Open Area (760,769). Its diver-
sity renders it apt for gauging the robustness of our method in varied landscapes. The
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ground truth class labels and their associated color legends for this area are delineated in
Figure 3(b2), serving as a benchmark for our model’s predictions and enabling classification
accuracy quantification.

Figure 3. In this study, a series of experimental images were employed to rigorously assess the
efficacy of our proposed method. The selected images encompass the following: Flevoland area
dataset 1: (a1) A PauliRGB depiction of the region. (a2) The associated ground truth class labels, sup-
plemented by their corresponding color codes. Oberpfaffenhofen Area Data Set: (b1) The PauliRGB
representation of the aforementioned area. (b2) Ground truth class labels, paired with their relevant
color codes. Flevoland area dataset 2: (c1) Another distinct PauliRGB portrayal from the Flevoland
region. (c2) Its affiliated ground truth class labels, along with the matching color codes. San Francisco
Area Data Set: (d1) The PauliRGB visualization of this iconic urban landscape. (d2) The ground truth
class labels, harmonized with their specified color codes.

Figure 3(c1) showcases the third dataset: an L-band AIRSAR image captured over
the Flevoland region in 1991. This dataset, spanning dimensions of 1020 × 1024 pixels, is
indispensable for discerning the radar responses of different land cover types and aug-
menting our grasp of PolSAR data interpretation. Figure 3(c2) manifests the corresponding
ground truth labels and color codings. This dataset, encapsulating 14 classes, is referred
to as Flevoland area dataset 2 in Section 5. This dataset includes a diverse range of land
types, with the number of pixels for each being Potato (21,539), Fruit (4062), Oats (1394),
Beet (10,795), Barley (24,543), Onions (2130), Wheat (26,277), Beans (1082), Peas (2160), Maize
(1290), Flax (4301), Rapeseed (28,235), Grass (4204), and Bare Soil (2952) pixels.

The fourth dataset entails a 25-look Radarsat-2 image of the San Francisco region
from 2008, with a size of 1800 × 1380 pixels. This dataset features five classes, with
the number of pixels for each being Sea (841,489), Vegetation (236,715), Urban 1 (80,616),
Urban 2 (348,056), and Urban 3 (282,975). Figure 3(d1) renders the PauliRGB image, while
Figure 3(d2) displays the ground truth class labels. Notably, in Figure 3(d2), void regions
are apparent, symbolizing unlabeled classes or interclass boundaries. These void zones are
excluded from experimental consideration and analysis.

The optimization algorithm was parameterized with a learning rate (τ) set at 0.001,
complemented by a momentum parameter of 0.9. During training, we utilized a batch size
of 128. For all experiments, we initialized with a noisy label rate of 20%. All experiments
were orchestrated within the TensorFlow framework, leveraging a Dell Z690 workstation
equipped with a GeForce RTX 3090 GPU and a memory capacity of 64 GB.

5.2. Ablation Study

The proposed method, predicated on the robust self-distillation mechanism for correct-
ing noisy labels, was rigorously tested on various prominent PolSAR images, as delineated
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in earlier sections. This study bifurcates into three critical experimental segments, each
elucidating distinctive facets of the model’s capabilities. Initially, the research accentuates
the advantages of harnessing self-distillation for feature extraction, particularly when
maneuvering high-dimensional vector distance computations in PolSAR imagery. For this
purpose, two contrasting experimentations were devised: one incorporating contrastive
learning and the other omitting it. To testify the effectiveness of each component of our
proposed SDBCS, we conducted four groups of experiments as follows: We start with
VGGNet-8 as our baseline, which trains directly on noisy-labeled samples. We then exam-
ine the influence of our label correction module with the VGGNet-8+CS model. Advancing
further, SDVGGNet-8+CS enriches the previous model by adding self-distillation-based
contrastive learning, aiming for enhanced feature extraction. The penultimate step in
our experimental series, SDVGGNet-8+CS+Aug, integrates data augmentation into the
SDVGGNet-8+CS framework to further improve the model’s resilience to noisy data and
enhance generalization. The culmination of our experimental series, the SDBCS frame-
work, incorporates data augmentation and balanced loss into SDVGGNet-8+CS, specifically
designed to overcome class imbalance and enhance the model’s classification efficacy.

We leverage the Oberpfaffenhofen dataset to verify the efficacy of our method. Table 3
elucidates the foundational methodology, wherein a VGGNet-8 neural network was trained
directly on the dataset, inclusive of the noise-labeled samples, sans any modification. This
primary approach served as a litmus test for gauging model performance. Resultant
accuracies across various classes were as follows: Build-up at 65.69%, Wood Land at 68.55%,
and Open Area at 84.87%. Consequently, the OA was pegged at 76.98%, with an AA of
73.04%. The Precision, which indicates the accuracy of positive predictions, was recorded
at 73.09%. The F1-Score, which balances precision and recall, was 73.05%, indicating a
moderate balance in the model’s ability to correctly identify classes and its robustness in
terms of recall. The Kappa statistic, measuring agreement beyond chance, stood at 60.96%,
suggesting a fair level of agreement. The Mean IoU, crucial for assessing the model’s
performance in segmenting classes, was 58.34%.

Table 3. OA values (%) of Oberpfaffenhofen area data for our proposed method.

Method Build-up Wood Land Open Area OA AA

VGGNet-8 65.69 68.55 84.87 76.98 73.04
VGGNet-8+CS 63.89 76.28 87.02 79.25 75.73

SDVGGNet-8+CS 72.94 91.13 88.22 85.04 84.10
SDVGGNet-8+CS+Aug 81.07 92.19 87.48 86.82 86.91

SDBCS 79.08 89.12 92.38 88.48 86.86

Method Precision F1-Score Kappa Mean IoU

VGGNet-8 73.09 73.05 60.96 58.34
VGGNet-8+CS 75.15 75.37 64.85 61.30

SDVGGNet-8+CS 81.57 82.58 75.08 70.91
SDVGGNet-8+CS+Aug 84.02 85.25 78.23 74.84

SDBCS 85.87 86.35 80.58 76.49

5.2.1. Noisy Label Correction

To elevate the established baseline, we incorporated a correction mechanism into the
VGGNet-8 model. For confident label determination, an intricate global distance matrix
encompassing all pixels was constructed. The objective was to discern the most congruent
pixels for each sample and subsequently adopt the predominant label within its pixel
cohort. Each training sample was aligned to the label of the nearest k training data points.
After computing the feature distance, the samples were sorted based on proximity. This
strategy was devised to counteract the detriments of noisy labels and bolster classification
accuracy. Despite inevitable trade-offs, the method showcased an upswing in performance.
The achieved accuracies were Build-up at 63.89%, Wood Land at 76.28%, and Open Area at
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87.02%. OA increased to 79.25%, with an AA of 75.73%. Additionally, precision improved
to 75.15%, F1-Score to 75.37%, Kappa to 64.85%, and Mean IoU to 61.30%.

5.2.2. Self-Distillation Feature Extraction

The model’s performance was further augmented by embedding a self-distillation
technique, thereby enabling the model to introspectively refine from its own predictions.
This adaptation yielded notable enhancements, with the accuracies for Build-up, Wood Land,
and Open Area classes registering at 72.94%, 91.13%, and 88.22%, respectively. The OA
marked an impressive 85.04%, culminating in an AA of 84.10%. Precision increased to
81.57%, F1-Score to 82.58%, Kappa to 75.08%, and Mean IoU to 70.91%.

In the realm of PolSAR data analysis, initial steps involve feature extraction from
PolSAR data using VGGNet-8 and self-distillation methodologies. A supplementary set,
termed VGGNet-8, was introduced for a comparative evaluation, which essentially trains
without noise labels. These methodologies illuminate intricate relationships within the data,
rendering high-dimensional features that encapsulate pivotal backscattering properties of
PolSAR data. The subsequent phase emphasizes dimensionality mitigation.

Efficient dimensionality reduction is pivotal for interpreting high-dimensional data.
One salient technique in this domain is t-distributed Stochastic Neighbor Embedding (t-
SNE) [61], a sophisticated nonlinear algorithm grounded in neighborhood graphs, tailored
to preserve the data’s intrinsic local structure. This is achieved by t-SNE’s transformation of
interpoint distances into congruent probability distributions spanning various dimensions.
Leveraging t-SNE, we embarked on visualizing both raw and quantized feature spaces.
Given its design as an unsupervised algorithm tailored for dimensionality reduction and
3D data projection, t-SNE demonstrates exceptional prowess in rendering visualizations of
intricate, high-dimensional datasets, thereby enhancing the interpretation of PolSAR data.
The utility of t-SNE is further accentuated when amalgamated with visual aids like scatter
plots and pseudocolor images, facilitating a lucid conveyance of intricate data relationships
and patterns.

Figure 4 presents a detailed visual exposition of the spatial and polarimetric attributes
across three preselected regions from the Oberpfaffenhofen dataset. The visualization
unmistakably illustrates a clear delineation of three terrain typologies within the three-
dimensional space charted by t-SNE. In particular, Figure 4a,d underscores the aptitude of
the feature extraction network, shining light on its innate ability to capture and epitomize
the quintessential characteristics of terrain surfaces. A deeper foray into Figure 4b,c
provides a comparative purview against Figure 4a. Significantly, Figure 4c, harmonized
with the self-distillation paradigm, exhibits heightened alignment with the ground truth,
especially in the positionings pertaining to the three distinct categories.

In parallel with our assessment of Figure 4d, a detailed comparative analysis is pre-
sented in Figure 4e,f, bringing forth salient observations. Notably, Figure 4f, emblematic
of the self-distillation-based method, highlights a pronounced aggregation in the central
positions associated with various categories. This stands in stark contrast to the more
scattered distribution observed within the VGGNet-8 influenced outcomes, as delineated
in Figure 4e. Collectively, these observations underscore the superior discriminative capac-
ity of the self-distillation approach, adeptly capturing inherent class distinctiveness and
intricate intercategory dynamics. This fortifies the assertion of its pivotal role in elevating
feature representation in the analyzed PolSAR dataset.

5.2.3. Data Augmentation and Balanced Loss

We further refined the SDVGGNet-8+CS model by integrating data augmentation,
resulting in the SDVGGNet-8+CS+Aug configuration. This intermediate step was crucial
in assessing the incremental benefits brought by data augmentation to the self-distillation
process. The SDVGGNet-8+CS+Aug model demonstrated a significant improvement in
dealing with noisy data and generalization capabilities, as evidenced by the following
accuracies: Build-up at 81.07%, Wood Land at 92.19%, and Open Area at 87.48%. The OA
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and AA were recorded at 86.82% and 86.91%, respectively. Additionally, the model saw
improvements in Precision (84.02%), F1-Score (85.25%), Kappa (78.23%), and Mean IoU
(74.84%). These advancements highlight the method’s impact in not only improving
accuracy but also precision, consistency, and segmentation effectiveness.

Figure 4. The presented figures showcase t-SNE plots derived from the Oberpfaffenhofen images. For
enhanced visualization fidelity, the dataset is judiciously bifurcated into two subsets according to their
sample proportions. Specifically, subsets (a–c) constitute 0.5% of the overarching samples, whereas
subsets (d–f) account for 1%. In terms of methodological delineation, subsets (a,d) resonate with the
features from the VGGNet-8 backbone trained devoid of noise labels, and subsets (b,e) are aligned
with the VGGNet-8 training approach. Conclusively, subsets (c,f) are emblematic of the feature
extraction facilitated through the self-distillation-based paradigm. Such a structured presentation
aids in an in-depth comparison and assessment of the respective methodologies across varied
sample sizes.

As illustrated in Table 4, we explored different loss functions in order to find a robust
option. The studied loss functions include LCCE [60], Label Smoothing Categorical Cross-
Entropy Loss [62] (LSCCE), Focal Loss [63] (L f ocal), and our proposed LCACE.

It is evident that both LSCCE and L f ocal demonstrate promising results under certain
parameter settings. However, it is crucial to note that slight changes in their parameters can
lead to significant drops in classification performance. For instance, when the ε parameter
in LSCCE changes from 0.3 to 0.2, there is a notable decrease in OA by 2.11%. Similarly,
in Focal Loss, a change in the γ parameter from 1.8 to 2.0 results in a reduction in OA by
2.17%. This sensitivity to parameter adjustments indicates that both LSCCE and Focal Loss
may not be robust across different categories or datasets, as their effectiveness heavily relies
on fine-tuning specific parameters.

In contrast, our LCACE, meticulously designed to overcome the limitations of existing
methods, demonstrated remarkable results. Significantly, LCACE stands out due to its
parameter-free design, eliminating the need for meticulous parameter tuning that plagues
other loss functions. This unique feature enhances its robustness, making it exceptionally
suitable for a wide range of PolSAR datasets. It achieved impressive classification accuracies
and showcased enhanced Precision (85.87%), F1-Score (86.35%), Kappa (80.58%), and Mean
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IoU (76.49%). The absence of parameters in LCACE not only simplifies its application but
also ensures consistent performance across various scenarios in PolSAR datasets.

In conclusion, this investigative endeavor presents a holistic exploration of innovative
methodologies tailored for optimizing neural-network-centric classifiers within the remote
sensing land cover classification domain. The empirical findings highlight the paramount
importance of bespoke strategies, especially when confronting challenges like label noise
and constrained data availability. The integration of self-distillation, data augmentation,
and balanced loss within the SDBCS framework emerges as a testament to this. Such
revelations not only augment our contemporary understanding of effective strategies
within this discipline but also establish an empirical benchmark, poised to guide and
inspire subsequent research trajectories in analogous domains.

Table 4. Performance comparison of different loss functions with SDVGGNet-8+CS+Aug architecture
on Oberpfaffenhofen area data, utilizing 0.05% of ground truth labels as the training set.

Loss Function Build-up Wood Land Open Area OA AA

LCCE 81.07 92.19 87.48 86.82 86.91
LSCCE ε(0.2) 81.42 92.94 87.58 87.11 87.31
LSCCE ε(0.3) 80.97 91.15 92.16 89.22 88.09
LSCCE ε(0.5) 81.82 92.23 87.75 87.17 87.27

L f ocal γ(2.0) α(0.37) 81.10 90.82 88.02 86.87 86.65
L f ocal γ(2.0) α(0.50) 81.10 91.26 87.97 86.93 86.78
L f ocal γ(1.8) α(0.50) 75.87 90.93 94.27 89.10 87.02

LCACE 79.08 89.12 92.38 88.48 86.86

Loss Function Precision F1-Score Kappa Mean IoU

LCCE 84.02 85.25 78.23 74.84
LSCCE ε = 0.2 84.17 85.50 78.73 75.17
LSCCE ε = 0.3 86.39 87.18 81.92 77.73
LSCCE ε = 0.5 84.24 85.52 78.82 75.21

L f ocal γ(2.0) α(0.37) 84.13 85.21 78.25 74.78
L f ocal γ(2.0) α(0.50) 84.09 85.23 78.39 74.84
L f ocal γ(1.8) α(0.50) 86.53 86.69 81.51 77.06

LCACE 85.87 86.35 80.58 76.49

6. Discussion

In this section, we provide a rigorous evaluation of our proposed method on four
PolSAR datasets, both from quantitative and qualitative perspectives. Section 6.1 delves
into a sensitivity analysis, assessing the robustness of the proposed SDBCS framework on
the Oberpfaffenhofen dataset. Section 6.2 furnishes a comparison between our proposed
method and four contemporary state-of-the-art competitors employing deep learning
techniques, namely Sel-CL [64], SSR [65], PASGS [22], and Auto-PASGS [22].

6.1. Sensitivity Analysis

To elucidate the robustness of the proposed method across varying proportions of
training data, this section meticulously evaluates the SDBCS framework on the Oberpfaf-
fenhofen dataset. This dataset served as a canvas for a rigorous appraisal of the land cover
classification efficacy of SDBCS, with the Average Correction Rate (ACR) as the evaluation
metric. Table 5 presents the corrected label rate for three principal land cover classes—Build-
up area, Wood Land, and Open Area—across 0.05%, 0.1%, and 0.2% data proportions.

In juxtaposition with Sel-CL and SSR, the supremacy of SDBCS was consistently
evident. It is noteworthy that, particularly in the Build-up area class, SDBCS was adept at
maintaining commendable classification accuracy, even with limited data, underscoring
its potent capacity for generalization relative to other methods. A salient aspect of the
study was the discernible prowess of SDBCS in classifying the Wood Land segment, even
when confronted with constrained data volumes. For the Open Area category, SDBCS’s
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consistency in distinguishing between diverse land cover types was evident, signifying its
resilience and robustness in comparison with alternative methodologies.

Table 5. Comparative analysis of the performance of SDBCS on varying proportions of the Oberpfaf-
fenhofen dataset (Corrected label rates %).

0.05%

Build-up WoodLand OpenArea ACR

Initial 81.82 79.84 79.13 80.01
Sel-CL 83.96 81.45 84.01 83.53

SSR 83.95 82.26 83.74 83.53
SDBCS 85.56 93.55 88.35 88.53

0.1%

Build-up WoodLand OpenArea ACR

Initial 80.39 78.24 80.43 80.01
Sel-CL 85.36 82.05 83.83 83.90

SSR 85.64 82.06 81.11 82.50
SDBCS 83.15 96.18 84.78 86.54

0.2%

Build-up WoodLand OpenArea ACR

Initial 81.40 78.23 79.96 80.00
Sel-CL 82.98 90.37 80.96 83.27

SSR 83.55 88.63 80.89 83.05
SDBCS 83.69 97.69 84.29 86.69

SDBCS’s consistently superior performance, relative to Sel-CL and SSR, across cate-
gories and proportions, accentuates the method’s robustness and efficiency. Its capacity
to sustain high accuracy, especially evident in the Wood Land category, underscores its
potential for precise classification even in resource-constrained scenarios.

6.2. Results and Comparisons

Figure 5 provides a visual representation of the efficacy of each method across the
Flevoland area dataset 1, Oberpfaffenhofen dataset, Flevoland area dataset 2, and San
Francisco dataset. Following this visual exploration, an intricate analysis aligned with the
associated tables is provided. Table 6 furnishes an exhaustive evaluation of the experimental
outcomes from the Flevoland area dataset 1. Our SDBCS method is benchmarked against
the prevalent state-of-the-art techniques: Sel-CL, SSR, PASGS, and Auto-PASGS. The core of
this evaluation revolves around classification accuracy across diverse land cover categories,
elucidating the subtle yet pivotal advantages proffered by SDBCS.

Table 6. Classification performances (%) of Flevoland area dataset 1 for the proposed method.

Method Stembeans Peas Forest Lucerne Wheat Beet

Sel-CL 85.94 85.35 89.88 93.76 90.08 83.23
SSR 87.87 87.25 89.01 93.66 93.31 80.74

PASGS 93.77 94.66 99.26 93.01 93.82 86.85
Auto-PASGS 96.03 92.32 97.39 95.03 96.38 89.27

SDBCS 93.48 85.62 97.23 91.53 96.88 79.91

Method Potatoes Bare Soil Grass Rapeseed Barley Wheat 2

Sel-CL 81.48 82.09 71.01 60.42 94.49 69.82
SSR 84.33 84.73 66.56 57.22 92.27 64.69

PASGS 92.52 81.03 70.87 70.55 95.08 81.72
Auto-PASGS 95.57 34.19 80.85 75.31 95.40 78.01

SDBCS 94.29 99.94 88.53 84.00 99.68 92.03
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Table 6. Cont.

Method Wheat 3 Water Building OA AA Precision

Sel-CL 95.01 87.59 72.68 84.81 82.86 79.94
SSR 94.23 76.51 71.63 83.37 81.61 79.04

PASGS 95.65 90.56 40.76 89.74 85.34 84.21
Auto-PASGS 83.92 95.58 59.24 88.88 84.30 89.93

SDBCS 97.52 83.14 84.24 91.87 91.21 88.89

Method F1-Score Kappa Mean IoU

Sel-CL 80.43 83.36 69.46
SSR 79.34 81.67 67.57

PASGS 84.52 88.83 75.78
Auto-PASGS 85.61 87.86 76.50

SDBCS 89.47 91.13 81.64

Figure 5. The figures presented offer a comprehensive visualization of the following: (a1–a5) class
label predictions for the Flevoland area dataset 1, as forecasted by Sel-CL [64], SSR [65], PASGS [22],
Auto-PASGS [22], and SDBCS. Subsequently, (b1–b5) showcases outcomes from the Oberpfaffenhofen
dataset, (c1–c5) presents findings associated with the Flevoland area dataset 2, and, lastly, the San
Francisco area dataset is elucidated in (d1–d5). Such systematic representation facilitates an insightful
comparison and evaluation across the diverse methodologies and datasets.

Dissecting individual land cover classes reveals the consistent preeminence of SD-
BCS. As a case in point, within the Stembeans category, SDBCS registers a commendable
accuracy of 93.48%, surpassing Sel-CL and SSR, which have accuracies of 85.94% and
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87.87%, respectively. Further, SDBCS achieves accuracies of 99.68% for Barley and 84.00%
for Rapeseed, outperforming its competitors. This performance accentuates the capability of
SDBCS to address intricate and multifaceted land cover types. Aggregating results across
all classes, SDBCS achieves a commendable OA of 91.87%, overshadowing Sel-CL (84.81%),
SSR (83.37%), PASGS (89.74%), and Auto-PASGS (88.88%). SDBCS not only excels in overall
accuracy but also demonstrates superior performance in other metrics. It attains the highest
Precision (88.89%), F1-Score (89.47%), Kappa (91.13%), and Mean IoU (81.64%).

These empirical findings highlight SDBCS’s paramount stance in land cover classifica-
tion, particularly amidst noise-induced challenges. Its unwavering performance across a
range of land cover categories substantiates its potential to enhance the accuracy of land
cover classification in remote sensing.

Table 7 illustrates the performance metrics of various agricultural land cover classifi-
cation methodologies applied to the 1% Flevoland area dataset 2. SDBCS emerges as the
superior method, outstripping competitors across several categories. It achieves stellar
accuracy rates, exemplified by Potatoes (98.33%) and Beet (94.95%), underscoring its finesse
in discerning pivotal agricultural variants. Its proficiency further extends to nuanced cate-
gories like Oats (92.47%) and Barley (81.80%). When compared with methods like Sel-CL,
SSR, PASGS, and Auto-PASGS, SDBCS’s superiority in accuracy remains evident. This
exemplary performance, even in formidable land cover classes like Bare Soil (94.17%) and
Rapeseed (96.70%), reinforces SDBCS’s promise in remote sensing agricultural land cover
classification. Additionally, SDBCS demonstrates robust performance in Precision (83.33%),
F1-Score (85.88%), Kappa (90.47%), and Mean IoU (76.64%).

Table 8 sheds light on the performance assessment of multiple methodologies, includ-
ing Sel-CL, SSR, PASGS, Auto-PASGS, and our proposed SDBCS, applied to the 0.05% San
Francisco area dataset. This dataset focuses on diverse land cover classifications, including
Sea, Vegetation, and three urban categories. The results in the table accentuate SDBCS’s
commendable adaptability, especially under sample-limited circumstances. While methods
like Sel-CL and SSR display varying accuracies, Auto-PASGS manifests an intriguing trend,
exhibiting a high accuracy for one category but faltering in others. SDBCS leads with the
highest Precision (87.24%), F1-Score (88.09%), Kappa (88.50%), and Mean IoU (79.22%)
SDBCS, however, consistently exhibits robustness across distinct land cover types, further
cementing its efficacy in challenging classification scenarios.

Table 7. Classification performances (%) of the Flevoland area dataset 2 for the proposed method.

Method Potatoes Fruit Oats Beet Barley Onions

Sel-CL 87.93 90.10 73.60 91.56 82.98 42.39
SSR 85.10 89.96 64.56 92.02 84.97 59.81

PASGS 97.33 89.19 85.08 93.09 93.04 29.53
Auto-PASGS 99.57 98.01 88.95 91.18 96.33 40.47

SDBCS 98.33 89.36 92.47 94.95 81.80 75.77

Method Wheat Beans Peas Maize Flax Rapeseed

Sel-CL 86.57 70.89 91.20 72.25 94.12 89.87
SSR 86.45 71.90 81.99 66.59 88.17 85.19

PASGS 92.14 78.28 97.36 63.88 91.86 94.05
Auto-PASGS 80.48 22.09 100 90.47 93.75 96.15

SDBCS 91.89 72.83 99.95 83.80 92.84 96.70

Method Grass Bare Soil OA AA Precision F1-Score

Sel-CL 85.01 95.05 86.69 82.39 71.05 75.17
SSR 79.76 91.73 85.19 80.59 69.65 73.53

PASGS 75.95 91.67 91.64 83.75 83.84 82.50
Auto-PASGS 74.43 94.68 91.01 83.33 85.75 82.58

SDBCS 88.25 94.17 91.87 89.51 83.33 85.88
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Table 7. Cont.

Method Kappa Mean IoU

Sel-CL 84.49 62.85
SSR 82.76 60.75

PASGS 90.16 73.32
Auto-PASGS 89.42 74.02

SDBCS 90.47 76.64

Table 8. Classification performances (%) of San Francisco area data for the proposed method.

Method Sea Vegetation Urban 2 Urban 3 Urban 1 OA AA

Sel-CL 91.13 78.43 75.30 82.28 81.38 84.53 81.70

SSR 91.22 75.89 75.49 81.83 81.86 84.23 81.26

PASGS 99.89 88.14 82.57 66.61 84.5 89.01 84.34

Auto-PASGS 99.70 86.98 90.54 53.40 88.42 88.41 83.81

SDBCS 99.75 86.53 80.96 86.57 93.84 92.00 89.53

Method Precision F1-Score Kappa Mean IoU

Sel-CL 76.63 78.60 78.19 65.74
SSR 76.14 78.14 77.76 65.14

PASGS 84.18 83.87 84.07 73.13
Auto-PASGS 83.66 82.29 83.25 71.35

SDBCS 87.24 88.09 88.50 79.22

Table 9 provides an analytical performance overview of diverse methodologies on the
0.05% Oberpfaffenhofen area dataset. Our model, SDBCS, consistently excels, outpacing
counterparts in pivotal categories. Illustratively, in the Build-up category, SDBCS achieves
an accuracy of 79.08%, superseding Sel-CL’s 69.32%. In the Wood Land category, SDBCS’s
accuracy peaks at 89.12%, transcending SSR’s 78.47%. Notably, in the OA metric, SDBCS’s
performance at 88.48% distinctly eclipses Sel-CL’s 84.55% and SSR’s 82.63%. SDBCS’s
prowess becomes manifest in the AA metric, with an accuracy of 86.86%, surpassing both
SSR’s 77.99% and PASGS’s 78.70%. Furthermore, the superiority of SDBCS is underlined
by its leading Precision of 85.88%, F1-Score of 86.35%, Kappa of 80.58%, and Mean IoU
of 76.49%.

In summation, these empirical outcomes robustly underscore the innate capability of
SDBCS to adeptly navigate challenges engendered by noisy labels, restricted sample sizes,
and a gamut of land cover classifications. The intrinsic proficiency of SDBCS in rectifying
label inaccuracies and capitalizing on limited annotations underscores its pivotal role in
the evolutionary trajectory of research within remote sensing, with a particular emphasis
on land cover classification endeavors.

6.3. Limitations and Enhancements

In Table 3, when the VGGNet-8 model was enhanced with our label correction module,
there was a drop in prediction accuracy for the built-up land type. This decline can be
linked to the unique properties of built-up areas in the Oberpfaffenhofen dataset, which
are characterized by complex spatial structures and varied spectral signatures. The label
correction process involves aligning each training sample with the label of its nearest k
training data points based on feature distance. However, due to the spectral resemblance of
some built-up areas to other land types, mislabeling may occur. This challenge is intrinsic
to handling complex urban environments in remote sensing imagery.

While our method effectively addresses noisy labels, its performance might be in-
fluenced by the quality of the feature representations. If the feature extraction process
fails to adequately distinguish between different classes, the label correction might not be
as effective.
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Table 9. Classification performances (%) of Oberpfaffenhofen area data for the proposed method.

Method Build-up Wood Land Open Area OA AA Precision

Sel-CL 69.32 79.14 93.13 84.55 80.53 81.46

SSR 62.66 78.47 92.84 82.63 77.99 79.42

PASGS 61.20 79.55 95.36 83.89 78.70 80.42

Auto-PASGS 59.24 75.99 95.87 82.99 77.03 79.73

SDBCS 79.08 89.12 92.38 88.48 86.86 85.88

Method F1-Score Kappa Mean IoU

Sel-CL 80.96 73.51 68.83
SSR 78.57 70.00 65.73

PASGS 79.29 72.07 66.88
Auto-PASGS 78.10 70.27 65.40

SDBCS 86.35 80.58 76.49

To improve the performance in boundary areas and in general, we could consider
integrating additional context-aware mechanisms. For instance, incorporating attention
mechanisms could enable the model to focus on more relevant features, thereby improv-
ing the accuracy of the label correction, especially in complex regions. Another potential
enhancement is to use multiscale feature representations. This approach could help in cap-
turing both fine-grained details and broader contextual information, thereby improving the
model’s ability to handle diverse and challenging scenarios, including boundary regions.

7. Conclusions

Confronting the complexities of PolSAR image classification, our study introduces a
novel label correction approach, designed for managing noisy labels, and leverages unsu-
pervised contrastive learning to enhance polarimetric representation ability and further
classification accuracy in label scarcity scenarios. The innovative label correction tech-
nique we developed employs similarities among training samples with a feature distance
matrix derived from contrastive learning, which identifies and rectifies mislabeled sam-
ples, thereby addressing the noisy label issue. In addition, by adopting self-supervised
representation learning, we significantly enhance the model’s robustness and accuracy,
especially in the context of limited labels in PolSAR image classification. Our method
also includes strategic rebalancing and data augmentation techniques to tackle the class
imbalance problem, improving the classification accuracy of minority classes. Extensive
evaluations on four benchmark datasets have proven the effectiveness and superiority of
the proposed method. To sum up, our approach effectively improves the accuracy and
robustness of DNN-based PolSAR image classification methods in noisy and sparse label
scenarios, addressing the initial challenges we set out to overcome.
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Abstract: Semantic segmentation based on optical images can provide comprehensive scene informa-
tion for intelligent vehicle systems, thus aiding in scene perception and decision making. However,
under adverse weather conditions (such as fog), the performance of methods can be compromised
due to incomplete observations. Considering the success of domain adaptation in recent years, we
believe it is reasonable to transfer knowledge from clear and existing annotated datasets to images
with fog. Technically, we follow the main workflow of the previous SDAT-Former method, which in-
corporates fog and style-factor knowledge into the teacher segmentor to generate better pseudo-labels
for guiding the student segmentor, but we identify and address some issues, achieving significant
improvements. Firstly, we introduce a consistency loss for learning from multiple source data to
better converge the performance of each component. Secondly, we apply positional encoding to
the features of fog-invariant adversarial learning, strengthening the model’s ability to handle the
details of foggy entities. Furthermore, to address the complexity and noise in the original version, we
integrate a simple but effective masked learning technique into a unified, end-to-end training process.
Finally, we regularize the knowledge transfer in the original method through re-weighting. We
tested our SDAT-Former++ on mainstream benchmarks for semantic segmentation in foggy scenes,
demonstrating improvements of 3.3%, 4.8%, and 1.1% (as measured by the mIoU) on the ACDC,
Foggy Zurich, and Foggy Driving datasets, respectively, compared to the original version.

Keywords: semantic segmentation in foggy scenes; unsupervised domain adaptation; UDA;
self-training

1. Introduction

Among the various perception methods, vision-based methods have attracted interest
due to their comprehensive, intuitive, and cost-effective advantages [1,2]. In particular,
robust semantic segmentation [3–10] based on visual images is important for autonomous
driving, as it can save on the huge costs of installing auxiliary sensors (like LiDAR), thereby
effectively aiding intelligent vehicles.

However, the segmentation models trained on clear-scene datasets often generalize
poorly under adverse weather conditions (such as foggy scenes [11]) due to the degradation
of visibility [12]. Meanwhile, the cost of directly producing annotations for foggy images is
much higher than for clear ones, which makes it difficult to address the problem of semantic
segmentation in foggy scenes (SSFS) using a traditional fully supervised training strategy.
At present, the most common way is to transform it into a domain adaptation (DA) problem
[13], which uses finely annotated datasets containing clear scenes (such as Cityscapes [14])
as the source domain and foggy scenes as the target domain (with no labels) to transfer
the segmentation knowledge by training a DA model. Domain adaptation methods are
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often based on Generative Adversarial Networks (GANs) [15] and self-training [16]. GAN-
based DA methods regard domain differences as noise that needs to be aligned across
the input [15,17,18], feature [19], and output spaces [20,21]. Self-training methods [22–25]
use the current model to generate pseudo-labels on the target domain and perform self-
guidance. But directly using DA methods makes it challenging to handle large dual-domain
differences (such as style differences between cities and visual degradation caused by haze),
resulting in poor-quality pseudo-labels. These methods tend to easily generate a large area
of classification error at the boundary between fog and objects [11]. Some methods [26–28]
introduce intermediate domains to reduce the domain gap by collecting or generating a set
of images with different degrees of haze or from different time periods using curriculum
learning strategies. But they require a large amount of data and are prone to accumulating
errors. Recently, introducing a single clear domain as an intermediate domain [29] has
gained attention, as this approach only requires collecting clear images from the target
city to serve as the intermediate domain. Cycle training or spatial alignment can then be
used on this domain to guide the segmentation of target domain images. However, the
intermediate domain and target domain information are still treated independently and
not fully utilized. In contrast, our method integrates information from various domains
through cyclical training, thus achieving the organic integration of information.

Despite the importance of both style gap and fog gap, most methods still focus on
only one of them, resulting in little improvement when facing real foggy scenes. This may
be due to the different training paradigms. When dealing with the fog gap, adversarial
training strategies or explicit fog modeling approaches are often used, whereas excellent,
newly developed methods mainly adopt self-training strategies [22,23,25,30] when dealing
with the style gap. Simply combining the two strategies can cause interference between
sub-modules due to chaotic backward gradients. Recently, the authors of SDAT-Former
[1] proposed a strong teacher for foggy road scene semantic segmentation, which differs
from previous domain adaptation methods, as it considers both style and fog knowledge,
successfully transferring style-invariant knowledge and fog-invariant knowledge to the
teacher segmentor [25,31]. This enables the teacher segmentor to have a broader perspective
and generate superior pseudo-labels in the target domain, thereby guiding the training
of the student segmentor (the main segmentor to be published). Specifically, this method
divides the entire training process into several mini-epochs, each consisting of four itera-
tions that perform fog-invariant adversarial learning, intermediate domain style feature
learning, information integration, and target domain mask domain adaptation, respectively.
This effectively solves the mutual interference between gradients and successfully han-
dles the problem of significant style and fog differences, surpassing the previous year’s
state-of-the-art solutions on mainstream foggy scene semantic segmentation benchmarks.

However, SDAT-Former [1] still has many drawbacks. Firstly, the extraction of style
features in the intermediate domain is cumbersome and cannot be integrated into an end-to-
end training process. SDAT-Former first trains an LSGAN [17] to apply the source domain
style to the intermediate domain images, then uses DAFormer [25] to predict the labels of
the transformed images. These training steps are performed offline and consume significant
computational resources and time. Additionally, when the intermediate domain changes,
the corresponding models need to be retrained to generate new data. The style features
learned by the GAN-based models may not be comprehensive due to down-sampling
operations for calculating discrimination probabilities [17] and artifacts [1]. In this case,
the label-based learning approach is prone to introducing noise, which can damage the
model. Secondly, in the fog-invariant feature learning step, the original feature dimension
is too low, but the actual variations in fog may be subtle, leading to the extracted features
not being representative enough. Furthermore, the three components of SDAT-Former
contribute equally to the parameters of the teacher segmentor, but in reality, they should be
assigned weights or dynamically adjusted. Finally, the performance of each component
eventually converges to a stable condition, but the SDAT-Former method does not take this
factor into account or adopt appropriate consistency constraints to accelerate convergence.
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Based on the above, we propose the improved “SDAT-Former++” which is shown
in Figure 1. This new version retains the cyclical training strategy from SDAT-Former
[1] but incorporates substantial optimizations. To address the complexity of intermediate
domain learning, we introduce a simple but effective strategy using masked autoencoder
learning [32,33], which can align the context by predicting masked images. This approach
enables the model to better distinguish similar categories such as roads and sidewalks. By
directly recovering the masked intermediate domain images, we use a basic backbone to
learn the style features of the intermediate domain in a complete and artifact-free manner.
Moreover, the knowledge is directly saved in the model’s parameters, thus facilitating an
end-to-end training process without the need for extra offline operations. Additionally,
the model can start training directly when the intermediate domain changes, achieving
a complete separation between the model and the data. To tackle the problem of low
feature dimensions and inadequate representations in fog-invariant learning, we introduce
positional encoding [34,35] to separate more high-dimensional details, making the fog
discriminator more sensitive and compelling the fog-invariant feature extractor to be
robust. To address the issue of evenly distributed knowledge transfer, we introduce weight
perturbations based on a random distribution for regularization.

Figure 1. The main idea of the proposed method. Unlike the original SDAT-Former, we optimize
the learning of style information and add feature enhancement for fog-invariant feature learning,
greatly reducing the computing consumption and integrating the processing pipeline. We also add
consistency learning and dynamic weighting when processing the knowledge transfer.

Compared to the original SDAT-Former publication, this paper provides more com-
prehensive experimental results and technical details. In addition to the existing ACDC
[36] and Foggy Zurich [27] datasets, a more challenging dataset, Foggy Driving Dense [37],
is also included. We also conduct extensive ablation experiments and provide favorable
entropy analysis evidence.

The contributions of this work can be summarized as follows:

• To the best of our knowledge, this work is the first to propose an end-to-end cyclical
training domain adaptation semantic segmentation method that considers both style-
invariant and fog-invariant features.

• Our method proves the importance of masked learning and feature enhancement in foggy
road scene segmentation and demonstrates their mechanisms through visualizations.

• Our method significantly outperforms SDAT-Former on mainstream benchmark
datasets for foggy road scene segmentation and exhibits strong generalization in rainy
and snowy scenes. Compared to the original method, SDAT-Former++ pays more
attention to the more important categories in road scenes and is more suitable for ap-
plications in intelligent vehicles. We test our SDAT-Former++ method on mainstream
benchmarks for semantic segmentation in foggy scenes and demonstrate improve-

173



Remote Sens. 2023, 15, 5704

ments of 3.3%, 4.8%, and 1.1% (as measured by the mIoU) on the ACDC, Foggy Zurich,
and Foggy Driving datasets, respectively, compared to the original method.

2. Method

2.1. Overview

Suppose there are Ns labeled images
{(

xi
s, yi

s
)}Ns

i=1 from the clear source domain s,

where yi
s is the pixel-level segmentation label for xi

s, and Nt unlabeled images
{

xk
t

}Nt

k=1
from

the target foggy domain t. Our goal is to transfer segmentation knowledge from the clear
source domain s to the foggy target domain t using our proposed SDAT-Former++ method.
Motivated by the success of DAFormer [25], we use a similar framework including a
“student” segmentor and a “teacher” segmentor to train in a self-training manner. However,
since the images in domain s and domain t were taken in different cities and under different
weather conditions, they exhibit a large domain gap caused by two factors, i.e., the style
factor and the fog factor, which poses a challenge to this method. Therefore, we introduce

an intermediate domain m with Nm unlabeled images
{(

xj
m

)}Nm

j=1
. This domain shares

similar fog influence (no fog) to the source domain and similar style variation to the target
domain (imaged in the same city). We also call these images the “reference images” Iref

of the foggy images Ifog. Thus, our main goal is to cumulatively transfer four kinds of
knowledge to the “teacher” segmentor to generate more robust pseudo-labels of t, thereby
empowering the “student” segmentor to complete the segmentation tasks: (a) segmenting
the knowledge from s, (b) segmenting the style knowledge from m, (c) segmenting the
knowledge from t, and (d) identifying and removing fog. Among these, (c) and (d) focus on
overcoming the “fog gap” between s and t, whereas (b) focuses on the “style gap”. Figure 2
depicts the framework of our proposed method.

Concretely, we reorganize the training workflow cyclically, where every four iterations
constitute a “mini-epoch”. The segmentation knowledge from s can be learned from labels{(

yi
s
)}Ns

i=1 in a supervised way (Figure 2A), and we train it throughout the process. In the
first iteration of a mini-epoch, a fog-pass filter [38] is trained for discriminating fog factors
from the clear source domain m and foggy target domain t (Figure 2B.1). Here, we use
positional encoding (PE) [34,35] to enhance the features and capture more high-frequency
information. In the second iteration, the segmentor backbone is trained to generate features
that fool the fog-pass filter (Figure 2B.2). These two iterations aim to train a robust extractor
for fog-invariant features in an adversarial manner. For the third iteration, we abandon the
complex operation mode in the original version of the method [1] and use a feature extractor
with a decoder to recover the masked images {(x̃j

m)}Nm
j=1 from the intermediate domain and

extract style features. In the last iteration, the parameters stored in the teacher segmentor
can be updated by the “student” segmentor (containing knowledge from s), the “teaching-
assistant” backbone (containing style knowledge from m), and the fog-invariant backbone
(containing fog-invariant knowledge) in an exponential moving average (EMA) [31] way
with dynamic weight (DW) (Figure 2D. Then, the self-training process is performed on the
target foggy domain t. Thus, the “teacher” can be “strong” enough to handle the domain
gap and guide the student (main) segmentor.

2.2. Sub-Modules

The main workflow includes 6 sub-modules: (a) “student” segmentor fθ (can be
published as the final segmentor), (b) “teaching assistant” backbone bsi

ψ (learns the style
knowledge), (c) decoder dr for reconstruction, (d) “teacher” segmentor hϕ, (learns knowl-
edge from the target domain), (e) fog-invariant backbone bfi

ω , and (f) fog-pass filter F (learns
to recognize fog factors).

All the segmentors contain a backbone and decoder head. The backbone follows the
design of Mix Transformers (MiT) [39] to produce multi-level feature maps, whereas the
decoder head follows ASPP [40] to predict segmentation maps. The fog-invariant backbone
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bfi
ω shares the same architecture as MiT for subsequent knowledge transfer. The fog-pass

filter F follows the design in FIFO [38]. The detailed architectures are described later.

Figure 2. The overall workflow of our method. (Left) Training flow within a mini-epoch that can be
repeated as the base training unit. (Right) The sub-process (A–E) includes learning segmentation and
style knowledge from the source and intermediate domains (A,C), attempting to train the backbone
producing fog-invariant features adversarially (B.1,B.2), transferring all knowledge to the teacher
(D), and compelling it to generate better pseudo-labels for supervision (E).

2.3. Supervised Training on Source Domain

Denote H and W as the height and width of the input image size and C as the number
of object categories. First, we can use fθ to learn the segmentation knowledge from the
labeled source domain

{(
xi

s, yi
s
)}Ns

i=1 using a categorical cross-entropy loss function:

Li
s = −

H×W

∑
p=1

C

∑
c=1

y(i,p,c)
s log fθ(xi

s)
(p,c)

(1)

2.4. Masked Learning on the Intermediate Domain

In the original version of SDAT-Former [1], an LSGAN [17] is used to transfer styles
between the source domain and the intermediate domain. Then, the source styles are
applied to the later images to narrow the domain gap. Next, a DAFormer [25] model is
used to predict the transformed images {(x̃j

m)}Nm
j=1 and generate pseudo-labels, which have

the same spatial layout as the original images {(xj
m)}Nm

j=1. This method adds two offline
training steps and results in a significant loss in the resolution and details of the predicted
values, even leading to artifacts. Training based on such pseudo-labels inevitably introduces
noise. Moreover, when changing the intermediate domain, we have to reconfigure two
pre-trained networks, influencing the deployment.

Since learning based on intermediate domain data aims to capture style features,
pseudo-labels may not be necessary. In this section, we introduce a more concise method to
model masked images. Specifically, we employ a uniform distribution to randomly sample
a mask:

Mmb+1:(m+1)b
nb+1:(n+1)b

= [v ≥ r] with v ∼ U(0, 1) (2)
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where [∗] is the Iverson bracket, b is the patch size, r is the mask ratio, and m ∈ [0..W/b − 1]
and n ∈ [0..H/b − 1] are the patch indices. Thus, we obtain the masked intermediate image
x̃j

m through element-wise multiplication of the mask and image:

x̃j
m = M � xj

m (3)

Then, we try to use encoder bsi
ψ and decoder dr to recover the original image:

xj,rec
m = bsi

ψ(dr(x̃j
m)) (4)

We force the model to adopt the L1 loss function to recover the original image infor-
mation. As a result, the feature extraction network obtains more realistic and context-aware
style features, which are difficult to achieve through label-based approaches and do not
lead to any resolution loss or noise:

Lrec
m = |xj,rec

m − xj
m| (5)

The knowledge from the intermediate domain can be stored in the parameters of bsi
ψ ,

which can be passed to the “teacher” segmentor rather than being directly transferred to
the final segmentor. This part is described in Section 2.7.

2.5. Fog-Invariant Feature Learning

Here, we focus on overcoming the fog gap between the intermediate domain and the
target domain. Since Section 2.4 described the learning of cross-style knowledge, now,
we only need to process the fog factor. That is, the final segmentor should output the
fog-invariant features from the pair of foggy and non-foggy images. To achieve this, we
design a fog-invariant feature extractor bfi

ω and a fog-pass filter F based on the architecture
of FIFO [38].

2.5.1. Training the Fog-Pass Filter

Given a pair of images (Ia, Ib) from the mini-batch, bfi
ω can output L layer features

of each image. We follow FIFO [38] to calculate these features’ Gram matrix to capture
a holistic fog representation denoted as {(ua,l , ub,l)}L

l=1. Denote F l as the fog-pass filter
attached to the lth layer feature. The fog factors of these two images can be computed by
fa,l = F l(ua,l) and fb,l = F l(ub,l), respectively.

To enhance the representation of the fog factors, we follow previous works [34,35,41]
and adopt a sinusoidal positional encoding scheme to capture the high-frequency details:

ψ(f) = (sin(ω1f), cos(ω1f), ..., sin(ωnf), cos(ωnf)) (6)

where the frequencies ω1, ω2, ...ωn are learnable during training and n is the positional
encoding dimension. The role of the fog-pass filter is to inform the fog-invariant backbone
bfi

ω about how Ia and Ib are different in terms of fog conditions through ψ(fa,l) and ψ(fb,l).
For this purpose, the fog-pass filter learns a space of fog factors, where those of the same
fog domain are grouped closely together and those of different domains are far apart. The
loss function for F l is designed as follows:

LF l = ∑
(a,b)

(1 − Π(a, b))
[
m − d(ψ(fa,l), ψ(fb,l))

]2

+Π(a, b)
[
d(ψ(fa,l), ψ(fb,l))− m

]2
(7)

where d() is the cosine distance, m is the margin, and Π(a, b) denotes the indicator function
that returns 1 if Ia and Ib are of the same fog domain and 0 otherwise.

176



Remote Sens. 2023, 15, 5704

2.5.2. Fog Factor Matching Loss

In contrast to the function of the fog-pass filter, which attempts to separate the fog
factors of different fog domains, the fog-invariant backbone bfi

ω learns to close the distance
between the fog factors. To this end, the second loss matches the two fog factors given by
frozen fog-pass filters:

Ll
f sm(ψ(f

a,l), ψ(fb,l)) =
1

4d2
l n2

l

dl

∑
i=1

(ψ(fa,l
i )− ψ(fb,l

i ))
2

(8)

where dl and nl denote the dimensions of their fog factors and the spatial size of the lth

feature map, respectively. The knowledge from fog-invariant training can be also stored in the
parameters in bfi

ω and can be passed to the “teacher” segmentor, as described in Section 2.7.

2.6. Self-Training on the Target Domain and Consistency Learning

We use a teacher segmentor hϕ to directly address the two gaps (style + fog) between
the source domain and the target domain to obtain better domain adaptation performance.
Specifically, hϕ can first produce pseudo-labels for the foggy target domain data

ỹ(k,p,c)
t =

[
c = arg maxc′hϕ(xk

t )
(p,c′)

]
(9)

Additionally, a quality (confidence) estimation is produced for the pseudo-labels. Here,
we use the ratio of pixels exceeding a threshold τ of the maximum softmax probability

qk
t =

∑H×W
p=1

[
maxc′hϕ(xk

t )
(p,c′) ≥ τ

]
H × W

(10)

The pseudo-labels and their quality estimates are used to additionally train the seg-
mentor hϕ on the target domain

Lk
t = −

H×W

∑
p=1

C

∑
c=1

qk
t ỹ(k,p,c)

t log hϕ(xk
t )

(p,c)
(11)

The self-training process can be more efficient if the segmentor is trained on augmented
data [42]. In this work, we follow DACS [23] and employ color jitter, Gaussian blur, and
ClassMix [43] for data augmentation to learn more domain features. To accelerate the
training, we introduce a consistency learning strategy between teacher hϕ and student
fθ . Specifically, for one specific sample x, we use the Kullback–Leibler divergence as a
consistency loss, forcing convergence between the teacher and student

Lcon(x) = ∑
i

KLdiv( fθ(x), hϕ(x)) (12)

2.7. Cyclical Training with Knowledge Transferring

The above steps facilitate domain adaptation learning from different levels, but they
need to be organically combined. If we include so many backward processes in a single
iteration, the gradient propagation could be easily confused and the sub-modules could
face potential interface issues Thus, we use cyclical training and build a “strong teacher”
to merge the above-mentioned knowledge. We divide every four iterations into a “mini-
epoch”. Considering that fog-invariant feature learning works adversarially, we allocate
the 1st and 2nd iterations to train the fog-pass filter F and fog-invariant backbone bfi

ω

successively. The 3rd iteration is allocated to intermediate domain learning using the
teaching-assistant segmentor gψ. For the 4th iteration, since the intermediate feature
extractor bsi

ψ does not need to complete segmentation, we remove the pre-updating used
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in [1] to prevent interface issues. All the knowledge can be transferred to the teacher
segmentor through an optimized three-step exponentially moving average (EMA[31])
update (Figure 2D):

ht+1
ϕ = α1ht

ϕ + (1 − α1)b
fi|t
ω

ht+2
ϕ = α2ht+1

ϕ + (1 − α2) f t
θ

ht+3
ϕ = α3ht+2

ϕ + (1 − α3)b
si|t
ψ

(13)

where αi = α + δi δi ∼ N(0, V) , i.e., the parameters are perturbed by a normal
distribution and thus the knowledge can be regularized. Then, we conduct self-training on
the target domain, as described in Section 2.6. In our proposed method, we use EMA [31] to
update the model parameters because it can transmit domain knowledge while protecting
the segmentor from the noise in the pseudo-labels [44]. Thus, the teacher segmentor can be
powerful enough to guide the student segmentor in the domain adaptation training. In the
ablation study, we discuss EMA updating in detail.

3. Results

3.1. The Network Parameters

Our implementation was based on the mmsegmentation framework [45] and PyTorch [46].
The MiT-b5 backbone (used in fθ , hϕ, gψ, and bfi

ω) produced a feature pyramid with channels
of 64, 128, 320, and 512. The ASPP decoder used nch = 256 and dilation rates of 1, 6, 12,
and 18. All encoders were pre-trained on the ImageNet-1k [47] dataset. The fog-pass filters
F were composed of a fully connected layer and LeakyReLU layer to convert the Gram
matrix of the feature maps into fog vectors.

3.2. Implementation Details

The main workflow was trained by AdamW [48], the learning rate was 6 × 10−5 with
a weight-decay of 0.01, and linear learning rate warm-up followed the “poly” strategy
after 1.5k iterations. All the input images and labels were cropped to 512 × 512, and the
maximum number of training iterations was 40k. Following DACS [23], we used the same
data augmentation parameters and set α = 0.99, τ = 0.968, and the perturbation variance
V = 0.1. We set the weight of the source domain supervised learning loss (Equation (1)) to
1 and the weight of the intermediate domain style feature learning loss (Equation (5)) to 0.5.
Following FIFO [38], we set the loss weights for both the fog-pass-filter loss (Equation (7))
and the fog factor matching loss (Equation (8)) to 0.001, with m = 0.1. We set the weight of
the consistency learning loss (Equation (12)) to 0.1 to avoid learning errors from the teacher
network. The weight of the loss function in the target domain had already been determined
based on confidence and did not need to be set manually. The dimension n for positional
encoding was set to 512. All the experiments were conducted on a single Tesla-v100 GPU
with a memory of 32 GB and equipped with CUDA 10.2.

3.3. Datasets

Cityscapes [14] is a real-world dataset composed of street scenes captured in
50 different cities. The data split includes 2975 training images and 500 validation im-
ages with pixel-level labels. The Cityscapes dataset is the source domain and shares the
same class set with all the datasets mentioned in this paper.

ACDC [36] contains four categories of adverse conditions (fog, snow, rain, and night-
time) with pixel-level annotations. Each category contains 1000 images and is split into a
train set, validation set, and test set at a ratio of about 4:1:5. The annotations of the test set
were withheld for online testing. We mainly used the foggy images. Moreover, the ACDC
dataset also provides clear reference images of each foggy image, which can be used as the
intermediate domain.
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Foggy Zurich [11] contains 3808 real foggy road views from the city of Zurich and
its suburbs. It is split into two categories of fog density—light and medium—consisting
of 1552 and 1498 images, respectively. It has a test set, Foggy Zurich-test, which includes
40 images with labels that are compatible with those of Cityscapes.

Foggy Driving [11] contains 101 real-world foggy images collected from the Internet
with different sizes and fog densities, including a challenging subset of 21 images with
“dense fog” (referred to as Foggy Driving Dense) [37]. The dataset can only be used
for evaluation.

The comparison results are shown in Table 1 and Table 2.

Table 1. Performance comparison I. Experiments were conducted on the ACDC [36] and Foggy
Zurich-test (FZ) [27] dataset, measuring the mean intersection over union (mIoU) (%) across all
19 classes following the Cityscapes [14] benchmark.

Experiment Method Backbone ACDC FZ Experiment Method Backbone ACDC FZ

- DeepLabv2 [49] 33.5 25.9 LSGAN [17] DeepLabv2 29.3 24.4
- RefineNet [50] 46.4 34.6 Multi-task [51] DeepLabv2 35.4 28.2
- MPCNet [4] 45.9 39.4 AdaptSegNet [20] DeepLabv2 31.8 26.1

Backbone

- SegFormer [39] 47.3 37.7 ADVENT [21] DeepLabv2 32.9 24.5
DCPDN [52] DeepLabv2 33.4 28.7 CLAN [22] DeepLabv2 38.9 28.3
MSCNN [53] RefineNet 38.5 34.4 BDL [30] DeepLabv2 37.7 30.2

DCP [54] RefineNet 34.7 31.2 FDA [55] DeepLabv2 39.5 22.2
Non-local [56] RefineNet 31.9 27.6 DISE [19] DeepLabv2 42.3 40.7

Dehazing

SGLC [57] RefineNet 39.2 34.5 ProDA [24] DeepLabv2 38.4 37.8
SFSU [11] RefineNet 45.6 35.7 DACS [23] DeepLabv2 41.3 28.7

CMAda [27] RefineNet 51.1 46.8 DAFormer [25] SegFormer 48.9 44.4Synthetic
FIFO [38] RefineNet 54.1 48.4

DA-based

CuDA-Net [26] DeepLabv2 55.6 49.1
SDAT SDAT-Former [1] SegFormer 56.0 49.0 Ours SDAT-Former++ SegFormer 59.3 53.8

3.4. Performance Comparison

We compared our method to several categories of methods, including:

• Backbones: RefineNet [50], Deeplabv2 [49], MPCNet [4], and SegFormer [39].
• Dehazing methods: MSCNN [53], DCP [54], SGLC [57], DCPDN [52], and non-local [56].
• DA-based methods: LSGAN [17], AdaptSegNet [20], Multi-Task [51], ADVENT [21],

CLAN [22], BDL [30], FDA [55], DISE [19], ProDA [24], DACS [23], DAFormer [25],
and CuDA-Net [26].

• Synthetic methods: SFSU [11], CMAda [27], and FIFO [38]

The configuration of each type of method was as follows. We trained the backbone
methods on the Cityscapes dataset with labels and tested them on the ACDC and Foggy
Zurich datasets to evaluate their performance across the domains. We set the source
domain for the DA-based methods as clear Cityscapes, representing the s domain in our
method. We used the fog images from ACDC and Foggy Zurich (with medium-level fog)
as the target domain data. For the intermediate domain m, we combined the ACDC fog
reference set (1000 images) with a manual selection of 600 clear images from the Foggy
Zurich dataset (light-level fog). For the synthetic methods, the paradigm was to fine-
tune the segmentation model pre-trained on clear weather images from Cityscapes. This
fine-tuning used synthetic foggy images, such as those from Foggy Cityscapes DBF [11],
along with labels corresponding to their clear weather images. We first used the dehazing
methods to dehaze the foggy images and then used the corresponding backbone segmentor
for predictions.

We compared our method to other outstanding works on the relatively easy ACDC-
test [36] and Foggy Zurich-test [27] datasets. Table 1 shows the results, and the results
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from the ACDC dataset can be found on the https://acdc.vision.ee.ethz.ch/benchmarks#
semanticSegmentation (accessed on accessed on 11 February 2023). ACDC-fog benchmark
website (with our method named “SDAT-Former++”). Our method significantly outper-
formed the baseline algorithm DAFormer [25], yielding 10.4% and 9.4% higher mIoU values
on the two datasets, respectively. Our method also outperformed the recently proposed
MPCNet (in RS 2023 [4]) and SGLC (in CVPR23) [57], thus demonstrating the necessity of
developing semantic segmentation methods for foggy scenarios. Compared to the original
SDAT-Former [1], our method achieved improvements of 3.3% and 3.4%. This indicates that
our method is robust without any special operations or removal of fog. Since the ground
truths from the ACDC-test dataset were withheld, we used the Foggy Zurich-test [27] and
Foggy Driving Dense datasets for qualitative comparison. The upper three rows in Figure 3
show the results on the challenging Foggy Driving Dense dataset [11], and the bottom
three rows correspond to Foggy Zurich images output by DAFormer [25] (our baseline),
CuDA-Net [26], MPCNet [4], SDAT-Former [1], and SDAT-Former++. Due to DAFormer’s
inability to handle style differences in intermediate domains, it failed to handle the sky
in foggy conditions. CuDA-Net removed these artifacts but made mistakes in identifying
objects occluded by fog (as shown by the yellow box). MPCNet tended to classify fog as
buildings or fences. In contrast, our method was highly accurate in segmenting details and
handling fog.

Input DA-F CD-Net MPCNet SDAT-F SDAT-F++ GT
Figure 3. Qualitative comparison with other methods. Since the ground truths from the ACDC-test
dataset were withheld and the fog in the images from the Foggy Driving dataset was light, we randomly
selected images from the challenging Foggy Driving Dense dataset (top three lines) and Foggy
Zurich-test dataset (bottom three lines) with dense fog to compare the performance of our method
with that of other methods.

Then, we tested our method on the Foggy Driving (FD) [11] and the more challenging
Foggy Driving Dense (FDD) [37] datasets. Many methods lost competitiveness or were
completely ineffective on these datasets, so only a subset of methods was chosen for
comparison. In Table 2, it can be seen that our method achieved improvements of 8.1%
and 12.6% in terms of the mIoU over the baseline algorithm DAFormer [25] on FD and
FDD, respectively. Our method also outperformed CuDA-Net (with improvements of 1.9%
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and 3.0%) and FIFO (with improvements of 4.7% and 2.4%). In Figure 3, it can be seen that
our method better preserved the segmentation of small objects in the images, for example,
the “pole” in the second row, the traffic lights in the third row, and the road signs in the
fourth row. This indicates that our method can effectively distinguish small objects while
removing the effects of fog, which is crucial for the stability of segmentation.

Table 2. Performance comparison II. Experiments were conducted on the Foggy Driving [11] and
Foggy Driving Dense [37] datasets, measuring the mean intersection over union (mIoU) (%) across
all classes.

Experiment Method Backbone FD FDD

- DeepLabv2 [49] 26.3 17.6
- RefineNet [50] 34.6 35.8Backbone
- SegFormer [39] 36.2 37.4

CMAda3 [27] RefineNet 49.8 43.0
Synthetic

FIFO [38] RefineNet 50.7 48.9
AdaptSegNet [20] DeepLabv2 29.7 15.8

ADVENT [21] DeepLabv2 46.9 41.7
FDA [55] DeepLabv2 21.8 29.8

DAFormer [25] SegFormer 47.3 39.6
DA-based

CuDA-Net [26] DeepLabv2 53.5 48.2
SDAT-Former[1] SegFormer 54.3 50.8

Ours
SDAT-Former++ SegFormer 55.4 51.2

4. Discussion

4.1. Effectiveness of Fog-Invariant Feature Learning

In Table 3, it can be seen that the non-modified DAFormer, which is also the baseline
of the original SDAT-Former, only yielded an mIoU of 48.92% on ACDC. Since we used
adversarial training to acquire fog-invariant features, cyclical training was necessary to
avoid gradient interference. This shows that the segmentor achieved an mIoU gain of
+4.92% after the addition of this component, which was the most significant contribution to
the performance improvement.

Table 3. Ablation study. We conducted an ablation study on the ACDC-test dataset, measuring the
mIoU (%) across all classes.

Experiment mIoU Gain
Initialization DAFormer 48.92 +0.00

Cyclical(w/o DW 1) imd(ls+da) 2 fog_inv 3(w/o PE 4) mIoU Gain
10.23 −38.69

� 49.88 +0.96
� 50.52 +1.60

� � 51.61 +2.69
� � 53.84 +4.92

SDAT-F [1]

� � � 55.98 +7.06
Cyclical(w/ DW) imd(masked) con_learn 5 fog_inv(w/ PE) mIoU Gain

� 50.34 +1.42
� 52.63 +3.71

� 51.33 +2.41
� � 56.19 +7.27
� � � 58.42 +9.50

SDAT-F++

� � � � 59.28 +10.36
1 Indicates dynamic weight allocation. 2 Indicates use of LSGAN [17] and DAFormer [25] to obtain pseudo-labels.
3 Note that cyclical training is necessary for fog-invariant learning; we did not experiment with fog-invariant
learning alone. 4 Indicates positional encoding. 5 Consistency learning.
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As depicted in the qualitative results in Figure 4, without fog-invariant learning, the
segmentor exhibited prediction drift in foggy conditions, such as misidentifying the sky as
vegetation and road, which is consistent with the reports in FIFO [38].

For SDAT-Former++, a 9.50% improvement in the mIoU was achieved after performing
fog-invariant feature learning, and the incorporation of positional encoding resulted in
a further performance improvement (4.58% higher), indicating that positional encoding
effectively enhanced the depiction of fog-related details in images. Figure 5 demonstrates
this in two aspects: (1) capturing motion blur and (2) improving the identification of
obscured objects within the fog. As shown in the first row, the original SDAT-Former
exhibited incomplete segmentation of nearby objects, whereas SDAT-Former++ effectively
overcame motion blur, thereby contributing to safer vehicle behavior. In the second row,
SDAT-Former failed to detect a tree hidden in the dense fog, whereas the new version with
positional encoding accurately captured this obscured element.

Input DA-F w/o imd w/o fog_inv SDAT-F++ GT
Figure 4. Qualitative results of ablation study. These experiments were conducted on the Foggy
Zurich-test dataset. Both points (i.e., intermediate domain style learning (Column 3) and fog-invariant
feature learning (Column 4)) yielded significant improvements compared to the baseline.

Figure 5. Qualitative results for the incorporation of positional encoding in fog-invariant learn-

ing. From left to right: input image, performance without/with position encoding. Compared to the
original method [1], our method can better overcome incomplete segmentation caused by motion
blur and effectively identify objects obscured by dense fog.

4.2. Effectiveness of Style-Invariant Features Learning

In Figure 4, without the help of the intermediate domain, the segmentor misjudged
the sky and some ground categories, even with the fog-invariant module. Interestingly,
the original DAFormer identified the sky as buildings, but after adding the intermediate
domain information, this prediction became vegetation and road. This also illustrates the
influence of style information implicitly.

The knowledge from the intermediate domain was mainly used to help the segmentor
address the style gap. For SDAT-Former, the segmentor achieved an mIoU gain of +1.60%
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by learning on the intermediate domain. For SDAT-Former++, this gain was 3.71%. As
mentioned before, pseudo-label learning based on style transformations introduces noise.
Figure 6 shows some bad pseudo-labels with artifacts and incomplete segmentation of
entities. This can inevitably affect training. After SDAT-Former++ adopted mask learning,
these problems were avoided.

Figure 6. Qualitative comparison of using masked learning in the intermediate domain. From left
to right: Input image, bad prediction by SDAT-Former [1], refined prediction by our method. The
original version uses style transfer, which can inevitably lead to artifacts in predictions, whereas
SDAT-Former++ does not.

4.3. Effectiveness of Cyclical Training

The main purpose of cyclical training was to integrate different training paradigms.
It did not significantly improve the performance of the segmentor, but its absence could
have been fatal. In Table 3, it can be seen that our segmentor obtained an mIoU gain of
+0.96% using cyclical training because no changes happened in the sub-modules. After
using dynamic weight allocation, the performance improved by +1.42%. However, without
cyclical training, our model only achieved an mIoU of 10.2, which means that training
failed. In addition, cyclical training was also necessary for fog-invariant feature learning.
This method effectively prevents gradient confusion in the temporal dimension and is a
promising training strategy for the future.

4.4. What Does SDAT-Former++ Learn?

To further investigate the roles of masked learning and fog-invariant learning, we visu-
alized the feature maps of the style-invariant backbone bsi

ψ and the fog-invariant backbone
bfi

ω. We averaged the second dimension of the multi-channel tensor, where brighter pixels
indicate higher values. In Figure 7, from left to right are the intermediate domain image,
the output of bsi

ψ without masked learning (SDAT-Former [1]), its target domain image,
and the output of bfi

ω without and with positional encoding. Qualitatively, the model bsi
ψ

focused more on contextual information and extracted more complete features after using
masked learning, which was mostly domain-independent (such as edges and contours).
On the other hand, the fog-invariant backbone performed a distinct “binary classification”
on objects and fog, with the classification becoming more refined after the use of feature
enhancement through positional encoding. Both of these knowledge transfer processes
were handed over to the teacher network hϕ, demonstrating the robust recognition ability
of SDAT-Former++.
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Input(M) bsi
ψ w/o ML bsi

ψ w/ ML Input(T) bfi
ω w/o PE bfi

ω w/ PE

Figure 7. Qualitative feature maps of bsi
ψ and bfi

ω . From left to right: intermediate domain image,
output of bsi

ψ without masked learning (SDAT-Former [1]) and the case with it, target domain image,

output of bfi
ω without and with positional encoding.

4.5. Sensitivity Analysis/Adaptability to Fog

We did not design additional modules specifically for fog processing, but our method
demonstrated excellent anti-fog interference performance, which was analyzed using
entropy. The brighter the pixels in the entropy map, the higher the uncertainty, indicating
that the model was more likely to make incorrect judgments. Conversely, the model output
more certain segmentation results. However, the model also generated high-certainty but
incorrect segmentation. Therefore, only the segmentation models that resulted in low
entropy predictions and conformed to the distribution of the real-world scenario were
truly notable. We performed predictive entropy analysis on the images from the Foggy
Driving Dense dataset [37], as shown in Figure 8. The baseline model DAFormer [25]
made highly uncertain predictions on fog-obscured pixels, potentially leading to unsafe
situations. SDAT-Former alleviated this but still retained uncertainty. In contrast, our
model generated lower uncertainty in dense fog conditions while still producing accurate
road and sky segmentation results, demonstrating the exceptional reliability of our method.

Figure 8. Entropy analysis. From left to right: input images (dense fog), entropy map output by
DAFormer [25], entropy map output by SDAT-Former [1], and entropy map output by our method.
Our method resulted in lower prediction entropy for the pixels occupied by fog, indicating higher
confidence in its predictions.

4.6. Number of Images from the Intermediate Domain

We explored the effect of intermediate domain images with varying quantities from dif-
ferent datasets, which is shown in Table 4. Firstly, using an exclusive intermediate domain
led to optimal results on the current dataset but did not achieve the same performance on
another dataset. For example, using intermediate domain images from the ACDC dataset
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resulted in a segmentor mIoU of 47.42% on the Foggy Zurich dataset. This was due to the
style variations between the datasets. Secondly, in the same dataset, the number of images
from the intermediate domain had little influence on the final performance. In other words,
the corresponding relationship between the clear domain and the foggy domain does not
need to be very strict, indicating the segmentor has adaptability in both fog-invariant
feature learning and intermediate domain segmentation learning.

Table 4. Discussion about the usage of intermediate domain images. We chose different numbers
of clear images from the different datasets, denoted as M. The results are measured by the mIoU (%).

Discussion of Numbers mIoU

400 1 600 2 1000 3 1600 4 ACDC FZ
� 56.19 47.42

� 54.17 51.61
� 59.28 53.82

Number of images from
intermediate domain

� 58.34 53.97
1 Clear reference images from the training set of the ACDC fog dataset. 2 Manually selected images from the
“light fog” category in the Foggy Zurich dataset. 3 Combination of 400 images from the ACDC dataset and
600 images from the FZ dataset. 4 Remaining 600 reference images from the ACDC fog validation/test set.

4.7. Generalization to Rainy and Snowy Scenes

We found that SDAT-Former++ could make better predictions for clear images (Figure 9).
We used the trained SDAT-Former++ to re-predict the intermediate domain images and
obtained surprisingly high-quality pseudo-labels. This indicates that the target domain is
also an “extension domain” to the intermediate domain, forcing the model to complete
more difficult tasks, potentially improving performance in the current task. Furthermore,
we tested our method on the rain and snow validation sets of the ACDC dataset (Table 5
and Figure 9), showing improvements compared to DAFormer, indicating the potential of
our method in addressing the understanding of different adverse scenes.

Table 5. Generalization to other adverse scenes. We conducted zero-shot testing on the snowy and
rainy validation sets of the ACDC dataset.

Generalization on ACDC Validation Subsets Rain Snow

SegFormer(no UDA) [39] 40.62 42.03
DAFormer(baseline) [25] 48.27 49.19

SDAT-Former [1] 53.99 58.04
Method

SDAT-Former++ 56.83 60.14

Figure 9. Qualitative results of generalization on rainy and snowy images. From left to right:
input images, predictions of DAFormer [25], predictions of SDAT-Former [1], and predictions of our
method. These experiments were conducted on the ACDC rain and snow subsets. We directly used
the checkpoint acquired by this paper to test without any extra training. The newly proposed SDAT-
Former++ greatly improved segmentation compared to DAFormer and the original SDAT-Former.

4.8. Order of EMA Updating

EMA updating is a temporal ensemble algorithm, signifying that (a(x + b) �= ax + b);
thus, different sequences of EMA updating may affect the final parameters of the segmentor.
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In Table 6, we present the results of an ablation study on the order of EMA updating. The
results show that altering the sequence of EMA updating concerning the teacher segmentor
had little effect on performance, which can be attributed to cyclical training.

Table 6. The order of EMA updating. We designed three different sequences for parameter updating.

Order of EMA Updating mIoU Gain

Fi 2→T 3 S 1→T TA 4→T ACDC FZ
1 2 3 58.14 52.78
2 1 3 59.24 53.80
1 3 2 59.17 53.68

Configuration

1 2 3 59.28 53.82
1 “S” represents the student segmentor fθ . 2 “Fi” represents the fog-invariant backbone bfi

ω . 3 “T” represents the
teacher segmentor hϕ. 4 “TA” represents the teaching-assistant backbone bsi

ψ .

4.9. Memory Consumption Comparison

Our method does not require all modules to work simultaneously. We adopt cyclical
training where every four iterations constitute one mini-epoch, and only two–three modules
need to be executed in each iteration. Specifically, in the first and second iterations, only
the student segmentor fθ and the fog-related modules (bfi

ω and F ) are involved. The third
iteration needs fθ , bsi

ψ , and dr, whereas the fourth iteration needs fθ and hϕ. The transferring
of EMA parameters does not increase memory consumption. Due to the introduction of
new loss functions, our method consumes more memory compared to previous methods,
but it does not exceed the limit of a Tesla V100 (32 GB). During the testing phase, our
method only deploys fθ ; thus, the consumption is consistent with the original SegFormer
[39]. In this context, our method is more like online knowledge distillation, aiming to train
a better student network. We provide a comparison of the memory consumption between
our method and DAFormer [25], SegFormer [39], and SDAT-Former [1] during the training
and testing phases in Table 7.

Table 7. Memory consumption comparison. We recorded the memory consumption during training
and testing when batch_size =1, with an input size of 512 × 512 for both the source domain and target
domain images, measured in GB.

Memory Consumption Comparison (GB)

Train Test
Mini-epoch Iter 4n Iter 4n + 1 Iter 4n + 2 Iter 4n + 3

SegFormer [39] 5.7
DAFormer [25] 11.3

SDAT-Former [1] 5.9 7.7 8.3 11.9
SDAT-Former++ 6.4 8.5 9.4 13.3

5.7

5. Conclusions

We propose a stronger domain-adaptive teacher-guided semantic segmentation method
called SDAT-Former++. It improves both style-invariant and fog-invariant feature learning.
Specifically, we replace the strategy of generating pseudo-labels using supervised learning
with a simple yet effective masked learning strategy. This integrates all training processes
into an end-to-end framework, greatly simplifying the training process and improving
performance. Furthermore, we enhance the fog-invariant feature learning module by
introducing positional encoding, guiding the model to learn more refined fog-related
features and scene contours. In the information integration part, we use consistency
learning to accelerate model convergence and narrow the gap between the student and
teacher segmentors.

Experimental results demonstrate that SDAT-Former++ surpasses the baseline meth-
ods on mainstream foggy road scene datasets. It achieves improvements of 3.3%, 4.8%,
1.1%, and 0.4% on the ACDC Fog, Foggy Zurich, Foggy Driving, and Foggy Driving Dense
datasets, respectively. Through analysis of the model outputs, we find that both intermedi-
ate domain learning and fog-invariant feature learning in SDAT-Former++ have positive
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effects, alleviating the issue of prediction artifacts in the baseline methods. When facing
dense fog, the proposed method exhibits lower uncertainty and demonstrates good safety
performance. Visualizing the model’s feature maps also reveals that intermediate domain
data primarily focuses on learning domain-style independent features (such as contours
and edges), whereas fog-invariant feature learning differentiates between fog and entities
in the images. Masked learning enables the model to better capture contextual information
rather than specific details, and positional encoding generates better contour information,
assisting the main segmentation model in producing better edges. Our method also shows
generalization ability to other adverse scenes such as rainy and snowy scenes.

In future studies, we plan to further research the fog factor and attempt to more
accurately avoid its influence. We also plan to research the unified segmentor, which is
suitable for all adverse conditions.
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Abstract: Few-shot semantic segmentation (FSS) is committed to segmenting new classes with only a
few labels. Generally, FSS assumes that base classes and novel classes belong to the same domain,
which limits FSS’s application in a wide range of areas. In particular, since annotation is time-
consuming, it is not cost-effective to process remote sensing images using FSS. To address this issue,
we designed a feature transformation network (FTNet) for learning to few-shot segment remote
sensing images from irrelevant data (FSS-RSI). The main idea is to train networks on irrelevant,
already labeled data but inference on remote sensing images. In other words, the training and testing
data neither belong to the same domain nor category. The FTNet contains two main modules: a
feature transformation module (FTM) and a hierarchical transformer module (HTM). Among them,
the FTM transforms features into a domain-agnostic high-level anchor, and the HTM hierarchically
enhances matching between support and query features. Moreover, to promote the development
of FSS-RSI, we established a new benchmark, which other researchers may use. Our experiments
demonstrate that our model outperforms the cutting-edge few-shot semantic segmentation method
by 25.39% and 21.31% in the one-shot and five-shot settings, respectively.

Keywords: meta-learning; cross-domain segmentation; few-shot semantic segmentation; transformer

1. Introduction

Deep learning-based semantic segmentation is widely used in remote sensing [1,2].
Generally, semantic segmentation provides pixel-level classification for downstream appli-
cations, which is a fundamental computer vision task. Many models have been built by
adopting fully convolutional networks and have achieved satisfactory results [3–5]. On this
basis, novel modules such as encoder–decoder [6,7], dilated convolution [8], and atrous spa-
tial pyramid pooling [9] have been proven to be effective. Indeed, pre-trained backbones,
such as the ResNet [10] and VGG [11], have been utilized in various semantic segmentation
models [8–10] for feature extraction, which has gradually become a stereotype. By contrast,
VIT [12], SETR [13], and SegFormer [14] divide images into a patch sequence. In these
works, transformers were used to extract image features [15,16], and their results surpassed
traditional methods to some extent.

However, a large dataset is needed during training, thus limiting semantic segmenta-
tion’s application in a broader field. FSS has been proposed [17,18] to solve this limitation.
Unlike supervised learning-based methods, FSS requires only a few annotations to segment
new classes.

There are no overlap categories between training and inference for FSS [19], which is
the main difference between few-shot semantic segmentation and semantic segmentation.
Most FSS methods follow meta-learning [20], where episodes are formed by image and label
pairs [17,21,22] to mimic few-shot scenes. Currently, FSS is mainly divided into two groups:
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relation-based methods and metric-based methods. Among them, relation-based meth-
ods [18,19,22–24] share the same backbone and freeze their parameters during training.
The main idea is to design a practical decoder to compare the query and support data.
In contrast, metric-based methods [21,25] tend to develop effective encoders to separate
foreground and background classes. Furthermore, some works [26,27] bring transformers
into FSS tasks with excellent results. As for remote sensing, it is time-consuming to obtain
numerous annotated data. Therefore, some works [28–30] have aimed to reduce the need
for annotations or use semi-supervised methods [31] to handle unknown categories.

Generally, FSS is conducted in a cross-validation manner with four splits [32]. Al-
though there is no class overlap between the training and testing sets, they belong to the
same domain. For example, there are 20 categories in PASCAL-5i [17], but each class’s pixel
distribution is similar, called the in-domain dataset. Additionally, although FSS is named
“few-shot”, a large, labeled dataset is still needed during training, which is inconvenient
for remote sensing. We aim to train such a network on a large but irrelevant dataset and to
predict masks on remote sensing images.

This work extends few-shot semantic segmentation to a new task called FSS-RSI. As we
know, FSS’s training and testing sets contain different categories within the same domain.
By contrast, FSS-RSI’s data differ not only in classes but also in image acquisition sensor
and pixel distributions, which belong to irrelevant/cross-domain data.

To achieve the goal of FSS-RSI, the FTNet was designed. The meta-learning method [20]
was adopted to train our network. Specifically, the FTNet transforms the support and query
features into a domain-agnostic space with the learnable FTM. In this way, the gap between
the support data and the query data is narrowed. In addition, the HTM is used to parse
the correlations between the support and query features, which fully promotes the fitting
capability of the support and query features.

To validate our network and provide convenience for other researchers, we established
a new benchmark. The images used came from four different datasets, DeepGlobe [33],
Potsdam [34], Vaihingen [35], and AISD [36], which were captured by satellites or drones.
All four datasets are typical in remote sensing and contain commonly used categories in
engineering. We combined these datasets into an FSS-format dataset and used them as a
benchmark for FSS-RSI.

PASCAL-5i and our benchmark were used for our experiments. The FTNet achieves
comparable accuracy to the cutting-edge method on the in-domain dataset. As for FSS-RSI,
the FTNet performs at an absolute advantage. The mIoUs in the one-shot and five-shot
settings were 25.39% and 21.31%, respectively, higher than the state-of-the-art (SOTA)
method.

In summary, our main contributions lie in the following aspects:

• We extend the FSS to FSS-RSI, which aims to utilize irrelevant domain data to guide
the segmentation of remote sensing images.

• A new benchmark is proposed. This benchmark may promote the development of
FSS-RSI and serve as a tool for researchers.

• We propose an effective network with the FTM and the HTM. Our method signifi-
cantly outperforms the cutting-edge few-shot semantic segmentation method in the
FSS-RSI task.

2. Method

2.1. Problem Setting

Table 1 shows the differences between semantic segmentation (SS), FSS, and FSS-RSI.
We define the training and testing data as domains Dtrain and Dtest and their semantic
categories as Ctrain and Ctest, respectively.
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Table 1. Differences between SS, FSS, and FSS-RSI.

Task Data Source Categories
Example

Training Pair Testing Pair

SS Dtrain = Dtest Ctrain ∩ Ctest = 1

    

FSS Dtrain = Dtest Ctrain ∩ Ctest = ∅

    

FSS-RSI Dtrain �= Dtest Ctrain ∩ Ctest = ∅

    

For SS, Dtrain and Dtest belonged to the same domain, specifically remote sensing,
in our task. The training and testing categories were the same. That is, SS only handles
classes that have appeared in training. For FSS, both Dtrain and Dtest were derived from
remote sensing, but their categories did not overlap. That is, FSS can process classes with
no appearance during training. FSS-RSI was the most challenging task, with Dtrain and
Dtest originating from different domains. The two domains have different classes and pixel
distributions, which we call irrelevant data.

In the FSS-RSI task, episodes [18] were used to mimic few-shot scenes. Each episode
consisted of a query set Q = {(Iq, Mq)} and a support set S =

{(
Is
i , Ms

i
)}K

i=1. In our
study, (·, ·) represents image pairs consisting of RGB images and corresponding masks.
Is, Iq ∈ RH×W×3 denotes the RGB images. Ms, Mq ∈ RH×W represents their masks. K
means K pairs of images and masks were used, which we call the K-shot. Strain and
Iq ∈ Qtrain are the inputs during training. The proposed network predicts a binary mask to
compute loss with Mq ∈ Qtrain. In the testing phase, the network predicted a new mask
with Stest and Iq ∈ Qtest as the inputs. It should be noted that Strain, Qtrain ⊂ Dtrain, and
Stest, Qtest ⊂ Dtest, respectively.

2.2. Model

The FTNet is designed to deal with FSS-RSI tasks. As shown in Figure 1, the network
is built in a meta-learning manner [20]. Specifically, we used ResNet50 [10], which was
pre-trained by ImageNet [37], as the backbone and froze its parameters during training.
The query and support branches share the same backbone to extract multi-layered features.
Furthermore, a prior mask [18] from high-level feature maps was introduced to strengthen
the connection between the query and support data. It should be noted that support masks
are important for FSS. Therefore, the FTNet adopted a support mask several times to
enhance its guidance for the query images. In particular, the FTM is designed to transform
the middle query feature, support feature, and prototype into a domain-independent,
high-level feature space called the feature anchor. The FTNet achieves better performance
when processing FSS-RSI tasks with the FTM. In addition, we input the fused query feature,
support feature, and mask into the HTM, which enhanced information fusion within and
between features. Figure 1 shows the model architecture of a one-shot structure, which can
be easily expanded to a five-shot structure.
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f

f

Figure 1. The architecture of the FTNet. This network was built in a meta-learning manner with a
prior mask [18]. The FTM and HTM are designed for better performance. H is the high-level feature,
M is the middle-level feature, P is the prototype, f s is the support feature, f q is the query feature, ⊗
is the element-wise multiplication, and GAP denotes the global average pooling.

2.2.1. Feature Extraction

During the training phase, we froze the backbone’s parameters, which was the strategy
employed by other methods [18,19,26]. There are five stages included in ResNet50. The
FTNet mainly adopts feature maps for stage 3, stage 4, and stage 5, which are denoted as
fs3, fs4, and fs5. In order to enhance the performance of high-level feature maps, PPM [38]
was used to refactor stage 5. Thus, we obtained fs6 as the following:

fs6 = Fcat
i=1,2,3,4

(
U i

(
F i

conv

(
F i

pool( fs5)
)))

(1)

where Fpool means the average pooling and Fconv denotes the convolution, followed by
the BatchNorm [39] and ReLU functions. U is the upsampling and Fcat represents the
concatenation. Pyramids with the sizes 1 × 1, 2 × 2, 3 × 3, and 6 × 6 were used, and i is
the level of pyramid. fs4, fs5, and fs6 were resized to be the same as fs3.

According to [22,40–42], middle-level features contain more semantic information,
such as the outline and color. Therefore, the FTNet concatenates fs3 and fs4 to obtain a
middle-level feature map:

f s
m = Fconv(Fcat( f s

s3, f s
s4)) ∈ R

c×h×w (2)

f q
m = Fconv

(
Fcat

(
f q
s3, f q

s4

))
∈ R

c×h×w (3)

where f s
m and f q

m are the middle-level features of the support and query data. Fconv and
Fcat are the same as in Function (1) with different parameters. Furthermore, we calculated
the prototype using the support mask and f s

m as the following:

ps = Fgap( f s
m �R(Ms)) ∈ R

c (4)
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where � means the Hadamard product, and R represents the operation to reshape the
initial query mask from RH×W to Rc×h×w, with the same size as f s

m. Fgap is the global
average pooling to reshape the feature map from Rc×h×w to Rc×1.

In addition, the prior mask generated by the high-level feature boosts performance
in a training-class-insensitive way [18]. We used fs4 and fs5 to generate prior masks and
merge them as the following:

Mp = Fcat(P( fs4),P( fs5)) (5)

where P denotes the generation of a prior mask Mp.

2.2.2. Feature Transformation Module

Motivation. Features extracted by convolutions have an excellent characterization
within category and domain. As for FSS-RSI, the parameters learned during training tend
to segment the categories that appear during training. Therefore, the FTNet transforms fea-
tures into a space independent of classes and domains. This strategy reduces the influence
of the source domain and training data. Inspired by a task-adaptive feature transformer
(TAF) [43], we propose a simple learnable transformation matrix that transforms f s

m, f q
m,

and ps to a domain-agnostic space.
For the feature matrix F, the goal was to find a matrix T that transforms F to a domain-

independent feature matrix W, called the feature anchor, as the following:

TF = W (6)

In general, F is a non-square matrix with no inverse. One solution is to calculate the
pseudo-inverse [43] of F is F+ =

{
FTF

}−1FT . Thus, the transformation matrix was obtained
as the following:

T = WF+ (7)

The parameters of W were initialized randomly and changed with the gradient’s
backpropagation; therefore, the matrix T was constantly optimized.

Specifically, for the prototype ps, we obtained ps
new = Tps. As for f s

m, we needed to
transform it as the following:

f s′
m = R( f s

m) (8)

where R(·) represents the reshape operation: Rc×h×w → Rc×(h×w) . We used the transfor-
mation matrix to multiply Formula (8) to obtain f s′

m,new = T f s′
m . Furthermore, f s′

m, new was
transformed to the original shape as f s

m, that is,

f s
m, new = R−1

(
f s′
m, new

)
(9)

where the inverse reshape is included. The same operation was performed for f q
m. Finally,

ps
new, f s

m, new, and f q
m, new were obtained. They are domain-agnostic features. In other

words, the gap between ps
new and f q

m, new and the gap between f s
m, new and f q

m, new were
significantly reduced. We provide a more detailed explanation in Appendix A.

We further merged ps
new, f q

m, new, and Mp to obtain f q
merge as the following:

f q
merge = Fcat

(
f q
m, new, Mp,J (ps

new)
)

(10)

where J (·) is the repeat operation: Rc×1 → Rc×h×w . It should be noted that only the
parameters of W were learnable. The transformation matrix was calculated directly. This
method does not add too many parameters.
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2.2.3. Hierarchical Transformer Module

Motivation. A transformer is used in many works to extract features [12–14]. It estab-
lishes relationships within and between features to mine the connections between image
blocks. As illustrated in [27], prototype-based FSS models are committed to providing class-
wise clues rather than pixel-wise clues. We adopted self- and cross-attention paradigms to
mine deep matching correlations.

To strengthen the support data’s performance, we again used support masks. We
define Q = Wq f q, K = Wk( f s � Ms), and V = Wv( f s � Ms). We followed the usual
transformer calculation, which is formulated as the following:

Trans(Q, K, V) = softmax
(

QKT
√

d

)
V (11)

where Wq, Wk, and Wv are the learnable parameters, and d is the hidden dimension.
Equation (11) is a general form of cross-attention. As shown in Figure 2, when the features
f s in K and V are replaced with f V , Equation (11) represents the self-attention manner,
which represents the relationship among query features. The main task of the HTM is
to calculate an informative query feature. Thus, we only performed self-attention within
the query path in a standard multi-head manner [12]. In addition, a cross-attention layer
follows self-attention. Similar to [27], Q was obtained from the query features, and K and V
were obtained from the support features. Inspired by the ResNet [10] and SegFormer [14],
we design a hierarchical architecture with four scale blocks. Each block contains self-
and cross-attention, followed by downsampling. At the end of the HTM process, we
concatenated the four blocks after scaling them to the same resolution. In a nutshell,
our model extracts abundant information within query features and obtains pixel-wise
matching correlations using a cross-attention layer. We demonstrate the role of the HTM in
mining this matching relationship, as detailed in Appendix B.

f

f M

Self
C

ross

Self
C

ross

Self
C

ross

Self
C
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H W× H W× H W× H W× H W×

Figure 2. The architecture of the HTM used in our network.

Finally, the FTNet adopts a simple decoder to generate predictions, mainly including
stacked convolutional layers and upsampling. Because FSS is a binary classification task,
binary cross-entropy loss (BCE) was used to optimize our model, which is formulated as
the following:

L =
1
n

n

∑
i=1

BCE
(
P q

i , Mq
)

(12)

where n is the number of episodes in each batch and P is the prediction of the query image.

2.2.4. Extension to K-Shot

Extending our model to K-shot (K > 1) format was straightforward. The K-shot setting
means that there are K support pairs in one episode. Specifically, the support pair is
S =

{(
Is
i , Ms

i
)}K

i=1 and the query pair is still Q = {(Iq, Mq)}. In order not to change the
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model’s settings, we concatenated the K groups in the channel dimension directly as the
following:

S =
{(

Fcat(Is
i )

K
i=1,Fcat(Ms

i )
K
i=1

)}
(13)

Therefore, the FTNet obtained an input with the same structure as a one-shot structure
with simple convolutions.

2.3. Benchmark

The FSS-RSI benchmark was derived from four datasets of remote sensing, including
DeepGlobe [33], Potsdam [34], Vaihingen [35], and AISD. These datasets differ from the
commonly used FSS datasets regarding their pixel distributions and categories.

DeepGlobe [33] consists of natural landscape images taken by satellites. This dataset
is annotated into seven categories: unknown, urban, aquatic, agricultural, forested, barren,
and rangeland areas. The ground sampling distance was 50 cm. However, only 803 training
images were labeled with a size of 2448 × 2448. Fortunately, this dataset was adopted as a
tool for FSS-RSI, so DeepGlobe’s training set could meet the need. Specifically, we divided
each image into 36 equal blocks and resized them to 400 × 400. The category “unknown”
was set as the background. Images that contained only a single category were filtered
out. Finally, we obtained 9175 pairs containing six categories. We named this dataset
FSS-RSI-DeepGlobe; some samples are shown in Figure 3a.

Image Mask Image Mask Image Mask Image Mask 

        

        

        

        
(a) DeepGlobe (b) Potsdam (c) Vaihingen (d) AISD 

Figure 3. Some images and their corresponding masks of our benchmark: (a) data from DeepGlobe;
(b) data from Potsdam; (c) data from Vaihingen; and (d) data from AISD.

Potsdam [34] was captured over Potsdam in Germany by aerial cameras. This dataset
is annotated into six categories: clutter, tree, low vegetation, building, car, and impervious
surface. The ground sampling distance of the images was 5 cm. We removed the category
“car” because of the overlap with the source domain used in our work. The buildings in
Potsdam are scattered and the category distribution is more balanced. Potsdam contains
38 image patches. The size of all images is 6000 × 6000. Each image was divided into
225 equal pieces. Similar to the DeepGlobe dataset, we removed pairs with a single category.

196



Remote Sens. 2023, 15, 4937

Finally, we obtained 1896 pairs containing five categories. We named this dataset FSS-RSI-
Potsdam; some samples are shown in Figure 3b.

Vaihingen [35] was captured over Vaihingen in Germany by aerial cameras and in-
cludes five categories (after removing “car”), like Potsdam. The ground sampling distance
of the images was 9 cm. Unlike Potsdam, the class distribution is more compact, with dense
settlement structures, narrow streets, and large buildings. Vaihingen contains 33 patches of
different sizes. We resized the images to 2800 × 2000 pixels and divided each image into
35 equal pieces. We removed images with a single category. As already known, episodes
needed to be built in each category. However, the filtered Vaihingen dataset contains only
6 “clutter” samples, which was insufficient to build a rich episode. Thus, images containing
the category “clutter” were discarded. Finally, we obtained 308 pairs containing four
categories. We named this dataset FSS-RSI-Vaihingen; some images are shown in Figure 3c.

AISD [36] is an aerial image segmentation dataset obtained using the OpenStreetMap [44–46]
and Google Maps [47]. AISD covers parts of different cities, of which Berlin was selected for
our experiment. There are only two categories in AISD: road and building. However, their
appearance is very similar within and between the two categories. Thus, we believe AISD
is a challenging task for FSS. AISD contains 200 patches of the same size, at 2611 × 2453.
We resized the images with 2800 × 2400 pixels and divided each image into 42 equal pieces.
We removed images with a single category similar to the other three datasets. Finally, we
obtained 5640 pairs containing two categories. We named this dataset FSS-RSI-AISD; some
samples are shown in Figure 3d. Table 2 provides a detailed description of PASCAL-5i and
our benchmark.

Table 2. Details of our benchmark. The FID was calculated between each dataset and PASCAL-5i.

Dataset Numbers Classes FID

PASCAL-5i 17,125
person, bird, dog, cat, cow, chair, dining table, potted plant, sheep,

horse, airplane, bicycle, boat, car, bottle, sofa, tv/monitor bus,
motorbike, and train

–

FSS-RSI-DeepGlobe 9175 agricultural, forested, barren, urban, rangeland, and aquatic areas 186.55

FSS-RSI-Potsdam 1896 clutter, tree, low vegetation, building,
and impervious surface 151.86

FSS-RSI-Vaihingen 308 tree, low vegetation, building,
and impervious surface 328.08

FSS-RSI-AISD 5640 building and road 194.90

As shown in Figure 4, we further calculated the pixel distribution of each category. The
pixel distribution was relatively balanced, except for “urban areas” in FSS-RSI-DeepGlobe.
Because of the richness of this dataset, we kept the class “urban areas”.

As shown in Table 2, the Fréchet inception distance (FID) [48] was reported to measure
the different data distributions between our benchmark and PASCAL-5i. The FID is
the Fréchet inception distance between the Gaussians obtained from the distributions of
two datasets:

d2((μ1, c1), (μ2, c2)) = ‖μ1 − μ2‖2
2 + Tr

(
c1 + c2 − 2(c1c2)

1
2
)

(14)

where (μ1, c1) and (μ2, c2) are means and covariances of the two distributions, and Tr is
the matrix trace. The larger the FID, the greater the difference between the datasets, and
vice versa.

As shown in Table 3, the same method was used to calculate the FID within PASCAL-5i.
We followed the strategy of FSS, that is, using a standard cross-training manner. Specifically,
the FID was calculated between each fold and the other three folds. Compared to the data
within PASCAL-5i, the distribution gaps between our benchmark and PASCAL-5i were
vast, where the FID was more than twice that of the in-domain data. In particular, the FID
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of FSS-RSI-Vaihingen was 328.08. Therefore, it is further proven that our benchmark and
PASCAL-5i belong to different domains.

(a) (b) 

 
(c) (d) 

Figure 4. Pixel distributions of our benchmark: (a) FSS-RSI-DeepGlobe; (b) FSS-RSI-Potsdam;
(c) FSS-RSI-Vaihingen; and (d) FSS-RSI-AISD.

Table 3. FIDs of different PASCAL-5i splits.

Split-1 Split-2 FID

Fold0 Fold1 + Fold2 + Fold3 79.47
Fold1 Fold0 + Fold2 + Fold3 47.47
Fold2 Fold0 + Fold1 + Fold3 41.45
Fold3 Fold0 + Fold1 + Fold2 61.48

2.4. Experiments
2.4.1. Datasets and Metric

Datasets. PASCAL-5i is the irrelevant domain training set created from PASCAL VOC
2012 [49] with SDS [50] augmentation. The benchmark we proposed is the testing set in the
remote sensing domain.
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Metric. The mean intersection over union (mIoU) [19,26] was adopted in our experi-
ment, as a standard metric in semantic segmentation. The IoU is defined as the following:

IoU =
TP

FN + FP + TP
(15)

where FN, FP, and TP represent the number of false negatives, false positives, and true
positives of the predictions, respectively. Furthermore, the mIoU is the average IoU of
all categories.

2.4.2. Training and Testing Strategy

We used a generic meta-learning manner for training and testing. That is, each batch
contained an episode. Unlike FSS, the entire PASCAL-5i dataset with all four splits was
used as the training data. Indeed, we use a supervised learning strategy and fixed the
backbone’s pre-training parameters during training. The Adam optimizer was adopted
with a learning rate of 10−4, and the weight decay was 0.01. Furthermore, the size of the
images was reshaped to 400 × 400 pixels, which was followed by random scaling, rotation,
and cropping. A mini-batch of 16 was utilized in the experiment. We trained each model
on four 2080 Ti GPUs with 50 epochs.

The test was performed on a single GPU. It should be noted that we tested the
benchmark with the model trained on the PASCAL-5i without transfer. The mIoU was
calculated for each dataset based on the average of 5 runs with different random seeds. A
total of 600 tasks were contained in each run.

3. Result

3.1. Models for Comparison

To prove the performance of the FTNet, we selected several representative FSS models,
including RPMMs [23], the PFENet [18], HSNet [24], BAM [19], and HDMNet [26]. Among
them, RPMMs and the PFENet are classic prototype-based architectures, especially the
PFENet, which is the most similar model to the FTNet. The HSNet uses 4D convolution to
push meta-learning-based FSS to new heights. BAM and the HDMNet are cutting-edge in-
domain FSS methods based on meta-learning and base-learning. For the RPMMs, PFENet,
and HSNet, their released codes were used with the same settings. For BAM and the
HDMNet, their meta paths were adopted, as there were no base classes in our benchmark.
The testing method was exactly the same as ours.

3.2. Main Results

The results are shown in Table 4. The mIoU of the FTNet significantly exceeded
that of the existing FSS model, including the SOTA model. Specifically, on the FSS-RSI-
DeepGlobe dataset, the FTNet outperformed the suboptimal HSNet by 30.18% and 25.98%
in the one-shot and five-shot settings, respectively. On the FSS-RSI-Potsdam dataset, the
FTNet outperformed the suboptimal method by 37.57% and 8.90% in the one-shot and
five-shot settings, respectively. On the FSS-RSI-AISD dataset, the FTNet outperformed
the suboptimal methods by 17.48% and 13.61% in the one-shot and five-shot, respectively.
In addition, our one-shot result was 13.53% higher than the HDMNet on the FSS-RSI-
Vaihingen dataset. But the FTNet obtained a value that was 2.00% lower than BAM in the
five-shot setting. For the mean results of all datasets, the mIoU significantly exceeded the
suboptimal model, which was 25.39% and 21.31% higher than the HSNet in the one-shot
and five-shot settings, respectively.

As can be seen, the PFENet achieved an mIoU that was 10% lower on the FSS-RSI-
DeepGlobe and FSS-RSI-Potsdam datasets, especially for the value of only 2.42% in the FSS-
RSI-DeepGlobe’s five-shot setting. This proves that the PFENet had no FSS-RSI performance
on these two datasets. However, as illustrated in Appendix C, the PFENet’s performance
within the domain was good. The same is true for RPMMs on the FSS-RSI-Potsdam
dataset. As already known, the HDMNet is a cutting-edge FSS model, even with only its
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meta branch. The results can be seen in Appendix C. However, for the FSS-RSI task, the
HDMNet did not perform well. The obtained mIoUs were 17.70 and 23.08 in the one-shot
and five-shot settings, which were 41.16% and 17.56% lower than the FTNet, respectively.
Performing slightly worse than our method, the HSNet performed suboptimally on FSS-
RSI-DeepGlobe’s one-shot and five-shot settings and on FSS-RSI-Potsdam’s one-shot setting.
We found that except for the PFENet, the five-shot results of all models were better than
the one-shot results. This phenomenon indicates that when there are more support data,
FSS-RSI performs better, which is similar to FSS. This experiment showed that the FTNet
achieved the best result in FSS-RSI with absolute advantages over the other cutting-edge
FSS methods.

Table 4. The mIoUs (%) of different methods experimented on our benchmark. The best results are
denoted in bold. Suboptimal results are underlined.

Method

FSS-RSI-
DeepGlobe

FSS-RSI-Potsdam FSS-RSI-Vaihingen FSS-RSI-AISD Average

1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

PFENet 3.97 2.42 6.26 4.84 12.58 12.29 25.03 25.18 11.96 11.18
RPMMs 10.66 13.17 6.76 7.56 16.24 16.45 25.12 23.86 14.70 15.26
HSNet 31.78 35.38 17.94 19.31 21.78 24.16 24.47 26.41 23.99 26.32
BAM 12.23 26.65 12.53 17.37 17.19 26.98 23.35 27.41 16.33 24.60

HDMNet 16.68 17.57 11.27 23.49 21.80 25.53 21.04 25.74 17.70 23.08
FTNet 41.37 44.57 24.68 25.58 24.75 26.44 29.51 31.14 30.08 31.93

Some qualitative results of our methods are shown in Figure 5. Classes with regular
shapes, such as buildings in the FSS-RSI-Potsdam and FSS-RSI-Vaihingen datasets, obtained
better results. However, FSS-RSI is challenging for irregular categories, such as trees
and low vegetation. In particular, FSS-RSI did not work well for categories with similar
appearances, such as the barren and rangeland areas in the FSS-RSI-DeepGlobe dataset
and all categories in the FSS-RSI-AISD dataset. These challenging cases also need to be
solved using semantic segmentation. Indeed, compared to commonly handled categories,
such as cars, people, and animals, it is more difficult to segment remote sensing images.
This issue is exactly the intractable part that FSS needs to solve.

Support Ground truth Query Support Ground truth Query 

      
(a) 

      
(b) 

Figure 5. Cont.
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(c) 

      
(d) 

Figure 5. Qualitative results of the FTNet: (a) FSS-RSI-DeepGlobe; (b) FSS-RSI-Potsdam; (c) FSS-RSI-
Vaihingen; and (d) FSS-RSI-AISD.

4. Discussion

4.1. Ablation Study

To prove the effectiveness of the FTNet, we carried out an ablation study. The mIoU
was selected as the metric. Our baseline was that the architecture removed the HTM
and FTM. To further justify the effectiveness of our HTM, we adopted a vanilla trans-
former module (VTM) for comparison. There were four repeat blocks in the VTM without
concatenation; each block was the same as the first in the HTM.

Effects of the HTM and FTM. Table 5 shows the results of the five forms. They were
the baseline, adding the FTM, adding the HTM, adding the VTM, and adding both the
HTM and FTM. As illustrated, the mIoU of the baseline was similar to that of BAM [19]
and the HDMNet [26]. After adding our tailored modules, the FTNet’s performance was
significantly boosted.

Table 5. The mIoUs (%) of the ablation study. The best results are denoted in bold. The baseline is the
architecture that removed the FTM and HTM.

Method
FSS-IRS-DeepGlobe FSS-IRS-Potsdam FSS-IRS-Vaihingen Average

1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

Baseline 19.29 30.56 11.56 17.84 21.69 21.72 17.51 23.37
Baseline + FTM 31.62 33.80 22.57 20.86 24.73 27.61 26.31 27.42
Baseline + HTM 38.41 43.40 23.03 23.99 23.31 25.41 28.25 30.93
Baseline + VTM 21.23 – 20.27 – 23.16 – 21.55 –

Baseline + HTM + FTM 41.37 44.57 24.68 25.58 24.75 26.44 30.27 32.20

Compared to the baseline, the mIoUs in the one-shot and five-shot settings were
improved by 50.26% and 17.33%, respectively, after adding the FTM. Furthermore, adding
the HTM improved the result by 61.34% and 32.35%, respectively. What surprised us the
most is that our complete structure with both the FTM and HTM achieved the highest
mIoUs, which were 72.87% and 37.78% higher than the baseline in the one-shot and five-
shot settings, respectively. We note that adding the FTM obtained a result comparable
to our complete architecture in the one-shot setting and a higher result in the five-shot
setting on the FSS-IRS-Vaihingen dataset. These results prove the effectiveness of the
proposed modules.

As illustrated in the HDMNet [26], a transformer module follows a backbone similar to
ours. Unlike the HDMNet, we added the HTM to fuse low- and high-level information after
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the prior mask and prototype. Thus, our model’s performance was improved. As shown
in Table 5, adding the VTM raised the mIoU from 17.51 to 21.55 in the one-shot setting.
However, our HTM’s result was 31.09% higher than the VTM’s result in the one-shot setting.
Furthermore, our device was out of memory when we trained the architecture with the
VTM in the five-shot setting. Therefore, we could not collect the five-shot result using the
VTM. The experimental results justify that our HTM is more effective than the VTM.

The visualization results of the five forms are shown in Figure 6. They are the results
based on FSS-RSI-DeepGlobe in the one-shot setting. It is important to note that these qual-
itative results were unstable across different test rounds, and we consider the quantitative
results in Table 5 on the entire dataset to be more reliable.

Support Ground truth Baseline Baseline + 
FTM 

Baseline + 
HTM 

Baseline + 
VTM 

Baseline + 
HTM + FTM 

       

       

Figure 6. Qualitative results of the ablation study.

Effects of different classes. We counted the mIoUs of each class on the whole bench-
mark, and the results are shown in Figure 7. To sum up, the FTNet had an unbalanced
accuracy for each category. On the FSS-RSI-DeepGlobe dataset, the FTNet had a higher
mIoU for agricultural, forested, and barren but a lower mIoU for the remaining three
categories. On the FSS-RSI-Potsdam dataset, the category with the highest mIoU was
“building”, which was 156.40% higher than “clutter”. On the FSS-RSI-Vaihingen dataset,
the best class was “tree”, which was 206.92% higher than the categories of “impervious
surface”. On the FSS-RSI-AISD dataset, the mIoU of “building” was higher. We believe
that “building” had a more regular shape relative to “road”, which was more conducive to
the prediction of the network.

When combined with the pixel distribution in each category in Figure 4, the seg-
mentation results of FSS-RSI-DeepGlobe and FSS-RSI-Potsdam are independent of the
number of pixels. On the FSS-RSI-Vaihingen dataset, the smallest pixel ratio was obtained
for “impervious surface”, and the mIoU in this category was also the smallest. On the
FSS-RSI-AISD dataset, the ratio of pixels was the opposite of the ratio of mIoUs. We do not
have enough evidence to prove that the accuracy was related to the pixel ratio. Balancing
the number of pixels in our benchmark and improving the semantic segmentation accuracy
of each category will need to be considered in the future.
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(a) Results of FSS-RSI-DeepGlobe 

(b) Results of FSS-RSI-Potsdam and FSS-RSI-Vaihingen 

 
(c) Results of FSS-RSI-AISD 
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Figure 7. The mIoUs (%) of different categories: (a) FSS-RSI-DeepGlobe; (b) FSS-RSI-Potsdam and
FSS-RSI-Vaihingen; and (c) FSS-RSI-AISD.
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4.2. Limitations

This work introduces FSS into the field of remote sensing image segmentation. Our
model achieved an absolute advantage over other SOTA methods, as our experiment shows.
The results prove the effectiveness of our approach. However, we need to note that in
the FSS-RSI task, the mIoU was only about 30%, which is still far from actual application
needs. On the one hand, this phenomenon is attributable to the fact that FSS-RSI is a
very challenging task. The training data and the test data were irrelevant. On the other
hand, most of the categories in our benchmark did not have fixed shapes, such as low
vegetation, impervious surface, and agriculture, which were difficult even for generic
semantic segmentation [5,9]. In addition, FSS-RSI did not work well with categories with
similar appearances, such as the barren and rangeland areas in the FSS-RSI-DeepGlobe
dataset and all categories in the FSS-RSI-AISD dataset.

Some previous works on remote sensing images using FSS have achieved high accu-
racy [51,52]. Their training and testing data came from the same remote sensing dataset,
which was different from our task. And the categories they contained were common cate-
gories with fixed shapes, such as airplanes, ships, or cars. In order to extend FSS-RSI to a
broader range of applications, some innovative works need to be proposed. For example,
tailored models must be designed for categories with no fixed shape to improve their
segmentation accuracy. Moreover, FSS-RSI combined with the usual semantic segmenta-
tion, which simultaneously segments novel and known categories, would be promising
future work.

5. Conclusions

To address the limitations of FSS for remote sensing, we extended the task to a new
field called FSS-RSI. Specifically, we established a novel benchmark for evaluating FSS-RSI,
which may be useful for other researchers. Moreover, we propose the FTNet with an FTM
and an HTM. The FTM transforms the support feature, query feature, and prototype into a
domain-agnostic space called the feature anchor. The HTM establishes abundant matching
correlations between the support and query patches. In this way, our model can process
remote sensing data with data from irrelevant domains.

Experiments were conducted on PASCAL-5i and our benchmark. The FTNet achieved
comparable accuracy to the cutting-edge methods on the in-domain data but obtained
an absolute advantage on the FSS-RSI data. The proposed method outperformed the
suboptimal model by 25.39% and 21.31% in the one-shot and five-shot settings, respectively.
We hope our method will be helpful for few-shot semantic segmentation for remote sensing.
For future work, we will focus on two interesting aspects: (1) designing tailored models to
improve the accuracy of the FSS-RSI and (2) dealing with FSS problems in some exceptional
cases, such as object occlusion, light changes, and similar appearance.

Author Contributions: Conceptualization, Q.S. and J.C.; Methodology, Q.S.; Software, Q.S.; Valida-
tion, Z.X. and W.C.; Formal analysis, Z.X.; Investigation, W.L. and N.H.; Writing—original draft,
Q.S.; Writing—review & editing, J.C., W.L. and N.H.; Visualization, Z.X. and W.C.; Supervision, J.C.;
Funding acquisition, W.L. and N.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by [Work Enhancement Based on Visual Scene Perception] and
[National Key Laboratory Foundation of Human Factors Engineering] grant number [GJSD22007].
The APC was funded by [Work Enhancement Based on Visual Scene Perception].

Data Availability Statement: The PASCAL VOC dataset is available at http://host.robots.ox.ac.
uk/pascal/VOC/voc2012 (accessed on 25 June 2012). The Deepglobe dataset is available at https:
//www.kaggle.com/datasets/balraj98/deepglobe-road-extraction-dataset (accessed on June 2018).
The Potsdam dataset is available at https://www.isprs.org/education/benchmarks/UrbanSemLab/
2d-sem-label-potsdam.aspx (accessed on February 2015). The Vaihingen dataset is available at https:
//www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-labelvaihingen.aspx (accessed on

204



Remote Sens. 2023, 15, 4937

February 2015). The AISD dataset is available at https://zenodo.org/record/1154821#.XH6HtygzbIU
(accessed on July 2017).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

We indicated in Section 2.2.2 that the gaps between ps
new and f q

m, new and between
f s
m, new and f q

m, new were significantly reduced after using the FTM. To confirm this, we
compared the distance between the support and query features before and after using
the FTM.

Specifically, for features f s
m and f q

m before the use of the FTM, we applied the global
averaging pooling operation to change their shape from (B, C, H, W) to (B, C, 1, 1), which
is the same shape as ps. B, C, H, and W indicate the tensor’s batch, channel, height, and
width, respectively. We defined B = 1 for convenience. The same operation was conducted
on f s

m, new and f q
m, new. Thus, f s

m, f q
m, ps, f s

m, new, f q
m, new, and ps

new were all vectors with
the shape of (1, C, 1, 1). The main purpose of the FTM was to transform the features
into a domain-agnostic space. We could not directly describe this domain-agnostic space.
However, we demonstrated this point by comparing the distance between the support and
query features as an alternative. This was plausible because the most important purpose of
FSS is to reduce the gap between these two features.

Indeed, the L2 norm was adopted as a metric. We calculated the distance d f s
m− f q

m
=∥∥∥ f s

m − f q
m

∥∥∥
2
, dps− f q

m
=

∥∥∥ps − f q
m

∥∥∥
2
, d f s

m,new− f q
m,new

=
∥∥∥ f s

m,new − f q
m,new

∥∥∥
2
, and dps

new− f q
m,new

=∥∥∥ps
new − f q

m,new

∥∥∥
2
, respectively. We collected 600 samples from the above four distances

when testing on the FSS-RSI-DeepGlobe dataset. In Figure A1, we present a visualization
of the whole results.

Figure A1a,b presents the distances before the use of the FTM with average distances
of 3.40 and 75.85, respectively. Figure A1c,d presents the distances after the use of the FTM,
with average distances of 0.47 and 0.88, respectively. The feature distances after the FTM
are much smaller than those before the FTM. Thus, we further prove that the FTM is a
useful module to reduce the gap between the support and query features.

 
(a)  (b)  

 
(c)  (d)  

Figure A1. Distances between support and query features: (a) f s
m and f q

m; (b) ps and f q
m; (c) f s

m, new
and f q

m, new; and (d) ps
new and f q

m, new.
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Appendix B

To clarify that the HTM hierarchically enhances matching between the support and
query features, the Frobenius norm was adopted as a metric. We denoted features before
the HTM as f s

front and f q
front. That is, f q

front = f q and f s
front = f s � Ms, where f q, f s, and Ms

are the features presented in Figure 2. Moreover, we denoted features after each trans-
former block as f s

after,0, f q
after,0, f s

after,1, f q
after,1, f s

after,2, f q
after,2, f s

after,3, and f q
after,3, respec-

tively. The features after merging the four transformer blocks were denoted as f s
merge

and f q
merge. Our purpose was to calculate the Frobenius norms as Ffront =

∥∥∥ f s
front − f q

front

∥∥∥
F
,

Fafter,0 =
∥∥∥ f s

after,0 − f q
after,0

∥∥∥
F
, Fafter,1 =

∥∥∥ f s
after,1 − f q

after,1

∥∥∥
F
, Fafter,2 =

∥∥∥ f s
after,2 − f q

after,2

∥∥∥
F
,

Fafter,3 =
∥∥∥ f s

after,3 − f q
after,3

∥∥∥
F
, and Fmerge =

∥∥∥ f s
merge − f q

merge

∥∥∥
F
, respectively. Similar to

the information presented in Appendix A, we collected 600 samples from the above six
distances when testing on the FSS-RSI-DeepGlobe dataset. In Figure A2, we present a
visualization of the results.

As shown in Figure A2a–f, the Frobenius norms decreased gradually, and their average
values were reduced from 244.03 to 91.40. Indeed, the transformer is a dense image
extraction and matching structure, which is difficult to explain using precise theory. We
hope that Figure A2. will justify that the HTM can hierarchically enhance matching between
the support and query features. Moreover, our ablation study, as presented in Section 4.1,
can further prove the effectiveness of the HTM.

 
(a)  (b)  

 
(c)  (d)  

Figure A2. Cont.
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(e)  (f)  

Figure A2. Frobenius norms between support and query features: (a) Fs
front and Fq

front; (b) Fs
after,0 and

Fq
after,0; (c) Fs

after,1 and Fq
after,1; (d) Fs

after,2 and Fq
after,2; (e) Fs

after,3 and Fq
after,3; and (f) Fs

merge and Fq
merge.

Appendix C

Apart from the FSS-RSI, we further proved the performance of the FTNet on the
in-domain dataset. The experiment was performed on PASCAL-5i, and we followed the
commonly used data division of four folds, but we reported only the results in the one-
shot setting. The results are shown in Table A1. As already known, a trick is used in the
BAM and HDMNet. That is, the image pairs containing novel classes during training are
removed. But in other works, novel classes are set as the background. This trick improves
the performance of the BAM and HDMNet. We did not use this trick for fairness, i.e., we
adopted the same strategy as for the other methods such as the HSNet and PFENet. Thus,
we retrained the BAM and HDMNet according to their official settings. The results of their
meta branches are shown in Table A1.

Table A1. The mIoUs (%) of different methods on the in-domain dataset. The best results are denoted
in bold. Suboptimal results are underlined.

Method Fold0 Fold1 Fold2 Fold3 Average

PFENet 63.23 70.79 53.28 57.25 61.14
RPMMs 59.50 71.58 55.40 51.96 59.61
HSNet 63.03 69.50 59.64 59.88 63.01
BAM 60.94 70.75 61.77 59.45 63.23

HDMNet 66.92 75.83 67.79 69.37 69.98
FTNet 62.42 71.06 58.00 58.91 62.60

As can be seen, the HDMNet is the best model, reaching the highest mIoU on three
folds. And its average mIoU on all four folds was the highest, reaching 69.98. The PFENet
and RPMMs also achieved good results on PASCAL-5i, reaching 61.14 and 59.61, respec-
tively. The FTNet obtained a suboptimal result on Fold1, which was 10.54% lower than the
HDMNet on all folds. However, our primary goal was FSS-RSI. The results in Table A1
further demonstrate the effectiveness of our model on FSS-RSI tasks. Figure A3 illustrates
our model’s qualitative results on PASCAL-5i.
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Figure A3. Results of the FTNet on PASCAL-5i.
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Abstract: Polarimetric synthetic aperture radar (PolSAR) image classification has been an important
area of research due to its wide range of applications. Traditional machine learning methods were
insufficient in achieving satisfactory results before the advent of deep learning. Results have signifi-
cantly improved with the widespread use of deep learning in PolSAR image classification. However,
the challenge of reconciling the complex-valued inputs of PolSAR images with the real-valued models
of deep learning remains unsolved. Current complex-valued deep learning models treat complex
numbers as two distinct real numbers, providing limited assistance in PolSAR image classification
results. This paper proposes a novel, complex-valued deep learning approach for PolSAR image
classification to address this issue. The approach includes amplitude-based max pooling, complex-
valued nonlinear activation, and a cross-entropy loss function based on complex-valued probability.
Amplitude-based max pooling reduces computational effort while preserving the most valuable
complex-valued features. Complex-valued nonlinear activation maps feature into a high-dimensional
complex-domain space, producing the most discriminative features. The complex-valued cross-
entropy loss function computes the classification loss using the complex-valued model output and
dataset labels, resulting in more accurate and robust classification results. The proposed method was
applied to a shallow CNN, deep CNN, FCN, and SegNet, and its effectiveness was verified on three
public datasets. The results showed that the method achieved optimal classification results on any
model and dataset.

Keywords: polarimetric synthetic aperture radar (PolSAR) image classification; complex-valued
convolutional neural network; complex-valued max pooling; complex-valued nonlinear activation;
complex-valued cross-entropy

1. Introduction

The polarimetric synthetic aperture radar (PolSAR) system was developed from the
conventional SAR system, which can provide multidimensional remote sensing informa-
tion about a target [1]. The PolSAR system is more advanced than the conventional SAR
system because it can obtain the target’s scattering echo amplitude, phase, and frequency
characteristics as well as the polarization characteristics of the target. PolSAR measures the
polarization scattering characteristics of the ground target by transmitting and receiving
electromagnetic waves with different polarization modes to obtain the target polarization
scattering matrix [2]. The polarization of electromagnetic waves is sensitive to physical
properties, such as the surface roughness, geometry, and orientation of the target, which
means that the polarization scattering matrix contains a wealth of target information. Pol-
SAR technology has been sustained and developed in recent decades, and it has been widely
studied and applied in various applications, such as identifying croplands, measuring
vegetation height, identifying forest species, describing geological structures, estimating
soil humidity and surface roughness, measuring ice thickness, and monitoring coastlines.
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PolSAR image classification involves assigning a label to each pixel in an image. As Pol-
SAR systems become more popular, the range and types of ground targets change faster, and
the captured target areas are becoming larger and captured more frequently. The traditional
pixel-by-pixel manual labeling method is becoming inadequate due to the rapidly expand-
ing PolSAR image data. Machine learning has been introduced to the PolSAR classification
task to deal with this issue. PolSAR image classification algorithms can be broadly catego-
rized into traditional machine learning algorithms and deep learning algorithms. Tradi-
tional machine learning algorithms can be further classified as unsupervised and supervised
algorithms. Unsupervised algorithms include techniques such as Wishart [3–5], Markov
random fields (MFRs) [6,7], and objective decomposition [8–11]. Supervised algorithms
include supported vector products (SVMs) [12,13], random forests (RFs) [2], and fuzzy
clustering [14]. When analyzing PolSAR images, traditional machine learning algorithms
usually rely on shallow features of PolSAR images obtained through feature extraction
methods. These shallow features include statistical features such as the linear and circular
intensities, linear and circular coefficient of variation, and span [13], as well as target de-
composition features such as the Pauli decomposition [15], Freeman decomposition [16],
and Huynen decomposition [17]. However, this approach has several drawbacks. Firstly,
the available features are limited and specific to certain scenes or targets. Secondly, some
features, such as target decomposition features, require complex data analysis and com-
putation. Thirdly, manual feature selection is time-consuming and requires many trials.
Additionally, machine learning algorithms only utilize the features of a single pixel and
ignore contextual information and local dependencies. Lastly, traditional machine learning
algorithms do not perform well in nonlinear tasks.

In PolSAR image classification, deep learning has become a popular method for
feature extraction. Unlike traditional machine learning, deep learning can automatically
extract unlimited features. Deep and high-dimensional features can also be discovered
by extracting features layer by layer. Additionally, deep learning can extract contextual
information and the local dependency of pixels by inputting a patch containing a pixel
to be classified. The feature extractor and classifier are combined into a single model,
allowing for adaptive updates to the model parameters from a specific dataset. Deep
learning is especially effective in handling nonlinear tasks due to containing a large number
of nonlinear modules. Due to its advantages, deep learning has proven to be more accurate
and effective than machine learning in PolSAR image classification. De et al. [18] proposed
a stacked self-encoder and multi-layer perceptron approach to classify urban buildings
in PolSAR images. Zhou et al. [19] designed a convolutional neural network (CNN)
with two cascaded layers to extract spatial features with translation invariance in PolSAR
images. Bin et al. [20] proposed a semi-supervised deep learning model based on graph
convolutional networks for PolSAR image classification. Li et al. [21] developed a method
for PolSAR image classification that incorporates a fully convolutional network (FCN)
and sparse coding. They called this approach sliding window FCN and sparse coding
(SFCN-SC). This approach significantly reduced the computational resources needed. Pham
et al. [22] used SegNet to solve the problem of very-high-resolution (VHR) PolSAR image
classification. Liu et al. [23] proposed an active ensemble deep learning (AEDL) model
that achieved high classification accuracy using only a small amount of training data.
Cheng et al. [24] developed a multiscale superpixel-based graph convolutional network
(MSSP-GCN) based on a graph convolutional network that fully utilizes the boundary
information of superpixels in PolSAR images. Liu et al. [25] used a stacked self-encoder
for PolSAR image classification and an evolutionary algorithm to adaptively adjust the
weights, activations, and balance factor in the loss function of the stacked self-encoder.
Jing et al. [26] designed a method that simultaneously utilizes both the self-attention
mechanisms of polarized spatial reconstruction networks for solving the classification of
similar objects in PolSAR images. Nie et al. [27] demonstrated that deep reinforcement
learning combined with FCN can achieve higher classification accuracy under limited
samples. Yang et al. [28] utilized N-clustering generative adversarial networks and deep
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learning techniques to enhance the accuracy of PolSAR image classification. They achieved
this by improving the hard classification accuracy for negative samples. Ren et al. [29] also
developed a high-level feature fusion scheme for the multimodal representation of PolSAR
images. Their approach was based on a CNN and resulted in the more efficient utilization
of different features for the same target.

The PolSAR image classification models mentioned earlier are all based on real-
valued CNNs (RV-CNN). This means the models’ parameters, inputs, and outputs are
all real-valued. However, since the raw data of PolSAR images are complex-valued, it is
impossible to input the raw data into the real-valued model directly. Instead, a mapping
between the raw data and the input of the real-valued model must be established, and
this mapping is selected manually. Although RV-CNN achieves competitive results in
PolSAR image classification, this approach still has some issues. First, there are multiple
mappings between raw data and real-valued inputs, and it is unclear which is the best.
Second, the mapping may cause a significant loss of implicit features in the raw data.
Third, complex-to-real mapping often discards phase information, which is useful in
PolSAR data [30–32].

Researchers have been investigating the use of a complex-valued neural network to di-
rectly process PolSAR data due to the challenges faced in this area. In 1992,
Georgiou et al. [33] extended the backpropagation algorithm for neural networks to the
complex domain for training complex-valued neural networks. Trabelsi et al. [34] were
the first to propose a complex-valued convolutional neural network (CV-CNN), but their
complex-valued pooling and loss functions were ineffective, and their proposed complex-
valued activation did not work well. Zhang et al. [35] proposed a CV-CNN for PolSAR
image classification. Li et al. [36] proposed a model that uses a multiscale contour filter bank
and CV-CNN to automatically extract the complex-valued features of PolSAR images using
the prior knowledge of the filters. Xiao et al. [37] developed a classification model with
a complex-valued encoder and decoder. Additionally, they utilized the complex-valued
upsampling module for the first time. Zhao et al. [38] proposed a contrastive-regulated
CV-CNN that obtains features from raw back-scatter data. Tan et al. [39] explored the
effectiveness of using a 3D complex-valued convolution to extract hierarchical features in
both spatial and scattering dimensions. This allowed them to obtain physical features with
the polarization resolution of neighboring cells. Zhang et al. [40] investigated the potential
of random fields for modeling and complex-valued convolution for representation learning
on PolSAR images. They proposed a hybrid conditional random field model based on a
complex-valued 3D convolutional neural network. Qin et al. [41] suggested incorporating
expert knowledge as input to the CV-CNN model to enhance its performance and make
it more robust. Fang et al. [42] proposed a stacked complex-valued convolutional long
short-term memory network for PolSAR image classification, which extracts coherence
information between different features. Meanwhile, Tan et al. [43] utilized three sets of
CV-CNNs to extract coherence information from the PolSAR images. They achieved this by
maximizing the inter-class distance and minimizing the intra-class distance to learn the
most discriminative features.

Although deep learning models using complex values have made significant break-
throughs in PolSAR classification, they still face major challenges. Firstly, the complex-
valued nonlinear module has not received enough attention. The excellent performance of
CNNs in PolSAR image classification is due to its strong nonlinear fitting ability, but the
nonlinear module has not been optimized in the literature. CNN cannot perform strong
nonlinear fitting without an outstanding complex-valued nonlinear module bringing sub-
optimal classification results. Secondly, existing CV-CNNs either use only the amplitude of
the features while ignoring their phases or treat the real and imaginary parts of the features
separately. The first approach generates features that do not contain phase information,
and the second approach does not satisfy the complex multiplication theorem. Thirdly,
cross-entropy, the most common loss function in classification, can make the probability
distribution of the CNN output closer to the real label by minimizing the cross-entropy
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loss between the label and the CNN output. However, cross-entropy is computed for two
real-valued probability distributions, while CV-CNN output is complex.

This paper explores using CV-CNN in PolSAR image classification and suggests a
new complex-valued pooling method, nonlinear activation, and cross-entropy approach
called CV_CrossEntropy. The nomenclature employed in this study designates our novel
approaches as new CV-CNN to mitigate potential ambiguities with previously cited CV-
CNN methodologies in the literature. These methodologies are subsequently employed
across shallow CNN (SCNN), deep CNN (DCNN), FCN, and SegNet architectures. The
results reveal substantial enhancements in the models’ classification performance when
compared to both real-valued and conventional complex-valued counterparts featuring
identical structural configurations and parameters. This paper focuses on four aspects:
(1) complex-valued max pooling to reduce computation and expand the receptive field;
(2) complex-valued activation to extract high-dimensional nonlinear features; (3) complex-
valued probability and labels to calculate loss; and (4) CV_CrossEntropy to train CV-CNN.

To summarize, our contributions can be expressed as follows:

(1) A novel CV-CNN is introduced in this study, featuring complex-valued inputs, out-
puts, as well as complex-valued weights and biases. Our nonlinear module treats
the input as a complex number, respecting the mathematical significance of complex-
valued inputs and extracting the most discriminative features, resulting in improved
classification ability. Our new complex-valued methods are used in different deep
learning models and achieve better results than real-valued or old complex-valued
versions with the same structure.

(2) In this research, a novel complex-valued max pooling technique is presented for
the downsampling of feature maps. This method is designed to reduce computa-
tional demands, accelerate training and inference, and, importantly, retain the most
essential features.

(3) A novel complex-valued activation function is employed to acquire high-dimensional
nonlinear features. This new activation maps the amplitude and phase of the fea-
tures into the high-dimensional complex domain space and can make the model
more sparse.

(4) A novel complex-valued cross-entropy is applied in the training process of the new CV-
CNN. The complex-valued probability principle [44–48] is employed to reallocate one-
hot labels within the dataset. This loss function utilizes the complex-valued labels and
outputs to compute the classification loss and train a better model by backpropagation.

Three different versions of SCNN, DCNN, FCN, and SegNet were considered: the
real-valued version, the old complex-valued version, and the new complex-valued version.
In total, 12 models were compared across three publicly available PolSAR datasets. The
experimental results demonstrate that the models enhanced by the new complex-valued
approach consistently outperform the others, yielding the best results.

The rest of the paper is structured in the following manner. Section 2 provides
an in-depth explanation of complex-valued nonlinear modules and CV_CrossEntropy
theory. Section 3 presents the experimental results on three public datasets. Furthermore,
Section 4 showcases related discussions and ablation experiments. Lastly, Section 5 contains
the summary and future work.

2. Materials and Methods

This section presents a new approach called CV-CNN for classifying PolSAR images.
The method uses a complex-valued convolutional kernel to extract the features of Pol-
SAR images, which addresses the implicit mapping problem introduced by a real-valued
convolutional kernel. The paper also proposes a new complex-valued nonlinear module
that processes the input data amplitude and phase to extract better features. The model’s
training employs a new CV_CrossEntropy loss function, yielding improved accuracy and
robustness of the model and guaranteeing unique classification results during inference. Ad-
ditionally, Section 2.1 describes two deep learning models for PolSAR image classification,
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which can be either complex-valued or real-valued, depending on the input. It is necessary
to design appropriate nonlinear methods for PolSAR data to enhance classification accuracy.
Section 2.2 introduces the input format of PolSAR. Sections 2.3 and 2.4 present complex-
valued max pooling and complex-valued nonlinear activations. Section 2.5 introduces
complex-valued probability, a one-hot label, and cross-entropy for computing the loss dur-
ing training. Finally, the CV-CNN algorithm for PolSAR image classification is summarized
in Section 2.6.

2.1. Two Deep Learning Models for PolSAR Classification

Figure 1 shows two networks that can be used for PolSAR image classification:
(a) a CNN and (b) a convolutional encoder–decoder network. The CNN classifies one pixel
at a time using a patch of size h × w × C as input and produces a prediction of a pixel
of a size of 1 × 1. It consists of a feature extractor (convolutional, pooling, and nonlinear
activation layers) and a classifier (fully connected and softmax layers). Two CNNs are
used in this paper to test complex-valued methods, with the main difference being the
number of convolutional layers. The convolutional encoder–decoder network classifies all
pixels of an image at once using a PolSAR image of size H ×W × C as input and producing
a prediction image of size H × W. The encoder and decoder are the feature extractor
and classifier, respectively. The encoder has the same structure as the CNN, while the
decoder has convolutional, upsampling, nonlinear activation, and softmax layers but no
fully connected layer. The experiments use two convolutional encoder–decoder models:
FCN and SegNet, with the main difference being the connection between the encoder and
decoder. The convolutional encoder–decoder has more parameters but less computational
redundancy than the CNN.

Figure 1 shows that convolutional models consist of fundamental modules, includ-
ing convolution, fully connected, pooling, and activation layers. Convolution and fully
connected layers are linear modules while pooling, and activation layers are nonlinear
modules. A complex-valued batch normalization layer [34] is commonly inserted between
the convolutional and nonlinear activation layers to avoid model overfitting. Linear mod-
ules perform addition and multiplication, which can be expressed as Equations (1) and (2)
for real and complex numbers.

Figure 1. Two types of deep convolutional models for PolSAR image classification. The first
model (a) is a convolutional neural network with blue and green parts for feature extraction and gray
and yellow parts for classification. The second model (b) is a convolutional encoder–decoder network
with blue and green parts for feature extraction and red, blue, and yellow parts for classification. In
both models, ‘Conv’ refers to the convolutional layer, ‘BN’ refers to the batch normalization layer, and
‘FC’ refers to the fully connected layer. The black dotted line indicates that the encoder and decoder
feature maps have been fused. Additionally, ‘H’, ‘W’, and ‘C’ represent the input’s height, width, and
number of channels.
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(A + j · B)× (a + j · b) = (Aa − Bb) + j · (Ab + Ba) (1)

(A + j · B) + (a + j · b) = (A + a) + j · (B + b) (2)

By analyzing Equations (1) and (2), it is apparent that complex-valued addition
and multiplication are linear computations of real and imaginary parts. As a result,
two real-valued convolution kernels can replace one complex-valued convolution ker-
nel, and two real-valued fully connected operators can replace one complex-valued fully
connected operator.

2.2. Inputs of PolSAR Classification

The inputs with complex and real values have equal width and height but differ in the
number of channels. A 2 × 2 complex-valued scattering matrix represents each resolution
cell of the PolSAR data, as shown in Equation (3):

S =

[
SHH SHV
SVH SVV

]
(3)

H and V represent the horizontal and vertical polarization bases in this equation,
respectively. Spg represents the backscattering coefficient between the polarization scattered
and the incident field. It is typically assumed that SHV and SVH are identical due to the
reciprocity theorem. This allows the matrix to be simplified and reduced to the scattering
vector�k. Using the Pauli decomposition method, the scattering vector�k can be expressed
as shown in Equation (4):

�k =
1√
2

[
SHH + SVV , SHH − SVV , 2SHV

]T (4)

The representation of the consistency matrix for PolSAR data in the multi-look scenario
can be found in Equation (5):

T =
1
L

L

∑
i=1

�ki�kH
i =

⎡⎣T11 T12 T13
T21 T22 T23
T31 T32 T33

⎤⎦ (5)

The equation for T, which represents the consistency matrix, includes the number
of looks (L) and the conjugate transpose (denoted by H). T is a Hermitian matrix with
real-valued elements on the diagonal and complex-valued elements off-diagonal. Only
the upper triangular part [T11, T12, T13, T22, T23, T33] is necessary to input T into the deep
convolutional model. In the case of the real-valued model, the feature vector is represented
by Equation (6) and has nine input channels:

[T11, T22, T33,�(T12),�(T12),�(T13),�(T13),�(T23),�(T23)] (6)

In the model that deals with complex values, there are six input channels, and the
feature vector is identified as Equation (7):

[T11 + 0 · j, T22 + 0 · j, T33 + 0 · j, T12, T13, T23] (7)
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2.3. Complex-Valued Amplitude-Based Max Pooling

In machine learning, deep learning is a set of methods requiring much computational
power. Unfortunately, a significant portion of this computational power is used redundantly,
which can result in slow convergence, poor performance, and overfitting. One technique
to address this is pooling, which reduces the amount of data involved by shrinking the
feature map. Additionally, pooling also expands the receptive field, allowing the model to
extract more meaningful features with contextual and global information. As a result, it is
important to use pooling methods that keep the most effective features while reducing the
feature map size.

Based on Figure 2a, the complex-valued feature map can be split into real and imag-
inary feature maps. These two maps can then be combined into an amplitude feature
map. The amplitude feature map is then subjected to real-valued max pooling, and the
maximum value index is recorded. Afterward, the final pooling result is obtained by
utilizing the maximum index and the original feature map. The mathematical expression
for amplitude-based max pooling (CVA_Max_Pooling) is shown in Equation (8):

Figure 2. (a) displays the process of amplitude-based max pooling, using gray squares to represent
the feature map before pooling and colored squares for the feature map after 2 × 2 pooling. (b) shows
the complex plane representation of the four features in the 2 × 2 feature map identified by the red
dashed box in (a).

CVA_Max_Pooling(F) = {Fi,j|i, j = arg_max(F2
i,j)} (8)

In this equation, F represents the feature map, while w and h refer to the width and
height of the pooling kernel. Figure 2b displays a complex plane map of all the data within
a pooling kernel. Each feature in this map consists of an amplitude and a phase. The
amplitude indicates the strength of the feature, with higher amplitudes indicating greater
strength and importance. Meanwhile, the phase of a feature indicates its synchronization
relationship with other features. Features with closer phase values are more synchronized.
However, comparing the two features’ phase sizes is meaningless. In Figure 2b, feature
a6 + j ∗ b6 has the largest amplitude, so CVA_Max_Pooling will keep that feature in the
next layer.

Complex-valued pooling methods, such as max pooling or average pooling, are
commonly used on features’ real and imaginary parts. However, it is important to note that
old complex-valued average pooling can weaken significant features, while old complex-
valued max pooling can create “fake” features that could negatively impact the final
classification results. On the other hand, CVA_Max_Pooling can efficiently preserve crucial
features, thus reducing computational workload, broadening the receptive field, and
enhancing classification accuracy.

2.4. Complex-Valued Nonlinear Activation

Using complex-valued nonlinear activation is beneficial in mapping features into a
high-dimensional nonlinear space. This greatly enhances the nonlinear fitting ability of
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CV-CNNs. In RV-CNN models, the most commonly used nonlinear activations are variants
of ReLU. These activations are widely used in real-valued deep learning models and deliver
outstanding performance due to their computational simplicity, ease of derivation, and
ability to sparsify feature maps. A simulated ReLU function is also a preferred design
idea for most complex-valued nonlinear activations. Compared to real-valued activation,
complex-valued activation requires a double nonlinear mapping of the feature amplitude
and phase. The three common nonlinear activations in old CV-CNNs are ModReLU,
CReLU, and ZReLU . Their Equations are (9)–(11), respectively.

ModReLU(z) = ReLU(|z| − b)ejθz =

{
(|z| − b) z

|z| i f |z| ≥ b

0 + 0 · j otherwise
(9)

CReLU(z) = ReLU(�(z)) + j · ReLU(�(z)) (10)

ZReLU(z) =

{
z i f θz ∈ [0, π/2]
0 + 0 · j otherwise

(11)

Based on (9)–(11), it is evident that these three nonlinear activations with complex
values imitate ReLU in varying ways. This paper suggests an improved complex-valued
nonlinear activation called HReLU, which introduces a new approach and is expressed in
Equation (12).

HReLU(z) =

{
z i f θz ∈ [0, π]

0 + 0 · j otherwise
(12)

To fully comprehend the advantages and disadvantages of complex-valued nonlinear
activations, it is crucial to understand why ReLU has succeeded in RV-CNN. ReLU is a
segmented mapping with a constant mapping in the range of (−∞, 0) and a linear mapping
in the range of [0,+∞). This feature makes ReLU convenient for forward inference and
for the calculation of derivatives, as its derivatives are 0 in the range of (−∞, 0) and 1 in
the range of [0,+∞). ReLU maps data in the range of (−∞, 0) to 0 while keeping data in
the range of [0,+∞) unchanged. This not only sparsifies the feature map and improves
the model’s generalization ability but also prevents the feature map from being too sparse,
leading to insufficient model fitting. However, for the complex-valued feature maps, the
amplitude and phase ranges are [0,+∞) and [0, 2π], respectively, which makes ReLU
unsuitable. To address this, ModReLU, CReLU, ZreLU, and HReLU have been developed
to migrate ReLU to the complex domain. If these four complex-valued nonlinear activations
are split into the amplitude activation and the phase activation, they can be represented as
follows:

ModReLU:

ModReLU(|z|) =
{
|z| − b i f |z| ≥ b
0 otherwise

(13)

ModReLU(θz) =

{
θz i f |z| ≥ b, θz ∈ [0, 2π)

0 otherwise, θz ∈ [0, 2π)
(14)

CReLU:

CReLU(|z|) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|z| i f θz ∈ [0, π/2)
|�(z)| i f θz ∈ [π/2, π)

0 i f θz ∈ [π, 3π/2)
|�(z)| i f _θz ∈ [3π/2, 2π)

(15)
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CReLU(θz) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θz i f θz ∈ [0, π/2)
π/2 i f θz ∈ [π/2, π)

0 i f θz ∈ [π, 3π/2)
2π i f θz ∈ [3π/2, 2π)

(16)

ZReLU:

ZReLU(|z|) =
{
|z| i f θz ∈ [0, π/2]
0 otherwise

(17)

ZReLU(θz) =

{
θz i f θz ∈ [0, π/2]
0 otherwise

(18)

HReLU:

HReLU(|z|) =
{
|z| i f θz ∈ [0, π]

0 otherwise
(19)

HReLU(θz) =

{
θz i f θz ∈ [0, π]

0 otherwise
(20)

By examining Figure 3 and Equations (13)–(20), it can be observed that only HReLU
performs ReLU-like processing on the magnitude and phase of complex-valued feature maps.
HReLU is also a segmented function, with the upper half of the complex plane being a linear
mapping and the lower half being a constant mapping. Once HReLU is expressed as an
amplitude-activated function and a phase-activated function, these two functions also become
segmented functions, with half of the data being linear mappings and the other half being
constant mappings. HReLU’s nonlinear section also maps the data as 0+ 0 · j, which sparsifies
the feature map and improves the model’s generalization ability. In contrast, ModReLU’s
nonlinearization range is too small, making it difficult to extract efficient features. CReLU
is not sparse enough, leading to poor generalization. ZReLU is too sparse, resulting in a
model prone to underfitting. According to Georgiou et al.’s complex-valued backpropagation
algorithm [33], the derivatives of HReLU in the upper and lower halves of the complex plane
are simple to compute, being 1 + 1 · j and 0 + 0 · j, respectively.

Figure 3. (a–d) depict the complex plane mappings for ModReLU, CReLU, ZReLU, and HReLU,
respectively. The blue shaded area corresponds to the data set to 0 + 0 · j, while the dashed region
with arrows indicates data mapped to the coordinate axes. Any blank part areas in the data will be
preserved for the next layer.

2.5. Complex-Valued Cross-Entropy

CNNs are supervised learning models that rely on the loss between the model output
and the label during training. In the case of RV-CNN used for PolSAR image classification,
the output is a real-valued probability distribution vector. The labels are a real-valued one-hot
vector with dimensions equal to the number of categories. RV-CNN uses real-valued cross-
entropy to calculate the loss of PolSAR image classification. However, CV-CNN’s output is
no longer a real-valued probability distribution vector, which means that real-valued cross-
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entropy cannot be used to calculate the loss. The old complex-valued classification models
only use the real part of the output to calculate the loss value, but this approach loses at least
half of the information flow. Thus, this paper proposes a CV_one-hot label, complex-valued
probability distribution vector and CV_CrossEntropy to address this issue.

2.5.1. Complex-Valued Probability and CV_one-hot Label

Complex-valued probability is an extension of traditional probability that uses com-
plex numbers to express probability distributions [44–48]. Before delving into this concept,
it is important to clarify some related theorems.

Definition 1. Pm = j · (1 − Pr) represents the probability of a random event A in the imaginary
and real fields, where j denotes the imaginary unit.

Theorem 1. The norm of a random event in the complex domain is calculated as |Pc|: |Pc|2 =
P2

r + (Pm/j)2.

Theorem 2. The sum of probabilities of a random event’s real and imaginary parts in the complex
domain is always equal to 1: (Pr + Pm/j)2 = |Pc|2 − 2jPrPm = 1

From these theorems, it can be inferred that Pr represents the probability of any
random event happening, while Pm represents the probability of the associated event in
the imaginary domain. Pc is a random event in the complex field given by Pr and Pm. The
degree of knowledge and the chaos factor of a random event in the complex domain are
denoted by |Pc|2 and 2jPrPm, respectively.

If Pr = 1, this means that the random event in the real domain is deterministic, and
the degree of knowledge and the chaos factor of the random event in the complex domain
are 1 and 0, respectively.

If Pr = 0, this means that the random event in the real domain is impossible, and the
degree of knowledge and the chaos factor of the random event in the complex domain are
1 and 0, respectively.

When Pr = 0.5, the degree of knowledge of the random event in the complex domain
is 0.5, and the chaos factor is −0.5.

It is important to note Equations (21) and (22):

0.5 ≤ |Pc|2 ≤ 1 , −0.5 ≤ 2jPrPm ≤ 0 (21)

(Pr + Pm/j)2 = Degree_o f _knowledge − Chaos_ f actor = 1 (22)

This means a stochastic system in the complex domain has a constant probability
equal to 1, but its degree of knowledge and chaos factor are variable. The more stable the
stochastic system is, the greater its degree of knowledge, and the closer the chaos factor is
to zero. This can be used to redesign the CV_one-hot label for PolSAR image classification.

In Figure 4a, the real-valued one-hot label can be seen as a probability distribution for
an object belonging to a certain category with a 100% probability (the value at the activation
point is 1, and the values at the other inactivation points are 0). Figure 4b proposes a
K-dimensional complex-valued vector as the CV_one-hot label, with 1 + 0 · j values at
activation points and the 0+ 1 · j values at the inactivation point. Figure 4c shows that when
the complex-valued probability is decomposed into Pr and Pm/j probability, the meaning
of the CV_one-hot label becomes easier to understand. At the activation point, Pr equals 1,
and Pm/j equals 0, while at the inactivation point, Pr equals 0, and Pm/j equals 1. The
vector Pr represents the probability of classification and has the same meaning as the vector
P, which is used to obtain the unique class of an object via softmax. If a complex-valued
probability is treated as a stochastic system, the knowledge degree of any point in the
CV_one-hot label equals 1, and the chaos factor equals 0. Therefore, the CV_one-hot label
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has the highest stability, as well as the largest knowledge degree and the smallest absolute
value of the chaos factor.

Figure 4. (a) shows a real-valued one-hot label, while (b,c) are CV_one-hot labels. K represents the
number of categories. P represents the probability of a random event in the real domain, while Pc

represents the probability of a random event in the complex domain. Pr and Pm represent the real
and imaginary parts of the random event in the complex domain.

2.5.2. Complex-Valued Cross-Entropy

To effectively train CV-CNNs, it is not sufficient to use CV_one-hot labels. A loss
function must also measure the difference between the model’s output and the label. RV-
CNNs use cross-entropy as their loss function, which calculates the difference between
two probability distributions. A high loss value indicates a significant difference between
the model’s output and the label, while a low value indicates a small difference. Similarly,
to train CV-CNNs, this paper proposes a loss function called CV_CrossEntropy, which
describes the difference between complex-valued outputs and CV_one-hot labels using the
following Equation:

CV_Loss = CrossEntropy(�(ŷ),�(y)) +
K−1

∑
k=0

CrossEntropy([�(ŷk),�(ŷk)], [�(yk),�(yk)])

= − 1
N

N

∑
i=1

( K−1

∑
k=0

�(yik)log�(ŷik) +
K−1

∑
k=0

(�(yik)log�(ŷik) +�(yik)log�(ŷik)
)) (23)

In Equation (23), K represents the number of categories, while N represents the number
of samples in a mini-batch. In addition, y refers to the ground truth, whereas ŷ represents
the model’s predicted outcome. The initial segment of the loss function only applies to the
real part of the labels and the Pr of the outputs. The smaller the value of this part, the more
precise the classification outcome of the complex-valued model will be. The second part of
the loss function incorporates the labels, Pr, and Pm/j of the outputs. The smaller the value
of this part, the more stable the classification system will become.

2.6. Complex-Valued PolSAR Classification Algorithm

Algorithm 1 outlines the PolSAR classification process based on a complex-valued
approach proposed in this research. The first step involves constructing a complex-valued
convolutional classification network equipped with CVA_Max_Pooling and HReLU in the
model. Next, CV_one-hot labels are applied to the training set. Then, the model parameters
are updated through iterations using the CV_CrossEntropy loss. Lastly, the trained model
is utilized to classify the complete PolSAR dataset.
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Algorithm 1: Complex-valued convolutional classification algorithm for PolSAR
images

Preprocessing:

1. Construction of complex-valued models for PolSAR image classification with
CVA_Max_Pooling and HReLU

2. Assigning CV_one-hot labels to each pixel of the PolSAR dataset
3. Selection of training set from the PolSAR dataset
Input: a training set and corresponding labels, learning rate, batch size, and
momentum parameter
4. Repeat:

5. Calling CVA_Max_Pooling to obtain the most efficient features
6. Invoking HReLU to map the amplitude and phase of the feature to the
nonlinear domain

7. Calling CV_CrossEntropy to compute the loss during training
8. Updating model parameters with loss
9. Until: Meeting the conditions for termination
10. Inferring the class of the entire PolSAR image with the trained model
Output: Prediction of the testing set

3. Experimental Results

This section will start by providing a brief description of the three benchmark datasets.
Subsequently, the section delves into the specifics of the model inputs, the experimental
setup, and the evaluation metrics. Finally, the effectiveness of the proposed complex-valued
approach is demonstrated through a comparative analysis of classification model results
across the three PolSAR datasets.

3.1. PolSAR Dataset Description
3.1.1. Flevoland Dataset 1

On 16 August 1989, the NASA/JPL AIRSAR airborne platform collected a dataset from
the Flevoland area in the Netherlands. These data have a size of 750 × 1024,
and Figure 5a,b displays the RGB image and corresponding ground truth after Pauli
decomposition. The image contains 15 categories: stembeans, peas, forest, lucerne, wheat,
beet, potatoes, bare soil, grass, rapeseed, barley, wheat2, wheat3, water, and buildings.

Figure 5. The ground truth and class legends of Flevoland Dataset 1, Flevoland Dataset 2, and
Oberpfaffenhofen Dataset. (a,d,g) are RGB images, (b,e,h) are the corresponding ground truth images
after Pauli decomposition, and (c,f,i) are class legends.

222



Remote Sens. 2023, 15, 4801

3.1.2. Flevoland Dataset 2

In 1991, L-band ATRSAR data were collected in the Flevoland area, consisting of a
size of 1024 × 1024. Figure 5d displays the RGB image, while Figure 5e shows the ground
truth after Pauli decomposition. The image consists of 14 categories: potato, fruit, oats,
beet, barley, onions, wheat, beans, peas, maize, flax, rapeseed, grass, and lucerne.

3.1.3. Oberpfaffenhofen Dataset

The German Aerospace Center (DLR) has provided the ESAR data for the Oberp-
faffenhofen area in Germany. The dataset is 1300 × 1200, and the RGB image and the
corresponding ground truth after Pauli decomposition are displayed in Figure 5g,h. The
image depicts three categories: built-up, woodland, and open areas.

3.2. Parameterization

Before conducting experiments, it is crucial to establish the appropriate training. For
PolSAR image classification, several studies have explored the sampling rate and neural
network parameters for PolSAR image classification [20], which renders it unnecessary for
this paper to delve into those parameters. Instead, this paper will utilize them directly in
the experiments.

Training and testing sets for SCNN, DCNN, FCN, and SegNet needed to be created
using PolSAR images and labels. The inputs and outputs for these models were explained
in Section 2.1 and will not be repeated here. For the SCNN and DCNN, the input was a
12 × 12 image patch containing a pixel to be classified. For FCN and SegNet, a sliding
window of 128× 128 with a sliding step of 15 generated training and testing sets on PolSAR
images and labels. Only labeled pixels in the input of FCN and SegNet were involved
in training, and unlabeled pixels could not be used to update model parameters. In all
experiments, the model was trained and validated using a ratio of 0.9/0.1 for pixels in the
training set.

PyTorch was employed for implementing all codes, and the Adam optimizer with
default parameters was utilized. All experiments were conducted on a single workstation
with an Intel Core i7-6700K CPU, 32G RAM, an NVIDIA TITAN X GPU, and an Ubuntu
20.04 LTS operating system.

3.3. Evaluation Metrics

When evaluating how well PolSAR images are classified, there are three common
metrics: overall accuracy (OA), average accuracy (AA), and Kappa coefficient. OA is the
ratio of correctly classified samples to the number of test samples. AA is the average
accuracy of classification for each category. The kappa coefficient is a metric that measures
the effectiveness of classification and consistency testing, especially when the number
of samples in different categories varies greatly. The larger these metrics, the better the
classification effect.

3.4. Model Parameters

The SCNN, DCNN, FCN, and SegNet parameters are listed in Tables 1–3, respectively.
For real-valued models, ReLU was used as the activation function, max pooling was used
as the pooling function, and cross-entropy was used as the loss function. For old complex-
valued models, CReLU was used as the activation function, max pooling was used as the
pooling function, and cross-entropy was used as the loss function. For new complex-valued
models, HReLU was used as the activation function, CVA_Max_Pooling was used as the
pooling function, and CV_CrossEntropy was used as the loss function. To ensure fairness
in the experiment, the number of parameters in the different models was kept as equal
as possible.
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Table 1. Detailed parameters of the RV-SCNN and CV-SCNN. K denotes the total number of categories.

Module Dimension Module Dimension

RV-SCNN

RV-Convolution 3 × 3 × 9 × 8

CV-SCNN

CV-Convolution 3 × 3 × 6 × 6
RV-Max-Pooling 2 × 2 CVA_Max_Pooling 2 × 2

ReLU HReLU

RV-Convolution 3 × 3 × 8 × 22 CV-Convolution 3 × 3 × 6 × 12
RV-Max-Pooling 2 × 2 CVA_Max_Pooling 2 × 2

ReLU HReLU

RV-Average-
Pooling

CV-Average-
Pooling

RV-Fully-
Connection 22 × 180 CV-Fully-

Connection 12 × 128

RV-Fully-
Connection 180 × K CV-Fully-

Connection 128 × K

RV-SCNN Params FLevoland 1: 9147; FLevoland 2: 8966; Oberpfaffenhofen: 6975

CV-SCNN Params FLevoland 1: 9214; FLevoland 2: 8956; Oberpfaffenhofen: 6118

Table 2. Detailed parameters of the RV-DCNN and CV-DCNN. K denotes the total number of categories.

Module Dimension Module Dimension

RV-DCNN

RV-Convolution 3 × 3 × 9 × 18

CV-DCNN

CV-Convolution 3 × 3 × 6 × 12
RV-Max-Pooling 2 × 2 CVA_Max_Pooling 2 × 2

ReLU HReLU

RV-Convolution 3 × 3 × 18 × 36 CV-Convolution 3 × 3 × 12 × 24
RV-Max-Pooling 2 × 2 CVA_Max_Pooling 2 × 2

ReLU HReLU

RV-Convolution 3 × 3 × 36 × 72 CV-Convolution 3 × 3 × 24 × 48
RV-Max-Pooling 2 × 2 CVA_Max_Pooling 2 × 2

ReLU HReLU

RV-Convolution 3 × 3 × 72 × 144 CV-Convolution 3 × 3 × 48 × 96
RV-Max-Pooling 2 × 2 CVA_Max_Pooling 2 × 2

ReLU HReLU

RV-Average-
Pooling

CV-Average-
Pooling

RV-Fully-
Connection 144 × 312 CV-Fully-

Connection 96 × 256

RV-Fully-
Connection 312 × K CV-Fully-

Connection 256 × K

RV-DCNN Params FLevoland 1: 174,405; FLevoland 2: 174,092; Oberpfaffenhofen: 170,649

CV-DCNN Params FLevoland 1: 168,254; FLevoland 2: 167,740; Oberpfaffenhofen: 162,086
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Table 3. Detailed parameters of the RV-(FCN, SegNet) and CV-(FCN, SegNet). K denotes the total
number of categories.

Module Dimension Module Dimension

RV-(FCN, SegNet)

RV-Convolution 3 × 3 × 9 × 17

CV-(FCN, SegNet)

CV-Convolution 3 × 3 × 6 × 12
RV-Max-Pooling 2 × 2 CVA_Max_Pooling 2 × 2

ReLU HReLU

RV-Convolution 3 × 3 × 17 × 34 CV-Convolution 3 × 3 × 12 × 24
RV-Max-Pooling 2 × 2 CVA_Max_Pooling 2 × 2

ReLU HReLU

RV-Convolution 3 × 3 × 34 × 68 CV-Convolution 3 × 3 × 24 × 48
RV-Max-Pooling 2 × 2 CVA_Max_Pooling 2 × 2

ReLU HReLU

RV-Convolution 3 × 3 × 68 × 132 CV-Convolution 3 × 3 × 48 × 96
RV-Max-Pooling 2 × 2 CVA_Max_Pooling 2 × 2

ReLU HReLU

Up-sampling 2 × 2 Up-sampling 2 × 2
RV-Convolution 3 × 3 × 132 × 68 CV-Convolution 3 × 3 × 96 × 48

ReLU HReLU

Up-sampling 2 × 2 Up-sampling 2 × 2
RV-Convolution 3 × 3 × 68 × 34 CV-Convolution 3 × 3 × 48 × 24

ReLU HReLU

Up-sampling 2 × 2 Up-sampling 2 × 2
RV-Convolution 3 × 3 × 34 × 17 CV-Convolution 3 × 3 × 24 × 12

ReLU HReLU

Up-sampling 2 × 2 Up-sampling 2 × 2
RV-Convolution 3 × 3 × 17 × 9 CV-Convolution 3 × 3 × 12 × 6

ReLU HReLU

Up-sampling 2 × 2 Up-sampling 2 × 2
RV-Convolution 3 × 3 × 9 × K CV-Convolution 3 × 3 × 6 × K

RV-(FCN, SegNet)
Params FLevoland 1: 218,345; FLevoland 2: 218,262; Oberpfaffenhofen: 217,349

CV-(FCN, SegNet)
Params FLevoland 1: 223,080; FLevoland 2: 222,968; Oberpfaffenhofen: 221,736

3.5. Analysis of Experimental Results
3.5.1. Flevoland Dataset 1 Results

In order to enhance the robustness assessment of the proposed methods, cross-
validation was employed to acquire the classification results. Five percent of the labeled
samples from each of the 15 dataset categories were randomly selected as the training set,
while the remaining samples constituted the testing set. The final result, as depicted in
Figure 6 and Table 4, represents the average of ten classification outcomes.

It is evident from the quantitative results that the real-valued version of any classifica-
tion model has the poorest classification results, while the new complex-valued approach
has the best results. This demonstrates the effectiveness of the new complex-valued ap-
proach. The complex-valued approach preserves the phase features of the input, thus
extracting and retaining more effective features. Moreover, CVA_Max_Pooling preserves
the most discriminative features, while HReLU provides sufficient nonlinearity and sparsity.
Finally, CV_CrossEntropy enhances the efficiency of feature utilization, leading to the best
classification results.
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Figure 6. Classification results of Flevoland Dataset 1 with different methods. The classification
results of RV-SCNN, RV-DCNN, RV-FCN, and RV-SegNet are represented by (a,d,g,j), respectively,
while the results of old CV-SCNN, old CV-DCNN, old CV-FCN, and old CV-SegNet are shown
by (b,e,h,k). The classification results of new CV-SCNN, new CV-DCNN, new CV-FCN, and new
CV-SegNet are represented by (c,f,i,l).

After analyzing the effects of four classification models, it was observed that SegNet
performs the best in achieving classification results under the same version, while SCNN
has the poorest classification results, and the encoder–decoder model outperforms the
CNN model. The new CV-SCNN, new CV-DCNN, new CV-FCN, and new CV-SegNet have
shown an improvement of 4.01%, 4.46%, 3.46%, and 0.45%, respectively, over RV-SCNN,
RV-DCNN, RV-FCN, and RV-SegNet. The results indicate that the complex-valued method
has a significant improvement effect on CNNs with fewer parameters. This is because
the classification results of FCN and SegNet are already satisfactory, and improving them
significantly using the complex-valued method is challenging. Therefore, if only CNNs
can be selected for PolSAR image classification due to machine performance constraints,
the new CV-CNN model would be the best choice. Otherwise, the new CV-SegNet would
provide optimal classification results. Figure 6l highlights that the new CV-SegNet’s results
are almost identical to the ground truth.
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Table 4. Overall accuracy (%), average accuracy (%), and Kappa coefficient of all competing methods
on the Flevoland Dataset 1. The bolded values represent the highest values among three versions of a
model (RV-, old CV-, new CV-).

RV-
SCNN

Old
CV-

SCNN

New
CV-

SCNN

RV-
DCNN

Old
CV-

DCNN

New
CV-

DCNN

RV-
FCN

Old
CV-

FCN

New
CV-

FCN

RV-
SegNet

Old
CV-

SegNet

New
CV-

SegNet

Stembeans 99.85 99.95 99.33 99.48 99.67 99.62 99.72 99.84 99.92 99.95 99.98 100.00
Peas 95.71 99.57 99.58 95.06 99.14 99.96 97.56 99.70 98.72 98.94 98.76 99.31

Forest 98.73 99.65 97.12 98.11 99.46 99.52 98.65 98.70 100.00 99.26 99.48 99.92
Lucerne 98.04 99.91 96.24 96.39 96.89 96.47 88.26 99.88 99.93 98.23 99.95 99.88
Wheat 97.44 97.91 94.21 93.54 98.89 95.35 99.81 98.35 99.80 99.95 100.00 100.00
Beet 98.38 98.60 98.52 97.84 93.64 99.79 96.16 94.78 98.92 99.70 99.20 99.43

Potaotes 97.74 96.76 97.57 99.44 95.02 99.35 94.47 99.80 98.54 99.25 99.27 99.88
Bare
soil 99.97 94.41 93.01 100.00 74.27 98.31 87.69 92.76 95.58 100.00 99.94 100.00

Grass 94.51 92.10 92.79 96.47 95.58 98.68 98.69 77.51 99.89 99.86 99.79 100.00
Rapeseed 72.03 69.68 98.72 71.44 94.12 90.59 97.48 96.42 99.35 99.53 99.92 99.91
Barley 66.85 45.26 96.79 78.30 99.46 96.95 77.71 99.58 96.03 96.80 99.83 99.64
Wheat2 95.52 99.61 88.63 97.57 97.55 99.75 98.97 95.80 98.80 100.00 100.00 99.92
Wheat3 99.92 99.45 97.94 99.90 98.22 99.97 99.66 99.65 99.97 99.97 99.35 99.92
Water 77.20 99.77 99.07 87.54 96.99 99.98 86.69 93.92 95.71 98.66 98.81 99.46

Buildings 98.74 96.22 93.49 83.82 83.82 98.53 85.08 96.64 82.98 85.50 84.03 82.77
OA 92.65 93.81 96.66 93.67 96.79 98.13 95.40 97.10 98.86 99.31 99.49 99.76
AA 92.71 92.59 96.20 92.99 94.85 98.19 93.77 96.22 97.61 98.37 98.55 98.67

Kappa 0.9186 0.9315 0.9634 0.9300 0.9648 0.9795 0.9493 0.9682 0.9875 0.9925 0.9944 0.9974

3.5.2. Flevoland Dataset 2 Results

In order to enhance the robustness assessment of the proposed methods, cross-
validation was employed to acquire the classification results. Five percent of the labeled
samples from each of the 14 dataset categories were randomly selected as the training set,
while the remaining samples constituted the testing set. The final result, as depicted in
Figure 7 and Table 5, represents the average of ten classification outcomes.

According to Table 5, FCN and SegNet can extract more contextual information,
resulting in excellent classification results for (RV-, old CV-, new CV-) FCN and SegNet.
Although the new CV-FCN and new CV-SegNet perform the best in classification, the
improvement is not very noticeable. In comparison, new CV-SCNN and new CV-DCNN
show a significant improvement in their classification results compared to RV-SCNN and
RV-DCNN. It is worth noting that RV-SCNN and RV-DCNN only achieve 0.09% and 11.18%
accuracy, respectively, for the category of beans, while old CV-SCNN and old CV-DCNN
only achieve 13.29% and 17.89% accuracy for the onions category. In contrast, the new
CV-SCNN and new CV-DCNN show a more balanced performance in these two categories,
with no extremely low accuracy. The new CV-SCNN has a classification accuracy of 82.16%
and 60% for beans and onions, respectively, while the new CV-DCNN has a classification
accuracy of 98.63% and 76.24% for beans and onions, respectively.

From Figure 5e, it is apparent that both beans and onions fall under categories with a
limited number of samples. The RV-CNNs and old CV-CNNs have struggled to extract the
features of these categories during training. This is because the inputs of these categories
have only a few complex-valued features hidden in them. RV-CNNs ignore this part of the
features from the input, while old CV-CNNs destroy it during the computation process.
However, the new CV-CNNs are designed to retain this part of the features as much as
possible during computation. Hence, they can accurately recognize beans and onions.
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Figure 7. Classification results of Flevoland Dataset 2 with different methods. The classification
results of RV-SCNN, RV-DCNN, RV-FCN, and RV-SegNet are represented by (a,d,g,j), respectively,
while the results of old CV-SCNN, old CV-DCNN, old CV-FCN, and old CV-SegNet are shown
by (b,e,h,k). The classification results of new CV-SCNN, new CV-DCNN, new CV-FCN, and new
CV-SegNet are represented by (c,f,i,l).
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Table 5. Overall accuracy (%), average accuracy (%), and Kappa coefficient of all competing methods
on the Flevoland Dataset 2. The bolded values represent the highest values among three versions of a
model (RV-, old CV-, new CV-).

RV-
SCNN

Old
CV-

SCNN

New
CV-

SCNN

RV-
DCNN

Old
CV-

DCNN

New
CV-

DCNN

RV-
FCN

Old
CV-

FCN

New
CV-

FCN

RV-
SegNet

Old
CV-

SegNet

New
CV-

SegNet

Potato 99.48 99.50 99.98 99.90 99.80 99.86 98.72 97.72 99.97 99.63 99.46 99.94
Fruit 100.00 99.70 99.77 99.66 99.66 99.93 98.23 99.98 99.70 96.97 90.03 98.51
Oats 93.62 94.98 95.62 96.41 92.32 96.41 99.93 100.00 100.00 100.00 99.93 99.78
Beet 94.20 99.06 98.87 92.75 98.54 98.87 94.82 95.21 97.71 94.14 95.41 99.92

Barley 93.59 99.60 99.74 96.26 99.09 99.99 98.60 98.92 99.98 98.32 99.98 99.98
Onions 52.77 13.29 60.00 77.75 17.89 76.24 100.00 98.08 98.73 97.18 96.71 99.39
Wheat 89.50 99.80 99.71 98.54 99.76 99.95 99.91 99.45 100.00 99.83 99.78 100.00
Beans 0.09 94.27 82.16 11.18 82.53 98.43 84.84 92.42 95.84 87.99 97.97 99.91
peas 99.72 97.69 97.22 99.91 99.95 99.44 99.95 100.00 100.00 100.00 100.00 100.00

Maize 89.61 89.15 91.86 96.28 81.16 74.11 94.42 98.99 100.00 92.56 97.75 94.42
Flax 98.72 97.74 99.28 97.23 99.95 99.98 99.95 100.00 100.00 98.63 99.98 100.00

Rapessed 97.62 99.42 99.55 99.29 99.27 99.95 99.27 99.58 99.97 99.99 99.87 99.99
Grass 85.94 82.30 95.15 97.84 95.20 99.62 97.88 98.72 99.74 100.00 100.00 99.95

Lucerne 87.94 92.48 98.88 98.17 88.79 99.80 99.93 100.00 99.97 100.00 100.00 100.00
OA 93.31 97.22 98.57 96.95 97.39 99.17 98.66 98.72 99.73 98.78 99.06 99.86
AA 84.49 89.93 94.13 90.08 89.56 95.90 97.60 98.50 99.40 97.52 98.35 99.41

Kappa 0.9190 0.9668 0.9830 0.9638 0.9689 0.9902 0.9841 0.9849 0.9968 0.9856 0.9889 0.9984

3.5.3. Oberpfaffenhofen Dataset Results

In order to enhance the robustness assessment of the proposed methods, cross-
validation was employed to acquire the classification results. Only one percent of the
labeled samples from each of the three dataset categories were randomly selected as the
training set, while the remaining samples constituted the testing set. The final result, as
depicted in Figure 8 and Table 6, represents the average of ten classification outcomes.

Table 6 shows that all models can accurately classify woodland and open areas with
classification accuracies above 96%. However, Figure 8a–f shows that CNNs sometimes
confuse built-up areas with woodland. Nonetheless, according to Table 6, the classification
accuracy of the new CV-SCNN for built-up areas is higher than that of RV-SCNN and
old CV-SCNN by 12.6% and 5.14%, respectively. Additionally, the new CV-DCNN has
a classification accuracy for built-up areas that is 10.45% and 7% higher than that of
RV-DCNN and old CV-DCNN, respectively. These results suggest that the new complex-
valued approach significantly improves the classification accuracy of the more challenging
categories.

Table 6. Overall accuracy (%), average accuracy (%), and Kappa coefficient of all competing methods
on the Oberpfaffenhofen Dataset. The bolded values represent the highest values among three
versions of a model (RV-, old CV-, new CV-).

RV-
SCNN

Old
CV-

SCNN

New
CV-

SCNN

RV-
DCNN

Old
CV-

DCNN

New
CV-

DCNN

RV-
FCN

Old
CV-

FCN

New
CV-

FCN

RV-
SegNet

Old
CV-

SegNet

New
CV-

SegNet

Built-up areas 79.90 87.36 92.50 79.38 82.83 89.83 98.55 97.22 99.46 96.45 96.24 98.96
Wood land 97.36 98.27 98.65 98.74 99.11 99.44 99.69 99.30 99.31 98.74 99.59 99.20
Open areas 96.21 96.07 96.12 98.71 99.30 99.78 97.46 99.05 99.11 98.68 99.04 99.51

OA 92.35 94.31 95.69 93.88 95.14 97.22 98.15 98.64 99.23 98.13 98.45 99.31
AA 91.16 93.90 95.76 92.28 93.75 96.35 98.57 98.52 99.29 97.96 98.29 99.22

Kappa 0.8512 0.8941 0.9221 0.8831 0.9094 0.9501 0.9679 0.9763 0.9868 0.9673 0.9729 0.9882
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Figure 8. Classification results of Oberpfaffenhofen Dataset with different methods. The classification
results of RV-SCNN, RV-DCNN, RV-FCN, and RV-SegNet are represented by (a,d,g,j), respectively,
while the results of old CV-SCNN, old CV-DCNN, old CV-FCN, and old CV-SegNet are shown
by (b,e,h,k). The classification results of new CV-SCNN, new CV-DCNN, new CV-FCN, and new
CV-SegNet are represented by (c,f,i,l).
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In summary, it is recommended to use SegNet instead of CNNs to enhance the accuracy
of PolSAR image classification without any restrictions on the model size. Although the new
CV-SegNet offers better classification outcomes than RV-SegNet, the accuracy improvement
is limited. When the model size is limited, the optimal choice is the new CV-CNNs, which
can accurately distinguish difficult entries and significantly improve the classification
accuracy of small sample categories, thus leading to an overall enhancement in accuracy.

3.5.4. Computational Complexity of CNN

From Figure 9a,b, Tables 1 and 2, it is evident that when the number of convolutional
layers in CV-CNN and RV-CNN is the same and the difference in the number of parameters
is not substantial, CV-CNN has fewer convolutional kernels in each layer, yet achieves
higher classification accuracy. This indicates that, despite extracting fewer feature maps,
the new CV-CNN consistently delivers superior classification results.

Figure 9. (a–c) illustrate the overall accuracy, number of parameters, and FLOPs (floating-point
operations per second) for SCNN and DCNN on the Flevoland Dataset 1, respectively. The blue color
represents the real-valued version, the red color corresponds to the old complex-valued version, and
the green color indicates the new complex-valued version.

Figure 9b,c illustrates that the FLOPs of CV-CNN are significantly larger than those of
RV-CNN when they share the same number of convolutional layers and the difference in the
number of parameters is not substantial. This discrepancy arises because complex-valued
operations can only be approximated by multiple real-valued operations in the PyTorch
environment, as depicted in Formulas (1) and (2). For instance, a complex-valued addition
operation necessitates two real-valued addition operations, while a complex multiplication
operation requires four real-valued multiplication operations and two real-valued addi-
tion operations. It is expected that with advancements in complex-valued deep learning
techniques, particularly in polarized coordinates, where a real-valued multiplication oper-
ation and a real-valued addition operation can replace a complex-valued multiplication
operation, this limitation will be mitigated.

Comparing the old CV-CNN and new CV-CNN with the same number of parameters
and FLOPs, the new CV-CNN consistently outperforms the old CV-CNN, achieving better
classification results. For the Flevoland Dataset 1, the new CV-SCNN yields a 2.99% higher
accuracy than RV-DCNN and is only 0.1% lower than the old CV-DCNN. For the Flevoland
Dataset 2, the new CV-SCNN achieves results 2% higher than RV-DCNN and 1% higher
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than the old CV-DCNN. In essence, under the condition of meeting accuracy requirements,
the new CV-SCNN can effectively replace RV-DCNN and the old CV-DCNN. Moreover,
the new CV-SCNN boasts approximately half the parameters compared to RV-DCNN and
old CV-DCNN, with FLOPs being roughly half of RV-DCNN and about one-third of old
CV-DCNN. This trend holds for the Oberpfaffenhofen Dataset as well.

4. Discussion

Three ablation experiments were conducted to validate the performance of vari-
ous aspects of the new CV-DL models, specifically CVA_Max_Pooling, HReLU, and
CV_CrossEntropy. The SCNN classification model was chosen and validated on three
different datasets.

4.1. Ablation Experiment 1: Performance of CVA_Max_Pooling

One of the new components in CV-DL models is CVA_Max_Pooling. This component
is important because it helps to retain the most important features in the feature map and
passes them on to the next convolution layer. This increases the feature utilization efficiency
and reduces the computation required. To test the impact of CVA_Max_Pooling on the
experimental results, complex-valued classification models were created using both real-
valued max pooling and average pooling. These models operate on the real and imaginary
parts of the feature map separately. Table 7 shows the results of our experiments, with
RMP-CV-SCNN and RAP-CV-SCNN denoting the models using real-valued max pooling
and average pooling, respectively.

Table 7. Overall accuracy (%), average accuracy (%), and Kappa coefficient of the different poolings.

Dataset Methods OA AA Kappa

Flevoland Dataset 1
RMP-CV-SCNN 95.65 95.17 0.9522
RAP-CV-SCNN 94.10 93.64 0.9349
new CV-SCNN 96.66 96.20 0.9634

Flevoland Dataset 2
RMP-CV-SCNN 97.94 93.56 0.9756
RAP-CV-SCNN 96.71 92.30 0.9609
new CV-SCNN 98.57 94.13 0.9830

Oberpfaffenhofen Dataset
RMP-CV-SCNN 94.78 94.90 0.9043
RAP-CV-SCNN 94.63 94.64 0.9014
new CV-SCNN 95.69 95.76 0.9221

Table 7 shows that the new CV-SCNN achieved the best classification results on all
three datasets, followed by RMP-CV-SCNN, while RAP-CV-SCNN obtained the worst
outcome. Notably, CVA_Max_Pooling is superior to max pooling, as it not only retains the
most significant features but also avoids generating “fake” features. Max pooling tends to
generate “fake” features by operating on the real and imaginary parts of the feature map
separately, resulting in two unrelated features being combined. Although average pooling
works on the real and imaginary parts separately, it is a form of complex-valued average
pooling. While it does not generate “fake” features, it significantly reduces the weight of
the most important features by confusing them with the unimportant ones.

4.2. Ablation Experiment 2: Performance of HReLU

HReLU functions as a complex-domain ReLU by discarding half of the features
nonlinearly. To assess its effects on experimental results, complex-valued classification
models were created using ModReLU, ZreLU, and CReLU, referred to as Mod-CV-SCNN,
ZReLU-CV-SCNN, and CReLU-CV-SCNN, respectively. The outcomes of these experi-
ments can be found in Table 8.
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Table 8. Overall accuracy (%), average accuracy (%), and Kappa coefficient of the different activations.

Dataset Methods OA AA Kappa

Flevoland Dataset 1

CReLU-CV-SCNN 95.95 95.49 0.9554
ZReLU-CV-SCNN 95.45 95.00 0.9499

Mod-CV-SCNN 95.53 95.03 0.9508
new CV-SCNN 96.66 96.20 0.9634

Flevoland Dataset 2

CReLU-CV-SCNN 98.05 93.67 0.9769
ZReLU-CV-SCNN 97.84 93.42 0.9744

Mod-CV-SCNN 97.68 93.25 0.9725
new CV-SCNN 98.57 94.13 0.9830

Oberpfaffenhofen Dataset

CReLU-CV-SCNN 94.97 95.00 0.9082
ZReLU-CV-SCNN 94.79 94.82 0.9046

Mod-CV-SCNN 93.77 93.67 0.8844
new CV-SCNN 95.69 95.76 0.9221

Based on the data presented in Table 8, it is clear that new CV-SCNN outperforms
the other models on all three datasets. Additionally, CReLU-CV-SCNN yields better
results than ZReLU-CV-SCNN and Mod-CV-SCNN, despite both containing ReLU in their
names. However, as explained in Section 2.3, only HReLU produces ReLU-like sparsity
and nonlinearity. CReLU is slightly less effective due to a lack of sparsity, while ZReLU
underperforms because too many features are dropped, and ModReLU produces the worst
results due to its inadequate nonlinearity.

4.3. Ablation Experiment 3: Performance of CV_CrossEntropy

When training deep learning models, the loss function is crucial in driving the model
outputs closer to the ground truth and helping the model learn the best classification
patterns. For complex domain classification tasks, the CV_CrossEntropy loss function is
commonly used in conjunction with complex-valued probabilities to continuously improve
the model’s accuracy and stability during training. Two common methods for combining
cross-entropy and CV-CNN are: (i) calculating cross-entropy loss using only the output’s
real part and (ii) calculating cross-entropy loss using the real and imaginary parts of the
output separately and then summing them up as the final loss. However, the second
approach contains a logical error that arises when the model outputs different classification
results using real and imaginary parts, leading to confusion.

To assess the influence of CV_CrossEntropy on the experimental outcomes, a complex-
valued classification model was developed to utilize real-valued cross-entropy ((i) calcu-
lating cross-entropy loss using only the output’s real part), called RCE-CV-SCNN. The
findings of the experiment are presented in Table 9.

Table 9. Overall accuracy (%), average accuracy (%), and Kappa coefficient of the different loss functions.

Dataset Methods OA AA Kappa

Flevoland Dataset 1 RCE-CV-SCNN 96.00 95.55 0.9560
new CV-SCNN 96.66 96.20 0.9634

Flevoland Dataset 2 RCE-CV-SCNN 98.20 93.72 0.9787
new CV-SCNN 98.57 94.13 0.9830

Oberpfaffenhofen Dataset RCE-CV-SCNN 95.02 95.16 0.9089
new CV-SCNN 95.69 95.76 0.9221
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According to Table 9, CV-SCNN performs better than RCE-CV-SCNN in all three
experiments. This is because CV-SCNN produces complex-valued output, while RCE-CV-
SCNN can only calculate the loss using the real part of the output. This results in the loss
of half of the information flow. Additionally, the constraints imposed on the model by
CV_CrossEntropy are stronger than RV_CrossEntropy, which helps the model learn more
accurate classification patterns.

Figure 10 illustrates the training progression of the new CV-SCNN and RCE-CV-
SCNN models on Flevoland Dataset 1. Despite the heightened computational complex-
ity and the imposition of more stringent constraints associated with the computation of
CV_CrossEntropy, the convergence rate of the models remains unimpeded. Over successive
epochs, the new CV-SCNN exhibits a gradual improvement in accuracy over RCE-CV-
SCNN. It is pertinent to note that even though the new CV-SCNN consistently manifests
higher loss values compared to RCE-CV-SCNN during the convergence phase, this discrep-
ancy arises from the augmented computational elements within CV_CrossEntropy and
does not detrimentally impact the overall model performance.

Figure 10. (a,b) each represent the variation curves of overall accuracy and loss function during the
training process for RCE-CV-SCNN and new CV-SCNN.

4.4. Comparison with State-of-the-Art Algorithms

This study also conducted a comparison on Flevoland Dataset 1, evaluating the new
CV-SegNet against the state-of-the-art algorithms, with results presented in Table 10. The
findings reveal that the new CV-SegNet achieves the highest classification performance.
However, it is worth noting that such comparisons may lack full rigor due to the diverse
research objectives associated with each algorithm. Consequently, they employ inputs of
varying sizes and training datasets with different sampling rates, all of which can influence
the final outcomes. For example, RCV-CNN excels in achieving superior accuracy when
confronted with limited annotated data, a proficiency that may not confer significant
advantages when dealing with relatively large training datasets. The method proposed in
this paper is not an independent model but rather an approach aimed at enhancing deep
learning models, including CNNs, FCNs, and SegNets. The resulting improved models
can lead to performance enhancements or reductions in parameter complexity.
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Table 10. Overall accuracy (%), average accuracy (%), and Kappa coefficient of the state-of-the-art
algorithms on the Flevoland Dataset 1. The bolded values represent the highest values among all models.

RCV-
CNN [49]

CV-
Contourlet-
CNN [36]

SF-
CNN [50]

AMSE-
LSTM [51]

CV-ConvLSTM [42] New CV-SegNet

Stembeans 98.61 99.81 - 97.16 94.24 100.00
Peas 98.56 99.86 99.62 97.62 99.97 99.31

Forest 97.81 98.98 - 98.43 99.17 99.92
Lucerne 98.22 99.55 99.93 97.54 98.56 99.88
Wheat 94.50 99.59 99.46 98.82 97.56 100.00
Beet 94.14 99.25 99.22 94.71 99.07 99.43

Potaotes 98.90 99.18 99.50 96.40 98.49 99.88
Bare soil 98.05 100.00 99.72 99.43 99.67 100.00

Grass 89.17 99.85 - 98.06 96.73 100.00
Rapeseed 97.07 99.00 99.88 96.03 97.68 99.91

Barley 98.20 99.77 99.50 99.72 100.00 99.64
Wheat2 97.28 99.43 - 98.50 99.88 99.92
Wheat3 98.56 99.39 - 99.22 98.32 99.92
Water 99.89 99.58 - 99.81 99.68 99.46

Buildings 80.88 99.26 - 84.90 79.41 82.77
OA 97.22 99.42 99.58 97.09 98.58 99.76
AA - 99.50 99.61 - 97.32 98.67

Kappa 0.8930 0.9902 0.9950 0.9683 0.9845 0.9974

5. Conclusions

This paper introduced a new method for enhancing deep learning models utilized
in PolSAR image classification. The method involves CVA_Max_Pooling, HReLU, and
CV_CrossEntropy. CVA_Max_Pooling decreases the computational work and extracts the
most important features. HReLU changes the model into a nonlinear sparse model, while
CV_CrossEntropy provides a loss computation method for complex-domain classification
tasks. The proposed complex-valued deep learning method was applied to improve four
PolSAR classification models: SCNN, DCNN, FCN, and SegNet. The models were then
validated on three public PolSAR datasets. The experimental results reveal that the method
proposed in this paper outperforms the old complex-valued model and is much better than
the real-valued model despite having comparable parameters.

In order to continue this work in the future, the following ideas could be explored:
(1) While the experiments have shown that the new complex-valued method can signifi-
cantly improve the performance of shallow CNNs, it is important to note that the inference
process of CNNs can be quite time-consuming. On the other hand, FCNs are effective at
fast inference but require many model parameters and computation. Therefore, it would be
worthwhile to explore the possibility of combining the new complex-valued method with
shallow FCNs to improve classification accuracy and reduce inference time simultaneously;
(2) The experiments have also demonstrated that the new complex-valued method is suit-
able for learning with small samples. Further research could be conducted to reduce the
sampling rate by utilizing the new complex-valued method.
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Abstract: Semantic segmentation of high-resolution remote sensing images holds paramount impor-
tance in the field of remote sensing. To better excavate and fully fuse the features in high-resolution
remote sensing images, this paper introduces a novel Global and Local Feature Fusion Network,
abbreviated as GLF-Net, by incorporating the extensive contextual information and refined fine-
grained features. The proposed GLF-Net, devised as an encoder–decoder network, employs the
powerful ResNet50 as its baseline model. It incorporates two pivotal components within the encoder
phase: a Covariance Attention Module (CAM) and a Local Fine-Grained Extraction Module (LFM).
And an additional wavelet self-attention module (WST) is integrated into the decoder stage. The
CAM effectively extracts the features of different scales from various stages of the ResNet and then
encodes them with graph convolutions. In this way, the proposed GLF-Net model can well capture
the global contextual information with both universality and consistency. Additionally, the local
feature extraction module refines the feature map by encoding the semantic and spatial information,
thereby capturing the local fine-grained features in images. Furthermore, the WST maximizes the
synergy between the high-frequency and the low-frequency information, facilitating the fusion of
global and local features for better performance in semantic segmentation. The effectiveness of the
proposed GLF-Net model is validated through experiments conducted on the ISPRS Potsdam and
Vaihingen datasets. The results verify that it can greatly improve segmentation accuracy.

Keywords: high-resolution remote sensing; semantic segmentation; global context information;
fine-grained feature; feature fusion

1. Introduction

As image processing technology, sensors, and data storage capabilities continue to
advance, the acquisition of high-resolution (HR) remote sensing images has become more
common and feasible [1]. HR remote sensing images refer to image data with correspond-
ing spatial resolutions acquired by remote sensing platforms, such as satellites, aviation,
or unmanned aerial vehicles. These images can provide detailed surface information,
including buildings, roads, vegetation, etc. HR remote sensing images are widely used in
urban planning, environmental monitoring, and agricultural management [2,3].

Semantic segmentation of HR remote sensing images has always been a difficult
challenge in the field of computer vision (CV) [4]. In the early stages, semantic segmentation
methods for HR remote sensing images were mainly based on hand-designed features.
Researchers scrutinized remote sensing images, dissecting their color, texture, shape, and
other distinctive attributes. They harnessed conventional machine learning techniques, like
support vector machines and random forests, to execute classification tasks. Davis’s method
was based on threshold-extracted texture features of images for semantic segmentation [5].
Adams et al. proposed a region-based method to divide an image into regions to realize
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image segmentation [6]. Kundu et al. proposed an algorithm that could automatically
select important edges for human perception [7]. Achanta et al. [8] introduced a novel
super-pixel algorithm known as Simple Linear Iterative Clustering, which serves to enhance
the performance of semantic segmentation. However, these methods often perform poorly
for complex terrain classes and changing environmental conditions.

Compared with traditional methods, CNN possesses the inherent capability to au-
tonomously glean feature representations from raw data, obviating the need for manual
design of feature extractors through an end-to-end learning process. And CNN has a more
powerful learning ability for image features. The ResNet [9] model was proposed to solve
the gradient explosion problem and improve the performance of the model. It is used as
the baseline model for many CV tasks and is also suitable for semantic segmentation tasks.
The proposal of the fully convolutional network (FCN) [10] extends the traditional convolu-
tional neural network to pixel-level classification and realizes fine semantic segmentation.
It used an encoder–decoder structure that produces a layer-hop connection structure to
integrate high- and low-dimensional feature maps. To obtain higher segmentation accuracy,
researchers have proposed many improved model architectures to further improve the
performance of semantic segmentation of HR remote sensing images. Building upon the
foundation of FCN, U-Net [11] introduces a streamlined skip connection architecture and
optimizes and fuses different feature maps to improve accuracy. Meanwhile, SegNet [12]
innovatively captures and utilizes the pooling index during the encoding phase, effectively
guiding and standardizing the subsequent decoding procedure. In a similar vein, PSP-
Net [13] leverages parallel pooling across various scales to extract pivotal features from
diverse ground object categories, thereby enhancing the overall segmentation performance
of the model. Meanwhile, RS remote sensing images also have the problems of complex
labeling and high time consumption, so unsupervised algorithms have also been a hot
issue in the semantic segmentation of RS remote sensing images. A method to reduce the
prediction uncertainty of target domain data was proposed by Prabhu, S. et al. [14]. Liu, Y.
et al. [15] proposed a source-free domain adaptation framework for semantic segmentation,
SFDA, in which only well-trained source models and unlabeled target domain datasets
are available for adaptation. Chen, J. et al. [16] proposed an unsupervised domain adap-
tive framework for HRSI semantic segmentation based on adversarial learning. Guan,
D. et al. [17] proposed a Scale Variance Minimization (SVMin) technique that uses scale
invariance constraints to perform inter-domain alignment while preserving the semantic
structure of images in the target domain. Stan, S. et al.’s [18] approach is based on en-
coding source domain information into the interior for use in guiding the distribution of
adaptations in the absence of source samples.

In recent years, attention mechanisms have been widely adopted in the field of com-
puter vision. There are two ways of modeling attention mechanisms: (1) One is to use
global information to obtain attentional weights to enhance key local areas or channels
without considering the dependencies between global information. SE-Block [19] repre-
sents a classical approach to attention, aiming to explicitly establish interdependencies
between feature channels. This involves dynamically assigning weights to each channel
through model learning, thus boosting relevant features while suppressing irrelevant ones.
PSANet [20] proposes the point-wise spatial attention network (PSANet) to relax the local
neighborhood constraint. Each position on the feature map is connected to all the other
ones through a self-adaptively learned attention mask. (2) The other is to model the depen-
dencies between global as well as local information and enhance the subject information
by obtaining the correlation matrix between channels or spatial features. DANet [21]
introduces the dual attention (DA) module into the field of semantic segmentation and
improves the performance of the model by modeling global information dependencies.
Meanwhile, another noteworthy contribution is CBAM-Block [22], an attention module
that seamlessly fuses spatial and channel information. In contrast to the singular focus on
channel attention exhibited by SE-Block, CBAM combines channel attention and spatial
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attention, thus enabling the model to focus on both global and local information and to
better model global information dependencies when processing images.

However, for the semantic segmentation problem, there are still deficiencies in the
existing methods, which can be summarized as follows: (1) Global context information
is crucial for the semantic segmentation task. When computing global dependencies, the
correlation matrix from a large number of feature maps usually results in high complexity
and strong training difficulties. Although some models try to introduce a multi-scale input–
output mechanism, how to effectively utilize the information of different scales and how to
adequately capture the remote dependency and global context in an image are still difficult
problems. (2) RS remotely sensed images contain intricate topographic landscapes that
exhibit a wide variety of textures, resulting in both high intra-class diversity and inter-class
similarity. As a result, the boundaries in these images can be easily confused with small
object features, while some small objects and some regions with unclear boundaries can
also be misclassified. This motivates us to mine more distinguishable local fine-grained
features for accurate classification. To address the above problems, we propose a covariance
attention module (CAM) and a local fine-grained extraction module (LFM) to extract multi-
scale global and local fine-grained information, respectively, and a wavelet self-attention
module (WST) to fuse global and local features. The main contributions and innovations of
this paper include:

1. We designed a CAM that uses the covariance matrix to model the dependencies
between the feature map channels, capturing the main contextual information. These
features are subsequently encoded by graph convolution, which helps to capture
universally applicable and consistent global context information. The covariance
matrix can adaptively capture not only the linear relationship between the local
context information of the feature map but also the non-local context information
of the feature map [23,24]. We model the feature maps of the last three layers of
ResNet using covariance matrices to obtain their main context information and fuse
them using feature addition. This non-local context information can help GLF-Net
understand the relationship between different regions in the image.

2. Building upon the ResNet features, we have introduced a novel approach by inte-
grating the local feature extraction module. This innovative step refines the feature
map and yields finely detailed, local-level features. Through a process that involves
encoding both spatial and semantic information from the feature map, followed by
a comparative analysis against information from global pooling, we successfully
capture intricate features that tend to be challenging to discern amidst the complex
background of HR remote sensing images. This enhancement improves accuracy
when identifying small targets and delineating boundaries, thereby bolstering our
model’s capacity for feature capture and recognition.

3. We consider the differences and interactions between global features and local features,
and simply pursuing maximization or merging class probability maps cannot ensure
comprehensive semantic description. Recognizing the intrinsic value of intricate
details and texture information residing within an image’s high-frequency compo-
nents, we devised a wavelet self-attention mechanism. This innovation facilitates
the fusion of global and local features, harnessing the synergistic interplay between
high-frequency and low-frequency information. Importantly, this approach ensures
information fusion across varying scales, thereby optimizing the comprehensive
utilization of image content.

The subsequent sections of this paper are organized as follows: Section 2 delves into the
relevant literature concerning local and global feature extraction. In Section 3, we provide
an overview of the materials and methodologies utilized in our study. Moving forward to
Section 4, we delve into the presentation of the results stemming from our experimental
pursuits. Ultimately, Section 5 encapsulates a concise summary of our concluding insights.
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2. Related Work

This section briefly reviews the semantic segmentation methods relevant to this paper,
namely, the global feature extraction-based semantic segmentation method and the local
feature extraction-based semantic segmentation method.

2.1. Global Context Feature Extraction for Semantic Segmentation

Global context information is crucial in the context of semantic segmentation of HR
remote sensing images. It not only helps identify a wide range of objects and distinguish
objects and backgrounds, but also captures spatial correlations and enhances the model’s
ability to understand the overall image semantics. This information holds great importance
in enhancing the accuracy and overall effectiveness of semantic segmentation. The Deeplab
series [25,26] of networks have established atrous convolution, global average pooling,
and atrous spatial pyramid pooling. By employing these techniques, the Deeplab series of
networks effectively harness the global context information within images. This enables
them to capture semantic details across various scales and facilitates a more profound com-
prehension of the semantic structure inherent in the images. At the same time, DeeplabV3+
uses the skip connection mechanism to fuse the features in the encoder and the features
in the decoder. This allows the decoder to directly access the low-level information from
the encoder so that it can better utilize the detailed information of low-level features for
segmentation. Zhang, H. et al. [27] introduced a context encoding module based on FCN,
which effectively captured and leveraged contextual information, resulting in notable en-
hancements to the model’s segmentation accuracy. Li, R. et al. [28] implemented a feature
pyramid network to seamlessly integrate the spatial and contextual features that were ex-
tracted. Building upon this foundation, they further refined multi-scale feature acquisition
by utilizing attention-guided feature aggregation. Liu, H. et al. [29] introduced additional
correspondences between foreground and background, along with incorporating multi-
scale contextual semantic features. This strategic augmentation notably aids the encoder in
capturing dependable matching patterns.

2.2. Local Fine-Grained Feature Extraction for Semantic Segmentation

In order to handle the classification of small targets and boundaries caused by com-
plex scenes in HR remote sensing images, models usually need to further enhance local
information to obtain more subtle fine-grained features. Fine-grained features usually
focus on capturing the detailed information in the image, increasing the diversity and
discrimination ability of the features. Yang, M. et al. [30] proposed densely connected
atrous spatial pyramid pooling, and the features generated by this network can cover the
local area in a very dense way to obtain fine-grained local features. Li, R. et al. [31] proposed
ABCNet, which uses a bilateral attention network to capture rich spatial details in HR
remote sensing images, obtains fine-grained spatial information, and improves the accuracy
of the model. Wang, L. et al. [32] proposed the category feature compact module, which
solves the problem of feature dispersion in the target domain achieved by cross-domain
networks, facilitates the fine-grained alignment of categories, and improves segmentation
performance.

3. Materials and Methods

As mentioned above, multi-scale contextual features are crucial for obtaining images in
complex scenes. During the down-sampling process, the model inevitably loses important
information. Encoding each stage of down-sampling aids in acquiring a broader spectrum
of multi-scale contextual and semantic insights. Due to the complexity of HR remote sensing
images, some small targets and boundaries are usually confused by global information.
Refining the feature map to obtain fine-grained features will help the model recognize these
small targets and boundaries. Based on these, we designed GLF-Net.

This section introduces the primary architecture of GLF-Net. As depicted in Figure 1a,
an encoder–decoder architecture is employed. The encoder is comprised of a backbone
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network, alongside a global feature extraction module and a local feature extraction mod-
ule. We use ResNet50 as the backbone network for feature extraction and down-sample;
Figure 1b is a schematic of the ResNet50 residual block. Our CAM is applied to the final
three layers of ResNet50, enabling the extraction of comprehensive global context features.
The correlation between features is crucial for correctly distinguishing the semantic cate-
gories of features. By calculating the covariance matrix of features, we can understand the
linear correlation between features, which helps us select the most discriminative combina-
tion of features. The extracted multi-scale contextual features can help GLF-Net obtain a
wider range of contextual information, including the object’s global structure, background
information, and contextual relationships, and also enable GLF-Net to better adapt to
changes in different images and objects. This contextual information plays a pivotal role in
achieving precise object segmentation, comprehending their semantics, and enhancing the
overall generalization capability of GLF-Net. The regional fine-grained feature extraction
module is used to extract local features, and the fine-grained module can refine the output
of ResNet50. Fine-grained features can provide internal details of the object, which helps to
distinguish different semantic categories and accurately classify internal regions. It can also
capture small changes and edge details of the object to improve the accuracy of boundary
recognition and segmentation. This gives better recognition results for small objects in the
dataset.

 

Figure 1. (a) Overall structure diagram of GLF-Net. (b) ResNet50 residual block. (c) Up-sample
module.

In the decoder part, we built a WST module that employs the wavelet transform and
self-attention to fuse the multi-scale features from the CAM and LFM modules. Then, a
sequence of up-convolutions gradually expands the fused output to the original size. The
wavelet transform has good sensitivity to edge and texture features. It helps to detect edge
and texture information in an image and extract clear boundaries. In semantic segmentation,
boundary information helps the model to obtain higher segmentation results. By applying
the wavelet transform, the boundary information can be enhanced to improve the ability
of GLF-Net to perceive object boundaries. The self-attention mechanism can model the
global correlation of different positions in the input features instead of being limited to
local regions. By calculating the attentional weights between each location in the input
features, the self-attention mechanism can capture the long-range dependencies between
different locations. This enables the self-attention mechanism to effectively model global
contextual information in feature fusion. In the up-sampling process, as shown in Figure 1c,
we designed the up-sampling part based on the ResNet residual block and use the jump
connection strategy.
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3.1. Global Feature Extraction

In convolutional neural networks, with the transformation of the sensory field and
the gradual stacking of features, the semantic information contained in the deeper features
of each layer is not exactly the same. Gradually, along with the change of the receptive
field and characteristics of the stacked, each layer of ResNet deep features contained in
the semantic information is not the same. In this regard, the fusion of multi-scale context
information is crucial for the model. By this kind of information fusion, GLF-Net can adapt
to different target dimensions effectively and handle the target boundary and complexity
so as to improve the flexibility and generalization ability in semantic segmentation tasks.

In the CAM module, we use a covariance matrix (CM) to model the relationship
between channels [23], highlight the main channel information while providing a global
summary, and then use graph convolution to encode the extracted features to capture the
main context information in the last three layers of ResNet50. Figure 2 shows a visualization
of the effect of the CM projection, with a1 and b1 showing the original image and a2 and b2
showing the effect of the image covariance projection matrix. It can be seen that the CM
has a strong and prominent effect on the main information in the image. Based on this,
as shown in Figure 3, we use the covariance matrix to extract the main information of the
second-, third-, and fourth-layer features of ResNet50 in an attention mechanism. The first
step is to perform the L2 normalization operation on the obtained features and then find
the covariance matrix.

cov =
1

H × W

H×W

∑
t=1

(
Ft − Ft

)T(
Ft − Ft

)
(1)

where C, H, and W are the number of channels, height, and width; t ∈ (1, 2, . . . , H × W);
Ft ∈ R(H×W)×C; and Ft is the mean of F

t
. In the dot product process, subject to the effect

of the broadcast mechanism, the covariance matrix cov ∈ RC×C. Then, we obtain the
corresponding covariance attention matrix by the so f tmax function:

S(i) =
exp(cov(i))

C
∑

i=1
exp(cov(i))

(2)

X(i) = Fm(i)× S(i) (3)

where cov(i) represents the middle element of the covariance matrix. The result, X(i), of
the covariate attention is obtained by multiplying the original feature, F, with the covariate
attention matrix, S. Then, we use covariance attention to extract the main information in
this layer. In order to effectively fuse the features of the three layers, we use the dilated
convolution strategy to down-sample the features of the second and third layers so that the
three-layer features obtain feature maps of the same size. The expanded convolution enables
GLF-Net to obtain a larger receptive field, thereby obtaining wider context information.
Finally, the three layers of features are added to obtain the fusion feature.

After obtaining the fused multi-scale context features, we use graph convolution [33]
to model the global context information of the features. First, our approach involves the
projection of the input feature map from the coordinate space onto a graph composed of
latent nodes or regions within the interaction space. These latent nodes adeptly aggregate
local descriptors using convolutional layers, strategically diminishing the impact of super-
fluous attributes within the coordinate space. Subsequently, the interrelationships among
these nodes are comprehensively deduced through a duo of one-dimensional convolutions.

Z = GXwg (4)

where G denotes the adjacency matrix that propagates information across nodes and the
adjacency matrix learns edge weights reflecting the relationship between the underlying
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global pooled features at each node. wg represents the graph convolution parameters. G
and wg are learned autonomously with gradient descent as the model is continuously
trained. During training, the graph’s affinity matrix learns the edge weights, thus capturing
the nuanced connections between nodes within a fully interconnected graph. This design
ensures that each node assimilates information from all the other nodes, constantly updat-
ing its state. Upon inference, the output features undergo a transformation back into the
original space, yielding the derivation of our global features.

 
(a1) (a2) (b1) (b2) 

Figure 2. Covariance matrix projection visualization. (a1,b1) Original image. (a2,b2) Covariance
matrix projection visual effect.

 

Figure 3. Schematic of the global feature extraction module.

3.2. Local Fine-Grained Feature Extraction

HR remote sensing images have the characteristics of high within-class variance and
low within-class variance. In HR remote sensing images, as shown in Figure 4, some small
objects present in complex environments are usually misclassified. Therefore, diverging
from global features, local features place greater emphasis on recognizing and classifying
intricate fine-grained attributes within images. After down-sampling by ResNet, the model
eventually extracts a feature map of dimensions 8 × 8; each feature value represents a
region of the original image [34]. Through the inference screening of this module, the
features of small objects are obtained and highlighted by up-sampling.

 
(a) (b) (c) (d)

Figure 4. Example of a small object in a complex scene of an HR remote sensing image. The red box
selected is the small object that is easy to be ignored. Vegetation in (a). Cars in (b). Vegetation in (c).
Cars in (d).
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Our local feature extraction module is shown in Figure 5. First, we evenly divide our
feature map, V∈ R(H×W), into t local areas.

Vhw = ∑D
t=1 Fthw (5)

where Vhw represents the information in the dimension (h, w) of V and Fthw represents the
information in the dimension (t, h, w) of F. We obtain fine-grained local features through
semantic and spatial relationships between feature points in each local area. The individual
feature points in our local region, Vhw, are set to Pj. Specifically, we take the peak point
within each local region as the salient point, Pn, and use it as a benchmark to compute
semantic and spatial relationships with each point within the local region.

 

Figure 5. Schematic of local feature extraction.

As mentioned above, the context relationship is particularly important in the task of
semantic segmentation, and the simple region division can easily cause the loss of context
information in the feature map. To this end, we first calculate the spatial relationship
between salient points, Pn, and each feature point, Pj, in each local area based on Euclidean
distance, as CRnj:

CRnj =
√
(Pn(x)− Pj(x))2 + (Pn(y)− Pj(y))

2 (6)

where j = 1, · · ·, H × W.The smaller the value of CRnj, Pn and Pj get closer. We then use
the cosine similarity to calculate the semantic dependency between the salient point, Pn,
and the rest of the feature points, Pj:

SRnj =
Qn

T
Qj∣∣∣∣Qn

∣∣∣∣∣∣∣∣Qj
∣∣∣∣ (7)

where Qn∈ RD and Qj∈ RD are the channel features of point Pn and point Pj in each local
area. Considering both spatial relationship and semantic similarity, we define the spatial
semantic relationship, Rnj, as follows:

Rnj =
SRnj

CRnj + 1
(8)

The correlation between point Pn and point Pj is proportional to the value of R. Then,
we can obtain the local features, Fl

n, of salient points, Pn, by aggregating spatial semantic
context information, which is formulated as follows:

Fl
n = ∑H∗W

j=1

exp(Rnj)

∑H∗W
j=1 exp(Rnj)

(9)
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After obtaining all the local features, to filter the features of the small target we need
from these local features, we first obtain the global features of the original feature, which is
denoted as FG:

FG = GAP(F) (10)

where GAP is the global average pooling. The semantic similarity between each local
feature and the global pooling result is then calculated using the cosine similarity and by
screening the k groups of local features that are most dissimilar to the global feature, which
are the local small target features we need to extract.

3.3. Fusion Module

In CNNs, both convolution and pooling operations inherently entail a certain degree of
information loss across different frequencies. However, by incorporating the wavelet trans-
form, the model enables the fusion of various frequency characteristics and the preservation
of multi-scale information fusion. This approach optimally exploits the complementarity
between high- and low-frequency data.

The deeper convolutional neural network architectures show greater ability to improve
the segmentation accuracy of complex image edge contours and details while retaining
the multi-frequency attributes. Wavelet transform, employing an array of diverse scale
wavelets, decomposes the original function. This process yields coefficients representing
the original function under distinct scale wavelets through translation and scale transfor-
mations. The translation affords insight into the temporal attributes of the original function,
while scale transformation elucidates its frequency characteristics.

Having extracted the global and local features, the subsequent phase revolves around
their effective fusion. As depicted in Figure 6, our fusion module harnesses a combination
of wavelet transform and self-attention mechanisms to accomplish this fusion task:

 

Figure 6. Illustration of the fusion module.

We first use the 2D Haar transform on the global and local features to obtain the
low-frequency component, xLL, and three high-frequency components, xLH , xHL, and xHH .
The four frequency band components are obtained by Equation (11):

xLL(i, j) = x(2i − 1, 2j − 1) + x(2i − 1, 2j) + x(2i, 2j − 1) + x(2i, 2j)
xLH(i, j) = −x(2i − 1, 2j − 1)− x(2i − 1, 2j) + x(2i, 2j − 1) + x(2i, 2j)
xHL(i, j) = −x(2i − 1, 2j − 1) + x(2i − 1, 2j)− x(2i, 2j − 1) + x(2i, 2j)
xHH(i, j) = x(2i − 1, 2j − 1)− x(2i − 1, 2j)− x(2i, 2j − 1) + x(2i, 2j)

(11)

where i = 1, 2, . . . , H/2, j = 1, 2, . . . , W/2 and H and W are the height and width of the
original feature map, respectively. That is, the width and height of the output component
of each level of the DWT will be 1/2 that of the input image.
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V1 and V2 of the self-attention module are obtained by performing a convolution
operation on the low-frequency components of the two features. Subsequently, the high-
frequency components undergo convolution to yield the Q and K elements of the self-
attention module, where Q, K ∈ Rck×Hl×Wl and CK is the number of channels in the
low-dimensional mapping space. Then, we reshape them into the shape of CK × N, where
N = Hl ×Wl is the number of pixels. Diverging from traditional self-attention mechanisms,
our Q and K features establish a mutual interplay to facilitate cross-image information
exchange. In light of this, we introduce the concept of two distinct branches tailored
to amplify the representation of support and query features. Following this, a matrix
multiplication is executed, utilizing the transposed forms of Q and K. This operation
culminates in the creation of a novel feature map, which is subsequently transposed once
more to derive the feature map for the alternate branch. Lastly, a so f tmax module is applied
to each of these derived maps, individually generating spatial attention maps for the Q and
K branches, thereby completing this process [35].

Aji =
exp(Qi × Kj)

∑N
i=1 exp(Qi × Kj)

(12)

where Aji measures the impact of querying the ith position on supporting the jth position.
The enhanced similarity in feature representations between two locations corresponds to a
heightened correlation between them. Then, the final fused features, Aji, are obtained by
concatenating them with V1 and V2, respectively.

4. Experimental Results and Analysis

4.1. Data Sets

We validated the performance of GLF-Net using two state-of-the-art airborne image
datasets from the City Classification and 3D Building Reconstruction Test projects provided
by ISPRS, which are available from the URL Semantic Annotation Benchmark (https:
//www.isprs.org/education/benchmarks/UrbanSemLab/Default.aspx, accessed on 26
May 2022). The dataset utilizes a Digital Terrain Model (DSM) produced through HR
orthogonal photographs and complementary dense image-matching methodologies. Both
datasets encompass urban landscapes, capturing diverse urban scenes. Vaihingen portrays
a quaint village characterized by numerous individual buildings and multi-story edifices.
On the other hand, Potsdam stands as a quintessential historical city replete with expansive
building complexes, narrow alleyways, and densely clustered settlement formations. In a
meticulous effort, each dataset has been subject to manual classification, resulting in the
categorization of land cover into the six most prevalent classes.

(1) Vaihingen dataset: Comprising 33 distinct remote sensing images of varying
dimensions, each image is meticulously extracted from a larger-scale orthophoto picture
at the top level. A careful image selection process ensures the avoidance of data gaps.
The remote sensing images adhere to an 8-bit TIFF file format, encompassing three bands:
near-infrared, red, and green. Meanwhile, the DSM is represented as a single-band TIFF file,
with its grayscale values (indicative of DSM height) encoded in 32-bit floating point format.
The HR remote sensing images and the DSM both share a ground sampling distance of
9 cm. The DSM data are ingeniously derived through dense image matching utilizing
the Trimble INPHO 5.3 software. Presented in various channel combinations, HR remote
sensing images adopt the form of TIF files, with each channel sporting an 8-bit spectral
resolution. Both the HR remote sensing images and label maps take on the form of three-
channel images, while DSM data maps are presented as single-channel images. The HR
remote sensing images are stored as 8-bit TIF files, each equipped with three frequency
bands. These RGB bands correspond to the near-infrared, red, and green bands captured by
the camera. Notably, a DSM is encapsulated within a TIFF file, featuring a single frequency
band, and its gray levels are encoded as 32-bit floating point values. It is worth mentioning
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that HR remote sensing images are spatially defined within the same grid as the DSM,
thereby eliminating the necessity to factor in geocoding information during processing.

(2) Potsdam Dataset: Comprising 28 images, all uniformly sized, the spatial resolution
of the top image is an impressive 5 cm. Parallel to the Vaihingen dataset, this collection is
constructed from remote sensing TIF files characterized by three bands, alongside DSM
data, which remain as a single band. It is noteworthy that each remote sensing image
within this dataset boasts identical area coverage dimensions.

4.2. Parameter Setting and Evaluation Index

We trained our model within the PyTorch framework, conducting experiments on HR
remote sensing image datasets. These experiments were executed on a personal computer
featuring an 11th-generation Intel(R) Core(TM) i9-11900F CPU clocked at 2.50GHz(Intel
Productions), an NVIDIA GeForce RTX 3090 GPU, and 32 GB of memory (Asus Produc-
tions). An initial learning rate of 0.0001 was adopted, spanning a comprehensive training
regimen of thirty epochs. The learning rate underwent adjustments every ten epochs,
facilitating progressive optimization. For loss computation, the cross-entropy loss function
was employed, aiding in the convergence of training. To accommodate the input data
within GLF-Net, we meticulously partitioned the HR remote sensing image into smaller
256x256 patches. We introduced image flipping and rotation. These data augmentation
techniques effectively expanded the dataset and enhanced its diversity.

The evaluation of GLF-Net’s performance was accomplished using metrics such as
mean intersection over union (IoU), intersection over union (IoU), overall accuracy, and
mean F1-score. IoU is the proportion of the intersection to the union between the predicted
outcome and the ground truth value and is calculated for use case segmentation. mIoU is a
standard assessment, and it is the mean of all categories of IoU. F1 is a weighted average of
the precision and recall of GLF-Net. From the confusion matrix, we can calculate mIoU,
IoU, OA, and F1:

OA =
∑K

K=1 TPK

∑K
K=1 TPK + FPK + TNK + FNK

(13)

IoU =
∑K

K=1 TPK

∑K
K=1 TPK + FPK + FNK

(14)

mIoU =
1
K

∑K
K=1 TPK

∑K
K=1 TPK + FPK + FNK

(15)

mF1 =
1
K ∑K

K=1 2 × precisionK × recallK
precisionK + recallK

(16)

where TP and TN represent the number of correct and incorrect positive samples, respectively;
FP and FN represent the number of negative samples that were correctly and incorrectly
judged, respectively; and precisionK =TPK/(TPK + FPK) and recallK =TPK/(TPK + FNK)
are the precision and recall of GLF-Net, respectively.

4.3. Semantic Results and Analysis

This section primarily presents the outcomes attained by GLF-Net. As depicted
in Figure 7, the confusion matrix provides a comprehensive overview of our model’s
performance across these two datasets. Figures 8 and 9 showcase the segmentation results
of HR remote sensing images: Figure 8 corresponds to the Potsdam dataset, and Figure 9
pertains to the Vaihingen dataset. Figures 8 and 9 have the same legend. Notably, GLF-Net
demonstrates commendable performance on both datasets, substantiating its efficacy in
semantic segmentation tasks.
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(a) (b) 

Figure 7. Model confusion matrix. (a) The confusion matrix for the Potsdam dataset. (b) The
confusion matrix for the Vaihingen dataset.

 
(a) (b) (c)

Figure 8. Results of GLF-Net on the Vaihingen dataset. (a) Vaihingen dataset image. (b) Label image.
(c) Segmentation result (MioU:0.780).

   
(a) (b) (c) 

Figure 9. Results of GLF-Net on the Potsdam dataset. (a) Potsdam dataset image. (b) Label image.
(c) Segmentation result (MioU:0.811).
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To further verify the performance of GLF-Net, we set up a quantitative compari-
son experiment. We compared GLF-Net with four models: Unet, deeplabV3+, A2-FPN,
and BSE-Net [36], and each model consistently uses ResNet50 as the baseline network.
DeeplabV3+ employs dilated convolutions to acquire features spanning multiple scales,
thereby facilitating the extraction of contextual information. A2-FPN also aggregates global
features for image semantic segmentation and derives discriminative features through the
accumulation and dissemination of multi-level global contextual attributes. The Bes-Net
model is based on boundary information, and incorporating multi-scale context information
enhances the precision of the semantic segmentation model.

Tables 1 and 2 present the comparative results from the experimentation conducted on
the Vaihingen and Potsdam datasets, respectively. We bold the optimal metrics. Addition-
ally, select outcomes from the test set are showcased in Figures 10 and 11. Notably, GLF-Net
demonstrated superior performance across these evaluations. In particular, it stands out for
its reduced incidence of misclassified segments and its improved proficiency in discerning
certain boundaries and smaller objects. For instance, in the Potsdam dataset, GLF-Net
excels at distinguishing the delineation between road and low vegetation. Moreover, the
Vaihingen dataset showcases a heightened aptitude for identifying diminutive elements,
like trees and cars.

Table 1. Comparative experiments on the Vaihingen dataset.

Model
IoU

mIoU F1 OA
Building Low-Veg Surface Tree Car

Unet 0.795 0.866 0.632 0.744 0.504 0.682 0.804 0.863
DeeplabV3+ 0.755 0.826 0.622 0.737 0.513 0.658 0.784 0.846

A2-FPN 0.817 0.887 0.667 0.771 0.622 0.748 0.853 0.881
Bes-Net 0.830 0.899 0.698 0.789 0.658 0.774 0.871 0.892
OURS 0.833 0.902 0.692 0.781 0.668 0.780 0.869 0.894

Table 2. Comparison experiments on the Potsdam dataset.

Model
IoU

mIoU F1 OA
Building Low-Veg Surface Tree Car

Unet 0.814 0.878 0.704 0.774 0.473 0.715 0.827 0.881
DeeplabV3+ 0.840 0.924 0.741 0.725 0.777 0.758 0.857 0.890

A2-FPN 0.869 0.943 0.782 0.759 0.808 0.800 0.886 0.911
Bes-Net 0.871 0.944 0.786 0.770 0.825 0.803 0.887 0.913
OURS 0.876 0.946 0.791 0.770 0.827 0.811 0.893 0.916

4.4. Ablation Experiments

GLF-Net makes full use of the global context information extracted by CAM, LFM
extracts fine-grained local features to make GLF-Net better improve the recognition and
classification of small targets, and WST effectively integrates the two. To verify that each
module can fully play its role, we set up two sets of ablation experiments to verify the
performance of our module. Firstly, the ablation strategies of the first group are the baseline
network, adding CAM, adding LFM, adding CAM and LFM, and adding three modules
(GLF-Net) to verify the performance of our three modules.
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Image Label UNet DeeplabV3+ -FPN Bes-Net Ours 

Figure 10. Comparative experimental results on the Potsdam dataset.

       

       

       

       
Image Label UNet DeeplabV3+ -FPN Bes-Net Ours 

Figure 11. Comparative experimental results on the Vaihingen dataset.

Table 3 showcases the outcomes of ablation experiments conducted on the Vaihingen
dataset, while Table 4 presents the results of ablation experiments performed on the Pots-
dam dataset. We bold the optimal metrics. Moreover, Figures 12 and 13 visually illustrate
the findings from ablation experiments on the Vaihingen and Potsdam datasets, respectively.
A detailed analysis of the data in these two tables indicates that our modules significantly
elevated the performance of GLF-Net when contrasted with the baseline network. And it
can be seen from the results that the addition of three modules at the same time is superior
to the baseline module and the single use of modules in terms of overall classification and
the identification of boundaries and small targets.
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Table 3. Ablation experiments on the Vaihingen dataset.

Model
IoU

mIoU F1 OA
Building Low-Veg Surface Tree Car

Baseline 0.715 0.823 0.584 0.678 0.531 0.592 0.714 0.821
CAM 0.829 0.898 0.687 0.777 0.659 0.764 0.864 0.887
LFM 0.826 0.899 0.685 0.774 0.660 0.761 0.862 0.886

CAM+LFM 0.828 0.900 0.685 0.774 0.652 0.766 0.865 0.888
OURS 0.833 0.902 0.692 0.781 0.668 0.780 0.869 0.894

Table 4. Ablation experiments on the Potsdam dataset.

Model
IoU

mIoU F1 OA
Building Low-Veg Surface Tree Car

Baseline 0.788 0.922 0.720 0.728 0.569 0.680 0.795 0.873
CAM 0.869 0.938 0.774 0.769 0.818 0.803 0.887 0.912
LFM 0.865 0.941 0.776 0.763 0.824 0.793 0.880 0.908

CAM+LFM 0.872 0.945 0.787 0.765 0.827 0.806 0.889 0.913
OURS 0.876 0.946 0.791 0.770 0.827 0.811 0.893 0.916

       

       

       
Image Label Baseline CAM LFM CAM+LFM GLF-Net 

Figure 12. Ablation experimental results on the Potsdam dataset.

To verify which stage of context information of ResNet is most needed for GLF-Net,
we set up a second set of ablation experiments to compare the performance of CAM. Our
CAM module is used for ResNet stages 123, 124, 134, and 234. Finally, Tables 5 and 6
present the experimental results derived from the Vaihingen dataset and the Potsdam
dataset, respectively. The outcomes distinctly highlight the superiority of the CAM module,
showcasing its optimal performance when applied to the 234 stages. At the same time,
in order to verify the effect of the covariance matrix and graph convolution, we also
performed a comparison with two models without using the covariance matrix and without
using graph convolution. As shown in Figures 5 and 6, there is a large gap between the
performance of the two and CAM. We bold the optimal metrics. Finally, in order to verify
the superiority of the CAM module, we also made a comparison with the existing model
DANet. The CAM module shows better performance than DANet on both datasets.
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Image Label Baseline CAM LAM CAM+LAM GLF-Net 

Figure 13. Ablation experimental results on the Vaihingen dataset.

Table 5. CAM ablation experiment on the Vaihingen dataset.

Model
IoU

mIoU F1 OA
Building Low-Veg Surface Tree Car

CAM123 0.827 0.891 0.685 0.779 0.647 0.762 ± 0.01 0.862 0.886
CAM124 0.827 0.887 0.685 0.779 0.650 0.761 ± 0.01 0.862 0.886
CAM134 0.827 0.887 0.685 0.779 0.650 0.761 ± 0.01 0.862 0.886

CAM_nonCM 0.820 0.895 0.675 0.775 0.631 0.755 ± 0.02 0.857 ± 0.01 0.885 ± 0.01
CAM_nonGrapth 0.821 0.893 0.677 0.775 0.608 0.749 ± 0.02 0.853 ± 0.01 0.885 ± 0.01

DANet 0.826 0.885 0.686 0.776 0.643 0.761 ± 0.03 0.862 ± 0.01 0.886 ± 0.01
CAM234 0.829 0.898 0.687 0.777 0.659 0.764 ± 0.03 0.864 ± 0.01 0.887 ± 0.01

Table 6. CAM ablation experiment on the Potsdam dataset.

Model
IoU

mIoU F1 OA
Building Low-Veg Surface Tree Car

CAM123 0.870 0.943 0.783 0.768 0.818 0.801 ± 0.01 0.886 0.911
CAM124 0.869 0.938 0.784 0.767 0.819 0.800 ± 0.01 0.885 0.911
CAM134 0.869 0.938 0.784 0.767 0.819 0.800 ± 0.02 0.885 0.911

CAM_nonCM 0.868 0.935 0.776 0.754 0.815 0.798 ± 0.02 0.882 ± 0.02 0.909 ± 0.01
CAM_nonGrapth 0.868 0.936 0.779 0.762 0.812 0.798 ± 0.02 0.883 ± 0.02 0.909 ± 0.01

DANet 0.867 0.935 0.776 0.757 0.810 0.797 ± 0.03 0.882 ± 0.02 0.909 ± 0.01
CAM234 0.869 0.944 0.777 0.769 0.822 0.803 ± 0.02 0.887 ± 0.01 0.912 ± 0.01

In particular, to visualize the role of the CAM module in extracting and enhancing
contextual features, we visualized ResNet, the CAM module, and the intermediate features
of DANet, as shown in Figure 14. The red channel represents a higher degree of respon-
siveness, while the opposite is true for yellow. Compared to ResNet, DANet does not show
significant changes, while CAM extracts channels with primary information.

Finally, in order to verify the performance of the self-attention module in our WST
module, we performed ablation experiments on the WST module. Tables 7 and 8 give the
results of the ablation experiments. We bold the optimal metrics. It can be seen from the
results that the self-attention module has brought significant improvements.
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(a) (b) (c) 

Figure 14. Covariance attention effect. (a) ResNet intermediate features. (b) The effect after using
covariance attention. (c) The effect after using DANet.

Table 7. WST ablation experiment on the Potsdam dataset.

Model
IoU

mIoU F1 OA
Building Low-Veg Surface Tree Car

Non_self attention 0.870 0.945 0.779 0.758 0.820 0.806 0.890 0.912
GLF-Net 0.876 0.946 0.791 0.770 0.827 0.811 0.893 0.916

Table 8. WST ablation experiment on the Vaihingen dataset.

Model
IoU

mIoU F1 OA
Building Low-Veg Surface Tree Car

Non_self attention 0.821 0.891 0.677 0.774 0.610 0.750 0.854 0.844
GLF-Net 0.833 0.902 0.692 0.781 0.668 0.780 0.869 0.894

5. Conclusions

This paper introduces the GLF-Net model for semantic segmentation of HR remote
sensing images. This model addresses the complex challenges posed by significant intra-
class differences and small inter-class differences in HR remote sensing images. The
proposed GLF-Net employs an encoder–decoder architecture with ResNet50 as the base
network. The model uses the CAM module to extract global contextual features, uses
the LFM module to extract complex local features, and uses WST to effectively integrate
these two features. Through the above modules, the proposed GLF-Net simultaneously
obtains broader global context information and fine-grained local texture and boundary
features, which significantly enhances the model’s ability to recognize smaller objects and
contributes to the overall enhancement of segmentation performance. The validation of our
model on ISPRS’s Vaihingen and Potsdam datasets confirms its superior achievement, with
GLF-Net outperforming other models when all three modules are effectively integrated.

Although the proposed GLF-Net has achieved good results, it still has a high com-
putational cost, and, next, we will research reducing the complexity of the model while
maintaining the existing performance.
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Abstract: Remote sensing techniques for shoreline extraction are crucial for monitoring changes in
erosion rates, surface hydrology, and ecosystem structure. In recent years, Convolutional neural
networks (CNNs) have developed as a cutting-edge deep learning technique that has been extensively
used in shoreline extraction from remote sensing images, owing to their exceptional feature extraction
capabilities. They are progressively replacing traditional methods in this field. However, most CNN
models only focus on the features in local receptive fields, and overlook the consideration of global
contextual information, which will hamper the model’s ability to perform a precise segmentation
of boundaries and small objects, consequently leading to unsatisfactory segmentation results. To
solve this problem, we propose a parallel semantic segmentation network (TCU-Net) combining
CNN and Transformer, to extract shorelines from multispectral remote sensing images, and improve
the extraction accuracy. Firstly, TCU-Net imports the Pyramid Vision Transformer V2 (PVT V2)
network and ResNet, which serve as backbones for the Transformer branch and CNN branch,
respectively, forming a parallel dual-encoder structure for the extraction of both global and local
features. Furthermore, a feature interaction module is designed to achieve information exchange, and
complementary advantages of features, between the two branches. Secondly, for the decoder part, we
propose a cross-scale multi-source feature fusion module to replace the original UNet decoder block,
to aggregate multi-scale semantic features more effectively. In addition, a sea–land segmentation
dataset covering the Yellow Sea region (GF Dataset) is constructed through the processing of three
scenes from Gaofen-6 remote sensing images. We perform a comprehensive experiment with the
GF dataset to compare the proposed method with mainstream semantic segmentation models, and
the results demonstrate that TCU-Net outperforms the competing models in all three evaluation
indices: the PA (pixel accuracy), F1-score, and MIoU (mean intersection over union), while requiring
significantly fewer parameters and computational resources compared to other models. These results
indicate that the TCU-Net model proposed in this article can extract the shoreline from remote sensing
images more effectively, with a shorter time, and lower computational overhead.

Keywords: double-branch; sea–land segmentation; GF-6; CNN; transformer; remote sensing

1. Introduction

A coastline refers to the boundary line or marginal area between the ocean or lake and
the land [1]. Different and debated are the definitions of coastline, because defining the
sea–land interface is neither conceptually nor physically simple; one of the conceptually
simplest is defined as the boundary between the land surface and the ocean surface [2], also
known as an instantaneous coastline, in the field of remote sensing application research.
The types of coastline are mainly divided into rocky coasts, sandy coasts, silty coasts,
biological coasts, and artificial coastlines. Coastline information is an important basis for
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the implementation of coastal zone protection and disaster management, the basis for
the development and use of marine resources, and an important territorial resource for
countries bordering the sea, and plays an significant role in the ecological safety of the
ocean [3]. However, at the same time, the extraction of the coastline is a very challenging
problem, because it is the land–water boundary of the multi-year average high tide, rather
than an instantaneous line [4]. Traditional shoreline extraction methods are mainly manual
measurements. However, manual surveying and mapping is associated with issues of labor
intensiveness and a lengthy surveying and mapping duration, which consequently lead to
a reduced efficiency. Additionally, the influence of human factors [5]; for instance, errors
introduced during the process of data collection and variations in subjective judgments and
drawing styles among different operators when delineating coastlines; results in disparities
in the depiction of the same coastline area on different maps. Collectively, these factors
will have an impact on the precise depiction of the coastline. In contrast, remote sensing
images have the advantages of a wide coverage, fast information acquisition, high data
reliability, fewer constraints caused by the weather, geographic environment and other
conditions, free access, etc., which can greatly reduce the cost of surveying and mapping
and, therefore, have been commonly used in agricultural development, sea monitoring,
and other fields [6,7]. Remote sensing technology has become the main technical means of
coastline research, and is widely used in the extraction and monitoring of coastlines.

Coastline extraction methods mainly include threshold segmentation methods [8],
edge detection algorithms, object-oriented methods, machine learning methods, and deep
learning methods [9]. The threshold segmentation method divides the pixels in an image
into two or more categories according to the pixel digital number values, so as to divide
the image into different regions. In remote sensing images, the spectral water index (SWI)
method is often used; i.e., based on the different reflectance properties of water bodies and
non-water bodies in the infrared and visible bands, we calculate certain combinations of
bands in the remote sensing image, to distinguish between water bodies and non-water
bodies. For example, there is the Normalized Difference Water Index (NDWI) [10] and the
Modified Normalized Difference Water Index (MNDWI) [11]. However, threshold-based
methods often require thresholds to be set manually, but different images often have large
differences, and it is likely that different thresholds will need to be set, making threshold
selection difficult and, thus, affecting the final shoreline extraction accuracy. In addition,
the coastline region has a complex terrain; there are shadows cast by the surrounding
terrain, clouds, vegetation, and other factors, meaning that considering only the spectral
differences to distinguish between land and water will make the accuracy lower. Image
edge detection algorithms, currently commonly used as edge detection models include
the Roberts operator [12], Sobel operator [13], Canny operator [14], and so on. However,
the coastline detected by such methods is highly affected by noise, and the noise causes
distortion in the edge detection results. Thus, the detected edges are not accurate enough.
At the same time, these methods are less efficient, and can only detect the significant
edges in the image, and the accuracy of the obtained boundaries is not high [4,15,16].
The object-oriented classification method combines pixels into objects, integrating their
interrelationships and spatial distributions, and thereby reducing the interference from
internal pixel information, and maximizing the utilization of image information. However,
due to the complexity of the steps, processing difficulties, and the difficulty of determining
the threshold value of image segmentation, it is difficult to use in a wide range of high-
resolution images with many features and information. Many machine learning algorithms
extract diverse information based on a variety of data, and use traditional machine learning
algorithms, such as random forest [17] or support vector machine (SVM) [18], to extract
the shoreline. These algorithms are able to extract the shoreline quickly and efficiently
compared to traditional methods. Traditional machine learning methods have certain
limitations. For instance, when manually extracting image features as input, and selecting
features, it is possible that the complex distinctions between the ocean and land cannot be
fully captured, thereby restricting the algorithm’s generalization ability and robustness.
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Furthermore, machine learning algorithms typically focus only on individual pixel features,
neglecting the spatial relationships and contextual information among pixels, leading
to insufficient smoothness and accuracy in the segmentation results. As a result, these
limitations result in a lack of precision in traditional machine learning methods when
extracting complex coastlines from high-resolution images [4,16,19].

Advancements in computer technology and artificial intelligence have generated
considerable interest in the application of deep learning techniques, particularly in the
domain of computer vision, including, but not limited to, semantic segmentation [20] and
object detection [21]. In contrast to other approaches, deep learning models, specifically
those based on convolutional neural networks (CNNs) [22], have demonstrated a superior
capacity to handle intricate image features, and show robust self-learning capabilities. Long
et al. [23] proposed the use of a full convolution network (FCN) to solve the problem that
a traditional convolutional neural network (CNN) cannot directly handle variable length
inputs and outputs. They used convolutional layers instead of fully connected layers, and
used methods such as inverse convolution and up-sampling to reduce the feature maps,
which provided new ideas for those who came after them. On this basis, U-Net, proposed
by Ronneberger O et al. [24], has been extensively employed in the domain of medical
image segmentation. Its innovative architecture and the introduction of jump connections
bring new methods for image segmentation research. Furthermore, the domain of semantic
segmentation encompasses several classical methods, including SegNet [25], PSPNet [26],
the Deeplab series [20,27,28], HRNet [29], and so on. In addition, several researchers
have endeavored to integrate CNN methods into land and water segmentation in remote
sensing images, which has led to substantial enhancements in the accuracy of shoreline
extraction. Li et al. [30] proposed a model called DeepUNet, which is deeper than U-Net,
and improves the accuracy by 2% compared to U-Net. Shamsolmoali et al. [31] combined
the DenseNet [32] and ResNet [33] to develop RDUNet, which has a better classification
accuracy than DeepUNet, DenseNet, and other models. He et al. [34] combined the attention
mechanism with the classical UNet network to devise a novel segmentation network for
extracting glacial lakes in remote sensing images, which enhances the classification accuracy,
as well as achieving clearer boundaries compared to the traditional models.

However, traditional CNN methods capture detailed features of an image only from
a local scope, and do not determine the target boundaries from the global level, based
on the contextual information of the image. In recent years, Transformer [35] has been
migrated to computational vision tasks, showing amazing potential and value. By dividing
images into image patches, and applying a self-attention mechanism, global contextual
information can be utilized for classification, rather than just local features. This global
information processing gives Transformer an advantage over other methods when dealing
with large-scale images and complex scenes. The Vision Transformer (ViT), proposed by
Dosovitskiy et al. [36], is a transformer-based architecture developed for large-scale image
recognition tasks. The fundamental concept behind ViT is to divide the input image into a
series of image patches, considering each patch as an element in a sequence. These image
patches are transformed into corresponding embedding vectors, through a linear mapping
layer, and combined with position coding, to form the input to the Transformer model. By
processing these input embedding vectors through multiple Transformer encoder layers,
ViT is able to capture the global contextual information in the image and, thus, process im-
age tasks efficiently, with a relatively good performance. Several studies have modified the
architecture of ViT for dense prediction tasks. The Pyramid Vision Transformer (PVT) [37]
was the first transformer-based model to import the feature pyramid of CNNs. With the
pyramid structure capturing the multi-scale features, and the Transformer model achieving
global context modelling, PVT has shown a good performance in image classification tasks.
Later, a hierarchical attention mechanism was proposed in the Swin Transformer [38],
which performs attention computation at multiple scales, thus reducing the computational
and memory burden. It is able to handle large-size images with a good scalability and
efficiency, achieving an excellent image classification performance. Meanwhile, in the
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domain of semantic segmentation, segmentation transformers (SETR) [39] employ ViT as
a backbone to extract features, while the decoder uses progressive up-sampling to mit-
igate the noise problem. After four up-sampling operations to obtain the segmentation
results subsequently, semantic segmentation transformers (SegFormer) [40] achieved some
improvements on STER, by removing positional coding, and introducing convolutional
operations, while using a hierarchical encoder structure that outputs multi-scale features
and, finally, designed a lightweight decoder, to reduce the computational overhead. These
changes further improve its segmentation effect.

However, it has been pointed out [41–43] that results based on sheer transformer-
based segmentation networks are suboptimal, primarily because transformers are inclined
towards global modelling, and lack location awareness. Furthermore, due to the unique
self-attention mechanism, and absence of convolutional operations, in Transformer models,
they suffer from certain drawbacks in modeling spatial information, expressing local details,
preserving image invariance, and maintaining robustness. Consequently, these limitations
result in the disruption of image structure, and loss of information. Therefore, many
scholars have tried to design methods with better results, by combining the union of CNNs
and transformers. TransUNet [41] used a hybrid Vision Transformer structure to stack
CNNs and transformers sequentially as an encoder, while the decoder followed the classical
UNet, and achieved good results in medical image segmentation. He et al. [44] constructed
a novel parallel dual-branch encoder based on TransUNet, using Swin Transformer as
a secondary encoder, and the original hybrid Vision Transformer primary encoder, and
achieved good segmentation results on hyperspectral images. Chen et al. [45] put forth a
dual-branch parallel network for segmentation tasks. In the encoding part, ResNet50 and
Swin transformers serve as a dual-branch backbone, to capture the features from the input
images, followed by the complete fusion of the extracted information. A new fusion module
is proposed during the decoding process for multi-scale feature fusion. The experimental
results show that the network maximizes the advantages of both the backbone networks,
and improves the accuracy of semantic segmentation tasks related to buildings and water
bodies.

Inspired by these works, and in order to solve the problems of complex shoreline
extraction and fine water-body identification, in this study, we propose a new two-branch
parallel image segmentation network fusing CNN and Transformer, to achieve the accurate
segmentation of sea and land in multispectral remote sensing images. The paper primarily
contributes via the following four aspects:

• In this paper, we propose TCUNet, a parallel two-branch image segmentation network
fusing CNN and Transformer, to achieve a fine segmentation of land and sea in
multispectral remote sensing images.

• We design a new lightweight feature interaction module (FIM) to achieve feature
exchange and information flow in the dual branch, by embedding it between each
coding block in the dual branch, to minimize the semantic gap of the dual branch,
enhancing the global representation of the CNN branch, while complementing the
local details of the Transformer branch.

• We propose a cross-scale, multi-source feature fusion module (CMFFM) to replace the
decoder block in UNet, to solve the issue of feature inconsistency between different
scales, and achieve the fusion of multi-source features at different scales.

• Based on three Gaofen-6 satellite images produced in February 2023, we constructed a
sea–land semantic segmentation dataset, the GF dataset, covering the entire Yellow Sea
region of China, which contains 12,600 sheets, each with a size of 512 pixels × 512 pixels.
We have made it available for public use.

2. Methods and Materials

2.1. Overall Network Structure

Most of the existing land and sea segmentation models use a convolutional neural
network as an encoder to achieve land and sea feature extraction from remote sensing
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images. Despite being highly effective in local feature extraction, and significantly enhanc-
ing the network’s robustness in sea–land segmentation, CNNs extract image features by
reusing convolutional and pooling layers, but this results in a limited size of the model’s
receptive field. When dealing with large images, the convolution kernel needs to become
very large, which increases the computational cost and memory consumption. Convolu-
tional neural networks are, after all, only network structures that focus on local information,
and this computational mechanism leads to difficulties in capturing and storing global
information over long distances. Numerous transformer-based backbone networks have
emerged, integrating the self-attention mechanism to effectively capture global contextual
information, and address the limitations of CNN in recent years. However, compared to
CNN, transformer-based models cannot fully utilize the local features of the image.

To address this limitation, we propose a novel parallel semantic segmentation network
based on a transformer and CNN, to extract comprehensive global information and intricate
local details between the target and background for sea–land segmentation tasks. The
network architecture, as illustrated in Figure 1, comprises a CNN branch, a Transformer
branch, a feature interaction module (FIM) and a cross-scale multi-level feature fusion
module (CMFFM), which are described in detail below. Considering that the remote
sensing image in the GF dataset contains eight bands, in order to facilitate clear viewing,
we selected a specific image, and displayed a subset of bands. More specifically, bands 3, 4,
and 5 (Red, NIR, and SWIR-1) were selected as illustrative samples, as visually depicted in
Figure 1.

Figure 1. The overall structure of TCUNet.

2.2. CNN Branch

The CNN branch is devised to capture the local contextual information. It is structured
in a feature pyramid style, comprising five distinct layers, where the feature map resolution
of each subsequent layer is halved compared to the previous layer, and the number of
channels is doubled, accordingly. The resolution of the feature map decreases with the
increase of the number of network layers, while the number of channels increases. The first
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layer is the stem module, which consists of a 7 × 7 convolutional kernel with the stride of
2, a batch normalization (BN) layer, and a ReLU activation function. An initial H × W × C
remote sensing image is processed by the stem module, to obtain an H × W × 16 feature
map, which is used for the image extraction of the initial local features, and the layers 2–5
are all composed of a number of Conv Blocks, as shown in Figure 2. Every Conv Block
comprises two bottleneck blocks. Each layer down-samples the input feature map, and
inputs it into the next stage and, finally, outputs a feature map with half the resolution, and
double the number of channels. Therefore, five hierarchical feature maps with different
scales are obtained through these five layers. The shape of the i-th layer feature map is
H/2i × W/2i × Ci, where i ∈ {1, 2, 3, 4, 5}, and C1 = 16, Ci+1 = 2 × Ci.

Figure 2. The structure of the Conv Block, FIM, and Tans Block.

2.3. Transformer Branch

The transformer branch is devised to capture the global contextual information from
remote sensing images. PVT v2 [46], as the latest transformer backbone network, is de-
signed with overlapping patch embedding to encode the images, removes the fixed-size
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positional coding in the feed-forward network, introduces zero-filling positional coding,
and replaces the spatialreduction attention (SRA) [37]. With these three improvements,
PVTv2 can not only ensure the local continuity of image and feature maps, but can also
flexibly handle different scales of input signals, and control the computational complexity
within the linear range. Therefore, in this paper, PVT v2 is adopted as the encoder of the
Transformer branch for feature extraction, and its encoder module is shown in Figure 2.
Similarly to the CNN branch, the Transformer branch also employs the feature pyramid
structure to divide the whole branch into five layers. In the first level, the input image is
initially partitioned into overlapping patches of 7 × 7 dimensions. Subsequently, these
patches are fed into the Transformer encoding module, to acquire the first-stage feature
maps, which are transmitted to the next stages. The subsequent four-stage feature maps are
cut into overlapping 3 × 3-sized patches and, finally, five feature maps with different scales
and resolutions are obtained, which are consistent with the size and number of channels of
the CNN branch, facilitating interaction between the feature layers of both branches. To
mitigate the high computational burden associated with the self-attention mechanism in
Transformer encoders, PVT V2 proposes the linear spatial reduction attention (LSRA) as
a substitute for the traditional multihead attention (MHA) in Transformer encoders [35].
Similar to the MHA, the LSRA accepts the query Q, key K, and value V as input, and
produces refined features as the output. The distinguishing feature of the LSRA is that it
reduces the spatial scale of K and V before executing the attention operation, resulting in a
significant reduction in the computational and memory overheads. This is described in
Equation (1):

LSRA(Q, K, V) = Concat
(
head0, . . . , headNi

)
WO (1)

headj = Attention
(

QWQ
j , LSR(K)WK

j , LSR(V)WV
j

)
(2)

where Concat (·) represents the channel splicing operation, WQ
j ∈ RCi×dhead ,

WK
j ∈ RCi×dhead , and WO ∈ RCi×Ci are linear projection parameters. In addition, headi is

the attention value of the ith head in Stagei. LSR(·)represents the operation of reducing the
spatial dimensions of K and V, which is written as:

LSR(x) = GELU(Norm
(

Reshape(f(AvgPool(x, p) )WS
)
). (3)

Attention(Q, K, V) = Softmax

(
QKT

√
dhead

)
(4)

In contrast to traditional multi-attention operations, the LSRA utilizes average pooling
to decrease the spatial dimensions (h × w) to a constant size (p × p). As a result, the LSRA
significantly reduces the computational cost, and decreases the model memory footprint. To
be specific, when provided with an input of size h × w × c, the computational complexity
of the LSRA and the MHA can be expressed as follows:

O(LSRA) = hwp2c (5)

O(MHA) = h2w2c (6)

Here, p corresponds to the feature map size subsequent to pooling, which is fixed at 7.

2.4. Feature Interaction Module

We considered the problem of the feature differences between the feature maps in
the CNN branch and the patch-embedding features in the Transformer branch, as well as
aiming to better combine and utilize the global features extracted by the Transformer, and
the local features captured by the CNN. Inspired by Conformer [47], starting from stage
2, we embedded a feature interaction module in the middle of each bottleneck block and
Transformer encoding block, to realize the feature interaction of the dual branches, as shown
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in Figure 2. Firstly, the features from the CNN branch undergo a 1 × 1 convolution, to align
with the number of channels in the Transformer branch, while the features are regularised
using LayerNorm [48] and, finally, the features from the two branches are summed. In
this way, local features extracted from the CNN branch are gradually incorporated into
the Transformer block, complementing the local semantic information of the Transformer
branch. Similarly, when the features from the Transformer branch are fed back to the CNN
branch, the feature maps need to be aligned with the CNN feature maps, in terms of the
channel dimensions by 1 × 1 convolution and, at the same time, the features are regularized
using BatchNorm, and the features of the two branches are finally summed, and such a
process achieves the advantages of the two-branch feature maps, in such a way that they
complement each other.

2.5. Cross-Scale Multi-Level Feature Fusion Module

After five stages of the backbone network, the model extracts multi-layer features with
global contextual information. Similar to FPN-like networks, low-level features contain
coarse-grained information with a relatively high resolution; high-level features contain
fine-grained information, but with a relatively low resolution. While in the decoding stage,
traditional UNet models often employ the simple upsampling of high-level features, to
match the spatial scale of low-level features, followed by concatenation. However, the
simple upsampling only makes the feature size of the high and low layers consistent; it
cannot eliminate the corresponding error between the high- and low-layer feature pixels.
Consequently, this approach falls short in resolving spatial misalignment between features,
resulting in substantial information loss, and adversely affecting the overall performance of
the model [49]. In addition, this operation easily generates semantic gaps, which lead to the
occurrence of situations such as the omission of small water bodies, and the misclassification
of shadow targets. To solve the above problems, we design a cross-scale, multi-source
feature fusion module, to replace the decoder block in UNet.

As shown in Figure 3, for two feature maps with different scales and channel numbers
as inputs to the module, we assume that the high-level input features are Xh, and the low-
level input features are Xl, whose sizes are 2C × H × W and C × 2H × 2W, respectively,
where C represents the number of channels of the feature map, and H and W are the height
and width. To ensure that the high-level features include the same channels as the low-level
features, a 1 × 1 convolution operation is initially applied to Xh. Then, inspired by Li et
at. [49] and Huang et al. [50], we put the high-level and low-level features into a designed
feature calibration module, so that we could obtain the spatially dimensional aligned high-
and low-level features Xh2 and Xl1 (both of the sizes C × 2H × 2W). Subsequently, the
high- and low-level features are summed, to obtain the fusion feature Xf. For the fusion
feature, we perform the attention mechanism along the spatial and channel dimensions,
respectively, to obtain the spatial weight Ms and the channel weight Mc, and then we sum
the outputs of the two to obtain the output Xf1, and then we obtain the weights via the
sigmoid activation function. The output variables Xh3 and Xl2 are generated via multiplying
the weight coefficients s and (1 − s) with Xh2 and Xl1, respectively, which are then summed
to obtain the final feature map Xout. The above process can be expressed as a series of
equations:

Xl1, Xh2 = FAM
(

Xl, f1×1(Xh)
)

(7)

Xf = Xl1 + Xh2 (8)

Xf1 = CAM(Xf) + SAM(Xf) (9)

s = sigmoid(Xf1) (10)

Xout = Xl1·(1 − s) + Xh2·s (11)
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where f1×1() denotes the 1 × 1 convolution layer, while the abbreviations FCM, CAM,
and SAM, respectively, denote the feature calibration module, channel attention module,
and spatial attention module. For further details regarding these modules, please refer to
Sections 2.5.1–2.5.3 of this paper.

Figure 3. The overall structure of the cross-scale, multi-level feature fusion module.

2.5.1. Feature Calibration Module

In semantic segmentation tasks, low-level features contain abundant spatial informa-
tion, but are limited in terms of semantic information, while high-level features exhibit the
opposite characteristics, being abundant in semantic information, but lacking in contex-
tual and spatial details. In the decoder stage, the challenge lies in how to effectively fuse
multi-scale hierarchical semantic features, to obtain rich spatial and semantic information
for pixel classification. Previous works have explored this issue [24,26,51,52]. However,
many of these works often overlook a crucial problem, which is the feature misalignment
issue across different scales.

The problem of feature misalignment refers to the misalignment or mismatch between
features caused by differences in the receptive field sizes and resolutions at different scales.
This may lead to issues such as blurry boundaries and misclassification of objects in the
segmentation results. The main cause of feature misalignment across multiple scales lies
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in the up-sampling and down-sampling operations used in the models. During scale
transformations, the up-sampling and down-sampling operations employed may introduce
misalignment in feature maps. For example, the interpolation method used during up-
sampling may introduce positional offsets, while down-sampling may result in a loss of
information and blurring effects.

To address the issue of the semantic and spatial misalignment of features on different
scales, this study proposes a feature calibration module (illustrated in Figure 4). Specifically,
the high-level and low-level features are first passed through individual 1 × 1 convolutional
layers to adjust their dimensions, followed by up-sampling of the high-level features to align
with the low-level features. Subsequently, the concatenated feature maps are processed by
a 3 × 3 convolutional layer, to reduce the number of channels to four, which represent the
offset maps of the high-level and low-level features in the x and y directions, as shown in
Equation (12).

Δl, Δh = f3×3
(

cat
(

f1×1(Fl), Up(f 1×1(Fh))
))

(12)

where cat(·) represents the concatenation operation, and f3×3(·) is the 3 × 3 convolutional
layer, f1×1(·) is the 1 × 1 convolutional layer, Up(·) denotes the up-sampling operation, and
Δl, Δh represent the offset map (size H × W × 2) of the low- and high-level features.

Figure 4. The structure of the Feature Calibration Module.

After obtaining the offset map between the high- and low-level feature maps, we
then perform a warp operation (as shown in Figure 5) on the semantic flow field of the
two features, which is described in Equation (13):

Warpc
hw =

H

∑
h′=1

W

∑
w′=1

Fc
h′w′ · max

(
0, 1 − ∣∣h + Δy − h′∣∣)

·max(0, 1 − |w + Δx − w′|)
(13)

where Fc
h′w′ is the value of the position of the original feature at the spatial level (w′, h′, c),

and h, w are the height and width of the output feature map (e.g., for high-level features,
h = 2 × h′, and for low-level features, h = h′). Δy, Δx are the offset of the offset map obtained
from the feature map in Equation (12) on the y, x axes, i.e., on the height and width.
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Figure 5. The warp procedure of the feature calibration module.

Finally, two feature maps are obtained after calibration, with consistent height and
width dimensions for both (i.e., generating the feature maps with a size of H × W × C for
both).

2.5.2. Channel Attention Module

Inspired by the human visual system, attention mechanisms [35] have been introduced
into neural networks, to learn more relevant features. In neural networks, attention mech-
anisms calculate weights for each feature map in a layer, allowing the model to capture
critical information more effectively. Building on the work of Liu et al., a channel attention
sub-module was designed (as shown in Figure 6) to model the interdependencies between
channels in the fused features. To determine the variance between channels, and infer
their relative importance, a scaling factor γ was introduced into the calculation of batch
normalization (BN) [53], as shown in Equation (14).

Bout = BN(Bin ) = γ
Bin − μB√

σ2
B + ε

+ β (14)

Figure 6. The structure of the channel attention module.

In Equation (14), μB and σB, respectively, represent the mean and standard deviation of
batch B, while β denotes the bias term. The channel attention module weights, denoted as
Mc, can be obtained by reversing Equation (14) using Equation (15), where γ is the scaling
factor for each channel, and Wγ = γi

∑j=0 γj
represents the proportion of the scaling factor

for each channel among all the channels. A higher value indicates that the corresponding
channel requires more attention, while a lower value suggests that the model should assign
less attention to that channel.

Mc = sigmoid(Wγ(BN(F1))) (15)
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2.5.3. Spatial Attention Module

For the spatial attention module, as shown in Figure 7, we directly pass the feature
map through three convolutions, followed by BN and ReLU after each convolution, and the
first and last of the three convolutions are 1 × 1 convolutions for channel transformation,
similar to the structure in the bottleneck. In the middle is a 3 × 3 dilation convolution,
which is used to enlarge the receptive field without increasing the computational overhead.
The introduction of dilated convolution and the ability to obtain more context information
are of great help in providing spatial modeling. Finally, the spatial weight Ms is obtained
through the sigmoid function, as shown in Formula (16).

Ms(F)= sigmoid
(

f1×1
2

(
f3×3
1

(
f1×1
0 (F)

)))
(16)

where f3×3(·) denotes a 3 × 3 two-dimensional dilated convolution, and f1×1(·) denotes a
1 × 1 two-dimensional convolution.

Figure 7. The structure of the spatial attention module.

2.6. Loss Function

Cross-entropy (CE) loss and Dice loss are commonly utilized as the predominant
loss function in the semantic segmentation of remote sensing images. However, these
loss functions and their variants are based on region similarity, and may lead to a poor
performance when dealing with imbalanced classes, as well as small objects and edge
details in images. In the task of land–water segmentation, there are often many small
segmentation targets in the image, such as lakes, ships, islands, buildings, and clouds.
Moreover, the water–land boundary in the image is often jagged and difficult to distinguish.
The use of only the Dice loss or CE loss is insufficient to address these issues.

Therefore, in this study, we incorporated the boundary loss function [54] to address
the problem of edge detail handling and small object recognition in water–land semantic
segmentation. The formula for computing the boundary loss is as follows:

LB =
1
N

N

∑
i=1

d(B(yi),B(ŷi)) (17)

where LB denotes the boundary loss function,yi is the ground truth label of pixel i, and
ŷi is the predicted label of pixel i by the model. The distance function d measures the
dissimilarity between two boundaries, with N representing the whole number of pixels. To
address the challenges of small object recognition and edge detail handling in land–water
semantic segmentation, we propose a hybrid loss function L that integrates the boundary
loss function with the CE loss. Specifically, the proposed loss function L is defined as
follows:

L = p·Lce + (1 − p)·LB (18)

Lce represents the CE loss function, and p is a weighting coefficient. Through experi-
ments, we set p to 0.8 in this study.
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3. Results

3.1. Study Area and Dataset

For this study, the Chinese coastline on the Yellow Sea was chosen as the designated
study area. The image data utilized in this study were acquired from the China Center for
Resources Satellite Data and Application (CCRSDA; http://www.cresda.cn, accessed on
15 April 2023). Specifically, we acquired three remote sensing images from Gaofen-6 (GF-6),
captured in February 2023, with a spatial resolution of 16 m, and eight spectral bands. All
the GF-6 images utilized in this study were of the Class 1A product type, characterized by
a high quality and an absence of cloud cover, and provided complete coverage of the entire
Yellow Sea area (see Figure 8 for further details). A detailed summary of the GF-6 images is
presented in Table 1. Subsequently, we preprocessed the original image with radiometric
calibration and atmospheric correction and, ultimately, generated remote sensing images
suitable for further research purposes.

Figure 8. The geographic location of the research area, on the Yellow Sea.
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Table 1. GF6/WFV data.

Project GF6/WFV Data

Wavelength range/um

B1(Blue): 0.45~0.52

B2(Green): 0.52~0.59

B3(Red): 0.63~0.69

B4(NIR): 0.76~0.90

B5(SWIR1): 0.69~0.73

B6(SWIR2): 0.73~0.77

B7(Purple): 0.40~0.45

B8(Yellow): 0.59~0.63

Spatial resolution/m 16

Width/km 864.2

In the image of the study area, the part of the sea–land boundary to be used to construct
the GF dataset was selected, and sea–land segmentation was carried out. Initially, due
to the excessive width of the original GF6 WFV images, and the presence of overlapping
regions between the three images, we cropped these three images, while preserving the
Yellow Coast as fully as possible, to reduce the difficulty of the task. Please refer to Figure 8
for specific details. Then, the clipped image was divided into two categories: ocean and
land. To improve the efficiency of the training, we selected only those cropped images that
contained both ocean and land, and obtained 2100 images and 2100 labels, all of which
were 512 pixels × 512 pixels in size.

In cases where the network model requires an insufficient number of training samples,
data augmentation becomes a crucial step in enhancing the network’s invariance and
robustness. In order to increase the data volume of the experimental dataset, five data
expansion methods, such as horizontal flip, vertical flip, diagonal mirror, local cropping and
magnification, and image sharpening, are used to increase the image quantity of the dataset.
Finally, the GF dataset we constructed contained 12,600 images, which were subsequently
partitioned into training, validation, and test sets, in a random 7:2:1 ratio.

3.2. Experimental Details and Evaluation Metrics

All experiments were performed on a workstation running Windows 10 with an
NVIDIA GeForce RTX 3090 graphics card, and using the deep learning framework Pytorch
(2017). All models were trained with an initial learning rate of 0.001, and AdamW [48],
with a momentum term of 0.9 and a weight decay of 0.01, was selected as the optimizer to
optimize the network model. Additionally, to speed up the training, we set the batch size
to 16, and the epoch number to 100. The poly method is used to dynamically adjust the
learning rate. The formula is expressed as follows:

li = lbase ×
(

1 − epoch i
epoch max

)0.9
(19)

where li is the current learning rate, lbase is the base learning rate set to 0.001, epochi is the
current number of iterations, and epochmax is the maximum epoch set to 100.

In this paper, three metrics normally utilized in semantic segmentation are used to
verify the effectiveness of the model, namely the pixel accuracy (PA), mean intersection
over union (MIoU), and F1-score. Based on the associated confusion matrix, the PA, MIoU,
and F1 are calculated as

PA =
∑K

k=1 TPk

∑K
k=1(TPk + FPk + TNk + FNk

) (20)
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MIoU =
1
K

∑K
K=1 TPk

(TPk + FPk + FNk)
(21)

F1 = 2 × precisionk × recallk
precisionk + recallk

(22)

where TPk, FPk, TNk, and FNk represent the true positive, false positive, true negative, and
false negative values for the kth class, respectively. In addition, precisionk = TPk

TPk+FPk
and

recallk = TPk
TPk+FNk

are the precision and recall rates for the k classes, respectively.

3.3. Performance Comparison of Different Band Combinations

The GF6 image is a typical multispectral remote sensing image. Compared with the
traditional RGB image, multispectral images contain a significantly greater amount of
information, due to their higher number of bands (the GF6 has eight bands). This paper,
firstly, discusses the effectiveness of different band combinations in sea–land segmentation.
According to Yu et al. [55] and Mou et al. [56], we selected ten common three-band and
all-band combinations, and compared their performance differences on sea–land semantic
segmentation. Details of the comparison experiment of band combination are presented in
Table 2.

Table 2. Comparison of results of different band combinations on the GF dataset.

Band Combination PA (%) MIoU (%) F1 (%)

B1 + B2 + B3 96.52 91.12 95.30
B1 + B4 + B5 96.81 92.23 95.36
B2 + B3 + B4 96.95 92.64 95.58
B2 + B3 + B5 96.21 91.81 94.88
B3 + B4 + B5 96.99 92.78 95.67
B3 + B4 + B8 96.64 92.07 95.27
B3 + B5 + B7 95.89 89.56 94.32
B4 + B5 + B6 96.69 92.19 95.33
B4 + B6 + B7 96.31 91.28 94.82
B5 + B6 + B7 96.88 92.36 95.43

All-bands 97.52 93.53 96.63

As seen in Table 2, bands 3, 4, and 5 (Red, Nir, and Swir-1) outperformed the other nine
bands in the sea–land segmentation task. However, the effect of the all-band combination
is better than that of all the three-band combinations. This shows that the eight different
bands can contain more spatial and spectral information, and that the complementary
information is more advantageous in the task of sea–land semantic segmentation.

3.4. Ablation Study
3.4.1. Performance of Feature Interaction Module

To assess the performance of the FIM, this article conducted ablation research to
validate the effectiveness of the module design. We divided the experiment into three
scenarios: (1) only using CNN branches as encoders; (2) using only transformer branches as
encoders; (3) the method proposed in this article, to use dual branches and, simultaneously,
use FIM as encoders. For the decoder part, we uniformly used the designed CMFFM. The
outcomes of the experiment are presented in Table 3.
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Table 3. Results of the module ablation experiments. The best results are in bold.

Method Encoder PA (%) MIoU (%)

TCU-Net

CNN 96.02 92.01

Transformer 95.89 91.95

CNN + Transformer + FIM 97.52 93.53

Table 3 reveals that the segmentation accuracy using only the Transformer branch
as the encoder is the worst, with an MIoU of 91.95% and a PA of 95.89%, while the
segmentation accuracy using only the CNN branch is not high, with an MIoU of 92.01%
and a PA of 96.02. There is a certain gap between the segmentation accuracy of the two
branches and the FIM as the encoder. This shows that simply using a CNN or Transformer
branch as the encoder has certain defects in feature extraction, and cannot integrate image
spatial information, semantic information, and global context information well. After the
introduction of the FIM as the information exchange bridge between the two branches,
the missing local and global information perception ability between the two branches is
enhanced, the information exchange and complementary function are perfectly realized,
and the feature extraction ability of the whole model is greatly enhanced.

3.4.2. Performance of Cross-Scale, Multi-Level Feature Fusion Module

In order to evaluate the performance of the cross-scale, multi-level feature fusion
module, we verified the effect of the module for small targets and edge extraction in images.
In this paper, we use TCU-Net as a baseline to perform ablation experiments on the Yellow
Sea sea–land semantic segmentation dataset.

The results of the experiment are shown in Table 4. Through comparing the feature
fusion strategies, we find that the simple up-sampling and jump join, as in the original
UNet, can not fully fuse semantic features of different scales and levels. Through using the
proposed CSMFF module, the PA, MIoU, and F1-score are improved by 0.51%, 0.31%, and
0.36%, respectively, on the test set. Simultaneously, the number of parameters of the CSMFF
module designed in this paper is reduced by 0.68 M, compared with the jump connection of
the original UNet, which further upgrades the efficiency of the model in processing images.

Table 4. Results of the module ablation experiments.

Method Decoder PA (%) MIoU (%) F1 (%) Params (M)

TCU-Net
UNet 96.91 93.01 96.02 2.4 M

CSMFF 97.52 93.53 96.63 1.72 M

The visualization results from the experiment are shown in Figure 9. In order to show
the difference in the prediction results between the two decoders more directly, blue boxes
are used to highlight the positions where the model shows differences in the prediction
image. It is evident that the TCUNet using the decoder of the original UNet performs
poorly on the sea–land boundary and the small water body when predicting the picture,
because the shallow feature and the deep feature are spliced only using up-sampling and
the jump connection, and semantic gaps are easily generated, resulting in the situation
whereby the small water body is missed, and the shadow target is misclassified. Using the
CSMFF module designed in this paper as a decoder can effectively improve the detection
of small objects and the definition of boundaries in the land–sea segmentation task, so that
the classification results of the model are more accurate.
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Figure 9. Visualization of CMFFM ablation on the GF dataset. “−” indicates that CMFFM was not
used, and “+” indicates that CMFFM was used. The blue boxes highlight where the model differs on
the predicted image.

3.5. Contrast Experiment

To more accurately evaluate the performance of the model proposed in this paper, we
compare our model with some excellent models commonly found in the field of seman-
tic segmentation, including UNet, Deeplabv3+, DANet [51], Segformer, SwinUNet [57],
TransUNet, ST-UNet, and UNetformer [58]. The first three methods are CNN networks,
Segformer and SwinUNet are pure vision sensor methods, and TransUNet, ST-UNet, and
UNetformer are hybrid models that combine CNNs with sensors. The TransUNet encoder
adopts the serial form of standard ViT and ResNet, and the decoder is the same as UNet; ST-
UNet improves the encoder part on the basis of TransUNet, using a dual-encoder structure
with a Swin transformer and CNN in parallel, while UNetformer uses ResNet18 as the en-
coder, and develops an efficient global–local attention mechanism to construct transformer
blocks in the decoder, as the decoder. In addition, the backbone of Deeplabv3+ and DANet
is ResNet50, that of Segformer is MiT-B1, and the backbones of other models are set by the
original authors. In addition, according to the experiment in 3.3, for UNetformer, which
only accepts three-band image input (its backbone is the officially packaged ResNet18), we
chose the band combination of bands 2, 3, and 5 as its input data, while the other models
used the full-band combination (8 bands) as their input data. To ensure the fairness of the
experiment, no models were pre-trained. The experiments were carried out under the same
conditions, and the specific implementation details are shown in Section 3.2. of this paper.
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The quantitative analysis results of the GF dataset are shown in Table 5, and the best results
of each evaluation index are highlighted in bold.

Table 5. Comparison of all the methods in metrics. Training Time represents the time spent by the
model in processing the training and validation sets during training; Inference Time represents the
time spent processing the test set when the model makes predictions.

Method Backbone
PA
(%)

MIoU
(%)

F1
(%)

Params
(M)

FLOPs
(GMac)

Training
Time (s)

Inference
Time (s)

UNet [24] - 96.95 92.15 95.96 31.04 218.9 695 86.28
Deeplabv3+ [28] ResNet50 96.87 91.98 95.77 40.36 70.22 385 77.28

DANet [51] ResNet50 96.68 91.52 95.52 49.61 205.37 680 85.44
Segformer [40] MiT-B1 97.16 92.71 96.18 13.69 13.49 375 78.48
SwinUNet [57] Swin-Tiny 96.88 91.95 95.92 27.18 26.56 505 84.36
TransUNet [41] ViT-R50 97.07 92.41 96.03 100.44 25.5 810 106.26

ST-UNet [44] - 97.23 92.99 96.34 160.97 95.41 915 135.54
UNetformer [58] ResNet18 97.15 92.67 96.15 11.72 11.73 235 73.44

TCUNet - 97.52 93.53 96.63 1.72 3.24 445 87.78

The results show that the TCUNet proposed in this paper is superior to the other eight
models in its PA, MioU, and F1-score. Overall, the combination of CNN and Transformer
worked slightly better than the visual Transformer method, and the CNN-based method
showed the worst classification accuracy, but there was no significant difference between
the nine methods. This shows that the CNN-based model has some limitations in describing
global dependencies. In the CNN method, the effect of UNet is the best, that of Deeplabv3
+ is the second best, and the effect of DANet is the worst. This may be due to the fact
that UNet adopts a feature pyramid-like structure in the decoder, which fuses the five
layers of semantic features extracted by the backbone network through jumping links;
it can be applied to the sea–land segmentation of high-level semantic information and
detail information. However, Deeplabv3 + uses hole convolution and an ASPP module
to integrate multi-layer semantic features, which is too simple, and not good for the
fine segmentation of object edges and details. DANet’s encoder only uses the high-level
semantic features of the backbone network for classification, meaning that it can not
make full use of the shallow semantic features, and the classification effect is the worst.
Among the Transformer models, TCUNet is the best, ST-UNet is the second, Segformer
and UNetformer have the same classification accuracy, slightly better than TransUNet, and
SwinUNet is the worst.

Figure 10 shows the segmentation results for all the methods in the six test images.
Looking at Figure 10, we can see that TCUNet performed better on segmentation than
the other eight models, especially in the blue-rectangular-box-labeled area. As can be
seen from these test charts, the proposed method shows the best segmentation effect
compared with the other models. Faced with complex types of shorelines (farmed ponds,
ports, small rivers), our networks can still clearly delineate boundaries. At the same
time, in the edge details and small target recognition, compared with other methods, our
network segmentation is better. This shows that our network model can solve the problems
of missed detection and misclassification in low contrast areas and small water bodies
with a complex background, and effectively improve the problems of pixel classification,
small target extraction, and boundary blur, meaning that the effect of classification is
more accurate.
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Figure 10. Comparison of different models in the GF dataset.

In order to evaluate the segmentation efficiency of all the models, we also list the
number of parameters, the computational complexity, and the time spent on training and
reasoning of each model in Table 5, where “M” represents one million parameters, and
“GMac” stands for the billion times a model performs a floating-point multiplication and
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addition operation in the course of a single forward propagation. The model proposed
in this paper is only 1.72 M and 3.24 GMac, far lower than the other eight models. This
is because the two-branch structure used in this paper greatly enhances the ability of the
model to extract semantic features, so we set the number of channels in the first stage
of the model to 16 (that is, greatly reducing the width of the network) without affecting
the performance of the network. In terms of the training and prediction efficiency, the
training time of TCUNet is 89 s per epoch, and the inference time is 14.63 s, which ranks
medium among all models. The lightweight model UNetformer runs much faster than other
networks. This may be because the hybrid structure of the CNN and transformer in TCUNet
slows down the running efficiency of the model, and there are many LN and GELU [59]
functions in FIM, which are far less optimized via the graphics card than the convolution
and ReLU operations of a traditional CNN. This will cause TCUNet to be slower when
processing images. Although the above two issues may limit the application of TCUNet in
some scenarios (such as on small mobile devices), TCUNet is still valuable in exploring
the role of the transformer and CNN combination in sea–land semantic segmentation in
remote sensing images.

4. Discussion

4.1. Comparison of Model Effects on Different Satellite Sensor Images

Various satellite sensors can collect different remote sensing images in the same
geographical area. In order to verify the adaptability of our model to different satellite
images at different time periods, we selected a Landsat 8/OLI remote sensing image of
the Yellow Sea region in October 2019, to verify the portability of the model. The OLI
sensor has a total of 9 bands, with bands 1–7 and 9 having a spatial resolution of 30 m, and
band 8 having a panchromatic resolution of 15 m. The detailed information is listed in
Table 6. In order to ensure that the number of bands in the data is consistent with GF6/WFV,
this article will perform image fusion on the first seven bands and panchromatic bands
after some preprocessing steps, such as radiation calibration and FLAASH atmospheric
correction. Finally, an 8-band image, with a resolution of 15 m, was obtained. As with
the GF6 image, we selected part of the sea–land boundary, to construct a Landsat dataset
for validation experiments. After cropping and labeling, 112 images and labels were
obtained; all images had a size of 512 pixels × 512 pixels. Subsequently, we used five data
expansion methods, including horizontal flipping, vertical flipping, diagonal mirroring,
local cropping, and zooming in, and image sharpening, to increase the number of images
in the dataset, resulting in 672 images and labels.

Table 6. Landsat8/OLI data.

Project Landsat 8/OLI

Wavelength range/um

B1(Coastal aerosol): 0.43~0.55

B2(Blue): 0.45–0.51

B3(Green): 0.53–0.59

B4(Red):0.64–0.67

B5(NIR): 0.85–0.88

B6(SWIR1): 1.57–1.65

B7(SWIR2): 2.11–2.29

B8(PAN): 0.50–0.68

Spatial resolution/m 15

Width/km 185

Without training and parameter adjustments, we directly predicted the 672 images
using the model weights trained in 3.5, exploring the land and sea segmentation effects
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of each model on remote sensing images of the same area from different satellites and at
different time points. The experimental results are shown in Table 7. The indicators of
TCUNet in the PA, F1-Score, and MIoU are 95.46%, 95.19%, and 90.84%, respectively, which
are much higher than those of the other nine models.

Table 7. The results of all methods on the Landsat datasets.

Method PA (%) MIoU (%) F1 (%)

UNet 64.63 41.55 61.25
Deeplabv3+ 91.75 83.82 91.13

DANet 88.23 76.84 86.72
Segformer 80.88 67.83 80.63
SwinUNet 81.04 68.03 80.96
TransUNet 75.10 60.60 74.92

ST-UNet 84.82 73.41 84.65
UNetformer 90.17 80.20 88.89

TCUNet 95.46 90.84 95.19

In addition, for the segmentation results of Landsat images, as shown in Figure 11,
in order to visually verify the segmentation effect of each method, this article uses blue
boxes to highlight the positions where the model shows differences in the predicted image.
It can be clearly seen that without pre-training, Deeplabv3+, UNeformer, and DANet
perform well. However, it can be seen from the graph that these models cannot perform
the precise segmentation of water and land, and there is a phenomenon of misclassification
and missing segmentation for small targets, such as ships, islands, and ponds. However,
the segmentation results of Segformer, TransUNet, and SwinUNet are not satisfactory, and
cannot accurately complete land and sea segmentation. They can only roughly distinguish
between water and land. U-Net cannot perform land and sea segmentation in Landsat
8 images. This indicates that U-Net struggles to extract water bodies from different remote
sensing images across sensors, despite its excellent performance in medical images. The
TCUNet method proposed in this article can extract the coastline at different times, across
sensors. The accuracy of the extraction results meets the extraction requirements.

4.2. Performance under Different Parameter Settings

In this paper, we continue to explore the sea–land segmentation task, by setting
different parameters, to test the segmentation performance of the model. The experimental
results are shown in Table 8.

Table 8. Performance under different parameter settings. E represents the dimension of the first stage
of the Transformer branch. C represents the number of channels in the first layer of the CNN branch,
and D represents the number of Conv blocks and Transformer blocks in stages 2–5.

E C D PA (%) Params

16 16
[2,2,2,2] 96.92 1.04 M

[3,4,6,3] 97.52 1.72 M

46 32
[2,2,2,2] 97.06 7.07 M

[3,4,6,3] 97.46 8.50 M

92 64
[2,2,2,2] 97.42 20.43 M

[3,4,6,3] 97.56 33.51 M
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Figure 11. Comparison of the prediction effects of different models on the Landsat dataset.

As can be seen from Table 3, increasing the number of dual-branch channels in the
first stage (stages 2–5 have twice as many channels as the previous stage, as described in
Section 2.2, i.e., they deepen the width of the network) does not significantly improve the
segmentation performance of the model, but the parameters and complexity of the model
have increased by tens of times. On the contrary, through keeping the number of model
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channels constant, and increasing the number of double-branch encoder modules in layers
2–5 (i.e., increasing the depth of the network), the segmentation precision of the model is
obviously improved, and the parameters of the model did not increase significantly.

In response to the aforementioned phenomenon, we speculate that our proposed
model, which combines a CNN and Transformer, exhibits a considerably enhanced ability
in feature extraction compared to conventional CNN networks. Consequently, each layer
of the model does not require too many channels (i.e., the width of the network does not
need to be too wide) to obtain sufficient rich information. Correspondingly, increasing
the number of channels in each layer of the network does not significantly improve the
segmentation accuracy. However, network depth enhancement can enable the model to
learn deeper feature information, and more complex representations of the image. As a
result, enhancing the depth of the model is more effective in improving the accuracy of
land and sea segmentation, in comparison with increasing the width of the module, while
it also contributes to a reduction in the computational overheads.

Therefore, combining the network complexity and the model segmentation accuracy,
we set the channel number of the first stage model to 16, and set the number of encoder
blocks in layers 2–5 of the network to 3, 4, 6, and 3, respectively.

4.3. Limitations of the Model and Future Prospects

This paper presents a TCU-Net model specifically designed for the extraction of the
shoreline from multispectral remote sensing images. Compared with the latest CNN and
Transformer methods, the proposed model achieves a better segmentation accuracy with
fewer model parameters and computational resources.

However, due to the inherent computational demands of the parallel dual-branch
encoder structure and the Transformer model, despite efforts to reduce the model’s com-
putational overhead through narrowing the network width and designing lightweight
decoder structures, optimal results in terms of training and inference speed have not been
achieved in this study. Future research will focus on further optimizing the model archi-
tecture, while ensuring a robust segmentation accuracy. This will involve the design of
more efficient model structures and effective training strategies, aiming to alleviate training
complexity and difficulty.

5. Conclusions

In order to achieve the high-precision segmentation of sea–land boundaries and
coastline extraction from remote sensing images, a lightweight two-branch parallel network
model combining CNN and Transformer is designed for sea–land segmentation in remote
sensing images.

Specifically, in the encoding process of the algorithm, the CNN branch and the Trans-
former branch are used to extract the local semantic features and the global spatial features
of the multi-spectral remote sensing image. At the same time, we design a feature interac-
tion module (FIM) which is embedded between each corresponding two-branch coding
block, serving as a bridge module to fuse the local features from the CNN branch and
the global representation from the Transformer branch, to realize information interaction
between the twobranches’ features. For the decoder part, we designed a cross-scale, multi-
source feature fusion module (CMFFM) to replace the original UNet encoder module,
achieving the successful integration of low-level semantic and high-level abstract features,
and improving the network’s ability to capture information flows. For CMFFM, the module
is first replaced via up-sampling using a feature calibration module, which can reduce the
semantic differences between the “corresponding” pixels of images at different scales. At
the same time, a channel attention module and spatial attention module are introduced to
obtain channel and spatial attention weights, using two branches with different scales for
the fused features, so that the model can capture the spatial and band information of the
image, and realize the successful integration of low-level semantics and high-level abstract
features. Finally, the fused multi-scale features are obtained. In this study, we generated
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a dataset, named the GF dataset for sealand segmentation in the Yellow Coastline region,
using three GF-6 remote sensing satellite images. Subsequently, an extensive series of
comprehensive experiments was conducted, to evaluate the segmentation performance and
efficiency of TCUNet in comparison to other existing semantic segmentation networks on
this dataset. The experimental results demonstrate that TCUNet has a better segmentation
effect than other classical semantic segmentation networks, highlighting its superiority and
effectiveness. Furthermore, we also discussed the application of the model on different
band combinations and different remote sensing sensor images. In summary, this study
provides a new method for extracting the coastline from remote sensing images accurately
and effectively.

In our future research, we will continue to refine our model, collect multi-spectral
satellite remote sensing images taken by different satellites, at different band settings
and spatial resolutions, improve the application scope of the model and the accuracy
of shoreline extraction, and then expand the research area, to achieve the extraction of
shorelines in other sea areas.
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Abstract: Rock detection on the surface of celestial bodies is critical in the deep space environment
for obstacle avoidance and path planning of space probes. However, in the remote and complex deep
environment, rocks have the characteristics of irregular shape, being similar to the background, sparse
pixel characteristics, and being easy for light and dust to affect. Most existing methods face significant
challenges to attain high accuracy and low computational complexity in rock detection. In this paper,
we propose a novel semantic segmentation network based on a hybrid framework combining CNN
and transformer for deep space rock images, namely RockSeg. The network includes a multiscale low-
level feature fusion (MSF) module and an efficient backbone network for feature extraction to achieve
the effective segmentation of the rocks. Firstly, in the network encoder, we propose a new backbone
network (Resnet-T) that combines the part of the Resnet backbone and the transformer block with a
multi-headed attention mechanism to capture the global context information. Additionally, a simple
and efficient multiscale feature fusion module is designed to fuse low-level features at different scales
to generate richer and more detailed feature maps. In the network decoder, these feature maps are
integrated with the output feature maps to obtain more precise semantic segmentation results. Finally,
we conduct experiments on two deep space rock datasets: the MoonData and MarsData datasets.
The experimental results demonstrate that the proposed model outperforms state-of-the-art rock
detection algorithms under the conditions of low computational complexity and fast inference speed.

Keywords: deep space exploration; planetary rover; rock segmentation; semantic segmentation

1. Introduction

Obstacle detection is a crucial component of space exploration to assure rover patrol
safety of deep space probes. Particularly, on the surface of most celestial bodies, rocks are
the main obstacle that interfere with landing probes and rover missions [1–3]. To obtain
suitable path planning and ensure the safe driving of planetary rovers, it is important for
planetary rovers to perceive and avoid these rock hazards when carrying out a deep space
exploration mission. However, the deep space environment is complex and unknown; some
rocks have irregular morphology and different size on the surface of the planet. Compared
to other nearby targets such as sand, soil, or gravel, they have no distinct distinguishing
features, and some rocks may also be affected by changes in illumination, different lighting
angles, and the resulting shadow causing a false visual perception. These conditions
undoubtedly increase planetary rovers’ difficulty in perceiving and understanding the
surroundings. Therefore, the exploration of autonomous rock detection on the surface of
planets still faces great challenges [4,5].

Recently, autonomous technology has been used for a range of planetary scientific
missions, including autonomous landing location [6–8], rover navigation [2,3,9], and au-
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tonomous path planning [1,10]. As the distance of deep space exploration increases,
autonomous technology becomes the key and necessary technology to support deep space
exploration in the future [11]. In deep space environments, edge-based digital image
processing methods [12–14] are a common method to achieve rock autonomous detection.
Most of them use the local strength gradient operator or the gradient difference in illumina-
tion direction to detect the target boundary, which is sensitive to noise and illumination
conditions. In order to deal with the influence of sunlight and noise, some studies [15–17]
try to classify regional objects by using a super-pixel segmentation region method based on
pixel clustering to improve the performance in rock detection. In addition, some machine
learning classifiers [18,19] are also used to classify planetary terrain. However, the complex-
ity of super-pixel segmentation increases with the size of the input image, and how to adjust
its convergence and detection performance is a challenge. Although most machine-learning
techniques are successful at terrain classification, they fall short in accurately identifying
rock boundaries and locations.

Convolutional neural network (CNN)-based deep learning technology has achieved
great success in the semantic segmentation of 2D images [20,21]. Some efforts towards
semantic segmentation-based methods have been made to achieve automatic rock detection.
For the deep space autonomous rock segmentation network, when the rover captures an
image, it is passed to a semantic segmentation network and the network output is the
classification at the pixel level, which is fed back to the detector to sense the surrounding
environment information. In order to realize high-precision rock detection in the deep
space environment, acquiring multiscale context information of rock images is essential
in a semantic segmentation network. Some studies propose convolution pooling, dilated
convolution [22], spatial pyramid pooling (SPP) [23], pyramid pooling module (PPM) [24],
and atrous spatial pyramid pooling (ASPP) [25] to obtain a larger receptive field and inte-
grate multiscale context information [26]. A U-shape network [27] is a common multiscale
semantic segmentation network widely applied to medical image segmentation and analy-
sis, which uses upsampling in the decoder to expand the feature map to the same size as
the original image. In addition, there has recently been increased focus on other multiscale
semantic segmentation networks, such as FCN [28], PSPNet [24], and DeepLabV3+ [25],
for planet rock detection [4,5,29,30].

Convolutional pool operation is a common operation in the encoder of semantic
segmentation networks, which is used to obtain the multiscale feature map, expand the
field of perception, and reduce the amount of calculation to some extent. However, using
convolutional pool operations may cause a loss of information, which causes blurry output
results in the process of the network decoder. It is very important to consider how to reduce
information loss to restore the clarity output feature mapping for improving the accuracy
of rock semantic segmentation. Some works [24,25] use a direct upsampling operation in
the network decoder to obtain the output feature map. Although this approach is easy to
implement, some details may be lost, resulting in blurred segmentation boundaries. To
enhance the clarity of the rock detection boundary, other researchers [5,29–32] recommend
fusing low-level feature details and using skip connections and stepwise sampling to
generate more rich feature output in the upsampling process. These strategies can improve
the clarity of the rock segmentation boundary to a certain extent. However, some overlaps
and redundant information may be added to the output feature map in the upsampling
process, which affects the accuracy of network segmentation [11]. In addition, the multiple
sampling and connection process may increase unnecessary network parameters and
computational complexity [33,34]. Most rock detection methods do not consider how to
balance accuracy and complexity.

Obtaining local and global context dependencies is the key to extracting the target
object [35,36]. CNN can obtain the local context dependencies using multiscale context
information in semantic segmentation networks. However, the local feature of the con-
volution layer of the CNN limits the ability of the network to capture global information.
Recently, a transformer network based on a multi-headed attention mechanism has been
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successful in the field of computer vision. Vision Transformer (ViT) can effectively obtain
global information using a self-attention mechanism and enhance the model expression
through the multi-head spaces map. Some researchers have applied vision transformers
(ViT) in image classification and segmentation [5,29,37]. The VIT model often relies on pow-
erful computing resources and a pre-training model, which limits its use in many tasks. To
apply the strong global feature extraction ability of the transformer, some studies propose a
new combination of CNN and transformer networks to fuse both advantages for capturing
local and global contextual information. Hybrid networks combining CNN and transformer
have been attempted in some fields, such as image change detection [38,39], medical image
segmentation [35,36], person re-identification [40], and image super-resolution [41].

In previous work, we have proposed [31] an onboard rock detection algorithm based
on a spiking neural network to reduce the calculation energy consumption. In this paper,
we explore a novel network based on a hybrid framework combining CNN and vision
transformer for deep space rock images to improve the efficiency and accuracy of rock
detection; the proposed model contains an efficient backbone feature extraction block and
a multiscale low-level feature fusion module. Firstly, to efficiently extract rock features,
we propose a new backbone (Resnet-T), which utilizes part of the Resnet backbone and
combines it with a visual transformer block to capture the global context information of the
rock. Secondly, a simple and effective multiscale low-level feature fusion (MSF) module
is designed to obtain more rich semantic features, and they are fused into the output
feature map in the upsampling process to improve the quality of the output feature map.
Last, we use two deep space rock image datasets (MoonData and RockData) to verify the
performance of the proposed model. The experimental results show that our model has
higher detection accuracy and faster model reasoning speed than other methods when the
model parameters and computational complexity are lower.

In summary, our main contributions are as follows.

• We propose a novel semantic segmentation network (RockSeg) based on the combined
CNN and transformer framework, which contains an efficient feature extraction
backbone and a multiscale low-level feature fusion module to effectively detect rocks
on the surface of celestial bodies.

• We combine Resnet blocks and visual transformer blocks to construct an efficient
Resnet-T backbone network to extract the global context information. In addition, we
design MSF to obtain rich multiscale fusion features and fuse them into the output
feature map to improve the segmentation clarity of the target boundary.

• The experiment is conducted on the PyTorch platform with two rock datasets to
verify the performance of the RockSeg. The results show that our method outper-
forms the state-of-the-art rock detection models in terms of detection accuracy and
inference speed.

The rest of this paper is organized as follows: Section 2 describes related work.
Section 3 describes the proposed network architecture, the design of the feature extraction
backbone, and the multiscale low-level feature fusion module. The experimental results
and analysis are provided in Section 4. In Section 5, we conclude our work.

2. Related Work

2.1. Deep Learning-Based Obstacle Detection in Space Exploration

Obstacle detection is crucial for rover navigation and path planning of space rovers.
Recently, some deep learning-based approaches for improving the accuracy and practicality
of obstacle detection have been developed. Craters are a conspicuous and well-preserved
feature of star surfaces, with the majority of them being registered. Researchers used CNN
to detect the crater pictures obtained during the probe’s descent to gain visual global local-
ization [7,8], which helps the lander in locating and selecting a safe landing place. Moreover,
other studies concentrate on applying deep learning to terrain classification [42,43], terrain
segmentation [33,44], and rock segmentation [4,30] for Mars rovers. (i) Terrain classification.
Li et al. [43] suggest using transfer deep learning techniques for autonomous classification
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of Martian rock images with seven different types of terrain. In order to enhance the clarity
of the output feature map texture, Liu et al. [45] also combine a number of modules with
generative adversarial networks, attention mechanisms, and a feature pyramid structure to
build the detection network. (ii) Terrain segmentation. In order to increase the accuracy of
the segmentation result, a hybrid attention semantic segmentation network is proposed [44]
for unstructured terrain on Mars, which combines the global and local attention branches
to aggregate the contexts for the final segmentation. In addition, Dai et al. [33] propose a
lightweight ViT-based terrain segmentation approach with low computational complexity
and power consumption for onboard satellites. Furthermore, the semi-supervised learning
framework [46,47] is proposed for Mars terrain segmentation to address the lack of training
data and training complexity. (iii) Rock segmentation. In previous work, we propose an
efficient rock detection algorithm on the surface of the Moon to reduce the complexity of
the calculation [31], which uses a spiking neural network with a new brain-like paradigm to
achieve onboard rock detection. In Martian rock detection methods, the work [4] employs
the Unet convolutional neural network to obtain a segmented rock image by training
different sizes, shapes, and textures of rock images in a Mars-like environment. The pa-
per [5] build a U-shaped transformer network that uses a hierarchical encoder–decoder
architecture and multiscale features based on an improved vision transformer to capture
global dependencies for Martian rock segmentation. In addition, the authors of [30] also
design automatic rock segmentation based on deep learning using enhanced Unet-based
architecture combined with a visual geometry group and dilated convolutional to improve
the accuracy of the rock segmentation.

In general, the above models for deep learning-based obstacle detection have promoted
the progress of autonomous technology in deep space exploration to some extent. However,
the terrain classification method only divides terrain categories to detect the terrain, which
is a coarse-grained recognition and detection of the surroundings. Semantic segmentation
methods are fine-grained recognition and detection methods based on pixel classification,
which is vital for deep space probes to know the surroundings. Moreover, deep space is
far from the Earth, and the probe carrying resource is limited. To achieve autonomous
technology in complex and changeable deep space, the deep space spacecraft must meet
safety, high recognition accuracy, and low complexity computing requirements. Due to most
semantic segmentation methods for planet rock detection only paying attention to detection
accuracy or low computational complexity, few of them consider both computational
complexity and precision, so most autonomous rock detection methods do not yet have the
capability to be used in deep-space environments. In this paper, we propose an effective
rock detection network to balance accuracy and computational complexity, and make it
more suitable for deep space environments.

2.2. Improved Segmentation Accuracy and Performance

A semantic segmentation network is usually composed of an encoder and a decoder;
the encoder is used to extract multiscale features from the input image, and the decoder is
used to convert the features into pixel-level segmentation results. In the network encoder,
a convolution pool is a common method to enhance the receptive field and reduce the
model parameters. However, this may lead to the loss of some information, which has a
negative impact on the accuracy of the segmentation results. In order to reduce the loss
of information, Yu et al. [22] propose a novel dilated convolution to aggregate multiscale
contextual information without losing resolution, which achieves an increase in the recep-
tive field without additional parameters of the network. Inspired by [22], the work [24]
utilizes a dilated convolution and pyramid pooling module to integrate contextual infor-
mation from different regions and embed it in fully convolutional networks. In addition, a
stronger encoder–decoder network to refine the result of segmentation is proposed in [25],
in which they apply atrous convolution at multiple scales to encode multiscale contextual
information in the encoder module and in the decoder module they use spatial information
to recover the feature map to refine the object boundary.
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Another approach is to improve segmentation accuracy by incorporating more details.
When researchers use the simple and direct one-time upsampling methods [24,28] to obtain
the output feature image, the edge of the output feature image may be blurred, which may
have a bad effect on the segmentation results. In order to obtain a clear segmentation of
the boundary, some works [5,7] use skip connections and step-by-step sampling methods
to merge more rich fine-grained information and increase the quality of an output feature
map. Sun et al. [32] propose the HRNet network using repeated fusion of the high-to-low-
resolution representations to obtain rich high-resolution representations. However, multiple
upsampling and connection operations may increase unnecessary network parameters and
computational complexity. In this paper, a new semantic segmentation network based on
a hybrid framework combining CNN and vision transformer is constructed which has
an efficient backbone feature extraction module and a multiscale low-level feature fusion
module. Similar to [32], we design a more simple and efficient multiscale low-level feature
fusion module to fuse more detailed features to the output feature map during upsampling
on the network to obtain more fine-grained segmentation results.

To improve the semantic segmentation network’s capability in capturing global fea-
tures, some studies have presented a hybrid framework network combining CNN and
transformer to enhance the ability of the network to capture local and global features. In an
image change detection task, the authors of [38] construct a new model combining vision
transformer and UperNet to effectively transfer the pretrained model. Zhang et al. [39]
propose an asymmetric cross-attention hierarchical network by combining CNN and trans-
former in a series-parallel manner to improve effectiveness in a change detection task. In
medical image segmentation, Xiao et al. [35] design a new teacher–student semi-supervised
learning optimization strategy fusing CNN and transformer, which improves the utilization
of a large number of unlabeled medical images and the effectiveness of model segmentation
results. The paper [36] links CNN and a swin transformer as a feature extraction backbone
to build a pyramid structure network for improving the quality of breast ultrasound lesion
segmentation. To improve the image super-resolution, Fang et al. [41] propose a hybrid
network of CNN and transformer for lightweight image super-resolution. In these hybrid
networks, most of them embedded the transformer block by image patch in the CNN layer
as a new feature extraction block to capture the global context information. However, the
CNN and transformer block have their own advantages; the later decision fusion may be
more beneficial to the representation of features. In this paper, to fully fuse these advan-
tages, we propose a new hybrid network combining CNN structure and transformer blocks
without image patches to apply them to deep rock detection.

3. Methods

In this section, we describe the detail of the novel semantic segmentation network
based on a hybrid framework combining CNN and vision transformer, namely RockSeg, the
efficient feature extraction backbone, and the multiscale low-level feature fusion module.

3.1. RockSeg

We propose a hybrid framework combining CNN and vision transformer for rock
image semantic segmentation in deep space and the whole network includes two parts, an
encoder process and a decoder process. Figure 1 depicts the RockSeg network structure.
The network input is the rock images on the surface of celestial bodies and the output is
the classification results at the pixel level. In the network encoder, the input rock images
are first processed through the feature extraction backbone, which contains the two Resnet
blocks from the Resnet-34 network and four transformer blocks to extract the important
features of the rock. Simultaneously, five different scales of low-level feature maps Li are
obtained from the network encoder, where Li = {l1, l2,l3, l4, l5}, 1 ≤ i ≤ 5, and i ∈ N. In the
network decoder, to improve the quality of the final output feature map, the five low-level
feature maps are fused by a simple multiscale feature fusion module; the fused results are
denoted as ms f1 and ms f2 shown in Figure 1. Then, the fusing results are added to the
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output feature map by two upsampling processes, Decoder1 and Decoder2, to enhance the
clarity of semantic segmentation object boundaries.

Figure 1. Framework overview of the proposed RockSeg.

3.2. Efficient Backbone Network

In deep space with limited carrying resources, low computing complexity and com-
putational cost are important considerations for the rover to achieve the mission. Deep
residual networks [48] have been shown to easily gain accuracy from rapidly increasing
depth networks and the results are often superior to those of other networks. However, their
network complexity may not apply to deep-space environments with limited resources.
To balance the accuracy and complexity of the network model, we design a new efficient
backbone network based on a hybrid framework, which combines Resnet-34 blocks and
transformer blocks with a multi-head self-attention mechanism to extract the rock’s features.
The original Resnet-34 backbone and the new proposed backbone structure Resnet-T are
shown in Figure 2. Figure 2a shows the original backbone of Resnet-34 with four Resnet
blocks. In comparison, Figure 2b is the proposed backbone of Resnet-T with two resnet
blocks b1, b2, and one transformer block Tb3. The details of the parameters of Resnet-34
and the Resnet-T are shown in Table 1 and Table 2, separately.

Figure 2. The backbone structure comparison of Resnet-34 and Resnet-T.

In most semantic segmentation networks, full convolution networks without linear
fully connected layers are used to extract the object features. So, in Table 1, we remove the
linear fully connected layers of the final layer from Resnet-34 as the backbone to extract
the object image features. We suppose the input of the network is an RGB image with
256 × 256 pixels, and the output size is obtained by the convolution or pool operation of
different blocks. In Table 1, The backbone of Resnet-34 has a 33-layer convolution structure
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which mainly includes four Resnet blocks, where s is the stride of the convolution operation,
k denotes kernel size, B represents the resnet block, B = {b1, b2, b3, b4}, and n is the number
of times repeated for each Resnet block, n = {3, 4, 6, 3}.

We discovered that using four Resnet blocks to extract rock features is redundant and
inefficient in our studies. Feature redundancy may degrade the quality of the output feature
map and redundant Resnet extraction blocks also consume additional processing and
storage resources. Recently, transformers [37] have achieved significant success in the field
of computer vision of 2D image classification. A transformer network is a deep learning
mode that uses a self-attention mechanism to better capture long-distance dependencies,
compute global dependencies, and more easily interpret predictive results. In particular,
some studies have achieved success in the semantic segmentation field [29]; they use the
self-attention transformer blocks to build the semantic segmentation networks to improve
the performance of object detection. Inspired by the transformer network, in this paper, we
design a novel hybrid architecture, which combines Resnet-34 blocks and a transformer
block to build a lightweight backbone Resnet-T to effectively extract rock features. In
Table 2, we delete the b3 and b4 blocks from Resnet-34 and replace them with a transformer
block Tb3 with a multi-headed attention mechanism to create a new backbone Resnet-T for
feature extraction.

Table 1. The network parameters of the Resnet-34 backbone.

Layer Name Output Size Resnet-34

Conv 128 × 128 k = 7 × 7, 64, s = 2

b1 64 × 64
k = 3 × 3 maxpool, s = 2

3 × 3, 64
33 × 3, 64

b2 32 × 32
3 × 3, 128

43 × 3, 128

b3 16 × 16
3 × 3, 256

63 × 3, 256

b4 8 × 8
3 × 3, 512

33 × 3, 512

Table 2. The network parameters of the Resnet-T backbone.

Layer Name Output Size Resnet-T

Conv 128 × 128 k = 7 × 7, 64, s = 2

b1 64 × 64
k = 3 × 3 maxpool, s = 2

3 × 3, 64
33 × 3, 64

b2 32 × 32
3 × 3, 128

43 × 3, 128

Tb3 16 × 16

1 × 1, 256, avgpool, s = 2

Transfm, 256 4

In Table 2, we can see the Resnet-T network framework is simpler than Resnet-34,
where Conv, b1, and b2 are the same as Resnet-34. On the other hand, in order to reduce
the computational complexity and obtain good performance, we use Tb3 to replace the
b3 and b4 blocks as the enhanced feature extraction block. And we downsample the final
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output feature map to 1/16 times the input feature map using the Resnet-T backbone. In
the proposed Resnet-T backbone, the blocks b1 and b2 can efficiently extract the basic rock
features, and the transformer blocks TB3 with multi-headed self-attention mechanisms
can weigh features; this hybrid network structure can satisfactorily enhance the feature
extraction and reduce the backbone parameters.

In the Tb3 block, we first use 1 × 1 convolution to raise the channel, then, we utilize
the average pool to enlarge the receptive field and reduce the size of the feature map,
simultaneously. This process can be described as follows:

Ẋ = AvgPool(Conv1×1(X)) (1)

where X is the input of TB3, Ẋ is the output of the raising channel, and X and Ẋ ∈ RC×H×W .
Then, Ẋ is processed by layer normalization [49] over a mini-batch of inputs, after it is sent
to the layer transformer block (Transfm) with multi-headed attention mechanisms (MHead)
and multi-layer perceptions (MLP) to obtain the output of the feature map. In the Trans f m
block, we flatten the feature map to one dimension without the patch and we use the four
transformer blocks to extract rock features. The transformer block Trans f m can be defined
as follows:

Ẍ = Trans f m(Norm(Ẋ))

= (MLP(MHead(Norm(Ẋ))) (2)

where Norm represents the layer normalization operation, MHead is the operation of multi-
headed attention mechanisms, MLP denotes the operation of the multi-layer perception,
and Ẍ presents the final feature map output of Resnet-T.

3.3. Multiscale Low-Level Feature Fusion

In CNN networks near the input layer, the network layer becomes shallow and has
rich local detail features, the resolution of feature mapping is high, and the receptive field is
small [50]. Otherwise, the layer has a large receptive field and high dimension when closer
to the output layer, and has abstraction features and global information [51]. In order to
keep consistent with the input image, the semantic segmentation network must restore the
size of the feature map. The traditional methods of recovering an output feature map are to
use upsampling methods once or many times. Although the one-time sampling method is
simple and direct, the obtained feature map lacks fine-grained information, which leads to
blurring the target boundary. The method of using upsampling multiple times fuses more
low-level feature maps by skipping connections and using stepwise sampling to restore the
feature size. However, most of these algorithms are complex and inefficient; they need to
spend more computation and multiple upsampling to keep the final output feature map
clear and detailed.

In this paper, we present a simple and efficient multiscale low-level feature fusion
module for fusing more detailed features into the output feature map during the network
upsampling process. The diagram of the feature fusing process is shown in Figure 3.
We obtain five low-layer feature maps using the feature extraction layers in the network
encoder process. The five low level features are denoted L, where L={l1, l2, l3, . . . , li, . . .},
i = {1, 2, 3, . . .}, i ∈ N+. Due to the closer input layer, the network layer is richer in local
detail features, so we use adjacent feature maps to fuse more different detailed information.
In our network, i ∈ [1,5], the two groups of low-level feature maps {l1, l2, l3} and {l3, l4, l5}
are fused to output ms f1 and ms f2 by MSF, respectively.

In Figure 3, we show the fusing process of the three adjacent low-level features X
to obtain more detailed information, where X={X1, X2, X3} and, for each Xj ∈ X, Xj ∈
R

Bj×Cj×Hj×Wj . The green arrow, yellow arrow, and blue arrow represent the different fusion
branches of X. In order to describe the fusion process more clearly, we set batch B as 1, so
Xj ∈ R

Cj×Hj×Wj . Due to Xj being next to each other and obtained from the network encode
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process, they meet these constraints, C1 ≤ C2 ≤ C3, H1 ≥ H2 ≥ H3, W1 ≥ W2 ≥ W3, and
Hj ≡ Wj.

Figure 3. Illustration of the multiscale low-level feature fusion.

In the MSF module, Xj first is processed by 1 × 1 convolution to achieve channel
consistency; the channel consistency is computed as follows:

X1
j =

{
Conv1×1(Xj), Cj! = C2

Xj, otherwize
(3)

where X1
j is the output result of the j-th low feature map using the channel consistency

process. After, X1
j has the same channel C2 and X1

j ∈ R
C2×Hj×Wj . Then, the results of the

channel consistency are processed by the Maxpool or Upsampling operation to achieve size
consistency of the feature map. The size consistency is described as follows:⎧⎪⎪⎨⎪⎪⎩

X p
j = Maxpool(X1

j ), Hj! = Hj+1

Xu
j = Upsampling(X1

j ), Hj+1! = Hj

X1
j = X1

j , otherwise

(4)

where Maxpool is the maximum pool operation, which is used to reduce the length and
width of the feature map to 1/2 of the original size. The Upsampling operation denotes
sampling the image to a higher resolution and we use bilinear interpolation to obtain the
upsampling results. X p

j is the output result of the j-th feature map by Maxpool and Xu
j

denotes the output result of the j-th feature map by Upsampling. After the consistency
operation has adjusted the different sizes of the feature map, we use element-wise addition
to fuse the neighborhood information of different branches. This simple method can fuse
other additional information on the basis of the original information; the fusion process is
characterized as follows: ⎧⎪⎨⎪⎩

X2
1 = X1

1 ⊕ Xu
2

X2
2 = X1

2 ⊕ X p
1 ⊕ Xu

3

X2
3 = X1

3 ⊕ X p
2

(5)

where the output results of the three branches are X2
1, X2

2, and X2
3, where X2

j ∈ R
C2×Hj×Wj .

In the feature fusion process, we first use the Maxpool and Upsampling operations
to adjust X2

1, X2
2, and X2

3 to the same height H2 and width W2 to obtain X2
j , where

X2
j ∈ RC2×H2×W2 . Then, we connect the three branches in channel dim and use the 1×1
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convolution to obtain the final fusing output result X ′, X ′ ∈ RC2×H2×W2 ; this is computed
as follows:

X ′ = Conv1×1(Concat(X2
1 , X2

2 , X2
3 )) (6)

In our model, we obtain two fusion feature map ms f1 and ms f1 using the MSF module.
The two fusing feature maps are connected with the upsampling feature map one by
one in the decoder process to enhance the clarity of the object boundary of the output
segmentation result. The pseudo-code of the multiscale low level feature fusion is described
in Algorithm 1. The input parameters of the MSF are X, C, W, H. X is processed by pre-
processing, channel consistency, size consistency, and feature fusion in turn to obtain the
final segmentation result X ′.

Algorithm 1: Multiscale low-level feature fusion
Input: Input parameters X, C, W, H
A set of feature maps X = {X1, X2, . . . , Xj}, Xj ∈ R

Cj×Hj×Wj ;
A set of feature channels C = {C1, C2, . . . , Cj},C1 ≤ C2 ≤ Cj ;
The high of feature maps H = {H1, H2, . . . , Hj}, H1 ≥ H2 ≥ Hj;
The wide of feature maps W = {W1, W2, . . . , Wj},W1 ≥ W2 ≥ Wj;
Constraints: Hj = Wj, j ∈ N+, j = 1, 2, 3, . . .;
Pre-processing: Xsub = sub(X), Xsub ← {X1, X2, X3}, and Xsub ⊂ X ;
Output: The output result of the fusion feature X′
begin

// step 1:channel consistency
Xnsub= [];
for Each feature map Xj in Xsub do

if Cj! = C2 then

X1
j = Conv1×1(Xj);

else

X1
j = Xj;

end

Xnsub.add(X1
j );

end
// step 2:size consistency
for Each feature map Xj in Xnsub do

if Hj! = Hj+1 then

X p
j = Maxpool(X1

j ) ;

end
if Hj+1! = Hj then

Xu
j = Upsampling(X1

j ) ;
else

X1
j = X1

j ;
end

end

X2
1 = X1

1 ⊕ Xu
2 ;

X2
2 = X p

1 ⊕ X1
2 ⊕ Xu

3 ;
X2

3 = X1
3 ⊕ X p

2 ;
// step 3:feature fusion

X2
1

Maxpool←−−−−− X2
1, X2

2 ← X2
2, and X2

3

Upsamping←−−−−−− X2
3;

X′ = Conv1×1(Concat(X2
1 , X2

2 , X2
3 ));

end
Return X′

In the network decoder, we employ the three times upsampling operations to restore
the output feature map size to the input size shown in Figure 1. In Decoder1 and Decoder2,
we first upsample the feature map to 2 times scale and fuse the low-level feature (ms f1,
ms f2) with detailed information by concatenation in the channel dimension, then use the
two 3 × 3 convolutions to scatter converged information. In Decoder3, we upsample the
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feature map to 4 times the size, utilize the 3 × 3 convolution to reduce the chance to 64 and,
lastly, use a 1 × 1 convolution to obtain the segmentation results of N categories.

4. Experiments

In this section, we describe the experimental setup, including the experimental envi-
ronment and parameter settings, experimental datasets, evaluation measures, comparison
algorithms, and experiment results and analysis.

4.1. Experiment Setting

We conducted the experiments on a single GPU (GeForce RTX 3080Ti, 12 GB RAM, 8
CPU/4 core) with Pytorch 1.8.1 + CUDA 11.1. During network training, we set the initial
learning rate to 10−4, and used the Adam [52] optimizer and cross-entropy loss function
to train the network model. The size of the network training batch was set to 16 and the
maximum number of training iterations was 200 epochs. The sign of the end of network
training is that the training reaches the maximum number of iterations, or the network is
stagnant in 20 epochs. In the experiment, the network input is an RGB image; the image is
normalized and processed by a resizing method without distortion to 256 × 256 pixels. All
the image label is transformed into gray labels with linear pixel mapping and the output of
the network is a grayscale image with different category values.

4.2. Datasets

We used two rock detection datasets in this paper, a lunar rock dataset called Moon-
Data (https://www.kaggle.com/datasets/romainpessia/artificial-lunar-rocky-landscape-
dataset (accessed on 9 December 2022)) and a Martian rock dataset called MarsData [17].
The details of the two datasets are as shown in Table 3.

Table 3. Parameter details of two rock datasets.

DataSet Training Validation Testing

MoonData 7812 977 977
MarsData 22,279 5541 3092

MoonData: This lunar rock dataset is a sample of artificial yet realistic lunar landscapes,
which was used to train rock detection algorithms. The Moon rock dataset contains 9766
realistic renders of rocky lunar landscapes, which are labeled into four classes: background,
sky, smaller rocks, and bigger rocks. MoonData is an RGB image with 480 × 720 pixels
and the label is also a three-channel RGB image. In this experiment, we convert the three-
channel RGB label to grayscale by linear pixel mapping, and we partition the dataset 8:1:1
into 7812 training images, 977 validation images, and 977 testing images. The details of the
Mars dataset are described in Table 3.

MarsData: The Martian rock dataset (https://dominikschmidt.xyz/mars32k/ (ac-
cessed on 13 September 2021)) consists of about 32,000 color images collected by the
Curiosity rover on Mars with a Mastcam camera between August 2012 and November
2018. All images have been scaled down using linear interpolation to 560 × 500 pixels;
unfortunately, they don’t have semantic segmentation labels. In previous work, the pa-
per [17] completed a total of 405 labeled rock images of more than 20,000 rocks and the
data were augmented to 30,912 images by cropping and rotating. In our experiment, we
use the augmented Mars rock dataset to train and evaluate rock segmentation methods.
Moreover, we repartitioned the dataset 9:1 according to the train–validation images with
22,279 training images, 5541 validation images, and 3092 testing images.

4.3. Evaluation Criteria

In order to report the research results in the field of semantic segmentation, most
researchers used simple and representative measures of pixel accuracy (PA), class pixel
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accuracy (CPA), mean pixel accuracy (MPA), intersection and union (IoU), and mean
intersection and union (MIoU). In this paper, we employ the standard evaluation standards
for semantic segmentation to confirm the effectiveness of our model. We computed PA,
MPA, Recall, and MIoU based on the corresponding confusion matrix to evaluate the
quality of network predictions.

In the confusion matrix, the PA denotes the sum of the true positives and true negatives
divided by the total number of queried individuals. The PA is computed as follow:

PA =
TP + TN

TP + TN + FP + FN
(7)

where true positive (TP) represents the number of positive samples that are correctly
predicted as positive ones. True negative (TN) denotes the number of negative samples
that are correctly determined as negative ones. False positive (FP) represents the number of
negative objects that are incorrectly predicted as positive samples and false negative (FN)
is the number of positive samples that are incorrectly classified as negative samples.

The class pixel accuracy is the percentage of the total predicted value that is correct for
a category and MPA is the mean of CPA; CPA is represented as follow:

CPA =
TP

TP + FP
(8)

where TP is the prediction accuracy of the category and TP + FP is all predictions in this

category. MPA = 1
n

n−1
∑

i=0
CPAi, where n denotes the number of categories and CPAi is the

value of CPA in the i-th class. The recall is the probability that a category is predicted
correctly, which is calculated by TP divided by TP + FN as follows:

Recall =
TP

TP + FN
(9)

The IoU is the ratio of the intersection and union of the predicted results and the true
values for a given classification. The IoU is computed as follows:

IoU =
TP

TP + FN + FP
(10)

where TP denotes the intersection set and TP + FN + FP is the union set of the predicted
results and true values for a category. Moreover, MIoU is the mean of the IoU of the n

classes; MIoU = 1
n

n−1
∑

i=0
IoUi, where IoUi represents the value of IoU in the i-th class.

4.4. Compared Methods

In our experiment, we compared with the six latest semantic segmentation networks
for rock detection, DeeplabV3+ [25], FCN [28], CCNet [53], DANet [54], PSPNet [24], and
Swin-Unet [29]. Simple descriptions of these compared methods are as follows. FCN [28]
is a basic model of classical semantic segmentation with the first full convolution network.
PSPNet [24] used a pyramid pooling module (PPM) and dilated convolutions to integrate
contextual information from different regions and embed it in FCN. DeeplabV3+ [25] used
the ASPP module to obtain multiscale context information. DANet [54] and CCNet [53]
employed a dual attention (DA) mechanism and criss-cross attention (CCA) mechanism
to improve the accuracy of segmentation. Swin-Unet [29] is a novel vision transformer
network-based semantic segmentation used to compare.

The main parameter settings of the compared methods are in Table 4, which con-
tains the network backbone, downsampling multiple (dm), network encoder, and de-
coder. The dm represents the downsampling multiple of the input image in a network
encoder; FCN8 denotes using an eight-fold sampling to obtain the output feature map.
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The network decoder is divided into three methods to restore the output feature map: (1)
the one_upsamping method employing upsampling once, (2) the one_ f use + upsampling
method fusing fine-grained shallow features once and upsampling, and (3) the muti_ f use +
upsampling method utilizing multiple-fusion and upsampling. Resnet-34-2 is a combina-
tion of the proposed model, which consists of two Resnet-34 blocks and a transformer block
(T). It utilizes MSF to fuse more shallow features to obtain a finer-grained output.

Table 4. The main parameter settings of the compared methods.

Methods Backbone dm Encoder Decoder

DeeplabV3+ [25] Resnet-50 1/16 Resnet-50+ASPP one_fuse+upsampling
FCN [28] Resnet-50 1/8 Resnet-50+FCN8 one_upsamping
CCNet [53] Resnet-50 1/8 Resnet-50+CCA one_upsamping
DANet [54] Resnet-50 1/16 Resnet-50+DA one_upsamping
PSPNet [24] Resnet-50 1/16 Resnet-50+PPM one_upsamping
Swin-Unet [29] Resnet-50 1/16 Vision Transformer muti_fuse+upsampling
RockSeg (Our) Resnet-34-2 1/16 Resnet-34-2+MSF+T one_fuse+upsampling

4.5. Experiment Results

In this section, we compared the state-of-the-art methods for deep space rock detection.
All compared networks used the Resnet-50 backbone to extract the feature, and the input
image was processed to a uniform size of 256 × 256 pixels by image resize, padding, and
scale technology. In experiments, we not only used the evaluation metrics of PA, CPA,
MPA, Recall, IoU, and MIoU mentioned in Section 4.3, but we also calculated the network
parameters (Params) to evaluate the spatial complexity of the network, evaluated the
time complexity of the model by floating-point operations (FLOPs), and computed the
inference speed of the network in frames per second (FPS) to evaluate the performance of
the networks.

4.5.1. Results on MoonData

The rock detection results on the MoonData dataset are shown in Table 5; the bold
data represents the best prediction results. We can see that the proposed RockSeg obtained
the best prediction results in the PA, MPA, Recall, and MIoU indicators, and it achieved
a faster inference speed with fewer network parameters. Specifically, it improved by
about 5.3% and 11.2% on the PSPNet model in MPA and Recall evaluation indicators,
respectively. In the MIoU indicator, the proposed RockSeg improved about 2.2%, 6.1%,
1.4%, 6.7%, 10.5%, and 6.1% on DeeplabV3+, FCN, CCNet, DANet, PSPNet, and Swin-Unet,
respectively. Moreover, we found that RockSeg not only obtained a high detection precision
but the network also had a fast inference speed; the FPS was up to 52.90 HZ. The network
parameters of the proposed model were reduced by about seven times compared to the
CCNet model.

Table 5. The comparison results with other methods on MoonData.

Methods PA (%) MPA (%) Recall (%) MIoU (%) FLOPs (G) Params (M) FPS (HZ)

DeeplabV3+ 97.01 88.32 83.00 76.71 45.77 40.35 51.15
FCN 96.72 87.83 80.34 72.80 34.72 32.94 53.31

CCNet 97.05 89.33 83.26 77.49 59.93 52.27 38.12
DANet 96.29 86.42 77.86 72.18 14.30 47.55 51.98
PSPNet 95.86 84.01 73.95 68.37 14.84 46.70 43.43
Swin-Unet 96.54 85.75 79.28 72.78 40.06 17.25 33.26
RockSeg (Ours) 97.25 89.42 85.13 78.90 20.29 7.94 52.90

Furthermore, we used the CPA and IoU indicators to evaluate the different category
detection results shown in Figure 4. The MoonData dataset has four categories including
ground, sky, bigger rocks simplified “brocks”, and smaller rocks simplified “srocks”. In

295



Remote Sens. 2023, 15, 3935

Figure 4, the horizontal axis represents four different categories and the vertical axis is the
value of CPA and IoU, respectively. The legend represents different methods and ranges
(R) in two categories of brocks and srocks; R is defined as

R = |Rbrocks − Rsrocks| (11)

where Rbrocks and Rsrocks denote the accuracy score in brocks and srocks classes and R
represents the difference between the two categories; the larger R, the more difficult it is to
distinguish between the two categories; otherwise, the easier it is to distinguish between
the two categories.

Figure 4. The comparison results of different network models with CPA and IoU on MoonData.

On the whole, we discovered that all compared methods could obtain better detection
accuracy in the ground and sky categories, but the detection results of different models
have a large gap in the brocks and srocks categories. For an input rock image of the
Moon, the pixel ratio of the ground and sky is large, and the pixel ratio of the rocks is
relatively small; there is an imbalance of categories in the MoonData data. In semantic
segmentation, category objects with different pixel proportions in an image have different
detection difficulties [55,56]. Category objects with small proportion pixels are difficult
to distinguish, while category objects with multi-proportion pixels are relatively easy to
distinguish [7]. So the ground and sky categories have a higher accuracy than the brocks
and srocks categories in CPA and IoU evaluation.

From Figure 4, we can see that the DANet model had the worst classification results;
the proposed model and the CCNet model had better detection accuracy than other meth-
ods. The DANet and PSPNet models obtained a large R between the brocks and srocks
classifications; the accuracy range was 0.226 and 0.102 in CPA, and 0.153 and 0.146 in IoU,
respectively. In the IoU evaluation, we found that RockSeg obtained the best scores in each
classification; in particular, it achieved 63.11% and 59.94% IoU scores in brocks and srocks
classifications, respectively. In the CPA evaluation, the RockSeg obtained high CPA values
in ground, sky, and brocks classification, in which the brocks and srocks were 63.11% and
59.94%, respectively. The CCNet network also achieved the highest accuracy in the srocks
class using the CPA evaluation, in which the brocks and srocks accuracy were 78.17% and
83.65%, respectively. However, RockSeg obtained a smaller R in CPA and IoU than the
CCNet model. The accuracy range of RockSeg was only 0.001 compared to 0.055 for CCNet
in the CPA evaluation and, in the IoU, the accuracy range of RockSeg was 0.032 and the R
was lower than CCNet in the CPA and IoU evaluations. Thus, the proposed RockSeg is
more robust than the CCNet model.

In addition, we show the confusion matrix of the probability of different categories
being predicted in Figure 5. We can see that most pixels with ground and sky categories can
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be correctly classified; the probability of brocks being incorrectly classified as the ground
category was 0.24 and the probability was only 0.02 of them being incorrectly classified as
the srocks category. In the srocks category, there was only a probability of 0.29 and 0.01 of
being incorrectly classified as the ground and brocks categories, respectively. Therefore,
RockSeg has strong robustness for detecting deep space rocks; both large and small rocks
can be detected correctly. Last, we show the visualization segmentation results of different
methods on MarsData in Figure 6. There are five visualization segmentation results with
different angles of sunlight and shadows in Figure 6. The yellow rectangle represents the
contrast of the local details. Figure 6a,d,e denote the vision that follows the sunlight and
Figure 6b,c are the visual angle against the sunlight on the surface of the Moon. When
the sun’s rays shine perpendicular to the surface of the Moon, the rock shadows are small
as shown in Figure 6d,e; otherwise, the rock shadows are big as shown in Figure 6a–c.
We can see that the proposed RockSeg could accurately obtain segmentation results with
different sunlight shadows and angles. Specifically, our model could clearly detect the
boundary of the object compared to the other models and some small rock objects could
also be accurately detected.

Figure 5. The confusion matrix of the RockSeg model on MoonData.

Figure 6. Comparison of the visualization segmentation results for different models on MoonData.
(a–e) show the different views of the rocks on the lunar surface from different Suns. (a,d,e) denote
the vision that follows the sunlight, and (b,c) represent the visual angle against the sunlight.
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4.5.2. Results on MarsData

The comparison results with other methods on MarsData are shown in Table 6; the bold
denotes the best prediction accuracy. The MarsData has two categories, the background and
rock objects. The pixel ratio of rocks and background is not much different, so it is relatively
easy to segment them. We can see that the compared methods are all above 96% accuracy
in the PA, Recall, and MIoU indicators. From Table 6, the FCN model obtained the best
inference speed compared with other models and the precision of the PSPNet model was
relatively low. Our proposed model obtained the best accuracy in each indicator compared
to the other methods. Moreover, the proposed model achieved a high inference speed with
low network parameters and computation complexity. Furthermore, we evaluated the CPA
and IoU of different categories on MarsData; the results of different methods are shown in
Table 7. We found that R was small in the CPA and IoU evaluations for all compared models.
Due to the classes being relatively balanced on MarsData data, they could be very well
detected. We can see that the RockSeg model achieved the best score in the IoU evaluation
and obtained the best PA value in ground classification compared to the other models. In
deep space rock detection, our proposed model had excellent portability and robustness.

Table 6. The comparison results with other methods on MarsData. The best result for each column is
in bold.

Methods PA (%) MPA (%) Recall (%) MIoU (%) FPS (HZ)

DeeplabV3+ 98.72 97.12 98.51 97.12 54.13
FCN 98.52 98.29 98.29 98.29 55.83

CCNet 98.74 98.53 98.53 98.53 40.18
DANet 98.03 97.73 97.73 97.73 54.26
PSPNet 97.69 94.85 97.29 96.05 55.10
Swin-Unet 98.39 98.21 98.10 96.39 34.55
RockSeg (Ours) 98.91 98.78 98.73 97.54 55.18

Table 7. Comparisons of CPA and IoU for different methods on MarsData. The best result for each
column is in bold.

Methods
CPA (%) IoU (%)

Ground Rocks Ground Rocks

DeeplabV3+ 99.01 98.12 98.14 96.10
FCN 98.88 97.76 97.84 95.50
CCnet 98.17 98.32 98.37 96.59
Danet 99.02 98.17 97.14 94.06
PSPNet 98.19 96.62 96.65 96.18
Swin-Unet 98.71 97.71 97.66 95.11
RockSeg (Ours) 99.16 98.23 98.41 96.68

By comprehensive feature extraction and rich semantic feature fusion, the proposed
model could realize high-precision detection. The proposed RockSeg network used combining
the CNN and vision transformer to extract the rock features, in which the CNN network is
advantageous in obtaining local multiscale context features and the vision transformer block
is more suitable for capturing global features. The local and global rock features were fused
to achieve a comprehensive feature extraction by the proposed hybrid network, which is
beneficial for the detection of objects of different sizes. Moreover, the designed MSF module
fused multiscale low-layer features to the output feature map which could improve the
accuracy of the segmentation results. Furthermore, we eliminated the feature redundancy and
overlap by manually adjusting the network parameters to achieve a lightweight network; see
Section 4.6 for details of model parameters. Using the above policies, the proposed model
could achieve high accuracy and inference speed under low computation complexity.
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The visualization segmentation results of our model and the state-of-the-art methods
on MarsData are shown in Figure 7. In the label image, we labeled the object rock as
green and the other compared segment results as yellow for visual distinction. In the four
image visualization segmentations, we discovered that all of the comparison models could
accurately detect large rock objects. But, for some small gravel with burning in the soil and
some dense rocks, it is relatively more difficult to distinguish and identify them than big
rocks. In terms of accuracy and clarity of the border segmentation, the RockSeg results
were finer and closer to the label image than the other model, and we used the red box
in our model to show the finer boundary segmentation results. From the visualization
segmentation results, we can see that the Swin-Unet, PSPNet, DANet, CCNet, and FCN
models had poor detection results in small object detection; their segmentation results
show that the target boundary was blurred and rough. In Figure 7b,d, we can see that
the proposed model achieved accurate detection in big rocks, and also obtained accurate
segmentation in some dense small rocks or small rocks buried in the soil.

Figure 7. Comparison of the visualization segmentation results for different models on MarsData.
(a–d) show the different rocky features of the Martian surface. (a,b) represent the surface of Mars as
composed of sparse mudstones and small boulders, and (c,d) denote dense large rocks and sandstone
partially buried in the sand.

4.5.3. Ablation Study

In this section, we ablated our network to validate the performance of the proposed
model. The results of the ablation study are shown in Table 8 and the best value in each
column is in bold. The MSF represents the multiscale low-level feature fusion module, the
transformer block is simplified as T, the � flag represents the module being used, and the
– flag denotes the module not being used. In Table 8, we can see that our model obtained
the best PA, MPA, and MioU compared to the other ablation models. The T module with a
multi-headed attention mechanism could capture the global context information of the rock
to improve the rock’s object detection accuracy. Thus, we discovered that RockSeg-T and the
RockSeg-MSF-T achieved a higher accuracy in PA, MPA, Recall, and MIoU than RockSeg-no-
MSF-T. Specifically, RockSeg-T obtained the best accuracy in Recall. The multiscale feature
fusion module obtained the rich fusion feature maps ms f1 and ms f2; they were added to the
output feature map using the upsampling process to accurately enhance the clarity of the
semantic segmentation object boundary and improve the accuracy of segmentation. In Table 8,
we found the RockSeg-MSF and RockSeg-MSF-T models also achieved an improvement over
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the RockSeg-no-MSF-T in the four evaluation indicators. On the whole, our model with T
and MSF modules obtained the best performance in rock detection.

Table 8. The ablation results of our model on MoonData.

Model MSF T PA (%) MPA (%) Recall (%) MIoU (%)

RockSeg-no-MSF-T – – 97.12 88.70 84.39 77.93
RockSeg-T – � 97.20 88.95 85.29 78.72
RockSeg-MSF � – 97.18 88.89 85.10 78.56
RockSeg-MSF-T (Ours) � � 97.25 89.42 85.13 78.90

Furthermore, we show the visual ablation results of the MSF and T modules with
the heatmap output shown in Figure 8. We compared the different channel activation
statuses with the different models of RockSeg-no-MSF-T, RockSeg-T, RockSeg-MSF, and
RockSeg-MSF-T. We used a blue–red color scheme to show the difference; the smaller the
value, the closer it is to blue, the larger the value, the closer it is to red. In Figure 8, the top
is the original rock image and label; Figure 8(1–6) show the two low-level feature maps
ms f 1 and ms f 2, where Figure 8(1–3) denote the output results of ms f1 and Figure 8(4–6)
are the output results of ms f2 with RockSeg-no-MSF-T, RockSeg-MSF, and RockSeg-MSF-T
(our model). Figure 8a–c show the feature map output results of the transformer block
using RockSeg-no-MSF-T, RockSeg-T, and RockSeg-MSF-T.

Figure 8. Comparison of the visual results of the ablation study. (1–6) are the visual results of the MSF
module with different models; (1–3) denote the output feature map of the ms f1 module; (4–6) are the
output feature map of the ms f2 module. (a–c) represent the output feature map of the T module with
different models.
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For the whole network structure, ms f 1 is closer to the input network and ms f 2 is
relatively far from the network input. We can see that most information of the original
image was retained in the activation output ms f 1. From the activation output ms f 1 and
ms f 2, we discovered that, as the number of layers increased, the activation output became
more and more abstract. The density of activation decreased with the deepening of layers
and the information about categories was increased. For example, the density of activation
contrast, Figure 8(3) > Figure 8(6). In ms f 1 and ms f 2, we can see that RockSeg-MSF
and RockSeg-MSF-T had more channel activation statuses than RockSeg-no-MSF-T; the
proposed MSF module obtained more rich semantic information from the context. Due
to the T module being far from the network input in the whole network structure, the
activation output is very sparse and abstract as shown in Figure 8a–c. The RockSeg-T and
RockSeg-MSF-T used multiple attention mechanisms to activate important information
by setting different weights of attention. Thus, they had more red feature signatures than
the RockSeg-no-MSF-T model in Figure 8. On the whole, from different output feature
heatmaps, we found that the proposed semantic segmentation network based on a hybrid
framework combining CNN and vision transformer, using an efficient feature extraction
backbone and multiscale low-level feature fusion, had an excellent presentation of features
to achieve good performance in rock detection.

4.6. Impact of Different Backbones and Parameters on Models

In this section, we discuss the parameter impact on our model and tune them with the
MoonData data. The parameters contain the different backbone networks, the number of
backbone layers, and the number of layers and heads of the T block. The tuning process
is divided into three groups, denoted gps, gps = {gp1, gp2, gp3}. In the three groups, we
kept the same decoder process, normalized the size of the feature map in downsampling to
an input size of 1/16 times, and evaluated them by the indicators described in Section 4.3.
The tuning results are shown in Table 9. In Table 9, nbs is the number of Resnet blocks. The
backbone represents the network encoder with different modules and parameters, where
MSF and T denote the multiscale low-level feature fusion module and vision transformer
in the backbone, respectively. The T module has two import parameters, the number of
heads represented by h and the depth of the transformer layer denoted d. The – represents
the process of adjusting their parameters and the � denotes using this module.

Table 9. The impact of different backbones and parameters on models. The best result for each
column in gps is in bold.

gps Backbone nbs MSF T PA (%) MPA (%) Recall (%) MIoU (%) FLOPs (M) Params (G) FPS (HZ)

gp1
Resnet-50 4 � � 97.24 90.45 84.11 78.67 27.89 32.01 34.41
Resnet-34 4 � � 97.22 89.77 84.84 78.87 25.40 27.97 41.44
Resnet-18 4 � � 97.10 88.43 84.96 78.16 22.07 17.86 51.57

gp2
Resnet-34-4 4 � � 97.22 89.77 84.84 78.87 25.40 27.97 41.44
Resnet-34-3 3 � � 97.24 88.8 85.96 79.12 22.00 14.72 43.57
Resnet-34-2 2 � � 97.25 89.42 85.13 78.90 20.29 7.94 52.90

gp3
Resnet-34-2-88 2 � – 97.17 88.98 85.29 78.73 21.10 11.09 52.83
Resnet-34-2-44 2 � – 97.25 89.42 85.13 78.90 20.29 7.94 52.90
Resnet-34-2-14 2 � – 97.21 88.97 85.38 78.80 20.29 7.94 52.47

In gp1, we compared the impact of different Resnet backbones with four Resnet blocks
on deep space rock detection. We combined Resnet-50, Resnet-34, and Resnet-18 with the T
module as the backbone network separately, and used the same MSF module to decode
the network. In gp1, we found Resnet-50 obtained the best PA and MPA with maximum
parameters and a large amount of computation; Resnet-18 had low parameters, small
amounts of computation, and high FPS. Resnet-34 achieved the best MIoU compared to
Resnet-50 and Resnet-18; the detection accuracy in PA and MPA indicators was close to
Resnet-50, and the model parameters and computations were close to Resnet-18. In order
to balance the calculation complexity and accuracy of the rock detection model in a deep
space environment with limited resources, we chose Resnet-34 as the backbone for our
model. Too many feature extraction layers may cause feature redundancy and overlap. To
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obtain an efficient and lightweight feature extraction backbone network, after obtaining the
Resnet-34 backbone, we tuned the number of Resnet blocks in the backbone to optimize
our model. In gp2, Resnet-34-n represents the backbone with different numbers of Resnet
blocks n, where n = {2, 3, 4}. We discovered that Resnet-34-2 with two Resnet blocks
achieved better performance than the Resnet-34-4 and Resnet-34-3 models. In gp2, the
Resnet-34-4 backbone network may have over-representation; the Resnet-34-2 backbone
network achieved the appropriate representation for rock feature extraction. The Resnet-34-
2 backbone could obtain the best PA, MPA, Recall, and MIoU score under low computation
and parameters, and fast inference speed.

Last, in gp3, we test the impact on the proposed model by tuning the parameters of
h and d in the T block. Resnet-34-2-hd is composed of the Resnet-34-2 backbone network
and the T module with h heads and d layers, where h is the number of heads, h = {1, 4, 8};
corresponding to the number of transformer layer d denotes d = {4, 4, 8}. In gp3, we found
the parameter of h and d had little effect on the precision of the model, but the complexity
of different parameters was different. In deep space, the probe carries limited resources,
and onboard computation needs to satisfy not only high precision requirements but also
low complexity requirements. We can see that Resnet-34-2-44 achieved a higher PA, MPA,
and MIoU than other models with a faster inference speed. Thus, in this paper, in order
to create a high accuracy and low complexity rock detection model, we chose the final
Resnet-34-244 as the hybrid framework combining CNN and transformer for deep space
rock images, which is based on the Resnet-34-2 backbone and the T module containing four
heads and transformer layers.

5. Conclusions

In this paper, we proposed an efficient deep space rock detection network, named
RockSeg, which is a novel semantic segmentation network based on a hybrid framework
combining CNN and vision transformer for deep space rock images. The novel model
contains an efficient backbone feature extraction block and a multiscale low-level feature
fusion module for deep space rock detection. Firstly, to enhance the feature extraction, we
used part of the Resnet-34 backbone and combined it with the visual transformer block as
a new backbone network Resnet-T to extract the global context information of the rock. In
addition, we proposed a simple and efficient multiscale low-level feature fusion module
to obtain more rich detailed feature information. These rich features were fused to the
output feature map in the network decoder to obtain a more fine-grained output result
and improve the clarity of the semantic segmentation object boundary. Furthermore, the
proposed model was applied to two rock segmentation datasets (lunar and Martian rock
data) compared with six state-of-the-art segmentation models for deep space rock detection.
The results demonstrated that the RockSeg model outperforms the state-of-the-Art rock
detection methods; our model achieved good performance in deep space rock detection. In
particular, on MoonData data, our model achieved accuracy up to 97.25% in the PA and
78.97% in the MIoU indicators with low parameters, smaller amount of computation, and
high inference speeds.

In tuning the network process, we found the deeper network may not be a good choice
to achieve the best performance; too many deep network structures may be redundant
for feature extraction. The proposed hybrid network combines CNN and transformer;
they need to play to their strengths to complement and integrate local and global context
information. To obtain the best appropriate network structure, we manually adjust the
network backbone structure and optimize the parameter configuration with coarse-grained
parameter tuning. We employed a conventional backbone to achieve network feature
extraction and used evaluation measures and visual heatmaps simultaneously to decide
whether the network feature extraction is insufficient or redundant. Then, the network
structure was suitably decreased and increased based on the qualitative and quantitative
assessment results to meet the specific detection task. In the future, we need to further study
how to integrate CNN and transformer network structures adaptively to remove redundant
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features and enhance the ability to capture local and global context information. Moreover,
we will transplant and expand our work to the detection of deep space multi-category
terrain segmentation, further improving the availability of the model in deep space.
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Abstract: Network pruning has been widely used in model compression techniques, and offers a
promising prospect for deploying models on devices with limited resources. Nevertheless, existing
pruning methods merely consider the importance of feature maps and filters in the spatial domain. In
this paper, we re-consider the model characteristics and propose a novel filter pruning method that
corresponds to the human visual system, termed Low Frequency Preference (LFP), in the frequency
domain. It is essentially an indicator that determines the importance of a filter based on the relative
low-frequency components across channels, which can be intuitively understood as a measurement
of the “low-frequency components”. When the feature map of a filter has more low-frequency
components than the other feature maps, it is considered more crucial and should be preserved
during the pruning process. We conduct the proposed LFP on three different scales of datasets
through several models and achieve superior performances. The experimental results obtained on the
CIFAR datasets and ImageNet dataset demonstrate that our method significantly reduces the model
size and FLOPs. The results on the UC Merced dataset show that our approach is also significant for
remote sensing image classification.

Keywords: model compression; neural network pruning; frequency domain; lightweight deep neural
networks; remote sensing image classification

1. Introduction

Deeper and wider architectures of convolutional neural networks (CNNs) have
achieved great success in the field of computer vision and have been widely used in
both academia and industry [1–6]. Nevertheless, they also impose high requirements for
computing power and memory footprint, resulting in a significant challenge in deploying
most state-of-the-art CNNs on mobile or edge devices. Therefore, reducing the parameters
and calculations of existing models is still a research hot spot, where an effective technique
is model compression. This technique can achieve a balanced trade-off between accuracy
and model size.

Conventional compression strategies consist of network pruning [7–11], quantiza-
tion [12–14], low-rank approximation [15,16], knowledge distillation [17–20] and lightweight
neural framework design [21–23]. Network pruning has become the most popular model
compression technique. Recent pruning strategies in this category can be roughly divided
into weight pruning [8,24,25] and filter pruning [26–28], according to the granularity of
pruning. Weight pruning directly removes the selected weights from a filter, resulting in
unstructured sparsity. Despite the irregular structure having a high compression ratio, real
acceleration cannot be achieved on general hardware platforms or Basic Linear Algebra
Subprogram (BLAS) libraries [29]. Filter pruning directly discards the selected filters, leav-
ing a regular network structure, which makes it hardware friendly. CNNs have exerted a
great influence on remote sensing classification tasks with their powerful feature represen-
tation capability. Zhang et al. [30] and Volpi [31] constructed relatively small networks and
trained them using satellite images from scratch. Xia et al. [32] and Marmanis et al. [33]
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extracted features from the middle layer of the pre-training network, formed global fea-
ture representation and realized remote sensing classification. Nogueira et al. [34] used a
remote sensing dataset for fine-tuning and obtained a superior classification performance.
Zhu et al. [35] proposed a knowledge-guided land pattern depicting (KGLPD) framework
for urban land-use mapping. Ref. [36] constructed a new remote sensing knowledge graph
(RSKG) from scratch to support the inference recognition of unseen remote sensing image
scenes. Zhang et al. [37] made full use of the advantages of CNNs and CapsNet models
to propose an effective framework for remote sensing image scene classification. Ref. [38]
proposed a CNN pre-training method guided by the human visual attention mechanism to
improve the land-use scene classification accuracy. However, the success of CNNs comes
with expensive computing costs and a high memory footprint. However, the classification
task of remote sensing images often needs to be carried out on the airborne or satellite-
borne equipment with limited computing resources. Insufficient computing resources
hinder the application of CNNs in remote sensing imaging. Therefore, model pruning
technology can alleviate this resource constraint and enable CNNs to develop in the field
of remote sensing. It is worth noting that the scale of public remote sensing image datasets
is usually smaller than the scale of natural image datasets, which contain hundreds of
thousands or even millions of images. This leads to a lot of parameter redundancy and
structural redundancy in the network model, so pruning techniques are needed to reduce
these redundancies and avoid overfitting of the model. Therefore, pruning technology has
a great application demand and prospect in real-time remote sensing image classification
(as shown in Figure 1) for resource-constrained devices such as spaceborne or airborne
devices [39,40].

Figure 1. Examples of remote sensing image classification.

To achieve both network speedup (reduction in FLOPs) and a model size reduction
(reduction in parameters), we focus on filter pruning aiming to provide a general solution
(as shown in Figure 2) for devices with a low computational power.

Inherent Attribute Constraint. The pruning operation on a filter can be regarded as
decreasing the constraints generated by different inherent attributes in CNNs. Li et al. [26]
calculated the L1-norm of parameters or features to judge the degree of attribute constraints.
The conclusion was that the smaller norm, the less useful the information, which indicates
that a smaller norm is a weak constraint for the network and should be pruned first.
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Hu et al. [41] measured the constraint of each filter by counting the Average Percentage of
Zeros (APoZ) in the activation values output by the filter. The sparser the activation feature
map, the weaker the constraints of the feature map. Molchanov et al. [42] used a first-order
Taylor expansion to approximate the contribution of feature maps to the network output to
estimate the importance of filters. He et al. [43] calculated the geometric median of filters
in the same layer, in this case, the filter closest to the geometric median is considered as a
weak constraint that should be pruned first. Lin et al. [44] proposed that feature maps with
a lower rank have fewer constraints on the network. Therefore, the corresponding filters
can be removed first. Sui et al. [45] proposed to estimate the independence of channels by
calculating the nuclear norm of the feature map. Channels with a lower independence have
weaker constraints and can be deleted first. In brief, these methods follow the principle
of “weak constraints are pruned, strong constraints are retained” to achieve fast pruning.
Nevertheless, they cannot make up for the loss in the network training process while merely
improving the performance by fine-tuning in the later stage.

Figure 2. Framework of the proposed LFP. In the left box, we first use images to run through the
convolutional layers to obtain the feature maps. The resulting feature map is then calculated by
FFT in the second box. In the third box, we then estimate the LFP of each spectrum map, which is
used as the criteria for pruning. The last box shows the pruning (the dotted filters) according to LFP
calculation results.

Induction of sparsity. These methods learn sparse structure pruning by imposing
sparsity constraints on the target function in the network. Wen et al. [28] proposed a
compression method based on structured sparse learning, which learns different compact
structures by regularizing various network structures. Huang et al. [46] also introduced a
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new scaling factor, which scales the output of various structures, such as neurons, group
convolutions or residual blocks, and then safely removes structures whose correspond-
ing scaling factor is close to zero. In contrast to [46], Liu et al. [47] utilized the scaling
parameter in the batch normalization layer to control the output of the corresponding
channel without introducing any additional parameters. Zhao et al. [48] further extended
the scaling parameters in the batch normalization layer to include bias terms and estimated
their probability distributions by variational inference. These methods are not based on
deterministic values but on the distribution of the corresponding scaling parameters to
prune redundant channels, which makes them more interpretable. Lin et al. [49] studied
important filters by incorporating two different regularizations of structural sparsity into
the original loss function, achieving a superior performance on a variety of state-of-the-art
network frameworks. Chen et al. [50] imposed regularizations on both filter weights and
BN scaling factors and then evaluated the filter importance by their combination. Com-
pared with the inherent attribute constraint method, the induction of sparsity achieves
better compression and acceleration results. Nevertheless, the sparsity requirement must
be embedded into the training process, so it is expensive with regard to training time
and manpower.

In general, it is desirable to pursue a higher compression ratio and speedup ratio
without losing too much accuracy. In recent years, pruning models according to the
constraints provided by different inherent attributes in CNNs has become a popular filter
pruning strategy. Instead of directly selecting filters, important feature maps are first
determined and then the corresponding channels are retained. As reported in [44,45,51–53],
feature maps can inherently reflect rich and important information about the input data and
filters. Therefore, calculating the importance of feature maps could provide better pruning
guidance for filters/channels. For example, the feature-oriented pruning concept [45]
can provide richer knowledge of filter pruning than the intra-channel information when
considering the correlation of multiple filter/channel feature information. The importance
of a filter that is merely determined by its corresponding feature map could be easily
affected by the input data. On the contrary, cross-channel feature information leads to
more stable and reliable measurements, as well as a deeper exploitation of the underlying
correlations between different feature maps (and corresponding filters). The results in [45]
also show that the proposed inter-channel and feature-guided strategy outperforms the
state-of-the-art filter-guided methods in terms of task performance (e.g., accuracy) and
compression performance (e.g., model size and floating-point operation reduction).

Preference and Frequency Perspective. In previous work, both the feature-map-
based strategy and the filter-guided strategy passively formulate the pruning strategy
according to the inherent internal structure of CNNs in the spatial domain. Specifically,
some theories, such as optimal brain damage [54] and the lottery ticket hypothesis [55,56],
propose that there is parameter redundancy inside the model. Therefore, only if the param-
eters of the filter or feature maps are calculated in the spatial domain can their importance
be determined according to experience and mathematical knowledge. Considering the
“preference” of the model from the perspective of frequency domain, it can be found that the
neural network often learns low-frequency information first, and then slowly learns high-
frequency information [57,58] in the process of fitting the data (and some high-frequency
information cannot be perfectly fitted). At the same time, the human visual system is sensi-
tive to the representation of low-frequency information [59,60], while the representation of
low-frequency information in the spatial domain is not prominent enough. We can observe
from Figure 3 that after discarding part of the high-frequency information, the category of
the image can still be identified through the retained low-frequency information.
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Figure 3. The original image (left), three random feature maps (top), low-frequency representations
of the feature maps (middle) and high-frequency representations (bottom).

In order to maintain the consistency between the model characteristics and the human
visual system, it is necessary to explore new methods in the frequency domain. Experiments
in [61] show that, after adding a low-frequency filter in the test image, the robustness of the
whole model is enhanced. In addition, adding low-frequency information can efficiently
improve the accuracy and gradually achieve a performance similar to the original image.
Considering that most real scenario images are predominantly low frequency, the influence
of noise is relatively negligible on the low-frequency images but enormous on the high-
frequency images, which easily leads to overfitting of the model. Therefore, a better task
and compression performance can be obtained by discarding the learning of high-frequency
information (the feature maps with more high-frequency components are pruned).

Technical Preview and Contributions. Motivated by these promising potential ben-
efits, in this paper, we exploit the frequency information of cross-channel features for
efficient filter pruning. We propose a novel metric termed Low Frequency Preference
(LFP) to determine the importance of filters based on the relative frequency components
across channels. It can be intuitively understood as a measurement of the “low frequency
component”. Specifically, if the feature map of a filter is measured with a larger proportion
of low-frequency components compared with other feature maps of the layer, the feature
map is more important than that in other channels, which needs to be preserved during
pruning. On the contrary, feature maps with more high-frequency components are less
preferred by the model, which indicates that they contain very limited information or
knowledge. Therefore, the corresponding filters are treated as unimportant and can be
safely removed without affecting the model capacity.

To sum up, the contributions of this paper can be summarized as follows:

• We analyze the properties of a model from the new perspective of the frequency
domain and associate the characteristics of an image with the frequency domain
preference characteristics of the model. Similar to the “smaller-norm-less-important”
hypothesis, we come up with a novel “lower-frequency-more-important” metric.
On this basis, a low-cost, high-robustness, low-frequency component analysis scheme
is proposed.

• We propose a novel metric that measures the relative low-frequency components of
multiple feature maps to determine the importance of filters, termed LFP. It originates
from an inter-channel perspective to determine the importance of filters more globally
and precisely, thus providing better guidelines for filter pruning.
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• We apply the LFP-based importance determination method to different filter pruning
tasks. Extensive experiments show that the proposed method achieves good results
while maintaining high precision. Notably, on the CIFAR-10 dataset, our method
improves the accuracy by 0.96% and 0.95% over the baseline ResNet-56 and ResNet-
110 models, respectively. Meanwhile, the model size and FLOPs are reduced by 44.7%
and 48.4% (for ResNet-56) and 39.0% and 47.8% (for ResNet-110), respectively. On the
ImageNet dataset, it achieves 40.8% and 46.7% storage and computation reductions,
respectively, for ResNet-50 and the accuracy of Top-1 and Top-5 is 1.21% and 1.26%
higher than the baseline model, respectively.

2. Proposed Method

2.1. Notation

We formally introduce symbols and notations in this section. Assume a pre-trained
convolutional neural network model has L layers. We use Ci and Ci+1, to represent the
number of input and output channels for the i-th convolutional layer, respectively. Fi,j

represents the j-th filter of the i-th layer, then the dimension of filter is Fi,j is RCi×K×K,
where K denotes the kernel size of the network. The i-th layer of the CNN model W (i)

can be represented by {Fi,1, Fi,2, . . . , Fi,j} that contains j filters, where Fi,j ∈ RCi×K×K, 1 ≤
j ≤ Ci+1. The tensor of connection in the deep CNN network can be parameterized by
{W (i) ∈ RCi+1×Ci×K×K, 1 ≤ i ≤ L}. The outputs of i-th layer, i.e., i-th feature maps, are
denoted as Mi = {Mi,1, Mi,2, . . . , Mi,Ci+1 } ∈ RCi+1×h×w. The feature map corresponding to
the j-th channel is Mi,j ∈ Rh × w. The height and width of the feature map are h and w,
respectively. In filter pruning, W (i) can be split into two groups, i.e., a subset I containing
ni1 filters to be reserved and a subset, with less importance, to be pruned U containing ni2
filters. Thus, we have I ∩ U = ∅, I ∪ U = W (i) and ni1 + ni2 = Ci+1.

2.2. Frequency Domain Analysis of Feature Maps

The Fourier transform aims to obtain the signal distribution in the frequency domain,
which can also be utilized in digital image processing, since an image is a collection of
points sampled in a continuous space (real scenario). It uses a two-dimensional matrix to
represent each point in the space, and the image can be represented by z = f (x, y). For the
discrete signal of digital image, we choose the discrete Fourier transform (DFT) to obtain its
frequency distribution (spectrum). Then, the frequency can be regarded as an indicator of
the intensity change in the image, which reveals the gradient of the gray level in the plane
space. Specifically, if the gray level changes quickly, the frequency will be high. On the
contrary, if the gray level changes slowly, the frequency will be low. In terms of an image,
a high-frequency signal usually corresponds to the edge and noise, while a low-frequency
signal describes the image contour and background signal. The two-dimensional DFT is
defined as follows:

F(u, v) = 2D − DFT[ f (x, y)]

=
M−1

∑
x=0

N−1

∑
y=0

f (x, y)e−j2π( ux
M +

vy
N ),

(1)

where 2D-DFT [·] stands for the two-dimensional DFT; f (x, y) is a digital image of size
M × N; and x and y are spatial variables, which, respectively, represent the specific hori-
zontal and vertical coordinates in the digital image f (x, y). Then, u and v are frequency
domain variables, where u ∈ {0, 1, 2, . . . , M − 1}, v ∈ {0, 1, 2, . . . , N − 1}; e−j2π( ux

M +
vy
N ) is

the transform kernel of the DFT, which has separability.
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Therefore, the DFT of the output of i-th layer (i.e., i-th feature map) is denoted as:

FMi,Ci+1
(u, v) = 2D − DFT[Mi,Ci+1 ]

=
h−1

∑
x=0

w−1

∑
y=0

f (x, y)e−j2π( ux
h +

vy
w ),

(2)

To further boost the computational efficiency of the DFT, Cooley et al. [62] proposed
a special kind of DFT termed a one-dimensional fast Fourier transform (FFT). In this
way, the number of multiplications required in the DFT can be greatly reduced. In addi-
tion, the more sampling points to be transformed, the more significant the savings of the
FFT algorithm computation. Based on the separability of the Fourier transform kernel
e−j2π( ux

h +
vy
w ), the 2D-DFT can also be computed using the two-step FFT:

FMi,Ci+1
(u, v) = FFTx{FFTy[ f (x, y)]}

= FFTy{FFTx[ f (x, y)]}
= FFT(Mi,Ci+1),

(3)

The spectrum map obtained by the two-dimensional Fourier transform is a distri-
bution of image gradient. The points on the spectrum map do not have a one-to-one
correspondence with the points on the image plane, even if the frequency is not shifted.
The degree of brightness or darkness on the Fourier spectrum map indicates the intensity
difference between the gray value of a point on the image with the neighboring points (i.e.,
the gradient and the frequency value of a point). Larger differences/gradients indicate
higher frequencies and lower energies, which leads to lower values and a darker appear-
ance on the spectrum map. A smaller difference/gradient indicates a lower frequency
and a higher energy, resulting in a higher numerical value and a brighter appearance on
the spectrum map. In other words, the brighter the frequency spectrum, the higher the
energy, the lower the frequency and the smaller the image difference (more flat). Therefore,
the result of the FFT on the image is shown in Figure 4c. The low-frequency component of
the image is distributed in the four corners of the spectrum map. For better observation,
the low-frequency component F(0, 0) is translated to the center of the frequency rectangle
defined by the interval [0, M − 1] and [0, N − 1] via the following equation:

f (x, y)(−1)x+y FFT−→ F(u − M
2

, v − N
2
), (4)

In the displayed spectrum map, since the dynamic range of other gray values is
compressed, the log transformation in Equation (5) is performed once on Figure 4c,d.
Therefore, the details can be greatly improved to observe and calculate the spectral law.

F′(u, v) = 1 + log|F(u, v)|, (5)

Therefore, the i-th spectrum map (the i-th feature map after FFT) is represented as
Mi

FFT = {MF
i,1, MF

i,2, . . . , MF
i,Ci+1

}. To observe the extraction of different frequency features
by different filters more apparently, we visualize the feature maps of the model ResNet-50-
conv1 as well as the corresponding spectrum map in Figures 5 and 6. The bright areas in
the spectrum correspond to the low-frequency components (with higher values), while the
dark areas correspond to the high-frequency components (with lower values). In addition,
some spectra with fewer low-frequency components and the corresponding feature maps
are annotated with red boxes. Therefore, we can prune the filters corresponding to the
feature maps with fewer low-frequency components, thus leaving more low-frequency com-
ponents.
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Figure 4. Workflow of the FFT. (a) A color bird image; (b) the grayscale image of (a). The image
should be converted into grayscale before the FFT since the frequency is an indicator of the intensity
change in the image. (c) The result of applying FFT to (b); (d) the centralized spectrum; (e) loga-
rithmic transformation of (c) for better observation and calculation of the spectrum; (f) the result of
(e) after centralization.

Figure 5. Visualization of feature maps of ResNet-50-conv1.
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Figure 6. Spectrum corresponding to the feature map.

2.3. LFP-Based Model Pruning

As mentioned above, measuring importance in the frequency domain is a new research
approach. Motivated by those promising benefits in Section 1, we propose to explore the
filter importance from an inter-channel perspective, and the key idea is to use LFP to
measure the importance of each feature map (and its corresponding filter). Specifically,
if there are more low-frequency components in a feature map of a channel, the model
“prefers” its intrinsic information, that is to say, the Frequency Preference Index of this
feature map is higher. The Frequency Preference Index is higher as the filter corresponding
to the feature map becomes more important. On the other hand, feature maps with
relatively few low-frequency components (i.e., high-frequency components dominate)
contain relatively little useful information. Therefore, even if the corresponding filter is
excluded, the information and knowledge can still be roughly preserved by feature maps of
other filters after the fine-tuning process. In other words, filters that generate low-frequency
preference feature maps tend to be more “ignorable”, which can be interpreted as having
lower importance. Therefore, it would be appropriate to remove those filters that have
feature maps with low channel frequency preferences, while still maintaining the high
model capacity.

Filter pruning aims to identify and remove the less important filter sets from W (i).
To accurately measure the importance, we design a mathematical metric to quantify the
Frequency Preference of a feature map using the Frobenius norm in Equation (6). It was
reported in [63,64] that the F-norm can be used to measure the energy and difference of an
image. In addition, we have also mentioned that higher frequency locations in the image
mean lower energy, lower value, and a darker appearance in the spectrum. On the contrary,
lower frequency locations mean higher energy, higher values and a brighter appearance
on the spectrum. To this end, we elaborate a mathematical metric to measure Frequency
Preference by using the F-norm of the spectrum.

‖A‖F =
√

tr(AT A) =

√√√√ m

∑
i=1

n

∑
j=1

∣∣aij
∣∣2 , (6)

where A is an m × n matrix and aij is each element of matrix A.
If the importance of a filter is merely determined by its corresponding feature map,

the results may be sensitive to input data. Cross-channel feature information leads to
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more stable and reliable measurements, which is suitable for discovering the underlying
correlations between different feature maps (and corresponding filters). Thus, in practice,
in order to simultaneously remove multiple unimportant filters, a combination of frequency
preference on multiple feature maps needs to be calculated. For the i-th layer with output
feature maps, Mi

FFT = {MF
i,1, MF

i,2, . . . , MF
i,Ci+1

}∈ RCi+1×h×w. Firstly, let Mi
FFT be rewritten

as Mi = [mi,1
T , mi,2

T , . . . , mi,Ci+1
T ]T ∈ RCi+1×hw, a matrix of Ci+1 rows and hw columns,

mi,Ci+1 ∈ Rhw. To determine the minimum k-row frequency preference in Mi
FFT , we first

successively delete row mi,j from Mi and compute the corresponding F-norm change
between the remaining (Ci+1 − 1) row matrix and the original Ci+1 row matrix Mi. Then,
Ci+1 F-norm change values are obtained after Ci+1 computations, and the k values with
the smallest change are determined by sorting, along with their corresponding feature
maps. These selected k feature maps Mi,j are interpreted as receiving a lower “preference”
from the model compared to other feature maps, so their corresponding filters Fi,j are less
important and should be pruned. Therefore, computing the change in the global F-norm
in the feature map Mi in i-th layer, that is, the low frequency preference of Mi, can be
defined as follows:

LFP[Mi] � [
∥∥∥Mi

∥∥∥
F
−

∥∥∥Mi ∗ Zj

∥∥∥
F
]
Ci+1
j=1 , (7)

where ‖·‖F is the Frobenius norm, ∗ is the matrix convolution operation and Zj is the row
mask matrix whose j-th row entries are zeros and other entries are ones.

In the set of F-norm changes obtained by LFP[Mi], the k smallest changes can be
determined according to the pruning rate, and the corresponding feature maps and filters
are not important and can be pruned. As shown in Figure 7, by randomly extracting the
spectra corresponding to five change values, it can be observed that the spectra with more
low-frequency components show higher LFP change values.

Figure 7. The low frequency preference of feature maps for one layer in ResNet-50. The ordinate is
the change value of Mi, while the abscissa is the index of the feature map.

2.4. The Overall Algorithm

Combining the above two steps, the whole filter pruning process is developed from
an inter-channel perspective. Figure 8 is a chart of methodology for the proposed method.
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The pseudo-code of LFP is provided in Algorithm 1, which gives a lucid description and
summary of our proposed filter pruning algorithm. Starting from a pre-trained model
W (i), the feature maps obtained after the image input model are calculated by the FFT to
obtain the spectrum. The spectrum is reshaped into a matrix Mi with row Ci+1 and column
hw. Then, an LFP calculation is performed on Mi and the results are sorted. According
to the pruning ratio, specific filters can be pruned. After fine-tuning the pruned model,
a sub-model W∗ can be obtained.

Figure 8. The chart of methodology.

Algorithm 1 Algorithm Description of the LFP method for the i-th layer

Input: An L-layer CNN model with pre-trained weights W (i); The i-th feature maps Mi =
{Mi,1, Mi,2, . . . , Mi,Ci+1 } ∈ RCi+1×h×w; target sparsity S; training set D;

Output: A sub-model satisfying the target sparsity S and its optimal weight values W∗;
1: for Sample a mini-batch from D do
2: FFT calculation: Calculate FMi ,Ci+1 by Equation (3)
3: Reshape FFT feature maps: Mi := reshape(Mi

FFT , [Ci+1, hw])
4: for i = 1; i <= Ci+1; i ++ do
5: LFP calculation: LFP[Mi] by Equation (7)
6: end for
7: end for
8: Filters Selection: Sort LFP[Mi];
9: Pruning: Prune S × Ci+1 filters via the S × Ci+1 smallest LFP[Mi];

10: Fine-tuning;

3. Experiments and Analysis

3.1. Experimental Settings

Baselines Models and Datasets. To demonstrate the effectiveness and generality of
the proposed LFP method, we evaluate its pruning performance against various baseline
models on three image classification datasets. Specifically, we introduce LFP into three
modern CNN models (ResNet-56 [65], ResNet-110 [65] and VGG-16 [66]) on the CIFAR-
10 dataset [67] and ResNet-20 [65] on the CIFAR-100 [67] dataset. CIFAR-10 contains
60,000 color images (50,000 for training and 10,000 for testing) with a uniform size of
32 × 32 and classes of 10, but CIFAR-100 has 100 classes. In addition, we further evaluate
and compare the performance with other state-of-the-art pruning methods using the
ResNet-50 model [65] on ImageNet [68], which is a large-scale and challenging dataset. In
addition, we perform our algorithm on VGG-16 with a publicly available dataset designed
for remote sensing image classification, called UC Merced land-use dataset, which consists
of images of 21 land-use scene categories [69]. Each class contains 100 images with the size
of 256 × 256 pixels and a one foot spatial resolution. Figure 9 shows some example images
randomly selected from the UC Merced dataset.

316



Remote Sens. 2023, 15, 3144

Figure 9. Remote sensing example images from the UC Merced dataset. (1) Agricultural. (2) Airplane.
(3) Baseball diamond. (4) Beach. (5) Building. (6) Chaparral. (7) Dense residential. (8) Forest.
(9) Freeway. (10) Golfcourse. (11) Harbor. (12) Intersection. (13) Medium residential. (14) Mobile
home park. (15) Overpass. (16) Parking lot. (17) River. (18) Runway. (19) Sparse residential.
(20) Storage tank. (21) Tennis court.

Configurations. We use PyTorch 1.6.0, Python 3.7 and CUDA 10.2 for implementation
and thop for calculating the parameters and FLOPs. Referring to the experimental design
in [44,45], an identical layer-by-layer pruning strategy is adopted in our framework. To
determine the LFP of each filter, we randomly sample five batches (total five × mini-batch
input images) to calculate the average LFP of each feature map in all the experiments. After
completing filter pruning based on LFP, we perform fine-tuning on the pruned models
with stochastic gradient descent (SGD) [70–72] as the optimizer. SGD can more efficiently
use information, especially when the information is more redundant [72–74]. In addition,
we perform the fine-tuning for 300 epochs on CIFAR and UC Merced datasets with the
batch size 256, momentum of 0.9, weight decay of 0.005 and initial learning of 0.01. On the
ImageNet dataset, fine-tuning is performed for 150 epochs with the batch size of 128,
momentum of 0.99, weight decay of 0.0001 and initial learning rate of 0.1.

3.2. Results on CIFAR Datasets

To prove the feasibility of LFP, we use different pruning ratios (Table 1) to achieve the
goal of high accuracy, as well as the goals of model size and FLOP reduction. Tables 2–5
show the evaluation results of the pruned modern CNN models on the CIFAR-10/100
datasets, respectively.

For the ResNet-56 model, our LFP-based method improves the accuracy by 0.96%
over the baseline model, and reduces the model size and FLOPs by 44.7% and 48.4%,
respectively. When the model size and FLOPs are both reduced by 71.8%, we still achieve a
better performance.
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Table 1. Pruning ratio of various baseline models on different datasets by LFP.

Model/Dataset Pruning Ratio Setting of All Layers

ResNet-56/CIFAR-10 [0.0] + [0.15] × 2 + [0.4] × 27
[0.0] + [0.4] × 2 + [0.5] × 9 + [0.6] × 9 + [0.7] × 9

ResNet-110/CIFAR-10 [0.0] + [0.2] × 2 + [0.3] × 18 + [0.35] × 36
[0.0] + [0.4] × 2 + [0.5] × 18 + [0.65] × 36

VGG-16/CIFAR-10 [0.3] × 7 + [0.75] × 5
[0.45] × 7 + [0.78] × 5

ResNet-20/CIFAR-100 [0.0] + [0.1] × 2 + [0.25] × 9
[0.0] + [0.3] × 2 + [0.3] × 3 + [0.4] × 3 + [0.5] × 3

ResNet-50/ImageNet [0.0] + [0.1] × 3 + [0.35] × 16
[0.0] + [0.5] × 3 + [0.6] × 16

Table 2. Pruning results of ResNet-56 on the CIFAR-10 dataset.

Method Pruned Top-1% Δ Top-1 Parameters (↓%) FLOP (↓%)

ResNet-56 [65] 93.26 0 0.85M (0.0) 125.49M (0.0)

L1-norm [26] 93.06 −0.20 0.73M (14.1) 90.90M (27.6)

NISP [75] 93.01 −0.25 0.49M (42.4) 81.00M (35.5)

GAL-0.6 [76] 92.98 −0.28 0.75M (11.8) 78.30M (37.6)

HRank [44] 93.52 +0.26 0.71M (16.8) 88.72M (29.3)

CHIP [45] 94.16 +0.90 0.48M (43.5) 65.94M (47.5)

RUFP [77] 93.57 +0.52 0.52M (38.8) 79.3M (37.6)

LFP (Ours) 94.22 +0.96 0.47M (44.7) 64.71M (48.4)

GAL-0.8 [76] 91.58 −1.68 0.29M (65.9) 49.99M (60.2)

LASSO [78] 91.80 −1.46 N/A 62.00M (50.6)

HRank [44] 90.72 −2.54 0.27M (68.1) 32.52M (74.1)

CHIP [45] 92.05 −1.21 0.24M (71.8) 34.79M (72.3)

LFP (Ours) 92.70 −0.56 0.24M (71.8) 35.37M (71.8)

Table 3. Pruning results of ResNet-110 on the CIFAR-10 dataset.

Method Pruned Top-1% Δ Top-1 Parameters (↓%) FLOPs (↓%)

ResNet-110 [65] 93.50 0 1.72M (0.0) 252.89M (0.0)

L1-norm [26] 93.30 −0.20 1.16M (32.6) 155.00M (38.7)

HRank [44] 94.23 +0.73 1.04M (39.5) 148.70M (41.2)

CHIP [45] 94.44 +0.94 0.89M (48.3) 121.09M (52.1)

LFP (Ours) 94.45 +0.95 1.05M (39.0) 132.08M (47.8)

GAL-0.5 [76] 92.74 −0.76 0.95M (44.8) 130.20M (48.5)

HRank [44] 92.65 −0.85 0.53M (69.2) 79.30M (68.6)

CHIP [45] 93.63 +0.13 0.53M (69.2) 71.69M (71.6)

LFP (Ours) 93.72 +0.22 0.54M (68.6) 72.83M (71.2)
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Table 4. Pruning results of VGG-16 on the CIFAR-10 dataset.

Method Pruned Top-1% Δ Top-1 Parameters (↓%) FLOPs (↓%)

VGG-16 [66] 93.96 0 15.00M (0.0) 314.00M (0.0)

SSS [46] 93.02 −0.94 3.93M (73.8) 183.13M (41.6)

GAL-0.05 [76] 93.77 −0.19 3.36M (77.6) 189.49M (39.6)

HRank [44] 93.43 −0.53 2.51M (83.3) 145.61M (53.6)

CHIP [45] 93.86 −0.10 2.76M (81.6) 131.17M (58.1)

RUFP [77] 93.81 −0.15 2.50M (83.3) 167.00M (46.8)

LFP (Ours) 93.98 +0.02 2.51M (83.3) 104.96M (66.6)

GAL-0.1 [76] 93.42 −0.54 2.67M (82.2) 171.89M (45.2)

HRank [44] 91.23 −2.73 1.78M (92.0) 73.70M (76.5)

CHIP [45] 93.18 −0.78 1.90M (87.3) 66.95M (78.7)

LFP (Ours) 93.61 −0.35 1.89M (87.4) 67.09M (78.6)

Table 5. Pruning results of ResNet-20 on the CIFAR-100 dataset.

Method Pruned Top-1% Δ Top-1 Parameters (↓%) FLOPs (↓%)

ResNet-20 [65] 68.47 0 278.3k (0.0) 41.20M (0.0)

L1-norm [26] 66.59 −1.88 176.2k (36.7) 20.80M (49.5)

L2-norm [79] 66.61 −1.86 175.9k (36.8) 21.00M (49.0)

FPGM-0.4 [43] 66.68 −1.79 183.8k (34.0) 20.60M (50.0)

PFP [80] 66.19 −2.28 176.3k (36.7) 21.00M (49.0)

KLNP [81] 66.68 −1.79 187.5k (32.7) 21.20M (48.5)

LFP (Ours) 67.43 −1.04 175.8k (36.7) 20.62M (50.0)

IENP [27] 65.76 −2.71 168.8k (39.4) 20.00M (51.5)

LFP (Ours) 65.82 −2.65 157.4k (43.4) 19.65M (52.3)

For the ResNet-110 model, the accuracy is improved by 0.95% and the model size
and FLOP are reduced by 39.0% and 47.8%, respectively. When the model size and FLOP
are reduced by 68.6% and 71.2% for pruning (close to the highest compression ratio of
the algorithm), our pruned model can still obtain a 0.22% accuracy improvement over the
baseline model.

For the VGG-16 model, our method can reduce the model size and FLOPs by 83.3% and
66.6%, respectively. Meanwhile, it still improves the accuracy by 0.02%. In addition, when
the compression ratio of the pruned model is close to [44,45], the storage and computational
cost are reduced by 87.4% and 78.6%, respectively, and the accuracy is merely reduced by
0.35%.

For the ResNet-20 model on CIFAR-100, on the premise of little accuracy loss, LFP
can reduce the model size and FLOP by 36.7% and 50.0%, respectively. When the model is
further compressed, the accuracy of our method is reduced by only 2.65%.

After preliminary pruning on ResNet-56/110 and VGG-16, LFP can be more accurate
than the baseline model. This shows that the LFP algorithm can alleviate the overfitting
problem of the original model while reducing the model size and calculation costs. Al-
though further pruning on ResNet-56 and VGG-16 will cause a slight drop in accuracy, it is
within an acceptable range compared to other algorithms.
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3.3. Results on ImageNet

The proposed LFP not only shows good performance on small datasets but works
well on large-scale datasets. To verify the effectiveness more comprehensively, we also
conducted several experiments on the challenging ImageNet dataset. Table 6 lists the
pruning performance of ResNet-50 on the ImageNet dataset via our method. The results
indicate that, when targeting a small compression ratio, our method can achieve 40.8%
and 46.7% storage and computation reductions, respectively. In addition, the accuracy of
top-1 and top-5 is 1.21% and 1.26% higher than the baseline model, respectively. When the
compression ratio is further increased, LFP still achieves a superior performance over the
state-of-the-art methods. That is, the accuracy can be guaranteed while maintaining a high
compression ratio. However, in the case of a small compression ratio, CHEX [82] is slightly
more accurate than LFP. At the same time, the reductions in model size and computation
are not optimal for LFP. However, in the further compression, LFP shows its superiority in
precision, storage and computation reduction.

Table 6. Pruning results of ResNet-50 on the ImageNet dataset.

Method
Pruned
Top-1%

Δ Top-1
Pruned
Top-5%

Δ Top-5
Parameters

(↓%)
FLOPs (↓%)

ResNet-50 [65] 76.15 0 92.87 0 25.50M (0.0) 4.09B (0.0)

ThiNet [83] 72.04 −4.11 90.67 −2.20 16.91M (33.7) 2.58B (36.8)

SFP [84] 74.61 −1.54 92.06 −0.81 N/A 2.38B (41.8)

Auto [85] 74.76 −1.39 92.15 −0.72 N/A 2.10B (48.7)

GAL-0.5 [76] 71.95 −4.20 90.94 −1.93 21.19M (16.9) 2.33B (43.0)

FPGM-0.3 [43] 75.59 −0.56 92.63 −0.24 15.94M (37.5) 2.36B (42.2)

HRank [44] 74.98 −1.17 92.33 −0.54 16.17M (36.6) 2.30B (43.7)

SCOP-0.4 [52] 75.95 −0.20 92.79 −0.08 14.59M (42.8) 2.24B (45.3)

CHIP [45] 76.30 +0.15 93.02 +0.15 15.10M (40.8) 2.26B (44.8)

CHEX-0.3 [82] 77.40 +1.25 N/A - N/A 2.00B (51.1)

LFP (Ours) 77.36 +1.21 94.13 +1.26 15.09M (40.8) 2.18B (46.7)

PFP [80] 75.21 −0.94 92.43 −0.44 17.82M (30.1) 2.29B (44.0)

SCOP-0.5 [52] 75.26 −0.89 92.53 −0.34 12.29M (51.8) 1.86B (54.6)

CHIP [45] 75.26 −0.89 92.53 −0.34 11.04M (56.7) 1.52B (62.8)

CHEX-0.5 [82] 76.00 −0.15 N/A - N/A 1.00B (75.6)

LFP (Ours) 76.07 −0.08 92.26 +0.09 8.02M (68.5) 0.97B (76.3)

3.4. Results on the UC Merced Dataset

Table 7 lists the pruning performance of VGG-16 on the UCM dataset via our method.
The experimental results show that the proposed LFP also performs well in remote sensing
image classification. When targeting a small compression ratio, our method can achieve
78.3% and 40.6% storage and computation reductions, respectively. Meanwhile, the ac-
curacy is 0.23% higher than the baseline model. It can be seen that LFP has a tiny loss in
accuracy (it decreases by 0.68) when the compression ratio is further increased. That is,
the accuracy can be guaranteed while maintaining a high compression ratio.
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Table 7. Pruning results of VGG-16 on the UC Merced land-use dataset.

Method Pruned Top-1% Δ Top-1
Parameters

(↓%)
FLOPs (↓%)

VGG-16 [66] 93.45 0 15.00M (0.0) 314.00M (0.0)

LFP (Ours) 93.68 +0.23 3.25M (78.3) 186.61M (40.6)

LFP (Ours) 92.77 −0.68 2.04M (86.4) 146.53M (53.3)

4. Discussion

This paper proposes a novel model compression method for frequency domain filter-
ing in accordance with the “smaller-norm-less-important” idea. In contrast to previous
algorithms that perform pruning in the spatial domain, we explore the similarity, sym-
metry and substitutability of feature maps. We re-consider the model characteristics that
correspond to the human visual system termed Low Frequency Preference (LFP) in the fre-
quency domain. Based on the new frequency domain perspective and model characteristics,
the performance of LFP is even superior to state-of-the-art methods [45,82].

Although our LFP is originally proposed for CNNs, there are few pruning algorithms
for recurrent neural networks (RNNs). However, we are working hard to explore this
limitation, and hope to extend the pruning algorithm to more diverse network structures
in the future. Secondly, although it is effective to utilize F-norm pruning in the pruning
process, whether there is a more appropriate and accurate metric for pruning than F-norm
will continue to be explored in future work. At the same time, we will also focus on the
study of different pruning granularities such as [71] to further compress the model.

5. Conclusions

Convolutional neural networks (CNNs) have been widely used in remote sensing
image classification due to their powerful feature representation abilities. However, the
accompanying high computational cost is always a problem worth trying to improve. In
this paper, we propose a novel pruning method called low frequency preference (LFP)
from the new perspective of the frequency domain, which takes into account the model
properties (i.e., the preference of the network model) for the data properties. It determines
the relative importance of filters by observing and computing the spectrogram of the
feature map. We conducted LFP with several modern and popular models on different
scale datasets to verify its superiority. The experimental results demonstrate that the LFP
pruning method can effectively reduce the computational complexity and model size while
maintaining a high classification accuracy.

In future research, we will continue to explore different pruning methods in the
frequency domain, as well as combine the spatial domain pruning methods to achieve
a higher compression ratio. The goal is to find a method to prune CNNs from scratch
for remote sensing image classification. Since the pruned channels are already selected
when training the original over-parameterized network, pruning CNNs from scratch can
save more computational resources and time. It is also of great significance for resource-
constrained remote sensing image classification tasks.
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Abbreviations

The following abbreviations are used in this manuscript:

LFP Low Frequency Preference
CNN Convolutional Neural Network
RNN Recurrent Neural Network
BLAS Basic Linear Algebra Subprograms
FLOPs Floating Point Operations
APoZ Average Percentage of Zeros
NISP Neuron Importance Score Propagation
HRank High Rank
CHIP Channel Independence-based Pruning
GAL Generative Adversarial Learning
RUFP Reinitializing Unimportant Filters for Soft Pruning
FPGM Filter Pruning via Geometric Median
SSS Sparse Structure Selection
FFT Fast Fourier Transform
DFT Discrete Fourier Transform
F-norm Frobenius Norm
ResNet Residual Network
VGG Visual Geometry Group
CIFAR Canadian Institute for Advanced Research
SGD Stochastic Gradient Descent
ImageNet A Large-Scale Hierarchical Image Database
UC Merced University of California, Merced
CUDA Compute Unified Device Architecture
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Abstract: With the development of image segmentation technology, image context information
plays an increasingly important role in semantic segmentation. However, due to the complexity of
context information in different feature maps, simple context capture operations can easily cause
context information omission. Rich context information can better classify categories and improve the
quality of image segmentation. On the contrary, poor context information will lead to blurred image
category segmentation and an incomplete target edge. In order to capture rich context information
as completely as possible, we constructed a Multi-Pooling Context Network (MPCNet), which is
a multi-pool contextual network for the semantic segmentation of images. Specifically, we first
proposed the Pooling Context Aggregation Module to capture the deep context information of the
image by processing the information between the space, channel, and pixel of the image. At the
same time, the Spatial Context Module was constructed to capture the detailed spatial context of
images at different stages of the network. The whole network structure adopted the form of codec
to better extract image context. Finally, we performed extensive experiments on three semantic
segmentation datasets (Cityscapes, ADE20K, and PASCAL VOC2012 datasets), which fully proved
that our proposed network effectively alleviated the lack of context extraction and verified the
effectiveness of the network.

Keywords: semantic segmentation; context information; convolutional neural network; attention
module

1. Introduction

Image segmentation is an important part of computer vision, and semantic segmen-
tation is a basic task of image segmentation. Semantic segmentation involves pixel-level
semantic image processing, which is mainly utilizes the relationship between pixels and
their surroundings. The development of deep learning has led to the widespread use
of image semantic segmentation in real-life applications, such as medical imaging [1–3],
assisted driving [4–7], and radar image processing [8–10]. Context information usually
represents the relationship between its own pixels and surrounding pixels, which is crucial
for visually understanding tasks. The main principle of image semantic segmentation
is to give corresponding semantic expression to all pixels in the image. This expression
not only pays attention to the meaning of its own pixels, but also needs to express the
relationship between its own pixels and surrounding pixels. Therefore, context information
is an important factor in image semantic segmentation. Contextual information is not
only often used in the field of segmentation, but is also a common method of problem
solving in other areas [11–13]. We divide the context information into semantic context
information and spatial context information according to different image feature maps.
Semantic context information is often contained in low-resolution, high-level feature maps,
which is mainly used to distinguish pixel categories. The spatial context information is
mainly used in a high-resolution, low-level feature map to help the pixel restore the spatial
details. The combination of these two context information types greatly improves the
quality of image semantic segmentation.
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With the development of the convolutional neural network, more and more methods
have been used to capture rich semantic context information. For example, Context-
Reinforced Semantic Segmentation [14] proposes a context-enhanced semantic segmenta-
tion network to explore the advanced semantic context information in a feature graph. It
embeds the learned context into the segmentation reasoning based on FCN [15] to further
enhance the modern semantic segmentation method. The Co-Occurrent Features Net-
work [16] designs a special module to learn fine-grained spatial information representation
and constructs overall contextual feature information by aggregating co-occurrence feature
probabilities in co-occurrence contexts. Context Encoding for Semantic Segmentation [17]
is used to capture the semantic information in the scene using the encoding and decoding
module to selectively filter the information with the same class of features. The Context
Deconvolution Network for Semantic Segmentation [18] proposes a context deconvolution
network and focuses on the semantic context association in decoding network. The Gated
Path Selection Network [19] has developed a gated path selection network. In order to
dynamically select the required semantic context, the gate prediction module is further
introduced. Unlike previous efforts to capture semantic context information, its network
can adaptively capture dense context. LightFGCNet [20] has designed a lightweight global
context capture method and combines feature information from different regions dur-
ing the upsampling phase to enable better global context extraction across the network.
BCANet [21] has designed a boundary-guided context aggregation module to capture the
correlation context between pixels in the boundary region and other pixels to facilitate the
understanding of the semantic information of the overall image. DMAU-Net Network [22]
presents an attention-based multiscale maximum pooling dense network, which designs
an integrated maximum pool module to improve the image information feature extraction
ability in the encoder section, thereby improving the network segmentation efficiency. The
Multiscale Progressive Segmentation Network [23] presents a multiscale progressive seg-
mentation network that gradually divides image targets into small, large, and other scales
and cascades them into three distinct subnetworks to achieve the final image segmentation
result. The Semantic Segmentation Network [24] presents a semantic segmentation net-
work that combines multi-path structure, attention weighting, and multi-scale encoding. It
captures spatial information, semantic context information, and semantic map information
of images through three parallel structures. The Combining Max-Pooling Network [25]
combines the traditional wavelet algorithm with a convolutional neural network pooling
operation to propose a new multi-pooling scheme, and it uses this scheme to create two
new stream architectures for semantically segmenting images.

There are many ways to use spatial context information. For example, the CBAM [26]
aggregates spatially detailed information about pixels through pooling operations and
generates different spatial context descriptors through a spatial attention module to capture
spatial detail context information. The spatial context is generally found in high-resolution
feature maps or in the connection of pixels to other pixels. As a result, they cannot capture
spatial context information for objects that reside at different scales. The Feature Pyramid
Transformer [27] uses specially designed converters to form feature pyramids in a top-down
or opposite interaction to capture high-resolution spatial context. To reduce the compu-
tational effort needed to capture more spatial context, the Fast Attention Network [28]
captures the same spatial context at a fraction of the computational cost by using different
orders of spatial attention. The HRCNet [29] maintains spatial contextual information
through a specific network structure, obtains global contextual information during the
feature extraction phase, and uses a feature-enhanced feature pyramid structure to fuse
contextual information at different scales. The CTNet [30] has designed a spatial context
module and a channel context module to capture the semantic and spatial context between
different pixel features by exploring inter-pixel correlations.

These methods have excellent performance in extracting semantic context and spa-
tial context information. For better image semantic segmentation, not only rich semantic
context, but also sufficient spatial context information is required. We believe that a good
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combination of these two context information types can better complete the semantic
segmentation task and improve the segmentation quality. Therefore, we designed a new
network structure: the Multi-Pooling Context Network (MPCNet). The MPCNet captures
feature context information in different stages through encoding and decoding structures.
Specifically, we designed a Pooling Context Aggregation Module (PCAM), which is com-
posed of multiple pooling operations and dilated convolutions. The application captures
rich semantic context information in low-resolution high-level feature map to improve the
utilization of semantic-related context in a high-level feature map. In addition, a Spatial
Context Module (SCM) was proposed, which is composed of maximum pooling and av-
erage pooling. It captures the spatial context in a low-level feature map and provides the
output to the encoder in the form of a jump connection to form each decoding stage, so as
to better restore the spatial details of pixels. Our MPCNet captures rich semantic context
information through the encoder and combines the spatial context information from the
decoder that is captured by jump connection to form the encoding and decoding structure
of the whole network, which not only improves the information conversion rate of pixels,
but also increases the utilization rate of the context information, thus improving the quality
of semantic segmentation.

The following are our main contributions:

(1) We constructed a Multi-Pooling Context Network (MPCNet), which captures rich
semantic context information through the encoder and restores the spatial context
information through the decoder formed by the jump connection. The whole network
realizes the effective combination of semantic context and spatial context with the
encoding and decoding structure, thus completing the semantic segmentation task.

(2) We designed a Spatial Context Module (SCM), which is composed of different types
of pooling layers. It transfers the spatial information in the low-level feature map at
the encoding stage to each decoding stage through the jump connection, improves the
information utilization of the spatial context, and, thus, increases the pixel location of
the semantic category.

(3) We designed a Pooling Context Aggregation Module (PCAM) consisting of a combi-
nation of different pooling operations and dilation convolution. It cooperates with the
encoder to capture different contexts in the high-level feature graph, thereby creating
rich semantic contextual information for pixel classification.

2. Related Work

In this section, we introduce some relevant semantic context and spatial context
information capture methods and popular semantic segmentation models.

2.1. Semantic Context Information

An image is composed of several pixels. Semantic segmentation is mainly performed
to label several pixels in the image. Successfully partitioning each pixel requires rich
semantic context information. Semantic context information can effectively improve the
semantic classification of pixel images. In recent years, semantic context has fully verified
its effectiveness in semantic segmentation methods. For example, PSPNet [31] collects
the feature information of pixels by pooling the pyramids of different sizes to obtain
rich semantic context for the semantic segmentation of images. ParseNet [32] uses the
average feature of the layer to increase the information of each location, and then adds
the semantic context to the full convolutional network to improve the image segmentation
quality. DeepLabV3+ [33] is designed to expand the convolutional composition of the atrous
spatial pyramid pool module to capture rich semantic contextual information, thereby
improving the segmentation performance of the network. DDRNet [34] establishes two
parallel depth branches and uses the two-branch structure to search the semantic context
in the low-resolution feature map. The Gated Full Fusion for Semantic Segmentation [35]
(GFF) uses gates to selectively fuse semantic contexts at all levels in a fully connected
way, uses gate control units to control the propagation of useful semantic contexts, and
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suppresses additional contextual information noise. These methods improve the semantic
segmentation performance through their unique network design. They pay more attention
to large-scale pixel semantic information. On the contrary, our network method aims to
combine the multi-scale semantic context information in the low-resolution feature map
and achieve the purpose of multi-scale semantic context information and increase the
feature receptive field through different pooling combinations and dilated convolutions, so
as to capture more relevant semantic context information.

2.2. Spatial Context Information

Several pixels in the image are closely connected; pixels themselves and between
pixels have different meanings. In the process of semantic segmentation, it is necessary to
know the different meanings between the pixel itself and other pixels, but these meanings
are often contained in the spatial context information. At present, many methods are
exploring how to better capture the spatial detail context information of images. One
example is the SpaceMeshLab—featuring Spatial Context Memorization. Furthermore,
the Meshgrid Through Convergence Consus For Semantic Segmentation [36] proposed a
spatial context memo, which preserves the input dimension through the bypass branch of
this spatial context and constantly communicates with the backbone network to capture its
spatial context information. Context Encoding and Multi-Path Decoding [37] propose a
scale selection scheme, thereby selectively fusing information from different scale features,
preserving the rich spatial context information fraction in the feature scale, and improving
the segmentation performance of pixel spatial details. BiSeNetV2 [38] introduces a new
feature fusion module to effectively combine spatial and semantic context information,
interactively explore spatial and semantic context information, and find different pixels for
semantic segmentation. SGCPNet [39] devises a spatial detail-oriented context propagation
strategy that uses shallow spatial detail to guide the global context and also effectively
recovers lost spatial detail information. These methods have performed well in completing
the capture of spatial context information, and have a good restoration and reconstruction
effect on pixel spatial details, whether from the multi-scale or multi-branch. The difference
is that our method compensates for the lost spatial context in the down-sampling process
by combining pooling operations and transfers it to the corresponding image up-sampling
stage in the down-sampling stage, which greatly compensates for the spatial details of
image segmentation.

3. Methodology

In this section, we first explain the framework of our Multi-Pooling Context Network
(MPCNet) and present the main principles of the two proposed modules—the Pooling
Context Aggregation Module (PCAM) and the Spatial Context Module (SCM).

3.1. Overview

The structure of the Multi-Pooling Context Network for semantic segmentation (MPC-
Net) proposed by us is shown in Figure 1. The network uses codec as its main architecture
that uses the pre-training residual network ResNet101 [40] as the encoding stage. Since
down-sampling loses the spatial details of the image, we used a 3 × 3 convolution with
a step size of 2 instead of the down-sampling operation of the backbone network. In the
last resolution stage, we set the step size to 1 and used a 3 × 3 dilation convolution with a
dilation rate of 2 instead of the convolution. In this way, the image features are retained
at resolutions of 1/4, 1/8, 1/16, and 1/16, and the number of channels corresponding to
each resolution is 256, 512, 1024 and 2048, respectively. These four feature resolutions also
represent four different coding stages. In order to capture more semantic contexts, we
applied the Pooling Context Aggregation Module (PCAM) in the last coding stage. At the
same time, the Spatial Context Module (SCM) was used to capture the spatial context infor-
mation of the first three coding stages, and the spatial information of the first three coding
stages formed the decoding stage in the form of jump connection with the flow fusion [41]
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and the output of PCAM module. In this way, the spatial details of the corresponding
image encoding phase will exist in the corresponding decoding phase.

Figure 1. Overview of MPCNet. ResNet is used as the encoder backbone network, and its four
different resolution layers such as ResLayer1, ResLayer2, ResLayer3, and ResLayer4 are used as the
encoder stage. The PCAM obtains the semantic context of high-level features at the coding stage. The
SCM sends the spatial context extracted in each encoding stage to the decoder in the form of jump
connection. The whole network uses an encoding and decoding structure for semantic segmentation.
(Best in color).

Note that our MPCNet aims to capture more context information for semantic segmen-
tation. MPCNet captures three parts of the context in the encoder’s high-level feature map
by PCAM to form rich semantic context information, divides several categories of image
pixels, and then transfers the spatial context of the image pixels to the decoder in the form
of skip connection with the spatial context captured by SCM at each stage of encoding,
thus restoring the spatial details of the image pixels. In order to better capture the context
information, our entire model uses a codec–decode structure, extracts the context infor-
mation of the image using the backbone network as the encoder to reduce the resolution,
captures the semantic context information through PCAM, and combines it with the spatial
detail context captured by SCM in the form of jump connection. By sampling step-by-step
to form the decoder, each module structure of the whole network is clear, simple, and easy
to implement.

3.2. Spatial Context Module

With the continuous down-sampling of the convolutional neural network, the low-
resolution pixels of the image will lose the spatial detail information, thus resulting in
blurred target boundaries. To reduce the loss of spatial detail, the spatial position of the
target pixels was improved. We built the Spatial Context Module (SCM). Figure 2 shows
our proposed Spatial Context Module (SCM) structure. It can be seen from Figure 2 that
SCM is an integrated design of the whole module, which can be flexibly applied to any
network structure. Next, let us introduce SCM in detail.

First, we used high-resolution feature map as input, but because the number of feature
map channels in each stage was different, we used common convolution to unify the
number of channels, then used maximum pooling and average pooling operations to collect
different weight information of feature map, and then fused different weight information.
The context weight obtained was calculated by sigmoid function, and then all the weight
information output by sigmoid was selected by using the features of the unified channel,
filtering out redundant information, and preserving relevant spatial details. To prevent
the gradients from disappearing due to the increase in network depth, we initialized the
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connection of spatial contextual information to ensure smooth transmission of the gradients.
For spatial context module output Ooutput, the specific expression is

Figure 2. Overview of Spatial Context Module (SCM). It captures the spatial context information in
the high-level feature graph through different pooling operations.

Ooutput = Sig
[
Max

(
Conv

(
Xinput

))� Avg
(
Conv

(
Xinput

))]⊗ Conv
(
Xinput

)⊕ Xinput, (1)

where Max represents maximum pooling, Avg represents average pooling, Conv represents
standard convolution, Sig represents sigmoid function, Xinput represents high-resolution
input features, � represents concat, ⊗ represents matrix element multiplication, and ⊕
represents element summation.

Our Spatial Context Module aims to capture spatial details in high-resolution feature
maps. First, we used the channel number of the convolution uniform feature map and
then used the pooling operation to obtain different information weights. Because the
maximum pooling can obtain more prominent pixel information weights on the image,
and the average pooling can obtain additional target information, we used two parallel
poolings to capture the weight information of the image, then used the probability function
to effectively select it, and finally filtered out redundant information and output spatial
details between image pixels. This preserved effective spatial context information in the
high-resolution feature map.

3.3. Pooling Context Aggregation Module

Semantic context is crucial for semantic segmentation. Semantic information of dense
pixels is generally reserved in low-resolution feature images, so it is necessary to reduce
the resolution of the image to extract rich semantic information. However, in an image
with complex background, we should not only pay attention to the semantic information of
low resolution, but also pay attention to the context information between its own semantic
pixels and surrounding pixels. In order to better capture the rich context information with
low resolution, we designed the Pooling Context Aggregation Module (PCAM). Figure 3
shows the structure of PCAM. From Figure 3, we can see that PCAM is composed of three
parts. Next, we will introduce the Pooling Context Aggregation Module in detail.
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Figure 3. Overview of Pooling Context Aggregation Module(PCAM). It is mainly composed of three
parts of context information by capturing the semantic context in the low-resolution feature map.

The Pooling Context Aggregation Module (PCAM) is composed of three different
parts, and the corresponding capture A f eature, Bf eture, and Cf eture has three parts of context
information. First, the input low-resolution feature Oinput performs maximum pooling
and average pooling operations, and it then uses 1 × 1 convolution to capture the context
information between its channels after each pooling module. The maximum pooling
channel information and average pooling channel information are fused to form a complete
channel context weight. The weight probability is expressed using the sigmoid function,
and then the channel weight is selected with the initial input characteristics to remove
redundant channel information, as well as preserve complete and rich channel context
information A f eature. Next, in the second part, we use ordinary and dilation convolution
to expand the receptive field of the input features, as well as fuse and retain contextual
information between pixels. Then, average pooling and convolution are used to select
weights for feature links, remove redundant information, retain useful information between
pixels, increase connectivity between pixels, and capture contextual information between
pixels Bf eture. The last part is the spatial context information that is captured by the spatial
context module Cf eture. The captured three-part context information is fused to form a
low-resolution semantic context Ooutput. The formal description of output is as follows:

Ooutput = A f eature � Bf eature � Cf eature, (2)

where A f eature, Bf eture, and Cf eture represent channel context information, context informa-
tion between pixels, and spatial context information, respectively. They are specifically
expressed as follows:

A f eature = Sig
[
Conv

(
Max

(
Oinput

))⊕ Conv
(

Avg
(
Oinput

))]⊗ Oinput, (3)

Bf eature = Conv
(

Avg
(
Conv

(
Oinput

)� Dconv
(
Oinput

)))⊗ (
Conv

(
Oinput

)� Dconv
(
Oinput

))
, (4)

Cf eature = Sig
[
Conv

((
Max

(
Oinput

)� Avg
(
Oinput

)))]⊗ Oinput, (5)

where Max represents maximum pooling, Avg represents average pooling, Conv represents
standard convolution, Dconv represents 3 × 3 dilated convolution. Sig represents sigmoid
function, Oinput represents low-resolution input features, � represents concat, ⊗ represents
matrix element multiplication, and ⊕ element summation.

Our proposed Pooling Context Aggregation Module aims to capture rich semantic
context information of low-resolution feature maps through different pooling and convolu-
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tion operations. The channel weight is expressed by probability through maximum pooling
and average pooling, and the context information between its channels is obtained; in order
to preserve the connection between pixels, we use dilated convolution to capturing the
context information between pixels; because the low-resolution feature map also contains
spatial details, we use the spatial context module to capture its spatial context. Unlike the
high-resolution spatial context module, we remove the unified channel convolution and
initialization connection. The whole low-resolution semantic context is composed of these
three parts of context information. It not only divides the semantic categories of each pixel,
but also distinguishes itself and surrounding pixels by certain pixel categories. It ensures
the semantic correctness of different pixels.

4. Experimental Results

In this section, we compare numerical and segmentation results with ten image
semantic segmentation methods from recent years on the PASCAL VOC2012 dataset [42],
the Cityscape dataset [43], and the ADE20K MIT dataset [44].

4.1. Datasets and Experimental Settings

In this subsection, we first introduce the three semantic segmentation datasets used
for network training, and then detail the specific parameter details of the experiments.

4.1.1. PASCAL VOC2012

PASCAL VOC 2012 is a computer vision competition dataset. It is divided into three
sections according to the data training requirements: training, evaluation, and test sets.
Each set has roughly 1400 images. The categories of these images include not only humans
and animals, but also driving tools, indoor scenes, etc. There are 21 categories covering
many objects in our lives.

4.1.2. Cityscapes

Cityscapes is a vehicle driving dataset. It has a total of 19 street view category labels,
and the dataset is divided into three parts, including a training, evaluation, and test dataset.
The corresponding images are 2979, 500, and 1525, respectively, and each image has a high
resolution of 2048 × 1024.

4.1.3. ADE20K MIT

The ADE20K dataset is MIT’s open scene understanding dataset. It contains over 20 K
images of over 3000 object classes. Because of the complexity of the classes, the samples in
the dataset have different resolutions of up to 2400 × 1800 pixels.

4.1.4. Experimental Settings

We implemented our network on a single GPU using the Python language, which used
ResNet101 with a dilated convolution strategy as the backbone of the network. Specifically,
we replaced the pooling module with dilated convolution and resolved the size of Resnet’s
final output feature map to 1/16, thus avoiding 1/8, which would use too much GPU
memory, and ensuring sufficient contextual information.

Our experiments generally refer to most previous work [33,45,46] using pixel accuracy
(PA), intersection over union (IoU), and mean intersection of union (mIoU) as evaluation
metrics [47]. A combination of random gradient descent (SGD) [48] and cross-entropy loss
with a small batchsize dataset setup was used to train the network weights. For all datasets,
we used a horizontal random flip and random scaling. For the Cityscapes dataset, we used
a learning rate of 0.01, set the batchsize to 8, and set the training iterations to 160 K. For the
ADE20K and PASCAL VOC2012 datasets, we set the learning rate to 0.007, set the batchsize
to 12, and set training iterations to 100 K.
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4.2. Ablation Experiments with MPCNet

In this section, we designed ablation experiments on two modules of the MPCNet
(Pooling Context Aggregation Module (PCAM) and Spatial Context Module (SCM)) for the
Cityscape dataset. In the ablation experiments that follow, we set the training iterations to
100K for the convenience of the experiments.

4.2.1. Ablation Experiment for PCAM

To demonstrate the effectiveness of our proposed PCAM in MPCNet, we performed
ablation experiments on its components. Table 1 shows our proposed PCAM ablation
experiments on the ResNet101 backbone network for the Cityscapes dataset. We divided
PCAM into two parts for ablation experiments—one containing only channel context
A f eature and spatial context Cf eature and one containing the context information between
pixels Bf eature. From Table 1, we can see that, regardless of whether it contained only
channel context A f eature and spatial context Cf eature or context information between pixels
Bf eature, the PA and mIOU of the segmentation pixels were greatly reduced, and the results
were not as good as those of the three merges.

Table 1. PA and mIoU of our PCAM module for the Cityscapes dataset (A f eature, Bf eature, and Cf eature
denote the channel context, context information between pixels, and spatial context of our proposed
PCA module, respectively). (Note that the bold indicates the best value for that column).

Method A f eature Bf eature Cf eature PA (%) mIOU (%)

ResNet101 90.77 71.25
ResNet101 � � 94.76 77.88
ResNet101 � 94.27 77.56
ResNet101 � � � 95.81 78.05

To further evaluate the advancement of our PCAM, we compared the results with
PCAM using several classic context extraction modules: PPM [31], ASPP [33], and MMP [49].
To increase the fairness of the comparison data, we set consistent training parameters in
the comparison experiments. Table 2 shows the results of the module comparison. From
Table 2, we can see that our PCAM achieved 97.92% PA and 78.24% mIOU based on the
same parameter settings, which outperformed those with the PPM, ASPP and MMP. The
main reason is that our proposed PCAM aggregates the channel context, spatial context,
and inter-pixel context of the low-resolution feature map, thereby making maximum use of
the pixel information of the low-resolution feature map to capture more semantic context
information.

Table 2. Comparison of PA and mIoU of our PCAM module with the other three modules (PPM,
ASPP, MPM) for the Cityscapes dataset. (Note that the bold indicates the best value for that column).

Method BaseNet PPM ASPP MPM PCAM PA (%) mIOU (%)

MPCNet ResNet101 � 94.56 76.43
MPCNet ResNet101 � 95.15 77.68
MPCNet ResNet101 � 95.01 77.21
MPCNet ResNet101 � 97.92 78.24

4.2.2. Ablation Experiment for SCM

In order to verify the validity of the SCM module, we conducted an experimental
comparative analysis on the backbone network ResNet101 using SPM [49] with the same
ability to capture spatial context information. Table 3 shows the experimental analysis for
the Cityscapes dataset. From Table 3, we can see that the SCM module was superior to
the SPM in the ResNet101 baseline network, and its performance reached 76.74% mIOU.
The main reason is that our proposed SCM filters spatial information through different
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pooling, saves spatial location information in different stages, and transfers spatial details to
decoders through skip connections, thereby greatly restoring the pixel location to maintain
the consistency of semantic and spatial details.

Table 3. Comparison of PA and mIoU of proposed PCAM module with the SPM modules for the
Cityscapes dataset. (Note that the bold indicates the best value for that column).

Method SPM SCM PA (%) mIOU (%)

ResNet101 90.77 71.25
ResNet101 � 94.76 75.58
ResNet101 � 96.21 76.74

4.3. Segmentation Performances and Comparisons

In this subsection, to demonstrate the segmentation performance of our proposed
MPCNet, numerical and visualization results were compared with ten segmentation meth-
ods for three image semantic segmentation datasets.

4.3.1. PASCAL VOC2012

To validate the effectiveness of our proposed MPCNet, we conducted a numeri-
cal experimental comparison with excellent semantic segmentation algorithms of recent
years on the VOC2012 dataset. Table 4 shows comparison of the PA and mIOU for the
PASCAL VOC2012 dataset with ten other methods. Since some of the methods did
not run on this dataset, we ran the pixel precision (PA) of the FCN [15], PSPNet [31],
DeepLab [50], Denseaspp [51], OCNet [52], and DeepLabV3+ [33] on the same device. The
results of the OCRNet [53], OCNet [52], and ANN [54] were derived from SA-FFNet [55].
From Table 4, we can see that our method obtained 94.83% PA and 77.48% mIOU. Under
ResNet101, our PA was 0.99% to 6.1% higher than other methods. Our MPCNet could
achieve an mIOU of 77.48%, which was 1.06% higher than the SA-FFNet [55]. A comparison
of different experimental values reveals that our MPCNet maintains good pixel accuracy.

Table 4. Comparison of our proposed MPCNet’s PA and mIOU for the PASCAL VOC2012 dataset
with ten other methods.

Method BaseNet PA (%) mIOU (%)

FCN [15] ResNet101 88.73 62.20
DeepLab [50] ResNet101 92.84 78.51
PSPNet [31] ResNet101 93.11 82.60
DeepLabv3+ [33] ResNet101 93.78 80.57
Denseaspp [51] ResNet101 93.68 75.27
ANN [54] ResNet101 93.20 72.79
DANet [56] ResNet101 93.38 80.40
OCRNet [53] ResNet101 93.47 74.69
OCNet [52] ResNet101 93.80 75.55
SA-FFNet [55] ResNet101 93.84 76.42

MPCNet (ours) ResNet101 94.83 77.48

4.3.2. Cityscapes

In this section, we conducted a comparative experiment for the Cityscapes dataset.
Table 5 shows comparison of the PA and mIOU for the Cityscapes dataset. Considering
the rigor of the experiment, we also retested the pixel accuracy for DeepLab [50], FCN [15],
DeepLabV3+ [33], PSPNet [31], OCNet [52], Denseaspp [51], DANet [56], ANN [54], and
OCRNet [53], as well as the mIOU of the FCN [15] for the Cityscapes dataset. From Table 5,
we can see that our PA was 97.92%, which was 1.67% higher than other methods. The
mIOU was 78.24%, which was 5.11% higher than other methods. Therefore, our MPCNet
still has advantages regarding the PA and mIOU.
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Table 5. Comparison of our proposed MPCNet’s PA and mIOU for the Cityscapes dataset with ten
other methods.

Method BaseNet PA (%) mIOU (%)

FCN [15] ResNet101 94.85 66.61
DeepLab[50] ResNet101 95.78 79.30
PSPNet [31] ResNet101 96.49 78.40
DeepLabv3+ [33] ResNet101 96.66 79.55
Denseaspp [51] ResNet101 95.85 80.60
ANN [54] ResNet101 95.16 81.30
DANet [56] ResNet101 95.45 81.50
OCRNet [53] ResNet101 95.29 81.80
OCNet [52] ResNet101 96.53 81.40
SA-FFNet [55] ResNet101 96.25 73.13

MPCNet (ours) ResNet101 97.92 78.24

4.3.3. ADE20K

To further validate our proposed MPCNet, we performed experiments on a larger
ADE20K dataset. Table 6 shows the mIOU and PA of the MPCNet and ten other methods.
It can be seen From Table 6 that the pixel accuracy of the MPCNet was 82.55%, and the
mIOU was 38.04%. The results of these two methods still have certain advantages over
the other ten methods. The ADE20K dataset has a large number of images and complex
pixel types. Our proposed MPCNet extracts different pixel semantic contexts through the
PCAM, uses the SCM to compensate for the missing spatial details, and uses codec mode
to increase the capture of complex information. Our proposed MPCNet achieved different
segmentation performance, so it is effective.

Table 6. Comparison of our proposed MPCNet’s PA and mIOU for the ADE20K dataset with ten
other methods.

Method BaseNet PA (%) mIOU (%)

FCN [15] ResNet101 76.32 29.47
SegNet [57] ResNet101 68.59 21.63
DeepLab[50] ResNet101 80.26 33.87
PSPNet [31] ResNet101 81.56 41.68
DeepLabv3+ [33] ResNet101 82.31 36.42
Denseaspp [51] ResNet101 81.75 34.55
ANN [54] ResNet101 81.37 45.24
DANet [56] ResNet101 82.27 36.33
OCRNet [53] ResNet101 81.88 45.28
OCNet [52] ResNet101 82.10 45.04
MPCNet (ours) ResNet101 82.55 38.04

4.4. Visual Comparison

To demonstrate the proposed visual advantage of the MPCNet, we compared three
methods for the Cityscapes dataset in Figure 4, namely, PSPNet, OCNet, and DeepLabv3+.
From Figure 4, it can be seen that small targets in a complex background, such as traffic
lights, people in the distance, bicycles, etc., were all pixel categories that were difficult to
segment. In contrast, our method had a better segmentation result than the other methods
and could be successfully segmented. In addition, the loss of spatial detail information for
pixels was successfully alleviated, such as the division and positioning of “human contour”
and “overlapping vehicle” in line 5. From the perspective of the segmentation effect, our
proposed MPCNet can provide the context information needed for segmentation and can
accurately segment the image.
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(a) (b) (c) (d) (e) (f)

Figure 4. Comparison of the visual segmentation results of our proposed MPCNet with the
other three methods for the Cityscapes dataset: (a) Image. (b) Ground Truth. (c) PSPNet [31].
(d) OCNet [52]. (e) DeepLabv3+ [33]. (f) Ours.

To further verify the validity of our method, we compared our proposed MPCNet with
three methods for the VOC2012 dataset in Figure 5. From Figure 5, it can be seen that both
vehicle and animal MPCNets could result in the semantics being classified correctly and
the outline being clear. We propose that PCAM constructs a semantic context by capturing
different contextual information and semantically dividing pixels. The SCM improves the
spatial positioning ability of each semantic category and ensures that the outline of the
category is clear. Therefore, from the perspective of visual analysis, our proposed MPCNet
is effective in the application of semantics segmentation.

(a) (b) (c) (d) (e) (f)

Figure 5. Comparison of the visual segmentation results of our proposed MPCNet with the other three
methods for the PASCAL VOC dataset: (a) Image. (b) Ground Truth. (c) PSPNet [31]. (d) OCNet [52].
(e) DeepLabv3+ [33]. (f) Ours.
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5. Conclusions

In this paper, we proposed a Multi-Pooling Context Network (MPCNet) for semantic
segmentation. Specifically, our proposed PCAM aggregates the semantic context informa-
tion in the high-level feature graph through three parts of feature information, increases
the semantic exploitation of pixels in the low-resolution feature graph, and classifies differ-
ent pixels in the image into semantic categories. Our proposed SCM captures the spatial
contextual information of high-resolution features and passes it to the decoder in the form
of a jump connection to enhance the spatial localization of semantic categories. The stable
structure of the network using coding and decoding ensures that the contextual information
is fully utilized, thus better improving the segmentation results. Experimental results show
that our proposed MPCNet is effective.

Our method has initially alleviated the problem of insufficient context information
capture in simple images, but the segmentation effect for complex backgrounds and multi-
category pixel images still needs to be improved. For different complex background image
processing, not only sufficient context information is needed, but also more attention
should be paid to the relationships between pixels. For example, overlapping target objects,
small target objects, and multi-shape target objects constitute the difficulties of semantic
segmentation of complex images, and are also the focus of our research work in the future.
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Abstract: Deep learning networks based on CNNs or transformers have made progress in spectral
reconstruction (SR). However, many methods focus solely on feature extraction, overlooking the
interpretability of network design. Additionally, models exclusively based on CNNs or transformers
may lose other prior information, sacrificing reconstruction accuracy and robustness. In this paper,
we propose a novel Unmixing-Guided Convolutional Transformer Network (UGCT) for interpretable
SR. Specifically, transformer and ResBlock components are embedded in Paralleled-Residual Multi-
Head Self-Attention (PMSA) to facilitate fine feature extraction guided by the excellent priors of
local and non-local information from CNNs and transformers. Furthermore, the Spectral–Spatial
Aggregation Module (S2AM) combines the advantages of geometric invariance and global receptive
fields to enhance the reconstruction performance. Finally, we exploit a hyperspectral unmixing (HU)
mechanism-driven framework at the end of the model, incorporating detailed features from the
spectral library using LMM and employing precise endmember features to achieve a more refined
interpretation of mixed pixels in HSI at sub-pixel scales. Experimental results demonstrate the
superiority of our proposed UGCT, especially in the grss_d f c_2018 dataset, in which UGCT attains
an RMSE of 0.0866, outperforming other comparative methods.

Keywords: spectral reconstruction; convolutional transformer; hyperspectral unmixing; multi-head
self-attention; hyperspectral image

1. Introduction

Hyperspectral image (HSI) refers to a three-dimensional data cube generated through
the collection and assembly of numerous contiguous electromagnetic spectrums, which are
acquired via airborne or spaceborne hyperspectral sensors. Unlike regular RGB or grayscale
images, HSI provides more information in the band dimension, which allows subsequent
tasks to distinguish materials and molecular components that are difficult to distinguish
from normal RGB through their stored explicit or implicit distinctions. As a result, HSI
has distinct advantages in a variety of tasks, including object detection [1,2], water quality
monitoring [3–5], intelligent agriculture [6–8], geological prospecting [9,10], etc.

However, hyperspectral imaging often requires long exposure times and various
costs, making it unaffordable to collect sufficient data using sensors for many tasks with
restricted budgets. Instead, acquiring a series of RGB or multispectral images is often
a fast and cost-effective alternative. Therefore, using SR methods to inexpensively re-
construct the corresponding HSI from RGB or multispectral images (MSI) is a valuable
solution. Currently, there are two main reconstruction approaches: the first involves fus-
ing paired low-resolution hyperspectral (lrHS) and high-resolution multispectral (hrMS)
images to produce a high-resolution hyperspectral (HrHs) image [11–13] with both high
spatial and spectral resolutions, and the second approach generates the corresponding
HSI by learning the inverse mapping from a single RGB image [14–19]. Commonly, image
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fusion-based methods [11–13] require paired images of the same scene, which can still
be overly restrictive. Although reconstruction only from RGB images [14–16,20,21] is an
ill-posed task due to the assumptions of inverse mapping, theoretical evidence demon-
strates that feasible solutions exist under low-dimensional manifolds [22], and it provides
sufficient cost-effectiveness.

Utilizing deep learning to model the inverse mapping in single-image reconstruction
problems has been widely studied. Initially, numerous methods leveraged the excellent
geometric feature extraction capabilities of CNNs [15–19] to achieve success in SR tasks.
However, with the outstanding performance of transformers in various computer vision
tasks, many transformer-based approaches [14,23,24] have recently emerged. These ap-
proaches take advantage of the transformer’s global receptive field and sophisticated
feature parsing abilities to achieve more refined HSI reconstruction. Nonetheless, current
methods are predominantly limited to single-mechanism-driven frameworks, which often
implies that the transformer architecture sacrifices the exceptional geometric invariance
prior offered by CNNs. In fact, to ingeniously combine the advantages of both, numerous
computer vision tasks have attempted to employ convolutional transformers to enhance the
capability of feature extraction in their models, yielding highly impressive results [25–28].
Hence, employing a convolutional transformer to integrate the outstanding characteristics
of both approaches is a clearly beneficial solution in SR.

Additionally, to achieve a higher signal-to-noise ratio in hyperspectral imaging, a trade-
off between spectral resolution and spatial resolution is inevitable [29]. Most airborne
hyperspectral sensors typically have a spatial resolution lower than 1 m/pixel [30,31], while
satellite-based sensors, such as the Hyperion dataset of Ahmedabad, only have a 30 m/pixel
resolution [32]. This significantly limits the effectiveness of HSI in capturing geographic
spatial features. As a result, numerous approaches concentrate on employing mature
CNNs or advanced transformer architectures to enhance feature extraction capabilities
while overlooking the interpretability of the modeling itself and the pixel-mixing issues
that arise during the imaging process.

In recent studies, the HU has been mostly composed of the linear mixing model
(LMM) [33], the bilinear mixing model (BMM) [34], and the nonlinear mixing model
(NMM) [35]. Among them, LMM has long been a focal point, achieving notable results
in balancing time and computational costs, as demonstrated in Figure 1. In real-world
environments, it is relatively uncommon for electromagnetic waves to be captured by
sensors after only one reflection or refraction, which means NMM often aligns more closely
with practical modeling. However, nonlinear unmixing inherently takes into account too
numerous complex factors, such as the actual scene distribution, and still faces significant
limitations in practical applications. As a result, utilizing the more mature LMM model
to obtain the linear abundance distribution and subsequently extract HSI information
at the sub-pixel level is a judicious and convenient choice. As one of the most crucial
HSI processing tasks, employing a highly interpretable HU architecture enables sub-pixel
interpretation of the collected HSIs. In edge regions where pixel mixing is severe and under-
standing the imagery is critical, the HU mechanism extracts more refined features through
unmixing. Consequently, leveraging the HU framework to enhance image understanding
and interpretability for the SR network [31,36] would result in notable improvements.

In this paper, we propose a novel hyperspectral reconstruction network that combines
the LMM and convolutional transformer blocks. By leveraging the HU mechanism, this
network aims to enhance the mathematical interpretability of SR modeling and improve
the accuracy of HSI reconstruction at a sub-pixel, fine-grained level. By employing end-
members from a filtered spectral library, the input RGB images are mapped to an HSI with
high resolution. Our model capitalizes on the geometric invariance between the original
prior of the transformer and the convolutional mechanisms. Our model combines the
global receptive field of transformers with the geometric invariance of CNN mechanisms,
simultaneously extracting both local and non-local features from the image. Furthermore,
to mitigate spectral distortion arising from insufficient channel dimension modeling in
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CNNs [37], we embed channel position encoding by mapping transformer features into
CNNs. It bolsters the capability of the convolutional transformer, ultimately yielding a
precise reconstruction of HSIs. The primary contributions of our work can be summarized
as follows:

Figure 1. Linear Mixing Model.

1. We introduce an SR network, the UGCT, which tackles HSI recovery from RGB tasks
using the LMM as a foundation while employing convolutional transformer to drive
fine spectral reconstruction. By employing an unmixing technique and convolutional
transformer block, the reconstruction performance of mixed pixels has been notably en-
hanced. The experiments on two datasets demonstrate that our method’s performance
is state of the art in the SR task.

2. The Spectral–Spatial Aggregation Module (S2AM) adeptly fuses transformer-based
and convolution-based features, thereby enhancing the feature merging capability
within the convolutional transformer block. We embed the channel position encoding
of the transformer into ResBlock to address positional inaccuracies during the genera-
tion of abundance matrices. Notably, such errors can lead to spectral response curve
distortions in the reconstructed HSIs.

3. The Paralleled-Residual Multi-Head Self-Attention (PMSA) module generates a more
comprehensive spectral feature by synergistically leveraging the transformer’s excep-
tional complex feature extraction capabilities and the CNN’s geometric invariance.
To the best of our knowledge, we are among the first to incorporate a parallel convolu-
tional transformer block within the single-image SR.

2. Related Work

2.1. Spectral Reconstruction (SR) with Deep Learning

Deep learning technology in SR task encompasses two distinct aspects. The first
involves a fusion method based on paired images, while the second entails a direct re-
construction approach that leverages a single image such as those from CASSI or RGB
systems. In the first category, a simultaneous capture of lrHS and hrMs images is employed,
both possessing the same spectral and spatial resolution as HSIs separately. For example,
Yao et al. [11] views hrMS as a degenerate representation of HSI in the spectral dimension
and lrHS as a degenerate representation of HSI in the spatial dimension. It is suggested
to use cross-attention in coupled unmixing nets based on the complementarities of the
two features. Hu et al. [13], on the other hand, employed the Fusformer to obtain the
implicit connection between global features and to solve the local neighborhood issue of the
finite receptive field of the convolution kernel in the fusion problem using the transformer
mechanism. The training process’s data load is decreased by learning the spectral and
spatial properties, respectively. However, the majority of the models’ prior knowledge was
created manually, which frequently results in a performance decrease when the domain is
changed. Using the HSI denoising iterative spectral reconstruction approach based on deep
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learning, the MoG-DCN described by Dong et al. [38] has produced outstanding results in
numerous datasets.

For the second category, where only single images are input, the model will learn the
inverse function of the camera response function of a sensor using a single RGB image
as an example. It will separate the RGB image’s hidden hyperspectral feature data from
it and then combine it with the intact spatial data to reconstruct a fine HSI. Shi et al. [15],
for instance, replaced leftover blocks with dense blocks to significantly deepen the network
structure and achieved exceptional results in NTIRE 2018 [20]. The pixel-shuffling layer
was employed by Zhao et al. [19] to achieve inter-layer interaction, and the self-attention
mechanism was used to widen the perceptual field. Cai et al. [14] presented a cascade-
based visual transformer model, MST++, to address the numerous issues with convolution
networks in SR challenges. Its designed S-MSA and other modules further improved the
ability of model to extract spatial and spectral features and achieved outstanding results in
a large number of experiments.

The aforementioned analysis reveals that most previous models predominantly fo-
cused on enhancing feature extraction capabilities while neglecting the interpretability of
physical modeling. This oversight often resulted in diminished performance in practical
applications. In response, an SR model with robust interpretability was developed, cap-
italizing on the autoencoder’s prowess in feature extraction and the simplicity of LMM.
By harnessing the ability of LMM to extract sub-pixel-level features, ample spatial infor-
mation is concurrently gathered from RGB images. Subsequently, high-quality HSIs are
restored during the reconstruction process.

2.2. Deep Learning-Based Hyperspectral Unmixing

Several deep learning models based on mathematical or physical modeling have
been suggested recently and used in real-world tests with positive outcomes due to the
growing demand for the interpretability of deep learning models. Among these, HU
has made significant progress in tasks such as change detection (CD), SR, and other HSI
processing tasks. Guo et al. [39] utilized HU to extract sub-pixel-level characteristics from
HSIs to integrate the HU framework into a conventional CD task. In order to obtain the
reconstructed HSI, Zou et al. [40] used the designed constraints and numerous residual
blocks to obtain the endmember matrix and abundance matrix, respectively. Su et al. [41]
used the paired lrHs and hrMs to learn the abundance matrix and endmember from the
planned autoencoder network and then rearranged them into HSI using the fundamental
LMM presumptions.

Moreover, deep learning-based techniques are frequently used to directly extract the
abundance matrix or end endmembers from the HU mechanism. According to Hong et al. [42],
EGU-Net can extract a pure-pixel directed abundance matrix extraction model and estimate
the abundance of synchronous hyperspectral pictures by using the parameter-sharing mech-
anism and the two-stream autocoder framework. By utilizing the asymmetric autoencoder
network and LSTM to capture spectral information, Zhao et al. [43] were able to address
the issue of inadequate spectral and spatial information in the mixed model.

Based on the aforementioned research, utilizing the HU mechanism to drive the SR task
evidently improves interpretability. In light of this, our method introduces a parallel feature
fusion module that combines the rich geometric invariance present in the residual blocks
with the global receptive field of the transformer. This approach ensures the generation of
well-defined features and aligns the channel-wise information with the endmembers of the
spectral library.

2.3. Convolutional Transformer Module

The transformer-based approach has achieved great success in the field of computer
vision, but using it exclusively will frequently negate the benefits of the original CNN
structure and add a significant amount of computing burden. Due to this, numerous
studies have started fusing the two. Among these, Wu et al. [25] inserted CNN into the
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conventional vision transformer block, replacing linear projection and other components,
and improved the accuracy of various computer vision tasks. Guo et al. [26] linked the two
in succession, created the CMT model with both benefits, and created the lightweight visual
model. He et al. [27] created the parallel CNN and transformer feature fusion through the
developed RAM module and the dual-stream feature extraction component.

The integration of CNN and transformer is inevitable because they are the two most
important technologies in the field of image processing. Many performance comparisons
between the two have produced their own upsides and downsides [44,45]. Important
information will inevitably be lost when using a single module alone. It is crucial to
understand how to incorporate the elements that can be derived from both. In order to
perform feature fusion for the parallel structure of PMSA, the channel size of the CNN
that lacks modeling [37] can be well constrained utilizing the channel information in
the transformer.

3. The Proposed Method

In this section, we present an overview of the LMM in the SR network, including the
development of an extensive endmember library. We then introduce the UGCT frame-
work, as illustrated in Figure 2, and describe the HSI reconstruction process, comprising
the abundance generator framework and LMM architecture. Furthermore, we provide a
comprehensive account of the convolutional transformer architecture, driven by the fine
abundance generator, as depicted in Figure 3. Subsequently, the PMSA and S2AM are dis-
cussed, which are two crucial components of feature extraction. The process of seamlessly
integrating transformer and ResBlock features within S2AM will be thoroughly illustrated
in Figure 4. Lastly, we explore the loss function and delve into the implementation and
configuration of various details.

Figure 2. The Struction of Unmixing-Guided Convolutional Transformer Network (UGCT).
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Figure 3. The Struction of Unmixing-Guided Convolutional Transformer Abundance Genera-
tor (UGCA).

Figure 4. The Paralleled-Residual Multi-Head Self-Attention (PMSA) block and Spectral-Spatial
Aggregation Module (S2AM).

3.1. Hu-Based Modeling

During the imaging process of airborne and spaceborne hyperspectral image sensors,
a considerable amount of spatial information becomes intermingled within mixed pixels
due to factors such as atmospheric absorption, sensor performance complexity, and the
actual distribution of ground objects. This substantially reduces the spatial resolution of
HSIs. At present, HU is among the most effective algorithms for addressing pixel mixing,
with the LMM being one of the most well-developed fundamental modeling algorithms [46].
The HSI, Y ∈ RH×W×C, composed of mixed pixels can be divided into finite pure pixels
r ∈ RN×C and corresponding abundance matrices A ∈ RH×W×N in the classic LMM model.

Y = Ar + b (1)
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in which b ∈ RH×W×C means the noise matrices, H and W represent the spatial scale and
N is the number of the endmembers.

With the help of Equation (1), we can create HSIs with high spatial resolution at
sub-pixel scales by obtaining a complete endmember library L of HSIs and their corre-
sponding fine abundance matrices. Because of the low spatial resolution of hyperspectral
imaging, multiple ground objects are quite common in the same pixel. Within a mixed
pixel, the abundance matrix describes the pure pixel content ratio. According to the basic
assumption in the LMM [47], only one reflection and refraction of light occurs between
emitting and being captured by the sensor.

yn =
N

∑
i=1

αiri + β (2)

where αi ∈ A and ri ∈ r and yn represent the n-th pixel in the mixing HSI. It should be
noted that ri is the i-th endmember vector from a well-known complete spectral library,
which represents continuous spectral data obtained by sensors under pure light from
certain pure ground objects such as bushes and gravels. Furthermore, αi is the spectral
abundance of the i-th endmember corresponding to the nth mixed pixel. The β denotes
noise disturbances, which include complex atmospheric noise as well as environmental
disturbances. It is simply modeled as a bias matrix due to difficulties in accurate modeling
or being eliminated in the preprocessing section.

The abundance matrix has practical physical significance, and during calculation,
LMM specifies two constraints for it: a sum-to-one constraint and a non-negative abundance
constraint [31]. Because the information content of the mixed pixel cannot exceed that of
the pure pixel itself in the actual imaging process and because the proportion of a pure
pixel included in the pixel cannot be negative, the following constraints will be used:

αi ≥ 0; α�1 = 1 (3)

The entire spectrum library L is already available which was obtained in the labora-
tory and during onboard practical testing [48]. As a result, obtaining a fine abundance
matrix from a single RGB image input is central to improving the performance of spectral
reconstruction tasks based on the HU mechanism. This does not imply that we will only
use the weak spectral information in RGB to reconstruct a complete HSI. On the contrary,
the highly effective, complete, and pure pixels collected will be used as a key reference
index to guide model training. In fact, for a high level of a priori comprehensiveness, a deep
layer-by-layer autoencoder network utilizing a convolutional transformer will be used.

3.2. The Struction of UGCT

In our network, we employ the Unmixing-Guided Convolutional Transformer Abun-
dance Generator (UGCA) in Figure 3, denoted as F , which is specifically designed for the
generation of fine abundance matrices. By providing an accurate remote sensing RGB and
a complete spectral set [48] of endmembers from the relevant band, the created network
will recover all of its abundance values pixel by pixel using learnable parameters θl and
then combine them into a complete spectral abundance matrix.

A = Sof t(A) = F (X|θl) (4)

in which X represents the upsampled RGB input and Sof t(·) stands for the softmax
operator in order to fit the sum-to-one constraint in Formula (3).

X = Upsampling(X) (5)

In an effort to emulate the complex mixing process of light propagation, an autoen-
coder approach is employed to obtain the full abundance. In this method, the input RGB
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X must first undergo a predefined spectral upsampling to map it to the initial spectral
features X. As illustrated in Figure 3, the abundance matrix A is processed through an
encoding–decoding procedure where upsampling and downsampling modules are mod-
eled as conv4 and deconv layers, respectively, to facilitate the spatial feature transformation
while accommodating the corresponding channel dimension changes.

It is worth noting that this may lead to redundant features and parameters if upsam-
pling and downsampling operations are not incorporated in an autoencoder framework [14],
which inevitably leads to redundant features and parameters. To alleviate the pressure from
excessive parameters and invalid repetitive features on the training process, they are widely
employed in such frameworks. Specifically, as the encoder progresses deeper, the channel
dimension will gradually undergo upsampling, while the spatial dimension will experience
downsampling. Subsequently, in the decoder section, the spatial dimension is incrementally
upsampled in accordance with the input feature scale. Concurrently, the processing of
spatial dimensions facilitates the model in acquiring features at different scales. Overall,
the model is designed with a symmetric architecture and employs a Conv2D (mapping)
layer after the original skip connection to map the features to the desired abundance matrix.

A = Map(PMSA(n)(X) + X|θmap) (6)

The input hyperspectral features undergo processing through an n-layer PMSA
PMSA(n) module, which encodes them into abundance features using trainable parame-
ters. A skip connection is then employed to project these features into refined abundance
representations that fulfill the specified requirements. The n-layer PMSA module can be
dissected into three primary components: encoder, bottleneck, and decoder.

PMSAi
encoder = [ f i−1

T ⊗ f i−1
C ]↓ (7)

During the encoder phase, the original features are partitioned into two separate
streams, which are subsequently processed by transformer blocks and residual blocks
(ResBlock). Distinct from conventional transformer blocks, the PMSA module harnesses the
combined power of convolutional and transformer networks’ prior knowledge to execute
accurate abundance extraction driven by local and non-local information.

The i-th encoder module, denoted as PMSAi
encoder, employs a S2AM ⊗ to integrate

the two acquired features, thereby maximizing their exceptional extraction capabilities
in both spatial and channel dimensions. Following this, a downsampling operation ↓
is utilized to guarantee that no erroneous features impede the learning process while
expanding band dimensions. Within the S2AM module in the encoder, image features
undergo upsampling (doubling) in the channel dimension. To prevent the generation of
an excessive number of redundant features, spatial downsampling operations ↓ prove
to be highly advantageous. To avert irregularities during model training, a finer feature
representation is either recommended for subsequent computation or utilized in a skip
connection, ensuring a more stable and accurate learning process.

PMSAj
decoder = Concat(PMSAi

encoder, PMSAj−1
decoder)

↑ (8)

The encoder process maps hyperspectral features to abundance matrix features within
the bottleneck section while maintaining consistent feature spatial and spectral scales. In the
subsequent decoder step, spectral features and abundance features from the prior decoder
section are amalgamated in the channel dimension using the concatenation operation.

Contrasting the previously described encoder module, the decoder section PMSAdecoder
upsamples features in the spatial dimension to augment the spatial information of the abun-
dance matrix features while simultaneously compressing channel characteristics. Spatial
upsampling ↑ and channel downsampling operations are implemented within the same
deconvolution layer in order to maintain the symmetry of the autoencoder structure. This
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method ensures an effective balance between spatial and spectral information in the final
abundance matrix feature.

Finally, we will discuss in detail the issue of setting the number of blocks in the
Discussion section.

3.3. Paralleled-Residual Multi-Head Self-Attention

A Paralleled-Residual Multi-Head Self-Attention (PMSA) block is composed of four
key components: two parallel convolutional transformer blocks, an S2AM, and a sampling
module (either upsampling or downsampling, excluding the bottleneck layer). In this
architecture, the input features are explicitly divided into two separate parts, which are
then fed independently into the CNN and transformer blocks.

X̂ i
= MSA(X i−1) + X i−1

X i
t = FFN(X̂ i

) + X̂ i
(9)

in which MSA means the multi-head self-attention module, and FFN consists of three
Conv2D and two GELU operations.

In the ResBlock, as illustrated in Figure 4, the input must first undergo two consecutive
2D convolution and batch normalization layers (Conv2D+BN). The inclusion of a residual
connection assists the model in training and converging more effectively. In the encoder and
decoder part, the final ShortCut operation becomes a 2D convolution with a convolution
kernel of one, while in the bottleneck section, this part is set as an empty layer.

The PMSA block leverages the strengths of both the CNN and transformer architec-
tures to process multi-scale features effectively. The block can capture both local and global
contextual information simultaneously. The parallel transformer and CNN outputs are
combined in the feature fusion S2AM module to further improve the model’s capacity
for pattern recognition. Finally, the sampling module adjusts the spatial resolution of the
features as required, depending on the specific layer in the network.

X i = [X i
t ⊗ X i

c]
↓ (10)

The main distinction between features X i
t and X i

c lies in their methods for handling
scale within their respective blocks. Feature X i

t implements channel upsampling within the
resblock, which results in an increase in the number of channels while preserving spatial
dimensions. On the other hand, Feature X i

c maintains the same scale within the transformer
block, retaining both the spatial dimensions and the number of channels. The S2AM is
then employed to fuse the features from both X i

t and X i
c, even though they have different

scales. This fusion process enables the model to combine the information from various
scales effectively, capturing diverse contextual information and improving the overall
performance of the network.

Specifically, as depicted in Figure 2, within the encoder section, we first take input
X i−1 ∈ Rh,w,c and feed it into the parallel convolutional transformer section. Following this,
it passes through a channel upsampling module with a convolution with one kernal size
in ShortCut(), and X i

c ∈ Rh,w,2c is output after ResBlock. Subsequently, within the built-in
upsampling module of S2AM, features X i

c and X i
t ∈ Rh,w,c are fused to produce output

X̄ i ∈ Rh,w,2c. To reduce feature redundancy and prevent additional complexity, spatial
downsampling is applied to X̄ i, ultimately yielding X i ∈ R

h
2 , w

2 ,2c. In a similar manner,
the decoder section will exhibit symmetry with the encoder.

3.4. Spectral–Spatial Aggregation Module

Transformer and CNN models use distinctly different priors and feature extraction
techniques. We suggest the S2AM in Figure 4, which addresses ResBlock’s inaccurate
assumption of channel dimensions brought on by convolutional kernel constraints [37]
in order to significantly increase the benefits of both models. This module utilizes the
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transformer block to encode the weights of features along the channel dimension. These
encoded weights are then embedded into the ResBlock to assist in aligning features along
the channel dimension. This integration results in the reconstruction of a more detailed HSI.

Enhancing each feature separately and achieving feature scale alignment along the
channel dimension are prerequisites for efficiently processing features X i

t and X i
c in si-

multaneous transmission. Both features must go through a careful preprocessing stage to
achieve this.

X̂ i
t = τ(X i

t)

X̂ i
c = δ(X i

c)
(11)

in which δ represents a 3 × 3 dilation convolution, and τ represents a group convolution.
Utilizing the δ’s expansion factor gives features a larger spatial receptive field, which
aids in capturing more contextual information from the input. Group convolution, on the
other hand, helps reduce the redundant parameters introduced by the transformer during
channel dimension alignment. These enhanced features can then be effectively fused and
processed in subsequent layers of the network. Next, the feature X̂ i

t will be encoded as a
one-dimensional position code along the channel dimension.

T i = X̂ i
c � sig

(
£
(

Avgpool
(

X̂ i
t

)))
(12)

where £ stands for the fully connected layer and sig(·) is the sigmoid operator to map the
feature with 0–1.

It becomes difficult to model the distribution of many ground objects and their re-
lationships when pixels are mixed. This complexity significantly affects the generation
of abundance matrices, which are crucial for understanding the composition of mixed
pixels in remote sensing and hyperspectral imaging applications. In the position encoder
component of the S2AM, three cascaded, fully connected layers £ are employed to simulate
the complex relationships between ground objects.

X i+1 = T i + X̂ i
t (13)

In conclusion, the aligned transformer features and the position-encoded embed-
ded ResBlock information are carefully combined through element-wise addition. This
process achieves information aggregation for the transformer, enabling the model to ef-
fectively fuse the strengths of them. By integrating the position-encoded information and
leveraging the S2AM module, the model is better equipped to handle the challenges of
spectral reconstruction.

3.5. Loss Function and Details

Our model is specifically designed to address the single-image SR task. It begins
by taking a three-channel image as input, and through model mapping, it produces a
reconstructed HSI Y . To ensure that it closely resembles the ground-truth HSI Ŷ , it is
essential to constrain the model to learn the inverse function of the camera response
function. Designing a superior loss function is a key component of achieving this objective.
We primarily use the mean relative absolute error (MRAE) loss as the loss function for this
purpose. By using MRAE loss, the model is encouraged to learn a more accurate mapping
between the input three-channel image and the corresponding HSI, resulting in improved
reconstruction quality.

Loss(Y , Ŷ) =
1
N

N

∑
i=1

|Y i − Ŷ i|
Ŷ i

(14)

It is important to note that due to the presence of a significant number of zero values
(minimum values) in some datasets (AVIRIS [49]), the MRAE loss calculation may fail.
For all comparative experiments involving such datasets, we use the L1 loss as a substitute
for the previously mentioned loss function.
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In order to generate a more sufficient abundance matrix and subsequently reconstruct
the HSI, we have adopted a dual-stream PMSA architecture to process features. This design
choice enables the model to leverage the strengths of both convolutional and transformer-
based methods, resulting in improved feature representation and fusion. During the design
process, the number of blocks in the backbone network is set to 7, including two symmetric
encoder and decoder blocks in Figure 3, with one serving as the bottleneck layer. This
configuration allows for a more efficient flow of information through the network while
maintaining an appropriate balance between the model’s complexity and performance.

Additionally, the spectral dimension is designed with a reference point of 32 in X to
ensure the stability of parameter quantities and model performance. This choice helps to
keep the number of model parameters at a manageable level while still achieving high-
quality SR.

4. Experiments and Results

4.1. Spectral Library

The success of incorporating LMM into the SR task depends on the a priori integra-
tion of the accurate spectral library. The quality and completeness of this endmember
library directly influence the model’s effectiveness in practical applications. To ensure a
comprehensive and accurate data source, we have chosen the United States Geological
Survey (USGS) [50] Spectral Library Version 7. This library offers an extensive collection of
well-characterized reference spectra, enhancing the reliability of our model. To maximize
compatibility with various hyperspectral datasets, we selected the 2014 version of the Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) [49] sensor measurements, owing
to its wide spectral range (0.4–2.5 μm) and a fine spectral resolution of 10 nm. This choice
ensures that our model can accommodate the widest possible range of hyperspectral cubes.

However, the USGS v7 includes a large number of spectra that cannot be detected by
airborne or satellite-based sensors, such as those of laboratory-made substances. Including
these redundant spectra not only increases the number of parameters but also potentially
impacts the recontruction HSIs performance. Therefore, it is crucial to carefully curate the
spectral library by eliminating irrelevant spectra and retaining only those pertinent to the
specific remote sensing application.

To improve the spectral library’s precision, we first undertook a rigorous data-cleaning
process. This involved the removal of officially calibrated invalid spectral locations, result-
ing in the elimination of 914 targets containing invalid channels. After that, we concentrated
on identifying ground objects that are typically difficult to detect in remote sensing images,
such as minerals and lab-created organic compounds, in their pure pixels. Through this
process, we identified 1019 pure pixels that met our criteria for further analysis. In order to
optimize our results, we conducted additional screening to isolate pure pixels that were
not needed, as in Refs. [31,36]. This comprehensive screening process ultimately yielded
345 calibrated endmembers, which are expected to significantly improve the quality and
precision of our spectral analysis.

4.2. Datasets and Training Setup

We experiment with the UGCT on the grss_d f c_2018 [31] and AVIRIS [51] datasets.
The IEEE grss_d f c_2018 dataset is a remote sensing dataset for change detection analysis.
It was collected on 16 February 2017 by the National Center for Airborne Laser Mapping
(NCALM) from Houston University. The dataset includes hyperspectral data acquired by
an ITRES CASI 1500 sensor with a spectral range of 380–1050 nm and 48 bands. It covers
two urban areas, Las Vegas and Paris, with a total of 180 image pairs. The original dataset
consisted of 27, 512 × 512 pixel hyperspectral image patches. We randomly selected 24
of these patches for training and 3 for testing. Since the original dataset did not provide
corresponding RGB channels, we chose to superimpose the features of channels 23, 12,
and 5 to create RGB input.
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The AVIRIS [49] dataset is a collection of high-spectral-resolution images captured
by the AVIRIS sensor, which has 224 contiguous spectral bands between 0.4 and 2.5 μm
and a spatial resolution of 10–20 m. Its large imaging coverage is a major advantage.
After preprocessing, we extracted 48 spectral features in the 380–1050 range to form the
hyperspectral image (HSI) and selected three channels similar to those in the grss_d f c_2018
dataset as RGB inputs. In total, 3768 patches of size 64 × 64 were used as the training set,
and a large image of size 500 × 1000 was used as the validation set.

The proposed UGCT model was trained on an RTX2080Ti GPU for approximately 6 h.
The training data for the model input were divided into patches of size 64 × 64. The batch
size was set to 20, and the optimizer used was Adam [52] with βi = 0.9 and β2 = 0.999.
The learning rate was initialized at 0.0004, and a cosine annealing [53] learning rate strategy
was used for 100 epochs. Due to the limited size of the training set, random rotation and
flipping augmentation methods were used to enhance the data [54].

We selected several SR methods for comparison to demonstrate the superiority of our
method, including AWAN [16], HRNet [19], HSCNN+ [15], MST++ [14], and Restormer [55].
Additionally, Ours− was introduced, representing the UGCT model without LMM model-
ing. To ensure a fair comparison, each method was fully optimized and retrained in the
same scene.

MRAE =
1
N

N

∑
i=1

|Y i − Ŷ i|
Ŷ i

(15)

RMSE =

√√√√ 1
N

N

∑
i=1

(Y i − Ŷ i)2 (16)

To quantitatively compare the results, we used several parameters, including Root
Mean Square Error (RMSE) [14,15], Mean Relative Absolute Error (MRAE), Structural
SIMmilarity (SSIM) [17], Peak Signal-to-Noise Ratio (PSNR) and Spectral Angle Mapper
(SAM) [56]. The RMSE, MRAE, and SAM are metrics for evaluating the accuracy of the
reconstructed results, where lower values indicate better reconstruction. Meanwhile, higher
SSIM and PSNR values indicate better performance.

4.3. Comparision with Other Networks

Figure 5 showcases the performance results of different methods on the grss_d f c_2018
dataset. Five channels were selected as examples to demonstrate the MRAE loss error of
the comparison model on the validation set. It should be noted that if the reconstructed
result performs poorly in terms of MRAE, the pixel will appear brighter. Conversely, if the
reconstruction is similar to HSI, the image will appear darker as a whole.

Due to its large number of parameters, HRNet tends to overfit when faced with small
sample datasets, resulting in widespread errors in the spectral response curve of a patch
in Figure 6. Although HSCNN+, MST++, and Restormer generally maintain alignment in
spatial features when compared to HRNet, displaying only minor and consistent distortions
at the fine edges, they still exhibit more severe reconstruction errors in comparison to UGCT.

The Ours−, which removes the LMM, achieves results that are comparable to the afore-
mentioned models. However, by incorporating spectral library priors, our method clearly
provides more accurate reconstruction results. For the 830 nm feature, other approaches
exhibit distortions on the streets, whereas our method, due to the inclusion of priors,
demonstrates a significant advantage in maintaining the accuracy of the reconstructed HSI.
Based on the data presented in Table 1, our proposed method achieves competitive results
across multiple metrics. In terms of RMSE, our approach outperforms the second-best
result by 0.0048, while for MRAE, our method and the UGCT variant without LMM obtain
the best and second-best results, respectively. These outcomes collectively demonstrate the
effectiveness of our method in comparison to the competing algorithms.
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Figure 5. Visual error map of five selected bands on the grss_d f c_2018 validation dataset.

Table 1. The quantitative results of the grss_d f c_2018 validation dataset. The best and second-best
methods are bolded and underlined.

Method RMSE ↓ MRAE ↓ SSIM ↑ SAM ↓
HRNet [19] 0.2020 0.1630 0.882 8.53
AWAN [16] 0.1027 0.0757 0.970 4.64

HSCNN+ [15] 0.1001 0.0724 0.967 4.09
MST++ [14] 0.0914 0.0649 0.972 4.17

Restormer [55] 0.0973 0.0668 0.971 3.96
Ours− 0.0954 0.0614 0.977 3.89
Ours 0.0866 0.0587 0.979 3.91
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Figure 6. Spectral response curve of the patch (a–f) of the validation set for grss_d f c_2018.

Due to the validation images in the AVIRIS dataset being large, with dimensions
of 1010 × 662, we have reduced computational costs by dividing the images into three
overlapping 515 × 512 patches. To demonstrate our results in comparison with other
models, we have displayed the MRAE error maps for five selected channels in Figure 7 and
the spectral response curves for two selected regions in Figure 8. The closer the curve is to
the ground truth, the better the reconstruction performance, and vice versa.

As the results of Table 2 demonstrate, our method achieves the best performance in all
four metrics and exhibits the highest similarity to the ground truth curve in the spectral
response curves. Notably, HRNet and HSCNN+ appear unable to obtain adequate training
or extract sufficient features, leading to substantial distortion in the results, as depicted in
Figure 7, which implies that the AVIRIS dataset, characterized by its limited data volume
and elevated image noise, demands a more robust feature extraction capability from the
network. In contrast, the more lightweight MST++ achieves comparatively improved
results, demonstrating a markedly better fit of the spectral response curve in Figure 8 when
compared to the previously mentioned methods. While the UGCT exhibits a marginally
lower performance than Ours− in SAM metrics, it is evident that both methods substan-
tially outperform other comparison techniques, which indicates the superiority of the
convolutional transformer in feature extraction. It is worth noting that the removal of LMM
from UGCT results in a significant decline in the performance of the three indexes, which
can be attributed to the loss of prior knowledge from the spectral library. When faced
with the smaller, noisier AVIRIS dataset, this approach encounters considerable challenges.
However, it still manages to produce satisfactory reconstruction results, ranking near the
top overall.
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Figure 7. Visual error map of five selected bands on the AVIRIS validation dataset.
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Figure 8. Spectral response curve of the patch of the validation set for AVIRIS.

Table 2. The quantitative results of the AVIRIS validation dataset. The best and second-best methods
are bolded and underlined.

Method RMSE ↓ MRAE ↓ SSIM ↑ SAM ↓
HRNet [19] 0.1400 0.8158 0.105 59.63
AWAN [16] 0.0408 0.2141 0.779 12.30

HSCNN+ [15] 0.0775 0.4744 0.716 9.08
MST++ [14] 0.0446 0.2806 0.748 12.61

Restormer [55] 0.0324 0.1883 0.846 8.38
Ours− 0.0357 0.2424 0.875 7.71
Ours 0.0271 0.1451 0.886 6.80

The superior performance of our method on the two small-sample remote sensing
datasets demonstrates its enhanced reconstruction capabilities for scenes with low spatial
resolution, limited sample size, and high noise when compared to alternative approaches.
This improvement stems from the integration of the exceptional feature extraction ca-
pabilities in the convolutional transformer with the sub-pixel information interpretation
offered by the LMM. This combination enables a more effective extraction of mixed pixel
information and refined HSI reconstruction.

Specifically, we showcase the superiority of our method on the dataset through
Tables 1 and 2. Moreover, to observe the reconstruction ability of our method on remote
sensing datasets from the channel dimension, we randomly selected five channel visual-
ization error maps from two datasets, 380 mm, 530 mm, 680 mm, 830 mm and 980 mm
in the grss_d f c_2018 dataset and 395 mm, 470 mm, 785 mm, 905 mm and 1035 mm in
the AVIRIS dataset. It is evident that our method achieved better results/lower error
(indicated by darker colors) in both complex scene regions and simple, consistent regions.
This demonstrates that the local and non-local features extracted by the convolutional
transformer are effectively utilized in the task. Furthermore, spectral response curves serve
as a valuable method for visualizing reconstruction tasks. By observing the degree of curve
fitting in the selected area, we can clearly see that our method has achieved the best results
in multiple comparisons.

In summary, based on the comprehensive comparison results, we found that the
Unmixing Guided Convolutional Transformer (UGCT) driven by the LMM model outper-
forms the model without the unmixing module Our-, indicating that the unmixing-driven
model excels in spectral reconstruction tasks. Furthermore, employing the Spectral–Spatial
Aggregation Module to combine the benefits of CNN and transformer models surpasses
those models that use either convolution or transformer alone. Lastly, our initial attempt at
utilizing the self-encoder structured convolutional transformer for SR tasks demonstrated
a state-of-the-art performance.

5. Discussion

We further discuss and analyze the impact of the modules and hyperparameter settings
on the results through ablation experiments. The ablation study was divided into two parts.
The first part compared the performance of different parameter settings, including spectral
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dimension and block number. The second part focused on the internal modules of the
UGCT model, including the LMM module and the PMSA module, etc.

5.1. Network Details

In the first part, we compared the performance of different parameter settings to
determine the optimal configuration for spectral dimension and block number in the
grss_d f c_2018 dataset. We modified the spectral dimension while keeping other param-
eters constant, and we evaluated the results by measuring the corresponding indicators.
The results showed that when the initial spectral dimension of the X̂ channel was set to 32,
the model achieved higher performance, as shown in Table 3.

Table 3. Ablation study about the setting of spectral dim and block number.

Spectral Dim RMSE MRAE SSIM PNSR

8 0.0924 0.0624 0.976 25.39
16 0.0943 0.0667 0.973 25.34
32 0.0865 0.0587 0.979 25.69
48 0.0877 0.0602 0.978 25.60

Block Number Params RMSE MRAE SSIM

5 2.41M 0.0882 0.0618 0.977
7 9.56M 0.0865 0.0587 0.979
9 38.12M 0.0975 0.0678 0.969

In summary, for the hyperparameter design of the model, setting the spectral dimen-
sion to 32 and the block number to 7 is the optimal choice. All subsequent experiments will
be conducted under these settings.

On the other hand, we also examined the effect of block number on the performance
of the model while keeping the spectral dimension at 32. It should be noted that the block
number significantly affects the model’s parameter count due to channel expansion, so we
only conducted experiments on three block number values: 5, 7, and 9. According to the
table above, although the optimal value 7 has a larger parameter compared to 5, this is a
trade-off. As the block number further increases, the parameter count will sharply increase,
and the performance may decrease. Therefore, 7 is a relatively better choice.

5.2. Module Ablation Analysis

In this section, we will investigate three aspects of the model: the S2AM feature fusion
component, the dual-stream parallel convolutional transformer part, and the LMM module
in Table 4.

Table 4. The module ablation analysis in the grss_d f c_2018 validation dataset.

Description Ra Rb Rc Rd Re Ours

LMM � � � � � �
S2AM � � � � � �

Resblock � � � � � �
Transformer � � � � � �

MRAE ↓ 0.0638 0.0642 0.0712 0.0674 0.0614 0.0587

Firstly, in the comparison between Ra and Ours, we find that the removal of the
S2AM module results in a significant decrease in the reconstruction capability in terms
of MRAE. This is because although the PMSA block can effectively extract two excellent
features, the lack of a suitable combination method may cause the features to interfere with
or mask each other. The results of Ra are similar to those of Rb, which also demonstrates
the masking effect of the transformer on the ResBlock features.

357



Remote Sens. 2023, 15, 2619

Secondly, in Rb and Rc, we tested the reconstruction effects of retaining only one part
of the dual-stream model to demonstrate its working principle. Both experiments showed a
decline in performance, but it is evident that the transformer plays a leading role in feature
extraction, while ResBlock also has a crucial function when the S2AM module is present.

Lastly, in Re, we demonstrated the crucial role of the LMM mechanism, as the loss of
the excellent prior knowledge from the spectral library led to a significant decline in the
results. To illustrate the impact of the implicit relationship between the spectral position
encoding embedded in the S2AM module and the endmember positions in the spectral
library on reconstruction accuracy, we compared Experiment Rd with Experiment Re.
The results highlight the importance of the position encoder in S2AM.

6. Conclusions

In this study, we present a novel SR network, UGCT, which is based on the LMM.
Specifically, the backbone of the UGCT model consists of several dual-stream PMSA blocks,
divided into encoder, bottleneck, and decoder sections. The convolutional transformer
block PMSA is a combination of the transformer model and the CNN with various levels.
Additionally, considering that CNN does not explicitly model the band dimension, we
propose S2AM to fuse the dual-stream features and obtain globally refined image features.
To enhance the model’s interpretability and incorporate the clear prior knowledge from
the spectral library, we propose an HU-based model framework. Finally, comparative
experiments conducted on two small and noisy datasets demonstrate the superiority of
UGCT in reconstruction accuracy and spectral response curve fitting.
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Abstract: The technology of remote sensing-assisted tree species classification is increasingly devel-
oping, but the rapid refinement of tree species classification on a large scale is still challenging. As
one of the treasures of ecological resources in China, Arxan has 80% forest cover, and tree species
classification surveys guarantee ecological environment management and sustainable development.
In this study, we identified tree species in three samples within the Arxan Duraer Forestry Zone based
on the spectral, textural, and topographic features of unmanned aerial vehicle (UAV) multispectral
remote sensing imagery and light detection and ranging (LiDAR) point cloud data as classification
variables to distinguish among birch, larch, and nonforest areas. The best extracted classification
variables were combined to compare the accuracy of the random forest (RF), support vector machine
(SVM), and classification and regression tree (CART) methodologies for classifying species into three
sample strips in the Arxan Duraer Forestry Zone. Furthermore, the effect on the overall classification
results of adding a canopy height model (CHM) was investigated based on spectral and texture
feature classification combined with field measurement data to improve the accuracy. The results
showed that the overall accuracy of the RF was 79%, and the kappa coefficient was 0.63. After adding
the CHM extracted from the point cloud data, the overall accuracy was improved by 7%, and the
kappa coefficient increased to 0.75. The overall accuracy of the CART model was 78%, and the kappa
coefficient was 0.63; the overall accuracy of the SVM was 81%, and the kappa coefficient was 0.67;
and the overall accuracy of the RF was 86%, and the kappa coefficient was 0.75. To verify whether
the above results can be applied to a large area, Google Earth Engine was used to write code to
extract the features required for classification from Sentinel-2 multispectral and radar topographic
data (create equivalent conditions), and six tree species and one nonforest in the study area were
classified using RF, with an overall accuracy of 0.98, and a kappa coefficient of 0.97. In this paper,
we mainly integrate active and passive remote sensing data for forest surveying and add vertical
data to a two-dimensional image to form a three-dimensional scene. The main goal of the research
is not only to find schemes to improve the accuracy of tree species classification, but also to apply
the results to large-scale areas. This is necessary to improve the time-consuming and labor-intensive
traditional forest survey methods and to ensure the accuracy and reliability of survey data.

Keywords: active–passive remote sensing; canopy height model (CHM); classification; random forest (RF)
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1. Introduction

Forest resources are a major component of terrestrial ecosystems and play an in-
creasingly important role in regulating the global carbon balance and mitigating climate
change [1–3]. The quantity and quality of forest areas are, therefore, of great importance, as
is monitoring forests to ensure the stability of forest ecosystems [4]. However, traditional
manual monitoring methods are not only time-consuming and labor-intensive but also
subject to human error [5]. Remote sensing monitoring provides a rich source of data, and
the applied remote sensing methods are constantly being updated [6]; thus, such methods
have played an increasingly important operational role in the implementation of national
forest inventories (NFIs).

Research using remotely sensed data to classify and map tree species dates back several
decades. Several studies of tree species classification based on data sources to improve
accuracy have shown that classifiers that combine image pixels with spectra outperform
pure spectral classifiers [7–9]. Although optical remote sensing is sufficiently mature, in
many cases, it is difficult to identify small differences (e.g., similar species) in land cover
classification due to the similar spectral characteristics [10]. However, the accuracy of
stand identification based only on single features is very limited [11]. Combining textural
features and vertical structure information can improve the accuracy of the classification
results obtained with optical remote sensing techniques [12]. In some research based on the
optimization of classification methods, classification methods based on remotely sensed
data have advantages and disadvantages; usually, different classification methods are better
for different regional features [13]. The CART methodology assesses the nonparametric
discriminative statistical relationships among multiple data layers and generates a binary
tree [14,15]. However, the limitations of the decision tree approach are its potential for
overfitting and underfitting [16]. SVMs are machine learning methods with powerful
generalization capabilities [17,18]; they have been shown to be powerful for local feature
recognition in images [19,20]. The RF methodology is another approach for identifying local
features in images. It is an integrated learning technique that builds multiple classification
trees based on random bootstrap samples of training data [21,22]. In RFs, redundant
variables can be removed automatically using the best classification tree [23]. In recent years,
RF has been widely used in land cover and forest classification. Ke et al. integrated spectral
and LiDAR data and used machine learning decision trees to construct classification rule
sets. The results of a quantitative segmentation quality assessment and the classification
accuracy showed improved forest classification accuracy in image segmentation and object-
based classification [24].

Drones can carry a variety of sensors that can acquire a variety of different data types
and resolutions. Because UAV remote sensing data acquisition requires considerable money
and has various limitations, such as flight altitude, the application of satellite active–passive
remote sensing data is needed to classify the entire Duraer Forestry Zone, which contains
a large range of tree species. Satellite-based studies are becoming more common due to
the increasing availability of satellite data, image resolution and time series datasets, and
time and computational costs [25]. Researchers reported an overall accuracy of 83.2% for
a model constructed using only Sentinel-2 data and an improvement in overall accuracy
(OA) for combined Sentinel-1 broadleaf and conifer groups, with significant improvements
in producer accuracy (PA) and user accuracy (UA) for all species and relatively good
separation of the two species, which could not be separately classified using Sentinel-1
data alone [26]. This difference was because of the time-consuming satellite data search
and download activities of traditional methods and the huge storage space required for
aerial remote sensing data. In addition, the increased number of classified areas and
tree species affects the difficulty and workload of the classification process, requiring
strong computational processing power to manage all the data and run different algorithms.
Therefore, cloud-based platforms, also known as virtualized supercomputer infrastructures,
provide a more user-friendly approach [27]. In this respect, Google Earth Engine (GEE)
has been successful because it is a cloud-based platform used for geospatial analysis that
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allows users to efficiently solve the main problems related to managing large quantities of
data and their storage, integration, processing, and analysis [28].

The forest resources in the Arxan region cover 80% of the area, affecting the local
ecosystem and representing a national reserve forest resource and a treasure trove of
ecological resources [3]. The topography of the Duraer Forestry Zone is complex and
mountainous, and its slope orientation has a direct impact on the growth of forest stands.
Therefore, integrating multiple data sources [29] and optimal classification features [30] and
selecting the best classification method are key to the classification of tree species. The aim
of this study is to provide a logical basis for forest management measures to better support
the monitoring and conservation of forests and their sustainable development [31,32].

2. Materials and Methods

2.1. Study Area

The study area of this paper is in Duraer National Forest in Arxan, northwest of
Xing’an League, Inner Mongolia Autonomous Region (119◦28′–120◦01′E, 47◦15′–47◦35′N),
at the southwest foothills of the Greater Khingan Mountains, bordering Mongolia in the
west and Xin Barag Right Banner in Hulun Buir, Inner Mongolia in the north (Figure 1).
The total area of forestry operation is 49,812 hectares, with 33,466 hectares of forestry land,
including 14,603 hectares of forested land; a total timber accumulation of 900,000 cubic me-
ters; and a forest coverage rate of 40%. The area has a cold-temperate continental monsoon
climate, with long and severe winters, hot summers with short periods of precipitation,
and large daily and annual temperature differences. First, the Duraer Forestry Zone is a
comprehensive management forestry plantation with natural forests (the main species is
birch), planted forests (the main species is larch), farms, breeding, gathering, and wood
processing. We classified three sample strips of birch and larch in the Duraer Forest with the
same size from aerial photographs: sample a, 950 m × 2150 m; sample b, 910 m × 1970 m;
and sample c, 450 m × 4250 m (Figure 1). The number of small classes covered by the
three sample strips reached 62, with the number of forest classes being 13 and 2 major tree
species being present (birch and larch). Satellite data were then used to create equivalent
conditions to classify six species of trees throughout the forest site: willow, poplar, spruce,
camphor pine, birch, larch, and nonforest.

2.2. Data
2.2.1. Field Survey Data

Data collected in the field included UAV multispectral data, airborne LiDAR data, UAV
orthophotos, and forest sample survey data. Due to the border location of the study area,
UAV flight work required multiple applications for permission. All aerial photography was
completed between 10 July 2021 and 19 July 2021. Field tree survey work was performed
from 10 July 2021 to 19 July 2021 and 16 to 25 July 2022. The forest survey mainly included
sample coordinates, tree coordinates, community structure, woodland status, origin, slope
orientation, and tree species height.

The orthophotos played an auxiliary role in building the prediction model. The main
operation of the orthophoto shooting used Pegasus V10 large-load vertical takeoff and
a landing unmanned aerial system (UAS) (Figure 2), and for the complex terrain of the
survey area, a variable accuracy model of 8 cm for low flat areas and 13 cm for high steep
standing areas was adopted for the route; the regional flight height was approximately 500
to 800 m from the ground. To ensure the accuracy of the model edge, the route exceeded
the national border line by 100 to 1000 m.
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Figure 1. Location of the Duraer Forestry Zone and spatial distribution of the aerial photography
areas; (a), (b) and (c) in the figure represent different experimental sample areas acquired by aerial
photography, respectively.

Figure 2. Pegasus V10 large-load vertical takeoff and landing UAV.
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2.2.2. Drone Multispectral Data

UAV multispectral image data acquisition was performed using the Pegasus V300
product equipped with a camera model Mica Sense Red Edge-MX aerial survey (Figure 3).
This product was equipped with an all-in-one multispectral imaging system, using five
multispectral cameras (blue, green, red, red edge, and NIR) to form a multispectral im-
age. There were no clouds during the aerial photography, the resolution was adjusted to
10–20 cm for the complex terrain in the survey area, the starting flight altitude was 220 m,
and there was no altitude change throughout the survey; the airspeed was 16 m/s, the
heading overlap was 80%, and the side overlap was 60%; the camera characteristics are
shown in Table 1; and the radiation calibration was performed using a whiteboard.

Figure 3. Pegasus V300 UAV and camera Mica Sense Red Edge-MX introduction.

Table 1. Multispectral band information.

Band Band Name Wavelength Wave Width

Band 1 Blue (B) 475 20
Band 2 Green (G) 560 20
Band 3 Red (R) 668 10
Band 4 Near-infrared (NIR) 840 40
Band 5 Red edge (RE) 717 10

The processing of the raw data was performed by the fully automated and fast UAV
data processing software Pix4Dmapper from the Swiss company Pix4D. The software is
based on the principle of photogrammetry and multivision reconstruction and can be used
to quickly obtain point cloud data from aerial footage and process it in postprocessing.
We loaded the acquired image into the software to automatically identify the coordinate
information and added the image control points to obtain the stitched multispectral image.

2.2.3. UAV Lidar Data

The UAV LiDAR data were collected from a Hurtigruten six-rotor UAV Long-120
equipped with the Hurtigruten ARS-1000 L long-range LiDAR measurement system
(Hurtigruten, Wuhan, China) (Figure 4); the core parameters are shown in Table 2. Li-
DAR data were collected between 12 July 2021, and 17 July 2021, covering a total area of
21.8 km2. The platform flew at altitudes between 200 and 400 m, with flight speeds of 6 m/s
to 10 m/s and an overlap of 60% in the side direction and 70% in the heading direction.
The LiDAR sensor beam divergence fraction was 0.5 rmad, so the acquired data footprint
diameter was between 0.1 m and 0.2 m.
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Figure 4. Hurtigruten six-rotor UAV Long-120 equipped with the Hurtigruten ARS-1000 L long-range
LiDAR measurement system.

Table 2. Lidar sensor core parameters.

Core Parameters ARS-1000 L

Maximum flight height 1350 m
Range resolution ±5 cm
Scanning angle ±330◦

Angle resolution 0.001◦
Pulse frequency 820 KHZ

Laser wavelength Near-infrared
Beam divergence 0.5mrad

The processing of raw data was handled using Inertial Explorer (IE) postprocessing
software, an open-source software developed by NovAtel’s Waypoint product group, and
by UAV Butler, a one-stop commercial software for intelligent geographic information
systems (GIS) launched by Pegasus Robotics. IE is powerful and highly configurable
postprocessing software for processing all available GNSS IE and processing all available
GNSS data for decomposition and export to the SBET (OUT) format, which is recognized
by common commercial software and can provide high-precision combined navigation
information, including position, velocity, and attitude information. The SBET (OUT) format
is then converted to the LAS (las) format common to general geoprocessing software using
the Drone Butler Smart Laser.

2.2.4. Satellite Data

The Sentinel-2 satellite carries a multispectral imager (MSI) with an altitude of 786 km;
it covers 13 spectral bands with an amplitude of 290 km. The ground resolutions are 10 m,
20 m, and 60 m, and the revisit period is 10 days for one satellite and 5 days for two
complementary satellites. With different spatial resolutions, from visible and near-infrared
to shortwave infrared, the Sentinel-2 data are the only data with three bands in the red-edge
range among the available optical data; thus, Sentinel-2 products are very effective for
monitoring vegetation health information (Table 3).
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Table 3. Spectral bands of the Sentinel-2 sensors (S2A).

Band Number Band Name Band Length (nm) Bandwidth (nm) Resolution (m)

1 Coastal Aerosol 443.9 27 60
2 Blue 496.6 98 10
3 Green 560.0 45 10
4 Red 664.5 38 10
5 Vegetation red edge (RE) 703.9 19 20
6 Vegetation red edge (RE) 740.2 18 20
7 Vegetation red edge (RE) 782.5 28 20
8 Near-infrared (NIR) 835.1 145 10
8a Vegetation red edge (RE) 864.8 33 20
9 Water Vapour 945.0 26 60
10 SWIR_Cirrus 1373.5 75 60
11 SWIR 1613.7 143 20
12 SWIR 2202.4 242 20

NASA SRTM Digital Elevation 30 m (SRTM DEM) is a joint effort between NASA and
the Department of Defense’s National Mapping Agency (NIMA), as well as German and
Italian space agencies, and was completed by the U.S.-launched Space Shuttle Endeavour
with the SRTM system on board. The SRTM system was used to obtain a near-global DEM.
This SRTM V3 product (SRTM Plus) was provided by NASA JPL and has a resolution of
1 arc second (~30 m). This dataset underwent a void-filling process using open-source data
(ASTER GDEM2, GMTED2010, and NED), while other versions contained voids or were
filled with voids from commercial sources.

ALOS DSM: Global 30 m v3.2 (AW3D30) is a global digital surface model (DSM)
dataset with a horizontal resolution of approximately 30 m (1 arc second grid). The dataset
is a DSM dataset based on the world’s 3D topographic data (5 m grid version). Version
3.2, released in January 2021, is an improved version created by reconsidering the format,
ancillary data, and processing methods at high latitudes. The elevations of the AW3D
DSM are calculated via an image-matching process that uses pairs of stereo-optical images.
Clouds, snow, and ice are automatically identified during processing and mask information
is applied.

Data processing is performed using the Google Earth Engine (GEE) code editor, an
interactive environment for developing Earth Engine applications, with a central panel
that provides a JavaScript code editor. The application programming interface (API) is the
core functionality of GEE and is the platform that GEE users are most concerned about.
Compared to the graphical user interface (GUI), the API can call all the data and functions
in the GEE platform.

2.3. Methods
2.3.1. Extraction of Spectral Features and Texture Features

The vegetation index is very suitable for discriminating vegetation over large areas,
where the deviation of the general reflectance curve of vegetation between red and near-
infrared constitutes a variable that is sensitive to the presence of green vegetation [33].
For example, depreciation of the NDVI can distinguish unvegetated areas [34], and the
EVI belongs to atmospheric impedance [35]. The RVI can assess and monitor vegetation
cover [33], and the GRVI is sensitive to subtle disturbances and differences in ecosystem
types due to visible red-green band reflectance [36], both of which are sensitive in densely
vegetated areas. The VDVI was proposed because chlorophyll absorbs red and blue light
and reflects green light, so the classification principle in the study is to determine whether
the average value of red and blue light is greater than that of green light and also to
distinguish between soil and plants [37]. Other vegetation indices such as the DVI and
simple ratios in the NIR and blue bands are more sensitive to the spectral response of green
plants [38]. The OSAVI is an optimized index of the Soil Adjusted Vegetation Index (SAVI)
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which can reduce soil background effects during classification [39]. The IPVI is a linear
extension of the NDVI, which can avoid negative numbers during classification [40]. Details
of these vegetation indices are shown in (Table 4). In remote sensing, texture describes the
variation between light intensity values reflected to the sensor to distinguish valuable data
associated with different objects [41]. The red-edge band is valuable in measuring plant
health and helping in vegetation classification [42]. The difference in reflectance between
birch and larch in the images of the study area in this analysis was more obvious in the
red-edge band and the near-infrared band (Figure 5), so these two bands were used in the
selection of texture features. The band operation equation is given as follows.

Band = (NIR + RE)/2 (1)

* NIR: near-infrared band; RE: red-edge band

Table 4. Feature information in this research.

Features Abbreviation Formula Reference

Normalized Difference
Vegetation Index NDVI NDVI = NIR − R

NIR + R [34]

Ratio Vegetation Index RVI RVI = NIR
R [33]

Enhanced Vegetation
Index EVI EVI = 2.5 ∗ (NIR − R)

NIR + 6 ∗ R − 7.5 ∗ B + 1 [35]

Difference Vegetation
Index DVI DVI = NIR − R [38]

Green-Red Vegetation
Index GRVI GRVI = G − R

G + R [36]

Infrared Percentage
Vegetation Index IPVI IPVI = NIR

NIR + R [40]

Near infrared and Blue Band Ratios - NIR
B [38]

Renormalized Difference Vegetation Index RDVI RDVI = NIR − R√
NIR + R

[43]

Visible-band Difference Vegetation Index VDVI VDVI = (G − R) + (G − B)
G + R + G + B [37]

Optimized Soil Adjusted Vegetation Index OSAVI OSAVI = NIR − R
NIR + R + 0.16 [39]

Grayscale Symbiosis Matrix GLCM

Mean
Variance
Contrast

Homogeneity
Dissimilarity
Correlation

Angular Second Moment
Entropy

Edge Enhancement -

Median
Sobel

Roberts
User-defined

Statistical Filter -
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Figure 5. Differences in reflectance of different tree species: the red line represents the spectral
reflectance of white birch; the green line represents the spectral reflectance of larch.

2.3.2. Extraction of Vertical Features

The digital elevation model (DEM), digital surface model (DSM), and CHM were
obtained from LiDAR360 software developed by Digital Green Earth. This software can
preprocess point cloud data with functions such as noise removal, ground point normaliza-
tion, and extraction of various parameters.

First, the point cloud data were smoothed, resampled, and denoised to ensure that
the abnormal point clouds were removed. Then, the ground points were classified, and
subsequently, the DEM and DSM were extracted. After obtaining the DEM and DSM, the
CHM was extracted and used to segment the airborne point cloud into single trees. Finally,
the number of single tree species in a small class was estimated based on the classification
results obtained. When classifying by forest landscape (coniferous, broadleaf, and mixed
coniferous), we determined whether the ratio of single species in a small class reached 7:3.
Simply put, if the percentage of the dominant species was 70% or less, it was considered
a mixed forest. When classifying by tree species (birch, larch, mountain poplar, etc.), the
specific location of each tree was verified. However, due to the limitations of airborne data,
it was not possible to achieve 100% accuracy with the single-wood segmentation.

CHM = DSM − DEM (2)

2.3.3. Classification Technique

A CART decision tree is a binary tree that can be “pruned” after it is generated [44].
That is, each nonleaf node can only lead to two branches, so when a nonleaf node is a
discrete variable with multiple levels (more than 2), the variable has the potential to be used
multiple times. CART can be used not only for classification but also for regression. SVMs
represent a class of supervised learning that performs binary classification of data [45]. The
SVM classification method separates samples belonging to different classes by tracking
the maximum-edge hyperplane in the kernel space of the sample mapping [46]. An
RF is an integrated classifier consisting of multiple decision trees, where the strength of
individual trees and the correlation between trees can be used to generalize the error [21].
RF methodology is an augmentation of traditional decision trees that classifies new data by
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taking a majority vote among the classification results of all constructed decision trees [47].
In an RF, each node is split using the best combination in a randomly selected subset of
feature variables at that node [31].

2.3.4. Confusion Matrix

A confusion matrix summarizes the classification results from a machine learning method
in the form of a matrix that classifies the records in a dataset according to two features: the true
category and the category predicted by the classification model. In this study, the results of
the classification by the machine learning method were considered the predicted category,
and the classification results derived from secondary forest inventory data and orthophotos
were considered the true category. We analyzed the comparison matrix summarizing
the number of image elements and ground tests in every category [48]. The confusion
matrix can provide three descriptive accuracy metrics: overall accuracy (OA), producer
accuracy (PA), and user accuracy (UA). The OA is equal to the sum of correctly classified
pixels divided by the total number of pixels and directly reflects the proportion of correctly
classified pixels. PA is the ratio of the number of images that the classifier correctly classifies
into a category to the total number of true references in that category. UA is the ratio of the
number of pixels correctly classified into a class to the total number of pixels classified into
the same class by the classifier. The kappa coefficient is based on the confusion matrix and
is used to assess the classification accuracy, and the higher the kappa value is, the greater
the classification accuracy of remote sensing images. The value of the OA varies for each
category, and the kappa value decreases once the classification result of a category is poor.

2.3.5. GEE Workflow

In the following section, we only describe the conditions created in the GEE to verify
the applicability of our proposed scheme to a larger area for the equivalent of Scheme II.
Our workflow in the GEE is divided into the following main parts.

(1) Data query and display based on the study area boundary, where the study area vector
boundary (feature collection: ao) is imported and the retrieved data are cropped based
on the boundary.

(2) Extraction of the best classification elements, which include the best spectral bands,
vegetation indices, and texture features (glcm), as well as the CHM derived from the
DEM and DSM.

(3) Importation of training sample data based on feature combination, for which the
extracted elements are combined and imported into the region of interest (ROI).

(4) Comparison of classification methods and accuracy check, for which the classification
accuracy of three classifiers in the ROI are combined to obtain the confusion matrix.
Finally, the classification results, accuracy, and kappa of each classifier are calculated,
as are the PA and UA of individual tree species.

3. Results

3.1. Comparison of Tree Species Classification Schemes

When classifying image information, one should focus on how to define a meaningful
set of features to describe the entire image. Once the best combination of features for
classification is selected, the images can be classified using RF in machine learning methods.
We designed two schemes based on the above classification features. Scheme I is a combi-
nation of the six bands of multispectral reflectance and the extracted vegetation index and
texture features, while Scheme II is an additional CHM based on the combination of the six
bands of multispectral reflectance and the extracted vegetation index and texture features.
RF was used to assess the accuracy of the above two schemes for enhancing tree species
classification. As seen in Table 5, the overall accuracy of Scheme I was 79%, and the kappa
coefficient was 0.63. The overall accuracy of Scheme II with one more CHM vertical feature
was improved by 7%, and the kappa coefficient was 0.75 compared with that of Scheme I.
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Table 5. Comparison of the accuracy of Scheme I and Scheme II.

Birch Larch Nonforest

Scheme I

PA 80% 48% 85%
UA 87% 51% 76%

OA: 79% Kappa: 0.63

Scheme II

PA 90% 70% 84%
UA 91% 83% 87%

OA: 86% Kappa: 0.75

The results of classification Schemes I and II demonstrated that tree species classifica-
tion can significantly improve the classification accuracy by increasing its vertical structure
on top of the two-dimensional image. This also indicates that canopy height is effective
in distinguishing forest from nonforest areas and in classifying tree species. The addition
of CHM not only significantly improved the classification accuracy of birch and larch but
also significantly improved the misclassification between species, and CHM had no effect
on the misclassification of nonforest areas. Therefore, we believe that the hypothesis that
the participation of vertical features will improve the classification accuracy of tree species
is valid, i.e., Scheme II is the best classification scheme. Among the species, birch was
classified most accurately by both schemes and with fewer misclassifications; larch was
classified with low accuracy and with more misclassifications relative to other categories.
With the addition of CHM, the classification accuracy of both birch and larch improved
significantly, and the misclassification rate also decreased significantly. In particular, the
classification accuracy of larch was significantly improved, and the misclassification de-
creased significantly; the classification accuracy of nonforest areas was also significantly
improved, but the misclassification was not decreased.

As shown in (Figure 6), group (a) images show the spectral features of tree species,
and group (b) includes the CHM features extracted from the point cloud data for the
corresponding locations in group (a). The CHM can distinguish tree species from tree
height and can compensate for misclassification caused by the shadowed part in the
spectral images. Individual trees can also be classified accurately in mixed forests, and
low trees do not affect the interpretation of the classifier even if they are blocked by the
shadows of taller trees. Small clearings in large woods cannot be discerned spectrally, but
the CHM fills this gap well. This is the advantage and notable contribution of active remote
sensing in classification.

3.2. Comparison of Tree Species Classification Methods

Based on classification Scheme II, the comparison of tree classification by applying the
CART, SVM, and RF is shown in Table 5. The overall accuracy of RF was higher than SVMs
and the CART, with 5% and 8% improvement, respectively, and the kappa coefficient was
also the highest, indicating that RF has the best classification performance. In addition, we
found (Table 6) that RF not only had higher classification accuracy for birch than for other
categories, but also led to the lowest misclassification rate for all three categories, and the
distinction between birch and larch was more accurate. Although we found that the SVMs
and CART classified larch and nonforest areas slightly better than RF, they led to higher
misclassification rates. Compared to the SVMs and CART, RF had the least misclassification
of larch and nonforest, with 18% and 26% lower misclassification rates for larch and 12%
and 14% lower misclassification rates for nonforest areas, respectively. The overall average
height of birch was higher than that of the other categories, so each classification method
generally classified birch higher than larch and nonforest. The overall accuracy of tree
classification improved by 7% with the addition of vertical features; 4% for birch; 32%
for larch; and 9% for nonforest areas; with a 10% reduction in misclassification for birch;
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22% for larch; and no effect on misclassification for nonforest areas. The improvement of
misclassification for larch using RF was significant compared to that for birch and nonforest
areas. Overall, RF was the best tree classification method for the data source and the
selected scheme of this study, as well as for the Duraer Forestry Zone site.

Figure 6. (a) Spectral image (RGB) difference among tree species, (b) height (CHM) difference among
tree species.
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Table 6. Comparison of the classification accuracy of machine learning methods.

RF SVM CART

Birch
PA 90% 93% 95%
UA 91% 77% 75%

Larch
PA 70% 52% 44%
UA 63% 65% 62%

Nonforest
PA 84% 72% 70%
UA 87% 93% 90%

OA 86% 81% 78%
kappa 0.75 0.67 0.63

3.3. Spatial Distribution of the Tree Species Classification Based on RF

(Figure 7) shows the spatial distribution of tree species (birch, larch, and nonforest)
areas covered by the three sample strips within the Duraer Forestry Zone in Arxan. From
left to right in the figure are sample strips (a), sample strips (b), and sample strips (c). The
difference image is highlighted in yellow (representing birch in the tree species classifica-
tion image), orange (representing larch in the tree species classification image), and RGB
(representing nonforest areas in the tree species classification image) to show the difference
between the three types. The tree species classification in the figure was the result of the RF
with the best accuracy. The nonforest RGB image shows that very few tree species were not
classified and that small clearings in the forest were accurately classified as nonforest areas.

Figure 7. The classification results of sample strips (a–c).
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3.4. Spatial Distribution of the Tree Species Classification Based on GEE

Due to the different data sources, classification schemes, and classification methods
used for different data products, the suitability and accuracy of data in some specific
areas are often uncertain. Therefore, it is crucial to produce more precise and accurate
classification products for a given region [49]. We tested the applicability of the UAV-
based study protocol and the various classification features by fusing active and passive
satellite data over a large study area. Regions of interest (ROIs) were established based on
field-sampled data, and the accuracy of the overall classification results was assessed.

The OA of the CART decision tree classification was 0.96, and the kappa coefficient
was 0.94. The OA of the SVM classifier was 0.96, and the kappa coefficient was 0.95. The
results of the RF classifier with the highest accuracy are shown in (Figure 8). The OA of the
RF reached 0.98, and the kappa coefficient was 0.97. The most common forest type in the
Duraer Forestry Zone is natural forest (most of the coniferous forests are planted forests,
which are arranged in a regular way; larch is the most planted; and spruce (landscape
forest) is mostly planted along the roadside), and the UA reaches 0.98. The UA of nonforest
reaches 0.99 because the addition of the CHM contributes greatly to nonforest classification.
Therefore, under the same conditions the satellite data are suitable not only for large areas,
but also for specific terrain areas.

Figure 8. The classification results for the Duraer Forestry Zone.
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(Table 7) shows the results of the confusion matrix analysis using ground truth ROIs
for the case of applying RF in GEE. To visualize the significance of the variables of the
training sample and the test dataset, the rows of the matrix represent the actual categories,
while the columns represent the predicted categories. Because the distribution of nonforest
and birch is the widest within the Duraer Forestry Zone, the addition of CHM makes the
difference in nonforest and birch height obvious. Therefore, the judgments for nonforest
and birch are more accurate, and less misjudged. The confusion between birch and larch is
most frequent. Most of the larch in the forest is planted, with different planting years, and
some early planted larch do not differ significantly in height from immature birch, so the
contribution of the CHM to the classification of these two categories is reduced. Because
the differences between pine species are more obvious in the leaves, Sphagnum pine is
more often misclassified as larch.

Table 7. Confusion matrix using ground truth ROIs.

Swamp Willow
(ROI)

Poplar
(ROI)

Spruce
(ROI)

Sphagnum Pine
(ROI)

Birch
(ROI)

Larch
(ROI)

Nonforest
(ROI)

Total

Swamp Willow 2125 2 6 2 0 16 4 2155
Poplar 1 2259 0 1 9 23 1 2294
Spruce 7 0 2004 6 0 2 14 2033

Sphagnum pine 12 4 12 8742 16 70 7 8863
Birch 28 33 7 21 31,750 100 58 31,997
Larch 37 30 29 41 24 11,866 38 12,065

Nonforest 19 0 10 26 25 26 16,561 16,667
Total 2229 2328 2068 8839 31,824 12,103 16,683 76,074

4. Discussion

Optical sensors have been widely used in classification for a long time, but they are
sensitive only to the upper layers of the canopy and have low intercategory separation and
high intracategory variability [50]. The quality of a sensor’s work is influenced by many
environmental factors, and data need to be collected at midday when the sun is shining
without cloud cover. In alpine woodland areas, the difficulty of the work can be challenging
and data quality can be low due to the terrain and the forest landscape [51,52], making the
data can be difficult to separate spectrally. LiDAR radar systems can identify forest canopy
structures very well [53] and provide information on understory vegetation [54]. Airborne
laser scanning is an active remote sensing data acquisition technique that can provide high-
quality vertical structure details [55]; however, its application to forest surveys is limited by
the inherent complexity of the canopy structure, and the quality of point clouds collected in
naturally dense stands is usually not as good as that in sparse, evenly distributed stands [56].
In conclusion, the remote sensing data obtained from different sensors complement each
other [57]. Although many data sources or region-specific methods have been proposed
regarding the application of remote sensing data in tree species classification in recent
decades, the application to tree species inventoried at large geographic scales remains
one of the greatest challenges in this research area [58]. Z. Xie and others found that RF
and SVM classification methods performed particularly well when using multisource data
and that adding canopy height features to multisource data improved the classification
accuracy for some tree species [39]. Researchers verified the classification of individual
tree species by combining laser-scanned point clouds and spectral reflectance data and
mapping the LiDAR-generated canopy features to the corresponding pixels in multispectral
images, resulting in a significant improvement in the overall classification accuracy of all
the classified species groups. The results of this study were also consistent with the findings
of the above study, concluding that canopy height contributes to tree species classification
and significantly influences the classification results among tree species.

Data redundancy may occur when machine learning methods are used to process
complex categorical variables, and methods should be chosen considering whether they
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positively affect classification accuracy. Machine learning methods are efficient and accurate
automated techniques but are prone to overfitting when processing large amounts of com-
plex data [15,50]. RFs are integrated models with many classification trees and classifiers
and work internally based on a tree pruning mechanism by automatically filtering the
input classification features and then voting on the classification results to generalize the
classification error [21,59]. In this study, the classification method automatically generated
multiple classification trees internally. These classification trees consisted of multiple deci-
sion trees related to the reflectance of multispectral bands; the trees were used to extract
multiple vegetation indices, textural signatures, and vertical structures. The design of the
classification scheme was determined based on the response of the classification accuracy
of the RF method to different combinations of the above indices and features. The final
combination with the highest classification accuracy constituted a runnable decision tree.
Until now, most of the studies on forest classification optimization based on RFs achieved
greater than 90% classification accuracy. Part of the reason why the accuracy was not as
high in this study was the effect of the predictive classification model when calculating
the confusion matrix. The prediction model was based on the most recent forest Scheme
II inventory data using the dominant tree species and established species in small classes
with the aid of UAV orthophotos and field survey data. However, based on the tree species
classification method, the gaps in the forest within small groups were classified as nonforest
areas, and there were some large gaps or single trees in nonforest areas that differed from
the predicted classification result; therefore, the classification accuracy was affected when
calculating the confusion matrix. Although the classification accuracy in this paper was
not as good as that of the previous classification optimization study, the objectives of this
study were to investigate whether the use of the CHM could improve the classification
accuracy of tree species and to compare three machine learning methods to identify the
most suitable classification method for the selected study area. Therefore, the classification
accuracy we observed was sufficient given the nature of the study. GEE is currently used in
various fields, such as agriculture, forestry, ecology, economics, and medicine, with forest
and vegetation being the most frequently applied disciplines, followed by land use and
land cover [60]. Its development environment supports popular coding languages, and
these core features enable users to discover, analyze, and visualize geospatial big data in a
powerful way without the use of supercomputers or specialized coding knowledge [61]. In
the field of remote sensing and geospatial data science, GEE has become a new method and
a key tool for researchers. However, during our research, we found that the accuracy was
insufficient if the training sample was too large or complex. Therefore, we relied on the
training samples obtained from field surveys for accuracy testing. However, using forest
type II survey data to verify accuracy may result in metrics that indicate lower modeling
performance than if other less-accurate verification data are used.

In the context of ecologically sustainable development, the United Nations, to ensure
the sustainable development of forest ecosystems and woodlands, established measures for
different forest types to protect biodiversity and functions [62,63]. Tree species diversity is
a key parameter for describing forest ecosystems [47]. The classification of tree species also
plays an important role in sustainable forest management. Most of the current research
on tree species classification tends to focus on how to optimize the classification results,
with few targeted applications. The single-wood segmentation mentioned in this paper can
extract information such as absolute coordinates, tree height, and crown width of a single
wood. Combining these data with the classification results can solve the time-consuming
and labor-intensive problem of traditional forest two-class inventory operations. Although
airborne multispectral data and airborne LiDAR data can be effective for tree species
surveys in small groups, they are also difficult to implement in forest surveys due to their
relatively expensive acquisition costs. Due to the geographical environment of the Duraer
Forestry Zone and the natural dense birch forest, the difficulty of airborne LiDAR scanning
and data quality cannot be guaranteed. Moreover, the extraction of canopy height requires
overlapping points to complement the integrity of forest canopy data, and the contribution
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of the CHM is affected by the small number of overlapping points in the edge of the scanned
area. In addition, the larch in the study area was of an immature plantation forest, so the
classification may be confused with taller shrubs (marsh willow, mountain wattle, hoodia,
etc.) in terms of height, thus affecting the classification accuracy. In this regard, time series
data may improve the identification of larch and thus the classification accuracy of tree
species in the entire forest. Recently, some researchers have proposed alpha integrals that
can integrate multi-class classifiers, which can combine the best scores to each class by all
classifiers separately, thus breaking the limitations of individual classifiers and optimizing
the classification results [64,65]. Therefore, the most critical factor to optimize tree species
classification is to find the best classification method for individual tree species. Eventually,
multiple classification models are fused to obtain the best tree species classification results.

5. Conclusions

The main findings of this paper can be summarized with the following points.

(1) When the classification features were selected, we found that the addition of the CHM
to the combination of spectral and textural features for classification improved the
overall classification results, indicating that the CHM is an important indicator for
improving the classification accuracy of tree species and is important in distinguishing
forest from nonforest and white birch from larch.

(2) Comparing the accuracy of machine learning methods under the conditions of choos-
ing equal classification elements, we observed the clear advantage of the random
forest among a group of machine learning methods when classifying tree species. This
also indicated that RF was the best tree classification method applicable to the data
source and the selected scheme of this paper and to the Duraer Forestry Zone.

(3) Our study showed that combining the spectral features, textural features, and vertical
features of multisource data (UAV multispectral, LiDAR data, and auxiliary data) and
using RF could effectively improve the forest species classification accuracy in the
three sample strips within the Duraer Forestry Zone in Arxan.

(4) When applied to a large area following the above research process, the use of the GEE
program combined with the required satellite data can support accurate, complex, and
rapid tree species classification. The classification results are not limited to specific
environments or in cases with data-limited conditions.

Author Contributions: Conceptualization, S.R.; methodology, Y.S. and H.Y.; software, S.R., D.D. and
R.L.; validation, S.R.; investigation, S.R., Y.S., Y.L. and H.Y.; resources, Y.S.; writing—original draft
preparation, S.R.; writing—review and editing, S.R., Y.S. and H.Y.; visualization, S.R.; supervision,
W.D., Y.S., H.Y. and D.D.; All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by the “14th Five-Year Plan” Social Public Welfare Key
R&D and Achievement Transformation Project of Inner Mongolia Autonomous Region [Approval
No. 2022YFSH0027], the Key Special Project of Inner Mongolia “Science and Technology Xing
Inner Mongolia” Action [Approval No. 2020ZD0028], the National Natural Science Foundation
of China [Approval No. 42201374), the Inner Mongolia Natural Science Foundation [Approval
No. 2022LHQN04001], the project of “Forest and Grassland Fire Monitoring and Early Warning
and Emergency Management System” of the autonomous region [Approval No. 022YFSH0027],
the central leading local science and technology development funds “Integrated Demonstration of
Ecological Protection and Comprehensive Utilization of Resources in Arxan City”, the project of
introduction of high-level talents in Inner Mongolia Autonomous Region in 2021 “Key Technology
Research on Forest and Grassland Fire Risk Assessment”, and the Project for the introduction of
high-level talents of Inner Mongolia Normal University [Approval No. 2020YJRC050].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

377



Remote Sens. 2023, 15, 2596

Acknowledgments: We are grateful to the fieldwork support from the Inner Mongolia Key Labo-
ratory of Remote Sensing and Geographic Information Systems. The authors are very grateful for
the support of the Field Scientific Observation and Research Institute for Disaster Prevention and
Mitigation of Arxan Forest and Grassland in Inner Mongolia Autonomous Region.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Dixon, R.K.K.; Solomon, A.; Brown, S.; Houghton, R.; Trexier, M.; Wisniewski, J. Carbon Pools and Flux of Global Forest
Ecosystems. Science 1994, 263, 185–190. [CrossRef] [PubMed]

2. Hansen, M.C.; Potapov, P.V.; Moore, R.M.; Hancher, M.; Turubanova, S.; Tyukavina, A.; Thau, D.; Stehman, S.; Goetz, S.; Loveland,
T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [CrossRef] [PubMed]

3. Zhao, J.; Xie, H.; Ma, J.; Wang, K. Integrated remote sensing and model approach for impact assessment of future climate change
on the carbon budget of global forest ecosystems. Glob. Planet. Change 2021, 203, 103542. [CrossRef]

4. Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote
Sens. 2019, 11, 1197. [CrossRef]

5. Bouvier, M.; Durrieu, S.; Fournier, R.; Renaud, J. Generalizing predictive models of forest inventory attributes using an area-based
approach with airborne LiDAR data. Remote Sens. Environ. 2015, 156, 322–334. [CrossRef]

6. Barrett, F.; McRoberts, R.E.; Tomppo, E.; Cienciala, E.; Waser, L.T. A questionnaire-based review of the operational use of remotely
sensed data by national forest inventories. Remote Sens. Environ. 2016, 174, 279–289. [CrossRef]

7. Franklin, S.E.; Peddle, D.R. Classification of SPOT HRV imagery and texture features. Int. J. Remote Sens. 1990, 11, 551–556.
[CrossRef]

8. Soh, L.-K.; Tsatsoulis, C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci.
Remote Sens. 1999, 37, 780–795. [CrossRef]

9. Zou, X.; Li, D. Application of image texture analysis to improve land cover classification. WSEAS Trans. Comput. Arch. 2009, 8,
449–458.

10. Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [CrossRef]
11. Brovkina, O.V.; Cienciala, E.; Surový, P.; Janata, P. Unmanned aerial vehicles (UAV) for assessment of qualitative classification of

Norway spruce in temperate forest stands. Geo-Spat. Inf. Sci. 2018, 21, 12–20. [CrossRef]
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Abstract: In recent years, the application of semantic segmentation methods based on the remote
sensing of images has become increasingly prevalent across a diverse range of domains, including
but not limited to forest detection, water body detection, urban rail transportation planning, and
building extraction. With the incorporation of the Transformer model into computer vision, the
efficacy and accuracy of these algorithms have been significantly enhanced. Nevertheless, the
Transformer model’s high computational complexity and dependence on a pre-training weight of
large datasets leads to a slow convergence during the training for remote sensing segmentation
tasks. Motivated by the success of the adapter module in the field of natural language processing,
this paper presents a novel adapter module (ResAttn) for improving the model training speed for
remote sensing segmentation. The ResAttn adopts a dual-attention structure in order to capture the
interdependencies between sets of features, thereby improving its global modeling capabilities, and
introduces a Swin Transformer-like down-sampling method to reduce information loss and retain the
original architecture while reducing the resolution. In addition, the existing Transformer model is
limited in its ability to capture local high-frequency information, which can lead to an inadequate
extraction of edge and texture features. To address these issues, this paper proposes a Local Feature
Extractor (LFE) module, which is based on a convolutional neural network (CNN), and incorporates
multi-scale feature extraction and residual structure to effectively overcome this limitation. Further,
a mask-based segmentation method is employed and a residual-enhanced deformable attention
block (Deformer Block) is incorporated to improve the small target segmentation accuracy. Finally, a
sufficient number of experiments were performed on the ISPRS Potsdam datasets. The experimental
results demonstrate the superior performance of the model described in this paper.

Keywords: remote sensing; semantic segmentation; transformer; adapter

1. Introduction

With the development of modern remote sensing technology and the launch of a series
of important high-resolution remote sensing satellites, high-resolution remote sensing
(HRRS) images are increasingly captured and applied to research. They contain a rich
amount of information on the texture, shape, structure, and neighborhood relationship
of various features. The traditional mathematical theory-based semantic segmentation
methods [1–3] for the remote sensing of images can be used for relatively simple contents,
but are often not suitable for images with complex features. With the excellent image feature
extraction capability shown by CNN in recent years, an end-to-end network structure has
been established for use in image classification, semantic segmentation, object detection,
and other fields, and is effectively used for remote sensing applications [4–6].

Transformer is an architecture proposed in 2017 in the field of NLP, and is a structure
for learning global features through a self-attention mechanism. It has achieved extraor-
dinary results in the field of NLP and was quickly introduced by researchers into the
field of CV. The Vision Transformer (ViT) [7] cuts images into patches and maps them
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onto one-dimensional vectors for processing so that they can be converted into sequences
for input into the self-attention module, which better captures long-range features and
global information. ViT are slightly more accurate than CNN structures after pre-training
on large-scale datasets, which demonstrates the powerful potential of Transformer in the
imaging domain. Subsequently, more and more CV tasks use Transformer-based models,
including semantic segmentation [8–10], target detection [11–13], pose estimation [14,15],
etc.

However, the existing models still have serious shortcomings for remote sensing using
multi-objective segmentation. First of all, using weights pre-trained o a large dataset to
initialize the parameters leads to a better model performance [16], but Transformer lacks
inductive biases in CNN, such as translation invariance and local relations, resulting in a
poor performance of Transformer-based networks on small datasets. Secondly, based on
the square linear relationship between the computational complexity and the image size in
the ViT model, it cannot achieve better convergence in training. Thirdly, the increase in the
resolution of remote sensing images brings greater intra-class differences and inter-class
similarity, and while Transformer can construct a global semantic representation of the
images, it loses much detailed information in the process of patching, which is particularly
significant for HRRS images. In addition, the flattening process also destroys the structural
information of the images, resulting in small targets or multi-branch targets with obvious
texture features in HRRS images that cannot be well segmented.

To solve the above problems, this paper proposes a multi-objective segmentation
network (ACTNet) with a hybrid CNN and Transformer, which is based on the Swin Trans-
former and uses a shifted window-based attention algorithm, so that the computational
complexity is linear with the image size. In order to not change the structure of the Swin
Transformer, the ResAttn module is designed as an adapter in this paper. Its dual attention
mechanism ensures that sufficient global information is obtained during the training for
remote sensing segmentation tasks and does not lead to excessive computation. Mean-
while, for small and multi-branch targets, we also propose a CNN-based multi-scale feature
extraction module (LFE), which refers to the ResNet [17] and mainly consists of a series
of convolution and pooling layers to extract as many local details of different targets as
possible. In addition, a residual structure is added to the Mask2Former [18] algorithm, so
that the mask feature can incorporate more information on deep-level features to improve
the segmentation performance of the multi-target.

The main contributions of the article are summarized as follows:
In order to solve the problem of excessive computational complexity in the training

phase of HRRS image semantic segmentation, we propose an adapter module (ResAttn)
capable of remote sensing semantic segmentation. It uses a dual-attention mechanism to
ensure that sufficient global information can be obtained from the feature map. For better
integration into the Swin Transformer structure, we use the same patch merging method
for down-sampling.

In order to enhance small target segmentation, we explore a CNN-based multi-scale
feature extraction module (LFE), which aims to fully extract the texture, color, and other
shallow features according to the convolutional filter weights. Meanwhile, local correla-
tion and kernel weight sharing help to keep the parameters relatively small, which also
compensates for the lack of local information extraction in Transformer.

We use a mask-based segmentation method with enhanced residual structure. The
segmentation accuracy of the model on the occluded targets is improved by using residual
connections to process the feature maps before and after through the multi-scale deformable
attention layer.

The remainder of this paper is organized as follows. Section 2 introduces the related
work. Section 3 presents the design details of our proposed network. Section 4 provides
the relevant experiments and setups, and Section 5 summarizes our approach and presents
the outlook for future research.
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2. Related Work

This section describes the related work in CNN-based remote sensing semantic seg-
mentation methods, Vision Transformer, and adapters. Table 1 and Figure 1 show the
context of this section.

Table 1. Summary of related work.

HRRS Image Segmentation Methods
Adapter

Transformer Based CNN-Based CNN-Transformer

Swin [19], ST-UNet [20] FCN [21] CCTNet [22] K-Adapter [23]
DC-Swin [24] U-Net [25] Swin + SASPP + SE

[26]

Clip-Adapter [27]
TransRoadNet [28] DeepLab [29–31] AdapterFusion [32]

SwinSUNet [33] MC-FCN [34] CTNet [35] ViT-Adapter [36]

Figure 1. The overall context of related work.

2.1. CNN-Based Semantic Segmentation Methods on Remote Sensing Images

With the development of remote sensing technology and the outstanding performance
of CNN in deep learning, the research related to remote sensing semantic segmentation
has received wide attention. Since the introduction of the fully convolutional network
(FCN), an encoder–decoder architecture has been widely used. The encoder performs
convolution and down-sampling on the image to extract the image features, while the
decoder recovers the spatial resolution by upsampling the small-size feature map. Based
on FCN, Ronneberger et al. [25] developed the U-Net network with a symmetric encoder–
decoder structure (i.e., contracting path and expansive path), where the encoder features are
introduced in the decoding stage to gather more spatial information. The MC-FCN network
proposed by Wu et al. [34] added a residual structure and multi-scale subconstraints based
on the U-Net to improve performance in building segmentation.

Despite the successful application of Deep Convolutional Neural Networks (DCNNs)
to various tasks, they lack an effective method to acquire global information, which is
a critical limitation for understanding complex scenes. To address this issue, PSPNet,
proposed by Zhao et al. [37], invokes the spatial pyramid pooling (SPP) method to obtain
multi-scale features by pooling layers of different sizes, and then performs feature fusion
and upsampling to improve the network’s ability to acquire global information. Further-
more, the DeepLab model (DeepLab v2, DeepLab v3, and DeepLab v3+) proposed by Chen
et al. [29–31] replaces the pooling layer in SPP with inflated convolution, allowing for the
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learning of more feature information from the previous input. Although the above methods
have improved the performance of CNN model segmentation, they still lack the capability
to effectively extract dense target segmentation and fine-branch segmentation.

2.2. Vision Transformer

Due to the excellent performance of Transformer in the field of NLP, it was soon
adopted by CV and presented in the Vision Transformer architecture, which relies on its
attention mechanism to learn the long-distance information in images. The Swin Trans-
former proposed by Liu et al. [19] uses shifted window-based attention mechanisms, whose
computational complexity is squarely related to the window size and linearly related to
the image size. The shifted windows scheme ensures the information interaction among
the windows, which enables the Transformer-based model to further explore the features
in HRRS images. He et al. [20] introduced the Swin Transformer module into the U-Net
shape model, which enhances the spatial feature analysis and small-scale object extraction
to improve the global modeling capability. Wang et al. [24] designed the DCFAM module
based on an attention mechanism and inflated convolution in the decoder to strengthen the
relationship between spatial-wise and channel-wise. To improve the road extraction, Yang
et al. [28] performed contextual modeling on high-level features to enhance the foreground
information learning capability in order to combat similarity and occlusion problems.
Zhang et al. [33] designed a Siamese U-shaped network using Swin Transformer blocks;
the encoder generates multiscale features by using a hierarchical Swin Transformer.

The Transformer structure used for the extraction of global information can effectively
compensate for the lack of CNN models; therefore, many researches have begun to explore
suitable methods to fuse these two components. Wang et al. [22] proposed LAFM and
CAFM to efficiently fuse the dual-branch features of the CNN and Transformer models.
Zhang et al. [26] used depthwise-separable, convolution-based, atrous spatial pyramid-
pooling modules to connect the Swin Transformer-based backbone and CNN-based decoder
to capture multi-scale contextual information. The CTNet proposed by Deng et al. [35]
uses a dual-stream structure to combine the Transformer and CNN models in its overall
architecture, and uses concatenated semantic features and structural features to predict the
scene categories.

The Introduction of the Transformer module made the remote sensing segmentation
task pay full attention to the information of the target context, resulting in both improved
continuity and noise immunity. To solve the problem of the high computational complexity
of the attention algorithm, some attention-limited networks, such as cSwin Transformer [38],
have been proposed to further reduce the computational effort, but this has led to the loss
of the extraction of global features. Moreover, the networks which have Transformer as
the backbone still require a large number of computational resources for transfer learn-
ing, which has a great deal of room for improvement for the training of remote sensing
segmentation as a downstream task.

2.3. Adapters

CV tasks, such as classification, target detection, and semantic segmentation, have
been significantly improved with better architectural design and large-scale high-quality
datasets. However, collecting datasets for each task is too costly for the scale. To address
this problem, the “pretrain-finetune” paradigm, in which large-scale datasets such as
ImageNet are pre-trained to obtain weights and then applied to various downstream tasks
and finetune, has been widely adopted in the CV field [16,39].

The Adapter was first proposed in NLP (Houlsby et al. [40]), and has been widely
used in both the NLP and CV fields [27,32]. Its core idea is to update only the parameters in
the adapter module while keeping the other parameters unchanged, so that it can achieve
the same effect as finetuning. The K-Adapter structure proposed by Wang et al. [23] makes
the adapter more modular for knowledge-intensive tasks. Recently, the ViT-Adapter model
proposed by Chen et al. [36] successfully applied this idea to image dense prediction, where
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the missing local continuity information from the ViT is supplemented by the adapter,
allowing it to perform well in dense segmentation. However, it is still a challenge to design
an effective adapter module to cope with multi-scale targets and dense targets in remote
sensing segmentation.

3. Methodology

In this paper, we propose a new semantic segmentation scheme for remote sensing
images. First, we will introduce the various modules contained in ACTNet’s encoder and
decoder and the general flow. Then we propose an adapter module (ResAttn) based on a
dual attention structure to fully extract global information without excessively increasing
the parameters. To enhance the model for the extraction of shallow features, such as texture,
color, etc., we propose a CNN-based LFE module. Finally, we propose the Deform Block
with residual enhancement to improve the segmentation of occluded targets.

3.1. Overall Architecture

The general overview structure of ACTNet is shown in Figure 2. The network is
divided into encoder and decoder parts. In the encoder part, a stem block is used to
preprocess the H × W size input image first. It consists of four convolutional layers and
one pooling layer, each followed by a batch normalization and a ReLU activation function,
with an output size of 1/44 of the original image. The output of the stem block is used as
input for the LFE module, ResAttn module, and Swin Transformer backbone.

 

Figure 2. Overview structure of ACTNet.

As shown in the green area in Figure 2, due to the high resolution of the HRRS images,
global modeling at large imaging sizes is required. Therefore, the Swin Transformer
backbone is used as the main global modeling method, which significantly reduces the
computational effort with the help of the shifted window attention algorithm. It consists of
four Swin Transformer blocks, each of which contains several MSA and SW-MSA blocks in
a series to form a structure.

As shown in the blue-dashed part of the green area in Figure 2, a lightweight ResAttn
module is applied behind each Swin Transformer block. It has an input consisting of the
output of the current Swin Transformer block and the output of the previous ResAttn
module. After generating tokens and fusing them with each other, the global dependency
between the features of the two levels can be derived by using the self-attention mechanism
to minimize feature loss during down-sampling. In order to keep the structure of the
Swin Transformer, element-wise additions are made between the output and the original
Swin Transformer block output, so that the pre-trained weight information can be fully
utilized during migration training. We use the same patch merging method as the Swin
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Transformer uses for down-sampling the output features of the first three blocks to form a
multi-scale feature extraction.

Meanwhile, we use several sets of CNN structures to obtain the low-level features
of the image, as shown in the orange area of Figure 2. The feature maps obtained from
the stem are fed into the LFE module; here the design pattern of the ResNet is invoked,
which consists of three stages with a series of convolutions and poolings. The Identity
module will not perform any processing, so that the module will output feature maps of
1/4, 1/8, 1/16, and 1/32 of the original image size, finally concatenating with the output of
the 4 ResAttn modules as the encoder part of the output.

In the decoder section, we use Mask2Former as a base structure. To improve the
segmentation of small objects, a multi-scale decoder structure is used, where the encoder
output will be sent into the deformer block first to generate pyramid-like features. As
shown in the pink area in Figure 2, here we calculate the correlation of each pixel in the
feature map with the surrounding sampled points using 3 N deformable attention for 1/8-,
1/16-, and 1/32-size feature maps. We then upsample the 1/16- and 1/32-size feature
maps with the 1/4-size feature map using a bilinear interpolation method for element-wise
addition, in order to enhance the effect of small target segmentation while preventing
network degradation. These features are next sent to the Transformer decoder module,
where N-length queries with random initialization parameters will be learned to obtain
global information from masked attention. After that, the mask result and the classification
result are calculated with the feature map of 1/4 the original image size. Finally, the mask
output and classification output are combined to obtain the network output.

3.2. ResAttn

As shown in Figure 2, the first ResAttn module begins with the output of the stem
block. The stem block consists of 4 convolutional layers and 1 pooling layer and, as shown
in Figure 3, it performs simple feature extraction and down-sampling operations on the
input image, which is used to initially reduce the image size and decrease the network
complexity.

 

Figure 3. Illustration of stem block.

The existing models still have a risk of gradient disappearance as the network layer
deepens, and the deep feature map loses a large number of small object features. Therefore,
we propose the ResAttn module, as shown in Figure 4, which is based on an attention
structure and incorporates the idea of residual structure. Specifically, it uses the output
of the current Swin Transformer block and the previous ResAttn module, then generates
1 × 1-size tokens and fuses the features together for input into the self-attention module,
which uses a multi-head self-attention algorithm. It then concatenates the two parts of the
output. Finally, the result is passed through the FFN module. It contains 2 linear layers
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and 2 activation functions. For this reason, the computation performed in the self-attention
mechanism is mainly matrix multiplication, i.e., it is a linear transformation; therefore,
its learning ability is still not as strong as the nonlinear transformation, so the expression
ability of the query is enhanced by means of activation functions. The features from this
step are collected as part of the encoder output. In order to keep the structure of the Swin
Transformer, the same method of down-sampling is used to process the features as they
are, doubling the number of channels and halving the size. The output features perform
element-wise addition with the Swin Transformer block output.

Assuming that the input feature size is (c, h, w), the two inputs are passed through
the convolution layer to generate a token of size (c, 1, 1) and a query of size c, h × w,
respectively. Then they are fused with each other and sent to the self-attention layer after
the addition of position encoding to calculate the weight between the elements in the query
sequence. For this we use the self-attention algorithm from ViT, which essentially uses a
matrix multiplication to calculate the relationship between each patch and the other patches
in the query, and to update the weight matrix by back propagation, whose specific formulas
are as follows:

Attention(Q, K, V) = So f tmax(
QKT
√

dk
)V (1)

Q = X × Wq (2)

K = X × Wk (3)

V = X × Wv (4)

where X is the query, Wq, Wk, and Wv are the learnable weight matrices, and the association
between the previous layer features and the current features is constructed by self-attention.
The output query is then restored to its original size and concatenated, for which we use a
1 × 1 convolutional layer to adjust the length to (c, h × w) and an FFN module to enhance
its nonlinear representation. Finally, the image size and number of channels are adjusted
by patch merging.

Figure 4. Illustration of ResAttn module.

In ACTNet we add a ResAttn module after each Swin Transformer block, and the final
feature sizes obtained are 1/4, 1/8, 1/16, and 1/32 of the original image. This method
achieves a result very similar to that of the feature pyramid of the SPP network.

3.3. LFE

Previous studies have shown that the overuse of the Transformer model in the en-
coder part causes the network to become less capable of extracting shallow features. This
indicates there are difficulties in the extraction of most objects with distinct boundaries for
multi-target semantic segmentation in HRRS images. CNN-based networks, on the other
hand, can obtain local features with relatively small numbers of parameters by gradually
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increasing the perceptual field through layer-by-layer convolutions, which have distinct
geometric properties and are often concerned with consistency or covariance under trans-
formations such as translation, rotation, etc. For example, a CNN convolution filter detects
key points, object boundaries, and other basic units that constitute visual elements and that
should be transformed simultaneously under spatial transformations, such as translation.
CNN networks are a natural choice for dealing with such covariance, so that positional
transformations under the same objects have little effect. Therefore, a multi-scale CNN-
based LFE module is proposed to enhance the extraction and analysis of high-frequency
information in images and to improve the segmentation accuracy of small and multi-branch
targets to compensate for the shortcomings of the Transformer networks.

The purple area shown in Figure 5 is the LFE module, which borrows the design
pattern of ResNet. We take the original image as the input, and an initial feature block
of 1/4 the size of the original image is generated by stem for initial processing. Then a
3-stage convolution block is used to extract the image features. Each stage contains one
maxpooling layer and one ConvBlock. Each ConvBlock has N residual convolutional blocks,
as shown on the right side of Figure 5. The small cell composed of convolutional layers and
residual structures ensures feature extraction while preventing network degradation. After
concatenating the output of the maxpool and ConvBlock as the next input, the LFE module
finally extracts the features from the original image sizes of 1/4, 1/8, 1/16, and 1/32, as
the complement of the Transformer structure. The number of residual convolutional blocks
of each ConvBlock in ACTNet is 3, 4, and 3, respectively, so that the number of parameters
are small.

 

Figure 5. Illustration of LFE module.

3.4. Deformer Block and Loss Function

The decoder section can be seen in the upper right corner of Figure 2, which consists
mainly of a deformer block and a Transformer decoder. After the output from the encoder
module, a mask-based classification method is used for segmentation instead of the per-
pixel classification that we had been using. Many objects in remote sensing images have
occlusions, such as houses occluded by tree branches and cars occluded by leaves, which
leads to the wrong classification of pixels. Mask segmentation predicts the class of an
object using a binary mask, which works better in cases where per-pixel classification
fails due to background noise or image complexity, and requires fewer parameters and
computations [41].

As shown in the Figure 6, the 4-scale feature maps output by the encoder are first fed
into the deformer block module. We calculate the weights using 3 N multi-scale deformable
Transformers for the offset of the reference points, which are generated by each query in the
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feature map sizes of 1/8, 1/16, and 1/32, where N represents 2. The deformable attention
formula is as follows:

Deformable Attention (zq, pq , x) =
M

∑
m=1

Wm[
K

∑
k=1

Amqk · W ′
mx(pq+Δpmqk)] (5)

where zq is obtained from the input x by linear transformation, pq is a 2D vector representing
the coordinates, M represents the attention head, K represents the number of positions
sampled by 1 query in 1 head, Amqk represents the normalized attention weight, W ′

mx is the
transformation matrix of value, and Δpmqk is the sampling offset.

Figure 6. Illustration of our Deformer Block module.

Then the output of the 1/16- and 1/8-size features are added to the 1/4 feature map
using bilinear interpolation upsampling to obtain the masked attention. After that, the
1/8-, 1/16-, and 1/32-size features are fed into the Transformer decoder with 3L attention
blocks. Finally, the binary mask of each feature map and its corresponding classification
result are calculated by query.

In order to accurately calculate the deviation between the result and the ground truth
value, the loss function we use combines Cross Entropy Loss (CELoss), FocalLoss, and
DiceLoss, each of which has its own role in improving the overall performance. The function
can be expressed as follows:

Loss = (CELoss + FocalLoss) + DiceLoss (6)

CELoss is used to calculate the category probability loss, which is suitable for multi-
category tasks and is good for remote sensing multi-target segmentation. The formula is as
follows, where M represents the number of categories, yc is the ground truth value, and pc
is the predicted value:

CELoss = −
M

∑
c=1

yclog(pc) (7)

FocalLoss is used to calculate the loss value of a mask. Since the ratio between categories
in a remote sensing dataset is very unbalanced, using cross entropy loss will cause the
training process to be skewed towards the side with more categories. FocalLoss adds a
modulating factor, γ, to overcome this drawback based on CELoss. The formula is as
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follows, where p is the predicted value, y is the ground truth, and in this paper α = 0.25,
and γ = 2:

FocalLoss =
{ −α(1 − α)γlog(p), y = 1
−(1 − α)pγlog(1 − p), y = 0

(8)

DiceLoss [42] is derived from the dice coefficient, which is an ensemble similar to the
measure function. DiceLoss is used as a measure function to evaluate the similarity between
two samples and is designed to cope with a scenario of a strong imbalance between positive
and negative samples in semantic segmentation. It is defined in the formula below, where ε
is used to prevent the extreme case where the denominator is 0. In this paper, ε = 1.

DiceLoss = 1 − 2yp + ε

y2 + p2 + ε
(9)

4. Experiment

4.1. Dataset

In this article, we use the ISPRS Potsdam dataset to evaluate the performance of
ACTNet. The ISPRS Potsdam dataset is extracted from the Potsdam region and contains
38 true radiographic images of 6000 × 6000 size. Each remote sensing image area covers
the same size. Categories include Impervious surfaces, Buildings, Low vegetation, Tree,
Car, and Clutter/background. The Clutter/background class includes bodies of water and
other objects that look very different from everything else. Considering the size of the
HRRS images and the limitations of GPU memory, we cut the images and corresponding
labels into 600 × 600 pixel-sized images and then randomly divided them, with 80% going
into a training set and 20% going into a validation set in disorder.

4.2. Evaluation Metrics

The semantic segmentation evaluation metrics used in this experiment contain two
main categories. One is the metrics used to evaluate the accuracy of the model, including
mean Intersection over Union (mIoU) and mean (class) accuracy (mAcc). The other category
is a metric used to evaluate the inference speed and training speed of the module. Consider
mIoU as the primary metric, which calculates the intersection ratio of two sets and is widely
used in semantic segmentation model evaluation. The formulas for the evaluation metrics
are as follows:

mIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(10)

mAcc =
1

k + 1

k

∑
i=0

TP
FP + TP

(11)

4.3. Implementation Details

We built our model using the MMSegmentation framework with Python 3.8. MMSeg-
mentation is a deep-learning framework based on Pytorch, but is easier to scale and build
complex networks with than the latter. To initialize our network parameters, the weights
pre-trained by the BEiT [43] model on the ADE20K dataset were used. ResAttn and LFE
modules use random initialization methods for the initial parameters, while the deformer
block and Transformer decoder modules use the Kaiming initialization method [44] for the
initial parameters.

For the hyperparameter setting we used a batch size of two and an initial learning rate
of 1 × 10−4. A warmup training strategy was used to avoid instability during training and
to optimize the overall training effect. We used AdamW as the parameter update algorithm
and Poly as the learning-rate adjustment strategy. All the experiments were trained in
parallel on an NVIDIA Geforce RTX2080Ti with an 11-GB memory GPU and a maximum
Epoch of 100. In addition, we used random crop, random flip, and other measures to
enhance the training data.
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4.4. Comparative Experiments

The ACTNet model was compared to other mainstream remote sensing semantic
segmentation networks, namely the CNN-based FCN [21], U-Net [25], DeepLabV3+ [31],
the Transformer-based Swin-ViT [19], ST-UNet [20], and SwinSUNet [33], respectively, on
the Potsdam dataset using the same experimental settings, and the experimental results are
shown in Table 2.

Table 2. Comparative experimental result on the Potsdam dataset.

Method
Evaluation Metrics Inference

Time (ms)

Training
Time (min/epoch)mIoU (%) mAcc (%)

FCN 75.85 86.33 5.7 4.04
U-Net 77.23 87.45 8.5 7.31
DeepLabV3+ 78.47 88.12 13.83 9.87
Swin-ViT 79.63 87.73 27.93 15.60
ST-UNet 75.84 85.26 30.39 16.21
SwinSUNet 82.36 91.94 51.04 27.83
ACTNet 82.15 90.28 46.29 19.02

Our proposed ACTNet achieved an 82.15% in mIoU score and a 90.28% in mAcc score.
The experiments showed that our model performed better than the CNN-based models or
the Transformer-based models and required less training time and inference time compared
to other CNN and Transformer-combined models

The visualization results from the comparison experiments are presented in Figure 7,
where row (a) is the randomly selected image for the experiment and row (b) is the image
corresponding to the ground truth value. From rows (c–e) of the figure, it can be seen that
the traditional CNN-based model could not depict the specific outline of the object well due
to too many details being lost during down-sampling, which resulted in less detailed results
when performing multi-branching objectives. In column (1), the classifications of “Low
Vegetation” and “Clutter/background” were incorrectly mixed due to the similarity of their
colors. In column (2), the DeepLabV3+ model incorrectly split “Tree” into “Low Vegetation”
and “Clutter/Background.” The Swin-ViT model correctly classified these, but the area
was incomplete. From the black box of columns (3) and (4), the ST-UNet and SwinSUNet
were less effective in segmenting the “Clutter/Background” and “Building” objects due
to foreground occlusion. The ACTNet achieved better results than the Transformer-based
model due to the LFE module’s ability to extract local features and its use of the mask-
based segmentation method. ACTNet also outperformed DeepLabV3+, U-Net, and other
CNN-based networks due to the global modeling capability of the attention mechanism.
Furthermore, ACTNet also demonstrated better results on fragmented targets such as “Car”
when compared to the CNN and Swin-ViT models.

Although the overall performance of ACTNet was superior to that of the other models,
there is still potential for improvement regarding the segmentation effect. We analyzed the
test results and visualized the confusion matrix, as shown in Figure 8. In the confusion
matrix, we found that “Tree” was misclassified as “Building” or “Low Vegetation” in a
large number of cases, which led to a decrease in the overall mIoU and mAcc values.

391



Remote Sens. 2023, 15, 2363

Figure 7. Comparative experimental results from the different models. The black boxes mark the
areas with significant differences. Column (1–4) represents the segmentation results of four different
test images. Row (a) represents the randomly selected image, row (b) represents the ground truth
corresponding to the image, and rows (c–i) represent the experimental results from the FCN, U-Net,
DeepLabV3+, Swin-ViT, ST-UNet, SwinSUNet, and ACTNet methods, respectively.
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Figure 8. Confusion matrix for the ACTNet segmentation results.

4.5. Ablation Study

To further investigate the performance of the ResAttn, LFE module and the improved
mask-based segmentation method in this paper, we conducted a series of ablation ex-
periments on the Potsdam dataset. In these experiments, the baseline Swin Transformer
model used a Swin-T configuration with layer numbers = {2, 2, 6, 2} and window size
M = 7; all the models except ACTNet uniformly used Mask2Former as the segmentation
decoder. Our image enhancement methods on these two datasets used random cropping
and a 50% probability random flip, and the image resolution was uniformly scaled to
512 × 512 pixels. The overall experimental results are shown in Table 2, the specific values
for each classification are shown in Table 3, and the visualization results of the ablation
experiments are shown in Figure 9.

In Table 3, with the addition of the LFE and ResAttn modules leading to an increase
in model’s computations, the training time per epoch increased by 2.25 min and 3.13 min,
respectively. In the experiments where both LFE and ResAttn were added, we used the
pretrained parameters from the experiments with only the LFE module added. We froze
the weights of the Swin Transformer backbone and LFE modules and updated the weights
of the ResAttn module and decoder part. The experimental results showed only a small
increase in the training time and an improvement in segmentation performance, which
proves the effectiveness of an adapter in HRRS image segmentation. Meanwhile, the
inference time increased by 18.36 ms compared to the baseline; however, this is acceptable
in consideration of the improvement in classification accuracy.

Table 3. Overview of the results from the ablation experiments.

Method
Evaluation Metrics Inference

Time (ms)

Training
Time (min/epoch)mIoU (%) mAcc (%)

Swin-ViT 79.63 87.73 27.93 15.60
+LFE 80.73 88.88 33.44 17.85
+ResAttn 80.38 88.32 36.05 18.73
+LFE, ResAttn 81.52 89.57 46.08 19.02
ACTNet 82.15 90.28 46.29 19.02
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Figure 9. Visualization results from the ablation experiment. The black boxes mark the areas with
significant differences. Columns (1–5) represent the segmentation results of five different test images.
Row (a) represents the randomly selected image, row (b) represents the ground truth corresponding
to the image, and rows (c–g) represent the experimental results from the Swin-ViT, Swin-ViT with
LFE, Swin-ViT with ResAttn, Swin-ViT with LFE and ResAttn, and ACTNet models, respectively.

From Table 4, it can be seen that adding the LFE module to Swin-ViT increased the
mIou value by 1.1% and the mAcc value by 1.15%. The IoU value for the classes “Low
Vegetation”, “Tree”, “Car”, and “Impervious Surface” were significantly improved. From
Figure 9, row (d) shows a significant increase in IoU for the classes “Low Vegetation” and
“Car”. This demonstrates the effectiveness of CNN and a multi-scale structure in LFE mod-
ules for target edge analysis and small target segmentation. The relatively small increase
in inference time relative to the improved segmentation effect is shown in Table 2, which
proves the efficiency of the LFE module; these effectively compensate for the shortcomings
of the Transformer model in this regard.
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Table 4. Specific results from the ablation experiments.

Method

IoU Evaluation Metrics

Building
Low
Vegetation

Tree Car
Impervious
Surface

Clutter/
Background

mIoU mAcc

Swin-ViT(baseline) 77.06 76.40 60.16 83.89 86.86 93.41 79.63 87.73
+LFE 77.74 77.77 61.20 85.00 87.78 94.89 80.73 88.88
+ResAttn 77.22 77.48 61.02 84.81 87.08 90.83 79.74 88.32
+LFE, ResAttn 78.13 78.33 63.79 85.20 88.26 95.41 81.52 89.57
ACTNet 78.19 78.54 65.38 86.09 88.89 95.81 82.15 90.28

Meanwhile, Table 4 shows that the IoU values of “Low Vegetation”, “Tree”, and “Car”
obviously improved after adding the ResAttn module to Swin-ViT. This shows that the
double attention mechanism in the ResAttn module and the fusion of token and query
between the different features improved the segmentation effect for multiple identical
targets in a certain region. However, the IoU value of “Background” decreased, and it
can be seen from the black box of row (e) in Figure 9 that the “Impervious Surface” area
had some incorrect segmentation as “Background”. This indicates that the overuse of the
attention mechanism caused the model to forcibly associate a target with other targets of
different categories in a certain region, leading to segmentation errors. However, when
the LFE module was used in combination with the ResAttn module, it could suppress
some of the over-association effects of global modeling. As shown in Table 4, the use of
both LFE and ResAttn improved mIoU by 1.89% and mAcc by 1.15%, with a significant
improvements in all categories.

From the black box of row (f) in Figure 9, we can see that the misclassification of
“Impervious Surface” and “Low Vegetation” was suppressed; the boundary between
different targets was more clearly segmented. The segmentation results of the “Background”
category were also closer to the ground truth. This is because after concatenating the output
of LFE and ResAttn in the encoder part, the feature map set contained rich global modeling
information and local feature information simultaneously, which further improved the
model’s ability to discriminate between object features. Finally, after the addition of our
modified mask2former-based decoder under the above conditions, the model performance
was further improved, which demonstrates the importance of fusing more high-level
feature maps into the feature maps in multi-target segmentation.

5. Conclusions

In this paper, a high-performance HRRS image semantic segmentation method ACT-
Net was proposed. To address the problem of the high computational complexity of
the existing Transformer models for training downstream tasks and its dependence on a
pre-training weight of large datasets, we proposed a Transformer-based adapter module
for HRRS image semantic segmentation (ResAttn). This module uses a dual-attention
mechanism to ensure the acquisition of global information while the structure of Swin-ViT
remains unchanged. To enhance the extraction of edge and texture features, we designed a
CNN-based LFE module and used a pyramid-like structure to fit multi-scale objects. More-
over, we used a mask-based segmentation method with a residual-enhanced deformable
attention block to further improve the extraction of small objects. Our series of experiments
on the Potsdam dataset demonstrated the excellent performance of ACTNet. In the future,
we hope to further reduce the overall training parameters and computational resources
used by ACTNet. We will try to find a unified semantic segmentation network based on
the structure of ACTNet to support more HRRS image datasets. Furthermore, we will
explore its role in urban rail transportation planning, and to demonstrate the generality of
the ACTNet structure.
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Abstract: The present work, unlike others, does not try to reduce the noise in hyperspectral images to
increase the semantic segmentation performance metrics; rather, we present a classification framework
for noisy Hyperspectral Images (HSI), studying the classification performance metrics for different
SNR levels and where the inputs are compressed. This framework consists of a 3D Convolutional
Neural Network (3DCNN) that uses as input data a spectrally compressed version of the HSI,
obtained from the Tucker Decomposition (TKD). The advantage of this classifier is the ability to
handle spatial and spectral features from the core tensor, exploiting the spatial correlation of remotely
sensed images of the earth surface. To test the performance of this framework, signal-independent
thermal noise and signal-dependent photonic noise generators are implemented to simulate an
extensive collection of tests, from 60 dB to −20 dB of Signal-to-Noise Ratio (SNR) over three datasets:
Indian Pines (IP), University of Pavia (UP), and Salinas (SAL). For comparison purposes, we have
included tests with Support Vector Machine (SVM), Random Forest (RF), 1DCNN, and 2DCNN. For
the test cases, the datasets were compressed to only 40 tensor bands for a relative reconstruction
error less than 1%. This framework allows us to classify the noisy data with better accuracy and
significantly reduces the computational complexity of the Deep Learning (DL) model. The framework
exhibits an excellent performance from 60 dB to 0 dB of SNR for 2DCNN and 3DCNN, achieving a
Kappa coefficient from 0.90 to 1.0 in all the noisy data scenarios for a representative set of labeled
samples of each class for training, from 5% to 10% for the datasets used in this work. The source code
and log files of the experiments used for this paper are publicly available for research purposes.

Keywords: semantic segmentation; 3D convolutional neural network; noisy hyperspectral image;
Tucker tensor decomposition; spectral–spatial feature extraction

1. Introduction

Hyperspectral imaging studies the interactions between observed scenes and the
electromagnetic spectrum [1]. For example, it allows for measuring the amount of light
reflected into a spectral sensor. From these measurements, it is possible to obtain a distinc-
tive spectral signature composed of different wavelength channels [2]. If it is assigned a
label corresponding to the ground truth, with the help of a human expert or a clustering
algorithm, a Machine Learning classifier can be trained using supervised learning [2].
The hyperspectral image capturing process is far from ideal [3]; it is well known that
every signal will be prone to being corrupted by different kinds of noise depending on
the electronics’ quality, environment of capture, and many others factors. For example,
hyperspectral sensors are mounted on airplanes, drones, or satellites causing the capture
of data cubes to be highly expensive and noisy. Thus, the need for new methods that are
robust to noisy environments for expanding the possible range of applications. To address
this task, this work tests the performance of a 3DCNN for noisy hyperspectral images,
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which is a semantic segmentation algorithm based on the spatial–spectral feature extraction
pixel-by-pixel. Given the high computational complexity of the 3DCNN with the original
HSI, a dimensionality reduction method based on Tucker Decomposition compresses the
spectral dimension of the input, independent of the low signal-to-noise ratio.

1.1. Related Work

It is usual to consider data denoising as a preprocessing step for classification. As is
well known, there are many denoising algorithms for hyperspectral imagery [3–9], which
aims to recover the clean signal from the noisy one. These algorithms are particularly
useful when the posterior tasks analyze the spectral signature for qualitatively studies. On
the other hand, the pixel-based semantic segmentation (classification) could be based on
a wide range of algorithms, artificial neural networks architectures, or feature extraction
techniques; for example, Convolutional Neural Networks (CNNs) have demonstrated
outstanding results performing spatial and spectral feature extraction [2,10–15]. Semantic
segmentation techniques for RGB images, such as transfer learning [16–19], have been
applied to spectral imagery [20] in combination with fully convolutional models, such
as the well-known U-net [21–24]. There are other techniques specifically designed for
noise–robust classification, e.g., based on band fusion [25,26] or feature extraction as a
pre-processing step for a classification algorithm [27–31]. In some applications of optical
remote sensing satellites in orbit, using atmospheric correction as an example [32,33], for
hyperspectral [34,35] earth surface monitoring missions, the first task is to perform semantic
segmentation to obtain a classification mask, from which the atmospherically corrected
image is estimated.

This framework aims to classify the noisy data pixel by pixel. For example, 3DCNN can
extract spatial and spectral features despite the low Signal to Noise Ratio (SNR). However,
there is a drawback of using these models caused by the computational complexity of
having such huge datasets. Thus, we propose using Tucker Decomposition with a 3DCNN
to combine and improve the properties of DL and Decomposition in a single noise robust
framework. TKD shows excellent compression ratios with minimal or no effects in the
segmentation performance of DL models given that it found a lower-rank representation
of the original tensor, capturing the high spatial–spectral correlation of the data [36,37].
Not only that, in this work, we have shown that TKD helps to improve the classification
performance where there are a representative number of samples of each class for training.
Finally, in Table 1, we have a summary of the major papers consulted for the proposed
semantic segmentation framework.

Table 1. Main papers used for the proposed framework and its contribution.

Author Contribution

Tensor Kolda and Bader [38] Tensor theory
López et al. [36] Use of the TKD for semantic segmentation tasks

Noise Bourennane et al. [4] Noise theory and noise model
Liu et al. [39] Noise model and noise generation
Rasti et al. [3] Noise theory and classification test methodology

Classification Paoletti et al. [2] Classifiers code, architectures, and theory
Chen et al. [10] Spatial–Spectral feature extraction theory

Li et al. [40] 3DCNN architecture
Fu et al. [25] Noisy-robust classification

Metrics Grandini et al. [41] Metrics used for multi-class classification evaluation

Luque et al. [42] Impact of class unbalance for classification performance
metrics

1.2. Contributions

Our main contributions are three-fold:
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• This work provides the remote sensing community with a framework based on a
3DCNN and Tucker Decomposition, performing semantic segmentation of noisy hy-
perspectral images, from an SNR of from 60 dB to 0 dB, outperforming other classical
classifiers such as RF and SVM.

• Taking advantage of the spectral correlation of the data, we perform the Tucker De-
composition compressing only in the spectral domain; for example, for the three data
sets studied to 40 new tensor bands and achieving a relative reconstruction error of
less than 1%. This compression of the spectral domain of the input space reduces
the computational complexity, consequently reducing the training time ratio by up to
29 times with respect to the original input space, depending on the case.

• TKD not only reduces the computational complexity but also increases the classification
performance. This improvement was most significant for training set sizes on the order
of from 5% to 3%. Furthermore, the behavior of TKD under different SNR are studied
for the three used datasets.

The remainder of this work explains the basic concepts of tensor algebra, the noise
model used, and the architecture of the DL model in Section 2. Section 3 describes the
proposed framework. Section 4 analyzes the experiments. Finally, Sections 5 and 6 present
the discussion and conclusions, respectively.

2. Mathematical Background

This section presents a short description of the theoretical concepts used in each
stage of the proposed semantic segmentation framework. First, tensor theory for HSI
representation and compression based on the TKD is used [38]. Second, a noise model
for hyperspectral imagery is used in this paper for noise generation [3,4,39]. Finally, DL
spectral and spatial feature extraction models [2,10,40] with metrics are used to compare
ground truth labels and predicted ones for unbalanced training scenarios [41–43].

2.1. Tensor Algebra

Nowadays, research in tensor data analysis is finding new novel properties and
applications on spectral images [4,8,9,36,44–48]. For this reason, this section presents an
overview of the tensors theory, and the representation of an HSI as a tensor.

For tensor algebra, the work of Kolda and Bader [38] is our main reference. Us-
ing its notation, a scalar is denoted by x, and the vectors and matrices are denoted by
x and X, respectively, which can also be seen as tensors. For example, a first-order ten-
sor is a vector, and a second-order tensor is a matrix. A third- or higher-order tensor is
denoted by X with elements xi,j,...,n. Thus, naturally, a third-order tensor may be repre-
sented as a cube of elements. Besides, xi is the ith column of a matrix X, and a(n), A(n)

are the nth vector or matrix in a sequence of vectors or matrices, respectively. Now, a
mode-n fiber is a vector obtained by fixing all indices, except the one corresponding to the
nth-dimension [38] (pp. 457–460). X(n) is a mode-n matricization of an Nth-order tensor X,
where the mode-n fibers are arranged to be the matrix columns. Lastly, ‖X‖ denotes the ten-
sor norm of X ∈ RI1×I2×···×IN , as described by Equation (1); this is analogous to the matrix
Frobenius norm.

‖X‖ =

√√√√ I1

∑
i1=1

I2

∑
i2=1

· · ·
IN

∑
iN=1

x2
i1i2···iN

. (1)

An element of the new vector space generated by the outer product of the N vector
spaces on the same field R is an Nth-order tensor X. Thus, a tensor can be seen as a
multi-dimensional array of N dimensions. The order of a tensor is also called the ways
or modes [38]. An hyperspectral image H in Figure 1 can be represented as a third-order
tensor H ∈ RI1×I2×I3 , where I1 and I2 are image height and width, respectively. I3 is the
number of bands in which the electromagnetic spectrum is captured. Then, the element
xi1,i2,i3 is the pixel value at position (i1, i2) at band i3.
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I1

I2

I3

Figure 1. AVIRIS HSI of Indian Pines, NW Indiana. NASA/JPL [49].

In order to introduce the concept of TKD, the concepts of rank-one, vector outer
product, n-mode product, and n-rank are required. A rank-one tensor of the Nth-order
X ∈ RI1×I2×···×IN can be represented as the outer product of vectors [38],

X = a(1) ◦ a(2) ◦ · · · ◦ a(N), (2)

where the symbol “◦”, at Equation (2), represents the vector outer product. Thus, each
element xi1,i2,...,in of X is obtained from the corresponding vector elements [38]:

xi1,i2,...,in = a(1)i1
a(2)i2

· · · a(N)
iN

for all 1 ≤ in ≤ In. (3)

The n-rank, rankn(X), is the column rank of the matrix X(n). For easy-reading reasons,
it is defined rankn(X) as Rn of X for n = 1, ..., N. For an HSI represented as a third-order
tensor, H ∈ RI1×I2×I3 , rank1(H), and rank2(H) correspond to the spatial domain of the
image, such that 1 ≤ rank1(H) ≤ I1 and 1 ≤ rank2(H) ≤ I2. In the same way, rank3(H)
and 1 ≤ rank3(H) ≤ I3 corresponds to the spectral domain. Finally, for the n-mode
product of a tensor with a matrix, X×n U, with U ∈ RJ×In , the resultant tensor will have
dimensions I1 × · · · × In−1 × J × In+1 × · · · × IN [38] (pp. 460–461):

(X×n U)i1···in−1 jin+1···iN =
In

∑
in=1

xi1i2···iN ujin . (4)

Tucker in 1966 introduced the now-called Tucker Decomposition [50]. It is a form
of higher-order PCA and there are several tensor decompositions derived from this one.
The Tucker Decomposition (TKD) decomposes a tensor of Nth-order into a core tensor of
the same order but could have different dimensions, multiplied by a transformation matrix
along each mode [38]. The Tucker Decomposition for a third-order tensor, e.g., see Figure 2,
for an HSI representation, X ∈ RI×J×K, is defined as:

X ≈ G×1 A ×2 B×3C =
P

∑
p=1

Q

∑
q=1

R

∑
r=1

gpqr ap ◦ bq ◦ cr = [[G; A, B, C]], (5)

where P ≤ I, Q ≤ J and R ≤ K.
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I × P J × Q

K × R

Figure 2. Tucker Decomposition of Indian Pines HSI, a third-order tensor.

Element-wise, the Tucker Decomposition in Equation (5) is provided by:

xijk ≈
P

∑
p=1

Q

∑
q=1

R

∑
r=1

gpqr aipbjqckr for i = 1, ..., I, j = 1, ..., J, k = 1, ..., K. (6)

The entries of the core tensor G ∈ RP×Q×R “show the level of interaction between the
different components”. P, Q, and R are the new dimensions of the factor matrices A, B,
and C, respectively, which can be seen as the principal components in each mode. “If P, Q,
R are smaller than I,J,K, the core tensor G is a compressed version of X”.

According with Kolda and Bader [38], for Rn = rankn(X), an exact Tucker Decom-
position of rank (R1, R2, ..., RN) can be computed. Another case is “the truncated Tucker
Decomposition of rank (R1, R2, ..., RN), when Rn < rankn(X) for one or more n, then it will
be necessarily inexact and more difficult to compute.” Tucker Decomposition can compress
along selected dimensions. To do this, we use the Tucker1 Decomposition, defined in [38],
which fixes two factor matrices to be the identity matrix,

X ≈ G×1 A = [[G; A, I, I]]. (7)

2.2. Noise Model

Noise is intrinsic to any signal and hyperspectral imaging is not an exception. There
are many sources and kinds of noise present on HSIs mentioned in this section. In general,
the noise can be distinguished into two classes [4]: the fixed pattern noise and the random
noise. The first one is due to calibration errors, and it is not of interest in this work. Instead,
random noise, due to its stochastic nature, can be studied and generated from a suitable
noise model. For new-generation imaging spectrometers used in hyperspectral imagery,
the random noise mainly comes from two aspects: Signal-Dependent (SD) photonic noise
and Signal-Independent (SI) electronic noise, also known as thermal (Johnson) noise [51].

Although, the noise model used in this paper is due to the work of Bourennane et al. [4],
we are not addressing the signal denoising process; rather, we use it for the simulation of the
noisy data scenarios. For this, we carefully study the calculation of variances focused on the
implementation of a noise generator in Section 3.2. Using the tensor theory, the noisy HSI is
represented as a sum of the clean signal and additive noise [3].

H = X+N, (8)

where H,X,N ∈ RI1×I2×I3 . H is the noisy HSI, X is the clean signal, and N is the noise for
both photon and thermal noise [4]. Note that H is quantized depending on the capturing
sensor; this process is described in Section 3.2 by Equation (26). The noise model in
Equation (8) is valid under the assumption of high-SNR of X. The variance of the noise
depends of each pixel value xi1,i2,i3 in the clean signal X. The tensor N is composed of the
sum of two tensors, the photonic noise tensor P ∈ RI1×I2×I3 , and the thermal noise tensor
T ∈ RI1×I2×I3 . Thus:

N = P+ T, (9)
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where P is dependent of the clean signal X, and T is signal independent.
The improvement of the Charged Couple Device (CCD) sensors for new generation

instruments exhibited a tendency to increase the spatial resolution. Therefore, the number
of photons that reach a pixel per unit time becomes smaller, causing the random fluctuation
of photons arriving at the sensor. Consequently, the photonic noise is now more relevant
than before [4]. Photonic noise follows Poisson distribution [52], but it can be approximated
by a Gaussian distribution [53]. A single photon noise element pi1,i2,i3 of tensor P ∈
RI1×I2×I3 can be expressed in terms of its corresponding element xi1,i2,i3 of the clean signal X
as follows [53]:

pi1,i2,i3 =
(
xi1,i2,i3

)γ · ui1,i2,i3 , (10)

where ui1,i2,i3 is a stationary, zero-mean uncorrelated random process independent of xi1,i2,i3
with variance σ2

u”. “In the case for earth remote sensing images captured by instruments
mounted in airborne or spaceborne platforms, the exponent γ is equal to 0.5” [51]. Thus:

pi1,i2,i3 =
√

xi1,i2,i3 · ui1,i2,i3 . (11)

The thermal agitation of the charge carriers inside the electronics of the instruments
used for hyperspectral images causes the thermal noise. A single thermal noise element of
the noise tensor T is denoted by ti1,i2,i3 ; this random process can be modeled as an additive
zero-mean white Gaussian noise with variance σ2

t [4].
From Equations (8) and (9), the noise model used in this paper is:

H = X+P+ T. (12)

Element-wise, using Equations (10) and (11), the noise model is:

hi1,i2,i3 = xi1,i2,i3 +
√

xi1,i2,i3 · ui1,i2,i3 + ti1,i2,i3 . (13)

To highlight the dependency, another useful notation for Equation (9) is [39]:

N(X) = NSD(X) +NSI . (14)

ni1,i2,i3(X) =
√

xi1,i2,i3 · ui1,i2,i3 + ti1,i2,i3 . (15)

Given this, Equation (12) can be rewritten as:

H(X) = X+NSD(X) +NSI . (16)

This SD and SI noise model is used in the framework of this paper, because it considers
two of the main sources of random noise for new generation sensors.

2.3. Spectral–Spatial Deep Learning Models

Generally, spectral signatures of equally labeled pixels are highly correlated between
them, and this is a feature that most of the classification algorithms take advantage of for
class separation. Spatial correlation is present when a group of neighbor pixels belongs
to the same class, which is a common case for remote sensing optical images of the earth
surface. Convolutional Neural Networks (CNN) are DL models designed to extract features
of neighbor pixels and bands, based on this, the architecture depends on the feature analysis
they perform. CNNs for HSI classification are divided in three kinds: spectral, spatial,
and spectral–spatial [2].

For the Spectral DL model (1DCNN) in Figure 3, the spectral pixels xi ∈ Nnbands

are the input data, where nbands is the number of bands of the image with or without
compression. On each convolutional layer (CONV), 1D-kernels are applied, such that
K(l) × q(l), obtaining as a result an output X(l) composed of K(l) feature vectors [2].
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Figure 3. Traditional architecture of spectral convolutional model employed using 1DCNN [2].

Spatial DL models (2DCNN) consider the spatial information obtained from the
neighbor pixels of the HSI, see Figure 4. For that reason, the input will be spatial patches
of d × d pixels cropped from the complete HSI with the pixel of interest at the center.
To extract spatial features, on each CONV layer, 2D-kernels are applied over the input data,
such that K(l) × k(l) × q(l), obtaining K(l) feature maps as a result [2].

Figure 4. Traditional architecture of spatial convolutional model employed using 2DCNN [2].

Spectral–spatial DL models (3DCNN) extract spectral and spatial features at the same
time, see Figure 5. Similarly, as with 2DCNN, the features are extracted from spatial patches
of d × d, associated with a single pixel of the HSI. This model uses 3D-kernels, such that
K(l) × k(l) × k(l) × q(l), extracting K(l) feature volumes as output [2].

Figure 5. Traditional architecture of spectral–spatial convolutional model employed using 3DCNN [2].

All these spectral feature extraction DL methods basically infer the ground truths
based on the spectral signature. Moreover, remote sensing images exhibit an obvious
correlation between neighbor pixels, causing the spatial feature extraction to be a good
candidate for this task. Spectral–Spatial feature extraction adopts both characteristics,
creating features volumes from a pixel of interest, and, additionally, contains information
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from its neighbor pixels. For this reason, we use 3DCNN, which is used for the classification
of hyperspectral remote sensing noisy images.

2.4. Unbalanced Classification Performance Metrics

Unbalanced classification performance metrics are a key piece for this framework, because
we cannot guarantee the same number of labeled samples per each class for HSIs to be tested.
Each image will have different spatial Ground Truth (GT) distribution, and there is a need to
highlight that, when identifying targets with a low sample count, classical metrics in multi-class
classification may show biases. For example, the Overall Accuracy is defined as the number of
correct classified samples divided by the overall number of samples. This metric is not reliable
when the classification problem is imbalanced. The Average Accuracy metric is essentially an
average of the accuracies per each class. If the classification problem shows an unbalanced
distribution of classes, this metric takes into account the accuracy per each class as equal,
independent of the number of samples. On the other hand, Cohen in 1960 evaluated the
classification of two raters (prediction of the model and the actual GT) in order to measure
the agreement between them [41]. Cohen’s Kappa coefficient (K) is widely used for the
performance evaluation of remote sensing image classification. For this reason, all the
results in this work are presented with this metric.

Given a predicted classification map Ŷ, obtained from the trained classifier, and the
ground truth Y, of the HSI, a multi-class confusion matrix M =

(
mi,j

) ∈ Zc×c is computed,
where c is the number of classes in Y.

For the case of a binary confusion matrix, Cohen´s Kappa coefficient is defined as follows:

K =
Po − Pe

1 − Pe
. (17)

where Po is the accuracy achieved by the model, Pe is the level of accuracy to obtain by
chance. For a multi-class confusion matrix, K is defined as:

K =
∑c

k=1 mk,k ∑c
i=1 ∑c

j=1 mi,j − ∑c
k=1

(
∑c

i=1 mi,k ∑c
j=1 mk,j

)
(

∑c
i=1 ∑c

j=1 mi,j

)2 − ∑c
k=1

(
∑c

i=1 mi,k ∑c
j=1 mk,j

) . (18)

The case when K = 1 shows a perfect agreement between the GT and predicted
labels. K = 0 means that there is a chance of agreement, but if K is negative, it is a clear
disagreement. Each class classification must have importance; for that reason, all the results
are presented with Cohen’s Kappa coefficient, but the other two metrics (OA and AA) can
be consulted in the log files available in the public repository of this paper [54].

3. Proposed Framework

The proposed framework consists of the following three blocks:

• Noise Generation and Quantization: Having as input the clean signal power,
the variances for signal-dependent and independent noise processes are calculated
for a specified SNR. In order to follow the non-negative integer values of a digital image,
a quantization is performed.

• Tucker Decomposition: Transforms H into a new input space through a core-tensor G
and factor matrices IA, IB and C, where G is a spectrally compressed version of H.

• Deep Learning Model: The model is fitted in terms of the Softmax loss with G and the
class labels present in the ground truth Y, evaluating the prediction Ŷ of the trained
model with metrics that consider a possible unbalanced class scenario.

In Figure 6, a block diagram of the proposed framework is shown.
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Figure 6. Proposed framework.

3.1. Problem Statement

Given X ∈ RI1×I2×I3 , which is a source HSI in a third-order tensor form, assuming
high-SNR, and Y ∈ NI1×I2 , and given the corresponding pixel ground truth matrix, a noise
tensor N must be generated with the same size of X, N ∈ RI1×I2×I3 . N is the sum of two
third-order tensors, the signal-dependent photon noise P, and the signal-independent
thermal noise T; hence, N = P+ T. N must be generated in such a way that the SNR
between X and N is at a desired target and the power of both noise tensors are at different
proportions. Thus, the new noisy HSI H is obtained from the sum of the original HSI X,
and the generated noise tensor N; therefore, H = X+N,H ∈ RI1×I2×I3 .

The purpose of H is to evaluate the classification performance of the Spectral–Spatial
DL models when the input HSI is noisy and no denoising method is applied, but the training
complexity of these models is too high compared with some classical classifiers. Hence,
there is a need to reduce the size of the input to decrease the computational complexity
of the DL model. This task could be performed using a Tucker Decomposition-based
Spectral Compression, setting a suitable compression ratio. Thus, it is necessary to find a
core tensor G ∈ RI1×I2×R3 , which will be a spectrally compressed version of H, such that
R3 ≤ rank3(H).

With the pair (G, Y), divide the ground truth available pixels in training and testing
sets, taking into account a possible imbalanced classification case. Train the DL Spectral–
Spatial Model and predict with it a Ŷ. Finally, evaluate the performance of the DL model
with multi-class classification metrics between Y and Ŷ.

3.2. Noise Generation and Quantization

For experiment purposes of this paper, under the assumption of high-SNR, each
available HSI obtained from space agencies is considered as the clean signal X from
Equation (16). From X, the noise variances σ2

u,i3
and σ2

t,i3
are calculated to generate samples

of the random processes ui1,i2,i3 and ti1,i2,i3 , which correspond to generate the noise tensors
NSD(X) and NSI at a specified SNR in dB [39]. If the variance of the signal is calculated
on homogeneous pixels, this is σ2

xi1,i2,i3
= 0 by definition [51]; assuming that x, u, and t are
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independent, and both u and t are zero mean and stationary, the noise variance of each
element n(X) of the noise tensor N(X) can be written as [39]:

σ2
ni1,i2,i3

(X) = xi1,i2,i3 · σ2
u,i3 + σ2

t,i3 ; (19)

“in practice, homogeneous pixels with σ2
xi1,i2,i3

= 0 may be extremely rare and theoretical
expectation are approximated with local averages” [51]. The mean variance of the noise
tensor N(X) is composed of the sum of the SD and SI noise variances:

σ2
N(X) = σ2

NSD(X) + σ2
NSI

. (20)

Besides, it can be expressed in terms of the mean power of the signal X and the SNR (dB):

σ2
N(X) = PX · 10−(

SNR
10 ), (21)

where PX = ‖X‖2

I1 I2 I3
. Assuming a parameter α, which controls the contribution of both noise

processes to the noise tensor N(X), such that:

α =
σ2
NSD(X)

σ2
NSI

. (22)

From Equations (20) and (22), the mean SI and SD noise variances are expressed in
terms of α as follows:

σ2
NSD(X) =

σ2
N(X) · α

α + 1
,

σ2
NSI

=
σ2
N(X)

α + 1
.

(23)

Furthermore, the noise variances to draw samples are:

σ2
u,i3 =

σ2
NSD(X)

μi3
,

σ2
t,i3 = σ2

NSI
.

(24)

Some mathematical details of the noise model can be consulted in Appendix A.1.
Once obtained, the noise variances are drawn as random samples from a normal

continuous random variable to obtain the tensor N. As seen in Equation (8), H is obtained
by the addition of X and N. The elements hi1,i2,i3 of such tensors are integers, in the range
0 ≤ hi1,i2,i3 ≤ L, where L is the number of quantization levels, provided by Equation (25),
which depends on Q, the number of bits of the sensor. Then,

L = 2Q − 1, (25)

and where a uniform quantization was performed according to the following rule:

hi1,i2,i3 =

⎧⎪⎪⎨⎪⎪⎩
0 if hi1,i2,i3 ≤ 0
L if hi1,i2,i3 ≥ L⌊

hi1,i2,i3
⌋

if
(
hi1,i2,i3 −

⌊
hi1,i2,i3

⌋)
< 1

2⌈
hi1,i2,i3

⌉
otherwise.

(26)

In Figure 7, the behavior of both different kinds of noise is observed, where a specific
case of Pavia University is displayed. The SD noise is clearly more present in the high-
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reflectance pixels. On the other hand, the SI noise is uniformly distributed along the spatial
domain.

Figure 7. 30th band of Pavia University HSI. SNR = −15, α = 5.

3.3. Tucker Decomposition-Based Spectral Compression

For our particular case of HSI, we need to reduce the dimensionality in the spectral
domain only. If the factor matrices A and B are the identity matrices, which correspond to
the spatial components, then:

H = G×3 C = [[G; I, I, C]], (27)

H(3) = CG(3). (28)

Thus, the core tensor keeps the first two dimensions or spatial domain but reduces the
third dimension or spectral domain, causing G to be a spectrally compressed version of H.
To perform this computation, using the truncated Tucker Decomposition, set the n-ranks
to: R1 = rank1(H), R2 = rank2(H), and R3 < rank3(H), and reduce the spectral domain
from I3 spectral bands to R3 new tensor bands.

3.4. Deep Learning Model Architecture

In this paper, the experiments were performed using a 3DCNN model, given that,
generally, the spectral and spatial domains of HSIs are highly correlated. In Table 2, it is
shown that the architecture used is [2,10,40]. The fundamentals of the 3DCNN model were
explained in Section 2.3.

Table 2. Architecture of the 3DCNN model.

Main Layer Normalization Activation Function Downsampling

Linear input
(19 × 19 × nbands) - - -

CONV(32 × 5 × 5 × 24) BN ReLU -
CONV(64 × 5 × 5 × 16) BN ReLU POOL (2 × 2 × 1)

FC(300) BN ReLU -
FC(nclass) - Softmax -

4. Dataset Experiments and Results

The following section explains the setup and details for the experiments performed to
test the framework. The source code and log files with the obtained results are available
in the following GitHub repository [54]: github.com/EfrainPadilla, https://github.com/
EfrainPadilla/Noisy-Hyperspectral-Semantic-Segmentation-Framework-based-on-Tucker-
Decomposition-and-3D-CNN (accessed on 10 March 2022).
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4.1. Hardware

The experiments were performed using SSH in a High-Performance Computing (HPC)
server installed at the Cinvestav Guadalajara Campus. The hardware is described in Table 3.
The implementation ran in Python 3.8.5 and the neural network was implemented in Keras-
Tensorflow 2.3.0 with CUDA 10.1. Google Collab was used for developing and testing.

Table 3. Hardware of HPC server for experiments.

Hardware Cinvestav Guadalajara HPC Server

CPU ×2 Intel Xeon 2.20 GHz 13.75 MB Cache L3
Cores per CPU 10

Threads 40

RAM 6×16 GB 96 GB DDR4 HPE Smart 2666 MHz
ECC

GPU ×1 NVIDIA Tesla V100 PCIe 3.0
GPU Memory 16 GB HBM2
CUDA cores 5120

4.2. Datasets Description
4.2.1. Indian Pines

The Indian Pines (IP) dataset was captured using the AVIRIS sensor [55] in 1992, an
agricultural area in NW Indiana, characterized by its crops of regular geometry and its
irregular forest regions. The spatial resolution is 20 m per pixel with dimensions 145 × 145.
From 224 bands in a wavelength range of 0.4 to 2.5 μm, 24 were removed for being null or
water absorption bands (in particular 104–108, 150–163, and 220), considering the remaining
200 bands for the experiments [2]. The ground truth described in Table 4 has 10,249 labeled
samples divided into 16 classes and true color (RGB) is composed from bands 28, 16, and 9
as red, green, and blue, respectively.

Table 4. Indian Pines ground truth description and true RGB visualization, from [2].

Class Number-Name Samples Color Ground Truth True RGB

“0-Background 10,776
1-Alfalfa 46

2-Corn-notill 1428
3-Corn-mintill 830

4-Corn 237
5-Grass-pasture 483

6-Grass-trees 730
7-Grass-pasture-mowed 28

8-Hay-windrowed 478
9-Oats 20

10-Soybean-notill 972
11-Soybean-mintill 2455
12-Soybean-clean 593

13-Wheat 205
14-Woods 1265

15-Buildings-Grass-Trees-Drives 386
16-Stone-Steel-Towers” 93

4.2.2. University of Pavia

The campus of the University of Pavia (UP) was captured using the ROSIS sensor [56]
in 2002, an urban environment in the North of Italy with multiple solid structures, natural
objects, and shadows. The spatial resolution is 1.3 m per pixel with dimensions 610 × 340
and 103 bands in a wavelength range of from 0.43 to 8.6 μm. The ground truth described
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in Table 5 has 42,776 labeled samples divided into nine classes and true color (RGB) is
composed from bands 48, 24, and 9 as red, green, and blue, respectively.

Table 5. University of Pavia ground truth description and true RGB visualization, from [2].

Class Number-Name Samples Color Ground Truth True RGB

“0-Background 164,624
1-Asphalt 6631

2-Meadows 18,649
3-Gravel 2099
4-Trees 3064

5-Painted metal sheets 1345
6-Bare Soil 5029
7-Bitumen 1330

8-Self-Blocking Bricks 3682
9-Shadows” 947

4.2.3. Salinas

The Salinas (SAL) HSI was captured using the AVIRIS sensor [55] in 2001 over several
agricultural fields in the Salinas Valley, CA, USA. The spatial resolution is 3.7 m per pixel
with dimensions 512 × 217. As in the case of IP, from 224 bands in a wavelength range of
from 0.43 to 8.6 μm, 20 were discarded due to water absorption and noise [2]. The ground
truth described in Table 6 has 54,129 labeled samples divided into 16 classes and true color
(RGB) is composed from bands 28, 16, and 9 as red, green, and blue, respectively.

Table 6. Salinas ground truth description and true RGB visualization, from [2].

Class number-name Samples Color Ground Truth True RGB

“0-Background 56,975
1-Brocoli-green-weeds-1 2009
2-Brocoli-green-weeds-2 3726

3-Fallow 1976
4-Fallow-rough-plow 1394

5-Fallow-smooth 2678
6-Stubble 3959
7-Celery 3579

8-Grapes-untrained 11,271
9-Soil-vinyard-develop 6203

10-Corn-senesced-green-weeds 3278
11-Lettuce-romaine-4wk 1068
12-Lettuce-romaine-5wk 1927
13-Lettuce-romaine-6wk 916
14-Lettuce-romaine-7wk 1070

15-Vinyard-untrained 7268
16-Vinyard-vertical-trellis” 1807
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4.3. Data Pre-Processing for Reduction of Number of Bands

The noise generation is implemented using the random.normal package of Numpy [57],
where we draw samples with the computed variances, seen in Section 3.2. Tucker Decom-
position is implemented using Tensorly [58], but the code was modified to set the spatial
projection matrices to be the identity matrix, as seen in Equation (27). To select the spectral
compression ratio, the reconstruction error of the original H using TKD for different num-
ber of tensor bands R3 = 1, 2, ..., I3 was calculated. The relative reconstruction error ξ is
obtained using Equation (29).

ξ =
‖H− ĤR3‖2

‖H‖2 . (29)

In Figure 8, the relative reconstruction error is shown for each compression case of IP, UP,
and SAL. We have selected R3 = 40 for all the experiments of this paper, given its low relative
reconstruction error (below 1%) for the three images. Table 7 shows the reconstruction error ξ
and the running time of TKD with R3 = 40, for each HSI used in this paper.

Table 7. Reconstruction error and running time of TKD compressing to 40 tensorial bands.

HSI ξ TKD Running Time (s)

IP 0.994 % 2.89
UP 0.019 % 16.83

SAL 0.027 % 12.41

5 10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

R3

ξ

IP
UP

SAL

Figure 8. Relative error between original data and the reconstruction from core tensor.

TKD Behavior for Low-SNR HSI Analysis

The aim of the TKD is to find a vector space of a smaller dimension to represent
the same information of the original space, taking advantage of the spatial and spectral
correlation of pixels. As explained in Section 2, the core tensor G defines the contribution by
the weights on the ith frontal slice G::i. A simple way to visualize the contribution of each

tensorial band is to compute the power per pixel pi of the ith frontal slice using pi =
‖G::i‖2

I1 I2
.

In Figure 9, the behaviors of the contribution for the first tensorial bands from 60 dB to
−20 dB are shown for the three datasets used in this paper. The last bands show very low
power compared to the first ones; for this reason, they are not included in Figure 9. It is
clear that the main contribution is on the first two tensorial bands of G for the three datasets,
but the contribution becomes smaller for low-SNR scenarios. This is explained because the
data becomes uncorrelated by the random noise processes with higher variances, causing
it to be harder to find a projection matrix that defines the direction of the data. For IP in
Figure 9a, the power per pixel of the first tensorial bands start to decay approximately at
20 dB, for UP in Figure 9b at 0 dB, and SAL in Figure 9c at 10 dB; note that SAL decays less
than IP and UP. The higher power per pixel values corresponds to high spatial correlated
scenes, such as IP and SAL, which are composed of agricultural crops, different to UP,
which is an urban scenario. This could explain the power value differences.
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Figure 9. First five tensorial bands power from G, after performing TKD from 60 dB to −20 dB, α = 1.

To take advantage of the spatial correlation feature extraction of the 3DCNN model, it
is necessary to generate a patch with the pixel of interest and its neighbors to train and test
the DL model. Each patch P is composed of 361 pixels (P ∈ R19×19×bands), with the pixel of
interest in the center (p9,9,i3 ); if this pixel is associated with a background label, the patch is
discarded. The patch is padded with zeros if the pixel is at the edge of the image. Note
that the labeled patches contain unlabeled pixels. In Table 8, the running time for patch
generation is shown.

Table 8. Running time for patch generation.

Compressed HSI (40 Bands) Patches Generation Running Time (s)

IP 0.71
UP 18.51

SAL 10.53

We have used scikit-learn [59] for the split of patches in the training and testing sets.
The samples are randomly chosen in each experiment with a stratification strategy based
on k-folds, which returns the stratified folds, where we ensure that the train and test sets
have approximately the same percentage of samples of each class available in the ground
truth Y. In this paper, the size for the training dataset is called the Train Size (TS), and
is represented in a percentage from the total labeled samples available. The size for the
testing data will be the remaining labels. In Table 9, the number of samples for each case
are shown. For the IP case, a smaller set than 5% for the training implies selecting less
than one sample for the “Oats” class; for this reason, we do not perform experiments with
smaller TS for IP. On the other hand, a bigger TS than 20% for IP or 15% for UP and SAL
obtain redundant results and are not aggregated for easy-reading reasons.

Table 9. Number of samples for training and testing sets.

HSI Set 20% 15% 10% 5% 3% 1%

IP Training 2049 1537 1024 512 - -
Testing 8200 8712 9225 9737 - -

UP Training - 6416 4277 2138 1283 427
Testing - 36,360 38,499 40,638 41,493 42,349

SAL Training - 8118 5412 2706 1623 541
Testing - 46,011 48,717 51,423 52,506 53,588
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4.4. 3DCNN Prediction of Data with Variable SNR from 60 to −20 dB

To test the 3DCNN DL model robustness against noise, this experiment considers the
model trained with the original data “clean signal”, but the prediction is performed for
noisy data with different SNR levels and α values. The model was trained for IP, UP, and
SAL with a TS of 15%; the results are shown in Figure 10.
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Figure 10. Cohen’s Kappa coefficient obtained by the prediction of the 3DCNN DL model over raw
noisy data, trained with 15% of the noise-free data of IP, UP, and SAL, without TKD. UP shows the
highest Cohen’s Kappa coefficient values until −20 dB; after that SAL and IP are the lowest.

This experiment shows that the prediction made by 3DCNN does not change signif-
icantly when the signal power is greater than the noise power. For IP, noise affects the
prediction for SNR ≤ 15 dB. For UP and SAL, noise affects the classifier when the SNR is
below 0 dB. The different tested α values do not seem to affect the prediction performance
in any particular way.

4.5. Comparison between 3DCNN and Other Classical Algorithms

In this section, Figure 11–13 show a comparison of the performance robustness to
high-level noisy data scenarios of spectral (1DCNN), spatial (2DCNN), and spatial–spectral
(3DCNN) DL models; additionally, Random Forest (RF) and Support Vector Machine
(SVM), which are widely used classifiers, are tested in the same scenario. The training and
testing were individually performed for each SNR level with α = 1. The results are the
average of 10 runs, showing very low variability. Table A1 in Appendix A.2 shows the
average Kappa Coefficient with the standard deviation for each experiment.
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Figure 11. Indian Pines. Cohen’s Kappa coefficient obtained by different classifiers for IP HSI
compressed with TKD to 40 tensorial bands training with 10% of TS. The best performance is
achieved by 3DCNN and 2DCNN, then RF, 1DCNN, and SVM in descending order.
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Figure 12. University of Pavia. Cohen’s Kappa coefficient obtained by different classifiers for UP
HSI compressed with TKD to 40 tensorial bands training with 10% of TS. The best performance is
achieved by 3DCNN and 2DCNN, then 1DCNN, RF, and SVM in descending order.
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Figure 13. Salinas. Cohen’s Kappa coefficient obtained by different classifiers for SAL HSI compressed
with TKD to 40 tensorial bands training with 10% of TS. The best performance is achieved by 3DCNN
and 2DCNN, then 1DCNN, RF, and SVM show aproximately the same performance above 10 dB, but,
below that, SVM was shown to be the worst.

Given the high spatial correlation of the agricultural crops present in IP, the classifiers
based on spatial feature extraction achieved better results in all the noise level scenarios.
Besides, 3DCNN performs slightly better than 2DCNN at low-level noisy data scenarios;
on the other hand, at highly noisy scenarios, 2DCNN performs better. The performance
of the spectral-based feature extraction classifiers, 1DCNN, RF, and SVM, is considerably
lower than 2DCNN and 3DCNN in all cases, and they are severely affected for SNR ≤ 0 dB.

4.6. Performance, Computational Complexity, and Training Time Comparison between Original
and Compressed Data Using TKD for 3DCNN Model

The purpose of this section is to show how TKD improves the performance and
reduces computational complexity. We have tested the 3DCNN DL model for different
noise levels with an equivalent presence of SD and SI noise (α = 1). The compression is
performed reducing from 200 (IP), 103 (UP), and 204 (SAL) bands, to 40 new tensor bands
in the three cases and for a relative reconstruction error less than 1%. The DL model is
trained for 40 epochs.

For the Indian Pines HSI with 10249 labeled samples available, we show three training
scenarios with 15%, 10%, and 5% for the TS of them in Figure 14.
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Figure 14. Indian Pines. Cohen’s Kappa coefficient obtained using 3DCNN DL model trained for
40 epochs from the original IP HSI and compressed with TKD to 40 tensorial bands. From 60 to
−5 dB, Tucker improved the performance for Cohen’s Kappa coefficient.

It can be seen that the achieved performance of the DL model training with 15%
and 10% of the available labels is always high, even in the high-level noisy scenarios.
The Tucker Decomposition improves the classification performance in low- and mid-level
noisy scenarios in all the cases. For from 5% to 15% of TS, and from SNR 60 to 0 dB,
TKD improves the prediction and is more significant for a TS of 5% than 10% or 15%.
The performance achieved, fpr the training with 5% of the labels, is significantly lower than
the other two cases, but the TKD remarkably improves the classification performance for
low- and mid-level noisy scenarios, while reducing the training time.

For the University of Pavia, HSI with 42,773 labeled samples were available; we show
two training scenarios with 5% of TS and 1% in Figure 15.
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Figure 15. University of Pavia. Cohen’s Kappa coefficient obtained using 3DCNN DL model trained
for 40 epochs from the original UP HSI and compressed with TKD to 40 tensorial bands. From 60 to
−5 dB, Tucker improved the performance for Cohen’s Kappa coefficient.

In this case, a consistent improvement of the training is observed with the data
compressed by TKD. The improvement increases as the number of available samples for
training decreases.

For the Salinas HSI with 54,129 labeled samples available, we show two training
scenarios with 5% and 1% of TS in Figure 16.
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Figure 16. Salinas. Cohen’s Kappa coefficient obtained using the 3DCNN DL model trained for
40 epochs from the original SAL HSI and compressed with TKD to 40 tensorial bands. From 60 to
−20 dB, Tucker improved the performance for Cohen’s Kappa coefficient.

The same behavior is observed in the SAL case, where TKD remarkably improves the
performance in all noisy scenarios. Furthermore, the improvement is more notorious with
a lower quantity of samples for training.

From Figures 14–16, for 5% of TS until 0 dB of SNR, the lowest score is achieved
by IP and the highest by SAL, while UP is in between these two. In these three cases,
TKD improves the classification performance in terms of the Cohen’s Kappa coefficient.
The classification performance of the DL model trained with the compressed HSI by TKD
achieves slightly better results at high-SNR levels compared with the original HSI, while,
at low-SNR values (close to 0 dB), the performance decreases as the noise power increases.
It is important to note that the classification results for the input data compressed by
TKD follows the trends in Figure 9, where, for low-SNR, the weight of the contribution
of the first tensorial bands of SAL is greater than that corresponding to IP and UP. For IP,
the improvement of TKD decreased from SNR ≤ −5 dB; for UP, when SNR ≤ −10 dB, and
for SAL, it is always superior. Generally, the aim of compression methods is to reduce
the input data size for decreased computational complexity of post-processing algorithms.
In this case, TKD not only reduces that complexity but it also improves the classification
performance in some cases. The training times of the above experiments are shown in
Table 10. Some of them are not displayed in the graphics because of easy-reading reasons
(all the log files are available at the public repository for this paper [54]), but all cases follow
the same behavior. TKD reduces the original number of bands of each HSI to 40 tensor
bands in all the experiments, with a low relative reconstruction error (ξ ≤ 1%). The times
shown in Table 10 are approximately the average of the experiments presented above,
the variation of the training time is insignificant in all the experiments with the same TS.

Table 10. Training time comparison for IP, UP, and SAL datasets.

15% TS 10% TS 5% TS 1% TS

Indian
Pines

Original-200 bands (s) 1889.73 1702.36 1469.47 1284.38
TKD-40 bands (s) 67.56 63.54 58.43 55.32

Time reduction ratio 27.97 26.79 25.49 22.56

University
of

Pavia

Original-103 bands (s) 2987.26 2660.66 2321.35 2041.95
TKD-40 bands (s) 255.90 239.80 228.65 208.53

Time reduction ratio 11.67 11.09 10.15 9.79

Salinas
Original-204 bands (s) 9762.00 8783.62 7714.61 6692.29

TKD-40 bands (s) 328.07 302.23 279.74 266.59

Time reduction ratio 29.75 29.06 25.57 25.10
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4.7. Framework Testing with Datasets for Different α-Values and TS Percentage

The aim of the experiments of this subsection is to show the 3DCNN model perfor-
mance for different levels and kinds of noise, simulating an extensive set of scenarios for
the framework testing. The parameter α controls the dominance of signal-dependent over
signal-independent noise (see Equation (22)). The following experiments in Figures 17–19
were performed compressing the HSIs to 40 tensor bands and training the 3DCNN DL
model for 40 epochs.
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Figure 17. Indian Pines. Cohen’s Kappa coefficient obtained using 3DCNN DL model trained with
20%, 15%, 10%, and 5% of the samples of compressed IP HSI for different α values. α-values do not
seem to influence Cohen’s Kappa coefficient.
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Figure 18. University of Pavia. Cohen’s Kappa coefficient obtained using 3DCNN DL model trained
with 15%, 10%, 5%, 3%, and 1% of the samples of compressed UP HSI for different α values. α-values
do not seem to influence on Cohen’s Kappa coefficient.

These experiments show the capabilities of the DL model to extract representative
features for all datasets employed in this work. These results have shown that a repre-
sentative number of samples of each class for training is key for the consistent perfor-
mance for SNR ≥ 0 dB. In terms of TS, for IP TS ≥ 10%, UP TS ≥ 3%, and SAL TS≥ 3%.
The changes in the α values tested, from 0.1 to 10, do not seem to influence the
classification performance.
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Figure 19. Salinas. Cohen’s Kappa coefficient obtained using 3DCNN DL model trained with 10%,
5%, 3%, and 1% of the samples of compressed SAL HSI for different α values. α-values do not seem
to influence Cohen’s Kappa coefficient.

5. Discussion

In this paper, we provide a classification framework for remote sensing hyperspectral
imagery, which allows for adding simulated signal-dependent and signal-independent noise to
test their robustness for different SNR values. This kind of framework allows for performing
semantic segmentation for noisy hyperspectral images with different SNR values.

The framework is based on a 3DCNN, which is a spectral–spatial deep learning feature
extraction model. This method proved to be robust against the training for low-signal-
to-noise ratio cases (even when the noise power is greater than the signal power), see
Figures 11–13. It is also possible when predicting noisy data from training with noise-free
data, such that prediction is affected until the noise power is of the same magnitude as the
signal power (SNR close to 0 dB), see Figure 10. However, the computational complexity
and resource requirements are higher, compared to other classification algorithms. For that
reason, we have implemented spectral compression based on Tucker tensor decomposition,
resulting in shorter training times and less hardware resources for implementation.

Tucker Decomposition performs compression correctly until the noise power is of
the same magnitude as the signal power, which is a borderline noise case. In most cases,
compression, based on TKD, improves the performance of the classifier, see Figures 14–16.
This improvement is most noticeable when the model is trained with a set of samples in
the order from 5% to 3%.

Since remote sensing images present in nature an unbalanced classification problem,
all the results were analyzed primarily using the multi-class unbalanced classification
metric, the Cohen’s Kappa coefficient, which provides us with a summary of the confusion
matrix between the predicted labels and the ground truth of the original image. Three
unbalanced hyperspectral images widely studied in the state of the art (described in
Tables 4–6) were used to generate the noise and to test the framework: University of Pavia,
Salinas, and Indian Pines.

In this way, the presented framework can effectively classify images directly from raw
data, with high- and low-signal-to-noise ratios. In the state-of-the-art context, this article
includes a detailed analysis for different noisy cases and training with low availability
of labeled samples. Our current experiments have demonstrated outstanding results.
Although, some related papers use the same datasets, a direct comparison is not fair
because a different noise model or SNR are used, with a different number of samples for
the classifier training as well as different objectives. The work closest to us is [25], but it is
only comparable with the original datasets or high-SNR cases of Figures 14–16, where our
approach obtains slightly higher results in terms of the Kappa coefficient for UP (from 0.954
to 0.958) and SAL (from 0.965 to 0.988), but slightly lower results for IP, (from 0.94 to 0.91).
For the same original datasets, our approach is competitive with other approaches such
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as [26–30]. As some of the references present their classification results with the overall
accuracy metric only, we prefer to present the results in terms of the Kappa coefficient,
because this metric does not hide the imbalanced classification problem.

6. Conclusions

All the results and behaviors can be summarized in the following four conclusions:

• This framework, based on a 3DCNN spectral–spatial deep learning feature extraction
model and Tucker Decomposition, proved to be robust in most cases for different
combinations and levels of simulated signal-dependent and signal-independent noises,
even when the SNR is close to 0 dB.

• Tucker Decomposition reduces from 103 to 224 bands to 40 new tensor bands with ξ < 1%,
reducing the computational complexity for the classifier. Different to other compression
algorithms, Tucker Decomposition does not affect the performance of the deep learning
model; conversely, it improves the classification performance of the 3DCNN deep learning
model in the three studied datasets. This improvement is more noticeable for the training
set size in the order of from 5% to 3% for the three datasets tested.

• Tucker Decomposition performs well until SNR is close to 0 dB; for SNR ≤ 0 dB, TKD
cannot represent the useful information in the core tensor, resulting in an obvious loss
of performance.

• With a representative number of labeled samples of each class (depending on the
hyperspectral image and accuracy we want), for an SNR ≥ of 0 dB, our proposal is
not affected by different α-values; in other words, different noisy scenarios of signal-
dependent and signal-independent noise.

Open Issues

• To test the spatial–spectral feature extraction of 3DCNN in other types of applications
for hyperspectral imagery.

• An algorithm is needed to find the minimum n-rank that fully represents the data into
the core tensor, reducing the computational and spatial complexity for posterior stages
in the framework.

• To test the framework with a larger number of hyperspectral images, considering
distributions of ground truth with less spatial correlation, and for RGB and multi-
spectral imagery.

• Mathematical and statistical analysis of Tucker Decomposition for noisy data.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network.
DL Deep Learning.
GT Ground Truth.
HPC High Performance Computing.
HSI Hyperspectral Image.
IP Indian Pines.
PCA Principal Component Analysis.
SAL Salinas.
SD Signal Dependent.
SI Signal Independent.
SNR Signal-to-Noise Ratio.
TKD Tucker Decomposition.
TS Train Size.
UP University of Pavia.

Appendix A

Appendix A.1

In this appendix, the variance calculations for noise generation used in this paper are
explained, which was formulated on [4,39]. First of all, to obtain the noise variances of
the random processes σ2

u,i3
and σ2

t,i3
, the mean variance of the noise tensors NSD(X) and

NSI [39] are required. For a signal-dependent mean noise variance tensor:

σ2
NSD(X) =

1
I1 I2 I3

I1

∑
i1=1

I2

∑
i2=1

I3

∑
i3=1

σ2
u,i3 · xi1,i2,i3 . (A1)

Let μi3 be the mean of the clean signal at band i3:

μi3 =
1

I1 I2

I1

∑
i1=1

I2

∑
i2=1

xi1,i2,i3 , (A2)

from (A2), Equation (A1) can be rewritten as:

σ2
NSD(X) =

1
I3

I3

∑
i3=1

σ2
u,i3 · μi3 ; (A3)

additionally, the signal-independent noise has constant variance σ2
NSI

in all bands.
The signal-independent mean variance noise tensor is:

σ2
NSI

=
1

I1 I2 I3

I3

∑
i3=1

σ2
t,i3 ; (A4)

thus, using Equation (19), the mean variance of the noise tensor N(X) is:

σ2
N(X) = σ2

NSD(X) + σ2
NSI

, (A5)

σ2
N(X) =

1
I1 I2 I3

I1

∑
i1=1

I2

∑
i2=1

I3

∑
i3=1

(
σ2

u,i3 · xi1,i2,i3 + σ2
t,i3

)
. (A6)

From the SNR (dB) formula:

SNR = 10 · log10
‖X‖2

‖N(X)‖2 , (A7)
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‖N(X)‖2 in terms of X and a specified SNR is expressed as:

‖N(X)‖2 = ‖X‖2 · 10−(
SNR

10 ). (A8)

If Equation (A8) is divided by the total number of pixels I1 I2 I3, note that

σ2
N(X) =

‖N(X)‖2

I1 I2 I3
(see Equation (A6)). If PX = ‖X‖2

I1 I2 I3
is the mean power of tensor X, then:

σ2
N(X) = PX · 10−(

SNR
10 ). (A9)

Assuming a parameter α, which controls the dominance of the signal-dependent noise
variance over the signal-independent noise variance, such that:

α =
σ2
NSD(X)

σ2
NSI

, (A10)

Then, from Equations (A10) and (A5), follows:

σ2
NSD(X) =

σ2
N(X) · α

α + 1
, (A11)

and:

σ2
NSI

=
σ2
N(X)

α + 1
. (A12)

Note that both results depend only on α and σ2
N(X), which are already available in

Equations (A9) and (A10). Finally, solving for the noise variance of the random process
σ2

u,i3
from Equation (A1):

σ2
u,i3 =

σ2
NSD(X)

μi3
; (A13)

as well, the noise variance of the random process σ2
t,i3

, from Equation (A3):

σ2
t,i3 = σ2

NSI
. (A14)
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Appendix A.2

Table A1. Average Cohen’s Kappa coefficient of 10 runs obtained using different classifiers for IP, UP,
and SAL compressed with TKD to 40 tensorial bands training with 10% of TS. Standard deviation
shows very low variability for high-SNR cases, growing as the noise variance increases.

SNR SVM RF 1DCNN 2DCNN 3DCNN

Indian
Pines

60 dB 0.6244 ± 0.0068 0.6664 ± 0.0111 0.6231 ± 0.0113 0.9654 ± 0.0059 0.9802 ± 0.0029
55 dB 0.6241 ± 0.0087 0.6682 ± 0.0068 0.6250 ± 0.0099 0.9683 ± 0.0024 0.9803 ± 0.0024
50 dB 0.6303 ± 0.0066 0.6716 ± 0.0105 0.6186 ± 0.0104 0.9690 ± 0.0078 0.9817 ± 0.0040
45 dB 0.6289 ± 0.0090 0.6697 ± 0.0068 0.6193 ± 0.0086 0.9641 ± 0.0059 0.9793 ± 0.0056
40 dB 0.6223 ± 0.0029 0.6780 ± 0.0112 0.6203 ± 0.0139 0.9720 ± 0.0045 0.9799 ± 0.0050
35 dB 0.6148 ± 0.0103 0.6795 ± 0.0075 0.6133 ± 0.0103 0.9712 ± 0.0045 0.9781 ± 0.0029
30 dB 0.5985 ± 0.0105 0.6660 ± 0.0111 0.6008 ± 0.0061 0.9692 ± 0.0052 0.9793 ± 0.0035
25 dB 0.5501 ± 0.0100 0.6553 ± 0.0107 0.5803 ± 0.0093 0.9665 ± 0.0043 0.9773 ± 0.0033
20 dB 0.4354 ± 0.0066 0.6346 ± 0.0092 0.5303 ± 0.0126 0.9660 ± 0.0049 0.9737 ± 0.0059
15 dB 0.1919 ± 0.0093 0.6054 ± 0.0094 0.4856 ± 0.0108 0.9574 ± 0.0060 0.9673 ± 0.0043
10 dB 0.0248 ± 0.0037 0.5808 ± 0.0063 0.4419 ± 0.0131 0.9573 ± 0.0068 0.9628 ± 0.0035
5 dB 0.0006 ± 0.0003 0.5424 ± 0.0069 0.4106 ± 0.0063 0.9493 ± 0.0060 0.9522 ± 0.0061
0 dB 0.0000 ± 0.0001 0.5086 ± 0.0069 0.3831 ± 0.0128 0.9406 ± 0.0065 0.9425 ± 0.0081
−5 dB 0.0000 ± 0.0000 0.4664 ± 0.0083 0.3433 ± 0.0120 0.9443 ± 0.0092 0.9404 ± 0.0068
−10 dB 0.0000 ± 0.0000 0.4191 ± 0.0039 0.2826 ± 0.0130 0.9318 ± 0.0096 0.9299 ± 0.0042
−15 dB 0.0000 ± 0.0000 0.3700 ± 0.0081 0.2246 ± 0.0085 0.9143 ± 0.0099 0.9083 ± 0.0079
−20 dB 0.0000 ± 0.0000 0.2938 ± 0.0069 0.1534 ± 0.0099 0.9091 ± 0.0164 0.9002 ± 0.0079

University
of

Pavia

60 dB 0.5909 ± 0.0048 0.8461 ± 0.0036 0.8946 ± 0.0045 0.9973 ± 0.0009 0.9994 ± 0.0003
55 dB 0.5900 ± 0.0043 0.8484 ± 0.0037 0.8935 ± 0.0044 0.9972 ± 0.0004 0.9994 ± 0.0003
50 dB 0.5904 ± 0.0041 0.8444 ± 0.0076 0.8920 ± 0.0061 0.9977 ± 0.0009 0.9995 ± 0.0005
45 dB 0.5911 ± 0.0033 0.8502 ± 0.0050 0.8948 ± 0.0052 0.9977 ± 0.0004 0.9995 ± 0.0004
40 dB 0.5906 ± 0.0040 0.8475 ± 0.0089 0.8924 ± 0.0042 0.9978 ± 0.0006 0.9994 ± 0.0003
35 dB 0.5890 ± 0.0050 0.8489 ± 0.0041 0.8947 ± 0.0069 0.9976 ± 0.0008 0.9996 ± 0.0002
30 dB 0.5880 ± 0.0034 0.8431 ± 0.0061 0.8931 ± 0.0050 0.9977 ± 0.0005 0.9994 ± 0.0002
25 dB 0.5841 ± 0.0028 0.8415 ± 0.0040 0.8897 ± 0.0048 0.9967 ± 0.0011 0.9992 ± 0.0004
20 dB 0.5692 ± 0.0041 0.8380 ± 0.0051 0.8840 ± 0.0083 0.9972 ± 0.0013 0.9995 ± 0.0003
15 dB 0.5281 ± 0.0016 0.8350 ± 0.0037 0.8713 ± 0.0035 0.9972 ± 0.0008 0.9996 ± 0.0002
10 dB 0.3853 ± 0.0049 0.8224 ± 0.0032 0.8438 ± 0.0049 0.9977 ± 0.0008 0.9993 ± 0.0003
5 dB 0.0492 ± 0.0021 0.7800 ± 0.0036 0.7870 ± 0.0045 0.9973 ± 0.0004 0.9993 ± 0.0003
0 dB 0.0000 ± 0.0000 0.7421 ± 0.0035 0.7274 ± 0.0056 0.9961 ± 0.0011 0.9989 ± 0.0005
−5 dB 0.0000 ± 0.0000 0.7077 ± 0.0028 0.6873 ± 0.0030 0.9954 ± 0.0011 0.9977 ± 0.0012
−10 dB 0.0000 ± 0.0000 0.6716 ± 0.0032 0.6478 ± 0.0039 0.9934 ± 0.0018 0.9966 ± 0.0009
−15 dB 0.0000 ± 0.0000 0.6241 ± 0.0030 0.5806 ± 0.0069 0.9894 ± 0.0013 0.9930 ± 0.0012
−20 dB 0.0000 ± 0.0000 0.5463 ± 0.0026 0.4703 ± 0.0084 0.9853 ± 0.0028 0.9874 ± 0.0017

Salinas

60 dB 0.9010 ± 0.0021 0.8971 ± 0.0023 0.9131 ± 0.0036 0.9996 ± 0.0004 0.9999 ± 0.0001
55 dB 0.9017 ± 0.0018 0.8954 ± 0.0026 0.9125 ± 0.0030 0.9995 ± 0.0002 0.9999 ± 0.0001
50 dB 0.9016 ± 0.0025 0.8977 ± 0.0040 0.9126 ± 0.0025 0.9994 ± 0.0004 0.9999 ± 0.0001
45 dB 0.9029 ± 0.0021 0.8967 ± 0.0019 0.9114 ± 0.0031 0.9995 ± 0.0002 0.9999 ± 0.0001
40 dB 0.9006 ± 0.0019 0.8975 ± 0.0020 0.9129 ± 0.0025 0.9995 ± 0.0002 0.9998 ± 0.0001
35 dB 0.9020 ± 0.0017 0.8968 ± 0.0021 0.9106 ± 0.0041 0.9995 ± 0.0003 0.9999 ± 0.0001
30 dB 0.8993 ± 0.0019 0.8944 ± 0.0019 0.9122 ± 0.0023 0.9995 ± 0.0003 0.9999 ± 0.0001
25 dB 0.9003 ± 0.0019 0.8940 ± 0.0028 0.9076 ± 0.0038 0.9995 ± 0.0001 0.9999 ± 0.0001
20 dB 0.8961 ± 0.0016 0.8892 ± 0.0017 0.9039 ± 0.0026 0.9995 ± 0.0003 0.9999 ± 0.0001
15 dB 0.8881 ± 0.0012 0.8828 ± 0.0026 0.8947 ± 0.0029 0.9994 ± 0.0003 0.9998 ± 0.0001
10 dB 0.8699 ± 0.0015 0.8777 ± 0.0015 0.8815 ± 0.0034 0.9996 ± 0.0002 0.9998 ± 0.0001
5 dB 0.8234 ± 0.0025 0.8677 ± 0.0022 0.8634 ± 0.0041 0.9993 ± 0.0003 0.9998 ± 0.0001
0 dB 0.6413 ± 0.0035 0.8589 ± 0.0020 0.8468 ± 0.0025 0.9994 ± 0.0003 0.9997 ± 0.0001
−5 dB 0.2741 ± 0.0100 0.8474 ± 0.0025 0.8324 ± 0.0031 0.9992 ± 0.0003 0.9998 ± 0.0001
−10 dB 0.1056 ± 0.0013 0.8344 ± 0.0020 0.8114 ± 0.0029 0.9993 ± 0.0003 0.9995 ± 0.0003
−15 dB 0.0377 ± 0.0005 0.8121 ± 0.0015 0.7837 ± 0.0039 0.9994 ± 0.0003 0.9997 ± 0.0001
−20 dB 0.0079 ± 0.0005 0.7743 ± 0.0027 0.7478 ± 0.0046 0.9989 ± 0.0004 0.9996 ± 0.0002
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Abstract: Semantic segmentation for urban remote sensing images is one of the most-crucial tasks in
the field of remote sensing. Remote sensing images contain rich information on ground objects, such
as shape, location, and boundary and can be found in high-resolution remote sensing images. It is
exceedingly challenging to identify remote sensing images because of the large intraclass variance and
low interclass variance caused by these objects. In this article, we propose a multiscale hierarchical
channel attention fusion network model based on a transformer and CNN, which we name the
multiscale channel attention fusion network (MCAFNet). MCAFNet uses ResNet-50 and Vit-B/16 to
learn the global–local context, and this strengthens the semantic feature representation. Specifically, a
global–local transformer block (GLTB) is deployed in the encoder stage. This design handles image
details at low resolution and extracts global image features better than previous methods. In the
decoder module, a channel attention optimization module and a fusion module are added to better
integrate high- and low-dimensional feature maps, which enhances the network’s ability to obtain
small-scale semantic information. The proposed method is conducted on the ISPRS Vaihingen and
Potsdam datasets. Both quantitative and qualitative evaluations show the competitive performance of
MCAFNet in comparison to the performance of the mainstream methods. In addition, we performed
extensive ablation experiments on the Vaihingen dataset in order to test the effectiveness of multiple
network components.

Keywords: semantic segmentation; transformer; channel attention module; hybrid structure

1. Introduction

Semantic segmentation assigns semantic labels to each pixel of the image [1]. In the
field of remote sensing, high-resolution remote sensing images provide corresponding data
and information support for the construction of smart cities. However, high-resolution
urban remote sensing imagery contains rich information about ground objects, which leads
to the common phenomenon of large intraclass variance and small interclass variance.
Figure 1 shows the local remote sensing image of Potsdam; the orange boxes display the
importance of capturing multiscale semantic information, and the black boxes illustrate the
difference between small-scale objects. Therefore, extracting useful relevant information
from remote sensing images has become a key issue.

In recent years, remote sensing images have developed great potential for application
in the field of smart city construction. However, traditional image semantic segmentation
of remote sensing images is typically performed by extracting low-level features from the
image. When establishing the corresponding semantic segmentation model, there is a
gap between the artificially designed features and the high-level semantic features, so the
generalizability of the established semantic segmentation model is poor. The interpreted
results of deep-learning-based semantic segmentation algorithms in remote sensing city
images often present lump-like fuzzy boundaries, which do not sufficiently preserve the
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feature information of objects. This leads to the confusion of semantic classifiers and brings
great challenges to the task of semantic segmentation. Effectively segmenting small objects
and improving the interpretation accuracy are still extremely challenging tasks.

Figure 1. The challenge of urban remote sensing image interpretation.

The transformer is a concept proposed by Google in the literature [2]. Since its
birth in 2017, the transformer has made rapid breakthroughs in the NLP field. With the
advancement of research, it also shows great potential in the field of computer vision,
providing novel solutions and achieving good results. Image Transformer [3], released
in 2018, was the first to migrate the transformer architecture to the field of computer
vision. Since 2019, transformer-based visual models have developed rapidly, and many
new attention achievements have appeared. For example, the segmentation transformer
(SETR) [4] uses a transformer encoder to completely replace the CNN backbones, discards
the convolution and downsampling processes, and uses split tasks as sequence-to-sequence
prediction tasks. The detection transformer (DETR) [5] applies the advantages of the
transformer in the field of target detection. In July 2020, Chen et al. [6] proposed the
iGPT model in order to explore the performance of the approach on images, as well as the
performance of unsupervised accuracy. In October 2020, Dosovitskiy et al. [7] proposed
the Vision Transformer model, an image classification scheme that is based entirely on the
mechanism of self-attention, which was the first work using a transformer to substitute
a standard convolution. In January 2021, Esser et al. [8] constructed the vector quantized
generative adversarial network (VQGAN), which combines a transformer and CNN, and it
is the first transformer architecture to generate megapixel images by semantic guidance. It
is worth noting that researchers from Facebook and Berkeley [9] rechecked the design space
and tested the limits that pure ConvNet can reach, indicating that the performance of a
convolutional neural network is no less than that of a visual transformer, while maintaining
the simplicity and effectiveness of the standard ConvNet.

Therefore, given the difficulty of identifying different scales in remote sensing images,
we propose a hybrid network structure based on a transformer and CNN, which makes
full use of semantic feature information at different scales. In the decoder module, a variety
of effective blocks is applied to study an urban scene with complex surface features based
on a CNN. The following are this paper’s main contributions:

(1) We combine the ResNet-50 and a transformer hybrid model to improve the current
mainstream semantic segmentation network structure, and the proposed global–local
transformer block models the spatial distance correlation in the image while maintain-
ing the hierarchical characteristics.

(2) We propose a channel attention module decoder (CAMD). In the module, a pooling fu-
sion module is designed to enrich the feature expression of the network. We evaluated
the efficiency of each part of the decoder module through ablation research.

(3) We added a fusion module to optimize the structure of the hybrid model, merge
feature maps from different scales, and improve semantic representation of the
underlying features.
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2. Related work

2.1. Methods for Semantic Segmentation Based on Deep Learning

Deep learning [10] is a new research direction in machine learning in recent years. The
field of remote sensing image interpretation has gradually implemented deep learning
algorithms to deal with problems that were difficult to solve by traditional machine learning
methods. At present, the mainstream deep semantic segmentation networks include three
forms: a network based on a spatial pyramid structure, a multibranch network, and
an encoder–decoder network. These three networks can handle problems in multiscale
semantic information extraction and output resolution degradation.

The network based on the spatial pyramid structure uses the pyramid structure
to capture the scale semantic information. This kind of network introduces numerous
branches to reference the network’s end, and each branch corresponds to a fixed scale.
For example, PSPNet [11] generates input with different resolutions through an adaptive
average pooling operation. PANet [12] changes the input feature map’s resolution through
a convolutional operation with various core sizes and step sizes. DeepLab [13,14] proposes
the atrous spatial pyramid structure (ASPP), which fixes the input resolution of each branch
of the pyramid structure and introduces convolutional layers with different expansion rates
to expand the network’s receptive field. DensAspp [15] improves the receptive field of the
pyramid structure in DeepLab by introducing dense connections, making the structure
suitable for large-resolution pictures.

The multibranch network sends the input image into multiple branches, and each
branch has a different output resolution. For example, icnet [16] uses two spatial branches
to capture small-scale targets. Reference [17] uses the branches with higher output reso-
lution to generate a proportional fraction map, which optimized the spatial information
of low-resolution branches. Bisenet [18] proposes a lightweight branch with high output
resolution and introduces the attention mechanism into the fusion process of different
branches, which greatly improves the network speed while maintaining the network accu-
racy. By combining the shallow characteristics of many branches, Fast SCNN [19] creates a
multibranch network, which considerably reduces the amount of calculation consumed on
the high-resolution output branches.

The encoder–decoder network gradually integrates the high-dimensional feature map
into the low-dimensional feature map to improve the resolution of the output. At the
same time, different levels of feature maps have different resolutions. Integrating them
can enable the network to capture semantic information of different scales. Therefore, the
encoder–decoder network is an effective method to address resolution degradation and
multiscale complications. The first deep semantic segmentation network, FCN [20] is a
famous encoder–decoder network. It generates a layer-hopping connection structure to
integrate high-dimensional and low-dimensional feature maps. On this basis, U-Net [21]
proposes a more efficient layer-hopping connection structure, which realizes the fusion of
different feature maps with higher accuracy. SegNet [22] records the pooled index in the
encoding process and uses the pooled index to supervise the decoding process, making
the decoding process more standardized. Refinenet [23] introduces a large number of
optimization modules to optimize the feature map fusion results, which could increase the
information capture ability of the fused feature map.

Compared with the above two networks, the encoder–decoder structure does not need
to change the reference framework and draw additional branches to obtain small-scale
semantic information. It needs only to properly optimize the semantic feature maps at
different levels on the basis of the reference network. Therefore, this approach is best suited
to the domain of semantic segmentation in remote sensing.

Although the encoder–decoder network has great advantages in the field of semantic
segmentation, the existing studies have not found an accurate optimization and fusion
method for high- and low-dimensional feature maps. Therefore, improving the optimal fu-
sion efficiency of high- and low-dimensional feature maps is a bottleneck in the application
of encoder–decoder networks.
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2.2. Methods for Semantic Segmentation Based on Transformers

For image problems, convolution has a natural inherent bias translation of equivalence
and locality. The transformer obviously does not have these advantages, but its core self-
attention operation can obtain a large range of global information, which has obvious
advantages for the information extraction range of images. The reasons for the rapid
development of the transformer can be attributed to its strong ability to learn long-distance
dependencies, multimodal fusion ability, and more interpretable models.

Therefore, many segmentation algorithms take ViT as the backbone network, with
Segmenter [24], Segformer [7], and Swin Transformer [25] as typical representatives.
Strudel et al. [24] proposed a converter model for semantic segmentation based on the
research results from ViT. Segment adopts the ViT model structure in the coding stage,
divides the image into blocks, performs a linear mapping, and outputs the embedded
sequence after being processed by the encoder. In the decoding stage, learnable category
embedding is introduced, and the output of the encoder and category embedding are sent
to the decoder, which obtains the class label. Xie et al. [7] proposed SegFormer, a simple,
effective, yet powerful semantic segmentation framework. SegFormer uses a hierarchi-
cal feature representation method that combines a transformer with a light multilayer
perceptron (MLP). Swin Transformer [25] uses a multi-stage design similar to the convolu-
tional neural network, and each stage has a different resolution of the feature map. This
mechanism of using a local window attention fully proves that convolution, a method of
extracting local feature information, can play its role.

In summary, the transformer has proven to be more powerful than a CNN in feature
extraction in semantic segmentation. However, during the semantic segmentation test, the
resolution of the picture is not fixed. Its requirements for pixel classification and contour
details are meticulous. Transformer-based semantic segmentation methods have poor
effects in processing image details. Therefore, more research is needed to build an effective
transformer structure and combine it with the current CNN model.

3. The Proposed Method

In this section, we elaborate the method for the semantic segmentation of high-
resolution images that combines the hybrid transformer and CNN encoder model. In
Section 3.1, we describe the principle and network structures of the hybrid model based
on the transformer and ResNet-50. In Section 3.2, we describe the structure of the CAMD
module in the CNN-based decoder. Finally, the overall design of our network is described
in Section 3.3.

We propose a multiscale channel attention fusion network (MCAFNet) in the context
of the semantic segmentation of remotely sensed images. The framework of the MCAFNet
is shown in Figure 2. The overall structure of the MCAFNet follows an encoder–decoder
structure. A remotely sensed image of an urban area has rich spectral information and
texture structure and irregular ground object boundaries, and these characteristics require
a higher feature extractor. Therefore, in the encoder part, we used the hybrid model of a
CNN and a transformer to extract the multilayer features of the image and optimize the
structure of the transformer block. When facing the decoder part of the MCAFNet, the
channel attention decoder module is introduced to learn the complex relationship between
high- and low-dimensional semantic features. The fusion module is used to improve the
fusion efficiency.
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Figure 2. Overall structure diagram of the MCAFNet.

3.1. CNN-Transformer Hybrid as Encoder

The encoder module, which is presented in Figure 3, is designed as a hybrid network
model of ResNet-50 and Vit-B/16 [7]. The ResNet-50 convolutional layer is used to enhance
the expression of the local context information. The linear multihead self-attention of the
transformer module is used to capture the global context information of urban remote
sensing images.

Figure 3. The encoding part structure of the MCAFNet.

We first cut the input remote sensing image x into fixed size patches {x = [x1, · · · , xN ] ∈
R(N×P2×C)} for feature extraction, where N = H × W/P2 is the number of image patches
and C is the number of slice channels. Then, we used ResNet-50 to perform preliminary
semantic feature extraction on the patch. We flattened each patch into a one-dimensional
vector {X0 = [EX1 , · · · , EXN ] ∈ RN×D, E ∈ RP2C} and, then, performed a linear projection
to produce a series of patch embeddings to retain low-dimensional semantic feature in-
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formation. Finally, we modeled the global image context information based on position
embedding in the transformer, which perfectly removes the dependence on convolution.

Specifically, inspired by Wang et al. [26], we introduced convolutional groups to extend
the multihead attention module. The specific structure is shown in Figure 4b; it adds a
convolutional group branch to extract the local features of the image, while retaining the
transformer’s self-attention mechanism as the global feature extraction branch. In addition,
we used batch normalization to solve the variable shift problem in transformer training,
accelerate the convergence rate of the model, and resolve the overfitting problem.

Figure 4. Optimization example of the transformer block. (a) is the basic block, and (b) is the
optimized block.

Figure 5 shows the combination design idea of the module’s convolution and self-
attention. In order to obtain high- and low-level semantic information at the same time, we
processed one part of the input image as a one-dimensional sequence based on the QKV
mechanism, and the other part recovers from the sequence the two-dimensional feature
map for convolution processing and, finally, splices according to the channel dimensions to
output feature vectors with rich semantic information.

Figure 5. Specific structure design of the global–local attention module.

The global branch deploys the multihead self-attention to capture the global context,
and the local branch uses two parallel convolutional layers with core sizes of 3 and 1 to
extract the local context. In the transformer, the self-attention mechanism is represented
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by a linear layer of three points mapped to an intermediate layer. The QKV mechanism is
calculated as follows:

Attention(Q, K, V) = so f tmax(
QKT
√

dK
)V (1)

Based on the QKV mechanism of self-attention, in this paper, we combined the deep
and shallow semantic features of the input semantic features through weighted fusion,
which calculates the correlation between the deep semantic features and the other shallow
features in the transformer encoder.

We used the encoded feature vector corresponding to the deep feature map as the
query and the value of the multihead attention mechanism and used the encoded feature
vector corresponding to the shallow feature map as the key to perform attention fusion.
Then, we multiplied the fusion attention map by the encoded feature vector corresponding
to the deep feature map, which obtains Attention(Q, K, V) through residual connections
and layer normalization. Finally, more precise semantic features are output through the
feed-forward network.

3.2. CNN-Based Decoder

As is shown in Figure 6, the process of the MCAFNet interpretation of urban remote
sensing images can be summarized as follows: information encoding, information opti-
mization, and information fusion. In addition, a channel attention module is added to
adjust the weight of semantic features. Inspired by Ma et al. [27], we added a pooling
fusion module (PFM) to enrich the feature expression of remote sensing image semantic
information. Its specific structure is shown in Figure 7.

Figure 6. Three steps to decode multiscale semantic information.

Figure 7. Design motivation and detailed structure of the PFM. (a) is the design motivation of PFM,
and (b) is the specific structure of PFM.
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Figure 7a shows the design motivation for the PFM. We materialized the semantic
feature maps of six categories of objects and found that the requirements for high-resolution
and high-level semantic segmentation contradict the design of convolutional networks. The
broken lines with different fluctuations are used to represent the low-dimensional feature
map and the high-dimensional feature map after upsampling. Intraclass differences can
be shown by discounting small fluctuations, and the differences between classes can be
represented by large discounted fluctuations. When they are merged along the spliceosome
of the channel dimension, the high- and low-dimensional feature maps of each location are
not equally effective, and there are uneven spatial dimensions. Simple upsampling cannot
solve the semantic gap problem.

Figure 7b shows the specific structure of the PFM. The operation core of the pooling
fusion module is to embed the local attention information in the high-dimensional semantic
features of remote sensing images into the low-dimensional semantic features. In this
manner, low-dimensional features can be fused to sense the field context information, while
this original spatial information will not be lost. First, the average pooling layer is used to
optimize the high-dimensional feature map, retain the background information, and obtain
the channel attention vector. Then, we reused a 1 × 1 convolutional layer encoder of each
channel weight vector that unifies the number of high- and low-dimensional feature map
channels. Finally, we extracted the local attention feature map Zc from high-dimensional
semantic features. The calculation formula is as follows:

Zc =
1

hpwp

hp

∑
i=1

wp

∑
j=1

xc(i, j) (2)

where hpwp denotes the split window size of the average pooling operation and xc repre-
sents a pixel from the c channel.

On this basis, we set the extracted high-dimensional feature map as ZH ∈ RCh×Hh×Wh ,
and set the original low-dimensional feature map as Xl ∈ RCl×Hl×Wl . Based on the
move flip bottleneck convolutional operation, we generated attention maps for the low-
dimensional features Ml [28] by transformation. The calculation formula is as follows:

Ml = Fu{σ[Hlδ(HrZh)]} (3)

where σ and δ stand for the sigmoid and ReLU functions. A dimension-reduction convolu-
tion of 1 × 1 with the reduction ratio r is represented by Hr [28]; Hl adjusts the number of
channels to match Xl ; Fu is the upsampling operation. In addition, we added a residual
design to emphasize the importance of low-dimensional features. The augmented features
are computed as follows:

Bl = Xl + Xl Ml (4)

Finally, the PFM outputs feature maps with both precise semantic and spatial information.
The attention mechanism can greatly improve the information capture ability of feature

maps. Through the observation of urban remote sensing images, it was found that there
are not too many irregular boundaries between adjacent objects in the image, and there
was less detail information in the image, making the spatial information of high- and
low-dimensional feature maps more accurate. Therefore, this paper used the channel
attention mechanism in the soft attention mechanism and did not introduce the spatial
attention branch to optimize the spatial information of low-dimensional feature maps.
Therefore, we designed the channel attention decoder by combining the channel attention
module and the PFM. Figure 8 shows the specific structure of the channel attention module
decoder (CAMD).

First, we improved the semantic and spatial information acquisition ability of the
MCAFNet based on the channel attention module (CAM). Then, we used upsampling
and a 3 × 3 convolutional operation the further optimize and unify the resolution and
channel number of the redefined feature map. Finally, the PFM is used to emphasize
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the underlying feature information in the key high-dimensional features and filter the
background information, restore the pixel position of the target category, and output the
enhanced feature information.

Figure 8. Specific structure of channel attention module decoder.

3.3. Network Architecture

Inspired by Peng et al. [29], we took the output feature maps of the hybrid model as
the optimization targets, in order for the network to be able to capture semantic information
for three different scales. The characteristic images of Output 1 and Output 2 have a large
resolution, which makes them more sensitive to small-scale targets in urban remote sensing
images. Therefore, they are the most-important optimization objectives of the network. The
overall network structure of the hierarchical encoding and decoding network is shown in
Figure 9.

Figure 9. Each module of the network and its overall network structure. (a) Channel attention
optimization module network structure, (b) convergence module network structure, (c) infor-
mation fusion module network structure, (d) overall network structure, and (e) output module
network structure.
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A transformer is more suitable for extracting global image information and has a
limited ability to capture local semantic information. Directly fusing its intermediate
feature map to obtain multiscale semantic information leads to poor segmentation results.
Therefore, before fusing the multilevel feature maps, we added a 3 × 3 convolutional layer
combined with BN and ReLU to the front-end of the channel attention branch so that it has
the function of unifying the number of output channels, which optimizes the feature maps
of each dimension, especially low-dimensional feature maps. We assumed that the feature
map Fin ∈ RC×h×w is the input of the channel attention mechanism and Mc ∈ RC×1×1 is
the channel attention mask. The calculation process of the output feature map Fcout after the
channel attention mechanism optimization is as follows. The improved channel attention
branch is shown in Figure 9a.

Fcout = Flow
⊗

MC (5)

where
⊗

denotes multiplication by elements. However, the network is still unable to
extract accurate small-scale semantic information based on the improved channel attention
branch. Therefore, after using the channel attention branch to optimize the feature maps of
each dimension, we continued to use the pooling fusion module of the CAMD to optimize
the low-dimensional feature maps. The specific fusion module structure used in this article
is illustrated in Figure 9b.

The fusion module that we adopted has two input feature maps Fcout and Fhigh. The res-
olution of the high-dimensional feature map is half of the resolution of the low-dimensional
feature map. This setting limits the information spread between the two feature maps,
which is convenient for information fusion. The fusion module first uses the bilinear
interpolation operation UP(·) so that the resolution of the high-dimensional feature map is
consistent with the low-dimensional feature map. Thereafter, we adopted a 3 × 3 convolu-
tional layer CV3×3 (·) combining BN and ReLU to optimize the high-dimensional feature
maps after upsampling. Finally, the optimized high- and low-dimensional feature maps are
aggregated through the concat operation C (· , ·), and the aggregation is optimized using
a 1 × 1 convolutional layer CV1×1 (·) that combines BN and ReLU to generate the output.
The process of realizing the entire fusion module can be expressed as follows:

Fc f out = CV1×1(C(Flow, CV3×3(UP(Fhigh)))) (6)

Through the fusion module, the low-dimensional feature map obtains more abstract
information, and its ability to capture semantic information is also significantly improved.
In addition, the fusion module has a simple structure, which quickly improves the ability
of low-dimensional feature maps.

We introduce the channel attention module and fusion module to optimize the feature
maps of each dimension, the feature maps of each dimension are simultaneously sent to the
information fusion module shown in Figure 9c. This module uses cascade operations to fuse
the characteristics of different scales, optimizes the fusion result with a 1 × 1 convolutional
layer combining BN and ReLU, and finally, outputs a feature map that captures multiscale
semantic information.

The specific MCAFNet architecture is illustrated in Figure 9d. First, we used a hybrid
network model to extract global and local features from remotely sensed imagery. Then,
the channel attention branches were used to optimize the feature maps from different levels
within the network to improve their ability to capture semantic information. Next, the
feature maps of Output 1 and Output 2 are sent to the same fusion module, and the feature
maps of Output 2 and Output 3 are sent to another fusion module to greatly improve the
ability of the low-dimensional feature map to capture small-scale semantic information.
Unlike encoder–decoder networks, our network does not introduce the information of
Output 3 to optimize Output 1 in the decoding process, which avoids the impact of the
information gap on the optimization efficiency of Output 1. After optimizing the feature
maps of each dimension, they are upsampled at the same time to make them have the same
resolution as Output 1, and they are input into the information fusion module, which can
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improve the ability of capturing semantic information by output feature maps. Finally,
the output result of the information fusion module is processed by the output module to
generate the final network output feature map, as shown in Figure 9e.

4. Experiment Setup

4.1. Datasets and Evaluation Metrics

All the data needed for repeating the experiments described in the paper are available
at https://www.isprs.org (accessed on 10 April 2022). The dataset includes two sub-
datasets: the ISPRS Vaihingen and Potsdam 2D semantic segmentation datasets, which
correspond to two high-resolution urban remote sensing images of Vaihingen and Potsdam
in Germany. The ground objects in the image are marked and distinguished with bright
colors, rich ground structures, and representative categories and are suitable for verifying
the generalization and robustness of semantic segmentation models. According to the
experimental results officially given by ISPRS, generally, only the classification accuracy of
the first five categories is evaluated. Therefore, we conducted ablation and interpretation
experiments based on them.

Since the image resolution of the experimental dataset is very high, it cannot be directly
sent to the GPU for training on the network. We cut the tif image into nonoverlapping
blocks to produce 10,000 images, each with a size of 256 × 256 as the training set and test
set. The image as rotated, flipped, tilted, translated, elastically transformed, perspective,
cropped, and zoomed to complete the expansion of the dataset. Figure 10 shows some
examples of the data augmentation.

We calculated the confusion matrix of these datasets and extracted the overall accuracy
(OA), the mean F1-score, and the mean intersection over union (MIoU) [30] of each class in
order to assess the semantic segmentation results. The confusion matrix was obtained by
comparing the segmentation result of the predicted output with the labeled image. The
formula for the calculation is:

CM =

⎡⎢⎢⎢⎣
c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cn1 cn2 · · · cnn

⎤⎥⎥⎥⎦
The definitions of the relevant evaluation indicators are shown in the following formulas:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

OA =

n
∑

i=1
cii

n
∑

i=1

n
∑

j=1
cij

(9)

F1 = 2 · Precision · Recall
Precision + Recall

(10)

MIoU =
1
n

n

∑
i=1

cii
n
∑

i=1
cij +

n
∑

j=1
cji + cii

(11)
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Figure 10. Examples of experimental dataset enhancements. (a) is the reference image, and (b–f) is
examples of multiple enhanced operations based on opencv.

4.2. Implementation Details

We used Python 3.6 and the open-source deep learning framework PyTorch for the
experiments in this paper. The optimization algorithm we adopted is the random gradient
descent algorithm with momentum equal to 0.9 and weight attenuation equal to 0.0005. In
order to train the proposed model on both datasets, the number of iterations was fixed at
15,000. Some experimental parameter settings were as follows: the batch size was set to six;
the initial learning rate was set to 0.01; the initial learning rate of the encoder in the network
was 0.005. The image was randomly scaled during the training process to be between 0.5-
and 2-times higher than the original resolution. At the same time, the image was randomly
flipped horizontally to increase the robustness of the model. On this basis, the input image
was cropped and padded to a 224 × 224 resolution rate to unify the resolution in each batch
of training data.

The skewed distribution of ground objects in remote sensing image sample sets leads
to class imbalance. Inspired by D. Eigen et al. [31], we introduced a focal loss function
to make the model focus on complex and difficult samples. The definition of the loss
function is:

MFB_Focalloss = − 1
N

N

∑
n=1

C

∑
c=1

wc · l(n)c (1 − p(n)c )2 · log(p(n)c ) (12)

where N represents the number of samples of a minibatch, C represents the number
of categories, wc represents the weight corresponding to category c, l(n)c represents the
true label corresponding to sample n, and p(n)c represents the probability of sample n for
category c.

5. Experiments And Results

5.1. Result Display

To confirm the efficiency of our approach, we visualize the results of the model
segmentation on the ISPRS dataset, as shown in Figures 11 and 12. The segmentation
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results of our proposed network model are almost close to the label values, and the
interpretation effect is outstanding in the high-resolution urban remote sensing scene
with a dense distribution of ground objects. The boundary of the segmentation results of
different types of ground objects is smooth and accurate, and the confusion of classification
rarely occurred.

Figure 11. The segmentation results of the MCAFNet on the Vaihingen dataset.

Figure 12. The segmentation results of the MCAFNet on the Potsdam dataset.
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5.2. CAM Visualization Analysis

We took the output feature map of the three stages in the MCAFNet encoding part
as the optimization goal. According to the change of the resolution of the output feature
map, we dynamically adjusted the weight of each channel, so that the CAMD can better
optimize the small-scale target. To make the effect more intuitive, we visualize the heat
map of the attention mechanism of three stage, as shown in Figure 13. The weight of small
target features increases with the deepening of the process, which makes the model more
sensitive to small-scale targets.

Figure 13. Heat map of small target objects in different stages.

5.3. Architecture Ablation Study

Comprehensive ablation experiments were designed to analyze the efficiency of every
part in the MCAFNet. The influence of each module of the network is shown in Table 1,
and the improvement effect of the overall and local remote sensing images is shown in
Figure 14. It can be seen from Table 1 that different modules of the MCAFNet improved
the segmentation performance. However, the performance gain of the transformer and
FM is relatively marginal. This is because transformer applications in computer vision
are less compatible with urban remote sensing scenes, and the improvement of semantic
segmentation accuracy in multi-category scenes is limited. The effect will be obvious if it
is combined with the CAMD modules. FM has a simple structure and a small amount of
calculation, which can increase the network depth of low-dimensional feature maps, so
as to improve the ability of low-dimensional feature maps to capture small-scale targets.
It is mainly for the optimized high- and low-dimensional feature maps, which are placed
after the CAMD. If a feature map does not go through the channel attention optimization
branch, even after FM optimization, this limits the accuracy of the segmentation due to the
sufficient depth of the baseline network.

Table 1. The influence of each module on the MCAFNet’s performance.

Transformer CAMD FM Mean F1 (%)

MCAFNet

× × × 81.24√ × × 83.25√ √ × 85.46√ × √
83.78√ √ √
88.41
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Figure 14. The improvement effect of the overall and local remote sensing images.

(1) Baseline network:

In order to evaluate the performance improvement brought by the architecture in the
CNN transformer hybrid as the encoder, we carried out visual analysis on the attention map
of different ground object categories for the models before and after the transformer was
removed, as shown in Figure 15. The upper row represents the attention map of the figure
category of the CNN transformer hybrid model, and the lower row represents the attention
map of the category after the transformer is removed. Through comparison, it can be
clearly seen that the CNN transformer structure plays an important role in distinguishing
the semantic features of different kinds of ground objects when interpreting ground objects.
In the process of feature reconstruction, more attention is paid to the pixels of the same
category. After the transformer is removed, the model is relatively seriously interfered
with by the features of other categories when interpreting a single category of ground
objects, which effectively proves that the CNN transformer structure can extract global–
local context feature information and improve the segmentation accuracy of multiple types
of ground objects.

Figure 15. The effect of baseline network on the remote sensing semantic segmentation results. (a) is
the input image and ground truth, and (b–f) are different types of surface feature attention maps.

(2) Channel attention optimization module:

In the ablation experiment, the channel attention decoder was removed, and only the
front-end convolutional layers were kept. At this time, the mean F1-score of the network
dropped from 88.41 to 83.78, indicating that the channel attention decoder module plays
a very large role in remote sensing scene segmentation. Figure 16 shows the effect of the
CAMD on the remote sensing semantic segmentation results.
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Figure 16. The effect of the CAMD on the remote sensing semantic segmentation results.

(3) Fusion module:

To test the gains in performance brought by the fusion module to the network, we re-
moved it from the network and tested the change in network performance. After removing
it, the mean F1-score of the network decreased from 88.41 to 85.46, which fully proved the
importance of the fusion module. From the visualization results shown in the figure, the
fusion module increased the network depth of the low-dimensional feature map, which
improved the ability of the low-dimensional feature map to capture small-scale targets, and
it can efficiently optimize the segmentation results of small-scale targets. Figure 17 shows
the effect of the FM on the remote sensing semantic segmentation results.

Figure 17. The effect of the FM on the remote sensing semantic segmentation results.

(4) Advanced contrast:

Compared to the performance of U-Net, SegNet, PSPNet, HRNetV2 [32], DeepLab
V3+ [33], TransUnet [34], SegFormer, Inception-ResNetV2 [35], and Swin Transformer, the
performance of our MCAFNet model in urban remote sensing image interpretation was
significantly improved. In Table 2, we provide four test-set-based assessment indices for
various models. Compared with the mainstream semantic segmentation model, our model
achieved greater improvement in various indicators.
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Table 2. The metrics (%) of the semantic segmentation models in the testing phase.

Method Overall Accuracy Recall Mean F1 MIoU

U-Net 87.5 83.6 82.7 81.2
SegNet 89.4 86.9 86.7 83.6
PSPNet 89.7 87.1 86.9 84.6

HRNetV2 87.2 84.1 83.2 81.4
DeepLab V3+ 89.8 87.0 86.7 85.2

TransUnet 90.1 87.2 87.3 86.2
SegFormer 89.5 86.8 87.1 85.9

Inception-ResNetV2 88.1 86.5 86.4 85.5
Swin Transformer 90.2 87.3 87.9 87.3

MCAFNet 90.8 87.9 88.4 88.2

To prove the superiority of the method in remote sensing scenes, based on the same
experimental conditions, comparison experiments were carried out from local small-scale
object segmentation and whole remote sensing scene interpretation. Some visualization
results on Vaihingen and Potsdam are shown in Figures 18 and 19. The mean F1-score of
the different models is shown in Tables 3 and 4.

Figure 18. Semantic segmentation results on Vaihingen. (a1,a2) Original image, (b1,b2) ground truth,
(c1,c2) U-Net, (d1,d2) SegNet, (e1,e2) PSPNet, (f1,f2) HRNetV2, (g1,g2) DeepLab V3+, (h1,h2) Tran-
sUnet, (i1,i2) SegFormer, (j1,j2) Inception-ResNetV2, (k1,k2) Swin Transformer, and (l1,l2) MCAFNet.
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Figure 19. Semantic segmentation results on Potsdam. (a1,a2) Original image, (b1,b2) ground truth,
(c1,c2) U-Net, (d1,d2) SegNet, (e1,e2) PSPNet, (f1,f2) HRNetV2, (g1,g2) DeepLab V3+, (h1,h2) Tran-
sUnet, (i1,i2) SegFormer, (j1,j2) Inception-ResNetV2, (k1,k2) Swin Transformer, and (l1,l2) MCAFNet.

The performance of these mainstream semantic segmentation networks may be related
to their own structure. There are many convolutional layers and pooling layers with steps
in the networks, but the convolution lacks an overall understanding of the image itself;
moreover, it cannot model feature dependence and does not dynamically adapt to changes
in the input. The networks performed poorly in capturing the semantic information of
different scales and processing the spatial output resolution of the network. However, we
applied a hybrid model network architecture that can reduce the influence of the convo-
lutional operation. It also better integrates semantic information and spatial information
through the attention module to optimize the segmentation accuracy of urban features.

Table 3. Performance of ground objects interpreted by the different models on the Vaihingen dataset.

Method #Param Building Car Low_veg Imp Tree GFLOPs

U-Net 118 M 88.2 75.2 80.2 86.9 85.4 135.4
SegNet 104 M 90.1 84.2 81.7 90.5 86.8 82.9
PSPNet 121 M 91.2 85.7 82.9 91.1 86.4 20.5

HRNetV2 40 M 90.8 76.8 80.4 87.5 86.5 51.5
DeepLab V3+ 223 M 91.7 81.4 82.1 88.9 87.6 72.3

TransUnet 257 M 92.3 85.1 83.2 89.7 87.1 112.4
SegFormer 246 M 91.1 81.3 81.5 86.9 86.9 88.7

Inception-ResNetV2 153 M 90.7 84.9 82.5 89.1 86.7 98.5
Swin Transformer 238 M 92.4 85.5 84.1 91.3 87.2 131.4

MCAFNet 334 M 93.6 86.4 84.9 92.6 88.1 164.2
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Table 4. Performance of ground objects interpreted by the different models on the Potsdam dataset.

Method #Param Building Car Low_veg Imp Tree GFLOPs

U-Net 114M 87.2 76.2 80.8 86.2 84.6 123.5
SegNet 97M 89.4 83.6 82.3 90.1 85.9 80.5
PSPNet 114M 90.3 84.7 81.9 89.6 85.4 16.1

HRNetV2 38M 91.2 77.8 80.1 86.9 85.6 43.8
DeepLab V3+ 207M 91.4 80.9 81.8 88.2 87.2 62.7

TransUnet 231M 91.8 84.6 82.8 89.1 86.7 98.7
SegFormer 220M 90.7 81.1 81.1 86.4 86.3 81.2

Inception-ResNetV2 141M 90.1 83.9 80.9 87.7 85.5 87.3
Swin Transformer 217M 91.6 85.1 83.1 90.4 87.4 108.7

MCAFNet 320M 92.4 86.1 83.9 91.3 88.3 153.3

6. Discussion

The MCAFNet model we proposed effectively reduces the probability of the mis-
classification of ground objects in the interpretation of urban remote sensing images and
improves the accuracy by integrating low-level semantic features, such as the shape and
boundary of ground objects and the high-level semantic information of ground object
categories. Two factors ensure the superiority of the model. First, the MCAFNet model
realizes the structural innovation in the encoder part and fully combines the advantages
of the CNN and transformer when processing semantic segmentation tasks. Second, the
proposed network adopts a pooling fusion module in the decoder section. This elaborate
design alleviates the information gap and improves the utilization of low-dimensional
feature maps. However, the parameters of our model are relatively large, and how to better
simplify the transformer structure and combine the advantages of CNNs requires further
exploration.

7. Conclusions

We proposed the MCAFNet to realize fast and high-precision semantic segmentation
of remote sensing images. The designed network structure successfully integrates the ad-
vantages of the transformer and CNNs. Furthermore, we used a channel attention decoder
to emphasize the key areas, especially the small-scale target semantic information. The
research of our method realizes the robustness and generalization of the model. However,
in exchange for high accuracy, the proposed model relies on a large amount of computation,
and the CAMD is mainly aimed at the feature extraction of small-scale objects. Its perfor-
mance is not good when dealing with large-scale target objects. At the same time, there
are far more than three bands available in the remote sensing task of image segmentation,
and the DSM in the remote sensing image can be used for auxiliary segmentation. This
information was not used in this paper. Therefore, future research needs to consider how
to reduce the amount of computation of the encoding part, further improve the proposed
CAMD to focus on multi-category and large-scale feature extraction, and utilize multiple
band information of urban remote sensing images.
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Abstract: Planetary rover systems need to perform terrain segmentation to identify feasible driving
areas and surround obstacles, which falls into the research area of semantic segmentation. Recently,
deep learning (DL)-based methods were proposed and achieved great performance for semantic
segmentation. However, due to the on-board processor platform’s strict comstraints on computational
complexity and power consumption, existing DL approaches are almost impossible to be deployed on
satellites under the burden of extensive computation and large model size. To fill this gap, this paper
targeted studying effective and efficient Martian terrain segmentation solutions that are suitable
for on-board satellites. In this article, we propose a lightweight ViT-based terrain segmentation
method, namely, SegMarsViT. In the encoder part, the mobile vision transformer (MViT) block in the
backbone extracts local–global spatial and captures multiscale contextual information concurrently.
In the decoder part, the cross-scale feature fusion modules (CFF) further integrate hierarchical
context information and the compact feature aggregation module (CFA) combines multi-level feature
representation. Moreover, we evaluate the proposed method on three public datasets: AI4Mars,
MSL-Seg, and S5Mars. Extensive experiments demonstrate that the proposed SegMarsViT was able
to achieve 68.4%, 78.22%, and 67.28% mIoU on the AI4Mars-MSL, MSL-Seg, and S5Mars, respectively,
under the speed of 69.52 FPS.

Keywords: Mars terrain segmentation; semantic segmentation; planetary exploration

1. Introduction

Intelligent environmental perception is a necessity for planetary rovers toward au-
tonomous driving, which provides crucial semantic information, e.g., identifying feasible
driving areas and surrounding obstacles. For such a panoptic perception mission, ter-
rain segmentation is the most critical procedure, which also can be viewed as a semantic
segmentation task. Semantic segmentation is a widely used perception method for self-
driving vehicles on earth that can assign a separate predefined class label to each pixel
of an image [1] it is the foundation of many high-level tasks that need to infer relevant
semantic information from images for subsequent processing. This applies on self-driving
vehicles on Mars as well. Therefore, this study explored the task of terrain segmentation on
the Martian surface, aiming to characterize semantic information from rover images. As
shown, the Figure 1a shows the Tianwen-1 Zhurong rover, China’s first Mars rover, which
is undergoing its fantastic exploration on the red planet. RGB sample images of the Mars
surface and the corresponding terrain segmentation annotation are depicted in Figure 1b,c,
respectively. It can be observed that semantic segmentation is a pixel-level dense prediction
task, which requires an in-depth understanding of the semantics of the entire scene and is
in some ways more challenging than those image-level prediction tasks.

Early image segmentation approaches dedicated to divide images into regions based
on little more than basic color and low-level textual information [2,3]. With the rapid
development of deep learning techniques in the 2010s, deep convolutional neural networks
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(CNNs) became dominant in automatic semantic segmentation technology due to their
tremendous modeling and learning capabilities, which strive to boost algorithm accuracy
on the strength of massively parallel GPUs and large labelled datasets [4,5]. Long et al. [6]
first proposed a fully convolutional network (FCNet), which is a revolutionary work and the
majority of following state-of-the-art (SOTA) studies are extensions of the FCN architecture.
One of the most pioneering works is UNet presented by Ronneberger et al. [7] for biomedical
image segmentation, which adopts the influential encoder–decoder architecture and proved
to be very useful for other types of image data [8–11]. Meanwhile, inspired by the high
precision that CNNs achieved in semantic segmentation, many CNNs-based approaches
were proposed for the Martian terrain segmentation (MTS) task. Rothrock et al. [12]
proposed a soil property and object classification (SPOC) system based on DeepLab for
visually identifying terrain types as well as terrain features (e.g., scarps, ridges) on a
planetary surface. They also presented two successful applications to Mars rover missions,
including the landing site traversability analysis and slip prediction. Iwashita et al. [13]
proposed TU-Net and TDeelLab robust to illumination changes via data fusion from
visible and thermal images. Liu et al. [14] proposed a hybrid attention-based terrain
segmentation network called HASS for unstructured Martian images. Claudet et al. [15]
employed advanced semantic segmentation algorithms to generate binary safety maps
for the spacecraft safe planetary landing problem. Furthermore, several existing studies
attempted to resolve the terrain segmentation issue by using wear-supervised techniques.
Wang et al. [16] adopted the element-wise contrastive learning technique and proposed
a semi-supervised learning framework for Mars imagery classification and segmentation
through introducing online pseudo labels on the unlabeled areas. Goh et al. [17] proposed
another semi-supervised Mars terrain segmentation algorithm with contrastive pretraining
techniques. Zhang et al. [18] proposed a novel hybrid representation learning-based
framework, which consists of a self-supervised pre-training stage and a semi-supervised
learning phase for sparse data. Li et al. [19] introduced a stepwise domain adaptation
Martian terrain segmentation network, which effectively alleviates covariate shift through
unifying the color mapping space to further enhance the segmentation performance.

Figure 1. Planetary rover on Mars (a) and a sample image (b) along with its segmentation annotation
for terrain types (c).

Furthermore, data-driven deep learning generally refers to learning directly through
sufficient experience data. The level of success for deep learning applications is to a great
extent determined by the quality and the depth of the data being used for training. In this

448



Remote Sens. 2022, 14, 6297

respect, Mars terrain segmentation is currently attracting more and more attention, and
scientific interest for deep learning-based segmentation datasets is growing rapidly. Several
large-scale 2D image sets were established for the Mars terrain segmentation problem, the
relevant information of which is listed in Table 1. Swan et al. [20] built the first large-scale
dataset, AI4Mars, for the task of Mars terrain classification and traversability assessment, of
which labels were obtained through a crowdsourcing approach and consisted four classes:
soil, bedrock, sand, and big rock. Li et al. [19] extensively released a Mars terrain dataset
annotated finely with nine classes, named Mars-Seg. Liu et al. [14] established a panorama
semantic segmentation dataset for Mars rover images, named MarsScapes, which provides
pixel-wise annotations for eight fined-grained categories. Zhang et al. [18] presented a
high-resolution Mars terrain segmentation dataset, S5Mars, annotated with pixel-level
sparse labels for nine categories. The Martian surface condition is complicated and the
corresponding annotation process is challenging. Hence, we thank all the above dataset
creators that enabled us to conduct the research for this paper.

Table 1. To the best of our knowledge, there are already four public datasets established for MTS task
up to now.

Dataset Year Classes RGB

AI4Mars 2021 4 1.6 k
Mars-Seg 2021 8 ~4.1 k
S5Mars 2022 9 6 k

MarsScapes 2022 8 ~18.5 k

In comparison to natural scene images, the Martian images have their particular
characteristics. Objects on the surface of Mars exhibit unstructured characteristics with
rich textures, ambiguous boundaries and diverse sizes, such as rocks and gravel [21].
Understanding unstructured scenes quite heavily depend on modeling the connection
between the target pixel and its relevant surrounding content to a certain extent. Therefore,
a limited receptive field is hard-pressed to meet demand, and several acquired rare target
instances available for training are in small numbers. Class imbalance remains a problem
in the MTS task. The above difficulties make it unreliable to directly apply the semantic
segmentation methods designed for natural images on Martian terrain segmentation tasks.

On the other hand, CNN-based semantic segmentation methods always made brilliant
achievements at the expense of high computational costs, large model size, and inference
latency. This situation prevented recent state-of-the-art methods from being applied to
real-world applications. Real on-board applications have a strong demand of semantic
segmentation algorithms to run on resource-constrained edge devices in a timely manner.
Therefore, deep models for the Mars terrain segmentation task should be efficient and
accurate. Considering the performance limitations of spacecraft equipment, it is essential
to develop efficient networks for accurate Mars terrain segmentation.

Toward this end, this paper proposes a novel lightweight Martian terrain segmentation
model, named SegMarsViT. In the encoder part, the mobile vision transformer (MobileViT)
backbone is leveraged to extract local–global spatial and capture high-level multiscale
contextual information concurrently. An effective layer aggregation decoder (ELAD) is
designed to further integrate hierarchical feature context information and generate powerful
representations. Moreover, we evaluate the proposed method on three public datasets:
AI4Mars, MSL-Seg, and S5Mars. Extensive experiments demonstrate that the proposed
SegMarsViT achieves comparable accuracy as the state-of-the-art semantic segmentation
method. In the meantime, SegMarsViT has much less computation burden with a smaller
model size.

The main contributions of this work can be summarized as follows:
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(1) To the best of our knowledge, this is the first effort toward introducing the lightweight
semantic segmentation model into the field of Martian terrain segmentation. We
evaluate several representative semantic segmentation models and conduct enough
comparable experiments. This is expected to facilitate the development and bench-
marking of terrain segmentation algorithms in Martian images.

(2) We investigate a novel vision transformer-based deep neural network SegMarsViT
for real-time and accurate Martian terrain segmentation. In the encoder, we employ
a lightweight MobileViT backbone to capture a hierarchical feature. Notably, the
proposed SegMarsViT is the first transformer-based network for the Martian terrain
segmentation task. In the decoder part, a cross-scale feature fusion (CFF) module and
a compact feature aggregation (CFA) technique are designed to strengthen and merge
the multi-scale context feature.

(3) We conduct extensive experiments on AI4Mars, S5Mars, and MSL-Seg datasets. The
results validate the effectiveness and efficiency of the proposed model, which can obtain
competitive performance with 68.4%, 78.22%, and 67.28% mIoU, respectively. In the
meantime, SegMarsViT has much less computation burden with smaller model size.

The remainder of this article is organized as follows: In Section 2, we will briefly
introduce some previous work related to lightweight semantic segmentation and vision
transformer. Section 3 describes the proposed method in detail. Section 4 provides overall
performance and comparison results of the proposed method with analysis and discussion,
and Section 5 concludes this study.

2. Related Work

2.1. Lightweight Semantic Segmentation

In real-world applications, such as robotics [22] and land resource monitoring [23],
it is hard to deploy high-precision, high-complexity, and time-consuming semantic seg-
mentation models for real-time inference speed in need. Hence, lightweight semantic
segmentation networks came into being. Several research works were proposed to address
the challenge of real-time semantic segmentation.

The standard convolution layer is the basic building layer in CNNs, which is compu-
tationally expensive. Real-time semantic segmentation pursues the fast data processing
capability of the network. In order to meet the requirements of real-time inference per-
formance and ensure high-quality prediction as much as possible, efficient convolution
operations are generally used. For example, DABNet [24] introduced the depth-wise
asymmetric bottleneck module, which increases efficiency through the combination of
depth-wise separable and asymmetric factorized convolutions. ESPNet [25] proposed an
efficient spatial pyramid module utilizing 1 × 1 grouped convolution to reduce dimension
complexity and parallel dilation convolution modules to increase the effective receptive
field, which results in a very compact and significant network. In addition, many other
segmentation models, e.g., RTSeg [26] and EACNet [27], straightly employ the lightweight
backbone networks designed for classification tasks as the feature extractor to improve the
inference speed.

In addition to commonly used techniques for decreasing the latency and model size,
designing novel and lightweight architectures is another effective solution. BiseNetV1 [28]
is a two-branch architecture to reserve spatial feature information and enlarge the recep-
tive field, which consists of a context path based on Xception architecture and a spatial
branch based on strided convolution layers. Attention refinement modules (ARM) are
applied to encode global context. The improved version, BiseNetV2 [29], further simpli-
fies the architecture through utilizing the inverted bottleneck blocks of MobileNetv2 and
efficient convolutions and obtains more favorable performance. The real-time general pur-
pose semantic segmentation network (RGPNet) introduces a novel adapter module and a
lightweight asymmetric encoder–decoder architecture. The adaptor module intermediates
between encoder and decoder through the combination of features of three different levels.
The strategy of integrating multi-scale context information results in excellent segmenta-
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tion performance and the optimized progressive resizing training scheme makes RGPNet
achieve an effective balance between speed and accuracy.

2.2. Vision Transformer-Based Semantic Segmentation

In spite of the exceptional representational power, CNN-based approaches generally
exhibit limitations for modeling explicit long-range relations, due to the intrinsic local con-
nectivity mechanism of convolution operations. Recently, transformer became a “hotspot”
in the computer vision community, which was initially designed for sequence-to-sequence
prediction and was powerful at modeling global contexts [30]. To overcome the limitation
of the local receptive field of CNN, the latest efforts were focused on adapting transformer
models into the computer vision sector [31,32], named vision transformer (ViT). Many
scholars introduced the ViT mechanism into the semantic segmentation task. The two most
common ways to do this are applying ViTs in conjunction with CNNs and developing pure
ViTs. Wang et al. [33] proposed PVT, a pyramid vision transformer for dense prediction
tasks, which is a natural extension of ViT with pyramid structures. Zheng et al. [34] pro-
posed SETR, which is a hierarchical transformer from a sequence-to-sequence learning
perspective, and it shows that good results can still be obtained without relying on the
convolution operation. Huang et al. [35] designed a scale-wise intra-scale transformer,
named ScaleFormer, of which the elaborate hybrid CNN-transformer backbone can effec-
tively extract intra-scale local features and global information. Shi et al. [36] took the idea
of the SwinTransformer [37] and presented the hierarchical SSformer with an elaborate
and simple MLP decoder for semantic segmentation. Xie et al. [38] proposed SegFormer,
which comprises a novel hierarchically structured transformer encoder and a lightweight
all-MLP decoder, yielding great results. Hatamizadeh et al. proposed the UNetFormer [39]
with a 3D SwinTransformer [40]-based encoder and a hybrid CNN-transformer decoder,
which can achieve a trade-off performance between efficiency and accuracy for medical
image segmentation. Similarly, there are UNETR [41] and nnFormer [42] in the same vein.
Motivated by the astounding achievements of ViT, this paper presents the first study to
explore the potential of ViT and fulfill the local–global semantics research gap in the context
of Martian terrain segmentation.

3. Methodology

In this section, we first provide an overview of our method in the Section 3.1. Then,
we introduce the lightweight encoder and effective decoder in the Sections 3.2 and 3.3,
respectively. Finally, we present the loss function in the Section 3.4.

3.1. Framework Overview

The overall structure of the proposed SegMarsViT is illustrated in Figure 2. This paper
is dedicated to the encoder–decoder segmentation architecture through ViT modules. The
whole SegMarsViT is a novel combination of CNN and transformers to some extent, which
has the local advantage of CNN and the long-range dependency merit of a transformer.
The proposed network utilizes MobileViT backbone to extract corresponding features of
five stages (stage1~stage5), whose outputs are denoted as F1, F2, F3, F4 and F5, with scales
of 1

2 , 1
4 , 1

8 , 1
16 and 1

32 , respectively. In other words, the output feature maps Fi after each
stage are down-sampled with strides of 2i. After the backbone, we perform an efficient
stage-wise layer aggregation decoder, named ELAD, to generate segmentation outputs.
The novel ELAD is designed to make multiscale features more distinguishable to learn
representative features for SegMarsViT. In ELAD, a series of cross-scale feature fusion (CFF)
modules are proposed to further enhance the context modeling and boost the cross-scale
communication, which are built upon the top-down pathway. After obtained, we introduce
a compact feature aggregation (CFA) module to ensure that feature maps extracted from
different stages can be well merged. As shown in Figure 2, the proposed SegMarsViT is
asymmetric and the contracting path is deeper than the expansion path. In what follows,
we describe all the structures of the above-mentioned modules in detail.
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Figure 2. Framework overview of the proposed SegMarsViT.

3.2. Lightweight MViT-Based Encoder

Context modeling in not yet proven to be critical for segmentation and the en-
coder progressively reduces the spatial resolution and learns more abstract visual con-
cepts with larger receptive fields. However, the encoder is always the most vital part
of the whole framework and accounts for the dominant proportion of model size and
computational budget.

Considering the strict complexity limitations on the spaceborne payload hardware, we
use MobileViT as the backbone to accelerate feature extraction and improve the real-time
performance of the proposed method. MobileViT is a lightweight and general-purpose
neural network architecture introduced by Apple ML researchers. We removed the last
pooling layers and all fully connected layers for image-to-image semantic segmentation
prediction. With a special perspective to encode both local and global representations
effectively, MobileViT is a hybrid network with both CNN and ViT-like properties. Mo-
bileViT improves its stability and performance through incorporating spatial inductive
biases of CNN in ViT. As can be seen in Figure 2, the architecture of MobileViT contains the
initial fully convolution layer, followed by several MV2 blocks and MViT blocks. Figure 3
visually depicts the design of the two main modules. The MV2 blocks (Figure 3a) come
from MobileNetv2 [43] and are mainly responsible for down-sampling in the backbone.
Even more to the point, unlike conventional ViTs, the elaborate MViT block (Figure 3b) can
learn local and global information with an effective receptive field of H × W.
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Figure 3. Two types of building blocks in MobileViT backbone: (a) MV2 block; (b) MViT block.

The first two layers are a standard 3× 3 convolution layer and a 1× 1 point-wise expan-
sion layer, where the given input tensor X ∈ RH×W×C is projected to XL ∈ RH×W×d(d > C).
As is the first step of all the ViTs, XL is then split into N non-overlapping patches XU ∈
RP×N×d. Next, the standard transformer blocks of multi-headed self-attention (MHA) [44]
is applied to model long-range non-local dependencies as:

XG(p) = Transformer(XU(p)), 1 ≤ p ≤ P. (1)

Then XG ∈ RP×N×d will be folded to obtain XF ∈ RH×W×d as the order of unfolding
process. In the end, XF will be projected to low C-dimensional space with a point-wise con-
traction layer and integrate with the raw input tensor X via concatenation and convolution
operations.

The detailed configurations of the MobileViT model are shown in Table 2. The Mobile-
ViT models provide three different network sizes (s: small, xs: extral small, and xxs: extra
extra small). To obtain multi-scale terrain information, the hierarchical output of five stages
will be forwarded into the following decoder module.

Table 2. Detailed architecture of the lightweight backbone used in our SegMarsViT.

Layer Output Size Repeat
Channel

xxs xs s

Stage 1
Conv 3 × 3 H

2 × W
2 1 16 16 16

MV2 block H
2 × W

2 1 16 32 32

Stage 2
MV2 block H

2 × W
2 1 24 48 64

MV2 block H
4 × W

4 2 24 48 64

Stage 3
MV2 block H

4 × W
4 1 48 64 96

MViT block H
8 × W

8 1 48 64 96

Stage 4
MV2 block H

8 × W
8 1 64 80 128

MViT block H
16 × W

16 1 64 80 128

Stage 5

MV2 block H
16 × W

16 1 80 96 160

MViT block H
16 × W

16 1 80 96 160

Conv 1 × 1 H
32 × W

32 1 320 384 512
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Through leveraging the vision transformer to focus on modeling the global context at
all stages, the proposed SegMarsViT can better establish long-range semantic relationships
between feature representation. The capacity to model local–global context relationships of
images would benefit to learn more abstract semantic visual concepts through enlarging
the receptive field. Moreover, the mobile vision transformer is a lightweight and low-
latency architecture, which can meet the requirements of accuracy and model complexity in
practical satellite missions. The lightweight encoder, therefore, makes the network suitable
for real-time applications, as it provides rich semantic information.

3.3. Efficient Layer Aggregation Decoder

In order to further model and fuse multi-level information from the feature encoder, we
design an efficient layer aggregation decoder (ELAD) consisting of two primary elements:
cross-scale feature fusion (CFF) module and compact feature aggregation (CFA) module
in SegMarsViT, as shown in Figure 4. In ELAD, CFF modules are designed to interact
multiscale information and strengthen the feature representation learning of lightweight
backbone network, and the CFA module is conducted to efficiently aggregation multi-scale
deep features and obtain the final segmentation results.

Figure 4. Illustration of the proposed Efficient Layer Aggregation Decoder.

• Cross-Scale Feature Fusion: The utilization of our CFF modules allows high-level
context information to be delivered to multi-scale feature maps at different pyramid
levels, each of which contains four sub-branches. As can be seen, following the top-
down pathway, the input feature maps with coarser resolutions are firstly up-sampled
by a factor of 2 to obtain Ci. Meanwhile, we utilize the 1 × 1 convolution layer for
the feature maps in the lower level Fi to unify the channel dimension. Then the up-
sampled feature maps Ci are concatenated and fused to the Fi. A 1 × 1 convolution
layer is attached after fusion. Specifically, we have C1 = Conv1×1(Conv1×1(F1)⊕ C2),
where Conv1×1(·) represents a 1 × 1 convolution and ⊕ denotes the concatenation
operation. In this way, the proposed CFF modules assist our model to enlarge the
receptive field through enabling each spatial location to view the local context in
different scale spaces.
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• Compact Feature Aggregation: After CFF, we perform multi-level feature integration
for predicting segmentation maps with fine details. To accomplish multi-level feature
fusion, we construct the compact feature aggregation (CFA) module. The output
of CFF consists of five fusion maps. We first reshape the high-level feature maps
{C1, C2, C3} to the same size as C4 and C5. Then, all these feature maps in the same
spatial resolution are concatenated and followed by a 1 × 1 convolution for feature
fusion. By this means, our lightweight decoder merges multi-level features from top
to bottom till the segmentation map of size equal to input image is reconstructed.

3.4. Loss Function

We continue by introducing our loss function for optimizing the proposed SegMarsViT.
Our loss function combines the weighted intersection over union (IoU) loss and the
weighted binary cross-entropy (BCE) loss:

Loss = Lω
IoU + Lω

BCE (2)

where Lω
IoU and Lω

BCE represent the weighted IoU loss and BCE loss for the global restriction
and local (pixel-level) restriction. Different from the standard IoU loss, which was widely
adopted in segmentation tasks, Lω

IoU increases the weights of hard pixels to highlight
their importance. In addition, compared with the standard BCE loss, Lω

BCE pays more
attention to hard pixels rather than assigning all the pixels equal weights. The definitions
of these losses are the same as in [45,46], and their effectiveness was validated in the field of
semantic segmentation.

4. Results and Analysis

In this section, we first provide the experimental setup in the Section 4.1. Then the
Section 4.2 presents the results achieved with our model and a comparison made with other
segmentation models. In Section 4.3, we conduct comprehensive ablation studies.

4.1. Experimental Settings
4.1.1. Datasets

In order to demonstrate the proposed network’s performance, we extensively evaluate
our SegMarsViT on three publicly available MTS datasets, including AI4Mars-MSL, MSL-
Seg, and S5Mars. These three datasets consist of 17,030, 4155, and 6000 real images of Mars
with corresponding pixel-level labels. We offer a brief view in Table 3.

• AI4Mars-MSL: AI4Mars is the first large-scale semantic segmentation dataset build
for terrain-aware autonomy on Mars contains 17,000 images with a spatial resolution
of 1024 × 1024, which consists of 3-band RGB images taken by NASA’s Mars Science
Laboratory (MSL). It contains four classes: Soil, Bedrock, Sand and Big Rock.

• MSL-Seg: The MSL-Seg dataset contains 4184 images with the size of 560 × 500, which
consists of 3-band RGB images from the mars32k dataset (available at
https://dominikschmidt.xyz/mars32k/ (accessed on 20 February 2022)). It con-
tains eight categories: Martian soil, Sands, Gravel, Bedrock, Rocks, Tracks, Shadows,
and Background.

• S5Mars: The S5Mars dataset contains 6000 images with a spatial resolution of
1200 × 1200, which are collected by the color mast camera (Mastcam) from the Curios-
ity rover on Mars. Different from AI4Mars-MSL and MSL-Seg, the overall annotations
in S5Mars are employed in a sparse style, which only the pixels with enough human
confidence are labeled. It contains nine classes: Sky, Ridge, Soil, Sand, Bedrock, Rock,
Rover, Trace, and Hole.
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Table 3. Statistics of experimental datasets in this research.

Dataset Classes Annotated Images Image Size Split

AI4Mars-MSL 4 17,030 1024 × 1024 16,064:322:322
MSL-Seg 8 4155 560 × 500 2893:827:414
S5Mars 9 6000 1200 × 1200 5000:200:800

4.1.2. Implementation Details

We implement our experiments with the MMSegmentation [47] open source toolbox
and Pytorch [48] accelerate training via NVIDIA GPUs. During training, we applied data
augmentation operations through random mirror, random resize with ratio 0.5–2.0, random
horizontal flipping, random rotation between −10 and 10 degrees and random Gaussian
blur for all datasets. Particularly, we random crop to 512 × 512 for AI4Mars, S5Mars, and
MSL-Seg datasets. The proposed model was trained for 400 epochs with a mini-batch size
of 16 over 4 GPUs RTX2080Ti. We use the SGD optimizer with the initial learning rate (LR)
1e−2. The polynomial LR policy [49] was used to update the learning rate and help the
model in faster convergence for improving performance.

4.1.3. Evaluation Metrics

For all experiments, we run the same training recipe three times and report several
widely used metrics, such as the mean of class-wise intersection over union (mIoU), pixel-
wise accuracy (pixelACC), the mean of F1 score (mFscore), and the mean of precision
value (mPrecision).

4.2. Comparison with SOTA Methods

In this paper, we compared the proposed SegMarsViT with existing lightweight se-
mantic segmentation methods. We evaluate SegMarsViT against eight SOTA natural image
semantic segmentation methods, including FCN [10], DeepLabV3+ [50], Segmenter [51],
PSPNet [52], PSANet [53], SegFormer [38], and FPN-PoolFormer [54].

4.2.1. Results on AI4Mars-MSL

Table 4 summarizes our results including parameters, FLOPS and other accuracy
metrics of different lightweight semantic segmentation methods on the AI4Mars-MSL
dataset. Red, blue, and green denote the best, the second-best, and the third-best results,
respectively. For AI4Mars-MSL, there is a relatively small amount of labeled terrain types.
With the computing power constraint of available GPUs, we mainly report the results
trained with a lightweight backbone. From the results, in comparison with several SOTA
approaches, our proposed SegMarsViT outperforms most of them. As shown, on AI4Mars,
SegMarsViT yields 68.4% mIoU using only 8.54 M parameters and 5.6 G FLOPs, achieving
competitive results in contrast to all other real-time counterparts in terms of parameters and
efficiency comprehensively. For instance, compared to SegFormer (MIT-B0), SegMarsViT
keeps 0.66% better mIoU.

Table 4. Comparison with state-of-the-art methods on AI4Mars-MSL.

Method (PubYear) Encoder pixelACC mIoU FLOPs (G) Params (M)

Segmenter (2021) ViT-s 92.04 66.85 17.93 26.03
SegFormer (2021) MIT-B0 92.76 67.74 6.39 3.72

FPN-PoolFormer (2022) S12 92.72 67.79 30.69 15.64
FCN (2016) MobileNetv2 92.27 67.12 39.6 9.8

PSPNet (2018) MobileNetv2 92.41 66.58 52.94 13.72
DeepLabV3+ (2018) MobileNetv2 91.17 62.04 69.4 15.35

PSANet (2018) ResNet50 86.83 54.6 194.8 54.07
SegMarsViT (Ours) MobileViT-s 92.46 68.4 8.54 5.61
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4.2.2. Results on S5Mars

Here, we show both quantitative and qualitative results on S5Mars. Table 5 shows the
comparative results on the test set of S5Mars. We achieve 78.22% in terms of mIoU, with
the standard MobileViT structure as the backbone. The depicted results demonstrate that
our model outperforms most of current real-time semantic segmentation works. Figure 5
shows the visual comparison of Martian terrain segmentation methods on five examples
from the S5Mars dataset. The examples include a diverse scene context and backgrounds.
The proposed methodology can achieve better or comparable performance in Martian
terrain segmentation. What should be noted is that the samples Figure 5a,b are of scenarios
in which rough and scattered terrains coexist. From the visual results, the proposed Seg-
MarsViT has less false-positive detection. As for the samples (c) and (d), unstructured scene
properties particularly stand out in the images. The proposed method can model contextual
information well under the circumstance of unstructured scenes on Mars, which benefit
from that ViT-based self-attention technique is applicable to explore spatial correlations.
While other competitors may not detect the whole semantic objects or even not find some
semantic objects in difficult scenarios, SegMarsViT can segment semantic regions with
more accurate results. Especially in the boundary part, the loss of spatial details leads to
the loss of accuracy. However, when the difference among foreground objects is relatively
small, such as the Figure 5e, some missed detections occur in the results and there is still
room for improvement.

Table 5. Comparison with state-of-the-art methods on S5Mars.

Method pixelACC mIoU mFscore mPrecision FLOPs(G) Params (M) FPS

Segmenter—ViT-s 90.99 77.15 84.21 85.4 17.93 26.03 48.44
SegFormer—MIT-B0 91.99 79.05 85.74 85.61 6.39 3.72 59.21

FPN—PoolFormer-s12 91.74 76.82 83.3 84.28 30.69 15.64 37.35
FCN—MobileNetv2 86.53 56.57 64.46 72.7 39.6 9.8 58.17

PSPNet—MobileNetv2 90.68 74.64 82.32 82.26 52.94 13.72 50.21
DeepLabV3+—MobileNetv2 89.64 69.5 78.22 80.94 69.4 15.35 37.64

FCN—HRNetv2-w18s 87.71 63.68 73.41 79.71 9.6 3.94 49.53
PSANet—ResNet50 89.11 72.18 80.78 81.96 194.8 54.07 17.64

SegMarsViT—MobileViT-s (Ours) 92.15 78.22 84.74 85.86 8.54 5.61 69.52

4.2.3. Results on MSL-Seg

Table 6 summarizes our results including FLOPS, frame per seconds (FPS), and other
four metrics to evaluate the segmentation accuracy on the MSL-Seg dataset. Compared
with other latest methods, the proposed SegMarsViT exhibited significant improvement
of 2.96% and 5.17% in terms of the pixelACC and mIoU, respectively. We further analyze
the classwise segmentation performance of the proposed SegMarsViT on eight classes, we
obtain classwise IoU on the test dataset, and is shown in Table 7. It can be observed that
IoU for few classes is low, e.g., the Martian soil and bedrocks. This is because the notion of
these classes is ambiguous in MSL-Seg. Their low IoU score is due to the low pixel count of
these objects in the training data.

Figure 6 shows the ground truth segmentation maps of five sample images along with
their predicted segmentation maps. It can be observed that the proposed SegMarsViT has
much better comparative results in scenes. As shown in the last two rows of Figure 6,
our method can work well on several kinds of complex scenarios with noisy informa-
tion, while others may fail in such scenarios. It can be seen from the overall detection
effect that the main Martian terrain feature can be extracted. However, missed detections
and error detections of some objects existed, and the segmentation accuracy needs to be
further improved.
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Figure 5. Qualitative comparison on S5Mars test set. (a–e) show five experimental samples.

Table 6. Comparison with state-of-the-art methods on MSL-Seg.

Method pixelACC mIoU mFscore mPrecision FLOPs (G) Params (M) FPS

Segmenter—ViT-s 84.39 66.2 78.32 76.4 17.93 26.03 48.44
SegFormer—MIT-B0 83.84 64.37 76.99 74.74 6.39 3.72 59.21

FPN—PoolFormer-s12 83.9 63.41 76.56 76.03 30.69 15.64 37.35
FCN—MobileNetv2 81.67 54.96 68.32 77.72 39.6 9.8 58.17

PSPNet—MobileNetv2 82.32 60.62 74.2 71.1 52.94 13.72 50.21
DeepLabV3+—MobileNetv2 82.47 59.08 72.78 70.56 69.4 15.35 37.64

FCN—HRNetv2-w18s 82.59 58.57 71.98 75.44 9.6 3.94 49.53
PSANet—ResNet50 83.23 62.43 75.41 73.47 194.8 54.07 17.64

SegMarsViT—MobileViT-s (Ours) 86.05 67.28 78.69 78.75 8.54 5.61 69.52

Table 7. Classwise IoU of the proposed SegMarsViT on MSL-Seg dataset.

Martian Soil Sands Gravel Bedrock Rocks Tracks Shadows Unknown mIoU

41.3 77 82.43 47.91 74.39 54.22 89.23 71.78 67.28

To further analyze the model efficiency, we summarize the efficiency-related metrics
on the three datasets mentioned above and state them in Figure 7. As shown, the proposed
SegMarsViT has the fewest parameters among all the models. These metrics are crucial
for Martian terrain segmentation on satellite, which has limited storage. Here, frames
per second (FPS) is an average speed that per second with size 512 × 512. Data and
parameters load time is not considered, and the employed single GPU is NVIDIA 3070Ti
with 8-G storage. The time spent per image of our SegMarsViT is less than other semantic
segmentation methods. In conclusion, our method achieves the state-of-the-art performance
in Martian terrain segmentation and meanwhile is much more efficient than methods with
comparable accuracy.
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Figure 6. Visualization examples on MSL-Seg test set. (a–e) represent five experimental samples.

Figure 7. Speed and accuracy comparison on three datasets, (a) AI4Mars; (b) S5Mars; (c) MSL-Seg.
Compared with other regular semantic segmentation methods, the proposed SegMarsViT is competitive.

4.3. Ablation Studies
4.3.1. Effect of Backbone

We first analyze the effect of increasing the size of the encoder on the performance
and model efficiency. MobileViT-xxs, MobileViT-xs, and MobileViT-s are the series of
mobile transformer encoders with the same architecture but different sizes (as illustrated
in Table 2 of Section 3.2). Table 8 summarizes the comparison results for three datasets.
It can be observed that both the largest model SegMarsViT-s and the super small model
SegMarsViT-xxs achieve close to or exceeding SOTA performance. Furthermore, the super
small model SegMarsViT-xxs has good performance, and the number of parameters and
FLOPs are 1.84 M and 1.16 G, along with 66.81%, 74.83%, and 65.80% mIoU on the three
datasets, respectively. Because the model parameters of the backbone network are smaller
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and the structure is compact, the pressure on computing resources is smaller. Hence, the
proposed model can be better applied to engineering.

Table 8. Evaluation of encoder with different model sizes for SegMarsViT.

Encoder
Complexity AI4Mars S5Mars MSL-Seg

FLOPs Params FPS pixelACC mIoU pixelACC mIoU pixelACC mIoU

MobileViT-xxs 1.16 G 1.84 M 110.1 91.92 66.81 89.34 74.83 83.17 65.80
MobileViT-xs 2.23 G 4.61 M 80.3 91.99 67.73 91.58 76.32 84.35 66.83
MobileViT-s 8.54 G 5.61 M 69.5 92.46 68.4 92.15 78.22 86.05 67.28

4.3.2. Effect of ELAD

In this subsection, we test the proposed ELAD with different decoders. As mentioned
earlier, the proposed efficient layer aggregation decoder (ELAD) consists of stagewise CFF
modules and one CFA module in a nutshell, which are constructed in the way shown in
Figure 8. In addition, we select two representative decoders (Figure 9a,b) for test: the
All-MLP decoder, termed AMD, first proposed in SegFormer [38], and the classic decoder
of the U-shaped network [11], termed UNetD. In practice, we use the official code provided
by the authors to implement our experiments. From Table 9, with the same encoder, e.g.,
MobileViT-s encoder, we find that the proposed ELAD produces higher performance.

Compared with AMD, the proposed ELAD achieves through introducing the CFF
modules to build internal communications between the adjacent feature stages. The experi-
mental results in Table 9 verify the significant effect of our CFFs on better fusing feature
maps at different scales from another perspective, and this is exactly the common point
of ELAD and UNetD. Both consist of an information fusion path for modeling a more
representative and robust context. The key difference is the way they implement feature
fusion across adjacent stages. The comparison results on Table 9 show that our ELAD has
the least FLOPs with comparable parameters, which are the vital part of the construction
for the lightweight segmentation network.

Figure 8. Illustrating the ELAD architecture of the proposed SegMarsViT.
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Figure 9. Illustration of different decoder architectures: (a) All-MLP Decoder, (b) UNet Decoder.

Table 9. Ablation studies for decoder on MSL-Seg dataset.

Encoder Decoder pixelACC mIoU FLOPs(G) Params (M)

MobileViT-s AMD 85.66 66.69 13.14 5.09
MobileViT-s UNetD 85.48 66.83 12.85 6.23
MobileViT-s ELAD 86.05 67.28 8.54 5.61
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4.3.3. Effect of Components in Decoder

In this subsection, we design ablation experiments on SegMarsViT to examine the
validity of CFF and CFA modules.

(1) Baseline: MobileViT-s + ELAD (Without CFA).
(2) SegMarsViT: MobileViT-s + ELAD (CFF + CFA).

Table 10 reports the ablation studies of the baseline and our model on the MSL-Seg
test set. We can see that incorporating both the CFF and CFA modules results in consistent
and significant increase over the baseline. In particular, when compared with the baseline
model, mIoU and PixelACC of the SegMarsViT with both CFF and CFA blocks integrated
are improved by 4.06% and 2.62%, respectively. The great improvement of SegMarsViT
proves the gain effect of their combination.

Table 10. Ablation results on MSL-Seg dataset.

Method
Modules

pixelACC mIoU FLOPs(G) Params (M)
CFF CFA

Baseline - � 83.43 63.22 7.54 5.0
SegMarsViT � � 86.05 67.28 8.54 5.61

5. Conclusions

In this paper, we propose SegMarsViT, a lightweight network for the real-time Martian
terrain segmentation task. We adopt a deployment-friendly MobileViT backbone to extract
discriminative local–global context information from multi-scale feature space. Further, an
effective cross-scale feature fusion module was designed to encode context information
in the multi-level features, with a cross-scale feature fusion mechanism applied to help
further aggregate feature representations. In the end, a compact prediction head is used
to aggregate hierarchical features and help enhance feature learning, yielding run-time
efficiency. Empirical results validate the superiority of the proposed SegMarsViT over
mainstream semantic segmentation methods. The ablation study verifies the effectiveness
of each module. More specifically, MobileViT helps obtain the semantic properties of terrain
objects in terms of morphology and distribution, while the compact decoder can lead to both
high efficiency and performance. Through the comparison of parameters, FLOPs and FPS,
the SegMarsViT further demonstrates its advantages in terms of space and computation
complexity. All of the results fully demonstrate the capability of the SegMarsViT in efficient
and effective Martian terrain segmentation, which provides significant potential for the
further development of MTS task.

One potential limitation is that there’s an enormous gap between high-end GPU and a
low-memory spacecraft device. Our future work will experiment on a realistic hardware
platform to evaluate the model efficiency. Energy consumption and practical performance
will be our primary focus. Moreover, we will proceed to refine our approach and be
committed to investigate MTS methods for more challenging cases, e.g., multi-source
heterogeneous data and a multi-task perception system.
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Abstract: Robust segmentation in adverse weather conditions is crucial for autonomous driving.
However, these scenes struggle with recognition and make annotations expensive, resulting in poor
performance. As a result, the Segment Anything Model (SAM) was recently proposed to finely
segment the spatial structure of scenes and to provide powerful prior spatial information, thus
showing great promise in resolving these problems. However, SAM cannot be applied directly for
different geographic scales and non-semantic outputs. To address these issues, we propose SAM-
EDA, which integrates SAM into an unsupervised domain adaptation mean-teacher segmentation
framework. In this method, we use a “teacher-assistant” model to provide semantic pseudo-labels,
which will fill in the holes in the fine spatial structure given by SAM and generate pseudo-labels close
to the ground truth, which then guide the student model for learning. Here, the “teacher-assistant”
model helps to distill knowledge. During testing, only the student model is used, thus greatly
improving efficiency. We tested SAM-EDA on mainstream segmentation benchmarks in adverse
weather conditions and obtained a more-robust segmentation model.

Keywords: segment anything model (SAM); unsupervised domain adaptation; semantic road
scene segmentation

1. Introduction

The semantic segmentation [1–7] of road scenes is important for autonomous driving [5],
particularly during scene data analyses and behavior decision-making [8]. This technology
also has good applications in motion control planning [9,10] and multi-sensor fusion pro-
cessing [11]. Furthermore, over the past decade, we have seen tremendous advancements
in semantic segmentation technology [7,12–15]. Currently, intelligent semantic segmenta-
tion algorithms can even outperform humans in recognizing clear scenes [15]. However,
these works mostly ignore the deterioration of image quality caused by adverse weather
conditions such as fog, rain, and snow [16]. This leads to an obvious performance decline.
Unfortunately, the reliable and safe operation of intelligent systems requires the underlying
recognition processes to be highly robust under these adverse conditions. Thus, this issue
is receiving increasing attention now.

Adverse weather conditions bring two main challenges to semantic segmentation.
Firstly, important objects become blurred, which leads to higher uncertainty in the out-
puts of these intelligent algorithms. Although some studies have tried to restore these
images [17] and have attempted to convert them into images with clear scenes, a domain
gap still exists. Secondly, annotating these scenarios is more difficult than annotating
clear ones, making it expensive to use supervised algorithms. Therefore, many studies
have adopted unsupervised domain adaptation (UDA) strategies [18–20] in an attempt to
transfer segmented knowledge from a clear annotated source domain to adverse weather
scenes (the target domain). However, in the transfer process, a domain gap in the UDA
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methods inevitably leads to information loss, resulting in imprecise segmentation in the
target domain scenario.

Recently, the Segment Anything Model (SAM) [1] has attracted much attention as it
uses massive amounts of data to pre-train and conduct self-supervised learning, acquiring
an extremely strong generalization ability. Such a generalization ability enables SAM to
be directly applied to various vision-based tasks without task-oriented training, including
camouflaged object detection [21] and image in-painting [22]. Concretely, SAM can finely
segment all objects in an image, thus providing powerful prior spatial structure information.
Even in adverse conditions, SAM remains robust [23]. Thanks to SAM’s generalization
ability, SAM-DA [24] can make predictions from nighttime images and has a large number
of samples for training, which greatly improves the performance of the model. Thus, we
can assume that applying SAM’s spatial structure information to UDA methods, i.e., adding
a powerful supervision signal to the UDA framework, will be beneficial.

However, currently, SAM cannot be integrated directly into the UDA framework
for three main reasons: (1) As mentioned above, SAM is not a task-oriented model,
and a well-designed access plugin is needed to adapt it to semantic segmentation tasks.
(2) Limited by its computing power, SAM is difficult to mount on the platform of a vehicle.
(3) The operational speed of SAM is very slow and is insufficient when applied to real
scenarios. For problem (1), the SSA [25] method can be used to fuse the spatial structure
information generated by SAM with the semantic information generated by a segmentation
model. However, the SSA method exacerbates the problem of slow operation, taking
40–60 s to complete segmentation for just one image, and its original semantic branch
has not been trained to adapt to adverse weather conditions, resulting in inaccurate infor-
mation and, therefore, producing unsatisfactory results. For problems (2) and (3), some
scholars put forward Fast-SAM [26] and Faster-SAM [26], which have greatly improved
the operational efficiency of SAM and can be deployed from mobile terminals, thus further
adding significance to the research in this paper, as is shown in Figure 1.

Figure 1. The main idea behind the proposed method. For images from the target domain, the
teacher-assistant model and SAM-teacher generate semantic segmentation masks (called “semantic
prompts”) and spatial structure masks, respectively, and, then, use the algorithm mentioned in
Section 2.2 for fusion. Due to SAM’s strong generalization ability, this step can produce pseudo-labels
that are more consistent with real scene distributions; so, the student model can completely explore
the target domain knowledge, similar to the method of supervised learning.

To address the above issues, we propose a SAM-enhanced UDA method called SAM-

EDA as shown in Figure 2, aiming to improve segmentation performance by utilizing the SAM
knowledge while maintaining its original operational speed. Specifically, we plugged SAM (or its
variants) into a mean-teacher’s self-training domain adaptation architecture [19,27], dynamically
carrying out SAM-enhanced learning on the target domain, as well as knowledge distillation.
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The whole architecture and pipeline consist of three sub-modules: (1) the student
model, (2) the teacher-assistant (TA) model, and (3) the SAM-teacher model. However,
only the student segmentation model will be published for evaluation. In a single training
iteration, the TA and SAM-teacher models generate semantic segmentation masks (called
“semantic prompts”) and spatial structure masks on the target domain, respectively, and,
then, use the pseudo-label fusion algorithm mentioned in Section 2.2 for fusion. Due to
SAM’s strong generalization ability, this step can produce pseudo-labels that are more
consistent with real scene distributions, so the student model can completely explore the
target domain knowledge, similar to the method of supervised learning. After completing
the training, neither the SAM-teacher nor TA models remain, thus maintaining the speed
of the existing semantic segmentation network.

The contributions of this article can be summarized as follows:

(1) We propose a simple, but effective semantic filling and prompt method for SAM
masks, which utilizes the output of existing semantic segmentation models to provide
SAM with class information and explore methods to address the scale of the SAM
segmentation results;

(2) To the best of our knowledge, we are the first to incorporate SAM into an unsupervised
domain adaptation framework, which includes the SAM-teacher, teacher-assistant,
and student models, achieving knowledge distillation in the case of completely incon-
sistent structures and output spaces between SAM and the main segmentation model,
effectively improving its adaptability in adverse scenarios;

(3) Our method is applicable to different UDA frameworks and SAM variants, providing
useful references for the application of large models in local professional fields.

Figure 2. The pipeline of the proposed method. Both the source and target domain images used in
this method were captured from a vehicle perspective camera. The target domain image YT was
first fed into the teacher-assistant gφ to generate coarse pseudo-labels ỸT , which serve as semantic
prompts. Then, YT was put into SAM to obtain a spatial structural segmentation map M, leveraging
SAM’s generalization. We merged ỸT and M to incorporate the semantic information. During the
merging process, the top-k occupancy ratio method was mainly used to retain some key class pixels
from ỸT while considering the holes in the SAM’s missing segmentation. The weights were also
calculated based on the proportion of semantic pixels to reduce the impact of uncertainty in SAM.
The merged pseudo-label YT was close to the distribution of the real-world scene, thus enabling
supervision of the student model.
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2. Method

2.1. Unsupervised Domain Adaptation (UDA)

In order to perform an unsupervised domain adaptation for semantic segmentation,
we utilized a student network fθ and a teacher-assistant network gφ based on the mean-
teacher [19,27] pipeline. Given a set of labeled source domain data {(Xi

S, Yi
S)}NS

i=1 (where Yi
S

is the pixel-wise semantic label of Xi
S), the student network directly learns from the source

domain data using the cross-entropy loss function:

LS,cls/seg
i = H( fθ(Xi

S), Yi
S) (1)

H(ỹ, y) = −
H

∑
h=1

W

∑
w=1

C

∑
c=1

yhwc logỹhwc (2)

However, models trained only on the source domain often lack generalization; thus,
knowledge from the target domain needs to be extracted with NT unlabeled images
{(Xk

T)}NT
k=1. In our UDA pipeline, the teacher-assistant network gφ needs to make pre-

dictions using the target domain images and needs to generate pseudo-labels {(Ỹk
T)}NT

k=1,
so the learning loss function based on the pseudo-labels can be denoted as LT

k , which is

similar to the supervised LS,cls/seg
i :

LT
k = H(gφ(Xk

T), Ỹk
T) (3)

The pseudo-labels generated by gφ are often inaccurate (especially during the early
stages of training), so it is necessary to set a dynamic weight λ to balance the impact of
noise in the pseudo-labels. Generally, λ is set as the confidence pixel ratio exceeding a
certain threshold τ:

λk
T =

∑H×W
p=1

[
maxc′ gφ(Xk

T)
(p,c′) ≥ τ

]
H × W

(4)

Finally, the total loss function of our UDA architecture is the weighted sum of source
domain loss and target domain loss:

min
θ

1
NS

NS

∑
i=1

LS
i +

1
NT

NT

∑
k=1

λTLT
k (5)

2.2. Semantic Prompt Fusion and Learning

After standard UDA loss computation, we employed SAM [1] (or its variant) to make
additional predictions on the target domain image Xk

T . Taking the standard SAM as an
example, the input image was first patchified, automatically calculating the points of each
patch as prompts. Then, SAM used a ViT-based [28] encoder and decoder head to obtain a
feature embedding and a mask embedding. Finally, a mask decoder head identified several
masks M without semantic information. Let hϕ denote SAM-series used in our pipeline.
This process can be described as follows:{

Mj
}Nm

k
j=1 = hϕ(Xk

T) (6)

The distribution of M closely matches real-world scenarios, but it requires semantic
information from pseudo-label ỸT , referred to as a “semantic prompt”. For a single mask
Mj, the class ID can be obtained by calculating the most-frequent category ID within the
corresponding region in ỸT :

Mcls
j = arg max

c
(count(Mj � Ỹk

T)p=c) (7)
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However, existing dataset label systems are often restricted to the broadest instance-
level labels (such as cars, buses, buildings, etc.), while SAM’s segmentation has multi-scale
outputs (e.g., window, car, etc.). This leads to some errors when preserving the SAM
segmentation masks (see Section 4.2), meaning that certain parts of the SAM output are not
fully representative of their objects, which makes it difficult to avoid using general rules. To
mitigate this, we calculated the weights for each mask Mj based on the maximum occupied
pixel’s class ID proportion:

Wcls
j =

sum(count(Mj � Ỹk
T)p=c)∣∣Mj

∣∣ (8)

Then, due to holes being present in small objects when using the SAM and the potential
confusion between similar classes (such as roads and sidewalks), it is important to preserve
some pixels to identify key classes. Taking the Cityscapes dataset [12] as an example, we
selected a set of classes among [0, 19], denoted as set K, through empirical judgment. The
final obtained pseudo-label is a combination of the masks Mj, along with the inclusion of
key class pixels from ỸT :

Yk
T =

nm
k⋃

j=1
Mcls

j ∪Ỹk
T [c = cd] cd ∈ K (9)

For the mask filled using Equation (7), the weights are determined using Equation (8).
For the remaining parts, the weights (which will participate in the loss function) were
uniformly set to 1. The final weight matrix is as follows:

Wk
T =

nm
k⋃

j=1
Wcls

j ∪1 � Ỹk
T [c = cd] cd ∈ K (10)

Thus, we can obtain the pseudo-labels enhanced by SAM, which can be used to

construct a loss function similar to that in Equation (1), namely LM = H( fθ(Xk
T), Yk

T).
Consequently, the final loss function is

min
θ

1
NS

NS

∑
i=1

LS
i +

1
NT

NT

∑
k=1

(λTLT
k + Wk

TLM) (11)

3. Results

3.1. Implementation Details

3.1.1. Adverse Condition Semantic Segmentation Dataset

We used the Cityscapes dataset [12] as the source domain for training, which includes
2975 training images. The candidate target domain includes four different datasets—ACDC [16],
Foggy Driving [29] and Foggy Driving Dense [30], Rainy Cityscapes [31], and Dark-Zurich
(DZ) [32]—covering images with adverse conditions such as foggy, rainy, snowy, and nighttime
scenes. Among them, ACDC contains 1600 images for training and 400 images for validation.
Dark-Zurich contains 2416 training images and 151 test images. All datasets were labeled
according to the Cityscapes standard, which includes 19 categories.

3.1.2. SAM-EDA Parameters

For the UDA architecture, we used DAFormer [19] as the baseline. Both the teacher-
assistant and student models were SegFormer [7] with an MiT-B5 backbone. We followed
DAFormer to set the EMA parameter α = 0.99 and the confidence threshold τ = 0.968. For
the SAM mask generator, we used the largest SAM-ViT-H [1,28] and set the prediction IoU
threshold δiou to 0.8. We also set the stability score threshold δsta to 0.8 and the minimum
mask region rmin to 50 pixels. The settings of the SAM parameters directly affect the
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quality and quantity of segmentation masks and determine the geographical scale. All the
experiments were conducted on a Tesla v100 graphic card with 32 GB of graphic memory,
equipped with CUDA 10.2 and cudnn 7.6.5.

3.2. Performance Comparison

We compared our methods with prominent UDA methods for four kinds of adverse
conditions, as well as with the segmentation method SSA [25] combined with SAM ap-
plication. For foggy scenes, we compared CuDA-Net [20] and FIFO [33]; for nighttime
scenes, we compared VBLC [34] and GCMA [35]. These methods are all specialized for spe-
cific scenes. As for universal domain adaptation methods, we compared DAFormer [19],
CumFormer [36], and the SSA method combined with SAM. For the SSA method, we
provide the results using different extractors (ViT-B, ViT-L, and ViT-H). All performance
comparisons are shown in Table 1 and Figure 3. We not only provide comprehensive
performance comparisons for each method, but also present their runtime and memory
consumption. All evaluation metrics were calculated on the validation sets of each dataset.
In Table 2, we show the improvement of our method to different UDA strategies. In Table 3
and Figure 4, we show the influence of different fusion methods between SAM-generated
masks and original pseudo labels. In Table 4, we show the performance of replacing the
original SAM to its variants.

Table 1. Performance comparison. Experiments were conducted on the ACDC, Foggy Driving, Foggy
Driving Dense, Rainy Cityscapes, and Dark-Zurich validation sets and measured with the mean
intersection over union (mIoU %) over all classes.

Dataset

Fog Rain Snow NightModel Pub/Year Backbone

ACDC-f FD FDD ACDC-r Rain-CS ACDC-s ACDC-n DZ

Speed/FPS GPU/GB

DAFormer [19] CVPR 2022 SegFormer [7] 63.41 47.32 39.63 48.27 75.34 49.19 46.13 43.80

6–10
Train: 16 GB

Test: 8 GB

CuDA-Net [20] CVPR 2022 DeepLabv2 [13] 68.59 53.50 48.20 48.52 69.47 47.20 - -
FIFO [33] CVPR 2022 Refinelw-101 [14] 70.36 50.70 48.90 - - - - -

CumFormer [36] TechRXiv 2023 SegFormer 74.92 56.25 51.91 57.14 79.34 62.42 44.75 43.20
VBLC [34] AAAI 2023 SegFormer - - - - 79.80 - - 44.41

GCMA [35] ICCV 2019 DeepLabv2 - - - - - - - 42.01

SegFormer (cs) NeurIPS 2021 - 64.74 46.06 33.15 40.62 68.31 42.03 26.61 23.43 6–10 -

SSA + SAM + SegFormer
arXiv 2023

Github 2023

ViT-B [28] 60.57 39.02 25.33 43.17 67.51 42.93 24.97 22.36
<0.1

Train: 8–48 GB
Test: 16–24 GB

ViT-L [28] 66.78 48.02 31.33 52.94 68.69 51.47 27.69 26.73
ViT-H [28] 68.16 50.89 33.72 54.39 70.27 53.32 29.60 28.92

OneFormer (cs) [15] arXiv 2022 - 72.31 51.33 44.31 56.72 74.96 55.13 32.41 26.74 4–5 -

SSA + SAM + OneFormer
arXiv2023

GitHub2023

ViT-B 69.13 46.97 41.96 58.77 73.03 57.14 36.78 28.96
<0.1

Train: 8–48 GB
Test: 16–24 GB

ViT-L 75.94 53.14 46.78 64.25 75.62 64.21 40.14 34.25
ViT-H 77.87 55.61 48.41 69.25 76.31 66.22 41.22 37.43

SAM-EDA(Ours) -
ViT-B 68.10 50.74 43.66 54.20 71.01 55.47 33.62 27.63

6.7
Train: 8–48 GB

Test: 8 GB
ViT-L 75.30 55.49 46.98 64.68 73.41 58.12 41.30 35.45
ViT-H 78.25 56.37 51.25 69.38 76.63 68.17 43.15 42.63

Table 2. SAM-EDA for UDA methods. Experiments were conducted on the ACDC-Fog validation set
and measured with the mean intersection over union (mIoU %) over all classes.

UDA Method w/o SAM-EDA w/ SAM-EDA Diff.

DACS [37] 61.08 64.28 +3.20
ProDA [18] 65.17 68.74 +3.57

DAFormer [19] 67.93 71.61 +3.68
CuDA-Net [20] 68.56 72.37 +3.81

CumFormer [36] 74.92 77.89 +2.97
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Table 3. Different semantic prompt fusion methods. Experiments were conducted on the ACDC
and Dark-Zurich validation set and measured with the mean intersection over union (mIoU %) over
all classes.

ACDC-F
Method/Datasets

Fog Rain Snow Night
Dark-Z Mean

Gain

(mIoU)

DAFormer [19] 63.41 48.27 49.19 46.13 43.80 50.16 +0.00
IoU [38] 55.19 41.58 42.17 39.48 27.66 41.22 −8.94

SSA (SegFormer) [25] 68.16 54.39 53.32 29.60 28.92 46.88 −3.28
SAM-EDA w/o Weight 74.02 65.17 62.74 38.74 39.91 56.12 +5.96
SAM-EDA w/ Weight 78.25 69.38 68.17 43.15 42.63 60.32 +10.16

Table 4. SAM-EDA for SAM variants. Experiments were conducted on the ACDC-Rain validation set
and measured with the mean intersection over union (mIoU %) over all classes.

Performance Time (s/iter) Memory (GB)

SAM [1] 69.38 10 8–48
Fast-SAM [39] 68.22 0.5 16

Faster-SAM [26] 68.87 0.3 16

We found that, in bright scenes, such as foggy, rainy, and snowy ones, the SAM-
enhanced algorithm outperformed the UDA algorithms. The SSA method performed
better than DAFormer, and some methods even outperformed CumFormer, which was
newly proposed by the authors, but our SAM-EDA was better than the SSA method. This
is because SAM demonstrated strong generalization in bright scenes, providing sharper
contour branches. Additionally, the teacher-assistant model can generate relatively accurate
pseudo-labels, contributing to better fusion. For night scenes, however, the SAM itself
has a significant bias (which will be shown in Section 4.2, thereby reducing the overall
performance. However, our SAM-EDA still outperformed the two SSA algorithms for night
scenes. Since we only kept the student model, the testing speed and memory consumption
were the same as the fast SegFormer. In Figure 3, we show the qualitative comparison. Due
to space limitations, we only show the results of ACDC. Based on our method, more-precise
segmentation results were obtained in categories such as poles, traffic lights, and traffic
signs with obvious shapes.

Input SegFormer DAFormer CumFormer SSA ours GT

Figure 3. A qualitative comparison with other methods. From top to bottom, there are foggy, rainy,
snowy, and nighttime scenes. Based on our method, more-precise segmentation results are obtained
in the categories poles, traffic lights, and traffic signs with obvious shapes.
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Input PL SAM mask IoU SSA S-E S-E W. GT

Figure 4. Different pseudo-label fusion methods. From left to right are the target domain image, the
original pseudo-label (PL) generated by the teacher-assistant model, the original masks generated
by the SAM, the pseudo-label fused using the IoU method, the SSA method, our SAM-EDA (S-E)
method, SAM-EDA’s weight, and the ground truth (GT).

4. Discussion

4.1. SAM-EDA for Different UDA Methods

We used the pseudo-labels generated by the teacher-assistant model as semantic
prompts for filling in SAM’s masks. In fact, SAM-EDA is suitable for any UDA segmentation
method that utilizes pseudo-labels for self-training. We conducted ablation experiments on
the ACDC-Fog validation set. Table 2 demonstrates the enhancement of different methods
by SAM-EDA. We found that SAM-EDA can not only improve classic UDA methods
(e.g., DACS [37], ProDA [18], and DAFormer [19]), but also improve methods specific to
adverse scenes (CuDA-Net [20] and CumFormer [36]) by approximately 3%, indicating
that SAM’s information is generalizable. This shows that SAM-EDA is a good plugin, and
through data-side processing, complex knowledge distillation or fine-tuning operations
can be avoided, thus taking advantage of both SAM and domain-specific models.

4.2. Influence of Different Pseudo-Label Fusion Methods

Different semantic prompt fusion methods matter. We chose as many comprehensive
fusion strategies as possible and present them in Figure 4. From left to right are the target
domain image, the original pseudo-label generated by the teacher-assistant model, the
original masks generated by SAM, the pseudo-label fused using the IoU method [38], the
SSA method [25], our SAM-EDA method, and SAM-EDA’s weight. From top to bottom are
the four adverse-condition scenes. Among the three label fusion strategies, the simplest
one is to directly assign the class that has the largest intersection over union (IoU) between
the mask and category ID layer [38], which was successfully applied in weakly supervised
semantic segmentation and saliency detection. However, this approach led to many holes
(black areas in the fourth column of Figure 4). This is because the semantic segmentation
task is at the “category level”, while the SAM masks are at the instance level. When
calculating the IoU, the instance-level mask takes the class-level label as the denominator,
making the calculation ineffective. For example, if there are three cars in the image, in the
“car” category layer, the pixels of the three cars will all be taken into account. Therefore, the
proportion of pixels belonging to the “car” class in the mask of a car instance will decrease
to 1/3 or 1/2 of the original proportion. If there are other classes present in the current
area, it is likely that this area will be misclassified into another class. The SSA method relies
entirely on the SAM mask and assigns instance-level pixel labels to all the masks output by
SAM. This ensures that each mask has a definitive category label and does not generate
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large areas of holes. However, if the segmentation by SAM is inaccurate, it will directly
result in large areas of errors.

When dealing with the SAM masks, we identified three shortcomings. Firstly, SAM
struggled to differentiate classes with similar features, such as roads and sidewalks. In
all scenarios, SAM uses the same mask for roads and sidewalks. This is unacceptable
for autonomous driving. Secondly, SAM has difficulty distinguishing walls from railings
or simply does not recognize them as objects, which could also be fatal for autonomous
driving. Lastly, SAM performed poorly in nighttime conditions. For example, in the fourth
row of Figure 4, SAM mistakenly assigned large areas of buildings to the sky, leading to
errors in the label fusion region and undermining the performance brought by the original
pseudo-labels.

To address these issues, we retained some critical categories from the original pseudo-
labels (such as sidewalks, walls, and fences) to counter SAM’s shortcomings. Then, we
allowed the masks to be assigned to incorrect classes (which is difficult to avoid), and we
calculated the weights for each mask and reduced them in the loss function, thus effectively
optimizing the SSA method. In Table 3, we show the impact of different label fusion
strategies. As seen, the SAM-EDA method, which incorporates weights, achieved real
improvements and outperformed the SSA method and the case without weights.

4.3. SAM-EDA for SAM Variants

SAM-EDA is also applicable to SAM variants with different numbers of parameters,
with the potential to accelerate training. In Table 4, we replaced SAM with the lighter
Fast-SAM [39] and Faster-SAM [26], significantly reducing the duration and memory usage
of each iteration. In the standard SAM-EDA, we do not need to include SAM in the final
segmentation model, so different SAM variants have little impact. However, the emergence
of Faster-SAM undoubtedly provided a better option for future methods to include SAM.

4.4. Influence of SAM’s Hyper-Parameters

SAM’s hyper-parameters are related to the quality, density, and porosity of the gen-
erated masks. We conducted tests on the effectiveness of two hyper-parameters: the
prediction IoU threshold δiou and the stability score threshold δsta (Figure 5). The higher
they were set, the more precise the mask contours, but the fewer the masks. We conducted
separate experiments on the ACDC-Rain validation set and found that the best results were
achieved when δiou = δsta = 0.8. This indicates that we need a stable quantity of masks
to cover the entire image during label fusion rather than solely focusing on the quality of
the masks.

Figure 5. Influence of SAM’s hyper-parameters. High δiou and δsta both result in performance
degradation, and we found that the best results were achieved at δiou = δsta = 0.8.
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5. Conclusions

We have presented SAM-EDA, a universal framework for using SAM in unsupervised
semantic segmentation tasks. This method utilizes pseudo-labels generated by specific
semantic segmentation models as prompts to fill in the spatial structure of SAM segmen-
tation, thereby obtaining a more-accurate probability distribution of scene segmentation.
The most-significant contribution of our method is the introduction of a more-accurate
and fault-tolerant semantic prompt fusion approach. It can integrate the spatial structure
provided by SAM with the semantic discernment generated by the original segmentation
network. Our experiments showed that our method achieved better performance on se-
mantic segmentation benchmarks under several adverse imaging conditions. Moreover, it
can be implemented in a plug-and-play manner to enhance any unsupervised semantic
segmentation algorithm based on pseudo-labels. After introducing a lightweight variant of
SAM, our method obtained the ability to perform near real-time training and testing. We
also explored the hyper-parameters of SAM.

The universality and generalizability of SAM are valuable resources. In future research,
we plan to introduce SAM into tasks such as Test Time Adaptation, serving as a spatial
structure anchor to combat the catastrophic forgetting that may occur during prolonged
adaptation processes of the model.
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Abstract: In the realm of few-shot classification learning, the judicious application of data augmen-
tation methods has a significantly positive impact on classification performance. In the context of
few-shot classification tasks for remote sensing images, the augmentation of features and the efficient
utilization of limited features are of paramount importance. To address the performance degradation
caused by challenges such as high interclass overlap and large intraclass variance in remote sensing
image features, we present a data augmentation-based classification optimization method for few-
shot remote sensing image scene classification. First, we construct a distortion magnitude space using
different types of features, and we perform distortion adjustments on the support set samples while
introducing an optimal search for the distortion magnitude (ODS) method. Then, the augmented
support set offers a wide array of feature distortions in terms of types and degrees, significantly
enhancing the generalization of intrasample features. Subsequently, we devise a dual-path classifica-
tion (DC) decision strategy, effectively leveraging the discriminative information provided by the
postdistortion features to further reduce the likelihood of classification errors. Finally, we evaluate the
proposed method using a widely used remote sensing dataset. Our experimental results demonstrate
that our approach outperforms benchmark methods, achieving improved classification accuracy.

Keywords: remote sensing scene classification; few-shot learning; data augmentation; feature distortion

1. Introduction

The field of remote sensing image classification holds a pivotal position in various ap-
plication domains, including disaster detection [1], land use analysis [2], and environmental
monitoring [3]. Early remote sensing scene classification methods predominantly relied on
manually crafted features, encompassing texture features, structural features, and spectral
features [4]. Correspondingly, a multitude of models based on these features emerged, such
as the Bag of Words (BoWs) model [5] and sparse coding models [6]. Their fundamental
strategies often revolved around enhancing or reducing certain aspects of the image, such
as increasing the sparsity of features or reducing redundant image portions, aiming to
improve classification performance. These methods are characterized by their simplic-
ity and efficiency [4,7]. However, as the demand for improved performance has grown,
these methods have shown limited feature representation capabilities and low utilization
efficiency of data information, constraining their effectiveness in practical applications.

With the rapid evolution of parallel computing resources and advancements in artifi-
cial intelligence theory, deep learning algorithms have become the predominant trend in
remote sensing image classification [8–10]. This approach involves using deep encoders,
convolutional neural networks (CNNs), and similar architectures for end-to-end feature
extraction, followed by analysis and processing using appropriate decoders. Several no-
table advancements have been made in model optimization. For instance, Chen et al. [11]
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integrated local convolutional attention modules into the backbone network, resulting
in significant target-highlighting effects in complex background remote sensing images.
Ma et al. [12] introduced network evolution, training, and searching for better network
structures using various remote sensing image datasets. Wang et al. [13] employed a
target–background separation strategy, using background information beyond the effective
target as decision support to enhance distinguishability between target similarity and
background difference samples. They also combined texture and morphological features to
guide feature learning, effectively reducing the impact of intraclass differences.

In practice, optimizing network architectures significantly enhances performance,
assuming sufficient labeled data for structural training optimization. However, a major
challenge in remote sensing scene classification is the scarcity of annotated data for model
training, especially when faced with tasks involving unseen scene types. Few-shot learning,
focusing on a limited number of samples, has gained prominence in addressing this
challenge. The primary hurdle in few-shot learning is enabling deep models to quickly
learn and infer from a small number of samples without extensive training on large-scale
datasets [14–16].

There are two primary approaches to few-shot learning: meta-learning [17] and metric
learning [18]. Meta-learning trains classifiers for quick adaptation to new tasks by sharing
knowledge across multiple tasks, enhancing few-shot learning. In high-resolution satellite
image scene classification, Zhai and colleagues introduced a lifelong few-shot learning
approach [19], enabling easy adaptation to new datasets. Li et al. [20] improved intertask
relevance by integrating more historical prior knowledge from partial intratask sequences.
They also introduced a graph transformer to optimize the distribution of sample features
in the embedding space. In contrast, similarity-based methods or metric learning methods
are simpler and more effective. The core idea is to cluster similar samples and disperse
dissimilar ones by measuring sample similarity. Deng et al. [21] proposed a deep metric
learning-based feature embedding model using the nearest neighbor (NN) algorithm as a
classifier, addressing classification tasks for high-spectral remote sensing images within
and across scenes. Li et al. [22] introduced an adaptive matching network, concatenating
support and query set discriminative features and assigning similarity scores to sample
pairs. This method captures a more comprehensive range of image information and cues.
The challenge for these methods lies in better representing sample features and measuring
class similarity. They need to address the limitations of sample features and potential issues
in handling similarity metrics, as shown in Figure 1.

Figure 1. An illustration of a common issue in similarity computation for few-shot classification
tasks using metric learning. The query image is classified as “stadium”, but its true label is “center”,
leading to frequent similar misses. This significantly impacts the classification performance in
few-shot learning for remote sensing images.
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Previous studies confirm that effective data augmentation in few-shot learning sig-
nificantly improves classification accuracy [23]. Data augmentation methods offer ad-
vantages by minimizing additional computational costs and being less constrained by
training/testing framework designs. In addition to traditional techniques like rotation and
color adjustments, researchers have innovated various augmentation methods, broadly cate-
gorized into two types. One type involves data generation. For instance, Antoniou et al. [24]
introduced the data augmentation generative adversarial network (DAGAN) model. It
extracts image data from a source domain, projects it into a lower-dimensional vector with
an encoder, and concatenates the transformed random vector with a decoder to generate
augmented images. Li et al. [25] proposed the adversarial feature hallucination network
(AFHN) model, utilizing generative adversarial networks (cWGANs) for dataset expan-
sion in few-shot learning. This model enhances discriminative capability and diversity
by adding a classification regularizer and an anticollapse regularizer. Subedi et al. [26]
presented a GAN-based data augmentation approach generating high-quality training
data. Featuring an additional binary classifier in data and feature spaces, this approach
controls the generator for optimized training data, improving classification performance.
Chen et al. [27] simultaneously employed GAN and U-Net models to create medical images
with additional information, elevating few-shot classification task performance. However,
a challenge with such methods is the instability in the contribution of generated features
to classification performance. The difficulty arises from evaluating whether the newly
generated features possess adequate discriminability. Task-specific regularization may
lead to the collapse of the synthesis process, resulting in a lack of diversity in generated
samples [28].

The other type of method is based on feature enhancement, forming the foundation of
this work. These methods assume that knowledge about relationships between samples
within known visible categories can be acquired and transferred to unseen categories.
Successfully establishing cross-associations between visible categories and learning these
relationships allows the application of the knowledge to handle unseen categories with
only a few labeled samples. Researchers believe that by increasing sample diversity, we
can expand intraclass differences and better define classification boundaries between
different categories [29]. Following this rationale, Chen et al. [30] proposed a semantic
feature enhancement algorithm. This algorithm utilizes an encoder–decoder model to map
samples to a semantic space, learning concepts of samples in the semantic space. By adding
noise, extending samples in the semantic space, finding nearest neighbors, and mapping
them back to the visual space, the algorithm achieves effective sample augmentation.
Alfassy et al. [31] introduced a label-set operations (LaSOs) network for multilabel few-
shot image classification tasks. LaSOs leverage relationships between label sets to extract
potential semantic information, forming data augmentation at the feature space level.
Such approaches introduce varying degrees of distortion to data, making it crucial to
ensure that distorted samples maintain or increase discernibility; otherwise, achieving ideal
classification performance becomes challenging. On the other hand, accurate delineation
of classification decision boundaries depends on sufficient intraclass variance in labeled
samples. Therefore, the process of feature enhancement can be understood as actively
adding distortion to original features, with these distortions having limitations. Excessive
distortion may lead to the loss of discernibility in numerous newly introduced features,
increasing the risk of underfitting [32], as illustrated in Figure 2. The impact of image
distortion levels on classification accuracy varies when different numbers of images are
used for training (e.g., 103 and 104). The training data are randomly extracted in proportion,
and the horizontal axis represents the distortion magnitude level, while the vertical axis
shows the ratio of classifier accuracy when using additional distorted data compared to
not using it.

It is noteworthy that frameworks or data optimization methods for specific tasks
often lack generalizability [33,34]. Currently, a more universally applicable solution is the
use of learned data augmentation policies [35]. The limited adoption of these methods
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is primarily due to the mostly discrete nature of the search space they construct. Each
subpolicy within this space brings inconsistent gains to the model, with variations even
far apart. Hence, the generation of these policy combinations is inherently challenging to
generalize. Additionally, achieving optimal parameters involves independent and costly
search and learning stages, resulting in unstable performance gains [36].

Figure 2. Illustration of how distortion magnitude influences classification accuracy.

For remote sensing images, few-shot classification tasks are significantly more challeng-
ing than those for ordinary object images. Remote sensing images have lower resolutions,
less detail, and are more prone to confusion between images, making it relatively difficult
to define interclass boundaries. In this work, to maximize the improvement of interclass
boundaries in few-shot learning tasks, we first explored the impact of different types of fea-
ture distortions on learning and introduced a method to construct a continuous distortion
space. Subsequently, we combined feature enhancement with metric learning, incorporat-
ing the distortion magnitude of features into the metric learning process. Through this
amalgamation, we tried to construct a classification framework with a better generalization
performance through the acquirement of more discriminable additional features and the
support of an optimized learning network.

The specific contributions of this paper are as follows:

• For few-shot classification tasks in remote sensing images, we propose a data aug-
mentation method based on distortion magnitude optimization. The core idea of this
method is to introduce appropriate shifts in the feature space for limited samples
across a distortion magnitude space, thereby probing and reconstructing interclass
boundaries. This approach assimilates the strengths of feature enhancement and met-
ric learning methods. By constructing a multidimensional feature distortion space and
segmenting the search for distortion magnitude, it efficiently identifies the optimal
distortion magnitude;

• We propose a dual-path classification strategy that optimizes the classification process
by dynamically adjusting decision weights. This strategy is particularly suitable for
few-shot classification tasks in remote sensing images, as it simultaneously considers
the feature information provided by the overall sample distribution and individual
samples, significantly reducing the probability of classification errors.
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2. Proposed Method

The proposed methodology comprises three integral components: optimal distortion
search, feature distortion space construction, and dual-path classification strategy. The
optimal distortion search is employed to acquire samples with more discernible features,
while the construction of the distortion magnitude space provides feature references for
the optimization search. Ultimately, the dual-path classification strategy is employed to
manage a more effective classification of augmented data.

2.1. Optimal Distortion Search

Assuming the current problem is a k-way, N-shot task, the overall framework of the
optimal distortion search (ODS) is represented in Figure 3, where Xij denotes a specific
image’s data in the support set, and XD

ij represents the image after feature distortion.
The core idea of this method is to introduce additional distortion to the sample features
provided by the support set, allowing these features to generate appropriate shifts in the
feature space.

Figure 3. Schematic diagram of data augmentation method based on distortion magnitude optimiza-
tion. Through the similarity comparison, the current distortion magnitude is gradually updated to a
better level. During this workflow, optimizing the magnitude of feature shifts induced by distortion
leads to better intraclass space and interclass boundaries.

In the initial stages of the method, we need to obtain a similarity matrix Sij for each
sample in the support set with all other samples. Here, i and j represent the indices of
images in the support set, S represents the similarity between image pairs, and f denotes a
convolutional neural network. From this matrix, we can find the maximum and minimum
values of intraclass similarity Sintra

ij for each sample, as well as the maximum and minimum

values of interclass similarity Sinter
ij . Similarly, Sintra

ij and Sinter
ij , respectively, represent the
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similarity matrices between the current distorted sample and samples of the same class
and other classes, which can be represented as follows:

SDintra
ij =
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Depending on the magnitude of the distortion, the feature vectors of the distorted
samples may exhibit a significant shift from their original positions. Therefore, during
the process of updating the distortion parameters, it is essential to impose reasonable
constraints on this range. Therefore, we set Sintra

min and Sinter
max as the expected target values to

achieve for Sij. In previous few-shot learning methods, these two parameters were often
set to 0 and 1, but in the distortion magnitude search process, such settings can lead to
issues. For example, it may result in distorted sample features being too close to the original
features, rendering the distortion itself meaningless. So, in our approach, we uniformly
set the threshold for Sintra

min to be 0.7 (set to 0.7 if it falls below this value) and the threshold
for Sinter

max to be 0.3 (set to 0.3 if it exceeds this value). This choice aims to ensure that the
distortion of features increases the similarity between the current image and the sample
with the minimum intraclass similarity while decreasing the similarity with the sample
with the maximum interclass similarity. This way, the feature vector of the distorted image
can approach the intraclass boundary as closely as possible while staying far away from
the feature boundary of other sample classes in the support set. The loss function in the
optimization process is defined as follows:

Ld =
1
N

N

∑
i=1

1
k

k

∑
j=1

Max
(∣∣∣Sintra

min − Min
(

SDintra
ij

)∣∣∣, ∣∣∣Sinter
max − Max

(
SDinter

ij

)∣∣∣) (2)

This framework shares the same feature extractor f and fully connected layers with
the earlier pretrained model. During the distortion magnitude search process, we need
to freeze all the parameters of f and the fully connected layers until the entire distortion-
based augmentation operation is complete. Once the search is finished, the final values of
the distortion magnitudes will be directly used for data augmentation. These data, after
undergoing feature distortion, will form a new support set along with the basic geometric
transformation-based data augmentation (rotation, random clip, etc.). The augmented
support set will provide data features that occupy more positions in the feature space
compared to the original features, and the mean feature vector of individual classes will
also exhibit varying degrees of shift.

2.2. Construction of Feature Distortion Space

In contrast to methods based on AutoAugment [36], the premise of the method pro-
posed in this paper is to start with specified data augmentation strategies and then optimize
their inner attributive parameters based on these strategies. Therefore, to search for the
optimal distortion magnitudes, it is essential to construct an appropriate magnitude space.
The preset distortion magnitude values are stored in registers, and as the iterative process
proceeds, the current parameters are continuously updated based on the loss value. The
last updated magnitude parameters represent the best magnitude for feature enhancement.

In the edge distortion section, we use simple operators (such as the Sobel operator)
to first extract the edge information from the original image and then perform a dilation
operation on the edges of the image. The size of the dilation matrix is D × D, which
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determines the degree of thickening of the shape edges. Based on empirical evidence, the
range of D is set within D ∈ [1, 8]. This parameter will be involved in the learning process.

For texture distortion, we refer to the six attributes of texture features proposed
by Tamura et al. [37] (i.e., contrast, coarseness, directionality, regularity, linearity, and
roughness, with the first three being more significant in feature representation). We use
the addition of random pixel grains to control the roughness of the image. The parameter
involved in the search process is the granularity level P, with P representing the number of
times random pixels are added. Before adding, we can set the number of pixels to be added
and the size of the pixel blocks artificially. The benefit of this approach is that it simplifies
the model and makes the enhancement magnitude controllable.

To simplify the calculation in the color distortion section, we randomly (or at evenly
spaced intervals) set C color combinations of RGB channels. In other words, we select
values from the RGB channels to form C different combinations. In this section, there are C
updatable values that determine the color.

This approach allows us to establish a discrete distortion magnitude space, denoted as
Φ = (D, P, C). Assuming P = 20 and C = 10, this results in a potential pool of 8 × 20 × 10
different distortion magnitude combinations. It is worth noting that the aforementioned
augmentation strategies may not necessarily represent the optimal choices, as there can be
multiple strategies to choose from. Furthermore, these diverse strategies entail different
parameters for representing the distortion magnitude. It is important to clarify that our
research focuses on exploring the distortion magnitude space and does not encompass
learning within the strategy space.

During the exploration process, we employ a segmented search strategy by dividing
the magnitude values for each feature into ρ subregions. The mean distortion magnitude
from each subregion combination is introduced into the iterative process as the magnitude
parameter. In each iteration, a set of distortion magnitudes for each feature is generated,
which corresponds to a specific loss function, Ld. Subsequently, within the subregion
associated with the smallest Ld, we conduct further searches. This subregion is then
excluded, and the process is repeated iteratively. Figure 4 visually illustrates this process,
where m denotes the index of the subspace. The best distortion magnitudes determined
for Xij during the current iteration are subsequently incorporated, replacing the original
images in the support set for the next iteration. The value of ρ can be tailored to the size
of the distortion magnitude space. Through this approach, we efficiently realize dynamic
feature distortion selection while streamlining the search process, considerably reducing
computational overhead in the iterations.

Figure 4. Illustration of search process of distortion magnitude space. The mean value of subspace
nodes is utilized for distortion generation. The updated support set is employed for the subsequent
round of model performance assessment, retaining support sets that yield higher accuracy. The
ultimately retained subspace will be utilized for the final search.
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2.3. Dual-Path Classification

Currently, the prevailing approach in few-shot classification involves comparing the
query to the mean feature vectors of various classes within the support set. Cosine similarity
has been demonstrated to be a highly effective method for measuring similarity [38], and it
is typically computed using the formula expressed in Equation (3). Here, X represents the
feature vector, s denotes the support set, and ‖·‖2 signifies the calculation of the L2 norm.

cos θ =
XT

queryXs∥∥Xquery
∥∥

2 · ‖Xs‖2
(3)

In conventional classification, the mean feature vector represents the overall character-
istics of the current class, essentially acting as its centroid. However, in few-shot remote
sensing image classification tasks, relying solely on the overall features may lead to the
loss of distinctive characteristics contributed by individual samples. Furthermore, the
negative impact of this situation becomes more pronounced as the number of intraclass
samples increases [39]. Through the effective feature expansion discussed in the previous
two sections of this paper, each few-shot category now occupies a richer position in the
feature space, providing clearer class boundaries. Based on this, we propose a dual-path
classification (DC) strategy. The framework of this method is illustrated in Figure 5. In the
figure, f denotes the feature extraction network, which remains entirely consistent with the
one used in pretraining. A and B are the two-way classification output labels, λA and λB
represent the weight parameters for the output probabilities, and μ indicates the number of
samples added for each class after regular augmentation and feature distortion processing.

Figure 5. The work flow of the dual-path classification framework. Here, A represents the conven-
tional classification pathway, focusing on overall category features. Branch B is an additional pathway
added to emphasize richer individual features.

After extracting the features of the support set samples following data augmentation,
we introduce an additional branch on top of the existing training branch. The feature vectors
of the support set samples, after entering this additional branch, bypass the mean operation
and are directly used to calculate their similarity with the query’s feature vector, forming a
similarity score matrix M. In this matrix, the scores computed between all samples of the
same class and the query are randomly shuffled within each row. Each column represents
a set of randomly composed samples with all class labels and their calculated similarity
scores with the query. In this score matrix, the label corresponding to the highest similarity
score is considered the classification result for that branch. Equations (4) and (5) illustrate
the calculation process for the two-way outputs.

PA(y = r|x) = exp(τ · 〈 f (x), wr〉)
∑r′ exp(τ · 〈 f (x), wr′〉) (4)
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PB(y = r|x) = exp(τ · (Max〈 f (x), w̃r〉))
∑r′ exp(τ · 〈 f (x), w̃r′〉) (5)

Here, x represents the feature vector of the query image, wr stands for the mean
feature vector of the label r, 〈·〉 denotes cosine similarity calculation, w̃r is a vector within
the set of feature vectors corresponding to the support set, labeled as r, and w̃r forms a
pair with a random sample from each of the other categories. τ represents the temperature
hyperparameter, where a lower value of temperature leads to lower entropy, concentrating
the distribution in a few high-confidence positions.

To compare the classification effectiveness between the two branches through learning,
we add weights λA and λB at the output of both the original classification branch and the
new classification branch. These two weights satisfy λA + λB = 1, and their initial values are
both set to 0.5. Before making the comparison, the vector formed by selecting the maximum
element column in the matrix is normalized, resulting in Ps as the normalized value of
the maximum element in the matrix. During the process of sample learning, when the
classification outcomes of the two branches are consistent with the labels, it indicates that
both the mean features and the maximum similarity are effective. In this case, the weights
remain unchanged. However, when one branch’s classification outcome matches the label,
and the other does not, the weight of the correct branch increases, while the incorrect one
decreases. Furthermore, when the judgment based on the mean feature is not effective, it
should be replaced by the predictions based on the similarity among individuals. So, when
the classification outcomes of both branches do not match the labels, λA decreases while
λB increases. Given a support set, assuming that for each category, a sample is randomly
chosen from the support set to form the query set, the query set has a total of (N + μ)
samples, and the support set contains (k − 1) × (N + μ) samples for training. To encourage
competition between branches A and B, we set the loss functions for the training of the A
and B branches as follows:

LA = −
N+μ

∑
i

k

∑
j

log PA

((
y = yj

∣∣xq
i

))
(6)

LB = −
N+μ

∑
i

k

∑
j

log PB

((
y = yj

∣∣xq
i

))
(7)

In the equation, yj represents the label of the sample, and the overall loss function
of the network is defined as L = λA LA + λB LB. By optimizing L using gradient descent,
end-to-end training of the network can be achieved. The weight parameters are updated
based on the learning rate, with each update magnitude being (γ × lr), where γ is a learning
rate coefficient. During training, the value of γ is set based on the number of samples
in the support set, typically with smaller values for larger support sets. Additionally, to
ensure that the parameters are initialized in an appropriate state, we initially conduct extra
pretraining on the original A branch (without weight parameter λA) using the augmented
support set [40]. Finally, the training is completed by combining both the A and B branches.

3. Experimental Results and Discussions

In this section, we first employed the three data augmentation methods mentioned in
Section 2.2 to construct the distortion magnitude space. We evaluated the benefits of the
distortion-based data augmentation method combined with the dual-path classification
strategy for few-shot learning models. The datasets used for our experiments include
the UCMerced Landuse dataset (UCM) [41], the Aerial Image dataset (AID) [42], and
the NWPU-RESISC45 Remote Sensing Image Scene Classification dataset (NWPU) [43].
Finally, we conducted ablation experiments and analyzed the impact of feature distortion
magnitude space dimensions on model improvements.
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3.1. Dataset Description and Preprocessing

The UCM, AID, and NWPU datasets used in this study are publicly available general
remote sensing image datasets. The UCM dataset originates from the National Map Urban
Area Imagery series of the United States Geological Survey, offering labeled examples
of diverse categories within typical urban remote sensing scenes. The AID, unveiled by
the Huazhong University of Science and Technology and Wuhan University, constitutes
an extensive aerial image dataset compiled from samples extracted from Google Maps
imagery. The NWPU dataset, released by Northwestern Polytechnical University, stands as
an openly accessible dataset showcasing notable variations across scene samples concerning
translation, spatial resolution, and other factors. Table 1 provides the specific details for
each of them.

Table 1. The comparison of experimental datasets.

Dataset Image Size
Number of

Scenes
Number of

Samples
Samples per

Class
Resolution

(m)

UCM 256 × 256 21 2100 100 0.3
AID 600 × 600 30 10,000 220–420 0.5–0.8

NWPU 256 × 256 45 31,500 700 0.2–30

In our experiments, each remote sensing scene in the datasets was divided into three
sets. Specifically, in the UCM dataset, we randomly selected 11 categories as the training
set, 5 categories as the validation set, and 5 categories as the test set. Similarly, in the
AID dataset, we randomly selected 16, 7, and 7 categories, and in the NWPU dataset, we
randomly selected 23, 11, and 11 categories for training, validation, and testing, respectively.
Our model was trained on two of these subsets and evaluated on the remaining one in a
cross-validation fashion. For each testing task, we randomly sampled five scenes from the
test set to simulate five new remote sensing scenes as encountered in the real world. Each
scene was assigned only one or a few labeled samples for the scene classification task.

3.2. Experimental Settings

The experiments were conducted on a computer with an Intel(R) Core(TM) i5-13600KF
CPU, with 64GB of RAM and an Nvidia GeForce RTX 3080Ti GPU. The distortion space
parameters were set to D = 8, P = 20, and C = 12. For the purpose of comparison, we
employed ResNet-12 as the backbone network and initialized the similarity function with
pretraining on the UCM, AID, and NWPU datasets.

Before training, all image pixels were resized to 256 × 256. The hyperparameters τ
and γ were set to 50 and 5, respectively. The initial learning rate was 0.001, the batch size
was set to 32, and the number of epochs was set to 800. We utilized stochastic gradient
descent (SGD) for optimization during both the pretraining and metric learning phases.
During the first 200 epochs, only the original A branch was trained, and in the subsequent
600 epochs, the A and B branches were jointly trained. The learning rate was decayed by a
factor of 0.5 every 100 epochs. Additionally, the traversal order within the distortion space
was D, P, and C, with each parameter exploring its range from small to large. The reported
classification accuracy results in all experiments are the averages of the accuracy results
from 100 randomly sampled subsets from the test set, with a 95% confidence interval.

3.3. RS Scene Few-Shot Classification Results and Analysis

Figure 6 illustrates the change in accuracy during the distortion magnitude search
process. A maximum accuracy value was recorded after every 200 attempts. If this accuracy
was higher than the previously recorded maximum, it was updated as the current accuracy;
otherwise, it remained unchanged. The solid line represents the mean accuracy obtained
from 100 complete search processes, each utilizing different support sets randomly extracted
from the test set. The shaded region shows the range in which the 100 search operations’
curves appeared.
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Figure 6. The mean accuracy update curves during the distortion magnitude search process (5-way).
The vertical axis represents the accuracy of few-shot classification, and the horizontal axis represents
the number of iterations. The iterations utilize combinations of distortion parameters (D, P, C),
starting from the smallest values. (A,D) correspond to the UCM dataset, (B,E) correspond to the
AID dataset, and (C,F) correspond to the NWPU dataset. The different colored curves in the graph
represent scenarios with 1 and 5 samples per class, respectively. The nodes indicate the maximum
average accuracy value, corresponding to the optimal distortion magnitude.

In the figures, we can observe that feature-based data augmentation significantly
impacts the classifier’s performance. Simultaneously, the segmented search approach
substantially shortens the search process. Regardless of the different support sets used, the
proposed method in this paper consistently identifies the optimal distortion magnitudes.
Table 2 displays a comparison of the performance of the ODS method with advanced
data augmentation models. It is evident that the proposed approach effectively leverages
discriminative features, thereby enhancing the model’s generalization performance.

Table 2. Performance comparison of the ODS method with advanced data augmentation methods
in terms of classification accuracy on UCM, AID, and NWPU datasets (all using ResNet-12 as the
backbone network).

Method
UCM (%) AID (%) NWPU (%)

1 Shot 5 Shot 1 Shot 5 Shot 1 Shot 5 Shot

Mixup [33] 49.51 ± 1.51 65.11 ± 1.26 49.99 ± 1.43 66.54 ± 1.30 58.03 ± 1.96 74.39 ± 1.77
CutMix [44] 52.69 ± 1.80 67.12 ± 1.45 53.52 ± 1.67 68.37 ± 1.59 61.64 ± 2.31 75.69 ± 2.01

DAGAN [24] 52.12 ± 1.16 66.59 ± 0.76 52.88 ± 1.15 66.97 ± 0.80 59.98 ± 1.60 75.22 ± 1.24
f-DAGAN [26] 53.25 ± 0.44 67.31 ± 0.35 55.89 ± 0.41 68.10 ± 0.33 63.86 ± 0.87 76.28 ± 0.64
AugGAN [45] 52.54 ± 0.53 66.76 ± 0.31 53.59 ± 0.64 67.80 ± 0.52 64.00 ± 0.89 76.05 ± 0.70
Style Aug. [46] 54.00 ± 1.33 68.33 ± 0.98 55.20 ± 1.23 69.05 ± 1.00 65.56 ± 1.52 77.23 ± 1.31
AutoAug. [36] 57.67 ± 0.65 68.89 ± 0.54 59.58 ± 0.57 70.99 ± 0.50 66.10 ± 0.82 77.80 ± 0.65
RandAug. [32] 58.76 ± 0.95 70.85 ± 0.62 60.09 ± 1.19 72.74 ± 0.90 67.94 ± 0.99 79.64 ± 0.67
MADAO [47] 59.40 ± 0.73 71.31 ± 0.56 61.06 ± 0.70 72.60 ± 0.47 66.87 ± 0.96 79.96 ± 0.58
ODS (Ours) 60.35 ± 1.02 72.67 ± 0.73 61.79 ± 1.26 74.31 ± 0.76 67.47 ± 1.17 80.59 ± 0.86
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Figure 7 illustrates the variations in validation accuracy during the learning process of
the dual-path classification network. It is evident that, in the training process of the five-
way-five-shot scenario, the introduction of branch B significantly boosts the classification
accuracy. Even in the five-way-one-shot training scenario, branch B provides performance
gains. However, the five-shot curve demonstrates more pronounced gains compared to
the one-shot scenario. Hence, in the context of few-shot classification, the greater the
number of samples in the support set, the more pronounced the impact of ODS-DC on
classification accuracy.

Figure 7. The variation curves of validation accuracy during the training process of the dual-path
classification method (5-way). Specifically, (A) corresponds to the UCM dataset, (B) to the AID
dataset, and (C) to the NWPU dataset. All curves are smoothed using a 0.2 ratio moving average for
improved visualization.

Table 3 presents a performance comparison between the method proposed in this
paper and currently advanced data augmentation-based few-shot learning methods. All the
methods include data augmentation techniques such as random rotation, random cropping,
and translation, and employ ResNet-12 as the backbone network for testing in a five-way
scenario. It is evident that the method introduced in this paper outperforms other methods
across the three widely used datasets.

Table 3. Performance comparison between the dual-path classification method in this paper and the
current benchmark methods.

Method
UCM (%) AID (%) NWPU (%)

1 Shot 5 Shot 1 Shot 5 Shot 1 Shot 5 Shot

ProtoNet [48] 58.79 ± 0.81 72.82 ± 0.60 60.18 ± 0.78 74.00 ± 0.61 62.78 ± 0.85 80.19 ± 0.52
MAML [49] 54.97 ± 0.69 65.45 ± 0.70 56.50 ± 0.65 70.02 ± 0.50 56.01 ± 0.87 72.94 ± 0.63

RelationNet [50] 55.32 ± 0.87 72.59 ± 0.53 56.17 ± 0.80 73.94 ± 0.57 55.84 ± 0.88 75.78 ± 0.57
RS-MetaNet [51] 63.75 ± 0.51 76.94 ± 0.29 64.18 ± 0.49 76.68 ± 0.30 72.04 ± 0.43 82.69 ± 0.22

SGMNet [52] 64.17 ± 0.75 76.63 ± 0.59 64.32 ± 0.79 77.98 ± 0.42 73.01 ± 0.77 84.52 ± 0.50
ODS-DC (ours) 65.93 ± 0.94 77.60 ± 0.72 66.28 ± 0.89 79.04 ± 0.69 73.93 ± 0.90 84.66 ± 0.76

In addition, Table 4 illustrates the variation in classification accuracy when different
backbone networks are employed as feature extractors. As observed from the table, using
deeper feature extractors leads to significantly better classification performance. However,
it is worth noting that backbone networks with more layers tend to be more complex
and demand greater computational resources. For example, transitioning from Conv-4 to
ResNet-12 increases the number of layers by threefold, resulting in substantial accuracy
improvement. On the other hand, substituting ResNet-12 with ResNet-50, which increases
the number of layers by more than fourfold, yields only a minor accuracy gain. Hence,
for the method proposed in this paper, the choice of the backbone network is not solely
based on having more layers but rather involves a comprehensive consideration of fac-
tors such as gains in accuracy, computational resource utilization, and the efficiency of
method reproduction.
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Table 4. In the 5-way, 5-shot task, ODS-DC achieves average classification accuracy using different
feature extraction networks.

Dataset Conv-4 (%) ResNet-12 (%) ResNet-50 (%)

UCM 61.67 ± 0.83 77.60 ± 0.72 79.07 ± 0.33
AID 63.03 ± 0.90 79.04 ± 0.69 80.60 ± 0.36

NWPU 65.75 ± 0.91 84.66 ± 0.76 85.19 ± 0.42

3.4. Ablation Study

We assessed the performance of ODS-DC under different combinations of feature
distortions using the AID dataset. Table 5 documents the average classification accuracy for
each combination in the five-way few-shot classification. From the table, it is visually evi-
dent that the contribution of distortion optimization varies significantly for different types
of features. Optimization of edge feature distortion yields the greatest performance gain,
followed by texture features, with color features exhibiting the smallest gain. Moreover, as
the dimension of feature distortion optimization increases, the model’s performance shows
varying degrees of gain change depending on the combination of different feature types.

Table 5. The average classification accuracy achieved by combining different distorted feature.

Feature Group
Average Accuracy (%)

1 Shot 5 Shot

Edge 61.02 ± 1.51 75.58 ± 1.32
Texture 60.85 ± 1.83 74.10 ± 1.50
Color 57.47 ± 1.94 73.70 ± 1.51

Edge and Color 62.91 ± 1.19 77.19 ± 1.04
Edge and Texture 65.11 ± 0.97 78.67 ± 0.80
Texture and Color 62.74 ± 1.72 76.15 ± 1.29

Edge, Texture, and Color 66.28 ± 0.89 79.04 ± 0.69

To better illustrate the benefits of the dual-path classification strategy, we compared
the classification performance between the single path (without branch B and weighting
coefficients) and the dual path by recording the classification accuracy for individual
categories. Using the AID dataset as an example, we randomly selected five categories
related to urban scenes and five unrelated to urban scenes for testing. Each category served
as a query for few-shot classification, and after each round of classification for all test objects,
a new round began by randomly selecting query images and a support set. This process
continued for 200 rounds. Figure 8 presents the confusion matrix of the ODS-DC model for
these scene categories under both single-path and dual-path scenarios (five-way, five-shot).
As observed from the figure, dual-path classification exhibits a significant improvement
over the single path, with substantial variations in the degree of enhancement for each
category. The differences in gains are primarily related to the selection of scene types, where
specific scenes are more influenced by feature types that exhibit better discriminability. For
instance, in the comparison between (A) and (B), the dual-path classification model achieves
greater performance improvement in the “Center” category, where edge features are more
prominent. However, in the comparison between (C) and (D), the “Forest” category, where
texture features are more pronounced, exhibits the greatest improvement in accuracy.

Furthermore, to better capture the variations in the operational performance of the
model, we assessed the framework’s average prediction time on the AID dataset under
1-shot, 5-shot, and 10-shot (5-way) scenarios. We randomly sampled 20 subsets of classes
from the AID dataset for model training. Subsequently, using 100 randomly selected
samples from each corresponding subset, we evaluated the model’s predictions after
each training iteration. Table 6 documents the average inference time for all sampled
data under different configurations (95% confidence intervals included). Notably, dual-
path classification exhibits a slight decrease in inference speed compared to single-path
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classification, and the model’s inference time significantly elongates with an increase in the
number of samples in the support set, as evident from the table.

Figure 8. The confusion matrices for single-path (A) and dual-path (B) classification of 5 randomly
selected urban scenes, as well as single-path (C) and dual-path (D) classification of 5 randomly
selected nonurban scenes (5-way, 5-shot).

Table 6. Comparison of mean inference time (ms) of the proposed model in different settings.

Framework Type 1 Shot 5 Shot 10 Shot

Single path 72 ± 17 106 ± 19 134 ± 19
Dual path 98 ± 21 177 ± 28 685 ± 39

3.5. Discussion

Through the analysis of experimental results, the proposed ODS method demonstrates
its effectiveness across three remote sensing scene datasets. In comparison to generative
and policy-based approaches, ODS exhibits superior accuracy in five-way tasks with
varying sample sizes. Notably, among the selected feature types, optimizing the distortion
magnitude of edge features provides the model with the most significant gains. This
suggests a substantial discrepancy in the contribution of distinguishable features generated
by different types of feature distortions. Hence, exploring and optimizing combinations
of distortion amplitudes for different features in the feature distortion space holds the
potential for further accuracy improvement. However, constructing a higher-dimensional
feature distortion space will inevitably result in a significant increase in computational
complexity, necessitating a specific task analysis and hardware ability assessment.

Simultaneously, the test results of ODS-DC on the three datasets indicate an enhance-
ment in model robustness. In comparison to the single-path strategy, the dual-path strategy
in five-way, five-shot tasks showed a potential improvement of approximately 7–18% in
classification accuracy. Furthermore, the classification efficiency of ODS-DC is contingent
on the number of support set samples. While an increase in the number of support set
samples enhances model accuracy, it also leads to a substantial reduction in model inference
efficiency. For instance, in a five-way scenario, the inference time for a single-path model
only increased about twice from 1-shot to 10-shot tasks, while for a dual-path model, the
inference time increased by over six times. Therefore, in tasks with fewer samples, the
advantages of ODS-DC are more readily evident.
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4. Conclusions

The impact of data augmentation on classification performance in few-shot learning
is evident. Traditional feature enhancement methods have not explored the distinctive-
ness of features extensively, leading to unstable gains in classification performance. This
issue is particularly common in the context of few-shot tasks with remote sensing images.
Even with improvements in data augmentation techniques, it is challenging to provide
effective support in the design of learning models. In this paper, we quantified feature
distortion magnitudes and projected them onto a feature distortion magnitude space.
Through the search of this distortion space, we optimized the distribution of sample fea-
tures. Subsequently, to fully utilize this distribution, we proposed a classification model
based on dual-path classification. The additional classification branch, through learning
the comparison of intraclass and interclass similarities of all support samples, reinforced
the classification process of the original branch while mitigating, to some extent, the short-
comings of the original branch in classifying challenging data. In the experimental section,
we validated the effectiveness of the ODS-DC joint method using general remote sensing
datasets. Furthermore, our comparative experiments revealed that the gains brought by
the ODS-DC method surpass current State-of-the-Art data augmentation methods. In
the ablation experiments, we explored the impact of changes in distortion magnitudes of
different features on classification performance. Regrettably, due to hardware constraints
and model efficiency, we were unable to conduct more in-depth investigations using higher-
dimensional feature spaces comprising various feature types. However, in subsequent
investigations, we will not only focus on expanding the dimensions of the feature space
but may also introduce additional distortion parameters, thereby further exploring the
potential of feature distortion in few-shot classification. Overall, this method’s novel and
valuable perspective on feature distortion and model optimization offers a more efficient
way to utilize data for few-shot classification learning in remote sensing scenes. It also
provides new insights into research on data augmentation in deep learning.
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Abstract: This article presents a method to detect and segment mine waste deposits, specifically waste
rock dumps and leaching wasted dumps, in Sentinel-2 satellite imagery using artificial intelligence.
This challenging task has important implications for mining companies and regulators like the
National Geology and Mining Service in Chile. Challenges include limited knowledge of mine
waste deposit numbers, as well as logistical and technical difficulties in conducting inspections and
surveying physical stability parameters. The proposed method combines YOLOv7 object detection
with a vision transformer classifier to locate mine waste deposits, as well as a deep generative model
for data augmentation to enhance detection and segmentation accuracy. The ViT classifier achieved
98% accuracy in differentiating five satellite imagery scene types, while the YOLOv7 model achieved
an average precision of 81% for detection and 79% for segmentation of mine waste deposits. Finally,
the model was used to calculate mine waste deposit areas, with an absolute error of 6.6% compared
to Google Earth API results.

Keywords: satellite imagery; scene segmentation; deep generative models; mine waste rock; leaching
waste dumps; physical stability; closure planning

1. Introduction

In the global mining sector, addressing the management and monitoring of massive
mining waste deposits (MWDs) is critical, especially in countries like Chile, which leads in
copper production worldwide [1–5]. The numerous phases of mining activities in Chile gen-
erate a significant amount of waste, which is stored in various forms such as tailing dams,
waste rock dumps (WRDs, Figure 1a), and leaching waste dumps (LWDs, Figure 1b) [1–5].
This waste accumulation poses substantial challenges and requires intricate management
and regulatory adherence, particularly during the closure and post-closure stages [6–10].

Addressing the challenges related to MWDs is pivotal due to the complexities in-
volved in their management and the limited information available, which impacts entities
like SERNAGEOMIN in their regulatory and monitoring roles [11,12]. The varied forms
of MWDs, each with their unique characteristics and impacts, necessitate intricate man-
agement strategies and strict adherence to national legislation to ensure the safety and
well-being of people and the environment [6–10].

The national legislation mandates adherence to the “Methodological Guide for the
Evaluation of the Physical Stability of Remaining Mining Facilities” provided by SERNA-
GEOMIN [11]. This guide outlines the comprehensive methodologies and parameters
for evaluating the potential failure mechanisms of MWDs, thereby optimizing the time,
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cost, and efficacy of physical stability (PS) studies and facilitating streamlined regulatory
compliance and approval processes for closure [11].

Figure 1. Mine waste deposits (MWDs) located in the north region of Chile. (a) Waste rock dump
(WRD), (b) Leaching waste dumps (LWDs).

The integration of satellite imagery, specifically from the Copernicus Sentinel series by
ESA [13], and AI technologies offers advanced, innovative solutions in a variety of fields,
including vegetation monitoring [14], urban planning [15], and land use classification [16].

This research aims to harness the capabilities of AI and Sentinel-2 satellite imagery to
bridge the existing information gaps regarding the PS of MWDs during their closure and
post-closure stages [11]. The objective is to create a comprehensive system for maintaining
a national record of MWDs, enabling the extraction of crucial variables related to their PS
through advanced DL algorithms such as image classification, deep generative models,
and object detection. The innovative application of AI in analyzing satellite imagery for the
detection and identification of MWDs is a significant advancement in the field, contributing
to the establishment of a detailed, accurate national record of MWDs.

By providing a nuanced understanding of MWDs and their associated risks, this
methodology supports the advancement of industry standards and regulatory frameworks.
It aids entities like SERNAGEOMIN in their inspection and monitoring roles, enabling pre-
cise identification of MWD locations and condition assessments and facilitating risk-based
prioritization and compliance processes, thereby enhancing operational and environmental
safety protocols in the mining sector [11].

2. Related Works

In this section, a review of the literature most relevant to the research of this article
is carried out. In particular, different works on satellite image classification, the use of
deep generative models, and detection and segmentation algorithms for satellite images
are detailed.

2.1. Image Classification

Image classification is a widely used technique for assigning predefined class labels
to digital images based on their visual content. In the context of land classification, this
technique can be used to automatically identify and map different land cover types, such as
forests, croplands, urban areas, and water bodies, from satellite imagery. There are various
popular image classification algorithms that are used in practice, including convolutional
neural networks (CNNs) [17,18], support vector machines (SVMs) [19,20], and vision
transformers (ViT) [21,22]. Each of these algorithms has their own unique strengths and
weaknesses, and they have been shown to generalize well to unseen data. For our work,
we considered as relevant the following studies that utilize the DL techniques mentioned
previously. For instance, ref. [23] examines advancements in DL techniques for agricultural
tasks such as plant disease detection, crop/weed discrimination, fruit counting, and land
cover classification. Future directions for AI in agriculture are presented, emphasizing the
potential of DL-based models to improve automation in the industry. In [24], a remote-
sensing scene-classification method using vision transformers is proposed, resulting in high
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accuracy on various datasets. In [25], a lightweight ConvNet, MSDF-Net, is presented for
aerial scene classification with competitive performance and reduced parameters. In [26],
a new method, E-ReCNN, is presented for fine-scale change detection in satellite imagery,
with improved results compared to other semi-supervised methods and with the potential
for global application once trained.

2.2. Deep Generative Models

DGMs can improve DL models’ performance and robustness when labeled data are
scarce by generating synthetic data to augment the training dataset. These models can also
generate new samples similar to real data, which is useful for data-intensive applications
such as medical imaging and computer vision. Additionally, DGMs can be used to generate
synthetic data when real-world data collection is difficult or costly.

The use of DGMs has been proposed for various medical and mining applications.
In [27], researchers present a study on using GANs [28] for data augmentation in computed
tomography segmentation tasks, showing that using CycleGAN [29] improves the perfor-
mance of a U-Net model. In [30], the authors explore the use of the Stable Diffusion [31]
model for generating synthetic medical images, finding that fine-tuning the U-Net [32]
component can generate high-fidelity images. In [33], a method using AI algorithms and
GANs was proposed to increase the number of samples for studying the PS of tailing
dams in mining applications, resulting in an average F1-score of 97%. These studies high-
light the potential of DGMs in expanding limited datasets and improving performance in
various fields.

2.3. Image Detection and Segmentation

Image detection and segmentation for satellite imagery is a critical task in remote sens-
ing, with applications such as land-use mapping and change detection. Recent techniques
in the field are based on DL, specifically CNNs, which have shown superior performance
compared to traditional methods. Popular algorithms for image detection and segmentation
include RetinaNet [34], Mask R-CNN [35], and U-Net [32], each with their own advantages.

The authors of [36] investigate the use of CNNs for classifying and segmenting satel-
lite orthoimagery and find that CNNs can achieve results comparable to state-of-the-art
methods. Ref. [37] applies DL to detect and classify mines and tailing dams in Brazil using
satellite imagery, demonstrating potential for low-cost, high-impact data science tools.
Ref. [38] proposes a framework using YOLOv4 [39] and random forest [40] algorithms
to extract tailings pond margins from high spatial resolution remote sensing images with
high accuracy and efficiency. Ref. [41] presents a method for semantic segmentation of
high-resolution satellite images using tree-based CNNs, which outperforms other tech-
niques in terms of classification performance and execution time and which suggests that
incorporating data augmentation techniques and deeper neural networks in future work
could enhance the efficiency of the method.

This study proposes an innovative method for the precise localization, detection,
and segmentation of MWDs in Chilean mining facilities. What sets this method apart from
previous studies is the use of cutting-edge DL techniques such as YOLOv7, the ViT classifier,
and generative models, which have not been applied before in this context. In addition,
this study utilizes open access tools to obtain MWD information, making it cost-effective
and accessible to other researchers and mining companies. The proposed method also
addresses a current challenge in the Chilean mining context, which is the lack of accurate
information in the area of MWDs. By leveraging the generated synthetic tiles of MWDs
using deep generative models and the ViT classifier, this study is able to estimate the area of
detected MWDs, which is a crucial factor in evaluating mining activities. Overall, this study
provides a novel and practical approach to the characterization and assessment of MWDs,
which can significantly improve safety and operational efficiency in the mining industry.
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3. Methodology

The research methodology is outlined in two stages. Stage one involves the acquisition
of satellite image datasets, while stage two encompasses tasks for detection, segmentation,
and area estimation. Subsequently, a comprehensive explanation of the relevant metrics
used to evaluate the models is provided.

3.1. Dataset Creation

The methodology employed for acquiring the dataset utilized in this research is de-
scribed in Figure 2. The process consists of four distinct stages: (a) retrieval of satellite
imagery from the European Space Agency’s Copernicus Open Access Hub platform and
subsequent processing utilizing TorchGeo v0.4.1 [42] to facilitate image analysis; (b) im-
plementation of vision transformer (ViT) techniques for image classification; (c) utilization
of deep generative models to generate synthetic maps, thereby augmenting the number
of samples in the dataset; and (d) making the prepared dataset available for subsequent
analytical stages.

Figure 2. Methodology applied to obtain satellite imagery from the European Space Agency’s (ESA)
Copernicus site to create datasets for conducting experiments.

3.1.1. Satellite Imagery Acquisition

The areas of interest for the study were determined through the identification of the
major mining facilities within the country, as sourced from the website of the National
Mining Council of Chile [43] and depicted in Table 1. A total of 30 mining facilities were
identified and used as a basis for the study.

The acquisition of satellite imagery was conducted through the Copernicus Open Ac-
cess Hub, a platform that provides access to Sentinel data through an interactive graphical
user interface. To ensure a high-quality dataset, only products (data items for satellite im-
agery [44]) with a cloud cover percentage of less than 9% were selected from the Sentinel-2A
and Sentinel-2B platforms and S2MSI2A products with bottom-of-atmosphere reflectance.
The products were downloaded within the time frame of 2019 to 2022 in SENTINEL-
SAFE [45] format. The RGB bands (bands 02, 03, and 04; see Figure 3) were combined
into a single image and then segmented into 256 × 256 pixel resolution tiles, with a 20%
overlap on adjacent tiles, using the TorchGeo [42] software, for a 10 m spatial resolution.
The metadata of the downloaded products were used to determine the vertices in decimal
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format coordinates in the resulting tiles, and this process was repeated for each of the
determined zones.

Table 1. Major mining facilities in Chile. Figure adapted from [44].

Map of Chile Zone Region Name Region Key Mining Facilities

Northern

Tarapacá I Cerro Colorado, Quebrada Blanca, Collahuasi.

Antofagasta II
Antucoya, Chuquicamata, Ministro Hales, Spence, Sierra Gorda,

Centinela, Gabriela Mistral, Lomas Bayas, Zaldivar,
Escondida, Franke.

Atacama III Cerro Negro Norte, Salvador, La Coipa, Lobo Marte, Maricunga,
Ojos del Salado, Candelaria, Caserones, Los Colorados.

Coquimbo IV El Romeral, Carmen de Andacollo, Los Pelambres.

Central

Valparaíso V El Soldado, Andina.

Metropolitana RM Los Bronces.

Rancagua VI El Teniente.

Figure 3. Different satellite image bands of the Chuquicamata mining facility (Region II, Antofagasta,
Chile). From left to right are the red, green, and blue bands, respectively.

3.1.2. Image Classification

Once the tiles from the mining facilities in Table 1 were obtained, and given the 1:159
relationship of tiles containing MWDs, a ViT image classifier was employed to select the
MWD regions for analysis. The images were then categorized into five classes, namely
city, desert, sea, tailings pond, and MWD, with each class consisting of 2200 images. This
selection was made based on the most frequently occurring scenes from the analysis.

ViT utilizes self-attention mechanisms and the transformer architecture for learning
spatial hierarchies of features without image-specific biases. This study adopted the ap-
proach of splitting images into positional embedding patches processed by the transformer
encoder, which has proven to be highly effective. The results show the effectiveness of the
ViT architecture in this context.

To improve performance and prevent overfitting, the selected images were augmented
through horizontal and vertical flips and rotations of 90° and −90°, with each class contain-
ing 2200 images, including augmentations.

3.1.3. Data Augmentation

Data augmentation is a technique used to artificially increase the size of a dataset in DL
and computer vision by applying various random transformations to the existing data, such
as rotation, scaling, and flipping. This technique can improve the robustness and general-
ization of models by exposing them to different variations of the same data. Additionally,
it can help to mitigate overfitting by providing the model with more diverse examples.

The procedure was carried out in two phases. The first phase was applied to the ViT
classifier, while the second phase was applied to the original 769 MWD image dataset
(Figure 4a). For both phases, two augmentations were employed: horizontal flip (Figure 4b)
and −90° rotation (Figure 4c).
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Figure 4. (a) Original MWD image used for data augmentation, (b) original image flipped horizontally,
and (c) original image rotated −90°.

3.1.4. Deep Generative Model

For the generation of synthetic images of maps containing MWDs, we propose a
pipeline based on denoising diffusion probabilistic models (DDPMs) [46]. The basic idea
behind diffusion models is quite simple. They take the input image x0 and gradually add
Gaussian noise through a series of T steps (direct diffusion process). Subsequently, a neural
network is trained to recover the original data by inverting the noise process. By modeling
the inverse process, we can generate new data. This is called the inverse diffusion process
or, in general, the sampling process of a generative model (see Figure 5).

Figure 5. Reverse denoising process applied to generate a synthetic sample of MWDs.

The process is formulated using a Markov chain consisting of T steps, where each step
depends solely on the previous one, a moderate assumption in diffusion models. Most
diffusion models use architectures that are some variant of U-Net. The forward diffusion
process executed at training is given by Equation (1):

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI) q(x1:T |x0) =
T

∏
t=1

q(xt|xt−1). (1)

This approach is useful as DDPMs are able to generate high-resolution images, pre-
serving fine details and textures, making it suitable for data augmentation. This is essential
for our application of generating synthetic maps containing MWD zones. As we saw in
the previous stage, the ViT classifier is utilized to detect the patches corresponding to
MWDs. The images classified as MWDs are then utilized as input to train the DDPM
algorithm, using unconditional guidance. In our implementation, we train a DDPM model
with a database of 792 MWD images. A U-Net architecture is used for the image denois-
ing, configured with two ResNet layers for each U-Net block, with identical input and
output channels corresponding to 3 channels for RGB and a resolution of 256 × 256 pixels.
The noise scheduler process is configured to 1000 steps in order to add noise to the images.

500



Remote Sens. 2023, 15, 4949

3.1.5. Unlabeled Dataset

The images were arranged in preparation for the subsequent stage of locating, de-
tecting, and segmenting MWDs. The images are assembled into two datasets as the final
step of the procedure outlined in Figure 2 to perform the different experiments. These
correspond to:

1. Unlabeled Dataset 1. Original dataset containing 792 MWD images.
2. Unlabeled Dataset 2. Original dataset plus increased data as described in data aug-

mentation and synthetic MWDs tiles, totaling 2430 MWD images.

The composite image in Figure 6 displays the tiles (centered in the Centinela mining
facility) that make up the dataset, showcasing the 20% overlap used. The image consists of
unlabeled images.

Figure 6. Representation of the detected MWD-containing tiles superimposed on Google Earth in the
Centinela mining facility, Region II, Antofagasta, Chile.

3.2. Detection and Segmentation of MWDs

Once the various image datasets have been obtained and arranged, the second part of
the methodology enables detection, segmentation, and estimation of the areas of MWDs.
This methodology is shown in Figure 7, where the following steps are observed: (a) the two
obtained datasets are labeled with human-annotated labels for the MWD regions within
each dataset; (b) the two datasets are then used to train three experiments with detection
and segmentation algorithms; and (c) compute the surface area measurements based on
the outputs of the detection and segmentation algorithms.
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Figure 7. Methodology employed for the detection, segmentation, and calculation of the area of MWDs.

3.2.1. Human-Annotated Labels

In DL, human-annotated labels, which include object or image classes, bounding
box coordinates, and other attributes, are used to train and evaluate machine learning
models. Image classification recognizes objects and properties within an image, while
object detection localizes objects through bounding boxes. Image segmentation allows
for understanding of an image at the pixel level, with semantic segmentation assigning
each pixel to a single class. In this research, the use of segmentation masks is employed
to achieve the proposed objectives and application. The masks are labeled using Label
Studio [47] software v1.5.0. The labels are confirmed by an expert who recognizes MWDs
based on the geographical location of the mining facility and the characteristics of the
MWDs, such as the distance from the mining pit, texture and color of the mine waste,
the shape, and geometry. This process is repeated for all available datasets.

3.2.2. Detection and Segmentation of MWDs

Two segmentation algorithms were tested for extracting features from manually la-
beled tiles containing MWDs, resulting in 792 zones. The first algorithm is YOLOv7 [48],
developed by Wong Kin-Yiu and Alexey Bochkovskiy, a state-of-the-art model for object
detection and instance segmentation.

YOLOv7 is built upon the Efficient Layer Aggregation Network (ELAN) [49], optimiz-
ing several parameters and computational densities to design an efficient network, and is
specifically extended to E-ELAN for more substantial learning ability. E-ELAN enhances
the model’s learning capability by using group convolution to expand the channels and
cardinality of the computational block and by applying the same channel multiplier and
group parameter to all the computational blocks in a computation layer. This model pre-
serves the architecture of the transition layer while modifying the computational block in
ELAN. The enhancements lead to the improvement of gradient flow paths and an increase
in diverse feature learning, contributing to faster and more accurate inferences.

YOLOv7 employs advanced model scaling techniques, which are crucial for adjusting
the model’s depth, image resolution, and width to meet various application requirements.
These adjustments are meticulously done to maintain the optimal structure and the initial
properties of the architecture, even when concatenating with other layers.

In this study, the YOLOv7 pre-trained model was utilized with its default architecture.
The chosen hyperparameters, including epochs, batch size, learning rate, and input image
size, are described in Table 2. The image data were normalized and distributed into training
(70%), validation (20%), and testing (10%) subsets to ensure a balanced evaluation.

The second algorithm is Mask R-CNN [35], another advanced object instance segmen-
tation model that extends Faster R-CNN [50] by adding a fully convolutional network to
predict object masks in parallel with bounding box and class predictions. For Mask R-CNN,
two different backbones, namely ResNet50 and ResNet101 [51] from the Detectron2 [52]
library, were employed, with fine-tuning performed on both configurations. The hyperpa-
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rameters for these experiments are also detailed in Table 2, providing a consolidated view
of the training configurations for both segmentation algorithms.

Table 2. Hyperparameters used in the detection and segmentation stages.

Hyperparameter YOLOv7 Mask R-CNN

epochs 3000 3000
batch size 448 450

learning rate 0.002 0.0025
image input size 256 × 256 256 × 256

3.2.3. Area Estimation

Once the models were trained and their evaluation metrics obtained, they were applied
to unseen images to make predictions regarding object detection and segmentation. This
was done using tiles generated from RGB bands at 10 m of spectral resolution, with each
pixel in the image representing a 10 m × 10 m square on the ground. Information on
vertex coordinates in decimal format was also available from the tile generation process.
By utilizing the fact that the image always has a resolution of 256 × 256 pixels, it was
possible to establish a correlation between the identified mask and its representation in
decimal format coordinates.

The calculation of the MWD area was performed using the Gaussian area formula.
The area of the polygon P with vertices (x1, y1), (x2, y2), . . . , (xn, yn) is calculated using the
Gaussian area formula, as shown in Equation (2).

A =
1
2

∣∣∣∣∣ n

∑
i=1

(xiyi+1 − xi+1yi)

∣∣∣∣∣ (2)

Furthermore, the Google Earth (GE) API [53] can be employed to calculate the area
of a polygon through its coordinates. This enables a comparison between the estimated
area obtained through a mathematical approach and the measurements obtained through
the API. The GE API is utilized to corroborate the results obtained, thereby obtaining
verified values.

3.3. Evaluation Metrics

Evaluating the performance of the algorithms employed in this experiment requires
an understanding of relevant metrics.

3.3.1. Metrics for Classification, Detection, and Segmentation

The most commonly used metrics for evaluating image classification, detection, and seg-
mentation models are precision, recall, F1-score, accuracy, macro AVG, and weighted AVG.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 =
2 × Precision × Recall

Precision + Recall
=

2 × TP
2 × TP + FP + FN

(5)

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

where TP—true positive, TN—true negative, FP—false positive, and FN—false negative.
Precision (Equation (3)) measures the proportion of true positive detections among all
positive detections made by the model. Recall (Equation (4)) measures the proportion
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of true positive detections among all actual positive instances in the dataset. F1-score
(Equation (5)) is the harmonic mean of precision and recall. Accuracy (Equation (6)) is
a measure of the model’s overall performance, calculated as the proportion of correct
predictions out of all predictions.

Additionally, for image detection and segmentation performance evaluation, the use
of intersection over union (IoU) and mean average precision (mAP) are also considered
relevant metrics in this context.

IoU =
Area of Overlap
Area of Union

(7)

mAP =
1
n

k=n

∑
n

APk (8)

IoU (Equation (7)) is a metric used to evaluate the accuracy of image segmentation
models by comparing the overlap between the predicted and ground truth segments.
mAP (Equation (8)) is a measure of the model’s overall performance, used to measure
the average precision of all classes by taking into account both true positive and false
positive detections.

3.3.2. Metrics for Deep Generative Models

The Fréchet inception distance (FID) [54] is a method for evaluating the quality of
images generated by generative models. It compares the statistics of the generated images
to those of real images by measuring the Fréchet distance between the Inceptionv3 [55]
features of the two distributions. The lower the FID score, the more similar the generated
images are to the real images, indicating a higher quality of the generated images. It has
been shown to correlate well with human judgment of image quality and is widely used
in the literature to evaluate the performance of generative models. It is calculated by
Equation (9):

FID = |μr − μg|2 + Tr(Σr + Σg − 2(Σr × Σg)
1
2 ), (9)

where μr and μg represent the mean vectors of the feature activation in the Inception net-
work for the real data and generated data, respectively. Σr and Σg represent the covariance
matrices of the feature activation in the Inception network for the real data and generated
data, respectively. Tr is the trace operator. (Σr × Σg)

1
2 is the matrix square root of the

product of the two covariance matrices.

4. Experiments and Results

In this section, the results obtained from the methodology presented in the previous
section are presented. Initially, the results obtained in creating the two databases will be
shown. For this, the results for each relevant stage of the process will be presented. In the
second part, the results of the detection and area estimation system will be presented,
with a comparison to the GE API.

4.1. Results for Dataset Creation

The creation of the datasets involved the utilization of two deep learning models: the
ViT image classifier and the deep generative model, specifically, DDPM.

4.1.1. ViT Classifier

The ViT model utilizes the Transformer architecture to perform image classification.
The input image is divided into smaller patches which are then flattened and fed as input
sequences to the Transformer model. The Transformer performs self-attention operations
on these sequences to capture global context and correlations between patches, ultimately
producing a feature representation of the entire image. This representation is then fed
through a classifier head to predict the class label of the image.
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The ViT image classifier was configured with five balanced classes: desert, city, tailings
pond, ocean, and MWD, and each class contained 2200 images. The hyperparameters
from the model in [56], pre-trained on ImageNet-21k [57], were used. This model uses
12 attention heads, encoder layer dimensionality and hidden size set to 768, 12 hidden
layers, and patches of 16 × 16 resolution. The data were split into training, validation,
and testing subsets in ratios of 70%, 20%, and 10%, respectively. The model was trained for
300 epochs with a batch size of 240. The results of the ViT image classifier are presented in
Table 3.

Table 3. ViT classifier results for the experiment proposed in Figure 2 to classify five different types
of imagery.

Class Precision Recall F1-Score

City 0.99 1 0.99
Desert 0.95 0.98 0.97
Ocean 1 1 1
Tailings Pond 0.98 0.96 0.97
MWDs 1 0.98 0.99

Accuracy 0.98
Macro average 0.98 0.98 0.98
Weighted average 0.98 0.98 0.98

The ViT classifier demonstrated high accuracy, with a result of 98.8%, in differentiating
between five scenes of aerial imagery.

4.1.2. Deep Generative Model

The DDPM model was trained using images containing MWDs, with a configuration
of 250 epochs and a batch size of 8, at a resolution of 256 × 256 pixels. The original
denoising DDPM algorithm was employed to sample images for the model, as it generated
the highest number of expert-verified samples of MWDs.

A total of 1125 maps were generated, which were then classified by the ViT classifier
to identify those that visually resemble MWDs. Finally, the best 792 tiles were selected.
The FID score was computed for 792 real and synthetic images using Equation (9), resulting
in a score of 222.46. Potential avenues for improvement of the FID score include the
generation of high-quality synthetic data for comparison with the original dataset and
the implementation of a more diverse and extensive training set for the DDPM model.
The implementation of these proposed solutions has the potential to result in a lower
FID score.

The application of the ViT classifier and DDPM resulted in the successful creation of
two datasets, composed of 792 and 2430 images of MWDs, respectively.

4.2. Results for Detection, Segmentation, and Area Estimation

This section contains the results of experiments using the application of Mask R-CNN
and YOLOv7 detection and segmentation algorithms used for the purpose of estimating the
areas of MWDs in satellite imagery. This procedure is repeated for each dataset created. A
comprehensive analysis of the procedures and results of the area estimation was conducted
using both the segmentation masks and the GE API.

4.2.1. Results for YOLOv7 and Mask R-CNN

The Mask R-CNN and YOLOv7 models were evaluated using a k-fold cross-validation
approach with 5 folds. The experiments were performed on the dataset, and the reported
results represent the average performance across the folds.

The Mask R-CNN models were configured with two backbone networks, namely
ResNet50 and ResNet101, both of which were equipped with FPN for feature extraction,
with 3× schedule [58]. Fine-tuning was performed on both configurations, utilizing the
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respective backbone weights. The experiment was executed with an epoch setting of 3000
and a batch size of 450.

The YOLOv7 model was fine-tuned using the official weights available in its repository,
with an epoch set to 3000 and a batch size of 448. In both cases, the images were normalized
and partitioned into three subsets, with 70% of the images designated for training, 20% for
validation, and 10% for testing purposes, respectively.

The results of the experiments performed using the two generated datasets are pre-
sented in Table 4. The table displays the AP metrics for detection (AP box) and segmentation
(AP Mask), with the best results emphasized in bold for all experiments performed. The AP
calculation was conducted with an IoU of 1.

Table 4. Results of YOLOv7 and Mask R-CNN algorithms for MWD detection and segmentation.

Dataset Algorithm AP Box AP Mask

Original dataset
Mask R-CNN 50 FPN 3× 0.30 0.15
Mask R-CNN 101 FPN 3× 0.31 0.17

YOLOv7 0.72 0.71

Original dataset + augmentation + synthetic
Mask R-CNN 50 FPN 3× 0.39 0.38
Mask R-CNN 101 FPN 3× 0.42 0.40

YOLOv7 0.81 0.79

As can be seen in Table 4, the AP score result for object detection, in all cases, is
higher than for object segmentation, but by a small margin. It is observed that increasing
the data with data augmentation techniques results in a significant improvement in the
performance of MWD detection. Additionally, the YOLOv7 algorithm outperforms Mask
R-CNN in all cases, based on its AP score. The disparity in results between YOLO and
Mask R-CNN can be attributed to their utilization of distinct architectures. YOLO, a single-
shot object detection model, predicts object bounding boxes through the utilization of a
grid-based approach [59]. In contrast, Mask R-CNN operates in two stages, utilizing region
proposal networks (RPNs) and a mask prediction stage to achieve object segmentation [35].
The differing architectures of the algorithms contribute significantly to their performance,
with YOLO’s simpler grid-based approach proving effective for objects with clear bound-
aries and well-defined shapes, while Mask R-CNN’s more complex architecture excels in
handling small or overlapping objects [60], which is not the case for our MWD detection
and segmentation.

4.2.2. Results for Area Estimation

The objective of this experiment is to determine the accuracy of the estimated areas
obtained from the applied area formula compared to the actual measurements obtained
through the GE API.

The detected MWDs were obtained using YOLOv7, where the output of the segmenta-
tion model produces a polygonal mask. The Gaussian area formula was used to estimate
the area of the identified MWDs. The same detected polygon was used with the GE API to
obtain the area with this method.

The estimated areas of 10 random samples of detected MWDs, using both the Gaussian
area formula and the GE API, are presented in Table 5.

The average absolute error for the samples in Table 5 was found to be 5.58%, which
is within the expected range. Further analysis of 100 detected MWDs revealed an aver-
age absolute error in area calculation using our proposed method of 6.6%. While there
was a slight increase in error, the results indicate that the performance of our system is
highly satisfactory.

To validate the estimated areas using our solution, Figure 8 shows a detected MWD,
Figure 8a shows the detected polygon area of size 623,886 m2, and Figure 8b shows the
projection of the area of size 647,681 m2 in Google Earth.
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Table 5. Areas of the 10 MWD random samples estimated using both the Gaussian area algorithm
and the GE API. Subsequently, the absolute error, standard deviation, and variance of the two
measurements were calculated.

MWD ID Estimated Area (m2) Area GE API (m2) Absolute Error (%)

0 449,412 439,785 2.19
1 243,687 273,733 10.98
2 1,463,262 1,550,792 5.64
3 514,362 521,347 1.34
4 394,150 359,541 9.63
5 189,962 184,733 2.83
7 571,587 554,441 3.09
8 337,762 322,835 4.62
9 135,975 126,476 7.51

10 47,262 43,776 7.96

Average 5.58
Standard Deviation 3.14

Variance 11.01

Figure 8. Detected MWDs using our proposed methodology. (a) shows the mask detected over a tile
of Sentinel-2 imagery; (b) shows the same area exported to Google Earth.

The experiments demonstrated that the mathematical approach for estimating the
area of MWDs is both accurate and valid, as the estimated area was in agreement with
the measurements obtained through the GE API. This approach offers the advantage of
providing accurate results while saving time compared to manual measurements. The uti-
lization of the GE API also facilitated easy visualization and verification of the results,
further confirming the validity of this approach as an alternative method for estimating the
area of MWDs.

5. Conclusions and Future Work

In this study, we introduced a methodology aimed at the localization and estimation
of the area of MWDs by employing advanced DL techniques. This methodology aspires
to provide a foundational framework for analyzing PS, a crucial aspect during the closure
and post-closure phases of mining operations.

Utilizing a ViT classifier, we achieved a classification accuracy of 98% across various
aerial scenes. This demonstrates a promising avenue for processing satellite imagery
in the context of mining waste management. Additionally, the employment of DGMs
proved beneficial in augmenting the limited data available, showcasing a potential path for
enhancing detection algorithms.
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The application of YOLOv7 and Mask R-CNN algorithms on RGB imagery with a
10 m spectral resolution facilitated the accurate detection and segmentation of MWDs while
preserving the location information derived from Sentinel-2 metadata. The experimental
results indicate that the combination of YOLOv7 and diffusion models was effective in
detecting and segmenting MWDs. Specifically, the YOLOv7 algorithm achieved an AP
of 81% for detection and 79% for segmentation when integrating original, augmented,
and synthetic data. This suggests that synthetic data can play a role in improving the
accuracy of detection algorithms.

Furthermore, the methodology allowed for the estimation of areas of detected MWDs,
offering a cost-effective alternative to the challenge of cataloging and accounting for the
quantity of MWDs in a region.

The analysis of satellite images corresponding to the MWD areas could potentially
provide variables associated with site sector, geomorphology, vegetation, populated sectors,
and environmentally protected areas. This lays the groundwork for further exploration
into machine learning algorithms for feature extraction, image processing, manual labeling,
and deep learning in the context of mining waste management.

While this study presents an initial step towards addressing the challenges associated
with the fiscalization process of MWDs, further research is warranted to refine the pro-
posed methodology and explore other machine learning and deep learning algorithms for
improved accuracy and efficiency.
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Abstract: Semantic segmentation of high-resolution remote sensing images (HRSI) is significant, yet
challenging. Recently, several research works have utilized the self-attention operation to capture
global dependencies. HRSI have complex scenes and rich details, and the implementation of self-
attention on a whole image will introduce redundant information and interfere with semantic
segmentation. The detail recovery of HRSI is another challenging aspect of semantic segmentation.
Several networks use up-sampling, skip-connections, parallel structure, and enhanced edge features
to obtain more precise results. However, the above methods ignore the misalignment of features
with different resolutions, which affects the accuracy of the segmentation results. To resolve these
problems, this paper proposes a semantic segmentation network based on sparse self-attention
and feature alignment (SAANet). Specifically, the sparse position self-attention module (SPAM)
divides, rearranges, and resorts the feature maps in the position dimension and performs position
attention operations (PAM) in rearranged and restored sub-regions, respectively. Meanwhile, the
proposed sparse channel self-attention module (SCAM) groups, rearranges, and resorts the feature
maps in the channel dimension and performs channel attention operations (CAM) in the rearranged
and restored sub-channels, respectively. SPAM and SCAM effectively model long-range context
information and interdependencies between channels, while reducing the introduction of redundant
information. Finally, the feature alignment module (FAM) utilizes convolutions to obtain a learnable
offset map and aligns feature maps with different resolutions, helping to recover details and refine
feature representations. Extensive experiments conducted on the ISPRS Vaihingen, Potsdam, and
LoveDA datasets demonstrate that the proposed method precedes general semantic segmentation-
and self-attention-based networks.

Keywords: semantic segmentation; high-resolution remote sensing; self-attention; context modeling;
feature alignment

1. Introduction

Semantic segmentation predicts the semantic labels for each pixel in an image. Seman-
tic segmentation of high-resolution remote sensing images (HRSI) is the cornerstone of
remote sensing interpretation. It is of great importance in many fields, such as mapping,
navigation, land resource management, etc. [1–3]. Specifically, land cover maps depict local
and overall landscape conditions, from which environmental change trends can be obtained.
Semantic segmentation can be used to assess urban development and estimate the impact of
natural disasters. Since remote sensing technology has advanced, HRSI with more complex
pixel representation have become more readily available. Semantic segmentation is more
crucial and challenging for HRSI. Traditional semantic segmentation methods [4–6] rely on
expert experience and complex human-designs. Moreover, the segmentation performance
relies on the accuracy and suitability of manually designed features. With robust feature
modeling capabilities, deep learning technology has become an effective method used for
semantic segmentation of HRSI, and researchers have applied deep learning technology
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to this operation. Specifically, a convolutional neural network (CNN) [7] has been widely
used in semantic segmentation and achieved satisfactory results. To further enhance the
accuracy of semantic segmentation, researchers focus on both contextual information fusion
and the refinement of segmentation results.

To achieve contextual information fusion, several network variants are proposed to
enhance contextual aggregation. PSPNet [8] developed spatial pyramid pooling to acquire
a rich, multi-scale context. The Deeplab series [9–11] utilized the atrous spatial pyramid
pooling (ASPP) to gather contextual clues, which consisted of parallel atrous convolutions
with different dilated rates. GCN [12] removed the pooling in the network and developed
a large decoupling convolution kernel to extract features. The large convolution kernel
can obtain a large receptive field and is beneficial to the capture of long-range contextual
information. However, the above methods fail to model the global contextual dependencies
across an entire image. Recently, self-attention mechanisms commonly used in natural
language processing (NLP) have been widely used for visual tasks with exciting results.
Wang et al. [13] first proposed self-attention to capture global dependencies. Fu et al. [14]
developed DANet to model non-local dependencies in position and channel dimensions.
Instead of calculating self-attention at each point, EAMNet [15] utilized the expectation-
maximization iteration manner to learn a more compact basis set, and then carried out
self-attention. To model spatial long-range dependencies, CCNet [16] proposed recurrent
a criss-cross attention module. Yuan et al. [17] developed OCNet with interlaced sparse
self-attention. The above methods show that the self-attention operation is an effective
way to capture global dependencies. Thus, several studies have used the self-attention
mechanism for semantic segmentation of HRSI. Shi et al. [18] combined self-attention
and atrous convolution with different atrous rates to capture spatially adaptive global
context information. Li et al. [19] proposed kernel attention with linear complexity and
combined it with the standard dot product attention. However, the above methods ignore
a key problem: due to the complex background and rich details of HRSI, standard self-
attention will introduce redundant information and interfere with semantic segmentation.
To solve this problem, this paper proposes the sparse position self-attention module (SPAM)
and sparse channel self-attention module (SCAM), which not only captures the global
information, but also reduces the interference of redundant information.

For the refinement of segmentation results, the current semantic segmentation network
uses several strategies. One is to obtain the high-level semantic information gradually via
down-sampling and then integrate the features of various levels through the decoder to
recover the details. For example, Long et al. [20] proposed fully convolutional networks
(FCNs) that restored the original image size by incorporating the low-level features and high-
level features. SegNet [21] retained the index of the maximum position when pooling, and the
index was reused when upsampling. U-Net [22] adopted skip-connections to connect shallow
layers and deep layers. RefineNet [23] utilized a Laplacian image pyramid to explicitly model
the available information during downsampling and predictions from coarse to fine. Another
potential strategy is to learn semantic information while maintaining high resolution feature
maps. For example, HRNet [24] proposed a parallel structure backbone network, which
maintained high resolution characteristics during the entire process. Additionally, several
networks refine the segmentation edges to obtain more precise semantic segmentation results.
Gated-SCNN [25] deconstructed the edge information from the regular features and used
a shape branch to focus on semantic boundary information. SegFix [26] proposed a post-
processing method to refine the boundaries of semantic segmentation results. ERN [27]
developed the edge enhancement structure and the loss function used to supervise the edge
to enhance the segmentation accuracy. Zheng et al. [28] developed a Dice-based edge-aware
loss function to refine edge information directly from semantic segmentation prediction.
Li et al. [29] highlighted the edge distribution of the feature map in a self-attention fashion.
The above methods recover the details and improve the edge segmentation performance to
some extent. However, the issue of feature maps with different resolutions being misaligned
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is ignored. To solve this problem, this paper proposes the feature alignment module (FAM),
which generates a learnable offset map to align feature maps with different resolutions.

HRSI generally have complex background information and abundant details, which
makes semantic segmentation more challenging. The standard self-attention and excessive
fusion of long-range context information may introduce redundant information and cause
interference to object segmentation. This paper proposes SPAM and SCAM to effectively
model the position global context and channel-wise dependencies. Additionally, feature
maps with different resolutions are not aligned. Features from shadow layers and deep
layers are directly fused and, thus, fail to obtain higher-quality segmentation results. This
paper proposes FAM, which combines low-level and high-level features with different reso-
lutions. FAM is beneficial, as it refines segmentation results and improves the segmentation
performance of an object edge. The contributions of this work are threefold:

1. The paper proposes SPAM and SCAM to efficiently model the position non-local
information and channel-wise dependency, which reduces redundant information,
contributing to the intraclass consistency of large objects and the segmentation accu-
racy of small objects.

2. The paper introduces FAM, which can align feature maps with different resolutions
and further improve segmentation results.

3. Extensive experimental results demonstrate that SAANet achieves leading perfor-
mance on ISPRS Vaihingen, Potsdam, and LoveDA datasets.

2. Materials and Methods

The particulars of the proposed semantic segmentation network based on sparse self-
attention and feature alignment (SAANet) for semantic segmentation will be introduced.
We first present the overall framework of our SAANet and then illustrate the details of the
SPAM, SCAM, and FAM.

2.1. Overview

As shown in Figure 1, the proposed SAANet consists of a backbone, SPAM, SCAM, and
FAM. Many studies have proved the good performance of a pretrained ResNet backbone
in semantic segmentation tasks. First, the dilated ResNet-101 [30] is set as the backbone
to extract features. The outputs of the dilated ResNet-101 in each stage are denoted as
{S1, S2, S3, S4}. Due to the removal of down-sampling operations and adoption of dilated
convolutions in the last two blocks, feature maps have strides of {4, 8, 8, 8} pixels, with
respect to the input image. Then, SPAM and SCAM take the feature map S4 as input
to model non-local dependencies in the position and channel dimensions. In addition,
in order to achieve better feature representations, a feature pyramid network (FPN) [31]
is used to combine low-level and high-level features and the outputs are denoted as
{F1, F2, F3, F4}. Finally, feature maps F2,F3, and F4 are up-sampled to the same size as
feature map F1 utilizing FAM. The four feature maps are concatenated to gain final pixel-
level feature representations.

Figure 1. An overview of our proposed semantic segmentation network based on sparse self-
attention and feature alignment (SAANet). H and W represent the height and width of the input
image, respectively.
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2.2. Sparse Position Self-Attention Module

Due to the complex scenes and rich details of HRSI, the implementation of a position
self-attention module (PAM) on the whole image introduces redundant information and
interferes with semantic segmentation. To capture long-range dependencies more efficiently
and reduce redundant information, this paper proposes the SPAM, which is based on PAM.

2.2.1. Position Self-Attention Module

PAM is first introduced and shown in Figure 2. Given the feature map M, the features
query (Q), key (K), and value (V) are first generated by convolutions, respectively, where
Q, K, V ∈ RC×H×W . C, H, and W denote the number of channels of the feature, image
height, and image width, respectively. Then, they are reshaped to Qp, Kp, Vp ∈ RC×N ,
where N = H × W is the number of pixels. Next, Qp is multiplied by the transpose of Kp,
and the softmax layer is applied to calculate the position attention map Ap ∈ RN×N :

Ap = softmax
(

KT
p Qp

)
(1)

where Ap measures the influence between the two positions, and the more similar two
pixel features are, the larger the value of Ap is. Then, Vp and the transpose of Ap are
multiplied, and the resulting product is reshaped to RC×H×W . Finally, to obtain the output
Np ∈ RC×H×W , the feature map is multiplied by the scale coefficient α and sum with the
feature map M.

Np = αVp AT
p + M (2)

where α is a learnable parameter, which is initialized to 0.

Figure 2. The framework of the position self-attention module (PAM).

2.2.2. Sparse Position Self-Attention Module

The proposed SPAM is based on PAM. Instead of standard PAM operating on the
entire image, SPAM implements the sparse mechanism by performing PAM operations on
sub-regions. SPAM can not only capture global context information, but can also reduce
redundant information. Specifically, we divide the inputs to small regions along the position
dimension and perform PAMs in sub-regions. The details of SPAM are shown in Figure 3.
Given a feature map X with the spatial size of H × W, the feature map X is grouped along
the H and W dimensions and the spatial size of each group is H_n ×W_n. The feature map
X is divided into H/H_n × W/W_n groups, named {X1, X2, X3 . . .}. Figure 3 illustrates
the details of SPAM by taking H, W = 8 and H_n, W_n = 2 as an example. Then, the pixels
at the same relative positions in each group are reorganized into new regions. The number
of new regions is H_n × W_n, and the pixels of each new region are H/H_n × W/W_n.
Meanwhile, PAMs are operated in new regions, and the feature map Y1 is obtained, which
is then set as the global operation. Finally, the pixel position of the feature map Y1 is
restored to the original combination, and PAMs are carried on {X1, X2, X3 . . .}. The feature
Z1 is obtained. The input of SPAM is S4 in our SAANet. SPAM efficiently captures the
long-range context information and models the pixel-wise relationship. The information
propagation process of SPAM is shown in Figure 4. Take regions R1, R2 and pixels M, N, P,

514



Remote Sens. 2023, 15, 1598

Q as examples to illustrate details of the information propagation. Specifically, pixel M in
the region R1 and pixel N in the region R2 first operate PAM, while pixel P in the region R1
and pixel Q in the region R2 operate PAM. Then, the region R1 and the region R2 continue
PAM, respectively. Finally, pixels M, N, P, and Q aggregate the local and global contextual
information. The above operations complete the information propagation between regions
R1 and R2.

Figure 3. The structure of the proposed sparse position self-attention module (SPAM). (a) The input
image is divided along position dimension. (b) PAMs are performed in rearranged small regions.
(c) The pixel position of the feature map is restored to the original combination. (d) PAMs are
performed in restored sub-regions. (e) The output of SPAM is obtained.

Figure 4. The information propagation process of the proposed SPAM. (a) M and P are the two pixels
in region R1; and N and Q are the two pixels in region R2. (b) During the first PAM operation, the
information is transmitted between M and N and between P and Q, respectively. (c) During the
second PAM operation, the information is transmitted between M and P and between N and Q,
respectively. (d) M, N, P, and Q contain global and local information.

2.3. Sparse Channel Attention Module

Due to the complexity of HRSI, there are large intra-class differences and small inter-
class differences. Therefore, operating a standard self-attention module (CAM) on all
channels introduces redundant information and causes category confusion. To model
interdependent information between channels more efficiently and suppress redundant
information, this paper proposes SCAM, which is based on CAM.

2.3.1. Channel Self-Attention Module

The architecture of CAM is shown in Figure 5. We first reshape the local feature
map M ∈ RC×H×W to Mc ∈ RC×HW . Then, the matrix multiplication between Mc and
the transpose of Mc is performed for the softmax layer, and the attention feature map
Ac ∈ RC×C is obtained as follows:

Ac = softmax
(

Mc Mc
T
)

(3)

where Ac measures the influence of different channels. Then, Mc is multiplied by the
transpose of Ac, and the multiplication is reshaped to RC×H×W . Finally, the product is
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multiplied by the scale coefficient β and added to the original feature M to obtain the final
feature map Nc ∈ RC×H×W , as follows:

Nc = βAc
T Mc + M (4)

where β is a learnable parameter and is initialized to 0.

Figure 5. The architecture of the channel self-attention module (CAM).

2.3.2. Sparse Channel Self-Attention Module

The details of SCAM are shown in Figure 6. First, the feature map X is divided
into C_n groups {C1, C2, C3 . . .} in the channel dimension. The channel number of each
group is C/C_n. Figure 6 illustrates the details of SCAM, taking C_n = 2 as an exam-
ple. Then, the groups {C1, C2, C3 . . .} are further divided into C_n sub-groups, named
{C11, C12, C13 . . .}, {C21, C22, C23 . . .}, {C31, C32, C33 . . .} . . . . The channel number of each
sub-group is C/C2_n. Next, for each channel group, sub-groups in the same relative
position (for instance, C11, C21, C31 . . .) are taken out to rearrange and generate new
channel groups {C11, C21, C31 . . .}, {C12, C22, C32 . . .}, {C13, C23, C33 . . .} . . . . The feature
map Y2 is obtained by operating CAMs in C/C_n new groups. Finally, Y2 is restored to
the original channel arrangement, and Z2 is acquired by performing CAMs in original
groups {C1, C2, C3 . . .}.

Figure 6. The structure of the proposed sparse channel self-attention module (SCAM). (a) The input
image is divide along the channel dimension. (b) CAMs are performed in rearranged sub-channels.
(c) The channels of the feature map are resorted to the original combination. (d) CAMs are performed
in resorted sub-channels. (e) The output of SCAM is obtained.

2.4. Feature Alignment Module

Several methods are proposed to refine semantic segmentation results. However,
the misalignment of features is ignored. To align features with different resolutions and
refine semantic segmentation representations, this paper proposes an FAM. Specifically, the
feature map S′

4 in Figure 1 from the last stage of ResNet fuses global context information
and possesses enriched semantic information. However, the feature map S′

4 with coarse
resolution lacks fine details. The proposed SAANet uses an FPN to fuse different resolution
features from different stages. The FPN gradually fuses lower-level features with the details
and higher-level features with abundant semantic information in a top-down pathway
via 2× bilinear upsampling. However, the feature maps with different resolution are mis-
aligned, which causes confusion in edges and small object segmentation. The misalignment
has a great influence on the accuracy of semantic segmentation, especially on HRSI with
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complex scenes. After a series of operations in SAANet, such as downsampling, residual
connection, self-attention, etc., the misalignment of the feature maps is more complicated.
In the upsampling process, using bilinear interpolation alone fails to achieve better semantic
segmentation results. The proposed SAANet develops a feature alignment module, which
utilize convolutions to obtain a learnable offset map for feature alignment.

The details of the FAM are shown in Figure 7. The FAM is structured within the FPN
framework. The inputs of the FAM are two feature maps with different spatial resolutions.
It is assumed that Fl and Fl−1 are the two input features of FAM, where Fl ∈ RHl×Wl×C and
Fl−1 ∈ RHl−1×Wl−1×C. Fl is first upsampled via the standard regular grid sampling based
bilinear interpolation. Then, the upsampled Fl and Fl−1 are concatenated, and the feature
map F′ is obtained. The feature F′ is passed through a 1 × 1 convolution, BN, and 3 × 3
convolution to predict an offset Δ f ∈ RHl−1×Wl−1×2. Finally, the offset map is used to correct
the upsampled Fl , which obtains the output feature map aligned with Fl−1. Mathematically,
the above operations can be written as:

F′ = concat(Fl−1, upsample(Fl)) (5)

Δ f = conv3×3(BN(conv1×1(F′))) (6)

where the upsample denotes the bilinear interpolation function, and Δ f denotes offsets in
horizontal and vertical directions. The FAM also involves less computation. SAANet uses
three FAMs for the alignment of F2, F3, F4, and F1, respectively. FAM alleviates the feature
misalignment and enhances the performance of semantic segmentation, especially for small
objects and boundary regions.

Figure 7. The framework of the proposed feature alignment module (FAM).

3. Experiments

We first introduce the datasets, evaluation metrics, and implementation details and then
conduct ablation studies to validate the effectiveness of our framework. Finally, we compare
the proposed network with several state-of-the-art methods on ISPRS Vaihingen, Potsdam [32],
and LoveDA Urban [33] datasets.

3.1. Datasets and Evaluation Metrics

ISPRS Vaihingen dataset: ISPRS Vaihingen is a high-resolution remote sensing
dataset used for semantic segmentation, which is composed of 33 images. The ground
sampling distance (GSD) is 9 cm, and the average size of the images is 2496 × 2046 pixels.
All images have corresponding semantic segmentation labels. The training and testing
sets contain 17 and 16 images, respectively. There are six categories: impervious surface,
building, low vegetation, tree, car, and clutter/background.

ISPRS Potsdam dataset: ISPRS Potsdam contains 38 images. The GSD is 5 cm, and
the size of each image is 6000 × 6000 pixels. All images have corresponding semantic
segmentation labels. The number of images in the training and testing sets is 21 and 17,
respectively. As with the Vaihingen dataset, there are six categories.

LoveDA Urban dataset: The LoveDA dataset is constructed by Wang et al. [33]. The
historical images were obtained from the Google Earth platform. LoveDA Urban dataset
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was obtained from urban areas in Wuhan, Changzhou, Nanjing, and other places in China.
The size of each image is 1024 × 1024 pixels, and the GSD is 0.3m. The dataset was divided
into three parts: a training set, a val set, and a test set, among which the training set and
val set have semantic labels. In our experiment, 1156 training images were used as our
training set, and 677 val set images were used as our test set. There are seven categories:
background, building, road, water, barren, forest, and agricultural.

Evaluation Metrics: To evaluate the performance of semantic segmentation, this study
sets the mean intersection over union (mIoU), F1-score (F1), and overall pixel accuracy (OA) [34]
as its evaluation metrics. The aforementioned metrics are as follows.

mIOU =
1
N

N

∑
k=1

TPk
TPk + FPk + FNk

(7)

F1 = 2 × Precision × Recall
Precision + Recall

, Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(8)

OA =

N
∑

k=1
TPk

N
∑

k=1
TPk + FPk + TNk + FNk

(9)

where TP, FP, TN, FN, and k indicate the true positive, false positive, true negative, false
negatives, and category, respectively.

3.2. Implementation Details

Due to limited computing resources, we cropped all images into 512 × 512 pixels. All
experiments were implemented with PyTorch on a single NVIDIA GeForce RTX 2080Ti
GPU, and the optimizer was set as standard the stochastic gradient descent (SGD). For
different data sets, different learning rates were selected. The learning rates of the Vaihingen,
Potsdam, and LoveDA Urban datasets were 0.001, 0.0008, and 0.0007, respectively. For all
methods, cross-entropy loss is set as the loss function. For all datasets and networks, the
maximum iteration period is 100 epochs.

3.3. Comparison to State-of-the-Art

To verify the superiority of our SAANet, we perform comparisons with several existing
semantic segmentation methods, including self-attention-based and other general semantic
segmentation networks. Aside from HRNet, whose backbone network is W48, other
networks use the dilated ResNet-101 as the backbone. The experimental results on ISPRS
Vaihingen, Potsdam, and LoveDA datasets are shown in Tables 1–3, respectively. The
proposed SAANet achieves the best mIOU on ISPRS Vaihingen, Potsdam, and LoveDA
Urban datasets.

Results on the Vaihingen dataset: Compared with the typical segmentation network
FCN, our SSANet obtains 1.72%, 1.33%, and 0.76% improvement and achieves 68.50%,
80.22%, and 86.72% for mIOU, mF1, and OA, respectively. Moreover, the mIOU/F1/OA of
our SAANet surpasses 0.92%/0.72%/0.37% by the network based on self-attention DANet.
Thanks to SPAM, SCAM, and FAM, SSANet achieves more precise semantic segmentation
results in all classes, especially on small objects. For example, SSANet outperforms the
previous best one by 1.62% in the car category.

Results on the Potsdam dataset: Compared with a typical segmentation network
based on self-attention CCNet, our SSANet obtains 1.20%, 1.02%, and 0.61% improvement
and achieves 73.79%, 83.57%, and 88.22%, on mIOU, mF1, and OA, respectively. Moreover,
the mIOU, mF1, and OA of our SAANet surpasses 1.07%/0.75%/0.76% by the typical
network with multi-scale aggregation PSPNet. Meanwhile, SSANet achieves more precise
semantic segmentation results in all classes, with the most significant improvement in the
car category.
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Table 1. Comparisons of different networks on ISPRS Vaihingen dataset. Note that we chose the IOU
as the metric of each category. The best results are shown in boldface.

Method Imp. Surf. Building Low Veg. Tree Car Background mIOU mF1 OA

DeepLabv3+ 77.15 85.40 61.22 74.54 57.46 26.44 63.70 75.90 85.30
HRNet 79.12 85.78 62.46 75.69 60.46 25.87 64.90 76.70 86.10

EMANet 77.83 85.73 62.61 75.37 60.95 32.18 65.78 77.87 85.88
PSPNet 77.94 85.77 62.90 75.65 60.40 34.59 66.21 78.34 85.97
CCNet 77.73 85.64 62.35 75.42 61.61 36.22 66.50 78.66 85.83
FCN 77.99 85.82 62.84 75.39 61.86 36.76 66.78 78.89 85.96

DANet 78.48 86.67 63.19 75.74 63.73 37.67 67.58 79.50 86.35

SAANet 79.00 87.52 63.79 76.16 65.35 39.21 68.50 80.22 86.72

Table 2. Comparisons of different networks on ISPRS Potsdam dataset. Note that we choose the IOU
as the metric of each category. The best results are shown in boldface.

Method Imp. Surf. Building Low Veg. Tree Car Background mIOU mF1 OA

DeepLabv3+ 81.87 90.32 71.75 73.58 83.12 34.19 72.47 82.50 87.45
CCNet 82.43 90.64 71.72 73.31 83.47 33.97 72.59 82.55 87.61
PSPNet 81.64 89.96 71.43 74.45 82.61 36.21 72.72 82.82 87.46
HRNet 82.65 89.99 72.17 74.16 83.58 35.06 72.94 82.87 87.76
DANet 82.80 90.94 72.23 74.42 83.70 33.87 72.99 82.80 87.96

FCN 82.30 90.66 71.62 74.37 83.55 36.03 73.09 83.03 87.73
EMANet 82.54 90.49 71.92 73.73 83.31 37.16 73.19 83.18 87.77

SAANet 83.40 90.78 72.46 74.53 84.12 37.46 73.79 83.57 88.22

Table 3. Comparisons of different networks on LoveDA Urban dataset. Note that we choose the IOU
as the metric of each category. The best results are shown in boldface.

Method Background Building Road Water Barren Forest AgriculturalmIOU mF1 OA

DeepLabv3+ 35.31 59.73 56.23 54.95 19.45 42.05 31.17 42.70 58.46 57.99
FCN 34.13 59.60 54.99 68.42 26.91 47.90 23.27 45.03 60.39 58.38

HRNet 37.96 60.03 59.83 68.33 25.07 44.63 30.59 46.63 62.11 60.87
PSPNet 38.72 58.80 53.00 60.30 23.18 44.36 48.13 46.64 62.64 63.41
DANet 38.67 62.04 58.93 66.52 23.26 43.92 34.37 46.82 62.33 61.54
CCNet 38.83 60.31 56.04 63.89 39.74 46.96 29.61 47.91 63.92 61.62

EMANet 40.46 60.02 58.18 64.55 30.36 47.74 46.22 49.65 65.58 65.19

SAANet 42.09 61.25 57.26 63.64 33.14 44.32 48.38 50.01 66.03 65.45

Results on the LoveDA Urban dataset: Compared with the ISPRS Vaihingen and
Potsdam datasets, the LoveDA Urban dataset with lower GSD has more complex scenes,
which makes semantic segmentation more challenging. Nevertheless, our SAANet still
achieves the best mIOU, mF1, and OA. Particularly, for more challenging classes, the
background class with greater intra-class variation, and the agricultural class with a small
number of pixels, the proposed SAANet achieves the highest IOU. Specifically, compared
with typical segmentation network FCN, our SSANet obtains 4.98%, 5.64%, and 7.07%
improvement and achieves 50.01%, 66.03%, and 65.45% for mIOU, mF1, and OA, respec-
tively. Moreover, the mIOU/F1/OA of our SAANet surpasses 2.10%/2.11%/3.83% for the
network based on the self-attention CCNet.

Overall, our method achieves state-of-the-art semantic segmentation performance
on the ISPRS Vaihingen, Potsdam, and LoveDA datasets. To qualitatively validate the
effectiveness, several visualization results are shown in Figures 8 and 9. It is observed that
the overall visual effect of our method outperforms other methods. Specifically, for large
objects, our method contributes to the intra-class consistency. In the first group in Figure 8,
for large buildings, other methods incorrectly predict that several pixels representing
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buildings are low vegetation or tree class. In the first group in Figure 9, other methods
incorrectly predict pixels inside impervious surfaces. On the contrary, our SAANet can
maintain category consistency. Additionally, for small objects, our method achieves more
refined semantic segmentation results. For example, in the second group in Figures 8 and 9,
several pixels representing cars are incorrectly predicted or have rough edges in the visual
results of other methods. However, our SAANet obtains more accurate pixel classification
and more precise edges. This suggests that our SAANet can obtain superior semantic
segmentation performance and visual effects.

Figure 8. Visual results achieved by different networks on ISPRS Vaihingen dataset. For the first group,
other methods incorrectly predict that several pixels representing buildings are low vegetation or tree
class. For the second group, several pixels representing cars have rough edges. However, our SAANet
can maintain category consistency and obtain more precise edges.
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Figure 9. Visual results achieved by different networks on ISPRS Potsdam dataset. For the first group,
other methods incorrectly predict pixels inside impervious surfaces. For the second group, several
pixels representing cars are incorrectly predicted. However, our SAANet can maintain category
consistency and obtain more accurate pixel classification.

3.4. Evaluation in Efficiency

We not only evaluate the segmentation accuracy and visualization results of different
methods, but also measure the computational complexity and model parameters, in terms of
giga floating-point operations per second (GFLOPs) (G) and the number of parameters with
millions (Params) (M). All models are calculated with an input image size of 512 × 512 × 3.
The results are shown in Table 4. HRNet uses HRNetv2_W48 as the backbone network
and has the lowest computational complexity. The backbone network of other methods
is ResNet-101 with dilated convolution strategy. Compared with the self-attention-based
networks DANet and CCNet, our method only increases the computational complexity by
about 1.76% and the number of parameters by 0.6% to obtain better segmentation accuracy.
Although our SAANet achieves better performance, it has a more complex structure and
provides a small amount of computational complexity and parameters. We will focus on
balancing the relationship between accuracy and complexity in future work.
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Table 4. Comparison with other networks on GFLOPs and Params. The best results are shown in boldface.

Method GFLOPs (G) Params (M)

DeepLabv3+ 254.56 60.21
HRNet 93.73 65.85

EMANet 246.63 58.71
PSPNet 256.63 65.60
CCNet 278.57 66.45
FCN 275.88 66.12

DANet 277.26 66.45
SAANet 283.46 66.85

4. Discussions

Previous work has focused on the fact that contextual information is important for
semantic segmentation. PSPNet [8] uses the pooling operation of a pyramid structure to
model the context information of different scales. Deeplabv3+ [11] combines the pyramid
structure with the dilated convolution to capture the context information. In addition,
several works [13–17] have proved that the self-attention mechanism is an effective way to
model global context information. The self-attention mechanism captures context informa-
tion through a sequence of matrix operations, which improves the accuracy of semantic
segmentation. However, HRSI have complex scenes and rich details. The implementation
of standard self-attention will introduce excessive redundant information and interfere
with semantic segmentation. In this paper, SPAM and SCAM are proposed to model local
and global context information, while avoiding the introduction of redundant information.
In addition, FAM is proposed to improve the segmentation accuracy of edge regions and
refine the semantic segmentation results. To better discuss and validate the effectiveness
of each module of our SAANet, extensive ablation studies are conducted on the ISPRS
Vaihingen and Potsdam datasets.

4.1. Sparse Position and Channel Attention Module

Both local and global context information is indispensable for the semantic segmenta-
tion task. In general, a larger receptive field can fuse a wider range of information, which is
conducive to obtaining better feature representation. The standard self-attention operation
is equivalent to fusing the information of each pixel of the image indistinguishably, which
models long-range context information. The proposed SPAM and SCAM can capture local
context information, as well as model long-range context information, and does so both
sparsely and efficiently. To acquire a balance between local and global context, different
H_n, W_n in SPAM and C_n in SCAM are set. Extensive experiments are conducted on the
ISPRS Vaihingen and Potsdam datasets, and the results are shown in Table 5.

The pretrained ResNet-101 with the dilated strategy is adopted to initialize the back-
bone. The output of the last stage of ResNet-101 is used for semantic segmentation. Baseline
based on ResNet101 obtains an mIOU of 65.19%, an mF1 of 77.32%, an OA of 85.60% on
the ISPRS Vaihingen dataset. Baseline obtains an mIOU of 72.03%, an mF1 of 82.04%, an
OA of 87.43% on the ISPRS Potsdam dataset. Compared with other H_n, W_n in SPAM
and C_n in SCAM, SPAM with H_n, W_n = 4 and SCAM with C_n = 2 achieves the best
mIOU of 68.19% on the Vaihingen dataset and mIOU of 73.65% on the Potsdam dataset.
The larger H_n and W_n are, the wider the region of capturing local information in the
spatial dimension is, which will introduce more redundant information. Each channel map
of high-level features is related to the category. By dividing channels into more groups
(i.e., the larger C_n is), several channels with strong associations may be dispersed and
rearranged, which is adverse to obtaining a better feature representation of each class.
Therefore, H_n, W_n, and C_n are set as 4, 4, and 2, respectively, in follow-up experiments.
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Table 5. Comparisons of different H_n, W_n, and C_n on ISPRS Vaihingen and Potsdam datasets.
The best results are shown in boldface.

Dataset H_n W_n C_n mIOU mF1 OA

Vaihingen

/ / / 65.19 77.32 85.60
4 4 2 68.19 79.99 86.64
4 4 4 67.82 79.67 86.47
8 8 2 67.73 79.71 86.24
8 8 4 67.82 79.75 86.40

16 16 2 67.67 79.52 86.42
16 16 4 68.04 79.75 86.40

Potsdam

/ / / 72.03 82.04 87.43
4 4 2 73.65 83.49 88.09
4 4 4 73.38 83.28 87.96
8 8 2 73.44 83.22 88.15
8 8 4 73.11 83.04 87.89

16 16 2 73.54 83.45 87.98
16 16 4 72.57 82.39 87.89

Sparse Position Attention Module: In order to efficiently model spatial long-range
context information, SPAM is introduced to enhance the output of the backbone. The results
are shown in Table 6. Compared with the baseline, SPAM provides an mIOU of 0.54% and
1.15% improvement and achieves an mIOU of 65.73% and 73.18%, an mF1 of 78.06% and
83.12%, and an OA of 85.61% and 87.88%, respectively, on the Vaigingen and Potsdam
datasets. It is obvious that SPAM can effectively capture global context information and
achieves a better segmentation performance.

Table 6. Comparisons of different versions of our network on ISPRS Vaihingen and Potsdam datasets.
The best results are shown in boldface.

Dataset SPAM SCAM FPN FAM mIOU mF1 OA

Vaihingen

65.19 77.32 85.6
� 65.73 78.06 85.61

� 65.38 77.41 85.85
� � 68.19 79.99 86.64
� � � 66.82 78.88 86.11
� � � � 68.50 80.22 86.72

Potsdam

72.03 82.04 87.43
� 73.18 83.12 87.88

� 72.80 82.80 87.73
� � 73.65 83.49 88.09
� � � 73.63 83.45 88.07
� � � � 73.79 83.57 88.22

Sparse Channel Attention Module: In order to efficiently capture the interdependencies
between channels, SCAM is introduced to enhance the output of the backbone. The results are
shown in Table 6. Compared with the baseline, SCAM provides mIOU of 0.19% and 0.77%
improvement and achieves an mIOU of 65.38% and 72.80%, an mF1 of 77.41% and 82.80%,
and an OA of 85.85% and 87.73%, respectively, on the Vaigingen and Potsdam datasets. SCAM
is of great significance when it comes to modeling the dependencies between channels.

We integrate SPAM and SCAM into the baseline to generate a network. Compared
with the baseline, the SPAM models long-range context information, and SCAM efficiently
captures the interdependencies between channels. SPAM and SCAM provide an mIOU of
3%, an mF1 of 2.67%, and an OA of 1.04% improvement and obtain an mIOU of 68.19%,
an F1 of 79.99%, and an OA of 86.64% on the Vaihingen dataset. Additionally, SPAM and
SCAM provide an mIOU of 1.62%, an mF1 of 1.45%, and an OA of 0.66% improvement
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and obtain an mIOU of 73.65%, an F1 of 83.49%, and an OA of 88.09% on the Potsdam
dataset. Extensive experiments demonstrate that SPAM and SCAM enhance the semantic
segmentation performance of HRSI.

4.2. Feature Alignment Module

We compare the segmentation results of the method with SPAM and SCAM with
labels. Several results are shown in Figure 10, demonstrating that most of the regions with
inaccurate segmentation are boundary regions. In this paper, the FPN structure is used
to integrate the high-level features with semantic information and the low-level features
with detail information to obtain a finer semantic segmentation result. However, feature
maps with different resolutions are misaligned. Utilizing the FPN structure to fuse features
from shadow layers and deep layers fails to obtain better results. Therefore, it is vital
that the FAM aligns and fuses features with different resolutions. The results are shown
in Table 6. The network with the FPN obtains an mIoU of 66.82%, an mF1 of 78.88%,
and an OA of 86.11% on the Vaigingen dataset. The network with FAM achieves the
best mIoU of 68.5%, mF1 of 80.22%, and OA of 86.72%. Meanwhile, the network with
FAM achieves the best mIoU of 73.79%, an mF1 of 83.57%, and an OA of 88.22% on the
Potsdam dataset. The results prove that feature alignment is essential and the proposed
FAM is effective. Additionally, FAM is beneficial, as it refines the boundaries. To prove the
effectiveness of FAM for boundary regions, the mIOU, mF1, and OA are calculated on the
edge region. Since there is no standard edge region, a neighborhood in which different
classes are connected is selected as the edge region in this paper. Specifically, we first extract
the boundary of different objects in the label and then perform the dilation operation in
morphology operations to obtain the edge region. Note that the pixels closer to the object
boundary are more likely to be confused, and the pixels closer to the object interior are
more likely to be classified. As the dilation kernel increases, the edge region expands and
the pixels grow closer to the interior of the object. The mIOU, mF1, and OA in a larger
area cannot fully highlight the improvement in the edge region. Therefore, in this paper, a
kernel of 3 × 3 is selected for the dilation operation to obtain the edge region. The results
are shown in Table 7. The network without FAM obtains an mIoU of 35.68%, an mF1 of
51.88%, and an OA of 55.19% on the Vaigingen dataset. FAM provides an mIOU of 1.04%,
an mF1 of 0.84%, and an OA of 0.23% improvement. Meanwhile, the method without FAM
obtains an mIoU of 38.32%, an mF1 of 54.34%, and an OA of 56.48% on the Potsdam dataset.
The method with FAM obtains an mIoU of 38.81%, an mF1 of 54.82%, and an OA of 56.90%.
The results demonstrate that FAM refines the edge regions of semantic segmentation results
and further explains the necessity and effectiveness of feature alignment.

In general, the experiments and visual results illustrate that SPAM, SCAM, and FAM
achieve better semantic segmentation results. As shown in Tables 1–3, the proposed method
achieves optimal OA, mF1, and mIOU on the ISPRS Vaihingen, Potsdam, and LoveDA
Urban datasets. Specifically, the accuracy of small object cars is significantly improved.
Additionally, as shown in Figures 8 and 9, other networks incorrectly the predicted pixels
inside large objects, such as impervious surfaces and buildings. For small objects, such
as cars, incorrect pixel classifications occur, as well as inaccurate edges. In contrast, our
SAANet can maintain intra-class consistency for large objects and accuracy for small objects.
Meanwhile, the experimental results show that global context information enhancement
on HRSI with complex backgrounds introduces redundant information. The researchers
further explore more adaptive global context information fusion methods to suppress
redundant information as much as possible.
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Table 7. Quantitative results achieved by different variants of our network on boundaries. The best
results are shown in boldface.

Dataset Method mIOU F1 OA

Vaihingen baseline + SPAM + SCAM 35.68 51.88 55.19
baseline + SPAM + SCAM + FAM 36.52 52.92 55.42

Potsdam baseline + SPAM + SCAM 38.32 54.34 56.48
baseline + SPAM + SCAM + FAM 38.81 54.82 56.90

Figure 10. Visualization results of the difference between predictions and labels. (a–c) from the test set of
the Vaihingen dataset. Note that most of the regions with inaccurate segmentation are boundary regions.

5. Conclusions

In this paper, we present a network based on sparse self-attention and feature align-
ment for semantic segmentation of HRSI. Specifically, SPAM is developed to capture
long-range context information. SCAM is adopted to model interdependencies between
channels more efficiently, while FAM is introduced to align features with different resolu-
tions and refine semantic segmentation results. Moreover, extensive ablation experiments
demonstrate the effectiveness of our method on the ISPRS Vaihingen and Potsdam datasets.
Comparative experiments on the ISPRS Vaihingen, Potsdam, and LoveDA Urban datasets
demonstrate that our SAANet obtains finer semantic segmentation results and achieves
outstanding performance. Although our SAANet enhances the context information and
details, there are still problems in the field of semantic segmentation of HRSI, such as
large intra-class differences and small inter-class differences. For example, trees and low
vegetation in the Vaihingen and Potsdam datasets are easily confused. In subsequent
research, we will use comparative learning in the semantic segmentation of HRSI to obtain
better feature embedding space and more easily distinguished feature representation.
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