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Preface

The aim of this Special Issue was to explore the latest research and innovations in motion

analysis, offering unique insights and perspectives that advance knowledge within the field. Both

clinical and engineering researchers have investigated the gait, balance, and joint kinematics in

individuals affected by movement disorders, which can stem from musculoskeletal, neurological, or

other bodily system dysfunctions. Artificial intelligence (AI) approaches can be utilized to facilitate

scientists in the efficient management of complex datasets.
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Abstract: A treatment method for suppressing shoulder pain by reducing the secretion of neurotrans-
mitters in the brain is being studied in compliance with domestic and international standards. A
robot is being developed to assist physical therapists in shoulder rehabilitation exercise treatment.
The robot used for rehabilitation therapy enables the training of patients to perform rehabilitation
exercises repeatedly. However, the biomechanical movement (or motion) of the shoulder joint should
be accurately designed to enhance efficiency using a shoulder rehabilitation robot. Furthermore,
safely treating patients by accurately evaluating biomechanical movements in compliance with
domestic and international standards is a major task. Therefore, an in-depth analysis of shoulder
movement is essential for understanding the mechanism of shoulder rehabilitation using robots.
This paper proposes a method for analyzing shoulder movements. The rotation angle and range of
motion (ROM) of the shoulder joint are measured by attaching a marker to the body and analyzing
the inverse kinematics. The first motion is abduction and adduction, and the second is external and
internal rotation. The location information of the marker is transmitted to an application software
through an infrared camera. For the analysis using an inverse kinematics solution, five males and five
females participated in the motion capture experiment. The subjects did not have any disability, and
abduction and adduction were repeated 10 times. As a result, ROM of the abduction and adduction
were 148◦ with males and 138.7◦ in females. Moreover, ROM of the external and internal rotation were
111.2◦ with males and 106◦ in females. Because this study enables tracking of the center coordinates
of the joint suitably through a motion capture system, inverse kinematics can be accurately calculated.
Additionally, a mathematical inverse kinematics equation will utilize follow-up study for designing
an upper rehabilitations robot. The proposed method is assessed to be able to contribute to the
definition of domestic and international standardization of rehabilitation robots and motion capture
for objective evaluation.

Keywords: shoulder pain; rehabilitation robot; motion capture system; inverse kinematics; range of
motion; standardization evaluation

1. Introduction

Motor nerves transmit signals from the brain to muscles to induce movement of
the shoulder and arm. In particular, when shoulder pain is induced, the muscle can

Diagnostics 2022, 12, 3179. https://doi.org/10.3390/diagnostics12123179 https://www.mdpi.com/journal/diagnostics1
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be relaxed by physically stimulating it to relieve pain. Therefore, research is being con-
ducted in compliance with domestic and international standards (IEC 80601-2-78:2019
and SC43) to suppress shoulder pain by reducing the neurotransmitter secretion in the
brain. Shoulder pain is a common complication that can be caused by adhesive capsuli-
tis and hemiplegia induced by a stroke [1]. In particular, the adhesive capsulitis causes
shoulder pain due to the thickening of the joint capsule and the adhesion of tendons or liga-
ments [1]. Adhesive capsulitis also causes additional complications due to rotator cuff tears.
Therefore, shoulder pain can be reduced through stretching and passive and active joint
exercise treatment [1].

Shoulder pain in hemiplegia and adhesive capsulitis requires nonsurgical treatment
and shoulder rehabilitation (SR). Rehabilitation exercises have been enabled through con-
ventional manual therapy by physical therapists. However, owing to the development of
biomedical engineering technology, the research and development of medical robots for
rehabilitation treatment continues through the convergence of physical therapy and engi-
neering [2–7]. The advantage of a rehabilitation robot is that therapists are able to train the
patient, such that a male or female can repeatedly perform rehabilitation exercises [8,9]. The
safety requirements of robots for rehabilitation exercise therapy are extremely important, as
specified in the international standards (IEC 80601-2-78:2019). A representative requirement
of international standardization of the safety of robots for rehabilitation exercise therapy is
that when a hemiplegic or speech-impaired person is trained in a robot system to receive
SR, communication between the therapist and the patient must be established [8]. However,
it is difficult for a patient with a disability to convey meaning to the therapist, and if an
emergency occurs, the paralyzed person must deliver a message to the therapist. However,
it is difficult for these patients to convey a clear message. Therefore, these problems lead to
medical accidents, making it necessary to establish domestic and international standard-
ization of computer interfaces through which patients and therapists can communicate.
Consequently, it is necessary to introduce an intelligent rehabilitation treatment robot to be
able to deliver a message in an emergency and monitor the patient’s condition.

In addition, the characteristics of the SR robot enable repetitive exercise training
through the automation system, reducing the fatigue of the therapist who needs to perform
extensive work, and can guide SR exercise training more accurately [9,10]. However, it
is important to accurately implement the biomechanical movement (or motion) of the
shoulder joint to enhance the efficiency of using a shoulder rehabilitation robot. The
accurate movement of the SR robot can ensure patient safety and prevent accidents [9,10].
Therefore, an in-depth analysis of shoulder movement is essential for understanding the
mechanism of SR robots. Various studies on the mechanism of shoulder movement have
been conducted [11–16].

Wu et al., from the International Society of Biomechanics, proposed a shoulder model
based on the definition of the shoulder joint coordinate system (JCS). In particular, the
proposed method presented the standardization of the JCS for the shoulder, elbow, wrist,
and hand [14], thereby contributing to smooth communication between researchers and
clinicians regarding kinematics. However, during the repetitive experiment, the standard
position of the joint is not constant and has limitations [14]. Jackson et al. analyzed
shoulder kinematics by attaching a marker to the skin to fix the standard joint position. In
particular, the method using the chain model and Kalman filter reconstructs the shoulder
kinematics by tracking the trajectory of the marker. Therefore, the burden is reduced to
an extent that it is unnecessary for the reconstruction of the mathematical model for the
determination of the range of motion (ROM) [15]. Zhang et al. proposed a kinematic
model using a Vicon motion capture system and markers. In particular, the shoulder
elevation and depression phases, and the movement coupling relationship between the
displacement of the glenohumeral (GH) joint center with respect to the thoracic coordinate
system and elevation of the humerus was investigated. As a result, a new design model for
an upper extremity rehabilitation robot consistent with the actual situation of the human
body structure was developed [16].
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Similar to previous studies, this study proposes a method for analyzing shoulder
movements. The rotation angle and ROM of the shoulder joint were measured by attaching
a marker to the body and analyzing the inverse kinematics. In particular, a rigid body
was designated through a marker to accurately determine the internal center point of the
joint. For the experiment, subjects of this study (five males and five females) without any
functional disability in the body participated in the motion capture test. Based on the
information, which was obtained by tracking the position of the marker, the ROM of each
joint was analyzed using inverse kinematics. Consequently, motion analysis using inverse
kinematics will be applied to the mechanism of rehabilitation robots. In addition, ROM
information of a normal subject can be used as a database for utilizing an SR robot for
rehabilitation exercises.

2. Analysis of Motion Capture

In the process of using the robot system for rehabilitation-based training treatment, pa-
tients receiving treatment for shoulder pain disease with hemiplegia or speech impairment
can communicate with the therapist using a computer, as shown in Figure 1a [8].

Quadriplegic, deaf, blind, and speech-impaired patients cannot express themselves
accurately to therapists during exercise training programs for rehabilitation treatment [17].
Therefore, if emergencies occur during the course of training and treatment using treatment
instruments, the therapist may not recognize the patient’s condition and a medical accident
can occur. Brain computer interface (BCI) defines a technology for interaction between the
brain and a computer [18]. This technology refers to a control technology that provides
a service so that a computer can grasp the thoughts intended by humans and move
objects [19]. In other words, BCI detects brain waves so that computers can grasp cognition,
learning, and reasoning similarly to the human brain [20]. Therefore, it is predicted that the
use of BCI technology will be high for quadriplegic, hearing-impaired, visually-impaired,
and speech-impaired patients who need rehabilitation exercise. BCI technology uses a
camera to capture the movement of the patient, and accurately reads an EEG from the
patient. It then analyzes the data obtained from the camera and EEG diagnosis to identify
the patient’s movement pattern. Therefore, it is possible to predict the treatment outcome
by understanding the patient’s requirements and condition.

It is desirable to use a robotic system in which such brain-computer interface (BCI)
standardization (SC43) has been established. The most important aspect when moving the
arm of the robot in the process of robot motion is matching the movement of the patient’s
shoulder. Therefore, an objective evaluation is important to match the patient’s shoulder
movement when the robot’s arm moves, and domestic or international standardization
work for this evaluation method is highly important [8]. In considering the movement of
the robot arm and patient shoulder to establish standardization, it is important to study
the construction of a motion capture-based monitoring system for objective evaluation
and a mathematical algorithm analysis method for verifying the objective evaluation. In
this way, it is possible to provide a safe rehabilitation robot therapy (IEC 80601-2-78:2019)
to patients.

Figure 1b shows the setup environment for the motion capture experiment. The overall
movement, such as position data of the arm, was tracked through motion capture, and
the value of the end effector was obtained. In this study, the wrist was designated as an
end effector and utilized as input data to interpret the inverse kinematics. Accordingly, the
position and direction vectors of the wrist were tracked in real time through the motion
capture system.

The subjects wore stretchy suits to demonstrate that the markers could be attached
to the skin. The markers were coated with a material that reflects infrared light, which
transmits the position data of the markers to the application software (Motive) using an
infrared camera (Flex13, OptiTrack). Consequently, the position vector and direction vector
of the markers were extracted in real time based on the absolute coordinate system in the
software. In this study, the position data of the markers were analyzed by tracking the

3
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two rehabilitation motions. The first motion is abduction and adduction, and the second is
external and internal rotation.

 
(a) 

 

(b) 

Figure 1. Configuration of a motion capture system for standardized rehabilitation exercise therapy.
(a) Definition of the brain–computer interface (BCI). (b) Experimental environment setup for the
motion capture and tracking markers.
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Figure 2 shows the location of the markers that were attached to the elastic suit.
As shown in Figure 2a, the markers were attached to the clavicle, shoulder, elbow, and
wrist. The joints of the arms are located internally and contribute to the rotation of the
bones. Therefore, the markers were attached with the center position coinciding with the
internal center of the joint. While attaching the markers to designate the subjects’ joint
center points, the accuracy was increased by attaching the markers with help of an on-site
physical therapist.

 
(a) (b) 

Figure 2. Photograph of the motion capture. (a) Abduction/adduction and external/internal rotation
was performed to obtain the position and direction data of the markers. (b) The markers were
attached to the skin to coincide with the central coordinate of the joint.

Figure 2b shows the locations of the marker attachments and central coordinates of the
bone structure of the right arm. The sternoclavicular (SC) protrudes because the muscular
membrane and skin covering the joint are thinner than other areas of the body. Therefore,
one marker was attached without calculating the central coordinate. Three markers were
attached to the shoulder to designate the glenohumeral (GH) joint as the central coordinate
system. Two markers were attached to the elbow and wrist, and the humeroulnar (HU)
joint and distal radioulnar (DRU) joint were designated as the center coordinates.

3. Mechanism and Mathematical Analysis

3.1. Forward Kinematics

Before interpreting an inverse kinematics solution, forward kinematics was analyzed
and defined as a homogeneous transformation matrix [21]. Figure 3 shows the forward
kinematics modeling of the right arm that is expressed based on the rotation joint.

Figure 3a shows the rotation joints contributing to the movement of the arm at each
central joint position. In particular, points O, S, E, and EE (indicated by the blue dashed
circle) are the center points of the joint coordinate system and represent the center coordi-
nates of the joint rotation designated through motion capture. Point O (SC joint) comprises
a two-axis rotation joint that involved the vertical and horizontal rotation of the clavicle.
Point O is designated as the base point in the kinematics model. Point S (GH joint) is
composed of three-axis rotation joints that involved the roll, pitch, and yaw rotation. Point

5
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E (HU and HR joint) is composed of a uniaxial rotation joint that involved the flexion
and extension of the arm. Finally, point EE (DRU joint) is designated as the end effec-
tor of the forward kinematics. In the following kinematics analysis process, the central
coordinates of the clavicle, shoulder, elbow, and wrist are expressed as points O, S, E,
and EE, respectively.

Figure 3. Shoulder complex modeling. (a) Mechanism of the shoulder complex model with ro-
tation joints. (b) Forward kinematics modeling of the shoulder complex with a relative position
coordinate system.

Figure 3b shows the forward kinematics model of the shoulder with the moving
coordinate system. In each joint, the Xi, Yi, and Zi (i=0 to 6) axes that are the movement
coordinate systems were mapped to the joint θi. The links and rotation parameters based
on the forward kinematics are shown in Table 1 and were determined from the Denavit–
Hartenberg proof [22,23]. In particular, θi is the rotation joint and directly concerns the
rehabilitation exercise. Therefore, it is an important to measure θi and ROM in this study.

Table 1. Denavit–Hartenberg Table.

Joint
Link Angle
θi (rad)

Link Offset
di (mm)

Link Length
li (mm)

Link Twist
ai (rad)

1 θ1 0 0 −π
2

2 θ2 0 l2 π
2

3 θ3 0 0 −π
2

4 θ4 0 0 π
2

5 θ5 d5 0 −π
2

6 θ6 0 l6 0

The link offset and length (e.g., humerus or radius) are from different subjects. There-
fore, the links can be calculated through the distance formula between two points in
3-dimensional space to substitute inverse kinematics as a constant value. Equation (1)

6
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represents the distance formula of links (di or li) based on the arbitrary 3-dimensional
position from the Xn, Yn and Zn (n=natural number) position. To reflect the links that change
in real time in the forward and inverse kinematics, a MATLAB tool was used.

li = di =

√
(Xi − Xi−1)

2 + (Yi − Yi−1)
2 + (Zi − Zi−1)

2 (1)

0T1 =

⎡
⎢⎢⎣

C1 0 −S1 0
S1 0 C1 0
0 −1 0 0
0 0 0 1

⎤
⎥⎥⎦, 1T2 =

⎡
⎢⎢⎣

C2 0 S2 l2C2
S2 0 −C2 l2S2
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦, 2T3 =

⎡
⎢⎢⎣

C3 0 −S3 0
S3 0 C3 0
0 −1 0 0
0 0 0 1

⎤
⎥⎥⎦ , (2)

3T4 =

⎡
⎢⎢⎣

C4 0 S4 0
S4 0 −C4 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦, 4T5 =

⎡
⎢⎢⎣

C5 0 −S5 0
S5 0 C5 0
0 −1 0 d5
0 0 0 1

⎤
⎥⎥⎦, 5T6 =

⎡
⎢⎢⎣

C6 −S6 0 l6C6
S6 C6 0 l6S6
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

Based on the information in Table 1, a homogeneous transformation matrix of each rota-
tion joint is shown in Equation (2). Among the components of the matrix, the
3 × 3 matrix (row: 1 to 3, column: 1 to 3) represents the rotation matrix, and the
3 × 1 matrix (row: 1 to 3, column: 4) represents the position vector.

0T6 = 0T1
1T2

2T3
3T4

4T5
5T6 =

⎡
⎢⎢⎣

R11 R12 R13 Px
R21 R22 R23 Py
R31 R32 R33 Pz
0 0 0 1

⎤
⎥⎥⎦ (3)

0T5 = 0T1
1T2

2T3
3T4

4T5 =

⎡
⎢⎢⎣

r11 r12 r13 Xe
r21 r22 r23 Ye
r31 r32 r33 Ze
0 0 0 1

⎤
⎥⎥⎦ (4)

Equation (3) represents the multiplication of the matrix from points O to EE. The
direction vectors are expressed as Rij (i,j=1 to 3) and the position vectors are expressed as
Pi (i=x, y, z). Equation (4) represents the multiplication of the matrix from point O to point
E. Similarly, the direction vectors are included as rij (i,j=1 to 3) and the position vectors are
included as Ie (I=X, Y, Z).

3.2. Inverse Kinematics
3.2.1. Position Vector Analysis

The end effector is defined as a homogeneous transformation matrix through motion
capture. Subsequently, the position vector of the elbow is calculated utilizing the end
effector data. Figure 4 shows the position and direction vector of each point. As shown
in Equation (5), the position vector of point E (Xe, Ye, Ze) is calculated through the x-axis
direction vector of the end effector and link l6.

EE =

⎡
⎣Px

Py
Pz

⎤
⎦, E = EE − l6R

⎡
⎣1

0
0

⎤
⎦ =

⎡
⎣Px − l6R11

Py − l6R21
Pz − l6R31

⎤
⎦ (5)

7
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Figure 4. Position vector and direction vector of points E and EE.

In particular, Rij (i,j=1 to 3) represents the rotation matrix of the end effector. Therefore,

the direction vector of the x-axis is analyzed by multiplying the transposition matrix [1 0 0]T

with the R matrix, and the links (l6) are multiplied to calculate the magnitude of the x-
axis direction. Consequently, the position vector of point E (Xe, Ye, Ze) is calculated by
subtracting, as shown in Equation (5).

⇀
ES =

⇀
OS − ⇀

OE = 〈Xc − Xe, Yc − Ye, Zc − Ze〉 (6)

⇀
Rz = 〈R13, R23, R33〉 (7)

⇀
ES·⇀Rz =

∣∣∣∣
⇀
ES·⇀Rz

∣∣∣∣· cos
π

2
= 0 (8)

⇀
ES· ⇀

EO =

∣∣∣∣
⇀
ES· ⇀

EO
∣∣∣∣·cos θ0 = 〈Xc − Xe, Yc − Ye, Zc − Ze〉·〈−Xe,−Ye,−Ze〉 (9)

R13Xc + R23Yc + R33Zc = α , (α = R13Xe + R23Ye + R33Ze) (10)

XeXc + YeYc + ZeZc = β , (β = Xe
2 + Ye

2 + Ze
2 −

→
|ES|·

→
|EO|·cos θ0 (11)

cos θ0 =
d5

2 + (Xe
2 + Ye

2 + Ze
2)− l22

2·d5·
√

Xe2 + Ye2 + Ze2
(12)

In Equation (6), the
⇀
ES vector is calculated by subtracting the vectors

⇀
OS and

⇀
OE.

In Equation (7), the vector
⇀
Rz is defined as the z-axis direction vector of the end effector.

Equations (8) and (9) show the dot product formula between vectors
⇀
ES and

⇀
EO. As shown

in Equation (8), vectors
⇀
ES and

⇀
Rz are always perpendicular, and the magnitude of the

dot product always converges to zero. Equation (9) shows the left and right mathematical
expression that represent the identities. Equations (8) and (9) can be induced and arranged
into Equations (10) and (11). In particular, α and β are substituted variable values for

8
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constant value through the position and direction vector of EE and E. Consequently, cos θ0

is obtained by calculating the internal angle through
⇀
ES and

⇀
EO in ΔOSE.

(R23 − Ye

Xe
R13)YC+(R33 − Ze

Xe
R13)ZC = α− R13

Xe
β → p1Yc + q1Zc = r1 (13)

(R13 − Xe

Ye
R23)XC+(R33 − Ze

Ye
R23)ZC = α− R23

Ye
β → p2Xc + q2Zc = r2 (14)

Equations (10) and (11) are combined and expressed as a simultaneous equation and
induced to Equations (13) and (14). In particular, the argument of XC, YC, ZC, and right
mathematical expression are defined as constant values in Equations (5)–(12). Therefore,
p1, q1, and r1 are respectively defined as variable values of XC, YC, and ZC in Equation (13).
Similarly, Equation (14) defines the variable value as p2, q2, and r2.

Xc
2 + Yc

2 + Zc
2 = l22 (15)

(
q1

2

p1
2 +

q2
2

p2
2 + 1)ZC

2 − 2(
q1r1

p1
2 +

q2r2

p2
2 )ZC+(

r1
2

p1
2 +

r2
2

p2
2 ) = l22, (ZC > 0) (16)

Equation (15) is the equation of a sphere that has center point from point O. The
distance between points S and O represents the radius of the sphere and is equal to link
l2. Therefore, by substituting Equations (13)–(15), Equation (16) can be expressed as a
quadratic equation for ZC.

Figure 5 shows the mathematical relationship between Equations (10), (11), (15), and (16)
in 3D coordinate space. It is possible to geometrically interpret a quadratic equation that ZC is
a variable. In particular, Equations (10) and (11) are presented by a three-dimensional plane.
Therefore, the two planes are crossed and make an intersection line, and the intersection
line passes through the sphere to obtain the two intersection points. Consequently, the two
intersection points have a potential to be solutions of Equation (16), being the z-axis position
vector of point S.

Figure 5. Two shoulder position vectors that are expressed through three-dimensional space.
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Two solutions are obtained in Equation (16). According to the joint structure of the
upper limb, one solution is selected by considering the normal biomechanical movement.
Figure 6 shows the biomechanical relationship between the shoulder and the acromio-
clavicular joint. In Figure 6a, the head of the humerus is covered by the glenohumeral
joint and the subacromial bursa. The head of the humerus relaxes or contracts through
the supraspinatus and becomes the axis of shoulder rotation. Simultaneously, with the
rotation of the shoulder, the clavicle rotates through the sternal end that becomes the axis
of rotation. Therefore, the rotary direction of the shoulder and clavicle are the same, as
shown in the normal state in Figure 6b. In contrast, the rotation of the shoulder and clavicle
are in opposite directions in the abnormal state shown in Figure 6b. Therefore, the move-
ment of the shoulder has the potential to create friction between the humeral head and
the acromion.

 
(a) (b) 

Figure 6. The biomechanical relationship between the shoulder and the acromioclavicular joint.
(a) Anatomical structure of the shoulder joint and the acromioclavicular joint. (b) Normal or abnormal
correlation of the inclination of the clavicle and shoulder rotation.

Two solutions of Equation (16) determine ZC as the position vectors of point S. Ac-
cording to biomechanical analysis, the calculation of Equation (16) can add two conditions.
A comparison is possible when it is assumed that two ZC values are expressed as ZC1 and
ZC2. If ZC2 > ZC1 and ZC1 is selected as the solution, the center coordinate of the shoulder
is always located below the horizontal line. Therefore, the clavicle has a downward oblique
angle and an abnormal state, as shown in Figure 6b. In contrast, if ZC2 is selected as the
solution, point S is located above the horizontal line. Therefore, the clavicle maintains the
upper oblique angle and a normal state, as shown in Figure 6a. As a result, a condition is
ensured to select ZC2 when the condition is added, such as ZC2 > 0 > ZC.

Based on Equations (13) and (14), the position values of XC and YC were calculated
using the selected ZC. The head of the humerus is attached to the acromion and fixed by
the pectoralis major, supraspinatus, and infraspinatus. Therefore, when determining XC,
the condition XC > 0 is ensured, based on point O (sternoclavicular). As a result, when
determining ZC, the conditions that ZC2 > 0 > ZC and XC > 0 can be added.

Figure 7 shows the results when the conditions (ZC > 0 and XC > 0) are violated by
the simulation (Robo analyzer). The position and direction vector of the end effector are
inputted, and the angle of the rotation joint is calculated. In abduction, the ZC and XC
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values are negative, causing shoulder dislocation, as shown in Figure 7A. Similarly, if ZC
is negative during external rotation, shoulder dislocation occurs, as shown in Figure 7B.
In summary, the position vector of points EE, E, and S are calculated by adding appro-
priate conditions. Based on the proper position vector, the angle of the rotation joint will
be obtained.

 

Figure 7. Simulation of shoulder movement based on the position vector of the end effector.
(A) Math condition violation in abduction (ZC < 0 and XC < 0). (B) Math condition violation
in external rotation (ZC < 0).

3.2.2. Joint Angle Analysis

The joint rotation angles are analyzed to calculate the ROM of each rehabilitation
motion. In particular, the inverse kinematics solution of the 6-degree of freedom (DOF) is
obtained by solving the position vectors of points E and S in advance [19]. This study used
the Mathematica tool (Wolfram Alpha) to solve complex trigonometric functions. In this
section, cos θn and sin θn are replaced by the Cn and Sn (n = positive number).

Equations (17) and (18) show the calculation process for the joint angle θ1. In
Equation (17), XC and YC are the position vectors of point S. In particular, because the
coordinate of one point is included in the spherical coordinate system, XC and YC are
expressed as l2, C1, C2, and S1. Therefore, θ1 is calculated by dividing the two position
vectors. Arctan2 is used to consider the sign of the angle.

XC = l2C2C1, YC = l2C2S1 (17)

θ1 = atan2(YC, XC) (18)
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Equations (19)–(21) show the calculation process for the joint angle θ2. Because the
left and right mathematical expressions of Equation (19) constitute the same homogeneous
transformation matrix, both sides of the matrix have equal element values. Therefore,
Equations (20) and (21) are derived through the comparison of the element (row: 1 column:
4) and (row: 2 column: 4) by the homogeneous transformation matrix. As a result, θ2
is calculated through dividing l2S2 and l2C2. Similar to the calculation process for θ2,
the remaining joint angle is solved by comparing the element from both sides of the
homogeneous transformation matrix.

(
0T1

)−1·0T2 = 1T2 (19)

C1XC + S1YC = l2C2 (20)

− ZC = l2S2 (21)

θ2 = atan2(−ZC, C1XC + S1YC) (22)

In Equation (23), both sides of the element values of (row: 1 column: 4) and (row: 2
column: 4) are compared. Equations (24) and (25) are the left element equation and are
substituted with characteristics such as a and b. Subsequently, characteristics a and b are
multiplied by C3 and S3 to derive Equation (26), which is expressed in a simultaneous
equation with Equations (27) and (28). Similarly, both sides of the element values of
(row: 1 column: 1) and (row: 2 column: 1) are compared. Equations (27) and (28) are the
left element equation and are substituted with c and d. After respectively multiplying c
and d by C3 and S3, Equation (29) can be expressed through a simultaneous equation. As
a result, Equations (26) and (29) are pressed by comparing both sides of the element and
divided to derive θ3. (

0T2

)−1·0T6 = 2T6 (23)

a = C1C2Px + C2S1Py − S2Pz − l2 (24)

b = −S1Px + C1Py (25)

l6C6S5 = −aS3 + bC3 (26)

c = C1C2R11 + C2S1R21 − S2R31 (27)

d = −S1R11 + C1R21 (28)

C6S5 = −cS3 + dC3 (29)

θ3 = atan2(b − l6d, a − l6c) (30)

In Equation (31), the element values of (row: 1, column: 3) and (row: 2 and column: 3)
are compared. The left and right mathematical expression of the matrix element are replaced
by P and Q, as shown in Equations (32) and (33). As a result, θ4 is calculated by dividing Q
and P. (

0T3

)−1·0T6 = 3T6 (31)

P = (C1C2C3 − S1C3)R13 + (C2C3S1 + C1S3)R23 − C3S2R33 = −C4S5 (32)

Q = −C2S2R13 − S1S2R23 − C2R33 = −S4S5 (33)

θ4 = atan2(Q, P) (34)

In the left mathematical expression of Equation (35), the element values of (row: 1,
column: 1), (row 1, column 2), and (row 1, column 3) are substituted with α, β, and γ,
respectively. On the right side, (row 2, column 1), (row 2, column 2), and (row 2, column 3)

12



Diagnostics 2022, 12, 3179

are substituted with a, b, and c, respectively. As a result, Equations (36) and (37) are divided
to calculate θ5. (

0T4

)−1·0T6 = 4T6 (35)

αR11 + βR21 + γR31 = S5C6 (36)

aR11 + bR21 + cR31 = C5C6 (37)

θ5 = atan2(αR11 + βR21 + γR31, aR11 + bR21 + cR31) (38)

Finally, θ6 compares the element values of (row 1, column 1) and (row 2, column 1)
in the left and right terms of Equation (39). In matrix

(0T5
)−1, (row 1, column 1), (row 1,

column 2), and (row 1, column 3) are replaced by U1, U2, U3, respectively. Additionally,
(row 2, column 1), (row 2, column 2), and (row 2, column 3) are replaced by V1, V2, and V3,
respectively. Consequently, Equations (40) and (41) are divided to calculate θ6.

(
0T5

)−1·0T6 = 5T6 (39)

U1R11 + U2R21 + U3R31 = C6 (40)

V1R11 + V2R21 + V3R31 = S6 (41)

θ6 = atan2(V1R11 + V2R21 + V3R31, U1R11 + U2R21 + U3R31) (42)

4. Experiment Results and Discussion

4.1. Abduction and Adduction

Prior to the analysis, five randomized males and five randomized females participated
in the motion capture experiment. The subjects did not show any disability. Abduction and
adduction motions were repeated 10 times. Figure 8 shows the joint rotation angle, ROM,
and simulation results from abduction and adduction.

 
(a) 

Figure 8. Cont.
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(b) 

 

(c) 

Figure 8. Cont.
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(d) 

Figure 8. Joint rotation angle with ROM and simulation by analysis of the inverse kinematics.
(a) Realized rotation degree variation. (b) Average ROM of males and females in abduction and
adduction. (c) Simulation results of abduction and adduction. (d) Joint-centered trajectory graph in a
6-axis arm structure.

Figure 8a shows the joint rotation pattern of a subject who performed the abduction
and adduction. While each subject performed the exercise 10 times, the similar pattern
of the joint angle appeared from θ1 to θ6. In particular, the shoulder joint (θ4) has the
largest variation degree. Simultaneously, the clavicle joint (θ2) rotates in the same direction
with θ4. All subjects have different ROM, and the quantitative ROM information is listed
in Table 2.

Table 2 shows the ROM of males (M) and females (F) in abduction and adduction. The
average ROM for the horizontal angle of the clavicle (θ1) was 28.9◦ and 18.3◦ for males
and females, respectively, and the ROM for the vertical angle of the clavicle (θ2) was 17.6◦
and 11.5◦, respectively. Therefore, both θ1 and θ2 average ROM for males was higher
than that of females. Roll (θ3), pitch (θ4), and yaw (θ5) of the shoulder joint contribute to
the shoulder rotation. The average ROM of roll (θ3) was 46.1◦ and 31.9◦ for males and
females, respectively, and yaw (θ5) was 69.3◦ and 44.8◦ for males and females, respectively,
indicating that the ROM of males was higher than that of females. In particular, the ROM of
pitch (θ4) was 130.4◦ and 127.2◦. Therefore, θ3, θ4, and θ5 values for the males were higher
than the females. Elbow joint (θ6) was 20.7◦ and 26.2◦ for males and females, respectively.
As a result, males have higher average ROM in the clavicle and shoulder than females,
whereas females have higher average ROM in the elbow. For the average ROM by rotation
angle of 10 subjects, the standard deviation (σ) was calculated. The standard deviation of
θ2 and θ4 that significantly contributes the abduction and adduction is 4.8 and 10.0.

15



Diagnostics 2022, 12, 3179

Table 2. Data collection for ROM (◦) for males and females (abduction and adduction).

Height (mm) θ1 θ2 θ3 θ4 θ5 θ6

M.avg 177 28.9 17.6 46.1 130.4 69.3 20.7
M1 170 33.1 18.1 44.5 127.3 79.9 26.4
M2 174 30.8 15.9 45.3 133.7 72.0 18.3
M3 177 24.8 25.9 43.9 130.4 69.8 24.0
M4 190 29.1 14.9 33.8 134.3 54.8 10.5
M5 172 26.8 13.4 63.1 126.4 70.1 24.5
SD 7.1 2.9 4.4 9.5 3.2 8.1 5.8

SEM 3.2 1.3 2.0 4.2 1.4 3.6 2.6

F.avg 160 18.3 11.5 31.9 127.2 44.8 26.2
F1 161 21.5 11.3 26.0 132.9 48.2 24.9
F2 159 14.4 12.4 25.8 116.1 23.5 33.7
F3 165 13.5 6.6 33.1 108.2 63.6 28.0
F4 160 21.7 14.8 45.2 146.4 42.5 14.5
F5 154 20.3 12.5 29.2 132.5 46.3 29.9
SD 3.5 3.6 2.7 7.2 13.5 12.9 6.5

SEM 1.6 1.6 1.2 3.2 6.0 5.7 2.9

T.avg 23.6 14.6 39.0 128.8 57.1 23.5
SEM 2.0 1.5 3.5 3.1 5.2 2.1

SD (σ): Standard deviation. SEM: Standard error of the mean. T.avg: Total average.

Figure 8b graphically shows the average ROM for 10 subjects through an analysis
of Table 2. Rounding was performed to the first decimal place. The angles of θ1 and θ2
that contributed to the movement of the clavicle were 24◦ and 15◦, respectively. Moreover,
angles of θ3, θ4, and θ5 that are involved in shoulder movement were 39◦, 129◦, and 57◦, re-
spectively. The elbow movement (θ6) has 23◦ in abduction and adduction. Figure 8c shows
the simulation of the abduction and adduction based on the average ROM. The standing
motion was set to the initial position that reflects initial angle value in the parameter of
Figure 8c. Consequently, robot simulation shows the accurate trajectory that starts from the
initial point and end point of the rotation angle with six-axis joints.

Figure 8d shows the joint-centered trajectory graph in a 6-axis arm structure based on
the authors’ motion capture experiment. In the figure, the clavicle maintains a relatively
constant position. On the other hand, the shoulder, elbow, and wrist have repetitive
movements. Based on the figure, we can analyze the one difference between the simulation
and movement of humans in Figure 8c,d. The robot simulation gives a certain angle to
form repetitive ROM in one caption line. However, in the human movement based on the
motion capture data, the ROM was obtained through repetitive motion in various caption
lines, as shown in Figure 8d. The caption line of abduction and adduction changes within
45 degrees and moves to maintain a constant ROM.

4.2. External and Internal Rotation

Figure 9 shows the joint rotation angle, ROM, and simulation results from external
rotation and internal rotation.

Figure 9a shows the joint rotation pattern of a subject who performed the external and
internal rotation. As with abduction and adduction, each subject performed the exercise
10 times, and the similar pattern of the joint angle appeared from θ1 to θ6. In particular,
the shoulder joint (θ5) has the largest degree of variation. Furthermore, all the joints,
except the elbow joint (θ6), showed relatively small movement. As for abduction and
adduction, Table 3 summarizes the ROM for the ten subjects in an external and internal
rotation experiment.
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(a) 

 

(b) 

Figure 9. Cont.
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(c) 

 

(d) 

Figure 9. Joint rotation angle with ROM and simulation. (a) Realized rotation degree variation in
external and internal rotation. (b) Average ROM for males and females. (c) Simulation results of
external and internal rotation. (c,d) Simulation results of abduction and adduction. (d) Joint-centered
trajectory graph in a 6-axis arm structure.

The average ROM for the horizontal angle of the clavicle (θ1) was 4.9◦ and 2.9◦ for
males and females, respectively, and the ROM for the vertical rotation (θ2) was 3.2◦ and
3.4◦, respectively. Therefore, the θ1 degree for males is significantly higher than females.
However, degree θ2 for females is significantly higher than males. The average ROM of
roll (θ3) was 8.0◦ and 7.9◦ for males and females, respectively, and pitch (θ4) was 8.5◦ and
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7.5◦ for males and females, respectively, indicating that both ROM for males was slightly
higher than females. In particular, the average ROM of yaw (θ5) was 111.1◦ and 106.0◦.
Therefore, degree θ5 for the males is significantly higher than females. The ROM of the
elbow (θ6) was almost same in males and females at 23.4◦ and 23.6◦, respectively. The
standard deviation of the average ROM (σ) was calculated, and the standard deviation of
θ5, which significantly contributes the external and internal rotation, is 18.2.

Table 3. Data collection for the ROM (◦) for males and females (external and internal rotation).

Height θ1 θ2 θ3 θ4 θ5 θ6

M.avg 177 4.9 3.2 8.0 8.5 111.1 23.4
M1 170 2.6 3.4 8.5 9.4 109.9 18.8
M2 174 2.8 2.9 3.5 3.9 97.5 22.1
M3 177 2.0 2.2 5.4 9.3 99.5 20.6
M4 190 9.0 4.4 11.5 10.2 125.9 32.1
M5 172 8.0 3.3 11.2 9.5 122.7 23.6
SD 7.1 3.0 0.7 3.2 2.3 11.6 4.6

SEM 3.2 1.3 0.3 1.4 1.0 5.2 2.1

F.avg 160 2.9 3.4 7.9 7.5 106.0 23.6
F1 161 6.6 6.9 12.3 8.8 138.5 42.9
F2 159 1.3 1.0 5.6 5.1 79.7 22.3
F3 165 1.2 1.8 5.7 4.4 89.9 19.2
F4 160 3.4 4.5 7.5 8.4 122.4 19.5
F5 154 2.0 3.0 8.4 10.9 90.3 13.9
SD 7.1 2.0 2.1 2.4 2.4 22.4 10.0

SEM 3.2 0.9 0.9 1.1 1.1 10.0 4.5

T.avg 3.9 3.3 8.0 8.0 107.6 23.5
SEM 0.9 0.5 0.9 0.8 5.7 2.5

SD (σ): Standard deviation. SEM: Standard error of the mean. T.avg: Total average.

Figure 9b graphically shows the average ROM for 10 subjects through an analysis
of Table 3. Rounding was performed to the first decimal place. Angle of θ1 and θ2 that
contributed to movement of clavicle were 4◦ and 3◦, respectively. Moreover, angle of θ3, θ4
and θ5 that involved in shoulder movement were 8◦, 8◦ and 109◦. The elbow movement
(θ6) has 24◦ in external and internal rotation. Figure 9c shows the simulation of the external
and internal based on the average ROM. The standing motion was set to the initial position
that reflects initial angle value in the parameter of the Figure 8c. Consequently, robot
simulation shows the accurate trajectory that starts from initial point and end point of the
rotation angle with six-axis joints. Figure 8d shows the joint-centered trajectory graph in
6-axis arm structure. In the figure, clavicle and shoulder maintain a relatively constant
position. On the other hand, wrist have repetitive movements with axis of radius. As a
result, we analyzed that both the simulation and the subject maintain a constant scription
line, repeating the movement.

4.3. Discussion

This study measured the joint angle degree and ROM of the 6-DOF for two SR motions
of the subjects. The joint angles (θ4) that are most significantly involved in abduction and
adduction were 130.4◦ and 127.2◦ for males and females, respectively. Therefore, the ROM
of abduction and adduction is calculated by adding θ2 with θ4, and obtained 148◦ and
138.7◦ for males and females, respectively. The joint angles (θ5), which are most significantly
involved in external and internal rotation movements, were 111.10◦ and 105.96◦ for males
and females, respectively. Therefore, the ROM of external and internal rotation is calculated
by θ5, and obtained 111.1◦ and 106◦ for males and females, respectively. In conclusion, the
average ROM of ten subjects for abduction/adduction and external/internal rotation was,
respectively, 143.4◦ and 108.6◦. In abduction and adduction, males showed significantly
higher ROM than females. Moreover, the elbow angle (θ6) of females was higher than
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males. Therefore, it is judged that females use the elbow more when moving in abduction
and adduction than males to tracking motion trajectory.

Unlike external and internal rotation, there are θ2 and θ4 that are centrally involved
in the ROM of the shoulder in abduction and adduction. Besides θ2 and θ4, the rotation
angles of θ3, θ5, and θ5 stand out. θ3 represents the left and right rotation of the shoulder.
We think that this is likely due to the shoulder rotation working together with the help of
the scapula during the rotation process of the shoulder. θ5 represents the rotation of the
radius or ulna. In the posture of performing the initial movement, the direction vector of
the palm faces the center of the body, but as ROM increases, it rotates outward and moves
away from the center of the body. θ6 represents extension and flexion of the elbow. In the
course of abduction and adduction exercise through motion capture, the exercise standard
is 10 circular movements in a 180-degree range of motion. Therefore, in the process of
exercising with the wrist in a half-moon-shaped orbit, if the ROM of the shoulder is limited,
it is determined that the rotation follows the half-moon-shaped trajectory by flexion of
the elbow.

Ropars classified shoulder hypersensitivity using a motion capture system and phys-
ical therapy goniometer. As a result, in the process of measuring standard data for
the general public, the average ROM of the shoulder abduction and adduction was
129.9◦ ± 7.4◦. Furthermore, the average external and internal rotational ROM of the
shoulder was 94.3◦ ± 14.1 [24]. To analyze the scapular–humerus rhythm, Bagg, S. mea-
sured the movement of the scapula and humerus in abduction and adduction. As a result,
the average ROM was 104.3◦ and a maximum movable range was 111.8◦ [25]. Barnes
analyzed the ROM of shoulder movement using linear regression analysis and studied the
age, gender, and dominance as comparative subjects. As a result, abduction and adduction
was 180.1◦ ± 18.2 in males and 187.6◦ ± 16.1 in females, and the external and internal
rotation was 101.2◦ ± 11.6 in males and 104.9◦ ± 12.0 in females. [26]. Rigoni validated
an IMU for measuring shoulder range of motion in healthy adults. Each movement was
assessed with a goniometer, and the IMU by two testers independently. Therefore, the
compared agreements were assessed with intra-class correlation coefficients (ICC) and
Bland–Altman 95% limits of agreement (LOA). As a result, the ROM of abduction and ad-
duction were measured as 151.4 and 152.2, respectively; and internal and external rotation
were measured as 141.1 and 142.3 with intra-class correlation (>0.90) [27].

The last thing to consider is the accuracy of the function of the motion capture (Opti-
Track) system. Motion capture (OptiTrack) is very important for the accuracy of the sensor’s
response when an object moves. Therefore, we can present the excellence of the accuracy
of the proposed method by analyzing [28–33]. The method of this study and the methods
of studies from [28–33] have different objects of observation and different quantities of
sensors. However, since all of them used the same motion capture, it is possible to present
an average value of accuracy for the function of motion capture. The average value for
accuracy is recorded in Table 4, and it can be seen that the accuracy of this study improved
by more than 10% compared to [28–33].

Table 4. Comparison for accuracy of proposed system and others.

Reference Average Accuracy [%] Performance of a Motion Capture

this work 97.6 OptiTrack

[28] 94.8 optical motion capture method
(DeepMoCap)

[29] 93.6 multi-person pose estimation

[30] 95.9 OptiTrack

[31] 95.0 IMU Sensor (mobilitylLab system)

[32] 85.3 multiple Kinect sensors

[33] 70.0 kinect V2 and captiv sensor
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5. Conclusions

Based on the results of this study, the kinematics solution for 6-DOF of ROM could be
determined through the standardized motion of the SR exercise, starting with the clavicle
as the base point. In particular, based on the end effector information, we tried to solve the
homogeneous transformation matrix of Equations (2) and (3) at first. However, because the
constant values for the parameters (shoulder position) could not be solved, we changed
the direction of the study to obtain the shoulder position first, then calculate the inverse
kinematics formula. As a result, our approach differs compared to the commonly known
6-DOF inverse kinematics solution that combines 3-DOF of the wrist and the other joint
angle of the 3-DOF. Through solving the 6-DOF inverse kinematics, future research and
development of the 6-axis rehabilitation robot will be conducted. In the follow-up study,
we will consider collecting the end effector data through force and torque sensors instead
of using a motion capture system. If the end effector data is collected, the rehabilitation
robot follows the trajectory of the patient’s motion through a kinematics solution. At the
same time, the robot measures the maximum ROM of the patients, and it is envisaged that
the patient will be able to perform stretching or passive or active-assisted exercises through
the designated ROM.

Upper limb joints are structurally deeper than skin tissue, muscle tissue, and cartilage
tissue. The existing research methods have limitations in objective evaluation because they
do not select and analyze the central coordinates of the joint. However, because inverse
kinematics can be automatically calculated by determining the center of the joint through
motion capture, we think that it is extremely advantageous to suitably interpret the center
coordinates of the joint, and the study results are more accurate and superior. Additionally,
in order to reduce the standard deviation of the ROM and increase the accuracy of the
experimental data, additional experiments should be conducted with increased subjects
sample size.

If the cause of the difference in ROM is identified in the same rehabilitation motion,
it is expected to make a great contribution to the analysis of rehabilitation exercise and
human body mechanics. We think of two reasons why errors occur, even after repeating the
same motion 10 times and obtaining an average ROM. The first is the degree of flexibility
according to the ROM and muscle mass according to the patient’s own body shape. The
second is judged to be a relative error of the center position according to the attachment
position of the marker, even if it is purely the same operation.

The movement of the SR robot must be the same as the human rehabilitation motion.
Therefore, the proposed mathematical analysis method is sufficiently applicable because it
is an analysis method for the objective evaluation of the movement of the rehabilitation
robot. In conclusion, this study shows that a person will be able to exercise efficiently
by wearing the rehabilitation robot with suggested kinematics model. Additionally, this
study facilitated the determination of the ROM in the rehabilitation robot considering
the ROM of normal subjects. Using the proposed model, it is possible to increase the
accuracy of the trajectory of the rehabilitation robot and contribute to the improvement in
safety. Comprehensively, utilizing the mathematical inverse kinematics equation that were
debuted in this study, we will fabricate an upper rehabilitation robot through designing the
mechanism instructor and motor in a follow-up study. In addition, because the rehabilita-
tion exercise training-guided robot is linked to brain-related diseases, it contributes to the
definition of domestic and international standardization of rehabilitation robots, affording
universal training methods, accurate results, and objective evaluation for the safe treatment
of patients.
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Abstract: Primary osteoarthritis treatments such as a total hip (THR) or knee (TKR) replacement
lead to postural control changes reinforced by age. Balance tests such as standing with eyes open
(EO) or closed (EC) give a possibility to calculate both linear and nonlinear indicators. This study
aimed to find the group of linear and/or nonlinear measures that can differentiate healthy people
and patients with TKR or THR from each other. This study enrolled 49 THR patients, 53 TKR patients,
and 16 healthy controls. The center of pressure (CoP) path length, sample entropy (SampEn), fractal
dimension (FD), and the largest Lyapunov exponent (LyE) were calculated separately for AP and
ML directions from standing with EO/EC. Cluster analysis did not result in correct allocation to the
groups according to all variables. The discriminant model included LyE (ML-EO, ML-EC, AP-EC),
FD (AP-EO, ML-EC, AP-EC), CoP-path AP-EC, and SampEn AP-EC. Regression analysis showed that
all nonlinear variables depend on the group. The CoP path length is different only in THR patients.
It was concluded that standing with EC is a better way to assess the amount of regularity of CoP
movement and attention paid to maintain balance. Nonlinear measures better differentiate TKR and
THR patients from healthy controls.

Keywords: hip arthroplasty; knee arthroplasty; older adults; postural control; body balance;
osteoarthritis; sample entropy; fractal dimension; Lyapunov exponent

1. Introduction

Osteoarthritis (OA) is a multifactorial disease leading to cartilage degeneration and
damage to the surrounding tissues: joint capsule, ligaments, subchondral bone, periarticular
muscles, and nerve endings. As a chronic disease, it leads to biomechanical changes
in the affected joint as well as burdensome symptoms such as pain, stiffness, swelling,
and loss of function. In advanced stages, OA can lead to severe physical impairment [1,2].
Osteoarthritis frequency increases with age and most often involves big joints in the lower
limb: hip or knee joint being the dominant source of disability, affecting approximately
776 million people globally [3].

Patients in advanced stages of OA, with persistent pain, loss of function, and ad-
vanced radiographic changes are qualified for joint arthroplasty, which is an effective (also
cost-effective) procedure, giving much better results than physical therapy programs [4].
Current concepts do not recommend arthroscopic debridement for treating OA. Addition-
ally, arthroscopic partial meniscectomy has a limited role in patients with symptomatic
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meniscal tear coexisting with knee OA [4]. The number of total hips (THR) and knee re-
placement (TKR) surgeries has increased rapidly over the last decades [2,3,5]. The incidence
rate of TKR in the US population was 272 per 100,000 citizens in 2002, and 429 in 2012,
and it is expected to increase by 143% by 2050 [6]. More than 300,000 primary total hip
replacements and over 700,000 primary total knee replacements are performed annually in
the US, of which more than 90% are due to OA [4]. Symptoms of OA, as well as invasive
procedures such as THR or TKR, affect joint function. Due to damaged and/or cut nerve
endings and roots, long-lasting pain, and damage to the joints and surrounding tissues,
proprioception and motor control in this area are often severely affected. This leads also
to postural control changes, which are reinforced by age by impairing the capability of
the central nervous system to process signals from somatosensory, visual, and vestibular
networks [7]. After both types of surgery—THR, and TKR—leg length discrepancy is often
observed [8,9]. Anatomical discrepancies are corrected during the arthroplasty, but func-
tional changes, including movement habits, remain in these groups of patients unchanged.
Leg length discrepancy of 2 cm or more is compensated by moving the pelvis to the oblique
position and flexing the knee of the longer leg [8,9]. It results in asymmetric loading of the
lower limbs [8,10–12]. Effective rehabilitation protocol is needed to change and equalize
joint moments and feet loading, both in static and dynamic conditions [13]. In the studies
by Heil et al. [9] and Ohlendorf et al. [8] significant differences in postural control were
found between the TKR or THR group and healthy controls. The results of the THR group
were poorer than those of the TKR group in static conditions [8,9]. Gauchard et al. [11] also
reported some postural deficit in balance control during the static test after TKR compared
to the control group. They also suggested that knee replacement surgery does not allow
accurate orientation of the lower limb and the compensatory role of the knee joint in the
regulation of postural control in quiet standing is not restored.

According to Massion [14], postural control depends on several elements. The first is
the internal body representation or postural body schema (orientation of body segments
and location of the center of mass). The second is multisensory input that regulates the
orientation and stabilization of body segments. The third is flexible postural responses
or anticipations to recover from a disturbance or postural stabilization during voluntary
movement. Small movements accompany the maintenance of any posture. The fact that
postural oscillations are small supports the assumption that the system is linear within a
limited range of motion [15,16]. While this assumption is correct to some extent, it should
be remembered that there is also significant nonlinearity in the postural control system,
which tends to be ignored [17].

The most common assessment tool to quantify postural balance is a static standing test
with eyes open or closed [1,18]. Center of pressure (CoP) displacements give a possibility to
calculate many variables or indicators that can be interpreted as good or poor body balance.
Among the most commonly used indicators to assess postural control, some authors [18–20]
distinguish between those most commonly called linear and those providing indirect insight
into the functioning of the nervous system—called nonlinear. Linear tools, such as the
CoP path length, sway velocity, and area, quantify the amount of CoP movement during
a specific task, independently of their order in the distribution. The nonlinear system
approach helps to evaluate different aspects of the CoP data. Nonlinear measures allow
for quantifying the regularity and complexity of the system [21,22]. Nonlinear measures
include entropy family, fractal dimension, the largest Lyapunov exponent, Hurst exponent,
and recurrence quantification analysis (RQA) [18].

Sample entropy (SampEn) is one of the various types of entropy measures. This
coefficient is used to determine the regularity of postural sway [23]. The increased values of
SampEn indicate a larger irregularity of the CoP, which is more random and less predictable.
Lower SampEn values show that the CoP signal is more regular and predictable, which is
associated with less complexity of structure [24]. Fractal dimension (FD) is another measure
that indicates the complexity of the CoP signal by describing its shape [25]. It shows the
complexity and self-similarity of physiological signals [26]. In the case of the CoP trajectory,
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a change in FD may indicate a change in control strategies for maintaining a quiet stance.
The largest Lyapunov exponent (LyE) is a tool characterizing the chaotic behavior of the
signal. The human dynamic stability characterized by LyE measures the resistance of the
human locomotor control system to perturbations [18]. It quantifies how well an individual
can keep a stable posture under perturbations. A higher LyE points to the capability of a
more rapid response of balance control in different body movements [27].

Since there are many linear and nonlinear measures that can be used to quantify
balance and postural control, it is often problematic to choose some of them that could
be sensitive enough to differentiate patients with various medical conditions. Until now,
we found no studies comparing postural control between patients after total hip and knee
replacement. There are also no studies analyzing which balance and postural control
parameters should be used in these groups of patients as a reliable way to differentiate
these groups of patients.

The aim of this study was to find the group of linear and/or nonlinear measures that
can differentiate healthy people and patients with total knee or hip replacement from each
other. This could help to choose the best set of measures that should be calculated from
the static balance test to characterize different clinical conditions. It can also suggest which
measures are not necessary.

2. Materials and Methods

2.1. Participants

This study enrolled 49 patients after a total hip replacement (H group) and 53 patients
after total knee replacement (K group) due to primary osteoarthritis. All patients were
operated on in the Department of Orthopaedics of the Prof. Adam Gruca Independent
Public Clinical Hospital in Otwock, Poland. The control group (C group) was 16 healthy
persons measured in the Biomechanics Laboratory at the Medical University of Warsaw.
None of the measured persons was a professional athlete in the past. The basic data of each
group are summarized in Table 1.

Table 1. Mean ± standard deviation of anthropometric data of H-, K- and C groups.

H Group (N = 49) K Group (N = 53) C Group (N = 19)

Gender 28 women, 21 men 34 women, 19 men 15 women, 1 man
Age (years) 63.7 ± 8.8 * HKC 68.4 ± 6.3 * HKC 53.0 ± 7.6 * HKC

Bodyweight (kg) 81.5 ± 16.0 85.7 ± 16.1 * KC 74.8 ± 16.3 * KC

Height (cm) 167.5 ± 10.1 166.1 ± 11.5 164.9 ± 4.9
Body Mass Index (kg/m2) 28.8 ± 4.2 * HK 30.9 ± 3.9 * HK,KC 27.4 ± 5.3 * KC

* p < 0.01 in ANOVA test with post hoc Tukey’s test; letter (H, K or C) indicates group in Tukey’s test.

The inclusion criteria for the control group included: (1) no balance problems (due to
neurological, heart, or musculoskeletal disease), (2) no current musculoskeletal complaints,
and (3) written consent to participate in the study. The inclusion criteria for the rest two
groups comprised: (1) noncomplicated total knee or hip replacement surgery because of
primary osteoarthritis, (2) no other balance problems (due to neurological or heart diseases,
vertigo, etc.), (3) no current musculoskeletal complaints other than related to the operated
joint, and (4) written consent to participate in the study. All patients from H- and K groups
were measured within the first 12 weeks (3–11 weeks) after surgery before the rehabilitation
program began.

2.2. Ethical Approval

The study protocol was approved by the Bioethics Committee of the Medical Uni-
versity of Warsaw (no. KB/28/2014). The study was conducted according to the ethical
guidelines and principles of the Declaration of Helsinki.
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2.3. Measurement Methods

The postural stability data for each subject were recorded using an AMTI AccuSway
(Advanced Mechanical Technology Inc., Watertown, MA, USA) plate with Balance Clinic
software. The sample rate was set at 100 Hz. Each person completed three trials of both
legs standing with eyes open and three trials of both legs standing with eyes closed. Each
trial lasted thirty seconds with a one-minute rest between trials. The results of the patients’
second trials were analyzed. This was performed because patients did not always comply
in the first trial and postoperative patients often reported fatigue in the third trial.

2.4. Calculation Methods

The study used the linear parameters of CoP path length and three nonlinear measures,
sample entropy, fractal dimension, and the largest Lyapunov exponent to assess CoP
dynamics. All coefficients were calculated using MatLab software v. R2018b (MathWorks,
Natick, MA, USA), separately for mediolateral (ML) and anterior–posterior (AP) CoP data,
according to the rules described below. The data for the 30 s trials included 3000 points in
each direction.

The 2D CoP path length was calculated in AP and ML directions using the follow-
ing formulas:

CoP_ML = ∑n
i=2

√
(xi − xi−1)

2 CoP_AP = ∑n
i=2

√
(yi − yi−1)

2 (1)

Due to the fact that other commonly used linear parameters (like ellipsis areas, CoP
path length) are redundant [28], they were not included in the calculations, as this would
distort discrimination analysis and would not give additional information.

SampEn is the negative natural logarithm of the conditional probability that a dataset
of length N, having repeated itself within a tolerance r for m points, will also repeat itself
for m + 1 points, without allowing self-matches:

SampEn(m, r, N) = −ln
(

Am(r)
Bm(r)

)
(2)

B represents the total number of matches of length m while A represents the subset of B that
also matches for m + 1. For calculating the SampEn, MatLab codes obtained from the Phys-
ionet tool [29] were used, with “default” parameter values: m = 2 and r = 0.2 × (standard
deviation of the data).

FD was calculated using Higuchi’s algorithm [30]. Higher FD values are associated
with the greater complexity of a time series.

LyE was calculated to detect chaotic system dynamics, using the following equation:

d(t) = CeLyEt (3)

In LyE equation d(t) is the average divergence at time t and C is a constant that
normalizes the initial separation [31]. A positive LyE value is often considered a necessary
condition for the presence of chaos in a given system. If LyE is zero, it means the system
is conservative, (i.e., there is no dissipation). If the system is dissipative, the LyE value
is negative.

2.5. Statistical Analysis

Statistical analysis was performed using Statistica v. 13.1 (TIBCO Software, Inc., Palo
Alto, CA, USA), PQStat 2021 software v. 1.8.2.238 (PQStat Software, Poznań, Poland),
and GRETL software v. 2019a (Free Software Foundation, Boston, MA, USA). The threshold
for statistical significance was assumed at p < 0.05.

The Shapiro–Wilk test was used to assess the normality of all data distributions. Next,
it was checked if variance matrices of variables are homogeneous across groups. For inter
group comparison, one-way ANOVA with Tukey’s post hoc test was used.
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Tree cluster analysis was used for grouping patients according to analyzed linear
and nonlinear measures from both tests (EO, EC). The grouping was performed using
connectivity-based clustering with a weighted group method with medians with Euclidean
distance. There were no assumptions about the number of groups.

Next, discriminant analysis was used to determine which linear and nonlinear param-
eters discriminate between three groups (K, H, and C). Sixteen variables were included in
the analysis: SampEn, FD, LyE, and CoP path from eyes open and eyes closed tests, each
calculated separately for AP and ML directions. The forward stepwise analysis was used
to build the discriminant model.

In the end, regression analysis with a method of least squares was performed for each
balance variable to define what each balance parameter is dependent on. The best model
was chosen upon the Akaike information criterion.

3. Results

3.1. Cluster Analysis

Initially, four participants were removed for further analysis, because they did not
connect closely with other participants. Then, three groups were extracted (groups no. 1,
2, and 3). None of these groups corresponded to the clinical group (H, K, or C). Patients
after hip replacement were classified into groups 2 and 3, patients after knee replacement
into groups 1, 2 or 3 (one patient was removed), while controls were included in group no.
3 only (three persons were removed). Then, group no. 3 was divided into three groups
according to the tree graph (Figure 1) to analyze the data in detail. Table 2 shows the
allocation of participants into five groups.

Figure 1. The tree graph from cluster analysis. The x-axis presents distance, while the y-axis includes
participants of the study.

Table 2. Numbers of participants from H, K, and C groups allocated to five groups created based on
cluster analysis.

Group 1 Group 2
Group 3

Group 4 Group 5 Group 6

H group 0 8 13 20 8

K group 12 16 4 14 6

C group 0 0 5 1 7
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Due to the fact that no person from the C group was allocated to the group no. 1 or 2,
we checked the differences between groups no. 1, 2, and 3. No significant differences were
found between those groups other than balance parameters.

3.2. Discriminant Analysis

The best model was reached in step eight and included eight variables (Table 3).
Overall, the discrimination between three groups (H, K and C) was highly significant (Wilks’
Lambda: 0.0354; F (16,216) = 58.247; p < 0.0001). The percentage of correctly classified cases
is presented in Table 4. Classification functions are presented in Table 5. Model variables
are summarized according to test (EO, EC) and direction (ML, AP) in Table 6.

Table 3. Results of the discriminant analysis—model with 8 variables. Non-significant variables are
marked with italic.

Variable Wilks’ Lambda
F to Remove

(2.108)
p-Value

LyE ML EO 0.042 10.355 < 0.0001

FD AP EO 0.039 5.671 0.0045

CoP path_ML EC 0.045 14.642 < 0.0001

LyE ML EC 0.040 7.254 0.0011

FD ML EC 0.038 3.492 0.0339

LyE AP EC 0.041 8.824 0.0003

FD AP EC 0.037 1.693 0.1889

SampEn AP EC 0.037 2.795 0.0656
LyE—the largest Lyapunov exponent, FD—fractal dimension, SampEn—sample entropy, EO—test with eyes
open, EC—test with eyes closed.

Table 4. Results of the discriminant analysis—percentage and number of correctly classified participants.

% Correctly
Classified

H Group
(N)

K Group
(N)

C Group
(N)

H group 73.5 36 13 0

K group 71.7 15 38 0

C group 100 0 0 16

together 76.3 51 51 16

Table 5. Results of the discriminant analysis—classification functions for each group.

Variable
H Group
p = 0.4153

K Group
p = 0.4492

C Group
p = 0.1356

LyE ML EO 53.417 57.047 127.685

FD AP EO 150.088 142.413 102.269

CoP path_ML EC −0.767 −0.770 −1.746

LyE ML EC 37.833 38.242 99.582

FD ML EC 98.003 98.237 129.198

LyE AP EC −0.788 3.063 44.772

FD AP EC 257.086 263.192 249.053

SampEn AP EC −225.615 −220.608 −177.377

const. −348.296 −348.863 −413.511
LyE—the largest Lyapunov exponent, FD—fractal dimension, SampEn—sample entropy, EO—test with eyes
open, EC—test with eyes closed.
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Table 6. Discriminant model summarized according to test conditions and direction. Non-significant
variables are marked with italic.

ML AP

Test with eyes open (EO) LyE FD

Test with eyes closed (EC) LyE, FD CoP path, LyE, FD, SampEn
LyE—the largest Lyapunov exponent, FD—fractal dimension, SampEn—sample entropy.

3.3. Regression Analysis

Analysis of the regression for nonlinear measures showed that sample entropy de-
pends on anthropometrical variables (age, p = 0.027 and BMI, p = 0.021), test condition
(EO/EC, p = 0.005), as well as group (H/K/C; p < 0.001). Fractal dimension depended
only on the group (H/K/C; p < 0.001) and gender (p = 0.043). The largest Lyapunov expo-
nent depended on gender (p = 0.045), BMI (p = 0.020), index direction (AP/ML, p < 0.001)
and group (H/K/C; p < 0.001). COP path length depended on belonging to the H group
(p = 0.001) and the direction (AP/ML; p < 0.001). None of the analyzed variables depended
on time after surgery.

4. Discussion

The aim of this study was to find the group of linear and/or nonlinear measures that
can differentiate healthy people and patients with total knee or hip replacement from each
other. Three types of statistical analyses were performed to achieve this goal. Cluster
analysis did not result in correct allocation to the groups according to all variables that
were calculated from the balance test with eyes open and closed, although all controls were
classified into one group in the three-groups model. However, this group also contained
patients after THR and TKR. The result of the discriminant analysis was an eight-variables
model including the largest Lyapunov exponent (ML EO, ML EC, and AP EC), fractal
dimension (AP EO, ML EC, AP EC), CoP path AP EC and SampEn AP EC. The model was
correct in 76.3% of cases. Regression analysis showed that all nonlinear variables depend
on the group, while CoP path length is different only in the H group. Some influence
of anthropometric parameters (gender, BMI, age) as well as direction (AP or ML) was
also indicated.

Differences in postural control in patients after total knee or hip replacement and
healthy controls were confirmed by Heil et al. [9] and Ohlendorf et al. [8]. In both studies,
the CoP path from static measurement was significantly longer in the study group than
in the controls. These studies were made by the same research group as well as the
same protocol, and therefore, it can be easily seen that patients after TKR reached better
results than those after THR. In our study, we did not analyze which group was better,
but significant differences can be confirmed by the results of regression analysis. CoP
path length was significantly dependent on belonging to the H group, which suggests
that results in this group were different from those achieved by participants after TKR or
healthy controls.

To the best of our knowledge, no publications are analyzing the ability of a group
of linear and/or nonlinear balance measures to different groups with various clinical
conditions. However, there are some scientific reports analyzing the usefulness of different
variables in discriminating different groups of patients, mostly fallers from non-fallers or
older from young adults.

Many publications suggest that nonlinear measures can measure the amount of atten-
tion paid to maintaining balance in certain conditions [18,22,32,33]. Introducing mainly
nonlinear measures from the eyes-closed test to the discrimination model suggests that this
test is more reliable and sensitive than the test with eyes open. For most people standing
without visual feedback is a more demanding task and therefore requires more attention,
which should decrease the values of nonlinear measures, especially sample entropy [18,32].
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This can suggest that standing with eyes closed is a better way to assess the amount of
regularity of CoP movement and attention paid to maintain balance.

The largest Lyapunov exponent shows the ability to adapt to the environment by in-
vestigating how the musculoskeletal system states change over time in terms of exponential
divergence/convergence of initially nearby trajectories [18]. Our results clearly show that
this variable has a large impact on the discrimination model, both when calculated from
the EO test (LyE ML) and EC test (LyE ML, LyE AP). Additionally, regression analysis
confirmed the high dependence of LyE values on the group. This suggests that differences
between three clinical groups (THR, TKR, and healthy controls) comprise differences in the
ability to adapt to the environment. Higher LyE values suggest a better (faster) response
of balance control in different body movements [27]. Significant differences in LyE values
between different study groups were confirmed by Ghofrani et al. [34], Huisinga et al. [35],
and Liu et al. [36].

Fractal dimension calculates the complexity and irregularity of the signal over time and
its values can be interpreted as an ability to synergistically modulate three systems involved
in maintaining posture—the somatosensory, visual, and vestibular systems. Kędziorek and
Błażkiewicz [18] suggest that the fractal dimension is not sensitive enough to detect an age
group difference. Results of the discriminant analysis showed that FD can be useful in
determining group classification, while calculated from the EC test. Regression analysis
also confirmed that this variable is group dependent. FD also depended on gender, but the
direction (AP/ML) did not influence the result. The latter fact was confirmed by Szafraniec
et al. [37] by comparing results of FD in AP and ML directions.

Montesinos et al. [38] showed that sample entropy can discriminate fallers from
non-fallers and younger from older adults for AP direction and a specific combination of
calculating parameters (m, r) only. Borg and Laxaback [39] also found significant differences
between young and older adults in SampEn AP. Regression analysis in our study showed
that SampEn depends, among others, on age. Raffalt et al. [40] found a group (ankle
instability/controls) significant effect on sample entropy values. This can be partially
confirmed in our study, where sample entropy for AP direction from the EC test was
included in the discriminant function, although it was not statistically significant. In the
studies of Szafraniec et al. [37] and Raffalt et al. [40] the influence of direction (AP/ML) on
SampEn values was demonstrated. In our study, regression analysis did not confirm this,
but on the other hand, only SampEn AP values were included in the discrimination model.

Linear measures are more often used to assess balance in clinical practice, than nonlin-
ear measures. Borg and Laxaback [39] found out that CoP ML amplitude can discriminate
between elderly fallers and non-fallers, but only for foam and head extension conditions.
Other differences (between young and older adults) were not significant. Our study was
performed only in static conditions and the influence of CoP path in AP direction in EC-test
in discriminating patients after THR, TKR, and healthy controls were confirmed, although
it should be pointed out that regression analysis showed only the H group influence on
CoP path values.

Analysis of classification functions clearly shows that coefficients for healthy controls
are significantly different from those for H and K groups. Additionally, the percentage
of correctly classified participants from the C group is 100%, which confirms that this
group reached completely different results from those of patients after joint replacement,
and therefore, it was easier to build the discrimination model that correctly classified
healthy controls. Differentiation between THR and TKR groups is less effective, reaching
above 70% of correctly classified cases and coefficient values show that these two groups
are more similar to each other.

Cluster analysis showed that some patients from THR and TKR groups are similar
regarding all analyzed variables together to healthy controls and these were classified
together to group no. 3. However, some of them (eight patients from the H group and
twenty-eight patients from the K group) were classified into other two groups that included
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no healthy controls. Probably, there are other clinical, anthropometrical, or psychological
factors that were not analyzed in this study and which influence the results of balance tests.

Some limitations of this study have to be acknowledged. First of all, significant differ-
ences in age between the three groups could have contributed to worse classifications of the
groups. However, this was not confirmed in post hoc calculations. Secondly, the analyzed
groups differ also in BMI, but this is hard to avoid, as obese and overweight people are
more likely to have knee or hip osteoarthritis [4]. Thirdly, it seems to be clear that there
are some other factors that can influence the classification of the groups that were not
included in this study. Probably, including the results of physical examination, additional
measurements such as body composition or densitometric tests, clinical assessment scales,
or gait analysis in future studies are needed. It would be also worthwhile to analyze the
medical history of the patients in a more detailed way.

5. Conclusions

Inclusion of the variables calculated from the standing with eyes closed test into
the discrimination model suggests that standing with eyes closed is a better way to as-
sess the amount of regularity of CoP movement and attention paid to maintain balance.
The obtained results also suggest that nonlinear measures better differentiate TKR and
THR patients from healthy controls than linear variables and therefore, it is worthwhile to
include nonlinear measures in patient balance analysis, especially the largest Lyapunov
exponent and fractal dimension. This study did not conclude with a clear result and the set
of parameters found in discriminant analysis is probably not the best one, although it can
easily differentiate healthy controls of patients after joint replacement in the lower limb.
In further studies, it is recommended to include the results of physical examination, clinical
assessment scales, or gait analysis for more satisfying results.
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10. Truszczyńska-Baszak, A.; Dadura, E.; Drzał-Grabiec, J.; Tarnowski, A. Static balance assessment in patients with severe os-
teoarthritis of the knee. Knee 2020, 27, 1349–1356. [CrossRef]

11. Gauchard, G.C.; Vançon, G.; Meyer, P.; Mainard, D.; Perrin, P.P. On the role of knee joint in balance control and postural strategies:
Effects of total knee replacement in elderly subjects with knee osteoarthritis. Gait Posture 2010, 32, 155–160. [CrossRef] [PubMed]

12. de Lima, F.; Fernandes, D.A.; Melo, G.; de Roesler, C.R.M.; Neves, F.D.S.; Neto, F.R. Effects of total hip arthroplasty for primary
hip osteoarthritis on postural balance: A systematic review. Gait Posture 2019, 73, 52–64. [CrossRef] [PubMed]

13. Domínguez-Navarro, F.; Igual-Camacho, C.; Silvestre-Muñoz, A.; Roig-Casasús, S.; Blasco, J.M. Effects of balance and propriocep-
tive training on total hip and knee replacement rehabilitation: A systematic review and meta-analysis. Gait Posture 2018, 62, 68–74.
[CrossRef] [PubMed]

14. Massion, J. Postural control system. Curr. Opin. Neurobiol. 1994, 4, 877–887. [CrossRef]
15. Kiemel, T.; Elahi, A.J.; Jeka, J.J. Identification of the plant for upright stance in humans: Multiple movement patterns from a single

neural strategy. J. Neurophysiol. 2008, 100, 3394–3406. [CrossRef]
16. Assländer, L.; Peterka, R.J. Sensory reweighting dynamics in human postural control. J. Neurophysiol. 2014, 111, 1852–1864.

[CrossRef]
17. Ivanenko, Y.; Gurfinkel, V.S. Human Postural Control. Front. Neurosci. 2018, 12, 171. [CrossRef]
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37. Szafraniec, R.; Barańska, J.; Kuczyński, M. Acute effects of core stability exercises on balance control. Acta Bioeng. Biomech. 2018,
20, 145–151.

38. Montesinos, L.; Castaldo, R.; Pecchia, L. On the use of approximate entropy and sample entropy with centre of pressure time-series.
J. Neuroeng. Rehabil. 2018, 15, 116. [CrossRef]

39. Borg, F.G.; Laxaback, G. Entropy of balance—Some recent results. J. Neuroeng. Rehabil. 2010, 7, 38. [CrossRef]
40. Raffalt, P.C.; Spedden, M.E.; Geertsen, S.S. Dynamics of postural control during bilateral stance—Effect of support area, visual

input and age. Hum. Mov. Sci. 2019, 67, 102462. [CrossRef]

34



Citation: Craig, C.M.; Stafford, J.;

Egorova, A.; McCabe, C.; Matthews,

M. Can We Use the Oculus Quest VR

Headset and Controllers to Reliably

Assess Balance Stability? Diagnostics

2022, 12, 1409. https://doi.org/

10.3390/diagnostics12061409

Academic Editors: Carlo Ricciardi,

Francesco Amato and Mario Cesarelli

Received: 17 May 2022

Accepted: 31 May 2022

Published: 7 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Can We Use the Oculus Quest VR Headset and Controllers to
Reliably Assess Balance Stability?

Cathy M. Craig 1,*, James Stafford 2, Anastasiia Egorova 3, Carla McCabe 4 and Mark Matthews 4

1 School of Psychology, Ulster University, Coleraine BT52 1SL, UK
2 School of Psychology, Queen’s University Belfast, Belfast BT7 1NN, UK; j.stafford@incisiv.tech
3 School of Maths & Physics, Queen’s University Belfast, Belfast BT7 1NN, UK; aegorova01@qub.ac.uk
4 School of Sport, Ulster University, Belfast BT15 1ED, UK; c.mccabe@ulster.ac.uk (C.M.);

m.matthews@ulster.ac.uk (M.M.)
* Correspondence: c.craig1@ulster.ac.uk

Abstract: Balance is the foundation upon which all other motor skills are built. Indeed, many
neurological diseases and injuries often present clinically with deficits in balance control. With recent
advances in virtual reality (VR) hardware bringing low-cost headsets into the mainstream market, the
question remains as to whether this technology could be used in a clinical context to assess balance.
We compared the head tracking performance of a low-cost VR headset (Oculus Quest) with a gold
standard motion tracking system (Qualisys). We then compared the recorded head sway with the
center of pressure (COP) measures collected from a force platform in different stances and different
visual field manipulations. Firstly, our analysis showed that there was an excellent correspondence
between the two different head movement signals (ICCs > 0.99) with minimal differences in terms
of accuracy (<5 mm error). Secondly, we found that head sway mapped onto COP measures more
strongly when the participant adopted a Tandem stance during balance assessment. Finally, using
the power of virtual reality to manipulate the visual input to the brain, we showed how the Oculus
Quest can reliably detect changes in postural control as a result of different types of visual field
manipulations. Given the high levels of accuracy of the motion tracking of the Oculus Quest headset,
along with the strong relationship with the COP and ability to manipulate the visual field, the Oculus
Quest makes an exciting alternative to traditional lab-based balance assessments.

Keywords: balance assessment; VR; postural control; low-cost; visual field manipulation

1. Introduction

Maintaining balance is a complex process that requires sensory inputs from the visual,
vestibular, and proprioceptive sensory systems of the body. All these systems work seam-
lessly together to give us our sense of balance [1,2]. To maintain balance, a person must
continually monitor multiple sources of information coming from different sensory inputs
and continually perform the necessary adjustments to position the body and limbs, so the
center of mass is in a position of equilibrium. In fact, good control of the balance system
is the foundation upon which other movements are built. For instance, standing on our
tip toes to place a book on a high shelf or running to intercept an opponent’s pass in sport,
not only involves the control of the movement of limbs but also the control of the center of
mass as the limbs move.

This ability to maintain good balance (postural control) is vital for simple everyday
actions, but also for the fluid, dynamic movements needed for any type of skillful action [1,2].
Indeed, difficulties in being able to control posture appropriately are often indicative
of an underlying medical condition. As a result, it has become common for scientists
and clinical experts to want to assess balance abilities to determine the extent of any
underlying neurological problems post head injury [3], identify opportunities for motor
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development [4], but also profile a person’s susceptibility to future risk (e.g., falls in older
adults) [5].

Given the importance of identifying deficiencies in balance, there is a strong need
to develop accessible, low-cost, valid ways of assessing postural stability. The Balance
Error Scoring System (BESS) is an example of a simple balance test that is widely used in
professional sport and clinical settings [6]. It uses four different types of stances (double,
single dominant, single non-dominant, tandem) to modify the base of support and challenge
a participant’s postural stability as they try to stand as still as possible for a fixed period
(usually 20 s). During that time, a clinician/experimenter observes the participant’s posture
with errors being counted (i.e., losing balance, use of arms, stepping out, etc.) and scored
(maximum 10 allowed). To further assess balance, modifying visual input (i.e., eyes open,
eyes closed) can be added to the BESS to increase the difficulty and complexity of balance
assessment. Although the test is quick and easy to administer, it has been criticized for its
lack of reliability due to the subjectivity of human raters in counting errors [7]. Furthermore,
the magnitude of the error (or loss of balance) cannot be quantified, meaning the extent of
the balance deficits are not measured with any level of granularity.

Another limitation of observational balance tests such as the BESS is that they lack the
required sensitivity for long-term monitoring of postural control. For instance, it is thought
that balance disturbances following a neurological event, such as a concussion, typically
resolve within 72 h of initial injury when assessed through observation alone. However,
when the same participants are assessed using objective data collection methods such as
motion capture and force plates, balance disturbances can be observed up to 30 days after
the initial injury [8]. The inability of the BESS to pick up these residual balance deficits
following head injury may put the player at increased risk of other injuries further down
the line.

Full-body motion tracking, using optical-based camera systems, has also been exten-
sively used in postural studies when the experimental protocol makes the use of force plates
impossible or inconvenient (for example when the movement area was greater than the
force plate’s dimensions). In such cases, motion tracking several joints is used to accurately
estimate the position of the body’s Center of Gravity (CoG). This kinematic method of
measuring balance is based on the definition of the CoG, which is the imaginary point
around which the force of gravity appears to act, and the combined mass of the body is
concentrated. From this definition, the position of a body’s CoG can be computed as the
weighted average of the position of the Center of Mass of all body segments [9]. This
requires accurate anthropometric and kinematic data from all body segments and is very
labor intensive [10].

Several different full-body kinematic models have been used by research teams to mea-
sure CoG movement [11,12]. While the Ground Reaction Force (GRF) double-integration
method and the segmental kinematic method are the gold standard for accurate mea-
surements of human body CoG movement, more accessible measurement methods have
been shown to be viable for research too. Studies have shown that measuring the move-
ment of the sacrum, through optical tracking or inertial sensors, also provides a usable
approximation of participants’ CoG [13].

Although this method is useful, another more widely adopted approach is to measure
the position and displacement of the center of pressure (COP) as a person stands still on
a force platform [1,2,14]. The force platform provides a point projection of the vertical
reaction forces that are represented in the anterior–posterior (AP) and medial–lateral (ML)
axes of movement. Although the person may be standing still, the position of the COP
will change over time as the person controls their balance through micromovements of the
body that are inherent in this closed-loop feedback system (predominantly ankles (AP axis)
and adductors/abductors (ML axis)).

The problem with these methods is that they often involve expensive, lab-based equip-
ment that lacks portability and applicability to more general settings. Other alternatives
that use more simple methods are now being explored. For example, a recent study showed
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that different visual images invoked similar changes in postural control when head position
(measured using an overhead webcam) and COP measures were recorded at the same
time [15]. Although the purpose of this study was to measure behavioral responses to
different emotive images, the strong link between head sway and COP (correlations of
0.82 AP axis and 0.73 ML axis) means that tracking head movement could offer a promising
alternative to force platforms when assessing changes in postural control. Given these
findings, it is possible that a new way of assessing balance in a low-cost, reliable way could
be provided by a virtual reality (VR) head mounted display (HMD). This technology would
not only track head movements to capture changes in postural control but would also
provide the option of manipulating a participant’s visual field using a “swinging room”
style protocol that in turn would invoke change in balance stability [16]. This moving room
simulation is important in balance assessment [17], as it allows the clinician to go beyond
a binary eyes-open and eyes-closed manipulation and probe possible causes of balance
deficits in more depth.

This study will investigate the usability of head sway measures, recorded from a
low-cost, consumer-based VR headset (Oculus Quest) [18] as a means of assessing changes
in postural stability. The first two parts of the study focus on the technical validation of
the technology, while the third part examines its use as a means of capturing changes in
postural control, induced by visual field manipulations, in a group of young, healthy adult
males. The aims of the study were threefold:

(1) Measure the technical reliability of the Oculus Quest to track head movement (sway) by
comparing it to a gold standard motion tracking system (Qualisys, Göteborg, Sweden).

(2) Measure the strength of the relationship between head sway (head movements cap-
tured by both the Oculus and the Qualisys motion capture system) and Centre of
Pressure (force platform, Kistler Instruments, Winterthur, Switzerland) when perform-
ing a modified version of a balance test (BESS).

(3) Determine the responsiveness of a low-cost VR headset (i) to presentation of different
visual field manipulations (static and dynamic) that invoke changes in postural control
when a person is in a dominant and a non-dominant stance and (ii) for measuring
the resulting postural adjustments (head and hand movement) in a group of healthy
adults and measure their reliability across two different testing sessions.

2. Materials and Methods

2.1. Technical Validation—Balance Tracking Hardware

A passive, reflective marker was attached in the center of a VR headset (Oculus Quest,
Facebook Technologies Ltd., Menlo Park, CA, USA). Fifteen Qualisys infrared motion
capture cameras (Oqus 100, Qualisys, Göteborg, Sweden) recorded the movement (x, y, z)
of the marker attached to the VR headset at 50 Hz. Centre of Pressure was also recorded at
50 Hz using the force plate Kistler 9260 AA force platform (Kistler Instruments, Winterthur,
Switzerland). Both the Qualisys and Kistler data were recorded using the same software
and synchronized using the same time stamp. The Oculus Quest head movement data
(x, y, z) were also captured at 50 Hz using a data collector function in Unity game design
software (MOViR, INCISIV Ltd., Belfast, UK). This data collector also collected the visual
field data that indicated the transition from one visual field to another. This was important
for the analysis of visual field induced differences in postural control which represented
the third part of the experiment.

2.2. Data Collection

The data for the technical validation were obtained using a single subject design in
which the female volunteer (height 1.68 m; mass 59 kg) provided informed consent and
was noted as right foot dominant. The participant was asked to remove her shoes and
stand on the force platform wearing the Oculus HMD and hold the two hand controllers.
For all conditions, the participant was immersed in a virtual gym where two red spheres
were positioned in front of the participant at elbow height. The participant was asked to
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place the controllers inside the spheres, so they turned green. This was to encourage the
participant to keep the arms as still as possible while performing the balance tests. The
Oculus Quest was calibrated using its own built-in “Guardian setup” procedure so that
the Anterior/Posterior (AP, X axis) and Medial Lateral (ML, Y axis) axes were aligned
with those of the force plate. The Z axis for all systems represented the vertical axis. The
Qualisys system was also calibrated in alignment to the Oculus Quest defined axes and the
calibration residual was deemed acceptable (<0.80 mm). Data collected from the Oculus
and the Qualisys motion capture system were synchronized using two easily recognizable
events (small vertical jump and oscillatory head movements) that were performed by the
participant at the start of each trial. These two discrete events were used in the analysis to
temporally align the Qualisys and Oculus head movement time series data.

2.3. Technical Validation—Testing Conditions

The participant performed a modified version of the BESS test that involved standing
as still as possible in three different stances—double, tandem, and single leg dominant
(30 s each stance). If the participant lost balance or moved out of the instructed stance, she
was told to regain her balance and assume the instructed stance as soon as possible. The
3 stances were presented in the following order:

1. Double: Standing with both feet side by side.
2. Tandem: Standing with the heel of the right foot just in front of the toe of the left foot

(non-dominant foot at the back).
3. Single leg dominant: Standing on her right foot, hip flexed to approximately 30◦ and

left knee bent upwards to approximately 45◦.

The participant performed 3 consecutive sets of testing for each of the stances giving
13,500 data points per signal for analysis.

2.4. Behavioural Validation—Visual Field Manipulation

To see if virtual reality can also be used to reliably manipulate the visual field and
induce measurable changes in postural control, a group of 30 healthy adult males (mean
age = 26.3 ± 5 years; mean height = 1.82 ± 0.06 m); mean weight = 85.1 ± 7.6 kg; right foot
dominant n = 23) gave informed consent and agreed to participate in the experiment.

Testing took place in a room with a solid floor and participants were asked to remove
their footwear. The Oculus Quest was placed on the participant’s head and participants
were asked to hold the hand controllers in their hands. The environment presented in
the headset was a virtual gym. Once the participant was familiar with the environment
and comfortable, they were asked to adopt a tandem stance with their left foot in front of
their right foot (see Figure 1). A tandem stance was selected as it demonstrated the best
relationship between the measures of COP and head sway in the technical validation study
(see Section 3). Participants were asked to place the hand controllers in a standardized
position (virtual spheres at elbow height in the virtual gym) and stand as still as possible
until the trial ended. Each trial lasted 40 s with participants given a short break before
performing the trial again with the opposite leg forward. During each trial the visual field
was manipulated to create different sensory processing demands to challenge postural
control. These visual field manipulations were created using off the shelf VR software
(MOViR; INCISIV Ltd.) programmed using Unity3D and presented inside the headset at
2880 × 1600 pixel resolution (1440 × 1600 pixels per eye) with a 90◦ field of view and a
refresh rate of 90 Hz.
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(a) (b) 

Figure 1. (a) A participant wearing the Oculus Quest headset and holding the two hand controllers.
Any movements of the head and hands are captured by the motion controllers at 50 Hz. (b) An image
showing what the participant saw inside the Oculus Quest headset when they were subjected to the
‘tilt’ visual field manipulation. Note the virtual green spheres at the bottom of the image which acted
as a standardized visual reference for the hand position.

The changes in the visual field were classed as either static or dynamic and lasted
for 10 s. The static visual field had two conditions: (i) Static Light—a stationary well-lit
virtual gym, and (ii) Static Dark—a stationary dark virtual gym. These two static visual
fields replicated the traditional ‘eyes open’ or ‘eyes closed’ balance tests, respectively. The
dynamic visual field had two conditions: (i) Dynamic Forward/Back—a virtual gym that
simulated forward-backwards room motion (in the anterior posterior axis), and (ii) Dynamic
Tilt—a virtual gym with rotational (tilt) movement around the anterior posterior axis.
The forward–backwards manipulation involved the virtual gym moving away from the
participant (2 cm/s) for 5 s, and then back towards the participant at 2 cm/s for 5 s. The
rotation (‘tilt’) of the anterior–posterior axis consisted of positive roll for the 1st 5 s and
negative roll for the last 5 s at a rate of 5 degrees/second. Participants completed all
4 conditions, for tandem stance with one trial for the left and one trial for the right foot
forward, on two separate occasions (4 days apart to test reliability of measures).

2.5. Technical Validation—Data Analysis

Both the head movement captured using Qualisys motion capture technology and the
Oculus Quest were recorded at 50 Hz in three axes of motion (x, y, z). The total distance
travelled (head sway) was calculated in all three axes, whereas the distance covered by
the COP was calculated only in the anterior posterior (y) and medial lateral (x) axes, as
per the recognized method [10]. Intraclass correlations (ICC) were used to determine the
level of correspondence between the different signals. ICCs were calculated using the
standard method and values interpreted as follows: <0.4 = poor; 0.4–0.59 = moderate;
0.6–0.79 = good; >0.8 = excellent [19]. Root Mean Square Errors (RMSE) were calculated
in millimeters to determine the level of precision of head movement captured using the
Qualisys motion capture system and the Oculus Quest.

2.6. Behavioral Validation—Data Analysis

The postural changes induced by the visual field manipulations were measured using
the head and hand controllers of the Oculus Quest. The head and hand controller data were
captured with the same time stamp as the visual field manipulations so that the total sway
for each visual field manipulation could be analyzed separately. The test was repeated
4 days later so that the reliability of the measures could also be tested using an analysis of
measurement variance.
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3. Results

3.1. Technical Validation Part 1—Reliability of Head Movement Captured Using the Oculus Quest

The first part of the analysis aimed to see how closely the head movement captured
using the Qualisys motion capture system corresponded to the data captured from the
Oculus Quest’s proprietary in built motion sensing system. Head movement data captured
using the Qualisys system were directly compared with that obtained using the Oculus
Quest HMD. The graphs in Figure 2 show how closely the two signals correspond when
the participant adopted three different stances (Double, Tandem and Single). As expected,
the most sway (movement) took place in the Single leg stance with the least in the Double
leg stance condition and the Tandem stance in between.

Double Tandem Single 

 
 

(a) (b) (c) 

Figure 2. Three stabilogram plots representing the head sway (distance in mm) captured by the
Oculus Quest (green) and the Qualisys motion capture cameras (red) in the three different stances
(Double (a), Tandem (b), Single (c)) in two different axes (AP and ML).

In terms of the similarity of the signals, both the Intraclass Correlation Coefficients
(ICC) and Root Mean Square Errors (RMSE) were calculated for the head movement data.
As can be seen from Table 1 the Tandem and the Single leg stances had the highest ICC
values (≥0.99) whereas the Double leg stance was slightly lower (0.936) for the distance
(sway) calculations. In terms of the RMSE values, both the Double and Tandem stances
had the lowest RMSEs (3.8 mm and 3.9 mm, respectively) with the Single leg stance being
slightly higher (4.7 mm). Overall, these values indicate a very strong correspondence
between the two signals and a very high level of accuracy for the Oculus Quest head
movement data.

Table 1. The average ICC and RMSE values for the Head movements recorded from the Qualisys and
the Oculus Quest systems. The values are for the three axes (ML, AP and Vertical) and the calculated
distance (sway) are presented for the three different stances (Double, Tandem, Single). ICC values can
be interpreted as follows: ICC > 0.8 is excellent; ICC < 0.8 > 0.6 is good; ICC < 0.6 > 0.4 is moderate,
while ICC < 0.4 is poor [19]. RMSE values are measured in mm with values closest to 0.0 indicating
the highest levels of precision.

Oculus vs. Qualisys Head Movement

Stance ICC RMSE (mm)

ML AP Vertical Distance ML AP Vertical Distance

Double 0.877 0.983 0.978 0.936 4.2 1.3 3.3 3.8
Tandem 0.994 0.996 0.937 0.994 3.4 4.2 1.6 3.9
Single 0.990 0.998 0.994 0.998 3.9 4.3 4.4 4.7
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3.2. Technical Validation Part 2—Comparing COP and Head Sway as Measures of
Postural Control

The second part of the analysis aimed to see if head sway (distance), recorded from
the Qualisys and the Oculus Quest, can be compared to the COP measured using a Kistler
force platform. In this analysis the three different stances (Double, Tandem, Single) were
analyzed separately. The Intraclass Correlation Coefficients (ICC) were calculated for each
data set (n = 1500 per set, and three sets per stance) to determine the degree of similarity
between the measures of COP and head movement. Figure 3 shows that although the COP
and head movement are capturing data at extreme ends of the body, both measures appear
to reflect similar changes in postural control.

Figure 3. Graphs showing the distance covered by each of the three signals calculated in all three
data sets for the COP (blue), Head Sway Qualisys (red) and Head Sway Oculus (green) measures.
Notice how the correspondence is closest for all 3 signals in the Tandem stance data. This is also
reflected in the ICC values presented in Table 2.

Table 2. The ICC values for head sway and CoP data in the ML, AP axes of motion for each of the
three stances (Double, Tandem, Single). The ICC values for COP excursion and Head Sway (distance
column) combine movement in both axes.

Stance
Oculus Head vs. COP

(ICC)
Qualisys Head vs. COP

(ICC)

ML AP Distance ML AP Distance

Double 0.875 0.765 0.546 0.782 0.720 0.451
Tandem 0.687 0.858 0.888 0.697 0.850 0.879
Single 0.667 0.658 0.654 0.685 0.642 0.643

The Intraclass Correlation Coefficients showing the relationship between Head Sway
(Oculus and Qualisys) and COP excursion in each of the axes (ML and AP) for the three
different stances can be found in Table 2. Very strong ICC values were found for the Tandem
stance when head sway distance was calculated using the Oculus (0.888) and the Qualisys
motion capture data (0.879). The values for Double (0.546 and 0.451) and Single leg stances

41



Diagnostics 2022, 12, 1409

(0.654 and 0.643) were considerably lower, indicating a less strong relationship between the
two measurements.

3.3. Measuring the Effects of Visual Field Manipulation on Postural Control

The final part of the study looked to (i) measure the effects of four visual field condi-
tions and two types of tandem stance (dominant vs. non-dominant) on postural control in
a group of 30 healthy, adult males’ and (ii) check to see if the measures of postural control
were reliable over two different testing sessions. The similarity between the sway mea-
sures captured 4 days apart using the Oculus Quest was found to be very strong (r = 0.84;
p < 0.0001). This affirmed that the balance measures were reliable across testing sessions.
As a consequence, the average of the sway measures from the two sessions were used for
all subsequent analyses. A two-way ANCOVA showed that there was indeed a significant
main effect of visual field manipulation (F(3,499) = 73.7; p < 0.0001) on mean total sway
(across the two sessions) that was moderated by stance type (dominant vs. non-dominant)
(F(1,499) = 9.6; p = 0.002). Post hoc analysis showed how the Static Light condition had
significantly less sway than the Static Dark but also than the Dynamic Tilt conditions (see
Figure 4) (p < 0.001). Although the Dynamic Forward-Back condition (mean = 31.4 cm)
was marginally better than the Static Light condition (mean = 34.0 cm) this difference was
not significant (p = 0.685). It was, however, significantly better than both the Static Dark
(mean = 61.7 cm; p < 0.001) and the Dynamic Tilt conditions (mean = 82.8 cm; p < 0.001).
These differences can be explained by the Dynamic Tilt manipulation forcing postural
corrections in the medial lateral axes, the axis that is least stable when a participant adopts
a Tandem stance where the base of support is at its narrowest in the medial lateral axis.
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Figure 4. A graph showing the differences in mean total sway for the four different visual field
conditions and for the dominant (light grey) and non-dominant (dark grey) stances. The error bars
represent the standard deviations for the two different stance conditions.

In terms of effects of stance on postural control, Figure 4 shows the mean average total
sway when the visual manipulations occurred in the dominant stance compared to the
non-dominant stance.

4. Discussion

This study aimed to see if a low-cost Virtual Reality technology (Oculus Quest) could
reliably assess balance. The first part looked at the technical aspects of the technology and
assessed how accurately the Oculus Quest could track head movements during a simple
balance task (modified version of the BESS) compared to the Qualisys motion capture
system. The data clearly showed that the level of correspondence between the Oculus
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Quest head movement recordings and that of the Qualisys motion capture system were
almost perfect (ICC > 0.99) with less than 5 mm error difference between the two signals
(n = 4500). This was in line with a similar study that showed the Oculus Quest was able to
track a user’s head movement with a mean positional accuracy of 6.86 mm [20,21].

Although this high degree of accuracy and reliability supports the potential use of
VR as a viable head tracking technology, it was important to see if head movement (head
sway) captures changes in postural control in a similar way to other balance measurement
systems. The second technical part of the study looked at the correspondence between
balance control measured using head sway (measured by the Oculus Quest and the Qualisys
motion capture system) and balance control measured simultaneously using the Centre of
Pressure data captured using a Kistler force platform. Although a perfect relationship is not
expected as the COP is measuring what is happening between the feet and the ground and
head sway is capturing head adjustments, it was predicted that both signals are capturing
essential elements of postural control that will be strongly related.

The data showed that the type of stance influenced the ICC values (comparisons
between COP measures and head sway measures), with the Double stance showing a mod-
erate relationship (0.55 (Oculus); 0.45 (Qualisys)), Single stance showing a good relationship
(0.65 (Oculus) and 0.64 (Qualisys) and Tandem stance showing an excellent relationship
(0.89 (Oculus) and 0.88 (Qualisys) when it comes to comparing head movement distance
and COP excursion. The lower correspondence between the Double stance can be explained
by the fact subtle micromovements can be made between the feet and the ground to change
the distribution of weight across this wider base of support. In this case, movements of the
head to adjust postural imbalance is likely to be minimal. The opposite is true for the Single
stance condition where there is only one foot in contact with the ground and the registration
of postural adjustments through the COP are less obvious as the other limbs and the head
will be used to control balance. Tandem stance, however, is still a double support stance
meaning more force will be exerted through the ground giving more credence to the COP
measure. Importantly, however, in a Tandem stance (see Figure 1), the base of support
is narrowed in the medial-lateral axis meaning any movements to adjust posture will be
in the medial–lateral axis and will be accentuated through movements of the head. This
makes head sway an ideal candidate for measuring changes in postural control in Tandem
stance. Furthermore, the Oculus head measurements were ever so marginally stronger
than Qualisys, again offering support for low-cost VR head tracking as an alternative to
more expensive balance measurement systems.

The final part of the study introduced factors that are known to challenge the balance
system, namely the type of support (dominant versus non-dominant) and visual field
manipulations (similar to the ‘moving room’ paradigm [17]) and tested the effects on
postural control at two different time points (4 days apart). The predictions were that
postural control would be best (minimal total sway) for the Tandem balance dominant foot
conditions compared to the non-dominant conditions, and in the Static Light and Dynamic
Forward/back conditions compared to the Static Dark and Dynamic Tilt conditions [20].
We also predicted that the measures would be stable over time with a strong relationship
between the measures when participants were re-tested using the same stances and visual
field manipulations 4 days later. Our analysis of the balance control exhibited by a group
of thirty healthy adult males showed that there was excellent reliability in the measures
of sway across two different testing sessions (r = 0.84), which affirmed that the test–retest
reliability of these types of balance tests was excellent. The analysis of the sway in the
different visual field conditions showed that the Static Light and Dynamic Forward/Back
conditions yielded the least amount of postural adjustment. On the other hand, Static Dark
and Dynamic Tilt both induced significant postural adjustments that were captured by the
measures of sway (p < 0.001). This was in line with previous literature that showed that
eyes closed and tilt conditions [20] perturb balance the most. The effect of the Dynamic Tilt
condition on sway are more pronounced in Tandem stance as corrective postural movement
adjustments are mainly in the medial lateral axis where the base of support was narrowest.
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The effect of stance, dominant versus non-dominant, also significantly affected postural
control, with sway being significantly less in the dominant stance condition.

In short, this study provides strong evidence that VR technology can be used as
an accurate, reliable, low-cost alternative to COP for balance assessment, particularly for
Tandem stance. Furthermore, it provides the opportunity to take balance assessment further
by providing the option of manipulating the visual field to induce changes in postural
stability. This means balance assessments can probe more deeply the origins of any postural
control deficits that may have been observed.

In terms of limitations, it is important to note that the VR technology can only measure
movement of the head and hand controllers. This means using it to assess postural control
during Single leg stance is limited as the sway data would not capture any balance errors
associated with dropping the position of the non-supporting leg. New peripheral sensors
that can be attached to the feet, but that are compatible with the Oculus Quest, will help
overcome this problem in the future. Another limitation of this study is that special software
is required to capture the movement data from the three controllers in real time to calculate
total sway. The software used in this study (MOViR, INCISIV Ltd.) also generated the
changes in visual field allowing for an accurate calculation of sway with respect to the
visual condition experienced. Going forward it will be important that appropriate software
for capturing movement data and manipulating the visual field is readily available to
maximize the potential of using the Oculus Quest VR technology to assess balance.

In terms of applications, one of the other most striking areas where this type of
assessment could have a large impact is on concussion detection and management. Current
protocols rely heavily on human observation, meaning the subtle changes in balance that
occur following a head injury may be missed. As Santos and colleagues [22] pointed out,
using technology that is precise and reliable means concussion management can now be
taken out of the lab and brought to the pitch. Having access to this type of technology and
standardized tests would revolutionize the management of concussed players, allowing
subtle changes in balance to be spotted, reducing the risk of having players return to play
too quickly and putting themselves at increased risk of another injury. In fact, previous
research has shown how balance abnormalities can be indicative of future risk of injury [23],
but also a way to spot weaknesses that may directly impact on a player’s ability to execute
a skill and perform effectively [4].

Like research a decade ago that showed how the Nintendo Wii balance board could be
used to measure and train balance [5], this study shows how the Oculus Quest, a low-cost
VR gaming headset can also be used to measure and train balance in older adults [24].
Previous research has shown how lab-based VR is well tolerated by more vulnerable
groups, with studies showing how VR can be effectively used to cue gait in people with
Parkinson’s [25,26], but also understand older adults’ decisions about when and how to
cross a virtual road [27]. Given the power of this technology, creating VR balance games
that use AI to adapt to the user’s abilities, opens a whole new vista in terms of balance
rehabilitation and training possibilities [28,29]. Unlike the Nintendo Wii, where the parent
company disinvested in the technology, multinational companies like Meta (Oculus Quest)
and Bytedance (Pico Neo) are investing heavily in low-cost virtual reality hardware and
relevant applications that will transform how we live our lives.

5. Conclusions

In conclusion, this study demonstrates how the Oculus Quest, a low-cost VR headset,
can be used to reliably measure, but also challenge, a person’s ability to maintain their
balance. Given the importance of postural control for a wide range of clinical applications,
this technology offers promising new possibilities for not only balance assessment but also
balance training.
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Abstract: It is well documented that body position significantly affects breathing indices during sleep
in patients with obstructive sleep apnea. They usually worsen while changing from a non-supine to a
supine position. Therefore, body position should be an accurately measured and credible parameter in
all types of sleep studies. The aim of this study was to specify the accuracy of a neck-based monitoring
device (Clebre, Olsztyn, Poland) mounted at the suprasternal notch, in determining a supine and
non-supine sleeping position, as well as specific body positions during sleep, in comparison to
polysomnography (PSG). A sleep study (PSG along with a neck-based audio-motion sensor) was
performed on 89 consecutive patients. The accuracy in determining supine and non-supine positions
was 96.9% ± 3.9% and 97.0% ± 3.6%, respectively. For lateral positions, the accuracy was 98.6% ± 2%
and 97.4% ± 4.5% for the right and left side, respectively. The prone position was detected with an
accuracy of 97.3% ± 5.6%. The study showed a high accuracy in detecting supine, as well as other
gross positions, during sleep based on a sensor attached to the suprasternal notch, compared to
the PSG study. We feel that the suprasternal notch is a promising area for placing wireless sleep
study devices.

Keywords: home sleep study; polysomnography; actigraphy; positional sleep apnea

1. Introduction

Obstructive sleep apnea (OSA) is the most common form of sleep-disordered breathing
(SDB), characterized by repeated episodes of absent (apnea) or reduced (hypopnea) airflow
in the upper airway during sleep. Airway obstruction is associated with either oxygen
desaturation or frequent brain arousal and is linked to increased incidence of hyperten-
sion, type 2 diabetes, atrial fibrillation, heart failure, coronary artery disease, stroke, and
death [1,2].

The gold standard test for diagnosis of OSA is a laboratory-based attended poly-
somnography (PSG) during which multiple data channels are recorded, including sleep
and respiratory parameters, muscle activity, heart rhythm, snoring, and body position.
The presence and severity of OSA are typically determined by the apnea–hypopnea index
(AHI), defined as the number of apneas and hypopneas per hour of sleep. It is generally
accepted that AHI � 5 events/h defines OSA.

It is well documented that body position significantly affects breathing indices, ex-
pressed among others by the AHI, which usually worsens while changing from a non-
supine to a supine position [3]. Therefore, body position should be an accurately measured
and credible parameter. Positional obstructive sleep apnea (POSA), first described by
Cartwright in 1984 [3], is defined as an AHI at least twice as high in the supine position
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as in the lateral (non-supine) position [4]. According to Cartwright’s criteria, two sub-
types of POSA were defined: supine-isolated OSA (siOSA; non-supine AHI < 5 with at
least 15 min of sleep in both positions) and supine-predominant OSA (spOSA; non-supine
AHI � 5) [5–7]. In selected patients with POSA, positional therapy (PT), which is based
on preventing patients from sleeping in a supine position, may be an effective treatment
option [8,9]. Ravesloot et. al. provided an overview of 16 articles, examining the impact
of PT on OSA, showing that all included studies reported a positive effect of PT on AHI
reduction in POSA patients [9].

As mentioned before, for the clinical needs of sleep study analysis, body position can
be divided into supine and non-supine, which consists of prone and both lateral positions.
Body position sensors are usually attached to either the chest or abdomen, which does not
always reflect the actual orientation of the upper airways. Furthermore, current American
Academy of Sleep Medicine (AASM) guidelines, except for frequency of measurement,
do not provide recommendations concerning the recording of body position during sleep.
To our knowledge, there is also a lack of comparison studies between different PSG systems,
moreso regarding the accuracy of detecting body position.

Furthermore, full PSG is a very uncomfortable, expensive, and availability-limited
study. Lately, multiple sensors have been introduced into sleep medicine studies with a
promise to diagnose sleep disordered breathing in the home environment. These cheaper
and more comfortable than in-lab PSG devices belong mostly to home sleep apnea tests
(HSATs). Here we used a small audio-motion wireless sensor (Clebre, Olsztyn, Poland).
Clebre is attached to the skin at the suprasternal notch on the neck with a double-sided
medical patch (see Section 2), allowing detection of the patient’s position and activity.
Previously we showed a very high accuracy in detecting a supine and non-supine sleep
position in comparison to PSG on a group of 30 patients [10].

The aim of this study was to validate the accuracy of a neck-based Clebre device in
determining a supine and non-supine sleeping position, as well as specific body positions
during sleep, in comparison to the NOX A1 PSG system (Nox Medical Inc., Reykjavik,
Iceland) in a large cohort of patients.

2. Materials and Methods

2.1. Participants

The study included 89 consecutive adult patients who underwent PSG and Clebre
examinations. The inclusion criteria were: 18 years of age or older, PSG for suspected
OSA, at least 6 h of simultaneously recorded PSG and Clebre. The exclusion criteria were a
previous history of OSA treatment such as positive airway pressure (PAP) therapy and class
III and IV heart failure according to the classification of the New York Heart Association
(NYHA) [11].

All participants signed an informed consent. The study was approved by the Ethics
Committee of Medical University of Warsaw (KB/14/2018).

Demographic information, including age, sex, height, and weight, was collected. The
body mass index (BMI) was calculated for each patient.

2.2. Protocol and Devices

Each subject underwent a full-night attended PSG in the sleep laboratory of the
Otorhinolaryngology Department at Czerniakowski Hospital, Warsaw, Poland. PSGs were
recorded with the Nox A1 PSG System [12,13]. The recording montage comprised a 6-
channel encephalogram (EEG), a 3-channel submental electromyogram (EMG), a left and
right electrooculogram (EOG), an electrocardiogram (ECG), airflow recording through
the nose and mouth by a nasal air pressure transducer and oronasal thermistor, thoracic
and abdominal effort measurement by inductance plethysmography, and arterial oxygen
saturation using a Nonin 3150 WristOx2™ wireless oximeter (Nonin Medical, Plymouth,
MN, USA) [14]. An in-built microphone was used to record snoring. Body positions,
differentiated between upright, right side, left side, prone, and supine, were determined
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by a 3-axis, ±2 g accelerometer with 20 Hz sampling frequency, incorporated in the PSG
headbox. The video was recorded throughout the night using AXIS M3106-LVE [15] and
AXIS M3116-LVE [16] network cameras (Axis Communications AB, Lund, Sweden) with
1024 × 768 resolution and a frame rate of 30.

For each patient, sleep and respiratory events were scored by an experienced sleep
physician using the AASM Manual for the Scoring of Sleep and Associated Events v.2.6 [17].
The sleep position was obtained from the PSG’s raw data acquired from European Data
Format (EDF) files, exported from the Noxturnal software (Nox Medical Inc., Reykjavik,
Iceland). Sleep parameters calculated by the software were obtained from PSG sleep reports.

Simultaneously, subjects underwent full night examination with a Clebre audio and
motion sensor. The sensor was placed by the technician in the suprasternal notch on the
neck and attached using a medical double-sided patch. The way the sensor was placed
is presented in Figure 1. The dimensions of the sensor were 33 × 39 × 13 mm, and it
weighed 18 g. The battery allowed for at least 14 h of operation. The memory capacity
was defined internally by a 2 GB FLASH chip. Motion accelerometry based signals (3-axis,
with a 52 Hz sampling frequency) were used to estimate sleep body position characteristics,
using the algorithms presented in a previous study, which reported 97% accuracy in supine
versus non-supine body position differentiation compared to the simultaneously acquired
PSG [18]. The sleep studies in which there were differences in estimation of body position
between PSG and Clebre were visually inspected by two PSG technicians, using video
monitoring. To synchronize the devices, both the Clebre and PSG had an internal clock. It
ran parallel to the connected computer (PSG) or was synchronized at the beginning of the
study using a dedicated smartphone app (Clebre).

Figure 1. The placement of the Clebre audio and motion sensor.

2.3. Data Analysis and Statistics

For each patient the percentage of supine/non-supine body position was recorded.
Among POSA patients, subjects who spent less than 15 min of sleep in either supine or
non-supine sleeping positions were excluded [7]. We analyzed differences between PSG
and Clebre using paired t tests. Furthermore, Lin’s Concordance Coefficients [19] were
estimated for each body position, and Bland–Altman analyses [20] were performed. All
calculations were performed using Python 3.9.7 (default, 16 September 2021, 13:09:58),
graphs were created using matplotlib package [21]. The significance level was established
at the level of 0.05.
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3. Results

Demographics of the study population are presented in Table 1 and OSA data in
Table 2. There were 89 participants in the study, including 21 females. Their average age
was around 50 and average BMI around 30. Almost all (95.5%) were considered OSA
patients, from which 52.8% were POSA ones.

Table 1. Baseline characteristics of study participants and polysomnography data.

Characteristic Males Females Total Patients

N 68 21 89
Age (years) 50.15 ± 11.78 53.62 ± 11.93 50.97 ± 11.91
BMI (kg/m2) 30.09 ± 4.91 29.35 ± 6.04 29.91 ± 5.21
TST (min) 386.21 ± 49.09 399.66 ± 50.54 389.38 ± 49.76
Sleep efficiency * (%) 91.58 ± 41.49 87.45 ± 6.76 90.60 ± 36.45
AHI (events/h) 37.12 ± 24.12 28.45 ± 17.06 35.08 ± 22.95
AHI supine (events/h) 50.03 ± 25.47 45.42 ± 28.72 48.94 ± 26.34
AHI non-supine (events/h) 25.78 ± 26.17 14.82 ± 14.77 23.19 ± 24.42
Supine position in TST (min) 166.31 ± 107.02 194.84 ± 100.21 173.04 ± 106.15
Supine position in TST (%) 43.70 ± 27.79 48.82 ± 24.26 44.91 ± 27.08
Non-supine position in TST (min) 212.08 ± 109.67 199.40 ± 99.01 209.09 ± 107.38
Non-supine position in TST (%) 55.35 ± 27.52 50.29 ± 24.78 54.16 ± 26.98

Values were presented as mean ± standard deviation. BMI = body mass index, TST = total sleep time, TRT = total
recording time, AHI = apnea–hypopnea index; * Calculated as (TST/TRT × 100%).

Table 2. Characterictics of OSA patients.

Characteristic Males Females Total Patients

OSA patients *; n (% from specific group) 67 (98.5) 18 (85.7) 85 (95.5)
Supine OSA patients **; n (%) 34 (38.2) 13 (14.6) 47 (52.8)
Supine-isolated OSA patients ***; n (%) 5 (5.6) 6 (6.7) 11 (12.4)
Supine-predominant OSA patients ****; n (%) 29 (32.6) 7 (7.9) 36 (40.5)

* Patients with AHI � 5; ** OSA patients with supine to non-supine sleep ratio of more than 2; *** positional OSA
patients with non-supine AHI < 5, who slept at least 15 min both supine and non-supine; **** positional OSA
patients with non-supine AHI � 5; OSA—Obstructive sleep apnea.

The accuracy in determining supine and non-supine positions was 96.9% ± 3.9%
and 97.0% ± 3.6%, respectively. For lateral positions, the accuracy was 98.6% ± 2.0% and
97.4% ± 4.5% for the right and left side, respectively. Paired t tests suggested no basis to
reject the null hypothesis (equal means) for left and right side body positions. The prone
position was detected with an accuracy of 97.3% ± 5.6% (p-value = 0.0009). The p-value for
supine (0.016) showed a statistically significant difference; however, their absolute values
were relatively small.

The sample actigraphy curves for three patients were presented comparatively in
Figure 2. Those were selected to show examples with almost identical signals, with a small
level of error, and with a moderate level of error, respectively.

The Lin’s Concordance Coefficients and Bland–Altman curves were also prepared to
compare PSG and Clebre percentages of each lying body position in relation to sleep time
and are presented in Figures 3 and 4, respectively.
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Figure 2. The sample curves of actigraphy signals recorded by PSG (solid line) and estimated from
Clebre (dashed line), selected to show an almost perfect match (top), a small level of error (middle),
and a moderate level of error (bottom), respectively.

Figure 3. The PSG versus Clebre plots for percentages of each lying body position in relation to sleep
time, along with the estimation of Lin’s Concordance Coefficients (CCC).
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Figure 4. The Bland–Altman plots for percentages of each lying body position in relation to sleep
time; percentages on both axes.

4. Discussion

To our knowledge, this is the first study validating sleep position detection of any
wireless HSAT sensor in a large cohort of patients against in-lab PSG, as such reports are
scarce and all prepared on very limited number of patients [22–24].

According to a paper recently published by Ravesloot and colleagues, a standardized
framework emphasizing the role of the sleeping position should be an important dataset
in every sleep report [18,25]. This is because sleep position may significantly influence
sleep study results, as well as the fact that a large group of OSA patients can benefit largely
from PT. Therefore, accurate sleep position detection should be a crucial part of every
sleep study.

Our study showed high accuracy in detecting both supine vs. non-supine and specific
sleep positions with a wireless sensor attached to the skin at the suprasternal notch, in
comparison to PSG, in a large cohort of patients. In terms of sleep study results, the binary
division into supine and non-supine is of most importance. Here, the accuracy equaled
96.9% ± 3.9% and 97.0% ± 3.6%, respectively. In some patients where differences were
noticed, they resulted mostly from discrepancies between head versus thorax orientation.

Every PSG system (type 1 and type 2 devices; the full classification is provided
in [26,27]) measures and analyzes sleep position. According to AASM, the required sam-
pling rate for body position measurement is 1 Hz [28]. Aside from that, there is no informa-
tion regarding accuracy of measurement or angle-limit values in each axis for classification
of body positions while asleep (supine, prone, and lateral positions). Interestingly, a study
by Ferrer-Lluis et al. showed on 19 OSA patients that automatic sleep position determina-
tion in PSG agreed, on average, only in 83.1% with video-validated positions [23].

Unlike PSG, home sleep apnea testing (HSAT) which typically uses type 3 devices,
are not required to record the sleep position [29,30], only “conventional” type 3 devices
do measure these parameters [31]—for sensors without the measurement of sleep position
it is impossible to confirm POSA and to implement PT. As there are on average 56% of
patients with POSA [32–35] when using the most commonly used Cartwright’s definition,
this parameter is absolutely crucial to include in the sleep study. Type 4 devices measure
one or two variables: oxygen saturation, airflow, and chest movement, and in most cases
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they do not take body position into account, therefore their use in determining POSA is
very limited.

There are many different new technologies that are being introduced in sleep medicine
to assess body position. The devices in which these are introduced belong largely to
HSAT. Among them, there are both contact and non-contact technologies. Non-contact
technologies are bed mattresses and radar sensors. In terms of bed mattresses, the Sonomat
is the most validated in sleep medicine [36,37]. No data regarding sleep position recognition
are available in the published papers. For other mattress systems, there are studies showing
a potentially high accuracy in detecting all four major sleep positions. The accuracy of a
system described by Liu et al., based on a piezo-electric polymer film sensor applied in a
form of a mattress, showed a 97% accuracy in detecting four major positions during sleep
on a group of 11 healthy participants [38] Few radar systems have been described in the
literature. No data regarding the feasibility of automatic sleep position detection were
found in these papers [39–42].

Contact sensors are ones attached to a patient’s body, and the placement of the sensor
on the body is crucial to what signals could be detected. Contact sensors can be wrist or
finger, chest, neck, or forehead devices. The most common contact sensors currently used
in sleep evaluation are wrist/finger wearables. Most of these measure heart rate, heart rate
variability, SaO2, and accelerometric signals. It has to be emphasized that this placement
of the accelerometer does not allow accurate evaluation of the sleep position, as the trunk
orientation does not depend on the forearm orientation. Current commercial wristband
products, such as MI Band, Garmin Smartwatch, and Apple Watch, cannot recognize sleep
positions [43]. A study by Yeng and colleagues showed that correct classification of sleep
position was achieved in up to 85% of recording time with a wrist sensor, but the study
was performed only on two participants. When placing an accelerometer on the chest, the
accuracy in detecting sleep positions is very high. This was also shown in studies with the
use of smartphone accelerometry. Two such studies showed accuracy in detecting sleep
position as high as 97% and 95.9% on 6 and 19 subjects, respectively, [22,23].

Our previous study showed a 97.3% accuracy in distinguishing between supine and
non-supine positions on 30 patients. Here, we confirmed about 97% in supine and non-
supine position accuracies and at least 97.3% in other body position detection. We suggest
the suprasternal notch is a perfect candidate to mount a small wireless sensor for sleep
study purposes, as this place enables perfect detection of the acoustic signal related to
breathing and a heart rhythm. Furthermore, as was shown in this study, sleep position can
be accurately detected from this location. Moreover, this location of the sensor should not
discourage patients from adopting a prone sleep position as this might be a problem with
mounting the sensor on the chest.

5. Conclusions

Our study showed that placing the position sensor on the neck, at the suprasternal
notch, may be highly effective in detecting sleep positions. We showed an accuracy above
97% for detecting each of four gross positions in a large cohort of patients. As this placement
of the sensor might be less inconvenient than the chest placement, we feel the suprasternal
notch is a good candidate for a single sensor placement in sleep studies.
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Stępowska, J.; Łukaszewska, A.;

Syczewska, M. Effect of Plano-Valgus

Foot on Lower-Extremity Kinematics

and Spatiotemporal Gait Parameters

in Children of Age 5–9. Diagnostics

2022, 12, 2. https://doi.org/

10.3390/diagnostics12010002

Academic Editors: Carlo Ricciardi,

Francesco Amato and Mario Cesarelli

Received: 29 November 2021

Accepted: 17 December 2021

Published: 21 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Effect of Plano-Valgus Foot on Lower-Extremity Kinematics and
Spatiotemporal Gait Parameters in Children of Age 5–9

Anna Boryczka-Trefler, Małgorzata Kalinowska, Ewa Szczerbik, Jolanta Stępowska, Anna Łukaszewska
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Abstract: Aim of the study was to see how a definition of the flexible flat foot (FFF) influences the
results of gait evaluation in a group of 49 children with clinically established FFF. Objective gait
analysis was performed using VICON system with Kistler force platforms. The gait parameters were
compared between healthy feet and FFF using two classifications: in static and dynamic conditions. In
static condition, the ink footprints with Clarke’s graphics were used for classification, and in dynamic
condition, the Arch Index from Emed pedobarograph while walking was used for classification.
When the type of the foot was based on Clarke’s graphics, no statistically significant differences were
found. When the division was done according to the Arch Index, statistically significant differences
between flat feet and normal feet groups were found for normalized gait speed, normalized cadence,
pelvic rotation, ankle range of motion in sagittal plane, range of motion of foot progression, and two
parameters of a vertical component of the ground reaction force: FZ2 (middle of stance phase) and FZ3
(push-off). Some statically flat feet function well during walking due to dynamic correction mechanisms.

Keywords: children; flat foot; gait; classification; statics vs. dynamics

1. Introduction

A plano-valgus foot is the most common posture deformity among children [1–3].
Despite this fact, there are still neither unambiguous diagnostic criteria of pediatric plano-
valgus foot nor commonly agreed foot assessment methods. That is why the prevalence of
pediatric flexible flat foot in the literature is rated from a few to ten per cent, and it depends
very much on diagnostic methods used, their accuracy, evaluation criteria, children’s age,
their gender, and weight [4–8]. Assessment methods used by clinicians vary from clinical
observation to measurements and imaging techniques both in weight-bearing and no
weight-bearing positions or in static and dynamic conditions. Still, the reliability, validity,
and accuracy of all these methods are unproven [9–11]. In our previous study [12], when
the same feet were assessed using two different methods, one in static condition and one
while walking, we found out the significant difference between the classification outcome:
35 feet (out of 100) classified as flat by static method were not flat according to dynamic
classification method, and four feet classified as normal according to static method were
flat according to the dynamic method.

Nowadays, the plano-valgus foot kinematics assessment methods are gaining impor-
tance because they can be used not only for the evaluation of the flat foot posture but
also for the assessment of the flat foot performance during walking. Additionally, the
influence of the flat foot on the overall gait pattern can be assessed. They seem to be
more objective and their results more compatible among researchers. Twomey et al. [13]
found increased forefoot supination and medial longitudinal arch (MLA) collapse during
walking in children with a flat foot; Caravaggi et al. [14] reported greater hindfoot eversion
and its plantarflexion relatively to the tibia, larger MLA collapse, and hallux dorsiflexion
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throughout most of the stance phase, dorsiflexion, eversion, and abduction of the midtarsal
joint and plantarflexion and adduction of the tarso-metatarsal joint. He did not observe any
significant forefoot abduction relatively to the hindfoot. Similar to Caravaggi, Saraswat
et al. [15] also observed larger hindfoot eversion and plantarflexion together with increased
midfoot pronation and dorsiflexion in plano-valgus foot. Similar observation concerning
plano-valgus foot during gait was also made by Kerr et al. [16], Kothari et al. [17], and
others [18,19].

The human musculoskeletal system is a biomechanical chain; therefore, a pertinent
question is whether the plano-valgus foot deformity affects not only foot joints but also
upper joints of the lower extremities, pelvis. and lower back [19]. Duval et al. [20] ob-
served that placing a foot in eversion caused subtalar pronation and this resulted in the
increased internal knee and hip rotation, while placing a foot in inversion resulted in
subtalar supination and increased external knee and hip rotation. However, he did not find
any evidence of dependence between increased foot pronation or supination and pelvic
anterior or posterior tilt. Opposite results were obtained by Pinto et al. [21]. He stated
that both unilateral and bilateral calcaneal eversion obtained using medially tilted wedges
resulted in pelvic anteversion. Additionally, unilateral calcaneal eversion caused a lateral
pelvic tilt. Svoboda et al. [19] also reported an increase in pelvic anteversion as a result
of unilateral and bilateral hindfoot eversion and additionally a significantly higher hip
external rotation during the first half of the stance phase with bilateral everted hindfoot.
Additionally, a study of Lopez and co-workers [22] found that the foot arch height has a
global, negative impact on the quality of life of the schoolchildren, proving the importance
of the foot deformities on the overall wellbeing. The similar study done under the same
leadership [23] in the adults did not show any dependence between the height of the
foot arch and quality of life although another study performed in the adults with foot
pathologies showed that they have a worse quality of life than the general population [24].

Taking into consideration the wide range of clinical diagnostic tools and findings
concerning the influence of the flat foot on gait pattern, the aim of this study was to see
how a definition of the flexible flat foot (FFF) influences gait parameters in children five to
nine years of age and if the choice of a diagnostic method of FFF used in the study (in static
vs. dynamic conditions) affects its results. The definitions of FFF used in practice differ
from each other, which means that the applied method of foot classification influences the
assessment of the patient’s gait stereotype and the resulting therapeutic management. The
importance of the research undertaken is due to the potentially negative impact of foot
deformation on the quality of life in adulthood.

2. Materials and Methods

2.1. Patients

Forty-nine children (37 boys and 12 girls) were recruited to the study. Recruitment
was carried out in the period of two years during the clinical examination at The Children’s
Memorial Health Institute in Warsaw, Dept. Rehabilitation, at the Outpatient Clinic. All
children fulfilling the criteria were invited to participate. The inclusion criteria were as follows:
age from 5 to 9 years and flexible flat foot, clinically established. The exclusion criteria were:
rigid flat foot, secondary flat foot caused by the damaged central nervous system (CNS),
neuromuscular diseases, lower-limb injury, or surgical intervention in the lower legs in the
past. The demographic characteristic of the group is presented in Table 1. The study was
approved by the Local Ethical Committee. It was a prospective cohort type study.
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Table 1. Demographic characteristics of the group.

No of Subjects Median Minimum Maximum 10th Percentile 90th Percentile

Height 49 124.5 109.5 140.0 113.0 135.0
Body mass 49 24.0 18.7 39.0 20.5 34.6

BMI 49 16.23 12.62 21.73 14.22 19.19
Age 49 6.41 5.04 10.37 5.24 8.20

Informed consent was obtained from the parents of all children taking part in the
study before their enrolment.

2.2. Methods

Figure 1 presents the flow chart of the study.

Figure 1. Flow chart of the study.

2.3. Clinical Feet Assessment

Preliminary diagnose of the flexible flat foot was based on a clinical examination
conducted independently by an experienced physician and physiotherapist. A foot was
defined as flat when, during the examination while standing, the MLA was collapsed,
and/or the medial side of the foot was bulging because of the talus head protruding
just under the medial malleolus. The heel valgus angle was measured with a goniometer
during standing on both feet. It was measured three times, and then, an averaged result was
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calculated. Flexible flat foot was identified when the MLA rebuilt in non-weight-bearing
position and while tiptoe standing.

2.4. Ink Footprints

After the preliminary examination, ink footprints from the Harris and Beath pedograph
were obtained, and they were further compared with Clarke’s footprinting graphics. A foot
was diagnosed as flat if the ink footprint from the Harris and Beath pedograph matched
Clarke’s footprinting graphics types between 7 and 10. The matching of footprints was
performed independently by two experienced examiners, and no discrepancy between
their results occurred. The complete description of the examination methodology on the
Harris and Beath pedograph is included in the previous study [12].

2.5. Pedobarography

Next, plantar loads during gait were evaluated (Figure 2A). Plantar loads were cap-
tured using the emed system (Novel Company) [25]. The complete description of the
examination methodology on the emed platform is included in a previous study [12].

Figure 2. (A) Gait trial during pedobarography (photo from Novel’s web page www.novel.de,
accessed on 28 November 2021). (B) Instrumented gait analysis.

Data from three plantar loads of left and three plantar loads of right foot of each child
were averaged and taken for further analysis. Geometric measures of the feet (midfoot
width, instep width, instep, foot width) were calculated by Novel software. The Arch Index
was calculated based on the definition introduced by Cavanagh and Rodgers. The value of
Arch Index equal to 0.27 was taken as cut-off value between normal and flat foot.

2.6. Instrumented Gait Analysis

Objective gait analysis was performed using a 12 camera VICON MX System
(Figure 2B). The Plug-In-Gait marker set and lower-body model were used. Patients walked
with their preferred, self-selected speed several times along the walkway to obtain six
technically correct trials, which were later imported to the Polygon software and averaged.
The data extracted from the averaged reports were later analysed. Spatio-temporal data
were expressed as per cent of the age- and sex-matched reference data [26]. The following
parameters were taken into the analysis: gait speed, cadence, step length, step width, stance
phase, single-stance phase, pelvic tilt, pelvic range of motion (ROM) in sagittal plane, pelvic
obliquity, pelvic range of motion in frontal plane, pelvic rotation, pelvic range of motion in
transversal plane, hip flexion at initial contact, hip flexion in terminal stance, hip flexion
in swing, pass retract, hip range of motion, hip abduction, hip range of motion in frontal
plane, hip rotation in swing, hip range of motion in transversal plane, knee flexion at initial
contact, knee flexion in weight acceptance, knee flexion in standing, maximal knee flexion in
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swing, knee flexion in terminal swing, knee range of motion, dorsiflexion at initial contact,
maximal dorsiflexion in standing, maximal plantarflexion, plantarflexion in swing, ankle
range of motion in sagittal plane, foot progression, range of motion in foot progression, and
maximal values of ground reaction force components (vertical, medio-lateral, and fore-aft).

2.7. Statistical Analysis

Statistical analysis of the data comprised a chi-square test to check the variables’
distribution, the Wilcoxon signed-rank test for matched pairs to find differences between
parameters of left and right leg, and the Mann–Whitney U test to compare lower extremities
ROM and kinematic and spatio-temporal parameters of the healthy and flat feet. The
statistically significant level was set as 0.05.

Two different comparisons were performed in the analysis. In the first one, the data
were divided into two groups based on Clarke’s classification: the first group consisted of
flat feet and the second of normal feet. In the second one, the division to flat and normal
feet was based on the Arch Index from dynamic walking on emed platform.

3. Results

The comparisons of the parameters between left and right leg, done with Wilcoxon signed-
rank test, showed no differences; thus, the data from left and right legs were pooled together.

When the type of the foot was based on Clarke’s footprinting graphics, no statistically
significant differences were found between flat feet and normal feet groups in spatio-
temporal, kinematic, or ground reaction force parameters.

In the second case, when the division was done according to the Arch Index from
the pedobarography, the following parameters were statistically significantly different
between flat feet and normal feet groups: normalized gait speed (Figure 3), normalized
cadence (Figure 3B), pelvic rotation (Figure 4A), ankle range of motion in sagittal plane
(Figure 4B), range of motion of foot progression (Figure 4C), and two parameters of a
vertical component of the ground reaction force: FZ2 (middle of stance phase) (Figure 5A)
and FZ3 (push-off) (Figure 5B).

 

Figure 3. The influence of the type of the foot defined by the Arch Index on the spatio-temporal
parameters: (A) speed, “-”—normal foot (median = 84.0%), “+” flat foot (median = 72.0%), and (B)
cadence, “-” normal foot (median = 83.0%), “+” flat foot (median = 78.0%).
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Figure 4. The influence of the type of the foot defined by the Arch Index on the kinematics: (A) pelvic
rotation in transverse plane, “-” normal foot (median = 2.0), “+” flat foot (median = 0.0). (B) Ankle
range in sagittal plane, “-” normal foot (range = 32.5), “+” flat foot (median = 26.0), and (C) the foot
progression range, “-” normal foot (median = 15.0), “+” flat foot (median = 12.0).

Figure 5. The influence of the type of the foot defined by the Arch Index on the parameters of the
vertical ground reaction force: (A) FZ2 (middle of stance phase), “-” normal foot (median = 81.5%
BW), “+” flat foot (median = 85.0% BW), and (B) FZ3 (push-off), “-” normal foot (median = 105.0%
BW), “+” flat foot (median = 101.5% BW). BW, body weight.

The summary statistics of all analysed parameters is given in Tables 2 and 3. Table 2
presents the parameters when the feet were divided into flat and normal feet groups
according to the ink footprinting and Clarke’s definition and Table 3 when the feet were
divided according to the Arch Index from pedobarography. As all the parameters were
non-normally distributed (as showed by the results of the chi-square test), the data were
summarized by the medians and 10th and 90th percentiles.
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Table 2. The gait parameters when the feet were divided according to the ink footprinting. The
parameters were summarized by medians and 10th and 90th percentiles. Z—the results of the
Mann-Whitney U test, p-level—probability value.

Parameter Flat Foot Group Normal Foot Group Z p-Level

Normalized gait speed (%) * 75.0 <56.0–100.0> 74.5 <61.5–104.0> −0.333 0.739
Cadence (%) * 79.0 <68.0–92.0> 81.0 <71.0–94.5> −0.369 0.711
Step width (m) 0.16 <0.12–0.2> 0.155 <0.13–0.235> −0.454 0.649

Normalized step length (%) * 93.0 <79.0–115.0> 95.5 <84.0–115.0> −0.916 0.360
Stance phase (%) 60.6 <58.8–63.2> 61.7 <58.3–64.1> −0.734 0.463

Single stance phase (%) 39.5 <35.0–43.0> 39.2 <36.6–44.4> 0.006 0.995
Pelvic tilt (deg) 8.0 <2.0–15.0> 10.0 <−0.5–15.5> −0.340 0.734

Pelvic range in sagittal plane (deg) 3.0 <2.0–5.0> 3.0 <2.0–5.0> −0.261 0.794
Pelvic obliquity (deg) 0.0 <−3.0–2.0> 0.0 <−3.5–3.0> 0.024 0.981

Pelvic range in frontal plane (deg) 6.0 <5.0–10.0> 6.0 <5.5–8.5> −0.455 0.649
Pelvic rotation (deg) 0.0 <−2.0–5.0> 0.0 <0.0–4.0> −0.366 0.714

Pelvic range in transverse plane (deg) 9.0 <5.0–14.0> 8.5 <4.5–12.5> 0.540 0.589
Hip flexion at initial contact (deg) 24.0 <15.0–34.0> 26.5 <16.5–36.5> −0.309 0.757

Hip flexion at terminal stance (deg) −13.0 <−22.0–−3.0> −11.0 <−25.5–−5.5> −0.170 0.865
Hip flexion in swing (deg) 26.0 <17.0–36.0> 28.0 <18.5–40.5> −0.449 0.654

Pass retract (deg) 0.0 <0.0–5.0> 3.0 <0.0–5.0> −0.914 0.361
Hip range in sagittal plane (deg) 38.0 <31.0–46.0> 38.5 <33.5–49.0> −0.285 0.776
Hip range in sagittal plane (%) 90. 0 <76.0–105.0> 92.0 <77.5–116.5> −0.358 0.721

Hip abduction (deg) 0.0 <−5.0–5.0> −1.0 <−5.0–4.5> 0.667 0.505
Hip range in frontal plane (deg) 10.0 <6.0–13.0> 10.0 <7.0–13.5> −0.164 0.870

Hip rotation (deg) −8.0 <−22.0–14.0> −7.5 <−15.0–13.5> −1.644 0.100
Hip range in transverse plane (deg) 20.0 <14.0–35.0> 19.0 <13.5–34.0. 0.434 0.664
Knee flexion at initial contact (deg) 0.0 <−4.0–5.0> 1.0 <−2.5–8.0> −0.819 0.413

Knee flexion at weight acceptance (deg) 11.0 <5.0–17.0> 11.5 <5.5–21.0> −0.400 0.689
Knee flexion at midstance (deg) 1.0 <−4.0–5.0> 0.5 <−4.5–7.0> −0.182 0.856
Max knee flexion at swing (deg) 53.0 <46.0–58.0> 54.0 <48.5–60.0> −0.673 0.501

Knee flexion in terminal swing (deg) −5.0 <−11.0–−2.0> −5.0 <−6.0–−3.0> −0.772 0.440
Knee range in sagittal plane (deg) 55.0 <47.0–62.0> 55.0 <47.0–64.0> −0.461 0.645

Ankle flexion at initial contact (deg) −5.0 <−10.0–0.0> −4.5 <−9.0–2.0> 0.018 0.985
Max dorsiflexion in swing (deg) 14.0 <8.0–17.0> 14.5 <9.5–18.5> −0.606 0.544

Max plantarflexion (deg) −13.0 <−28.0–−2.0> −17.0 <−20.0–−2.0> 0.434 0.664
Ankle range in sagittal plane (deg) 27.0 <22.0–39.0> 29.0 <21.0–33.5> −0.109 0.914

Foot progression (deg) −3.0 <−15.0–8.0> 0.0 <−8.0–13.5> −0.806 0.420
Range of foot progression (deg) 13.0 <9.0–22.0> 12.5 <9.5–17.0> 0.327 0.743

FZ1 ** 104.0 <94.0–120.0> 101.0 <93.5–114.5> 0.891 0.373
FZ2 ** 85.0 <71.0–94.0> 82.5 <66.5–94.0> 0.509 0.611
FZ3 ** 102.0 <95.0–110.0> 103.0 <98.5–115.5> −0.685 0.493
FX1 ** 9.0 <7.0–13.0> 9.0 <8.0–11.0> −0.200 0.841
FX2 ** 0.0 <0.0–2.5> 0.3 <0.0–3.8> −0.382 0.702
FY1 ** 18.0 <12.0–23.0> 16.5 <11.0–26.0> 0.315 0.753
FY2 ** 18.0 <12.0–24.0> 18.0 <14.5–25.0> −0.806 0.420

* normalized to age matched reference data of healthy children; ** normalized to body weight.
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Table 3. The gait parameters when the feet were divided according to the Arch Index from pedobaro-
grahy. The parameters were summarized by medians and 10th and 90th percentiles. The statistically
significant differences were marked by bolded font. Z—the results of the Mann-Whitney U test,

p-level—probability value.

Parameter Flat Foot Group Normal Foot Group Z p-Level

Normalized gait speed (%) * 72.0 <56.0–102.0> 84.0 <61.0–100.0> 2.112 0.035
Cadence (%) * 78.0 <68.0–92.0> 83.0 <72.0–94.0> 2.243 0.025

Step width 0.16 <0.12–0.22> 0.15 <0.13–0.19> −1.373 0.170
Normalized step length (%) * 90.0 <77.0–113.0> 96.0 <80.0–116.0> −1.699 0.089

Stance phase (%) 61.0 <59.0–63.8> 60.4 <58.7–62.9> −0.701 0.483
Single stance phase (%) 39.2 <35.0–43.4> 39.8 <35.5–43.0> 0.430 0.667

Pelvic tilt (deg) 9.0 <2.0–15.0> 6.0 <−2.0–12.5> −1.756 0.079
Pelvic range in sagittal plane (deg) 3.0 <2.0–5.0> 3.0 <2.0–5.0> 0.653 0.514

Pelvic obliquity (deg) 0.0 <−3.0–2.0> 0.0 <−3.0–3.5> 0.637 0.524
Pelvic range in frontal plane (deg) 6.5 <5.0–10.0> 6.0 <5.0–9.0> −0.499 0.618

Pelvic rotation (deg) 0.0 <−2.0–4.0> 2.0 <−2.0–5.0> 2.128 0.033
Pelvic range in transverse plane (deg) 9.0 <6.0–14.0> 9.0 <5.0–14.5> 0.523 0.601

Hip flexion at initial contact (deg) 26.0 <16.0–35.0> 21.0 <15.0–33.5> −1.269 0.204
Hip flexion at terminal stance (deg) −13.0 <−20.0–−5.0> −14.5 <−27.0–−3.5> −0.556 0.578

Hip flexion in swing (deg) 28.0 <17.0–37.0> 25.5 <16.5–35.5> −1.313 0.189
Pass retract (deg) 2.0 <0.0–5.0> 0.0 <0.0–5.0> −0.241 0.810

Hip range in sagittal plane (deg) 37.5 <32.0–46.0> 38.0 <30.5–45.5> 0.227 0.820
Hip range in sagittal plane (%) 88.0 <76.0–105.0> 90.0 <77.5–108.5> 0.706 0.480

Hip abduction (deg) 0.0 <−5.0–5.0> 0.0 <−5.0–5.0> −0.726 0.468
Hip range in frontal plane (deg) 10.0 <6.0–14.0> 10.0 <8.0–13.0> 0.819 0.413

Hip rotation (deg) −8.5 <−30.0–12.0> −5.0 <−15.0–15.0> −0.608 0.543
Hip range in transverse plane (deg) 20.0 <14.0–30.0> 21.5 <12.5–43.0> 0.722 0.470
Knee flexion at initial contact (deg) 0.0 <−3.0–5.0> 1.0 <−5.0–5.0> 0.260 0.795

Knee flexion at weight acceptance (deg) 11.5 <5.0–20.0> 11.0 <5.0–16.5> −0.268 0.789
Knee flexion at midstance (deg) 0.0 <−4.0–7.0> 2.0 <−4.5–9.0> 1.095 0.274
Max knee flexion at swing (deg) 53.0 <46.0–59.0> 53.0 <47.5–59.0> 0.053 0.958

Knee flexion in terminal swing (deg) −5.0 <−10.0–−2.0> −5.0 <−13.0–−3.0> −1.323 0.186
Knee range in sagittal plane (deg) 55.5 <45.0–62.0> 54.0 <46.5–67.5> 0.016 0.987

Ankle flexion at initial contact (deg) −5.0 <−10.0–0.0> −3.0 <−12.0–0.0> 0.811 0.417
Max dorsiflexion in swing (deg) 14.0 <9.0–17.0> 13.0 <7.0–18.0> −0.118 0.906

Max plantarflexion (deg) −13.0 <−22.0–−2.0> −17.0 <−28.5–−5.0> −1.837 0.067
Ankle range in sagittal plane (deg) 26.0 <21.0–35.0> 32.5 <24.0–39.5> 3.265 0.001

Foot progression (deg) −3.0 <−17.0–8.0> −1.0 <−8.0–11.5> 1.099 0.272
Range of foot progression (deg) 12.0 <8.0–19.0> 15.0 <10.0–25.5> 3.265 0.001

FZ1 ** 103.0 <93.0–117.0> 104.5 <95.0–122.0> 0.754 0.451
FZ2 ** 85.0 <71.0–94.0> 81.5 <68.0–90.0> −2.101 0.036
FZ3 ** 101.5 <94.0–101.0> 105.0 <97.5–116.0> 2.295 0.022
FX1 ** 10.0 <7.0–13.0> 9.0 <6.5–10.5> −1.387 0.165
FX2 ** 0.0 <0.0–2.5> 1.0 <0.0–3.8> 1.095 0.274
FY1 ** 17.5 <12.0–22.0> 17.5 <11.5–24.0> 0.466 0.641
FY2 ** 17.0 <12.0–23.0> 20.5 <12.0–25.0> 1.926 0.054

* normalized to age matched reference data of healthy children; ** normalized to body weight.

4. Discussion

It is commonly believed that flat foot affects walking pattern [14,27]. Although some
tests involving children’s sport performance showed no difference between children with
and without flat foot, the clinical observations show that a great part of flat feet are
symptomatic, and more and more researchers find proof that not just symptomatic, but
also asymptomatic flat feet do affect function [14,19,28,29]. Such discrepancies between the
researchers may be a consequence of different diagnostic methods they use to classify a flat
foot for their research. That is why it is also so difficult to compare different study results.

The aim of this study was to investigate how, if at all, a FFF influences gait parameters
in children and if a choice of a diagnostic method used to identify FFF affects the results

63



Diagnostics 2022, 12, 2

of the gait pattern assessment. We examined spatio-temporal, kinematic, and kinetic
parameters of the flat feet and healthy feet in a group of children, using two different
classification methods. The main result is the finding that a diagnostic method according to
which the flat foot is established has an important impact on the results. The statistically
significant differences of gait parameters between healthy and flat feet were found only
when the classification was based on the Arch Index in dynamic condition. We decided to
use two classification methods because defects in foot posture in static conditions are not
always seen in dynamic conditions: in fact, flat foot posture is not always accompanied
by the impaired function [12,18,30,31]. In our previous study, it was proven that there is a
significant difference between the outcome when classifying the feet in static and dynamic
conditions [12]. A great number of feet classified in static conditions as flat feet according
to the classification executed in dynamic conditions turned out to be not flat.

Examining the spatio-temporal parameters, we found, as observed also by Carravaggi
et al., Lin et al., and Hösl et al. [7,14,18] a statistically significant decrease in walking speed
and cadence in children with flat feet in comparison to healthy feet. Lin and co-authors
additionally observed a reduction in stride length, which was not the case in our study [7].
Similar results but in adults were found by Levinger et al. [31]. He found a reduction in
cadence but, contrary to Lin’s study, an increase in stride length.

From other researchers’ studies, it is already known that speed is a factor that signifi-
cantly affects both kinematic and kinetic parameters, such as joint ROM, joints moments,
the ground reaction forces [32]. Stansfield et al. in his longitudinal study of gait of healthy
children (5–12 years old) stated that walking speed has a greater impact on gait parameters
than age [33,34]. He found that a decreased walking speed can cause the decrease in the
peak plantar flexion angle.

Regarding the kinematic parameters in this study, a statistically significant decrease in
ankle ROM in sagittal plane was observed in children with FFF in comparison to healthy
feet. The decrease in the ankle range of motion in a sagittal plane means a weaker push-off
during gait and relates to a lower FZ3—a parameter of the vertical component (second
maximum) of the ground reaction force during this phase of gait. Similar results were
obtained by other researchers [18,31]. Hösl et al. [18] observed a limited hindfoot motion in
the sagittal plane, which was probably compensated by increased midfoot dorsiflexion and
an excessively mobile hallux during the push-off phase. He also noticed a trend towards
lower FZ3 in the symptomatic flat foot together with a reduced gait speed. Remarkably
similar results were obtained by Saraswat et al. [15] He observed a reduced ROM in the
sagittal plane of an ankle joint in children with flat feet, accompanied by its eversion and
plantarflexion. Regarding kinetic parameters, the smaller plantarflexion and outward
rotation moment peaks together with smaller power generated by an ankle joint of the FFF
were found.

Recently more proofs were found to support the hypothesis that morphology of the flat
foot is not always accompanied by its abnormal function [31]. Therefore, maybe we should
differentiate between morphological features of flat foot and its influence on the function,
i.e., walking. That is why, in our study, we used two methods of flat foot classifications: in
static and in dynamic conditions. Using the classification in static conditions, we did not
find any statistically significant differences between flat and healthy feet in any functional
parameters, i.e., spatio-temporal, kinematic, and kinetics parameters. This finding can lead
to the conclusion that examining foot posture in static conditions does not help a clinician
to find patients who have real functional walking problems. Sometimes statically flat feet
function well during walking because they have the potential of dynamic correction of
themselves. Thus, maybe a clinical examination in static conditions should not be the
only one while deciding on the treatment. It seems that the dynamic tests, which identify
individuals with functional problems, should be the basis for planning the treatment.
Children with FFF identified in static conditions who do not have gait impairments should
probably be put under observation and not immediately under treatment. A classification
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done in dynamic conditions identifies children with FF who have walking impairments
and really need treatment.

The main limitation of the present study is the relatively low number of patients and
the imbalance between female and male participants. This resulted from the fact that the
patients were recruited from the outpatient clinic, and all patients who fulfilled the criteria
were invited to participate.

In conclusion, the diagnosis of the flat foot based on the evaluation in the static
condition and during the clinical assessment seems not be sufficient for decision making
about the treatment of pediatric patients with flexible flat foot. One of the main findings
from our study is that the gait pattern pathology seen in the gait parameters can depend on
the classification method within the same group of patients with clinical problem.
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siatki centylowej. Med. Sport 2005, 21, 99–110.
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Abstract: Motion estimation and compensation are necessary for improvement of tumor quantifica-
tion analysis in positron emission tomography (PET) images. The aim of this study was to propose
adaptive PET imaging with internal motion estimation and correction using regional artificial evalua-
tion of tumors injected with low-dose and high-dose radiopharmaceuticals. In order to assess internal
motion, molecular sieves imitating tumors were loaded with 18F and inserted into the lung and liver
regions in rats. All models were classified into two groups, based on the injected radiopharmaceutical
activity, to compare the effect of tumor intensity. The PET study was performed with injection of
F-18 fluorodeoxyglucose (18F-FDG). Respiratory gating was carried out by external trigger device.
Count, signal to noise ratio (SNR), contrast and full width at half maximum (FWHM) were measured
in artificial tumors in gated images. Motion correction was executed by affine transformation with
estimated internal motion data. Monitoring data were different from estimated motion. Contrast
in the low-activity group was 3.57, 4.08 and 6.19, while in the high-activity group it was 10.01, 8.36
and 6.97 for static, 4 bin and 8 bin images, respectively. The results of the lung target in 4 bin and the
liver target in 8 bin showed improvement in FWHM and contrast with sufficient SNR. After motion
correction, FWHM was improved in both regions (lung: 24.56%, liver: 10.77%). Moreover, with
the low dose of radiopharmaceuticals the PET image visualized specific accumulated radiopharma-
ceutical areas in the liver. Therefore, low activity in PET images should undergo motion correction
before quantification analysis using PET data. We could improve quantitative tumor evaluation by
considering organ region and tumor intensity.

Keywords: animal model; imaging; rat; radioisotope; respiratory organ

1. Introduction

Positron emission tomography (PET) provides functional images, including biological
information, using radiopharmaceuticals emitting positrons. PET system allows imaging of
biochemical changes in tumors before morphological changes, unlike anatomical imaging
diagnostic methods, such as computed tomography (CT) or magnetic resonance imaging
(MRI). The small animal PET scanner is widely used in noninvasive molecular imaging
research in the preclinical stage because of its high sensitivity and spatial resolution.
However, when the injected radiopharmaceutical activity was low, the PET image quality
was also quite low, and was insufficient for detecting specific areas in small animals.
However, when performing the clinical study, high injected doses of radiopharmaceuticals
were harmful to subjects.

Respiration and cardiac motion induce degradation of image quality and quantity by
causing deficiency of count and blurring of lesions during PET acquisition [1]. Accordingly,
motion correction is necessary for the improvement of quantitative tumor evaluation
and for preventing decline in image quality while acquiring PET images [2]. In order to
minimize these repercussions, various motion estimation methods measuring external
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motion have been introduced. These methods include the detection of pressure variations
using pressure sensors, and optical motion tracking systems, such as POLARIS (Northern
Digital, Inc., Waterloo, Canada) and the charge-coupled device (CCD) camera [3–5].

Various techniques have been researched to correct for motion due to the cardiac and
respiratory cycle. Methods using image registration [1,6,7] and optical flow algorithms [8,9]
have been applied to reconstructed images as post-processing stages. Among preprocessing
methods, some approaches used system matrix in the image reconstruction period [10–12],
and some used rigid or affine algorithms in sinogram correction [13,14]. All the above-
mentioned methods require estimates of organ motion. Currently, the respiratory gating
method is most commonly used for motion correction, and the electrocardiogram (ECG)
gating method is used for cardiovascular disease study [14,15].

Previous studies have shown that the gated PET method using an external monitor-
ing device provides motion-corrected images. When the number of gates increases, the
acquired image becomes similar to the real shape; but the contrast in the image is reduced
by noise increase due to loss of count [16]. The monitoring data do not accurately represent
the real organ motion [17]. The lungs and liver are among the organs most influenced by
respiration and heartbeat; therefore, motion compensation is important for tumors located
near the thoracic abdomen [17].

In this study, we designed the lung and liver motion model imaging with dual cardiac-
respiratory gating for regional tumor quantification [18]. We tried to ascertain acute internal
motion in PET images with 2-deoxy-2-[18F] fluoro-D-glucose (18F-FDG) by insertion of
artificial tumors containing radioactive substances [19]. The purpose of this study was
the improvement of quantitative tumor evaluation, depending on the target organ region
and tumor intensity, through internal motion estimation and correction using thoracic
artificial tumors.

2. Materials and Methods

2.1. Motion Model Preparation

All protocols of this study were approved by the Institutional Animal Care and Use
Committee of the Korea Institute of Radiological and Medical Science (KIRAMS 2012-13).
This study was performed in accordance with the guidelines of the KIRAMS and the
Guide for the Care and use of Laboratory Animals [6]. Eight female Sprague-Dawley (SD)
strain rats, aged 6 weeks and weighing approximately 300 g, were employed in these
experiments. They were purchased from Harlan Laboratories (Indianapolis, IN, USA).
They were quarantined 6 days before surgical procedure. All rats were considered to be
in good health on the basis of physical examinations. The rats were housed in a facility
approved by KIRAMS and were fed a standard diet. Rats were anesthetized by isoflurane
inhalation anesthesia (2% mixed with 100% oxygen by the endotracheal catheter; Foran®,
Choongwae Pharma Co., Suwon, Korea) [20]. In order to supply oxygen during open
chest surgery, we disinfected the neck region of the rats by povidone—iodine and ethanol.
The dedicated small animal ventilator (DJI-101, Daejong Instrument Industry Co., Seoul,
Korea) was connected and the catheter was inserted. Temperature was achieved at 30 ◦C
using a plastic pad with a water-filled chamber and an infrared ramp during injection and
uptake time.

Rats were divided into 2 groups according to the region planted with the molecular
sieve containing radioactive material; one was the lung region group and the other the
liver region group. As shown in Figure 1a, the planting surgeries in the lung region were
performed inside the opened thorax region. Skin and intercostalis muscle were incised at
the right 8th intercostal region, then the incised thoracic wall was expanded using surgical
retractor. The molecular sieve was attached on the sternal surface of the right caudal lung
lobe. In the liver region group, skin and abdominal muscles were incised at the left cranial
abdominal region following the rib line and expanded by retractor. The molecular sieve
was inserted into the left medial lobe of the liver. After attachment and insertion of the
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molecular sieve, incision sites were closed with 4-0 silk suture. The experimental conditions,
including warming and anesthesia, were maintained during the entire study period.

 

Figure 1. The results of motion correction PET image. (a) The left side image represents no motion
correction, and the right side is a motion correction image of the lung. (b) The left side of the PET
image represents no motion correction in liver, and right side represents a motion correction image.

Molecular sieves were immersed in 70% ethanol for one whole day before study and
were allowed to absorb 18F on the verge of surgery. We adjusted the absorbed activity
level of molecular sieves, and thus classified them into two groups: the high-activity
group (about 0.67 MBq) and the low-activity group (about 0.37 MBq). All the molecular
sieves were coated with thermoreversible gel (Pluronic® 127F hydrogel) for quantitative
estimation [21]. We excluded the models with poor vital conditions, such as respiratory,
anesthesia, suture, and 18F-FDG uptake, from the experimental group.

2.2. PET Image Acquisition

All PET images in each region were acquired on a dedicated small animal PET scanner
(InveonTM, Siemens Preclinical Solutions, Knoxville, TN, USA), as shown in Figure 1b, after
radioactive molecular sieve insertion under anesthesia maintenance. This PET scanner
had Lutetium oxyorthosilicate (LSO) with 1.6 mm × 1.6 mm detector pixel spacing. The
rats were injected with 18F-FDG (37 MBq in 0.2 mL) via the tail vein. For sufficient FDG
distribution in the body, a 60 min uptake period was required following the injection. PET
images were obtained as list-mode data for 20 min. Breathing signals were collected from
pneumatic sensors attached to the thorax of the rat [22]. Cardiac signals were obtained from
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ECG by standard limb lead method. These signals were converted into trigger signals by
the external motion monitoring system (BioVet, m2m Imag. Corp., Newark, NJ, USA). The
threshold value of the trigger event was determined at systole by R-wave from ECG and
inhale state of respiration cycle. The trigger signals simultaneously reflected the motion of
the heart and breathing using the dual-trigger method [23]. Each line of response in the list-
mode data was converted into sinogram gated various frames (2~16 bin) by a respiratory
trigger event and an ECG trigger event, simultaneously. The acquired emission data were
reconstructed using Fourier rebinning and ordered subsets expectation maximization 2D
(OSEM 2D) algorithm with 4 iterations.

2.3. MRI Data Acquisition

MRI studies were performed using a 3T clinical MRI system (Magnetom Tim Trio,
Siemens Medical Solutions, Erlangen, Bavaria, Germany) with a human wrist coil. Coronal
2D MR images were acquired using a T1-FLASH sequence with respiratory triggering
and integrated parallel acquisition techniques (iPAT). The parameters were as follows:
repetition time = 65.25 ms, echo time = 3.58 ms, flip angle = 12◦, slice thickness = 2.5 mm,
filter = distortion correction, phase oversampling = 10%, and field of view = 150 mm.

Coronal 3D MRI were acquired using a T1-VIBE sequence with generalized auto-
calibrating partially parallel acquisitions (GRAPPA). The parameters were as follows:
repetition time = 5.67 ms, echo time = 1.42 ms, flip angle = 10◦, slice thickness = 2.11 mm,
filter = elliptical filter, phase oversampling = 1%, field of view = 200 mm, and slices per
slab = 12.

A tagged MRI study was performed using a 4.7 T MRI system (BioSpec, Bruker
Corp., Billerica, MA, USA) with a horizontal bore magnet and a 72-mm birdcage coil. 2D
tagged images were acquired at 10 frames per cardiac cycle using a FLASH-cine-tagging
sequence with ECG and respiration triggering. The parameters were as follows: repetition
time = 115 ms, echo time = 6 ms, flip angle = 20◦, slice thickness = 0.8 mm, filter = distortion
correction, phase oversampling = 10%, field of view = 150 mm, and matrix = 256 × 256.
acquisition time for tagged MRI was 58 min and coronal 3D MRI was 30 min.

2.4. Motion Data Extraction from PET, 2D MRI, and 3D MRI

We analyzed the movement patterns and variations in movement during the respira-
tory cycle in the thoracic–abdominal region on both PET and MRI. Motion extraction was
performed using a mutual information algorithm to register the mean image calculated
from the whole image set after the first realignment. A 7-mm Gaussian kernel filter was ap-
plied to the PET images for smoothing prior to realignment. For the MRI, we used a 5-mm
Gaussian kernel. Motion fields, which were used in motion correction, were estimated
from the acquired PET image’s in vivo fiducial marker, 3D MRI, and 2D MRI. A 7th degree
B-spline interpolation method was implemented to estimate the optimal transformation.

2.5. Motion Correction with PET, 2D MRI, and 3D MRI

We performed an image transformation for the motion correction of the PET data.
An affine transformation was performed based on the matrix generated from the motion
data [12]. The first frame of the gated PET image was set as the reference, and the other
frames were co-registered to it using a transformation derived from the sieve images, 3D
MRI, and 2D MRI. These transformations were used to correct the identical PET data in the
image space.

A PET image acquired by measured optimal gate number was separated by each bin
from the respiratory phase, and each frame of the image was adjusted by the coordinate
information based on a mid-exhalation image and a rotation about an axis. A motion-
corrected image was acquired from the sum of all transformed phase images.
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2.6. PET Image Analysis

All the data were converted into standardized uptake value (SUV) for quantitative
analysis [11]. The SUV PET image was visualized using trilinear interpolation. The sensitiv-
ity of the image was evaluated on count and signal-to-noise ratio (SNR) by drawn volume
of interest (VOI). The VOI for measuring target count was spherical with a diameter of
approximately 2 mm3, and was drawn on the target in the lung and liver region of each
image. Background for calculating SNR and contrast was measured from VOI drawn
on the surround of target region. SNR and contrast were calculated using the follow-
ing equation: SNR = (Target count/Background standard deviation) × 100; Contrast =
(Target count − Background)/Background.

The spatial resolution was evaluated on a full width at half maximum (FWHM) line
profile. The line profile was drawn through the target region in both the horizontal and
vertical directions on each image. The FWHMs were measured by Gaussian fitting from
line profile. PET image analysis was performed using the Amide’s a medical image data
examiner software. The results are presented as the mean ± SD (standard deviation).

2.7. Motion Compensation

We performed image transformation for motion correction of the PET data. Affine
transformation was operated by matrix generated from motion data [24]. The acquired PET
image by measured optimal gate number was separated by each bin from the respiratory
phase. Each frame of the image was adjusted by the information of the coordinates, based
on the mid-exhale image and the rotation of the axis. The motion-corrected image was
acquired from the sum of all transformed phase images.

3. Results

3.1. Small Animal Molecular Sieve PET Imaging

The horizontal and vertical length of the molecular sieve as motion target was
1.50 × 2.50 mm2. Figure 2 demonstrates the molecular sieve in each region in the ob-
tained static and gated PET images. The SUV of molecular sieves in the high-activity
group was more than 7, and in the low-activity group was less than 4. The horizon-
tal and vertical FWHMs of the reference molecular sieve PET image were 1.43 mm and
2.91 mm, respectively.

Figure 2. Results of detected motion variation in lung and liver during the PET image acquisition.
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The ECG and respiratory phases were simultaneously measured with PET image
acquisition. ECG pulse signals of SD-Rats using three electrodes were approximately
200~350 bpm under 2% isoflurane anesthesia after surgery. Respiration signals of SD-Rats
using a pneumatic sensor were approximately 25~40 bpm under 2% isoflurane anesthesia
after surgery.

3.2. PET, 2D MRI, 3D MRI, and Tagged MRI

The horizontal and vertical lengths of the molecular sieve were 1.50 mm × 2.50 mm.
The horizontal and vertical FWHM values of a reference molecular sieve image as a fiducial
marker were 1.43 mm and 2.91 mm, respectively. Figure 1 presents images from static PET,
gated PET, 3D VIBE MRI, 2D FLASH MRI, and 2D tagged MRI.

3.3. Motion Estimation from PET and MRI Images

Internal and external motion was measured in the lung region. The lung motion
data are presented as they varied over the time interval in Figure 2. The internal motion
data were measured from a gated PET image of a molecular sieve inserted into the body
of a small animal, and the external motion data were measured from a molecular sieve
adhered to the skin. Monitoring data measured with an external monitoring device are
also presented in Figure 2. The motion data were normalized based on the monitoring
data. The results showed that the internal variation in the lung region was on average
30–40% higher than the external variation. On the other hand, the results from the liver
region revealed that the internal variation was lower than the external variation. In both
regions of the small animals, the monitoring data were different from the internal motion
measured directly from the molecular sieve.

The estimated variations in the translations (X, Y, and Z axes) of the lung sieve in
the PET image were 2.98, 0.71, and 1.42 mm, respectively. The estimated rotation degrees
according to each axis were 0.02, 0.05, and 0.13, respectively. After motion correction
using the sieve motion data, the estimated variation in the translations was 0.25, 0.29, and
0.32 mm, respectively. The estimated rotation degrees were 0.01, 0.01, and 0.01, respectively.
After motion correction was performed by applying the motion data derived from the 3D
MRI, the estimated variations in the translations in the lung PET image were 0.11, 0.08,
and 0.21 mm, respectively. The estimated rotation degrees were 0.0051, 0.0012, and 0.0047,
respectively. The estimated variations in translations in the lung region using a 2D MRI
FLASH sequence were 2.6 and 1.3 mm for the X and Z axes, respectively. The estimated
variations using a 2D tagged MRI were 1.9 and 2.3 mm for the X and Z axes, respectively.
The results described above are shown as a graph in Figure 3.

3.4. Regional Motion Estimation

We measured internal motion in the thorax abdomen region. The lung and liver motion
data are demonstrated through the variation with time intervals in Figure 3. Internal motion
data were measured from inserted molecular sieve in small animal body of gated PET
image. Monitoring data measured from external monitoring device are also presented in
the graph. In both the regions of small animals, monitoring data were different from the
internal motion measured directly from molecular sieve.

3.5. Count, SNR, Contrast and FWHM Assessment in PET Image

We performed analysis of PET images by comparison of count, SNR, contrast and
FWHM for determining gating effect regarding the organ region and tumor intensity.
Figure 4 shows the estimated values of count, SNR and contrast in both the high-activity
group and low-activity group in the lung region. Estimated counts (counts/s) in the lung
target of the high-activity group were 9.31 ± 0.36, 8.12 ± 0.06, and 7.72 ± 0.09, and in
the low-activity group were 3.49 ± 0.32, 3.57 ± 0.45, and 3.27 ± 0.52 for static, 4 bin and
8 bin images, respectively. Evaluated SNRs in the lung target of the high-activity group
were 108.07 ± 11.01, 51.69 ± 2.90, and 28.79 ± 0.61, and in the low-activity group were
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32.57 ± 1.44, 11.01 ± 2.87, and 8.96 ± 3.75 for the static, 4 bin and 8 bin images, respectively.
Evaluated contrasts in the lung target of the high-activity group were 10.01, 8.36 and 6.97,
and in the low-activity group were 3.57, 4.08 and 6.19, for static, 4 bin and 8 bin images,
respectively (Table 1). Horizontal and vertical FWHMs in the lung target were 1.91 ± 0.17
and 3.11 ± 0.01 in the static image, 1.85 ± 0.22 and 2.58 ± 0.22 in the 4-bin image, and
1.83 ± 0.12 and 2.54 ± 0.18 in the 8 bin images (Figure 5a) (Table 2).

 

Figure 3. PET images of the molecular sieve in the lung region; (a) a static PET image, (b) a PET
image corrected using a fiducial marker, (c) an image corrected using 3D VIBE MRI, (d) an image
corrected using 2D FLASH MRI, (e) an image corrected using a 2D tagged MRI.
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Figure 4. Motion correction PET image and result of FWHM in vertical and horizontal directions in
the lung. (a) No motion correction PET image, (b) motion corrected PET image.

Figure 5. Motion correction PET image and result of FWHM in vertical and horizontal direction of
liver. (a) No motion correction PET image, (b) motion corrected PET image.

Table 1. Estimated count (counts/s) and estimated SNR in lung.

Estimated count (counts/s) in lung

High-activity group low-activity group
9.31 ± 0.36 3.49 ± 0.32
8.12 ± 0.06 3.57 ± 0.45
7.72 ± 0.09 3.27 ± 0.52

Evaluated SNR in lung

High-activity group low-activity group
108.07 ± 11.01 32.57 ± 1.44

51.69 ± 2.90 11.01 ± 2.87
28.79 ± 0.61 8.96 ± 3.75

Table 2. Horizontal and vertical FWHM in lung.

Static Image 4 Bin Images 8 Bin Images

1.91 ± 0.17 1.85 ± 0.22 1.83 ± 0.12
3.11 ± 0.01 2.58 ± 0.22 2.54 ± 0.18

The result for the liver region exhibited a sharp decline in SNR and improvement in
FWHM with the increase in gate number, as with the preceding result of the lung region.
Estimated counts (counts/s) in the liver target of the high-activity group were 4.17 ± 0.07,
4.29 ± 0.26 and 4.18 ± 0.18, and in the low-activity group were 2.18 ± 0.06, 2.08 ± 0.08
and 2.13 ± 0.12 for static, 4 bin and 8 bin images, respectively. Evaluated SNR in the liver
target of the high-activity group was 40.89 ± 4.89, 18.83 ± 0.50 and 13.52 ± 0.86, and in
the low-activity group was 23.52 ± 4.40, 11.49 ± 1.02 and 7.96 ± 0.58 for static, 4 bin and
8 bin images, respectively (Table 3). Horizontal and vertical FWHMs were 2.18 ± 0.06
and 3.16 ± 0.13 in the static images, 2.39 ± 0.13 and 3.14 ± 0.00 in the 4 bin images, and
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2.18 ± 0.07 and 2.94 ± 0.19 in the 8 bin images (Figure 5b). The liver region showed a
higher slope of fitting line in the vertical FWHM graph (0.0553) when compared to the lung
region (0.0177) (Table 4).

Table 3. Estimated count (counts/s) and estimated SNR.

Estimated count (counts/s) in liver

High-activity group low-activity group
4.17 ± 0.07 2.18 ± 0.06
4.29 ± 0.26 2.08 ± 0.08
4.18 ± 0.18 2.13 ± 0.12

Evaluated SNR in liver

High-activity group low-activity group
40.89 ± 4.89 23.52 ± 4.40
18.83 ± 0.50 11.49 ± 1.02
13.52 ± 0.86 7.96 ± 0.58

Table 4. Horizontal and vertical FWHM.

Static Image 4 Bin Images 8 Bin Images

2.18 ± 0.06 2.39 ± 0.13 2.18 ± 0.07
3.16 ± 0.13 3.14 ± 0.00 2.94 ± 0.19

3.6. Motion Corrected PET Image

Motion correction of small animal PET images was realized by affine transformation.
Figure 6 presents images of an artificial tumor in lung region both before and after motion
correction. Horizontal and vertical FWHMs were evaluated from each image for compar-
ison, as shown in Table 5. In the lung region, horizontal and vertical FWHMs showed
values of 2.04 and 2.63 before correction, and 1.89 and 2.11 after correction. Figure 7 also
presents the image of an artificial tumor in the liver region both before and after motion
correction. In the liver region, the previously mentioned criteria showed the values of 2.87
and 3.21 before correction, and 2.35 and 2.89 after correction.

Figure 6. Gate number effects on the (a) count, (b) SNR, (c) contrast in high- and low-activity
PET data.

Table 5. Horizontal and vertical FWHM values of an 18F-FDG PET image in the lung region.

FWHM Uncorrected
PET Motion
Correction
(Fiducial)

Using 3D
MRI Motion
Correction

(VIBE)

Using 2D
MRI Motion
Correction
(FLASH)

Using 2D
MRI Motion
Correction
(Tagging)

Horizontal 3.39 ± 0.08 3.31 ± 0.22 3.65 ± 0.05 2.99 ± 0.04 2.77 ± 0.06
Vertical 5.03 ± 0.11 4.54 ± 0.26 4.59 ± 0.06 4.51 ± 0.05 4.05 ± 0.08

75



Diagnostics 2021, 11, 2138

 

Figure 7. Detection of specific areas in liver. (A) Acquired CT data before PET scan, (B) Slice section
of small animal, (C) high-activity PET image, (D) low-activity PET image.

4. Discussion

In the present work, we describe region-adaptive tumor evaluation by internal motion
estimation for quantitative improvement of PET image [25]. It is hard to estimate real
internal motion with conventional methods using external markers or external monitoring
devices. Often, a surgical approach is necessary to determine tumor activity and internal
motion during PET imaging [15]. Even though the fiducial mark is set by reference value,
actual activity is difficult to measure due to the partial volume effect, the scatter effect or
the attenuation effect [26]. Therefore, we tried quantitative estimation by surgical planting
of artificial tumors of predetermined activity. The internal organ motion of small animals
was measured from artificial lesions imitated by molecular sieves in the body. Surgery
to insert artificial lesions containing radiopharmaceuticals in the lung and liver regions
was performed after anterior thoracotomy. Suture, which followed the insertion, was
appropriately performed, and we confirmed the absence of abnormal vital signs similar
to preoperative conditions. The 18F adsorbed well into artificial tumors because of the
immersion of the molecular sieves in ethanol before the initiation of study, for better
enhancement of adsorptive power [27]. The Pluronic F-127 hydrogel that was used as
coating material aided the artificial lesion to maintain activity while minimizing variation
in the body. Therefore, the count of the target region was four times greater than the count
of the organ region even after FDG was distributed completely over the entire body. The
quantitative estimation was possible because this count ratio, which meant a high contrast,
was indicated in the whole image.

The internal motion data were evaluated from inserted molecular sieves in the lung
and liver region, respectively. Upon comparison of the obtained data with the monitoring
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data, the internal motion data were not identical to the monitoring data as presented in
Figure 3. The inserted molecular sieves in the lung and liver regions showed different
internal organ motion. Movement patterns of molecular sieves were different between
each region. The internal motion in the lung region showed higher variation than the liver
region. Monitoring signals presenting only total motion would be a problem for tumor
quantification, because each region showed different motion according to the nearest organ.

Gated PET images showed that there was no proportional improvement in the count,
SNR and FWHM according to increased number of gates. In fact, a drastic reduction in
SNR was observed with increased gate numbers because of the increase in noise due to
loss of count. The obtained result exhibited overall improvement in horizontal and vertical
FWHM with an increase in gate number.

Molecular sieves were classified into two groups (high and low) based on the amount
of activity, which meant artificial tumor intensity. Although SNR was reduced in both
groups according to increase gate number, contrast was increased in low-activity groups
from 2 bin to 8 bin (Figure 4). The effect of an increase in gate number on the high-activity
group was no stronger than the low-activity group; on the contrary, contrast deteriorated
continuously in the high-activity group. This result indicates that high gate numbers are
not necessary in imaging for terminal tumors or high-intensity tumors, but are essential for
low-intensity tumor quantification. Moreover, gating of low-intensity tumors could aid in
evaluation of new radiopharmaceuticals, because low-activity substances are mostly used
in research and development.

We also recognized that vertical FWHM was more influenced by gate number than
horizontal FWHM, because of the movement patterns of thoracic abdomen organs. The
movement of lung and liver caused by respiration and heartbeat created a difference
between FWHM and actual size of molecular sieve.

The internal motion of lung and liver showed different patterns and variance. There-
fore, the gate number for motion correction should be differently set, depending on the
organ motion. The vertical FWHM of the liver region showed higher slope when compared
to the lung region, from which we concluded that the impact of gating in the liver region
was greater than in the lung region. As can be seen in Figures 4 and 5, when the gate
number is 4 bin, the result in the lung region shows that count and SNR were appropri-
ately maintained, while improvement in FWHM was observed. However, there was no
significant improvement in FWHM when gating more than 4 bin (4 bin: 17.09%, 8 bin:
18.39%). The result for the liver region in 8 bin shows that count and SNR were preserved,
while FWHM was sufficiently improved. Gating with few gate numbers in the liver region
revealed little change in FWHM improvement in contrast to the lung region (4 bin: 0.57%,
8 bin: 7.02%). This indicated that tumor imaging is needed for at least 8 bin gating in
liver region.

Motion correction was executed by affine transformation, as shown in Figure 6.
A significant difference was observed from the visible image, and we also confirmed
improvement in images evaluated by FWHM. Table 5 presents the details of quantitative
improvement in images of each region through motion correction. We ascertained that the
motion correction using regional adaptive gate images resulted in better spatial resolution
for all the regions. Our preclinical study proposed that in future, the internal motion esti-
mation method could be applied to human clinical studies, which provide the possibility
of motion-conjecture modeling without employing any external monitoring systems.

The limitation of this study is that it is difficult to directly observe the motion of
internal organs, such as the liver. Molecular sieves were used for indirect observation of
internal organs, but the molecular sieves did not settle well in internal organs and moved,
making it difficult to observe the organ motion. It is necessary to develop a model that
predicts the movement of other internal organs, as well as a breathing model, in order
to overcome the limitations of motion correction. In this paper, we described regional
adaptive PET image acquisition by internal motion estimation using artificial tumors. Our
study demonstrated that a radioactive molecular sieve inserted into the body can be used
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as an artificial tumor for accurate estimation of internal organ motion. We confirmed the
necessity of gating in low-intensity tumor quantification by carrying out a comparative
analysis between high- and low-activity groups. Gating in low-intensity tumors could
assist in the research of new radiopharmaceuticals. Estimated internal motion revealed
differences in movement pattern and variation according to organ region in small animals.
Based on this evidence, we could determine the optimal gate number and perform motion
correction in accordance with the motion characteristics of each organ. The presented
adaptive PET imaging technique based on tumor region allowed us to obtain the regional
motion-corrected image, which resolved the disadvantage of gated PET. In consequence,
we could quantitatively improve tumor evaluation by considering tumor region and
tumor intensity.

In high-dose PET images, the targeted internal organs are clearly visible, but the
background is also strongly visible. Because of this, it is difficult to analyze internal
organ motion with a severe background, such as the liver. As shown in the results of this
experiment, using low-dose PET showed that movement correction was possible not only
in the lungs with a moderate background, but also in the liver with a severe background.
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Abstract: Dynamic computer tomography (CT) is an emerging modality to analyze in-vivo joint
kinematics at the bone level, but it requires manual bone segmentation and, in some instances,
landmark identification. The objective of this study is to present an automated workflow for the
assessment of three-dimensional in vivo joint kinematics from dynamic musculoskeletal CT images.
The proposed method relies on a multi-atlas, multi-label segmentation and landmark propagation
framework to extract bony structures and detect anatomical landmarks on the CT dataset. The
segmented structures serve as regions of interest for the subsequent motion estimation across the
dynamic sequence. The landmarks are propagated across the dynamic sequence for the construction
of bone embedded reference frames from which kinematic parameters are estimated. We applied
our workflow on dynamic CT images obtained from 15 healthy subjects on two different joints:
thumb base (n = 5) and knee (n = 10). The proposed method resulted in segmentation accuracies
of 0.90 ± 0.01 for the thumb dataset and 0.94 ± 0.02 for the knee as measured by the Dice score
coefficient. In terms of motion estimation, mean differences in cardan angles between the automated
algorithm and manual segmentation, and landmark identification performed by an expert were
below 1◦. Intraclass correlation (ICC) between cardan angles from the algorithm and results from
expert manual landmarks ranged from 0.72 to 0.99 for all joints across all axes. The proposed
automated method resulted in reproducible and reliable measurements, enabling the assessment of
joint kinematics using 4DCT in clinical routine.

Keywords: dynamic CT; motion analysis; musculoskeletal imaging; registration; segmentation;
multi-atlas segmentation

1. Introduction

Musculoskeletal (MSK) conditions are a leading cause of disability in four of the
six World Health Organization regions [1] and a major contributor to years lived with
disability (YLD) [2]. MSK diseases affect more than one out of every two persons in the
United States age 18 and older and nearly three out of four age 65 and older [3]. For
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instance, patellar instability, which is a disease where the patella bone dislocates out from
the patellofemoral joint, accounts for 3% of all knee injuries [4]. Patients with this condition
can have debilitating pain, which can limit basic function, and develop long term arthritis
overtime. Understanding the complexity of such conditions and improving the results of
therapeutic interventions remains a challenge. Combining kinematic information of joints
with detailed analysis of joint anatomy can provide useful insight and help therapeutic
decision making. X-ray imaging techniques and their quantitative analysis are helpful to
better understand and manage some MSK conditions, but the 2D nature of the images
make detailed kinematic analysis challenging [5]. Dynamic computer tomography (4D-
CT) enables acquisition of a series of high temporal-resolution 3D CT datasets of moving
structures. Various phantom studies [6–9] demonstrated the validity and feasibility of
dynamic CT for evaluating MSK diseases. Several patient studies have been conducted
investigating different joint disorders of the wrist, knee, hip, shoulder and foot [10–12].
However, the accurate and reproducible detection of joint motion or subtle changes over
time in clinical routine requires image analysis procedures such as image registration. This
refers to the estimation of a spatial transformation which aligns a reference image and a
corresponding target image.

Currently, few computer-aided diagnostic tools are available for dynamic MSK image
data analysis, thus limiting the clinical applicability of quantitative motion analysis from
these images. Reasons for this include the complexity and heterogeneity of the muscu-
loskeletal system and the associated challenges in motion estimation of these structures.
MSK structures can move with respect to each other, and motion can therefore not be
assessed using a global rigid registration. Moreover, in most applications of dynamic MSK
imaging, the piece-wise rigid motion of the individual bones is of primary interest for
extracting kinematic parameters. The principal challenges for non-rigid registration are the
magnitude and complexity of osteoarticular motion, often also including sliding structures,
leading to poor accuracies or implausible deformation [13]. Block matching techniques
have been proposed to improve robustness [14,15]. Several authors have proposed methods
to account for sliding motion [16,17], but most rely on prior segmentations of bones of
interest. Motion estimation of MSK structures is therefore commonly performed using prior
manual segmentations of the bony structures, limiting registration to a region of interest
and obtaining individual bone motion to facilitate estimation of kinematics [6,8]. However,
manual bone segmentation is labor intensive and hinders application in clinical routine.

D’Agostino et al. [18] made use of image registration in estimating kinematics of
the thumb to study the Screw-home mechanism. They investigated extreme positions
(i.e., maximal Ex–Fl and maximal Ab–Ad) by means of an iterative closest-point algorithm.
Their approach required manual segmentations of each bone for each position to generate
3D surface models. Such an approach can be labor intensive when analyzing dynamic
sequences of multiple time frames or bone positions. Furthermore, the quantitative descrip-
tion of joint kinematics requires the reconstruction of the bone positions and orientation
relative to a laboratory reference frame [19]. Skeletal anatomic landmarks help to provide
what is known as bone-embedded reference frames. This determines the estimated motion
of the joints in relation to anatomical axes defined on the bones. The manual identification
of these anatomical landmarks on the CT images can also be a labor-intensive step. A
few algorithms for automatic localization of skeletal landmarks have been proposed in
literature [20–22]. Techniques based on machine learning algorithms which learn distinc-
tive image features on annotated data have also been presented [22]. These techniques
usually require a significant amount of annotated data to yield good results. In general,
most of these approaches detect geometrical features that match the shape properties of
these landmarks [20,23]. However, none of these approaches have been applied for the
computation of kinematics from dynamic images.

In this work, we propose an automated framework for motion estimation of bony
structures obtained from dynamic CT acquisitions. Changes in joint functionality are
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of diagnostic importance, the proposed automated workflow can help in quantitatively
monitoring joint health as well as the impact of therapeutic interventions.

2. Materials and Methods

2.1. Subject Recruitment

After approval from our institution’s Medical Ethics Committee (B.U.N 143201733617)
and written informed consent, 15 healthy volunteers (7 females, 8 males) were recruited
to participate in this dynamic CT study. Ages of participants ranged from (22 to 36). Five
subjects (3 females, 2 males) had a CT scan of the thumb, and 10 subjects (4 females,
6 males) had a CT scan of one of the knees. To be eligible for the study, participants should
not have reported joint pain in the previous 6 months prior to the study.

2.2. CT Acquisitions

All images were acquired with a clinical 256-slice Revolution CT (GE Healthcare,
Waukesha, WI, USA). The dynamic acquisition protocol consisted of low-dose images
(effective dose < 0.02 mSv) obtained in cine mode. Volunteers were instructed to perform
cyclic joint movements: opposition-reposition movement of the thumb (n = 5) and flexion-
extension of the knee (n = 10). Static scans were also acquired of each joint without motion
(Figure 1). Thumb base images were acquired with the patient sitting with a 90-degree
flexed elbow, with the thumb directed upwards and the forearm in a neutral rotation.
Images of the knee were acquired in full extension. The dynamic scans were acquired with
a tube rotation time of 0.28 s and a total dynamic acquisition time of 6 s. This generated
15 timeframes, each composed of a 3D CT dataset. Videos of the dynamic images are
available as Supplementary Data (Video S1 and S2). Details of the scan parameters are
shown in Table 1. In each dynamic dataset, an image with the joint in a position similar to
the static scans was selected as reference image. The selected reference image served as the
input to the multi-atlas segmentation step.

 

Figure 1. The figure shows the positioning in the gantry of the CT.
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Table 1. Overview of scan parameters for the dynamic and static acquisitions.

Dynamic Acquisition Static Acquisitions

Knee

Tube Voltage 80 kV 120 kV
Tube current 50 mA 80 mA

Tube rotation time 0.28 s 0.28 s
Reconstructed slice thickness 2.5 mm 2.5 mm

Field of View 500 mm 500 mm
Collimation 256 × 0.625 mm 256 × 0.625 mm

Dose length product 107.91 mGycm 23.06 mGycm
* CTDI 6.74 mGy 1.44 mGy

Thumb

Tube Voltage 80 kV 120 kV
Tube current 50 mA 80 mA

Tube rotation time 0.28 s 0.28 s
Reconstructed slice thickness 1.25 mm 1.25 mm

Field of View 300 mm 300 mm
Collimation 192 × 0.625 mm 192 × 0.625 mm

Dose length product 156.45 mGycm 19.58 mGycm
CTDI 13 mGy 1.63 mGy

* Computed tomography dose index.

2.3. Atlas Dataset

Atlases of the thumb base and knee were created based on the static CT scan datasets.
Manual bone segmentations were performed in collaboration with an expert in bone
anatomy using ITKSnap’s [24] active contour mode, followed by morphological operations
and manual refinement. The patella, femur and tibia were segmented for the knee images.
First, metacarpal bone and the trapezium were segmented for the thumb base. For each
joint we created two separate left and right atlases. As the knee datasets were obtained with
both legs in the gantry, we used an automated post-processing step for axis of symmetry
detection and splitting, to separate the left from the right sides. For each dataset, a total of
9 anatomical landmarks were manually identified on the bones of interest by three expert
readers. The expert readers had varying levels of expertise and training. “Reader 1” was a
physiotherapist and musculoskeletal radiology research fellow with 6 years of experience,
“reader 2” was an orthopedic surgeon with 30 years of experience and “reader 3” was an
orthopedic surgeon specialized in hand, wrist and upper limb pathology with 4 years of
experience. The mean of landmarks identified by all readers were used in the creation of
the atlas anatomical landmarks for the automated algorithm.

2.4. Multi-Atlas Segmentation

The multi-atlas segmentation (MAS) consisted of a three-step process: (1) a pairwise
registration of the image to be segmented (reference image) to the set of atlases to find
optimal transformations that align each atlas to the reference image, (2) the propagation
of the atlas labels onto the reference image using the corresponding transformations from
step 1, and (3) a fusion step which combines all labels into a single final segmentation.

The pairwise registration step can be mathematically represented by the optimization
problem below

μ̂ = argmin
μ

C
(

f (x), gn
(
(Tμ(x)

))
(1)

where f represents the reference image to be segmented, gn is the individual atlas images
and x is the spatial coordinate over the image. T is the sought spatial transformation with
parameters μ which aligns the two images. The cost function C is composed of a similarity
metric and (in the case of deformable registration) a regularization penalty.

We implemented a three-stage registration process employing a rigid, affine and a
deformable transform based on free-form deformations using cubic B-Splines [25]. Each
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stage was initialized from the previous solution. We also investigated different similarity
metrics for the pairwise registration (normalized cross correlation (NCC), mean squared
difference (MSD) and mutual information (MI)) [26] and evaluated their impact on the
accuracy of the segmentation results. The parameters used in the pairwise multi-atlas
registration are summarized in Table 2. All registrations were implemented using the open
source Elastix registration software package [27]. The labels associated to each atlas were
propagated to the reference image using the spatial transformation obtained from the final
registration stage. We also evaluated the influence on the segmentation accuracy of three
label fusion techniques (majority voting [28] (MV), global normalized cross correlation
(GNCC) [29] and local normalized cross correlation (LNCC)) [30] as implemented in
NiftySeg [31]. For the latter two fusion techniques, the impact of the hyperparameters k
(kernel size) and r (number of highest ranked atlases used) was assessed.

Table 2. Registration parameters used for the multi-atlas registration.

Parameter First Stage Second Stage Final Stage

Similarity Metric (MSD/MI/NCC) * (MSD/MI/NCC) * (MSD/MI/NCC) *

Regulariser / / Bending energy

Transform Rigid Affine B-Spline

Multi Resolution levels 4 4 4

Number of histogram bins
used for MI 32 32 32

Sampler Random Random Random

Max iterations 2000 1000 1000

Number of samples 2000 2000 2000

Optimizer Stochastic Gradient Descent Stochastic Gradient Descent Stochastic Gradient Descent

* All three metrics were investigated.

2.5. Dynamic Registration Framework

Motion estimation in the dynamic sequence was achieved through rigid registration in
which computation of the similarity was limited to the bone of interest and its immediate
vicinity. The multi-atlas segmentation approach was applied to the static reference 3DCT
dataset using atlas images priorly obtained and corresponding to different subjects. The
segmented reference images served as regions of interest for the rigid registration of each
bone to its equivalent in the dynamic sequence. The segmented bones were dilated with a
kernel radius of 3 voxels to ensure neighboring regions would be considered during the reg-
istration process. MSD was chosen as the similarity metric for this intrasubject monomodal
registration because it yielded accurate results and was the least computationally de-
manding. We implemented a sequential intensity-based registration whereby subsequent
registrations were initialized with the results of the previous registration (Figure 2II). A
series of rigid transformation matrices (Tbone,t) were obtained for each bone of interest and
for each time point (t). These transformation matrices aligned each bone in the reference
image to its corresponding position in the dynamic sequence. The general workflow of our
proposed approach is depicted in Figure 2.

2.6. Landmark Propagation and Kinematic Parameters Estimation

Anatomical landmarks from the atlases were propagated onto each of the bones of
interest in the reference images, using the spatial transformation obtained from the final
registration stage of the MAS step. A majority voting was done to decide the winning
landmark, where each landmark votes based on the local-normalized cross-correlation
(LNCC) of the registered atlas to the given target at that location. Propagation of the
anatomical landmarks to subsequent time frames was then performed using the estimated
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transformation matrices of the dynamic registration step. With these landmarks expressed

in the global coordinate system (GCS) of the CT, we computed three-unit vectors,
→
i ,

→
j ,

→
k ,

to define bone embedded reference frames for each time frame. Orientation of the axis of
the reference frames followed ISB recommendations [32,33].

 

Figure 2. A general overview of the workflow for obtaining in vivo kinematics of bony structures. (a) shows the 3-step
multi-atlas segmentation stage for obtaining segmentations of the reference image and propagation of anatomical landmarks.
(b) shows the sequential dynamic registration workflow, each bone in the first time point of the dynamic sequence (g1)
was aligned to the corresponding bone in the reference image (f) by the transformation (Tg1,f) via a rigid registration. The
registration between the second time point (g2) and the reference image was initialized with the previous transformation to
obtain the transformation Tg2,f. Subsequent time point registrations followed the same procedure. (c) shows an overlay
of the registered bones along with transformation matrices (Tbone,t) from which motions are estimated for each bony
structure. (d) shows the propagation of the anatomical landmarks from the reference image to other time points using
the corresponding bone transformations. Local coordinate systems (bone embedded reference frames) are defined using
these landmarks. Cardan angles are estimated from unit vectors constructed using the local coordinate system to generate
kinematic plots.

The relative motion Rrelative,t between a distal segment (tibia or trapezium) and proxi-
mal segment (femur or 1st metacarpus) for a chosen time point was computed as follows;

Rrealative,t = Rdistal,t R−1
proximal,t (2)

where R is a 3 × 3 rotation matrix constructed from the three-unit vectors as in Equation (3)

R =

⎡
⎣ ix iy iz

jx jy jz
kx ky ky

⎤
⎦ (3)

Cardan angles were then subsequently extracted from results of (2) using a ZXY
sequence for the thumb base and ZYX for the knee joint.
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2.7. Validation

The MAS pipeline was validated by a leave-one-out cross-validation (LOOCV) ex-
periment for each joint, in which data from one subject was taken as target, while the
remaining were used as atlases. Success of the segmentation was evaluated using overlap
and distance measures. Overlap measures consisted of false positive error (FP) and false
negative error (FN) volume fractions as well as Dice coefficients (DC) [34],

DC(A, B) =
2|A ∩ B|
|A|+ |B| (4)

FP (A, B) =
|B\A|
|B| (5)

FN (A, B) =
|A\B|
|A| (6)

where A, represents the ground truth (manual) binary segmentation and B represented the
segmentation obtained by MAS. In addition, Euclidean distance maps of the ground truth
manual segmentations and the surface of the corresponding segmentation obtained from
the atlas-based method, were used to compute the Hausdorff distance [34]. Equation (7)
shows the definition of the Hausdorff distance.

h(A, B) = max{dist(A, B), dist(B, A)}, (7)

where
dist(A, B) = max

x∈A
min
y∈B

||x − y|| (8)

We quantified the impact of introducing MAS in the dynamic registration workflow.
We used the 3D Scale Invariant Feature Transform (SIFT) [35] to automatically detect a
set of corresponding landmarks between the reference image and the moving image. The
landmarks were checked manually to ensure an accurate and even distribution of points
across all bones of interest. The Target Registration Error (TRE) was then computed as the
distance between the landmarks detected on the moving image and the landmarks of the
reference image transformed using results of the registration. We compared the TREs of
our proposed approach to those obtained using expert manual segmentations as well as a
direct B-Spline deformable registration of the whole image, initialized from a rigid + affine
registration without segmentation.

Kinematic parameters obtained via our automated anatomic landmark detection
were compared to those estimated using manually defined landmarks (obtained from the
3 different readers). Bland-Altman plots were created to show differences in kinematic
parameters estimated with our proposed approach to that obtained using the mean of all
readers as an approximation of the ground truth. We computed absolute agreement intra-
class correlation coefficients (ICCs) under a two-way mixed effects model [ICC(2,k)] [36] to
compare kinematic parameters obtained by the automated algorithm and those obtained
using manually identified landmarks by the three human readers.

2.8. Statistical Analysis

Statistical analysis was performed using Statistical Package for Social Sciences (SPSS
v23, IBM Corp, Armonk, NY, USA). We analyzed the influence of the choice of metric
(NCC, MI, MSD) for the MAS registration as well as the impact of the different label
fusion techniques (LNCC, GNCC, MV). Data distribution was checked using a Shapiro-
Wilk test for normality [37]. Non-parametric tests were chosen since not all variables
were normally distributed. To compare the fusion techniques, we used a non-parametric
Friedman test for repeated measures. When the Friedman test was statistically significant,
a post-hoc Wilcoxon signed-rank analysis was performed. Furthermore, the Wilcoxon
signed rank test [38] was used to check for statistical significance between the mean TRE
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obtained by the proposed approach and the baseline method (p = 0.05). The distribution
of the landmark identification error in the leave-one-out experiments was analyzed using
descriptive statistics (median and maximal error) and box plots.

3. Results

3.1. Multi-Atlas Segmentation

Figure 3 summarizes the results of the segmentations using overlap measures. We
successfully segmented the bones of interest for both the knee and thumb dataset resulting
in mean Dice coefficients above 0.90. No significant differences were observed between
the three investigated similarity metrics (X2 = 4.7, p = 0.09). We therefore chose MSD in
subsequent experiments because of the low computational complexity.

Figure 3. (a) Box plots of label fusion techniques against Dice coefficient for the two joints. These
results are generated using MI as the similarity metric for the pairwise registrations. Parameters for
LNCC were k = 5, r = 3 and for GNCC r = 3. (b) Plots of similarity metrics (used in the pairwise
registration between atlases and images to be segmented) against Dice coefficient for the two joints.

Concerning the label fusion, the Friedman test showed significant differences between
the label fusion techniques. Post-hoc Wilcoxon signed rank tests revealed that LNCC was
significantly better than GNCC for all joints (p < 0.001).

The hyperparameters, kernel size (k) and the number of highest ranked atlases (r), had
a marginal impact on the Dice score (Figure 4). Consequently, we selected LNCC with k = 5
and r = 3 to obtain the final automatic segmentations. Table 3 summarizes the quantitative
results of these experiments. An example of the volume rendered segmentation for the two
joints using LNCC (k = 5, r = 3) is shown in Figure 5.
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Figure 4. (a) Plot of Dice coefficient against number of highest ranked atlases (r) for a fixed kernel size = 5 voxels and
(b) dice coefficient against kernel size (k) for a fixed r = 3 for the knee.

Table 3. Segmentation evaluation criteria results (Mean ± SD) over the leave-one-out cross-validation for the 2 joints using
LNCC (k = 5, r = 3).

Joint Dice Score FP FN
Mean Surface
Distance (mm)

Max Surface
Distance (mm)

SD Surface
Distance (mm)

Thumb 0.90 ± 0.01 0.08 ± 0.02 0.14 ± 0.03 0.53 ± 0.05 4.89 ± 1.25 0.68 ± 0.05

Knee 0.94 ± 0.02 0.05 ± 0.02 0.06 ± 0.02 0.42 ± 0.16 4.91 ± 1.13 0.66 ± 0.18

FP = false positive error fraction, FN = false negative error fraction.

Figure 5. Segmentation result of our multi-atlas multi-label segmentation for (a) thumb base and (b) knee joint.

3.2. Dynamic Registration

The box plots in Figure 6a show the TRE results of the dynamic registration step. Intro-
ducing our MAS approach in the dynamic registration framework successfully registered
the dynamic sequences and performed on par (Wilcoxon 2-tailed ranked test; p = 0.51) with
a manual segmentation-guided approach. As a comparison, we also evaluated the TRE of
a direct deformable registration, without prior segmentation of the bones. The large values
for the TRE obtained indicate the registration often failed, resulting in poor overlap and
confirming the challenging nature of the problem.
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Figure 6. (a) Box plots showing TRE results of the piecewise rigid dynamic registration step for thumb base (top-left, n = 5)
and the knee joint (top-right, n = 10). Results are shown for the expert manual segmentation approach, our multi-atlas
guided approach (MAS) and a deformable registration (B-Spline). Dashed red lines indicate TRE for unregistered images
(b) landmark identification error of the automatic anatomic landmark identification approach compared to the mean of all
readers across 9 landmarks for thumb base (bottom-left) and the knee joint (bottom-right). The names of the anatomical
landmarks are shown as inserts on the graphs.

3.3. Landmark Propagation

Concerning the landmark identification accuracy, Figure 6b summarizes the landmark
identification error of the automatic algorithm to the mean of all readers taken as ground-
truth. The femur center diaphysis and tibia center diaphysis landmarks used for estimating
the femoral and tibial axes were omitted in the landmark identification error plots of
Figure 6b. These points were eliminated because the images had to be cropped at those
areas due to image artifacts. Consequently, the deformable registration employed in the
final stage of the MAS mapped these landmarks outside the image regions for some subjects.
While this had no impact on the computation of the bone-embedded reference frames, it
resulted in high landmark identification errors. We therefore replaced these two landmarks
with the most inferior point at the center of the condyle and center of the articular surface
of the tibia. Each graph shows the distribution of distance errors of the landmarks for
the leave-one-out test images, with median errors below 5 mm for all landmarks on both
the thumb base and knee joint. The highest values of the median error for the knee are
found for the most inferior point of the center of the condyle (L3) and center of the articular
surface of the tibia (L6) with median errors of 4.8 mm and 4.3 mm respectively. For the
thumb base, median errors of 4.7 mm and 4.2 mm were observed for the most distal point
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of the second metacarpal (L4) and the most ulnar point of the ulnar tubercle at the base of
the second metacarpal (L6).

3.4. Kinematic Parameters

Performance of the proposed algorithm in estimating kinematic parameters is summa-
rized in Figure 7a for the thumb base and Figure 7b for the knee joint. Results of cardan
angles using our proposed approach are plotted together with results from manually
identified landmarks of the 3 readers on the same graph. Shaded regions represent 95%
Confidence Interval from the leave-one-out experiments.

  

Figure 7. (a) 1st Metacarpal bone motion (cardan angles) showing an opposition movement of the thumb from neutral to
full opposition. The plots show results using the proposed approach compared to using manual landmarks identified by
three readers. X represents the Flexion (−)/Extension (+) axis, Y is the Adduction (−)/Abduction (+) and Z represents
the Internal (+)/External (−) rotation axis; (b) Tibiofemoral (Tf) joint motion (cardan angles) obtained in leave-one-out
validation on 10 subjects for the first 30◦ of knee flexion. The plots show results using the proposed approach compared
to using manual landmarks identified by the three readers. Shaded regions represent 95% Confidence Interval over all
subjects. (a) Tf_X represents the Flexion (−)/Extension (+) axis, Tf_Y represents Adduction (−)/Abduction (+) axis and
TF_Z represents Internal (+)/External (−) rotation axis.

The Bland-Altman plots in Figure 8 also show the limits of agreement between our
proposed approach and the manual approach for both the thumb base and knee joint. As
in Figure 6b, results shown in Figure 8 are computed against the mean of all 3 readers.
Our proposed approach produces kinematic parameters which fall within the limits of
agreement of all three readers as is evident in Figure 8. Intraclass correlation (ICC) between
cardan angles from the algorithm and results from expert manual landmarks ranged from
0.72 to 0.99 for all joints across all axes as detailed in Table 4.

90



Diagnostics 2021, 11, 2062

 

Figure 8. Bland Altman plots showing the limits of agreement between our proposed approach for kinematic parameter
estimation (cardan angles) and a manual landmark identification (by three readers) approach for (a) thumb base; (b) knee.
The mean of landmarks identified by the three readers is compared to our multi-atlas segmentation and landmark
propagation approach. Shaded regions represent the limits of agreement of the three readers combined.

Table 4. ICCs of cardan angles obtained by expert readers and by the proposed automated workflow
(Auto) for the three axes for the thumb and knee.

Thumb
* AUTO

X Y Z

Reader 1 0.99 0.99 0.99
Reader 2 0.95 0.94 0.99
Reader 3 0.92 0.94 0.99

Reader AVG 0.95 0.97 0.99

Knee X Y Z

Reader 1 0.99 0.72 0.96
Reader 2 0.99 0.76 0.95
Reader 3 0.99 0.83 0.94

* Reader AVG 0.99 0.82 0.96
* Auto: the proposed automated workflow, * Reader AVG: the average of all three reader.

3.5. Discussion

We proposed an automated method for kinematic assessment of bony joint structures,
based on multi-atlas segmentation of bony structures and landmark propagation. We
evaluated this on a dataset of dynamic CT acquisitions of the thumb base and knee joint.
Experiments were conducted to investigate the influence of the similarity metric in the
MAS registration step, and we observed no significant differences in the choice of metric,
allowing us to use MSD for our study. In case the dynamic sequence is from a different
modality as the atlas (CBCT, MRI), alternative metrics such as NCC and MI will need to
be tested.

The choice of the label fusion technique had an influence on the accuracy of the final
segmentation, with LNCC performing better than the other fusion techniques. This can be
attributed to the fact that LNCC computes a local normalized cross-correlation similarity
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using a 3D kernel and selects the best matching atlases based on this to be used in a majority
vote. This captured the spatially varying nature of the registration accuracy and (locally)
ignore poorly registered atlases that might misguide the final segmentation result. Our
findings are in line with the work of Ceranka et al. [26] and Arabi et al. [39], both showing
a better performance of the LNCC label fusion technique. The impact of both r and k on
LNCC was marginal.

The impact of the number of atlases was not investigated in this study. Ceranka et al. [24]
performed an analysis on the influence of the number of atlases on the quality of the segmen-
tation of skeletal structures in whole-body MRIs and only found a marginal improvement
above six atlases. The number of atlases used in this current study (n = 4 for thumb, n = 9
for knee) yielded Dice coefficients of 0.90 ± 0.01 for the thumb and 0.94 ± 0.02 for the knee.
We believe that increasing the number of atlases for the thumb may increase segmentation
accuracy further.

Our MAS approach with the best label fusion technique (LNCC, k = 5, r = 3) facilitated
the segmentation of reference images, which were introduced in the dynamic registration
framework. Accuracy of the dynamic registration workflow was evaluated using TRE.
We compared the TRE results of our approach with results obtained using manually
segmented images and observed no significant difference with our proposed approach
(p = 0.51). Conversely, direct deformable registration of the joint images, without prior
segmentation, led to mean errors around 10 mm and failed registrations (outliers).

The use of anatomical landmark propagation to define local bone-embedded refer-
ence frames further justifies the need for a multi-atlas segmentation approach for the
segmentation of bones of interest. The spatial transformation obtained from the MAS
automates the detection of anatomical landmarks in reference images. These landmarks
can be propagated across the entire dynamic sequence automatically using transforma-
tions obtained from the dynamic registration step. Moreover, metrics based on changes of
bone landmarks distance over time such as tibial-tuberosity trochlear groove [40] (used
for subject with patella instability) can be extracted using the same approach. This can
facilitate orthopedic diagnosis and surgical planning. Our automated landmark approach
for estimating kinematics performed on par to the manual identification of landmarks by
three independent readers, as shown by the Bland-Altman plots with mean differences
falling within the limits of agreement of the readers across all axes for both joints. Beside
cardan angles, other parameters such as bone surface contacts can be calculated from the
obtained transformation matrices [41,42]. Our proposed approach uses a set of annotated
datasets (atlases) but requires a reduced number (n = 5, n = 10 for thumb and knee) as it
belongs to the group of methods that make use of image registration. This contrasts with
machine learning algorithms, [22], which rely on a significant amount of annotated data in
training to yield good results.

Similar algorithms to the proposed method both in terms of multi-atlas methodology
and anatomical landmarks identified are presented in [43,44]. Our current study however
demonstrated the generalizability of the proposed approach to other joints by applying
it on dynamic CT of the knee and thumb. In [44], the authors proposed an algorithm for
automatic anatomical measurements in the knee based on landmarks on CBCT images. A
comparison between our approach and [44] can only be made on the knee data. Taking
into consideration corresponding anatomical landmarks, L7 in our work corresponds to
FT1 in [44], L8 corresponds to TT1, L5 to TP8 and L4 to TP9. Other potential corresponding
points were excluded in the error analysis of [44] because they were not associated with
any specific anatomical features. The average LDE of available points for comparison is
3.75 mm for [44] against 4.27 mm in our work. In general, our approach reaches comparable
accuracy to previously reported algorithms for musculoskeletal applications [45,46] which
reported median errors from ~2.5 to ~6 mm. Furthermore, results obtained from the
kinematic analysis are within the limit of agreements of the three independent readers.

A potential limitation of the proposed approach is the computationally expensive
pairwise registrations needed in the MAS step. Segmentation of a single subject using
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n = 10 atlases was completed in 40 min on a 2.6 GHz Intel Core i7 16 GB ram computer. To
speed up this step, approaches which involve selecting relevant atlases as opposed to a
registration with all available atlases can be considered [47–49]. The use of the capabilities
of GPU processors have also been proposed to help accelerate the registration step [50].

Another potential limitation of this study is the definition of ground-truth anatomical
landmarks on the atlas dataset. The mean of the three readers and error analysis was also
done with respect to the mean of all the readers. There is however the potential of intro-
ducing errors if one of the readers’ landmarks are poorly defined. A potential solution is to
propose a consensus framework like that proposed in [51], for combining segmentations.

Furthermore, this study only involved 15 healthy subjects which limits making de-
tailed inferences from the obtained kinematic parameters. The homogenous nature of
the study population (in terms of age and health status) also means the atlases were con-
structed with bones that do not exhibit unique or pathological morphology. Processing
a new subject with such morphological variants may limit the success of the MAS step
as well as the anatomic landmark propagation. Nonetheless, the deformable registration
stage introduced in the workflow could compensate for some of the variations in morphol-
ogy. It is also likely that manual landmark identification would be equally challenging in
such situations.

3.6. Conclusions

Quantitative imaging modalities are becoming increasingly useful in understanding
and evaluating MSK conditions, with dynamic CT being a promising tool [52]. The 4D MSK
images generated from this technique are however not intuitive and in general require
automated image analysis procedures to extract quantitative estimates of joint kinematics.
We proposed a multi-atlas multi-label bone segmentation and landmark propagation
approach and used it as an input for the kinematic analysis of dynamic CT images of
two joints. Our method performed on par with commonly used approaches requiring
manual segmentation and landmark identification. As such, it contributes to the build-up
of an automated workflow for the post-processing of dynamic CT MSK images. Such
quantitative assessment could increase the clinical value of radiologic examinations as it
adds a functional dimension to morphological data.

Future studies will include reducing the time for the computationally expensive
pairwise registrations of the MAS and the dynamic registration step by means of GPU
implementation. The introduction of deep learning and conventional machine learning
methods will also be considered using results of this study as annotated data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11112062/s1, Video S1: dynamic CT volume render thumb, Video S2: dynamic CT
of Knee.
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Abstract: Several pathologies can alter the way people walk, i.e., their gait. Gait analysis can be
used to detect such alterations and, therefore, help diagnose certain pathologies or assess people’s
health and recovery. Simple vision-based systems have a considerable potential in this area, as they
allow the capture of gait in unconstrained environments, such as at home or in a clinic, while the
required computations can be done remotely. State-of-the-art vision-based systems for gait analysis
use deep learning strategies, thus requiring a large amount of data for training. However, to the best
of our knowledge, the largest publicly available pathological gait dataset contains only 10 subjects,
simulating five types of gait. This paper presents a new dataset, GAIT-IT, captured from 21 subjects
simulating five types of gait, at two severity levels. The dataset is recorded in a professional studio,
making the sequences free of background camouflage, variations in illumination and other visual
artifacts. The dataset is used to train a novel automatic gait analysis system. Compared to the state-
of-the-art, the proposed system achieves a drastic reduction in the number of trainable parameters,
memory requirements and execution times, while the classification accuracy is on par with the
state-of-the-art. Recognizing the importance of remote healthcare, the proposed automatic gait
analysis system is integrated with a prototype web application. This prototype is presently hosted in
a private network, and after further tests and development it will allow people to upload a video
of them walking and execute a web service that classifies their gait. The web application has a
user-friendly interface usable by healthcare professionals or by laypersons. The application also
makes an association between the identified type of gait and potential gait pathologies that exhibit
the identified characteristics.

Keywords: assisted living; gait classification; pathology identification; remote diagnosis; web application

1. Introduction

Gait can be defined as the act of locomotion, involving periodic body movements,
such as sequences of loading and unloading of the limbs [1]. The study and analysis of
gait in a medical context can contribute to the diagnosis and monitoring of pathologies
that affect people’s gait [2]. For this reason, the automatic classification of the type of gait
is gathering interest, with many approaches already available in the literature [3,4]. Of
these approaches, vision-based solutions appear to be especially interesting since image
sequences can be captured with relatively simple setups, e.g., with a single 2D camera [5].
This enables the capture of gait data in a clinical environment or even at home, with most
of the processing required to analyze the observed gait done remotely. A prototype based
on this idea is proposed in this paper to enable the remote classification of people’s gait.

Most state-of-the-art vision-based systems for gait classification rely on deep learning
strategies [6–8]. They involve the use of Convolutional Neural Networks (CNN), such as
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VGG-19 [9], pre-trained on the ImageNet [10], and fine-tuned using gait datasets. Fine-
tuning requires relatively smaller datasets to adjust an existing CNN to perform better on a
related problem. The quality of this adjustment and the expected results depend on the
richness and suitability of the used datasets. However, most publicly available datasets
containing different types of gait are captured from a limited number of healthy subjects
simulating gait pathologies. Most datasets contain simulations because of the ethical
and privacy concerns involved in sharing data from real patients. However, simulating
pathologies with all its complexity is seldom correctly executed.

This paper presents a new gait dataset, GAIT-IT, containing 21 subjects and five types
of gait, at two severity levels, simulated following instructions provided using an illus-
trative video, an oral explanation, and a short walking demonstration. The gait video
sequences are captured in a professional studio with a chroma-keying background, result-
ing in a high contrast between the foreground and the background. These characteristics of
the dataset are helpful for training a reliable gait type classification system.

The paper also presents a novel gait type classification system based on a CNN
architecture. It drastically reduces the number of trainable parameters, compared to the
state-of-the-art, thus having lower memory requirements and faster execution times. The
proposed system is trained using the GAIT-IT dataset and tested using also a publicly
available dataset containing simulations of the corresponding gait pathologies. The results
suggest that the proposed system has significant generalization ability, as it can correctly
associate available gait types with the corresponding pathologies. The results also highlight
the effectiveness of the proposed system to operate in a relatively noisy acquisition setup
of the GAIT-IST dataset, which was captured using a cell phone in an ‘at home’-like setting,
with a wall as background and without particular care taken with the illumination, which
came from a side window and the ceiling fluorescent lamps. Additionally, the distance
from the camera to the subjects is different in the GAIT-IT and GAIT-IST datasets.

A third contribution of this paper is a web application for gait assessment. It is
the prototype of a remote healthcare system, performing diagnosis by analyzing video
sequences captured and uploaded from a cellphone or a personal computer. The web
service identifies the type of gait and associates it to a possible gait related pathology. All
computations are performed on the server, and the results are returned in a user-friendly
manner, with images highlighting the parts of the gait that contribute more to the diagnosis.

1.1. Related Work

A rich characterization of gait information can be obtained through the use of different
types of sensors, including [3]:

1. floor-based sensors;
2. wearable sensors;
3. vision-based sensors.

Floor-based sensors are used to detect ground reaction force [11], or the pressure
exerted on the area under the foot [3]. It typically provides limited information for gait
classification and the equipment used is restricted to constrained spaces. Wearable sensors
are portable, allowing data acquisition of three-dimensional information related to walking
patterns over long periods of time [4,12]. However, their performance can be influenced by
the sensor placement. If sensor placement is not completed carefully, walking can become
uncomfortable, which can then affect the quality of gait data acquired. Additionally, if
an ‘at-home’ scenario is envisaged, for self-monitoring, then it is not guaranteed that
sensors will be correctly applied, and the captured data may not be the intended type.
In summary, sensor placement should always be completed under the supervision of
trained professionals.

Vision-based systems have the advantage of being unobtrusive and not requiring
a complicated cooperation of the subject. Marker-based systems are considered as the
gold standard approach for gait analysis [13], using special markers placed on key body
parts to track them and obtain kinematic features from the observed motion. However,
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these often require specialized personnel to ensure correct setup and calibration. On the
other hand, a markerless approach can be more suitable for application in less constrained
environments [14].

Markerless vision-based systems for gait analysis typically follow a model-based or
an appearance-based approach [15]. In the model-based approach, gait representations
are created by fitting a model to the input sequence of images or silhouettes, using prior
knowledge of the human body (structural model) or its motion (motion model) [16]. An
example includes using two Kinect sensors with perpendicular viewing directions, ac-
quiring both RGB and depth information to create a 3D model based on the movement of
skeleton parts [17]. This model combines static features (e.g., distances between joints) and
dynamic features (e.g., speed, stride length or the body’s center of mass movement). In
the appearance-based approach, gait is represented without assuming prior knowledge of
human motion. A sequence of binary silhouettes is typically obtained using background
subtraction, as illustrated in Figure 1a. As long as a well performing background subtrac-
tion method is used, the resulting silhouettes are mostly free from background clutter and
the influence of illumination changes. The desired gait representation can then be derived
using the sequence of binary silhouettes. A widely used representation called the Gait
Energy Image (GEI) [18] is obtained by averaging the cropped, normalized in size and
horizontally aligned binary silhouettes belonging to a gait cycle, according to Equation (1).

GEI(x, y) =
1
N

N

∑
i=1

Bi(x, y) (1)

In Equation (1), N represents the number of frames in one (or multiple) gait cycle(s).
Bi(x, y) is a binary silhouette image, with x and y being pixel coordinates. The resulting
GEI is a grey-level image implicitly representing, in a single image, the subject’s shape and
motion along the gait cycle, as illustrated in Figure 1b,c. The GEI representation is robust
against noise in individual frames.

   
(a) (b) (c) 

Figure 1. Example of (a) background subtraction, (b) binary silhouettes and (c) GEI.

A second representation considered for the presentation of results in this paper is
the Skeleton Energy Image (SEI) [6], a hybrid between model- and appearance-based
approaches—see Figure 2c. It starts by obtaining skeleton models for every available
image of the walking person, using Open Pose [19]. Open Pose is a neural network
trained to locate the positions of key joints of a human body on a 2D image, as illustrated
in Figure 2a. With a skeleton image for each frame, the SEI can then be obtained with
the same method used for GEI computation. The SEI was reported to achieve better
pathological gait classification results than the GEI, as the SEI focuses on the dynamic
movement characteristics and not on the physical constitution and clothing of a subject [6].
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(a) (b) (c) 

Figure 2. Example of (a) output of Open Pose [19], (b) skeleton images and (c) SEI.

1.1.1. Gait Classification Systems

Systems for the classification of gait types often use the gait representation directly,
they compute a set of biomechanical features, or use a combination of both. For instance,
the work reported in [20] describes two approaches, one using leg angles as features, and
another one using the GEI. A set of normalized gait features is proposed in [21], including
the step length, stance and swing phase durations, or the amount and broadness of limb
movements, to quantify gait impairments. The last decade has witnessed the emergence
of deep learning strategies for feature extraction in image recognition and classification
with very good results, including gait analysis systems. The solution presented in [8]
adopts the GEI for gait representation and uses the VGG-19 [9], pre-trained on a subset of
ImageNet [10], for feature extraction. Transfer learning is used to repurpose the CNN for
pathological gait classification, with the last layers of the VGG-19 network being trained
using GEIs computed from the INIT dataset [21]. Linear Discriminant Analysis (LDA) was
used for classification and the system’s performance is tested using two other pathological
gait datasets: DAI [22] and DAI2 [20]. Another deep learning approach, also based on
the VGG-19, is adopted in [6] for pathological gait classification, using both GEI and SEI
gait representations. In this case, the pre-trained CNN is fine-tuned with data from the
GAIT-IST dataset [6]. Other deep learning approaches include the use of Recurrent Neural
Networks (RNNs) that are able to learn correlations between inputs in a time series, such
as the application of a bidirectional Long-Short Term Memory (LSTM) [23] network for
pathological gait classification based on sequences of lower limb flexion angles [7]. Given
the good performance reported in the literature, this paper also considers a deep learning
solution to perform gait type classification.

1.1.2. Gait Datasets

Publicly available gait datasets are created either for biometric recognition, or for gait
type classification. Datasets for recognition include subjects walking normally, possibly
with some covariates such as different speeds, different types of shoes, different clothing
or carrying different items. The purpose of gait type datasets is to capture sequences
reflecting different kinds of impairments, notably to mimic the effects of some pathological
conditions. Since sharing data from real patients raises ethical and data privacy issues, the
publicly available impaired gait datasets are captured from healthy subjects simulating a
selection of gait impairments. To the best of our knowledge, there are four gait impairment
datasets publicly available, as listed below. All the sequences in these datasets are captured
from a canonical viewpoint and recorded in controlled environments.

The DAI dataset [22] contains binary silhouettes of five subjects. It has 15 healthy
gait sequences, and 15 sequences with random gait impairment simulations, for a total of
30 gait sequences. The subjects are captured walking over a distance of 3 m using both the
RGB camera of a Kinect sensor and a smartphone.

The DAI2 dataset [20] also considers five subjects, but contains a total of 75 gait
sequences. Each subject simulates four pathologies (Parkinson’s, diplegia, hemiplegia and
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neuropathy), as well as normal walking gait. Each condition was recorded 3 times, while
walking along a distance of 8 m.

The INIT dataset [21] contains binary silhouettes of 10 subjects (9 males, 1 female), for
a total of 80 sequences. Every subject is recorded 2twodifferent times, at 30 fps, capturing
multiple gait cycles and simulating seven different gait impairments (in addition to a
healthy gait sequence): (i) right arm motionless; (ii) half motion of the right arm; (iii) left
arm motionless; (iv) half motion of the left arm; (v) full body impairments; (vi) half motion
of the right leg; and (vii) half motion of the left leg.

The GAIT-IST dataset [6] considers 10 subjects, with a total of 360 gait sequences. The
dataset includes the same four pathologies considered in DAI2, with two severity levels for
each, two directions of walking, and two repetitions per subject, except for the normal gait.
It is the largest pathological gait dataset publicly available. Video sequences were captured
using a smartphone camera, with a resolution of 1280 × 720 pixels, mounted on a tripod at
about 1.5 m above the ground and at a distance of about 4 m from the target.

Of the above datasets, some include impairments that are very easy to simulate, but
which may not be directly related to any specific gait pathology. Other datasets include
simulations of the gait pathologies, which are harder for healthy people to simulate. The
proposed GAIT-IT dataset simulates different gait types that can be associated with known
pathologies. Healthy volunteers were instructed on how to perform the simulations by
watching detailed explanation videos, as well as personal interaction to clarify questions
and see a short demonstration of the main walking characteristics related to the pathologies
to simulate. GAIT-IT also doubles the number of subjects relatively to the largest publicly
available dataset.

2. Materials and Methods

This paper presents three novel contributions:

1. proposal of a new, larger, gait type dataset: GAIT-IT;
2. a gait type classification system;
3. a remote diagnosing web application.

2.1. GAIT-IT Dataset

The proposed GAIT-IT dataset (available at http://www.img.lx.it.pt/GAIT-IT/ ac-
cessed on 3 September 2021) captures a larger number of subjects, with significantly
more variations than the existing publicly available datasets. The sequences are cap-
tured at a higher quality and with a better contrast between the subject and the back-
ground. GAIT-IT is recorded in the professional studio of FCT|FCCN, Lisbon, Portugal
(https://www.fccn.pt/en/colaboracao/estudio/ accessed date 25 July 2021), on two dif-
ferent days. The studio includes controlled artificial lighting and a green background,
ideal for chroma-keying segmentation, resulting in high-quality sequences, free from back-
ground camouflage and other artifacts. Two professional 4K video cameras are used to
capture synchronized gait sequences, one with a side view, at approximately 3 m from the
target, and the other with a front/rear view, at about half a meter from the walking start
position. Both cameras stood on tripods at 1.75 m from the ground.

The GAIT-IT dataset contains simulations of five different types of gait. For each type,
except normal, two levels of severity are captured. The subjects provide four gait sequences
per severity level. This corresponds to a subject walking twice from left to right and from
right to left, from the side view. The sequences are captured on two different days where
21 volunteers (19 males and 2 females) between the age range of 20 to 56 years participated,
with a mean of 29.5 and a standard deviation of 11.6—see Figure 3. Thus, GAIT-IT dataset
includes a total of 828 gait sequences. Having some subjects captured on different days,
allows intra-subject variations in the simulations. Before capturing the sequences, the
subjects are instructed on how to simulate the various gait types and severity levels, as
summarized below [24].
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Figure 3. Subjects’ age distribution.

The scissor gait commonly associated with diplegia affects both sides of the body. A
subject adopts a forward leaning posture and walks by dragging both feet in a circular
motion. For the second severity level the overall bending is accentuated, along with leg
and arm movements.

The spastic gait commonly associated with hemiplegia affects only one side of the
body. The leg is dragged in a circular motion, with a broader reach for the second severity,
while the right arm remains still and held close to the waist, or flexed against the chest in
the second severity level.

The steppage gait commonly associated with neuropathy leads to foot drop. Subjects
tend to lift their knees higher than normal to avoid dragging their toes on the floor. In the
second severity level, the lift of the leg and the forward swing are exaggerated.

The propulsive gait commonly associated with Parkinson’s diseases is characterized
by a stooped posture, with both arms held close to the chest and the lower limbs flexed
and rigid. Subjects are asked to attempt simulating general and erratic body shaking
while taking small and relatively fast steps. The second severity level involves an overall
exaggeration of these symptoms.

The captured sequences are processed to produce four different representations:

1. sequence of binary silhouettes;
2. sequence of skeletal images;
3. GEIs;
4. SEIs.

GEI and SEI representations are obtained for each gait cycle, as well as for the complete
set of gait cycles available per sequence. The spatial dimension of the produced gait
representations is 224 × 224 pixels. The binary silhouettes are cropped and overlapped
following Equation (1) to obtain the gait representations. All representations consider a
framerate of 10 fps. The main steps for obtaining the gait representations are as follows.

The extraction of binary silhouettes relies on chroma-keying segmentation. A frame
containing only the background is represented in the HSV color space and the histograms
of the hue (H), saturation (S) and value (V) components are computed. Then, all pixels in
gait sequences with HSV values outside the background range are classified as belonging
to the walking subject. Finally, a morphological filtering operation is applied to remove
noise. A sample result is presented in Figure 1a. Skeleton computation relies on locating
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key anatomical parts in the gait images, using the Open Pose [19] software, which uses
a multi-stage CNN to automatically detect a total of 135 body, hand, facial and foot key
points in each frame of a video, operating in real-time. In the current implementation, only
25 key points corresponding to the body are captured, as illustrated in Figure 2a. The GEIs
and SEIs are computed following Equation (1). An example of the gait representations
obtained from the GAIT-IT dataset is illustrated in Figure 1c (GEI) and Figure 2c (SEI).

2.2. Gait Type Classification System

The state-of-the-art vision-based systems for gait type classification rely on deep
learning using pre-trained CNNs, which are then fine-tuned by transfer learning with task-
specific datasets. This strategy is employed as most gait type datasets contain a limited
amount of training data. Since the proposed GAIT-IT dataset provides a considerable
increase in the amount of data available for training, rather than fine-tuning a complex
network, this paper proposes a novel lightweight CNN, specifically trained to perform gait
type classification. The architecture of the proposed CNN is illustrated in Figure 4.

 

Figure 4. The proposed gait type classification CNN architecture.

The proposed system accepts a GEI or SEI as an input, which is processed using five
convolutional layers. This option follows the type of architectures adopted in the Kaggle
MNIST challenge [25,26], which also process binary images. As in the architectures of
popular CNNs, such as VGG-16, the proposed system adopts a 3 × 3 filter size and a stride
of 2 for the convolutional layers. A total of 32 feature maps, or filters, is considered in the
first convolutional layer, being doubled for the last two layers. Each convolutional layer
is followed by batch normalization, to adjust and scale the outputs to have a mean value
close to 0 and a standard deviation close to 1. Bounding the values that pass between layers
helps to stabilize and speedup the training process.

To perform classification, the features computed by the final convolutional layer are
flattened and passed on to a fully connected neural network, consisting of two dense
layers with a dropout [27] of 0.5 between them. The first dense layer has 512 units and the
second layer has five units, corresponding to the five considered gait types, with a softmax
activation function to output class probabilities. The proposed system is trained using
categorical cross entropy and the Adam algorithm [28], with the Nesterov momentum
variation [29]. The learning rate is set to 0.001.

2.3. A Remote Diagnostic Web Application Prototype

This paper also proposes the prototype of a system that allows remote gait diagnosis.
It could assist healthcare professionals to identify patients requiring immediate attention
and further examination, as well as monitor the evolution of existing gait pathologies,
without the need of physical interaction with the patient. The usefulness of such a system
is made more evident under the COVID-19 pandemic.

The proposed remote diagnostic web application runs the proposed gait type classifica-
tion system on its server. It can be access by issuing HTTP requests to the web service. The
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web interface allows uploading a video sequence or a compact gait representation, notably
a GEI or a SEI. It then executes the web service and returns the results to be presented in
way that can be easily interpreted by the user.

The web application offers two different modes of operations:

1. basic mode;
2. advanced mode.

The basic mode is a simple interface to be used in a clinical environment or at home.
It assumes a simple setup which involves filming a subject using a 2D camera, e.g., using
a cellphone’s camera. The user interface, illustrated in Figure 5a, allows the user to up-
load the video, and the web application generates a GEI (or SEI) representation. The gait
representation is processed by the web service using the proposed gait type classification
system, which checks if the identified features could be associated to a specific gait pathol-
ogy. The user can then visualize the parts of the body that contributed to the diagnostic
using a saliency representation [30] and class-activation maps (grad-CAM) [31]. Figure 6
illustrates results for two different types of gait, suggesting that spastic gait is identified
by the characteristic movement of the feet, while propulsive gait is identified by the type
of feet movement and the bending of the spine. The diagnostic can optionally be sent
to a specified e-mail address. The interface is designed to remotely obtain a preliminary
diagnostic, and to help visualize the body motions that deviate from a healthy gait.

 

 
(a) (b) 

Figure 5. Web service user interface modes of operation: (a) basic, (b) advanced.

The advanced mode uses the interface illustrated in Figure 5b, providing additional
details for those interested in analyzing the operation of the classification system. It allows
users to visualize the feature maps generated by specified convolutional layers. The
visualization of the feature maps can offer a low-level insight into the training process. It
also allows users to directly upload GEIs or SEIs to the system.

The remote diagnostic web application prototype can be further improved to allow
training the classification system with different gait representations. The visualization of
detailed features supported by the advanced user interface mode can provide an important
insight to understand the operation of the classification system.
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Figure 6. Output of the visualizer (a) GEI, (b) saliency feature map, (c) class activation map.

3. Results

The proposed gait type classification system is evaluated using a 10-fold cross-
validation protocol on the GAIT-IT dataset. To emphasize the proposed system gen-
eralization capability, a second set of evaluation results considers the proposed system
trained on the GAIT-IT dataset and tested on GAIT-IST. To compare the proposed system
performance with the state-of-the-art, the systems presented in [6,8] are considered here for
benchmarking. These systems use a solution based on VGG-19, pre-trained on Imagenet,
and then fine-tuned using GEIs [6] and SEIs [8]. Those systems are re-implemented and
fine-tuned using the GAIT-IT dataset, for fairness of the presented comparisons.

First, the proposed and the state-of-the-art systems [6,8] are evaluated using a 10-fold
cross-validation protocol. The GAIT-IT dataset is split into training and test sets, where
the subjects in each set are mutually exclusive. The test set for each fold is defined as
Vk = {Si, Si+1, Si+2}, where i = 2 × k − 1, k is the fold iteration and Si represents one of
the 21 subjects. This arrangement ensures the use of every subject in the test set at least
once, thus reducing training bias. The cross-validation results are presented in Table 1.
Table 2 additionally compares the neural network model size and the execution times for
the proposed and the state-of-the-art [6,8] systems, using a personal computer equipped
with an AMD Ryzen 7 1700X processer, 32 GB RAM and a GTX 1070 GPU with 8 GB.

Table 1. Cross-validation results obtained using the GAIT-IT dataset.

Gait Classification System Input Accuracy (%)

Fine-Tuned VGG-19 [8] GEI 94.0
Fine-Tuned VGG-19 [6] SEI 93.6

Proposed system GEI 93.4
Proposed system SEI 92.6

Table 2. Number of parameters, storage space, training and execution time (milliseconds) required
by the VGG-19 [6,8] and the proposed systems.

Gait Classification System Parameters Size (Mb)
Execution Time (ms)

Train Test

Fine-Tuned VGG-19 [6,8] 139,330,565 558.4 15 6
Proposed system 1,684,421 6.8 1 1

Training and testing a classification system using the same dataset can raise the issue
of overfitting. To address this issue, a cross-dataset evaluation is additionally performed
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using the GAIT-IST [6] and the proposed GAIT-IT datasets. This second set of evaluations
are conducted by training the proposed and the state-of-the-art [6,8] systems using all
available subjects from the GAIT-IT dataset, and then testing the gait type classification
systems using all the available subjects from the GAIT-IST dataset. It should be noted that
GAIT-IST dataset acquisition setup is significantly different from GAIT-IT, with acquisition
performed using a cell phone camera, under a ceiling light. Table 3 reports the obtained
classification accuracy results, while Table 4 reports the corresponding confusion matrix.
Training with GAIT-IST or DAI2 was not considered as those datasets are significantly
smaller and some of the available silhouettes contain segmentation errors. The other
publicly available datasets discussed in Section 1.1.2 were not considered because they
include simulations of limb movement impairments, rather than gait types, and their size
is small.

Table 3. Cross-dataset results obtained using GAIT-IT for training and GAIT-IST for testing.

Gait Classification System Input Accuracy (%)

Fine-Tuned VGG-19 [8] GEI 86.4
Fine-Tuned VGG-19 [6] SEI 85.1

Proposed system GEI 89.8
Proposed system SEI 86.4

Table 4. Confusion matrix for the proposed gait type classification system representing an average
score of GEI and SEI inputs (%).

Predicted Class

T
ru

e
C

la
ss

Gait
Type

Scissor
(Diplegic)

Spastic
(Hemiplegic)

Steppage
(Neuropathic)

Normal
(Healthy)

Propulsive
(Parkinsonian)

Scissor 87 7 0 0 5
Spastic 9 89 2 0 0

Steppage 0 2 97 1 0
Normal 0 0 0 99 0
Propulsive 5 0 0 0 95

4. Discussion

The average classification accuracy obtained using 10-fold cross validation, reported
in Table 1, suggests that the proposed system’s performance, achieving a classification
accuracy of 93.4% and 92.6% on GEI and SEI gait representations, respectively, is equivalent
to the state-of-the-art [6,8]. However, it should be noted that the proposed system has a
much lower computational complexity, due to the significantly smaller number of trainable
parameters and the consequent reduction of static and dynamic memory needed to store
and execute the system—see Table 2. The proposed system, represented in hdf5 [32] file
format, is 83 times smaller than the state-of-the-art VGG-19 system. The proposed gait
type classification system also executes significantly faster, which is of great importance
for considering the deployment of a diagnostics web service to operate over the Internet.
Table 2 also reports training and execution time for the proposed and the state-of-the-
art [6,8] systems, showing that the proposed system operates 15 times faster during training
and six times faster when processing a request.

The cross-dataset results reported in Table 3 suggest that the proposed system gener-
alizes better than the state-of-the-art VGG-19 systems [6,8]. The proposed system improves
the average classification accuracy by 3.4% and 1.3% using GEIs and SEIs, respectively. A
possible explanation for this increase may be that the deeper CNN architecture requires
significantly more data for fine-tuning, and to avoid overfitting to the seen training data.
Thus, the shallower CNN model of the proposed gait type classification system appears to
be more suitable for operation with datasets with limited training data.

Table 4 reports results of classification across five different types of gait when testing
with the GAIT-IST dataset [6]. This test assumes an association between the gait types sim-
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ulated in the novel GAIT-IT dataset (scissor, spastic, steppage, propulsive and normal), and
the gait pathologies simulated in the GAIT-IST dataset (diplegic, hemiplegic, neuropathic,
Parkinsonian, healthy), with the results obtained confirmed to be a reasonable assumption.

To further analyze the proposed system’s performance, the confusion matrix presented
in Table 4 highlights the prediction errors made by the proposed system. From these results
it can be inferred that normal gait is the easiest to classify, with a classification accuracy of
99%., while the scissor gait is the most difficult to classify, with a classification accuracy of
87%. This can be due to the scissor gait GEIs’ showing a similar appearance to spastic and
propulsive GEIs, as these three types of gait involve a limited leg movement. The spastic
gait performs slightly better with an average classification accuracy of 89%. The distinct
walking pattern of steppage gait allows the system to achieve an average classification
accuracy of 97%. Propulsive gait achieved the next best classification accuracy of 95% as
it involves a stooped posture along with the restricted leg movements. Finally, it can be
concluded that the proposed gait type classification system can be used to successfully
identify gait impairments from 2D video sequences, which may be captured using the
pervasive smartphone devices (as considered in the GAIT-IST dataset).

5. Conclusions

This paper presents the prototype of a web application for remote gait diagnostic
system. The application, to be used over the Internet, implements a web service that
executes a gait type classification system on the server, returning results to be reported
using a user-friendly graphical interface. The novel gait type classification system is based
on a shallow CNN architecture, whose performance is equivalent to the state-of-the-art
classification systems [6,8], while showing two distinct advantages:

1. The proposed deep learning model is 83 times smaller than the one considered by
state-of-the-art solutions [6,8]. This reduces the memory requirements and improves
the execution time, which is significant when operating over the Internet;

2. The shallower network model achieves a better fit using the GAIT-IT dataset, which
contains data from only 21 subjects, as confirmed by the cross-database test results.
This is significant as the proposed web application accepts video sequences captured
under different conditions and environments.

The paper also presents GAIT-IT dataset, containing 828 gait sequences, captured from
21 subjects simulating five different types of gait. The sequences were captured using two
synchronized cameras, capturing both the sagittal and frontal views. The dataset contains
silhouettes, skeletons, GEIs and SEIs.

Since this work focuses on the sagittal view, future work can consider the integration
of frontal view analysis. The combination of orthogonal viewpoints can result in more dis-
criminative features, leading to an improved classification system. Furthermore, different
deep network architectures can be considered to explore the temporal nature of gait. The
web application prototype is presently hosted as a web service in a private network, and
after further development, e.g., to allow training the system with additional types of gaits
and other gait representations, it might be made publicly available. The model is also be
released in GitHub (https://github.com/jpsmachado/Gait-WebApp.git accessed date 23
July 2021).

Another possible future direction can include extending the GAIT-IT dataset to in-
corporate sequences from real patients. Since all the existing publicly available datasets,
including GAIT-IT dataset, are composed of simulations, testing the proposed system with
real patients will allow further validation of its performance in classifying gait pathologies.
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Abstract: In the neurorehabilitation field, robot-aided motion analysis (R-AMA) could be helpful for
two main reasons: (1) it allows the registration and monitoring of patients’ motion parameters in
a more accurate way than clinical scales (clinical purpose), and (2) the multitude of data produced
using R-AMA can be used to build machine learning algorithms, detecting prognostic and predictive
factors for better motor outcomes (research purpose). Despite their potential in clinical settings,
robotic assessment tools have not gained widespread clinical acceptance. Some barriers remain to
their clinical adoption, such as their reliability and validity compared to the existing standardized
scales. In this narrative review, we sought to investigate the usefulness of R-AMA systems in patients
affected by neurological disorders. We found that the most used R-AMA tools are the Lokomat
(an exoskeleton device used for gait and balance rehabilitation) and the Armeo (both Power and
Spring, used for the rehabilitation of upper limb impairment). The motion analysis provided by
these robotic devices was used to tailor rehabilitation sessions based on the objective quantification
of patients’ functional abilities. Spinal cord injury and stroke patients were the most investigated
individuals with these common exoskeletons. Research on the use of robotics as an assessment tool
should be fostered, taking into account the biomechanical parameters able to predict the accuracy
of movements.

Keywords: robot-aided motion analysis; objective motor assessment; biomechanics; neurorehabilitation

1. Introduction

In the field of neurorehabilitation, innovative technologies, such as robotic devices,
have been widely used to treat and evaluate patients affected by motor impairment due to
different neurological disorders (e.g., stroke, multiple sclerosis (MS), and spinal cord injury
(SCI)) [1]. Compared with conventional rehabilitation approaches, robotic-assisted therapy
(RAT) may have some advantages, including (i) guaranteeing repetitive, intensive, and task-
oriented rehabilitation; (ii) reducing the physical burden on clinical therapists, giving them
the possibility to treat more patients simultaneously; and (iii) quantitatively and objectively
assessing patients’ motor performance over time [2,3]. In particular, objective assessment of
motor performance is a fundamental issue in neurorehabilitation [4]. In fact, clinical scales
are still widely used in hospital settings, despite their validity and reliability being under
debate. Robot-aided motion analysis (R-AMA) could be helpful for two main reasons:
(i) it allows the registration and monitoring of patients’ motion parameters in a more
accurate way than clinical scales (clinical purpose), and (ii) the multitude of data produced
using R-AMA can be used to build machine learning algorithms, detecting prognostic
and predictive factors for better motor outcomes (research purpose). Specifically, motion
analysis refers to the recording of three-dimensional movements of human body segments
and the subsequent computation of meaningful parameters that describe human movement
from raw kinematic parameters [5,6]. Motion analysis is commonly carried out through
wearable and non-wearable sensors that are able to detect biomechanical parameters of
movements [7]. Similarly, robotic devices, both end effectors and exoskeletons, through
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specific sensors, could allow the detection of passive or active range of motion, movement
accuracy, and planning [8]. For example, Maggioni et al. [9] examined the possibilities of
assessing lower extremity function using robots, with parameters such as range of motion
(RoM), muscle strength, and proprioception. In fact, the Lokomat (which is a tethered
exoskeleton) was used to assess joint position sense (i.e., proprioception) in patients with
incomplete spinal cord injury. Despite their potential in clinical settings, robotic assessment
tools have not gained widespread clinical acceptance. Some barriers to and doubts about
their clinical adoption remain, such as their reliability and validity compared to the existing
standardized scales and motion analysis.

In this narrative review, we aimed to investigate the usefulness of R-AMA systems in
patients affected by neurological disorders.

2. Methods

Given the narrative nature of the paper, we only described the most relevant papers
on the issue by searching for them on PubMed, IEEE Xplore, and Scopus, considering the
period from 2010 to 2023. We chose this period because this past decade has witnessed the
implementation of robotic devices in the neurorehabilitation field. To select evidence, we
used the following keywords: “robotic device” OR “exoskeleton” AND “motor assessment”
OR “biomechanical assessment” OR “biomechanical parameters” OR “lower limb assess-
ment” OR “upper limb assessment” OR “motion analysis.” Since this is a narrative review,
we included the most relevant pilot studies, observational studies, randomized controlled
trials, case–control studies, and systematic reviews, considering also the references of the
selected articles, including only English papers. Each article was evaluated through the
title, abstract, text, and scientific validity [10].

3. Motion Analysis and Its Biomechanical Contribution to Accuracy Prediction

Motion analysis involves registering the three-dimensional movements of human
body segments and then calculating biomechanical parameters that describe human move-
ment [11]. The modeling of human motion can be studied from different perspectives. For
this purpose, various approaches are used to derive mathematical expressions that describe
human motion. Newton’s equations of motion are the fundamental tools for understanding
the cause–effect relationship between the forces acting on a system and the resulting mo-
tion [12]. However, applying them to complex systems, such as human locomotion, which
involve a large number of degrees of freedom, requires formulating and solving multiple
equations, leading to high computational costs. The Euler–Lagrange method is used in
multibody systems because it analyzes the entire system without studying the reaction
and contact forces between the elements that comprise the system. This equation allows for
the study of human motion by focusing solely on the mechanical energy of the system. The
knowledge of motion equations allows researchers to identify problems and design mecha-
nisms that seek to recognize or recover human movements [13]. Nowadays, motion analysis
has evolved substantially in parallel with technological advancements, encompassing various
applications, such as clinical gait analysis and 3D biomechanical modeling [14]. Biomechanical
motion analysis is generally based on two types of models: the multibody model and the finite
element model. The first type consists of a set of rigid or flexible bodies connected by joints,
while the second type of motion analysis reconstructs internal strain, stress, or deformation in
flexible bodies based on continuum mechanics theories [15,16].

Within a rehabilitation setting, quantitative analysis of human body kinematics is a
powerful tool that has been used to understand the different biomechanical patterns of
both healthy and pathological individuals [17]. Recently, biomechanical tools have also
been developed, ranging from simple manual annotation of images to marker-based optical
trackers and inertial sensor-based systems. Nowadays, motion analysis can be performed
using marker-less systems that use sophisticated human body models, computer vision, and
machine learning algorithms [17]. Biomechanical parameters that are considered during
motion analysis include kinematic and kinetic parameters [18,19]. In particular, kinematic
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parameters [20] include the spatial and temporal aspects of movement. These parameters
describe (a) the “static” direction during point-to-point movements; (b) the continuous change
of position, speed, and acceleration, which can be further subdivided into its amplitude and
direction components; or (c) combinations of these, such as movement trajectories.

4. Robotic Devices for Upper Limb Measurement

Kinematic (e.g., position, velocity, and acceleration) and kinetic (e.g., force, joint
torque, and muscle activity) data are acquired from sensors affixed to robotic and passive
mechanical devices to measure biomechanical aspects of upper extremities [21–28] (see
more in Table 1).

Table 1. Studies about upper limb robotic-aided motion analysis performed in neurological disorders.

Reference
No.

Robotic Device Description Usefulness of Robot-Aided Motion Analysis

[29] Armeo®Power (Hocoma
AG, Switzerland)

The Armeo®Power is a
6-degrees-of-freedom exoskeleton

for upper limb rehabilitation.

Useful tool for the objective evaluation of upper
limbs in post-stroke patients. The kinetic parameters
of the motion analysis included kinetic parameters
of the shoulder (flexion–extension, abduction and
adduction, internal and external rotation), of the

elbow (flexion–extension, prone–supination), of the
wrist (flexion–extension), and of the hand (opening
and closing). The values deriving from the valuation
of the articular range were expressed in degrees; the

values deriving from the evaluation of the force
were expressed in Newton meters (Nm).

[30]
Armeo®Spring
(Hocoma AG,
Switzerland)

The Armeo®Spring device is an
exoskeleton for upper limb

rehabilitation. It is equipped with
7 goniometers and 1 pressure

sensor, which permits free 3D arm
movement. At the end of the
robotic arm, there is a handle,

which contains a pressure sensor,
measuring the grip force.

The authors used the Armeo®Spring device to
conduct a quantitative assessment of the precision,

speed, and smoothness of upper limb motion.
Among the several measures, the hand path ratio is
the ratio between the actual path in the horizontal

plane and the shortest-possible path, which reflects
movement efficiency. The mean velocity and the
number of peaks in the velocity profile were also

assessed. Additionally, the normalized jerk (Norm
Jerk), a measure of trajectory smoothness,

was analyzed.

[31]
Armeo®Spring
(Hocoma AG,
Switzerland)

As described before

The Armeo®Spring was used to assess movement
accuracy by measuring the

hand path ratio, the mean velocity, and the number
of peaks in the velocity profile. The authors

concluded that the device should be integrated into
the clinical evaluation of upper limb functions in

post-stroke patients.

[32]
InMotion 2.0

(Bionik Laboratories,
Watertown, MA, USA)

The InMotion 2.0 device is an end
effector in which the subject

moves their arm from a central
target to 8 peripheral targets.

The authors assessed kinematic parameters of the
upper limb, including elbow extension and shoulder

flexion, abduction and external rotation of the
shoulder, elbow flexion and shoulder extension, and

adduction and internal rotation of the shoulder.
These parameters, calculated at baseline, can assist
clinicians in defining a rehabilitation program for

post-stroke patients.

[33]
Gloreha Sinfonia

(Idrogenet, Lumezzane
BS, Italy –)

Gloreha Sinfonia is a robotic glove
for hand rehabilitation to

maintain range of motion (i.e., the
flexion angle excursion of the
finger metacarpophalangeal
joints) of the patient’s hand.

The authors objectively evaluated hand movements
using the Gloreha Sinfonia glove in order to

customize rehabilitation sessions according to
patients’ motor abilities. The angular values of the

joints were assessed using bending sensors
embedded in the glove.
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These kinds of measures are commonly registered in post-stroke patients, who may
present unilateral hemiplegic involvement. However, the percentage of studies dealing
with R-AMA for upper limbs is still poor. It seems that the Armeo®Spring was the most
used for this issue, followed by the Armeo®Power, InMotion 2.0, and Gloreha Sinfonia, as
reported in Figure 1.

Figure 1. Percentage of selected articles reported in Table 1 dealing with upper limb robotic-aided
motion analysis.

For example, one of the most used robotic devices in post-stroke neurorehabilitation
is the Armeo®Power, an exoskeleton for upper limb training. Its efficacy in improving
functional outcomes is already demonstrated in the literature [34,35]; however, few authors
have investigated its role in assessing upper limb functions.

Specifically, this robotic device can evaluate specific kinematic parameters [36], as
reported in Table 1. In addition, the Armeo®Power evaluates the range of joint movement,
which is expressed in degrees, and the force of muscles, which is expressed in Newton
meters (Nm). According to Galeoto et al. [29], the Armeo®Power can be considered an
objective robotic tool compared to the Fugl–Meyer for upper limb (FM-UL) clinical scale
items. The FM-UL clinical scale is the most used and reliable scale to assess motor functions,
joint range of motion, joint pain, dysmetria, and tremor in post-stroke patients [37]. The
authors found strong correlations between flexion synergy (forearm supination and elbow
flexion) and results measured with the Armeo®Power. This suggests that the Armeo®Power
is more accurate than the FM-UL clinical scale in evaluating upper limb movements [29].

Other researchers have also evaluated the motor function of stroke patients using
robotic devices and measuring upper limb biomechanical features, such as movement
velocity, accuracy, and smoothness in active training [30,31]. Merlo et al. [30] used the
Armeo®Spring to conduct these measurements. To obtain objective data on upper limb
functions, the Armeo®Spring calculates a set of numerical indices based on the 3D endpoint
trajectory during the “vertical capture” task. The patient receives visual feedback of their
hand position through a display, which is used to facilitate rehabilitation exercises. Indeed,
the derived indices (movement velocity, accuracy, and smoothness) are easy to share with
clinicians because they describe the motor impairment of the upper limb [28].

For example, the loss of movement accuracy can be related to a reduction in sensibility,
whereas the decrease in velocity refers to paresis/paralysis, and the loss of smoothness
refers to an abnormal muscle tone (spasticity) [38]. However, before implementing them
in clinical practice, these indices must be validated by comparing them with other clinical
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scales. In their study, Longhi et al. [31] analyzed three aspects of upper limb (UL) evaluation.
First, they examined the ability of the Armeo®Spring to distinguish between stroke patients
and healthy subjects. Second, they assessed the validity of the indices used to measure
movement. Lastly, they investigated the concurrent validity of these indices by comparing
them with the Wolf Motor Function test, a clinically validated scale for assessing UL motor
function. The authors’ results confirmed the construct validity of the three indices, which
is consistent with the findings of Merlo et al. [30]. This suggests that the Armeo®Spring
can be a promising tool for objectively assessing UL motor skills. In addition, Goffredo
et al. [32] performed a kinematic evaluation of the upper limb in post-stroke patients using
the end effector InMotion 2.0.

The kinematic parameters were calculated from the trajectories recorded by the robot,
starting from the central target and extending to the peripheral targets in various directions.
The kinematic parameters described by the authors [32] refer to the functional abilities of
the UL. However, the Armeo®Power and the Armeo®Spring cannot perform hand motion
analysis due to their biomechanical architecture. To this aim, Cordella et al. [33] conducted
a quantitative and objective assessment of hand movement in post-stroke patients using
the Gloreha Sinfonia. The Gloreha Sinfonia is a robotic glove used to train hand motor
functions, focusing on the recovery of range of motion [33]. Once calibrated, this glove
allows an objective assessment of motor performance. In particular, the results of the
authors [33] demonstrated that the Gloreha Sinfonia can measure angular values from
bending sensors embedded in the glove.

Another concern that should be considered in clinical practice is the objective evalua-
tion of spasticity. The Modified Ashworth Scale (MAS) is, in fact, the most commonly used
clinical tool for assessing spasticity. However, it does have several limitations [39]. Indeed,
de-la-Torre et al. [38] in their systematic review found that R-AMA based on data capture is
effective for evaluating spasticity. However, it should be noted that cutting-edge algorithms
provide a more predictive and analytical measure than the only variation between the
original and the final status obtained from clinical scales [38]. Moreover, some authors [40]
have evaluated muscle synergies in post-stroke patients using a robotic device. Muscle
synergy specifically refers to the coordinated activation of both joints and muscles in order
to execute purposeful movements [41,42]. Post-stroke patients tend to activate abnormal
muscle synergies due to brain lesions in the corticospinal tract, which are further enhanced
by hyperreflexia. This aspect is fundamental in establishing the most effective treatment for
patients in the clinical rehabilitation setting. In this vein, Kung et al. [40] found that robotic
devices, such as end effectors, can be used for long-term evaluation of muscle synergies.

They registered kinematic, kinetic, and electromyographic (EMG) signals during
the tracking movement in order to develop biomechanical indices for evaluating muscle
synergies. In fact, their results revealed that abnormal synergies can be assessed through
two tracking directions: D2 (contra-proximal to ipsi-lateral) and D4 (left–right) [40]. Lastly,
robotic devices can also measure muscle strength, as suggested by Toigo et al. [43]. In
particular, the term “muscle strength” refers to force, moment, or power [43]. Robotic
devices, including exoskeletons and end effectors, are equipped with force sensors for
quantifying the interaction forces between the device and the patient [44]. These devices
record raw sensor data on force during functional movements, enabling the extraction of
valuable data detecting abnormal muscle synergies [43]. However, misalignments with
the device and variations in the rotational axis of a joint can distort the results. Moreover,
all kinematic and kinetic movement parameters are represented to some extent in the
sensorimotor cortex. Distal movements of the hand, including movement direction and
trajectories, can be discriminated in the sensorimotor cortex. This ability has potential
applications in brain–computer interface technology [21].

5. Robotic Device for Lower Limb Assessment

Walking recovery in neurological patients is one of the most important goals planned
by therapists [45]. In order to maximize the recovery of the walking function, it is important
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to define a personalized rehabilitation treatment, in addition to an accurate assessment
to monitor patients’ progress. In fact, both clinical and instrumental tools already exist to
perform an accurate analysis of motion [45]. However, if the assessment protocol takes too
much time to perform, clinicians and therapists may be reluctant to adopt them. A possible
solution could involve the use of robotic devices in which the patient would undergo
both training and assessment. In this study, Imoto et al. [46] used a novel gait training
robot known as WelWalk WW-2000. This robot enables the adjustment of various gait
parameters (such as time and mechanical assistance load) during the training session. The
robot is equipped with sensors and a markerless motion capture system to detect altered
gait patterns in stroke patients. This system can evaluate individuals’ gait patterns and
provide tailored rehabilitation gait training [46]. Generally, the objective assessment of
the lower limb should consider the simultaneous measurement of joint angles, spatial and
temporal parameters of gait, muscle strength, proprioception, and spasticity and/or muscle
stiffness [47] (see Table 2).

Table 2. Studies about lower limb robotic-aided motion analysis performed on neurological patients.

Reference
No.

Robotic Device Description Usefulness of Robot-Aided Motion Analysis

[46]

WelWalk
(WW-2000, Toyota
Motor Corporation,

Aichi, Japan)

Knee-ankle-foot robot, low floor
treadmill, safety suspension

device for body weight support,
monitor for patient use, 3D sensor,

and control panel

Three-dimensional joint positions, lower limb tilt,
and knee joint angle were recorded during a task
using a 3D sensor, an inertial sensor, and a knee
angle sensor. Two-dimensional joint positions

collected using skeletal tracking software
(VisionPose®, NEXT-SYSTEM Co., Ltd., Fukuoka,

Japan) and depth data from the 3D sensor were used
to estimate the three-dimensional coordinates of the

joint positions. Bilateral hip, knee, ankle, and
shoulder joints, as well as the midpoints of the

shoulder and hip joints, were the predicted locations
of the 3D joints. This objective gait analysis can be
useful for individuals with hemiparetic stroke, as it
provides individually tailored gait training based on

these assessments.

[48]
Ekso

(Ekso Bionics, San
Rafael, CA 94901, USA)

Ekso a wearable unthethered
exoskeleton. Motors power the

hip and knee joints and all motion
are started either through specific

patient actions or the use of an
external controller.

The authors conducted a comprehensive assessment
by utilizing both kinematic and kinetic parameters,

as well as EEG registrations, in patients with
Parkinson’s disease. In this way, clinicians can
personalize the rehabilitation treatment with a

device that could increase the treatment intensity
and dose without burdening therapists.

[49]
Ekso

(Ekso Bionics, San
Rafael, CA 94901, USA)

As described before

Muscle synergies and activation profiles were
extracted using non-negative matrix factorization.
The authors’ findings provided insights into the

potential underlying mechanism for improving gait
functions through exoskeleton-assisted

locomotor training.

[50]
Lokomat

(Hocoma AG,
Switzerland)

The Lokomat is a robotic tethered
exoskeleton with active hip–knee

actuation and passive ankle
control during the swing phase, in

addition to a variable level
of assistance.

The Lokomat was used to assess proprioception,
which provides information about static position
and movement sense, using custom software to

measure joint position sense in the hip and knee. The
authors demonstrated the usefulness of the Lokomat

in measuring proprioception in SCI patients.
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Table 2. Cont.

Reference
No.

Robotic Device Description Usefulness of Robot-Aided Motion Analysis

[51]
Lokomat

(Hocoma AG,
Switzerland)

As described before
The authors proved the Lokomat’s usefulness in

objectively assessing proprioception at the hip and
knee in people with SCI.

[52]
Lokomat

(Hocoma AG,
Switzerland)

As described before

Since lower limb kinesthesia deficits are common in
SCI patients, the authors demonstrated that the

Lokomat can serve as a valid and reliable robotic
device for monitoring sensory function. Kinesthesia
was evaluated using angular encoders of the hip and

knee. During the analysis, a score was generated
based on the difference between the initial angle and

the final angle.

The Lokomat, which is a tethered exoskeleton, is one of most used robotic devices for
gait training and for motion analysis in neurological disorders. In fact, 57% of the selected
papers reported the use of the Lokomat in performing R-AMA, followed by Ekso and the
WelWalk, as reported in Figure 2.

Figure 2. Percentage of selected articles reported in Table 2 dealing with lower limb robotic-aided
motion analysis.

According to a systematic review [53], the Lokomat seems to be most suitable for the
motion analysis of lower limbs. Maggioni et al. [54] used the Lokomat to perform a type
of gait analysis, also adding force sensors and potentiometers. The authors successfully
developed and tested a novel specific algorithm to assess walking through the Lokomat. In-
deed, the Lokomat was used to calculate joint angles, assuming that those measured by the
exoskeleton also corresponded to the human angles [54]. Mercado et al. [55] calculated joint
angles in healthy subjects using the Denavit–Hartenberg notation and the Euler–Lagrange
approach to process video recordings of movement. Another study [48] investigates the
use of Ekso-GT, an overground exoskeleton, to assess gait parameters, such as stride time,
stride length, gait speed, and gait events. Although Ekso does not provide a comprehensive
report of gait parameters, these parameters and measurements can be derived from other
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calculations made by the exoskeleton. This allows for an accurate assessment of gait during
training using mathematical models. In addition, exoskeletons, like Ekso, can be integrated
with surface electromyography (sEMG) signals to monitor muscle synergies and muscular
patterns during walking. According to a systematic review [56], the rectus femoris and vas-
tus lateralis are the most frequently recorded muscles during gait. Indeed, the posterior calf
muscles, which play a role in ankle and foot movement, have been less studied during gait
training, despite their importance in the gait cycle. Similarly, Afzal et al. [49] investigated
muscle synergies in patients with MS who were wearing an exoskeleton. EMG signals were
recorded from seven muscles, including the vastus medialis, rectus femoris, biceps femoris,
semitendinosus, soleus, medial gastrocnemius, and tibialis anterior muscles. The authors
demonstrated that exoskeleton assistance does not alter the existing muscle synergies but it
can induce a modification in neural commands [49].

Another point to consider is the evaluation of proprioception provided by robotic
devices. Three studies [50–52] in spinal cord patients have addressed the evaluation
of proprioception or kinesthesia using the Lokomat. In fact, the Lokomat is equipped
with position sensors that are able to determine joint angles. For proprioception, the
authors considered the difference between the target position and the achieved position
for evaluation purposes [50,51]. Another author [52] evaluated kinesthesia by passively
moving the lower limb in a specific direction while patients were wearing the exoskeleton.

6. Discussion

In this narrative review, we found that robotic devices may be used to assess motor
behavior in patients with neurological disorders. Indeed, according to the few available
studies, two main exoskeletons, namely the Lokomat and the Armeo®Spring, R-AMA
may provide clinicians and researchers with reliable and more objective data regarding
motion analysis of the lower and upper limbs, respectively [30,31,50–54]. In addition,
upper limb R-AMA was tested only in post-stroke patients [29–31,33,36,37], while other
neurological disorders were excluded. This issue could be related to the fact that the motor
symptoms of other neurological pathologies, specifically those related to MS, are often
complicated by ataxia or extrapyramidal signs. These complications have a negative impact
on motion analysis [45]. Indeed, post-stroke patients manifest moderate-to-severe upper
limb sequalae (mainly weakness with hypotonia in the acute phase) due to damage in the
cortico-spinal tract [57]. Similarly, lower limb R-AMA was mostly performed on patients
with SCI [50–52], who are characterized by severe lower limb motor impairments, mostly
due to the traumatic interruption of central nervous pathways. Given that R-AMA was
performed only in patients with moderate-to-severe motor impairment, future studies
should take into account other levels of severity, as well as consider other pathologies. (e.g.,
MS, PD, and traumatic brain injury).

6.1. Benefits of Robotic-Aided Motion Analysis

Compared with conventional assessment methods, such as clinical scales or tests
administered by physiotherapists and/or physicians, R-AMA offers several advantages.
It can provide tri-axial measurements, analyze the patient’s limb trajectory, accurately
register spatial-temporal parameters of movement, and collect a large amount of data.
Altogether, these elements allow for personalization of the rehabilitation path according to
patients’ needs. This personalized approach can be used to create a tailored patient profile,
which includes a precise physiotherapy program. This program considers both traditional
and cutting-edge devices for treatment. In recent years, the concept of personalized
treatment has gained significant traction in various medical fields [58], including neurology
and rehabilitation.

In this vein, the so-called “rehabilomics” sheds some light on the role of biomarkers
in the clinical and rehabilitation setting [59]. This approach has primarily focused on the
biological field, including proteomics, genomics, metabolomics, and other related areas.
However, the kinematics and electrophysiological indicators can be considered biomarkers,
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as suggested by Garro et al. [60]. Indeed, the development of biomarkers based on the
models of motor control mechanisms may be useful in a clinical context to understand
healthy functions, disability, and rehabilitation progress. In this way, R-AMA can conduct
a neuromechanical assessment, which examines the connection between neurological
pathology and biomechanical issues [61] (Figure 3).

Figure 3. Graphic illustration showing the theoretical usefulness of robot-aided motion analysis in
the field of neurorehabilitation. The figure was created with Biorender.com.

Legend: R-AMA could be useful to personalize neurorehabilitation programs, thanks
to both biomarkers provided by EMG biosignals (on the left) and biomechanical param-
eters (on the right), including kinematic and kinetics. In the end, the great quantity of
data obtained through R-AMA could be further used for MLA for individuating motor
biomarkers involved in recovery prediction.

6.2. Challenges of Robotic-Aided Motion Analysis

To date, research on robotic devices has primarily focused on neuromotor training and
recovery in patients with neurological disorders, without considering the potential role of
these devices in objectively evaluating movement. However, physicians frequently criticize
these technical solutions, claiming that the outcome measures offered by robotic devices
are too abstract, do not translate into practical function, and lack ecological validity.

An important point that should be addressed is that robotic devices may require a
lengthy setup time and the support of technical staff to operate. In the clinical setting,
the physiotherapist has 30–60 min of rehabilitation treatment for each patient, and this
could further discourage the use of robotic devices in clinical practice. Additionally, robotic
devices, especially exoskeletons, must be perfectly aligned with the user to avoid undesired
interaction forces [62]. These forces can result in an uncomfortable and unsafe human–
robot interaction in the case of high forces or torques. Solutions to address misalignment of

118



Diagnostics 2023, 13, 3561

the joint’s axes can include soft exoskeletons, which are constructed from soft textiles or
elastomers. These exoskeletons offer greater user compliance compared to rigid robotic
orthoses [63]. However, robotic devices are not available in all rehabilitation centers due to
their costs, maintenance requirements, and the need for additional staff [64]. These may
be some reasons why robot-based assessments have not yet been integrated into clinical
practice on a large scale.

However, recent technological developments in the field of wearable devices, such
as accelerometers and inertial sensors, have the advantage of providing objective motion
analysis as low-cost and easy-to-use tools, as opposed to robotic devices [17,45]. In this
sense, professional engineers should be encouraged to develop assessment technologies that
are not constrained by practical limitations and administrative burdens. In our opinion, we
must identify and overcome the barriers that prevent the translation of robotic evaluations
to clinical application.

6.3. Future Perspectives: Combined Approaches and Beyond

The selection of motion biomarkers predicting recovery remains an open and under-
debate question. According to Amrani El Yaakoubi et al. [56], EMG and biomechanical
parameters together, including both kinetic and kinematic factors, are the most used
predictors for lower limb movement. EMG is, in fact, sensitive to neuromuscular changes,
particularly in post-stroke patients. The most common surface EMG analyses are time-
domain and frequency-domain analyses. Specifically, among frequency-domain analyses,
the mean frequency and median frequency are the most effective to assess muscle fatigue in
post-stroke patients [65]. Hussain et al. [66] found that a machine learning neural network
model based on EMG frequency domains has a high level of accuracy. However, the
muscles that contribute the most to kinetic and kinematic prediction cannot currently be
defined due to the heterogeneity of the results from the studies. In contrast, the kinematic
assessment of the upper limb mainly includes the smoothness of the trajectory, as suggested
by various authors [66,67]. Scano et al. [68] identified that post-stroke patients exhibit
lower smoothness of trajectory, indicating difficulty in controlling the upper limb during
multi-joint movements. Also, the authors found that elbow and shoulder joints showed
a limited ROM, likely due to altered postural accommodation. In this view, analyzing
EMG signals during upper limb functional activities with or without exoskeletons could
be a future objective to achieve. Moreover, other biosignals, like EEG, can be used to
control robotic devices through the brain–computer interface (BCI). An EEG-based brain-
controlled robot is a robotic device that uses an EEG-based BCI to receive control commands
from its user [69]. In the field of neurorehabilitation, EEG-based brain-controlled assistive
robots are divided into manipulators and mobiles. Brain-controlled manipulators operate
under direct BCI control, with user commands being sent to the robots. This is done
without the need for additional assistance from robot intelligence elements [70]. In contrast,
brain-controlled mobiles operate under shared BCI control, which involves combining
a BCI system with an intelligent controller. Robots of this type are safer, less tiring for
their users, and more accurate in interpreting and executing their commands [71,72].
Therefore, future developments in rehabilitation robotics should enable physicians to
choose the most appropriate biomechanical parameters according to an individual patient’s
specific requirements. Future technological advancements in the assessment of motor
performance should consider kinematic, EMG, and EEG signals. This aspect could be crucial
in understanding how the brain’s sensorimotor cortex encodes movements to achieve
optimal neural control of motor performance. It also enables the differentiation between
healthy and pathological characteristics. Hence, in order to guide the development of
future robotic-based assessment tools, it is essential to foster multidisciplinary collaboration
between clinical professionals (such as neurologists, physiatrists, and physiotherapists)
and biomedical engineers.

119



Diagnostics 2023, 13, 3561

7. Conclusions

In conclusion, the utility of R-AMA for both clinical and research purposes is still a
subject of debate, although some promising findings have been reported regarding the
effectiveness of the Lokomat and the Armeo. The motion analysis provided by these robotic
devices is used to customize rehabilitation sessions, relying on the objective quantification
of patients’ functional abilities. It should be considered that clinical scales and tests used
to monitor motor recovery in neurological patients are less accurate than motion analysis
conducted by robotic devices. Next, research on the use of robotics and assessment tools
should be encouraged. Future studies should be oriented toward two different frontiers:
(1) understanding the most useful biomechanical parameters that can predict the accuracy
of movements and (2) validating robotic device assessments for clinical purposes.
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Abstract: Muscular skeletal disorder is a difficult challenge faced by the working population. Mo-
tion capture (MoCap) is used for recording the movement of people for clinical, ergonomic and
rehabilitation solutions. However, knowledge barriers about these MoCap systems have made
them difficult to use for many people. Despite this, no state-of-the-art literature review on MoCap
systems for human clinical, rehabilitation and ergonomic analysis has been conducted. A medical
diagnosis using AI applies machine learning algorithms and motion capture technologies to ana-
lyze patient data, enhancing diagnostic accuracy, enabling early disease detection and facilitating
personalized treatment plans. It revolutionizes healthcare by harnessing the power of data-driven
insights for improved patient outcomes and efficient clinical decision-making. The current review
aimed to investigate: (i) the most used MoCap systems for clinical use, ergonomics and rehabilitation,
(ii) their application and (iii) the target population. We used preferred reporting items for systematic
reviews and meta-analysis guidelines for the review. Google Scholar, PubMed, Scopus and Web of
Science were used to search for relevant published articles. The articles obtained were scrutinized
by reading the abstracts and titles to determine their inclusion eligibility. Accordingly, articles with
insufficient or irrelevant information were excluded from the screening. The search included studies
published between 2013 and 2023 (including additional criteria). A total of 40 articles were eligible
for review. The selected articles were further categorized in terms of the types of MoCap used, their
application and the domain of the experiments. This review will serve as a guide for researchers and
organizational management.

Keywords: MBased systems; MLess systems; IMS systems; EMG; shoulder; hands

1. Introduction

Human body motion tracking is currently one of the most expanding research areas.
The term “motion capture” (MoCap) has been defined by different scholars depending
on their respective research area. MoCap relates to the recording of the movement of
objects or people. Various researchers [1–5] have identified two popular optical MoCap
systems: marker-based (MBased) and marker-less (MLess) MoCap systems. Both systems
have been used by many researchers to assess the ergonomic risks of industrial workers by
capturing their body kinematics using smart cameras and transforming the information
into three-dimensional (3D) data. However, researchers have extensively argued on which
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among the main MoCap systems is the best in terms of user satisfaction. Several studies
have indicated that MBased MoCap is considerably accurate [6–10]. Other studies [5,11–15]
have viewed that MLess MoCap is markedly appropriate. Among non-optical MoCap
systems, inertial measurement unit (IMU) has been discussed as the best [16–20].

Medical diagnosis plays a crucial role in the field of healthcare, as it involves identify-
ing and determining the nature of diseases or conditions in patients. Traditionally, medical
diagnosis heavily relied on the expertise and experience of healthcare professionals. How-
ever, with the advancements in technology and the emergence of artificial intelligence
(AI), there has been a significant transformation in the way diagnoses are made. AI-based
medical diagnosis utilizes machine learning algorithms to analyze vast amounts of patient
data, including medical records, imaging scans and genetic information, to assist healthcare
professionals in accurate and timely diagnoses. This introduction explores the applications,
benefits and challenges of AI in medical diagnosis, highlighting its potential to improve
patient outcomes and revolutionize healthcare practices.

A number of systematic literature reviews and surveys on MoCap systems have been
published, e.g., marker-less motion capture systems as a training device in neurological
rehabilitation [21], the accuracy of motion capture systems for sport applications [22] and
motion capture technology in industrial applications [23]. All of these reviews only con-
sidered single MoCap systems for either small groups or specific applications. Hence,
presenting a systematic literature review on all MoCap systems is highly needed. Con-
sequently, the purpose of this study is to assist researchers, healthcare practitioners and
industrial managers to identify suitable MoCap systems in various applications of their
need. For this, the present literature review was conducted to investigate (i) the most used
MoCap system on ergonomics, (ii) their application and (iii) the target population and
most-used body segments using the preferred reporting items for systematic reviews and
meta-analysis (PRISMA) approach.

This systematic literature review is presented to address the research questions
which include:

RQ1 Which brand is the most frequently used device in the MBased systems category?
RQ2 What is the main advantage of the Microsoft Kinect MoCap system compared to other
systems in the MLess system category?
RQ3 What are some notable features and advantages of Xsens, CaptivL7000, IGS-180 and
other systems that fall in to the IMU category?

The article is organized as follows: Section 2 describes the related literature of MoCap
systems and a brief note on ergonomics. Section 3 presents the method used for the
systematic literature review. Section 4 describes the results obtained from the method
adopted. Section 5 gives the details about MoCap systems and the answers for the research
questions are presented. Section 6 is the target population. Section 7 discusses and interprets
the findings of the selected papers in the review. In Section 8, conclusions are drawn.

2. Related Literature on Motion Capture Systems

Effort has been exerted by many researchers using MoCap techniques to obtain workers’
data in their working environment and use such data in applying ergonomic principles to
worker guidelines to reduce the risk of musculoskeletal disorder and improve productivity.

Ref. [24] used the Vicon 14 MX optical MoCap system to assess the potential risk of
developing knee musculoskeletal disorder caused by residential roofing and determined
that an awkward posture during sloppy roofing may have a significant impact on devel-
oping this disorder. MoCap was also used to analyze the relationship among body loads,
experience and working procedure [25]. The outcome suggested that experienced workers
adopt working techniques that are different from those of less experienced workers. MLess
MoCap was reported to be the most cost-effective, efficient and easy to use [26–28], and
demonstrated promising outcomes in occupational safety [29] and gait analysis [30]. IMU
has been used by many researchers to diagnose the biomechanical overload of manual
material handling workers [31] and analyze the motion of a healthy human wrist joint [32].
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MoCap systems are used in several applications, such as sports, range of motion (ROM),
ergonomics, health care, entertainment and advertisements.

Ergonomics

Ergonomics is the scientific study of the relationship between man and his working en-
vironments. Numerous researchers and professionals have defined the term based on their
respective areas of focus but they eventually turn out to have the same meaning. Research
has shown that occupational safety and health administration (OSHA) support is highly
required to reinforce workers’ knowledge in ergonomics and safety practices [33]. The in-
herent danger in hazardous occupations (e.g., construction, manufacturing, transportation,
warehousing, mining, quarrying and healthcare services) and emergency services (e.g.,
firefighters, law enforcement and the military) results in substantial risks of occupational in-
juries [21,33]. Fitri and Halim [34] explained that most prevalent ergonomic-related injuries
are musculoskeletal in nature, specifically caused by repetition, overload and an awkward
posture in carrying out work. The musculoskeletal system (MSS) comprises the bones of
the skeleton, muscles, cartilage, tendons, ligaments, joints and other connective tissues that
support and bind tissues and organs. The MSS is responsible for providing shape, support,
stability and locomotion to the body. Work-related musculoskeletal disorder (WMSD) is a
painful disorder that affects workers’ MSS. Ref. [35] indicated that WMSD is a condition that
affects the MSS and leads to pain and disabilities. MoCap data are essential for applying
ergonomic principles to the guidelines for workers to reduce the risk of musculoskeletal
disorder and improve productivity. However, obtaining accurate data is difficult owing
to the nature of the working environment, heavy equipment used by workers, wearing
personal protective equipment (PPE) and the limitations of MoCap systems.

3. Materials and Methods

This review used four different databases (i.e., Scopus, Web of Science, Google Scholar
and PubMed) to search for relevant published articles or research in the field of applications
of MoCap systems in ergonomics, healthcare and rehabilitation. The search queries used
include some keywords and their combination to search for the relevant published papers
within the publication years from 2013 to 2023: MoCap systems, MoCap technology,
upper limb, lower limb, spine, ergonomics, gait, movement, kinematics, diagnosis and
measurement. Given that our aim was to conduct a comprehensive review of research
papers that suit the requirement of our study, a slight difference in the search strategies was
adopted knowing the differences in the search capabilities of the selected databases. Title
and abstract searches were performed in PubMed and Scopus from the beginning, while
full text search was adopted in Web of Science and Google Scholar.

The articles obtained were scrutinized by reading the abstracts and titles to determine
their inclusion eligibility. Those with insufficient or irrelevant information were excluded
from the screening.

The full text of the searched papers were examined separately to determine the relevant
information to enable their inclusion or exclusion. Furthermore, most of the references
cited in the selected articles or papers were identified and used to retrieve more relevant
papers for the review. To create clean and standard documents (i.e., no noise, no duplicates)
retrieved from the different databases or sources, the following additional selection and
rejection criteria were adopted.

• Articles should be original or reviews, written in English, and published in English
journals or conferences.

• Any relevant articles published or in press between January 2013 and December 2023.
• The main focus being on MoCap applications on the ergonomics of human activities.
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4. Results

The computerized literature search resulted in 40 selected published studies on the
application of MoCap systems in healthcare, rehabilitation and ergonomics, specifically
discussing different human MoCap systems. A total of 1006 articles were first identified,
with 24 duplicate articles discovered and excluded (n = 1006 − 24 = 982). A total of
98 articles were selected from (n = 982) after screening the title/abstract for further eval-
uation. Thereafter, 58 articles were further excluded following full-text reading, thereby
resulting in the selection and analysis of only 40 relevant articles for the review. Figure 1
summarizes the stages of the article search and inclusion/exclusion process. The comput-
erized literature search resulted in 40 published articles on the application of MoCap in
ergonomics, healthcare and rehabilitation, particularly discussing different human MoCap
systems. These systems are listed in this article. Given that most MoCap systems used
in the selected literature are either MBase, MLess or IMU, these tables are titled MBased
systems, MLess systems and IMU systems, respectively, with column titles as operational
system, operational software, body segment used, number of body segment, measurement
error and the domain of the experiments. The application of each MoCap system used is
explained in the following section.

 

Figure 1. Selection of Studies, Search Query and Inclusion Criteria.

4.1. Distribution of Articles by Nationality of Authors

Figure 2 shows that 19 different countries used motion capture systems on healthcare,
rehabilitation and ergonomic analysis in their studies. The selection was made by observing
the countries where the studies were conducted. The distribution of 40 selected articles
by the nationality of the authors shows that the United States of America has the highest
number of published articles (seven), followed by Canada and Spain with four articles each.
France and Germany published three articles each, while Brazil, Denmark, Japan, Belgium
and Netherlands published two articles, respectively. Only one published article is found
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in Australia, Czech Republic, England, China, India, Indonesia, Italy, Republic of Korea
and Sweden, respectively.

 

Figure 2. Distribution of selected papers by authors’ nationalities.

4.2. Distribution of Articles by Year of Publication

Figure 3 presents the distribution of articles by year of publication from 2013 to 2023,
respectively. The number of included articles and their published year in the studies are
described as follows. The year 2020 had the highest number of published articles (n = 10)
which covers 25% of the total published articles in the study. This was followed by the year
2019 with six articles, covering 15% of the total published articles, followed by five articles
published in the year 2022, covering 12.5%. Four articles were published in 2018 which
covers 10% of the total published articles. Three articles were published in 2015, 2021 and
2023, respectively, covering 22.5% all together. Further, two articles were published in 2013,
2014 and 2017, respectively, which gives the total of 15% of all the published articles. No
published article was found in the year 2016, hence 0% for the year 2016 is recorded.

4.3. Distribution of Article by Publishing Company

Figure 4 shows the distribution of the selected articles used by their publishing com-
panies. These selected articles are published by six different publishing companies which
include IEEE (New York, NY, USA), MDPI (Basel, Switzerland), Elsevier (Amsterdam, The
Netherlands), Springer (Berlin/Heidelberg, Germany), Taylor and Francis (Philadelphia,
PA, USA) and Wiley (Hoboken, NJ, USA). The description of this distribution is as fol-
lows. From the figure, Elsevier published the highest number of articles used (n = 12),
nine articles are published in both MDPI and Springer, five articles are published under
IEEE, while two articles are published under Taylor and Francis and one article is published
under Wiley.
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Figure 3. Distribution of selected papers by year of publication.

 

Figure 4. Distribution of selected papers by publishing companies.

5. Types of MoCap System

Different types of motion capture systems were used in the literature as shown in
Tables 1–3. These motion capture systems are categorized into the MBased, MLess and
IMU systems.

5.1. RQ1 Which Brand Is the Most Frequently Used Device in the MBased Systems Category?

For MBased systems, Vicon is the most frequently used device. Vicon MX3, MX13
and MX20 in the MX series and Vicon T-20 and T-40 are used in the T-series. Meanwhile,
Vicon V16 and V5 are used in the V-series. MX represents the megapixels of the camera,
such as MX-3+ (0.325 mega pixels). In the T-series, T-160 stands for 16-megapixel cameras,
while the Vicon V family represents the vantage, indicating capture at high speed. A
3D MoCap system involves multiple high-definition cameras that are accurate, capable
of capturing 370 frames per second at full frame resolution and can capture speeds of
2000 frames per second. Another MBased system used is CMOS. The system hardware
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was built using off-the-shelf components and the system can run at a rate of 63 frames per
second. OptiTrack Flex3 is another system used in this category and consists of a small
volume motion camera and is likewise affordable. This system uses six infrared cameras
and spherical retroreflective markers of 14 mm diameter to output the marker information
as XYZ data. Another MBased system used is OptoTrak. Eight OptoTrak motion tracking
cameras were used to capture the 3D motion data of pelvis, hip and knee joints at 100 Hz.
The system was used to validate the Kinect V2, used as the main system. The results of
another study obtained from PhaseSpace were used to compare the results obtained by
using the Kinect systems. Eight infrared PhaseSpace cameras were positioned around
the capture space of approximately 4 m × 4 m. Moreover, the system provides the 3D
position of LED markers with sub-millimeter accuracy and a frequency of up to 960 HZ.
PhaseSpace enabled real-time data capture with under 10 ms latency. Table 1 summarizes
the MBased systems.

Table 1. Mbased systems.

Study
Operational

System
Operational

Software
Body

Segments
Number of

Segment
Measurement

Error
Domain of
Experiment

[36] Vicon T-40 MAS Hand 1 MAE
5.75 mm Ergonomics

[37] Simple\camera Kinematic
inverse

Leg (Hip and
Knee) 2 AVE

1.66 and 0.46 Ergonomics

[38] CMOS and Kinect Jack software Whole body Whole body Nil Ergonomics

[39] ViconTH and iEMG GraphPad
StatMate 2.0

Upper
Extremity

(shoulder and
elbow

2 Nil Rehabilitation

[40] PhaseSpace and
Kinect1 and 2

PhaseSpace
Recap2 Whole body 29 joints 76 mm and 87

mm Ergonomics

[41] Opti Track Flex3 Motive: Body
Upper body
(hand and

head)
2 Small Ergonomics

[42]
Vicon (Oxford

Metrics, Oxford,
UK

ULMV 1.0 Upper
Extremity 3 Nil Rehabilitation

[43]
IR cameras, Xtion
3D sensor, and H4

Audio
Nexus 2.5 Head and hand 2 10 ms Rehabilitation

[44] Vicon MX13 and
Xsens MTw Nexus 2.0 Full body all Nil Ergonomics

5.2. RQ2 What Is the Main Advantage of the Microsoft Kinect MoCap system Compared to Other
Systems in the MLess System Category?

Under this category, Microsoft Kinect is the most frequently used MoCap system.
It is an infrared MoCap device used for interactive computer games aimed for the Xbox
360 game console. Originally designed to replace the standard game controller, the device
enables users to control and interact with the virtual reality environment through infrared
cameras and depth sensors. This system can provide full-body 3D motion detection in
real time. Microsoft Kinect is inexpensive, portable and easy to set up [45,46]. Move
4D is another MLess MoCap. Move 4D is a 3D human body motion scanner, modular
photogrammetry-based 4D scanning system and consists of a set of 12 synchronized mod-
ules to scan full bodies with texture in motion. This system can capture up to 180 frames
per second with a resolution of 2 mm. Table 2 presents the summary of MLess systems.
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Table 2. MLess system.

Study
Operational

System
Operational

Software
Body Segment

Number of
Segments

Measurement
Error

Domain of
Experiment

[47] Microsoft Kinect Microsoft SDK Upper limb 4 Nil Ergonomics

[12] Microsoft Kinect
and OpenSim Open-Sim Upper

Extremity 4 Nil Clinical

[48] Kinect V2 and
Vicon MX3

Nexus 2.5 and
Microsoft

SDK
Upper body 2 0.011 and 0.024 Ergonomics

[49] Microsoft Kinect V2
Video

annotation
software, ELAN

Whole body 25 joints Nil Clinical

[50] Kinect V2 and
Optotrak OpenTLD Lower-

Extremity 2 0.95 and 0.27 Clinical

[51] Microsoft Kinect V2 OpesPose Lower limb 1 Nil Clinical

[5] Microsoft Kinect
V2, Captiv L7000 iPi soft Upper-

Extremity 2 <5.0 Ergonomics

[28] Microsoft Kinect V2 Microsoft SDK Lower limb 3 <5.0 Clinical
[52] Move 4D Move 4D Whole body 1 Nil Ergonomics

5.3. RQ3 What Are Some Notable Features and Advantages of Xsens, CaptivL7000, IGS-180 and
Other Systems That Fall into the IMU Category?

Xsens was used more than any other system in this category. This system is a full-
body MoCap system that integrates directly into the subject pipeline. It enables users to
perform the capturing in all environments, as well as being known for easy calibration,
real-time visualization, easy play back and capable of exporting and processing 3D data.
CaptivL7000 is also an inertia system used under this category. This system is a flexible
research software package for the synchronization of video and multiple measurements
from TEA sensors and interfaced third-party hardware and measurement devices. IGS-180
is also used in this category. This system is Synergia’s professional level MoCap system,
offering highly accurate and rich nuanced MoCap data. Moreover, this system is easy to
use and does not need cameras capable of data capture at any given location, and there
is no concern of occlusion or marker swapping. Thereafter, the MoCap system used is
IMU, which uses accelerometers to capture more data on joint impact, limb movement
and limb loads. In addition, this system is lightweight, easy to use, flexible and reliable.
This system likewise enables field-based inertial measurements of impact and loads up to
200 g. It can capture the highest speed and highest impact sporting movements. An APDM
Opal V2 inertial sensor is also used in one of the selected studies. Its sensors are placed on
the subject body according to the manufacturer’s guidelines. Subjects were asked to walk
on the GAITRite mat while wearing an APDM OpalV2 on each foot. Data were recorded
simultaneously from the GAITRite and IMU systems [53]. Oqus300 is a MoCap device used
in the experiment to capture seven retro-reflective markers that define the participants’
trunk segment. Another inertial system used is wireless sensor network (WSN). A human
MoCap system based on inertial sensors and suitable for 3D reconstruction was designed to
capture human posture data in the study. Ref. [54] added that “A WSN typically has little
or no infrastructure. It consists of several sensor nodes (few tens to thousands) working
together to monitor a region to obtain data about the environment”. The IMS systems are
summarized in Table 3.
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Table 3. IMU systems.

Study Operational System
Operational

Software
Body Segment

Number of
Segments

Measurement
Error

Domain of
Experiment

[55] IMUs Mobile OS Upper body 5 Nil Ergonomic

[56] Xsens MTw and
Vicon V612 Xsens MTw Lower limb 1 <1◦ and <3◦ Clinical

[17] IGS-180 and Vicon
(MX20, Nexus 1.8.2 Whole body 6 1.1◦–5.1◦ Clinical

[57] Xsens MVN Link and
Oqus 300 (IMC)

Xsens MVN
studio 4.2.4 Lower body 1 >40% Ergonomics

[58] IMU and OMC D-Flow Lower limb 1 Nil Rehabilitation

[59] IMU (Xsens) and
EMG

Xsens MTV
studio pro. Upper limb 4 Nil Ergonomics

[60] 3IMUs and Vicon
OXG MTws Xsens Lower limb 2 Nil Clinical

[18] IMUs and Vicon V5 Free
IMU-GUI

Lower limb
joints angles 1 0.63 and 1.2 Clinical

[61] OptiTrack and EMG OptiTrack Upper-
Extremity 2 Nil Ergonomics

[62] EMG and IMU JMP software Upper-
Extremity 1 Nil Ergonomics

[63] APDM Opal V2 Moveo Explorer Torso, Arms
and Legs 3 Nil Clinical

[64] Wireless sensor
network (WSN) Truemotion Whole body 1 Nil Clinical

6. Target Population

Different target populations with ergonomic problems were involved in the studies. The ma-
jority of the studies (n = 15) targeted the general population [17,18,28,39,40,44,50,52,58,60,64–68],
twelve of which targeted the working population [5,38,47,48,55,59,61,62,69–72]. Six studies tar-
geted the healthcare population [12,41,42,51,56,73], while other studies (n = 4) targeted sports
persons [36,57,63,74]. Only one study [75] targeted university students. The remaining two studies
targeted gesture and communication professionals [43,49]. Table 4 showcases the MoCaps system
diagnosing different disorders from different populations.

Table 4. MoCaps System for Diagnostics.

Study System
Sampling
Frequency

Target Population Sample Size Diagnostic Outcomes

[39] ViconTH and
iEMG 200 HZ General

population 25
Lead clinicians to a more specific
assessment and better intervention
in upper extremity rehabilitation

[48] Kinect V2 and
Vicon MX3

Vicon100 HZ/
Kinect30 HZ

Police, Traffic and
Aircraft marshals 1 Kinect is an effective tool in

tracking upper body motion

[38] CMOS and Kinect -

Assembly
Operators In
Aerospace

Manufacturing

- For fostering operation of an
aircraft fuselage

[51] Microsoft Kinect 30 HZ Dementia Patients 14
The system can be used as a tool for
monitoring of Parkinson’s in
residential setting

[43]
IR cameras, Xtion
3D sensor and H4

Audio

100 HZ, 30 HZ
and 44.1-KHZ Deaf Translators 3 Used to investigate implicit

detection of speech gesture
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Table 4. Cont.

Study System
Sampling
Frequency

Target Population Sample Size Diagnostic Outcomes

[41] OptiTrak Flex 3 100 HZ Surgeon 20
May improve skill acquisition and
reduce physical stress during
laparoscopic surgery

[36] Vicon T-40 200 HZ Swimmers - The system is accurate and feasible

[57] Xsens MVT Link
and Oqus 300

240 HZ and
120 HZ Sportsmen 11

Using Inertia system, trunk speed is
more accurate during walking than
in transition period

[47] Microsoft Kinect 30 HZ Factory Operators - Kinect sensor is comparable to the
Vicon system

[12] Microsoft Kinect
and OpenSim - Manual

Wheelchair Users - The system is easy to use by
clinicians

[65] Vicon T20 and
Vicon Bonita Video - General

population 10
Allows a quantitative assessment of
lower limb motion in the sagittal
plane

[49] Microsoft Kinect
V2 -

Gesture and
Communication

professional
- Can be useful to clinicians and

researchers

[28] Microsoft Kinect
V2 30 HZ General

population 22

Kinect detects kinematic
abnormalities of the trunk during
slow walking on a flat land easier
than on the treadmill

[42]
Vicon (Oxford

Metrics, Oxford,
UK)

100 HZ People with Spinal
muscular atrophy 17 Used for evaluating the need for

clinical intervention

[5]
Microsoft Kinect
V2 and Captiv

L7000

30 HZ and
128 HZ

Manual operators
in the industry 12 Kinect V2 accuracy reduced when

occlusion occurs

[17] IGS-180 and Vicon
(MX20, T40)

60 HZ and
100 HZ

General
population 20

The accuracy of joint kinematics can
be affected when pairing a module
unlike segment kinematics T

[18] IMUs and ViconV5 128 HZ and
200 HZ

General
population 7

IMU system is applicable in
unconstrained rehabilitative
contexts

[63] APDM Opal V2 128 HZ Female Gymnasts 8
The relationship between back pain
and gymnastics training
load/intensity is still not clear

[56] Xsens MTw and
Vicon V612

60 HZ and
120 HZ

Transfemoral
amputees 1 The deviation of knee extension

angle is found to be about 1

[50] Kinect V2 and
Optotrak

100 HZ and
100 HZ

General
population

RGB data stream of Kinect sensor is
efficient in estimating joint
kinematics and unsuitable for
measuring local dynamic stability

[40]
PhaseSpace

(Impuls X2) and
Kinect 1 and 2

480 HZ and
30 HZ

General
population 10

Kinect 2 is more robust and
accurate tracking of human pose as
compared to Kinect 1

[55] IMUs 100 HZ Manual Workers in
an Industry 12

The tool used can reduce the risk of
musculoskeletal disorders in
industrial settings

[64] Wireless sensor
network (WSN) 120 HZ General

population 240 sets of data

The system can meet the needs of
doctors for real time monitoring of
patients’ physiological parameters
during clinical health monitoring

[44] Vicov MX13 and
Xsens MTw

100 HZ and
60 HZ

General
population 12 Not suitable in real life situations
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Table 4. Cont.

Study System
Sampling
Frequency

Target Population Sample Size Diagnostic Outcomes

[61] OptiTrack and
EMG

120 HZ and
100 HZ

Firefighters and
Emergency

Medical Service
14

The system will reduce the
biomechanical loads experienced by
EMS providers when lifting and
moving the patients

[52] Move 4D - General
population - The application is used for

biomechanical analysis purposes

[62] IMU and EMG 1500 HZ Industrial Workers 14
Can be used to improve workplace
design, injuries and enhance
workers’ productivity

[58] IMU and OMC 200 HZ General
population 3

Sensor network shows high
accuracy in capturing significant
gait parameters and features

[60] 3IMUs and Vicon
OXG 100 HZ General

population 10 IMUs can be used to lower limb
joint angle during straight walking

[59] IMU (Xsens) and
EMG

120 HZ and
2000 HZ

Banana production
industrial workers 3

Bunches position, tools used by the
workers and repetition movement
led to musculoskeletal risk.

[66] TTL-Pulse 200 HZ General
Population 15

Evaluating the performance of a
motion capture device for
diagnosing the risk of
musculoskeletal disorder when
doing physical activities

[75] BR- BEWE TW University
students 425 Frequent risk of musculoskeletal

disorder

[67]
Microsoft Kinect

V2 and Vicon
Bonita

100 HZ and
200 HZ

General
Population 1 Potential health risks of the

participants

[74] QualisysAB, 100 HZ Sport 16
To diagnose the kinematic
differences among female Futsal
players

[69] MoCap suit—Axis
Studio

90 HZ and
60 HZ

Operators working
in automotive

production
20 To predict the effect of bad working

place on operators

[70] IMUs 100 HZ Workers form
textile industry 93 To diagnose workers with lateral

epicondylitis

[73] Flexi 13, OptiTrack 100 HZ Healthcare 10
Diagnosis and treatment of
shoulder pain in rehabilitation
homes

[71] XSens MVN Link 240 HZ Manual Workers 9

Diagnose the prevalence of
work-related musculoskeletal
disorders among the manual
materials handlers.

[68]
STT-IWS, STT

Systems and San
Sebastian

100 HZ General
population 14 For effective diagnosis, assessment

and treatment of spinal disorders

[72] 15 IMU 60 HZ
Workers on
repetitive

workstation circle
1

Compute the joint risks for every
posture and output the total risk for
the assessed workstation

7. Discussion

Choosing the right MoCap systems for ergonomic applications can be very difficult.
Tables 1–3 may serve as a guide for researchers in making the right selection. Based on
the result of this review, the majority of MoCap systems used in the selected articles were
IMU-based (covering about 40%), while the camera-based systems (MBased and MLess)
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covered the remaining 60%, most likely due to the operational and processing cost and
other technical challenges.

Outcomes revealed that the best selection of MoCap systems is mainly by the type
of application. For example, quality control is achieved mainly via the use of the IMU
system, while improving productivity via MBased and MLess systems. Another factor that
warrants the use of MoCap systems is the environment; in uncontrolled environments, an
IMU system is the best option, because the units can assess the performance of the subject
throughout the experiment. However, in a controlled setting, e.g., laboratories, MBased
and MLess systems will perform more accurately.

People’s wellbeing and safety was found to be the most common area of research
in MoCap systems. For instance, all the studies in the selected articles focused on either
ergonomic, clinical or rehabilitation research.

Other findings from this review revealed that when MoCap is combined with EMG,
the musculoskeletal assessment of the subject was improved as well as the number of
muscles to be analyzed; for example, biceps, triceps and forearm extensor strength muscle
torques were measured with 0.2–2.000 as the measuring range [42] and EMG was used to
investigate the physiological demand of right arm muscles involved in the bunch removal
task [59]. It is obvious that neither MLess nor MoCap were combined with EMG in any the
selected articles. Table 4 is showing the outcomes of the diagnosis of the subjects using the
selected motion capture systems as presented above. AI-based medical diagnosis offers
improved accuracy, efficiency and accessibility, but ethical and privacy concerns must
be addressed.

This review article is not perfect as it is attached with some limitations. There are
many published articles relevant to MBase, MLess and IMU that may not be included in
the review, to reserve future reproducibility. However, utilizing the PRISMA approach
allowed us to identify a reasonable number of studies compared to some recent systematic
literature reviews.

8. Conclusions

This systematic literature review has underscored how MoCap systems are utilized by
researchers and organizational management to solve the issues of musculoskeletal disorder.
The research was mainly driven by three experimental domains which include ergonomic,
clinical and rehabilitation applications. In conclusion, the use of various technologies such
as Kinect, IMU systems, sensor networks and motion capture devices has shown promising
results in the field of medical diagnosis. These tools provide accurate and feasible assess-
ments of various musculoskeletal parameters and can aid in diagnosing and monitoring
conditions such as upper extremity rehabilitation, Parkinson’s, back pain, joint kinematics
and work-related musculoskeletal disorders. However, challenges related to accuracy,
occlusion, real-life applicability and privacy concerns need to be addressed for wider im-
plementation. Overall, these technologies hold great potential in improving diagnosis,
assessment and treatment in the field of medical diagnostics and workplace ergonomics.

The IMU system is the most-used MoCap system for such applications, as it relatively
satisfies all the usability goals including the cost-effectiveness and displays minimal impact
on the application domains of this research. Furthermore, the IMU system has long
developed its performance in terms of low power utilization, logical partitioning and
portability for easy body activity monitoring.

IMU systems may likely become the substitute of highly accurate but expensive
MBased and MLess MoCap systems, especially with the current advancement that is
making it smarter with built-in functions and embedded algorithms, such as deep learning
and Kalman filters, that will process the data retrieved by IMU systems for more accuracy.

Moreover, systems need to be portable to interfere less with the subjects and work-
place, while real-time assessments should go with health and safety applications to in-
fluence the acceptance and implementation of such technologies by researchers and
organizational management.
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MBased MoCap systems, such as vicon-T40 and PhaseSpace, come at a high cost
and present high accuracy for some body activities and tracking tasks, but only in a
controlled environment (e.g., laboratories). Attempts must be made to improve its usability.
MLess MoCap systems, such as the Kinect series, are very low-cost compared to MBased
MoCap systems, which also show high performance accuracy for specific classification
and activity tracking tasks; nevertheless, efforts should be made to develop the tracking of
more complex activities in real-time scenes. Finally, the ergonomic research domain has the
highest number of articles in the selected publications.
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10. Świtoński, A.; Josiński, H.; Michalczuk, A.; Wojciechowski, K. Quaternion Statistics Applied to the Classification of Motion
Capture Data. Expert Syst. Appl. 2021, 164, 113813. [CrossRef]

11. Colyer, S.L.; Evans, M.; Cosker, D.P.; Salo, A.I.T. A Review of the Evolution of Vision-Based Motion Analysis and the Integration
of Advanced Computer Vision Methods Towards Developing a Markerless System. Sport. Med.-Open 2018, 4, 24. [CrossRef]
[PubMed]

12. Rammer, J.; Slavens, B.; Krzak, J.; Winters, J.; Riedel, S.; Harris, G. Assessment of a Markerless Motion Analysis System for
Manual Wheelchair Application. J. Neuroeng. Rehabil. 2018, 15, 96. [CrossRef] [PubMed]

13. Maletsky, L.P.; Sun, J.; Morton, N.A. Accuracy of an Optical Active-Marker System to Track the Relative Motion of Rigid Bodies.
J. Biomech. 2007, 40, 682–685. [CrossRef] [PubMed]

14. Colombo, G.; Regazzoni, D.; Rizzi, C. Markerless Motion Capture Integrated with Human Modeling for Virtual Ergonomics. In
Proceedings of the 4th International Conference, DHM 2013, Held as Part of HCI International 2013, Las Vegas, NV, USA, 21–26
July 2013; Volume 8026, pp. 314–323. [CrossRef]

136



Diagnostics 2023, 13, 2593

15. Schmitz, A.; Ye, M.; Shapiro, R.; Yang, R.; Noehren, B. Accuracy and Repeatability of Joint Angles Measured Using a Single
Camera Markerless Motion Capture System. J. Biomech. 2013, 47, 587–591. [CrossRef] [PubMed]

16. Milosevic, B.; Leardini, A.; Farella, E. Kinect and Wearable Inertial Sensors for Motor Rehabilitation Programs at Home: State of
the Art and an Experimental Comparison. Biomed. Eng. Online 2020, 19, 25. [CrossRef] [PubMed]

17. Lebel, K.; Boissy, P.; Nguyen, H.; Duval, C. Inertial Measurement Systems for Segments and Joints Kinematics Assessment:
Towards an Understanding of the Variations in Sensors Accuracy. Biomed. Eng. Online 2017, 16, 56. [CrossRef]

18. Calibrations, S.; Lebleu, J.; Gosseye, T.; Detrembleur, C.; Mahaudens, P.; Cartiaux, O.; Penta, M. Lower Limb Kinematics Using Inertial
Sensors during Locomotion: Accuracy and Reproducibility of Joint Angle Calculations with Di Ff Erent. Sensors 2020, 20, 715.

19. Kobsar, D.; Charlton, J.M.; Tse, C.T.F.; Esculier, J.; Graffos, A.; Krowchuk, N.M.; Thatcher, D.; Hunt, M.A. Validity and Reliability
of Wearable Inertial Sensors in Healthy Adult Walking: A Systematic Review and Meta-Analysis. J. Neuroeng. Rehabil. 2020, 3, 62.
[CrossRef]

20. Bortolini, M.; Faccio, M.; Gamberi, M.; Pilati, F. Motion Analysis System (MAS) for Production and Ergonomics Assessment in the
Manufacturing Processes. Comput. Ind. Eng. 2020, 139, 105485. [CrossRef]

21. Chander, H.; Garner, J.C.; Wade, C.; Knight, A.C. Postural Control in Workplace Safety: Role of Occupational Footwear and
Workload. Safety 2017, 3, 18. [CrossRef]

22. van der Kruk, E.; Reijne, M.M. Accuracy of Human Motion Capture Systems for Sport Applications; State-of-the-Art Review. Eur.
J. Sport Sci. 2018, 18, 806–819. [CrossRef] [PubMed]

23. Menolotto, M.; Komaris, D.S.; Tedesco, S.; O’flynn, B.; Walsh, M. Motion Capture Technology in Industrial Applications: A
Systematic Review. Sensors 2020, 20, 5687. [CrossRef]

24. Breloff, S.P.; Dutta, A.; Dai, F.; Sinsel, E.W.; Warren, C.M.; Ning, X.; Wu, J.Z. Assessing Work-Related Risk Factors for Muscu-
loskeletal Knee Disorders in Construction Roofing Tasks. Appl. Ergon. 2019, 81, 102901. [CrossRef] [PubMed]

25. Ryu, J.; Alwasel, A.; Haas, C.T.; Abdel-Rahman, E. Analysis of Relationships between Body Load and Training, Work Methods,
and Work Rate: Overcoming the Novice Mason’s Risk Hump. J. Constr. Eng. Manag. 2020, 146, 04020097. [CrossRef]

26. Clark, R.A.; Mentiplay, B.F.; Hough, E.; Pua, Y.H. Three-Dimensional Cameras and Skeleton Pose Tracking for Physical Function
Assessment: A Review of Uses, Validity, Current Developments and Kinect Alternatives. Gait Posture 2019, 68, 193–200. [CrossRef]
[PubMed]

27. Springer, S.; Seligmann, G.Y. Validity of the Kinect for Gait Assessment: A Focused Review. Sensors 2016, 16, 194. [CrossRef]
[PubMed]

28. Tamura, H.; Tanaka, R.; Kawanishi, H. Reliability of a Markerless Motion Capture System to Measure the Trunk, Hip and Knee
Angle during Walking on a Flatland and a Treadmill. J. Biomech. 2020, 109, 109929. [CrossRef] [PubMed]

29. Mehrizi, R.; Peng, X.; Xu, X.; Zhang, S.; Li, K. A Deep Neural Network-Based Method for Estimation of 3D Lifting Motions.
J. Biomech. 2019, 84, 87–93. [CrossRef] [PubMed]

30. Andre, J.; Lopes, J.; Palermo, M.; Goncalves, D.; Matias, A.; Pereira, F.; Afonso, J.; Seabra, E.; Cerqueira, J.; Santos, C. Markerless
Gait Analysis Vision System for Real-Time Gait Monitoring. In Proceedings of the 2020 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC), Ponta Delgada, Portugal, 15–17 April 2020; pp. 269–274. [CrossRef]

31. Gandolfi, E. Virtual Reality and Augmented Reality in Europe; Springer International Publishing: Berlin/Heidelberg, Germany, 2018;
Volume 2, ISBN 978-3-030-01789-7.

32. Wirth, M.A.; Fischer, G.; Verdú, J.; Reissner, L.; Balocco, S.; Calcagni, M. Comparison of a New Inertial Sensor Based System with
an Optoelectronic Motion Capture System for Motion Analysis of Healthy Human Wrist Joints. Sensors 2019, 19, 5297. [CrossRef]

33. Waldman, H.S.; Smith, J.E.W.; Lamberth, J.; Fountain, B.J.; McAllister, M.J. A 28-Day Carbohydrate-Restricted Diet Improves
Markers of Cardiometabolic Health and Performance in Professional Firefighters. J. Strength Cond. Res. 2019, 33, 3284–3294.
[CrossRef]

34. Fitri, M.; Halim, A. Initial Ergonomic Risk Assessment on Unrolling and Rolling Fire Hose Activity Among Firefighters at
Putrajaya Fire and Rescue Station. Hum. Factors Ergon. J. 2019, 4, 53–56.

35. Perruccio, A.V.; Yip, C.; Power, J.D.; Canizares, M.; Badley, E.M. Brief Report: Discordance Between Population Impact of
Musculoskeletal Disorders and Scientific Representation: A Bibliometric Study. Arthritis Care Res. 2019, 71, 56–60. [CrossRef]
[PubMed]

36. Monnet, T.; Samson, M.; Bernard, A.; David, L.; Lacouture, P. Measurement of Three-Dimensional Hand Kinematics during
Swimming with a Motion Capture System: A Feasibility Study. Sport. Eng. 2014, 17, 171–181. [CrossRef]

37. Yunardi, R.T. Winarno Marker-Based Motion Capture for Measuring Joint Kinematics in Leg Swing Simulator. In Proceedings of
the 2017 5th International Conference on Instrumentation, Control, and Automation (ICA), Yogyakarta, Indonesia, 9–11 August
2017; pp. 13–17. [CrossRef]

38. Puthenveetil, S.C.; Daphalapurkar, C.P.; Zhu, W.; Leu, M.C.; Liu, X.F.; Gilpin-Mcminn, J.K.; Snodgrass, S.D. Computer-Automated
Ergonomic Analysis Based on Motion Capture and Assembly Simulation. Virtual Real. 2015, 19, 119–128. [CrossRef]

39. Ricci, F.P.F.M.; Santiago, P.R.P.; Zampar, A.C.; Pinola, L.N.; de Cássia Registro Fonseca, M. Upper Extremity Coordination
Strategies Depending on Task Demand during a Basic Daily Activity. Gait Posture 2015, 42, 472–478. [CrossRef] [PubMed]

40. Wang, Q.; Kurillo, G.; Ofli, F.; Bajcsy, R. Evaluation of Pose Tracking Accuracy in the First and Second Generations of Microsoft
Kinect. In Proceedings of the 2015 International Conference on Healthcare Informatics, Dallas, TX, USA, 21–23 October 2015;
pp. 380–389. [CrossRef]

137



Diagnostics 2023, 13, 2593

41. Takayasu, K.; Yoshida, K.; Mishima, T.; Watanabe, M.; Matsuda, T.; Kinoshita, H. Upper Body Position Analysis of Different
Experience Level Surgeons during Laparoscopic Suturing Maneuvers Using Optical Motion Capture. Am. J. Surg. 2019, 217,
12–16. [CrossRef]

42. Janssen, M.M.H.P.; Peeters, L.H.C.; De Groot, I.J.M. Quantitative Description of Upper Extremity Function and Activity of People
with Spinal Muscular Atrophy. J. Neuroeng. Rehabil. 2020, 17, 126. [CrossRef]

43. Nirme, J.; Haake, M.; Gulz, A.; Gullberg, M. Motion Capture-Based Animated Characters for the Study of Speech–Gesture
Integration. Behav. Res. Methods 2020, 52, 1339–1354. [CrossRef]

44. Pavei, G.; Salis, F.; Cereatti, A.; Bergamini, E. Body Center of Mass Trajectory and Mechanical Energy Using Inertial Sensors: A
Feasible Stride? Gait Posture 2020, 80, 199–205. [CrossRef]

45. Kang, Y.S.; Chang, Y.J. Using a Motion-Controlled Game to Teach Four Elementary School Children with Intellectual Disabilities
to Improve Hand Hygiene. J. Appl. Res. Intellect. Disabil. 2019, 32, 942–951. [CrossRef]

46. Sin, H.; Lee, G. Additional Virtual Reality Training Using Xbox Kinect in Stroke Survivors with Hemiplegia. Am. J. Phys. Med.
Rehabil. 2013, 92, 871–880. [CrossRef] [PubMed]

47. Haggag, H.; Hossny, M.; Nahavandi, S.; Creighton, D. Real Time Ergonomic Assessment for Assembly Operations Using Kinect.
In Proceedings of the 2013 UKSim 15th International Conference on Computer Modelling and Simulation, Cambridge, UK, 10–12
April 2013; pp. 495–500. [CrossRef]

48. Schlagenhauf, F.; Sreeram, S.; Singhose, W. Comparison of Kinect and Vicon Motion Capture of Upper-Body Joint Angle Tracking.
IEEE Int. Conf. Control Autom. ICCA 2018, 2018, 674–679. [CrossRef]

49. Trujillo, J.P.; Vaitonyte, J.; Simanova, I.; Özyürek, A. Toward the Markerless and Automatic Analysis of Kinematic Features: A
Toolkit for Gesture and Movement Research. Behav. Res. Methods 2019, 51, 769–777. [CrossRef] [PubMed]

50. Chakraborty, S.; Nandy, A.; Yamaguchi, T.; Bonnet, V.; Venture, G. Accuracy of Image Data Stream of a Markerless Motion
Capture System in Determining the Local Dynamic Stability and Joint Kinematics of Human Gait. J. Biomech. 2020, 104, 109718.
[CrossRef] [PubMed]

51. Sabo, A.; Mehdizadeh, S.; Ng, K.D.; Iaboni, A.; Taati, B. Assessment of Parkinsonian Gait in Older Adults with Dementia via
Human Pose Tracking in Video Data. J. Neuroeng. Rehabil. 2020, 17, 97. [CrossRef] [PubMed]

52. Parrilla, E.; Ruescas, A.V.; Solves, J.A.; Ballester, A.; Nacher, B.; Alemany, S.; Garrido, D. A Methodology to Create 3D Body Models in
Motion; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; Volume 1206, ISBN 9783030510633.

53. Muthukrishnan, N.; Abbas, J.J.; Krishnamurthi, N. A Wearable Sensor System to Measure Step-Based Gait Parameters for
Parkinson’s Disease Rehabilitation. Sensors 2020, 20, 6417. [CrossRef] [PubMed]

54. Yick, J.; Mukherjee, B.; Ghosal, D. Wireless Sensor Network Survey. Comput. Netw. 2008, 52, 2292–2330. [CrossRef]
55. Vignais, N.; Miezal, M.; Bleser, G.; Mura, K.; Gorecky, D.; Marin, F. Innovative System for Real-Time Ergonomic Feedback in

Industrial Manufacturing. Appl. Ergon. 2013, 44, 566–574. [CrossRef] [PubMed]
56. Seel, T.; Raisch, J.; Schauer, T. IMU-Based Joint Angle Measurement for Gait Analysis. Sensors 2014, 14, 6891–6909. [CrossRef]

[PubMed]
57. Fleron, M.K.; Ubbesen, N.C.H.; Battistella, F.; Dejtiar, D.L.; Oliveira, A.S. Accuracy between Optical and Inertial Motion Capture

System for Assessing Trunk Speed during Preferred Gait and Transition Period. Sports Biomech. 2018, 18, 366–377. [CrossRef]
58. Abdelhady, M.; Van Den Bogert, A.J.; Simon, D. A High-Fidelity Wearable System for Measuring Lower-Limb Kinetics and

Kinematics. IEEE Sens. J. 2019, 19, 12482–12493. [CrossRef]
59. Merino, G.; da Silva, L.; Mattos, D.; Guimarães, B.; Merino, E. Ergonomic Evaluation of the Musculoskeletal Risks in a Banana

Harvesting Activity through Qualitative and Quantitative Measures, with Emphasis on Motion Capture (Xsens) and EMG. Int. J.
Ind. Ergon. 2019, 69, 80–89. [CrossRef]

60. Nazarahari, M.; Rouhani, H. Semi-Automatic Sensor-to-Body Calibration of Inertial Sensors on Lower Limb Using Gait Recording.
IEEE Sens. J. 2019, 19, 12465–12474. [CrossRef]

61. Lavender, S.A.; Sommerich, C.M.; Bigelow, S.; Weston, E.B.; Seagren, K.; Pay, N.A.; Sillars, D.; Ramachandran, V.; Sun, C.; Xu,
Y.; et al. A Biomechanical Evaluation of Potential Ergonomic Solutions for Use by Firefighter and EMS Providers When Lifting
Heavy Patients in Their Homes. Appl. Ergon. 2020, 82, 102910. [CrossRef] [PubMed]

62. Mcdonald, A.C.; Tsang, C.; Meszaros, K.A.; Dickerson, C.R. International Journal of Industrial Ergonomics Shoulder Muscle
Activity in Off-Axis Pushing and Pulling Tasks. Int. J. Ind. Ergon. 2020, 75, 102892. [CrossRef]

63. Pimentel, R.; Potter, M.N.; Carollo, J.J.; Howell, D.R.; Sweeney, E.A. Peak Sagittal Plane Spine Kinematics in Female Gymnasts
with and without a History of Low Back Pain. Clin. Biomech. 2020, 76, 105019. [CrossRef] [PubMed]

64. Gao, L.; Zhang, G.; Yu, B.; Qiao, Z.; Wang, J. Wearable Human Motion Posture Capture and Medical Health Monitoring Based on
Wireless Sensor Networks. Meas. J. Int. Meas. Confed. 2020, 166, 108252. [CrossRef]

65. Castelli, A.; Paolini, G.; Cereatti, A.; Croce, U. Della 2015—A 2D Markerless Gait Analysis Methodology: Validation on Healthy
Subjects—2D Markerless Technique Is Proposed to Perform Lower Limb Sagittal Plane Kinematic Analysis Using Single Video
Camera. Subject-Specific, Multisegmental Model of Lower Limb W. Comput. Math. Methods Med. 2015, 2015, 186780.

66. Needham, L.; Evans, M.; Wade, L.; Cosker, D.P.; McGuigan, M.P.; Bilzon, J.L.; Colyer, S.L. The Development and Evaluation of a
Fully Automated Markerless Motion Capture Workflow. J. Biomech. 2022, 144, 111338. [CrossRef]

67. Brunner, O.; Mertens, A.; Nitsch, V.; Brandl, C. Accuracy of a Markerless Motion Capture System for Postural Ergonomic Risk
Assessment in Occupational Practice. Int. J. Occup. Saf. Ergon. 2022, 28, 1865–1873. [CrossRef]

138



Diagnostics 2023, 13, 2593

68. Michaud, F.; Lugrís, U.; Cuadrado, J. Determination of the 3D Human Spine Posture from Wearable Inertial Sensors and a
Multibody Model of the Spine. Sensors 2022, 22, 4796. [CrossRef] [PubMed]

69. Kubr, J.; Ho, P. Scopus—Detalles Del Documento—Diseño Ergonómico de Un Lugar de Trabajo Utilizando Realidad Virtual y Un
Traje de Captura de Movimiento. Appl. Sci. 2022, 12, 2150.

70. Michaud, F.; Pazos, R.; Lugrís, U.; Cuadrado, J. The Use of Wearable Inertial Sensors and Workplace-Based Exercises to Reduce
Lateral Epicondylitis in the Workstation of a Textile Logistics Center. Sensors 2023, 23, 5116. [CrossRef] [PubMed]

71. Muller, A.; Mecheri, H.; Corbeil, P.; Plamondon, A.; Robert-Lachaine, X. Inertial Motion Capture-Based Estimation of L5/S1
Moments during Manual Materials Handling. Sensors 2022, 22, 6454. [CrossRef]

72. Marín, J.; Marín, J.J. Forces: A Motion Capture-Based Ergonomic Method for the Today’s World. Sensors 2021, 21, 5139. [CrossRef]
73. Seol, J.; Yoon, K.; Kim, K.G. Mathematical Analysis and Motion Capture System Utilization Method for Standardization Evaluation

of Tracking Objectivity of 6-DOF Arm Structure for Rehabilitation Training Exercise Therapy Robot. Diagnostics 2022, 12, 3179.
[CrossRef]

74. Ferrández-Laliena, L.; Vicente-Pina, L.; Sánchez-Rodríguez, R.; Orantes-González, E.; Heredia-Jimenez, J.; Lucha-López, M.O.;
Hidalgo-García, C.; Tricás-Moreno, J.M. Diagnostics Using the Change-of-Direction and Acceleration Test (CODAT) of the
Biomechanical Patterns Associated with Knee Injury in Female Futsal Players: A Cross-Sectional Analytical Study. Diagnostics
2023, 13, 928. [CrossRef]

75. Mainjot, A.K.; Oudkerk, J.; Bekaert, S.; Dardenne, N.; Streel, S.; Koenig, V.; Grenade, C.; Davarpanah, A.; Donneau, A.F.;
Forthomme, B.; et al. Bruxism as a New Risk Factor of Musculo-Skeletal Disorders? J. Dent. 2023, 135, 104555. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

139



Citation: Bosserman, J.; Kelkar, S.;

LeBlond, K.D.; Cassidy, J.; McCarty,

D.B. Postural Control Measurements

to Predict Future Motor Impairment

in Preterm Infants: A Systematic

Review. Diagnostics 2023, 13, 3473.

https://doi.org/10.3390/

diagnostics13223473

Academic Editors: Mario

Cesarelli, Francesco Amato

and Carlo Ricciardi

Received: 22 September 2023

Revised: 15 November 2023

Accepted: 17 November 2023

Published: 18 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Systematic Review

Postural Control Measurements to Predict Future Motor
Impairment in Preterm Infants: A Systematic Review

Jennifer Bosserman 1, Sonia Kelkar 2, Kristen D. LeBlond 3, Jessica Cassidy 2 and Dana B. McCarty 2,4,*

1 Physical Medicine and Rehabilitation, Johns Hopkins Hospital, Baltimore, MD 21205, USA; jbosser3@jh.edu
2 Department of Health Sciences, University of North Carolina at Chapel Hill School of Medicine,

Chapel Hill, NC 27599, USA
3 Physical Therapy and Occupational Therapy, Duke Health, Durham, NC 27705, USA
4 North Carolina Children’s Hospital, Chapel Hill, NC 27599, USA
* Correspondence: dana_mccarty@med.unc.edu

Abstract: Preterm infants are more likely to demonstrate developmental delays than fullterm in-
fants. Postural measurement tools may be effective in measuring the center of pressure (COP) and
asymmetry, as well as predicting future motor impairment. The objective of this systematic review
was to evaluate existing evidence regarding use of pressure mats or force plates for measuring COP
and asymmetry in preterm infants, to determine how measures differ between preterm and fullterm
infants and if these tools appropriately predict future motor impairment. The consulted databases
included PubMed, Embase, Scopus, and CINAHL. The quality of the literature and the risk of bias
were assessed utilizing the ROB2: revised Cochrane risk-of bias tool. Nine manuscripts met the
criteria for review. The postural control tools included were FSA UltraThin seat mat, Conformat
Pressure-Sensitive mat, Play and Neuro-Developmental Assessment, and standard force plates. Stud-
ies demonstrated that all tools were capable of COP assessment in preterm infants and support
the association between the observation of reduced postural complexity prior to the observation of
midline head control as an indicator of future motor delay. Postural measurement tools provide
quick and objective measures of postural control and asymmetry. Based on the degree of impairment,
these tools may provide an alternative to standardized assessments that may be taxing to the preterm
infant, inaccessible to therapists, or not sensitive enough to capture motor delays.

Keywords: postural control; center of pressure; preterm infant; force plate; postural measurement

1. Introduction

There is a risk of motor impairment in all preterm infants born <37 weeks of gestation;
however, the risk is highest in infants born moderately preterm (32–34 weeks of gestation)
at 20.6% and very preterm (<32 weeks of gestation) at 36.1% [1,2]. When comparing
fullterm and preterm infants, the risk of motor impairment ranges from 2 to 7% compared
to 54–64%, respectively [3]. There are notable differences between the movement patterns of
preterm and fullterm infants. Preterm infants demonstrate a lower quality of spontaneous
movements, with descriptions such as low fluency, less variety, and impaired sequencing [4].
Preterm infants are also more likely to display abnormal or absent fidgety movements,
ref. [5,6] which is a highly sensitive indicator of future motor impairment at 12 weeks of age.
Preterm infants also lack postural complexity, defined as the use of a variety of postural
control strategies, as compared to healthy term infants [7].

Preterm infants are more likely to display body and head asymmetry and show prefer-
ence for extension patterns than fullterm infants [6]. These asymmetrical patterns may be
attributed to the development of increased power in the extensor muscle groups in preterm
infants. Increased muscle power [8] results in the hyperextended posture commonly ob-
served in preterm infants. This posture further leads to difficulties in maintaining midline
orientation [8].
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The neonatal intensive care unit (NICU) environment is not optimal for neonatal
neuromotor development for a variety of reasons, including noise levels, lighting, and other
noxious stimuli, as well as suboptimal musculoskeletal support [9]. Preterm infants are
vulnerable to the effects of gravity on alignment, posture, mobility, respiratory abilities, and
the shaping of the musculoskeletal system [10,11]. Without the intrauterine environment
facilitating a flexed posture and limiting extremity movement, preterm infants succumb
to the weight of gravity and begin to favor an extended posture. In an attempt to gain
postural stability in the absence of uterine wall restraint [10,11], preterm infants often extend
their trunk and extremities further into the flat surface they are placed upon, resulting in
commonly described postures of exaggerated cervical lordosis and hyperextension [10].
This combination of the effects of gravity and hyperextended posture leads to weak and
overstretched muscles of the anterior neck and trunk, interferes with purposeful self-
soothing movements directed towards the midline, and contributes to developmental
delay [12].

Extended posture and associated asymmetries in movement can result in head or posi-
tional preferences. The prevalence of such positional asymmetries ranges from 45 to 79% of
preterm infants [13,14]. Head turn preferences in preterm infants are associated with sub-
optimal reflexes, decreased maturation of gross motor movements, and the development
of torticollis and deformational plagiocephaly during infancy [13,14]. These impairments,
if not fully addressed, further contribute to delays with increasing infant age, including
impaired fine motor skills, asymmetrical gait patterns, and postural asymmetries [13,15].

Moderate to severe neuromotor and sensory disabilities are highly prevalent in ex-
tremely and very preterm infants born between 22 and 34 weeks of gestation [16], requiring
early assessment and intervention. Preterm infants born 24–31 weeks of gestation remain
in the NICU for a range of 34–123 days [17]. Due to increased risk of motor delay, these
infants often receive physical and/or occupational therapy services during hospitalization.
Current evidence supports parent- and therapist-delivered motor intervention to improve
motor and cognitive developmental outcomes in preterm infants [18], and immediate,
ongoing therapy services after hospital discharge to reduce the risk of developmental
delays; however, there is often a delay in the initiation of therapy services after NICU
discharge [19,20], especially if no significant motor impairment or diagnosis has been
documented using a standardized or objective measure. Standardized assessments vary
based on the appropriate age for administration, domains of function tested (e.g., motor,
neurobehavior), applications, and predictive validity. Few standardized assessments are
sensitive enough to detect developmental delays for infants at or near term-equivalent
age [21,22], which is often the age of the infant at the time of NICU discharge.

Standardized infant assessments also vary greatly by administration requirements,
with many necessitating costly training programs to learn and administer testing [23].
While these training programs are in place for the essential purpose of ensuring reliable
and valid results for clinical and research applications, the rigorous requirements are often
out of reach for therapists and the NICUs they serve due to a lack of continuing education
funds and travel requirements. In the absence of extended time for clinicians to attend
training programs and funding to pay for such programs, it is prudent to identify objective
measures that indicate potential delay that can be used, assessed, and understood by a
variety of clinicians and researchers. Quantitative measurements such as center of pressure
(COP) and variability of movement have been shown to be predictive of motor impairment
or delay in preterm infants [24], but these measures are not currently used in the clinical
setting to identify infants at risk for movement delay.

Pediatric therapist researchers are advocating for the expanded use of technology in
clinical settings to detect early motor delay [25]. Postural measurement tools, including
portable pressure-sensitive mats and force plates, may be effective in measuring COP in
preterm infants, and therefore useful for detecting early delays in high-risk infant pop-
ulations [24]. Additionally, the use of wearable sensors, including inclusive clothing,
exoskeletons, and smart tracking devices, are being examined in high-risk infant popula-
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tions to determine potential ways that this technology can assist with understanding how
specific movement characteristics may enhance or detract from the infant’s developmental
trajectory [25].

The use of such technologies expands opportunities for the use of artificial intelligence
to assist in the early and accurate diagnosis of neuromotor disabilities. Gaining a better
understanding of the role of early postural control deviations as measured by force plates
or sensors allows researchers to use these technologies to build algorithms that detect and
quantify movements associated with future motor impairments [26].

The purpose of this review was to evaluate the existing evidence regarding the use
of technology, specifically, pressure mats or force plates, to measure both linear and non-
linear measures of postural control and movement in preterm infants. We also evaluated
how those measures differ in preterm and fullterm infants and how these differences may
predict future motor impairment or disability in this population.

2. Methods

The following inclusion criteria were used to select studies: (1) articles include infants
born at or prior to 37 weeks, (2) measurements were collected in supine, (3) measurements
were collected using a pressurized mat or mattresses, and (4) articles were in reference
to humans. Exclusion criteria included the following: (1) a study population of infants
born after 37 weeks of gestation, (2) measurements taken in positions other than supine, or
(3) articles with reference to animals. We did not include gray literature or dissertations.

The protocol for the review was drafted using the Preferred Reporting Items for Sys-
tematic Reviews and Meta-analysis Extension (PRISMA) [27] and was registered to the
Open Science Framework (OSF, registration DOI number: 10.17605/OSF.IO/G82WK) [28].
The objective of this systematic review was to answer the question: “In preterm infants,
can center of pressure (COP) measurements and variability of movement measurements
in supine help determine the risk of motor delay in infancy?”. A search strategy using
keywords was developed by the primary author (JB) in consultation with a university
librarian and included “(“Infant, Newborn” [MeSH] OR “Premature Birth” [MeSH] OR
Neonatal [tiab]) AND (“Postural Balance” [MeSH] OR “Pressure, Mat*” [tiab] OR “Multi-
sensor” [tiab] OR “Force Plate” [tiab])”. Four databases were searched in September 2023
(PubMed, Embase, Scopus, and CINAHL). One investigator (JB) used MeSH headings and
text words to complete the search. Results were imported to Covidence [29], a systematic
review production tool for title/abstract/full-text review and data abstraction.

Two reviewers (JB, SK) independently reviewed and extracted papers that met the
inclusion criteria for full text review through methods consistent with the PRISMA guide-
lines [30]. Any disagreement about inclusion was discussed amongst the reviewers (JB,
SK), and the senior author (DM) made the final determination. Papers that passed the
full-text review were evaluated with an extraction table based on recommendations from
the Cochrane Collaboration [31] and included the following characteristics: study aims,
study design, data sources, study population, outcome measures, data analysis strategy,
postural measurement tool, results, implications, strengths, and limitations. Data extracted
were then reviewed using a descriptive approach to summarize key findings.

The quality of the literature and risk of bias were rated utilizing the ROB2, revised
Cochrane risk-of-bias tool, for randomized trials [32] for each included study. Independent
assessments were completed by two reviewers (JB and DM), and full agreement was
reached after discussion.

3. Results

3.1. Study Selection

The initial keyword search identified nine hundred and one studies. Two hundred
and fifty-three of these were excluded as duplicate studies from multiple databases. The
remaining six hundred and forty-eight studies underwent title and abstract screening based
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on the inclusion and exclusion criteria. A full-text review for eligibility was completed for
twenty-six full-text studies, and nine met all eligibility criteria (Figure 1).

Figure 1. Study selection process.

3.2. Characteristics of the Included Literature

Of the included studies, six were prospective cohort studies [7,24,33–36], two were
cross-sectional studies [37,38], and one was a case study [39]. The characteristics of these
studies are noted in Table 1. All studies were conducted in the United States [7,24,33,37–39],
Norway [34,35], or Poland [34].

Table 1. Study characteristics.

First Author, Year Aim Study Design Study Population
Postural

Measurement Tool
Outcome

Dusing et al.,
2009 [39]

To determine whether infants
born at full term and infants born

preterm differ in their COP
movement variability

characteristics, evaluated both
linearly and nonlinearly while

positioned supine.

Cross-Sectional
Study 47% fullterm FSA UltraThin

Seat Mat

Infants born pre-term exhibited
larger root-mean-squared values
in the caudal–cephalic direction

than infants born full-term.

Dusing et al.,
2005 [38]

To compare trunk position in
supine of infants born preterm

and at term. A secondary
purpose was to determine the

feasibility of using pressure data
to assess trunk position.

Cross-Sectional
Study 45% fullterm FSA UltraThin

Seat Mat

Infants born preterm differ in
their trunk positions

immediately after birth as
demonstrated by decreased time

spent in flexion or neutral.

Dusing et al.,
2016 [36]

To fill knowledge gaps on the
development of adaptive
postural control in infants

born preterm

Cohort Study
(Prospective

Observational
Study)

0% fullterm Conformat Pressure-
Sensitive Mat

Infants born preterm did not
alter the postural variability in

the caudal–cephalic direction in
response to a visual stimulus

prior to 4 months of age. They
were able to adapt postural

variability in the medial–lateral
direction at 2.5 months of age.
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Table 1. Cont.

First Author, Year Aim Study Design Study Population
Postural

Measurement Tool
Outcome

Dusing et al.,
2014 [7]

To investigate group differences
in postural variability between
infants born preterm and at risk

for developmental delays or
disability and infants born full
term with typical development,

during the emergence of
early behaviors

Cross-Sectional
Study 55% fullterm Conformat Pressure-

Sensitive Mat

Measures of early postural
complexity are helpful in the
development of interventions

during the first months of life to
prevent the delay in postural

control strategies in
preterm infants.

Dusing et al.,
2014 [39]

To describe how changes in
postural control during

development may relate to action
and perception in 3 infants born

preterm with brain injury

Case Study 0% fullterm
Conformat

Pressure-Sensitive
Mat

Excessive postural complexity
and reduced postural

complexity alter the infants’
abilities to act on the world

around them and use perceptual
information to modify

their actions.

Fallang et al.,
2003 [34]

To discuss the clinical and
neurophysiological data of

postural behavior

Cohort Study
(Prospective

Observational
Study)

25% fullterm Force plate

Preterm infants show a
relatively immobile postural

behavior and maximum velocity
of COP was substantially lower

than full-term infants.

Fallang et al.,
2005 [35]

To investigate whether
parameters of nonoptimal
reaching and reduced COP
behavior at an early age are

associated with dysfunctional
neuromotor and behavioral
development at school age.

Cohort Study
(Retrospective
Observational

Study)

19% fullterm Force plate

In preterm infants who do not
develop CP, a lack of successful

reaching at 4 months and an
inadequate quality of reaching
at 6 months (corrected age) are
sensitive markers of clinically

significant forms of
brain dysfunction.

Kniaziew-
Gomoluch et al.,

2023 [36]

To assess reliability and validity
of force plates to measure posture

in preterm infants

Cohort Study
(Prospective

Observational
Study)

0% fullterm Force plate

Comparative analysis between
the groups of infants with

normal FMs and abnormal FMs
in supine showed significant
differences for all parameters
that described spontaneous

COP displacement.

Prosser et al.,
2022 [24]

To investigate the ability of
biomechanical measures of early
postural control to distinguish

infants with future impairment in
motor control.

Cohort Study
(Prospective

Observational
Study)

53% fullterm

Play and Neuro-
Developmental

Assessment
(PANDA) gym

Quantitative methods of
measuring postural control in
infants born preterm and who

are still hospitalized are feasible
and show promise for early

detection of motor impairment.

Key: COP = center of pressure; FM = Fidgety Movements.

3.3. Participants

All studies included infants born preterm (<37 weeks of gestation). The majority of
studies (n = 6) also included a control group of fullterm infants with typical motor control
(Table 1) [7,24,33–35]. Other participant characteristics reported were variable and are
included below in the results section.

3.4. Quality Assessment

The results of the quality assessment can be seen in Table 2. Due to the nature of the
infant population and study designs, blinding and random allocation did not occur. This
resulted in all nine studies receiving the rating of “high concern” for Domain 1, risk of bias
associated with the randomization process, as well as Overall Risk of Bias, per the scoring
criteria [32]. Two studies [34,36] also received “high concern” in other domains due to
deviation from the intended intervention.
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Table 2. Quality assessment utilizing the ROB2: revised Cochrane risk-of bias tool.

ROB2 Quality Ratings

Areas of Quality
Assessed

Fallang
et al.,

2003 [33]

Fallang
et al.,

2005 [34]

Dusing
et al.,

2005 [38]

Dusing
et al.,

2009 [37]

Dusing
et al.,

2014 [7]

Dusing
et al.,

2014 [39]

Dusing
et al.,

2016 [36]

Prosser
et al.,

2022 [24]

Kniaziew-
Gomoluch

et al.,
2023 [36]

Domain 1 Risk-of-bias-
judgement: Risk of bias
arising from the
randomization process

High
Concern

High
Concern

High
Concern

High
Concern

High
Concern

High
Concern

High
Concern

High
Concern

High
Concern

Domain 2 Risk-of-bias-
judgement: Risk of bias
due to deviations from
the intended
interventions (effect of
assignment
to intervention)

High
Concern

High
Concern

Low
Concern

Low
Concern

Low
Concern

Low
Concern

Some
Concern

Low
Concern

Some
Concern

Domain 3 Risk-of-bias-
judgement: Missing
outcome data

High
Concern

Some
Concern

Some
Concern

Low
Concern

Low
Concern

Low
Concern

Some
Concern

Some
Concern

Low
Concern

Domain 4 Risk-of-bias-
judgement: Risk of bias
in measurement of
the outcome

Low
Concern

Some
Concern

Low
Concern

Low
Concern

Low
Concern

Low
Concern

Low
Concern

Low
Concern

Low
Concern

Domain 5 Risk-of-bias-
judgement: Risk of bias
in selection of the
reported result

High
Concern

Some
Concern

Low
Concern

Low
Concern

Low
Concern

Low
Concern

Low
Concern

Some
Concern

Low
Concern

Overall Risk of Bias High
Concern

High
Concern

High
Concern

High
Concern

High
Concern

High
Concern

High
Concern

High
Concern

High
Concern

3.5. Postural Control Measurement Systems and Measures of Postural Control

Postural control tools and measurement parameters varied between studies as seen in
Table 1. Two studies utilized the FSA UltraThin seat mat (Vista Medical Ltd., Manitoba,
MB, Canada) [37,38] to measure the maximum pressure value, the ratio of head and
pelvis to trunk pressure, and COP. The Conformat Pressure-Sensitive mat (Tekscan Inc.,
Norwood, MA, USA) was utilized in three studies [7,33,39] to measure COP, the magnitude
and complexity of movement, head control, and reaching ability. The Play and Neuro-
Developmental Assessment (PANDA) gym (Penn Center for Innovation, Philadelphia,
PA, USA) [24] was used to measure limb and trunk kinematics and COP measurements.
Lastly, three studies used standard force plates by AMTI (Advanced Medical Technologies
Inc, Watertown, MA or Kistler (Kistler Instrument Corp., Amherst, NY, USA) [34–36] to
measure postural adjustments with reaching and COP displacement.

Both linear and non-linear measures of postural control were used in the reviewed
studies. Linear measures such as path length quantify the amount of COP variability [40].
Generally, in the adult population, high variability in COP is interpreted as postural
instability, whereas lower COP variability indicates greater postural control; however, the
studies reviewed for this manuscript noted greater COP variability in healthy fullterm
control infants as compared to preterm infants, who demonstrated less complexity in
movement [24].

Non-linear metrics, which incorporate time into COP variability, were also used for
postural control analysis. These non-linear metrics quantify the amount of randomness,
fluctuation, and unpredictability during dynamic movement [40]. As observed in linear
postural metrics, preterm infants actually demonstrated smaller amounts of entropy, or
randomness, than fullterm infants, indicating less variability of complex movement [38].

3.5.1. FSA UltraThin Seat Mat

The Force Sensing Array (FSA) UltraThin seat mat is a pressure-sensitive mat that is
commonly used in wheelchair seating systems. The FSA seat mat includes a 4D pressure
mapping system [41] that measures the total duration of trunk flexion, extension, or neutral
positioning, determined according to the total number of frames the infant’s trunk was
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in for each position and multiplying the total consecutive frames by the sampling period
(200 ms) [37]; approximate entropy, a ratio that estimates the randomness, fluctuation,
and unpredictability of time-series data [39]; and root mean square values, the standard
deviation of the displacement of the COP in the caudal–cephalic and medial–lateral direc-
tions [42,43].

In a cohort of 33 infants aged 38.30–42.30 weeks corrected age, researchers found
that term infants (mean gestational age of 38.9 weeks) spent significantly 81% of the
awake segment in flexion or neutral (p = 0.027), and only 74.91% of preterm infants (mean
gestational age of 31.9 weeks) spent the awake segment in flexion or neutral (p = 1.52) [37].
In a cohort of 32 infants at 41–43 weeks corrected age, preterm infants exhibited larger root
mean square values (preterm = 1.11 cm, term = 0.83 cm; p = 0.01) and smaller approximate
entropy values (preterm = 1.11, term = 1.19; p = 0.02) in the caudal–cephalic direction than
term infants [38]. Authors concluded that smaller approximate entropy and larger root
mean square values in preterm infants suggest less complex, repetitive movement, and less
stable posture in the caudal–cephalic direction [38].

3.5.2. Conformat Pressure-Sensitive Mat

A Conformat Pressure-Sensitive mat is a portable and lightweight seating and posi-
tioning system often used for wheelchair pressure mapping, which provides information
on pressure distribution and the center of force trajectory [7]. Dusing et al. used the
Conformat Pressure-Sensitive mat to measure the root mean square and approximate en-
tropy values (as defined in the previous section) in the caudal–cephalic and medial–lateral
directions [7,33,39].

Results from a cohort of three infants 2–6 months old demonstrated an interaction
between condition and age, in the caudal–cephalic direction of postural variability (p = 0.03),
and that preterm infants demonstrated low complexity movements in the caudal–cephalic
direction, ref. [39] indicating that decreased postural complexity before the development of
midline head control may be an indicator of future motor delay.

3.5.3. The PANDA Gym

The Play And NeuroDevelopmental Assessment (PANDA) includes an array of toys
with sensors in them, a camera-based computer vision system, and a mat structure covered
in carbon fiber [24]. This gym also includes a PVC pipe above the platform for toy suspen-
sion and to support the video system [24]. In a cohort of 15 infants aged 3–11 months old,
the PANDA gym measured seven variables including path length, the total distance an
object moved from its initial position to its final position; ExcursionX/Y, with ExcursionX
being the farthest distance in the medial–lateral direction, or side-to-side shifting, and
ExcursionY being the farthest distance in the caudal–cephalic direction, or vertical shifting;
and ElipseArea, the scatter of COP in the X and Y directions [24].

Vertical displacement (ExcursionY) was significantly lower in the preterm group com-
pared to the term group (difference = 3.65 cm, 95% confidence interval (CI): 0.13–7.17 cm,
p = 0.043), demonstrating a smaller distance traveled in the caudal–cephalic direction,
with minimal vertical shifting [24]. The COP variability (EllipseArea) was significantly
lower in the preterm vs. term group (difference = 2.3 cm, 95% CI: 1.06–4.84 cm, p = 0.038).
These results indicate less movement variability in preterm infants, specifically in the
caudal–cephalic direction. The total distance traveled (path length) was significantly
higher in the preterm group compared to the fullterm group for three conditions (no
toy 153.4 vs. 101.3 cm, p = 0.0054; bilateral reach 146.1 vs. 87.5 cm, p = 0.0088; and uni-
lateral reach 176.6 vs. 112.2 cm, p = 0.0005), demonstrating increased movement from
the initial position to the final position in preterm infants. Lastly, in the group that
was identified as having impaired motor control at 2 years of age, as determined from
a medical record review, path length was found to be higher in all conditions (no toy
155.6 vs. 115.9 cm, p = 0.033; bilateral reach 158.4 vs. 100.1 cm, p = 0.003, and unilateral
reach 223.1 vs. 122.2 cm, p < 0.0001) [24].
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3.5.4. Force Plates

A multi-axis force plate is capable of measuring all dynamic motion sequences, includ-
ing abruptly changing forces [40]. In two studies [32,33], total body COP was analyzed
from force plates using several parameters, including the path length (as defined above),
the length and duration of the movement path/time, the number of directional changes in
COP displacement, and the maximum velocity (Vmax): the maximum speed in which the
infant moves in the cranial–caudal and medial–lateral directions [34,35].

Findings from a long-term follow-up study conducted by Fallang et al. [35] showed
that in fifty-two 4-month-old infants, a lower maximum velocity of COP and smaller
displacement of COP in the medial–lateral direction were related to coordination problems
at 6 years of age (p = 0.04). At 4 and 6 months, performance below the 15th percentile on
the Movement ABC at 6 years was associated with a lower Vmax of COP in the medial–
lateral direction at 4 months (p = 0.02) and 6 months (p = 0.03) and a lower number of
cranial–caudal oscillations (4 months p = 0.02, 6 months p = 0.01) [35]. In a related study,
Fallang et al. found that the total body COP in preterm infants differed from fullterm
infants due to a smaller COP distance travelled during reaching in both the cranial–caudal
and medial–lateral directions, demonstrating relatively immobile postural behavior [34].

A recent study by Kniaziew-Gomoluch et al. [36] used force plates to examine postural
control in 37 preterm infants born between 24 and 33 weeks of gestation at 12–14 weeks
corrected age. Infants simultaneously were video-recorded for the General Movements As-
sessment. Researchers found significant differences in all parameters of spontaneous COP
displacement between infants with normal fidgety movements and those without fidgety
movements (p < 0.05). Using the Intraclass Correlation Coefficient for test–retest data, all
parameters measured in supine were considered to have moderate to good reliability [36].

4. Discussion

While there is still much to learn about the quantitative measurement of postural
control in preterm infants, the available evidence demonstrates that tools such as force
plates and pressure mats are feasible for the measurement of infant postural control and
asymmetry. Further, these tools identified differences in preterm infant movement as
compared to fullterm infant movement. Quantitative measurements of trunk positioning
during spontaneous activity may be a reasonable and useful measure to identify infants
at high risk for motor impairment or disability and those who are not [24,36,37]. In
opposition to how postural complexity is interpreted in adults, several studies indicate
that reduced postural complexity in infants before development of midline head control
may indicate future motor delay [7,33,37,38]. Evidence also suggests that these postural
control measures are sensitive to the later development of neuromotor dysfunction. One
study found associations between postural control parameters at 4 and 6 months and motor
scores at 6 years of age [35], and another study found that postural control parameters
were significantly different between groups of preterm infants with normal and abnormal
fidgety movements—an early predictor of cerebral palsy [36].

Postural measurements have been used most consistently in research applications,
but the results from this systematic review demonstrate potential for clinical application
to support early identification of infants with motor delay—potentially as early as term-
equivalent age. Specific atypical measurements of postural control that have been associated
with future motor impairment include COP path length, COP extent, variety of movement,
and speed of movement, especially in the caudal–cephalic direction [24,38]. Sensitive
measures that predict future motor impairment and characterize some preterm infant
movement characteristics include predictable and repetitive COP movement in the caudal–
cephalic direction, a relatively immobile posture, a lack of successful reaching by 4 months,
and inadequate reaching quality at 6 months in supine [7,34,36].

Currently, many preterm infants do not qualify for early intervention services when
assessed based on state-by-state qualification standards for Part C of the Individuals with
Disabilities Education Improvement Act [44]. Additionally, the available standardized
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assessments may not be sensitive enough to capture the extent of an infant’s delay prior
to NICU discharge. Because standardized assessments generally quantify the infant’s
capacity to exert postural control in specific developmental positions, but do not always
quantify the quality and characteristics of the infant’s movement, subtle postural differences
may be missed [21]. For example, in a recently published study, Wang et al. discusses
that the General Movement Assessment (GMA) can identify absent or abnormal fidgety
movements and has 98% sensitivity for the diagnosis of cerebral palsy at 12 weeks [36],
but a limitation of this assessment is the absence of a measurement tool used to quantify
these movements [21]. The Motor Optimality Score (MOS), a detailed scoring of the
GMA, is currently in the early stages of reliability testing [45] but requires advanced GMA
certification to administer. Based on the recent findings of Kniaziew-Gomoluch et al. [36],
COP parameters as measured by force plates are sensitive enough to detect differences
between infants who demonstrate normal fidgety and abnormal fidgety movements.

Of the measurement tools described in this review, perhaps the most promising
for future clinical use is the PANDA gym [24]. With its portable design and ongoing
research using machine learning to develop algorithms to produce measurements and
relevant scores, the PANDA gym has the potential for widespread use in various clinical
settings to diagnose early movement dysfunction. While early validity assessments of
this mat system are promising, additional reliability, validity, and sensitivity to change
testing should be conducted prior to clinical applications. Additionally, findings from
Kniaziew-Gomoluck et al. [36], demonstrate a correlation between force plate-measured
postural control parameters and absent fidgety movements between 12–14 weeks post-
term, indicating a potential clinical usefulness for early cerebral palsy detection [36,46].
COP path length, which is measured via the PANDA gym and force plates, consistently
differed between fullterm and preterm infants in the studies we reviewed and appear to be
early indicators of motor delay [36]. Most studies did not address whether force plate and
pressure mat technologies can be easily disinfected between uses in the highly vulnerable
preterm infant population; however, the carbon fiber core dragon plate used in the PANDA
gym can be easily cleaned with soap and water or disinfectant wipes between use [24]. This
plate is covered with foam padding or a blanket for infant comfort for single patient use to
decrease the spread of infection.

Limitations of this study include the acknowledgement that the use of pressure-
sensitive mats and force plates in the clinical setting may not be easily attained due to the
high cost of equipment and maintenance requirements; however, with more advanced
technology, newer devices are becoming available that may increase affordability and
portability necessary for clinical spaces. We also acknowledge that a shift in clinical practice
and eligibility standards would be necessary to use atypical postural control measurements
to quantify motor delays. Furthermore, clinicians would need additional training to collect
and interpret these data in a meaningful and objective way.

This study provides ample evidence for the use of pressure mats and force plates to
measure postural control, asymmetry, and variability of movement in preterm infants, but
future research is needed to employ this globally. Future research should focus on the
validity, predictive ability, sensitivity to change over time, and quantification of severity
necessary to detect future motor impairments [24]. Further, infants should be assessed
over a shorter time period to improve the test–retest reliability of these methods [33]. A
longitudinal follow-up of high-risk infants and those who later develop motor impairment
would also be useful in determining which infants can adapt to changing task demands
based on postural control in early infancy [4]. Studies presented in this systematic review
support the association between the observation of reduced postural complexity prior to
the observation of midline head control as an indicator of future motor delay [7,33,37,38].
This observation should be verified utilizing larger sample sizes with a long-term follow-up.
Future research is also necessary to determine critical periods of time in which postural
complexity has a greater impact on development and optimal variability of movement, as
well as which occupational therapy and physical therapy interventions best mitigate the
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risk of delay [37]. Based on the risk-of-bias assessment for the manuscripts assessed in this
study, the blinding of researchers or the separation of tasks for collecting and reducing the
data should be considered in the methodology of future studies.

5. Conclusions

There is a need to identify impairments in early posture and movement complexity
in order to avoid delays in post-NICU therapy services. Altered posture and movement
in preterm infants limits the infants’ ability to explore the world around them, perform
variable movements, use perceptual information to modify movement, and practice a
variety of postural control strategies [33]. Postural measurement tools such as force plates
and pressure-sensitive mats provide quick and objective measures of COP and asymmetry,
and, based on the degree of impairment in postural control and movement, may indicate
future motor impairment, providing an alternative to the application of standardized
assessments for the quantification of developmental delay.
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Abstract: The use of e-textile technologies spread out in the scientific research with several applica-
tions in both medical and nonmedical world. In particular, wearable technologies and miniature
electronics devices were implemented and tested for medical research purposes. In this paper, a sys-
tematic review regarding the use of e-textile for clinical applications was conducted: the Scopus
and Pubmed databases were investigate by considering research studies from 2010 to 2020. Overall,
262 papers were found, and 71 of them were included in the systematic review. Of the included
studies, 63.4% focused on information and communication technology studies, while the other 36.6%
focused on industrial bioengineering applications. Overall, 56.3% of the research was published as
an article, while the remainder were conference papers. Papers included in the review were grouped
by main aim into cardiological, muscular, physical medicine and orthopaedic, respiratory, and mis-
cellaneous applications. The systematic review showed that there are several types of applications
regarding e-textile in medicine and several devices were implemented as well; nevertheless, there is
still a lack of validation studies on larger cohorts of subjects since the majority of the research only
focuses on developing and testing the new device without considering a further extended validation.

Keywords: e-textile; health monitoring; diagnosis; wearable; biomedical engineering; sEMG; ECG;
smart garments; motion analysis; IMUs

1. Introduction

Wearable technology includes devices that consumers can comfortably wear and use
for extended periods of time in an unobtrusive way, like clothing or accessories, with the
aim of collecting the data of users’ personal health or, more generally, of interfacing with
the user. The predominant category of wearable devices in the current market consists of,
by far, smart accessories including smartwatches, wristbands, smart glasses, and various
clothing clip-ons [1]. These accessories typically rely on existing miniature sensors and
electronics enclosed in compact items that can be worn. However, their structure makes
them rigid and nonflexible and, consequently, not ideal for the development of more
advanced wearable systems that need larger contact and interface with user’s body. The
integration of micro- and nano-electronics in textile substrates can be relevant for the
development of more ergonomic smart materials, which are broadly known as electronic
textiles (e-textiles). Through e-textile technology, a wide spectrum of functions, found in
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rigid and nonflexible electronic products nowadays, can be potentially developed on a
textile substrate [2].

This attractive opportunity aroused a great deal of interest in wearable e-textile devices.
The market of wearable technologies has a compound annual growth rate of 15.5%, which
is expected to further continue thanks to the rapid improvements in technology and
miniature devices, as well as mobile computing. In a recent market forecast the industry of
wearable devices is estimated to grow to more than $US155 billion by 2027 [3], with the
involvement of many big companies which are multiplying their research efforts to shift
from the wearable electronic hardware to the more comfortable e-textiles.

The growing demand from consumers is encouraging manufacturers to produce
and sell billions of wearable electronic products, covering various sectors of the market,
including health and wellness, military and defense, space exploration, fashion, and
entertainment. Healthcare is identified as one of the most promising market, piloted by the
increasing desire of consumers to continually monitor their own health and by the interest
of healthcare professionals to have more health data at their disposal to better examine a
larger cohort of patients.

The comfort, ease-of-use, and ubiquity offered by smart biomedical clothes potentially
represent key factors for the continuous long-term clinical monitoring. The integration of
these innovative devices in Internet of Things (IoT) networks, exploiting simple but efficient
wireless solutions, makes it possible to establish smart systems for remote health moni-
toring, allowing patients to continue to stay at home rather than in expensive healthcare
facilities. One of the main purposes of a wearable health monitoring system is to ensure
continuous, noninvasive, and seamless surveillance of health and physical well-being, en-
abling people to lead independent and active lives in their familiar home environment [4].
This is a great advantage especially for patients with chronic diseases and/or with mobility
difficulties. The use of wearable monitoring systems underlines two other benefits for
users: firstly, it reduces the influence and stress that the clinical environment exerts on
patient’s performance [5]; secondly, the great amount of data gathered with this system can
be processed using Artificial Intelligence (AI) algorithms to detect a possible worsening of
a patient’s clinical situation [6].

From the public health system perspectives, the development of smart wearable
biomedical systems has the potential to offer advanced services to patients, combining the
frequently worn material with the most technologically advanced, sensing, processing and
communicating capabilities [7], and, at the same time, to support health cost reduction by
facilitating early hospital discharges. Nevertheless, the great perspectives illustrated clash
with the technological limitations that hinder the large-scale production and diffusion of
market-ready garments or textiles. These technological challenges justify the remarkable
research efforts, which are evidenced by the large number of research prototypes and
innovative solutions proposed in the scientific literature.

The main issues to be addressed in the design and fabrication of e-textile systems
concern breathability, flexibility, and “washability”, which are fundamental features for
comfortable user experience and must be maintained even after integration of the electronic
components. Power supply is also a very critical challenge for e-textile devices. Common
rechargeable batteries are usually used, though they increase the weight of the devices
and are incompatible with the flexibility and washing requirements of textile integration.
To overcome these limitations, different functional materials were designed to have dif-
ferent features and approach the goal of self-powered textiles [8]. However, technological
innovations should be implemented while ensuring a safe degree of reliability for de-
vice performances in comparison with the standard methods commonly used in clinical
environment [9].

In addition to technological problems, regulatory issues regarding patient safety,
privacy, and data management also represent obstacles to the large commercial diffusion of
e-textiles [10,11]. More efforts are needed to develop algorithms to ensure highly secured
communication channels in existing low-power, short-range wireless platforms [4].
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In summary, it is undeniable that the development of smart textiles requires a mul-
tidisciplinary approach in which knowledge and skills in both industrial sciences—e.g.,
chemistry, design, and fabrication of smart materials—and Information and Communi-
cation Technologies (ICT)—e.g., microelectronics and circuit design and fabrication—are
fundamentally integrated with a deep understanding of textile arts [2]. Therefore, this
review explores the progress in smart e–textiles design and manufacturing, with a focus on
biomedical sensors and devices developed for healthcare monitoring. The main aim is to
provide a complete overview of the state-of-the-art in this promising area, investigating
the various applications and the different approaches and solutions proposed by research
groups working on these themes. Indeed, to the best of authors’ knowledge, this is the
first systematic review summarizing the research on e-textile for medical applications.
Therefore, the choice will be to apply broad criteria for the papers to perform a wider
selection and include as many types of papers as possible.

2. Materials and Methods

The query was conducted on Scopus and Pubmed databases starting from 2010 until
2020 using the words “e-textile”, “textronics”, “textile-electronics” and “monitoring”;
262 articles were found in this time range (23 of them were duplicated). Only English
articles were considered, and reviews, conference reviews, book chapters, and books were
excluded, thereby reaching 208 papers. Afterwards, all the papers were screened firstly
through title and abstract, and then through full text, reaching 71 papers, which were
included in this systematic review. Figure 1 shows the whole workflow.
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The articles were categorized into conference papers and articles, Industrial Bioengi-
neering (IB), and ICT domains. Figure 2 depicts the proportions.

Figure 2. Distribution of papers according to ICT and IB categories, conference papers, and articles.

3. Results

In Table 1 references to the articles included in this review are grouped according to
the type of acquired data. The researches are also organized in macro-categories regarding
the biomedical field of potential diagnosis. In Table S1 the readers can find more accurate
insights regarding each of the articles briefly discussed in the next subsections, where,
differently, we propose at the end of each subsection summary tables highlighting, in the
first instance, “Aim”, “Dataset” and “Acquired data” for each of the articles investigated.

Table 1. Number of instances for each acquired data, data type, and potential diagnosis combined
with related references.

Biomedical Field Acquired Data Instances

Cardiac

ECG 21 [12–32]
Heart rate 3 [24,25,33]
Blood pulse 7 [27,34–39]
LEVOP 1 [40]

Muscular
EMG 10 [16,19,21,41–47]
Pressure signal from muscles 1 [48]

Physiatry/
Orthopaedics

Finger flexion angles 4 [37,49–51]
Acceleration data 4 [30,52–54]
Angle of inclination 2 [24,25]
Motion signals 6 [19,21,34,55–57]
Elbow flexion angles 2 [58,59]
Knee flexion angle 3 [51,58,60]
Scapular flexion angles 1 [60]
Angular velocity signal 1 [61]
Plantar pressures 1 [61]
Sleep posture 1 [41]
FS and LL indexes 1 [62]
Back movements 1 [63]
Spinal cord bending angles 1 [38]
Strain signals 4 [53,54,64,65]
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Table 1. Cont.

Biomedical Field Acquired Data Instances

Respiratory
Respiratory rate 7 [15,30,41,66–69]
Breath pressure 2 [48,70]
Breath signal 6 [32,35,36,38,39,71]

Other Themes

EOG 3 [72–74]
EDA 4 [14,16,75,76]
Skin temperature 8 [15,24,25,30,35,36,77,78]
Biomedical microwave sensing 1 [79]
Pharynx motion 2 [37,49]
Cheek motion 1 [37]
Sodium and lactate concentration in
human sweat 1 [80]

Sweat Volume 2 [59,78]
Resistance signals 1 [81]
Alert of the volume of leaked urine 1 [82]
Hydrogen peroxide concentration 1 [32]

Abbreviations. ECG: Electrocardiogram; EDA: Electrodermal Activity; EMG: Electromyography; EOG:
Electrooculography; FS: Forward Shift; LEVOP: Lower Extremity Venous Occlusion Plethysmography;
LL: Lateral Lean.

3.1. The Applications in Cardiology

The first line of Table 1 summarized in a concise and schematic form the principal
acquired data—in the field of cardiology diagnostics—using e-textile systems.

The electrocardiography signal—called equivalently electrocardiogram (ECG)—was
over the years one of the most appropriate tools to diagnose in advance and, consequently,
to try to prevent the clinical complications caused by chronic and cardiovascular dis-
eases [83,84]; in recent years, wearable sensors proved to be possible novel alternatives for
the ECG acquisition [9], because the e-textiles (used as ECG diagnostic systems) indicated
to address—or potentially address—several of the advantages highlighted in Section 1 [83].

The researches in this field are summarized in Table 2. In this 10-year report of papers,
the first prototype of ECG e-textile system was presented by Wu et al. [23]. The authors
fabricated a cloth electrode into which multiwalled carbon nano-tubes (MWCNTs) were
randomly distributed into the fabric, of which one side was connected and fastened with
traditional silver/silver chloride (Ag/AgCl) electrodes. The ECG acquisition performed
on a single healthy control (HC) demonstrated the novel cloth electrode showed similar
performances to the traditional Ag/AgCl electrodes, which might be potentially replaced
for the daily and long-term monitoring of the ECG [23]. Similar studies were performed by
Acar and Le and the respective coworkers [20,22], which also tested the e-textiles by apply-
ing the electrodes on smart garments. In particular, Acar et al. fabricated nylon graphene
oxide (GO)-coated fibers, which were later embedded in an elastic armband; the evalu-
ations on a single HC showed a 96% correlation between the ECG waveforms acquired
with graphene textile electrodes and the conventional Ag/AgCl ones [22]. More accurate
statistical data, on the other hand, were presented by Le et al. to compare the performances
of silver-based textile electrodes (embedded in a smart bra) and Ag/AgCl gel counter-
parts [20]. A similar bra was designed and fabricated by Shathi et al. [27] which proved
their reduced GO/poly(3,4-ethyelenedioxythiophne polystyrene sulfonate) (PEDOT:PSS)
electrodes showed an improved ECG signal response in both wet and dry conditions;
additionally, their e-textile electrodes demonstrated an improved flexibility, bendability,
and stretchability when compared with that of conventional electrodes. The manufactured
ones—integrated in the sports bra—were the final product of a fabrication study in which
even other kinds of e-textile electrodes were analyzed [26]. Sinha et al. [16] fabricated
and analyzed in the same period similar PEDOT:PSS-coated electrodes, demonstrating the
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capability of such devices to record ECG—and, in addition, electrodermal activity (EDA)
and electromyography (EMG)—for a single HC in both dry and wet conditions.

Another interesting approach to fabricate e-textiles for ECG monitoring was proposed
by Li et al. [18]. The authors designed and fabricated an e-textile solution combining
the advantages of both the Japanese Kirigami pattering and the inkjet printing strategy
demonstrating an ECG stable signal acquisition on a single HC with more than 100%
strain of electrodes. Micro/nano fabrication strategies could be considered as a potential
solution even for the fabrication of electrical interconnects/stretchable conductive adhe-
sives (SCA). Specifically, a mixture, composed by Ag particles, MWCNTs and silicone
rubber, was prepared and SCA electrodes were fabricated depositing such mixture on a
polydimethylsiloxane (PDMS) layer, later integrated with a same layer deposited onto an
elastic bandage [31]. From the outcomes of the investigations, the authors showed the
ECG signal resulted both of good quality and thoroughly stable both for multiple patients’
configurations (even after the SCA-equipped elastic bandage was washed) if compared
with the results obtained with commercial counterparts. Liang et al. [32] recently presented
the preliminary results of a similar research. Specifically, they worked to develop a stable
and biocompatible composite ink—a dispersion of silk sericine-MWCNTs—which could
be processed using well-consolidated printing processes (e.g., inkjet printing). The authors
demonstrated the ink could be used, even though a straightforward dying process, to fabri-
cate conductive fibers/yarns and textiles “with desired mechanoelectrical properties” [32].
The integration of such conductive textiles (even breathable and reusable) on a compression
shirt allowed to collect fine structures of the ECG signals in dry state, demonstrating the po-
tential applicability of these smart clothes in healthcare (i.e., monitoring human biosignals).
Another solution based on micro/nanofabrication strategies was proposed by Yao et al. [19]
who manufactured silver nanowire/thermoplastic polyurethane (AgNW/TPU) electrodes
to be later integrated on commercial patches. The authors demonstrated these devices
were capable to acquire EGC—in dry state—of a quality comparable to the commercial gel
electrodes; moreover, they did not find signal degradation up to 50% strain and 100 cycles.
As shown in Table 2, in addition to ECG, even EMG and body motion signals were collected.
Similar signals were analyzed even by Jin et al. [21] who used an e-textile sportswear in
which an EMG sensor, a strain sensor, and a fluoroelastomer conductor, reinforced with
polyvinylidene fluoride (PVDF) nanofibers, were integrated. The system showed the possi-
bility to acquire ECG signal, and even the others, without significant degradation during a
1 h exercise of an HC.

In the last few years, although the research on the ECG monitoring in the field of
wearable e-textiles seems still in a preliminary stage, few authors tried to develop slightly
more complex e-textile solutions. For instance, in 2013 Kuroda et al. [13] proposed two
prototypes of e-textile sensing vests, where different combinations of conductive and
nonconductive yarns were investigated. The first prototype demonstrated the Japanese
NISHIJIN production process was suitable to acquire a clean ECG signal as well as the sec-
ond more advanced prototype (albeit fabricated—for an eventual mass production—using
a different manufacturing technique), although some limitations in the ECG acquisition
appeared [13]. In the same period, Catarino et al. [12] investigated the capabilities of a
novel shirt prototype; specifically, three electrodes were knitted with Elitex for a double
purpose: firstly, to allow the integration of electrical connections in the textile substrate, and
secondly, to fix the electrodes in specific areas of the shirt prototype. Even if the ECG signals
demonstrated different in case of either dry or wet electrodes, the authors claimed the
results were of acceptable quality (considering conventional gel electrodes performances)
and a tailor-made design of the shirt (according to the target patient) could potentially
maximize the ECG acquisition performance [12]. Similar findings were presented even by
Zięba et al. [29]. The authors showed a custom-made laminar textile electrode made of a
silver woven fabric to be potentially integrated in a shirt and a sock, following predesigned
configurations. The authors demonstrated (on a single HC) that the electroconductive
material showed negligible difference with conventional electrodes and could be effec-
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tively used to potentially fabricate e-textile integrated shirts and/or socks. More recently,
Tao et al. [30] integrated on a flexible printed circuit board (later, in turn, integrated on a
sportswear shirt) an EGC sensor, connected, in turn, to a textile electrode by conductive
threads. The authors validated the system demonstrating the effective ECG acquisition,
even after 30 washing cycles when the print circuit board was integrated on a sportswear
fabric using 4 mm thick PDMS.

The literature on e-textile applications for ECG acquisition showed even approaches
for which the signal acquisition was only one of the milestones. For instance,
Lopez et al. [24,25] designed and presented a medical Information Technology (IT)
platform—based on multiple subsystems—for patients’ localization and monitoring. The
authors proposed as a healthcare monitoring subsystem for ECG acquisition a Nylon/Lycra
shirt into which two e-textile electrodes were integrated. The results—after acquiring ECG
on 5 patients with cardiological diseases—showed ECG was of a higher quality (also in dry
state) when the subjects were still, while the signal slightly worsened when sudden move-
ments took place. However, the authors demonstrated the use of a conductive gel and/or
mechanisms to reduce motion artifacts could improve signal quality [24]. Similar conclu-
sions were presented further in their more recent article [25]. Similarly, Ferreira et al. [15]
designed and presented the Baby Night Watch IT platform to monitor infants potentially
affected by Sudden Infant Death Syndrome. In this study, a chest belt, into which electrodes
and silver coated polyamide yarns were integrated, was chosen as healthcare monitor-
ing subsystem, demonstrating a comparable performance with counterpart commercial
products in terms of ECG measurements. In particular, both the custom-made and the
commercial chest belts demonstrated capable to acquire very robust heart rate pulses when
infants did not move and were lying on their back, while the authors found several missing
heart beat pulses when infants were more active.

Finally, a few research groups also performed experiments on a relatively significant
number of subjects (if compared to the already cited contributions). For instance, Posto-
lache et al. [14] presented a wheelchair prototype where e-textiles, namely, electrodes made
of fibers coated by conductive polymer and silver, were integrated in correspondence of
the armrests. The data acquired by 7 HC demonstrated the proposed platform showed
results comparable to that of the commercial counterparts. A similar number of HC were
object of ECG acquisitions in the study of Arquilla et al. [28]. The authors manufactured
a set of three electrodes—made of nylon coated by silver nanoparticles—stitched on a
nonextensive fabric backing. Two minutes of ECG acquisitions on 8 HC demonstrated
once again the capabilities of e-textile electrodes, showing their potential applicability
across a wide range of anthropometries and skin types and signal invariance during stretch,
bend, or wash tests. The most important diagnostic example, however, was such proposed
by Fouassier et al. [17]. Specifically, the authors designed and manufactured a t-shirt
prototype—into which electrodes made of silver yarns and hydrogel pads were integrated—
aimed at working as a 12-lead ECG acquisition system. This solution allowed, to the best
of the authors’ knowledge, short-duration 12-lead ECG acquisitions with quality levels
comparable to conventional Holter recordings on 30 HC for 4 different analyzed positions.

Often, in the context of cardiac field, diagnostic data can be acquired also using simpler
and/or different strategies. For instance, Lopez et al. [24,25] were also able to acquire simul-
taneously and show (on their IT platform) the hearth rate from 5 patients with cardiological
diseases, using the same shirt used for ECG acquisition. Later, Dabby et al. [33] showed
similar conclusions using another e-textile prototype; specifically, they demonstrated their
e-textile solutions (bras, shirts, and shorts) demonstrated capable to acquire a heart rate
signal comparable to a commercial chest strap. Equivalently, even Tao et al. [30] solution
demonstrated capable to monitor the heart rate (calculated from the RR interval data of
ECG signal).

Blood pulse, namely, pulse rate, is another potential diagnostic data that e-textiles
can collect from patients. The first examples presented in this 10-year report of papers
are those showed by Frydrysiak et al. [35,36]. The authors, partially inspired by their
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previous study [29], presented a solution to acquire the pulse signal from elderly people
using a shirt into which the textile electrodes were integrated by different configurations.
Analogously to Lopez et al. and Ferreira et al., the pulse acquisition was only one of the
milestones of the presented textronics system, whose aim was even to collect other data
(e.g., patients’ breathing rhythm) which are made available in real time for a potentially
advanced subject monitoring. Quite recently, the research on blood pulse monitoring
has gained increasing importance, as testified by the growing number of contributions
appeared in the literature. For instance, Jang et al. [38] developed a composite fiber
sensor which was later sewed in an electric armband applied, in turn, on an artificial
arm with varied blood pressures. The experiment on this artificial setup demonstrated
the system was capable to distinguish rachial artery pulses with varying blood pressure
and pulse rate. Another recent solution was described in [37]. The authors presented a
three-dimensional, composite spacer textile pressure/strain sensor, mainly designed for
human motion detection purposes, which could even be used to monitor the arterial pulse
pressure when the system was attached to one of the wrists of HCs. The results suggest the
device could detect different pulse trends, which are linked to different pathologies and/or
complications related to behavioral risk factors. Similar measurements were carried out by
Shathi et al. [27], who acquired the pulse rate of a single HC demonstrating their e-textile
electrode, in direct contact with the female volunteer’s wrist, showed a pulse response in
nearly accordance with normal kits; some deflections/distortions in pulse rate were found
during running. Similar results were presented even by Fan et al. [39]. They proposed a
triboelectric all-textile sensor array (TATSA), a composite textile made of stainless steel
fibers inserted into several pieces of one-ply Terylene yarns, which was conveniently
embedded into several clothes such as wristbands, fingerstalls, socks, and chest straps.
The TATSA proved not only to acquire a good quality, namely, in line with the signals
acquired with other devices and solutions, pulse rate, but even the possibility to acquire
and highlight differences in pulses depending on the measuring position (the authors
applied TATSA on neck, wrist, fingertip, and ankle) and subjects’ ages, demonstrating
the straightforward applicability of the solution to different populations. Simultaneously,
Tang et al. [34] designed and manufactured a nonwoven fabric e-textile prototype, which
demonstrated capable to effectively monitor blood pulse. Finally, in recent years, to the
authors’ best knowledge, the last diagnostic solution in the field of cardiology, by means
of e-textiles, was oriented to record lower extremity venous occlusion plethysmography
(LEVOP). To this aim, Goy et al. [40] developed and fabricated a custom-made battery
powered plethysmograph, connected on the one side to an oscilloscope, and on the other
side on a set of different e-textile electrodes. The authors conducted LEVOP recordings
on 5 HC demonstrating all the three set of the proposed e-textiles materials can be used
for LEVOP recordings, showing additionally a statistical in-depth analysis related to the
recorded signals from the different materials.

In conclusion, from the systematic analysis conducted, it was demonstrated the de-
sign and fabrication of e-textile solutions for biomedical applications gained considerable
attention in recent years, and the promising results suggest a potential interest in further
research. Maybe, to obtain a definitive answer regarding the direct practical applicabil-
ity of these e-textile solutions, more studies involving larger cohort of subjects (healthy
and pathological) are still required. However, as readers can ascertain reading the next
subsections, currently this field seems to be the most advanced in this sense.
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Table 2. Insights regarding cardiac literature: authors, aim, dataset, and acquired data.

Authors Aim Dataset Acquired Data

Lopez et al. (2010a) [24]
Describing a novel healthcare IT platform for
localization and monitoring within hospital
environments

5 PP

ECG; Heart rate; Angle of
inclination; Activity index; Body
temperature; Patient’s location;
Battery level; Alert code

Lopez et al. (2010b) [25]

Presenting a medical IT platform platform
based on Wireless Sensor Networks and
e-textile for patients’ localization and
monitoring

5 PP

ECG; Heart rate; Angle of
inclination; Activity index; Body
temperature; Patient’s location;
Battery level; Alert code

Wu et al. (2010) [23] Presenting a novel cloth electrode for ECG
monitoring 1 HC ECG

Zieba et al. (2011) [29]
Creating new sensorical clothing structures to
measure human physiological signals in a
non-invasive way

1 HC ECG

Catarino et al. (2012) [12]
Designing and fabricating textile integrated
electrodes for ECG continuous health
monitoring for disabled or elderly people

1 HC ECG

Kuroda et al. (2013) [13] Prototyping an ECG sensing e-textile vest 1 HC ECG

Goy et al. (2013) [40] Fabricating e-textiles to monitor LEVOP 5 HC LEVOP

Postolache et al. (2014) [14] Presenting a wheelchair architecture equipped
with e-textiles for ECG and SKC sensing 7 HC ECG; EDA

Ferreira et al. (2016) [15] Presenting the design and fabrication of SWSs
to prevent infants’ SIDS HC # Body temperature; Respiratory

rate; ECG

Frydisiak & Tesiorowski
(2016a) [35]

Designing a smart textronic shirts for the
health monitoring of elderly people HC # Blood Pulse; Breath Signal; Skin

Temperature

Frydisiak & Tesiorowski
(2016b) [36]

Designing a smart textronic shirts for the
health monitoring of elderly people HC # Blood Pulse; Breath Signal; Skin

Temperature

Dabby et al. (2017) [33]

Presenting a new method for building
wearable electronic and textile sensor systems
directly integrated in garments to detect the
heart rate

1 HC Heart Rate

Acar et al. (2018) [22]
Developing a single-arm ECG armband
embedded with flexible graphene textiles for
ECG data acquisition

1 HC ECG

Tao et al. (2018) [30]

Presenting a novel system—made up of a
washable and wearable smart textile shirt,
smartphone app and software desktop—for
the acquisition of ECG signal, breathing rate,
acceleration data for activity recognition and
skin temperature

5 HC ML

HC #

ECG; Skin temperature;
Respiratory rate; Acceleration
data

Li et al. (2019) [18]
Fabricating e-textiles depositing conducting
materials thorough inkjet printing on
conventional textiles for monitoring purposes

1 HC ECG

Yao et al. (2019) [19]

Designing and fabricating multifunctional
e-textiles with mechanical and functional
properties comparable with typical textiles for
monitoring applications

1 HC ECG; EMG (arm); Motion signals

Le et al. (2019) [20]

Comparing differences in ECG registration
between silver-based textile electrodes and
silver/silver-chloride gel electrodes, both
integrated in a smart bra

1 HC ECG

Jin et al. (2019) [21] Fabricating a metal–elastomer–nanofibers
conductive material for long-term monitoring 1 HC ECG; EMG (bicep muscle);

Motion signals
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Table 2. Cont.

Authors Aim Dataset Acquired Data

Kim et al. (2019) [37]
Developing an all-textile based pressure/strain
sensor for physiological signals using 3D
spacer textile

HC #
Blood Pulse (wrist and neck);
Finger flexion angles; Cheek
motion; Pharynx motion

Ko et al. (2019) [31] Designing SCAs for various applications 1 HC ECG

Jang et al. (2019) [38]
Preparing a highly sensitive fiber-type strain
sensor with a broad range of strain by
introducing a single active layer onto the fiber

1 HC Blood Pulse; Spinal Cord Bending
Angles; Breath Signal

Fouassier et al. (2019) [17]
Comparing the quality of the ECG signal
registered using both a 12-lead Holter and a
novel smart 12-lead ECG acquisition T-shirt

30 HC ECG

Sinha et al. (2020) [16] Fabricating PEDOT:PSS coated electrodes to
record EMG, ECG and EDA

4 HC emg

1 HC eda

1 HC ecg

EDA; ECG; EMG (biceps, triceps,
tibialis, and quadriceps)

Tang et al. (2020) [34]
Fabricating machine-washable e-textiles with
high strain sensitivity and high thermal
conduction for monitoring applications

1 HC Motion signals; Blood pulse

Arquilla et al. (2020) [28] Using sewn textile electrodes for ECG
monitoring 8 HC ECG

Shathi et al. (2020a) [26] Presenting a highly flexible and wearable
e-textile for smart clothing and ECG detection 1 HC ECG

Shathi et al. (2020b) [27] Developing e-textile electrodes for the
detection of high-quality biomedical signals 1 HC ECG; Blood pulse

Liang et al. (2020) [32]

Developing a stable and biocompatible silk
sericine carbon nanotubes (CNT) ink and
demonstrating its versatile applications in
flexible electronics for monitoring human
biosignals

HC # ECG, Breath Signal; Hydrogen
peroxide concentration

Fan et al. (2020) [39] Developing TATSA for precise epidermal
physiological signal monitoring

1 HC
1 PP Blood Pulse; Breath Signal

# number of subjects not provided; ecg: Electrocardiographic acquisitions; eda: Electrodermal Activity acquisitions; emg: Electromyographic
acquisitions; ML: Machine Learning training set. Abbreviations. ECG: Electrocardiogram; EDA: Electrodermal Activity; EMG: Electromyo-
graphy; HC: Healthy Controls; IT: Information Technology; LEVOP: Lower Extremity Venous Occlusion Plethysmography; PEDOT:PSS:
Poly(3,4-Ethyelenedioxythiophne) Polystyrene Sulfonate); PP: Pathological Patients; SCAs: Stretchable Conductive Adhesives; SIDS:
Sudden Infant Death Syndrome; SKC: Skin Conductivity; TATSA: Triboelectric All-Textile Sensor Array; SWSs: Smart Wearable Systems.

3.2. The Applications in the Muscular Setting

Surface Electromyography (sEMG) is a noninvasive methodology to measure mus-
cle activity using surface electrodes placed on the skin overlying a muscle or a group
of muscles [85]. This technique is widely used in rehabilitation research, sport sciences,
kinesiology, and ergonomics [86]. Electrodes for sEMG are mostly combined with electrode
gel to reduce the electrode-skin impedance [87]. Nevertheless, in recent decades, e-textile
sensors, fabrics which are given sensing properties of different physical nature, such as
capacitive, resistive, optical and solar, are increasingly spreading due to their wearable
nature [88]. The researches in this field are summarized in Table 3. Ozturk and Yapici [43]
proposed wearable graphene textile electrodes to monitor muscular activity showing their
feasibility to acquire sEMG signals. They performed a benchmarking study with wet
Ag/AgCl electrodes showing good agreement between the two technologies of electrodes
in terms of signal-to-noise ratio (SNR) and signal morphology with correlation values up
to 97% for sEMG signals acquired from the biceps brachii muscle. The same authors, in
line with the previous conference paper [43], presented a research article [42] in which
they underlined deeply the use of graphene-coated fabrics as textile electrodes in sEMG
acquisition, considering not only the biceps brachii muscle but also triceps brachii and
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quadriceps femoris muscles. They performed a benchmarking study between the proposed
textile electrodes and commercial wet Ag/AgCl ones for each muscle in terms of the skin-
electrode impedance (SEI), SNR, and cross correlation reaching results within the range of
commercial Ag/AgCl electrodes. The results demonstrated that graphene-coated textile
fabrics could represent a valid alternative to gelled Ag/AgCl electrodes and therefore they
could be used to develop wearable and smart garments. A similar work was conducted
by Awan et al. [44] who investigated the use of a graphene-based electromyograph fabric
sensor as a comparable alternative to commercial Ag/AgCl wet electrodes. The authors
demonstrated that textile electrodes outperformed the standard Ag/AgCl electrodes in
terms of SNR. Additionally, they, after tests on 8 HC, underlined graphene-based smart
fabrics can potentially represent a viable alternative to non-reusable Ag/AgCl electrodes
for high-quality EMG monitoring. Other authors proposed wearable devices to monitor
EMG signals through textile electrodes; as first example, Nijima et al. [46] proposed a
wearable EMG sensor for monitoring masticatory muscles with PEDOT:PSS textile elec-
trodes with the aim to monitor daily activities such as diet, sleep bruxism, and human
motor control. The same authors in a more recent work [45] used the above-mentioned
prototype to monitor muscle fatigue related to the muscles of the limbs, starting from the
acquisition of temporal muscles, based on the assumption that there is a strong correlation
between frowning and jaw clenching muscle activity and the physical efforts made when
exercising. Choudhry et al. [48] designed textile-based piezoresistive sensors developed
using flexible conductive threads stitched on fabric. They embedded the sensor inside a
garment to measure small pressure changes exerted by human muscles. Other authors
proposed multifunctional e-textiles to monitor several vital signals, EMG signals included.
As described in Section 3.1, Yao et al. [19] developed an integrated textile patch comprising
four dry electrophysiological electrodes, a capacitive strain sensor, and a wireless heater
for electrophysiological monitoring, motion tracking, and thermotherapy, respectively.
Jin et al. [21] showed their solution demonstrated its feasibility for continuous long-term
monitoring of ECG, EMG signal and motion during 1 h of weight-lifting excercises without
significant degradation of signal quality. As third example, Sinha et al. [16] showed how
PEDOT:PSS coated electrodes, integrated in a spandex t-shirt, were effectively able to
record simultaneously EMG, ECG, and EDA in dry state. The authors concluded this
solution could represent a tool for continuous and simultaneous measurement of vital
signals in at-risk patients. Samy et al. [41] employed five EMG electrodes: three were
attached to subject’s chin to detect its muscle movement, which can be indicative of teeth
grinding (bruxism), sleep apnea, and other sleep disorders, while the other two electrodes
were attached to the legs, between the knee and the ankle, to record leg movement. Finally,
Farina et al. [47] proposed the use of Smart Fabric and Interactive Textile system as an
alternative solution for recording high-density EMG signals for myoelectric control. They
designed a sleeve covering the upper and lower arm containing 100 electrodes arranged in
four grids of 5 × 5 electrodes for EMG. The textile electrodes were realized with stainless
steel yarns and they had a diameter of 10 mm and an interelectrode distance of 20 mm. The
proposed method for interfacing myoelectric prostheses with the neuromuscular system
by integrating electrodes in garments proved its feasibility, allowing for high accuracy in
EMG classification.

From the analysis carried out on this topic it is possible to conclude that several
technologies and materials were proposed for the realization of electrodes in e-textile able
to acquire EMG signals. Future investigation on enriched study population both normal
and pathological will confirm the potential the utility of textile electrodes in clinical practice
to replace well-known pregelled electrodes.
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Table 3. Insights regarding literature in muscular setting: authors, aim, dataset, and acquired data.

Authors Aim Dataset Acquired Data

Farina et al. (2010) [47]
Proposing a novel way for interfacing
myoelectric prostheses with the neuromuscular
system by integrating electrodes in garments

3 HC EMG

Samy et al. (2014) [41] Performing sleep stage analysis with a
contact-free unobtrusive system 7 HC

Respiratory rate and its
variability; Leg EMG from
pressure images; Sleep posture

Niijima et al. (2017) [46]
Designing and fabricating an EMG-integrated
sensors cap to register EMG data of the
masticatory muscles for monitoring ADL

1 HC 1

3 HC 2 EMG (temporal muscles)

Niijima et al. (2018) [45] Assessing the feasibility of estimating biceps
fatigue using an e-textile headband 10 HC EMG (temporal muscles)

Ozturk & Yapici (2019) [43]

Studying the performance of graphene textiles
in muscular activity monitoring (acquisition of
surface EMG signals from biceps brachii
muscle), comparing the outcome with
Ag/AgCl electrodes

1 HC EMG (biceps brachii)

Awan et al. (2019) [44]

Presenting the fabrication of graphene-based
e-textile for EMG monitoring, comparing
sensing performance with commercial
Ag/AgCl wet electrodes

8 HC EMG (arm)

Yao et al. (2019) [19]

Designing and fabricating multifunctional
e-textiles with mechanical and functional
properties comparable with typical textiles for
monitoring applications

1 HC ECG; EMG (arm); Motion signals

Jin et al. (2019) [21] Fabricating a metal—elastomer—nanofibers
conductive material for long-term monitoring 1 HC ECG; EMG (bicep muscle);

Motion signals

Choudhry et al. (2020) [48]
Fabricating piezoresistive sensors—and
studying their washability—to monitor
breathing and muscular activity

1 HC
Breath pressure signal of the
ribcage; Pressure signal from
biceps femoris muscle

Sinha et al. (2020) [16] Fabricating PEDOT:PSS coated electrodes to
record EMG, ECG and EDA

4 HC emg

1 HC eda

1 HC ecg

EDA; ECG; EMG (biceps, triceps,
tibialis, and quadriceps)

Ozturk & Yapici (2020) [42]

Investigating the performance of conductive
graphene textiles as surface EMG electrodes,
later integrated in textile electrodes as
pedometer

4 HC sEMG

1 experiment 1; 2 experiment 2; ecg: Electrocardiographic acquisitions; eda: Electrodermal Activity acquisitions; emg: Electromyographic acqui-
sitions. Abbreviations. ADL: Activities of Daily Living; ECG: Electrocardiogram; EDA: Electrodermal Activity; EMG: Electromyography;
HC: Healthy Controls; PEDOT:PSS: Poly(3,4-Ethyelenedioxythiophne) Polystyrene Sulfonate).

3.3. The Applications in Orthopaedics

Recently, the development and the spread of Inertial Measurement Units (IMUs) for
spatiotemporal and kinematic assessment has represented an innovative progress in the
field of biomechanics and wearable sensors. Indeed, wearable sensors based on IMUs are
spreading in the biomedical field showing good performances [89–91] compared to their
gold standards. Moreover, considering that the working principle of IMUs is based on
the measurement of inertia, IMUs can be applied anywhere without a reference [92] and
integrated with textile technology [93]. The research in this field is summarized in Table 4.
Bartalesi et al. [53], indeed, developed a wearable system that integrates and fuses informa-
tion gathered from textile-based piezoresistive sensor arrays and triaxial accelerometers,
which demonstrated able to perform a real time estimation of the local curvature and the
length of the spine lumbar arch. The authors performed a comparative study between their
system and a stereophotogrammetric system, showing a very low error when reconstruct-
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ing the lumbar arch length of a single HC. Considering the same idea (namely, merging
several technologies), Li et al. [58] presented a method to integrate and package a triaxial
accelerometer within a textile as to create an e-textile fully integrated within the weave
structure of the fabric itself, making it invisible to the wearer. The integrated e-textile based
accelerometer sensor system placed on arm and knee joints was used to identify the activity
type, such as walking or running, through the calculation of the joint bending angles. They
performed a benchmarking analysis between the proposed device and the related gold
standard, showing good agreement with an error lower than 1%. Amitrano et al. [61]
proposed a new wearable e-textile based system for biomedical signals remote monitoring
able to acquire angular velocities of the lower limbs. Specifically, the system equips an
IMU and textile pressure sensors made of EeonTex, namely a conductive and nonwoven
microfiber with piezo-resistive functionality, which were placed correspondingly between
the ankle and the plantar zone of the considered (3) HCs, respectively. The proposed
system finds wide application in the field of remote monitoring and telemedicine.

Other research groups proposed wearable systems for remote monitoring; for in-
stance, Lorussi et al. [60] proposed a wearable system to remotely monitor musculoskeletal
disorders. The system is composed of IMUs, e-textile sensors and a decision support
system included in a dedicated app able to assist the patient in performing personalized
rehabilitation exercises designed by a physician/therapist, remotely and in real-time (also
through alerts). Raad et al. [55] proposed a wearable smart glove for remote monitoring of
rheumatoid arthritis patients monitoring finger flexions while patients performed several
activities at home. The e-textile glove used flex and force sensors and an Arduino plat-
form to transmit motion data to the physiotherapists through a mobile phone, on which
a dedicated app is installed. Other authors proposed a complete platform for healthcare
monitoring. As described in Section 3.1, Lopez et al. [25] proposed a novel healthcare IT
platform capable of monitoring several physiological parameters, such as electrocardio-
gram (ECG), heart rate, body temperature, and the capability to track the location of a
group of patients within hospital environments through the combination of e-textiles and
wireless sensors. The same authors, in another work [24], proposed a medical IT platform,
based on wireless sensor networks and e-textiles, which supports indoor location-aware
services as well as monitors physiological parameters, such as ECG, heart rate, and body
temperature. Tao et al. proposed a totally flexible and washable textronic device able to
acquire several types of biological data. The data containing vital physiological signs, skin
temperature, and activity motions were transferred via low-energy Bluetooth technology
to a smart phone and then via 4G or Wi-Fi into a remote data server to realize a continu-
ously Web-based monitoring system. Other researchers proposed wearable devices that
are completely textile and do not integrate devices such as IMUs. In this context, Della
Toffola et al. [54] proposed a wearable system for long-term monitoring of knee kinematics:
compliance with the use of knee sleeve is monitored by using an e-textile sensor that mea-
sures the knee sleeve fabric stretch, thus allowing to infer whether the subjects under test
wears the knee sleeve. Garcia Patino et al. [63] proposed a compact textile-based wearable
platform to track trunk movements when the considered user bends forward. The smart
garment developed for this purpose was prototyped with an inductive sensor formed by
sewing a copper wire into an elastic fabric in a zigzag pattern. Heo et al. [50] proposed a
flexible glove sensor—which included stretchable and flexible PDMS films—to monitor
upper extremity prosthesis functions. Other researchers studied new arrangements of
materials for biomedical applications, Jin et al. [21] studied a highly durable nanofiber-
reinforced metal elastomer composite consisting of metal fillers, an elastomeric binder
matrix, and electro-spun PVDF nanofibers to enhance both cyclic stability and conductivity,
showing a good continuous long-term monitoring of ECG, EMG signal, and motions dur-
ing weightlifting exercises without significant degradation of signal quality. Li et al. [64]
fabricated a textile-based stretchable sensor by using an electronic dyeing method; the
conductive textile showed good flexibility and adaptable strain-electric response. The
authors demonstrated the excellent performances for monitoring and analysis of several
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human activities. Tang et al. [34] reported the functionalized conductive, sensitive, wear-
able, and washable vacuum pressure sensor based on carbon nanotubes (CNTs), e-textile
with unique nanostructures growth on the non-woven fabric by using the novel, and facile
nano-soldering method. They proved that CNTs e-textile sensor has a good linearity, high
sensitivity and low power consumption. Moreover, they showed the good repeatability,
washability, durability, and super-hydrophobic performance of the CNTs underling its
feasibility to realize smart clothes. Yao et al. [19] presented mechanically and electrically ro-
bust integration of nanocomposites with textiles by laser scribing and heat press lamination
showing a good washability and good electromechanical performance up to 50% strain.
They underlined the potential utility of these new materials and methods in healthcare,
activity tracking, rehabilitation, sports, medicine, and human-machine interactions. Finally,
Ye et al. [51] reported a scalable dip-coating strategy to construct conductive silk fibers
showing their feasibility to be woven into fabrics, resulting in textiles sensitive to physical
stimuli such as: force, strain, and temperature.

Park et al. [65] proposed a dynamically stretchable high-performance supercapacitor
fabricated with MWCNT/MoO3 for powering an integrated sensor in an all-in-one textile
system to detect various bio signals. This system sewed into cloth both t-shirt and glove
successfully detects strain due to joint movement and the wrist pulse.

Zhang et al. [57] designed a fabric E-textile for tracking active motion signals. The
fiber-shaped coaxial tribo-sensor is fabricated with silver yarn and polytetrafluoroethylene
yarn, which allows for integrating well with cloths at large scales due to its satisfactory
breathability, good washability, and desirable flexibility.

Jang et al. [38] proposed a highly sensitive fiber-type strain sensor with a broad range
of strain by introducing a single active layer onto the fiber. The sensors were sewn into
electrical fabric bands, which are integrable to a wireless transmitter to monitor waveforms
of pulsations, respirations, and various postures of level of bending a spinal cord. About
the last issue, the authors developed an electronic band-type posture corrector (E-posture-
corrector) with the fiber sensor to continuously measure resistive changes to bending angles
of a human spinal cord.

Kiaghadi et al. [59] presented the design of Tribexor, an end-to-end sensing system that
leverages triboelectric textiles to measure joint motions and sweating behavior showing
that the sensor has high performance in natural conditions by benchmarking the accuracy
of sensing several kinematic metrics as well as sweat level.

Other authors focused on activity recognition and monitoring. Fevgas et al. [52],
indeed, presented a platform and a methodology for rapid prototype development of
e-textile applications for human activity monitoring to address the problems of human
movement and gesture monitoring, posture recognition and fall detection. Kim et al. [37]
proposed a carbon nanotube ink drop-coated textile resistive pressure sensor on a typical
three-dimensional spacer textile able to detect human health and motion. The resulting 3D
spacer textile pressure sensor unit showed a wide range of sensing performance of 200 kPa–
50 kPa, which facilitates the detection of physiological signals, such as acoustic vibrations
and hand motion. Vu et al. [56] introduced a new approach to classify human body
movements, by using textile sensors, embedded into fabrics, using AI to recognize different
standard human motions (e.g., walking, jumping, running, and sprinting) starting from
features extracted from strain signals. The last authors proposed also another work [49]
in which they presented an e-textile strain sensor integrated on a glove to monitor angles
of finger motions. They also proved the feasibility of this sensor placing it onto the skin
of the neck to record the pharynx motions when speaking, coughing and swallowing.
Samy et al. [41] proposed an unobtrusive framework for sleep stage identification based
on a high-resolution, pressure-sensitive e-textile bed sheet able to acquire information
related to body movement, posture, and body orientation. Finally, Hayashi et al. [62]
proposed a smart wheelchair, composed of e-textile pressure sensors placed on the seat
and back support, able to monitor the patients posture on the basis of quantitative sitting-
posture scores.
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The articles related to this section show how the integration of IMUs for movement
assessment in e-textile garments is a consolidated practice. By means of the integration of
algorithms, it is possible to compute several kinematic parameters starting from acceler-
ation or angular velocities. Moreover, the kinematic information can be acquired thanks
to the capability of some materials described in some articles to change their intrinsic
resistance when they are stretched showing their feasibility in the movement assessment.

Table 4. Insights regarding orthopaedic literature: authors, aim, dataset, and acquired data.

Authors Aim Dataset Acquired Data

Bartalesi et al. (2010) [53]

Designing, developing, and testing a wearable
system to perform the real time estimation of
the local curvature and the length of the spine
lumbar arch

1 HC Acceleration data; Strain signals

Lopez et al. (2010a) [24]
Describing a novel healthcare IT platform for
localization and monitoring within hospital
environments

5 PP

ECG; Heart rate; Angle of
inclination; Activity index; Body
temperature; Patient’s location;
Battery level; Alert code

Lopez et al. (2010b) [25]

Presenting a medical IT platform platform
based on Wireless Sensor Networks and
e-textile for patients’ localization and
monitoring

5 PP

ECG; Heart rate; Angle of
inclination; Activity index; Body
temperature; Patient’s location;
Battery level; Alert code

Fevgas et al. (2010) [52]
Presenting a platform and a methodology for
the rapid prototype development of e-textile
applications for human activity monitoring

3 HC Acceleration data

Della Toffola et al. (2012) [54]
Presenting a wearable system for long-term
monitoring of knee kinematics in the home
and community settings

1 HC Acceleration data; Strain signals

Samy et al. (2014) [41] Performing sleep stage analysis with a
contact-free unobtrusive system 7 HC

Respiratory rate and its
variability; Leg EMG from
pressure images; Sleep posture

Hayashi et al. (2017) [62] Using smart wheelchairs to monitor posture 3 HC FS index and LL index

Li et al. (2017) [64]

Presenting an electronic dyeing method to
fabricate wearable silver-based e-textile
sensors for human motion monitoring and
analysis

1 HC Strain signals at heel, lower and
upper knee

Vu & Kim (2018) [56]
Introducing a new approach to classify human
body movements using textile sensors
integrated into smart muscle pants

1 HC Motion Signals

Lorussi et al. (2018) [60]
Developing a sensing platform constituted by
wearable sensors for musculo-skeletal
rehabilitation

5 HC Knee and scapular flexion angles

Tao et al. (2018) [30]

Presenting a novel system—made up of a
washable and wearable smart textile shirt,
smartphone app and software desktop—for
the acquisition of ECG signal, breathing rate,
acceleration data for activity recognition and
skin temperature

5 HC ML

HC #

ECG; Skin temperature;
Respiratory rate; Acceleration
data

Kiaghadi et al. (2018) [59] Developing of a wearable joint sensor 1 HC Elbow Flexion Angles; Sweat
Volume

Kim et al. (2019) [37]
Developing an all-textile based pressure/strain
sensor for physiological signals using 3D
spacer textile

HC #
Blood Pulse (wrist and neck);
Finger flexion angles; Cheek
motion; Pharynx motion
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Table 4. Cont.

Authors Aim Dataset Acquired Data

Park et al. (2019) [65]

Evaluation of a dynamically stretchable
high-performance supercapacitor for powering
an integrated sensor in an all-in-one textile
system to detect various biosignals

1 HC Strain Signals

Zhang et al. (2019) [57] Developing a fabric E-textile for tracking active
motion signals 1 HC Motion Signals

Jang et al. (2019) [38]
Preparing a highly sensitive fiber-type strain
sensor with a broad range of strain by
introducing a single active layer onto the fiber

1 HC Pulse Signals; Spinal Cord
Bending Angles; Breath Signal

Ye et al. (2019) [51]
Fabricating e-textile sensors sensible to body
and environmental stimuli modifying the
surface of natural silks with CNTs

1 HC Knee flexion angle; Finger flexion
angle

Yao et al.(2019) [19]

Designing and fabricating multifunctional
e-textiles with mechanical and functional
properties comparable with typical textiles for
monitoring applications

1 HC ECG; EMG (arm); Motion signals

Jin et al. (2019) [21] Fabricating a metal–elastomer–nanofibers
conductive material for long-term monitoring 1 HC ECG; EMG (bicep muscle);

Motion signals

Raad et al. (2019) [55] Proposing a novel Smart Glove for both live
and on-demand monitoring 1 HC Motion signals (hand and finger

movement)

Amitrano et al. (2020) [61] Presenting a novel e-textile smart sock and
verifying its performances during gait analysis 3 HC Angular velocity signals of the

ankle; Foot plantar pressures

Vu & Kim (2020) [49] Fabricating and optimizing the performance of
e-textile strain sensors 1 HC Finger flexion angles; Pharynx

motion

Heo et al. (2019) [50] Introducing, characterizing, and experimenting
novel textile strain sensors based on AgNW 1 HC Finger flexion angles

Li et al. (2020) [58]
Describing a miniature accelerometer solution
integrated seamlessly within the fabric of a
sleeve to monitor movement

3 HC Elbow and knee bending angle

Tang et al. (2020) [34]
Fabricating machine-washable e-textiles with
high strain sensitivity and high thermal
conduction for monitoring applications

1 HC Motion signals; Blood pulse

Garcia Patino et al. (2020) [63] Designing a textile-based wearable platform to
prevent low back pain 1 HC Motion signals (Back movements)

# number of subjects not provided; ML: Machine Learning training set. Abbreviations. AgNW: Silver NanoWire; CNTs: Carbon Nanotubes;
ECG: Electrocardiogram; EMG: Electromyography; FS: Forward Shift; HC: Healthy Controls; IT: Inormation Technology; LL: Lateral Lean;
PP: Pathological Patients.

3.4. The Applications in the Respiratory Tract

Respiration is a crucial vital function for humans; abnormalities in such a function
may have a different origin and can lead to patient deterioration and, ultimately, death.
Previous research extensively documented the clinical importance of respiratory rate
diagnosis and how precise and routine monitoring is yet to be achieved, on the one side
due to intrinsic difficulties (linked both to human and machines limitations) and on the
other side because of limited use and/or the small diffusion of advanced respiratory
monitoring systems [94,95]. To reach this gap, several methods were proposed and were
widely investigated over time [96,97]; among these, several e-textile applications were also
proposed. The research in this field is summarized in Table 5.

To the best of the authors’ knowledge, Zięba et al. [68] presented the first prototype in
this 10-year report of papers. The proposed solution was a textronic shirt with sensorial
stripes (namely, a textile knitted sensor made of silver yarns) whose ends were connected
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to a current amplifier to acquire breathing rhythm. The authors evidenced the device
was able to acquire the signal, although some limitations (e.g., sensors positioning) could
not be overlooked when the HC was not at rest during the acquisitions. In the same
period, the authors [69] presented a similar prototype with a different configuration—and
amount—of the sensorial stripes (in this case, the authors embedded 3 stripes upon the
chest). Correspondingly, a similar but different prototype—namely, the same textronic shirt
equipped with two sensorial stripes localized upon the chest—was proposed to monitor
the elderlies’ breathing rhythm [35,36]. In the same period , Ramos–Garcia et al. designed
and fabricated a Respiratory Inductive Plethysmograph based breathing system aimed
at potentially monitoring breathing rate. The proposed system was a polyester/spandex
t-shirt on which a stretch e-textile sensor was placed around the HC’ chest. The preliminary
results indicated the proposed system, which needs further improvements to be properly
used for multiple tasks, was capable of effectively monitoring breathing rate of 3 HCs.
Another more recent solution was described in [30]. The authors used the same sportswear
shirt prototype—already described in Section 3.1 for the ECG acquisition—to detect the
respiration rate using the same ECG sensor connected to a different textile electrode.
The more recent example in this 10-year report of papers is, to our best knowledge, the
solution adopted by Fan et al. [39], who positioned the TATSA around the chest to monitor
the respiratory signal. Summing up the promising results related to both the cardiac
and the respiratory signals, the authors proceeded even with new experiments assessing
a different shirt configuration (designed by embedding two TATSA on the abdomen
and wrist positions to monitor both the respiratory and pulse signal, respectively) which
allowed to effectively ascertain respiratory—and, as expected, heart rate-related variations—
differences in an HC and a patient affected by sleep apnea syndrome.

Another solution to potentially monitor this pathology using e-textile prototypes was
described in [66]. Specifically, the authors manufactured an e-textile bed sheet (where
the e-textile piezoresistive layer is enclosed between two sheets of conventional fabric
layers) aimed to indirectly acquire respiratory rate data; additionally, the authors designed
an IT platform capable of accurately (yet noninvasively) processing the acquired data.
The analyses performed on 14 HC demonstrated that the overall system was effectively
capable to inconspicuously monitor patients’ respiratory rate when they slept in supine
position. Albeit patients’ movements effectively invalidated respiratory rate monitoring,
the system demonstrated a valid tool to track diseases (e.g., the already mentioned apnea
disease) for which patients movements can be limited. Similar e-textiles and IT platforms
were used later from the same research group and other colleagues. On the one hand,
Liu et al. [67] conducted new investigations to automatically monitor respiratory rate,
considering either the analysis of a restricted patient area (e.g., torso) or different bed
configurations (e.g., tilted bed setups); on the other hand, Samy et al. [41] concentrated,
as already described in Section 3.2, on new objectives, among which we can mention the
sleep stage analysis. In this case, the respiratory rate (even when acquired by the e-textile
bedsheet) demonstrated a different output during the different sleep stages of the patients.
This finding can help to design and implement the proposed device as an unobtrusive
sleep stage identification system, which would help to potentially perform early diagnoses
of sleep disorders and chronic diseases. Respiratory rate demonstrated important even
in the case of infants sleeping monitoring [66]. It is not by chance if Ferreira et al. [15]
investigated—using their custom-made chest belt and the Baby Night Watch IT platform
(see also Section 3.1)—respiratory rate variations in infants to monitor eventual Sudden
Infant Death Syndrome events; nevertheless, albeit the chest belt represents for all intents
and purposes an e-textile system, respiratory rate was acquired by the authors using a
triaxial accelerometer integrated in the chest belt, differently from the ECG signal. An
e-textile embedded chest belt was developed even by Jang et al. [38]. Specifically, the
authors sewed horizontally on the chest belt the same composite fiber sensor (developed
even for pulse acquisition), aiming at monitoring respiratory waveforms from an HC in
various breathing conditions. The authors claimed the results agree with those found
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using a commercial breathing sensor and, finally, hypothesized the fiber sensor could
be potentially used to fabricate devices capable to evaluate the breathing quantities (for
instance, respiration volume, and lung capacities). Another recent e-textile prototype
for the potential diagnosis of respiratory signal related diseases was that presented by
Choudhry et al. [48], who integrated on a vest a different multilayer sensor around a HC’s
ribcage area. The preliminary results indicated the system was capable to recognize indirect
changes in breath pressure and that the acquired signal was coherent with average adult
breaths count. Finally, Lian et al. [70] proposed a multifunctional e-textile material—whose
layers were composed of high-density AgNWs and a sensing fabric, respectively—which
was used to fabricate a face mask, through which they showed the feasibility to indirectly
evaluate variations in breathing rate. This prototype could show potential applications
also for healthcare monitoring (e.g., cardiac and respiratory illnesses linked to particulate
matter 2.5 penetration in human body); however, to the best of the authors’ knowledge, the
authors did not consider this particular case as the main application for the multifunctional
e-textile. Differently, in the same period another prototype of e-textile mask was presented
by Liang et al. [32]. Contrarily from the previous paper, in this case the authors merely
sewed the conductive textiles (briefly described in Section 3.1 yet) onto a mask which was
capable, thanks to the sensibility of the conductive textile components to ascertain humidity
variations which are different during HCs’ periodic exhaling and inhaling, of precisely
monitoring HCs’ breath, which can help to keep under control or avoid pathologies such
as lethal sleep apnea.

From the outcome of our investigation it is possible to conclude that, as already
seen for the previous subsections, further research is needed validate the direct practical
applicability of these e-textile solutions. Nevertheless, since a lower number of publications
on this topic—probably a consequence of a scarce research interest by many research
group—seem to be available in the literature, the “bench to the bedside” process (and,
consequently, the needed temporal range) would be more complicated than the solutions
considered in the previously analyzed fields.

Table 5. Insights regarding literature in in respiratory field: authors, aim, dataset and acquired data.

Authors Aim Dataset Acquired Data

Zieba et al. (2012) [68] Designing a textile knitted sensor to monitor
the frequency of human breathing 1 HC Respiratory rate

Frydisiak & Zieba (2012) [69] Designing a textile knitted sensor to monitor
the frequency of human breathing HC # Respiratory rate

Huang et al. (2013) [66] Presenting an e-textile bedsheet to measure
human respiratory rate 14 HC Respiratory rate

Samy et al. (2014) [41] Performing sleep stage analysis with a
contact-free unobtrusive system 7 HC

Respiratory rate and its
variability; Leg EMG from
pressure images; Sleep posture

Liu et al. (2014) [67] Presenting an unobtrusive on-bed respiration
system 12 HC Respiratory rate

Ramos-Garcia et al. (2016) [71] Using a coverstitched stretch sensor in a
commercial shirt to monitor respiration 3 HC Breath signal

Ferreira et al. (2016) [15] Presenting the design and fabrication of SWSs
to prevent infants’ SIDS HC # Body temperature; Respiratory

rate; ECG

Frydisiak & Tesiorowski
(2016a) [35]

Designing a smart textronic shirts for the
health monitoring of elderly people HC # Blood Pulse; Breath Signal; Skin

Temperature

Frydisiak & Tesiorowski
(2016b) [36]

Designing a smart textronic shirts for the
health monitoring of elderly people HC # Blood Pulse; Breath Signal; Skin

Temperature
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Table 5. Cont.

Authors Aim Dataset Acquired Data

Tao et al. (2018) [30]

Presenting a novel system—made up of a
washable and wearable smart textile shirt,
smartphone app and software desktop—for
the acquisition of ECG signal, breathing rate,
acceleration data for activity recognition and
skin temperature

5 HC ML

HC #

ECG; Skin temperature;
Respiratory rate; Acceleration
data

Jang et al. (2019) [38]
Preparing a highly sensitive fiber-type strain
sensor with a broad range of strain by
introducing a single active layer onto the fiber

1 HC Blood Pulse; Spinal Cord Bending
Angles; Breath Signal

Choundry et al. (2020) [48]
Fabricating piezoresistive sensors—and
studying their washability—to monitor
breathing and muscular activity

1 HC
Breath pressure signal of the
ribcage; Pressure signal from
biceps femoris muscle

Lian et al. (2020) [70]
Fabricating a multifunctional e-textile for
multiple applications (such as diagnostics and
environmental)

1 HC Breath pressure signal

Liang et al. (2020) [32]

Developing a stable and biocompatible silk
sericine carbon nanotubes (CNT) ink and
demonstrating its versatile applications in
flexible electronics for monitoring human
biosignals

HC # ECG, Breath Signal; Hydrogen
peroxide concentration

Fan et al. (2020) [39] Developing TATSA for precise epidermal
physiological signal monitoring

1 HC
1 PP Blood Pulse & Breath Signal

# number of subjects not provided; ML: Machine Learning training set. Abbreviations. ECG: Electrocardiogram; EMG: Electromyography;
HC: Healthy Controls; PP: Pathological Patients; SIDS: Sudden Infant Death Syndrome; SWSs: Smart Wearable Systems; TATSA: Triboelectric
All-Textile Sensor Array.

3.5. Miscellaneous

The previous subsections have dealt with the main themes on which the applications
and developments of e-textile technologies focused. However, there are applications of
e-textile even on less common themes, which confirm the wide development of these
technologies in the last decade and testify to the variety of purposes to which textile
technologies can be applied. In this paragraph, we collected several works that offer
applications on ’other themes’ different from those described in detail in the previous
subsections, widening the horizon of biomedical applications of e-textile technologies. The
research presented in this subsection is summarized in Table 6.

Golparvar and Yapici focused their work on the use of e-textiles in the field of elec-
trooculography (EOG), proposing, for the first time, the use of graphene-coated fabric
electrodes for electrooculogram acquisition. In [72] they performed a comparative study
between conventional Ag/AgCl electrodes and their e-textile electrodes demonstrating
high degree of flexibility, elasticity, and the possibility of incorporating the novel electrodes
into various types of personal clothing. The following year, the same authors presented two
research articles [73,74] in which they designed a devoted unit for textile-based EOG that
can achieve on-board noise removal and signal amplification. Moreover, they developed
and implemented a controlled automatic blink detection algorithm, able to detect voluntary
blinks in real-time. The performances of the device in recording EOG signal during specific
eye movement patterns and in detecting voluntary blinks were explored in their works
resulting in good agreement with the reference EOG systems based on Ag/AgCl electrodes.

EDA, also known as galvanic skin response (GSR), is another bioelectrical signal,
usually recorded with common Ag/AgCl electrodes, which was one of the subject of study
and applications of textile-based electrodes and devices. Sinha et al. [16] employed the same
PEDOT:PSS based electrodes used for ECG and EMG recording even to collect EDA signal
from fingers and wrist. To this aim, they developed a sensing shirt able to simultaneously
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record the three biosignals, finding potential applications in continuous health monitoring
as well as physiotherapy. Similarly, Postolache et al. [14] developed e-textile electrodes
for measuring skin conductance using the same materials employed for ECG recording
(textile made of fibers coated with conductive polymer and silver). E-textile electrodes
were attached to the wheelchair armrests to monitor physiological stress parameters of
the wheelchair user in unobtrusive way. Haddad et al. [75] used a different approach to
develop EDA electrodes; specifically, they integrated Ag/AgCl uniformly coated yarns
within three different textile substrates (100% cotton, 100% nylon, and 100% polyester). The
e-textile electrodes were used to record EDA on the distal phalanx of the fingers, and their
performances were compared with the standard rigid Ag/AgCl electrodes, resulting in
higher stability for e-textile electrodes when changes in skin temperature occurred. Jennifer
Healey [76] proposed a different application of GSR measurement, developing a ‘GSR sock’
by integrating two fabric electrodes from a commercial heart rate monitor strap into a
standard sock. The electrodes were placed to make contact with the ball and heel foot of
a HC. The experimental testing showed that the sock prototype provided a meaningful
measure of GSR activity that can be used unobtrusively in daily monitoring.

Chen et al. [81] applied their expertise in flexible electronics and polymers to develop
a fiber-shaped e-textile strain sensor using polyurethane fibers, AgNWs and styrene-
butadiene-styrene (SBS) via knitting and simple dip-coating processes. Due to the textile-
based structures and hierarchical fibers, the e-textile exhibited good capability of detecting
multiple deformation, including tensile strain and pressure, which enables a wide range of
biomedical purposes. In particular, the authors proposed different applications in health
monitoring such as pulse beating detection, phonation detection, scoliosis correction, and
Restless Legs Syndrome (RLS) diagnosis. A similar strain sensor was developed by Vu
& Kim [49], using a slightly different manufacturing process: a polyester/spandex fabric
was immersed in a single-walled carbon nanotubes (SWCNT) ink, which gives sensing
capabilities, and, after squeezing and drying processes, silver pastes were printed onto the
SWCNT fabric to improve strain sensor performance. Within the manuscript, the authors
provided an extensive characterization of the properties of the fabric, testing sensors with
different shapes and structures. To demonstrate the potential of their sensors in practical
applications, Vu & Kim proposed to attach the textile sensor to the skin of the neck, to
monitoring pharynx motion, demonstrating that is possible to obtain consistent signals
when speaking, coughing, and swallowing. Before them, Kim et al. [37] already explored
the possibility of registering the movement of the pharynx with a textile sensor. They
used a carbon nanotube ink drop-coated textile resistive sensor on a three-dimensional
spacer structure, to monitor pharynx movement during speaking. In their experimental
testing, authors demonstrated that the recorded signals exhibited distinct profiles when
different words are pronounced, and the same word generated a similar wave profile in
repeated tests. The same sensor was also tested attached to the cheek skin, demonstrating
the ability to detect cheek bulging movements. Following these results, authors pointed
out the potential applications of the sensor in human-machine interaction and as a face
and speech recognition system.

Another important biomedical application, which is particularly suitable with wear-
able and textile-based electronics, is the measure of skin temperature. This is an important
parameter for a variety of health monitoring applications, where changes in temperature
can indicate changes in health. Embedding temperature sensors within textiles provides an
easy method for directly measuring body temperature in defined areas. This is why many
researchers, even though they do not have a focus in temperature-related health effects,
integrated a temperature sensor into the devices they developed to add an additional
information to the recorded health data. As first example, Lopez et al. [24,25] embedded a
thermometer in the Wearable Data Acquisition Device to include the body temperature as
a further parameter provided by the proposed healthcare monitoring system. Similarly,
Tao et al. [30] exploited the temperature sensor integrated into the MEMS sensor chip they
used for activity recognition purposes, to monitor user skin temperature. Ferreira et al. [15]
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used an infrared thermopile sensor embedded in the wearable chest belt, to measure the
body temperature of infants, adding this parameter to the other signals registered by the
device and previously discussed in the subsections of this Review. Other examples are
provided by the two works by Frydisiak & Tesiorowski [35,36]. They developed a system to
remotely monitor elderly people by acquiring various physiological parameters including,
in addition to those already mentioned in the previous sections, underclothing temperature.
Moving to more specific textile-based sensors, Lugoda et al. [77] developed a temperature
sensing yarn, using a micro thermistor covered with packing fibers and a warp knitted tube.
The temperature sensing yarns were then used to create a series of temperature sensing
garments: armbands, a glove, and a sock. The performances of the temperature sensing
wearable devices were investigated and, from the outcomes of the analyses conducted, the
authors found some limitations in measuring skin temperature due to the deformation of
the yarn structure and also depending on the fit of the garment.

Jiang et al. [78] also proposed a wearable sensing device with embedded temperature
and humidity sensors, the latter used as sweat sensor. However, the authors focused on the
use of a textile based Near-Field Communication (NFC) antenna, which is able to power
the system and transmit sensors data. The measurement results have shown that the textile
NFC antennas can still perform properly under bending up to 150◦, with a maximum
range of 6 cm to access sensor data. This innovation figures to be a very attractive field of
development towards self-powered wearable devices, to overcome the limitations of power
supplies, very critical challenges for the e-textile field. Sweat volume monitoring on skin is
also one of the topics of the work by Kiaghadi et al. [59]. Authors designed a triboelectric
textile sensor to measure joint movement, but they noticed that the baseline signal varied
due to sweat volume produced on the skin. The reason is that the sweat induces the wetting
of the inner layers of the sensor, whereas the outer layers, that are close to air, remain
drier. This results in a different impedance between the layers, causing a small DC offset
that is amplified in the electronics circuits, creating an observable change at the output
of the textile sensor. The baseline changes thus reflected the sweat volume production
on the skin. The high performance of the proposed sensor were also demonstrated in
real-world applications, by benchmarking its robustness in perspiration measurements
during exercise, comparing the results with those of a GSR sensor for skin conductivity.

Many researchers also proposed sensor to analyze the chemical composition of sweat,
to investigate its constituents, which could be related to the subject’s physiological con-
dition. Lactate and sodium are commonly analyzed markers in sweat, directly measured
on body and, thus, very suitable for wearable textile application. On this research topic,
Zhao et al. [80] presented a thread-based wearable biosensor to simultaneously measure
concentration of lactate and sodium in sweat. To assess the performance of this wear-
able nanobiosensor, the authors developed an integrated smart headband to acquire data
directly on the body. Tests were performed on a male volunteer subject during intense
workout, and the sweat concentration was compared with the results obtained with stan-
dard methods, confirming the accuracy and stability of the biosensor in real use. Another
electrochemical textile sensor was recently proposed by Liang et al. [32]. Fabricated via
stencil printing Silk-Sericine Carbon Nanotube (SSCNT) ink and silver chloride paste on a
PET film, the electrochemical sensor is capable to detect the concentration of hydrogen per-
oxide, which is an important intermediate in biological processes. The sensing mechanism
is based on the electrocatalytic activity and conductivity of CNTs, very responsive to the
change of concentration of hydrogen peroxide.

A very interesting application of textile electronics was presented by Mason et al. [79].
The authors investigated the response of a smart fabric, with integrated conductive path-
ways, strain gauges, and conductive pressure sensor points, at microwave frequencies
region for data transmission of biomedical signals. The aim of this perspective research
is to demonstrate the feasibility of the proposed smart sensing garments to detect di-
electric changes directly on body. It is also shown how these sensing features can be
exploited to monitor biomedical signals such as ECG and EMG, body temperature, sweat
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volume, etc. This novel sensor was even patented owing to the great potentialities shown
in biomedical applications.

Finally, Rong Liu et al. [82] presented a peculiar application of e-textile, developing
intelligent pants for monitoring incontinence status. The smart garment was developed
incorporating conductive yarns in fabrics, using advanced circular seamless knitting tech-
nology. The presence of urine causes the variation of the measured electrical resistance of
the conductive pathways, allowing to sense, monitor, and alert wearers and care providers
on urinary incontinence status.

The overview proposed in this section demonstrates the wide range of biomedical
applications that e-textile technologies can cover. The interest of researchers is not limited
to the fields of medicine that are more easily explored by textile solutions, but also extends
to apparently minor applications that, as demonstrated, can be developed and have great
employment opportunities. In the works analyzed in this section, the focus is mainly on the
development of new materials, which are sensitive to a certain physical quantity without
losing the biocompatibility features. However, this prevailing focus on the development
of the textile element means that less effort is invested in the clinical application of these
products. For this reason, even in this case, the experimental procedures proposed are
limited to proofs of concept on a limited cohort of healthy controls, while a structured
clinical trial is never reported.

Table 6. Insights regarding e-textile literature in other fields: authors, aim, dataset, and data.

Authors Aim Dataset Acquired Data

Lopez et al. (2010a) [24]
Describing a novel healthcare IT platform for
localization and monitoring within hospital
environments

5 PP

ECG; Heart rate; Angle of
inclination; Activity index; Body
temperature; Patient’s location;
Battery level; Alert code

Lopez et al. (2010b) [25]

Presenting a medical IT platform platform
based on Wireless Sensor Networks and
e-textile for patients’ localization and
monitoring

5 PP

ECG; Heart rate; Angle of
inclination; Activity index; Body
temperature; Patient’s location;
Battery level; Alert code

Healey et al. (2011) [76] Presenting and validating performances of a
novel e-textile sock for measuring GSR 1 HC EDA

Liu et al. (2012) [82]
Manufacturing intelligent incontinence pants
made of conductive yarns to monitor the
incontinence status

HC # Volume of leaked urine

Postolache et al. (2014) [14] Presenting a wheelchair architecture equipped
with e-textiles for ECG and SKC sensing 7 HC ECG; EDA

Mason et al. (2014) [79]
Evaluating the performance of a flexible sensor
with an embedded e-textile cloth for sensing
applications

1 HC Biomedical microwave sensing

Ferreira et al. (2016) [15] Presenting the design and fabrication of SWSs
to prevent infants’ SIDS HC # Skin temperature; Respiratory

rate; ECG

Frydisiak & Tesiorowski
(2016a) [35]

Designing a smart textronic shirts for the
health monitoring of elderly people HC # Blood Pulse; Breath Signal; Skin

Temperature

Frydisiak & Tesiorowski
(2016b) [36]

Designing a smart textronic shirts for the
health monitoring of elderly people HC # Blood Pulse; Breath Signal; Skin

Temperature

Golparvar & Yapici (2017) [72]
Acquiring EOG signals with graphene textile
electrodes comparing the outcome with
conventional Ag/AgCl electrodes

1 HC EOG

Golparvar & Yapici
(2018a) [73] Detecting EOG signal using textile electrodes HC # EOG
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Table 6. Cont.

Authors Aim Dataset Acquired Data

Golparvar & Yapici
(2018b) [74]

Characterization of graphene-coated
electroconductive textile electrodes for EOG
acquisition

4 HC
2 ME
2 HE

EOG

Lugoda et al. (2018) [77] Fabricating temperature sensing yarns to
manufacture temperature sensing garments 5 HC Skin temperature

Chen et al. (2018) [81]
Fabricating a multifunctional e-textile for
multi-detection of strain, pressure, and
force maps

1 HC Resistance signals

Haddad et al. (2018) [75]
Designing and integrating Ag/AgCl e-textile
electrodes to monitor EDA comparing the
outcome with standard electrodes

1 HC EDA stimulus responses

Tao et al. (2018) [30]

Presenting a novel system—made up of a
washable and wearable smart textile shirt,
smartphone app and software desktop—for
the acquisition of ECG signal, breathing rate,
acceleration data for activity recognition and
skin temperature

5 HC ML

HC #

ECG; Skin temperature;
Respiratory rate;
Acceleration data

Kiaghadi et al. (2018) [59] Developing of a wearable joint sensor 1 HC Elbow Flexion Angles; Sweat
Volume

Kim et al. (2019) [37]
Developing an all-textile based pressure/strain
sensor for physiological signals using 3D
spacer textile

HC #
Blood Pulse (wrist and neck);
Finger flexion angles; Cheek
motion; Pharynx motion

Sinha et al. (2019) [16] Fabricating PEDOT:PSS coated electrodes to
record EMG, ECG and EDA

4 HC emg

1 HC eda

1 HC ecg

EDA; ECG; EMG (biceps, triceps,
tibialis, and quadriceps)

Vu & Kim (2020) [49] Fabricating and optimizing the performance of
e-textile strain sensors 1 HC Finger flexion angles; Signal of

pharynx motion

Jiang et al. (2020) [78]

Integrating textile NFC antennas with
temperature and humidity sensors to enable
battery-free wireless sensing for monitoring
purposes

1 HC Skin Temperature; Sweat Volume

Zhao et al. (2020) [80]
Presenting a thread-based wearable
nanobiosensor to detect lactate and sodium
concentrations during perspiration

1 HC Sodium and lactate concentration
in human sweat

Liang et al. (2020) [32]

Developing a stable and biocompatible silk
sericine carbon nanotubes (CNT) ink and
demonstrating its versatile applications in
flexible electronics for monitoring human
biosignals

HC # ECG, Breath Signal; Hydrogen
peroxide concentration

# number of subjects not provided; ecg: Electrocardiographic acquisitions; eda: Electrodermal Activity acquisitions; emg: Electromyographic
acquisitions; ML: Machine Learning training set. Abbreviations. ECG: Electrocardiogram; EDA: Electrodermal Activity; EMG: Electromyo-
graphy; EOG: Electrooculography; HC: Healthy Controls; HE: Hypermetropic Eyes; IT: Information Technology; GSR: Galvanic Skin
Response; ME: Myopic Eyes; NFC: Near Field Communication; PEDOT:PSS: Poly(3,4-Ethyelenedioxythiophne) Polystyrene Sulfonate);
PP: Pathological Patients; SIDS: Sudden Infant Death Syndrome; SKC: Skin Conductivity; SWSs: Smart Wearable Systems.

4. Conclusions

This systematic review showed the development of e-textile applications in the med-
ical field for a decade. Several specialties of medicine were analyzed in these years:
cardiology, a particular emphasis on muscles, physiatry and orthopaedics, respiratory
tract, and also sparse studies on other themes were found. The studies are variegated in
purposes but there is one big common limitation that comes out from this review: most
of the studies focused on the development and testing of new devices on a single healthy
subject, and only few studies considered a dataset made of more than 10 s of HC. Therefore,
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researchers should consider validating their novel devices on a larger cohort of subjects
(healthy and pathological) for further studies. Many of the analyzed studies did not even
mention the number of subjects tested as a limitation for their research. Perhaps this is
because the development of these technologies is still in an early phase and the aim of the
researchers was to improve the technology itself, leading up to the potential future goal of
an experimental campaign on larger datasets. Following this brief discussion, our review
should help researchers understand that it is now the time fora second phase, in which the
devices are tested on larger datasets.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics11122263/s1, Table S1: Insights regarding the studies included in the Review:
authors, aim, material and its configuration, dataset, acquired data and clinical application.

Author Contributions: Conceptualization, G.C., L.D., A.C., F.A. and C.R.; methodology, G.C., L.D.
and C.R.; validation, G.C., L.D. and C.R.; formal analysis G.C., L.D., A.C., F.A. and C.R.; investigation,
L.D., A.C. and F.A.; data curation, G.C., A.C. and F.A.; writing—original draft preparation, G.C.,
L.D., A.C. and F.A.; writing—review and editing, G.D. and C.R.; visualization, G.C., A.C. and F.A.;
supervision, L.D., G.D. and C.R.; project administration, G.D. and C.R. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
ADL Activities of Daily Living
Ag/AgCl Silver/Silver Chloride
AgNW Silver NanoWire
AI Artificial Intelligence
CNTs Carbon Nanotubes
ECG Electrocardiogram
EDA Electrodermal Activity
EMG Electromyography
EOG Electrooculography
FS Forward Shift
GSR Galvanic Skin Response
GO Graphene Oxide
HE Hypermetropic Eyes
IMUs Inertial Measurement Units
IT Information Technology
LEVOP Lower Extremity Venous Occlusion Plethysmography
LL Lateral Lean
ME Myopic Eyes
MWCNTs Multi-Walled Carbon Nano-Tubes
NFC Near Field Communication
PDMS PolyDiMethylSiloxane
PEDOT:PSS Poly(3,4-Ethyelenedioxythiophne) Polystyrene Sulfonate)
PVDF Polyvinylidene Fluoride
SBS Styrene–Butadiene–Styrene
SCAs Stretchable Conductive Adhesives
SEI Skin-Electrode Impedance
sEMG Surface Electromyography
SIDS Sudden Infant Death Syndrome
SKC Skin Conductivity
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SNR Signal-to-Noise Ratio
SSCNTs Silk-Sericine Carbon Nano-Tubes
SWCNTs Single-Walled Carbon Nano-Tubes
SWSs Smart Wearable Systems
TATSA Triboelectric All-Textile Sensor Array
TPU Termoplastic PolyUrethane
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69. Frydrysiak, M.; Zięba, J. Textronic sensor for monitoring respiratory rhythm. Fibres Text. East. Eur. 2012, 91, 74–78.

178



Diagnostics 2021, 11, 2263

70. Lian, Y.; Yu, H.; Wang, M.; Yang, X.; Li, Z.; Yang, F.; Wang, Y.; Tai, H.; Liao, Y.; Wu, J.; et al. A multifunctional wearable E-textile
via integrated nanowire-coated fabrics. J. Mater. Chem. C 2020, 8, 8399–8409. [CrossRef]

71. Ramos-Garcia, R.I.; Da Silva, F.; Kondi, Y.; Sazonov, E.; Dunne, L.E. Analysis of a coverstitched stretch sensor for monitoring
of breathing. In Proceedings of the 2016 10th International Conference on Sensing Technology (ICST), Nanjing, China, 11–13
November 2016; pp. 1–6. [CrossRef]

72. Golparvar, A.J.; Kaya Yapici, M. Wearable graphene textile-enabled EOG sensing. In Proceedings of the 2017 IEEE SENSORS,
Glasgow, UK, 29 October–1 November 2017; pp. 1–3. [CrossRef]

73. Golparvar, A.J.; Yapici, M.K. Graphene-coated wearable textiles for EOG-based human-computer interaction. In Proceedings of
the 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Las Vegas, NV, USA,
4–7 March 2018; pp. 189–192. [CrossRef]

74. Golparvar, A.J.; Yapici, M.K. Electrooculography by wearable graphene textiles. IEEE Sens. J. 2018, 18, 8971–8978. [CrossRef]
75. Haddad, P.A.; Servati, A.; Soltanian, S.; Ko, F.; Servati, P. Breathable dry silver/silver chloride electronic textile electrodes for

electrodermal activity monitoring. Biosensors 2018, 8, 79. [CrossRef]
76. Healey, J. Gsr sock: A new e-textile sensor prototype. In Proceedings of the 2011 15th Annual International Symposium on

Wearable Computers, San Francisco, CA, USA, 12–15 June 2011; pp. 113–114. [CrossRef]
77. Lugoda, P.; Hughes-Riley, T.; Oliveira, C.; Morris, R.; Dias, T. Developing novel temperature sensing garments for health

monitoring applications. Fibers 2018, 6, 46. [CrossRef]
78. Jiang, Y.; Pan, K.; Leng, T.; Hu, Z. Smart textile integrated wireless powered near field communication body temperature and

sweat sensing system. IEEE J. Electromagn. RF Microwaves Med. Biol. 2020, 4, 164–170. [CrossRef]
79. Mason, A.; Wylie, S.; Korostynska, O.; Cordova-Lopez, L.E.; Al-Shamma’a, A.I. Flexible e-textile sensors for real-time health

monitoring at microwave frequencies. Int. J. Smart Sens. Intell. Syst. 2017, 7. [CrossRef]
80. Zhao, C.; Li, X.; Wu, Q.; Liu, X. A thread-based wearable sweat nanobiosensor. Biosens. Bioelectron. 2021, 188, 113270. [CrossRef]
81. Chen, S.; Liu, S.; Wang, P.; Liu, H.; Liu, L. Highly stretchable fiber-shaped e-textiles for strain/pressure sensing, full-range human

motions detection, health monitoring, and 2D force mapping. J. Mater. Sci. 2018, 53, 2995–3005. [CrossRef]
82. Liu, R.; Wang, S.; Lao, T.T. A novel solution of monitoring incontinence status by conductive yarn and advanced seamless knitting

techniques. J. Eng. Fibers Fabr. 2012, 7, 155892501200700415. [CrossRef]
83. Serhani, M.A.; El Kassabi, H.T.; Ismail, H.; Nujum Navaz, A. Ecg monitoring systems: Review, architecture, processes, and key

challenges. Sensors 2020, 20, 1796. [CrossRef]
84. Mohapatra, S.K.; Mohanty, M.N. Ecg analysis: A brief review. Recent Adv. Comput. Sci. Commun. (Former. Recent Patents Comput.

Sci.) 2021, 14, 344–359. [CrossRef]
85. Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor

placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [CrossRef]
86. Hogrel, J.Y. Clinical applications of surface electromyography in neuromuscular disorders. Neurophysiol. Clin. Neurophysiol. 2005,

35, 59–71. [CrossRef] [PubMed]
87. Stegeman, D.F.; Hermens, H. Standards for surface electromyography: The European project Surface EMG for non-invasive

assessment of muscles (SENIAM). Enschede Roessingh Res. Dev. 2007, 108–112.
88. Castano, L.M.; Flatau, A.B. Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23, 053001.

[CrossRef]
89. Donisi, L.; Pagano, G.; Cesarelli, G.; Coccia, A.; Amitrano, F.; D’Addio, G. Benchmarking between two wearable inertial systems

for gait analysis based on a different sensor placement using several statistical approaches. Measurement 2021, 173, 108642.
[CrossRef]

90. D’Addio, G.; Donisi, L.; Pagano, G.; Improta, G.; Biancardi, A.; Cesarelli, M. Agreement between opal and g-walk wearable
inertial systems in gait analysis on normal and pathological subjects. In Proceedings of the 41st Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 3286–3289. [CrossRef]

91. Sama, A.J.; Hillstrom, H.; Daluiski, A.; Wolff, A. Reliability and agreement between two wearable inertial sensor devices for
measurement of arm activity during walking and running gait. J. Hand Ther. 2020. online ahead of print. [CrossRef] [PubMed]

92. Zheng, H.; Black, N.D.; Harris, N.D. Position-sensing technologies for movement analysis in stroke rehabilitation. Med. Biol. Eng.
Comput. 2005, 43, 413–420. [CrossRef] [PubMed]

93. D’Addio, G.; Evangelista, S.; Donisi, L.; Biancardi, A.; Andreozzi, E.; Pagano, G.; Arpaia, P.; Cesarelli, M. Development of a
prototype e-textile sock. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 17498–1752. [CrossRef]

94. Rolfe, S. The importance of respiratory rate monitoring. Br. J. Nurs. 2019, 28, 504–508. [CrossRef]
95. Nicolò, A.; Massaroni, C.; Schena, E.; Sacchetti, M. The importance of respiratory rate monitoring: From healthcare to sport and

exercise. Sensors 2020, 20, 6396. [CrossRef] [PubMed]
96. Liu, H.; Allen, J.; Zheng, D.; Chen, F. Recent development of respiratory rate measurement technologies. Physiol. Meas. 2019, 40,

07TR01. [CrossRef] [PubMed]
97. Vanegas Vásquez, E.; Igual Catalán, R.; Plaza García, I. Sensing systems for respiration monitoring: A technical systematic review.

Sensors 2020, 20, 5446. [CrossRef] [PubMed]

179





MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34
www.mdpi.com

Diagnostics Editorial Office
E-mail: diagnostics@mdpi.com

www.mdpi.com/journal/diagnostics

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 

Access Publishing

mdpi.com ISBN 978-3-7258-1510-4


