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Intelligent plant protection equipment utilizes advanced sensor technology and data
analysis algorithms to achieve real-time monitoring and precise management of crop
growth status, pest and disease situations, and environmental parameters. By employing
sensors for data collection, image recognition technology, and automated operations, intelli-
gent plant protection equipment can accurately identify pests and diseases, locate infected
areas, and achieve precise pesticide spraying during operations, thereby minimizing pesti-
cide usage and enhancing crop yield and quality. Additionally, through remote monitoring
and management functions, users can oversee equipment remotely and schedule its op-
erations, thereby improving agricultural production efficiency, reducing labor costs, and
mitigating environmental impact.

Pesticide spraying remains the primary method for pest and disease control in or-
chards. Orchard spraying technology and equipment, as vital components of orchard
pest and disease management, play a crucial role in reducing pesticide usage, improving
pesticide efficiency, and minimizing pesticide pollution to the environment. Li et al. [1]
conducted a study on the effects of airflow distribution patterns on the droplet deposi-
tion coverage and penetration efficiency of multi-unit air-assisted orchard sprayers. Their
experimental results indicated that increasing airflow velocity can enhance the droplet
deposition coverage on the backside of pear and cherry tree leaves, though it does not
significantly affect spray penetration. The article also investigated the relationship between
airflow velocity, direction, and droplet deposition indicators through Partial Least Squares
(PLS) analysis. The study revealed that enhancing airflow velocity in the forward and
horizontal directions can significantly improve the droplet deposition coverage on the outer
side of pear trees; however, airflow indicators did not significantly affect droplet deposition
coverage on cherry trees. Determining the orchard spraying deposition rate is crucial for
optimizing application performance and pesticide efficiency. However, the large canopy
and dense foliage of orchard trees, coupled with mutual shading, pose challenges for
quantitatively assessing spraying efficiency. Wang et al. [2] examined spraying deposition
quantity and distribution in different heights and layers of the fruit tree canopy using
orchard sprayers. Their experimental findings showed that when using a trailed orchard
sprayer, the upper and lower layers of leaves in the canopy have larger leaves, while the
top and bottom have smaller leaves. When using a fixed orchard sprayer, the deposition
quantity of spray liquid decreases with increasing canopy height. Additionally, within the
canopy, the deposition quantity of spray liquid is lower, whereas it is higher in external
areas. Sun et al. [3] employed an analysis method based on CFD orthogonal experiments to
study the effects of four key structural parameters—shrinkage pipe attenuation angle, dif-
fusion pipe divergence angle, venturi diameter, and venturi length—on an online pesticide
mixing device and the pesticide dissolution and mixing performance. This study provides
theoretical references for the production of prototype online pesticide mixing devices based
on pipeline spraying.

Agronomy 2024, 14, 937. https://doi.org/10.3390/agronomy14050937 https://www.mdpi.com/journal/agronomy1
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To meet the demand for precise monitoring of field pest and disease information in
modern agriculture, Wang et al. [4] proposed an intelligent plant protection monitoring
system. This system comprises wireless cameras, temperature and humidity sensors, smart
information terminals, and probes, facilitating the collection of plant images and meteo-
rological information. Additionally, the system features positioning and communication
functions, enabling the real-time recording of field environmental information and wire-
less data transmission to the monitoring center. In order to enhance the path-tracking
control accuracy and driving stability of orchard trailed spraying robots, Ren et al. [5]
proposed a navigation path-tracking control algorithm based on Double Deep Q Network
(Double DQN). Through simulation tests, this method demonstrated high accuracy and
stability in both straight and “U”-shaped path-tracking scenarios. To tackle the issue of
pesticide depletion during field spraying tasks when the spraying robot is incomplete, Qin
et al. [6] developed a spraying–dosing robot group and proposed a collaborative navigation
system based on an orchard map. Firstly, a three-dimensional orchard point cloud map
was constructed, and navigation path points were set on the projected map. Secondly,
a master–slave command-based collaborative navigation strategy was developed, where
the spraying robot acts as the master and the dosing robot as the slave. Finally, the spraying
robot and the dosing robot performed collaborative navigation on the constructed map
using the pure pursuit algorithm and the D-A control algorithm, respectively. To verify the
collaborative navigation system, field tests were conducted on individual communication
and navigation controls. The communication experiment results showed a packet loss
rate of less than 5%, meeting the communication requirements. The navigation control
experiment results indicated that the maximum absolute lateral error for the spraying robot
was 24.9 cm, and for the dosing robot it was 29.7 cm.

Unmanned Aerial Vehicles (UAVs) for low-altitude, low-volume and ultra-volume
crop protection operations offer several advantages, including the separation of humans
and machinery and of personnel and chemicals; good adaptability to terrain; flexible maneu-
verability; efficient labor, water, and pesticide saving; as well as a high level of automation.
Gradually, they have become significant equipment in agricultural crop protection oper-
ations. Dengeru et al. [7] conducted research on the application of insecticides sprayed
by UAVs agricultural sprayers on nutmeg crops, investigating the spray deposition and
drift characteristics. They found a potential method to effectively enhance insect control.
This research opens up new possibilities for agricultural production and demonstrates the
broad prospects of UAV technology in agriculture. Thomson et al. [8] studied the spray
deposition and off-target drift characteristics of plant protection materials sprayed by UAVs
to enhance spraying effectiveness and reduce off-target losses. They found that wind speed
is the most important weather factor affecting the local off-target drift of pesticides. In
drift of very fine droplets sampling experiments, accurately describing wind speed and
direction at sampling positions is challenging due to natural variations in spray movement
during the sampling target approach. Although accurately tracking wind direction to the
target is difficult or even impossible, analyzing spray drift using statistical models with a
large amount of field experiment data obtained by varying the wind speed and the tracking
method can yield many conclusions. Comparing wind tunnel experiments with other
technologies, Wang et al. [9] evaluated the spray drift of an octocopter Unmanned Aerial
Spraying System (UASS). Compared to ground sprayers, UASS sprays more fine droplets
at higher operating heights and faster travel speeds, hence posing higher drift risks. Li
et al. [10] discussed the effectiveness and distribution of pesticide spraying using UAVs
and ground sprayers. Their research revealed that cooperative spraying by UAVs and
ground sprayers can improve the all-round coverage of pesticides in fruit tree canopies,
especially in the upper and inner layers. By adjusting the spraying parameters, pesticide
utilization and operational efficiency can be enhanced. Moreover, increasing the application
proportion of ground equipment can improve the uniformity of deposits in the vertical
direction of the canopy. In summary, this joint spraying strategy can reduce pesticide usage
while ensuring the effective use of insecticides and protective fungicides. Mu et al. [11]
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investigated the complex wheat field classification problem based on multi-scale feature fu-
sion. They conducted ground target classification research using UAV multispectral remote
sensing images in diverse wheat field scenes with various varieties. Compared to satellite
remote sensing, UAVs provide high-spatial-resolution remote sensing images with rich
details at low altitudes. However, different wheat varieties exhibit different characteristics,
which may lead to category misjudgments during semantic segmentation, reducing the
classification accuracy and affecting the classification effectiveness of ground targets.

The interaction between soil erosion and farmland vegetation restoration and its
impact on soil enzyme activity and microbial nutrient limitations in the loess hilly region
of China is a significant research area. Tang et al. [12] investigated these interactive effects
by analyzing soil macroaggregate carbon (C), nitrogen (N), and phosphorus (P) contents,
alongside microbial biomass and enzyme activity. The study revealed that soil properties
such as composition, organic carbon content, and microbial biomass strongly influence soil
enzyme activity and microbial nutrient limitations. Furthermore, different land use types
(forest, grassland, and farmland) also display variations in their effects on soil enzyme
activity and microbial nutrient limitations. Given the importance of timely disease detection
to mitigate crop yield reduction due to pathogen infections, Wan et al. [13] explored the
potential of hyperspectral imaging as a rapid, non-destructive sensing technology for
disease identification. By analyzing spectral changes, they investigated the feasibility of
using hyperspectral imaging to detect plant diseases in their early stages. In addition, Zhang
et al. [14] examined the light and heat environment gradients and crop growth within open-
air agriculture photovoltaic systems (OAVSs) in the eastern region of China. They measured
solar radiation intensity, air temperature, and soil temperature during both summer and
winter seasons. Utilizing Autodesk Ecotect Analysis 2011 software, they conducted light
environment analysis, energy consumption analysis, and sunlight shading analysis to assess
the effects of building structural parameters, material parameters, and environmental
parameters on agricultural building environments. While the research findings offer
valuable insights for standardizing agricultural production and the photovoltaic agriculture
industries, there are limitations to consider. The study primarily focused on the effects
of continuously laid photovoltaic panels on the light and heat environment within the
OAVSs at specific spans and heights. Future research should expand to explore OAVSs with
different photovoltaic panel layout densities, span lengths, and heights. Moreover, there is
a need for further investigation into the response mechanisms of agricultural production to
environmental factors, integrating environmental analysis and agricultural production to
better understand the effects of light and heat environments on crop growth.

Author Contributions: All authors listed have made a substantial, direct, and intellectual contribu-
tion to the work and approved it for publication. All authors have read and agreed to the published
version of the manuscript.

Acknowledgments: We thank the authors and reviewers for their valuable contributions on this topic.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as potential conflicts of interest.

References

1. Li, T.; Qi, P.; Wang, Z.; Xu, S.; Huang, Z.; Han, L.; He, X. Evaluation of the Effects of Airflow Distribution Patterns on Deposit
Coverage and Spray Penetration in Multi-Unit Air-Assisted Sprayer. Agronomy 2022, 12, 944. [CrossRef]

2. Wang, S.; Wang, W.; Lei, X.; Wang, S.; Li, X.; Norton, T. Canopy Segmentation Method for Determining the Spray Deposition Rate
in Orchards. Agronomy 2022, 12, 1195. [CrossRef]

3. Sun, D.; Liu, W.; Li, Z.; Zhan, X.; Dai, Q.; Xue, X.; Song, S. Numerical Experiment and Optimized Design of Pipeline Spraying
On-Line Pesticide Mixing Apparatus Based on CFD Orthogonal Experiment. Agronomy 2022, 12, 1059. [CrossRef]

4. Wang, S.; Qi, P.; Zhang, W.; He, X. Development and Application of an Intelligent Plant Protection Monitoring System. Agronomy
2022, 12, 1046. [CrossRef]

5. Ren, Z.; Liu, Z.; Yuan, M.; Liu, H.; Wang, W.; Qin, J.; Yang, F. Double-DQN-Based Path-Tracking Control Algorithm for Orchard
Traction Spraying Robot. Agronomy 2022, 12, 2803. [CrossRef]

3



Agronomy 2024, 14, 937

6. Qin, J.; Wang, W.; Mao, W.; Yuan, M.; Liu, H.; Ren, Z.; Shi, S.; Yang, F. Research on a Map-Based Cooperative Navigation System
for Spraying–Dosing Robot Group. Agronomy 2022, 12, 3114. [CrossRef]

7. Dengeru, Y.; Ramasamy, K.; Allimuthu, S.; Balakrishnan, S.; Kumar, A.P.M.; Kannan, B.; Karuppasami, K.M. Study on Spray
Deposition and Drift Characteristics of UAV Agricultural Sprayer for Application of Insecticide in Redgram Crop (Cajanus cajan L.
Millsp.). Agronomy 2022, 12, 3196. [CrossRef]

8. Thomson, S.J.; Huang, Y. Comparison of Weather Acquisition Periods Influencing a Statistical Model of Aerial Pesticide Drift.
Agronomy 2023, 13, 213. [CrossRef]

9. Wang, C.; Wongsuk, S.; Huang, Z.; Yu, C.; Leng, H.; Zhang, J.; Sun, W.; Zeng, A.; He, X. Comparison between Drift Test Bench and
Other Techniques in Spray Drift Evaluation of an Eight-Rotor Unmanned Aerial Spraying System: The Influence of Meteorological
Parameters and Nozzle Types. Agronomy 2023, 13, 270. [CrossRef]

10. Li, Y.; Han, L.; Liu, L.; Huang, Z.; Wang, C.; He, X. Design and Spray Performance Evaluation of an Air–Ground Cooperation
Stereoscopic Plant Protection System for Mango Orchards. Agronomy 2023, 13, 2007. [CrossRef]

11. Mu, F.; Chu, H.; Shi, S.; Yuan, M.; Liu, Q.; Yang, F. Research on the Classification of Complex Wheat Fields Based on Multi-Scale
Feature Fusion. Agronomy 2022, 12, 2658. [CrossRef]

12. Tang, F.; Yao, Y.; Song, J.; Wang, C.; Liu, Y. Interactive Influence of Soil Erosion and Cropland Revegetation on Soil Enzyme
Activities and Microbial Nutrient Limitations in the Loess Hilly-Gully Region of China. Agronomy 2022, 12, 2796. [CrossRef]

13. Wan, L.; Li, H.; Li, C.; Wang, A.; Yang, Y.; Wang, P. Hyperspectral Sensing of Plant Diseases: Principle and Methods. Agronomy
2022, 12, 1451. [CrossRef]

14. Zhang, L.; Yang, Z.; Wu, X.; Wang, W.; Yang, C.; Xu, G.; Wu, C.; Bao, E. Open-Field Agrivoltaic System Impacts on Photothermal
Environment and Light Environment Simulation Analysis in Eastern China. Agronomy 2023, 13, 1820. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

4



Citation: Wan, L.; Li, H.; Li, C.;

Wang, A.; Yang, Y.; Wang, P.

Hyperspectral Sensing of Plant

Diseases: Principle and Methods.

Agronomy 2022, 12, 1451. https://

doi.org/10.3390/agronomy12061451

Academic Editor: Francesco

Calzarano

Received: 7 April 2022

Accepted: 13 June 2022

Published: 17 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Review

Hyperspectral Sensing of Plant Diseases: Principle
and Methods

Long Wan 1,†, Hui Li 1,†, Chengsong Li 1,*, Aichen Wang 2, Yuheng Yang 3 and Pei Wang 1,2,3,4,*

1 College of Engineering and Technology, Southwest University, Chongqing 400715, China;
wl09151057@email.swu.edu.cn (L.W.); leehui@swu.edu.cn (H.L.)

2 Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University),
Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China;
acwang@ujs.edu.cn

3 Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin,
Southwest University, Chongqing 400715, China; yyh023@swu.edu.cn

4 Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
* Correspondence: lcs_shz@163.com (C.L.); peiwang@swu.edu.cn (P.W.)
† These authors contributed equally to this work.

Abstract: Pathogen infection has greatly reduced crop production. As the symptoms of diseases
usually appear when the plants are infected severely, rapid identification approaches are required
to monitor plant diseases at early the infection stage and optimize control strategies. Hyperspectral
imaging, as a fast and nondestructive sensing technology, has achieved remarkable results in plant
disease identification. Various models have been developed for disease identification in different
plants such as arable crops, vegetables, fruit trees, etc. In these models, important algorithms, such
as the vegetation index and machine learning classification and methods have played significant
roles in the detection and early warning of disease. In this paper, the principle of hyperspectral
imaging technology and common spectral characteristics of plant disease symptoms are discussed.
We reviewed the impact mechanism of pathogen infection on the photo response and spectrum
features of the plants, the data processing tools and algorithms of the hyperspectral information of
pathogen-infected plants, and the application prospect of hyperspectral imaging technology for the
identification of plant diseases.

Keywords: hyperspectral imaging technology; plant disease identification; photo response;
machine learning

1. Introduction

Pathogens have brought great challenges to crop production in the last two decades.
The reduction of crop yield induced by plant diseases can be up to 28.1% for wheat, 40.9%
for rice, 41.4% for maize, 21% for potato, and 32.4% for soybean [1]. Several reasons
may contribute to the increase in incidence around the world. Firstly, the globalization
of human activities is promoting a more rapid spread and wider distribution of plant
pathogens [2]. Secondly, commercialized high-yield varieties are bred from genotypes
that are cultivated in certain regions. These varieties may not be adapted to new regional
environments and may be less resistant to the local plant pathogens compared to their
native wild relatives [3]. Finally, heavy fertilizer application, the large-scale cultivation of
monocultures, and reduced crop rotation impact the soil bacterial composition and damage
disease-suppressive microorganisms. As a result, there might be a higher possibility for the
plants to be infected by pathogens [4].

Conventionally, plant diseases are identified visually according to symptoms when
plants are infected severely by pathogens. This is usually quite time-consuming and labor-
intensive. Furtherly, it is also a drawback for crop protection with fungicide application, as

Agronomy 2022, 12, 1451. https://doi.org/10.3390/agronomy12061451 https://www.mdpi.com/journal/agronomy5
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a better control effect could occur when spraying is conducted at the early stage of pathogen
infection. In addition to manual monitoring, biological and molecular detection approaches
also provide accurate assessment results of plant diseases. However, a laboratory bioassay
can have a high cost and poor real-time performance as well as a limited sample size, which
will restrict the measurement scale [5–7]. Thus, it is of great significance to evaluate the
occurrence of plant diseases and provide an early warning of pathogen infection in crops
in time. To satisfy the requirements of the high-throughput detection of plant diseases for
precise fungi control, non-destructive and automatic remote detection methods with high
sensitivity and reliability are required.

In recent years, modern sensing technologies have been applied for the automatic
detection and early warning of plant diseases [8]. For instance, the infrared thermal
imaging system has been applied to identify tomato mosaic virus and wheat leaf rust [9];
chlorophyll fluorescence imaging technology was applied to monitor the photosynthetic
fingerprint of citrus Huanglongbing [10]; the deep learning model significantly improved
the classification accuracy and efficiency of RGB images of healthy or pathogen-infected
plants. However, the machine vision technology could only identify plant diseases if the
symptoms were obviously apparent on the plant leaves, when it was usually too late for
fungicide application. Compared to other sensing approaches, spectral imaging technology
has been applied most commonly and has presented remarkable application potential in the
real-time detection and evaluation of plant diseases [11–13]. In this review, we summarize
the principles, application status, technical obstacles, data processing algorithms, and
development trends of using hyperspectral imaging technology for disease identification
in phytopathology.

2. Literature Overview

This review investigates the relevant literature published from 2001 to 2021. The
following results were obtained:

(1) A search with the keywords “hyperspectral” and “plants” resulted in 6207 publica-
tions in total. Apart from the repeated literature records, 6165 relevant literature records
were obtained. The number of relevant publications in the timeframe is shown in Figure 1a.

(a) (b) 

Figure 1. Number of published relevant literature records each year. (a) Keywords “hyperspectral”
and “plants”; (b) keywords “hyperspectral”, “plants”, and “disease”.

(2) In a search of the subject “disease” in the results of (1), 621 literature records were
obtained. The time distribution of their publication is shown in Figure 1b.

(3) The 621 literature results obtained above are analyzed in this review. Their research
objects included grain crops, vegetables, fruit trees, medicinal materials, tobacco, and other
crops [14–20]. Among them, it was found that wheat disease identification attracted the
most attention from scientists, with 174 articles in total. Significant results were achieved in
the detection of stripe rust [21], scab [22], powdery mildew [23], downy mildew [24], and
several other main diseases in wheat.
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To identify these diseases, various spectral data processing algorithms, including the
vegetation index, spectral stoichiometry, machine learning, and deep learning were used.
It should be noted that the deep learning model has become more common for spectral
data processing than conventional machine learning tools in recent years. Both supervised
and unsupervised classes were applied in the disease identification algorithms, which
included the K-means clustering algorithm [25], support vector machine (SVM) [26], K-
nearest neighbor (KNN) [27], decision tree algorithm [28], and deep learning methods, such
as stacked auto-encoder (SAE) [29], deep belief network (DBN) [30], convolutional neural
networks (CNNs) [31], etc. Meanwhile, the feature extraction methods of hyperspectral
data have changed from extraction based on a single spatial or spectral feature to a space
spectrum combination.

In general, hyperspectral imaging technology has achieved gratifying accomplish-
ments in the field of plant disease detection, in which data processing methods, such as
machine learning and deep learning have shown great potential.

3. Variation Mechanism of Spectral Information and Photo Response of Plant Diseases

3.1. Principles of Hyperspectral Imaging Technology and Sensors

Spectral analysis has been widely used for investigating the interaction between
electromagnetic radiation and materials based on the wavelength and reflection intensity.
It is a quantitative analysis method for photo information extraction in remote sensing.
Via the analysis and interpretation of any object’s spectrum information, it can reveal the
variation of its surface physical characteristics or chemical features.

Hyperspectral remote sensing is also known as high spectral resolution remote sensing.
According to the international remote sensing community, a spectral resolution of 10−1λ

is defined as multispectral, and a spectral resolution of 10−2λ is defined as hyperspectral.
As a comprehensive technology, hyperspectral imaging technology integrates weak signal
detection, probing technology, precision optical machinery, and computing technology. It
can obtain hyperspectral resolution image data with a continuous and narrow band. It
is also a kind of multi-dimensional information acquisition technology that can combine
imaging and spectral technologies.

Compared to non-imaging spectral technology, hyperspectral imaging data can pro-
vide additional information, such as shape, gradient, color, etc. The resolution of image
data of hyperspectral imaging technology is high with a wavelength variation of 10−2λ [32].
In the visible to shortwave infrared band, the spectral has a resolution level of a nanometer.
There could be dozens or even hundreds of spectral bands. The spectral bands are con-
tinuous, and a complete hyperspectral resolution spectral curve can be extracted at each
pixel location of the image data. Therefore, the hyperspectral data frame is formed as a
three-dimensional image cube, as shown in Figure 2. The X-Y dimension expresses the spa-
tial position information of the image. The third dimension (λ) is the spectral/wavelength
dimension, which is composed of several bands in the spectral space. By making a multi-
dimensional section of the spectral image cube, different types of spectral features can be
obtained, such as the spectral characteristics at any point pixel, the spectral change of a
spectral interval on an arbitrary spatial profile, or the spatial image of any band in the
spectral dimension, etc. With the above information, we can not only identify the object
according to the image feature in the spatial section but also analyze the spectral feature in
the spectral dimension. As a result, it will benefit the recognition of the types, components,
and contents of the substances [33].

7



Agronomy 2022, 12, 1451

Figure 2. Structure of a hyperspectral image data cube of a cucumber leaf.

As the kernel part of the hyperspectral imaging system, spectral sensors can be
classified according to their spectral resolution (the number and widths of measurement
bands), spectral scales (ultraviolet, visible, near-infrared, shortwave infrared, etc.), or
imaging principles (imaging or non-imaging) [34]. The hyperspectral imaging sensor
can provide spectral information with a spatial resolution for the detected object, while
the non-imaging sensors usually provide the average spectral information of a certain
region in its field of view. In addition to RGB bands, the hyperspectral sensor can also
cover the visible band of the electromagnetic spectrum from 400 nm to 700 nm, the near-
infrared band from 700 nm to 1000 nm, and the shortwave infrared band from 1000 nm
to 2500 nm. The possible narrow spectral resolution of a hyperspectral sensor can be
less than 1 nm [35]. Multispectral sensors are similar to hyperspectral sensors, but they
provide less data complexity and information content. These sensors measure the spectral
information of objects in several bands, which are usually RGB and near-infrared. The
reduction of the sensing expense can make multispectral sensors light and relatively cheap.
In field applications, both multispectral and hyperspectral sensors are often combined with
unmanned aerial vehicles for low-altitude remote sensing.

3.2. Photo Response of Pathogen-Infected Plants

Understanding the interaction between plants and light is crucial for the analysis of
hyperspectral data. Many studies have shown that the modes of interaction between plant
leaves and natural light can be classified into three types—transmission, absorption, and
reflection, as shown in Figure 3.

 

Figure 3. Interaction between natural light and plant leaf surface.
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Firstly, light can transmit through the leaves [36]; secondly, the light can be absorbed
by chemical substances in the leaves (such as the pigments, water, sugars, lignin, and amino
acids) [37,38]; thirdly, the light can be reflected by the surface or internal structure of the
leaves (waxy cuticle, cell wall, etc.) [37,39].

Hyperspectral imaging technology can be used to monitor reflected and transmitted
light. Hyperspectral data reveal the characteristics of the spectral absorption activity of the
chemicals in the leaf. However, due to the limitation of the output of transmittance sensors
and the complexity of their measurement settings, only a few systems for measuring both
the reflectance and transmittance of light have been developed to detect plant diseases.

Different substances presented different reflectance and absorption values of light in
specific wavebands, showing unique spectral characteristics. For example, the spectral
characteristic curves of green plants are similar. They showed typical reflective spectral
characteristics in some bands, which are shown in Figure 4, including the following aspects:

Figure 4. Spectral signatures of healthy barley leaves (green) and diseased barley leaves with
net blotch (yellow), brown rust (brown), and powdery mildew (blue), respectively, at 10 days
after inoculation. Sensors: “PS V10E” (400–1000 nm) and “SWIR” (1000–2500 nm) push broom
scanners (Specim, Oulu, Finland). A zigzag line has been added to separate the discontinuous
parts of the spectral curves. All measurements were taken with the HyperART setup according to
Thomas et al. [34] (Reprinted with permission, copyright 2022 Anne-Katrin Mahlein). VIS—visual,
NIR—near-infrared, SWIR—shortwave infrared (parts of the electromagnetic spectrum).

(1) There is a small reflection peak near 550 nm, which corresponds to the strong
reflection region of chlorophyll [40];

(2) The reflectance near 700 nm increases sharply, as chlorophyll absorption had low
red reflectance and high internal leaf scattering, causing high near-infrared reflectance. The
slope of the curve is closely related to the content of chlorophyll in vivo in plants. This is
also known as the red edge phenomenon [41];

(3) In the band between 700 and 1200 nm, strong reflectance takes place, as the leaves
almost no longer absorb light energy to avoid high-temperature burns [36];

(4) There are two moisture absorption bands with low reflectance near 1470 nm and
1940 nm, which created two troughs [42];

(5) In the spectrum range of 1300~2500 nm, the spectral reflectance characteristics are
mainly related to the plant moisture content and CO2 emissions [43].

Plant pathogenesis is a dynamic process in which a series of reactions occur continu-
ously. In the process of plant–pathogen interactions, many physiological and biochemical
reactions take place in vivo in plants. Based on the nutritional structure and ontogeny
of different fungal pathogens, these changes in the plant pathogenesis in turn affect the
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optical properties of plants [44]. This makes it possible to detect plant diseases using the
hyperspectral method and distinguish different diseases at each plant pathogenesis stage.

Conventionally, plant diseases are identified upon either symptoms (e.g., damage,
wilt, gall, tumor, canker, wilt, rot, or necrotic disease) or visible pathogenic microorganisms
(e.g., the spores in the genus rust, the mycelium or conidium in the genus erysipelas) [45].
Early plant–pathogen interactions are detected at a submillimeter size, which limits precise
observation with visual assessment or HSI systems. The spatial resolution of a hyper-
spectral camera can be improved by using a hyperspectral microscope [46,47]. Using this
approach, it is possible to study the microscopic and subtle resistance-related reactions and
pathogenesis mechanisms in plants. Obtaining the hyperspectral imaging properties of
the biological processes during plant–pathogen interactions enables the detection of plant
diseases using hyperspectral imaging technology.

Complex processes control the emergence and progression of disease in each indi-
vidual plant–pathogen system. Changes in the reflectance caused by plant disease could
be attributed to the damage of specific chemical components of the leaf surfaces or tis-
sues during pathogenesis, which could be chlorosis, the succession of necrotic tissue, or
the appearance of typical fungal structures. Each host–pathogen interaction has specific
and dynamic statuses in both spatial and temporal dimensions, which affects the spectral
properties in different wavelength ranges [48–51].

4. Analysis Hyperspectral Imaging Information for Plant Disease Identification

Hyperspectral sensing is a non-contact and nondestructive detection method. Hy-
perspectral images contain a large amount of information that reveals environmental and
chemical compound characteristics [51–53]. The challenge of hyperspectral data analy-
sis is to extract target-related information from the huge amount of hyperspectral image
data [51]. The useful information correlated with plant disease could vary during plant
pathogenesis and be distributed among several regions of the measured spectrum. In recent
years, a variety of data analysis methods have been applied to hyperspectral images for
plant disease detection. This section reviews the most common preprocessing and analysis
approaches to hyperspectral data.

4.1. Preprocessing of Hyperspectral Images
4.1.1. Image Mosaic

After the collection of crop images, it is necessary to splice several small-range images
taken to obtain a complete and valuable large crop image. The mosaic of complete images
is accomplished by matching pixels of the same name between images.

Fu et al. [54] reported an end-to-end deep learning method to reconstruct hyperspectral
images directly from a raw mosaic image. It saves the separate demosaicing process
required by other methods, which reconstruct the full-resolution RGB data from the raw
mosaic image. The method reduced the computational complexity and accumulative error.
Three different networks were designed based on the state-of-the-art models, including a
residual network, a multiscale network, and a parallel-multiscale network. Liu et al. [55]
used remote sensing images to extract the plant number information of maize seedling
stages. To improve the accuracy of image mosaics, geometric reference boards were set
up in different navigation belts as GPS control points to ensure subsequent mosaic work
based on geographical positioning. Then the images with GPS positioning were input into
Agisoft PhotoScan (Agisoft LLC, St. Petersburg, Russia) to complete the stitching process
automatically. Another software, Pix4Dmapper (Pix4D S.A., Prilly, Switzerland) [56], can
also automatically complete image stitching and generate high-precision normal projection
images. For example, Dai et al. [57] provided a classification method of the main crops in
Northern Xinjiang and He et al. [58] performed the biomass measurement of single tree
trunks of Abies Minjiang using Pix4Dmapper (Pix4D S.A., Prilly, Switzerland).
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4.1.2. Image Segmentation

Efficient image segmentation is important to separate the object from the background.
Common image segmentation methods can be divided into three categories: region-based
segmentation methods, threshold-based segmentation methods, and edge-based segmenta-
tion methods.

The selection of threshold determines the effect of image segmentation. The gray scale
of the image can clearly show some characteristics of the object, so the gray histogram can
be used to select the threshold of image segmentation.

Nalepa et al. [59] showed a method to effectively deal with a limited number and
size of available hyperspectral ground-truth sets and apply transfer learning for building
deep feature extractors. They also exploited spectral dimensionality reduction to make the
technique applicable over hyperspectral data acquired using different sensors, which may
capture different numbers of hyperspectral bands. The experiments were performed on
several benchmarks and backed up with statistical tests. This indicates that the approach
allowed for effectively training well-generalizing deep convolutional neural networks
even using significantly reduced data. Cui et al. [60] proposed a novel spectral–spatial
hyperspectral image classification method that exploited the spatial autocorrelation of
hyperspectral images by which image segmentation was performed on the hyperspectral
image to assign each pixel to a homogeneous region. Although good results were achieved,
it still did not achieve the best segmentation for large field images with a complicated
background, large scope, and many transformations. Therefore, it is still an urgent demand
to explore innovative and efficient segmentation methods.

4.2. Vegetation Index

According to the spectral characteristics of green plants, visible and near-infrared
bands can be combined to form various vegetation indices (VIS). The vegetation index
method is derived from the analysis of satellite multispectral data [61]. It is also a very
important tool in the process of hyperspectral data processing of medium- and near-range
plant diseases. It can simply select several bands from hundreds of bands of spectral data
to represent the changes in target diseases, which greatly reduces the processing cost of
hyperspectral data analysis.

More than 40 VIS have been defined so far and are widely used in global and regional
land cover [62,63], vegetation classification and environmental change [64,65], crop and
pasture yield estimation [66,67], drought monitoring [63,68], and host–pathogen studies.
Francesco et al. [69] investigated the relationships among tiger-stripe foliar symptom
expression, microelements, and vegetation indices, including the NDVI, GNDVI, and
WI of grapevine. The results showed that calcium could play a role in modulating the
plants’ response to toxic fungal metabolites, reducing the effects of an uncontrolled reaction
associated with the expression of foliar symptoms in diseased vines. Therefore, increased
availability of calcium and magnesium in up to pea-sized berries reduces foliar symptom
expression just when they begin to appear. Rumpf et al. [70] used nine spectral vegetation
indices related to physiological parameters to be features of a support vector machine
with a radial basis function as a kernel. The discrimination between healthy sugar beet
leaves and diseased leaves resulted in classification accuracies of up to 97%. According to
Cao et al. [71], the SPAD values were predicted by calculating the spectral fractal dimension
index (SFDI) from a hyperspectral curve (420 to 950 nm). The correlation between the SPAD
values and hyperspectral information was further analyzed to determine the sensitive
bands that correspond to different disease levels.

Table 1 shows several examples of general spectral vegetation indices used to detect
and measure the severity of various plant diseases. Formulas for defining new targeted
vegetation indices can be developed for specific plant diseases, such as leaf beet disease [72].
Nevertheless, vegetation index methods abandon the spectral data of most bands. They do
not fully take advantage of the potential of hyperspectral data.
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Table 1. Application of general spectral vegetation indices.

Vegetation Index Formula Application

Normalized difference vegetation index (NDVI) (R800 − R670)/(R800 + R670) Detecting vegetation coverage, related to
chlorophyll content.

Green normalized difference vegetation
index (GNDVI) (NIR − GREEN)/(NIR + GREEN)

Detecting withered or aged crops and
measuring the nitrogen content in leaves

in the absence of red bands.

Water index (WI) R900/R970 Estimating the water stress.

Ratio vegetation index (RVI) R800/R670
Detecting and estimating plant biomass,

related to chlorophyll content.

Plant senescence reflectance index (PSRI) (R680 − R500)/R750
Detecting plant senescence, related to

pigment content.

Carotenoid reflectance index (CARI) 1/R510 − 1/R550 Related to carotenoid content.

Anthocyanin reflectance index (ARI) 1/R510 − 1/R700
Detecting yellow rust of wheat, related

to anthocyanin content.

Photochemical reflectance index (PRI) (R570 − R531)/(R570 + R531) Detecting yellow rust of wheat, related to
photosynthesis and carotenoid content.

Structure insensitive pigment index (SIPI) (R800 − R445)/R800 + R680) Related to the ratio of carotinoids
and chlorophylla.

4.3. Machine Learning

Hyperspectral image classification tries to define each pixel sample in the image with
different categories. Machine learning hyperspectral image classification methods can be
divided into unsupervised learning methods and supervised learning methods according
to whether prior categories of the training samples need to be introduced.

Unsupervised learning refers to “blind” classification (clustering) based on the distri-
bution rules of spectral features of hyperspectral images without prior knowledge. The
K-means cluster and the dynamic clustering analysis methods (interactive self-organizing
data analysis—ISODATA) are typical unsupervised learning methods [64].

Since plants and background regions in spectral images have significant differences
in the near-infrared and red bands, Zhang et al. [73] removed the non-plant background
using the K-means clustering algorithm before the detection of the scabs of rice sheath
blight. Compared to the traditional background removal methods based on pixel threshold
segmentation, the clustering-based method can mitigate the issue of irregular edges and the
“salt and pepper” phenomenon. Based on the selected spectral features, Yuan et al. [74] de-
veloped an analytical framework for disease scab detection that combines the unsupervised
classification ISODATA method and adaptive two-dimensional threshold determination.
A comparison with the direct pixel-based classification results suggests that the proposed
method is insensitive to differences in leaf background and can effectively identify diseased
tea leaves (anthracnose) and analyze the degree of infection. The accuracies for both the
calibration and validation samples were satisfactory, with an overall accuracy of 96% at
the pixel level. Supervised learning is based on prior knowledge, namely labeled training
samples, to learn the internal relationships between the hyperspectral image pixel samples
and the corresponding categories, which are used for mapping between the unlabeled
pixel samples and the corresponding categories, and finally to determine the category
for unlabeled pixels. Although the classification method of supervised learning requires
manually labeled training samples to assist the training classification model, its disad-
vantages lie in a high labor cost and strong human subjective factors. Compared to the
unsupervised learning method, the classification accuracy of supervised learning can be
improved through the repeated testing of prior training samples. Therefore, the supervised
learning method is more popular than the unsupervised learning method. Table 2 shows
the common supervised learning algorithms with their advantages and disadvantages.
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Table 2. Comparison of supervised learning algorithms.

Method Advantage Disadvantage

K-NN (1) The theory has matured and easy application.
(2) Less training time.

(1) High computational complexity and spatial complexity.
(2) Sample imbalance.

NBM
(1) Performs well for small-scale data and is
suitable for multi-classification.
(2) Simple computation.

(1) Due to the emphasis on conditional independence, the
accuracy is reduced.
(2) Sensitive to the expression of input data.
A priori probability needs to be calculated.

MLE It can quickly specify the pixels to be classified
into one of several classes.

When there are many types of hyperspectral data, the
operation speed slows down significantly, and more
training samples are needed.

Decision Tree

(1) Low computing cost.
(2) Able to handle irrelevant features.
(3) Suitable for datasets with many attributes and
has high scalability.

(1) Easy to cause over-fitting.
(2) When all kinds of samples are unbalanced, the result of
information gain will be biased to the characteristics with
more data values.

ELM Has fast learning speed and good
generalization ability.

The parameters of the model are randomly selected, which
causes ELM instability.

SRC Low computing cost.
Various sub-dictionaries have high atomic correlation, and
similar samples may be linearly represented by different
sub-dictionaries, resulting in poor classification accuracy.

SVM

(1) Low generalization error rate, low computing
cost.
(2) It can solve the classification problem of
small-sample and high-dimensional data.

It is sensitive to parameter adjustment and
function selection.

Has good classification effect.

The feature extraction is an essential step in the classification process that largely affects
the final classification accuracy of the algorithm in comparison and combination of thermal,
fluorescence early identification of root rot disease with hyperspectral reflectance [65]. In
this paper, supervised machine learning classification methods were divided into conven-
tional machine learning classification and deep learning classification according to whether
the features could be automatically learned from the original hyperspectral data.

Classification methods based on ordinary machine learning can only fit the relationship
between the samples and the corresponding categories according to the inherent features
of the hyperspectral images or features designed by feature engineering. According to
the features, the general machine learning classification method can be classified as a
spectral characteristic-based classification method or a spatial spectrum joint feature-based
classification method.

Conventional machine learning classification methods only use spectral features of
hyperspectral images or spectral features extracted from original data through feature
engineering as the basis for classification, without utilizing the spatial information of
images. The methods include K-nearest neighbor (K-NN), maximum likelihood estimate
(MLE), support vector machine (SVM), Fisher’s linear discrimination analysis (FLDA),
naive Bayes (NB), decision tree, extreme learning machine (ELM), sparse representation-
based classifier (SRC), etc.

Calderon et al. [75] applied the LDA and SVM classification methods to classify the
Verticillium dahliae severity of olive using remote sensing at a large scale of 3000 ha. The LDA
reached an overall accuracy of 59.0% and a kappa of 0.487, while the SVM obtained a higher
overall accuracy of 79.2% and a similar kappa of 0.495. However, the LDA better classified
trees at the initial and low severity levels, reaching accuracies of 71.4 and 75.0%, respectively,
in comparison to the 14.3% and 40.6% obtained by the SVM. Based on the selected spectral
bands, vegetation indices, and wavelet features from the canopy hyperspectral data of
winter wheat, Huang et al. [76] established discriminate models using FLDA and SVM. The
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results indicated that FLDA was more suitable for differentiating stresses, with respective
accuracies of 78.1% and 95.6% for powdery mildew and stripe rust. Karadag et al. [77]
used an artificial neural network (ANN), naive Bayes (NB), and K-nearest neighbor (KNN)
to classify the spectral features of healthy and fusarium diseased peppers. The average
success rates were calculated as 100% for KNN, 88.125% for the ANN, and 82% for NB.
Other relevant studies are provided in Table 3.

Table 3. Recent advances in plant disease detection based on machine learning.

Reference Pathosystem Scale Methods Detection
Early

Detection
Precision

Calderon et al.
(2015) [75] Olive—Verticillium wilt Canopy LDA, SVM

√ Overall: LDA 59.0%, SVM 79.2%
Early detection: LDA 75.0%, SVM 40.6%.

Xie et al.
(2017) [78]

Tomato—Gray mold
disease Leaf KNN, C5.0,

FR-KNN
√ Detection: 94.44%, 94.44%, 97.22% (KNN,

C5.0, KNN)
Early detection: 66.67%, 66.67%, 41.67%

Lu et al.
(2017) [79]

Strawberry—
Anthracnose

crown rot
Leaf SDA, FDA,

KNN
√ √

SDA: 71.3%, FDA: 70.05%, KNN: 73.6%

Zhu et al.
(2017) [20] Tobacco—Mosaic virus Leaf

SPA–GLCM–
BPNN/ELM/

SVM

√
95.00%

Huang et al.
(2018) [76]

Wheat—Powdery
mildew, stripe rust Canopy FLDA, SVM

√ FLDA: Powdery mildew 78.1%, stripe
rust 95.6%

Weng et al.
(2018) [80]

Citrus—
Huanglongbing,

Fe deficient
Leaf LS–SVM 93.50%

Nagasubramanian
et al. (2018) [81]

Sugar beet—Cercospora
leaf spot stem GA–SVM

√ Detection: 97%
Early detection: 90.91%

Abdulridha
et al. (2019) [82] Citrus—Canker Leaf/canopy RBF, KNN

√ Leaf: 94%, 95%, 96% (asymptomatic,
early, and late symptoms)
Canopy: 94%, 96%, 100%

Mahlein et al.
(2019) [24]

Wheat—Fusarium
head blight Spikelet SVM

√ Detection: 89.0%
Early detection: 78.0%

Deng et al.
(2019) [83]

Citrus—
Huanglongbing Leaf SVM

√ √ Detection: 96%
Early Detection: 90.8%

Lin et al.
(2020) [84] Rice—Sheath blight Leaf Relief

decision tree 95.50%

Van de Vijver
et al. (2020) [85] Potato—Early blight Leaf

PLS–DA,
PCA–SVM,

decision tree

√
92.78%

Karadag et al.
(2020) [77]

Pepper—Fusarium
disease, mycorrhizal

fungus
Leaf KNN, ANN,

NB KNN: 100%, ANN: 88.125%, NB: 82%

Zhang et al.
(2020) [86]

Wheat—Fusarium
head blight Leaf SPA-RF 96.44%

Gu et al.
(2020) [87]

Tobacco—Tomato
spotted wilt virus Leaf SPA–BRT

√
85.20%

Yuan et al.
(2020) [74] Tea—Anthracnose Leaf ISODATA Pixel level: 98%

Patch level: 94%

Calamita et al.
(2021) [88]

Vitis vinifera—Fungi
infection Leaf NB

√ Detection: 90%
Early detection: 75%

Zhang et al.
(2021) [73] Rice—Sheath blight Leaf

K-means–
FLDA–

HFPSSD

Pixel level: 98.42%
Patch level: 95.92%

Zhao et al.
(2022) [89]

Tea—Green leafhopper,
anthracnose, sunburn Leaf

CWA–K-
means,

SVM–RF

Green leafhopper: 93.99–94.20%,
Anthracnose 94.12–94.28%, Sunburn

82.50–83.91%
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However, the label samples of hyperspectral data are limited, and most machine
learning methods based on spectral features are affected by the Hughes phenomenon.
The classification results often have many discrete isolated points, which are seriously
inconsistent with the actual land cover distribution [90].

Hyperspectral images are characterized by high dimension, high spectral redundancy,
and mixed pixels. In the case of limited label samples, it is difficult to obtain accurate
classification results by directly using spectral features as the classification basis. Therefore,
in recent years, several groups have introduced the spatial information of hyperspectral
images based on spectral information and made up for the deficiency of spectral information
only through the dependence among the spatial pixels [91]. Ghasimi et al. [92] proposed
a method that combined the hidden Markov random field and the SVM classifier. The
method used the hidden Markov random field to generate segmentation results and the
classification results generated by the SVM to determine the classification results of the
final algorithm through majority voting.

Although the above classification methods based on the space spectrum combination
achieved good results, they all needed to design the classification features manually through
feature engineering to improve the classification accuracy, which required a lot of time and
energy to repeatedly verify. Unlike ordinary machine learning, which requires a manual
design to extract the classification features, deep learning methods can automatically extract
the optimal classification features.

4.4. Deep Learning

Compared to ordinary machine learning methods, deep learning has the characteristics
of automatic learning and a strong classification ability and has achieved great performance
improvement in many fields, such as image classification, target detection, natural language
processing, and so on. Due to the rapid development of deep learning in many fields, some
remote sensing image processing algorithms based on deep learning have been slowly
proposed in recent years. Common deep learning algorithms used in hyperspectral image
classification mainly include the stacked auto encoder (SAE) [93], deep belief network
(DBN) [94], and convolutional neural networks (CNNs) [95].

A stack autoencoder network (SAE) is a deep neural network model composed of
several sparse autoencoders. Usually, the output of the former autoencoder serves as
the input of the latter, and the final classification result is output by a logistic (for binary
classification) or SoftMax (for multiple classification) classifier. The SAE algorithm is
widely used in hyperspectral image classification. For example, Chen et al. [96] extracted
null spectrum features in hyperspectral images by forming a deep network of multi-
layer stacked autoencoders. Wei et al. [97] combined stacked denoising autoencoders
and superpixels through space constraints to improve the classification accuracy with a
novel structure.

Deng et al. [98] used a UAV hyperspectral remote sensing tool for the HLB rapid
detection of citrus. The proposed HLB detection methods (based on the multi-feature
fusion of the vegetation index) and canopy spectral feature parameters constructed (based
on the feature band in the SAE) had a classification accuracy of 99.33% and a loss of 0.0783
for the training set, and a classification accuracy of 99.72% and a loss of 0.0585 for the
validation set. The field-testing results showed that the model could effectively detect the
HLB plants and output the distribution of the disease in the canopy, thus judging the plant
disease level in a large area efficiently.

DBN, like the SAE algorithm, is composed of multiple layers of constrained Boltzmann
machines, and its generation process is essentially a process of unsupervised pre-training
for each constrained Boltzmann machine. Compared to SAEs, DBNs are used less of-
ten in hyperspectral classification. Zhao et al. [99] proposed a new feature extraction
and image classification framework based on a DBN for hyperspectral image classifi-
cation. Zhong et al. [100] regularized the pre-training and fine-tuning stages through
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the a priori of potential factors for diversity enhancement, to improve the original DBN
classification effect.

Sun et al. [30] used the spectral and imaging information from hyperspectral re-
flectance (400 similar to 1000 nm) to evaluate and classify three kinds of common peach
disease (Botrytis cinerea, Rhizopus stolonifera, Colletotrichum acutatum). Three decayed stages
(slight, moderate, and severe decayed peaches) were considered for classification by DBN
and PLSDA. The results showed that the DBN model had better classification results than
the classification accuracy of the PLSDA model. The DBN model based on integrated
information (494 features) showed the highest classification results for the three diseases,
with accuracies of 82.5%, 92.5%, and 100% for slightly decayed, moderately decayed, and
severely decayed samples, respectively.

SAEs and DBNs are deep neural networks based on full connection. With the deep-
ening of the network depth, the number of parameters in the model becomes extremely
high, which is not conducive to subsequent training and requires great computational
power. In addition, although the above deep network model can effectively extract deep
features in hyperspectral images to a certain extent to enhance the discrimination among
different categories, the model cannot make good use of the spatial information of hy-
perspectral images by converting the input data into one-dimensional vectors. In this
regard, the academic community adopted the classification method based on a CNN to
avoid the above problems and improve the learning and expression ability of the network
more efficiently.

Table 4 shows the comparison between an ordinary neural network and a convolu-
tional neural network. Most traditional hyperspectral classification methods used to classify
research are based on the characteristics of the project. This requires a priori knowledge,
and the traits are mostly shallow characteristics, but in actual research, it is not known
exactly what kind of characteristics exist in the image that are the most adaptable to the
problem at hand, and it requires a lot of time and energy to determine them. However,
the hyperspectral image algorithm based on a CNN can automatically learn and acquire
hidden advanced features in the image by constructing a multi-layer neural network and
can thus obtain the classification results more efficiently and accurately.

Table 4. Comparison of ANN and CNN.

Method Advantages Disadvantages

ANN Able to learn advanced features of data automatically
and has excellent classification performance.

(1) The model requires huge parameters and high
computational force.
(2) The input is a one-dimensional vector, which cannot
make good use of map spatial information.
(3) Difficult training, easy to produce gradient disappearance.

CNN

(1) Able to learn advanced features of data automatically
and has excellent classification performance.
(2) Compared to the ANN, the CNN model requires
significantly fewer data parameters and trains faster.

The existence of a pooling layer may lead to the loss of
valuable information while ignoring the relationship
between the global and local scales.

Table 5 shows some relevant studies from recent years. For the detection of potato
viruses, Polder et al. [101] designed a fully convolutional neural network that was adapted
for hyperspectral images and trained on two experimental rows in the field. The trained
network was validated on two other rows, with different potato cultivars. For three
of the four row/date combinations, the precision and recall compared to conventional
disease assessment exceeded 0.78 and 0.88, respectively. The classification of healthy and
diseased wheat heads in a rapid and non-destructive manner for the early diagnosis of
Fusarium head blight disease research is difficult. Zhang et al. [102] applied an improved
two-dimensional CNN model to the pixels of a hyperspectral image to accurately discern
the disease area. The results of the model show that the two-dimensional convolutional
bidirectional gated recurrent unit neural network (2D-CNN-BidGRU) has an F1 score and
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accuracy of 0.75 and 0.743, respectively, which illustrates that the hybrid structure deep
neural network is an excellent classification algorithm for the healthy and Fusarium head
blight disease classifications in the field of hyperspectral imagery.

Table 5. Recent advances in plant disease detection based on deep learning.

Reference Host–Pathogen System Scale Methods
Field

Capable
Early

Detection
Precision

Sun et al.
(2018) [30]

Peach—Botrytis cinerea,
Rhizopus stolonifera,

Colletotrichum acutatum
Flesh PCA–DBN

√ Detection: 92.5%
Early Detection: 82.5%

Jin et al.
(2018) [103] Wheat—Fusarium head blight Kernels CNN

√
74.30%

Polder et al.
(2019) [101] Potato—Viruses Leaf CNN

√ √
78.00%

Zhang et al.
(2019) [102] Wheat—Yellow rust canopy DCNN

√
85%

Deng et al.
(2020) [98] Citrus—Huanglongbing canopy SAE

√
99.72%

Liang et al.
(2020) [29] Wheat—Fusarium head blight Kernels/Flour MSC–GA–SAE Kernels: 100%

Flour: 96%

Zhang et al.
(2020) [15] Rice—Bacterial blight Leaf CNN 82.60%

Feng et al.
(2020) [104]

Rice—Leaf blight, rice blast,
rice sheath blight Leaf SVM, LR, CNN 93.00%

Fazari et al.
(2021) [100] Olive—Anthracnose Leaf CNN

√ Detection: 100%
Early Detection: 85%

Hernandez et al.
(2021) [105] Grape—Downy mildew Leaf KNN, CNN

√ CNN: 82%
KNN: 66%

Nguyen et al.
(2021) [106]

Grape—Grapevine
vein-clearing virus vine 2D CNN, 3D

CNN
√ 2D CNN:71%

3D CNN: 75%

Liu et al.
(2022) [107] Wheat—Fusarium head blight kernels ASSDN 98.31%

5. Summary

The application of hyperspectral imaging technology in agriculture makes full use of
the advantages of hyperspectral mapping unity, which can precisely monitor crop growth
and diseases. However, so far, hyperspectral cameras are still expensive, making them
difficult to be widely applied in agriculture. The process of spectral acquisition is easily
affected by environmental factors. It also takes a long time to acquire, analyze, and process
the hyperspectral image data, which limits the application of hyperspectral imaging systems
in agricultural real-time monitoring and online detection. When the pre-established model
is applied to another index system, data analysis and model transformation are required.
The characteristics of the sample may affect its classification results and prediction accuracy.
In addition, hyperspectral imaging technologies have high redundancy in image processing.
To reduce the time consumption of obtaining and processing hyperspectral data, it is often
necessary to extract featured wavelengths for specific applications in different crops, which
enables the multiple spectral imaging of the specific stresses or diseases and reduces
the cost.

Other than pathogens, hyperspectral image information can also indicate stresses
induced by abiotic environmental factors, crop growing process, and biological injury. With
the combination of the latest machine learning models and hyperspectral data processing
tools for plant disease detection, novel algorithms should be proposed to deal with complex
natural conditions. Thus, other biotic or abiotic stress effects on plant spectrum features
might be removed from plant disease identification models. As a result, this technology
could be more useful for field practice. Meanwhile, plant disease identification models
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should effectively contribute to the decision support system to carry out real-time control
strategies. Thus, the data processing speed should be improved with modern on-chip
calculation systems such as FPGA. This means specific intellectual property kernels should
be created for real-time plant disease identification and control strategy applications in
later studies.
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ANN Artificial Neural Network
ARI Anthocyanin Reflectance Index
ASSDN Architecture Self-Search Deep Network
BRT Boosted Regression Tree
BPNN Back Propagation Neural Network
CARI Carotenoid Reflectance Index
CNN Convolutional Neural Networks
CWA Continuous Wavelet Analysis
DBN Deep Belief Network
DCNN Dynamic Convolution Neural Network)
ELM Extreme Learning Machine
FDA Fisher Discriminant Analysis
FLDA Fisher’s Linear Discrimination Analysis
FR Features Ranking
GA Genetic Algorithm
GLCM Gray-level Co-occurrence Matrix
HFPSSD Hyperspectral Feature Profile Scanning-based Scab Detection
HLB HuangLongBing
ISODATA Interactive Self-Organizing Data Analysis
KNN K-Nearest Neighbor
LDA Linear Discriminant Analysis
LR Logistic Regression
LS Least Squares
MLE Maximum Likelihood Estimate
MSC Multiplicative Scatter Correction
NB Naive Bayes
NVDI Normalized Difference Vegetation Index
PCA Principal Component Analysis
PRI Photochemical Reflectance Index
PSRI Plant Senescence Reflectance Index
RBF Radial Basis Function
RGB Red, Green, Blue
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RVI Ratio Vegetation Index
SAE Stacked Auto-Encoder
SDA Stepwise Discriminant Analysis
SFDI Spectral Fractal Dimension Index
SIPI Structure Insensitive Pigment Index
SPA Successive Projections Algorithm
SPAD Soil and Plant Analyzer Development
SRC Sparse Representation-based Classifier
SVM Support Vector Machine
UAV Unmanned Aerial Vehicle
VIS Vegetation Indices
WI Water Index
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Abstract: With the aim of solving the problems of high labor intensity, low operational efficiency,
and poor deposition distribution uniformity in the mango canopy associated with traditional plant
protection devices, an air-ground co-operation stereoscopic plant protection system consisting of
an orchard caterpillar mist sprayer and a six-rotor plant protection UAV was designed to jointly
undertake plant protection operations in mango orchards. We tested the spraying performance of the
system on mango trees, compared with the single-machine operation, the air–ground co-operation
system could significantly increase the droplet coverage on the upperside of mango leaves in each
part of the canopy (a 14.7% increase for the mist sprayer and 12.9% for the UAV). This increased the
active component deposition distribution uniformity in the mango canopy but could not significantly
improve the deposition and coverage of droplets on the underside of leaves compared with the
mist sprayer and plant protection UAV. Due to the characteristics of the mango canopy such as
large leaf length and thickness and complex leaf inclination distribution, this led to poor deposition
distribution uniformity of the two spray units, and the overall CV was over 150%. The pesticide active
ingredients were almost uniformly distributed in the vertical direction when the application ratios
(ground implements/plant protection drones) were 8/2 and 7/3, offering a promising protocol for
reduced pesticide application in mango orchards. This study presents promising data that support the
innovative integration of drones into crop protection programs for large canopy crops (e.g., mango)
and provides guidance for the ACSPPS system in reduction and precision application research.

Keywords: smart mango orchard; co-operative plant protection; UAV; pest control

1. Introduction

Asian mango production accounts for 72.9% of worldwide production, especially
in some Southeast Asian countries, and their products occupy an important position
in the export of agricultural products [1]. Mango plantations are widely distributed in
tropical areas [2], with a high frequency of pest and disease outbreaks. The occurrence
characteristics and laws of pest and disease differ between regions, producing difficulties in
plant protection operations for mango trees. [3] In mango orchards, the common diseases
included anthracnose, bacterial keratosis, and powdery mildew, and the common insect
pests included thrips and weevils [4–6].

In Southeast Asian countries, manual knapsack sprayers and high-pressure line guns
are still used as the main application equipment for chemical control [7], which means a
low spray (i.e., pesticides) application efficiency for crops and poor deposition distribution
uniformity [8]. The wind-assisted target orchard sprayer, with its higher spray volume
and spray pressure, achieves an ideal pesticide deposition in the canopy of fruit trees to
effectively control pests and diseases [9]. Therefore, this type of equipment is widely used
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in the plant protection operations in orchards. However, when spraying large-volume
canopy fruit trees with orchard sprayers, pesticide deposition shows a gradual increase
from the upper to the lower parts of the canopy [10]. In order to obtain sufficient pesticide
deposition in the top canopy, it is necessary to increase the pesticide spray volume [11].
As a result, excessive pesticide deposition occurs in the middle and lower parts, greatly
reducing the effective utilization rate of pesticides. To address these issues, smart orchard
sprayer integrating sensory detection, intelligent decision making, and variable spraying
were developed [12–14]. The orchard automatic variable-rate sprayer, based on LiDAR
scanning detection technology, can adjust spray parameters in real-time based on canopy
characteristics, effectively improving pesticide utilization and operational efficiency, and
potentially saving up to 45.7% of the usage of pesticides [14]. In addition, using binocular
cameras to detect real-time grape leaf canopy depth and combining it with the sprayer’s
forward speed, the orchard sprayer can be guided to perform variable-rate spraying on
the grape canopy. However, these technologies involve high development costs and are
difficult to implement in complex orchard environments for pesticide application [13].

Furthermore, the development of plant protection unmanned aerial vehicle (UAV)
technology has provided another solution to the challenges of pesticide application in
orchards. In East and Southeast Asia, plant protection UAVs are replacing the conventional
plant protection equipment [7,15]. Plant protection UAV can be deployed quickly with
high spraying efficiency and outstanding terrain adaptability [16,17]. By choosing the
right operating parameters, UAV can effectively control the pest population to a level that
does not cause serious crop yield reduction in orchards and forestry [18,19]. However,
there are serious problems such as poor droplet deposition uniformity, a lack of droplet
deposition on the backs of leaves [20], and spray drift for UAV [21,22]. Especially when
dealing with large volume canopies such as apricot trees [23], citrus [24], etc., the UAV
spraying operations show low droplet penetration in the lower and middle canopy, and
poor distribution uniformity. The high concentration of pesticides often leads to damage in
the targeted crops. Furthermore, there are certain limitations when facing different control
objects [25].

Therefore, a co-operative spraying strategy applied using plant protection drones and
orchard sprayers may achieve an all-round coverage of the fruit tree canopy. In particular,
this strategy intends to combine the advantages of plant protection UAVs with strong
terrain adaptability and more deposition of the liquid in the upper canopy by using an
orchard sprayer with strong penetration ability and uniform liquid distribution in the lower
canopy. In the agricultural field, current applications using aerial and ground devices
to coordinate operations have been conducted to establish remote sensing information
collection platforms and crop protection operations. Zhang et al. [26] have invented a
method and control system for air–ground co-operation plant protection operation. This
system can plan collaborative operation paths based on the characteristics of orchards and
fruit trees, and control the coordinated operation of unmanned aerial vehicles and ground
spraying vehicles to carry out spraying according to the planned paths. Jiang et al. [27]
tested the spray performance of a stereoscopic plant protection system consisting of a
small swing-arm sprayer and a T16 plant-protection UAV, and determined the optimum
spray parameters using CFD simulation. The results show that the uniformity was 38.3%
higher than conventional approaches. Current research mainly focuses on the control and
improvement of equipment parameters of the co-operation plant protection system. When
pesticides are sprayed using two different types of equipment, it is necessary to ensure the
behavior of droplet deposition and the spraying ratio (such as the spraying volume of the
two devices and the type of pesticide used) in order to achieve the uniform distribution of
pesticides in the canopy of fruit trees. The rational distribution ratio of pesticide solution
on two types of spraying equipment will help us reduce pesticide usage while achieving a
uniform deposition of pesticides.

Our study established an air–ground co-operation stereoscopic plant protection system
(ACSPPS) which consisted of an orchard mist sprayer and a six-rotor UASS. The synergistic
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mode of ACSPPS was selected for spraying mango trees. We conducted a study to evaluate
the deposition performance of the system in the mango tree canopy using a tracer method.
Additionally, we tested the droplet deposition distribution of the two spray units when
applied separately to analyze the composition of droplet deposition for the ACSPPS. This
analysis was performed to establish a deposition distribution index for the system. Finally,
the optimal spraying ratio (the proportion of fixed doses of pesticide spray using two
devices) of two spraying units was expected to be determined across the result of the
droplet deposition index distribution. We expect to provide data support and practical
guidance for green, precision, and intelligent plant protection in orchards.

2. Material and Methods

2.1. Design of ACSPPS

An ACSPPS consists of an agricultural aviation pesticide spraying device and a land-
based plant protection vehicle. It is used on pesticide spraying of three-dimensional crops
such as fruit trees, especially the canopy with large volume and high canopy density, for
which it is difficult to obtain a good droplet deposition distribution. Generally, the aerial
application is undertaken by a plant protection drone, and the land-based plant protection
jobs are undertaken by a small and medium-sized orchard sprayer. The two devices
spray the same plot, and a fixed dose of pesticide is distributed to the two spray units for
spraying according to a certain ratio. Depending on the spray target and fruit tree growth
information, ACSPPS supports the following operational modes:

(1) Single-machine operation: When the tree is in the early growth stage, the canopy
with a small canopy volume and low leaf density and BBCH is 0–31 (pome fruit
for example) [28], or the pests or diseases are in the early stages of outbreak, one
spray unit can meet the current plant protection needs of fruit trees; the application
operation can be carried out using a mist sprayer or UAV alone. This mode is suitable
for standard orchards such as standard apples orchard or vineyards.

(2) Co-operative operation using two machines: The crop phenological stage is at full
development at BBCH 32–91 [28]. It is difficult to achieve uniform deposition of
pesticides in the canopy via one-machine operation, when the occurrence of pests and
diseases is at its peak, or when pesticides need high coverage such as a protective
fungicide (e.g., Bordeaux solution, which is shared by two machines, and both apply
to trees) (Figure 1). The movement track cannot spray two trees at the same time. This
mode is suitable for a fruit tree canopy with large volume and high canopy density
and standardized planting mode, such as olive, mango, grapefruit, and apricot, etc.
At the same time, this mode has the potential to reduce the usage of pesticides on the
basis of achieving spatially uniform distribution of pesticide.

(3) Dual-machine hybrid operation: In the complex terrain orchard application opera-
tion, ground sprayers and UAVs operate in accordance with the preset route, and
the ground implements cannot pass the specified place to wait for the end of the
collaborative operation in the UAV to make up the application. At the same time, this
mode can avoid the antagonistic effect of pesticide mixing, which can separate the
configuration of pesticides to avoid chemical reactions between pesticides, such as
insecticide spraying via drone and fungicide spraying using a mist sprayer. Different
pesticide dosage forms can also be separated for spraying.

The ACSPPS of this study consisted of a six-rotor electric UASS AGRAS T30 (man-
ufactured by SZ DJI Technology Co., Ltd., Shenzhen, China (Figure 2a)) and an orchard
caterpillar mist sprayer (3WDZ-200D, Shanxi Nonggu Feinong Plant Protection Technol-
ogy Co., Ltd., Datong, China (Figure 2b)). The UAV sprayer was equipped with a 30 L
PPP container, with a total weight (excluding battery) of 36.5 kg and maximum take-off
weight of 78 kg (at sea level). Sixteen extended-range flat-fan nozzles (SX11002VS, Spraying
Systems Co., Wheaton, IL, USA), divided into eight couples, were equipped below the cor-
responding rotors of the UAV. The mist sprayer was equipped with a 200 L container. One
XR95/02S (Yushengpenwu, China) nozzle was installed between two XR45/01S nozzles
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(spacing 40 cm, one side) and the spray angle of the mist sprayer in the orchard spraying
mode was −22.5◦ to 90◦ from the horizontal plane. It is operated using a remote control.
Both equipment parameters are shown in Table 1.

 

Figure 1. Air–ground co-operation stereoscopic plant protection system operation diagram.

Table 1. Two spray unit parameters.

Sprayer
Overall

Size/mm × mm × mm
Maximum Payload/L

Nozzle Type ×
Number of Nozzles

Device Maximum
Flow/(L/min)

Maximum Operating
Speed/(m/s)

Spray
Swath Width

/m

UAV 2858 × 2685 × 790 30 TEEJET 11002VS ×
16 9.0 7.0 9.0

Mist sprayer 1935 × 1140 × 690 200 XR45/01S × 4
XR95/02S × 2 16.0 1.25 8.0

UAV treatment is plant protection unmanned aerial vehicle spray treatment.

  
(a) Agras T30 UASS (b) 3WDZ-200D orchard caterpillar mist sprayer 

Figure 2. Air–ground co-operation stereoscopic plant protection system component units.

2.2. Spray Test Site

This experiment was conducted from December 2021 to March 2022, with an average
temperature of 30.4 ◦C, an average humidity of 41%, and an average wind speed of
0.6 m/s during the experiment. The test site was located in Dabuba Village (longitude:
109◦18′9578′′ E, latitude: 18◦42′2322′′ N), Sanya City, Hainan Province, China. The mango
orchard was a traditional orchard, with high-pressure line guns and plant protection UAV
that are used for daily pest control. The trees are 7–8-years-old, with an average plant
height of 2.70–2.90 m, a crown diameter of 3.2 m, a plant spacing of 4.5 m, and a row
spacing of 5 m. The mango trees were in good growth condition, with fully developed
leaves, an umbrella-like distribution of canopy leaves, and almost no leaves inside the
canopy, while the BBCH was at 74 [29]. Mango varieties included Mangifera indica Linn,
and the mango trees were in the mango swelling stage during this experiment. The density
of weeds in the test field was low and the height of weeds were below 0.3 m, which could
be considered as having no effect on the spraying effect. The orchard was located on flat
land with an open site free of obstacles (Figure 3).
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Figure 3. Experimental orchard and test site.

2.3. Experimental Design

A plot measuring 30 m × 20 m was chosen as the experimental area within the orchard
under investigation (Figure 4). Within this plot, three mango trees displaying uniform
growth were selected for droplet sampling.

Figure 4. Test fields for spray test and work lines of UAV and caterpillar mist sprayer.

This study aims to test the droplet deposition distribution of the co-operative applica-
tion mode of ACSPPS and determine a suitable spraying ratio, which refers to the pesticide
distribution ratio between the two spray units. Initially, the droplet deposition distribution
of the two spray units applied separately was tested to analyze the composition of the
droplet deposition for the ACSPPS treatment. Subsequently, the deposition distributions of
the two implements were combined, and the results were compared with the uniformity of
the droplet deposition distribution achieved using the ACSPPS treatment. This comparison
helped identify the optimal spray ratio for the two devices to work in synergy. To obtain
the best spray ratio for the two machines to work together, three treatment groups were
set up in this section: application using plant protection UAV, application using ground
equipment, and ACSPPS. The parameter settings of the sprayer in each treatment are
shown in Table 2. Three valid replicates were performed in each treatment group.

So as to avoid the mutual interference of flow fields during the operation of the
two implements, the co-operation sprays using UAV firstly. The flight mode of the UAV is
to mark the operational boundaries by using a remote control with an RTK module and
then set the drone operation line distance and flight height for an autonomous operation. It
can be ensured that the drone spraying path passed through the top of each mango tree.
After the UAV operation was complete, the operator started the mist sprayer and controlled
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the advance of the implements using a remote control to start the operation until all fruit
trees were treated. Tartrazine was selected as the tracer, and the spraying solution was the
tartrazine solution.

Table 2. The mango tree spray test design and sprayers’ parameters.

Treatment
Application

Volume/(L/ha)
Tartrazine

Concentration/(g/L)
Velocity/(m/s)

UAV Flight
Height/(m)

Spray Route/Track

UAV 120 4.20 2.5 3 Top of the tree row
Mist sprayer 510 0.40 1.25 / Spraying between tree rows

ACSPPS UAV: 120
Mist sprayer: 510

UAV: 4.20
Mist sprayer: 0.40

UAV: 2.5
Mist sprayer: 1.25 3 /

UAV treatment is plant protection unmanned aerial vehicle spray treatment and ACSPPS is air–ground co-
operation stereoscopic plant protection system treatment.

The meteorological parameters of each treatment during the experiment are shown in
Table 3 (measured using a mobile weather station, YG-BX Weather Station, Yigu technology
company, Shenzhen, China). All of the meteorological parameters provided a suitable
meteorological condition for spraying.

Table 3. Weather conditions for each application.

Treatment Wind Speed/(m/s) Wind Direction/◦ Temperature/(◦C) Humidity/(%)

UAV 0.6 156.8 31.6 46.5
Mist sprayer 0.8 203.7 28.4 50.8

ACSPPS 0.5 180.2 30.1 60.2

UAV treatment is plant protection unmanned aerial vehicle spray treatment and ACSPPS is air–ground co-
operation stereoscopic plant protection system treatment.

In this study, droplet coverage and tartrazine deposition were used as the indexes for
investigation, and tartrazine was regarded as the active ingredient of the pesticide solution.
Droplets were collected using HD photographic paper (38 × 26 mm, Chenguang, China)
and 7 cm filter paper (AL-1, Aokexingainian, Liaoyang, China). The diagram of the photo
paper layout was shown in Figure 5, and the mango trees were divided into upper, middle,
and lower layers: the outer layer of the lower was marked as O1, the inner was marked
as I1, the outer layer of the middle was marked as O2, and the inner layer of the middle
was marked as I2. Due to the characteristics of the mango tree canopy, the upper layer
was not set up in the inner canopy sample, marked as O3. A length of 7 cm of filter paper
arranged within 5 cm around the phase paper, both unobstructed from each other to detect
the amount of deposition, while the front and back of the leaf were covered with phase
paper and filter paper. Four filter papers were placed under O1 at the ground projection to
collect ground loss. Three sets of replicates were set up for each treatment.

Figure 5. Sampler locations for assessing mango tree canopy spray deposition.
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2.4. Droplet Site Measurement

Measurements of the droplet-size spectrum were carried out using a laser diffraction
system (DP-02, Zhuhai Omeike, Zhuhai, China) in the Centre for Chemicals Application
Technology, China Agricultural University according to ISO standard 25358 [30]. The tested
nozzle of UAV, flat-fan nozzle SX11002VS, was mounted at a height of 50 cm above the
laser analyzer vertically between the laser beam transmitter and the receiver lens. An
electric diaphragm pump Shurflo 8000 series (Pentair, Golden Valley, MN, USA) and a
63 mm diameter pressure gauge (Lechler GmbH, Metzingen, Germany) were applied to
maintain the pressure (3.0 bar) in accordance with the field trials. The tested nozzle of
the mist sprayer, flat-fan nozzle XR45/01S, and XR95/02S were also mounted at a height
of 50 cm above the laser analyzer; the nozzle is still connected to the spray system of
the mist sprayer to maintain the pressure within the spray pressure in the field test state,
by means of an extended pressure duct. In each test, the background measurement was
performed for 5 s to eliminate the interference of other particles in the air, and the droplet-
size spectrum measurements lasted for 10 s. The 10th percentile diameter (Dv10), volume
median diameter (VMD, Dv50), 90th percentile diameter (Dv90), relative span (RS), and
spray volume fractions generated using droplets finer than 75, 100, and 200 μm (V75, V100,
and V200) were recorded for further analysis.

2.5. Data Analyses

Five minutes after spraying, all photo papers were collected in the corresponding
position in the card holder and brought back to the laboratory within five days to be scanned
using an (EPSON DS-1610, Tokyo, Japan) at 600 dpi and analyzed using DepositScan
software (Version 1.38x) for droplet coverage and density. The filter paper was placed
in a No. 5 self-sealing bag, eluted with 20 mL of deionized water (5 mL for the ground
implement group) in the laboratory, and then analyzed using an enzyme standard (450 nm
wavelength, iMark Analytical Instruments, Inc., Orange, LA, USA) to calculate the amount
of deposition. A total of 20 mL of an initial solution for each sprayer was collected after
each application and diluted 100 times. The uniformity in the deposit distribution of the
spray coverage parameters on the tree canopy was expressed in the coefficient of variation
(CV, %). A lower CV means a better homogeneity in the spray coverage distribution of the
UAV spraying. The unit deposition was expressed as β, μg/cm2, and calculated as follows:

βdep = (Ct × Ve)/(a × A) (1)

where β is the deposition volume, μg/cm2; Ct is the tracer concentration, μg/mL; Ve is
the eluent volume, mL; a is the filter paper area, cm2; and A is the concentration of initial
solution, g/L.

The homogeneity of the spray distribution over the upperside and the underside of
the leaves was calculated for the spray coverage (HSC) as expressed in Equation (2):

HSC =
SCund
SCupp

× 100% (2)

where SCupp and SCund are the mean values of the spray coverage obtained from the upper
side and the underside of leaves, %, respectively.

The penetration coefficient in the vertical direction (KV) of the mango tree, %, was
calculated using the following equation:

KV =
βa

βb&c
× 100% (3)

where βa is the upper canopy deposition per area in the mist sprayer treatment and the
lower canopy in the UAV treatment, μg/cm2, and βb&c is the middle and lower canopy
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deposition per area in the mist sprayer treatment and the upper and middle canopy in the
UAV treatment, μg/cm2.

The proportion of inner canopy deposition (RI, %) could be calculated as:

RI =
β I

β I + βO
× 100% (4)

where βI is the inner canopy droplet deposition per area, μg/cm2, and βO is the outer
canopy droplet deposition per area, μg/cm2.

The summation deposition per area (βadd, μg/cm2) was used to calculate the deposition
number of different concentrations of chemical solution in each canopy part using the
synergistic operation and to construct the droplet deposition distribution index, which was
calculated as

βadd = C1V1 + C2V2 (5)

where C1 and C2 are the tartrazine concentrations of the mist sprayer and UAV treatment,
g/L and V1, V2 is the deposition per area of the mist sprayer and UAV treatment, μL/cm2.

The percentage distribution of the deposition unit area in the vertical direction (RV, %)
is the distribution ratio of the tartrazine in the vertical direction; when the value is closer
to each part of the canopy, the more uniform the deposition of the solution in the vertical
direction. This can be calculated as

RV =
βdep

βU + βM + βL + βG
× 100% (6)

where βU, βM, βL, and βG are the summation deposition of upper, middle, lower, and
ground loss respectively, μg/cm2.

All data were subjected to Anderson–Darling, Kolmogorov–Smirnov, and Lilliefors
normality tests, and Levene and Bartlett tests for the equality of residual variances. Data
from abnormal distributions were subjected to nonparametric Kruskal–Wallis tests at the
5% probability level. The result of the three application methods on droplet coverage
and deposit density were compared using a three-way analysis of variance (ANOVA) at a
significance level of 0.05 and Duncan’s post hoc test at a significance level of 0.05 for the
mean of each droplet deposit parameter. All statistical analyses were performed using SPSS
Statistics Version 20 for Windows (IBM Corporation, Armonk, NY, USA).

3. Result

3.1. Droplet-Size Spectrum

The mean values of parameters Dv10, Dv50, Dv90, RS, V75, V100, and V200 and the
spray quality classification for droplet-size spectrum characteristics are presented in Table 4.
At the higher spraying pressure of the mist sprayer, both nozzles XR45/01S and XR95/02S
produced droplets with VDM of no more than 65 μm, which was much smaller than UAV
at 3-bar spray pressure (139 μm). Most of the droplet produced by the mister were below
100 μm, while the 75% droplet size of UAV is larger than 100 μm. The average RS value
(0.7) of the mist sprayer for both nozzles of the implement was only 42.6% of that of the
plant protection drone, indicating that this device has better fogging ability compared to
UAV, which may increase the droplet deposition in the inner canopy.

Table 4. Droplet-size spectrum of the nozzles used in orchard tests.

Nozzle Device
DV10
(μm)

DV50
(μm)

DV90
(μm)

RS V75 (%) V100 (%) V150 (%)

SX11002VS UAV 63.01 139.02 289.74 1.63 10.94 25.98 60.17
XR45/01S Mist Sprayer 36.34 61.23 80.66 0.72 63.75 97.37 100.00
XR95/02S Mist Sprayer 38.66 64.00 81.82 0.67 59.14 96.51 100.00
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3.2. Characteristics of Deposition Distribution in The Mango Canopy
3.2.1. Spray Coverage and Deposit Density

Table 5 shows the distribution of droplet coverage and deposit density in the mango
canopy using three application methods and the results of the significance analysis. The
results showed that there was no significant difference (p < 0.05) in droplet coverage and
deposit density in each layer of the canopy in ACSPPS treatment, and co-operation spray
could improve the uniformity of droplet deposition distribution compared with the UAV
and mist sprayer; however, there was poor deposition distribution uniformity on the
underside of mango leaves in three application, and there was no statistical difference in
the deposition on the underside of leaf (p > 0.05).

Table 5. Droplet deposition distribution characteristics of three applications.

Treatment Sample Position
Coverage/% Deposit Density/cm2

HSC/%
Upperside Underside Upperside Underside

Mist sprayer

O1 10.9 ± 2.0 a 2.8 ± 1 a 186.9 ± 23.2 a 36.6 ± 15.5 a 25.7
O2 7.5 ± 2.3 a 5.2 ± 4.4 a 124.9 ± 30.1 b 26.9 ± 10.3 a 69.3
O3 2.4 ± 0.9 b 0.5 ± 0.4 a 60.0 ± 16.3 c 15.5 ± 9.3 a 20.8
I1 2.0 ± 1.0 b 0.6 ± 0.3 a 48.7 ± 17.6 c 19.8 ± 10.8 a 30.0
I2 2.4 ± 1.7 b 0.1 ± 0.1 a 38.1 ± 17.7 c 4.8 ± 2.5 a 4.2

UAV

O1 14.6 ± 4.0 a 1.4 ± 1.1 a 22.1 ± 4.0 a 4.0 ± 2.2 ab 9.6
O2 6.6 ± 2.7 b 5.2 ± 3.8 a 12.9 ± 4.7 ab 9.4 ± 4.2 ab 78.8
O3 7.9 ± 2.0 ab 5.8 ± 2.7 a 16.1 ± 3.7 ab 11.9 ± 3.7 a 73.4
I1 1.0 ± 0.4 b 0.2 ± 0.1 a 6.6 ± 2.3 bc 2.3 ± 0.6 b 20.0
I2 4.1 ± 2.0 b 0.3 ± 0.3 a 1.8 ± 0.8 c 1.8 ± 0.8 b 7.3

ACSPPS

O1 27.8 ± 6.7 a 3.2 ± 1.6 a 120.5 ± 22.3 a 49.7 ± 19.3 a 11.5
O2 25.8 ± 7.9 a 4.4 ± 2.6 a 116.7 ± 29.8 a 26.6 ± 10.9 b 17.0
O3 21.1 ± 7.3 a 0.6 ± 0.3 a 89.1 ± 28.3 a 5.0 ± 1.3 b 2.8
I1 24.0 ± 7.3 a 0.5 ± 0.2 a 124.1 ± 37.0 a 11.4 ± 3.4 b 2.0
I2 8.9 ± 2.6 a 1.2 ± 1.0 a 79.9 ± 21.9 a 9.2 ± 6.2 b 13.5

Note: Data of coverage and deposit density were expressed as mean ± standard error. Different letters after
the numbers indicate significant differences in different canopy positions in the same group of treatments at the
p < 0.05 level using Duncan’s test values.

Droplet coverage on the underside of the leaves is shown in Figure 6a. Co-operation
spraying can significantly improve (p < 0.05) the underside droplet coverage of the mango
canopy except for the innerside of the lower layer (I2) compared with mist sprayer and
UAV treatment. There was no significant difference (p > 0.05) between the mist sprayer and
UAV in terms of upperside coverage in all parts of the canopy. The deposition from bottom
to top showed a more obvious decreasing trend in the mist sprayer treatment. Because of
the umbrella shape of the mango canopy, the downwash airflow when the UAV passed the
top of the mango tree would have a diffusion effect so that the droplet coverage did not
show a significant decreasing trend in UAV treatment; the related penetration analysis was
conducted in Section 3.2.2.

The underside coverage distribution is shown in Figure 6b, except for the upper layer
(O3) where the UAV was significantly higher than the remaining two groups, and there
was no significant difference between the treatment in others parts; according to Table 5,
the mean value of the HSC in mist sprayer treatment was 9.36%, which were 30.0% and
37.82% in the mist sprayer and UAV treatment. Co-operative operation using two machines
cannot significantly improve droplet coverage on the underside of mango leaves and only
increases the droplet deposition rate on upperside of the leaves. According to Table 5, the
mean value of underside coverage of the inner layer canopy (I1 and I2) did not exceed 1.2%,
which meant that the two-sprays unit lacked the ability to deliver droplets to the underside
of mango leaves.

Figure 6c,d shows the droplet density distribution on the upper and underside of
mango leaves. The mist sprayer involved in spray treatment, for which the density on the
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upperside of all layers was significantly higher than that of the UAV treatment alone, which
was due to the atomization performance of the mist sprayer under higher spray pressure.
The droplet density on the upperside of the outer canopy of leaves could reach 92/cm2

in the mist sprayer group, while the UAV only had 12/cm2, for which most areas failed
to meet the pest control requirement density of 20 deposit/cm2. Through collaborative
work, the value could be increased to 109/cm2, and the distribution uniformity of droplet
density in the canopy was improved. There was no significant difference in droplet density
on upperside of leaves in each part of the canopy in this treatment. Except for O3, droplet
density on the underside of other parts of the ACSPPS treatment group was improved
compared with UAV, but without significant difference except for O1.

3.2.2. Spray Deposition and Penetration

The distribution of droplet deposition on the upper and the underside of mango leaves
was shown in Figure 6e,f. In this test, using this application method, the mean deposition
value for the mist sprayer was 0.26 μg/cm2, while the UAV resulted in a deposition
value of 0.68 μg/cm2. Normalizing these values (deposition/spray volume), we obtain
0.12 (constant dimensionless) for the mist sprayer and 0.13 (constant dimensionless) for the
UAV. There were no significant differences between the two methods in terms of the overall
effective utilization of pesticides. The main difference was the distribution uniformity in the
mango canopy. Except for O3, there was no significant difference in deposition per area on
the upperside of leaves in the remaining parts. The tartrazine deposition on the underside
of in ACSPPS treatment mainly came from UAV, and the deposition of UAV treatment at O1
was 2.6 times that of the mist sprayer, but there was no significant difference, because of the
poor deposit distribution uniformity (CV value of 178.9%) of UAV on the underside of the
blade, and deposition in some areas was slightly higher than that of the ACSPPS treatment.

Figure 6. Cont.
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Figure 6. Droplet coverage (a,b), droplet density (c,d), and droplet deposition (e,f) on the upper- and
underside of mango leaves in three application treatments. All data were expressed as mean ± standard
error, and different letters on each bar indicate significantly different differences at the p < 0.05 level
using Duncan’s test values.

The mist sprayer treatment major deposition was concentrated in the outer part of
the middle and lower canopy (a share of more than 50%). The deposition per area in the
upper canopy was 0.16 μg/cm2, which was only 47.0% of the average deposition, and
the UAV treatment had the highest proportion of deposition in the upper layer (43.0%).
According to Table 6, the proportion of the inner canopy deposition of the mist sprayer
was 37.1%, while the UAV was only 18.0%. This was due to the large droplets (size after
spreading, Dv50 = 631.4 μm) produced by the TEEJET 11002VS nozzle of UAV, which had
limited penetration into the inner canopy and caused most of the droplets to deposit in the
outside canopy, while the fine droplet produce by the mist sprayer was good at delivering
the liquid into the interior, so that the proportion of the deposition to the inner canopy
could be improved with the increase in the application ratio of the mist sprayer in ACSPPS
plant protection work. The ground loss rate was about 21% for both of the spray units
in the single-machine operation mode, which was basically the same as that of the co-
operative operation (21.2%). Therefore, the ground loss ratio could not be reduced through
co-operative operation.

3.3. Vertical Direction Droplet Deposition Distribution Index

The purpose of the air–ground co-operation stereoscopic plant protection system is to
optimize the spatial distribution of the pesticide in the canopy and improve the effective
utilization rate of the pesticide to achieve the purpose of reducing pesticide use. This section
establishes a droplet deposition distribution index of pesticide deposition distribution in
the mango canopy based on the depositional behavior of the mist sprayer and UAV and
analyzes the droplet deposition distribution in mango trees with a different spray mass
distribution ratio (which can be interpreted as the distribution of a certain amount of
pesticide active ingredients using a two-spray unit sprayed evenly into a certain area of
the orchard). The ratio was expressed as the ratio of application mass (g/ha) × tartrazine
concentration (g/L) of two spray units; the approximate ratio of the mist sprayer to UAV
application is 3.5:6.5 in this experiment. According to Equation (5), the added deposition of
this experiment was calculated and compared with the actual deposition of the ACSPPS
treatment (Figure 7).

The results of Figure 7 show that, except for the significant difference between the
add deposition and the actual deposition at I1, the deviation between the theoretical add
deposition and the actual value within 20%, with an average difference of 14.7%. The
reason for the deviation may be that the travel routes of the mist sprayer cannot be fully
overlapped, or the change in ambient wind speed has an impact on the spraying process of
the UAV. Therefore, this error has little influence on the establishment of the add droplet
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deposition distribution index, and the add deposition of the spray mass distribution ratio
(mist sprayer/UAV = 1/9, 2/8, 4/6, 5/5, 6/4, 7/3, 8/2, and 9/1) could be calculated
according to this index, assuming that the deposition of the pesticide in all parts of the
canopy in each co-operation was consistent with this experiment, and the add deposition of
each application ratio could be calculated under the conditions of this application volume.
The results of the spray mass distribution ratio add deposition are shown in Figure 8.

Table 6. Droplet deposition parameter.

Parameter
Treatment

Mist Sprayer UAV ACSPPS

Upperside droplet size Dv50upp (μm) 189.0 ± 7.5 b 792.7 ± 69.9 a 968.6 ± 127.7 a
Underside droplet size Dv50und (μm) 152.1 ± 9.6 b 470.0 ± 56.3 a 345.3 ± 45.3 a

Mean droplet size DV50 (μm) 170.6 ± 8.6 b 631.4 ± 63.1 a 656.9 ± 76.0 a
Upperside coverage SCupp (%) 5.0 ± 0.8 b 6.8 ± 1.2 b 19.7 ± 4.5 a
Underside coverage SCund (%) 1.8 ± 0.8 a 2.5 ± 1.1 a 2.0 ± 0.6 a

Mean coverage SC (%) 3.4 ± 0.6 b 4.6 ± 1.0 b 10.85 ± 2.3 a
Coverage distribution uniformity CVCov (%) 165.9 158.0 124.8

Upperside deposit density Ndupp (deposit/cm2) 91.7 ± 11.1 a 11.5 ± 1.7 b 106.1 ± 12.1 a
Underside deposit density Ndund (deposit/cm2) 20.7 ± 5.4 a 5.9 ± 0.8 a 21.1 ± 4.9 a

Mean deposit density Nd (deposit/cm2) 56.2 ± 8.3 a 8.7 ± 1.2 b 67.6 ± 10.2 a
Upperside deposition βupp (μg/cm2) 0.34 ± 0.1 0.77 ± 0.3 1.4 ± 0.4
Underside deposition βund (μg/cm2) 0.18 ± 0.1 0.59 ± 0.3 0.54 ± 0.3

Mean deposition B (μg/cm2) 0.26 ± 0.1 0.68 ± 0.3 0.97 ± 0.3
Vertical penetration coefficient KV (%) 27.8 33.4 /

Proportion of inner canopy deposition RI (%) 37.1 18.0 34.2
Ground loss rate RGroundloss (%) 21.8 21.2 21.2

Note: Data of coverage, deposit density, and deposition were expressed as mean ± standard error. Different
letters after the numbers indicate significant different differences at the p < 0.05 level for Duncan’s test values.

Figure 7. Add deposition versus actual deposition of ACSPPS, different letters on each bar indicate
significantly different differences at the p < 0.05 level using Duncan’s test values.

Based on Figure 8, it could be concluded that the percentage of ground loss basically
remained between 21% and 22% when the co-operative operation was sprayed with differ-
ent application ratios at the current spray volume. Changing the application ratios could
not reduce the ground loss ratio. By increasing the application ratio of the mist sprayer,
the proportion of deposition in the upper canopy layer decreased, while the deposition
proportion in the middle and lower layers increased. Droplet deposition distribution
uniformity (CV, %) in the vertical direction of the mango canopy via different application
ratios are shown in Table 7. It can be conduct that, when the application ratios were 8/2 and
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7/3 (0.92 g/L and 0.80 g/L for the tartrazine concentration of the mist sprayer and 1.29 g/L
and 1.94 g/L for the UAV), the pesticide active ingredients were most evenly distributed
in the vertical direction; the CV value of the percentage of vertical direction pesticide
distribution in the canopy was the smallest among all application ratios at 13.64% and
14.34%. Therefore, the study of pesticide reduction could be carried out on the basis of
these two applications ratios.

Figure 8. Vertical distribution rate of pesticide active ingredients of spray mass distribution ratio.

Table 7. Droplet deposition distribution uniformity in the vertical direction of the mango canopy via
different application ratios.

Application Ratios UAV 9:1 8:2 7:3 6:4 5:5 4:6 3:7 2:8 1:9 Vehicle

droplet deposition index/% 26.3 ± 11.9 26.3 ± 10.5 26.3 ± 9.9 26.2 ± 8.5 26.2 ± 7.1 26.2 ± 5.7 26.2 ± 4.6 26.1 ± 3.6 26.1 ± 3.7 26.1 ± 5.6 26.1 ± 7.8
CV/% 45.24 39.92 37.56 32.44 27.23 21.81 17.72 13.64 14.34 21.29 29.84

Note: Data of droplet deposition index was expressed as mean ± standard deviation.

4. Discussion

The deposition distribution uniformity test using two spray units shows that the
application of the mist sprayer is faced with the problem of an insufficient deposition
capacity in the upper layer canopy and underside of leaves. According to the result of the
droplet-size spectrum, the mist sprayer has an outstanding atomization capacity which
can deliver more pesticide to the inner canopy. While the droplets applied using the
UAV were mainly deposited in the upper layer of the canopy, the droplets deposition
density could not meet the pest control demand of 20 droplets/cm2. The result aligns
with what has been documented in recent literature. Specifically, the UAV encounters
certain challenges, including inadequate droplet coverage density, a scarcity of droplets
reaching the lower canopy, and inconsistent droplet distribution. These issues arise due
to the lower spraying dosage of the plant protection UAV, exacerbated by the turbulent
downwash airflow [20,23,24]. According to Table 6, the synergistic operation of two
sprayers significantly improved the deposit coverage of the mango leaves and made up for
the deficiency of an insufficient droplet deposition density of UAV application. Generally,
only some large-scale air-assistant orchard sprayers can achieve more than 20% coverage
on the surface of the canopy [11,31], but these sprayer are still difficult to adapt to spraying
operations in complex orchard environments. Therefore, the small ground plant protection
vehicle of ACSPPS in this study can be used to enhance the terrain adaptability of the
system. However, due to the high canopy density of mango trees, and the high mutual
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cover-up rate of leaves, it is unfavorable for the droplets to penetrate outside the canopy
to reach the inner canopy, and most of the droplets are deposited on the outside canopy.
According to Figure 9, the characteristics of the mango canopy, such as large leaf length
and thickness and complex leaf inclination distribution, led to poor deposition distribution
uniformity of the two spray units; the overall CV was over 150%. The CV was improved by
24% via synergistic operation but could not solve the problem of less droplet deposition on
the underside of mango leaves.

  

Figure 9. Test field mango trees’ canopy characteristics.

The three-treatment droplet deposition scans results show that, the large droplets
produced using the UAV (the average Dv50 value of 631 μm after spreading of the droplets)
and the fine droplets produced using the mist sprayer (the average Dv50 value of 171 μm)
on the leaves surface deposit action are shown in Figure 10. According to the study by
Ebert et al. [32,33], the control effect can be significantly improved by increasing the droplet
density under the same pesticide dose conditions. In addition to the biological optimum
size theory (BODS theory) proposed by Himel and UK [34], the biological optimum size
of foliar crawling pest larvae was 30~150 μm. Therefore, the mist sprayer had a better
potential pest control ability than UAV. In actual orchard plant protection operations, the
UAV was prone to damage the initial period fruit epidermis due to the higher application
concentration. In addition, the mango tree’s pests and diseases are prone to occur in the
inner canopy and on tender shoots, but the ground-based orchard sprayer lacks the ability to
deliver a deposit to the upper canopy. Through the co-operation of a two-spray unit, a high-
concentration liquid can form a dilution and certain doses of the pesticide can be dispersed
through the two machines, which can avoid causing damage to the crop while increasing
the pesticide deposition proportion in inside and upper layer canopy and improving the
deposition distribution uniformity in the vertical direction of the canopy. Through the
droplet deposition distribution index, it can be found that increasing the application ratios
of ground-based devices can increase the deposition uniformity of the canopy in the vertical
direction, but the proportion is not as large as it should be. If the ground base device takes
up too much application ratio it will result in insufficient deposition of the system in the
upper canopy of the fruit tree. Therefore, when the application ratios were 8/2 and 7/3,
the ACSPPS had the best deposition distribution index. It can be surmised that this ratio
has the best potential for reduced application.

Research on the synergistic application of UAV using orchard sprayers is not yet
mature. Jiang et al. [34] tested the spray performance of a stereoscopic plant protection
system and determined the optimum spray parameters using CFD simulation. The results
show that the uniformity was 38.3% higher than conventional approaches. But, it did
not optimize the application ratio of the two spray units. This experiment verified the
importance of air–ground co-operative plant protection operations to improve the pesticide
distribution characteristics in the mango canopy and optimized application ratios for both
spray units in the ACSPPS. This system was designed for tropical crops such as mango
trees which have frequent pest outbreak cycles and high insect density, and its high droplet
coverage and uniform distribution has obvious advantages when applying some pesticides
such as contact insecticides and protective fungicides.
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Figure 10. The scan results of mist sprayer (a), UAV (b), and ACSPPS (c) treatment droplet collect-
ing cards.

However, there are still some shortcomings:

(1) In this study, only the droplet deposition analysis of the ACSPPS system was con-
ducted under large spray volume conditions, which is not conducive to improving
effective pesticide utilization.

(2) The field control efficiency of ACSPPS was not tested. The ACSPPS’s strategies for
reducing pesticide use have not been developed.

In a subsequent study, the focus will shift towards researching methods to reduce
pesticide application while maintaining effective pest control. Building upon the findings
of this experiment, further research can be conducted to explore strategies for reducing
pesticide application. One aspect that will be investigated in later stages is the optimization
of application ratios between the two spray units. This research will aim to reduce the
water spray volume and pesticide dosage of the spray units while preserving the efficiency
of the insecticide. For example, potential measures include halving the volume of spraying
for both spray units and reducing pesticide usage by 30% by following a 8/2 or 7/3 (mist
sprayer/UAV) application ratio for pest control. These adjustments will be based on the best
application ratios derived from the results of this experiment, ensuring that the effectiveness
of the insecticide is maintained while achieving a reduction in pesticide application.

With the maturity of artificial intelligence technology, intelligent agricultural equip-
ment has become an inevitable trend for replacing traditional plant protection equipment.
The two spray units in this study were retrofitted with autonomous navigation and vari-
able spray technology. This system was applied to the management of smart orchards to
develop a plant protection decision plan based on the detection information of the pest and
disease sensing system, which was sent down to the variable spray system for accurate
environmental pest management.

5. Conclusions

In this paper, an air–ground co-operation stereoscopic plant protection system combin-
ing a ground-based orchard mist sprayer with a plant protection UAV was established. The
deposition distribution characteristics of three plant protection applications (spray using a
mist sprayer, UAV, and ACSPPS application) in the mango canopy were evaluated, and a
vertical droplet deposition index distribution of co-operative operation was constructed.
The results show the following:

The air–ground co-operation stereoscopic plant protection system has shown signifi-
cant improvements in droplet coverage on the upper side of mango leaves in all parts of
the canopy (a 14.7% increase for the mist sprayer and a 12.9% increase for the UAV), as
well as an increase in the uniform distribution of active components in the mango canopy.
However, it cannot significantly improve the deposition and coverage of droplets on the
underside of leaves compared with the mist sprayer and plant protection UAV.

Due to the characteristics of the mango canopy, such as large leaf length and thickness
and complex leaf inclination distribution, this led to poor deposition distribution uniformity
for the two spray units; the overall CV was over 150%.
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Under the spraying volume in this experiment, it can be concluded from the vertical
droplet deposition model that changing the spray mass distribution ratio of two devices
cannot reduce the ground loss rate for the pesticide. Deposition in the upper canopy will
be decreased and the ratio of deposition in the middle and lower layers will be increased
with the increase in the application ratio of the mist sprayer. When the application ratios
of a two-spray unit (mist sprayer/UAV) come to 8/2 and 7/3, the active ingredients in
the pesticides are most evenly distributed in the vertical direction. A study of on pesticide
reduction can be carried out on the basis of this these application ratios. This could be a
new idea for mango orchard plant protection and provides a technical solution to improve
spray uniformity in the canopy of fruit trees.
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Abstract: In order to clarify the temporal and spatial changes in the internal photothermal environ-
ment in an open-field agrivoltaic system (OAVS), this paper took the OAVS in eastern China as the
research object and divided the internal area into the southern area, middle area and northern area,
according to the spatial structure. Further, a photothermal environment test was conducted in the
above three areas in the summer and winter. The results showed that the summer average daylight
rate (Rm-avg) in the middle area was 66.6%, while the Rm-avg in the other two areas was about 20%,
with no significant difference. In the winter, the light environment in the southern area was slightly
better, and the Rm-avg in the above three areas was 26.4%, 24.7% and 19.7%, respectively. On the
whole, the relationship between the thermal environmental factors and the solar radiation intensity
was consistent. Further, a 3D model of an OAVS was established using Autodesk Ecotect Analysis
2011, and the internal light environment was simulated. Compared with the measured values, the
relative error was less than 10%, which verified the reliability of the OAVS model. Then, the model
was used to reveal the temporal and spatial changes in the light environment of the OAVS. The
simulation results showed that the daylighting rate in the summer from the ground to the height of
the fig canopy inside the system was 20.7% to 61.5%. In the winter, the daylighting rate from the
ground to the height of the fig canopy inside the system was 17.7% to 36.4%. The effectiveness of the
OAVS in reducing the level of solar radiation intensity depended on the time of day and the angle of
the sun. At the spatial scale, due to the strong consumption of light by photovoltaic panels, there
was a strong horizontal and vertical light environment gradient inside the system. In conclusion, the
photothermal environment research of an OAVS based on Autodesk Ecotect Analysis 2011 can not
only provide a basis for agricultural production and structural design such as span, height and the
laying density of PV panels, but also expand its application to regions with different latitudes and
longitudes and specific climates.

Keywords: agrivoltaics; agricultural building; photothermal environment; ECOTECT; simulation

1. Introduction

The open-field agrivoltaic system (OAVS) is a modern integrated agricultural pro-
duction system which combines PV power generation and agricultural production [1,2].
Under the condition that agricultural land and agricultural production are not affected, it
can improve the efficiency of land use, which is of great significance to the development
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of the PV industry and the transformation of modern agriculture [3,4]. In the context of
carbon neutrality, the development and utilization of solar energy has become an important
“tuyere” [5]. The OAVS has been widely applied and promoted in China, which com-
bines PV and field planting [6]. Relying on a good agricultural resource base, the OAVS
project has developed rapidly in eastern China [7]. By the end of 2022, the cumulative
grid-connected capacity of centralized PV power stations in this area reached 72.96 million
kW, accounting for 19.8% of the national grid-connected capacity, among which the OAVS
is the main application form of centralized PV power stations in this area [8]. At the same
time, this area is the main vegetable-producing area in China, and has great potential for
agrivoltaic implementation [9]. For example, the installed PV-saturated capacity of Jiangsu
Province and Shandong Province in eastern China can reach 18.25 GW and 16.00 GW,
respectively [7]. At present, the OAVS in East China covers a large area and is relatively
concentrated in scale, making it easy to carry out large-scale, mechanized and intensive agri-
cultural production. However, affected by the occlusion of photovoltaic panels, the OAVS
is conducive to the growth and development of shad-tolerant and cold-loving crops [10].
Therefore, the OAVS is mostly planted with shad-tolerant, compact, high yield and high
efficiency crop types and varieties. For example, it is suitable to plant corn, sorghum,
potato, taro, yam and beans between the boards and under the eaves, and shady crops such
as Chinese medicinal materials can be planted under the columns [11–14].

The development of the OAVS project can improve land utilization rate [15,16], pro-
mote industrial low carbon development [17,18], enrich field biomass [19], improve soil
moisture [19,20] and increase comprehensive benefits [21,22]. However, there are some
tricky problems in the OAVS in this area, such as the unclear internal photothermal envi-
ronment and the poor coupling effect of agriculture and PV [23]. A large number of studies
have shown that due to the shading of PV panels, there are phenomena such as uneven
distribution and low intensity of light inside the system, which affect the normal growth of
crops [24,25]. In order to clarify the variation rule in the internal photothermal environment
of the OAVS, experts and scholars at home and abroad have conducted a lot of research on
the photothermal environment of the system and similar PV buildings. Marrou et al. [26]
monitored the microclimatic conditions of different PV panel laying densities in the OAVS
in different seasons. The results showed that there was no significant difference in average
daily air temperature and average daily relative humidity under different treatments, but
there was a gradient difference in soil temperature. Gao et al. [27] studied the diurnal
and annual variation characteristics of air temperature inside and outside of PV power
stations. Through monitoring and the analysis of a single point inside and outside the
power station, the results showed that the daytime air temperature inside and outside the
power station was basically the same in the winter. In the spring, summer and autumn, the
air temperature inside the power station was significantly higher than that outside, and the
difference was the largest in the summer, 0.67 ◦C. Hassanpour Adeh et al. [19] studied the
environmental effects of PV panels on unirrigated grasslands that frequently suffer from
water stress, quantifying the effects of the presence of PV panels on microclimate and soil
moisture. The results showed that the area under the PV panel maintained a higher soil
moisture, and the biomass increased by 90% in the later period. Chang et al. [28] studied
the thermal effect of PV panels on the temperature of adjacent air, and the results showed
that the temperature of PV panels (height of the erection was 2 m) increased significantly,
with an average annual increase of 9.7 ◦C and an average annual increase in adjacent air
temperature of 3.8 ◦C. Sailor et al. [29] found through research that PV urban building
systems heat the city during the day and cool it at night. Ezzaeri et al. [30] studied the
effects of checkerboard form flexible PV panels on greenhouse microclimates and tomato
yields in the summer and winter. The results showed that the PV panel reduced the air
temperature in the greenhouse, and the occupancy rate of PV panel had no significant effect
on the total yield of tomato.

In summary, the internal environment of the OAVS is relatively complex and has
an important impact on agricultural production. However, there are no reports on the
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variation rule of the photothermal environment inside the system at a spatial scale. It is an
important basis for the agricultural production of the OAVS to make clear the variation rule
of internal environment and the photothermal performance. The accurate photothermal
environment can not only provide a basis for the OAVS agricultural mode selection and
production management, but also provide reference for the structural design of the system
span, height and PV panel laying density.

As a civil building software, Autodesk Ecotect Analysis 2011 is able to conduct light
environment analysis, energy consumption analysis and sunshine and shade analysis for
buildings by setting building structural parameters, material parameters and environmental
parameters [31–33]. Various studies show that the simulation accuracy of the software
is good [34,35]. When applying the software for research and analysis, the boundary
conditions are convenient to set, the operation process is relatively simple and the result
visualization ability is strong [36,37]. Although the software is mainly used for the analysis
of civil buildings, it has a broad prospect in the analysis and application of the light
environment of agricultural buildings.

This paper will take the OAVS in eastern China as the research object and measure
the solar radiation intensity, air temperature and soil temperature in the summer and
winter. Further, the distribution of environmental parameters in different areas will be
analyzed. Combined with Autodesk Ecotect Analysis 2011, a proportional agrivoltaic
system model will be constructed to simulate and analyze the solar radiation, shading
and sunshine hours in the system, so as to clarify its optical environment performance in
space and time scales. The novelties of this study are as follows: (1) Combined with the
sensor configuration strategy and spatial structure characteristics, the change rule of the
photothermal environment in different areas inside the OAVS in the summer and winter is
quantified. (2) The OAVS light environment model is established, revealing the spatial and
temporal scales system interior light environment distribution characteristics.

2. Materials and Methods

2.1. Experimental Site Description

The experimental OAVS is located in Shenzhen Energy Nanjing Holding Co., Ltd.
(31.62◦ latitude, 119.18◦ longitude, approx. 360 m above sea level), Lishui District, Nanjing
City, Jiangsu Province, China. The power station was put into operation in 2016, covering
an area of about 46.67 ha, with a total installed capacity of 20 MW and annual clean
power generation of about 24 million kWh. It is also a base integrating photovoltaic
power generation, ecological agriculture, sightseeing tourism, popular science exhibition
and photovoltaic agricultural research and experiment (Figure 1a). Lishui district is in
the transition zone from the north subtropical zone to the middle subtropical zone. The
average annual temperature is 15.5 ◦C. The average annual sunshine duration is 2145.8 h
and the average annual rainfall is 1036.9 mm.

The PV panels of the system face south and are supported by Φ300 concrete piles
and an inclined supporting frame. The distance between concrete piles is 3 m and 6.8 m
between the panel arrays. The PV module is made of 265 W polysilicon, with a photoelectric
conversion efficiency of 16.3%. The size of a single PV module is 1640 × 992 × 35 mm,
composed of 60 minimum cells. Four PV modules are arranged in a row and continuously
laid along the east–west direction. The lowest edge of the PV modules is 3.2 m above the
ground and has a tilt angle of 24◦. One row of fig (Ficus carica) trees were planted in the
middle of each span in the OAVS with a height of about 1.0 m and a root length of about
0.3 m. The figs were equally spaced with planting spacing of about 3.0 m, and their main
growing season at this site is from April to October. The soil texture is classified as yellow
loam. In addition, since the PV panes have the function of collecting rain, two drainage
ditches in the east–west direction are formed inside the single span PV array (Figure 1b,c).
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Figure 1. (a) Aerial view of OAVS; (b) spatial structure of experimental OAVS; (c) monitoring points
in experimental OAVS.

2.2. Photothermal Environment Measurement and Daylighting Rate Calculation

According to the needs of the experimental design, the space occupied by the PV
arrays is defined as the interior of the OAVS. The height of the space is the lowest height of
the PV panel from the ground, which is about 3.2 m. The exterior of the OAVS is defined as
a place far away from the OAVS and sufficiently open. According to the spatial structure of
the OAVS, the single span PV array was divided into three areas along the north–south
direction, namely, southern area, middle area and northern area. The width of each area
is 1.8, 3.2 and 1.8 m, respectively (Figure 2). The environmental factors monitored inside
and outside of this experimental OAVS include solar radiation intensity, air temperature
and soil temperature. The arrangement of monitoring instruments in the three areas
follows the following principles: (1) Reduce the sensor configuration redundancy under the
condition of meeting the information collection requirements; (2) fully consider the shading
of photovoltaic modules, plant height, plant root length and other factors; the expected test
results can fully reflect the objective law to avoid a bad impact on the monitoring of the
light temperature sensor. Based on this, the solar radiation intensity and air temperature
measurement point was set at 1.0 m above the ground, the same as the height of the fig tree
canopy, and the soil temperature measurement point was set at 0.15 m underground, which
was in the middle position of fig root depth. The instruments were arranged 0.65 m away
from the axis of the prefabricated pipe pile to fully reflect the photothermal performance of
the OAVS.

The arrangement of measuring points is shown in Figure 2: (1) Solar radiation intensity
and air temperature in the OAVS: Sensors for solar radiation intensity and air temperature
were placed at south area, middle area and north area, respectively, which were 0.65, 3.40
and 6.15 m away from the concrete pile along the north–south direction and 1.0 m above
the ground, one sensor for each area. (2) Soil temperature in the OAVS: Soil temperature
measuring sensors were placed at depth of 0.15 m directly below the solar radiation intensity
and air temperature measuring points, one sensor for each area. (3) All the measuring points
of solar radiation intensity, air temperature and soil temperature inside the OAVS were
arranged in the same plane along the north–south direction, and were not affected by side
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light. (4) The OAVS external environment measuring point: An environmental measuring
point was set in open field far away from the PV arrays. The data of solar radiation intensity
at a height of 1.0 m above the ground, air temperature and soil temperature at a depth
of 0.15 m were collected. The monitoring scene of the experimental OAVS is shown in
Figure 1c.

Figure 2. Layout of measuring points inside and outside the experimental OAVS.

Data were collected in the summer from 11 August 2022 to 25 August 2022 and in the
winter from 15 December 2022 to 30 December 2022. The test instruments were HOBO
series sensors, as shown in Table 1. The environmental data were recorded throughout the
day at 30 min intervals. The HOBO UX100-011A air temperature sensor was equipped
with a special meteorological radiation shield to eliminate the effects of solar radiation and
complex outdoor environment on data reliability. The daytime period in the summer and
winter was calculated from 06:00 to 18:00, and the night period was from 18:00 to 06:00+1.

Table 1. Instrument parameters.

Instrument Name Manufacturer Model Range Accuracy

HOBO temperature recorder

Onset Co., Ltd., Bourne,
MA, USA

UX100-011A −20~+70 ◦C ±0.2 ◦C
HOBO four-channel recorder UX120-006M −20~+70 ◦C ±0.2 ◦C
HOBO temperature sensor TMC20-HD −20~+100 ◦C ±0.15 ◦C
HOBO total solar radiation

sensor S-LIB-M003 0~+1280 W/m2 ±10 W/m2

Daylighting rate, as a key evaluation index, was used in the analysis of the light
environment of various buildings [38,39]. Sun et al. [40] took the ratio of the average solar
radiation intensity inside the greenhouse and outdoor in a single moment as the average
daylighting rate to evaluate the lighting performance of the greenhouse. Based on this,
the ratio of the average daily internal solar radiation intensity (Em-in) to the average daily
outdoor solar radiation intensity (Em-out) is prescribed in this paper as the daily daylighting
rate (Rm-d). The average of daily daylighting rate of each measurement point during the
whole recording period is described as the average daylighting rate (Rm-avg). The Rm-d and
Rm-avg are used as the evaluation index of the internal light environment of the OAVS, and
calculated according to Equations (1) and (2).
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where Em-in is the measured value of solar radiation intensity at a single time inside the
OAVS (W/m2); Em-out is the measured value of solar radiation intensity at a single time
outside the OAVS (W/m2); Rm-d is the daylighting rate of the OAVS (%); Rm-avg is the
average daylighting rate (%); k is the number of daily records of solar radiation intensity
data; and i is the number of experimental days (d).

2.3. Simulation of Light Environment

The internal photothermal environment of the OAVS is relatively complex according
to previous research. Solar radiation intensity is the primary ecological factor in the OAVS
and has strong interaction effects with other environmental factors. Therefore, Autodesk
Ecotect Analysis 2011 was used to construct the light environment model of the OAVS to
clarify the light environment performance in both spatial and temporal scales.

2.3.1. Model Construction

The 1:1 OAVS model (Figure 3) was established through a 3D framework (SOLID-
WORKS 2020, France) and imported into Autodesk Ecotect Analysis 2011. The typical
annual weather data of Nanjing was adopted, and relevant data were put into ECOTECT
weather tools to automatically extract meteorological conditions such as direct/scattered
solar radiation, annual temperature/humidity variation and annual wind speed variation.
Then, the shading rate, sunlight hours and solar radiation inside the OAVS were elabo-
rated based on the actual orientation and inclination. Building material attributes are not
included in this paper, as solar radiation and other studied indicators are mainly related to
solar altitude angle and azimuth angle. A flowchart for the OAVS simulation procedure
was designed based on the model as shown in Figure 4.

Figure 3. ECOTECT model of OAVS. “6-18”shows the hours of a day.
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Figure 4. Flowchart for OAVS simulation procedure.

2.3.2. Setting of Numerical Simulation

The center area of the PV arrays was chosen as the calculation domain to eliminate
the effect of side light. During grid division, the east–west profile was selected as the
simulation plane, and the simulation plane was divided into grid units and calculated in
turn. The “display analysis grid” was selected in the “analysis Grid” panel. The values
of “2D slice position” were successively set to the required cross sections for calculation.
On the basis of considering calculation accuracy and calculation speed, the mesh density
should be increased as much as possible. The number of mesh set in this paper was 2048
(“64 × 32”). In Autodesk Ecotect Analysis 2011, we selected “Solar Access Analysis” in
Calculate for relevant simulation settings (Figure 5). The simulated period was consistent
with the actual test period.

 

Figure 5. Simulation parameter setting diagram of ECOTET model.
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2.4. Data Analysis

Excel 2016 was used for statistical processing and analysis of the experimental data,
and Origin 2021 was used to make relevant charts.

3. Results

3.1. Analysis of Photothermal Environment in OAVS
3.1.1. Solar Radiation Intensity

As shown in Figure 6, the solar radiation intensity in the summer and winter differed
greatly inside and outside of the OAVS. The solar radiation intensity outside of the OAVS
was higher than that of the three measuring points inside the PV arrays. The maximum
solar radiation intensity of all the points in the open field, southern area, middle area and
northern area in the summer was 391.4, 69.4, 326.3 and 79.0 W/m2 (Figure 6a), and the
maximum solar radiation intensity of all the points in the open field, southern area, middle
area and northern area in the winter was 250.3, 170.7, 56.3 and 63.4 W/m2, respectively
(Figure 6b). In the summer, the middle area had the highest solar radiation intensity inside
the OAVS, followed by the northern area. The southern area was the lowest. The solar
radiation intensity in the OAVS in the winter showed a different change pattern. In the
winter, the solar radiation intensity on sunny days in the southern area was higher than
that in the other two areas, while on cloudy days, the middle area had the highest solar
radiation intensity.

Figure 6. Variation in solar radiation intensity inside and outside OAVS; (a) summer; (b) winter.

In the summer, on both sunny and cloudy or rainy days, the solar radiation intensity
curves of each measuring point had good consistency. On sunny days, the curves first rose
from 6 am and reached the highest value at around 12 pm, and then they fell and went
back to 0 after 6 pm. The curves of different measuring points reached the peak basically
at the same time. On cloudy days, the curves presented more frequent fluctuation, which
may be caused by the constant change in cloud thickness, leading to the constant change in
direct solar radiation intensity. The change pattern of solar radiation intensity on cloudy
days in the winter was similar to that in the summer. However, on sunny winter days, due
to the change in solar altitude angle, solar radiation intensity in the southern area increased
greatly around 12:00 am, while the other two areas stayed at a lower level.

As shown in Figure 7, the range of Ed-avg in the southern area, middle area and
northern area was 53.2~230.7, 18.6~37.3, 31.5~169.8 and 21.6~41.5 W/m2, respectively. The
range of Ed-avg in the winter was 22.3~150.3, 8.7~34.2, 13.0~29.7 and 8.1~23.8 W/m2, for
the southern, middle and northern area, respectively. The Rm-avg in the southern, middle
and northern area was 20.5%, 66.6% and 22.7% (summer), and 26.4%, 24.7% and 19.7%
(winter), respectively. It can be seen that the Ed-avg and Rm-avg of the OAVS in the summer
were the highest in the middle area, and there is no significant difference between the other
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two areas. In the winter, the Ed-avg and Rm-avg of the OAVS were larger in the southern
area, but the differences among the three areas were relatively small.

 
Figure 7. Box plots of average daily solar radiation intensity and daylighting rate in OAVS;
(a) summer; (b) winter.

3.1.2. Air Temperature

Figure 8 shows the changes in air temperature inside and outside of the OAVS in the
summer and winter. The statistical data show that the general trend in the air temperature
curve inside and outside of the OAVS was basically the same, and the air temperature
in the open field was significantly higher than the three measuring points inside the PV
array. As shown in Figure 8a, the air temperature of all the measuring points in the open
field, southern area, middle area and northern area in the summer ranged from 24.1 ◦C to
48.7 ◦C, 24.0 ◦C to 43.0 ◦C, 23.9 ◦C to 48.2 ◦C and 24.0~47.1 ◦C. As shown in Figure 8b, the
air temperature varied from −8.7 to 16.7 ◦C, −8.5 to 16.9 ◦C, −9.0 to 13.7 ◦C and −8.7 to
14.7 ◦C at all measuring points in the open field, southern area, middle area and northern
area in the winter. In addition, the air temperature distribution curve fluctuated greatly
in the two seasons, and the difference between the daily peak value and the daily trough
value was obvious, but the regularity was also obvious. In the summer, the air temperature
in the three areas of the OAVS was as follows: middle area > northern area > southern area,
and the air temperature in the middle area was much higher than that in the other two
areas. The variation in air temperature in the three areas of the OAVS in the winter was
somewhat different from that in the summer. The overall air temperature in the winter
shows that the southern area is higher than the other two areas, and the other two areas are
roughly equal.

Figure 8. Air temperature variations inside and outside OAVS; (a) summer; (b) winter.

Combined with the weather types during the two seasons, whether it was sunny or
cloudy or rainy, the curves of each measuring point had good consistency, showing a trend
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of first rising and then falling, and the corresponding time of peaks of each curve was
basically the same. At all measuring points, the temperature basically maintained a gradual
rising trend from 06:00 to 12:00, and reached the maximum temperature from 12:00 to 12:00,
and gradually dropped from 14:30 to 6:00 the next day.

In order to better display the air temperature differences in different areas of the
OAVS, this paper analyzed the distribution of four air temperature parameters. Figure 9
shows the changes in average daily air temperature, average daytime air temperature,
average nighttime air temperature and daily extreme air temperature of the OAVS in
the summer and winter. In the winter, the above four air temperature indices showed
that there was no significant difference among the measuring points inside of the OAVS,
and the daytime air temperature of the open field measuring points was slightly higher
than that of other measuring points. Taking the average daytime air temperature as an
example, the air temperatures in the open field, southern area, middle area and northern
area were 5.2 ◦C, 4.5 ◦C, 4.2 ◦C and 4.3 ◦C, respectively. In the summer, the above three
air temperature indices (excluding average nighttime air temperature) all showed the
temperature relationship of four measuring points: open field > middle area > northern
area > southern area. Taking the average daytime air temperature as an example, the
temperature in the above four areas was 38.5 ◦C, 35.5 ◦C, 37.6 ◦C and 36.5 ◦C, respectively.
In addition, there was no significant difference in the average nighttime air temperature
at each measuring point in the summer. The air temperature in the above four areas was
29.1 ◦C, 28.5 ◦C, 28.4 ◦C and 28.5 °C, respectively.

Figure 9. Marginal distribution curve data graph of air temperature in summer and winter; (a) average
daily air temperature; (b) average daytime air temperature; (c) average nighttime air temperature;
(d) daily extreme air temperature.
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3.1.3. Soil Temperature

Figure 10 shows the changes in soil temperature inside and outside of the OAVS in the
summer and winter. The statistical data show that the soil temperature curves inside and
outside of the OAVS had the same general trend, and the soil temperature in the open field
was significantly higher than that in the three measuring points inside the PV array. As
shown in Figure 10a, the soil temperature of all measuring points in the open field, southern
area, middle area and northern area in the summer ranged from 29.4 to 39.6 ◦C, 26.2 to
36.0 ◦C, 28.2 to 39.6 ◦C and 26.7 to 36.2 ◦C. As shown in Figure 10b, the soil temperature
varied from 3.6 to 9.6 ◦C, 1.9 to 6.8 ◦C, 1.4 to 6.6 ◦C and 1.6 to 6.5 ◦C at all measuring points
in the open field, southern area, middle area and northern area in the winter. In addition, the
soil temperature distribution curve fluctuated greatly in the two seasons, and the difference
between the daily peak value and the daily trough value in the four areas was obvious, but
the regularity was also obvious. The relationship of soil temperature in the three areas of
the OAVS in the summer was as follows: middle area > northern area > southern area, and
the soil temperature in the middle area was much greater than that in the other two areas.
In the winter, the soil temperature in the three areas of the OAVS was different from that in
the summer. The soil temperature in middle area was greater than that in the southern area
and the northern area, and the soil temperature in the southern and northern areas was
roughly equal.

Figure 10. Soil temperature variations inside and outside OAVS; (a) summer; (b) winter.

Combined with the weather types during the two seasons, whether it was sunny
or cloudy or rainy, the curves of each measuring point had good consistency, showing a
trend of first rising and then falling, and the corresponding time of peaks of each curve
was basically the same. All soil temperature measurement points basically maintained a
gradually rising trend during the day, reached the maximum value at sunset and gradually
decreased at night.

In order to better display the soil temperature differences in different areas of the
OAVS, this paper analyzed the distribution of four soil temperature parameters. Figure 11
shows the variation in average daily soil temperature, average daytime soil temperature,
average nighttime soil temperature and daily extreme soil temperature of the OAVS in
the summer and winter, and the variation in each index was obvious. In the summer, the
above four soil temperature indices all show the relationship between soil temperature in
four areas: open field > middle area > northern area > southern area. Taking the average
daytime soil temperature as an example, the average daytime soil temperature in the open
field, southern area, middle area and northern area was 34.1 ◦C, 28.8 ◦C, 31.8 ◦C and
30.4 ◦C, respectively. In the winter, the above four soil temperature indices showed that
there was no significant difference in soil temperature between the middle and northern
areas of the OAVS, and the relationship of soil temperature between the four areas was
as follows: open field > southern area > middle area ≈ northern area. Taking the average
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daytime soil temperature as an example, the soil temperature in the above four areas was
6.3 ◦C, 3.7 ◦C, 3.3 ◦C and 3.3 ◦C, respectively.

Figure 11. Marginal distribution curve data graph of soil temperature in summer and winter;
(a) average daily soil temperature; (b) average daytime soil temperature; (c) average nighttime soil
temperature; (d) daily extreme soil temperature.

3.2. Validation of ECOTECT Simulation

In order to verify the correctness and reliability of the calculated results of the estab-
lished OAVS simulation model, combined with the previous test results, the measured
values of each measurement point in the OAVS were compared with the simulated values.
As Autodesk Ecotect Analysis 2011 is a simulation software based on the mean value
of meteorological data for many years in the past, in order to avoid differences between
the measured solar radiation intensity (Em) and the average solar radiation intensity for
many years, the average daylighting rate (R) was adopted for verification in this paper.
The average daylighting rate (Rs-avg) and relative error (RE) obtained by simulation were
calculated according to Equations (3) and (4).

Rs-avg= Es-in/Es-out (3)

E = (R s-avg − Rm-avg

)
/Rm-avg (4)

where Es-in is the simulated value of the solar radiation intensity at the measuring point
inside of the OAVS [MJ⁄(m2·d)], Es-out is the simulated value of the solar radiation intensity
at the measuring point outside of the OAVS [MJ⁄(m2·d)] and Rs-avg is the simulated value
of the average daylighting rate (%).

Table 2 shows the comparison results between the measured values and simulated
values. The measured values of each measurement point are in good agreement with the
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simulated values, and the RE between them are all less than 10%. The simulation results
are relatively reliable, indicating that the established OAVS model meets the simulation
requirements and can be used for subsequent simulation studies.

Table 2. Comparison between simulated and measured R at each measuring point.

Season(s) Area(s)
Measured
Value/%

Simulated
Value/%

Relative
Error/%

Summer
Southern area 20.5 22.1 7.8
Middle area 66.6 60.8 −8.7

Northern area 22.7 21.0 −7.5

Winter
Southern area 26.4 28.6 8.3
Middle area 24.7 25.5 3.2

Northern area 19.7 18.2 −2.5

3.3. Results of OAVS Light Environment Simulation Analysis
3.3.1. Average Daily Solar Radiation

Figure 12 shows the distribution of ™average daily solar radiation intensity in the
north–south direction right below the OAVS PV panel and between the two adjacent PV
panels. It can be seen from the figure that the average daily radiation intensity inside the
OAVS has an obvious gradient change. In the summer, the intensity in the north and south
areas was low and the intensity in middle area was high. In winter, the intensity in the
southern area was high, while the intensity in the other two areas was low.

Figure 12. Cloud images of average daily solar intensity; (a) simulated cloud image in summer;
(b) simulated cloud image in winter.

Figure 12a shows that the average daily radiation intensity in the canopy and below
areas of the OAVS was between 1.88 and 5.58 MJ/(m2·d) in the summer. The average daily
radiation intensity in the southern, middle and northern areas was 1.94~2.72, 2.72~5.58 and
1.88~4.76 MJ/(m2·d), respectively. On the whole, the average daily radiation intensity of
the three internal areas was the highest in the middle area, and the average daily radiation
intensity of the northern area of the middle area was greater, but there was no significant
difference between the other two areas. Figure 12b shows that the average daily radiation
intensity in the canopy and below areas of the OAVS that were not affected by side light
was between 0.68 and 1.40 MJ/(m2·d), and the overall average daily radiation intensity
was small in the winter. The average daily radiation intensity in the southern, middle
and northern areas was 0.73~1.40, 0.80~1.78 and 0.68~0.81 MJ/m2·d), respectively. On
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the whole, the southern area had the highest daily average radiation intensity of the three
internal areas, while the other two areas had no significant difference.

3.3.2. Average Daily Sunshine Hours

Figure 13 shows the distribution of the average daily sunshine hours in the north–
south direction right below the PV panel of the OAVS and between the two adjacent PV
panels. On the whole, the variation rule is similar to the average daily solar radiation. It
can be seen from the figure that the average daily sunshine duration inside of the OAVS
had an obvious gradient change. On the whole, the OAVS in the summer showed a rule of
short duration in the northern and southern areas and long duration in the middle area. In
the winter, the OAVS showed a pattern of slightly longer duration in the southern area and
shorter duration in the other two areas.

Figure 13. Cloud images of average daily sunshine hours; (a) simulated cloud image in summer;
(b) simulated cloud image in winter.

Figure 13a shows that the average daily sunshine duration in the OAVS was between
0.10 and 11.12 h in the areas below the crop canopy and unaffected by side light in the
summer. The average daily sunshine duration in the southern, middle and northern areas
was 0.78~2.57 h, 2.57~11.12 h and 0.10~9.27 h, respectively. In general, the average daily
sunshine hours of the three internal areas were the largest in middle area, and the average
daily sunshine hours in the northern part of the middle area were greater, while there was
no significant difference between the other two areas. Figure 13b shows that the average
daily sunshine hours of the crop canopy and the areas below the OAVS that were not
affected by side light ranged from 0.00 to 2.72 h, and the overall average daily sunshine
hours were small in the winter. Among them, the average daily sunshine hours in the
southern, middle and northern areas are 0.00~2.72, 0.00~2.64 and 0.00~0.55 h, respectively.
On the whole, the southern area had the largest average daily sunshine hours, while the
other two areas had no significant difference.

3.3.3. Average Daily Shading Rate

The variation in solar radiation intensity in the OAVS caused by the shading of
the PV panel obviously affects the microecological environment of the system, and the
shading rate (S) can be used to characterize the shading rate of the PV panel on the solar
radiation intensity of the crop canopy or ground. The internal shading rate of the OAVS
was calculated according to Equation (5), where the sum of the shading and lighting rate
is 1.

S = (E s-out−Es-in)/Es-out (5)
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Figure 14 shows the distribution of the average daily shading rate in the summer and
winter in the north–south direction directly below the OAVS PV panel and between the two
adjacent PV panels. It can be seen that there was an obvious gradient change in the internal
shading rate of the OAVS. In the summer, the shading rate in the northern and southern
areas was large, while the shading rate in the middle was small. In the winter, the shading
rate in the southern area was small, while the shading rate in the other two areas was large.

Figure 14. Cloud images of average daily shading rate; (a) simulated cloud image in summer;
(b) simulated cloud image in winter.

Figure 14a shows that the shading rate of the canopy and the area below the crop in
the OAVS which was not affected by side light ranged from 3.3% to 100% in the summer.
Among them, the shading rate of the southern area was 77.6%~92.4%; the shading rate of
the middle area was between 3.1% and 77.6% and the shading in the northern area was
between 20.6% and 100%. On the whole, the southern area had the largest shading rate
among the three interior areas, while the other two areas had no significant difference.
Combined with agricultural production, the northern part of the middle area is more
suitable for the growth of non-shade tolerant crops. Figure 14b shows that the shading
rate of the OAVS which was not affected by side light ranged from 63.9% to 100%, and the
overall shading rate was large in the winter. Among them, the shading rate of are area
was 69.4%~100%; the shading rate in the middle area was 69.4%~100% and the shading in
the northern area was 93.0%~100%. On the whole, the southern area was the least shaded
among the three internal areas, while the other two areas had no significant difference.

4. Discussion

4.1. Temporal Variation in Light Environment in OAVS

For the OAVS, PV panels are an important factor affecting the light factor and have
a significant impact on the agrivoltaic environment. The intensity of solar radiation is
strongest at noon, weakest in the morning and evening and reaches its maximum around
12:00 noon. In addition, the solar radiation intensity is also affected by the weather and
clouds. The variation in the solar radiation intensity fluctuates obviously on cloudy days,
and the solar radiation intensity is significantly higher on sunny days than on cloudy days
due to the influence of cloud thickness.

In the temperate regions of the northern hemisphere, the sunlight is strongest in the
summer and weakest in the winter. The length of day and night is also different due to
the change in the sun’s height, and the solar radiation intensity changes periodically with
the seasonal changes. Overall, OAVS PV panels have a significant impact on the interior
light environment. In the summer, the lighting rate in the northern and southern areas
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is only about 20% of that in the open field, while in the middle area, it can reach about
65%. Winter is relatively small, only about 20% in three areas. The solar altitude angle in
eastern China is low in the winter, and the solar radiation intensity inside the system is
relatively weak, while the opposite is true in the summer. Our results support previous
findings that the AVS has a cooling function [41] but has a large impact on daylighting
capacity and thus agricultural production effectiveness (PV + kiwifruit [42], PV + coffee [43],
PV + potato [14]). In conclusion, the effectiveness of the OAVS in reducing solar radiation
intensity level depends on the time of day and solar angle under the condition of a certain
spatial structure and shape.

4.2. Spatial Variation in Light Environment in OAVS

According to experiment and simulation results, the spatial light environment of the
OAVS is similar to that of the forest light environment [44]. Because PV panels strongly
consume light availability and produce a strong vertical light environment gradient, this
vertical light environment gradient has an important impact on the light competition of
crops under PV panels, and thus affects the growth of crops. Taking the middle area as an
example, the higher the height, the higher the photosynthetic activity of crops, the better
the ability to use bright light; the photosynthetic activity of crops in the middle and bottom
of the canopy is low, but the ability to adapt to low light is strong. The vertical gradient
light environment in the southern and northern areas is opposite to that in the middle area.
The higher the height, the less suitable for crop growth.

On the horizontal gradient, due to the influence of the PV panel spatial structure,
solar altitude angle and other factors, as well as the difference in surface roughness and
terrain height caused by precipitation, the acceptance of solar radiation on the surface
varies greatly. Our research results show that the OAVS can reduce air temperature and
soil temperature to a certain extent, mainly because the PV panel shading reduces the
solar radiation received by the ground and the solar radiation temperature, so that the
air temperature and soil temperature are reduced to a certain extent. Our findings are
consistent with many previous studies on the effect of shading structure on temperature.
For example, Middel et al. found that different building shadows could reduce the daytime
solar radiation temperature by more than 17 ◦C [45].

4.3. Limitations and Future Research Directions of This Study

The study has several limitations. Firstly, the authors only studied the influence of
continuously laid PV panels on the internal photothermal environment of the OAVS under a
certain span and height. Expanding the test scope to OAVS with different photovoltaic panel
laying densities, photovoltaic array spans and heights will produce different photothermal
environments, which will have a different guiding significance for agricultural production,
and also contribute to the standardization of the photovoltaic agricultural industry. At
present, there are few OAVS with different spatial structure forms, which will be realized
by transforming existing OAVS in the later stage.

This paper only analyzed the photothermal environment and did not establish the
response mechanism of agricultural production to the environment based on the environ-
ment. In the follow-up study, environmental analysis and agricultural production can be
combined to explore further.

The meteorological data imported in Autodesk Ecotect Analysis 2011 are the average
data of nearly 30 years, so there are some differences between the simulated data and the
data of the year of the environmental test. Another limitation is that the software takes a
long time to compute.

5. Conclusions

The Rm-avg in the middle area was 66.6% in the summer, while the Rm-avg in the other
two areas was about 20%. In the winter, the light environment in the southern area was
slightly better, and the Rm-avg can reach 26.4%, while the Rm-avg in the three areas was
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maintained at about 20%. The variation in the thermal environment in three areas was
consistent with that in the light environment. The thermal environment of the OAVS middle
area in the summer was better than that of the other two areas. The thermal environment
of the southern area was better than that of the other two areas in the winter.

The OAVS optical environment model in eastern China was established, and the
Simulated values were basically consistent with the experimental values at each test point,
with the relative error within 10%. The constructed OAVS optical environment model can
reflect the distribution of the optical environment factors in the OAVS. The simulation
results show that the effectiveness of the OAVS in reducing the solar radiation intensity
depends on the time of day and the solar angle. On the spatial scale, because the PV panels
strongly consume the availability of light, the system produces a strong horizontal and
vertical gradient of light environment.

The experimental method and simulation model can be applied to other regions of
different latitudes and longitudes and specific climate conditions, so as to use the measured
and simulated data to guide existing agricultural production. At the same time, using
the simulation model, the optical performance of the photovoltaic agricultural system
with a new structure can be obtained, so as to further guide the architectural design and
agricultural production of the photovoltaic agricultural system.

Considering the effect of the OAVS agricultural production, the system’s reasonable
daylighting capacity is of great significance in engineering design. Because the power
generation benefit is far greater than the agricultural production benefit, problems such as
the optimal laying density of PV panels have not been solved. Therefore, this study can be
used as a reference for further research on optimal PV panels laying density.
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Abstract: In the past decade, an unmanned aerial spraying system (UASS) was applied more and
more widely for low-volume aerial pesticides spraying operations in China. However, UASS have
a higher drift risk due to more fine droplets sprayed with a higher working height and a faster
driving speed than ground sprayers. Study on UASS spray drift is a new hot spot within the field
of pesticide application technology. The field test bench was originally designed and applied for
the measurement of the spray drift potential of ground sprayers. No methodology using the test
bench for UASS drift evaluation was reported. Based on our previous study, field drift measurements
of an eight-rotor UASS were conducted using three techniques (test bench, ground petri dish, and
airborne collection frame) in this study, and the effects of meteorological parameters and nozzle
types were investigated, to explore the applicability and the feasibility of the test bench used in UASS
field drift evaluation. The test bench is proven promising for direct drift determination of UASS and
the described methodology enabled classification of different UASS configurations. Higher wind
speeds and finer droplets produced higher drift values. The faster the wind speed and the lower the
humidity, the more the spray drift. The test bench can reduce the site requirements and improve the
efficiency of the field drift test.

Keywords: unmanned aerial spraying system (UASS); spray drift; test bench; petri dish; droplet size;
wind speed; nozzle; cumulative drift percentage; correlation analysis

1. Introduction

In the past 10–15 years, the unmanned aerial spraying system (UASS), or unmanned
aerial vehicle (UAV) sprayer, was widely used worldwide as a new type of efficient plant
protection machinery [1,2]. Especially in China, UASSs replaced manual sprayers with
low efficiency, such as knapsack sprayers and sprayer guns. These aerial sprayers are
flexible and easy to operate, and have a lot of unique advantages in scenarios where ground
sprayers are difficult to access, i.e., paddy fields, hilly areas, and fruit trees planted in
disorder. They can also reduce the chemical toxicity for operators effectively. According
to the statistics from DJI and XAG, two leading Chinese manufacturers, the marketing
holdings of agricultural UAV used for spraying and broadcasting exceeded 160 thousand
and the annual working area reached 93 million ha all over China in 2021.

1.1. UASS Spray Drift

Under the combined influence of flying platform load capacity, spraying system per-
formance, regulatory policies, development and maintenance costs, operation convenience,
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and flexibility, the max take-off weight of UASS does not exceed 150 kg and the liquid tank
capacity does not exceed 100 L, currently. Therefore, a fine droplet (volume median diame-
ter, VMD < 200 μm) and a low application volume (<150 L/ha) are needed to guarantee
the pesticide active ingredients to be applied uniformly to targeted crops. UASS spraying
operations are normally classified into ultra-low volume application (ULV) and very-low
volume application (VLV) for field crops and tree crops. Compared to ground-based equip-
ment, UASS aerial operation normally generate a finer droplet with a faster flight speed and
a longer nozzle to target distance, contributing to an enormous risk of UASS’s drift. Spray
drift can be regarded as that part of a pesticide application that is deflected away from the
target area by the action of the wind. Control of drift is important because of the potential
exposure to pesticides of non-target organisms and structures outside a treatment zone and
where there is the possibility of such organisms being sensitive to very small quantities of
the pesticide materials [3]. Factors influencing the risk of spray drift vary, mainly including
spray nozzle design and performance, nozzle to target distance, atmospheric variables,
properties of the spray liquid, and the sprayer speed. Several studies on UASS spray drift
evaluation were conducted to explore the effects of application parameters, meteorology
conditions, and UASS configurations in different scenarios, such as field crops, orchards,
and vineyards [4–12].

1.2. Drift Testing Method

The testing method of spray drift mainly consists of the direct field test and the indirect
evaluation test. The field test is to measure the actual spray drift outdoors in typical field
conditions or over a defined surface including grass turf following the ISO 22866 standard
‘Methods for field measurement of spray drift’ (all standards cited in this paper were
introduced in Appendix A), [13] which is considered as the most realistic drift measurement
method. On the other hand, the evaluation test includes wind tunnel [14], drift test
bench [15,16], and droplets spectrum test [17,18]. The drift potential reduction percentages
are calculated by measuring the spray deposition or the droplet size distribution for
analysis [19–21].

1.3. Field Drift Test Bench

The field test bench was originally designed and applied for the measurement of
the spray drift potential of ground sprayers, including boom sprayers for field crops and
orchard airblast sprayers for tree crops. As an alternative methodology to simplify the
assessment of spray drift risk for different equipment, the Department of Agricultural
Forest and Environmental Economics and Engineering (DEIAFA) of the University of Turin
developed the drift test bench in 2007 [22] X. Wang et al. tested the spray drift potential of six
types of fan nozzles at two spraying pressures with a boom sprayer [23] Gil et al. evaluated
the influence of wind velocity and wind direction on the drift potential value using the
test bench [24]. In 2015, the ISO 22401 standard ‘Method for measurement of potential
spray drift from horizontal boom sprayers by the use of a test bench’ was published [15],
aiming at defining a test procedure to assess potential spray drift using the ad hoc test
bench. Nuyttens et al. and Balsari et al. measured the effects of application speed, boom
height, and spray characteristics on drift reduction potentials for boom sprayers using
the drift test bench under controlled indoor conditions [25–27]. The applications of the
test bench in quantifying the drift potential of airblast sprayers were also attempted by
Grella et al. [28,29]. However, no methodology using the test bench for UASS spray drift
evaluation was proposed and reported.

Under similar meteorological parameters, we compared the spray performance of
three different typical commercial UASS types with two nozzles types with an artificial
vineyard in 2019, and the characteristics of deposition, drift, and mass balance of unmanned
aerial spraying were obtained in our previous work [30]. Based on this methodology, field
drift measurements of an eight-rotor UASS were conducted using three techniques (test
bench, ground petri dish and airborne collection frame) in this study, and the effects of
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meteorological parameters and nozzle types were investigated, to explore the applicability
and the feasibility of the test bench used in UASS field drift evaluation.

2. Materials and Methods

2.1. Characteristics of Unmanned Aerial Spraying System

As shown in Figure 1, the unmanned aerial spraying system used in the field trials was
an eight-rotor electric UAV sprayer AGRAS MG-1P (SZ DJI Technology Co., Ltd., Shenzhen,
China), equipped with two types of nozzles: hollow cone nozzles (HC) TR 80-0067 and
air induction flat fan nozzles (AI) IDK 120-015 (Lechler GmbH, Metzingen, Germany).
The 8-rotor UASS has an unfolded size of 1460 mm long, 1460 mm width and 616 mm
height, and a propeller diameter of 53 cm, equipped with a 10 L spray tank. The net weight
(excluding battery) was 10 kg and the max take-off weight was 25 kg. Four nozzles were
mounted below the four lateral rotors of the UASS with a horizontal spacing of 146 cm.
Prior to all tests, the spraying system was calibrated to obtain a single nozzle flow rate of
0.30 L min−1 for the HC and 0.55–0.60 L min−1 for the AI, providing a nominal application
volume of 45 L ha−1 and 90–100 L ha−1, respectively. The UASS flew at an application
speed of 2.0 m s−1 and an appropriate working width of 2.0 m during the tests.

 
Figure 1. DJI AGRAS MG-1P UASS applied in spray drift tests.

2.2. Field Drift Test Bench

The field drift test bench (AAMS-Salvarani BVBA, Maldegem, Belgium) is constructed
according to the ISO standard 22401: 2015 about drift reduction. The test bench (TB) consists
of several aluminium modules (2.0 m length and 0.5 m width) that can be connected to
each other. Bench length depends on the configuration of the sprayer to be tested. With
the help of the pneumatic valves and the slideable aluminium covers, the collection trays
(0.5 × 0.2 m in size) positioned every 0.5 m along the bench can be closed and opened.
These trays with artificial collectors (plastic petri dishes) collect the drifting droplets from
the sprayer. The collection trays open when the boom of the ground sprayer touches the
dedicated stick or the switch is turned on, and the compressor with the pressure tank then
gets a signal to open them. The battery, compressor, and pressure tank are mounted on a
convenient trolley with two wheels.

In this study, we used five modules to compose a 10.0 m long test bench (Figure 2). It
was placed perpendicular to the flight direction of the UASS with the petri dishes (15 cm
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diameter, Nantong Fansibei Biological Technology Co., Ltd., Jiangsu, China) 0.3 m above
the ground. The first two collectors were positioned 2.0 m away from the edge of the
sprayed field (EOF). A total of 40 petri dishes from the test bench were obtained in a
single test.

 
Figure 2. Field drift test bench and artificial collectors for UASS spray drift measurement.

2.3. Test Site and Sampling Layout

UASS spraying applications were performed at Beijing TT Aviation Technology Co.
Ltd., Machikou town, Changping district, Beijing, China (40◦11′30” N; 116◦10′10” E). The
test site was a flat open field with no obvious obstacles within 200 m, covering a total area
of about 1000 m2. The sampling layout is shown in Figure 3. An artificial vineyard in a size
of 16 m length, 20 m width, and 2 m height, and three airborne drift collection frames (ACF)
in a size of 5.5 × 2.0 m, built in our previous spray deposition, drift, and mass balance
study [30], were utilized for these trials.

Except for the test bench, ground petri dish and airborne drift collection frame were
applied in order to measure ground spray drift and airborne spray drift, respectively. They
were arranged according to the procedure used by Wang et al. [30]. Ten 15 cm diameter
plastic petri dishes were placed at 3, 5, 10, 15, and 20 m from the edge of the treated field in
the downwind direction. Several metal plates were arranged on the ground to carry the
petri dishes, ensuring they remained on the same plane. A total of 50 ground petri dishes
(GPD) were collected for each application. Additionally, three frames were positioned
parallel to the UASS path with an interval of 5.0 m at 2.0 m downwind from the EOF.
Airborne drift collectors, polyethylene (PE) tubes (2 mm in diameter and 2.0 m long), were
fixed horizontally on the frame from a height of 0.5 m with an interval of 0.5 m. Thus, thirty
PE tubes were obtained for each application.

In order to make full use of the stable natural wind, the artificial vineyard row was set
in a northwest–southeast direction according to the local historical wind data, and the metal
plates carrying the ground petri dishes and the test bench were arranged symmetrically on
both sides of the artificial vineyard. The sampling layout could be quickly switched to start
the subsequent trials when the wind direction was reversed. Weather data, such as wind
speed and direction, as well as air temperature and relative humidity (RH), were recorded
at a sample rate of 1 Hz using a three-dimensional ultrasonic anemometer WindMaster
(Gill Instruments, New Milton, UK) and a weather sensor 350-XL (Testo SE & Co. KGaA,
Titisee-Neustadt, Germany) mounted 2 m above the ground.
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Figure 3. UASS spray drift measurement arrangement using three types of collectors: test bench,
ground petri dish and airborne collection frame, and an artificial vineyard [30].

2.4. Experimental Methodology

In this work, we performed 13 tests for each nozzle type using the eight-rotor UAV
sprayer MG-1P. Thus, twenty-six trials were totally conducted at wind speed from 1.61 m s−1 to
5.22 m s−1 and classified into three wind speed ranges: lower wind speed (LWS, <3.0 m s−1),
medium wind speed (MWS, 3.0 ≤ 4.0 m s−1), and higher wind speed (HWS, ≥4.0 m s−1).
The flight height of UASS was 3.5 m above the ground and 1.5 m above the top of the
artificial canopy. A fluorescent tracer dye pyranine (Simon & Werner, Germany) was
dissolved in tap water at a concentration of 0.1% to prepare the spray liquid. The pyranine
aqueous solution was sprayed at a pressure of 0.3 MPa during all trials. Spray drift
measurements in this study were conducted in acceptable atmospheric conditions in the
following ranges: (a) wind speeds of at least 1.0 m s−1 and no more than 10% of wind speed
measurements should be less than this value; (b) mean wind direction at 90◦ ± 30◦ to the
UASS flight routes and no more than 30% of results shall be 90◦ ± 45◦; and (c) temperatures
of 5–35 ◦C.

Even if Grella et al. [28] suggested to use the test bench in nearly absence of wind,
and more recently, authors found better results carrying trials indoors [31], due to the
detrimental effect of environmental variables [24]; all experimental procedures were in
according with both ISO 22866 standard [13] and our previous study in 2021 [30], and
details would not be repeated in this paper. The test bench control system was activated
to open the sliding cover while the UASS was in operation 20 m prior to the collector
array. The test bench was then closed after the first route was performed, and only sampled
the droplets from the first route, while the ground petri dishes and the airborne tubes
collected the spray drift from all three passes during the application process. A four-rotor
drone PHANTOM 4 PRO (SZ DJI Technology Co., Ltd., Shenzhen, China), equipped with
a complementary metal-oxide-semiconductor (CMOS) sensor, with a size of 1 inch and a
resolution of 20 megapixels, was hovering at 30 m height to record the whole process of
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flight. All samplers for spray drift were collected within less than 10 min after each test
and stored in a box protected from light exposure in order to minimize degradation.

2.5. Sample Processing

In the laboratory, each petri dish collected from the test bench and the ground plates
was filled with 60 mL of deionized water and was oscillated for 10 min using an or-
bital shaker TS-1000 (Haimen Kylin-Bell Lab Instruments Co., Ltd., Nantong, China) at
200 r min−1 (Figure 4). For an airborne drift collector, 100 mL of deionized water was added
into the Ziplock bag containing PE tube, and then the bag was placed in an ultrasonic
cleaner KM-36C (KJM Lab Instruments, China) for 5 min. The absorption of the tracer
eluent was determined with a fluorescence spectrophotometer HITACHI F-2700 (Hitachi
High-Technologies Corporation, Tokyo, Japan). The measuring configurations were set as
follows: the voltage of 650 V; the excitation wavelength of 400 nm and emission wavelength
of 505 nm; and the slit width of 15 nm.

Figure 4. Sample processing procedures of UASS spray drift collectors.

2.6. Droplet Size Measurement

Based on the ISO standard 25358 [17], the droplet size spectrum was measured using a
laser diffraction system SprayTec (Malvern Panalytical Ltd., Malvern, UK) in the College of
Agricultural Unmanned System, China Agricultural University after field trials. The two
types of tested nozzle were fixed 0.5 m above the analyzer between the laser transmitter
and the receiver. The spray liquid same with field test was sprayed at 2.5, 3.0, and 4.0 bar
with at least 5 valid replicates. The 10th percentile diameter (Dv0.1), VMD (Dv0.5), 90th
percentile diameter (Dv0.9), relative span (RS), and spray volume fractions generated with
droplets finer than 75, 100, and 200 μm (V75, V100, and V200) were obtained via Spraytec
software for Windows V3.30 (Malvern Panalytical Ltd., Malvern, UK).
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2.7. Calculation of Spray Drift Values
2.7.1. Spray Drift Percentage

According to ISO standards [13,15], the spray drift percentage (DP) accounted for
the actual applied volume from the reading of the fluorimeter of each collector can be
calculated in accordance with Equations (1)–(3).

Dij =

(
ρsmpl − ρblk

)
× Vdil

ρspray × Acol
(1)

DPij =
Dij

(DV/100)
× 100% (2)

DV =
q × 10000
B × v × 60

× 100% (3)

where Di is the spray drift deposit on a single collector i of collector type j (μL·cm−2); DPij

is the DP on a single collector i of collector type j (%); DV is the applied volume (L·ha−1);
ρsmpl is the f1uorimeter reading of the sample; ρblk is the is the fluorimeter reading of the
blank control; Vdil is the dilution liquid volume used to solute tracer from collector (L);
ρspray is the fluorimeter reading of the tank sample; Acol is the collector area (cm2); q is the
total flow rate (L·min−1); B is the swath width (m); and v is the flight speed (m·s−1).

2.7.2. Cumulative Drift Percentage

Cumulative drift percentages (CDP) of the three types of collector can be calculated
according to Equation (4) [13]. For this study, CDPB and CDPG are the cumulative drift
percentages obtained from the field drift test bench and the ground petri dish, respec-
tively, while CDPA is the cumulative airborne drift percentage from the PE tube of the
collection frame.

CDPj =
∫ b

a
DP(x)jdx (4)

where CDPj is the cumulative drift percentage for the collector type j; x is the downwind
distance from the EOF or the height from the ground (m); DP(x)j is the drift percentage as a
function of downwind distance or height for the collector j (%); and a and b are the start
and the end point of the sampling interval, respectively (m).

2.7.3. Drift Reduction Percentage

The drift reduction percentage (DRP, %) derived from CDP value was calculated via
the following expression, according to the ISO 22369-1 [32].

DRP =

(
1 − CDPtst

CDPref

)
× 100% (5)

where CDPtst was the CDP value for each tested configuration; CDPref was the CDP
value for the reference configuration, which is hollow cone nozzle trial for nozzle type
comparison. The reduction class was also defined by the ISO 22369-1 as follows: A ≥ 99%,
B 95 ≤ 99%, C 90 ≤ 95%, D 75 ≤ 90%, E 50 ≤ 75%, and F 25 ≤ 50%.

2.8. Statistical Analysis

All the statistical analyses were performed using IBM SPSS Statistics for Windows
V22 (IBM Corp., Armonk, NY, USA). Both two-way and three-way analysis of variance
(ANOVA) were applied to investigate the effects of downwind distance, nozzle type, and
wind speed via the two different collectors. In all trials, the mean values were compared
using the Duncan’s post hoc test. Statistical significance in all cases was when p < 0.05.
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3. Results

3.1. Meteorology Conditions and UASS Operation Parameters

Table 1 presents mean values of meteorological conditions and actual operation pa-
rameters for each treatment and replicate. During field tests, the temperature ranged from
26.4 ◦C to 34.3 ◦C and the RH was between 11.8% and 35.5%. The average wind speed
recorded was 1.61–5.22 m s−1, with an average wind direction (degrees from the ideal
direction) between −35.4◦ and 42.6◦. Field trials were classified into lower wind speed
(HC1-HC4 and AI1-AI7), medium wind speed (HC5-HC10 and AI8-AI10), and higher wind
speed (HC11-HC13 and AI11-AI13) according to the mean value of wind speed for further
analysis. Consequently, atmospheric conditions monitored met the requirements of ISO
standard [13].

Table 1. Meteorological conditions and experimental parameters of all spray drift tests.

Treatment and
Replicates

Temperature
(◦C)

Relative
Humidity (%)

Wind Speed
(m·s−1)

Wind Direction (Degrees
from the Ideal Direction)

Total Output (L
min−1)

Flight Speed
(m·s−1)

Applied Volume
(L·ha−1)

HC1 33.9 33.0 2.19 −1.5 1.77 2.15 45.7
HC2 34.1 31.5 2.19 28.8 1.21 2.13 47.3
HC3 32.4 33.8 2.63 4.9 1.21 2.10 48.1
HC4 33.2 25.7 2.65 2.8 1.21 2.16 46.6
HC5 31.7 18.7 3.15 3.7 1.24 3.08 33.5
HC6 29.9 13.4 3.28 28.7 1.24 2.68 38.5
HC7 34.1 28.9 3.35 38.4 1.77 2.16 45.5
HC8 32.2 30.6 3.81 9.4 1.77 2.09 47.0
HC9 33.1 29.1 3.93 31.2 1.77 2.16 45.5
HC10 32.2 31.4 3.97 22.4 1.77 2.12 46.3
HC11 33.7 20.9 4.77 31.0 1.21 2.11 47.9
HC12 31.2 23.7 5.11 23.9 1.21 2.07 48.8
HC13 32.3 16.8 5.22 42.6 1.24 2.61 39.6
AI1 30.3 35.1 1.61 −25.1 3.29 2.16 84.6
AI2 30.2 35.5 1.75 −16.9 3.29 2.12 86.2
AI3 32.0 32.9 1.96 −25.4 3.29 2.11 86.4
AI4 34.2 17.1 2.32 −32.5 2.37 2.05 96.2
AI5 33.6 34.7 2.59 −35.4 3.29 2.15 85.0
AI6 34.3 19.4 2.65 15.8 2.37 2.04 97.0
AI7 33.7 16.9 2.82 −12.2 2.37 2.00 98.6
AI8 31.6 11.8 3.79 −35.3 2.40 2.00 100.0
AI9 30.7 14.4 3.89 −23.3 2.40 2.96 67.5

AI10 34.2 17.1 3.93 6.3 2.37 2.12 93.0
AI11 32.3 18.1 4.41 6.3 2.37 2.11 93.8
AI12 33.3 13.0 4.43 −16.4 2.40 2.00 100.0
AI13 26.4 22.6 4.48 35.9 3.29 2.00 91.4

From the operation video captured by the photograph drone, flight speed for most of
trials ranged from 2.0 m s−1 to 2.2 m s−1, except for HC5, HC6, HC13, and AI9, with a bit
higher speed. UASS’s total output was found between 1.21 L min−1 and 1.77 L min−1 for
HC trials, and between 2.37 L min−1 and 3.29 L min−1 for AI trials. Therefore, the applied
volume was achieved at 38.5–48.8 L ha−1 for HC trials and at 84.6–100.0 L ha−1 for AI
trials, while higher flight speed contributed to lower applied volume for two trials (HC5:
35.5 L ha−1 and AI9: 67.5 L ha−1).

3.2. Droplet Size Spectrum

Table 2 shows the mean values of droplet size spectrum parameters Dv0.1, Dv0.5, Dv0.9,
RS, V75, V100, V200, and the spray quality classification. Droplet size (Dv0.1, Dv0.5, and
Dv0.9) varied with the nozzle type and the pressure. The highest value of VMD (408.4 μm)
was obtained at 2.5 bar for HC, while the lowest value (94.6 μm) was obtained at 4.0 bar
for AI, indicating a huge difference between these two nozzles. The RS values were
found higher for AI (1.64) than HC (1.22). Huge differences were also found between
the two nozzles for droplet size distribution parameters V75, V100, and V200, which
were proven to be instructive indicators for evaluating spray drift potential in several
publications [4,7,18,33]. For all the HC replicates, most of droplets were smaller than
200 μm in diameter (97.6%), and more than half (54.7%) of droplets have a size lower than
100 μm, and 31.8% of droplets were smaller than 75 μm in diameter. For the AI nozzle, V75
and V100 did not reach a proportion of 10%, and only about 20% of droplets had a diameter
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lower than 200 μm. The spray quality of the HC nozzle at 4.0 bar, and the AI nozzle at 2.5
and 3.0 bar was classified into three categories, ‘Very fine’ (VF), ‘Very Course’ (VC), and
‘Course’ (C), respectively.

Table 2. Droplet size spectrum and spray quality classification of the hollow cone nozzle and the air
induction nozzle used in tests.

Nozzle Model Replicate No.
Pressure

(Bar)
DV0.1
(μm)

DV0.5
(μm)

DV0.9
(μm)

RS V75 (%) V100 (%) V200 (%)
Spray

Quality 1

TR 80-0067, HC 1–13 4.0 45.5 94.6 161.4 1.22 31.8 54.7 97.6 VF

IDK 120–015, AI 1/2/3/5/13 2.5 130.3 408.4 798.1 1.64 2.9 5.9 19.1 VC
4/6/7/8/9/10/11/12 3.0 124.8 352.6 702.9 1.64 3.1 6.1 23.0 C

1 Spray quality was classified according to the ISO standard 25358: extremely fine (EF), VF, very fine (VF); fine (F);
medium (M); coarse (C); very coarse (VC); extremely coarse (EC); and ultra coarse (UC) [17].

3.3. Spray Drift Percentage

The spray drift percentage profiles at different downwind distances obtained from the
test bench using UASS with HC and AI nozzles at different wind speed ranges are shown
in Figure 5. Regardless of which nozzle was assembled, drift percentage from TB mostly
peaked at 2.0–5.0 m, and then declined sharply at 5.0–12.0 m downwind with a decreasing
decay rate for medium and higher wind speed; under lower wind speed, DP peaked within
3.0 m, followed by a progressive decrease. In the case of the HC nozzle, the highest DP
value at LWS ranged from 5% to 6% and DP dropped to less than 1% at 6.0–8.0 m. Buffer
zone width can be simply estimated with the criterion that a maximum drift fallout of 1%
was allowed, based on deltamethrin data by the Swedish EPA [34]. At MWS and HWS, the
peak of DP both exceeded 10% (MWS: 11.9%; HWS: 13.8%), but large differences and poor
repeatability between tests were found within a same wind speed range, highlighting the
uncertainty of the field spray drift measurements; DP could not fall to less than 1% until
the downwind distance reached 6.0 m or farther for most tests. Regarding the AI nozzle,
DP values did not surpass 2% for LWS, 5% for MWS, and 8% for HWS, and decreased to
less than 1% within 6.0 m. For both two-nozzle types, DP at LWS was obviously reduced at
different downwind locations compared to MWS and HWS. In addition, it can be found
from the flight parameters in Table 1 that UASS flied faster for HC5, HC13, and AI9, which
may be the main factor leading to a higher DP. Moreover, lower spray drift percentage
under HWS (AI13) could be obtained with a larger droplet size based on the droplet size
spectrum results presented in Table 2.

Figure 6 shows the spray drift percentage profiles at different downwind distances
obtained from the test bench using UASS with HC and AI nozzles at lower, medium, and
higher wind speed. In all trials, the spray drift percentage decreased continuously from the
EOF to 20 m downwind, with a sharp decline at the first 5 m and a steady decline after 10
m. Unlike the test bench, DP from GPD did not show a process of rising to a peak value
and then falling. In terms of HC nozzle, at LWS, the maximum value of DP ranged from 4%
to 8%, and DP fell to less than 1% at the distance range of 5–10 m; under MWS and HWS,
the highest DP value rose to 7–16%, the value dropped below 1% at 15 m downwind or a
farther distance. After the replacement of the AI nozzle, drift percentage at LWS did not
exceed 2% and declined to below 1% within 5 m; DP at MWS and HWS increased but could
not reach 7%, and decreased to less than 1% at 5–10 m. Similar to the TB results, the trial
AI13 also had a better anti-drift performance under the highest lateral wind speed, and
there was no obvious correlation between the drift value from GPD and the wind speed at
the same WSR, as well.
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Figure 5. Spray drift percentage profiles obtained from the test bench using UASS with HC and AI
nozzles at lower wind speed (LWS, <3.0 m s−1), medium wind speed (MWS, 3.0 ≤ 4.0 m s−1), and
higher wind speed (HWS, ≥4.0 m s−1).

Figure 6. Spray drift profiles obtained from the ground petri dish using UASS with HC and AI
nozzles at LWS, MWS, and HWS.

Airborne spray drift percentage profiles at different heights obtained from the airborne
collection frame for all the field trials are presented in Figure 7. In all tests, the highest
DP was found at the bottom of the frame, and the DP value decreased sharply from 0.5 to
2.0 m above the ground. Even though within a same wind speed range, DP values varied a
lot for different tests. With regard to HC nozzle, airborne DP for lower wind speed was
found more than 100% near the ground and fell to less than 1% at the height of 2.5–4.0 m;
DP for MWS and HWS increased markedly relative to LWS, with a peak value for HC9
close to 300% and values at all collected height more than 1% for HC5/6/7/9/13, implying
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the severe drift risk for fine droplets. In the case of the AI nozzle, the airborne drift was
reduced significantly, with DP value below 7% at LWS and below 20% at MWS and HWS.
Meanwhile, the measured airborne drift was also found to be higher for AI9 and lower for
AI13, in accordance with the results from the TB and GPD.

Figure 7. Airborne spray drift profiles obtained from the airborne drift collection frame using UASS
with HC and AI nozzles at LWS, MWS, and HWS.

The results obtained from the three-way ANOVA analysis are demonstrated in Table 3.
The effects of crosswind speed range, nozzle type, and sampling position on DPs were
extremely significant for all three techniques (p < 0.001), suggesting the abilities of TB, GPD,
and ACF to describe spray drift percentage were generally consistent.

Table 3. Significance obtained from three-way ANOVAs for DPs as affected by wind speed, nozzle
type, and sampling position (downwind distance or height above the ground) using UASS based on
test bench, ground petri dish, and airborne collection frame.

Sources of Variation
Test Bench Ground Petri Dish Airborne Collection Frame

p (>F) Sign. p (>F) Sign. p (>F) Sign.

Wind speed range (WSR) 0.000 *** 1, 2 0.000 *** 0.000 ***
Nozzle type (NT) 0.000 *** 0.000 *** 0.000 ***

Sampling position (SP) 0.000 *** 0.000 *** 0.000 ***
WSR × NT 0.000 *** 0.001 ** 0.000 ***
WSR × SP 0.000 *** 0.000 *** 0.013 *
NT × SP 0.000 *** 0.000 *** 0.000 ***

WSR × NT × SP 1.000 NS 0.880 NS 0.174 NS
1 Statistical significance level: NS p > 0.05, * p < 0.05, ** p < 0.01, and *** p < 0.001; 2 0.000 represents p value lower
than 10−4.

3.4. Cumulative Drift Percentage

Figure 8 provides cumulative drift percentages and drift values calculated from drift
results obtained from test bench and ground petri dish with HC and AI nozzles at LWS,
MWS, and HWS. The orders of the mean values under different combinations of wind
speed and nozzle type measured by the three methods were basically the same. Higher
CDP values were observed for HC-HWS and HC-MWS trials, followed by HC-LWS, AI-
MWS, and AI-HWS with similar values, and the lowest CDP was always found for AI-
LWS. The mean CDP of both HC-HWS and HC-MWS were significantly higher than the
other configurations, and no significant difference was found between any other two
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configurations. With respect to ACF, the CDP values with the HC nozzle were much
higher than the other two collection methods at the corresponding wind speeds (at least
three times the values obtained from TB and PD). However, this huge difference was not
presented when AI nozzles were used, although higher mean CDP was even found at MWS
instead of HWS, in agreement with the GPD results.

 
Figure 8. Cumulative drift percentage in mean ± standard error obtained from test bench, ground
petri dish, and airborne collection frame with HC and AI nozzles at LWS, MWS, and HWS. Different
letters above the bars represent significant differences among different configurations for each
measuring method (Duncan test, α = 0.05).

The two-way ANOVA results for CDPs as affected by wind speed and nozzle type via
the three measuring techniques in Table 4 show that WSR had a significant influence on
CDP value obtained from both TB and GPD (p < 0.05), but its effect on airborne CDP was
not significant (p > 0.05), while a good significant relationship was found between nozzle
type and CDP values measured via all three collectors (p < 0.01).

Table 4. Significance obtained from two-way ANOVAs for CDPB, CDPG, and CDPA, as affected by
wind speed, nozzle type based on test bench, ground petri dish, and airborne drift collection frame.

Sources of Variation
CDPB CDPG CDPA

p (>F) Sign. p (>F) Sign. p (>F) Sign.

Wind speed range (WSR) 0.016 * 1 0.029 * 0.243 NS
Nozzle type (NT) 0.000 *** 2 0.001 ** 0.000 ***

WSR × NT 0.166 NS 0.746 NS 0.387 NS
1 Statistical significance level: NS p > 0.05, * p < 0.05, ** p < 0.01, and *** p < 0.001; 2 0.000 represents p value lower
than 10−4.

3.5. Drift Reduction Percentage

Comparisons of drift reduction results calculated using CDP between the HC and AI
nozzle obtained from the three types of collectors can be seen in Table 5. Regardless of
tested wind speed, the highest drift reduction percentage was always found for the airborne
collection frame, followed by the test bench and the ground petri dish. For sedimenting
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drift, DRP results show lower values (less than 70%) at medium and higher wind speeds
(>3.0 m/s), indicating a better anti-drift performance was usually achieved at lower wind
speed when using the AI nozzle. However, there is not any similar trend for airborne spray
drift, and the AI nozzle can save 84.4–94.6% of spray drift compared to the HC nozzle.

Table 5. Drift reduction percentage and classification when using the AI nozzle based on test bench,
ground petri dish and airborne collection frame for the tested wind speed ranges.

DRP Source Wind Speed Range DRP (%) a Reduction Class b

Test bench
LWS 78.1 D
MWS 66.2 E
HWS 63.1 E

Ground petri dish
LWS 60.7 E
MWS 9.2 None
HWS 43.4 F

Airborne collection frame
LWS 94.2 C
MWS 84.4 D
HWS 94.6 C

a Drift reduction percentage values were calculated based on the HC treatment as the reference configuration.
b Classification determined by ISO 22369-1: A ≥ 99%, B 95 ≤ 99%, C 90 ≤ 95%, D 75 ≤ 90%, E 50 ≤ 75%, and
F 25 ≤ 50%.

3.6. Correlation Analysis Results

The results of the correlational analysis between CDP values and meteorology param-
eters for the two different nozzle type are presented in Figure 9 and Table A1. For HC
nozzles, CDP measured by all three techniques showed a significant positive correlation
with wind speed (p < 0.05, ρ > 0), i.e., the higher the wind speed, the higher the cumula-
tive drift percentage. In terms of relative humidity (RH) and wind direction, significant
correlations were only observed with the airborne CDP. The airborne CDP, meanwhile,
increased as the RH decreased (p < 0.05, ρ < 0) and as the degree from the ideal wind
direction increased (p < 0.05, ρ > 0), as well. For AI nozzles, both ground and bench values
were significantly positively correlated with wind speed (p < 0.05, ρ > 0), except for airborne
percentage. There was a significant negative correlation between CDP value and RH for all
three types of collectors (p < 0.05, ρ < 0), consistent with the airborne drift results of HC
nozzles. In general, under the test conditions of this study, the correlations between CDPs
and crosswind speed and RH were more pronounced, and significant positive and negative
correlations were presented, respectively. No relationships (p > 0.05) were detected between
CDP values and temperature for all settings in this study, and there was no significant
correlation (p > 0.05) between CDP and wind direction under most of circumstances. Corre-
lations between CDPs achieved from two ground collectors and meteorological parameters
were comparable. By contrast, the correlation results of airborne drift differed due to the
differences in the behaviors and distribution characteristics of airborne droplets.

In addition, Table 6 provides the intercorrelations among the three types of collectors
for spray drift. For HC nozzle trials, there was only a significant positive correlation
between CDP values obtained from TB and those from GPD (p < 0.01, ρ > 0), but no
significant correlation was found between TB results and ACF results and between GPD
results and ACF results (p > 0.05). For AI nozzle trials, all three combinations of results
were found to be significantly positive correlated with each other (p < 0.01, ρ > 0), showing
a good consistency of CDP value for the three types of collectors. Overall, these results
suggest that the correlation between each two-drift assessment technique differed when
using different types of nozzles.
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Figure 9. Heat map of Pearson’s coefficient correlation among cumulative drift percentages (respec-
tively, test bench, ground petri dish, and airborne collection frame) and meteorology characteristics
(temperature, relative humidity, wind speed, and wind direction).

Table 6. Correlation among CDP values obtained from different collectors (respectively, test bench,
ground petri dish, and airborne collection frame) for the HC and AI nozzle.

Nozzle Type
TB and GPD TB and ACF GPD and ACF

p (>F) Sign.a ρ b p (>F) Sign. ρ p (>F) Sign. ρ

HC 0.001 ** 0.812 0.134 NS 0.438 0.069 NS 0.519
AI 0.001 ** 0.816 0.005 ** 0.729 0.000 *** 0.946

a Statistical significance level: NS p > 0.05, ** p < 0.01, and *** p < 0.001. b Pearson’s coefficient of correlation.

4. Discussion and Conclusions

Filed drift measurements using the three techniques prove that the test bench is
also promising for direct drift determination of the unmanned aerial sprayer in windy
conditions (higher than 1 m/s), in addition to being used for spray drift potential evaluation
of boom sprayers and airblast sprayers when used in nearly absence of wind. The described
methodology enabled classification of different UAV sprayer configurations.

Regarding the distribution characteristics of spray deposition percentage, the results
measured by the three collectors were generally consistent, i.e., higher wind speeds and
finer droplets produced higher DP values and longer safe downwind distances or higher
safe heights. These results are in agreement with those obtained in previous studies related
to UASS spray drift [8,30,35]. However, unlike ground petri dish, DP from test bench
showed a process of rising to a peak value and then falling under high wind speeds,
and meanwhile, in the case of collecting only one route’s spray drift, did not decrease
substantially. This result may be explained by the fact that the sampling interval of TB is
small and more samples can be obtained for each test. Even though only a single route
was collected, a larger amount of direct drifted droplets could be captured to make up for
the shortfall in total applied volume, reflecting a higher collection efficiency of the field
test bench.

Similar to the DP results, wind speed range and nozzle type had a significant effect
on the CDP value measured by the three techniques. Particularly, the WSR did not affect
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the airborne CDP value significantly, and the aerial CDP of the HC nozzle was very high,
at least three times the values obtained from the other two techniques and six times the
AI nozzle results. A possible explanation for these results may be fine droplet behaviors.
Fine droplets tend to float in the air, and at a downwind distance of more than 2 m, most
of airborne spray would be in droplets < 100 μm [36]. Moreover, the collection efficiency
of the PE tube for small droplets produced by the HC nozzle is considerably higher than
that for large droplets from the AI nozzle. This leads to a too high airborne drift result for
the HC nozzle, so the significant correlation between WSR and airborne CDP cannot be
distinguished in the two-way ANOVA.

For sedimenting DRP results, a better anti-drift performance was usually achieved
at lower wind speed when changing nozzles to provide a coarser spray. However, the
findings of the current study do not support the previous research [29,37,38]. This study
defined three wind speed ranges. Lower spray drift was observed at low wind speeds,
but when the crosswind speed increased to 3.0 m/s, the effect of increased wind speed
on the increased drift value was not obvious. Tiny difference could be obtained between
MWS and HWS, and AI nozzle’s CDP measured by the GPD at MWS was even higher than
that at HWS. This resulted in a decrease in the DRP value when the wind speed increased.
However, more replicates are needed to verify whether this result is generalizable.

In general, both wind speed and humidity had significant effects on UASS spray
drift at different droplet sizes (Figure 9 and Table A1). The faster the wind speed and
the lower the humidity, the higher the drift value. These results are in line with those of
previous studies [4,39–42]. Furthermore, the correlations between the ground drift values
and various meteorological factors were consistent for TB and GPD, demonstrating the
feasibility of using TB to describe the ground drift characteristics. It is noteworthy that
the two ground CDPs were not correlated with RH for the HC nozzle’s fine spray, while
a significant negative correlation was found for the AI nozzle’s coarse spray. This could
be attributed to the combined effects of droplet size and humidity. Under the tested low
humidity conditions (11.8–35.5%), fine droplets evaporate faster, but they have longer
settling time, so regardless of how the RH changes, ground collector cannot collect those
evaporated droplets. Conversely, for coarse droplets with a longer lifetime, evaporation
would bring a reduction in droplet size during movement, increasing the amount of
drift [43]. In addition, the ACF is closer to where the droplet is released, and the fine
droplets are not completely evaporated when reaching the collector, so the amount of
evaporation is still directly related to the humidity. Moreover, as another important factor
impacting droplet evaporation, temperature has no significant correlation with CDP values
in this study (Table A1). This may be due to the narrow range of the temperature change
during the field tests (<10 ◦C).

With respect to the discordance of the correlation among CDPs obtained from different
collectors, there was no significant correlation between sedimenting drift value (TB or
GPD) and airborne drift value (ACF) when using HC nozzles (Table 6). These results
may be explained by the fact that fine droplets are prone to suspend in the air, drift
with the wind, and evaporate, and then the number of droplets can be collected under
the influence of changing meteorological conditions is also varying. The trends of the
spray drift distribution between the ground and the airborne collector are unlikely to be
coincident. Nevertheless, almost all droplets produced by AI nozzle sizes are greater than
100 μm (Table 2). Coarse droplets tend to sediment quickly, so the majority of drifting
droplets can be sampled by ground and airborne collectors.

In summary, the test bench can be closed in time after the end of one route’s opera-
tion to reduce dust contamination and avoid downwash airflow interference during tests,
and the airborne frame has similar advantages. In addition, the TB has higher collection
efficiency and reflects drift characteristics at a close downwind distance more comprehen-
sively, making the influence of different factors on the droplet distribution more obvious.
Therefore, the use of TB and ACF is able to diminish the sampling distance when compar-

74



Agronomy 2023, 13, 270

ing the drift risk of different sprayers and configurations, which can not only reduce the
requirements for the test site, but also improve the efficiency of the field test.

The external meteorological conditions normally have a serious impact on the com-
pletion of the field trials, which eventually leads to a reduction in the number of valid
replicates. In this study, more than 20 trials were conducted for each nozzle, but those trials
that did not meet the requirements of meteorological conditions, flight parameters, and
applied volume were discarded after careful evaluation. Therefore, the accuracy of the field
drift tests need to be improved in the further study by increasing the number of tests, find-
ing sites with more stable meteorological conditions, and strengthening pre-planning and
inspection during the tests. However, field drift test conditions are ultimately uncontrol-
lable, and direct measurements consume too much time, labor, and material costs. Further
work is required to explore the applicability and feasibility of TB in determining spray drift
potential of UASS under static wind conditions. A part of experiments was conducted
and the results are being processed and analyzed. It can be expected that TB used in this
method will further reduce the test conditions required for the UASS drift evaluation.
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Appendix A

ISO 22866: This International Standard establishes principles for the measurement of
droplet drift from all types of equipment designed for applying plant protection products.
Detailed specifications relate to tractor-mounted, trailed, and self-propelled agricultural
sprayers operating in arable field crops (boom sprayers) and in bush and tree (including
vines, hops, and fruit) crops (including broadcast air-assisted sprayers).

ISO 22856: This International Standard establishes general principles for the measure-
ment of spray drift potential in wind tunnels under controlled laboratory conditions, and
it is applicable where comparative assessment or classification of the relative spray drift
potential from spray generators or spray liquids is needed.

ISO 22401: This International Standard provides a test method to measure spray
sedimentation from horizontal boom sprayers using a test bench. The sedimentation
measure gives a value for potential spray drift. These measurements can be used to
compare different sprayer setups on the same sprayer.

ISO 25358: This standard specifies procedures for classifying droplet size spectra from
atomizers used in spraying for crop protection. It provides a reference system for defining
classes of droplet size spectra. Depending on their function principle and individual setup,
measuring systems for droplet sizing can give different results. This document provides a
means of comparing measured droplet size spectra to reference spectra and enables relative
comparisons of droplet size spectra obtained from different measuring systems.
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ISO 22369: All parts specify the drift classification of spraying equipment. ISO 22369-1
defines the spray drift reduction classes. The other parts specify the test procedures. The
object of these standards is to provide uniform procedures for the determination of the drift
reducing performance of spraying equipment.

Appendix B

Table A1. Relationships among cumulative drift percentages (respectively, test bench, ground petri
dish, airborne collection frame) and meteorology characteristics (temperature, relative humidity,
wind speed, and wind direction) for each nozzle’s 13 field trials (n = 13).

Nozzle Type CDP
Source

Temperature Relative Humidity Wind Speed Wind Direction
p (>F) Sign. a P b p (>F) Sign. ρ p(>F) Sign. ρ p (>F) Sign. ρ

HC
TB 0.576 NS 0.171 0.514 NS −0.199 0.045 * 0.564 0.188 NS 0.539

GPD 0.431 NS 0.239 0.319 NS −0.300 0.031 * 0.598 0.134 NS 0.663
ACF 0.685 NS 0.125 0.029 * −0.604 0.018 * 0.640 0.032 * 0.596

AI
TB 0.808 NS −0.075 0.038 * −0.579 0.002 ** 0.771 0.962 NS 0.015

GPD 0.746 NS −0.100 0.044 * −0.565 0.038 * 0.579 0.447 NS −0.231
ACF 0.984 NS −0.006 0.038 * −0.580 0.070 NS 0.517 0.471 NS −0.220

a Statistical significance level: NS p > 0.05, * p < 0.05, ** p < 0.01. b Pearson’s coefficient of correlation.
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Abstract: Off-target drift of crop protection materials from aerial spraying can be detrimental to
sensitive crops, beneficial insects, and the environment. So, it is very important to accurately
characterize weather effects for accurate recommendations on drift mitigation. Wind is the single-
most important weather factor influencing localized off-target drift of crop protection materials. In
drift sampling experiments, it is difficult to accurately characterize wind speed and direction at
a drift sampling location, owing to the natural variability of spray movement on the way to the
sampling target. Although it is difficult or impossible to exactly track wind movement to a target,
much information can be gained by altering the way wind speed and tracking is characterized from
field experiments and analyzed using statistical models of spray drift. In this study two methods
of characterizing weather were compared to see how they affect results from a statistical model of
downwind spray drift using field data. Use of a method that implemented weather averages over the
length of a spray run resulted in model-based estimates for spray tracer concentration that compared
well with field data averages. Model results using this method showed only a slight sensitivity to
changes in wind speed, and this difference was more pronounced further downwind. The degree of
this effect was consistent with field results. Another method that used single weather values obtained
at the beginning of each run resulted in an unexpected inverse relationship of residue concentration
with respect to increases in wind speed by sensitivity analysis and would thus not be recommended
for use in a statistical model of downwind spray drift. This study could provide a guideline for
general agricultural aviation analysis and unmanned aerial vehicle spray application studies.

Keywords: aerial application; drift control; agricultural aircraft; pesticide application

1. Introduction

Modern agriculture has seen significant innovation led by precision and site-specific
crop management since the late 1980s, primarily based on improvements in agricultural
mechanization that integrates information from global positioning systems (GPS), remote
sensing, and geographic information systems (GIS). Spatial detection methods can now
better characterize within-field variability of soils, nutrients, weed and insect pests, disease,
and yield. With the advancement of information and electronics technologies integrated
with artificial intelligence, automation and big data, precision agriculture is moving forward
to the next stage: smart agriculture [1]. In smart agriculture, agricultural production and
management advances to a new level supported by supercomputing, inter-networking,
machine or artificial intelligence, automation, and massive data resources in integrated
fashion to optimize crop production systems and resources.

Advanced technologies have been developed for spraying systems that target pests
precisely, thereby saving on pesticide costs with commensurate reduction in environmental
pressure. Even so, aerial spraying systems have not caught up with ground-based spraying
systems in their effectiveness for targeted spraying. By their nature, the best one can hope
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for is to limit spray application only to patches or small field areas. Advanced methods are
still required to mitigate off target spray drift, no matter which advanced technologies are
employed for site specific application.

Agricultural aviation began in 1906 by John Chaytor, who spread seed over a swamped
valley floor in Wairoa, New Zealand, using a hot air balloon with mobile tethers [2]. In 1924,
the first commercial operation of crop dusting was conducted in Macon, Georgia, USA, by a
company named Huff-Daland Crop Dusting, co-founded by a pilot Lt. Harold R. Harris,
who tested the system in McCook Field, Dayton, Ohio, USA [3]. Presently, aerial application
is used in the US for plant protection and is especially useful for covering large and remote
areas or where wet weather conditions preclude timely use of ground sprayers, primarily
across the Midwest and Midsouth US. This makes aerial application an indispensable
tool for ensuring high yields [4]. The National Agricultural Aviation Association (NAAA)
(Alexandria, Virginia, USA) defines this as an industry that “consists of small businesses and
pilots that use aircraft to aid farmers in producing a safe, affordable and abundant supply
of food, fiber and biofuel” while “aerial application is a critical component of high-yield
agriculture” (https://www.agaviation.org/aboutagaviation (accessed on 5 January 2023)).

There are some limits or challenges in aerial application of plant protection materials.
Off-target drift is one of them, which may cause economic loss and environmental damage.
So, in the past two decades scientists and engineers have investigated the factors and impact
of off-target spray drift in plant protection. For example, in the Mississippi Delta USDA
(United States Department of Agriculture), scientists have evaluated various nozzles for
drift control and tested a hydraulic pump with automatic flow controller for aerial variable-
rate spray studies [5]. The authors also collected meteorological data and studied the daily
change and probability of atmospheric stability for the likelihood of surface temperature
inversions [6–8]. Using these data, an algorithm was developed for a website, published
to guide aerial applicators on the timing to conduct spray application for avoidance of
off-target movement of spray parcels caused by temperature inversions [9,10].

Minimization of off-target drift from aerial- or ground- based spray systems [11] is
critical to reduce damage to off targeted crops and to mitigate environmental effects [12].
Drift minimization practices can also work to increase application efficiency. Methods
to mitigate off target movement of aerially applied agricultural materials have been well
documented [13–22]. Some research efforts focus on the prediction of drift [23–25] from
aerial spraying with several standards having been established [26,27]. Others are based
on optimized drift modeling from design of experiments [28,29].

Experimental assessment of off-target drift of crop protection materials continues to be
a challenge due in large part to highly variable environmental conditions. In their review
of spray drift assessment methods, Felsot et al. [30] outlined two spray drift situations:
the first is characterized as localized movement of agrochemical residues from target to
non-target sites. In this aspect, the in-swath spray deposition of a low-drift nozzle was
determined on the booms of Air Tractor 402B agricultural aircraft (Air Tractor Inc., Olney,
TX, USA) [28]. Further, the spray deposition and drift from the low drift nozzle were
characterized for aerial spray application of different application altitudes [31]. Using
airborne remote sensing the cotton injury was assessed by spray drift from aerially applied
glyphosate by spray deposition and drift sampling and measurement [32]. The second
involves concentration of residues within air masses under stable atmospheric conditions.
For the latter case, this mass of air with entrained chemical can drift long distances. In this
aspect, Fritz et al. monitored and documented atmospheric conditions over a six-month
period at two locations in Texas [22]. The measured meteorological data was used to relate
low-level temperature inversion with respect to time of day, duration, and other associated
meteorological conditions. Thomson et al. collected data to quantify atmospheric stability
throughout the day and showed consistent patterns of atmospheric stability occurring
primarily between the hours of 18:00 p.m. and 06:00 a.m. during summer months on
clear days at the Mississippi Delta latitudes [6,7]. Further, results verified correctness of
the three-degree rule in Arkansas when spraying on clear days in the summer months.
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Huang et al. determined atmospheric stability at different time intervals for determination
of aerial application timing to avoid the drift caused by temperature inversion [8].

Many controlled studies have used wind tunnels to assess the droplet spectra and
thus suitability of nozzles and spray mixtures for aerial and ground application [33,34].
Gil et al. developed a test bench that could examine effects of wind to complement drift
quantification methods in the field or laboratory [35]. The aim was to provide a simple
field method near a ground sprayer to obtain meaningful near-field drift data as a function
of weather conditions. In their study, it was found that drift potential was not significantly
influenced when trials were conducted at average wind velocities less than 1 m/s. Wind
speed and direction greatly influenced spatial distribution of spray sample recovered along
the length of the test bench.

For field studies on localized spray drift, wind speed and direction have been docu-
mented to be primary factors in downwind spray drift of crop protection materials, along
with height of application when using both aerial [28,31] and ground spray platforms [36].
Fritz et al. also indicated through field experiments that wind speed was the dominant
meteorological factor in transport of aerially applied sprays [37]. Wind effects have been
incorporated into simulations of downwind spray drift [24], which have been verified for
accuracy through field trials [24,38–40].

Owing to the difficulty in properly characterizing wind in drift studies, the study
presented herein compares two statistical methods for acquiring weather data to observe
their effect on statistically modeled downwind concentration of aerially applied spray
tracer. A sensitivity analysis on selected variables, including wind speed, was performed so
that their effects on modeled concentration could further be compared using both weather
acquisition methods.

2. Materials and Methods

2.1. Field Experiment

Spray tests were conducted over a 15-ha open field planted in Bermuda grass at the
USDA ARS, Stoneville MS, with downwind drift samplers placed at 100, 135, 200, and
320 m. Water mixed with Syl-Tac® adjuvant at standard mix of 0.25% v/v was sprayed rate
of 18.7 L/ha from an Air Tractor 402B aircraft (Air Tractor, Olney, TX, USA) through 56 CP-
09 straight stream (SS) nozzles (Transland LLC, Wichita Falls, TX, USA) at a release height
of 3.7 m, following the same procedures as indicated by Thomson et al. [5]. Rubidium
Chloride (RbCl) tracer was mixed in the tank and sampled and collected on mylar sheets
and used for analyzing spray swath patterns and off-target drift. To assure consistent
height of application, height of each pass was recorded using a Lasertech ULS laser (Laser
Technologies, Inc., Centennial, CO, USA). The CP-09 SS nozzles were set at a 30-degree
angle and operating pressure was 303 kPa corresponding to an approximate per-nozzle
flow rate of 2.4 L/min. Swath width was 18.3 m and aircraft speed was 56 m/s. Nozzle
parameters were set to closely match spray characteristics for a TeeJet® D6-46 hollow cone
tip [41]. Volume Median Diameter (VMD) (where half of the volume of spray contains
droplets larger than the VMD) was modeled to be 218 μm using the USDA ARS AATRU
models [42]. This droplet size indicates a large percentage of small droplets, and the
experiment was purposely set up to induce drift at long downwind distances. At this VMD,
41% of the spray volume indicated droplet diameter of 200 μm or less, and this is also
consistent with the nozzle setup used by Thomson et al. [41].

Spray samplers were oriented on the day of the experiment so that wind direction
was nearly perpendicular to the direction of aircraft travel. To collect enough sample at the
specified downwind distances, four passes of the aircraft were made for each run. After
each run, Mylar sheets were removed from stands (Figure 1) using clean rubber gloves
and toothpicks on the side of each sampling sheet to direct Mylar into its own zip-lock
bag. The samples were returned to the edge of the field and immediately placed into ice
chests where they were protected from light. Runs were repeated sixteen times. In the
laboratory, each sheet was shaken for 20 min within a rinse solution of 1% HNO3 (nitric
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acid solution), which was also used as a calibration blank on the AAnalyist 600 Atomic
Absorption Spectrometer (Perkin Elmer, Waltham, MA, USA). Results obtained from the
spectrometer for each sheet were determined in concentration units of ng/L.

 

Figure 1. Field sampling stand. Mylar sheets are held on the left bracket.

Weather data were recorded for each pass at 2-sec intervals using Kestrel 4500 weather
trackers (Nielsen-Kellerman, Boothwyn, PA USA); one was set to log weather data at the
beginning of each run, and one was read manually the instant spraying commenced. Using
dual weather trackers facilitated testing different methods of characterizing weather effects.
During the experiment, the air temperature ranged from 25 to 30 ◦C; relative humidity
ranged from 42 to 75%; wind speed ranged from 3.3 to 5.5 m s−1. The first 4 runs were
flown in an afternoon and testing continued the next day, significantly past time ranges
that would indicate stable atmosphere. Wind direction was from N to NE, perpendicular to
the flight-line.

Mean weather data recorded during each test run is shown in Table 1 in which all
weather variables were entered into the model. Depending on how weather data were
averaged for the comparisons presented herein, the actual values shown under each
heading will vary. Based on air temperatures at two heights and windspeed data recorded
at an adjacent tall tower [6,7], the average atmospheric stability ratio was determined as
−0.36 ◦Cs2/m2 indicating the desirable unstable atmospheric conditions. Thus, there was
no danger of entrainment of spray in an inversion layer, which would produce inaccurate
results for this spray drift study.
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Table 1. Meteorological data obtained during the spray tests.

Test Run *
Mean Air
Temp (◦C)

Mean Relative
Humidity (%)

Mean Solar
Irradiance
(kW/m2)

Mean Wind
Velocity
(m/s)

Mean Wind
Direction **
(Degrees)

1 29 44 0.6 4.8 2
2 29 43 0.5 5.0 −6
3 29 42 0.4 4.8 3
4 29 43 0.4 4.4 −3
5 25 75 0.7 5.5 −9
6 25 74 0.6 3.3 −9
7 27 64 1.0 4.0 −6
8 28 55 0.9 3.6 8
9 29 57 0.9 3.9 −17
10 29 55 1.0 4.3 −15
11 30 54 0.9 3.9 −19
12 30 56 0.8 3.3 −27
13 30 51 0.9 3.8 −22
14 30 51 0.4 4.1 −11
15 30 52 0.3 4.0 −32
16 29 52 0.3 3.9 −42

* Data for each run represented are an average of four flights/run. ** Wind Direction is relative to the sampling
line.

2.2. Statistical Analysis

Two methods of accounting for weather were compared. The first one averaged each
of the five weather variables at the start of each pass within a single run. This method is
indicated hereafter as Weather Method 1. The second method used a ten-minute average of
each weather variable within which all four passes were made. This method is indicated
hereafter at Weather Method 2.

PROC Mixed in SAS 9.4 provided a model-based solution for the chosen effects and
tested for significance of input variables on modeled downwind residue concentration. The
five weather variables and sampling distance were input to the model and the response
variable was residue concentration at each sampling location. Effective distance to a
sampler was adjusted for each run to account for changes in wind direction. A natural-
log (ln) transform was applied to the dependent variable ‘concentration’ and downwind
sampling distance. Using the ln transform gave the best model fit to actual residue data at
each sampling location, as verified with SAS runs of PROC GLM. Covariance parameter
estimates and non-significant variables showing little effect were progressively removed
from the model as their presence influenced results. This provided robust models by which
sensitivity analysis using two weather characterization methods could be achieved.

3. Results

Distance to the downwind sampler had a significant effect on the level of spray con-
centration at significance level of p = 0.01 for both weather methods. The solar radiation
intensity was also significant at p = 0.01. Interaction of wind speed and wind direction was
significant for Weather Method 1, as was the interaction of downwind distance and wind
direction at significance level of p = 0.05. Weather Method 2 showed no such interaction
effect of wind speed and wind direction (significance level of p = 0.8677), but also showed an
interaction effect of downwind distance and wind direction at significance level of p = 0.05.

Sensitivity analysis was performed on two significant variables—wind speed and
solar radiation—to see how they behaved using the two weather methods. Minimum and
maximum values for these variables over duration of the experiment were used.

The effect of solar radiation on modeled downwind concentration was pronounced
and comparable between the two methods, with Weather Method 2 showing a slightly
greater effect. Both methods indicated a greater effect of solar radiation differences with
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downwind distance, as this was probably due to the longer residence time for a droplet in
the air, further promoting evaporation.

Use of Weather Method 1 shows an unusual result for wind speed (Table 2). As
wind speed increased, modeled sample concentration decreased markedly. Contrary to
this, in-field residue data across all runs showed a weakly increasing trend in downwind
concentration with increasing wind speed (Figure 2). This is trend is consistent with what
had been observed in a propeller wash drift study [43]. Weather method 2 shows no such
discrepancy, with an expected increase in sampled concentration with wind speed (Table 3).
Values for modeled ln(concentration) were also in the range of values observed in field
data across all runs. Mean ln(concentration) across all field runs was 0.331 ng/L, and this
falls squarely within modeled ranges illustrated in columns 2 and 3 of Table 2. Values of
modeled ln(concentration) using Weather Method 1 (Table 2) were consistently higher than
this field-derived result.

Table 2. Modeled ln (concentration) at minimum and maximum values of variables wind speed and
solar radiation for Weather Method 1. Value of the other variable was held to minimum value to
illustrate the effect of changes in the variable of interest.

Downwind
Distance (m)

Modeled
ln(conc) at
Minimum
Value of Solar
(ng/L)

Modeled
ln(conc) at
Maximum
Value of Solar
(ng/L)

% Difference
between Min
and Max
Values

Modeled
ln(conc) at
Minimum
Wind Speed
(ng/L)

Modeled
ln(conc) at
Maximum
Wind Speed
(ng/L)

%
Difference
between Min
and Max
Values

100 1.049 0.654 −37.7 1.049 0.351 −66.5
135 0.999 0.605 −39.4 0.999 0.301 −69.9
200 0.926 0.533 −42.4 0.926 0.228 −75.4
320 0.833 0.439 −47.3 0.833 0.134 −83.9

Figure 2. Sampled concentration of RbCl as a function of wind speed.

It is clear from statistical model solutions that Weather Method 2 (using weather
averages over the first ten minutes of a run) yielded more reasonable results than Weather
Method 1 with respect to the effect of wind speed. This points to the importance of careful
characterization of weather when performing drift studies. Proper characterization may be
more difficult when performing a drift study such as that described herein, that relies on
several passes per run (four in this case). Although it is not immediately clear why Weather
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Method 2 performed better, it could be because Weather Method 1 used an average of
four discrete weather events. It is very possible for wind speed and direction to change
abruptly, and ten-minute weather averages (Weather Method 2) prevented discrete events
from markedly influencing results. Ten minutes was the approximate time for all four
passes to be completed for each run.

Table 3. Modeled ln (concentration) at minimum and maximum values of variables wind speed and
solar radiation for Weather Method 2. Value of the other variable was held to minimum value to
illustrate the effect of changes in the variable of interest.

Downwind
Distance (m)

Modeled
ln(conc) at
Minimum
Value of Solar
(ng/L)

Modeled
ln(conc) at
Maximum
Value of Solar
(ng/L)

%
Difference
between Min
and Max
Values

Modeled
ln(conc) at
Minimum
Wind Speed
(ng/L)

Modeled
ln(conc) at
Maximum
Wind Speed
(ng/L)

% Difference
between Min
and Max
Values

100 0.688 0.398 −42.2 0.688 0.723 5.1
135 0.643 0.352 −45.3 0.643 0.677 5.3
200 0.575 0.285 −50.4 0.575 0.610 6.1
320 0.489 0.198 −59.5 0.489 0.524 7.2

Statistical significance was not greatly influenced by weather characterization method,
although the interaction of wind direction and wind speed was only significant at the
0.05 level for Weather Method 1. Wind speed by itself was not significant for either method,
but the wind speed/wind direction interaction prompted further investigation. Wind speed
results from Figure 2 (and modeled for the second weather case, (Table 3) indeed indicate
only a slight effect on sampled concentration of residue.

4. Conclusions

Based on results, the following conclusions can be made regarding treatment effects
on downwind sampled concentration of RbCl:

• Use of Weather Method 2, that implemented weather averages over the length of a
run, resulted in model-based estimates for RbCl concentration that compared well
with field data averages.

• Model results using Weather Method 2 showed only slight sensitivity to changes in
wind speed, and this was more pronounced further downwind. The degree of this
effect was also consistent with field results.

• The effects of changes in solar radiation were comparable between the two methods.
• Use of Weather Method 1 resulted in unexpected (inverse) relationship of RbCl con-

centration with respect to increases in wind speed via sensitivity analysis and would
not be recommended for use in a statistical model of downwind spray drift.

• Statistically modeled downwind sampled concentration is highly sensitive to characteri-
zation of wind, and care should be taken in its measurement for realistic drift assessment.

• The experiment procedure and statistical analytical methods can be adopted for UAV
spray application of plant protection materials to characterize spray deposition and
off-target drift.

5. Further Discussion

The procedure and statistical methods used in this study indicating comparative drift
results hold for application of plant protection materials using general agricultural aviation
aircraft. Precision agriculture is now advancing to the stage of smart agriculture, which
can include targeted spraying [1]. In addition to conventional manned agricultural aircraft,
Unmanned Aerial Vehicles (UAVs) have been developed and adapted for targeted spray
application of plant protection materials. In the future, UAVs could possibly be developed
to match the tank capacities of conventional manned agricultural aircraft. UAV-based
systems typically have smaller tank capacities between 10 to 60 L, and this is a more
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popular setting for agricultural plant protection. UAV robot swarms could be used to cover
large areas.

UAV spray application began in the 1980s when crop dusting was conducted using a
spray system developed on a Yamaha UAV in Japan [44]. In the US, an experiment was
conducted to determine the effectiveness of using an off-the-shelf Yamaha RMAX UAV for
dispersing pesticides to reduce human disease due to insects [45]. Huang et al. developed
a multirotor UAV spraying system for low-volume aerial spray application [46]. Now, the
technology has been developed and applied worldwide [47]. Similar to conventional aerial
spray application, UAV-based spray application faces the challenge of off-target drift [48,49].
Nozzle atomization characteristics, spray deposition, and off-target drift are topics of the
research to maximize spray deposition within the crop canopy and minimize off-target
losses in the field and environment. For this purpose, UAV-based spraying systems need to
adopt parameters from the system investigation and evaluation. The parameters include:

• Pesticide parameters—the values of the parameters depend on spray volumes, total
spray amount of the system to determine spray flight operation parameter specifi-
cation, coefficient of variation to measure the uniformity of the total system spray
application, density of droplets, and effective swath width. Spray volumes can be
high volume, medium volume, low volume, very low volume, and ultra-low volume.
Among them very low (5~50 L/hm2) and ultra-low (<5 L/hm2) volumes are for UAV
spray application, which can be referred to select appropriate spray nozzles.

• Flight parameters, including flight speed, flight altitude, and flight position accuracy.
• Weather parameters including air temperature, relative humidity, precipitation, wind

speed, wind direction, and atmospheric stability.

Off-target drift of UAV spray application can be categorized as vapor drift and airborne
drift. Vapor drift mainly occurs in the spray of herbicide such as dicamba (3, 6-dichloro-2-
methoxybenzoic acid), able to control several annual and perennial broadleaf weeds. Drift
of dicamba is mainly vaporized and it has deleterious effects on broadleaf plants, especially
non-dicamba-tolerant (NDT) row crops. Zhang et al. assessed field NDT soybean damage
from dicamba by hyperspectral remote sensing using machine learning algorithms [50].

Airborne drift occurs in the spray of herbicides such as glyphosate (primarily glyphosate
[N-(phosphonomethyl) glycine) either alone or with other herbicides to manage a broad
spectrum of weeds. To determine the natural downwind drift, a tracer (such as RbCl as
described in this study) can be mixed in the spray solution and deposition can be deter-
mined using mylar (or other types) of spray samplers placed downwind from the spray
event. Water sensitive papers can also be placed downwind or clipped to plant leaves
(depending on research objectives). Droplet size and density can be calculated to determine
distribution and relative quantity spray deposition. Use of water sensitive papers does
not require a tracer. Droplet density or tracer concentration can be related the downwind
distance to assess spray drift potential [28,31].

In addition to natural spray drift, off-target spray movement can also be exacerbated
by spray application under stable atmospheric conditions. The main objective of the aircraft
pilot is simply to avoid spraying under stable atmospheric conditions. Guidelines for
avoidance of these conditions have been developed through research studies [6,8].

The study presented herein was an integrative investigation of parameter effects.
For spray application involving single- or multi-rotor UAVs, downwash air turbulence
can have a great effect on spray characteristics. Also, altitude, speed and position of a
UAV are susceptible to wind disturbance. This is a much different issue than that caused
by propwash effects from general aviation aircraft [42]. So, how is turbulence and wind
disturbance characterized for the spray deposition and off-target drift? Results of research
studies can be integrated to provide useful UAV parameter specifications for application of
plant protection materials to improve efficacy and decrease off-target drift.
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Abstract: Insecticide applications are typically being carried out with traditional manual spraying
equipment in redgram, which leads to inadequate control of insects due to higher crop height.
The modern deployment of tractor-drawn spray machines causes serious damage to the crop. In
this connection, unmanned aerial vehicle (UAV) spray technology has great potential for precise
insecticide application in redgram crops. One of the important machine parameters influencing
droplet deposition and drift characteristics in UAV sprayers is downwash airflow generated by a
multi-rotor propeller. A field experiment was carried out at the redgram research field (N11.01,
E76.92), Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, during 2021–2022 to study
the spray drift and deposition characteristics of an autonomous UAV sprayer. The Imidacloprid
(a.i. 17.8SL) insecticide mixed with water in a ratio of 1 mL per liter was sprayed with a UAV
sprayer. Water-sensitive paper samples were kept at upper, middle, and bottom positions on the
leaves, and data were analyzed for the spray droplet size, deposition rate, droplet density, and area
coverage both in target and non-target areas using Spray Deposit Scanner software. UAV spray
droplet deposition rate (2.93 ± 0.17, 2.01 ± 0.08, and 2.21 ± 0.162.38 μL cm−2), droplet density
(47 ± 4.04, 53 ± 3.61, and 52 ± 8.74 droplets cm−2), and area coverage (15.72 ± 0.39, 16.60 ± 0.71,
and 14.99 ± 0.39%) were highest in the upper layer as compared to the middle layer (droplet
deposition rate: 1.21 ± 0.08, 1.07 ± 0.03, and 0.77 ± 0.02 μL cm−2; droplet density: 42 ± 2.52,
43 ± 8.50, and 38 ± 2.52 droplets cm−2; area coverage: 10.95 ± 0.81, 11.22 ± 0.56, and 8.57 ± 0.44%)
and bottom layer (droplet deposition rate: 0.41 ± 0.06, 0.35 ± 0.03, and 0.33 ± 0.03 μL cm−2; droplet
density: 22 ± 4.36, 17 ± 3.51, and 19 ± 4.51 droplets cm−2; area coverage: 2.78 ± 0.29, 2.95 ± 0.45,
and 2.46 ± 0.20%, respectively). In the spray drift test, there was a higher droplet deposition rate
(1.63 ± 0.09, 1.93 ± 0.05, and 1.82 ± 0.06 μL cm−2), area coverage (14.40 ± 0.07, 17.54 ± 0.36, and
16.42 ± 0.30%), and droplet density (46 ± 3.61, 54 ± 2.08, and 45 ± 3.21 No’s cm−2) in the target area
as compared to the non-target area (droplet deposition rate: 0.88 ± 0.02, 0.46 ± 0.03, 0.22 ± 0.05, and
0.00 μL cm−2; droplet density: 23 ± 1.53, 11 ± 2.08, 6 ± 1.53, and 0.00 droplets cm−2; area coverage:
7.58 ± 0.34, 4.41 ± 0.19, 2.16 ± 0.05, and 0.00%, respectively), which may have been due to the
downwash airflow produced by the multi-rotor propeller of the UAV sprayer. Finally, the UAV-based
spraying technology results showed that the downwash air produced by the six-rotor propeller
improved the penetrability of insecticide to crop leaves and led to a higher droplet deposition rate,
droplet density, area coverage, and droplet penetrability on the upper layer, middle layer, and bottom
layer of the plants.

Keywords: droplet size; deposition rate; downwash airflow; flat fan nozzle; redgram leaf; UAV sprayer
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1. Introduction

The pigeon pea or redgram (Cajanus cajan L. Millsp.) is the second most significant
pulse crop and a rich source of protein. It is mainly intercropped with pulses, cereals, millets,
and oilseeds. Conventional methods of insecticide and pesticide spray application lead
to excessive application of chemicals, lower spray uniformity, deposition, and coverage,
resulting in a higher cost of pesticide as well as environmental pollution, as well as increased
drudgery and reduced area coverage [1]. Application of insecticide is being carried out with
traditional spraying equipment on the redgram crop, which leads to inadequate control of
pests due to higher crop height. On the other hand, tractor-drawn spray machines cause
serious damage to the crop. Unmanned aerial vehicle (UAV) spray technology has a great
potential for precise insecticide application in red gram crops.

UAV spray technology is one that can be controlled by a pilot on a ground station
autonomously using pre-programmed flight plans [2–4]. The UAV is attached with spray
tanks, which can store the insecticide and pesticide and spray them over the crops. These fly
at the proper height, helping the pesticide penetrate perfectly into the crop [5–7]. The most
essential benefit of using a multi-rotor UAV for chemical spraying is that, due to its unique
rotor structure and principle of motion, it generates a powerful downwash airflow during
flight operation, changing the crop disturbance and improving liquid penetration [8,9]. It
has been reported that liquid sprayed using UAVs has quite a good deposition impact on
the bottom part of crops [10–13].

Many investigators have carried out research on the spray effects of UAV spray
technology. For insecticides sprayed by UAV sprayers, droplet size is one of the most
important factors affecting droplet drift and deposition rate [14,15]. Wind speed is one
of the meteorological conditions that might cause spray drift [16,17]. The UAV machine
operation parameters, viz., flight height, travel speed, payload, and configuration of the
UAV model, have a great impact on the distribution and penetration of droplets [18]. The
height and forward speed of UAV flight parameters have a great impact on the spray
droplet distributions [19,20]. The downwash airflow velocity produced by the rotors can
create a strong velocity distribution for plants during spraying, helping spray droplets to
atomize much further with enhanced deposition onto the crop surface. As a result, spray
droplet velocity has positive effects on spray swath, deposition, and drift [21–23]. Shengde
et al. [24] used a wind velocity sensor to evaluate the effect of rotor wind field on the
uniformity and penetration of droplet deposition in three spatial directions: X, Y, and Z.
Spray droplet drift is decreased, and the impact of droplet deposition rate is increased
when chemicals are applied with a UAV sprayer [25,26]. Spray drift from unmanned aerial
vehicles (UAVs) was studied at various pressures (2, 3, 4, and 5 bar). Liu et al. [27] studied
spray drift from unmanned aerial vehicles (UAVs) at various pressures (2, 3, 4, and 5 bar).
The drift typically dropped, increasing the distance downwind from the UAV test platform.
Berner and Chojnacki [28] conducted the tests on the relationship between the speed of
the UAV rotor and spray deposition. Fritz et al. [29] tested the effects of spray rate and
droplet size on droplet deposition on wheat and found that lower spray rates with larger
droplet sizes resulted in greater deposits. It has been reported that liquid sprayed using
UAV has quite a good deposition impact on the bottom part of crops [10,30]. When the
flying height increases, the vertical velocity of the UAV downwash flow near the crop
canopy will decrease [31]. The rotor wind field, flight environment (temperature, humidity
wind direction, and wind power), equipment performance, and pesticide characteristics
(viscosity, density) also have an effect on the spraying effect [32–34]. Xinyu et al. [35]
evaluated UAV spray and deposition in a rice field using Z-3 UAV operating parameters
that could control 90% of drift in 8 m. Yang et al. [36] studied the influence of UAV rotor
downwash airflow spray width using the XV–2 model. The results showed that UAV flight
height mainly influenced the spray width, and the effective spray width was 10.0 m at a
flight height of 6.0 m and had better effect on droplet deposition at 2.0 m height of spray.
When droplets below 200 m are subjected to a 5 km/h crosswind, they can drastically
deviate from their intended path [37]. Choi et al. [38] conducted tests using a six-rotor UAV
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with three heights and two speeds of operational parameters. Lan et al. [39] conducted
research on the impact of the UAV downwash on droplet deposition distribution using
a DJI T16 UAV, and it was found that with an increase in flight height, the change of the
downwash wind field led to a gradual decrease in droplet deposition in the effective spray
area and were deposited more uniformly [24,27]. For decades, empirical and mechanistic
models have been developed to predict pesticide deposition and drift from aerial pesticide
application [40–42]. In insect control operations, the quality of insecticide application is
important. The proper dosage should be applied uniformly, the toxicant should reach
the target, and droplet size and density on the target should be correct [43]. The aim of
this investigation was to explore the spray droplet deposition rate, droplet size, droplet
density, area coverage, uniformity distribution, and drift characteristics in the redgram crop
sprayed by a UAV sprayer. It also provides technical reference and guidance for proper
and safe aerial spraying in agricultural production.

2. Materials and Methods

2.1. Equipment

The UAV used in the present investigation was an E610P six-rotor electric (M/s. EFT
Electronic Technology Co., Ltd., Hefei City, China), as shown in Figure 1. The spraying
system of the UAV sprayer mainly consists of BLDC motors, lithium polymer (LiPo)
batteries, a flight controller, an RC receiver, a GNSS RTK GPS unit, a pesticide tank, a pump,
nozzles, and a supporting frame. The UAV sprayer has two LiPo batteries of 6 cells each,
with a capacity of 16,000 mAh to supply the necessary current required for the propulsion
system. A 24 V BLDC motor coupled with a pump was used to pressurize spray liquid
and then to atomize it into fine spray droplets. This UAV sprayer has four numbers of
2020A-132 series flat fan nozzles (M/s. Ningbo Licheng Agricultural Spray Technology Co.,
Ltd., Zhejiang, China), which are mounted and screwed below the BLDC motor base plate.
This UAV model has the functions of GPS route planning and breakpoint return, which can
complete aerial spraying operations autonomously. The main performance indicators are
shown in Table 1.

Figure 1. Six-rotor electric autonomous UAV sprayer.

2.2. Field Plot

The experiment was carried out at the redgram research field (N11.01, E76.92), Depart-
ment of Pulses, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu state, India.
The details of crop parameters are mentioned below in Table 2. The redgram crop parame-
ters were average row to row, plant to plant spacing, and average crop height measured
during the UAV spraying operation. Figure 2 depicts the application of insecticide in the
redgram crop using a UAV agricultural sprayer.
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Table 1. Specifications of UAV agricultural sprayer.

Main Parameter Norms and Numerical Value

Type Hexacopter
Item model E610P
Unfold fuselage size, (L × W × H), mm 2000 × 1800 × 670
Folding size, (L × W × H), mm 950 × 850 × 670
Power source 12S 160,000 mAh LiPo Battery
Payload capacity, L 10
Self-weight, kg 6.9
Take-off weight, kg 26
Flight height, m 1–20
Forward travel speed, ms−1 0–8
Type of spray nozzle Flat fan shape (2020A-132 series)
Number of nozzles 4
Discharge rate, l m−1 0–3.2
Swath width of spray, m 3–5
Liquid pressure, kg cm−2 3.4
Remote controller distance, km 1.5
No-load flight time, min 25
Charging time, min 90

Table 2. Details of crop parameters.

Crop Parameters

Crop Redgram
Variety Co8
Plot size (L × W), mm 70 × 40
Height of crop, m 1.9 to 2.3
Stage of crop >110 DAS
Row to row spacing, m 0.70 to 0.74
Plant-to-plant spacing, m 0.15 to 0.21

Figure 2. UAV agricultural spray operation in redgram crop.
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2.3. Spray sampling Scheme
2.3.1. Sampling of Spray Deposition

Water-sensitive papers (produced by AAMS, Maldegem, Belgium) are a kind of spray
card specifically designed for visualizing deposit patterns. It has a dye-coated surface
that produces visible stains from aqueous droplets, and we used a 50 × 50 mm WSP
to collect the amount of spray droplets deposition on the surface of the leaves in three
locations [44,45]. At each sampling point, the WSP was clamped with a double-ended clip
and kept on the leaves at three different heights of the plants, viz., 40 cm, 110 cm, and
210 cm from the ground level. The arrangement and locations of WSP samples on redgram
leaf are shown in Figure 3a,b. The field layout with the location of WSP spray deposition
samples is shown in Figure 4.

(a) (b)

Figure 3. Layout and position of water sensitive paper for the collection of spray droplet deposition
characteristics: (a) layout of WSP samples in the upper, middle, and bottom at 210, 110, and 40 mm
height from the ground, respectively, and (b) the position of WSP samples on redgram leaf in the field.

Figure 4. Schematic diagram for the location of WSP spray.

2.3.2. Sampling of Spray Drift

The UAV agricultural spray drift experiment was conducted from 09:50 a.m. to
10:30 a.m. on 8 December 2021 at the redgram research field (N11.01, E76.92), Tamil Nadu
Agricultural University, Coimbatore, Tamil Nadu state, India. Weather conditions, viz.,
wind velocity, air temperature, and relative humidity, were recorded during the spray drift
experiment in the redgram field [46]. A WSP with a size of 50 × 50 mm was placed on flat
iron plate attachments to square iron rods at all collection points for the measurement of
spray droplet deposition rate in the canopy. The height of WSP samples were adjusted
to the head of the redgram crop canopy by flexible clamps [25], as shown in Figure 5a,b.
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A transmitter (SKYDROID, T10 2.4 Hz 10CH FHSS) with a screen recorded the flight
deviation, travel speed, and altitude of each flight using ground station equipment. The
total length of the target sample line was close to three meters, which is greater than the
effective spraying width calibrated during the laboratory test. The water-sensitive paper
collection cards were mounted below the UAV autonomous spray line fixed at 0 m, and
with consideration of the natural wind direction, single-line WSP collection cards were
placed and spaced at −1.0, 0.0, and −2.0 m on the upside wind flow direction of the UAV
path line, whereas another set of five WSPs collection cards were placed at 1.0, 2.0, 3.0, 4.0,
and 5.0 m on the down side of the wind flow [12,25]. The schematic experimental layout of
WSP drift sample locations is shown in Figure 6.

(a) (b)

Figure 5. Placement of WSP sample for spray drift: (a) layout position of WSP sample on iron stand
at 210 mm distance from the ground level, and (b) position of the WSP sample iron stand in the
redgram field crop.

2.4. Selection and Feeding of UAV Spray Operational Parameters

The nozzle 2020A-132 series flat fan nozzles (M/s. Ningbo Licheng Agricultural Spray
Technology Co., Ltd., Zhejiang, China) were selected for the test [47]. When the UAV is
spraying, the four nozzles behind the fuselage are turned on for spraying. The spray flow
rate of four nozzles were tested using a handheld portable-type sensor-based digital nozzle
tester (AAMS, Maldegem, Belgium). For measuring liquid operating pressure, a digital
liquid pressure gauge was connected to the output of a water spray hose pipe, and the
other end was connected to the nozzles of the lateral hose pipe. The maximum flow rate of
single nozzles was measured at 0.8 l m−1 at 100% spray motor speed, and the total nozzle
flow rate and liquid pressure, including the four nozzles, were 3.2 l m−1 and 3.4 kg cm−2,
respectively. The height of spray of 1.6 m (vertical distance between the crop canopy and
the tip of the drone sprayer nozzle) was set for the complete spray operation. The height
of spray and crop height layout is shown in Figure 7. The main sucking insects were
leafhoppers and white flies in the redgram crop. Imidacloprid insecticide was mixed with
water in a ratio of 1 mL per liter (as per the redgram crop package of practice published
by the Tamil Nadu Agricultural University, Coimbatore, India). The diluted chemical was
sprayed, and operational parameters during the spraying time are presented in Table 3.

Table 3. UAV sprayer operational parameters.

Operational Parameters Norms and Numerical Values

Forward speed, ms−1 3
Height of spray, m 1.6
Swatch width of spray, m 3.8
Discharge rate, l m−1 3.2
Liquid pressure, kg cm−2 3.4
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Figure 6. Schematic experimental layout of WSP drift sample locations.

Figure 7. Schematic experimental layout of height of spray and crop height.

2.4.1. Autonomous Spraying System

The Agri Assistant mobile app (JIYI K++V2, V1.5.1) was used for UAV autonomous
spraying operations in the redgram field. It also provides the live status of the UAV spray
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operational parameters, viz., field GPS location and satellite connection strength, field area,
time required to spray a given area, battery voltage warning, spray motor speed, height of
flight, and spray swath width. Initially, the GPS co-ordinates of the redgram field boundary
such as latitude, longitude, and altitude were entered. The operational parameters of the
UAV sprayer, viz., flight forward speed, spray height, spray swath width, and nozzle
flow rate were chosen as input operation modes for the spray test. Normal operation
conditions, such as a flight speed of 3 ms−1 and a flight height of 1.6 m above the crop
canopy with a swath width of 3.8 m, were used to ensure the validity and authenticity of
the test results [25]. After providing the field boundary and spray operational parameters
to the Agri Assistant app, the UAV sprayer starts in auto take-off mode and begins its
spraying operation by clicking the auto take-off option on the Agri Assistant mobile device
at the ground station. The UAV autonomous spraying operation of the Agri Assistant app
screen is shown in Figure 8. The layout of predefined and actual autonomous spray path
map layout is shown in Figure 9.

Figure 8. Screen view of the Agri Assistant mobile app for UAV autonomous spraying operations.

(a) (b)

Figure 9. Field maps of UAV spray operation with autonomous mode. (a) Predefined autonomous
spray path map. (b) Actual autonomous spray path map.

2.4.2. Recording of Meteorological Parameters

During UAV spraying operations, the different meteorological parameters such as
wind velocity, air temperature, humidity, and rainfall meteorological parameters were
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recorded in order to avoid the ill effects of climate on the performance of the spraying oper-
ation [16]. A portable anemometer (LUTRON AM 4202, Vane type, rang: 0.4~30.0 ms−1)
was mounted on a square iron pipe at 2.0 m above the crop canopy to measure the wind
velocity every 60 s [36]. Weather conditions, including wind speed, air temperature, and
relative humidity, were recorded and are presented in Table 4.

Table 4. Meteorological data during the UAV spray test in the redgram field.

Date 8 December 2021

Time 08:30 a.m. to 09:45 a.m.

Location Redgram research field (N11.01, E76.92),
TNAU, Coimbatore, Tamil Nadu state, India

Environmental parameters

Air temperature, ◦ C 22.4 to 26.6◦
Relative humidity, % 56.2 to 61.1

Wind velocity, ms−1 0.92 to 1.24
1.93 to 2.47 (drift experiment)

Rainfall, mm 0

2.5. Collection of WSP and Spraying Effectiveness Analysis

After every spraying test, WSPs were collected and placed in marked envelopes one
by one according to the serial number, then transferred to the laboratory for further study.
The deposited amount and coverage density of the droplets at upper, middle, and bottom
locations were analyzed as suggested by Zhu et al. [48].

2.5.1. Deposit Scan Software

WSPs were analyzed by using a Micro Droplet Analayzer and Macro Droplet Analyzer
instruments (developed by LABLINE—DMS 101, India), and then images were processed
with Deposit Scan software (developed by USDA, Wooster, OH, USA) [49]. The deposition
rate (μL cm−2); Dv0.1, Dv0.5, and Dv0.9 (μm); deposition density (No’s cm−2); and droplet
penetrability (%) were studied. Mean deposition, mean deposition density, and coefficient
of variation (CV) were also calculated. Dv0.1 is the droplet diameter (μm), wherein 10%
of the spray volume contained in droplets was smaller than this value. Similarly, Dv0.5
and Dv0.9 are droplet diameters, wherein 50% and 90% of the spray volumes contained
in the droplets were smaller than these values, respectively. The Dv0.5, also known as the
volume median diameter (VMD), is the droplet size median at which the accumulation
of all droplets, from small to large, equals 50% of the total volume of the droplets, which
is a critical index to measure the size of the droplet [47]. Figure 10 depicts the step-by-
step procedure for droplet size analysis using stereo micro and macro scope with Deposit
scan software. The image processing procedure used in the study was similar to what
Martin [50] reported previously. DepositScan software for finding droplet deposition rate
(μL cm−2) as per the work of Zhu et al. [48] is shown in Figure 11.

2.5.2. Droplet Penetrability (%)

In order to characterize the droplet penetrability between the various collection points
in the experiment, this study measured the coefficient of variation (CV) of droplet deposi-
tion density at each collection point. The droplet penetrability was measured by the CV of
the amount of droplet deposition on the upper, middle, and bottom layers of each collection
point [44]. The smaller the CV value, the more uniform the droplet deposition and the
better the penetration [51]. It was calculated by the following equation:

Coe f f icient o f Variation (CV) =
SD
X

× 100 (1)

Mean(X) =
∑ Xi

N
(2)
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Standard deviation (SD) =

√
∑N

1 (Xi − X)2

N − 1
(3)

where
X is the deposition value of every sampling point (μL cm−2);
Xi is the average deposition value of every sampling point (μL cm−2);
N is the number of sampling points.

(a) (b) (c)

Figure 10. Procedure flow chart for droplet size analysis using stereo micro and macro scope:
(a) image view of spray droplet sample under microscope; (b) conversion of the image to black and
white and with adjustment of contrast and threshold; and (c) output results of volume mean diameter
(VMD), droplet density (DD), and percentage of volume coverage.

(a) (b) (c)

Figure 11. Flow chart for the procedure for droplet deposition rate under DepositScan software:
(a) import of water-sensitive paper (WSP) image to Deposit Scan software, (b) conversion of the
imported color images to black and white under 8 bit with the sample area marked, and (c) selection
of the green AA Tool for analysis.

2.5.3. Effective Spray Width

The effective swath width is the distance between the points on either side of a single
swath, wherein the rate of spray deposit equals one-half of the effective application rate.
Effective spray width was determined in a manner that provided the most uniform overall
application rate. The effective spray width test was performed according to the method
described in the ASAE Standard [47].

2.5.4. Application Rate

The application rate was calculated as per the ASABE standard [52]. The mean value
of discharge rate, travel speed, and effective spray width were measured, and application
rate was calculated with the formula below:

Application rate (R) =
Q × K
S × W

(4)

where
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R = Application rate, l ha−1;
Q = Output rate, l min−1;
K = Constant, 600;
S = Travel speed, km h−1;
W = Effective spray width, m3.

3. Results and Discussion

3.1. Distribution and Analysis of Spray Droplet Deposition Characteristics

WSPs were placed on the leaf at 210 cm, 110 cm, and 40 cm above the ground level.
The sampling locations were divided into upper, middle, and bottom layers. The average
droplet deposition of each sample obtained by WSP analysis using DepositScan software is
presented in Table 5.

Table 5. Characteristics of droplet deposition for each layer at each location.

WSP Position Location of WSP
Spray Droplet Size (μm)

Droplet Density (No’s cm−2)
Dv0.1 Dv0.5 Dv0.9

Upper
U1 200 ± 9.45 423 ± 5.03 508 ± 5.69 47 ± 4.04
U2 223 ± 5.29 472 ± 2.65 622 ± 3.00 53 ± 3.61
U3 236 ± 4.36 492 ± 5.57 724 ± 6.51 52 ± 8.74

Middle
M1 239 ± 2.65 424 ± 2.08 537 ± 6.11 42 ± 2.52
M2 241 ± 6.24 484 ± 3.00 686 ± 4.16 43 ± 8.50
M3 134 ± 3.06 304 ± 3.06 656 ± 4.58 38 ± 2.52

Bottom
B1 219 ± 4.00 372 ± 4.51 754 ± 3.51 22 ± 4.36
B2 213 ± 3.61 355 ± 4.00 635 ± 4.04 17 ± 3.51
B3 282 ± 9.54 394 ± 4.58 742 ± 3.61 19 ± 4.51

It is observed from Figure 12 that the droplet deposition rate decreased from the upper
to the bottom layer, and droplet deposition rate in the upper (2.93 ± 0.17, 2.11 ± 0.08, and
2.36 ± 0.16 μL cm−2), middle (1.22 ± 0.08, 1.07 ± 0.03, and 0.76 ± 0.02 μL cm−2), and
bottom layers (0.43 ± 0.06, 0.35 ± 0.03, and 0.32 ± 0.03 μL cm−2) were found in locations
1, 2, and 3, respectively. The coverage per unit area decreased from the upper layer to
the bottom layer. Coverage per unit area in the upper (15.72 ± 0.49, 16.60 ± 0.71, and
14.94 ± 0.39%), middle (10.95 ± 0.81, 11.22 ± 0.56, and 8.57 ± 0.44%), and bottom layers
(2.78 ± 0.29, 2.95 ± 0.45, and 2.46 ± 0.20%) was found in locations 1, 2, and 3, respectively.
As shown in Table 5, the droplet deposition density on the upper (47 ± 4.04, 53 ± 3.61,
and 52 ± 8.74 droplets cm−2), middle (42 ± 2.52, 43 ± 8.50, 38 ± 2.52 droplets cm−2), and
lower layers (22 ± 4.36, 17 ± 3.51, and 19 ± 4.51 droplets cm−2) was found in locations
1, 2, and 3, respectively. Overall, the droplet deposition density was the highest in the
upper layer and the lowest in the middle and bottom layers. Yang et al. [53] found that the
RPAAS rotor’s downwash airflow generated a pressure difference between the top and
lower surfaces of the leaf, resulting in torque and allowing spray droplets to penetrate up
to fourfold to the bottom surface of the leaf. The droplet penetrability is another typical
index to evaluate the deposition effect. In smaller CV, more uniform distribution of the
spray droplet was observed. The best droplet penetrability was assessed on the basis of the
coefficient of variation. The droplet penetrability was best in the upper layer, with the CV
of deposition density reaching 6.34% compared to the middle and bottom layers at 6.45%
and 13.02%, respectively. The findings of this research are in line with previous research
and hence confirms that downwash and wind turbulence caused by RPAAS aircraft rotor
blades aid in droplet deposition and canopy penetration [11,22,54–57].

98



Agronomy 2022, 12, 3196

Figure 12. Droplet deposition rate and area coverage.

3.2. Effective Spray width and Application Rate of Chemical Usage

The average effective spray width was found to be 3100 mm at a height of spray of
1200 mm from the above crop canopy. It was observed that the swath width increased by
increasing the height of spray and operating pressure. In addition, when the flight height
was 1.0 to 3.0 m, the effective spray width was 3.1 to 3.8 m. This is in line with the earlier
study [51].

The average 3 ms−1 travel speed was maintained during autonomous spray operation,
and the actual field capacity of the UAV sprayer was found to be 2.84 ha h−1.

The theoretical application rate was calculated as per the procedure explained in
2.5.4, and it was found to be 57.34 l ha−1. The actual application rate was found to be
54.0 l ha−1 (≈15.0 L diluted chemical was consumed for covering 0.28 ha area of redgram
field). This diluted imidacloprid (a.i. 17.8SL) chemical application rate was matched as per
the recommendation of the redgram crop package of practice published by Tamil Nadu
Agricultural University, Coimbatore, India. UAV spray droplet deposition drift results in
target and non-target area zones.

For UAV spray drift, the sampling area was divided into two zones on the basis of the
direction of the natural wind. The samples in the target area zone were placed at −1.0, 0.0,
and 1.0 m distances, and the samples in the non-target area zone were placed at 2.0, 3.0, 4.0,
and 5.0 m distances, as presented in Table 6.

Table 6. Amount of spray drift droplet deposition.

Sample Zone Drift Sample Distance (m)
Droplet Density

(No’s cm−2)

Target area

−1.0 46 ± 3.61

0.0 54 ± 2.08

1.0 45 ± 3.21

Non-target area

2.0 23 ± 1.53

3.0 11 ± 2.08

4.0 6 ± 1.53

5.0 0.00
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Figure 13 shows that the large amount of droplets were deposited at sampling points
of −1.0, 0.0, and 1.0 m distance. Samples in the target area were found at 1.63 ± 0.09,
1.93 ± 0.05, and 1.82 ± 0.06 μL cm−2, respectively, indicating that the droplets mainly
deposited below the UAV sprayer flight route. This may have been due to the downwash
air produced by the propeller of the UAV sprayer [55–57]. Li et al. [21] reported that
the downwash air velocity had effects on droplet deposition and standing crop. A few
droplets were also collected on WSPs in the non-target area zone because the droplets
drifted with the wind to the downwind side. The droplet deposition in the non-target area
samples, viz., 2.0, 3.0, 4.0, and 5.0 m, were found to be 0.88 ± 0.02, 0.46 ± 0.03, 0.22 ± 0.05,
and 0.00 μL cm−2, respectively. From Figure 13, it is observed that the amount of droplet
deposition decreased as lateral distance increased from the central line of flight path and
was almost nil at 5.0 m from the UAV flight center line. The results support the findings
of Bird et al. [58], who concluded that, under identical stability situations, increased wind
speeds are likely to increase off-target deposition. Spraying droplets of UAV is affected
by many factors, and the droplet size is one of them [17,59]. The ideal droplet size is
50–300 μm. If the droplet size was less than 50 μm, the droplets would be easy to drift.
The effect of height, velocity, and nozzle flow rate on droplet deposition dispersion during
drone operation is proportional to crop canopy height [60]. If the droplet size is greater than
300 μm, the droplets would find it difficult to penetrate the crop canopy and adhere to the
target. As indicated by Bergeron et al. [37], our findings show that droplet size distribution
may have a major impact on spray drift.

Figure 13. Droplet deposition at different drift sampling distances.

Table 6 and Figure 14 show that the large amount of droplet density and coverage
area were found at sampling points of −1.0, 0.0, and 1.0 m distance. Samples of droplet
density in the target area (−1.0 m to 1.0 m) were found at 46 ± 3.61, 54 ± 2.08, and
45 ± 3.21 No’s cm−2, and 23 ± 1.53, 11 ± 2.08, 6 ± 1.53, and 0.00 No’s cm−2 droplet
density were found in the non-target area (2.0 m to 5.0 m). Similarly, more area coverage
(%) was found in the target area at 14.40 ± 0.07, 17.54 ± 0.36, and 16.42 ± 0.30% compared
to the non-target area at 7.58 ± 0.34, 4.41 ± 0.19, 2.16 ± 0.05, and 0.00%, indicating that
the droplets were mainly found more so below the UAV sprayer flight route (target area).
This may have been due to the downwash air produced by the propeller of the UAV
sprayer [11,54,60]. Yang [10] reported that the downwash air velocity had effects on area
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coverage and droplet density on crop leaf. Few droplets were also collected on WSPs in
the non-target area zone because the droplets drifted with the wind to the downwind side.
According to other studies [55–57,61], the reason for the difference in droplet deposition
results could have been that droplets with smaller sizes are more likely to drift outside the
target area due to the influence of the environmental wind, whereas droplets with larger
sizes, which are less affected by the environmental wind due to the mass of the droplet, are
more likely to be deposited in the target area.

Figure 14. Droplet density and coverage at different drift sampling distances.

From Figure 14 and Table 4, it is observed that the amount of droplet density and area
coverage were decreased as lateral distance increased from the central line of the flight path.
Area coverage and droplet density were almost nil at 5.0 m from the UAV flight center line.
These findings were comparable to those of Fritz [17], indicating that higher wind speed
resulted in greater downwind ground deposition. The findings revealed that wind speed
was the most important meteorological element in the transport and destiny of aerially
applied sprays.

4. Conclusions

In this study, a multi-rotor UAV sprayer with a payload capacity of 10 liters was used
in fully autonomous mode to apply insecticide to a redgram crop. The average deposition
rate and area coverage in the upper layer were higher (2.47 μL cm−2) when compared
to the middle layer (1.02 μL cm−2) and bottom layers (0.37 μL cm−2) of redgram leaf.
Overall, the droplet deposition rate (2.47 μL cm−2), droplet density (51.00 droplets cm−2),
and area coverage (15.77%) were highest in the upper layer as compared to middle layers
(0.75 μL cm−2, 19.33 droplets cm−2, 10.25%, respectively) and bottom layers (0.37 μL cm−2,
19.00 droplets cm−2, 2.73%, respectively). The droplet penetrability was best in the upper
layer, with the CV of deposition density reaching 6.34% when compared to the middle and
bottom layers (6.45% and 13.02%, respectively).

Spray droplet is one of the most critical aspects affecting the droplet deposition rate,
area coverage, and droplet density for insecticide spraying by UAV in the redgram field.
There was higher droplet deposition rate (1.79 μL cm−2), area coverage (16.17%)/ and
droplet density (48.00 droplets cm−2) in the target area as compared to the non-target area
(deposition rate: 0.39 μL cm−2, coverage: 3.54% and droplet density: 10.00 droplets cm−2

respectively), which may have been due to the downwash air produced by the propeller
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of the UAV sprayer. The downwash air velocity had effects on droplet deposition and the
standing crop. Droplet deposition rate decreased as the lateral distance from the center
of the UAV spray line increased (from 1.93 ± 0.05 μL cm−2 to 0.22 ± 0.05 μL cm−2), and
similarly, the spray droplet drift distance was reduced with the increase in droplet size,
which showed that the increase in spray droplet size can effectively minimize the spray
droplet drift. The UAV spray method is quite effective, not only in terms of reach but also
in mitigating health risks faced by farmers who walk through the fields with handheld
sprayers, exposing themselves to toxic chemicals. Moreover, it will help to overcome the
shortage of labor.
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Abstract: To solve the problem encountered when the spraying robot has run out of medicine even
though the spraying task on the field is not complete, we developed a spraying–dosing robot group
and proposed a collaborative navigation system based on an orchard map. Firstly, we constructed a
3D orchard point cloud map and set up navigation path points on the projected map. Secondly, we
developed a master–slave command-based cooperative navigation strategy, where the spraying robot
was the master and the dosing robot was the slave. Finally, the spraying robot and the dosing robot
completed the cooperative navigation on the constructed map by using the pure pursuit algorithm
and D-A control algorithm, respectively. To validate the cooperative navigation system, we conducted
field tests on the separate communication and navigation control. The results of communication
experiments demonstrated that the packet loss rate was less than 5%, which satisfied communication
requirements. The experimental results of the navigation control demonstrated that the maximum
value of the absolute lateral error is 24.9 cm for the spraying robot and 29.7 cm for the dosing robot.
The collaborative navigation system proposed in this research can meet the automatic navigation
requirements of the spraying–dosing robot group for collaborative tasks in traditional orchards.

Keywords: spraying–dosing robot group; collaborative navigation; map construction; traditional
orchard

1. Introduction

With the vigorous promotion of smart agriculture, agricultural robots have been
widely used in production practice. However, single robots cannot meet the labor-intensive
seasonal work, and the research of agricultural collaborative robots is gradually increas-
ing. Juan et al. developed a collaborative robot for avocado harvesting and investigated
the human–robot interaction strategy [1–3]. Thibault et al. studied a group of spraying
robots in a vineyard and proposed a co-localization method based on Ultra-Wide Band
technology [4].

China is the world’s largest fruit producer and consumer, with the highest fruit
production and planted area in the world. China’s fruit production reached 286.92 million
tons, with 12.64 million hectares of orchards planted, of which about 75% are traditional
orchards [5]. Fruit trees in traditional orchards are planted with high density and crossed
branches and leaves. The operating space of traditional orchards is extremely limited,
allowing only small machinery to enter the orchard [6,7]. Orchard plant protection is a
necessary part of orchard management. At present, spraying chemical pesticides for pest
control is an important means to ensure fruit quality [8]. The number of spraying tasks
reaches as many as 8–15 times a year, and the workload accounts for about 30% of the total
orchard management workload [9].
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Small-sized spraying robots that replaced manual operations have been widely used
in traditional orchards [10]. However, the capacity of a single spraying robot is extremely
limited and the amount of pesticide is not sufficient to complete the entire spraying tasks.
The distance between water sources and orchards in arid areas is usually far, so the task
of transporting water back and forth is particularly onerous. Therefore, it is necessary to
use a dosing robot to transport the water needed for the spraying robots back and forth.
Further, the collaboration between the spraying robot and the dosing robot not only reduces
labor but also greatly increases productivity. Collaborative navigation is one of the most
important technologies for the collaborative task of spraying and dosing robots.

At this stage, most of the robot groups are based on global navigation satellite systems
(GNSS) for collaborative navigation. With the promotion and application of satellite
positioning technology, Jo et al. used the difference in GNSS data between outdoor robots
to calculate the distance between robots and to realize the cooperative positioning of robot
groups [11]. However, the high density of fruit trees planted in tulip orchards makes it
a huge workload to manually measure the GNSS position information of each fruit tree
and then use this information as a target point to assist the robot group in cooperative
localization. Tim et al. developed a ground-based agricultural robot for high-throughput
crop phenotyping. The robot navigated autonomously by using path tracking between
GPS waypoints. However, as the season progresses, this capability was lost when the
sorghum grew taller than the GPS antenna [12]. Liang Zhang et al. developed an integrated
BDS/IMU automatic navigation system for orchard spraying robots [13]. The system used
a combination of BDS and IMU loosely coupled with path planning based on the terrain
features of the orchard. Although this navigation system can make the spraying robot track
the preset path smoothly and stably, it cannot satisfy the cooperative navigation of spraying
and dosing. Xu Aigong et al. proposed a cooperative navigation vehicle localization
method based on the BDS/UWB combination [14]. Firstly, the combined observation
equation of BDS/UWB was constructed, and then the position parameters were solved by
using the extended Kalman filter (EKF). Finally, the vehicle positioning result of cooperative
navigation was obtained. Although the positioning accuracy of this method is significantly
better than that of a single BDS system, it is not applicable to traditional orchards, where
navigation satellite signals are easily lost [15].

Currently, visual navigation and laser navigation are also widely used in orchards [16,17].
Although vision sensors are low-cost and information-rich, they are susceptible to light
and cannot be steadily navigated in the orchard [18,19]. Laser navigation would be more
stable in a traditional orchard, and LiDAR build maps are used by some for collaborative
navigation [20–22]. Cheein et al. proposed an Extended information filter-simultaneous
localization and mapping (EIF-SLAM) method using fruit trees as environmental refer-
ences [23]. The method utilized olive tree trunk information recognized by the robot’s
on-board 2D LiDAR and monocular vision, and reconstructed the trunk information into
a feature map. Its experimental results demonstrated that the map drawn by the robot
by this method was consistent with the real scene. However, the trunk information could
not be obtained when there were people or similar objects interfering next to the trunk,
which led to mapping errors. To reduce the relative errors that occurred during laser or
visual measurements, Gimenez et al. proposed a method for constructing maps based
on solving optimization problems with nonlinear constraints [24]. The method measured
the polar angle of fruit trees by robotic vehicle-mounted 2D LiDAR, and then optimized
this measurement information with the absolute GPS position information of fruit trees
in the four corners of the orchard. However, the method is not suitable for identifying
fruit tree trunks that are obscured by canopy or branches and leaves. To identify lower
fruit tree trunks, Shalal et al. used vehicle-mounted 2D LiDAR and vision to detect fruit
tree trunks [25], and GPS information from multiple known points within the fruit tree
rows was used to correct the detected trunk information and generate an orchard map.
However, this map only contains the location information of the center point of the fruit
trees in the orchard, and there are measurement errors in the vision sensors carried by
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different robots. Whether the orchard map constructed based on this method can provide
cooperative positioning information for the robot group needs to be further experimented.

In this paper, a map-based construction of a collaborative navigation system for
spraying-dosing robot groups was developed for the production needs of traditional
orchard spraying and dosing sessions in arid regions. In this study, a 3D orchard point
cloud map was constructed first, then paths and path points were set on the 2D projection
map, and finally, the spraying and dosing robot groups achieved collaborative navigation
on the map according to the developed collaborative navigation strategy and motion control
algorithm. Synergizing the spraying and dosing robots in traditional orchards can not only
alleviate the labor shortage but also improve production efficiency, and the research of the
cooperative navigation system is an important foundation for the intelligent development
of multiple robots in orchards.

This paper is organized as follows: Section 2 describes the system components and
research methodology of the spraying–dosing robot group; Section 3 describes the specific
experimental protocol and experimental results; Section 4 discusses the experimental results
and Section 5 presents the conclusions of this article.

2. Materials and Methods

2.1. Structure and Design
2.1.1. Navigation System

The spraying–dosing robot group consists of a spraying robot and a dosing robot, and
its hardware system is shown in Figure 1. The spraying robot consists of two main parts,
the traction robot and the sprayer, which are connected by pins. The spraying robot and the
dosing robot communicate through the wireless routers and receive each other’s navigation
information for cooperative navigation.

Figure 1. The hardware structure of the spraying–dosing robot cooperative navigation system.

The central control unit of the spraying robot adopts UNO-2484G computer, the
bottom control unit includes a KYDBL2450-2E motor controller and two 48 V DC brushless
motors, the centimeter-level accuracy RTK-GNSS in the positioning unit is composed of
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M600 mobile station and T300 base station produced by Sinan, and the model of LIDAR
is Velodyne VLP-16. The central control unit of the dosing robot adopts BOXER-8150AI
computer, the bottom control unit includes a VSY100D60-2 motor controller and two 48 V
DC brushless motors, the positioning unit adopts CGI-410 mobile station and i70 base
station produced by Sinan, and the model of LIDAR is RS-LIDAR-16.

The software system of the spray–dosing robot is shown in Figure 2. The information
interaction layer is used for the information interaction between the spraying robot and the
dosing robot under the Ubuntu system; the information processing layer is the cooperative
navigation program based on the Robot Operating System (ROS); the execution layer is
based on the Ubuntu system’s mobile platform control, which outputs speed information
to the underlying servo controller and finally realizes the autonomous navigation of the
spraying robot and the dosing robot.

Figure 2. Software system structure of the spraying–dosing robot.

2.1.2. Communication System Design

A stable and reliable wireless communication system is a prerequisite for the collabo-
rative navigation of the spraying–dosing robot group, under which the robot group can
co-locate and navigate based on exchanged position and velocity information [26,27]. To
save development time, the wireless communication system is based on Wi-Fi communica-
tion, using the existing IEEE 802.11 series of communication standards and the free public
frequency band of 2.4 GHz. The data frame format for robot information interaction uses
the communication data frame format developed by the team research [28,29].

The two robots communicate point-to-point in a local area network with the help of a
wireless router, where the wireless router (ADV1) has a connection (Internet Protocol, IP)
address of 192.168.62.1. The IP address of the spraying robot communication system is set
to 192.168.62.2, the sub-virtual mask set to 24, and the gateway address is the same as the
router address. Similarly, the IP address of the dosing robot is set to 192.168.62.20, and the
rest is the same as the spray delivery robot. After the setting is completed, check whether
the address of the wireless network card is modified successfully by opening the terminal.

2.2. Map Construction

In this section, based on the structure and design of the robot, we construct a point
cloud map of the orchard that provides a priori environmental information for collabora-
tive navigation.

Firstly, we remotely control the body of the spraying robot to drive continuously
through the orchard while recording point cloud information. Secondly, we process the
collected point cloud data and perform point cloud stitching by finding the neighboring
points in two adjacent frames. To reduce the amount of data during point cloud stitching,
we refer to the lightweight and ground-optimized LiDAR mapping algorithm (LeGO-
LOAM), which well balances the accuracy and efficiency of building maps [30–32]. Thirdly,
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we use the adjacent points in the point cloud to calculate the attitude estimate between
two adjacent frames and generate LiDAR odometry information. Finally, we optimized the
LiDAR odometry information using real-time GNSS pose information as a constraint and
constructed a point cloud map of the orchard, as shown in Figure 3.

Figure 3. Construction process of orchard point cloud map.

2.2.1. Feature Classification

We establish the local coordinate system XYZ with the center point of the spraying
robot body as the origin (LiDAR is at the center point of the spraying robot body). Since
the LiDAR was calibrated before being used, the calibrated point cloud image is projected
directly onto the XOY plane frame by frame here. In the current frame of the point cloud
pt, the distance from a single point pt

i to the LiDAR is the value of that point. As shown
in Figure 4, any point with horizontal scan angle αi and vertical scan angle βi in the XYZ
spatial coordinate system has coordinates of xt

i , yt
i and zt

i , respectively. The local coordinate
system XYZ is rotated around X-axis, Y-axis and Z-axis by the angles θroll, θpitch and
θyaw, respectively.

Figure 4. Point cloud reprojection.

In order to distinguish the projected points on the XOY plane matrix and to improve
the speed of searching the point cloud, we label the individual points pt in the point cloud
matrix according to Equation (1). The main markers are the row number index number
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ri, column number index number ci and the value vr
(t,i) of the plane in which the point is

located. Each point is unique according to the index and value.
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In Equation (1), Xt
i , Yt

i , Zt
i are the horizontal, vertical and height coordinates of any

point x in space in the point cloud of the current frame.
After marking the points in a single frame utilizing reprojection, the ground points and

non-ground points pt can be quickly distinguished. The principle is that the points smaller
than 1◦ of the LiDAR vertical scanning angle are ground points and the rest are non-ground
points. For non-ground points, the breadth-first search (BFS) algorithm is used to search the
surrounding neighborhoods adjacent to any point pt

i according to the row index number,
as shown in Figure 5. If the row number of any point pt

i is ri and the column number is ci,
the row number of the neighboring points is ri−1 or ri+1, and the column number of the
neighboring points is ci−1 or ci+1. According to Equation (2), determining whether pt

i and
its neighboring points are in the same plane when the angle between two points is less
than 60◦ is considered as the same plane, and vice versa is a different plane [19]. After the
neighboring points of point pt

i are traversed one by one, then search the adjacent points of
neighborhood, such as point pt

j, until all single-frame point clouds are traversed.

δ = arctan
vr
(t,j) sin γ

vr
(t,i) − vr

(t,j) cos γ
j ∈ (r ± 1, c ± 1) (2)

Figure 5. Point cloud search.

In Equation (2), δ is the angle between any point and the adjacent point, vr
(t,j) is

the Euclidean distance between the adjacent point and the LiDAR, vr
(t,i) is the Euclidean

distance between any point and the LiDAR, and γ is the angular difference between any
point and the adjacent point.

In the orchard environment, there will be a lot of weeds, rugged ground, leaves blown
by the wind, etc. This will result in scattered points in the point cloud acquired in the
current frame, and these scattered points will have a large impact on the accuracy of
feature classification. In order to obtain stable and reliable point cloud features, when the
number of point clouds in the plane of non-ground point cloud pt

i is less than 30, these
discrete point clouds are removed directly. After point cloud clustering, only large objects
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such as tree trunks, ground, signage, and other feature point clouds are left, as shown in
Figure 6. Figure 6a shows the original point cloud, and Figure 6b shows the point cloud
after clustering. It can be observed that the number of point clouds after clustering is
dramatically reduced compared with the original point cloud. Only stable point cloud
features are retained, such as green for ground point clouds and black for non-ground
object features.

Figure 6. Results of point cloud clustering: (a) Raw point cloud; (b) the point cloud after clustering.

Then, the clustered point cloud planar features are divided again into 6 regions
equally according to the LiDAR horizontal scanning angle (0∼360◦), and the same row
index number c in each region is regarded as a subset. Drawing on the method of BFS
search, the five points adjacent to the left and right of the point cloud particles pt

i in the same
subset are taken for comparison each time. The smoothness Si of each point cloud particle
in the same subset is calculated by substituting the point cloud particles into Equation (3)
according to the distance between the neighboring points pt

j and pt
i . When the smoothness

Si of the point cloud particles is greater than the set threshold Sth (set to 5 × 10−3) then it is
an edge feature, and conversely, Si is less than the set threshold then it is a surface feature.

Si =
1

|P| · ‖ri‖‖ ∑
j∈S j �=i

(pr
j − pr

i )‖ (3)

In Equation (3), P is a continuous subset of 5 adjacent points on the projection plane of
the current frame.

The non-ground point cloud with the maximum smoothness Smax in each subset
within a single aliquot is set as the edge feature nFt

e, and the minimum smoothness Smin is
set as the surface feature nFt

s. The Ft
e and Ft

s of the 6 aliquots are the point cloud collections
of edge and plane features of the current frame point cloud. As shown in Figure 7a, the red
points in the figure are the point clouds of edge features, and the green points are the point
clouds of surface features in the current frame. The set of non-ground surface features
with maximum smoothness in the aliquot is the set of non-ground edge features nFt

e , and
the set of ground surface features with minimum smoothness in each aliquot is the set
of ground edge features nFt

s . The Ft
e and Ft

s of 6 aliquots are the sets of non-ground edge
feature and ground surface feature point clouds for the current frame, respectively. Here,
Ft

e belongs to F
t
e and Ft

s to F
t
s. The overlapping point clouds can be removed by smoothing

calculation. As shown in Figure 7b, the yellow points are the point clouds with non-ground
edge features for the current frame, and the blue points are the point clouds with distinctive
ground surface features.
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Figure 7. Point cloud feature classification: (a) Surface feature point cloud and edge feature point
cloud; (b) non-ground edge feature point cloud and ground plane feature point cloud.

After downsampling the point cloud by feature classification, the surface features and
edge features of the current frame point cloud can be obtained, and this operation can
greatly reduce the number of single-frame point clouds, where each point cloud feature set
contains the point cloud, as shown in Equation (4).

F
t
s =

{
[pt

1, . . . , pt
i , . . . , pt

n1
]
T 1 ≤ i ≤ n1

}
F

t
e =

{
[pt

1, . . . , pt
i , . . . , pt

n2
]
T 1 ≤ i ≤ n2

}
Ft

s =
{
[pt

1, . . . , pt
i , . . . , pt

n3
]
T 1 ≤ i ≤ n3

}
Ft

e =
{
[pt

1, . . . , pt
i , . . . , pt

n4
]
T 1 ≤ i ≤ n4

}
(4)

In Equation (4), n1, n2, n3, n4 are the number of point clouds in the current frame for
F

t
s, Ft

e, Ft
s , and Ft

e , respectively.

2.2.2. Posture Estimation

We perform correlation calculation on the surface feature point clouds to obtain the
point cloud particles with the same surface features in the point clouds of the two adjacent
frames. Then, the surface feature Iterative Closest Points (ICP) matching is performed by the
same point cloud particles (neighboring points) to obtain the corresponding plane rotation
matrix. Under the constraint of this rotation matrix, we perform correlation calculation
on the edge feature point clouds to obtain the point cloud particles with the same edge
features in the adjacent two frames. Immediately after that, we perform ICP matching
of the edge features by the neighboring points to obtain the corresponding edge rotation
matrix relationship. The pose estimation of a single-frame point cloud can be obtained by
unifying the two matrices, which is the pose estimation of the LiDAR sensor relative to
the previous frame. The steps of point cloud pose estimation are shown in Figure 8. The
principle is to feature match the point clouds of two adjacent frames in LiDAR to obtain
the conversion relationship from a single point to an edge point cloud or a surface point
cloud. Then, the coordinate system of the original point cloud is transformed according to
the transformation relationship to obtain the point cloud pose estimation.
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Figure 8. The point cloud pose estimation.

The covariance is used to determine the correlation between two adjacent point clouds
in the above equation, as shown in Equation (5). We start the calculation from the second
frame by default, and the first frame is only used to record the time information. If the
correlation coefficient ρ

F
t−1
s Ft

s
between the points in the current frame F

t
s and the points in

the previous frame F
t−1
s is greater than 0, the point cloud particles in the surface features of

the two frames are correlated. At this time, the correlated points in F
t−1
s are recorded as

ground points and saved at this time, otherwise, they are regarded as non-ground points
and discarded directly. Similarly, if the correlation coefficient ρ

F
t−1
e Ft

e
between the points in

the current frame Ft
e and the points in the previous frame F

t−1
e is greater than 0, the point

cloud particles in the edge features of the two frames are correlated. Then, we record the
relevant points in F

t−1
e as the same edge and save them according to the point markers.

ρ
F

t−1
s Ft

s
=

cov(Ft−1
s ,Ft

s)
σ
F

t−1
s

·σFt
s

ρ
F

t−1
e Ft

e
=

cov(Ft−1
e ,Ft

e)
σ
F

t−1
e

·σFt
e

(5)

In Equation (5), ρ
F

t−1
s Ft

s
is the correlation coefficient between two adjacent frames of the

point cloud, which pt
i is in the same plane as pt−1

i , ρ
F

t−1
e Ft

e
is the correlation coefficient where

pt
i and pt−1

i are on the same side in two adjacent frames of the point cloud, cov
(
F

t−1
s , Ft

s
)

is the covariance between pt
i and pt−1

i in the surface feature point cloud of two adjacent
frames, and cov

(
F

t−1
e , Ft

e
)

is the covariance between pt
i and pt−1

i in the edge feature point
cloud of two adjacent frames.

The point cloud particles with correlation coefficients ρ
F

t−1
s Ft

s
> 0 and ρ

F
t−1
e Ft

e
> 0 are

substituted into Equation (6) to find the surface feature vector λjlm corresponding to the
feature maxima As of the current frame surface feature point cloud pt

i and the previous
frame surface feature points pt−1

j , pt−1
l and pt−1

m . Similarly, the edge feature vector λjl

corresponding to the feature maxima Ae of the current frame edge feature point pt
i and the

previous frame edge feature points pt−1
j and pt−1

l can also be found.
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As − λjlmΣ̂(Ft−1
s ,Ft

s )
xpt

i
= 0

Ae − λjlΣ̂(Ft−1
e ,Ft

e )
xpt

i
= 0,

(6)

In Equation (6), xpt
i

is the value of the current frame feature point pt
i in the local

coordinate system XYZ, Σ̂(Ft−1
s ,Ft

s )
is the surface feature-related particle swarm covariance

matrix, and Σ̂(Ft−1
e ,Ft

e )
is the edge feature-related particle group covariance matrix.

According to the area of space quadrilateral method, the distance dε from the current
frame surface feature point pt

i to the previous frame plane feature vector λjlm can be found.
According to the area of the parallelogram method, the distance dH from any point in the
current frame edge feature point cloud to the previous frame edge feature vector λjl can

be found. In Figure 9,
→
s jl is the direction vector of pt

j and pt
l in the previous frame edge

feature point clouds, and
→
s jm is the direction vector of pt

j and pt
m.

dε =
λjl∣∣∣→s jl

∣∣∣
dH =

λjlm∣∣∣→s jl×
→
s jm

∣∣∣ ,
(7)

Figure 9. Principle of eigenvector solving based on area method.

The smaller the values of dε and dH , the shorter the distance between the current
frame feature point pt

i and the previous frame surface feature F
t−1
s or edge feature point

cloud F
t−1
e , as shown in Figure 10. When point pt

i is perpendicular to the previous frame
feature F

t−1
s , the distance min(dH) between feature point pt

i and the corresponding point
pt−1

i of the previous frame feature point cloud is the shortest. This vector value is used to
estimate the point cloud pose between two frames in the fastest way. The initial frame point
cloud is used as the starting point to establish the map coordinate system as XMYMZM.
The distance D between the initial frame point p0

i and pt−1
i is calculated, and this distance

is used to obtain the pose estimate of the current frame point cloud relative to the map
coordinate system.
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Figure 10. Principle of point cloud pose estimation.

The coordinate system rotation is the inverse rotation of the vector. Referring to
Euler’s formula according to the rule of clockwise rotation, the relationship between the
current frame point cloud pt

i in XYZ coordinate system and the corresponding point pM in
XMYMZM coordinate system can be obtained, as shown in Equation (8).

pM = Q
(

pM, pt
i
)
= RyRxRz pt

i + T = Rpt
i + T (8)

In Equation (8), Q is the transformation function of the current frame point pt
i in XYZ

coordinate system, and the point pM in XMYMZM coordinate system, R is the rotation
matrix of pt

i and pM, and T is the translation matrix of pt
i verses pM.

There is a certain error between pt
i obtained by Equation (8) and the true value, as

shown in Equation (9).

f (X) = D(pM, M) = D
(

Rpt
i + T, M

)
, (9)

In Equation (9), f (X) is the error function and M is the true value of pt
i in XMYMZM

coordinate system.
The initial value f (X) is substituted into Equation (10) and iterated until the conversion

error is minimized (10−6) or the number of iterations is satisfied (set to 500). The pose
estimate ξi[tx,ty,tz,θroll ,θptich,θyaw] of the local single-frame point cloud in the point cloud
map coordinate system can be obtained, and the single-frame point cloud is converted into
the point cloud map after substituting it into Equation (8).

JTJΔxlm = JT f (X)

J =
[

∂dH
∂θroll

∂dH
∂θptich

∂dε
∂θyaw

∂dε
∂tx

∂dε
∂ty

∂dH
∂tz

]T
,

(10)

In Equation (10), Δxlm is the iteration step length and J is the Jacobi matrix of single-
frame feature point observables.

2.2.3. Map Optimization

LiDAR odometry information will drift when the robot turns too many times or
the rotation angle is too large, which leads to an increase in the error of the point cloud
map. In order to control the drift of the LiDAR odometry and improve the accuracy of
the point cloud map, this section adopts a GNSS optimization method based on graph
theory to optimize the map, as shown in Figure 11. We used the GNSS information
with fixed frequency (2 Hz) to constrain the LiDAR pose estimation several times and
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obtain an orchard environment map based on GNSS information. In Figure 11, the solid
black line is the robot’s trajectory, the green dots represent the LiDAR point clouds of
the current frame with continuously updated position estimates, the red pentagrams
represent GNSS information (XG, YG, ZG), and the red dots are the robot’s positions aligned
with GNSS frequency with position point coordinates of

(
Xm, Ym, Zm, θm

roll , θm
pitch, θm

yaw

)
,

where Xm, Ym, Zm are the robots’ coordinates in the cooperative coordinate system and
θm

roll , θm
pitch, θm

yaw are the position points’ cross roll, pitch and yaw angle information.

Figure 11. Principle of map optimization based on GNSS information.

According to Equation (10), the covariance matrix Σri of the point cloud position pose
ξi for each current frame can be obtained. After substituting Σri and the covariance matrix
Σmj of the current GNSS position data into Equation (11), the position of the robot can be
obtained after integrating the data from the beginning to the present.

Ai = Σn
i=1Σ−1

ri + Σ−1
mj i ∈ [1, 2, 3, . . . , n], (11)

In Equation (11), Ai is the Point cloud pose and GNSS position data integration
accuracy estimation matrix.

Ari = Ai
−1Σ−1

ri
Amj = Ai

−1Σ−1
mj

ξmi = AriTr + Amjmj,
(12)

In Equation (11), Tr is the robot’s current position parameters and ξmi the GNSS-
corrected geoid position parameters.

According to Equation (12), the positional parameters ξmi can be obtained and a point
cloud map optimized based on GNSS information can be generated, as shown in Figure 12.

Figure 12. Orchard point cloud map.
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2.3. Motion Control

To achieve the best path tracking results for the spraying robot and the dosing robot in
their respective navigation methods, pure pursuit control based on the trajectory motion
model is used for the spraying robot, and D-A control based on RTK-GNSS is used for the
dosing robot.

2.3.1. Pure Pursuit Control

Based on the research of our team members, we adopt the pure pursuit algorithm
based on robot kinematic model for the spraying robot [28]. The pure pursuit algorithm is a
widely applicable geometric method for low-speed movement control with the advantages
of few parameters, high predictability, and accurate linear tracking capability in narrow
scenarios [33]. The principle of this algorithm is to change the lateral deviation of the
robot’s current position point from the linear trajectory by the magnitude of the pre-sight
distance to achieve a good tracking effect.

2.3.2. D-A Control

The dosing robot takes the target point as the tracking object and adopts the Distance-
Angle (D-A) tracking control method [34]. Firstly, input the longitude and latitude infor-
mation of the target point measured by RTK-GNSS at static time, and then calculate the
direction difference and distance between the current point and the target point. It is judged
with the set threshold value to adjust the direction and movement strategy of the next
driving of the dosing robot. In addition, to prevent collision between two robots during
cooperative movement, each robot adopts the collision strategy of the LiDAR detection of
obstacles in the direction of movement and the emergency stop.

2.4. Collaborative Navigation Strategy

Based on the construction of a 3D orchard point cloud map, a master–slave command-
based collaborative navigation strategy was further developed, as shown in Figure 13. The
cooperative navigation consists of two parts, which are the navigation of the spraying robot
in the orchard and the navigation of the dosing robot on the road. The spraying robot
as the master robot sends the co-navigation command to the dosing robot and publishes
the information about the co-dosing point. The dosing robot receives and responds to the
cooperative request issued by the spraying robot and turns on the fixed-point navigation
function. The dosing robot first goes to the water source to fill the water, then moves to
the collaborative dosing point issued by the spraying robot after filling the water, while
feeding the navigation status information to the spraying robot. After the dosing robot
arrives at the collaborative dosing point, it doses the spraying robot within the waiting time.
After the dosing task is finished, the spraying robot continues to perform the spraying task.
The dosing robot returns to the water source and waits for a new cooperative navigation
command with the next cooperative dosing point.
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Figure 13. Spraying–dosing robot cooperative navigation strategy.

3. Results

To test the performance of the cooperative navigation system of the spraying–dosing
robot group, the communication system and navigation control were experimented on
separately. The experiment site was selected from the National Persimmon Germplasm
Resource Park of Northwest Agriculture and Forestry University, in which the persimmon
orchards were all traditional orchards with fruit trees spaced about 2.4 m apart in rows, as
shown in Figure 14.

Figure 14. Traditional orchard environment.
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The experimental orchard environment in which the spraying–dosing robot group
work consists of a garage, an orchard, a house, a road and a water source. Figure 15a shows
a schematic diagram of the orchard environment and Figure 15b shows a physical diagram
of the orchard environment.

Figure 15. Map of the orchard environment: (a) Diagram of the orchard environment; (b) physical
picture of the orchard environment.

3.1. Communication Experiment

To verify the reliability of the information interaction between the spraying robot and
the dosing robot, the communication system of the cooperative navigation system was
experimented upon. The dosing robot was docked at point D on the water source, and the
spraying robot was docked at points A, B and C in the orchard, as shown in Figure 16. To
ensure the minimum communication distance of the robot group, the wireless router was
deployed in the middle of the orchard. The height of the wireless router deployment is
affected by the orchard environment. If the deployment position is too high, the robot group
and the wireless signal are easily affected by the low branches of the fruit trees, resulting
in its poor passability; if the deployment position is too low, it is easy to aggravate the
influence of weeds on signal propagation (including reflection, bypass, etc.) [29]. Therefore,
to ensure the wireless signal strength of the communication system, the wireless router was
deployed at the fork of the main trunk of the fruit tree.
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Figure 16. Communication experiment schematic.

Before starting the experiment, the wireless communication router ADV1 was turned
on to set up a LAN for the two robots, and then the dosing robot was connected to the
spraying robot via SSH commands and IP addresses. The experiment was conducted by
sending 500 packets from the spraying robot to the dosing robot. Then, according to the
location between the two robots, the IP addresses of the robots connected from the spraying
robot to the dosing robot were checked and the number of packets received by the dosing
robot after communication was checked, and the packet loss rate was calculated. The
experiment was repeated three times independently and the average packet loss rate at
each experiment point was calculated.

The rate of communication data loss between the spraying robot and the dosing robot
in the experiment orchard environment is shown in Table 1.

Table 1. Packet loss in robotic communication systems.

Location Distance/m
Group

Number
Received

Packets/PCS
Packet
Loss/%

Average Packet
Loss/%

A 84.4
1 494 1.2

1.72 490 2
3 491 1.8

B 88.1
1 491 1.8

2.12 488 2.4
3 489 2.2

C 91.3
1 485 3.0

3.42 483 3.4
3 481 3.8

The average values of the packet loss rate of the dosing robot at A, B and C are 1.7%, 2.1% and 3.4%, respectively.

3.2. Cooperative Navigation Control Experiment

To test the effect of motion control on the cooperative navigation system, the experi-
ment of cooperative navigation control is carried out for the spraying–dosing robot group.
Since the spraying robot and the dosing robot chose different models of RTK-GNSS base
stations in the positioning module, to ensure the consistency of the positioning information,
it is necessary to match the positioning points of the two base stations. Firstly, the base
stations of the two robots were respectively set up on a fixed tripod. Secondly, the base
station of the spraying robot was used to measure and record the position point information
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of the base station of the dosing robot. Finally, the position point information was input
into the base station of the dosing robot.

The 3D point cloud map needs to be projected into a 2D point cloud map before the
experiment. Then, the navigation preset paths and points of the spraying–dosing robot
group are set on the 2D point cloud map. In Figure 17, the red pentagram is the navigation
starting point of the spraying robot, the green line is the preset path of the spraying robot,
the yellow line is the preset path of the dosing robot, and the blue dot is the cooperative
dosing point. The spraying robot travels through the orchard in the direction of the red
arrow, and the dosing robot goes from the garage to the water source, where it finishes
filling up and heads to the collaborative dosing point in the orchard.

Figure 17. Pre-set path for spraying–dosing robot group.

In Figure 18, a preset point is set at the midpoint of each end of the row, and the two
points are connected as a preset path for spraying between the rows. The spraying robot
adopts smooth steering when turning at the head of the ground, so two path points are
needed at the head of the ground to assist in turning [35].
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Figure 18. Pre-set paths for spraying robot.

Based on the results of several previous orchard experiments, the walking speed of
both the spraying robot and the dosing robot was set to 0.75 m/s in this experiment [7,28].
During the experiment, the spraying–dosing robot group were moved along the preset
paths on the map, and the GNSS coordinate information of the driving trajectory was
recorded at the same time. The experiment was repeated three times, in which the spraying
robot was tested for continuous operation between five rows. The experimental scenarios
are shown in Figure 19.

Figure 19. Collaborative navigation trials in orchards.

To verify the path-tracking effect of the spraying–dosing robot group, the motion
trajectory of the spraying–dosing robot group during operation is plotted in Figure 20.
When the spraying robot sprays in between rows, the actual motion trajectory is roughly the
same as the preset path between rows, but there are also some trajectories with deviations.
When the spraying robot turns at the head of the ground, the actual trajectory deviates
more from the preset path at the head of the ground. The deviation of the trajectory of
the movement of the dosing robot to the reservoir and the trajectory of the return to the
orchard is smaller.
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Figure 20. Movement trajectory of spraying–dosing robot group.

To analyze the performance of the cooperative navigation system more accurately, the
lateral deviation and heading deviation of the spraying robot and the dosing robot from
the known trajectory were calculated, respectively, as shown in Figure 21a–d.

The lateral deviation of the spraying robot was within 15 cm and the heading deviation
was about 10◦ when spraying between rows in the orchard. However, the deviation of
the spraying robot changed significantly during the head turn, the maximum value of the
lateral deviation was less than 52 cm and the maximum value of the heading deviation was
less than 45◦. Since the spraying robot does not carry out a spraying operation when the
ground head turns and no obstacles are blocking the ground head, the deviation value can
meet the demand of cooperative ground head navigation. The maximum lateral deviation
of the dosing robot was 30.1 cm, the average lateral deviation was 5.7 cm, the maximum
heading deviation was less than 90◦, and the minimum heading deviation was more than
10◦. The maximum and average values of lateral deviation of the dosing robot were 29.7 cm
and 5.7 cm, respectively, and the lateral deviation during linear motion was about 5 cm.

Figure 21. Cont.
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Figure 21. Results of cooperative navigation control experiments with spraying–dosing robot group.
(a) Lateral error of spraying robot; (b) heading error of spraying robot; (c) lateral error of dosing
robot; (d) heading error of dosing robot.

124



Agronomy 2022, 12, 3114

4. Discussion

The above experimental results demonstrated that the developed map-based con-
struction of the spraying–dosing robot group cooperative navigation system can meet the
navigation requirements of traditional orchard spraying and dosing tasks.

(1) In the experimental results of the communication system, the maximum com-
munication distance of the spraying–dosing robot group was 91.3 m, and the maximum
value of the packet loss rate was 3.8%, which was less than 5%. The experimental results
demonstrated that the spraying–dosing robot group can achieve point-to-point messaging
in the traditional orchard. Although the packet loss rate of communication between robot
groups increased with the increase in communication distance, the packet loss rates were
all less than 5%. Therefore, the Wi-Fi-based spraying–dosing robot communication system
can meet the communication needs of the cooperative operation in orchards.

(2) The experimental results of cooperative navigation control demonstrated that the
average lateral deviation of the spraying robot was 6.7 cm when it traveled at 0.75 m/s
between orchard rows and 19.8 cm when it made a turn in the ground, while the average
lateral deviation of the dosing robot was 5.7 cm. This is because the canopy above the
robot’s path is less shaded than the spraying robot. In addition, the working road of the
dosing robot is a hard concrete road, while the road in the orchard where the spraying
robot works is soft, and there may be slippage during the driving process. The actual
motion trajectory of the dosing robot was approximately the same as the preset path, with
an average lateral deviation of 5.7 cm, indicating that the D-A control method can ensure
that the dosing robot followed the path point in a relatively stable manner. The average
lateral deviation was 6.4 cm, but the lateral deviation and heading deviation increased to
51.7 cm and 43.1◦, respectively, during the turn. To reduce the lateral deviation and heading
deviation of the spraying robot when turning on the ground, the pure pursuit algorithm
needs to be optimized in the future.

The spraying robot as a master robot in this article demonstrated a 17% reduction in
maximum lateral deviation compared to the spraying robot based on the fuzzy control
algorithm [28]. The dosing robot as a slave robot has reduced the maximum lateral deviation
by 25.2% compared to the orchard transport robot based on following navigation [7].

5. Conclusions

In this study, a map-based construction of a collaborative navigation system for
spraying–dosing robot groups was developed and field experiments were conducted in
orchards, and the following are the specific findings of this study.

(1) The results of the navigation communication experiments demonstrated that the
packet loss rate during communication was less than 5%, which proved that the communica-
tion system constructed in this paper met the communication needs of traditional orchards.

(2) The results of the navigation control experiments showed that the maximum value
of the absolute lateral error in the row for the spraying robot was 24.9 cm, and the maximum
value of the absolute lateral error for the dosing robot was 29.7 cm. The results proved that
the cooperative map-based navigation system developed in this paper met the navigation
accuracy requirements for spraying and dosing operations.

(3) In future work, the cooperative navigation strategy needs to be optimized and the
pure pursuit control algorithm needs to be improved to reduce the deviation during the
ground head turn.
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Abstract: The precise path-tracking control of tractors and trailers is the key to realizing agricultural
automation. In order to improve the path-tracking control accuracy and driving stability of orchard
traction spraying robots, this study proposed a navigation path-tracking control algorithm based on
Double Deep Q-Network (Double DQN). Drawing on the driver’s driving experience and referring
to the principle of radar scanning and the principle of image recognition, a virtual radar model was
constructed to generate a virtual radar map. The virtual radar map was used to describe the position
relationship between the traction spraying robot and the planned path. Combined with the deep
reinforcement learning method, all possible robot driving actions under the current virtual radar map
were scored, and the best driving action was selected as the output of the network. In this study, a
path-tracking algorithm was self-developed with a deep Q-network trained by driving the traction
spraying robot in a simulated virtual environment. The algorithm was tested in both simulations
and in a field to follow a typical ‘U’-shaped path. The simulation results showed that the proposed
algorithm was able to achieve accurate path-tracking control of the spraying trailer. The field tests
showed that when the vehicle speed was 0.36 m/s and 0.75 m/s, the maximum lateral deviation of the
algorithm was 0.233 m and 0.266 m, the average lateral deviation was 0.071 m and 0.076 m, and the
standard deviation was 0.051 m and 0.057 m, respectively. Compared with the algorithm based on the
virtual radar model, the maximum lateral deviation was reduced by 56.37% and 51.54%, the average
lateral deviation was reduced by 7.8% and 5.0%, and the standard deviation was reduced by 20.31%
and 8.1%, respectively. The results showed that the Double-DQN-based navigation path-tracking
control algorithm for the traction spraying robot in the orchard had higher path-tracking accuracy
and driving stability, which could meet the actual operational requirements of traditional orchards.
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1. Introduction

China’s orchards are currently divided into standard orchards and traditional orchards.
The traditional orchards’ planting area accounts for about 75% of all orchard area [1]. Pest
and disease control work is an important part of orchard fruit tree management. With
changes in season and climate, 8~15 spraying times per year occur, and this workload
accounts for about 30% of the whole fruit tree management workload [2,3]. However,
traditional orchards are densely planted, and their access roads are low and narrow, which
makes it difficult for ordinary agricultural machinery to enter and operate [4]. Because
the traction structure can effectively reduce the height of the whole machine to adapt to a
low-channel working environment, it is widely used.
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The goal of automatic navigation or guidance of agricultural machinery is to control
the trajectory of the vehicle so that it maintains a constant distance from the adjacent
driving line. Most scholars at home and abroad are committed to keeping the distance
between the tractor and the planned path constant. In fact, different from self-propelled rice
transplanters, fertilizer applicators and seeders, the goal of traction agricultural machinery
navigation should be to maintain the operating points in the machine, such as the plough
knife in the seeder, the flat shovel of the grader or the spraying trailer in the traction
spraying robot, and keep a constant distance from the planned path. At present, domestic
and foreign scholars have little research on the path-tracking control of the orchard traction
spraying robot navigation, and the tractors are mainly wheeled tractors. As the steering
principles of tracked vehicles and wheeled vehicles are different, the path-tracking algo-
rithms of wheeled vehicles are difficult to apply directly to tracked vehicles [5,6]. However,
accurate path tracking is the key for spraying robots to achieve precise spraying of agricul-
tural crops [7]. Especially when working on a curved road, the driving track of a trailer is
different from that of the tractor. Navigating the tractor alone can result in path gaps and
overlaps, which can affect the effectiveness of spraying operations [8,9].

A traction agricultural machinery system is a non-holonomic system, which contains
multiple nonlinear dynamic inputs and outputs, so it is not easy to realize their automatic
navigation control. Modern control techniques such as Model Predictive Control (MPC)
are now being applied to the control of traction agricultural machinery systems [10].
For example, Kayacan et al. combined nonlinear moving horizon estimation (NMHE)
with a fast centralised NMPC approach to achieve accurate trajectory tracking of tractor-
trailer farm machinery systems under varying soil conditions [11]. Yue et al. proposed a
coordinated control method for tractor-trailer trajectory tracking control. The coordinated
control consists of multiple levels of controllers, each consisting of a different algorithm [12].
Murillo et al. proposed a novel nonlinear mathematical model of an articulated tractor-
trailer system that can be combined with the rolling horizon technique to improve the
path-tracking performance of articulated systems [5]. Kayacan et al. proposed a nonlinear
method of modelling the yaw and longitudinal dynamics of a tractor-trailer system to
address the problem of limited performance of existing vehicle kinematic models for
designing guidance systems. A complete nonlinear dynamics model and an accurate
calculation of the sideslip are achieved [13]. However, all the above control methods rely
on complex mathematical models and are not easy to apply in engineering.

Building accurate mathematical models is key to guaranteeing the effectiveness of the
control, and the models applied in the controller can be either kinematic or kinetic [14,15].
For mechanical equipment with only a simple control device, the dynamic model is not
applicable due to the lack of direct control force or torque. Therefore, this study studied the
control method of the traction spraying robot based on the establishment of its kinematic
model. In this regard, kinematic model-based controllers have been shown to be sufficiently
accurate for vehicles operating at low acceleration [14,16,17].

To address these issues, this study attempted to use a set of positioning systems to
obtain the pose information of the spraying trailer, created a kinematic model of the traction
spraying robot to derive the pose information of the spraying trailer in real-time, and
analyzed the path-tracking effect of the spraying trailer, which could effectively reduce the
cost of equipment and facilitate its application. Based on this, we designed a Double-DQN-
based robot navigation control system for accurate path tracking of the spraying trailer. The
method was based on control criteria learned in a simulated environment (using a reward
function) to optimize tracking performance. The method does not rely on complicated
mathematical derivation and is easy to extend.

2. Materials and Methods

2.1. Hardware and Software Setup

In order to test the performance of the navigation path-tracking control algorithm
of the orchard traction spraying robot based on Double-DQN, we built a test platform
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based on the representative 1KFL-30 crawler tractor widely used in China [6]. In order to
make the tractor structure compact and reliable, the tractor was replaced with a Yuchai
two-cylinder air-cooled engine. The spraying trailer was an orchard spraying machine
developed by our team. The traction spraying robot is shown in Figure 1. The vehicle is
small in size, and the crawler walking mechanism has good adaptability to various orchard
types and road conditions. In addition, this diesel engine-based vehicle ensures high power,
stability, ease of maintenance and low cost. The vehicle supports various tools to meet
the requirements of various tasks (e.g., spraying, tilling, furrowing, fertilizer application,
and transport). The main technical parameters of the traction spraying robot are shown in
Table 1.

Figure 1. Orchard traction spraying robot.

Table 1. The main technical parameters of the orchard traction spraying robot.

Project The Parameter Value

Dimensions (length × width × height) (mm) 3610 × 980 × 780
Maximum operating speed (km·h−1) 4.25

Spraying height (m) 2.6~3.2
Spraying width (m) 5~8

Pesticide box volume (L) 200
Track ground length (mm) 700

Gauge (mm) 700
Tractor supporting power (kW) 12
Sprayer supporting power (kW) 6.3

The structure of the navigation control system of the traction spraying robot is shown
in Figure 2; it was mainly composed of navigation and positioning equipment, the host
computer control system, a lower computer control system, a wireless remote control
system and a wireless communication system. The navigation and positioning equipment
was an XN422 combined navigation system (Xi’an North Jereh Optoelectronics Technology
Co., Ltd., Xi’an, China). The equipment consisted of three parts: a reference station, a mobile
station and a data link. It could provide position information with an accuracy of 0.03 m and
heading information with an accuracy of 0.1◦ at a frequency of 100 Hz. The lower control
system was deployed on the tractor. The lower control system transmitted the tractor pose
information provided by the navigation and positioning equipment through R232, R422
serial communication, and CAN bus communication and received the navigation host
computer control system or wireless remote control system command to control the robot.
The host computer control system software was built based on Python3.6 and QT5.0 (The
QT Company, Boston, CA, USA) framework. Its main functions include: (1) providing a
visual interface, (2) path planning, (3) tractor autonomous learning and training, and (4)
recording simulation and test data.
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Figure 2. Structure of the navigation control system of the orchard traction spraying robot.

2.2. Kinematic Model of the Traction Spraying Robot

The tractor of the traction spraying robot included an electromagnetic hydraulic valve
group, hydraulic cylinder and clutch. The onboard electronic control unit (ECU) outputted
on-off signals by controlling the relay unit to adjust the state of the solenoid valve. Taking
the forward motion state as an example, when the left track braked, the right track rotated,
and the vehicle turned left. When the right track braked, the left track rotated, the vehicle
turned right, and the turning radius was a fixed value. When the left and right tracks
rotated at the same time, the vehicle moved forward. When the left and right tracks braked
simultaneously, the vehicle stopped.

To simplify the kinematic analysis process, it was assumed that: (1) without consider-
ing the deformation, the tractor, the spraying trailer, and their connecting mechanism were
rigid bodies, (2) the centroid of the tractor and spraying trailer coincided with the geometric
center, (3) we could ignore the track section slip, and (4) the steering angular velocity and
resistance coefficient of the crawler tractor remained unchanged during rotation [18].

The kinematic model of the traction spraying robot is shown in Figure 3. (xi, yi, θi)
is defined as the positional information of each vehicle i = (0, 1), where Pi(xi, yi) denotes
the vehicle position coordinates, and θi denotes the heading of the vehicle (where I = 0
for the tracked tractor and i = 1 for the spraying trailer). L0 denotes the distance from the
tractor center of the mass coordinates to the hook-up point, L1 denotes the distance from
the spraying trailer center of the mass coordinates to the hook-up point, v0 and v1 denote,
respectively, the instantaneous linear velocity of the center of mass of the tractor and the
spraying trailer, and B is the tractor gauge width.

The instantaneous linear and angular velocities of the track speed and center of mass
on the left and right sides of the tractor are related as in Equations (1) and (2).

v0 =
vL + vR

2
, (1)

ω =
vR − vL

B
, (2)

Based on the kinematic principles
.
x = v cos(θ) and

.
θ = ω, Equations (1) and (2)

are brought into it to yield the kinematic equation of the tracked tractor, as shown in
Equation (3). ⎛

⎜⎝
.
x0.
y0.
θ0

⎞
⎟⎠ =

⎛
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cos(θ0)
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Figure 3. Kinematic model of the orchard traction spraying robot.

According to the kinematic principle, the expression for the position information of
the spraying trailer is shown in Equation (4).

{ .
x1 = v1 cos(θ1).
y1 = v1 sin(θ1)

, (4)

The relationship between the tractor position and the spraying trailer position can be
derived from the tractor unit structure in Figure 3, as shown in Equation (5).

{
x1 = x0 − (L0 cos θ0 + L1 cos θ1)
y1 = y0 − (L0 sin θ0 + L1 sin θ1)

, (5)

Deriving both sides of Equation (5) and substituting into Equation (1), Equation (6) is
obtained as follows.{

v1 cos(θ1) = v0 cos(θ0) + L0
.
θ0 sin(θ0) + L1

.
θ1 sin(θ1)

v1 sin(θ1) = v0 sin(θ0)− L0
.
θ0 cos(θ0)− L1

.
θ1 cos(θ1)

, (6)

Multiplying the first formula of Equation (6) by sin(θ1) at both ends and the second
formula by cos(θ1) at both ends, then subtracting the second formula from the first, gives
Equation (7).

v0(cos(θ0) sin(θ1)− sin(θ0) cos(θ1)) + L0
.
θ0(sin(θ0) sin(θ1) + cos(θ0) cos(θ1)) + L1

.
θ1 = 0 (7)

Simplifying Equation (7) yields Equation (8):

.
θ1 =

1
L1

(
v0 sin(θ0 − θ1)− L0

.
θ0 cos(θ0 − θ1)

)
, (8)
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Similarly, multiplying the first formula of Equation (6) by cos(θ1) at both ends and the
second formula by sin(θ1) at both ends, the two formulas are added together and simplified
to give Equation (9):

v1 = v0 cos(θ0 − θ1) + L0
.
θ0 sin(θ0 − θ1), (9)

The tractor used in this study was a single-sided brake steering, which could only
control the driving state of the tracks on the left and right sides. Based on the relationship
between the instantaneous linear velocity of the center of mass of the tractor and the
travelling speed of the left and right side tracks (Equation (1)), the instantaneous linear
velocity of the center of mass v0 in Equations (8) and (9) is replaced, and the kinematic
model of the tracked tractor (Equation (3)) is combined to obtain the kinematic model of
the orchard traction spraying robot, as shown in Equation (10).

⎛
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)
, (10)

Analysis of the kinematic model of the traction spraying robot shows that the re-
lationship between the spraying trailer and the change in tractor heading is shown in
Equation (11):

.
θ1
.
θ0

=

√
B2 + L02

L1
sin

(
θ0 − θ1 − arctan

L0

B

)
, (11)

When θ0 = θ1, i.e., the spraying trailer heading angle is equal to the tractor heading
angle, there is

.
θ1/

.
θ0 = −L0/L1, i.e., at this time, the heading change of the spraying trailer

is opposite to that of the tractor, and the size is inversely proportional to the distance from
the respective steering center to the hanging point.

2.3. Double-DQN Model Development
2.3.1. Double-DQN Network Architecture

We used the Double-DQN network structure, in which each action of the traction
spraying robot had a separate output unit, i.e., turn left, turn right, and go straight. The
state of the traction spraying robot was taken as the input of the neural network. The main
advantage of this architecture is the ability to calculate the Q value of all actions in a given
state with only one forward pass in the network [19].

In this study, the scanning result of a virtual radar on a virtual boundary was defined
as a virtual radar map. The scanning of the virtual radar on the virtual path boundary
could reflect the path deviation and path change of the tractor [9]. As shown in Figure 4,
the starting point of the straight part of the reference path is S(xs, ys), and the endpoint
is E(xe, ye). The width of the virtual path is d. The green graph in the figure shows the
image detected by the virtual radar, which consists of four edges, of which the straight line
segment is the detected virtual path boundary, and the circular arc segment is the maximum
detection boundary of the radar. As shown in Figure 5, the virtual radar map positioning
point is the midpoint of the connection between the tractor positioning point and the
spraying trailer positioning point, for which θ is the course of the tractor. Using the virtual
radar map as input to the Double-DQN network, the network structure and composition
of the input and output layers are shown in Figure 6. To solve the path-tracking control
problem, we made use of the optimal Q-value (action value) for each action. The Q-values
for a series of given actions (the desired action in this study) were the output of the network,
and a given state s was used as the network input. Each Q-value represented the expected
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future tracking performance of the corresponding steering action. Therefore, the action
with the largest Q-value was selected.

 
Figure 4. Schematic illustration of the virtual radar map generation.

Figure 5. Schematic illustration of the main parameters of the virtual radar diagram of the orchard
traction spraying robot.
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Figure 6. Overview of the network structure and the formation of its input and output layers.

The network architecture proposed in this study for training and control has six
layers, including an input layer, four fully connected hidden layers, and an output layer, as
shown in Figure 7. Based on Python 3.5, this study constructed a neural network model
based on Windows10 using Google’s open-source deep learning framework, TensorFlow2.0
(GPU). Specifically, the network was built using the Sequential model in Keras. There
are 360 neurons in the input layer and 3 neurons in the output layer, corresponding to
3 predefined actions. The activation function is the sigmoid function [6]. Each hidden fully
connected layer has 100 neurons, and the activation function is a rectification linear function.
In this study, we determined the network structure by balancing the generalization ability
and computational cost of the model. A simple network has fast calculation speed but poor
generalization ability. Complex networks have strong generalization ability but need a
long training time. When determining the model structure, we used the upper limit and
rising speed of reward scores in network training as evaluation criteria. The values of the
network hyperparameters are shown in Table 2.

 
Figure 7. Schematic illustration of the Double-DQN network.
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Table 2. List of hyperparameters and their values.

Hyperparameter Value

Minibatch size 16
Replay memory size 20,000

update frequency 200
Discount factor γ 0.99

Learning rate 0.0001
Initial exploration ε 0.9

2.3.2. Double-DQN Training Algorithm

Double-DQN is an improved algorithm of the classical deep reinforcement learning
algorithm DQN (Deep Q Network). Double-DQN solves the overestimation problem in
DQN to a certain extent and improves the stability of the algorithm [20]. The flow of the
Double-DQN agent training algorithm is shown in Figure 8.

 
Figure 8. Agent training algorithm flowchart.

The agent (traction spraying robot) was trained for autonomous learning by first
initializing the memory playback unit and the network parameters θ and θ− of the current
value network and the target value network. Then, s was initialized as the first state of
the current state sequence; we subsequently selected action a and executed it using the
ε-greedy algorithm to obtain the next state s′, immediately return r, and store (s, a, r, s′)
in the memory playback unit. Each time a certain number of parameters were adjusted,
a certain number of samples were randomly collected in the memory playback unit for
gradient descent to solve the current value network parameters. Because the weight of
the network is updated by gradient backpropagation, if the input data are sequential, it
will lead to overestimation. Collecting a certain number of samples can improve training
efficiency by disrupting the batch of input data. At regular intervals, the current value
network parameters were assigned to the target value network so that the agent training
was completed iteratively [21].

A reward is an incentive mechanism designed by people using prior knowledge to
encourage reinforcement learning algorithms to learn in the direction of people’s expec-
tations. For path-following autonomous learning, we designed a sparse reward [22]. The
rules for the incentive mechanism (12) were established as shown below. If R is a reward
for the agent’s action in the current state, when the agent made the correct action for the
state, a reward of 1 was given; otherwise, a reward of −1 was given, and when the lateral
deviation between the agent and the reference path was 0, a reward of 0 was given.

The network requires a large amount of data to be trained. In order to do this, each
time the simulated line tracking process was run until the agent successfully reached the
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endpoint, the process was stored and then used for empirical replay [23]. Δd1 denotes the
lateral deviation value of the intelligent body in state s′, Δθ1 denotes the heading deviation
value of the agent in state s′, and Δθ0 denotes the heading deviation value of the agent in
state s. The initial state s and action a are randomly established in the set range. Δd1 is in
the range [−700, 700], and Δθ1 and Δθ0 are in the range (−π/2, π/2). When the lateral
deviation and heading deviation took a positive value, it meant that it was on the left side
of the planned path and vice versa for the right side. The value of action a is [0, 1, 2] (0 for
straight, 1 for left, 2 for right). When the agent was outside the set range, the agent reverted
to the starting point.

R =

⎧⎨
⎩
+1
0
−1

Δd1 �= 0, Δθ1 ∈ (−π/2, π/2), Predefined action driving
Δd1= 0, Δθ1 ∈ (−π/2, π/2)

Δd1 �= 0, Δθ1 ∈ (−π/2, π/2), Non-predefined action driving
, (12)

According to the rules of the reward mechanism, the reward and punishment values of
specific actions in different states of the agent could be obtained, as shown in Tables 3 and 4.
Here, Δθ1 > Δθ0 for left, Δθ1 = Δθ0 for straight, and Δθ1 < Δθ0 for right.

Table 3. Reward and punishment values for the left side of the planning path.

Δd1 Δθ1 R

(0, 70]

(−90, −10] 1 (left turn)
−1 (other actions)

(−10, 0) 1 (straight)
−1 (other actions)

[0, 90) 1 (right)
−1 (other actions)

(70, 150]

(−90, −20] 1 (left)
−1 (other actions)

(−20, −12) 1 (straight)
−1 (other actions)

[−12, 90) 1 (right)
−1 (other actions)

(150, 700]

(−90, −30] 1 (left)
−1 (other actions)

(−30, −22) 1 (straight)
−1 (other actions)

[−22, 90) 1 (right)
−1 (other actions)

Table 4. Reward and punishment values for the right side of the planning path.

Δd1 Δθ1 R

[−70, 0)

(−90, 0] 1 (left)
−1 (other actions)

(0, 10) 1 (straight)
−1 (other actions)

[10, 90) 1 (right)
−1 (other actions)

[−150, −70)

(−90, 12] 1 (left)
−1 (other actions)

(12, 20) 1 (straight)
−1 (other actions)

[20, 90) 1 (right)
−1 (other actions)

[−700, −150)

(−90, 22] 1 (left)
−1 (other actions)

(22, 30) 1 (straight)
−1 (other actions)

[30, 90) 1 (right)
−1 (other actions)
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3. Simulation Test Results

3.1. Simulation Environment Creation

The simulation environment of this study was based on Python 3.5, the PyQt5 frame-
work and Google’s open-source deep learning program framework, TensorFlow2.0 (GPU
version). The running environment was a Windows 10 system; the simulation environment
is shown in Figure 9. The agent model represents the traction spraying robot, the reference
path fold line represents the operation path, and the solid dots represent the starting and
ending points of the planned path. The reference path parameters are shown in Figure 10,
with the reference path starting point being (0, 0) m and the reference path endpoint being
(5.0, 8.0) m.

 
Figure 9. The agent simulation environment.

Figure 10. Schematic illustration of reference path.
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The relevant network parameters and training hyperparameters were set according
to the previous sections. The current value network and the target value network were
structurally consistent. In the simulation experiment, the storage capacity of the memory
playback unit was set to 90,000, and the network parameters of the target value network
were copied to the current value network parameters once for each 200-parameter adjust-
ment so as to reduce the correlation between the two networks and improve the network
training efficiency. The ε value of the ε-greedy algorithm was set to 0.9 to improve the
exploration ability of the intelligence, i.e., a 0.9 probability of selecting the action with the
largest value of state behavior for execution; otherwise, a random action was selected for
execution, and the decay factor of the ε-greedy algorithm was set to 0.0001. The training of
the agent ended when the network converged to a certain extent.

The agent started from the starting point of the reference path. In order to make the
agent’s exploratory learning more comprehensive, we added random disturbance to the
agent’s kinematics model, and the random disturbance deviation range was [−20, 20] mm.
If the lateral deviation or heading deviation of the agent from the reference path were
greater than the set threshold, the agent ended the round and returned to the origin to start
the next round of training again. The agent reaching the end of the reference path was
regarded as the success of this round of learning.

3.2. Simulation Test Results

The single-step reward results of agent training are shown in Figure 11. The abscissa
represents the number of training steps, and the ordinate represents the reward value of
each step. The total number of agent training steps was 23,296 steps. With the increase in
training steps, the reward value tended to be stable, and the score of each round increased
gradually. The scoring results of each round of agent training are shown in Figure 12. At
the beginning of the training, the score was low, and the score changed greatly. As the
number of rounds increased, the score became larger, and the data tended to be stable.
The success rate of agent training is shown in Figure 13. The agent reached the end of the
reference path in the fifth round. As the training continued, the success rate of the agent
continued to increase.

 
Figure 11. Agent training single-step rewards.
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Figure 12. The agent trains to score points per turn.

 
Figure 13. Agent training success rate.

The results of the training and testing of the agent showed the value and potential of
this idea of autonomous learning using an agent. The advantage of reinforcement learning
is that an agent without excessive a priori knowledge could learn some of the common
experiences of artificial design through continuous interaction with the environment and
may even discover some experiences that have not been learned by engineers [20,21].

3.3. Validation of Simulation Results

To verify the feasibility of the path-tracking algorithm proposed in the study, simu-
lation experiments were carried out in a simulation environment. The path planned for
the simulation is a ‘U’-shaped folding path, 20 m long and 4 m wide (total path length
is approximately 42.83 m), with a path starting point of (0, 0) m and a path end point of
(0, 4.0) m. The initial lateral deviation of the kinematic model of the traction spraying robot
was 0.5 m, and the heading angle was 180◦. The simulation verification was carried out at
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two speeds of 0.36 m/s and 0.75 m/s. During the simulation process, the communication,
display and data recording of the upper control system were normal, and the simulation
test results are shown in Figure 14.

 
(a) The 0.36 m/s path-tracking track. 

 
(b) The 0.36 m/s spraying trailer path-tracking lateral and heading deviations. 

 

(c) The 0.75 m/s path-tracking track. 

(d) The 0.75 m/s spraying trailer path-tracking lateral and heading deviations. 

Figure 14. Simulation experimental results.

When the simulation speed was 0.36 m/s, the maximum lateral deviation of the
spraying trailer path tracking was 0.117 m, the average lateral deviation was 0.038 m,
and the standard deviation was 0.028 m. When the simulation speed was 0.75 m/s,
the maximum lateral deviation of the spraying trailer path tracking was 0.119 m, the
average lateral deviation was 0.040 m, and the standard deviation was 0.029 m. The
simulation results showed that the Double-DQN-based orchard traction spraying robot
navigation path-tracking control algorithm was feasible in principle for navigation path-
tracking control, and the spraying trailer had high path-tracking accuracy to meet practical
operational needs.
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4. Field Test Results

Experimental Results of Robot Path-Tracking Control Algorithm

Our team used a portable differential positioning device (Figure 15) to verify the
method of calculating the position of the spraying trailer by the established kinematic
model of the traction spraying robot. For the verification test, our team carried out a
portable differential positioning equipment accuracy test and kinematic model to calculate
the spraying trailer pose information method validation test. The test results showed that
the fixed differential signal of the portable differential positioning equipment was stable
and met the requirements of this study. The position of the spraying trailer calculated
by the kinematic model had the same trend as the position trajectory of the spraying
trailer actually recorded by the portable differential positioning device. The experimental
results showed that the kinematic model established in this study could better reflect the
kinematic characteristics of the orchard traction spraying robot and had higher accuracy. To
a certain extent, it could replace the sensor to calculate the position of the spraying trailer
in the actual operation process of the orchard traction spraying robot, saving the cost of
the equipment.

Figure 15. Portable differential positioning devices.

The experimental field of the path-tracking control algorithm for the traction spraying
robot was located in the National Persimmon Germplasm Resources Garden of Northwest
A&F University (108.066◦ E, 34.297◦ N). As shown in Figure 16, the row spacing of fruit
trees is 2.4 m, and the plant spacing is about 2~3 m.

 

Figure 16. Orchard traction spraying robot test site.
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The field test site is shown in Figure 17. Considering that the robot needed to follow a
straight line and turn around to change rows during the orchard operation, the planned
path was designed as a 20.0 × 2.4 m ‘U’-shaped folding path, and the test speed was set at
0.36 m/s and 0.75 m/s. To ensure the validity of the test data, each set of tests was repeated
three times (the lateral and heading deviations in the test results are absolute values). The
results of the path-tracking tests are shown in Figure 18, the statistics of the repeated tests
are shown in Table 5, and the three-dimensional diagrams of the path-tracking errors for
the two control methods are shown in Figure 19.

 
Figure 17. Navigation path-tracking real vehicle experiment.

(a) The 0.36 m/s path-tracking track. 

 
(b) The 0.36 m/s spraying trailer path-tracking lateral and heading deviations. 

Figure 18. Cont.
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(c) The 0.75 m/s path-tracking track. 

 
(d) The 0.75 m/s spraying trailer path-tracking lateral and heading deviations. 

Figure 18. Results of the real vehicle experiment.

Table 5. Path-tracking experimental data.

v/(m/s) Test No.

Sprayer Path-Tracking Deviation

Maximum
Lateral Deviation /(m)

Average
Lateral Deviation /(m)

Standard
Deviation/(m)

Straight Line
(0~20 m)

Full Range
Straight Line

(0~20 m)
Full Range

Straight Line
(0~20 m)

Full Range

0.36

r361 0.128 0.233 0.043 0.070 0.026 0.051
r362 0.120 0.225 0.041 0.069 0.025 0.049
r363 0.134 0.240 0.045 0.073 0.028 0.054
r36 0.127 0.233 0.043 0.071 0.026 0.051
l361 0.126 0.536 0.051 0.084 0.021 0.059
l362 0.146 0.558 0.061 0.080 0.023 0.069
l363 0.113 0.509 0.056 0.066 0.026 0.063
l36 0.128 0.534 0.056 0.077 0.023 0.064

0.75

r751 0.145 0.263 0.055 0.076 0.033 0.056
r752 0.155 0.275 0.057 0.079 0.034 0.058
r753 0.140 0.259 0.054 0.074 0.032 0.056
r75 0.147 0.266 0.055 0.076 0.033 0.057
l751 0.149 0.536 0.057 0.081 0.030 0.062
l752 0.178 0.554 0.054 0.081 0.034 0.066
l753 0.207 0.558 0.061 0.078 0.034 0.059
l75 0.178 0.549 0.057 0.080 0.033 0.062

Note: Test number r361 stands for the Double-DQN algorithm path-tracking test group 1 at 0.36 m/s speed,
l361 stands for the virtual radar control algorithm path-tracking test group 1 at 0.36 m/s speed, r36 stands for the
average of the Double-DQN algorithm control at 0.36 m/s speed for 3 sets of test results, and l36 stands for the
average of the virtual radar model control at 0.36 m/s speed.
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(a) (b) 

  

(c) (d) 

Figure 19. (a,b) The 3D maps of 0.36 m/s and 0.75 m/s path-tracking error for the Double-DQN
method; (c,d) 3D maps of 0.36 m/s and 0.75 m/s path-tracking error for the virtual radar method.

From Figures 18 and 19, it can be seen that under the same speed, the path-tracking
algorithm based on Double-DQN had a smaller overall lateral deviation in the whole path
of the spraying trailer compared with the path-tracking algorithm based on the virtual
radar model [9]. The spraying trailer had better path-tracking accuracy and driving stability
in the turning process and the straight-line driving part after lane changing.

The results of comparing the tracking accuracy of the straight path portion (‘U’-shaped
fold path 0~20 m) of the spraying trailer for the two control algorithms are shown in Table 6.
At the speed of 0.36 m/s, the virtual radar model algorithm was superior to the Double-
DQN algorithm in terms of the driving stability (standard deviation) of the spraying trailer.
However, the algorithm proposed in this study was superior to the virtual radar model
algorithm in terms of the average lateral deviation and maximum lateral deviation. The
average lateral deviation and maximum lateral deviation were reduced by 23.21% and
0.78%, respectively. At the speed of 0.75 m/s, the driving stability (standard deviation)
of the spraying trailer proposed in this study was consistent, but it was superior to the
virtual radar model algorithm in terms of average lateral deviation and maximum lateral
deviation. The maximum lateral deviation and average lateral deviation were reduced by
17.41% and 3.51%, respectively.
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Table 6. Comparison of straight-line path-tracking accuracy.

v/(m/s) Test No.
Maximum

Lateral Deviation
/(m)

Average
Lateral Deviation

/(m)

Standard
Deviation

/(m)

0.36
r36 0.127 0.043 0.026
l36 0.128 0.056 0.023

−0.001 (0.78%) −0.013 (23.21%) 0.003 (13.04%)

0.75
r75 0.147 0.055 0.033
l75 0.178 0.057 0.033

−0.031 (17.41%) −0.002 (3.51%) 0 (0%)

Comparing the ‘U’-shaped path-tracking accuracy of the spraying trailer under the
two navigation path-tracking control algorithms, the results are shown in Table 7. All
path-tracking indexes of the proposed algorithm were better than those of the virtual radar
model algorithm. The maximum lateral deviation was reduced by 56.37%, the average
lateral deviation was reduced by 7.8%, and the standard deviation was reduced by 20.31%.
This showed that the overall path-tracking performance of the new algorithm in the ‘U’-
shaped path was significantly better than that of the tracking algorithm based on the virtual
radar model.

Table 7. Comparison of ‘U’-shaped path-tracking accuracy.

v/(m/s) Test No.
Maximum

Lateral Deviation
/(m)

Average
Lateral Deviation

/(m)

Standard
Deviation

/(m)

0.36
r36 0.233 0.071 0.051
l36 0.534 0.077 0.064

−0.301 (56.37%) −0.006 (7.8%) 0.013 (20.31%)

0.75
r75 0.266 0.076 0.057
l75 0.549 0.080 0.062

−0.283 (51.54%) −0.004 (5.0%) −0.005 (8.1%)

Comparing the tracking accuracy of the ‘U’-shaped path and the straight path of the
spraying trailer under the two algorithms, the results are shown in Table 8. The tracking
accuracy indexes of the ‘U’-shaped path and straight path based on the virtual radar
model were quite different, especially the maximum lateral deviation. When the speed was
0.36 m/s and 0.75 m/s, the maximum lateral deviation of the ‘U’-shaped path based on the
virtual radar model was 317.19% and 208.43% higher than the maximum lateral deviation
of the straight path, while the relevant indicators of the proposed algorithm were relatively
similar. When the speed was 0.36 m/s and 0.75 m/s, the maximum lateral deviation of the
‘U’-shaped path was 83.46% and 80.95% higher than the maximum lateral deviation of the
straight path. It showed that the deviation control ability of the new algorithm was better
than that of the virtual radar model control and had better steering path adaptability.
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Table 8. Comparison of ‘U’-shaped and straight line path-tracking accuracy.

v/(m/s)
Path

Shape
Test No.

Maximum
Lateral Deviation

/(m)

Average
Lateral Deviation

/(m)

Standard
Deviation

/(m)

0.36

Straight r36 0.127 0.043 0.026
‘U’-shaped r36 0.233 0.071 0.051

0.106 (83.46%) 0.028 (65.12%) 0.025 (96.15%)
Straight l36 0.128 0.056 0.023

‘U’-shaped l36 0.534 0.077 0.064
0.406 (317.19%) 0.021 (37.5%) 0.041 (178.26%)

0.75

Straight r75 0.147 0.055 0.033
‘U’-shaped r75 0.266 0.076 0.057

0.119 (80.95%) 0.021 (38.18%) 0.024 (72.72%)
Straight l75 0.178 0.057 0.033

‘U’-shaped l75 0.549 0.080 0.062
0.371 (208.43%) 0.023 (40.35%) 0.029 (87.88%)

The statistical results of the path-tracking data of the spraying trailer and tractor were
analyzed, as shown in Table 9. The path-tracking accuracy indexes of the spraying trailer
and tractor based on the virtual radar model were quite different, especially the maximum
lateral deviation. When the speed was 0.36 m/s and 0.75 m/s, the maximum lateral
deviation of the spraying trailer path tracking was 256.0% and 187.43% higher than that of
the tractor path tracking. The relevant indicators of the proposed algorithm were relatively
similar. When the speed was 0.36 m/s and 0.75 m/s, the maximum lateral deviation of
the spraying trailer path tracking was 39.0% and 45.5% lower than the maximum lateral
deviation of the tractor path tracking. It showed that the new algorithm had better control
ability than the virtual radar model control for spraying trailer path tracking.

Table 9. Comparison of spraying trailer and tractor path tracking.

v/(m/s) Model Test No.
Maximum

Lateral Deviation
/(m)

Average
Lateral Deviation

/(m)

Standard
Deviation

/(m)

0.36

Tractor r36 0.382 0.087 0.075
Trailer r36 0.233 0.071 0.051

−0.149 (39.0%) −0.016 (18.39%) −0.024 (32%)
Tractor l36 0.150 0.031 0.025
Trailer l36 0.534 0.077 0.064

0.384 (256.0%) 0.046 (148.39%) 0.039
(156.0%)

0.75

Tractor r75 0.448 0.110 0.095
Trailer r75 0.266 0.076 0.057

−0.222 (45.5%) −0.034 (30.9%) −0.038 (40%)
Tractor l75 0.191 0.051 0.036
Trailer l75 0.549 0.080 0.062

0.358 (187.43%) 0.029 (56.86%) 0.026
(72.22%)

5. Discussion

The automatic navigation of the traction spraying robot should not only focus on
the position change of the tractor during its navigation and driving but also on whether
the spraying trailer can effectively track the planned orchard operation path. In order to
improve the path-tracking control accuracy and driving stability of the orchard traction
spraying robot, this study proposed a navigation path-tracking control algorithm based on
the Double Deep Q-Network (Double DQN). The algorithm was tested in both simulations
and on a field to follow a typical ‘U’-shaped path. The simulation results showed that the
proposed algorithm was able to achieve accurate path-tracking control of the spraying
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trailer. The field tests showed that when the vehicle speed was 0.36 m/s and 0.75 m/s,
the maximum lateral deviation of the algorithm was 0.233 m and 0.266 m, the average
lateral deviation was 0.071 m and 0.076 m, and the standard deviation was 0.051 m and
0.057 m, respectively. Compared with the algorithm based on the virtual radar model [6],
the maximum lateral deviation was reduced by 56.37% and 51.54%, the average lateral
deviation was reduced by 7.8% and 5.0%, and the standard deviation was reduced by
20.31% and 8.1%, respectively.

Although the trajectory of the spraying trailer is controlled, compared with the simu-
lation test, the indicators of the path tracking of the spraying trailer in the field test were
quite different. The test comparison data are shown in Table 10. When the vehicle speed
was 0.36 m/s and 0.75 m/s, the maximum lateral deviation of the spraying trailer path
tracking in the field experiment increased by 99.147% and 123.53%, the average lateral
deviation increased by 86.84% and 90%, and the standard deviation increased by 82.14%
and 96.55%, respectively. The main possible reasons for this are as follows: (1) in order to
save costs, we used a set of positioning systems to obtain the position information of the
tractor and estimate the position information of the spraying trailer through the kinematic
model. The angle difference between the heading angle of the tractor and the spraying
trailer was not taken into account, which may lead to deviation errors. (2) The tractor
control device was simple, and the tractor had a reaction time from receiving the signal
to performing the corresponding action, which may lead to deviation errors. (3) With the
increase in the speed of the traction spraying robot, the navigation path-tracking accuracy
of the spraying trailer was reduced. Due to the simple control device of the tractor in this
study, the influence of different speeds on the control accuracy was not considered, which
may lead to deviation errors. (4) When the robot was working in the orchard, the GNSS
signal drifted briefly, which may lead to deviation errors.

Table 10. Comparison of simulation and field experiment path-tracking accuracy.

v/(m/s) Test Type

Maximum
Lateral

Deviation
/(m)

Average
Lateral

Deviation
/(m)

Standard
Deviation

/(m)

0.36
Simulation 0.117 0.038 0.028

Field 0.233 0.071 0.051
0.116 (99.14%) 0.033 (86.84%) 0.023 (82.14%)

0.75
Simulation 0.119 0.040 0.029

Field 0.266 0.076 0.057
0.147 (123.53%) 0.036 (90%) 0.028 (96.55%)

Future work will focus on: (1) in the stage of establishing the kinematics model of the
traction spraying robot, the relevant parameters at the connection of the spraying trailer will
be added, such as the angle difference between the yaw angle of the tractor and the spraying
trailer, so as to include this interaction in the design stage, which may achieve a better
control effect; (2) in the aspect of optimizing the control algorithm, we suggest studying the
influence of virtual radar model parameters, the neural network structure and parameter
changes on navigation effect; (3) we propose studying the influence of speed changes
on navigation effectso that the control model can adapt to the effect of speed variation;
and (4) we recommend using 3D radar sensors to sense the environment, as through
multi-sensor data fusion, we can deal with the interference caused by trunk occlusion.

6. Conclusions

In this paper, in order to improve the precision and driving stability of a spraying
trailer tracking a predefined trajectory in a traction spraying robot, this study proposed
a navigation path-tracking control algorithm based on the Double-DQN method. The
Double-DQN method is an optimal decision-making method based on state space. This
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method is different from the supervised learning method. It does not need to be trained
according to the sample. The control standard (using the reward function) learned in the
simulation environment can optimize the tracking performance. It does not depend on
complex mathematical models and is easy to expand. In order to reduce the cost of use
and facilitate practical application, we used a set of positioning systems to obtain the pose
information of the tractor, combined the kinematics model of the traction spraying robot
to calculate the pose information of the spraying trailer in real-time, and analyzed the
path-tracking effect of the spraying trailer.

The algorithm was tested in both simulations and on a field to follow a typical ‘U’-
shaped path. The simulation results showed that when the speed was 0.36 m/s, the
maximum lateral deviation of the spraying trailer path tracking was 0.117 m; when the
speed was 0.75 m/s, the maximum lateral deviation of the spraying trailer path tracking
was 0.119 m. This showed that the proposed algorithm could realize the navigation path-
tracking control of the spraying trailer in principle and had a high control accuracy, which
could meet the needs of the orchard’s autonomous spraying operation. The field test results
showed that when the vehicle speed was 0.36 m/s and 0.75 m/s, compared with the control
algorithm of the virtual radar model, the maximum lateral deviation of the spraying trailer
was reduced by 56.37% and 51.54%, respectively, the average lateral deviation was reduced
by 7.8% and 5.0%, respectively, and the standard deviation was reduced by 20.31% and 8.1%,
respectively. It showed that the overall performance of the algorithm was better than the
control algorithm based on the virtual radar model, which effectively improved the tracking
accuracy of the navigation path of the spraying trailer and the stability of the automatic
operation and had better adaptability to the typical operation path of the orchard.
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Abstract: Soil erosion is a major form of land degradation, especially in agroecosystems, which has
been effectively controlled by vegetation restoration. However, the interactive role of erosion and
cropland revegetation on soil enzyme activities and microbial nutrient limitations is less understood.
To address this issue, we examined carbon (C), nitrogen (N), and phosphorus (P) in bulk soils and
microbial biomass, enzyme activities, and microbial nutrient limitations in the 0–200 cm soils in
eroded and deposited landscapes occupied by cropland, revegetated forest, and grassland. The
results showed that the activities of C-, N-, and P-acquiring enzymes were larger in the deposited
landscape than in the eroded landscape for 0–20 cm soils in forest and grassland but not in cropland.
Microbial metabolism was co-limited by N and P, and the threshold element ratio (TERL) indicated
that P was the most limiting factor. Microbial N limitation was lower in the deposited than the
eroded zone, especially in surface soils in revegetated forest and grassland. The TERL value was
larger at the deposited than at the eroded zone, and a greater difference was found in the surface
soils of forest and grassland. Microbial nutrient limitations were mostly explained by C/P and N/P.
Conclusively, the deposited areas were characterized by ameliorated enzyme activities, decreased
microbial N limitation but relatively strengthened microbial P limitation compared to the eroded
area, and such variations existed in the revegetated forest and grassland but not in the cropland,
which thus contributes to a better understanding of C and nutrient cycling for agroecosystems and
revegetation ecosystems in eroded environments.

Keywords: agroecosystem; revegetation; soil erosion; deposition; enzyme activity; microbial
metabolic limitation

1. Introduction

Soil erosion is the major driver of land surface processes and has caused environmental
problems such as soil and nutrient losses, soil siltation, vegetation degradation, and water
eutrophication [1–3]. Globally, approximately 84% of the Earth’s land surface suffers from
soil erosion, half of which occurs in agricultural ecosystems [4]. Cropland revegetation
has been deemed the most effective and economical way to curb severe soil erosion and
has achieved remarkable effects [5–7]. Understanding the coupled role of soil erosion and
vegetation restoration in microbial metabolism is of vital importance to the biogeochemical
cycling of essential elements in an erosive environment [8,9].

Soil erosion leads to the distribution of soil particles and nutrients and alters con-
ditions, and thus has an important effect on soil microorganisms’ metabolism [3,9–11].
Microorganisms secrete extracellular enzymes catalyzing the decomposition of complex
organic compounds to get soil nutrients, thus playing a critical role in biogeochemical
nutrient cycling [12–15]. Soil extracellular enzyme activities are affected by multiple factors,
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such as substrate concentration and availability, soil moisture, temperature, and ventila-
tion conditions [15,16]. Research has shown that extracellular enzyme activities are lower
in eroded than in deposited sites due to the redistribution of soil nutrients and changes
in the microclimate during the eroded-deposited process [17,18]. The combination of
ecoenzymatic stoichiometric theory with the metabolic theory of ecology and ecological
stoichiometric theory was accustomed to assess microorganisms’ metabolism limitations
in soil ecosystems from enzyme activity patterns [19]. A common method used to eval-
uate and measure microbial metabolic limitations is the threshold element ratio (TER)
model. This model characterizes the carbon (C), nitrogen (N), and phosphorous (P) ratios
in which microbial metabolic management is effective in converting from energy to nutri-
ents [20]. Recent studies have proven that microbial metabolic limitations differ based on
land-use patterns, tillage management, and fertilization treatments, which are driven by
soil moisture, soil physical properties (i.e., clay content and pH), and nutrient availabil-
ity [21–24]. However, how soil microbial metabolic limitations vary in eroded and deposited
landscapes remains less understood, despite the well-acknowledged variations in soil
physiochemical properties.

Vegetation type is an important factor affecting soil extracellular enzyme activities and
microbial nutrient limitations. Plant community characteristics and soil physicochemical
properties (e.g., plant species and litter nutrient input, respectively) have a profound
influence on soil extracellular enzyme activities and microbial nutrient limitations [12,14,25].
For example, Wobeng [21] recommended soybean cultivation in agroecosystems in South
Africa since it can alleviate microbial C limitation compared with the other three leguminous
species (Phaseolus vulgaris L., Glycine max L. and Arachis hypogea L.). Yan [26] demonstrated
that reafforestation worsens soil microbial metabolic N and P limitation, especially at
medium and high Pinus tabuliformis plantation densities on China’s Loess Plateau. Cropland
revegetation is an effective measure for ecosystem restoration and soil erosion control with
the increasing plant coverage and less human disturbance, such as tillage activities [27,28];
however, the interactive role of soil erosion and cropland revegetation on soil microbial
metabolism is less understood in eroding landscapes.

It has been estimated that 27–77% of organic C (OC) is stored below 20 cm, and any
small change in deep soil C would also have an important impact on global C cycling [29,30].
With increasing soil depth, the input of plant organic matter decreases gradually, and the
soil nutrient content, microbial biomass, and microbial activity also decrease correspond-
ingly [31]. In addition, compared with topsoil, the environmental conditions, including
moisture, porosity, and pH, are significantly different in the subsoil, which has a significant
influence on soil microbial metabolism [32]. For example, soil enzyme activities have
been reported to significantly decrease with depth and respond significantly to water-
enrichment treatment in the 40–160 cm layers along the 0–340 cm soil profile [33]. While
previous studies on microorganisms’ nutrient limitations have principally targeted on sur-
face soils [12,14,34], information about soil microbial metabolism in deep soils is currently
limited, although the effects of soil erosion and vegetation restorage can influence deep soil
carbon and nutrient cycling [9,35].

China’s Loess Plateau is one of the “most liable to erosion” regions globally [7]. The
“Grain-for-Green” project and the construction of check dams have been implemented to
decelerate soil erosion on the Loess Plateau over the past few decades [6]; thus, the region
provides an ideal platform for our study. The objective of this study was to elucidate the
coupled role of erosion and vegetation restoration on soil enzyme activities and microbial
nutrient limitations. To achieve this goal, cropland and revegetated forest and grassland
were selected in both the eroded and the deposited landscapes, and 0–200 cm soil and sedi-
ment samples were collected to analyze the C-, N-, and P-acquiring enzyme activities and
microbial nutrient limitation. We hypothesized that (H1) the deposited landscape would
have higher enzyme activities and lower nutrient limitations than the eroded landscape
due to the accumulation of C, nutrients, and moisture [20,36]; (H2) variations in these
indicators would be greater in cropland since revegetation reduces the effect of erosion;
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and (H3) variations in these indicators would be higher in surface soils since the influences
of erosion and vegetation restoration are more obvious.

2. Materials and Methods

2.1. Study Site and Sampling

The study was conducted in the Jiuyuangou watershed (37◦33′–37◦38′ N, 110◦16′–110◦26′ E)
in Suide County, Shaanxi Province, China, which belongs to the loess hilly area on the
Loess Plateau. This area features a temperate, semi-arid, continental monsoon climate. The
annual average temperature is 8 ◦C, the annual mean rainfall is 475 mm, and most of the
rainy season is concentrated from July to September [37].

The upper and middle parts of the slopes were selected as the eroded zones, and
the neighboring check dams were chosen as the deposited zones. Cropland, revegetated
forest, and grassland were selected in both the eroded and the deposited zones. The main
plant species of cropland, forest, and grassland were Zea mays, Robinia pseudoacacia L., and
Phragmites communis in the deposited zone and Solanum tuberosum, Prunus armeniaca L.,
and Cynanchum chinense in the eroded zone, respectively. The chemical N and P fertilizers
used were diammonium hydrogen phosphate and dipotassium hydrogen phosphate for
cropland and no fertilizers were applied in the forest and grassland.

Site surveys and soil sample collection were conducted in July 2021. Three 20 × 20 m
plots with similar elevations and slope aspects were selected for each land-use type in the
eroded and deposited landscapes. In each plot, three subplots (3 × 3 m) were randomly es-
tablished, and both surface soils (0–10 and 10–20 cm) and deep soils (60–80 and 180–200 cm)
were sampled with a soil auger. The three samples for each subplot were mixed into one
sample at each depth. Subsequently, visible plant organic matter was removed and each
soil sample was divided into two parts. One part of the samples was immediately sieved to
pass through a 2 mm sieve in the field, sent back to the laboratory, and stored at 4 ◦C to
determine the biological indices. The other part of the bulk soil (without sieving) was put
in sealed bags and sent back to the laboratory to measure the soil’s physical and chemical
properties. A subsample of these soils was oven-dried at 105 ◦C for 24 h until constant
weight to measure soil moisture (SM) and the rest was air-dried.

2.2. Laboratory Analysis

The soil particle size distribution was measured with a laser particle size analyzer
(Mastersizer 2000, Malvern Instruments Ltd., Malvern, UK). Soil pH was determined with
a pH-meter (PHS-3C, Leici, Shanghai, China) at a soil:water ratio of 1:2.5. After extracting
with 2 M KCl, soil nitrate nitrogen (NO3

−) and ammonium nitrogen (NH4
+) were analyzed

with a continuous flow autoanalyzer (AutoAnalyzer-AA3, Seal Analytical, Norderstedt,
Germany). The soil extractable P (EP) content was measured with the Olsen method. Soil
organic C (OC) was measured with the Walkley Black method and total N (TN) with
the Kjeldahl methods. Soil total P (TP) content was measured colorimetrically following
digestion with HClO4-H2SO4 [38].

The fresh soil samples were used to measure dissolved organic carbon (DOC), mi-
crobial biomass C (MBC), microbial biomass N (MBN), microbial biomass P (MBP), and
extracellular enzyme activities. The DOC was measured through extraction with deionized
water after shaking and then filtered through a Millipore 0.45-μm filter [39]. Soil MBC, MBN,
and MBP were measured using the chloroform fumigation-extraction method [14]. The
potential activities of C-acquiring enzymes (β-D-cellobiosidase (CBH), β-1,4-glucosidase
(BG)), N-acquiring enzyme (β-1,4-N-acetylglucosaminidase (NAG), L-leucine aminopepti-
dase (LAP)), and P-acquiring enzyme (alkaline phosphatase (AP)) were determined with
the microplate fluorescence method [40,41].
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2.3. Calculation of Microbial Nutrient Limitation

Based on the stoichiometric microbic C:N:P values obtained from the enzyme infor-
mation, the TERC:N and TERC:P values were obtained via the threshold element model
according to the subsequent formulas projected by Sinsabaugh [42]:

TERC:X = [AXBC:X]/CUEC:X = BC:X/SC:X = LC:XEEAC:X (1)

AX = CUEC:X/SC:X (2)

CUEC:X = CUEmax[SC:X/(SC:X + KX)] (3)

SC:X = (1/EEAC:X)(BC:X/LC:X) (4)

where the CUE is the carbon use efficiency of microorganisms, EEA is the soil extracellular
activity, AX represents the apparent assimilation efficiency of N or P, the ratios of soil
MBC:MBN and MBC:MBP were used as estimates of BC:X, SC:X is a scalar indicating the
extent to which the allocation of ecoenzymatic activities offsets the difference between the
elemental composition and microbial biomass composition of the available resources, KX is
the half-saturation constant and has a value of 0.5, the molar ratios of soil OC:TN and soil
OC:TP were used as estimates of LC:N and LC:P, respectively, and EEAC:N and EEAC:P were
expressed by (CBH + BG)/(NAG + LAP) and (CBH + BG)/AP, respectively [42].

In this study, we used the corresponding soil available nutrient ratios and subtracted
the TER to calculate the microbial nutrient limitations, and the positive values indicated that
microorganisms were subjected to nutrient restriction and vice versa. We also calculated
the TERL to identify the most limiting nutrient to microbial metabolism [20].

Xlimitation = LC:X − TERC:X (5)

TERL = Plimitation/BC:P − Nlimitation/BC:N (6)

where X represents N or P.

2.4. Statistical Analysis

Multiway analysis of variance (three-way ANOVA) and LSD tests were used to exam-
ine the significant differences in landform position (eroded and deposited), land-use type
(cropland, revegetated forest, and grassland), soil depth (0–10, 10–20, 60–80, 180–200 cm),
and their interactions with soil physicochemical properties, microbial biomass, extracellular
enzyme activities, and microbial nutrient limitations. Statistical analyses were performed
using SPSS 20.0 (SPSS Company, Chicago, IL, USA). Redundancy analysis (RDA) was used
to identify the contributions of soil physic-chemical properties to soil enzyme activities and
microbial nutrient limitation in Canoco 5.0 (Microcomputer Power, Inc., Ithaca, NY, USA).
The random forest (RF) model was used to identify the key factors influencing soil extracel-
lular enzymatic activity and microbial nutrient limitations in R software v.4.1.3. Before the
RF analysis, extracellular enzymatic activities were extracted from the principal compo-
nents (Figure S1), and the first principal component was used to represent the microbial
enzyme activity.

3. Results

3.1. Soil Physicochemical Properties

Soil moisture was significantly higher in the deposited zone (10.9%) than in the eroded
zone (5.0%) (p < 0.05), with more dramatic variations at 60–80 and 180–200 cm than at 0–10
and 10–20 cm (Tables S1 and S2). The deposited sediments had a higher clay content than
the eroded soils (p < 0.05), and such variations were higher in grassland (+70.4%) than
in cropland (+37.5%) and forest (+28.0%). The deposited zone had a higher pH (p < 0.1),
especially in cropland.

There were no significant variations in the OC and TN between the two landform
positions (p > 0.05, Table S1). The DOC concentration was significantly higher in the de-
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posited zone (55.88 mg kg−1) than in the eroded zone (38.83 mg kg−1) in cropland (p < 0.05)
but not in grassland or forestland (p > 0.05). The soil NH4

+ and NO3
− concentrations did

not differ significantly between the two landform positions for each land use (p > 0.05)
(Tables S1 and S3). The soil TP concentration was significantly lower in the deposited zone
than in the eroded zone (−9%) for each land use, while the EP concentration was signifi-
cantly higher in the deposited zone than in the eroded zone for forest (+53%) and grassland
(+143%) but was significantly lower in the deposited zone for cropland (−56%). The soil
C/N did not significantly differ between the two landforms (p > 0.05). However, the C/P
and N/P were larger at the deposited site than at the eroded site in forest (p < 0.05).

3.2. Soil Microbial C, N, P and Enzyme Activity

Generally, the differences in MBC and MBN were not significant between the deposited
site and eroded site, and such variation was not dependent on land use and soil depth
(p > 0.05, Figure 1a,b). The MBP content was considerably larger at the deposited site than
at the eroded site in the surface but not in the deep soils in the forest and grassland, but not
in cropland. Therefore, the deposited zone had a higher microbial P at the 0–10 cm depth
in the forest and grassland (Figure 1c).

Figure 1. (a) Microbial biomass carbon (C), (b) nitrogen (N), and (c) phosphorous (P) from different
soil sites. MBC: microbial biomass carbon; MBN: microbial biomass nitrogen; MBP: microbial biomass
phosphorous. CL: cropland; FL: forestland; GL: grassland; ES: eroded site; DS: deposited site. Values
are expressed as the mean ± standard error. P: landform position; L: land use type; D: soil depth.
***, **, * mean the significant differences at p < 0.001, p < 0.01, and p < 0.05, respectively, and ns means
no significant differences (p > 0.05).

Landform position significantly influenced soil extracellular enzyme activities, and
the effects depended on land-use type and soil depth (p < 0.05, Figure 2). For example, the
C-acquiring enzyme CBH and the N-acquiring enzyme NAG were higher in the deposited
zone (4.843 and 2.185 nmol g−1 h−1, respectively) than in the eroded zone (2.831 and
1.254 nmol g−1 h−1, respectively) (Figure 2a,c). The variations in the CBH and NAG were
significant at the 0–20 cm depth in forest and grassland (p < 0.05) and not significant in
cropland for either surface or deep soils (p > 0.05). The P-acquiring enzyme AP was also
significantly higher in the deposited zone than in the eroded zone at the 0–20 cm depth
in forest and grassland (p < 0.05) but similar in the two landform positions at the 0–2 m
soil profile in cropland (p > 0.05, Figure 2e). Thus, the deposited area had higher C-, N-,
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and P-acquiring enzyme activities in surface soils in forest and grassland but were similar
in cropland.

Figure 2. Soil microbial enzymatic activity of (a) CBH, (b) BG, (c) NAG, (d) LAP, and (e) AP from differ-
ent soil sites. CBH: β-D-cellobiosidase; BG: β-1,4-glucosidase; NAG: β-1,4-N-acetylglucosaminidase;
LAP: leucine aminopeptidase; AP: alkaline phosphatase. CL: cropland; FL: forestland; GL: grassland;
ES: eroded site; DS: deposited site. Values are expressed as the mean ± standard error. P: landform
position; L: land use type; D: soil depth. ***, **, * mean the significant differences at p < 0.001, p < 0.01
and p < 0.05, respectively, and ns means no significant differences (p > 0.05).

3.3. Soil Microbial Nutrient Limitation

The study area suffered from both N limitation and P limitation, with average values
of 5.41 and 10.81, respectively (Figure 3a,b). The positive TERL value (0.76) indicated
that P was the most limiting factor for microbial metabolism (Figure 3c). The microbial
N limitation in the eroded zone was 6.525, which was significantly higher than the value
of 4.301 in the deposited zone (p < 0.05, Figure 3a). Although the variations in microbial
N limitation between the two landform positions were independent of land use and soil
depth, the response ratios of microbial N limitation were higher in surface soils (−45%)
than in deep soils (−27%) and higher in forest (−39%) and grassland (−36%) than in
cropland (−28%). Microbial P limitation did not differ significantly between the eroded
and deposited zones, regardless of land use and soil depth (p > 0.05, Figure 3b), which
indicated a similar P limitation between landform positions. However, the TERL was
significantly higher in the deposited zone than in the eroded zone at the 0–20 cm depth in
forest and grassland (p < 0.05) but was not significantly different at the 0–2 m soil profile in
cropland (p > 0.05, Figure 3c).
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Figure 3. (a) Microbial N limitation, (b) microbial P limitation and (c) Threshold elemental ratio (TERL)

from different soil sites. CL: cropland; FL: forestland; GL: grassland; ES: eroded site; DS: deposited
site. Different capital letters represent significant difference (p < 0.05) between different landform
positions in the same land use type and soil depth. Values are expressed as the mean ± standard
error. P: landform position; L: land use type; D: soil depth. ***, * mean the significant differences at
p < 0.001 and p < 0.05, respectively, and ns means no significant differences (p > 0.05).

3.4. Factors Influencing Extracellular Enzyme Activities and Microbial Nutrient Limitations

The redundancy analysis (RDA) showed that the RDA 1 and 2 axes explained 85.47%
and 85.17% of the soil extracellular enzyme activity and microbial nutrient limitation,
respectively (Figure 4a,b). The forward selection and RF results indicated that the OC,
MBP, SM, clay, NO3− , and MBC were the most powerful factors affecting soil extracellular
enzyme activities (Table 1 and Figure 5a). The RDA results showed that the OC, MBP,
clay, NO3− , and MBC were positively associated with soil extracellular enzyme activities,
while the SM was negatively associated with extracellular enzyme activities (Figure 4a).
Furthermore, the forward selection and RF results implied that the C/P, clay, C/N, OC,
N/P, DOC, and MBP were the most influential factors affecting the microbial nutrient
limitations (Table 2, Figure 5b,c). The RDA results showed that the C/P, clay, OC, N/P,
DOC, MBP, and P limitation were negatively related to microbial N limitation (Figure 4b).
The RF results also highlighted that soil nutrients and their stoichiometry, MBC, MBN, and
MBP were affecting the TERL (Figure 5d).
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Figure 4. The redundancy analysis (RDA) was used to identify the (a) relationship between enzyme
activities and soil physicochemical and microbial properties and (b) the relationship between micro-
bial nutrient limitations and soil physicochemical and microbial properties. SM: soil moisture; OC:
soil organic carbon; TN: total nitrogen; TP: total phosphorus; MBC: microbial carbon; MBN: microbial
nitrogen; MBP: microbial phosphorus; DOC: dissolved organic carbon; EP: soil available phosphorus;
NO3

−: nitrate nitrogen; NH4
+: ammonia nitrogen; Nlim: microbial N limitation; Plim: microbial

P limitation.

Table 1. Simple term effects and forward selection of environmental variables on soil enzyme
activities from the redundancy analysis (RDA).

Variable Simple Term Effects Forward Selection

Contributions % p Explains % p

OC 81.8 0.002 70.2 0.002
C/P 79.5 0.002
TN 76.2 0.002

N/P 71.8 0.002
MBN 62.9 0.002
MBP 55.7 0.002 5.1 0.002
MBC 50.6 0.002 0.8 0.058
DOC 43.1 0.002
clay 26.7 0.002 1.3 0.036
pH 24.5 0.002

C/N 22.3 0.002 1 0.048
TP 16.4 0.002
SM 13.1 0.002 2.5 0.012

sand 13.0 0.008
silt 3.2 0.168

NO3
− 1.0 0.482 1.8 0.034

EP 0.1 0.88
NH4

+ <0.1 0.904
Note: SM: soil moisture; OC: soil organic carbon; TN: total nitrogen; TP: total phosphorus; EP: extractable
phosphorus; DOC: dissolved organic carbon; NH4

+: ammonia nitrogen; NO3
−: nitrate nitrogen; MBC: microbial

carbon; MBN: microbial nitrogen; MBP: microbial phosphorus.
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Figure 5. The Random Forest model (RF) was used to determine the key factors affecting (a) soil
extracellular enzymatic activity, (b) soil microbial N limitation, (c) P limitation, and (d) Threshold
elemental ratio (TERL). SM: soil moisture; OC: soil organic carbon; TN: total nitrogen; TP: total
phosphorus; DOC: dissolved organic carbon; EP: soil available phosphorus; NO3

−: nitrate nitrogen;
NH4

+: ammonia nitrogen. **, * mean the significant differences at p < 0.01 and p < 0.05, respectively.

Table 2. Simple term effects and forward selection of environmental variables on microbial nutrient
limitations from the redundancy analysis (RDA).

Variable Simple Term Effect Forward Selection

Contributions % p Explains % p

C/P 84.9 0.002 51.3 0.002
OC 82.0 0.002 1.9 0.006

N/P 81.2 0.002 1.3 0.054
TN 79.4 0.002

DOC 45.7 0.002 1 0.008
MBN 39.7 0.002
pH 33.2 0.002

MBP 31.9 0.002 0.9 0.08
MBC 29.9 0.002
clay 26.0 0.002 22.1 0.002
C/N 22.4 0.002 3.6 0.006
sand 13.4 0.002
TP 8.9 0.01

NO3
− 7.7 0.022

SM 6.9 0.042
NH4

+ 4.2 0.092
silt 3.8 0.108
EP 0.9 0.62

Note: SM: soil moisture; OC: soil organic carbon; TN: total nitrogen; TP: total phosphorus; EP: extractable
phosphorus; DOC: dissolved organic carbon; NH4

+: ammonia nitrogen; NO3
−: nitrate nitrogen; MBC: microbial

carbon; MBN: microbial nitrogen; MBP: microbial phosphorus.
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4. Discussion

4.1. Variations in Soil Enzyme Activities between the Eroded and Deposited Zones and Their
Dependence on Land Use and Soil Depth

The activities of CBH, NAG, and AP were greater in the deposited area than in the
eroded area, and such variations were significant at the 0–20 cm depth in revegetated forest
and grassland but not in cropland in either surface or deep soils, which was consistent
with Hypotheses H1 and H3, but not H2. Differences in the extracellular enzyme activities
between the eroded and deposited areas may be due to the OC concentration; stoichiometry
of C, N, and P; microbial biomass C, N, and P; clay content; and SM (Table 1, Figure 5a).
Previous studies have shown that enzyme activities were considerably lower in the eroded
zone than the deposited zone, mainly due to the depletion of OC and other nutrients
by erosion [11]. Forward selection and RF results revealed that OC was the key factor
influencing enzyme activities (Table 1, Figure 5a). However, the difference in OC between
landform positions was not significant in our study, which may be explained by the
positive effect of vegetation restoration in forest and grassland and fertilization in cropland
on OC [22,43]. Previous studies also illustrated that soil enzyme activity tends to be closely
associated with the microbial biomass [44,45] and lower MBP in the eroded site, which can
have a greater inhibitory effect on extracellular enzyme activities by downregulating the
quantity of enzyme released by unit of biomass [11]. The significantly higher MBP in the
surface soils of forest and grassland in the deposited zone than in the eroded zone (Figure 1c)
contributed to the larger discrepancy of soil enzyme activities between landform positions.
In addition, the soil enzyme activity per unit of MBC can also assess microorganisms’
metabolism [46]. In the present study, especially in the surface soils and forests and
grasslands, we found that the CBH/MBC and NAG/MBC values were considerably higher
at the deposited site than at the eroded site (Table S4); thus, soil microorganism biomass
released more enzymes in the surface soils of forests and grasslands at the deposited site [47].
Previous studies found that changes in soil nutrient content altered the stoichiometric ratio
of C, N, and P, and the relative shortage of certain elements promoted the secretion of
corresponding soil enzymes [48,49]. In our study, the higher soil C/P and N/P at the
deposited site than at the eroded site were only significant in surface soils in the forest and
grassland (Table S3), which contributed to increasing the AP (Figure 2e).

The SM and clay content were two other important factors influencing soil extra-
cellular enzyme activities (Table 2). The clay and silt contents within the eroded zone
were considerably lower than those within the deposited zone, which may be because soil
erosion destroyed the aggregate structure and selectively transported fine particles to the
deposited site [1,9,22]. Reported studies illustrated that the removal of the clay and silt
content caused by erosion will harm extracellular enzyme activities because these are easily
absorbable on the surface of the fine particles [11,50]. In this study, the clay and silt contents
were positively related to enzyme activities (Figure 4a); thus, the greater differences of
clay and silt contents between two landform positions in the surface soils of forest and
grassland (Table S2) may explain the greater variations of enzyme activities in these land
uses and depths. A previous study indicated that a decrease in soil moisture could enhance
the oxygen content, which stimulated extracellular enzyme activity [51]. In our study, we
also found that SM was negatively correlated with CBH and NAG (Figure 4a). Compared
with topsoils, the higher SM in the deposited site, as compared to the eroded site, was
prominent in deep soils, which would attenuate the response of enzymes to erosion and
deposition. Therefore, given the differences in soil enzyme activities between landform
positions, its interactions with land use and soil depth may be explained by a combination
of factors of the ratios of C, N, and P, MBP, clay content, and soil moisture.

4.2. Variations in Soil Microbial Nutrient Limitations between Eroded and Deposited Zones and
Their Dependence on Land Use and Soil Depth

Our results implied that soil microorganisms’ metabolism was restricted by N and
P, which was in line with reported studies on the Loess Plateau [23,44]. Microbial N
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limitation was considerably larger in the eroded zone than in the deposited zone (p < 0.05,
Figure 3a), and this change was higher in surface soils than in deep soils and higher in
forest and grassland than in cropland, which was consistent with our Hypotheses H1 and
H3 but did not support H2. Our forward selection and RF results indicated that nutrient
and nutrient stoichiometry were the vital factors influencing soil microbial N limitation
(Table 2 and Figure 5b). N and P are thought of as the dominant nutrient elements limiting
vegetation growth and microorganism metabolism [14,52,53]. Studies have shown that
soil microorganisms’ nutrient limitation was vulnerable to nutrient ratio imbalance [12,54].
For example, Cui et al. (2019) [12] implied that the soil C/N, C/P, and N/P considerably
affected microorganisms’ C and P limitations in temperate grassland ecosystems. In surface
soils, we found that the C/P and N/P were higher at the deposited site than at the eroded
site, which had a positive impact on alleviating the microbial N limitation (Figure 4b).
Another vital factor affecting N limitation was clay content (Table 2), which had a negative
effect on N limitation (Figure 4b). A review of nutrient limitations in terrestrial ecosystems
showed a shift from relative P to N limitation with lower soil clay content at global
scales [52]. This was because high clay contents in soils are strongly weathered and tend to
be deficient in P availability. Thus, the greater differences of clay content in grassland and
forest between the eroded and deposited zones (Table S2) would result in more prominent
variations of the N limitation. Furthermore, soil DOC concentration was negatively related
to N limitation (Table 2, Figure 4), meaning that the higher the soil DOC concentration, the
lower the microbial N limitation. Zhang et al. (2022) [55] implied that the soil microbial
N limitation was strongly dependent on soil available C. The higher DOC concentration
indicated that there were more labile C fractions and the labile C would provide energy for
microbes to decompose organic matter, which would release available N and alleviate the
microbial N limitation. Thus, in cropland, the higher DOC at the eroded site than at the
deposited site was conducive to alleviating the N limitation at the eroded site (Table S3),
which may be why the smallest difference was observed in cropland between landform
positions relative to revegetated forest and grassland. Therefore, the change in N limitation
affected by landform positions and its dependence on land-use types and soil depth may
be attributed to the combined effect of soil nutrient stoichiometry, clay content, and DOC.

There was no significant difference in microorganism P limitation between the eroded
and deposited sites. The TERL indicated that the study area was primarily limited by P
relative to N, which was in line with previous studies. Studies have reported that microor-
ganism metabolism is widely restricted by soil P in several terrestrial ecosystems, such
as subtropic forests and semiarid grasslands [14,23,56]. This phenomenon was mainly
attributed to the soil nutrient ratio, especially in surface soils. Soil C/P and N/P values
were higher at the deposited zone than at the eroded zone, which may enhance microbial P
limitation (Figure 4b). That is, nutrient limitations rely not only on the supply of nutrients
but also on the supply of other nutrients. The increase in soil C/P and N/P could also
be attributed to the fact that soil P was principally gained through weathering. Higher
vegetation aboveground biomass and root systems would assimilate more P after veg-
etation restoration, and soil eroded would accelerate the loss of P, which can hardly be
replenished by plant inputs and resulted in a relatively stable P compared with soil OC and
N [14,23,57]. The increase of C/P and N/P meant the relative dilution of P compared with
C or N, which would potentially result in microbial P limitation and, in turn, stimulate
P-acquisition enzyme activities [20,23]. Xiao et al. (2020) [23] and Jiao et al. (2013) [58]
additionally reported that the ratio of N to P increased after farmland abandonment and
implied that soil microorganisms were principally restricted by P in the Loess Plateau.
Furthermore, the higher P limitation at the deposited site than at the eroded site was
prominent in revegetated forests, which may be due to the larger difference in MBP be-
tween landform positions in forests as a positive relation between MBP and P limitation
(Figures 4b and 5d). These results implied that soil nutrient stoichiometry has a powerfully
regulatory impact on microorganism metabolism by influencing fundamental balance and

161



Agronomy 2022, 12, 2796

the nutrient ratio would thus potentially be the important threshold resulting in microbic
metabolic limitations.

5. Conclusions

Elucidating how soil enzyme activities and microbial nutrient limitations respond to
soil erosion and their dependence on land use is essential to understanding the microbial
metabolisms and nutrient cycling of agriculture and revegetated ecosystems in eroded
and deposited landscapes. In our study, the deposited sites had higher enzyme activities
and lower microbial N limitation than the eroded sites, and such variations were more
pronounced in forest and grassland than in cropland and were greater in surface soils
(0–10 and 10–20 cm) than in deep soils (60–80 and 180–200 cm). The terminal threshold
ratio model illustrated that the study area was mostly restricted by P, and such restrictions
were greater in the deposited zone than in the eroded zone for the surface soils in forest
and grassland. Our study highlighted the variations in microbial nutrient limitations
between two landform positions and their dependence on land uses in a hilly-gully area
of the northern Loess Plateau. However, our study did not capture the changes in the
metabolic metabolism characteristics in the eroded and deposited processes, and further
studies are recommended to investigate the dynamic features with the aid of rainfall
simulation experiments.
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Abstract: This study uses UAV multi-spectral remote sensing images to carry out ground object
classification research in complex wheat field scenes with diverse varieties. Compared with satellite
remote sensing, the high spatial resolution remote sensing images obtained by UAVs at low altitudes
are rich in detailed information. In addition, different varieties of wheat have different traits, which
makes it easy to misclassify categories in the process of semantic segmentation, which reduces the
classification accuracy and affects the classification effect of ground object. In order to effectively
improve the classification accuracy of ground object in complex wheat field scenes, two Multi-Scale
U-Nets based on multi-scale feature fusion are proposed. Multi-Scale U-Net1 is a network model that
adds a multi-scale feature fusion block in the copy process between U-Net encoding and decoding.
Multi-Scale U-Net2 is a network model that adds a multi-scale feature fusion block before U-Net
inputs an image. Firstly, the wheat field planting area of Institute of Water-saving Agriculture in Arid
Areas of China (IWSA), Northwest A&F University was selected as the research area. The research
area was planted with a variety of wheat with various types of traits, and some traits were quite
different from one another. Then, multi-spectral remote sensing images of different high spatial
resolutions in the study area were obtained by UAV and transformed into a data set for training,
validation, and testing of network models. The research results showed that the overall accuracy
(OA) of the two Multi-Scale U-Nets reached 94.97% and 95.26%, respectively. Compared with U-Net,
they can complete the classification of ground object in complex wheat field scenes with higher
accuracy. In addition, it was also found that within the effective range, with the reduction of the
spatial resolution of remote sensing images, the classification of ground object is better.

Keywords: multi-scale feature fusion; U-Net; UAV; multi-spectral image; complex wheat fields;
ground object classification

1. Introduction

The planting structure of wheat fields reflects the spatial distribution information of
wheat fields in an area or production unit [1]. Obtaining the planting structure information
of wheat fields efficiently and accurately is of great significance for wheat field yield
estimation, agricultural condition monitoring and agricultural structure adjustment [2].
In the field of scientific research, due to the large differences in the research objectives of
experts in different fields, the complex planting structure of wheat experimental fields,
the large variety of wheat varieties, and the large differences in traits, it is difficult for
the ground object classification method based on machine learning to meet the current
needs. With the rapid development of UAV remote sensing technology and deep learning
methods, the method of semantic segmentation of UAV remote sensing images based on
fully convolutional neural network technology is increasingly applied to the research of
farmland object classification [3–7]. The deep learning method can quickly and accurately
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realize the classification of ground object in complex wheat field planting areas and provide
technical support for wheat field yield estimation, agricultural condition monitoring, and
agricultural structure adjustment.

Remote sensing technologies include satellite remote sensing and UAV remote sensing.
Satellite remote sensing can obtain large-scale remote sensing images of land parcels, and
UAV remote sensing can obtain small-scale land remote sensing images with higher spatial
resolution [8]. Based on farmland satellite remote sensing images, there have been many
studies using traditional machine learning methods and deep learning-based semantic
segmentation methods to realize the classification of farmland objects, which have achieved
a good classification effect. For example, Al Awar B et al. [9] took a planting area in the
Bekaa Valley of Lebanon, where the main crops are wheat and potato, as the research area,
used Sentinel-1 and Sentinel-2 satellite remote sensing images as dataset, and adopted
Support Vector Machine (SVM), Random Forest (RF), Classification and Regression Tree
(CART) and Back Propagation Network (BPN) for crop classification research. The results
found that the overall accuracy (OA) of these four classification models can reach more
than 95%. Zheng Wenhui et al. [10] selected the Loess Plateau mulching dry agricultural
planting area as the research area based on Google Earth Engine cloud platform data and
Landsat-8 reflectivity data, using Random Forest (RF), Support Vector Machine (SVM),
Decision Tree (DT), and Minimum Distance (MD) to classify farmland objects. The result
showed that under the condition of artificial feature engineering, the overall accuracy
(OA) of machine learning object classification can reach 95.5%. Song Tingqiang et al. [11]
selected a crop planting area in Gaomi City, Shandong Province as the research area
based on the GF-2 satellite high spatial resolution panchromatic images and multispectral
images, and adopted an improved Multi-temporal Spatial Segmentation Network (MSSN)
to realize the classification of farmland objects. The experimental result showed that
the Pixel Accuracy (PA) of the model on the test set was 95%, the F1 score was 0.92,
and the Intersection over Union (IoU) was 0.93. Xu Lu et al. [12] selected a farmland in
Guangping County of Hebei Province and Luobei County of Heilongjiang Province as the
research areas based on the high spatial resolution remote sensing image of Gaofen-2 (GF-2),
firstly adopted the Depthwise Separable Convolution U-Net (DSCU-net) to realize the
segmentation of the entire image, and then the extended Multi-channel Rich Convolutional
Feature network (RCF) to further delineate the boundaries of cultivated land plots. The
experimental result showed that the overall accuracy (OA) of classification in the two
regions was around 90%. In summary, both the traditional machine learning algorithm and
the semantic segmentation algorithm based on the fully convolutional neural network can
show satisfactory results in the classification of agricultural satellite remote sensing images.

Compared with satellite remote sensing, UAV remote sensing has the characteristics
of high flexibility, short period, less environmental impact, and easy access to small-scale
agricultural remote sensing data [13]. In addition, satellite remote sensing can only obtain
remote sensing image data with meter-level spatial resolution, while UAV remote sensing
can obtain remote sensing image data with high spatial resolution at centimeter level.
Therefore, UAV agricultural remote sensing image data has more detailed information, and
it is easy to misclassify in the process of image classification, which brings great challenges
to agricultural land classification to a certain extent. For such agricultural remote sensing
images with more detailed information, due to the complexity and fragmentation of
ground object and the surrounding environment at high spatial resolution, the accuracy
of traditional classification methods has been unable to meet the standards of agricultural
problems. The classification method based on convolutional neural network can effectively
learn image features related to the target category [14]. Therefore, most of the current
researches on the high spatial resolution UAV agricultural remote sensing images use the
classification method based on the fully convolutional neural network to conduct ground
object classification research. For example, Chen Yuqing et al. [15] used a remote sensing
image of a farmland in Kaifeng City, Henan Province as a dataset. The dataset contained
farmland and two other types of ground object. The improved Deeplab V3+ model was
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used for land classification. The experimental result showed that the Mean Pixel Accuracy
(MPA) can reach 97.16%, which effectively improves the information extraction accuracy of
farmland edges and small farmlands. Qinchen Yang et al. [16] used UAV remote sensing
images of an agricultural planting area in the Hetao irrigation area of Inner Mongolia as
a dataset. The dataset contained five types of land objects, including roads, green plants,
cultivated land, wasteland and others. Two semantic segmentation algorithms, SegNet and
FCN, and traditional Support Vector Machine (SVM) were used to conduct ground object
classification research. The result showed that SegNet and FCN are significantly better than
the traditional Support Vector Machine (SVM) in terms of accuracy and speed, and their
Mean Pixel Accuracy (MPA) were 89.62% and 90.6%, respectively. Yang Shuqin et al. [17]
used the UAV multispectral remote sensing images of Shahao Canal Irrigation Area in
Hetao Irrigation District of Inner Mongolia Autonomous Region as a dataset. The dataset
contained sunflower, zucchini, corn and other four types of ground object; the improved
Deeplab V3+ and Support Vector Machine (SVM) to classify farmland objects were used.
The result showed that the Mean Pixel Accuracy (MPA) of the improved Deeplab V3+ was
93.06%, which is 17.75% higher than the Support Vector Machine (SVM). To sum up, in
terms of high spatial resolution UAV agricultural remote sensing images with more detailed
information, the semantic segmentation model based on deep learning has satisfactory
results in the classification of farmland objects.

The above-mentioned farmland object classification based on satellite remote sensing
or UAV remote sensing was all carried out between different types of objects. So far, there
have been few relevant reports on the classification of similar crops with different traits. At
present, with the continuous advancement of breeding work, different varieties of crops of
the same type may be planted in the same area, and some varieties possess large differences
in traits. Especially in the classification of farmland objects on the high spatial resolution
remote sensing images of UAVs, it is very easy to cause similar farmlands with large
differences in traits to be incorrectly classified. Based on UAV remote sensing technology
and the deep learning classification method of multi-scale feature fusion, this study carried
out ground object classification for complex wheat fields planted with different varieties of
wheat and with large differences in traits between some wheats.

2. Materials and Methods

As shown in Figure 1, the current research is the workflow of complex wheat field
classification research based on multi-scale feature fusion. This study selects a suitable
research area and conducts field surveys in the research area to understand the distribution
information of ground object. The experimental plan is designed according to the results
of the field investigation. First, the location information of Ground Control Points (GCPs)
is collected in the study area for geometric correction of the later remote sensing image
stitching process. Then, the UAV (DJ Inc., Shenzhen, China) flight parameters are set within
the time range required by the experimental plan to collect multi-spectral remote sensing
images in the study area. The collected remote sensing images and ground control points
information are imported into Pix4Dmapper 4.5.6 (Pix4D Inc., Prilly, Switzerland) for image
stitching and preprocessing, and finally the remote sensing images of the entire study area
required by this study are generated. Since the remote sensing images collected by the
UAV are multi-spectral data, in order to facilitate the later image labeling, it is necessary
to fuse the five single-band images to generate a single image with five bands (that is,
a five-channel remote sensing image). Next is labeling the image. Since it is difficult to
directly import the entire remote sensing image into the deep learning network for model
training, this study cropped the remote sensing images and their Labels to obtain regular
small-sized images and Labels, and divided the cropped images and Labels into datasets,
for training, validation, and testing of deep learning models. This research proposes two
Multi-Scale U-Nets based on U-Net by adding a multi-scale feature fusion block, and selects
Confusion Matrix (CM), Pixel Accuracy (PA), and Recall, F1-Score, and Intersection over
Union (IoU) as the five indicators to evaluate the classification accuracy of the models in
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three categories (wheat, road and background). Three indicators (Overall Accuracy (OA),
Mean Intersection over Union (MIoU), and Frequency Weighted Intersection over Union
(FWIoU)) were used to comprehensively evaluate the models.

Figure 1. Workflow of complex wheat field classification research based on multi-scale feature fusion.

2.1. Study Area

The study area is located in the Institute of Water-saving Agriculture in Arid Areas
of China (IWSA), Northwest A&F University, as shown in Figure 2. The study area is
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located in Yangling Demonstration Zone, Xianyang City, Shaanxi Province (34◦17′51.11′′ N–
34◦17′58.72′′ N, 108◦4′4.10′′ E–108◦4′7.64′′ E). This area has fertile soil, relatively flat terrain,
and an altitude between 560 and 790 m. It belongs to the semi-humid and semi-arid climate
in the warm temperate zone. It has obvious continental monsoon climate characteristics
such as warm and windy spring, hot and rainy summer, and cold and dry winter. The
annual average temperature is about 12 ◦C, the frost-free period is 211 days, the average
annual sunshine hours amount to about 2163 h, and the average annual precipitation is
635 mm. The area of the study area is about 17,553 m2, including 14 varieties of wheat,
some of which have great differences in wheat traits.

Figure 2. Multi-variety wheat planting area, Institute of Water-saving Agriculture in Arid Areas of
China (IWSA), Northwest A&F University.

2.2. Data Acquisition and Preprocessing
2.2.1. UAV Acquires Multispectral Images with Different High Spatial Resolution

In this study, UAV remote sensing data collection was conducted on 2 May 2022
at the Institute of Water-saving Agriculture in Arid Areas of China (IWSA), Northwest
A&F University. As shown in Figure 3, it is a UAV remote sensing image data acquisition
system, which consists of a DJI M600 PRO UAV (DJ Inc., Shenzhen, China), battery packs
(DJ Inc., Shenzhen, China), a RedEdge-MX Five-channel multispectral camera (MicaSense
Inc., Seattle, WC, USA), a FLIR Duo Pro Thermal Infrared Imager (FLIR Systems Inc.,
Washington, DC, USA), and a Zenmuse X3 visible camera (DJ Inc., Shenzhen, China). The
system customizes a gimbal that can carry the above three cameras at the same time to meet
the requirements of the three cameras working independently. The system is equipped
with four battery packs to meet the long-term work requirements. This study mainly uses
the RedEdge-MX Five-channel multispectral camera to obtain remote sensing image data.
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Some parameters of the RedEdge-MX Five-channel multispectral camera are shown in
Table 1.

Figure 3. UAV remote sensing image data acquisition system.

Table 1. Part of the parameters of the multispectral camera.

Parameter Name

Parameter Value

Band Name Central Wavelength (nm) Bandwidth (nm)

Spectral band

Blue 475 32
Green 560 27
Red 668 16

Red edge 717 12
Near infrared 842 57

Spatial Resolution 8 cm @ 120 m flight height

Ground Control Points (GCPs) are important data source for geometric correction and
geolocation of UAV remote sensing images [18]. As shown in Figure 4, this study uses the
Trimble GNSS system to obtain the coordinates of the GCPs. The Trimble GNSS system
includes a Trimble R8 GNSS receiver (Trimble Inc., Westminster, CO, USA), a Trimble
R2 GNSS receiver (Trimble Inc., Westminster, CO, USA), a radio, an antenna (Trimble
Inc., Westminster, CO, USA), a lead-acid battery (Trimble Inc., Westminster, CO, USA),
a mobile terminal (Trimble Inc., Westminster, CO, USA), and a connection line (Trimble
Inc., Westminster, CO, USA). The Trimble R8 GNSS receiver, radio, antenna, lead-acid
battery, and connecting line form a base station for receiving satellite signals and also for
sending signals to the Trimble R2 GNSS receiver. The Trimble R2 GNSS receiver is also
called a mobile station, which can receive the signal of the base station. The mobile station
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sends the coordinate information of the base station and the relative position information
between itself and the base station to the mobile terminal, and the mobile terminal obtains
the coordinate information of the mobile station after calculation and processing. The base
station is set up in the research area in advance, and the coordinate information of each
GCP is obtained by using the mobile station and mobile terminal. Therefore, the coordinate
accuracy of the GCPs completely depends on the accuracy of the base station and mobile
station. The accuracy of the GCPs obtained in this research is controlled at the millimeter
level, which fully meets the accuracy requirements of this experiment.

Figure 4. Use Trimble GNSS System to Obtain the Coordinates of Ground Control Points (GCPs).

Before the UAV collecting of remote sensing image data, it is necessary to perform
radiometric calibration of the multispectral camera. As shown in Figure 5, this experiment
conducted radiometric calibration in an open field in the study area at around 11:40 noon
on 2 May 2022. After the radiometric calibration, the remote sensing image data was
collected according to the expected experimental plan. The spatial resolution of remote
sensing images refers to the size of the ground range from the perspective of pixels, that
is, a pixel in a remote sensing image represents the area of the ground [19]. As shown in
Formula (1), it is the calculation formula of image spatial resolution, in which the flying
height of the UAV is inversely proportional to the spatial resolution of the image, and the
remote sensing images with different spatial resolutions can be obtained by changing the
different flying heights of the UAV. As shown in Table 2, it is the flight parameters of the
UAV. According to these parameters, the remote sensing images of four different spatial
resolutions required in this study are obtained. Figure 6 is the local detail map of remote
sensing images with different spatial resolutions.

S =
D· f
H

, (1)

where D is the Ground Sampling Distance (GSD), S is the Image Spatial Resolution, H is
the flying height, ƒ is the focal length.
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Figure 5. Multispectral camera radiometric calibration.

Figure 6. Local remote sensing images with different spatial resolutions (GSD: Ground Sam-
pling Distance).
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Table 2. UAV flight parameters.

Parameter Value

Flight Speed 5 m/s
Capture Mode Hover to capture

Heading Overlap 80%
Lateral Overlap 80%

Flying Height

The First Experiment 50 m
The Second Experiment 75 m
The Third Experiment 100 m

The Fourth Experiment 125 m

2.2.2. Multispectral Image Data Processing and Dataset Making

The remote sensing images obtained by UAV are a large number of small-sized pictures
taken according to the overlap rate. In order to facilitate the later labeling work, the remote
sensing images obtained by the UAV are subjected to stitching, geometric correction, and
other related preprocessing operations. The remote sensing image preprocessing software
used includes Pix4Dmapper 4.5.6 (Pix4D Inc., Prilly, Switzerland) and ENVI 5.3 (EVIS Inc.,
Los Angeles, CA, USA). As shown in Figure 7, the usage of ENVI 5.3 performs band fusion
on the remote sensing image and crops out the study area.

Figure 7. Remote Sensing Image Band stacking and Cropping.
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After band fusion and cropping, the remote sensing image of the study area is ob-
tained. Compared with the RGB image, the image contains 5 channels, namely Blue band,
Green band, Red band, Near infrared band, and Red-edge band. Traditional RGB image
labeling methods often use Labelme 4.5.7 (MIT, Cambridge, MA, USA) and other software
for labeling, but the remote sensing images with 5 channels in this study cannot be labelled
by Labelme. Therefore, the remote sensing images in this study were labelled with ENVI
Classic 5.3 (EVIS Inc., Los Angeles, CA, USA). Figure 8 are Labels obtained after labeling.
If the above images and their Labels are directly input into the deep learning network, it
will cause memory overflow, so these images and labels need to be cropped into small-size
images and input into the network. As shown in Figure 9, this study adopts the sliding
window cropping method for image cropping, and uses Python language to write a pro-
gram for cropping multispectral remote sensing images and their labels. The multispectral
images and their Labels are cropped by presetting the size of the slider window and the
overlap ratio. In this study, a slider window of 256 × 256 and an overlap rate of 20% were
used to crop images of the study area and their labels to obtain the dataset of this study.

Figure 8. Multispectral remote sensing images and their labels.

The basic configuration of the dataset used in this study is shown in Figure 10 and
Table 3. From Figure 10a, it can be observed that the number of wheat and road categories
is unbalanced after data cropping. Unbalanced categories will cause the model learning
effect to be biased towards the party with the larger category, which seriously affects the
generalization ability of the model [20]. Therefore, this study balances the dataset categories
by extracting images with road categories under different slider overlap ratios. As shown in
Figure 10b, the number of dataset categories after data balance is relatively balanced. After
the dataset is balanced, the dataset is integrated into the training set, validation set and test
set according to the ratio of 60%, 20% and 20%. On the one hand, data augmentation can
make the model have sufficient dataset for training, and on the other hand, it can improve
the generalization ability of the model [21]. This study performs data augmentation on
the training and validation set by horizontally flipping, vertically flipping, and diagonally
mirroring the multispectral images and their labels. The dataset division before and after
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data enhancement is shown in Table 3, with 4828 training images and labels, 1608 validation
images and labels, and 402 test images and labels.

Figure 9. Cropping multispectral images and their labels.

Figure 10. Statistics chart of dataset categories, (a) Statistics chart of categories at different spatial
resolutions before data balance, (b) Statistics chart of categories at different spatial resolutions after
data balance.

Table 3. Overview after dividing the dataset.

Dataset Number The Number of Data Augmentation

Training set 1207 4828
Validation set 402 1608

Test set 402 402
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2.2.3. Construction and Training of Complex Wheat Field Classification Model

Fully convolutional neural networks have shown satisfactory performance in high-
resolution image classification [22–24]. The dataset used in this study is high spatial
resolution, with more detailed information on image features. Since the dataset consists of
remote sensing images with four spatial resolutions, the image features are more abundant,
and image features can be extracted from convolutional blocks of different scales, and
image features at different scales can be fused to improve the accuracy of image semantic
segmentation [25–27]. Therefore, this study uses the method of multi-scale feature fusion to
build models based on U-Net to conduct ground object classification research on complex
wheat fields.

In order to effectively extract the multi-scale features of images, a multi-scale feature
fusion block is designed using Python language, as shown in Figure 11. The multispectral
image input to the model is first convolved with convolution kernels of different scale
types (kernel size: 3 × 3, 5 × 5, 7 × 7, 9 × 9) to extract image features of different scales.
After the convolution, the ReLU activation function is further used to obtain 4 feature maps
(map size: 256 × 256 × 1) under different scale conditions. We use the concatenate function
to fuse the four feature maps to obtain a feature map (map size: 256 × 256 × 4). Finally,
a convolution kernel (kernel size: 1 × 1 × filters) is used to convolve the feature map,
and a feature map (map size: 256 × 256 × filters) is output through the ReLU activation
function. In the multi-scale feature fusion block, the stride of all convolution operations is 1
by default, and the padding is “same”.

Figure 11. Multi-scale feature fusion block.

This study is based on U-Net for the classification of complex wheat fields. The
U-Net model architecture was first proposed in 2015 and can be trained end-to-end on
small-scale datasets with satisfactory results [28]. As shown in Figure 12, it is the U-Net
model architecture established in this study. The model includes two parts, Encoder and
Decoder, which are symmetrical to each other and U-shaped, so it is named U-Net. The
Encoder and Decoder parts of the model comprise 5 layers, respectively. Each layer of the
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Encoder consists of a convolution kernel (kernel size: 3 × 3), a ReLU activation function, a
BatchNormalization, and a maximum pooling layer (pool size: (2, 2)). Between the last two
layers of the Encoder, a layer of Dropout is added before the maximum pooling layer, which
can effectively prevent overfitting. Each layer of the Decoder consists of a convolution
kernel (kernel size: 3 × 3), a ReLU activation function, a BatchNormalization, and an
upsampling layer. A layer of Dropout is added between the first and second layers of the
Decoder before the upsampling layer. The Decoder adds a convolutional layer (kernel size:
32 × 3 × 3 × 32) and a convolutional layer (kernel size: 3 × 1 × 1 × 32) before output. This
study evaluates the modified network architecture based on the U-Net model architecture
as a reference.

Figure 12. U-Net Architecture.

In order to explore where the multi-scale feature fusion block can effectively improve
the segmentation accuracy of the network model in the U-Net architecture, this study
based on the U-Net model proposes a Multi-Scale U-Net1 model architecture that adds
a multi-scale feature fusion block between the Encoder and the Decoder and a Multi-
Scale U-Net2 model architecture for extracting multi-scale features from raw images. As
shown in Figures 13 and 14, they are the Multi-Scale U-Net1 model architecture and
the Multi-Scale U-Net2 model architecture, respectively. In the process of Multi-Scale
U-Net2 transmitting multi-scale features, since the size of the feature map of each layer of
the Encoder is different, before transmitting the multi-scale features to each layer of the
Encoder, a convolution operation (kernel size of 2 × 2, stride: 2),a ReLU activation function
and a BatchNormalization are performed on the multi-scale feature map. There is a big
difference between the Multi-Scale U-Net1 model and the Multi-Scale U-Net2 model. The
former mainly extracts deep multi-scale features, while the latter mainly extracts shallow
multi-scale features of images. The model was trained on an image workstation with an
Intel (R) Xeon (R) Gold 5118 CPU @ 2.30 GHz 2.29 GHz dual processor (Inter Inc., Santa
Clara, CA, USA) and an NVIDIA GeForce RTX 2080 Ti GPU (NVIDIA Inc., Santa Clara, CA,

177



Agronomy 2022, 12, 2658

USA). The Multi-Scale U-Net1 model and the Multi-Scale U-Net2 model were tested using
the test set, and the classification accuracy of the two models in the complex wheat field
scene of UAV multispectral images was analyzed and compared.

Figure 13. Multi-Scale U-Net1.

Figure 14. Multi-Scale U-Net2.
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3. Results

3.1. Model Training

This study uses the training set and validation set to train the U-Net, Multi-Scale
U-Net1, and Multi-Scale U-Net2, respectively. According to the aforementioned Wheat and
Road accounting for 56% and 44%, respectively, the weights are balanced before training the
model, and the training weights of 0.56 and 0.44 are set for the Wheat and Road categories,
respectively. The training parameters set for the three models in this study are shown in
Table 4.

Table 4. Model Training Parameters.

Model Training
Parameters

Value
Model Training

Parameters
Value

Batch size 8 Optimizer Adam

Epochs 50 Loss Categorical
cross-entropy

Learning rate 1 × 10−5 Programming
Language Framework Tensorflow keras

In this study, 4828 training set samples and 1608 validation set samples were input
into three models for training. Figure 15 shows the accuracy curve and Loss function
curve of U-Net, Multi-Scale U-Net1, and Multi-Scale U-Net2 model training, respectively.
U-Net, Multi-Scale U-Net1, and Multi-Scale U-Net2 finish training at epoch 28, 29, and
44, respectively. As can be seen from Figure 15, Multi-Scale U-Net2 converges first and
displays higher accuracy than the other two models, while the U-Net model is the slowest
to converge, and the accuracy is not as good as the other two models.

Figure 15. Train accuracy and train loss. (a) Train accuracy, (b) Train Loss.

3.2. Model Testing and Prediction Results

In this study, 402 test set samples were used for the accuracy evaluation of the three
models. Five indicators, Confusion Matrix (CM), Pixel Accuracy (PA), Recall (Recall),
F1-Score, and Intersection over Union (IoU), were selected to evaluate the model in three
categories. Three indicators, Overall Accuracy (OA), Mean Intersection over Union (MIoU),
and Frequency Weighted Intersection over Union (FWIoU), were used to comprehensively
evaluate models. The Confusion Matrix (CM) is an analysis table that summarizes the
prediction results of the classification model in machine learning. The records in the dataset
are summarized in the form of a matrix according to the two criteria of the real category and
the category predicted by the classification model. The Pixel Accuracy (PA) is “the number
of correctly predicted data in those data that are predicted to be positive examples”. The
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Recall is “the number of correctly predicted data in the real positive examples”. F1-Score is
the harmonic mean of precision and recall. Over Accuracy (OA) is the ratio between what
the model predicted correctly on all test sets and the overall number. Mean Intersection over
Union (MIoU) is the average of the ratio of the intersections and unions of all categories.

Tables 5–7 are the Confusion Matrix of U-Net, Multi-Scale U-Net1, and Multi-Scale U-
Net2, respectively. It can be seen that the three models have relatively few misclassifications
in the two categories of ‘Wheat’ and ‘Road’, but the three models all misclassify ‘Wheat’
and ‘Road’ into ‘Other’; considering that the purpose of this study is to separate ‘Wheat’
and ‘Road’, the overall classification of the three models is good. Compared with U-Net,
Multi-Scale U-Net1, and Multi-Scale U-Net2 with multi-scale feature fusion modules show
better performance on ‘Wheat’ and ‘Road’ classification, and especially the classification
accuracy between ‘Wheat’ and ‘Road’ categories is significantly improved.

Table 5. U-Net Confusion Matrix.

U-Net
Predict

Other Wheat Road

Real
Other 5,759,250 1,012,158 47,563
Wheat 149,715 10,400,195 48
Road 55,981 194 1,056,048

Table 6. Multi-Scale U-Net1 Confusion Matrix.

Multi-Scale U-Net1
Predict

Other Wheat Road

Real
Other 6,102,568 693,462 22,941
Wheat 184,810 10,365,148 0
Road 27,949 96 1,084,178

Table 7. Multi-Scale U-Net2 Confusion Matrix.

Multi-Scale U-Net2
Predict

Other Wheat Road

Real
Other 6137,736 602,737 78,498
Wheat 183,612 10,366,342 4
Road 11,132 78 1,101,013

This study evaluates U-Net, Multi-Scale U-Net1, and Multi-Scale U-Net2 on ‘Other’,
‘Wheat’, ‘Road’, and overall classification accuracy, respectively. Table 8 is the Accuracy
evaluation of different categories under three network models. Figure 16 is the accuracy
evaluation curve. According to the precision evaluation index, Multi-Scale U-Net1 is
superior to the other two network models, and Multi-Scale U-Net2 is inferior to the other
two models in the classification accuracy of the ‘road’ category, but the accuracy of Multi-
Scale U-Net2 in the ‘road’ category is 93.34%, and the result is still high, which can complete
the correct classification of the ‘road’ category with higher accuracy. According to the Recall
evaluation index, the Recall of Multi-Scale U-Net1 and Multi-Scale U-Net2 in the ‘road’
and ‘other’ categories were significantly higher than that of U-Net. The Recall for the three
network models in the ‘wheat’ category are almost close. According to the Intersection
over Union (IoU) and Figure 16d, Multi-Scale U-Net1 and Multi-Scale U-Net2 are better
than U-Net. It can be seen that the classification accuracy of the Multi-Scale U-Net1 and
Multi-Scale U-Net2 is better than that of the U-Net. The Multi-Scale U-Net1 outperforms
the Multi-Scale U-Net2 in both ‘Wheat’ and ‘Road’ classification. To sum up, a module
with a multi-scale feature fusion block can effectively improve the classification accuracy.
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Table 8. Accuracy evaluation of Different categories under three Network Models.

Precision Recall F1-Score IoU

U-Net
Other 96.55% 84.46% 90.10% 81.99%
Wheat 91.13% 98.58% 94.71% 89.95%
Road 95.69% 94.95% 95.32% 91.05%

Multi-Scale U-Net1
Other 96.63% 89.49% 92.93% 86.79%
Wheat 93.73% 98.25% 95.94% 92.19%
Road 97.93% 97.48% 97.70% 95.51%

Multi-Scale U-Net2
Other 96.92% 90.00% 93.34% 87.51%
Wheat 94.50% 98.26% 96.35% 92.95%
Road 93.34% 98.99% 96.09% 92.47%

Figure 16. Accuracy evaluation curve. (a) Other, (b) Wheat, (c) Road, (d) Overall evaluation.

Figures 17–20 are the prediction pictures of the three models in different spatial
resolution remote sensing images. The difference between the prediction pictures and the
Labels are not big. It can be seen that the three models have a good classification effect on
high spatial resolution remote sensing images, and as the spatial resolution increases, the
classification effect of the model improves.
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Figure 17. Three network models predict the results (GSD: 3.42 cm × 3.42 cm).

Figure 18. Three network models predict the results (GSD: 5.14 cm × 5.14 cm).

Figure 19. Three network models predict the results (GSD: 6.89 cm × 6.89 cm).
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Figure 20. Three network models predict the results (GSD: 8.63 cm × 8.63 cm).

4. Discussion

UAV remote sensing images have the characteristics of high spatial resolution and a
lot of detailed information, which brings great challenges to image semantic segmentation.
Based on the remote sensing images of UAV, this study carried out ground object classi-
fication for the complex wheat fields with diverse varieties, which once again increased
the difficulty of semantic segmentation of images. Based on U-Net, multi-scale feature
fusion block is added to different model structures, and Multi-Scale U-Net1 and Multi-Scale
U-Net2 are proposed, and the planting structure of complex wheat fields is predicted with
high accuracy. The following conclusions can be drawn from the performance of the U-Net,
Multi-Scale U-Net1, and Multi-Scale U-Net2 on the test set in this study:

(1) Adding a multi-scale feature fusion block between the Encoder and the Decoder can
effectively extract multi-scale features of different depths, and to a certain extent, the
model can learn multi-scale features of different depths, thereby effectively improving
the semantic segmentation accuracy of the model.

(2) Adding a multi-scale feature fusion block before the image input model can extract
the shallowest features of the original image, and input them to the convolutional
layers of different depths of the Encoder after a series of feature mining. Although
the classification accuracy of the model can be improved, the features mined by the
multi-scale feature fusion module are relatively single, so the performance of Multi-
Scale U-Net2 is not as good as Multi-Scale U-Net1 in the classification of ‘Wheat’
and ‘Road’.

(3) From the perspective of remote sensing images with different spatial resolutions,
within a certain range, reducing the spatial resolution of images can effectively im-
prove the classification performance of the network. The reason is that with the
reduction of the spatial resolution of the remote sensing image, the detailed informa-
tion of the image is greatly reduced, the phenomenon of model misclassification is
reduced, and the land classification effect is significantly improved.

5. Conclusions

In this study, the multi-scale feature fusion method based on U-Net has effectively
improved the classification accuracy of high spatial resolution UAV remote sensing images
and achieved satisfactory classification results in complex wheat fields with diverse vari-
eties. The overall classification accuracy of Multi-Scale U-Net1 and Multi-Scale U-Net2 in
complex wheat fields can reach 94.97% and 95.26%, respectively.

This study uses UAV to obtain remote sensing images of complex wheat fields with
different high spatial resolutions, and uses Multi-Scale U-Net1 and Multi-Scale U-Net2
with multi-scale feature fusion block to test on the obtained remote sensing images. The
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results show that the classification accuracy of the two models is higher than 94%, and
the classification accuracy is improved compared with the U-Net model. In this study,
it is found that adding a multi-scale feature fusion block based on U-Net can achieve
high-precision classification of UAV remote sensing images in complex wheat field scenes.
Based on the prediction results of different high spatial resolution remote sensing images,
this study found that with the increase of spatial resolution, the classification accuracy of
the model will be reduced. Therefore, it is difficult to conduct ground object classification
research based on UAV remote sensing images in complex wheat field scenes with diverse
varieties. The study itself has certain limitations, but the multi-scale feature fusion method
proposed in this study can effectively improve the classification accuracy of the model and
accurately complete the classification of UAV remote sensing images in complex wheat
field scenes.

Although the multi-scale feature fusion method proposed in this study can effectively
improve the ground object classification accuracy of UAV remote sensing images in complex
wheat field scenes, the model itself has a large number of parameters, and the study
only focuses on one growth cycle of wheat. Therefore, in later research, the study of the
classification of ground object can be carried out for the complex wheat field scenes with
lightweight models and multiple growth cycles.
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Abstract: The effective quantification of deposition rate is of vital importance in optimizing the
application performance and the utilization of pesticides; meanwhile, the canopies of fruit tree
orchards are large, with dense branches and leaves shading each other, making it difficult to quantify
spraying efficiency. Therefore, it is imperative to develop a facile methodology for assessing the
performance of different spraying techniques in terms of distribution and utilization rate in orchards.
To evaluate spraying efficacy in orchards, a canopy segmentation method was developed in to be able
to determine the spray deposition rate. The distribution and deposition rate of spray liquid applied
using three kinds of orchard sprayer were measured in a pear orchard and a peach orchard. The
test results showed that the trailer sprayer had the highest deposition rates, with values of 31.54%
and 56.92% on peach and pear trees, respectively. The deposition rates of the mounted sprayer in
the peach and pear canopies were 21.75% and 40.61%, and the rates of the hand-held sprayer were
25.19% and 29.97%, respectively. The spray gun had the best droplet distribution uniformity, with
CVs of the spray in the peach and pear canopies of 20.54% and 25.06%, respectively. The CVs in the
peach and pear canopies were 35.98% and 26.54% for the trailer sprayer, and the CVs of the mounted
sprayer were 92.52% and 94.90%, respectively. The canopy segmentation method could effectively be
used to calculate the deposition rate and drioplet distribution in orchard application, while a great
deal of time was consumed by counting the number of leaves in the different areas of the fruit tree
canopies. Therefore, research on the density of branches and leaves in fruit tree canopies should be
carried out in order to improve the efficiency of fruit tree canopy information extraction.

Keywords: orchard; sprayer; pesticide application; canopy; deposition rate

1. Introduction

China is a major producer and consumer of fruits, and the planting area of orchards
has ranked first in the world for a number of consecutive years. According to official data
from the National Bureau of Statistics, China’s fruit output totaled 256.88 million tons, and
the orchard planting area reached 11.87 million hectares [1]. The stable development of the
rural orchard planting industry has made outstanding contributions to increasing farmers’
income, optimizing the industrial structure, and accelerating the construction of new rural
areas [2]. Meanwhile, due to the diversity of planting patterns and complicated ecological
conditions, pests and diseases are infecting and spreading seriously in orchards, leading to
large numbers of insects and diseases in orchards.
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In current orchard cultivation systems, pests and diseases are primarily controlled us-
ing pesticides that are applied to the canopy with different types of sprayers [3,4]. Off-target
losses of sprayed pesticide is a common phenomenon in tree-fruit orchards [5]. During pes-
ticide application in orchards, only about 30% of the pesticide liquid is effectively deposited
on the canopy, and a great deal of spray liquid runs into the soil and the environment [6],
with such losses causing a serious waste of pesticide, which is harmful to the environment
and to residents [7–9].

With the increasing emphasis on the negative impacts of pesticides, the Chinese
government has issued several successive policies, making agricultural non-point source
pollution a priority for the improvement of the agricultural ecological environment [10].
It is urgently necessary to improve the pesticide utilization rate and reduce pesticide usage
in pesticide application. In 2015, the Chinese Ministry of Agriculture implemented a policy
that sought to achieve zero growth in the use of pesticide by 2020. After five years of
implementation, the utilization rate of pesticides in China’s three major grain crops (rice,
wheat, and maize) reached 40.6% in 2020, achieving the expected goal of reducing the
amount of pesticide used, and increasing their efficiency.

The utilization rate (also called the deposition rate) of pesticides is a basic parameter
for measuring the quality of pesticide application, which is expressed as the ratio of
pesticide deposited on the crop after spraying to the total amount applied [11]. Therefore,
the effective quantification of the deposition rate is of vital importance for optimizing
the application performance and utilization of pesticides. The method for measuring the
deposition rate of cereal crops and vegetables is relatively simple. The deposition rate can
be calculated on the basis of the deposition volume of a single plant, the application volume
per unit area, and the plant density [12,13]. Gao et al. developed an ultra-performance
liquid chromatography (UPLC) analytical method for determining the deposition amount
of Allura Red on rice plants. Laboratory testing and field trials confirmed that the developed
method for assessing spray deposition rate was feasible and practicable [14]. Wang et al.
evaluated the deposition rate for pesticide application on tomato crop using knapsack
sprayers, mist sprayers, thermal foggers, and handheld spray guns [15].

Compared with cereal crops and vegetables, the canopy of tree-fruit orchards is large,
with dense branches and leaves shading each other, making it difficult to quantify the
spraying efficiency. Vercruysse et al. [16] measured the ground deposits in the orchard and
downwind from the target area of pesticides applied with an air-blast sprayer on semi-
dwarf pears and apples, and the total off-target deposits were used to evaluate application
efficiency. However, this method does not calculate the specific utilization rate of spray
liquid in orchard application. Zhang et al. [17] developed a new method for measuring the
pesticide deposition rate on fruit trees using canopy characteristics and deposition. The
new method quantified the canopy structure of orchard into “leaf area index”, “canopy
shadow area”, and other indicators; however, it did not take the differences in leaf density
of canopy regions into account.

Therefore, it is imperative to develop a facile methodology for assessing the perfor-
mance of different spraying techniques in terms of distribution and utilization rate in
orchards [18–20]. To evaluate spraying efficacy in orchards, a canopy segmentation method
was developed to determine the spray deposition rate in orchards. The distribution and
deposition rate of the sprayed liquid applied using three kinds of orchard sprayers were
measured in a pear orchard and a peach orchard, respectively. This study can be used
as a reference for the quantification of deposition rate in orchards, and can also provide
guidance for the application of pesticides in orchards.

2. Materials and Methods

2.1. Sprayers and Orchards

In recent years, China’s orchard sprayers have gradually changed from manual knap-
sack sprayers to motorized sprayers, with the main development trends for primary
spraying equipment being motorized hand-held spray guns, mounted air-assisted orchard
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sprayers and trailer air-assisted orchard sprayers. Trailer air-assisted orchard sprayers
have a large liquid tank and high operating efficiency, but the unit is relatively long as a
whole and has a wide turning radius, making it suitable for large-scale orchards on flat
ground [21]. The mounted orchard air-assisted sprayer is generally integrated with the
tractor at three points. It is characterized by light weight and flexible maneuverability,
and it can operate on small plots, but its tank is small and its working efficiency is lower
than that of trailer sprayers [22]. Orchard hand-held spray guns have a simple structure
and flexible operation, and they are currently the most widely used spraying equipment
in orchards in developing countries. They can be transported by manual lifting or using
a motorized tricycle, and their movement capacity is basically not limited by terrain or
orchard conditions. At the same time, they can additionally be equipped with dozens of
meters of spray hose. A handheld rod attached to the end can also expand the spraying
range. In this research, a 3WQF-1000 trailer air-assisted sprayer (Figure 1a), a 3WG-500
mounted air-assisted sprayer (Figure 1b) and an orchard motorized handheld spray gun
(Figure 1c) were selected for orchard spraying.

  
(a) (b) (c) 

Figure 1. Orchard sprayers used for pesticide application. (a) 3WQF-1000 trailer air-assisted sprayer,
(b) 3WG-500 mounted air-assisted sprayer, (c) handheld spray gun.

The spray deposition rates of the three sprayers were measured in a peach orchard and
a pear orchard. The peach orchard test was carried out from 16 to 17 September 2019, and
the test site was located at the Experimental Station of the Jiangsu Academy of Agricultural
Sciences. The row spacing of the peach orchard was 4 m, and the spacing in the row was
2 m. The average plant height of the peach trees was about 3.0 m, the heading height
was 0.6 m, the canopy width of the peach tree was about 2.0 m, the leaf area index of the
peach orchard was 1.18, and the transmission coefficient was 0.22. The pear orchard test
was carried out from 23 to 24 September 2020, and the test site was located in the modern
agricultural industrial park of Xinjie Town, Taixing City, Jiangsu Province. The row spacing
of the pear orchard was 5 m, and the spacing in the row was 2 m. The average plant height
of the pear tree was about 3.8 m, the heading height was 0.6 m, the canopy width of the pear
tree was about 2.5 m, the leaf area index of the pear orchard was 1.43, and the transmission
coefficient was 0.29.

2.2. Experimental Design
2.2.1. Operating Parameters of Spraying Equipment

Before field application, the flow rate and travel speed of the three kinds of orchard
sprayer were measured, and the preliminary field application parameters of each sprayer
were determined. In each treatment, the fruit tree rows were sprayed from both sides,
and the application distance was 100 m. All treatments were performed by well-trained
pesticide applicators. Figure 2 shows pictures of the sprayers in the peach orchard.
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(a) (b) (c) 

Figure 2. Photos of the sprayers in the peach orchard during the experiment. (a) Trailer air-assisted
orchard sprayer, (b) mounted air-assisted orchard sprayer, (c) orchard spray gun.

During the test, the operating distance, duration and application volume of each
sprayer were accurately recorded, and the actual operating parameters of each sprayer
were calculated. The specific operating parameters of the sprayers in the field test are
shown in Table 1.

Table 1. Operating parameters of the sprayers in the field test.

Spraying Parameters
of Sprayer

Peach Orchard Pear Orchard

Trailer
Sprayer

Mounted
Sprayer

Spray
Gun

Trailer
Sprayer

Mounted
Sprayer

Spray
Gun

Forward
velocity/(m·s−1) 1.14 1.20 - 1.04 1.07 -

Flow rate/(L·min−1) 4.96 6.30 6.25 11.28 5.49 6.83
Application

volume/(L·ha−1) 180 220 3220 360 165 1920

2.2.2. Canopy Segmentation

Before the test, three typical peach trees and pear trees were selected in order to
perform canopy segmentation and obtain leaf density statistics. Considering the external
features of the peach and pear canopies, each canopy was divided into the top, middle
upper, middle lower, and bottom layers (Figure 3a,b). Each layer was divided into external
and internal sides, where the external side contained four areas A, B, C and D, and the
internal side was identified as area E (Figure 3c). Thus, the canopy of each fruit tree was
divided into 20 areas. According to the schematic diagram of canopy division in Figure 3,
the canopy of the fruit trees was segmented using metallic wire to build a frame, and the
number of leaves in each frame-selected area was counted. The average number of leaves
of the three fruit trees in each frame-selected area was taken as the number of leaves in the
corresponding area.

2.2.3. Spray Liquid and Sample Collection

To quantify the deposition of spray liquid on peach and pear leaves, BSF fluorescence
with a mass fraction of 0.1% was added to tap water as a tracer. Photo-degradation tests of
BSF verified that the fluorescence degradation after 120 min of solar exposure was less than
3.1% [23]. After spraying, the peach and pear leaves in each canopy area were randomly
collected and individually placed in labeled plastic zip-lock bags (140 × 200 × 0.05 mm3).
To evaluate the droplet distribution and deposition of each sprayer, 5 fruit trees were
selected from the application row as repetitions. Ten pieces of leaves were picked for each
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area of the segmented canopy and placed in a zip-lock bag. In this study, the deposition
rate of the spray liquid was calculated based on the number of leaves, regardless of the
area of a single leaf. Therefore, leaves of different sizes were randomly selected in each area
to eliminate the influence of leaf area on the detection results. To reduce the photolysis of
BSF, all of the leaf samples were collected within 1 h after application and then stored in
the dark at −20 ◦C until analysis.

  
(a) (b) (c) 

Figure 3. Schematic diagram of fruit tree canopy segmentation. (a) Height division of the peach
canopy, (b) height division of the pear canopy, (c) horizontal division of the canopy.

2.2.4. Meteorological Conditions

A portable meteorological station (WatchDog, Spectrum Technologies, Inc., Aurora,
CO, USA) was used to measure the weather conditions during the field experiments, and
the station was located upwind of the peach and pear orchards at a height of 2 m. The
temperature, relative humidity, wind speed and wind direction were collected at 1 Hz and
averaged across the period of each treatment. The wind direction was expressed as the
angle between the wind and the forward direction of the sprayers. The meteorological
conditions of the treatments are shown in Table 2.

Table 2. Meteorological conditions during spraying in the field test.

Meteorological
Parameter

Peach Orchard Pear Orchard

Trailer
Sprayer

Mounted
Sprayer

Spray
Gun

Trailer
Sprayer

Mounted
Sprayer

Spray
Gun

Relative humidity (%) 47.5 43.7 42.6 73.8 65.9 54.8
Temperature (◦C) 29.7 30.9 31.6 27.1 27.3 30.9

Mean wind velocity
(m·s−1) 1.23 1.16 1.37 0.81 0.84 0.93

Wind direction (◦) 110.3 112.3 111.7 18.75 11.56 3.83

2.3. Sample Processing and Calculation
2.3.1. Deposition on the Samples

A quantitative volume of deionized water was used to elute the collected leaves, and
a fluorescence spectrometer (LS55, PerkinElmer Instruments, Waltham, MA, USA) was
used to determine the amount of droplet deposition. In addition, the fluorescence value of
each original spray liquid diluted 1000 times was also measured to calculate the volume
of liquid on the samples. The deposition of the spray liquid was calculated using the
following equation:

Vl =
Vw × FLS

n × Nd × FLa
× 103 (1)
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where Vl : deposition on a single leaf, μL; Vw: volume of eluent, mL; FLs: fluorescence
value of eluent; FLa: fluorescence value of diluted liquid; n: number of leaves in sampling
area; Nd: dilution times of spray liquid.

2.3.2. Deposition Rates in Orchard

The deposition rate of the spray liquid of each sprayer was calculated according to
the number of leaves in the sampling area, the applied volume in the treatment area,
and the fruit tree density. The deposition volume for a single plant was calculated us-
ing Equation (2), and the effective deposition rate of the spray liquid was calculated
using Equation (3).

Vt =
20

∑
i=1

Vli × ni (2)

where Vt is the deposition of the spray liquid on a single tree, mL; Vli is the deposition of
the liquid in the i-th sampling area; and ni is the number of leaves in the i-th sampling area.

R =
Vt × S × 10−3

V0 × l × d
× 100% (3)

where R is the deposition rate of the spray liquid, %; S is the unit area of the orchard, ha,
m2; V0 is the total spraying volume of the unit area, L; l is the row spacing, m; and d is the
spacing in the row, m.

3. Results

3.1. Leaf Density of Fruit Trees

Table 3 shows the number of leaves in the different areas of the peach tree canopy.
Compared to other areas of the canopy, the top layer of the canopy has a smaller volume
and the least number of leaves. The number of leaves in the external area of the top layer
was about 500, which was slightly lower than the number of leaves in the upper middle,
lower middle, and lower layers. The number of leaves in the internal area of the top
canopy was only 223, which was significantly lower than the number of leaves in the upper
middle, lower middle, and lower layers. The number of leaves in the internal region of the
middle and upper layers was 705, which was significantly higher than the values of 459 and
400 found for the internal region of the middle lower and bottom layers, respectively. The
numbers of leaves in the middle upper, middle lower and external regions of the bottom
layer were not much different, but the numbers of leaves in the A and B regions of the same
layer were higher than those in the C and D regions. This may be due to the fact that areas
A and B were closer to the application row, and the orchard has a row spacing that was
larger than its plant spacing in the row, so areas A and B have better light, ventilation and
more room for growth.

Table 3. The numbers of leaves in different areas of the peach canopy.

Layer of Canopy A B C D E

Top 512 465 485 442 223
Middle upper 655 711 440 434 705
Middle lower 754 682 561 442 459

Bottom 702 668 455 406 400

Table 4 shows the numbers of leaves in the different areas of the pear canopy. The
results were similar to the leaf distribution in the canopy of the peach trees. The top layer
of the pear canopy was smaller in volume and had the lowest number of leaves, and the
numbers of leaves in each area of the top layer were all less than 100. The numbers of
leaves in the middle upper and the middle lower layers of the pear canopy were larger
than those in the top and bottom layers. The number of leaves in the middle lower layer
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was the highest, with the four external regions (A, B, C, and D) of the canopy having about
300 leaves, while the number of leaves in the internal region reached up to 463. Compared
with the middle upper and middle lower layers, the number of leaves in the bottom layer
of the canopy was lower, being in the range of 133 to 201. In contrast to the distribution
of leaves in the peach trees, the density of the pear branches was lower, thus having less
negative effect on ventilation and light transmission; therefore, the numbers of leaves in
areas A and B of the pear canopy were similar to those in areas C and D.

Table 4. The numbers of leaves in the different areas of the pear canopy.

Layer of Canopy A B C D E

Top 65 74 70 61 82
Middle upper 179 195 165 150 239
Middle lower 280 326 301 264 463

Bottom 181 133 152 201 164

3.2. Liquid Distribution in the Canopy

Table 5 shows the deposition amount and average deposition of spray liquid in the
peach canopy. The difference in the deposition amount of the liquid sprayed by the trailer
sprayer in the four extenal areas of the top layer, the middle upper layer and the middle
lower layer of the peach canopy is small. However, the deposition amounts of spray liquid
in the internal area of the top layer and the middle lower layers were 2.09 μL and 2.02 μL,
respectively, which were values significantly lower than that found for the external area of
the corresponding layer. This might be caused by the occlusion of the peripheral blades.
In the bottom layer of the peach trees, the deposition of the spray liquid in areas A and B
was 6.07 μL and 5.11 μL, respectively, which was much larger than the 3.14 μL and 3.31 μL
found for areas C and D. This is because the height of the spraying unit was similar to
the height of the bottom layer of the tree canopy, and areas A and B of the bottom layer
were closer to the operation row, increasing the adhesion probability of the spray liquid.
In general, there was little difference between the deposition in each area of peach canopy
and the average deposition in the whole canopy, and the deposition of the spray liquid
applied by the trailer sprayer in the peach canopy was relatively uniform.

Table 5. Deposition amount (μL) and average deposition (μL) of spray liquids in the peach canopy.

Area of Canopy Trailer Sprayer Mounted Sprayer Spray Gun

Top

A 3.86 ± 1.03 3.17 ± 2.38 49.10 ± 2.54
B 3.74 ± 0.13 2.67 ± 2.09 73.60 ± 3.69
C 3.14 ± 0.59 0.34 ± 0.22 59.05 ± 13.15
D 2.50 ± 0.82 1.27 ± 0.61 66.73 ± 0.91
E 2.09 ± 0.27 0.45 ± 0.38 53.49 ± 16.26

Middle upper

A 5.98 ± 1.60 6.15 ± 1.69 55.58 ± 5.57
B 4.73 ± 1.61 5.63 ± 2.78 68.26 ± 16.18
C 5.56 ± 2.17 0.88 ± 0.58 62.63 ± 10.82
D 5.15 ± 1.75 1.91 ± 1.36 68.71 ± 5.65
E 4.56 ± 1.31 1.14 ± 0.92 59.00 ± 11.67

Middle lower

A 4.65 ± 0.73 7.49 ± 5.26 65.67 ± 24.01
B 4.53 ± 1.10 4.59 ± 3.09 67.34 ± 11.94
C 3.92 ± 0.81 1.45 ± 1.02 65.01 ± 19.08
D 4.24 ± 0.44 4.20 ± 2.05 70.65 ± 3.42
E 2.02 ± 0.76 0.36 ± 0.24 58.63 ± 12.80

Bottom

A 6.07 ± 1.18 8.38 ± 2.21 49.98 ± 3.64
B 5.11 ± 1.13 4.21 ± 2.77 55.40 ± 19.05
C 3.14 ± 0.88 4.14 ± 2.49 48.00 ± 13.07
D 3.31 ± 0.31 4.20 ± 2.73 68.83 ± 4.12
E 3.46 ± 0.90 1.56 ± 1.18 59.12 ± 13.32

Average deposition 4.09 3.21 61.24
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The deposition amount of the liquid spray when using the mounted sprayer showed
a downward trend with increasing canopy height. Taking area A as an example, the
deposition amounts of the spray liquid in the bottom, middle lower, middle upper and
top layers of the peach canopy were 8.38, 7.49, 6.15 and 3.17 μL, respectively. Due to the
lower air speed of the mounted orchard air-assisted sprayer, the deposition amounts of the
spray solution in areas A and B were greater than those in areas C and D in the same layer
of the peach canopy. Compared with the deposition amounts on the external areas, the
deposition amounts of the liquid in the internal areas of the the canopy were lower, and
the deposition amounts in the top, middle upper, middle lower and bottom layers were
0.45, 1.14, 0.36 and 1.56 μL, respectively, all of which were much lower than the average
deposition of 3.21 μL.

Since the application volume of the spray gun is much greater than those of the trailer
sprayer and the mounted sprayer, the average deposition of the spray gun throughout the
whole peach canopy was 61.24 μL, which was also much higher than those of the other
two sprayers. Meanwhile, the adhesive capacity of droplets applied using the high-volume
spray gun exceeded the maximum retention of the leaves, causing a large amount of spray
liquid runoff from the leaves of the fruit trees. Therefore, the deposition amount of the
spray gun sprayed in different areas of the peach canopy was relatively uniform, and
the deposition amounts of the liquid were greater than 50 μL in almost all areas. The
differences in the deposition amounts in each area of the peach canopy when using spray
gun application were mainly determined on the basis of leaf inclination and density in
the area.

Table 6 shows the deposition amounts and the average deposition of spray liquids
in the pear canopy. Since the leaf area of pear trees is larger than that of peach trees, the
deposition amounts of the three sprayers on single pear leaves were greater than those on
peach leaves. The deposition and distribution trends of liquids applied using the three
sprayers in the pear canopy were similar to those in the peach canopy. Relatively speaking,
the deposition amount of spray liquid applied by the trailer sprayer was lower in the top
layer of the canopy, but the differences in the deposition amount of liquid between each of
the layers were small. The deposition amounts of the liquid sprayed by the trailer sprayer
in the internal areas of the pear canopy were the lowest, and the deposition amounts in the
top, middle upper, middle lower and bottom layers of the pear canopy were 29.07, 28.91,
43.02 and 43.22 μL, respectively. All of these values were lower than the average deposition
of 52.65 μL found throughout the whole canopy.

Table 6. Deposition amount (μL) and average deposition (μL) of spray liquids in pear canopy.

Area of Canopy Trailer Sprayer Mounted Sprayer Spray Gun

Top

A 59.03 ± 4.55 12.24 ± 4.41 176.75 ± 28.66
B 44.41 ± 15.32 1.20 ± 0.58 141.77 ± 22.80
C 49.60 ± 11.60 0.68 ± 0.24 144.82 ± 76.52
D 47.14 ± 0.92 2.08 ± 1.77 200.17 ± 29.48
E 29.07 ± 2.02 0.60 ± 0.28 161.21 ± 13.99

Middle upper

A 81.52 ± 15.12 39.23 ± 12.74 170.14 ± 30.32
B 77.06 ± 18.29 3.47 ± 3.35 209.66 ± 13.21
C 55.79 ± 8.28 5.50 ± 5.22 147.32 ± 71.69
D 61.28 ± 1.36 10.94 ± 11.67 251.93 ± 53.22
E 28.91 ± 7.40 3.11 ± 3.36 129.31 ± 23.51

Middle lower

A 71.29 ± 15.13 25.40 ± 8.08 126.10 ± 48.10
B 57.21 ± 13.97 5.09 ± 3.68 168.17± 73.50
C 47.38 ± 8.79 11.47 ± 6.25 122.91 ± 64.15
D 50.18 ± 3.74 18.69 ± 11.76 183.85 ± 8.33
E 43.02 ± 7.33 10.57 ± 7.04 128.74 ± 54.17
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Table 6. Cont.

Area of Canopy Trailer Sprayer Mounted Sprayer Spray Gun

Bottom

A 70.35 ± 24.00 41.00 ± 20.93 140.94 ± 29.82
B 60.76 ± 10.64 41.57 ± 23.29 162.38 ± 26.48
C 57.22 ± 3.32 28.29 ± 4.87 76.53 ± 13.70
D 57.20 ± 11.16 50.90 ± 10.74 189.40 ± 29.39
E 43.22 ± 11.75 32.80 ± 13.26 130.54 ± 31.39

Average deposition 52.65 17.32 152.42

Similar to the deposition results on peach trees, the deposition amount of liquid
applied using the mounted sprayer in the pear canopy also decreased with increasing
canopy height. The highest deposition of liquid was found in the bottom layer, and the
lowest deposition of liquid was found in the top layer. The liquid applied using mounted
sprayer was relatively uniformly deposited in the bottom areas of the pear canopy, while the
liquid in the other three layers was mainly deposited in the external areas. The deposition
amounts of spray liquid in the internal regions of the top, middle upper, and middle lower
layers were 0.60, 3.11, and 10.57 μL, respectively, which were significantly lower values
than the average canopy deposition volume of 17.32 μL. The spray gun had the highest
deposition amount of liquid in the pear canopy, and the deposition amount of the spray
gun sprayed in different areas of the pear canopy was relatively uniform.

3.3. Deposition Rate and Variable Coefficient

Table 7 shows the deposition rates and coefficients of variation of spray liquid in the
peach and pear canopies. The results showed that the deposition rate of the spray liquid
applied using the trailer sprayer was the highest, with the deposition rate of liquid in
peach and pear canopies being 31.54% and 56.92%, respectively. The deposition rates of
liquid applied using the mounted sprayer in the peach and pear canopies were 21.75%
and 40.61%, respectively. The deposition rates of liquid applied using the hand-held spray
gun in the peach and pear canopies were relatively close, with the deposition rates of the
pesticide solution being 25.19% and 29.97%, respectively.

Table 7. Deposition rates (%) and coefficients of variation (%) of spray liquid in the peach and
pear canopies.

Sprayer

Peach Orchard Pear Orchard

CV of
Deposition

Deposition Rate
CV of

Deposition
Deposition Rate

Trailer sprayer 35.98 31.54 26.54 56.92
Mounted sprayer 92.52 21.75 94.90 40.61

Spray gun 20.54 25.19 25.06 29.97

The uniformity of spray droplet distribution on the targets is commonly described
by the coefficient of variation (CV) [24]. The lower the CV is, the better the uniformity
of droplet distribution [25]. The spray gun with high volume spray had the best droplet
distribution uniformity, and the CVs of the spray on peach and pear trees were 20.54%
and 25.06%, respectively. The uniformity of the liquid distribution of the trailer sprayer
was second, where the CVs of the spray liquid deposited on the peach and pear trees were
35.98% and 26.54%, respectively. The mounted sprayer had the worst performance in terms
of the deposition and distribution of the liquid, with the CVs of the liquid deposited on the
peach and pear trees being 92.52% and 94.90%, respectively.

4. Discussion

Pesticide application aims at depositing the highest possible amount of the active
ingredient onto the target surface [26]. The performance of the sprayer, the meteorological
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conditions, the structure of the plant canopy, and the surface properties of the leaves all
have an impact on this during the deposition of the pesticide solution from the nozzle
to the surface of the leaves [27–30]. The orchards have the characteristics of continuous
planting, large canopies, and dense foliage. To improve the penetration of the spray liquid,
air-assisted sprayers are used to apply pesticides in orchards [16].

In this study, the assisted air speed of the trailer sprayer was higher than that of
the mounted sprayer and the non-air-assisted spray gun, and its delivery performance
was better for droplets, ensuring that more droplets were deposited on the target canopy
and penetrated into the interior of the canopy. However, the assisted air speed of the
mounted orchard sprayer was relatively lower, and its ability to transport droplets to the
target canopy was weak, resulting in a large number of droplets being deposited under the
canopy or in the operation row during the spraying process. Therefore, the deposition rate
of spray liquid obtained when using the trailer sprayer was the highest, with a deposition
rate on peach trees that was 1.45 times and 1.40 times those of the mounted sprayer and
the hand-held spray gun, respectively. Similarly, the deposition rate of the trailer sprayer
on pear trees was 1.40 times and 1.90 times those obtained using the mounted sprayer and
the hand-held spray gun, respectively.

The leaf area index and canopy volume of fruit trees also have a significant effect on
the deposition rate of spraying solution [16,31]. The peach trees selected in this experiment
had a maximum width of 2.0 m, a plant height of 3.0 m, and a leaf area index of 1.18.
The maximum width of the pear trees was 2.5 m, the plant height was 3.8 m, and the
leaf area index was 1.43, which were all larger than the values obtained of the peach
trees. Therefore, compared to the deposition rate of spraying solution on peach trees, the
deposition rate of liquid sprayed using the trailer sprayer and the mounted sprayer on pear
trees increased by about 20%. However, the deposition rates of the high volume applied
using the hand-held spray gun on the two fruit trees only increased by about 5%.

Hand-held spray guns are used for spraying without air assistance. Its operation
efficiency is low, the amount of runoff liquid is large, and the risk of the operator’s exposure
to pesticide is greatly increased [21]. Michael et al. [31] assessed the deposition on leaves and
the losses to the ground for four different spraying treatments in trellis and goblet viticulture.
The high-volume sprayer exhibited in the highest normalized deposit on the ground,
suggesting that runoff is excessive compared to the other types of sprayers. Compared with
hand-held spray gun, the air-assisted sprayers were highly efficient, showing the potential
for replacing high-volume pesticide sprayings with low-volume applications. However,
motorized air-assisted sprayers are not able to meet the requirements of mountainous
orchards and non-standardized orchards. Therefore, hand-held spray guns are still the
optimal choice for pesticide application in these areas.

In addition to the deposition rate of the pesticide solution, the uniformity of the liquid
distribution in the canopy is another important indicator for evaluating the performance of
spraying, and is of great significance for optimizing the spray parameters of equipment
and improving the utilization rate of the chemical solution [32]. The airflow generated by
air-assisted orchard sprayers is able to toss the branches and leaves of the fruit tree canopy,
so that the droplets entrained by the airflow penetrate into the target, thereby greatly
increasing the penetration of the droplets [33]. Compared with the trailer air-assisted
sprayer, the weaker air speed of the mounted air-assisted sprayer resulted in a greater
concentration of the spray liquid on the external and lower areas of the fruit tree canopy.
Therefore, the CVs of the deposition amount of the spray liquid in the peach and pear
canopy were 92.52% and 94.90%, respectively. The trailer air-assisted sprayer was able to
blow the droplets to various areas of the fruit tree canopy, so the CVs of pesticide solution
deposition in the peach and pear canopies were 35.98% and 26.54%, respectively, values
which were much lower than the CVs of the mounted sprayer. It is worth mentioning
that when the airflow of the air-assisted orchard sprayer is too weak, this will lead to
deficient deposition in the canopies of fruit trees, while excessive airflow will result in the
droplets being blown through the canopy, resulting in pesticide runoff and environmental
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pollution [3,30]. Therefore, in order to ensure the spraying performance of the air-assisted
orchard sprayer, research should be carried out on airflow demand in the context of fruit
tree canopies, and the air supply rate of sprayers should be regulated accordingly.

Admittedly, a great deal of time was consumed by counting the number of leaves in
different areas of the fruit tree canopies. To study the distribution of the droplet penetration
rate inside the tree canopy during air-assisted spraying, Sun et al. [34] chose cube-shaped
frames to divide the canopy area of the fruit trees, and counted the number of leaves
in each frame area. This method for the determination of the statistics of leaves in the
fruit tree canopy also consumes a lot of time. At present, the most widely used target
detection methods for fruit tree canopies are mainly aimed at calculating the outline and
volume of the fruit tree [35–38]. Therefore, research on the density of branches and leaves
in fruit tree canopies should be carried out to improve the efficiency of fruit tree canopy
information extraction.

The quantitative indicators of the density of branches and leaves in the canopy of
fruit trees include the leaf area index, leaf area density, point quadrat analysis and biomass
density. Zhang et al. [39] developed a calculation method for leaf area density based on
a three-dimensional laser point cloud, which provided a function relationship between
the leaf number and the laser point. Sanz-Cortiella et al. [40] used the SICK LMS200
two-dimensional LiDAR sensor to scan the fruit tree canopy bilaterally, and obtained a
three-dimensional structure map of the canopy. In addition, the linear relationship equation
between the number of laser point clouds falling on the canopy branches and the leaf
area was determined using statistical methods. Sanz et al. [41] found a linear relationship
between the canopy leaf area density and the logarithm of the canopy volume based on the
statistical results of the orchard test data and established a mathematical equation between
the leaf area density and the canopy volume. The above studies could provide reference
for the determination of fruit tree canopy information when determining the utilization
rate of new orchard spray liquids.

5. Conclusions

To evaluate spraying efficacy in orchards, a canopy segmentation method was de-
veloped to determine the deposition rate and droplet distribution in orchard application.
The distribution and deposition rate of spray liquid applied using three kinds of orchard
sprayer were measured in a pear orchard and a peach orchard. The test results showed
that the trailer sprayer had the highest deposition rates, with values of 31.54% and 56.92%
on peach and pear trees, respectively. The spray gun had the best droplet distribution
uniformity, and the CVs of the spray in the peach and pear canopies were 20.54% and
25.06%, respectively. Nevertheless, a great deal of time was consumed in counting the
number of leaves in the different areas of the fruit tree canopies. Therefore, research on the
density of branches and leaves in fruit tree canopies should be carried out to improve the
efficiency of fruit tree canopy information extraction.
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Abstract: Pipeline spraying can be adopted for greatly improving spraying efficiency in hillside
orchard spraying operations. However, residual phytosanitary product still remains in the pipeline
after the completion of pipeline spraying operations. Currently, residual phytosanitary liquid is
handled according to the following general method: pipeline flushing with fresh water. The method
can easily lead to pesticide waste and environment pollution. On-line pesticide mixing technology
can be adopted for reducing pesticide waste and environmental pollution. However, on-line pesticide
mixing technology is not applied in pipeline spraying operations. Therefore, the mixing principle
of jet-mixing apparatus is adopted as a reference in the paper for designing the basic structure of
on-line pesticide mixing apparatus based on pipeline spraying. The structure is mainly composed of
a constricted tube, suction chamber, Venturi, and diffusion tube. An analysis method based on the
CFD orthogonal experiment is adopted for studying the influence of the changes of four key structure
parameters on on-line pesticide mixing apparatus, pesticide dissolution performance, and pesticide
mixing performance; the four parameters include constricted tube falloff angle, diffusion tube
divergence angle, Venturi diameter, and Venturi length. Since there may be interaction among them,
three experiment evaluation indexes of lifting height, turbulent kinetic energy, and pressure recovery
distance are set for judgment. The change of three evaluation indexes with change of constricted tube
falloff angle, diffusion tube divergence angle, Venturi diameter, and Venturi length, respectively, is
revealed through single-index variance analysis; the three indexes include lifting height, turbulent
kinetic energy, and pressure recovery distance. The primary and secondary sequences of respective
influences of all structure parameters and their interaction on all evaluation indexes are obtained.
Analysis results of all evaluation indexes are comprehensively considered in order to finally discover
the comprehensive optimal pesticide mixing apparatus structure parameters, namely: constricted
tube falloff angle is 22◦, diffusion tube divergence angle is 9◦, Venturi diameter is 2 mm, Venturi
length is 6 mm, and pesticide mixing apparatus structure parameters are optimized. Theoretical
reference is provided in the paper for on-line pesticide mixing apparatus prototype production on
the basis of pipeline spraying.

Keywords: on-line pesticide mixing; pipeline spraying; pesticide mixing apparatus; CFD; orthogonal
experiment; optimization
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1. Introduction

At present, most areas of China still use traditional premixed pesticide mixture for
plant protection machinery spraying operations. The chosen pesticide and water–in a
certain proportion–are combined in the tank to mix well before spraying. The operator
is directly in contact with the pesticide under the pesticide mixing mode, and thus the
operator is prone to pesticide positioning. The remaining pesticide liquid can lead to
pesticide waste after mixing. If the pesticide liquid is not handled well, environment
pollution also can occur [1]. However, the dosing tank is separated from the water tank
according to on-line pesticide mixing mode, compared with the pre-mixed pesticide mixing
mode. Sprayer pipeline system internal water flow and sprayer pipeline extra power are
utilized for on-line mixing of pesticide and water, and the pesticide can be applied regularly,
professionally, and accurately. This is based on environmental protection and operator
safety, which is in line with the requirement of agricultural sustainable development [2].

On-line pesticide mixing technology is an important development direction in the
plant protection machinery field, which is a topic of concern for experts and scholars all
over the world, and has been widely researched [3–5]. The research on on-line pesticide
mixing technology in China is mainly based on jet-mixing apparatus; extra power is not
required for the pesticide mixing apparatus, the structure is compact, and the operation is
convenient. A momentum exchange energy transfer mode is utilized. Pesticide and water
online mixing is completed through the hydraulic power of the sprayer pipeline system.
He et al. [6–8] engaged in numerical simulation calculations on jet-mixing apparatus mixing
tubes, and the distribution law of radial velocity and axial velocity in the mixing tube was
concluded. Li et al. [9] studied double-stage jet-mixing apparatus under the condition of
different main-auxiliary jet flow nozzle outlet diameters and nozzle tube pitches through
experiments; the influence of all parameters of jet-mixing apparatus on pressure loss and
pesticide mixing ratio was revealed. Qiu et al. [10,11] studied the influence area ratio,
nozzle inclination, and other parameters of jet-mixing apparatus flowing properties and
the influence of area ratio on pesticide mixing uniformity through the CFD numerical
simulation method. Chen et al. [12] regarded LabVIEW as a development environment
for designing an on-line jet-mixing control system in order to solve the problems of jet-
mixing apparatus, and realize accurate and intelligent control of jet-mixing apparatus; the
problems include narrow pesticide mixing ratio adjustable scope and low control precision.
The on-line jet-mixing control system was set for obtaining a suitable pesticide mixing ratio
value, thereby significantly increasing the adjustment width of the phytosanitary mixing
ratio. Zhou et al. [13] studied the influence of jet-mixing apparatus structure parameters
on its performance through CFD numerical analog simulation analysis method and the
combination of experiment data. The jet-mixing apparatus optimal area ratio and optimal
nozzle tube pitch scope were finally determined. Ou et al. [14] adopted the CFD numerical
value analysis method for studying the flow field characteristics of the jet-mixing apparatus
under variable working condition, and obtained the following conclusion: the pesticide
mixing ratio is linearly reduced with the increase of outlet static pressure; STC12C5A60S2 is
regarded as the control core. Zhang et al. [15] established an on-line jet-mixing ratio control
experiment platform, and an on-line jet-mixing ratio control experiment was carried out
on the basis of the experiment platform. Experiment results showed that the experiment
platform can control the pesticide mixing ratio according to different phytosanitary liquid
concentrations; the adjustable scope of pesticide mixing ratio was expanded to improve
real-time automatic pesticide mixing precision.

The research on on-line pesticide mixing technology in developed countries such as
Europe and America is based on a pesticide direct injection system, which is different from
the research focus of scholars in China. In the pesticide mixing mode, an extra power sprayer
pipeline system is utilized for accurate metering of the pesticide, and for the mixing of pesticide
and water in the pipeline. The compressed air pesticide direct injection system developed by
Ghate and Phatak [16] can be used for adjusting the air pressure in the dosing tank and water
tank, respectively, according to mechanical equipment driving speed, water, and pesticide
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flow out of the water tank and dosing tank according to certain proportions, thereby achieving
pesticide and water online mixing, and meeting pesticide liquid concentration requirements.
The peristaltic pump is utilized for quantitatively sucking pesticide in the dosing tank and
feeding it into the main water pipeline; it is mixed with water, and control valves can be
used for automatically adjusting the pesticide delivery dose according to the driving speed
of the mechanical equipment in the Mid-West Technology CCI-2000 variable volume pump
direct injection system, developed in America. This ensures that the mixed pesticide liquid
concentration is in line with requirements [17]. There is also research that combines flow
capacity control technology and pesticide direct injection: Koo and Summer [18] developed
a pesticide direct injection system capable of real-time adjustment of phytosanitary liquid
and water flow capacity with sprayer driving speed, and that maintained constant pesticide
mixing concentration and dose in the unit. Slaughter et al. [3] applied the pesticide direct
injection system in a lateral herbicide sprayer with the research development of pesticide direct
injection technology, and its function of accurate targeted pesticide application was realized.
Steward and Humburg [19] studied a control sub-system mathematics model aiming at the
Raven SCS-700 pesticide direct injection system; the related parameters of flow capacity and
valve are analyzed, and valve adjustment response and stability are determined for improving
phytosanitary mixing performance and phytosanitary mixing precision. Gillis et al. [4] studied
a pesticide direct injection system based on machine vision, and preliminary research results
were obtained. Aissaoui et al. [20] developed an optical sensor with low power consumption,
where the performance of pesticide direct injection system was dynamically measured; test
results showed that the measurement data can be used for modifying the performance of
the pesticide direct injection system. Luck et al. [21] adopted a dye/glycerinum mixture as a
tracer agent for studying the working conditions of the pesticide direct injection system, and
they proposed the solution that the dye/glycerinum mixture calibration curve can be utilized
for simulating the pesticide mixing process. Felizardo et al. [22] constructed a variable speed
spraying system model based on pesticide direct injection technology; a predictive control
method is adopted for control, the carrier chemical mixing process and chemical flow rate
error can be lower than 5% of the allowable level, and the effectiveness of the model and its
control strategy is verified by experiment results.

Document literature consulted at present shows that pesticide direct injection systems
studied in developed countries such as Europe and America, jet-mixing apparatus studied
in China, and other on-line pesticide mixing apparatus, are mainly applied in medium- and
large-scale mobile plant protection machinery equipment and on pipeline spraying system
in hillside orchards, as shown in Figure 1. The CFD theory-based numerical simulation
analysis method can be applied to better reveal various pesticide mixing apparatus internal
flow field states in the aspect of the research method [14,23–27], and it is obvious that
the orthogonal experiment method has prominent advantages in reducing experiment
frequency and optimizing structure parameters [28,29].

Figure 1. Schematic diagram of hillside orchard pipeline spraying. 1. Water pool. 2. Mixer. 3. Water
valves. 4. Pipes. 5. Spray valves.
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Therefore, the objective of the study was to analyze the internal flow field state of the
mixer based on CFD orthogonal tests in order to obtain the optimum mixer construction
parameters, which mainly include constricted tube falloff angle α, diffusion tube divergence
angle β, Venturi diameter d, and Venturi length L. This would save on experiment costs
and reduce the amount of testing needed.

2. Materials and Method

The poor road conditions in mountain orchards make it difficult for large- and medium-
sized plant protection sprayers to access them for spraying operations. Pipeline spraying
is adopted to greatly improve spraying efficiency, however residual pesticide liquid still
remains in the pipeline after the pipeline spraying operation is complete. Currently, the
pipeline is generally cleaned with fresh water as a common method, which can easily lead
to pesticide waste and environment pollution. On-line pesticide mixing technology can
be adopted for reducing pesticide waste and environmental pollution. On-line pesticide
mixing technology will be applied for pipeline spraying in the paper in order to design
the basic structure of on-line pesticide mixing apparatus based on pipeline spraying.
An analysis method based on CFD orthogonal experiment is adopted for analyzing the
pesticide mixing apparatus internal flow field state, thereby optimizing the pesticide mixing
apparatus structure parameters, and finally discovering comprehensive optimal pesticide
mixing apparatus structure parameters.

2.1. Pesticide Mixing Apparatus Structure and CFD Model
2.1.1. Design of Pesticide Mixing Apparatus Basic Structure

Jet-mixing apparatus is characterized by no requirement of extra power, compact
structure, convenient operation, and low cost. Compared with other pesticide mixing
apparatus, jet-mixing apparatus has the advantages of strong mixing, reliable working
performance, quick mixing, and so on [1,2]. Therefore, the mixing principle of jet-mixing
apparatus is adopted as reference in the paper; the actual dimension of hose diameter in
pipeline spraying is combined to design the basic structure of on-line pesticide mixing
apparatus based on pipeline spraying, as shown in Figure 2. Here, the diameter of water
inlet and mixture outlet is 8.5 mm, the diameter of the pesticide mother liquid inlet is
2 mm, and the diameter is matched with the dimension of the spray gun hose in practical
application at a flow rate of 10 L/min in the corresponding size; the length of the constricted
tube L1 is 15 mm, the length of the diffusion tube L2 is 42 mm.

 

Figure 2. Structure of the jet mixer. 1. Constricted tube. 2. Suction chamber. 3. Venturi. 4. Diffusion tube.

The on-line pesticide mixing apparatus based on pipeline spraying is mainly composed
of a constricted tube, suction chamber, Venturi, and diffusion tube, where the constricted tube
falloff angle α, diffusion tube divergence angle β, Venturi diameter d, and Venturi length
L are four key structure parameters of the on-line pesticide mixing apparatus; these pa-
rameters have an important influence on pesticide mixing performance [13,30,31]. Figure 2
shows that the velocity of high-pressure water flow penetrating through the constricted
tube with a gradually reduced cross section area is gradually increased. Kinetic energy is
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increased, and pressure is gradually decreased, which is injected from the constricted tube
outlet into the Venturi. Negative pressure is formed in the Venturi; the pesticide mother
liquid in the dosing tank is entrained from the suction chamber to the pesticide mixing
apparatus under the effect of barometric pressure, and it can exchange energy with the
high-pressure water flow in the Venturi, where they are gradually and evenly mixed. Then,
mixed liquid enters into the diffusion tube with a gradually increased cross section area.
The velocity is gradually reduced, pressure is gradually increased, and the liquid flows out
of the pesticide mixing apparatus outlet, thereby realizing online mixing of the pesticide
mother liquid and water [6,7,32].

2.1.2. Establishment of Pesticide mixing Apparatus CFD Model

Before computational fluid dynamics (CFD) software Fluent is utilized for the numeri-
cal simulation calculation analysis of the on-line pesticide mixing apparatus internal flow
field state on the basis of pipeline spraying, it is necessary to establish a CFD model for
numerical simulation calculation. The pesticide mixing apparatus internal flow channel un-
dergoes mesh generation through the integrated computer engineering and manufacturing
code for computational fluid dynamics (ICEMCFD) mesh generation software in the paper,
thereby generating a CFD model in line with requirements.

The pesticide mixing apparatus internal flow channel has a regular geometrical shape.
Structure-based meshes can be adopted for division, thereby reducing mesh quantity and improv-
ing the numerical simulation calculation speed. Meshes vertical to the flowing direction can be
easily generated by structure-based hexahedral mesh generation technology, thereby reducing
pseudo diffusion, improving CFD model mesh quality, and ensuring computational accuracy. In
the paper, structure-based hexahedral mesh is adopted for mesh generation in the pesticide mixing
apparatus internal flow channel computational domain [33–35]. Since all structures of the pesticide
mixing apparatus internal flow channel are basically circular tube sections, advanced O-shaped
mesh generation technology of ICEMCFD is adopted, and blocks for generating structure-based
hexahedral mesh are divided into an O-shape, thereby facilitating the generation of a CFD model
with higher mesh quality, and improving the computational accuracy.

Normal velocity has very large gradients in areas close to the pesticide mixing ap-
paratus internal flow channel wall, flow field conditions are complex, and standard wall-
function method can be adopted for correct solution of the simulation value model wall
condition according to CFD software Fluent. Six boundary layers are arranged in the
pesticide mixing apparatus internal flow channel wall area for mesh encryption processing,
thereby meeting numerical calculation requirements. The pesticide mixing apparatus inter-
nal flow channel suction chamber, Venturi, and areas with more complicated diffusion tube
flow field states undergo local mesh encryption processing in order to evaluate pesticide
mixing apparatus pesticide dissolution performance and pesticide mixing performance
more accurately. In this process, 160 nodes are arranged on each longitudinal block line in
suction chamber, 40 nodes are arranged on each transverse block line of each Venturi, and
150 nodes are arranged on each oblique block line of diffusion tube, thereby improving the
computational accuracy, and better reflecting the pesticide mixing apparatus internal flow
field state. A CFD model in line with numerical calculation requirements can be finally
generated, as shown in Figure 3, and the mesh quantity is 416,160.

 

Figure 3. On-line pesticide mixing apparatus CFD model based on pipeline spraying.
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2.2. Design of Orthogonal Experiment
2.2.1. Design of Orthogonal Experiment Plan

When medium and large plant protection machinery for field crop are used for spray-
ing operations, better spraying effect can be achieved when the spraying pressure is
1 to 2 MPa. On the contrary, if the spraying object is a fruit tree hillside orchard, higher
spraying pressure is required during pipeline spraying operations, which should be higher
than 0.8MPa generally; this allows a pronounced spraying effect to be achieved [36]. Many
field experiment studies show that excellent spraying effect can be achieved when the
pipeline spraying operation spraying pressure is 1 MPa. Document literature is consulted,
and it is obvious that pressure loss of jet-mixing apparatus is higher than or equal to
50% [6,10,13,14,31]. Therefore, the analysis method based on CFD orthogonal experiment
is adopted in the paper, high pressure water flow inlet pressure of pipeline spraying on-line
pesticide mixing apparatus is set as 2 MPa, pesticide mother liquid inlet pressure is set as
0 MPa (barometric pressure), mixed liquid outlet pressure is set as 1 MPa.

The use of the double dilution method for the concentration formulation of pharma-
ceutical solutions improves the dispersion and suspension of the active ingredients and
allows for more accurate dosing. In order to make it easier and more intuitive for the
subsequent operator to use the on-line mixing device based on pipeline spraying, the article
uses a multiplicative representation for the preparation of a certain concentration of liquid.
By consulting relevant information on pesticides on websites such as China Pesticide First
and China Pesticide Network, it was determined that the mixing ratio of most pesticide
stock solutions to water was between 1:200 and 1:4000, i.e., the dilution times were between
200 and 4000 times. In the whole process of preparing the concentration of the liquid, the
mother liquor dilution method firstly dilutes the pesticide stock solution by 2 to 20 times
to make the pesticide mother liquor, and then the pesticide mother liquid is mixed by the
on-line mixing device, i.e., the pesticide is diluted by 100 to 200 times to spray. Ultimately,
the pesticide stock solution can be diluted 200 to 4000 times to meet the needs of most
pesticide dilutions. Therefore, the mixing ratio of the pesticide mother liquid and water
in the online mixing device based on pipeline spraying designed in this paper is finally
determined as 1:100~1:200.

The pesticide mixing apparatus internal flow field state is studied and analyzed to
observe the influence of change of four key structure parameters on pesticide mixing
apparatus pesticide dissolution performance and pesticide mixing performance; the four
parameters include constricted tube falloff angle α, diffusion tube divergence angle β,
Venturi diameter d, and Venturi length L, thereby finally discovering the comprehensive
optimal pesticide mixing apparatus structure parameters.

Change in single structure parameters affects pesticide mixing apparatus pesticide
dissolution performance and pesticide mixing performance. Therefore, some interaction
thereof also can generate a certain influence on pesticide mixing apparatus pesticide
dissolution performance and pesticide mixing performance according to the above four key
structure parameters, and a main influence can be determined. Therefore, four principal
factors and three interaction factors are finally selected as experiment factors based on CFD
orthogonal experiment study in the paper. The four principal factors are the constricted
tube falloff angle α (factor A), diffusion tube divergence angle β (factor B), Venturi diameter
d (factor C), and Venturi length L (factor D); the three interaction factors are the interaction
between constricted tube falloff angle α and diffusion tube divergence angle β (factor A*B),
interaction between diffusion tube divergence angle β and Venturi diameter d (factor B*C),
as well as the interaction between diffusion tube divergence angle β and Venturi length L
(factor B*D).

2.2.2. Experiment Evaluation Indexes and Factor Level

Before the orthogonal experiment table is designed, suitable factor levels should be
firstly selected for four principal factors in orthogonal experiment; the factor level is finally
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selected in the paper as Table 1 based a large number of literature [1,14,26,34] and previous
pre-experiment study results.

Table 1. Factor level table.

Level

Factor

A B C D
α/ (◦) β/ (◦) d/mm L/mm

1 0.884 0.626 3.058 0.888
2 1.189 1.078 0.268 1.200
3 1.318 1.688 0.066 1.303

A = constricted tube falloff angle α; B = diffusion tube divergence angle β; C = Venturi diameter d; D = Venturi
length L.

Three experiment evaluation indexes are selected for evaluation in the paper in order
to correctly evaluate pesticide mixing apparatus pesticide dissolution performance and
pesticide mixing performance, respectively, including lifting height H1, turbulent kinetic
energy k, and pressure recovery distance H2, wherein lifting height evaluation indexes is
used for evaluating pesticide mixing apparatus pesticide dissolution performance, and tur-
bulent kinetic energy evaluation indexes and pressure recovery distance evaluation indexes
are jointly used for evaluating pesticide mixing apparatus pesticide mixing performance.
The influence of three experiment evaluation indexes on pesticide mixing apparatus pesti-
cide dissolution performance and pesticide mixing performance is concretely described
as follows:

1. Lifting heigh: the pesticide dissolution performance of the pesticide mixing apparatus
is evaluated through observing the velocity vector diagram of the suction chamber
traverse section, and recording the maximum height numerical value of high pressure
water flow rising in the suction chamber. If the maximum height of high pressure wa-
ter flow rising is lower, the obstruction of rising high pressure water flow to the sucked
pesticide mother liquid is smaller, and the pesticide dissolution performance is better.

2. Turbulent kinetic energy: the numerical value of the maximum turbulent kinetic
energy reached by the pesticide mixing apparatus internal flow field is observed
and recorded for measuring the mixing ability of the pesticide mixing apparatus.
If the maximum turbulent kinetic energy is higher, the pesticide mixing apparatus
internal flow field turbulence development is better, the flow field state is more
unstable, the water and pesticide mother liquid can be mixed better, and the mixing
ability is stronger.

3. Pressure recovery distance: the distance for increasing the diffusion tube internal
pressure from 0.1 MPa to 0.9 MPa is observed and recorded for measuring the pressure
recovery ability of the pesticide mixing apparatus. If the distance is shorter, the
pressure recovery is faster, the pressure recovery ability is stronger, and the pressure
loss is smaller.

2.2.3. Design of Orthogonal Experiment Table

Since each principal factor contains three levels, the degree of freedom (DOF) of each
column in the orthogonal experiment table is 2, the DOF of each interaction factor is 4, and
each interaction should occupy two columns in the orthogonal experiment table. Therefore,
the column number of factor A*B in the orthogonal experiment table is, respectively, AB1
and AB2, the column number of factor B*C is, respectively, BC1 and BC2, and the column
number of factor B*D is, respectively, BD1 and BD2. Three error columns with column
numbers of E1, E2, and E3, respectively, also should be finally reserved, and they are used
for estimating random errors. An interaction orthogonal table with a table head of L27(313)
is selected in the paper accordingly [28]. SPSS data statistical analysis software is utilized
for generating the orthogonal experiment table in line with experiment requirements, as
can be seen in Table 2.
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Table 2. Orthogonal experiment table.

Experiment Number
Column Number

A B AB1 AB2 C BD2 E1 BC1 D E2 BC2 BD1 E3

1 2 2 3 2 3 2 3 1 1 3 1 1 3
2 1 2 1 3 3 3 3 2 3 2 2 1 1
3 2 1 3 3 1 3 1 3 2 2 3 1 3
4 3 2 2 1 3 1 3 3 2 1 3 1 2
5 3 2 1 3 2 1 1 3 1 3 2 2 3
6 2 2 2 1 2 2 1 1 3 2 3 2 1
7 2 3 2 3 1 1 3 2 2 3 1 2 1
8 1 1 3 3 3 1 2 1 3 3 3 2 2
9 3 1 1 1 3 2 2 2 2 2 1 2 3

10 1 3 3 1 1 2 3 3 1 2 2 2 2
11 3 3 1 2 1 3 3 1 3 1 3 2 3
12 2 2 1 3 1 2 2 1 2 1 2 3 2
13 2 3 1 2 3 1 1 2 1 2 3 3 2
14 1 2 2 1 1 3 2 2 1 3 3 3 3
15 1 1 2 2 2 1 3 1 2 2 2 3 3
16 2 1 1 1 2 3 3 3 3 3 1 3 2
17 3 1 3 3 2 2 3 2 1 1 3 3 1
18 3 3 2 3 2 3 2 1 1 2 1 1 2
19 1 3 2 3 3 2 1 3 3 1 1 3 3
20 2 3 3 1 2 1 2 2 3 1 2 1 3
21 1 2 3 2 2 3 1 2 2 1 1 2 2
22 3 2 3 2 1 1 2 3 3 2 1 3 1
23 2 1 2 2 3 3 2 3 1 1 2 2 1
24 1 3 1 2 2 2 2 3 2 3 3 1 1
25 1 1 1 1 1 1 1 1 1 1 1 1 1
26 3 1 2 2 1 2 1 2 3 3 2 1 2
27 3 3 3 1 3 3 1 1 2 3 2 3 1

A = constricted tube falloff angle α; B = diffusion tube divergence angle β; C = Venturi diameter d; D = Venturi
length L; ABX = the column number of factor A*B in orthogonal experiment table (X = 1, 2); BCX = the column
number of factor B*C in orthogonal experiment table (X = 1, 2); BDX = the column number of factor B*D in
orthogonal experiment table (X = 1, 2); EX = error columns (X = 1, 2, 3).

2.3. Boundary Condition and Model Selection

Fluent software is adopted for computational fluid dynamics (CFD) numerical analog
simulation research and analysis on pesticide mixing apparatus internal flow field state in
the paper: high pressure water flow inlet boundary is set as pressure inlet, gauge pressure
is 2 MPa; pesticide mother liquid inlet boundary is set as pressure inlet, gauge pressure
is 0 MPa; mixed liquid outlet boundary is pressure outlet, gauge pressure is 1 MPa. Non-
slipping wall boundary condition is adopted for the wall, standard wall-function method is
adopted for treating the area near the wall, and operating environment belongs to standard
barometric pressure [13,14,26,37].

The standard k-ε two-equation turbulence model belongs to a turbulence model, which
is applied most widely in the engineering field at present. This can be better applied in a
complex 3D flow field, and it is physically meshed in the aspect of flow field simulation
with a lower calculated amount and rational precision. The model is economical and
practical [1,10,13,26,31,33,38,39]. Therefore, a standard k-ε two-equation turbulence model
is adopted for numerical simulation solution calculations on the CFD model in the paper.

Turbulent kinetic energy k equation:

∂

∂t
(ρk) + div(ρμk) = div

[(
μ +

μt

σk

)
× grad(k)

]
− ρε + μtPG (1)
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Turbulent dissipation rate ε equation:

∂

∂t
(ρε) + div(ρμε) = div

[(
μ +

μt

σz

)
× grad(ε)

]
− ρC2

ε2

k
+ μtC1

ε

k
PG (2)

In the above formula: k is the turbulent kinetic energy in m2·s−2, ε is the turbulent
dissipation rate in m2·s−3, ρ is the fluid density in kg·m−3, μ is the dynamic coefficient of
viscosity in kg·m−1·s−1, μt is the turbulence coefficient of viscosity in kg·m−1·s−1, and PG
is the turbulent kinetic energy generation item in s−2.

SIMPLEC algorithm is adopted for pressure velocity coupling solution, PRESTO
interpolating scheme is adopted for pressure equation solution in the aspect of solving
method, other equation solutions are dispersed through Second Order Upwind method,
residual error convergence standard is set as 1 × 10−4, and Hybird Initialization is adopted
for initialization [11,26,34,40].

Concrete steps of numerical simulation calculation are shown as follows:

1. Fluent solver selection; 3DFluent solver should be selected according to the pesticide
mixing apparatus model.

2. Mesh importing; Menu bar File→Read→Mesh options are selected, and then msh
files exported from ICEM software are selected.

3. Mesh checking; Menu bar Mesh→Check options are selected, and the operator should
observe whether meshes suffer from negative volume. Meshes are divided again if
there is negative volume.

4. Setting of computational domain dimensions; Since the basic unit of the pesticide
mixing apparatus internal flow channel CFD model is mm, and the basic unit of
Fluent software is m, it is necessary to select the menu bar Mesh→Scale options for
setting the imported model as mm.

5. Selection of calculation model; Pressure-Based solver is selected for General parameter
setting panel. Steady stable-state flow is selected for the panel Time option. Viscous-
Standard k-e is used for standing the Models parameter setting panel, namely standard
k-ε two-equation model.

6. Confirmation of fluid physical properties; Water-liquid is selected in the material
depot equipped for the Fluent software; namely liquid water is regarded as the
working liquid material.

7. Definition of operating environment; Menu bar Define→Operating Conditions option
is selected, 101325 is the input into the Operating Pressure textbox, as the operating
environment namely has standard barometric pressure.

8. Appointment of boundary condition; In the Boundary Conditions parameter settings
panel, high pressure water flow inlet is set as pressure inlet, gauge pressure is 2 MPa,
pesticide mother liquid inlet is set as pressure inlet, and gauge pressure is 0 MPa;
mixed liquid outlet is set as pressure outlet, and gauge pressure is 1 MPa.

9. Solving method setting; Th pressure velocity coupling solution algorithm of SIMPLEC
algorithm is set in the Solution Methods parameter setting panel, PRESTO interpolat-
ing scheme is adopted for pressure equation solution, and other equation solutions
are dispersed by Second Order Upwind method.

10. Solution monitoring setting; Residual error convergence standard of 1 × 10−4 is set for
Monitors parameter settings panel. One monitoring face is established for monitoring
the change of mixture outlet mass flow rate.

11. Flow field initialization; Hybird Initialization is adopted for initializing flow field in
the Solution initialization parameter settings panel.

12. Iterative solution; Iteration frequency of 4000 is set as the Run Calculation parameter
settings panel to start the numerical simulation calculation.

13. Result checking.
14. Result saving and after-treatment.
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3. Results and Discussion

3.1. Analysis of Chemical Mixer Internal Flow Field

Tables 1 and 2 in the paper, as well as setting in text 2.3, are used for the numerical
calculation of the pesticide mixing apparatus internal flow field; calculation results occupy
a large amount of written space. Experiment number 10 is only listed in the paper. The
pesticide mixing apparatus internal flow field numerical calculation results for constricted
tube falloff angle is 20◦, diffusion tube divergence angle is 9◦, Venturi diameter is 2 mm,
and Venturi length is 6 mm, as shown in Figures 4–6.

 

Figure 4. Cloud atlas of X-Y plane flow field velocity distribution. This is the image placed at the
center of the pipe.

 

Figure 5. Cloud atlas of X-Y plane flow field pressure distribution. This is the image placed at the
center of the pipe.
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Figure 6. Velocity vector partial enlarged drawing at the joint of X-Y plane suction chamber and Venturi.

Figures 4 and 5 are combined. It is obvious that as low velocity high pressure water
flow penetrates through the constricted tube with a gradually decreased cross section area,
velocity is gradually increased, pressure is gradually decreased, and it is changed into a
high-velocity low pressure water flow. Velocity reaches its maximum value in the Venturi,
and pressure reaches the minimum level, thereby forming negative pressure; the pesticide
mother liquid is sucked from the suction chamber into the pesticide mixing apparatus
under the effect of the strong external barometric pressure and static pressure of the liquid.
Two liquid flows with different velocities exchange energy in the Venturi, water flow rate
is reduced, the flow rate of pesticide mother liquid is increased, and they are gradually
and evenly mixed. Since the cross-section area of the diffusion tube is gradually increased,
some kinetic energy is converted into pressure energy, mixed liquid flow rate is gradually
decreased, and pressure is gradually increased, which is accompanied by certain velocity
layering. Zhou et al. [13] have also concluded that the cross-sectional area can influence
the suction performance of the mixing device, and that the best suction performance can
be achieved with an area ratio between 1.0 and 1.6, but that the suction performance will
gradually deteriorate when the area ratio exceeds 2.0.

Figure 6 shows that some velocity vectors of backflow suction chambers and local
vortexes appear at the joint of the suction chamber and Venturi, which produces a certain
influence on the phytosanitary dissolution performance of the chemical mixer. However,
the velocity vectors are changed from a higher value to lower value with the increase of
the suction chamber height, which is gradually attenuated, and finally changed into a
completely downward velocity vector. It is obvious that the pesticide mother liquor can be
smoothly sucked, since upward water flow has a smaller suction influence on the pesticide
mother liquor.

3.2. Orthogonal Experiment Results and Analysis
3.2.1. Orthogonal Experiment Data

The CFD model of all experiment numbers in orthogonal experiment Table 2 undergoes
numerical simulation calculation, and the performance evaluation indexes experiment data
of the pesticide mixing apparatus under different experiment numbers is shown as Table 3.
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Table 3. Orthogonal experiment data table.

Experiment
Number

Evaluation Indexes

Lifting Height
H1/mm

Turbulent Kinetic
Energy

k/m2·s−2

Pressure Recovery
Distance
H2/mm

1 0.07 302.45 24.97
2 0.06 279.09 24.81
3 1.88 239.12 17.62
4 0.05 292.47 24.68
5 0.24 266.51 20.57
6 0.20 239.33 20.58
7 4.84 287.50 15.02
8 0.05 316.23 25.72
9 0.05 315.28 25.63
10 3.58 281.30 15.21
11 5.27 285.64 14.83
12 3.05 266.88 16.16
13 0.10 299.32 24.70
14 2.41 265.10 16.30
15 0.17 228.03 22.20
16 0.13 270.18 21.96
17 0.17 290.23 21.94
18 0.44 272.16 19.61
19 0.08 249.28 24.43
20 0.38 242.90 19.56
21 0.26 232.11 20.84
22 3.36 265.35 15.98
23 0.05 330.57 25.81
24 0.42 244.15 19.87
25 0.93 233.11 17.71
26 2.20 240.78 17.47
27 0.08 267.00 24.31

3.2.2. Analysis on Orthogonal Experiment Variance

The orthogonal experiment in the paper contains three evaluation indexes, which
belong to the multi-index orthogonal experiment. Each evaluation index undergoes single-
index variance analysis, respectively, in order to discover the main influence factors and
comprehensive optimal pesticide mixing apparatus structure parameters; the optimal level
of each evaluation index is determined. Next, analysis results of all evaluation indexes
are comprehensively considered and analyzed according to the experiment purpose; the
comprehensive optimal level is finally determined, and comprehensive optimal pesticide
mixing apparatus structure parameters are discovered. Results data of all variance analysis
and all factor level data mean values calculated by SPSS data statistical analysis software
are shown in Tables 4–10.

Table 4. Lifting height variance analysis.

Variance Source Quadratic Sum DOF Mean Square Error F p Value

A 0.891 2 0.446 2.549 0.158
B 5.115 2 2.557 14.628 0.005
C 50.335 2 25.168 143.952 0.000
D 0.843 2 0.421 2.410 0.171

A*B 0.060 4 0.015 0.085 0.984
B*C 7.611 4 1.903 10.883 0.006
B*D 0.048 4 0.012 0.068 0.989
error 1.049 6 0.175
Total 65.951 26
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Table 5. All principal factor level data mean values of lifting height.

Level

Factor
H1/mm

A B C D

1 0.884 0.626 3.058 0.888
2 1.189 1.078 0.268 1.200
3 1.318 1.688 0.066 1.303

A = constricted tube falloff angle α; B = diffusion tube divergence angle β; C = Venturi diameter d; D = Venturi
length L.

Table 6. Variance analysis of turbulent kinetic energy.

Variance Source Quadratic Sum DOF Mean Square Error F p Value

A 1875.760 2 937.880 8.731 0.017
B 167.241 2 83.620 0.778 0.501
C 8244.767 2 4122.383 38.376 0.000
D 1913.082 2 956.541 8.905 0.016

A*B 107.812 4 26.953 0.251 0.899
B*C 7260.973 4 1815.243 16.898 0.002
B*D 443.888 4 110.972 1.033 0.462
error 644.527 6 107.421
Total 20,658.050 26

Table 7. Data mean values matched with interaction factor B*C of turbulent kinetic energy, respectively.

Factor C Level

Factor B Level
k/m2·s−2

1 2 3

1 237.670 265.777 284.813
2 262.813 245.983 253.070
3 320.693 291.337 271.867

Table 8. All principal factor level data mean values of turbulent kinetic energy.

Level

Factor
k/ m2·s−2

A B C D

1 258.711 273.726 262.753 282.306
2 275.361 267.699 253.956 263.616
3 277.269 269.917 294.632 265.420

A = constricted tube falloff angle α; B = diffusion tube divergence angle β; C = Venturi diameter d; D = Venturi
length L.

Table 9. Analysis of pressure recovery distance variance.

Variance Source Quadratic Sum DOF Mean Square Error F p Value

A 0.246 2 0.123 16.311 0.004
B 19.325 2 9.663 1282.019 0.000
C 344.774 2 172.387 22,872.018 0.000
D 0.126 2 0.063 8.380 0.018

A*B 0.004 4 0.001 0.122 0.969
B*C 1.558 4 0.389 51.676 0.000
B*D 0.014 4 0.004 0.474 0.755
error 0.045 6 0.008
Total 366.093 26
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Table 10. All principal factor level data mean values of pressure recovery distance.

Level
Levels

Factor
H2/mm

A B C D

1 20.788 21.784 16.256 20.758
2 20.709 20.543 20.792 20.703
3 20.558 19.727 25.007 20.593

A = constricted tube falloff angle α; B = diffusion tube divergence angle β; C = Venturi diameter d; D = Venturi
length L.

Variance analysis F test in Table 4 shows that p value of factor B, factor C, and interac-
tion factor B*C is smaller than 0.05, and p value of factor A, factor D, interaction factor A*B,
and interaction factor B*D is larger than 0.05. Therefore, factor B, factor C, and interaction
factor B*C have significant influence on lifting height evaluation indexes at significance
level α = 0.05, and factor A, factor D, interaction factor A*B, and interaction factor B*D have
insignificant influence difference on lifting height evaluation indexes. The primary and
secondary influence sequences of all factors on lifting height can be discovered, namely
C > B > B*C > A > D > A*B > B*D. Table 5 shows that the optimal level of lifting height
evaluation indexes is A1B1C3D1, namely, the constricted tube falloff angle is 20◦, diffusion
tube divergence angle is 7◦, Venturi diameter is 3 mm, and Venturi length is 6 mm.

The variance analysis F test in Table 6 shows that p value of factor A, factor C, factor D,
and interaction factor B*C is smaller than 0.05, and the p value of factor B, interaction factor
A*B, and interaction factor B*D is larger than 0.05. Therefore, factor A, factor C, factor D,
and interaction factor B*C have significant influence on turbulent kinetic energy evaluation
indexes at the significance level α = 0.05, and factor B, interaction factor A*B, and interaction
factor B*D have insignificant influence difference on turbulent kinetic energy evaluation
indexes. The primary and secondary influence sequences of all factors on turbulent kinetic
energy can be discovered, namely C > B*C > D>A > B*D > B>A*B. Since the diffusion
tube divergence angle β is matched with Venturi diameter d, the interaction thereof has
significantly greater influence on turbulent kinetic energy evaluation indexes than that
on principal factor diffusion tube divergence angle β. Therefore, the optimal level of two
structure parameters of diffusion tube divergence angle β and Venturi diameter d should
be determined by their matched interaction optimal level. Tables 7 and 8 show that the
optimal level of turbulent kinetic energy evaluation indexes is A3B1C3D1, namely, the
constricted tube falloff angle is 22◦, diffusion tube divergence angle is 7◦, Venturi diameter
is 3 mm, and Venturi length is 6 mm.

Variance analysis F test of Table 9 shows that the p value of factor A, factor B, factor C,
factor D, and interaction factor B*C is smaller than 0.05, and the p value of interaction factor
A*B and interaction factor B*D is larger than 0.05. Therefore, factor A, factor B, factor C,
factor D, and interaction factor B*C have significant influence on pressure recovery distance
evaluation indexes at significance level α = 0.05, and interaction factor A*B and interaction
factor B*D have insignificant influence difference on pressure recovery distance evaluation
indexes. The primary and secondary sequences of all factors on pressure recovery distance
is discovered, namely C > B > B*C > A>D > B*D > A*B. Table 10 shows that optimal level
of pressure recovery distance evaluation indexes is A3B3C1D3, namely, constricted tube
falloff angle is 22◦, diffusion tube divergence angle is 9◦, Venturi diameter is 2 mm, and
Venturi length is 10 mm.

3.2.3. Determination of Comprehensive Optimal Level of Chemical Mixer Structure Parameters

When the influence of factor on indexes is analyzed, if single-index is available only
under general conditions, interaction among factors is not considered, the optimal levels of
all factors are combined, and it is regarded as the optimal optimization grouping. However,
three evaluation indexes are considered for orthogonal experiment in the paper, and the
experiment is thus a multi-index orthogonal experiment. The experiment results of the
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three evaluation indexes should be considered, respectively, and the analysis results of all
evaluation indexes also should be considered and analyzed comprehensively according to
experiment objectives, so that the comprehensive optimal level is finally determined. The
orthogonal experiment in the paper aims at improving the pesticide mixing performance
as much as possible, whilst guaranteeing that the pesticide dissolution performance is
acceptable. Therefore, two evaluation indexes of turbulent kinetic energy and pressure
recovery distance should be comprehensively considered first; it should be ensured that
lifting height evaluation indexes are not too high, and that they are acceptable. The
following are set: lifting height evaluation indexes account for 20%, turbulent kinetic
energy evaluation indexes account for 40%, and pressure recovery distance evaluation
indexes account for 40%. Finally, the determined comprehensive optimal level is A3B3C1D1,
and through comprehensive consideration and analysis according to weight, the constricted
tube falloff angle is 22◦, diffusion tube divergence angle is 9◦, Venturi diameter is 2 mm,
and Venturi length is 6 mm.

3.2.4. Verification of Chemical Mixer Structure Parameter Comprehensive Optimal Level

Finally, the determined comprehensive optimal level combination is arranged in the
orthogonal experiment of the paper; the combination should undergo a verification ex-
periment, thereby proving that it is the comprehensive optimal level of the orthogonal
experiment in the paper. The pesticide mixing apparatus internal flow channel simulation
value model of combination structure parameters undergoes numerical simulation calcula-
tion analysis, and it is concluded that the lifting height is 3.79 mm, turbulent kinetic energy
is 299.42 m2·s−2, and pressure recovery distance is 14.93 mm; the experiment number is
recorded as experiment 28. In order to prove that the determined comprehensive opti-
mal level combination adheres to the comprehensive optimal pesticide mixing apparatus
structure parameters, it is necessary to comprehensively score and calculate 27 groups of
experiment results and the experiment results of experiment No. 28 in Table 3, according to
the determined weight. When the comprehensive score of experiment No. 28 is the highest,
it is obvious that the determined comprehensive optimal level combination adheres to the
comprehensive optimal pesticide mixing apparatus structure parameters.

Since all evaluation indexes have great magnitude order difference, it is necessary to
first normalize primary data of all evaluation indexes; the result values can be mapped
in the interval [0, 1]. Min-max dispersed standardized method is adopted in the paper
for normalizing primary data of all evaluation indexes, and the computational formula is
shown in Formulas (3)–(5).

x∗ = x − minx

maxx − minx
(3)

In the formula: x* is the value of lifting height evaluation index primary data after
normalization, x is the lifting height evaluation index primary data in mm, minx is the
minimum value of lifting height evaluation indexes data in mm, maxx is the maximum
value of lifting height evaluation indexes data in mm.

y∗ =
y − miny

maxy − miny
(4)

In the formula: y* is the value of turbulent kinetic energy evaluation index primary
data after normalization, y is the turbulent kinetic energy evaluation index primary data in
m2·s−2, miny is the minimum value of turbulent kinetic energy evaluation indexes data in
m2·s−2, maxy is the maximum value of turbulent kinetic energy evaluation indexes data in
m2·s−2.

z∗ = z − minz

maxz − minz
(5)

In the formula: z* is the value of pressure recovery distance evaluation index primary
data after normalization, z is the pressure recovery distance evaluation index primary data
in mm, minz is the minimum value of pressure recovery distance evaluation indexes data
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in mm, maxz is the maximum value of pressure recovery distance evaluation indexes data
in mm.

Since the results of two evaluation indexes of lifting height and pressure recovery
distance are smaller and better, results of turbulent kinetic energy evaluation indexes are
higher and better. In order to facilitate subsequent correct and comprehensive scoring calcu-
lation and comparison, number 1 is respectively subtracted by the value of two evaluation
indexes of lifting height or pressure recovery distance after primary data normalization,
and these values are respectively regarded as the two evaluation index final normalization
results; the computational formula is shown in Formulas (6) and (7). Formula (4) is still
adopted for turbulent kinetic energy evaluation index final normalization results.

x′ = 1 − x∗ (6)

In the formula: x′ is the lifting height evaluation index final normalization results, x* is
the normalization result of lifting height evaluation indexes calculated through Formula (3).

z′ = 1 − z∗ (7)

In the formula: z′ is the pressure recovery distance evaluation index final normalization
results, z* is the normalization result of pressure recovery distance evaluation indexes
calculated through Formula (5).

The comprehensive score concrete computational formula can be obtained as shown
in Formula (8) according to the above-mentioned proportion of all evaluation indexes:

cs = 0.2x′ + 0.4y∗ + 0.4z′ (8)

In the formula: cs is the comprehensive score value of the calculation, x′ is the final
normalization result of the lifting height evaluation index, y* is the final normalization
result of the turbulent kinetic energy evaluation index, z′ is the index final normalization
result of the pressure recovery distance evaluation.

In Formulas (3)–(8): primary data of all evaluation indexes are normalized, and the
comprehensive score is finally calculated. The obtained evaluation index final normal-
ization results and comprehensive score results of the pesticide mixing apparatus under
different experiment numbers are shown in Table 11, and the combination with the highest
comprehensive score is the comprehensive optimal combination.

Table 11 shows that the comprehensive score of experiment No. 28 is prominently
higher than the comprehensive scores of the remaining 27 groups of experiment combi-
nations in Table 2. Therefore, it can be determined that it belongs to the comprehensive
optimal level of orthogonal experiment in the paper.

According to the research, the best value of the contraction angle of the classical venturi
structure is in the range of 20◦~22◦ [41,42], and the optimal parameter of the contraction
angle determined in the paper is 22◦. With the increase of the contraction angle, the effective
length of the contraction tube gets shorter, which can improve the mixing uniformity. The
best value of the diffusion angle is in the range of 7◦~14◦ [41], and the diffusion angle of 9◦
in the paper can achieve the uniformity of the pesticide mixing. Combined with related
studies [43,44], it is found that the optimal structural parameters determined in the thesis
are in line with objective laws, and the number of tests can be significantly reduced through
orthogonal tests.
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Table 11. Normalization results and comprehensive score results.

Experiment
Number

Evaluation Indexes

Comprehensive
ScoreLifting Height

H1/mm

Turbulent Kinetic
Energy

k/m2·s−2

Pressure Recovery
Distance
H2/mm

1 0.996 0.726 0.077 0.520
2 0.998 0.498 0.091 0.435
3 0.649 0.108 0.746 0.472
4 1.000 0.628 0.103 0.493
5 0.964 0.375 0.477 0.534
6 0.971 0.110 0.476 0.429
7 0.082 0.580 0.983 0.642
8 1.000 0.860 0.008 0.547
9 1.000 0.851 0.016 0.547
10 0.324 0.520 0.965 0.659
11 0.000 0.562 1.000 0.625
12 0.425 0.379 0.879 0.588
13 0.990 0.695 0.101 0.517
14 0.548 0.362 0.866 0.601
15 0.977 0.000 0.329 0.327
16 0.985 0.411 0.351 0.502
17 0.977 0.607 0.352 0.579
18 0.925 0.430 0.565 0.583
19 0.994 0.207 0.126 0.332
20 0.937 0.145 0.569 0.473
21 0.960 0.040 0.453 0.389
22 0.366 0.364 0.895 0.577
23 1.000 1.000 0.000 0.600
24 0.929 0.157 0.541 0.465
25 0.831 0.050 0.738 0.481
26 0.588 0.124 0.760 0.471
27 0.994 0.380 0.137 0.406
28 0.284 0.696 0.991 0.732

4. Conclusions

An analysis method based on CFD orthogonal experiment is adopted in the paper,
thereby optimizing pesticide mixing apparatus structure parameters, effectively saving exper-
iment costs, and reducing the need for experiment frequency. The following conclusions are
made through numerical simulation calculation and orthogonal experiment variance analysis:

1. Single-index variance analysis results show that diffusion tube divergence angle β
and Venturi diameter d are the two structure parameters with the most important
influence among the three experiment evaluation indexes, and the constricted tube
falloff angle α and Venturi length L are two structure parameters with secondary
influence. When it is only considered that turbulent kinetic energy is the evaluation
index, interaction influence of diffusion tube divergence angle β and Venturi diameter
d plays the decisive role, and the influence of interactions under other circumstances
are from respective principal factors.

2. Four structure parameters of pesticide mixing apparatus have different optimal values
under different evaluation indexes. Optimal pesticide mixing apparatus structure
parameters include the following when aiming at lifting height evaluation indexes:
constricted tube falloff angle is 20◦, diffusion tube divergence angle is 7◦, Venturi
diameter is 3 mm, and Venturi length is 6 mm; optimal pesticide mixing apparatus
structure parameters include the following when aiming at turbulent kinetic energy
evaluation indexes: constricted tube falloff angle is 22◦, diffusion tube divergence
angle is 7◦, Venturi diameter is 3 mm, Venturi length is 6 mm; optimal pesticide
mixing apparatus structure parameters include the following when aiming at pressure
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recovery distance evaluation indexes: constricted tube falloff angle is 22◦, diffusion
tube divergence angle is 9◦, Venturi diameter is 2 mm, and Venturi length is 10 mm.

3. Analysis results of all evaluation indexes are comprehensively considered to finally
conclude the following comprehensive optimal pesticide mixing apparatus structure
parameters: constricted tube falloff angle is 22◦, diffusion tube divergence angle is 9◦,
Venturi diameter is 2 mm, and Venturi length is 6 mm.

Author Contributions: Conceptualization, D.S., Z.L. and S.S.; methodology, D.S. and W.L.; software,
X.Z.; validation, D.S., W.L. and Z.L; formal analysis, W.L. and Z.L.; investigation, D.S. and W.L.;
resources, D.S., Q.D., X.X. and S.S.; data curation, W.L. and Z.L.; writing—original draft preparation,
D.S., W.L. and Z.L.; writing—review and editing, D.S., W.L. and X.Z.; visualization, D.S.; supervision,
D.S., Q.D., X.X. and S.S.; project administration, S.S.; funding acquisition, S.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant
No. 31671591. It was also partly supported by the Guangdong Provincial Special Fund For Modern
Agriculture Industry Technology Innovation Teams, grant No. 2019KJ108, Special Fund for 2018 Rural
Revitalization Strategy of Agricultural Department of Guangdong Provincial (Yue Cai Nong [2018]
No.125), Guangdong Provincial Science and Technology Plan Project, grant No.2017A020208049,
China Agriculture Research System (No.CARS-27), and Guangzhou Science and Technology Plan
Project, grant No.202002030245.

Data Availability Statement: The data can be requested from the corresponding authors.

Acknowledgments: We appreciate all the authors for their technical assistance in this study. We are
thankful to the teachers of South China Agricultural University for the supply of the server.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xu, Y.; Wang, X.; Zheng, J.; Zhou, F. Simulation and experiment on agricultural chemical mixing process for direct injection
system based on CFD. Trans. Chin. Soc. Agric. Eng. 2010, 26, 148–152.

2. Li, J.; Jia, W.; Wei, X. On-line mixing pesticide device based on flow control valve and neural network. Trans. Chin. Soc. Agric. Mach.
2014, 45, 98–103.

3. Slaughter, D.; Giles, D.; Tauzer, C. Precision offset spray system for roadway shoulder weed control. J. Transp. Eng. 1999,
125, 364–371. [CrossRef]

4. Gillis, K.; Giles, D.; Slaughter, D.; Downey, D. Injection mixing system for boomless, target–activated herbicide spraying.
Trans. ASAE 2003, 46, 997–1008. [CrossRef]

5. Liu, Z.; Xu, H.; Hong, T.; Zhang, W.; Zhu, Y.; Zhang, K. Key technology of variable-rate spraying system of online mixing
pesticide. Trans. Chin. Soc. Agric. Mach. 2009, 40, 93–129.

6. He, P.; Wu, C.; Chen, C.; Li, X.; Wang, G. Experimental Investigation on Safe Mixing Apparatus. China Saf. Sci. J. 2001, 4, 38–42.
7. He, P.; Wu, C.; Chen, C.; Wang, G.; Li, X. Performance of a New Type Spraying mixing Apparatus. Trans. Chin. Soc. Agric. Mach.

2001, 3, 44–47.
8. Peijie, H.; Cuiying, C.; Chundu, W.; Xuehui, L. Numerical computation of mixing pipe flow-field in jet mixing apparatus pesticide

mixture. J. Jiangsu Univ. Nat. Sci. Ed. 2002, 23, 13–16.
9. Li, Y.; Wu, C.; Fu, X. Experimental study on two-stage jet mixing apparatus. Trans. Chin. Soc. Agric. Eng. 2008, 1, 172–174.
10. Qiu, B.; Xu, X.; Deng, B.; Yang, N.; Jiang, G.; Wu, C. Effect of area ratio on mixing homogeneity in jet-mixing apparatus.

Trans. Chin. Soc. Agric. Mach. 2011, 42, 95–100.
11. Qiu, B.; Xu, X.; Yang, N.; Deng, B.; Jiang, G.; Wu, C. Simulation analysis of structure parameters of jet-mixing apparatus on

jet-mixing performance. Trans. Chin. Soc. Agric. Mach. 2011, 42, 70–69.
12. Chen, Z.; Zhu, S.; Qiu, B. Online jet mixing control system of pesticide concentration. J. Drain. Irrig. Mach. Eng. 2012, 30, 463–468.
13. Zhou, L.; Fu, X.; Xue, X. Design and experiment of jet mixing apparatus based on CFD. Trans. Chin. Soc. Agric. Mach. 2013,

44, 107–112.
14. Ou, M.; Jia, W.; Qiu, B.; Guan, X.; Sheng, Y. Experiment and numerical analysis of flow field in jet mixing device under variable

working conditions. Trans. Chin. Soc. Agric. Mach. 2015, 46, 107–111.
15. Zhang, J.F.; Pang, X.B.; Liu, H.; Zhang, T.J.; Guo, X.; Zeng, F.C. Study on Proportional Control Experimental Platform of Online Jet

Mixing Drug. Hubei Agric. Sci. 2016, 55, 2645–2648.
16. Ghate, S.R.; Phatak, S. A compressed air direct injection pesticide sprayer. Appl. Eng. Agric. 1991, 7, 158–162. [CrossRef]
17. Lin, M.; Zhao, G. Analysis for the security technology of chemical application in the plant protection mechinery from aborad.

Trans. Chin. Soc. Agric. Mach. 1996, S1, 153–158.

216



Agronomy 2022, 12, 1059

18. Koo, Y.M.; Sumner, H. Total flow control for a direct injection sprayer. Appl. Eng. Agric. 1998, 14, 363–367. [CrossRef]
19. Steward, B.L.; Humburg, D. Modeling the raven scs-700 chemical injection system with carrier control with sprayer simulation.

Trans. ASAE 2000, 43, 231–245. [CrossRef]
20. Aissaoui, A.E.; Lebeau, F.; Destain, M.F. Development of an optical sensor to measure direct injection spraying system performance.

VDI-Ber. 2007, 2001, 243–252.
21. Luck, J.D.; Shearer, S.A.; Luck, B.D.; Payne, F.A. Evaluation of a rhodamine-WT dye/glycerin mixture as a tracer for testing direct

injection systems for agricultural sprayers. Appl. Eng. Agric. 2012, 28, 643–646. [CrossRef]
22. Felizardo, K.R.; Mercaldi, H.V.; Oliveira, V.A.; Cruvinel, P.E. Modeling and Predictive Control of a Variable-Rate Spraying System.

In Proceedings of the 2013 8th EUROSIM Congress on Modelling and Simulation, Cardiff, UK, 10–13 September 2013; pp. 202–207.
23. Endalew, A.M.; Debaer, C.; Rutten, N.; Vercammen, J.; Delele, M.A.; Ramon, H.; Nicolaï, B.; Verboven, P. A new integrated CFD

modelling approach towards air-assisted orchard spraying. Part I. Model development and effect of wind speed and direction on
sprayer airflow. Comput. Electron. Agric. 2010, 71, 128–136. [CrossRef]

24. Wu, B. CFD simulation of gas mixing in anaerobic digesters. Comput. Electron. Agric. 2014, 109, 278–286. [CrossRef]
25. Salcedo, R.; Granell, R.; Palau, G.; Vallet, A.; Garcerá, C.; Chueca, P.; Moltó, E. Design and validation of a 2D CFD model of

the airflow produced by an airblast sprayer during pesticide treatments of citrus. Comput. Electron. Agric. 2015, 116, 150–161.
[CrossRef]

26. Zhou, L.; Zhou, L.; Xue, X.; Kong, W. Numerical analysis and test on cavitation of jet mixing apparatus. Trans. Chin. Soc. Agric. Eng.
2015, 31, 60–65.

27. Devarrewaere, W.; Heimbach, U.; Foqué, D.; Nicolai, B.; Nuyttens, D.; Verboven, P. Wind tunnel and CFD study of dust dispersion
from pesticide-treated maize seed. Comput. Electron. Agric. 2016, 128, 27–33. [CrossRef]

28. Wang, H.; Shi, W.; Lu, W.; Zhou, L.; Wang, C. Optimization design of deep well pump based on latin square test. Trans. Chin. Soc.
Agric. Mach. 2010, 41, 56–63.

29. Gao, X.; Shi, W.; Zhang, D.; Zhang, Q.; Fang, B. Optimization design and test of vortex pump based on CFD orthogonal test.
Trans. Chin. Soc. Agric. Mach. 2014, 45, 101–106.

30. Ma, Y. Determination of Jet-type Pesticide Mixture Device. J. Yangling Vocat. Tech. Coll. 2014, 13, 31–33.
31. Sheng, Y.; Qiu, B.; Chen, J. Mixing Characteristic Experiment of Different Area Ratio of Jet-mixing Apparatus. J. Agric. Mech. Res.

2016, 4, 134–140.
32. Zhang, T.; Liang, J.; Xue, X. Numerical Simulation and Experimental Study of Internal Flow Field of the Jet Pesticide Mixer.

Chin. Agric. Mech. 2011, 03, 63–67.
33. Lei, X.; Liao, Y.; Liao, Q. Simulation of seed motion in seed feeding device with DEM-CFD coupling approach for rapeseed and

wheat. Comput. Electron. Agric. 2016, 131, 29–39. [CrossRef]
34. Song, H.; Xu, Y.; Zheng, J.; Zhu, H. Swirling jet mixture mechanism of fat-soluble pesticides and numerical simulation of mixer

field. Trans. Chin. Soc. Agric. Mach. 2016, 47, 79–84.
35. Li, H.; Rong, L.; Zong, C.; Zhang, G. Assessing response surface methodology for modelling air distribution in an experimental

pig room to improve air inlet design based on computational fluid dynamics. Comput. Electron. Agric. 2017, 141, 292–301.
[CrossRef]

36. Dai, Q.; Hong, T.; Song, S.; Li, Z.; Chen, J. Influence of pressure and pore diameter on droplet parameters of hollow cone nozzle in
pipeline spray. Trans. Chin. Soc. Agric. Eng. 2016, 32, 97–103.

37. Lee, I.-B.; Bitog, J.P.P.; Hong, S.-W.; Seo, I.-H.; Kwon, K.-S.; Bartzanas, T.; Kacira, M. The past, present and future of CFD for
agro-environmental applications. Comput. Electron. Agric. 2013, 93, 168–183. [CrossRef]

38. Norton, T.; Grant, J.; Fallon, R.; Sun, D.-W. Improving the representation of thermal boundary conditions of livestock during CFD
modelling of the indoor environment. Comput. Electron. Agric. 2010, 73, 17–36. [CrossRef]

39. Li, H.; Rong, L.; Zhang, G. Study on convective heat transfer from pig models by CFD in a virtual wind tunnel.
Comput. Electron. Agric. 2016, 123, 203–210. [CrossRef]

40. Qiu, B.; Xu, X. Contrast and analysis between 2D and 3D flow field of jet-mixing apparatus. J. Drain. Irrig. Mach. Eng. 2011,
5, 441–445.

41. Lu, H. Theory and Application of Spraying Technology; Wuhan University Press: Wuhan, China, 2004; ISBN 978-7-307-04074-8.
42. Sun, H.; Wang, J. Design Manual for Flow Measurement Throttling Devices, 2nd ed.; Chemical Industry Press: Beijing, China,

2006; Volume 21.
43. Song, H.; Xu, Y.; Zheng, J.; Dai, X. Structural parameters optimization of swirling jet mixer based on reducing effective length.

Trans. Chin. Soc. Agric. Eng. 2018, 34, 62–69.
44. Song, H.; Xu, Y.; Zheng, J.; Wang, X.; Zhang, M. Structural analysis and mixing uniformity experiments of swirling jet mixer for

applying fat-soluble pesticides. Trans. Chin. Soc. Agric. Eng. 2016, 32, 86–92.

217



Citation: Wang, S.; Qi, P.; Zhang, W.;

He, X. Development and Application

of an Intelligent Plant Protection

Monitoring System. Agronomy 2022,

12, 1046. https://doi.org/10.3390/

agronomy12051046

Academic Editor: Roberto Marani

Received: 12 April 2022

Accepted: 26 April 2022

Published: 27 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Development and Application of an Intelligent Plant Protection
Monitoring System

Shubo Wang 1,2,3, Peng Qi 1,2,3, Wei Zhang 4 and Xiongkui He 1,2,3,*

1 Centre for Chemicals Application Technology, China Agricultural University, Beijing 100193, China;
wangshubo@cau.edu.cn (S.W.); qp@cau.edu.cn (P.Q.)

2 College of Agricultural Unmanned System, China Agricultural University, Beijing 100193, China
3 College of Science, China Agricultural University, Beijing 100193, China
4 Anhui Zhongke Intelligent Perception Industrial Technology Research Institute Co., Ltd.,

Wuhu 241000, China; zhangw@zkzngz.com
* Correspondence: xiongkui@cau.edu.cn

Abstract: Facing the need of modern agriculture to accurately grasp the information of farmland
diseases and pests, this paper proposes an intelligent plant protection system. The system is composed
of a wireless lens, temperature and humidity sensor, intelligent information terminal, and probe
rod to realize the collection of plant images and meteorological information. At the same time, a
software based on the mobile terminal and the computer terminal was developed. The plant images
and meteorological data are transmitted to the server through Wi-Fi transmission. Combined with
the expert knowledge model, a solution is generated, and the user can identify the current diseases
and pests and obtain solutions at any time. The system can remotely and automatically monitor and
warn of mainstream diseases and pests of field crops such as rice and wheat and provide support for
fine plant protection management.

Keywords: farmland information; disease and pest identification; temperature and humidity acquisi-
tion; mobile monitoring

1. Introduction

Diseases, pests, and weeds are the great enemies of crop growth. They occur in the
entire growth period of crops, which can cause a large reduction in crop production [1,2].
The application of chemical pesticides can greatly reduce agricultural losses, but the “three
causes” caused by the use of chemical pesticides (referring to the mutagenic, carcinogenic,
and teratogenic effects of pesticides on higher animals), pesticide residues, environmental
pollution, and other negative effects are becoming increasingly prominent. In addition to
experienced experts, for non-professional researchers, especially farmers, identifying crop
diseases through picture comparison or text description often leads to human judgment
errors [3,4]. In this way, it is difficult to accurately and timely apply pesticides, resulting in
a large reduction in crop production. More and more signs also show that the contradiction
between the increasing demand for pest identification and the relatively few plant protec-
tion experts has become increasingly serious [5]. It is of great significance to find new ways
to solve the problem of diseases and pests identification.

With the rapid development of digital image processing, the increasingly wide appli-
cation of computer vision, and the maturity of various pattern recognition technologies,
the purpose of intelligent recognition can be achieved by processing the images of crop
diseases, pests, and weeds and extracting characteristic parameters. Many scholars have
studied the intelligent perception of diseases, pests, and weeds. In terms of methodology,
machine learning models for agricultural monitoring are widely developed and used at
this stage [6,7]. Nagasubramanian et al. [8] developed an analytical statistics model for
plant growth and disease patterns based on a convolutional neural network (CNN) and
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support vector machine (SVM). This framework supported irrigation, nutrition planning,
and environmental compliance. Albanese et al. [9] presented an embedded system en-
hanced with ML functionalities, ensuring the continuous detection of pest infestation inside
fruit orchards. In their work, three different machine learning (ML) algorithms had been
trained and deployed. Mishra et al. [10] proposed a multi-node plant disease-monitoring
strategy, collected plant images through nodes, and used the proposed sine cosine algo-
rithm based on the rider neural network to identify diseases. The large-scale monitoring of
farmland could be realized by using a multi-node method. Liu et al. [11] proposed a novel,
deep learning-based automatic approach using hybrid and local activated features for pest
monitoring. The authors tested their algorithm in seven years of large-scale pest data set
containing 88,600 images (16 types of pests) with 582,100 pests and achieved good results.

In terms of hardware, there are ground-monitoring platforms and air-monitoring
platforms [12–15]. For ground-monitoring platforms, Trilles et al. [16] developed a low-cost
sensorized platform, capable of monitoring meteorological phenomena following the Inter-
net of Things paradigm, with the goal to apply an alert disease model on the cultivation of
the vine. However, the platform could only carry out meteorological monitoring, and it
was difficult to support the implementation of intelligent agriculture due to insufficient
information. Methun et al. [17] proposed an efficient carrot disease identification and clas-
sification method using a deep learning approach, especially VGG16, VGG19, MobileNet,
and Inception v3. The accuracy achieved by Inception v3 was 97.4%. Udutalapally et al. [18]
developed a disease prediction system disease prediction by trained a convolutional neural
network (CNN) model. Considering the power problem of field environment, the solar
sensor node was used for power supply. Khattab et al. [19] collected the environmental
and soil information from a wireless sensor network installed in the planted area. It also
provided an expert system that sent warning messages to the users before the outbreak of
a disease. Mekala et al. [20] proposed a cloud-enabled CLAY-MIST measurement (CMM)
index based on temperature and relative humidity to assess the comfort levels of a crop.

For an air-monitoring platform, He et al. [21] used multiangle remote sensing and
hyperspectral remote sensing to monitor wheat powdery mildew (WPM). Dong et al. [22]
developed an automatic system based on the Web GIS platform. At the same time, the
author used it to predict wheat stripe rust and East Asian migratory locust and achieved
good accuracy. Kim et al. [23] proposed an onion field monitoring system which composed
of a Pan Tilt Zoom (PTZ) camera, a motor system, wireless translator, and image-logging
module. Through pixel-level classification and location, six categories of disease recognition
were realized.

In addition to ground systems and air systems, it is also a trend to integrate them
for collaborative monitoring. Gao et al. [24] realized the joint detection of environmental
information by ground sensors and UAVs. IoT and UAV could monitor the incidence of
crop diseases and pests from the ground micro and air macro perspectives, respectively.
Zhang et al. [25] proposed to use high-resolution remote sensing data to identify infected
trees for controlling pine wilt disease (PWD). By processing the captured spectral, temporal,
and spatial features, this paper effectively distinguished the withered pine from other easily
confused objects.

In view of the above research status, as shown in the Figure 1, this paper has developed
a variety of crop diseases and pests monitoring systems, taking into account meteorological
conditions, plant images, and expert systems. The lower half of Figure 1 shows the
acquisition of images and meteorological data. The wireless lens collects the crop images,
and the Bluetooth temperature and humidity sensor collects the environmental information
in real time. The upper half of Figure 1 shows the data upload and discrimination results.
The obtained images are uploaded to the cloud expert system to realize the classification
of diseases and pests. Additionally, the expert system can release prevention and control
suggestions for users. The main contributions of this work are:

(1) A complete set of monitoring systems is constructed, including the software and
hardware of the system.

219



Agronomy 2022, 12, 1046

(2) The system can collect meteorological data and plant images at the same time and
realize the identification and counting of pests and diseases based on Yolo v3. A
timely solution can be given through the expert system.

The rest of the paper is organized as follows. Section 2 introduces the diseases and
pests identification. In Section 3, the hardware system is developed and applied. In
Section 4, software systems based on terminal and computer are developed. Section 5
describes the detailed acquisition method and representative results. Section 6 concludes
the paper.

Figure 1. Overview of intelligent plant protection monitoring system.

2. Diseases and Pests Identification

2.1. Image Acquisition and Coding of Diseases and Pests in Macro Mode

As shown in Table 1, the names of diseases and pests are set to a number with a length
of five. The combination of the first and second bits indicates the crop type; the third bit
indicates diseases or pests; and the combination of the fourth and fifth bits indicates the
specific kinds of diseases and pests.

Table 1. Coding table of diseases and pests with different crops.

Crop
Pests and
Diseases

Specific Diseases and Pests Coding

11: Wheat

1: Pest

11: Wheat spider 11111

21: Aphid, wheat long tube aphid or
wheat binary aphid (green) 11121

22: Aphid, rhopalosiphus (black) 11122

23: Aphids (red) 11123

31: Slime worm 11131

2: Disease

11: Normal wheat ears 11211

12: Scab 11212

21: Powdery mildew 11221

31: Wheat leaf rust 11231

41: Wheat stripe rust 11241
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Table 1. Cont.

12: Rice

1: Pest

11: Rice planthopper 12111

21: Normal rice leaves 12121

22: Rice-leaf roller 12122

31: Striped rice borer 12131

2: Disease

11: Sheath blight 12211

21: Flax spot 12221

31: Rice-false smut 12231

41: Rice blast (leaf) 12241

42: Rice blast (panicle) 12242

51: Bacterial streak 12251

13: Rape

1: Pest 11: Aphid 13111

2: Disease

11: Sclerotinia (rhizome) 13211

12: Sclerotinia (leaf) 13212

21: Downy mildew 13221

2.2. Identification Based on Neural Network

This paper presents an integrated framework of diseases and pests identification based
on YOLO V3 [26]. The YOLO algorithm has been optimized and iterated, and it is better
than Single Shot MultiBox Detector (SSD), Faster RCNN, and other algorithms in detection
performance. In terms of network structure, YOLO V3 integrates YOLO V2, Darknet-19,
and other new residual networks, composed of continuous 3 × 3 and 1 × 1 convolutional
layers. The YOLO V3 network preprocesses the remote sensing image, scales it to 416 × 416,
and sends it to the convolutional neural network for inference. Then, the non-maximum
suppression (NMS) and classification recognition of the detection results are carried out
according to the confidence of the network model. The YOLO V3 network divides the input
image into S × S grids. If there is a target object in the center of a grid, this grid is responsible
for predicting the object. Each grid predicts the four offset coordinates of the bounding box
of the detected object and the confidence score. The YOLO V3 network makes predictions
on three different scales, namely 13 × 13, 26 × 26, and 52 × 52. Three bounding boxes are
predicted for each scale, and the network structure is shown in the Figure 2.

 

Figure 2. Structure diagram of Yolo V3. DBL: Darknetconv2d_BN_Leaky, BN: Batch Normalization,
conv: convolution.
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First, the input image is divided into 13 × 13 cells. Then, each cell will generate
detection boxes, which are each composed of a five-dimensional prediction parameter,
including the center point coordinate (x, y), width and height (w, h), and confidence score
si. The confidence score is calculated as

si = P(Ci

∣∣∣Oobject)× P(Oobject)× IOU(kT , kp) (1)

where P(Ci

∣∣∣Oobject) represents the conditional probability of predicting class i in the cell
when there are diseases and pests in the detection frame; and P(Oobject) indicates the
possibility of diseases and pests in the detection box of the current cell. If there are diseases
and pests, the value is 1; otherwise, the value is 0. IOU(kT , kp) is the intersection and union
ratio of prediction detection frame and real annotation frame.

Then, the NMS algorithm is used to retain the target detection box with a high confi-
dence score. The NMS algorithm formula is

si =

{
si IOU(M, bi) < Ni
0 IOU(M, bi) ≥ NI

(2)

where M is the detection box with the highest confidence score in the current area;
IOU(M, bi) is the intersection and union ratio of M and the adjacent overlapping frame bi;
NI is the set overlap threshold.

In this paper, the loss function CIOU is used to calculate the regression loss value of
the prediction frame, and the formula is as follows:

LossCIOU = 1 − IOU +
ρ2(a, agt)

b2 + αv (3)

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
) (4)

α =
v

1 − IOU + v
(5)

where α, agt, w, wgt, h, hgt are the center position coordinates, width, and height of the
prediction box and the dimension box, respectively; ρ represents the Euclidean distance
between the centers of the two frames; b represents the diagonal length of the smallest
rectangle containing the prediction box and dimension box; αv represents the penalty item
including the width and height of the prediction box and the dimension box; α is the weight
parameter; and v represents the calculation item including the width and height of the
prediction box and dimension box.

After using the loss function α, agt, w, wgt, h.hgt, the optimization direction can still be
given when the overlapping area of the prediction box and the annotation box is equal,
disjoint, or included. This makes the prediction box close to the center of the annotation
box and speeds up the convergence speed of network training.

Farmers would use mobile phones and other terminal devices to take pictures or
videos and send them to the server through the Wi-Fi. After obtaining the pictures, the
server uses the identification network proposed in this section combined with the expert
database system to return the diseases and pests information and solutions to farmers.

2.3. Data Reporting and Location Information Acquisition

In this section, Geographic Information System (GIS) technology is further used to
establish a geographic information system database to display the occurrence degree,
transmission, and geographical distribution of crop diseases, pests, and weeds in the
form of a map. Through the collected meteorological, crop varieties, pest information,
control measures, and other information, combined with the mathematical model in the
later stage, the temporal and spatial dynamics and law of pest and grass occurrence are
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analyzed. Finally, the occurrence trend of diseases and pests are predicted by evaluating
the environmental and influencing factors.

3. Hardware System Development and Application

As shown in Table 2, the product type is selected according to the characteristics of
crop objects. The macro mode is suitable for photographing diseases and pests with a very
small size; The handheld probe mode is suitable for shooting close to the photographer; The
support frame mode is suitable for shooting in a far and high range from the photographer.

Table 2. Hardware development and composition under different modes.

Pattern

Form Wireless
Lens

Probe Rod Kit
Intelligent

Information Terminal

Temperature and
Humidity Sensor

Support
Frame

Macro
Lens

Macro mode
√ √ √ √

Handheld probe mode
√ √ √ √

Support frame mode
√ √ √ √ √

Note: The probe rod kit consists of a hand-held probe rod, a vientiane folding rod, a lens connecting seat, a
temperature and humidity sensor fixing seat, and an intelligent information terminal-fixing frame.

3.1. Perception Module Construction

As shown in Figure 3, the hardware system mainly includes temperature and humidity
Bluetooth sensor, intelligent information terminal, wireless lens, and other firmware.

Figure 3. Hardware system module.

The temperature and humidity sensor measures the temperature and humidity infor-
mation, connects with the intelligent information terminal through Bluetooth, and transmits
information to the terminal to realize the real-time environmental information recording of
farmland. The system adopts a waterproof and dustproof grade not lower than IP65 and
has good drop resistance. The temperature measurement range is −20 ◦C to 50 ◦C, and the
humidity is 0–100%. The detection accuracy of the temperature and humidity sensors are:
humidity ±0.5% and temperature ±0.5 ◦C.
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The intelligent information terminal includes a microprocessor, data memory, satellite
positioning module, Wi-Fi communication module, Bluetooth communication module,
power module, and display module. The Android version is not less than 6.0, and the rear
camera is not less than 10 million pixels. It supports 4G wireless communication network
communication, and the storage memory is 16G. The required image of plant diseases and
pests can be clearly collected through the camera and supporting wireless camera carried
by the intelligent information terminal and can be transmitted to the network service
background together with GPS information through a communication protocol for further
processing. The image shooting supports real-time shooting and real-time viewing.

The wireless lens realizes the front-end HD image acquisition and transmits it to the
intelligent information terminal for data processing through Wi Fi, which can adapt to the
harsh working environment of high temperature and humidity. The camera is 10 million
pixels, supports single autofocus, and can clearly shoot single diseases and pests with a
size of 1 mm–10 cm.

The telescopic probe rod can be extended to a maximum length of 2.5 m to ensure that
it can collect pest images and climate information within 2.5 m away from the operator. At
the same time, the long probe rod can ensure that the collection range of pests cannot be
disturbed by human beings, and the collection point can represent the characteristics of
typical farmland.

3.2. Positioning and Communication Module

The system positioning information includes the time, longitude, latitude, and other
positioning status information corresponding to the collected image. The hardware devel-
oped in this paper can store the positioning information in the terminal and upload it to
the monitoring center through wireless communication.

System communication modes include communication between camera, sensor, and
intelligent terminal and communication between intelligent terminal and back-end service
platform. The camera and the intelligent information terminal can be connected together
to transmit the collected images; the environmental sensor can be connected with the
intelligent information terminal to transmit the collected environmental data; and the
intelligent information terminal and the back-end service platform transmit data using
a wireless network. The camera communicates with the intelligent information terminal
through a Wi-Fi network; the environmental sensor communicates with the intelligent
information terminal through a Bluetooth network; and the intelligent information terminal
communicates with the network service platform through 3G and 4G networks. The
terminal sends pictures, environmental data, and other relevant data to the network service
platform for analysis and processing through TCP/IP protocol.

4. Software System Development

According to the different needs of users, the software system developments of two
platforms are carried out in this work. The software can be obtained through the website
(www.zkzngz.com, accessed on 20 April 2022). At this stage, it is only available in Chi-
nese. The team is developing versions in English and other languages to provide users in
different regions.

4.1. Development of Mobile Terminal Software System

The terminal adopts a Wi-Fi connection with a wireless lens and sensor, and the system
interface form is shown in Figure 4a. By clicking the environmental sensor and camera that
need to be linked, the link between the mobile phone and device can be realized so as to
establish wireless transmission. In the system design, the intelligent identification of plant
diseases and pests is mainly divided into four steps: wireless shooting, image uploading,
intelligent identification, and system storage. In the process of wireless shooting, the plant
phenotype can be obtained at a macro distance through the connected wireless lens and
the operation of retracting and stretching the lens, as shown in Figure 4b. After shooting,
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the obtained plant image is recognized by jumping the network link. In the recognition
process, one or more pictures can be recognized continuously, and crop type and growth
period need to be selected at the same time. The software system can also record the history
of identification. At the same time, the recognition result of the collected image will be sent
back to the user, and the solution of this kind of pest will be given.

  
(a) (b) 

Figure 4. Mobile terminal interface. (a) The main interface displays geographical location and
meteorological data. (b) Image upload and selection of crops and growth period.

4.2. Development of Computer Terminal Software System

In order to record and analyze various diseases and pests in the field, it is necessary to
set up multiple mobile monitoring systems in different regions and record and count the
disease and pest information and environmental data obtained by the mobile monitoring
system. The project has further developed the computer software system, which can
accept and record the data of multiple mobile monitoring systems and display the regional
location, intensity, and trend of diseases and pests.

5. Experiment and Discussion

5.1. Image Collection of Diseases and Pests

When using the mobile intelligent device for image acquisition, the user should see a
relatively clear picture on the screen (i.e., the lens focusing is completed) and then click the
shooting button to avoid dithering and fuzzy image data.

In the test experiments in this section, there were six kinds of common diseases and
pests: rice planthopper, rice-leaf roller, wheat spider, wheat aphid, wheat scab, and sheath
blight. For the area where each pest of rice or wheat gathers on the plant, the area where
the disease occurs on the plant, and the significant characteristic area of different seedling
conditions, the camera shall aim at the characteristic area for multi-angle shooting (such as
side, top, middle, local, etc.), and the specific shooting standards are shown in Table 3.
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Table 3. Collection mode under different crops with diseases and pests.

Type Name Viewfinder Range Angle and Distance

Pest

Rice planthopper

The side is facing the aggregation area of rice
planthopper above the rice root.

The lens vertically penetrates into the cluster
and overlooks the aggregation area of rice

planthopper above the root.

Angle: 0~30◦.
Distance: 5~10 cm, 10~15 cm,
mainly in a clear state with a

distance of 5~10 cm.

Rice-leaf roller
The viewfinder shall mainly focus on the
side images of rice leaves, which can be

distinguished by the naked eye.

Angle: 30~60◦.
Distance: 10~20 cm, 20~30 cm,
mainly in a clear state with a

distance of 20~30 cm.

Wheat spider
The lens is close to the ground in the winter

and perpendicular to the ground in the
spring.

Angle: 0~90◦.
Distance: 5~10 cm, 10~15 cm,
mainly in a clear state with a

distance of 5~10 cm.

Wheat aphid

The whole wheat plant shall be
photographed before jointing, and the

middle and upper parts of the wheat plant
shall be photographed after booting.

Angle: 0~30◦.
Distance: 5~10 cm, 10~15 cm,
mainly in a clear state with a

distance of 5~10 cm.

Others

Other pests, such as striped borer, leaf cicada,
rice borer sandfly, and armyworm, can be

photographed according to the actual
situation of the investigation.

According to the survey
characteristics, refer to the

above form.

Disease
Sheath blight The middle and lower part of rice is

photographed (one side is used).

Angle: 0~30◦.
Distance: 10~20 cm, 20~30 cm,
mainly in a clear state with a

distance of 10~20 cm.

Leaf rust
The viewfinder shall mainly focus on the

side image of wheat ear (which can be
distinguished by naked eyes).

Angle: 30~60◦.
Distance: 10~20 cm, 20~30 cm,
mainly in a clear state with a

distance of 20~30 cm.

Others

Other diseases, such as bacterial stripe
disease, rice false smut, and ear neck blast,

can be photographed according to the actual
situation of the investigation and with

reference to the above types.

According to the survey
characteristics, refer to the

above form.

Seedling growth

According to the significant characteristic
areas of different growth periods, the

viewfinder should mainly focus on the side
image of crop seedling.

Angle: 30~60◦.
Distance: 10~20 cm, 20~30 cm,
mainly in a clear state with a

distance of 20~30 cm.

5.2. Analysis of Acquisition Results

The six most common diseases and pests (rice planthopper, rice-leaf roller, rice sheath
bright, wheat spider, wheat aphid, and wheat leaf rust) were selected for statistical analysis
by different methods. The sample size of each kind of diseases and pests was 200, and
the rice images were collected in Liyang, Jiangsu, China (119.67◦ E, 31.49◦ N); Huaiyuan,
Anhui, China (117.04◦ E, 32.97◦ N); and Changsha, Hunan, China (113.33◦ E, 28.05◦ N).
The wheat images were collected in Xuchang, Henan, China (113.77◦ E, 34.05◦ N); Baoding,
HeBei, China (115.28◦ E, 38.89◦ N); and Linyi, Shandong, China (118.259◦ E, 35.19◦ N). The
collection method is shown in Table 3. In the experiment, the average precision (AP) was
used to evaluate the effects of different methods. The results are shown in Table 4. The AP
is defined as

AP =
∫ 1

0
P(R)dR (6)
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R =
TP

TP + FN
(7)

P =
TP

TP + FP
(8)

where AP is the average detection accuracy, R is the recall rate, P is the accuracy, TP
represents the positive samples predicted as positive, FN represents the positive samples
predicted as negative, and FP represents the negative samples predicted as positive.

Table 4. Average precision (AP) of different methods on different diseases and pests.

Rice Planthopper Rice-Leaf Roller Rice Sheath Blight Wheat Spider Wheat Aphid Wheat Leaf Rust

Ours (Yolo V3) 83.32% 85.34% 82.03% 86.32% 85.53% 87.01%

Yolo V2 [27] 78.13% 80.78% 78.89% 81.32% 80.56% 83.65%

Faster RCNN
[28] 75.52% 77.45% 76.76% 75.89% 73.20% 79.32%

SSD [29] 72.32% 75.32% 77.27% 74.12% 71.32% 74.78%

As shown in Table 4, the Yolo V3 method used in this paper had a higher accuracy
than other detection methods for different diseases and pests. Yolo V3 had an average
improvement of 10% compared with SSD in the detection of all diseases and pests; Yolo V3
had an average improvement of 5% compared with Yolo V2. The experimental statistical
results show that Yolo V3 had a better perception and learning ability for diseases and pests
images. The statistical methods and identification effects for different diseases and pests
are as follows.

5.2.1. Rice Planthopper

The monitoring of rice planthopper should be conducted once every five days after
the transplanting field returns to green. The direct seeding field starts from 30 days after
rice sowing until the end of rice yellow maturity. During the experiment, two rows were
chosen on each side of each field for a total of eight rows, one meter per row, and a total of
eight meters. The front end of the camera of the mobile acquisition terminal went deep into
the rice bush. The lenses were 5 cm–10 cm away from the rice base and aimed at the middle
and lower part of the rice. One picture was taken at an interval of 20 cm, five pictures were
taken in each line, and forty pictures were taken in each field. The number of shots per line
can also be adjusted according to the actual situation. In principle, there is no remake or
missed shot, or one shot per cluster. As shown in Figure 5, the server intelligently identifies
the rice planthopper and counts it automatically.

    
(a1) (b1) (c1) (d1) 

    
(a2) (b2) (c2) (d2) 

Figure 5. Rice planthopper. (a1), (b1), (c1), and (d1) are the original images; (a2), (b2), (c2), and (d2)
are the recognition results.

227



Agronomy 2022, 12, 1046

5.2.2. Rice-Leaf Roller

The monitoring of the rice-leaf roller begins with adults in the field, driving moths, and
taking photos day by day. Three representative paddy fields were selected and investigated.
The researchers caught moths every morning, checked 10 m along the edge of each field,
walked against the wind, slowly moved the rice plant with a pole, and counted the number
of rice-leaf roller moths flying at the same time. The specific experimental operations
were as follows: (1) Pest collection: one person drives moths, and the other takes photos
immediately after them. When the person in front drives every square meter of rice, and the
adults fly up, the person behind takes photos immediately. (2) Collection of leaf curl rate:
five points are randomly sampled from each field; more than one third of the rice leaves are
photographed at each point; and the damage status of the rice-leaf roller is photographed.
The identification results are shown in Figure 6.

    
(a1) (b1) (c1) (d1) 

    
(a2) (b2) (c2) (d2) 

Figure 6. Rice-leaf roller. (a1), (b1), (c1), and (d1) are the original images; (a2), (b2), (c2), and (d2) are
the recognition results.

5.2.3. Rice Sheath Blight

The monitoring of sheath blight began at the tillering stage of rice and was investigated
every five days until the end of the milk ripening of the rice. Three representative types of
fields were selected for the experiment. The four sides of each field were 2 m away from the
side of the field. Two rows were taken along the ridge and rice-transplanting row. Each length
was 1 m, and a total of 8 m was checked. The camera of the mobile acquisition terminal went
deep into the rice bush; the lower end of the camera was 10–20 cm away from the rice base;
and the camera was aimed at the middle and lower parts of the rice (one-side shooting was
adopted). One photo was taken every 20 cm; five photos were taken in each line; and forty
photos were taken in each field. The recognition results are shown in Figure 7.

    
(a1) (b1) (c1) (d1) 

    
(a2) (b2) (c2) (d2) 

Figure 7. Rice sheath blight. (a1), (b1), (c1), and (d1) are the original images; (a2), (b2), (c2), and (d2)
are the recognition results.
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5.2.4. Wheat Spider

Wheat spiders need to be monitored in the winter and spring. The collection was
carried out every day from 2:00 p.m. to 3:00 p.m. in the winter and from 3:00 p.m. to 4:00
p.m. in the spring, once every five days. Three representative wheat fields of different types
were selected, and the area of each field was not be less than 667 m2. Two persons were
required to cooperate in each data acquisition, one taking photos and one investigating
data. Each field was photographed along a row of wheat in the middle of the field. The
first photographing point was 2 m away from the field head. Later, 1 photo was taken
every 2 m, and a total of 20 photos was taken. When taking pictures, the camera clung to
the right ridge and took pictures to the left ridge. The lens was attached to the ground in
the winter and 5 cm–10 cm away from the ground in the spring (the lens faces the wheat).
When taking photos with mobile intelligent acquisition equipment, the lens was placed
vertically. The collected pictures and recognition results are shown in Figure 8.

    
(a1) (b1) (c1) (d1) 

    
(a2) (b2) (c2) (d2) 

Figure 8. Wheat spider. (a1), (b1), (c1), and (d1) are the original images; (a2), (b2), (c2), and (d2) are
the recognition results.

5.2.5. Wheat Aphid

The investigation was to be conducted once every seven days from the green jointing
stage to the milk ripening stage of wheat. When the number of aphids rose sharply and the
daily increase of aphids exceeded 300, the investigation was to be conducted once every
five days. More than 10 representative wheat fields were selected according to sowing
date, variety, growth, and other conditions. Samples were taken at five diagonal points of
each field; 50 plants were investigated at each point before jointing; and 20 plants were
investigated at each point after booting. The lenses were 5 cm–10 cm away from the wheat
plant, close to the right ridge, and took photos to the left ridge. The whole wheat plant was
to be photographed before jointing, and the middle and upper parts of the wheat plant
were to be photographed after booting. The 5 photos were to be photographed for each
field, and more than 50 photos were to be photographed for each survey. The collected
pictures and recognition results are shown in Figure 9.

5.2.6. Wheat Leaf Rust

The investigation was conducted every five days from the jointing stage of wheat to
the end of milk maturity of wheat. Each field was sampled in parallel at five points, and
two pictures were taken at each point with an interval of 1 m for a total of 10 m. The lens
of the equipment was aimed at more than one third of the wheat for photographing. The
collected pictures and recognition results are shown in Figure 10.
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(a1) (b1) (c1) (d1) 

    
(a2) (b2) (c2) (d2) 

Figure 9. Wheat aphid. (a1), (b1), (c1), and (d1) are the original images; (a2), (b2), (c2), and (d2) are
the recognition results.

    
(a1) (b1) (c1) (d1) 

    
(a2) (b2) (c2) (d2) 

Figure 10. Wheat leaf rust. (a1), (b1), (c1), and (d1) are the original images; (a2), (b2), (c2), and (d2)
are the recognition results.

6. Conclusions

The intelligent pest detection kit serves plant protection management through “sensing
+ artificial intelligence” technology to realize the accurate collection and mobile monitoring
of plant information and data. The equipment has been loaded with more than 500 users in
Qinghai, Jiangxi, Anhui, Zhejiang, Shanxi, and other places in China. The suite provides
users with tools and means for plant protection image and microenvironment acquisition
to help users implement more-refined plant protection management. Through artificial
intelligence to identify diseases and pests of crops, the plant protection operation is easier,
more accurate, and more efficient, so anyone can have a plant protection expert with him.
At this stage, this project only identifies the main diseases and pests of wheat, corn, rice,
and other major field crops and continues to increase the sample types to realize more
crop disease and pest monitoring, which is the further research direction of intelligent
agricultural monitoring.
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Abstract: Efficient utilization is a pre-requisite for pesticide reduction, and appropriate airflow
distribution pattern plays a key role in enhancing the effectiveness of pesticide application by air-
assisted orchard sprayers, yet the mechanism of this is unclear. In order to clarify the specific effects
of airflow velocity and direction on spraying efficacy, a series of spray tests on pear and cherry
and airflow distribution tests in open areas were conducted by a multi-unit air-assisted sprayer
on ten different fan settings. Several deposit indicators were analyzed and contrasted with the air
distribution. The results showed that an increase in airflow velocity inside the canopy improved
the abaxial side deposit coverage of both pear (from 3.33% to 11.80% in the Top canopy and from
6.26% to 11.00% in the Upper canopy) and cherry leaves (from 3.61% to 10.87% in the Top canopy,
from 1.36% to 9.04% in the Middle canopy, and from 3.40% to 9.04% in the Bottom canopy), but had
no significant effect on the spray penetration. The correlation between deposit indicators and airflow
velocities/directions was evaluated, and the results indicated that the enhanced airflow velocities,
both in the forward and horizontal direction, improved the abaxial side deposit coverage (CAB) on
the outside of pear canopy (p < 0.001), but for cherry, none of the airflow indicators had a significant
impact on the CAB independently. On the other hand, the increased airflow direction angle in the
cross-row plane for pear, as well as the increased airflow velocities in forward and vertical direction
for cherry, both showed negative effects on the adaxial side deposit coverage (p < 0.01). The findings
in this study might be helpful to improve the performance of pesticide application in orchards,
especially for abaxial side deposition, and could provide a reference for the further investigations
about the effect of airflow on spray canopy deposition.

Keywords: air-assisted sprayer; airflow distribution pattern; deposit coverage; spray penetration

1. Introduction

The reduction of pesticide application has been a consistent proposition of the Chinese
government for many years, and it has also been included in the most important national
development plan [1] as a significant goal of agricultural reform several times. Normally,
the efficient utilization of pesticide, which means the active ingredient should be delivered
to the target precisely, uniformly, and exclusively, was considered a key way to achieve
pesticide reduction.

Pear and cherry are two cash crops grown on a large scale in several provinces in China,
and their market demand has been increasing year by year. Recently, several investigations
on pear and cherry orchards and their managers have been conducted by our team, and it
was found that several kinds of diseases and pests occurred on the abaxial side of leaves,
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such as Pear psylla [2] and brown rot [3], which had a serious detrimental effect on the
yield and quality of the fruits. Therefore, during the pesticide application in orchard, it is
necessary to ensure sufficient deposit on the abaxial side of the leaves.

For decades, the air-assisted sprayer has been recognized as a high efficiency pesticide
application equipment and is widely used for disease and pest control in the orchards. The
main principle of air-assisted sprayers to improve the spraying effect is that the airflow
generated by the fan sends droplets into and disturbs the tree canopy to increase spray
deposition and enhance the uniformity of the droplet distribution [4–7]. In recent years, the
axial fan sprayer [8,9] (AAS) and air tower sprayer [10,11] (ATS) have been the most widely
used orchard application equipment, due to the stability of performance and convenience of
operation. Various studies have focused on the spray effect of both the two types of sprayers,
and there seems to be a general consensus that the spray deposition can directly or indirectly
be affected by not only the canopy structure [12], but also the physicochemical properties
of pesticides [13], the meteorological conditions [14] and operation techniques [15], among
others. However, in most cases, the canopy structure of trees in the orchard is relatively
stable with good management, where the application of pesticides mainly depends on the
type and outbreak degree of pest and disease. Furthermore, there is no doubt that the
artificial control of meteorological conditions is hard to achieve. All these factors make the
adjustment of sprayer operation the most direct and effective way to improve the spray
effect.

To date, the influence of the operating techniques on the spray effect, including
travel speed, nozzle type, spray pressure, etc., have been explored by many researchers.
Salyani, M. and Whitney, J.D. [16] characterized the effects of sprayer ground speed
(1.6–6.4 km/h) on spray deposition at different locations within citrus tree canopies, and
the results showed that travel speed did not have a significant effect on mean deposition in
the tree canopy; however, variability of deposition increased as speed increased. The spray
characteristics of the nozzle play an essential role in the pesticide application, especially
for spray deposition. Hence, Nuyttens, D. et al. [17] tested the droplet size spectra of
32 nozzle-pressure combinations and expounded the effect of the nozzle type, size, and
pressure on the droplet size and velocity spectra. It should be emphasized that droplet
velocity is important with regard to canopy penetration and leaving surface retention.
On the other hand, smaller droplets, especially those less than 150 [18] or 200 μm [19] in
diameter, are more susceptible to airflow. According to applications based on an axial-fan
air-blast orchard sprayer made by Derksen et al. [20], the smaller droplets can provide
higher coverage than larger droplets on the axial side of leaves, and the authors believed
that greater air turbulence was needed to improve this. However, considering that smaller
droplets also have a higher risk of off target or drift, the balance between the advantages
and the risk of off-target pollution should also be taken into account [21,22].

In addition to the above factors, the impact of spray distribution pattern on the pesti-
cide application performance cannot be ignored. According to Gil et al. [23], an adequate
adjustment of spray liquid distribution to the canopy structure can reduce spray drift up
to 90% and reduce pesticide use up to 20%. Li et al. [24] conducted a comparative exper-
iment on profile variable rate spray and conventional air assisted spray in orchard, and
the results showed that a 23.2% reduction of spray drift and a 67.4% reduction of ground
losses happened after adjusting the spray distribution pattern, moreover, a 45.7% saving of
the solution was also obtained. It is now generally accepted that the spray distribution is
directly determined by and dependent on the airflow pattern [4], including airflow velocity,
direction, and their distribution in space. Farooq et al. [25] evaluated the spray penetration
into the citrus canopy in two different airflow rates using air-carrier sprayers, results indi-
cated that the higher airflow resulted in a better spray penetration and a significantly larger
deposition in the far section of the canopy than the lower airflow. Holownicki et al. [26]
compared three axial fan sprayers with different air discharge systems in the modern
orchard, including conventional, cross-flow, and a high-volume directed air-jet (HVDAS)
with the air spouts directed at 20 and 40◦ upwards, and the HVDAS with air spouts set
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20◦ upwards produced a higher canopy deposit and a lower off-target loss than the other
two sprayers. Another work [27], by investigating the effects of changing the fan speeds
(1400, 2000 and 2500 rpm) and the direction of the air-jet (90 and 120◦ backward angle
of the outlet side deflectors in relation to the treated row), studied the performance of a
sprayer fitted with two vertical adjustable air outlets in vineyards, the highest deposit
was observed with 1400 and 2000 rpm fan speeds and 120◦ backward angled air outlets,
and the high 2500 rpm fan speed improved the degree and the uniformity of the spray
coverage. Proper adjustment of the airflow velocity plays a key role in the efficiency of
spray application [28,29]. However, excessive airflow will also reduce the canopy depo-
sition [30] and lead to more spray loss and drift [31]. All these studies show that proper
adjustment of airflow plays a key role in the efficiency of spray application. Therefore, as a
prerequisite for determining the optimal adjustment, the specific effect of airflow on spray
canopy deposition should be defined.

In order to clarify the correlations of airflow velocity distribution and direction with
spray deposit in different parts of the canopy, we conducted a series of spray tests in the
orchard and airflow distribution tests in an open field with different unit fan parameters,
which were determined by the canopy characteristics of pear and cherry. In the end, the
effect of the fan unit adjustment was evaluated by analyzing the correlation between the
airflow velocity and direction with the canopy deposition. These were all based on a
multi-unit air-assisted sprayer independently developed by our team.

2. Materials and Methods

2.1. Sprayer Characteristics

Figure 1 shows the multi-unit air-assisted sprayer (MAS). The length and width of
the MAS were 3.2 m and 1.5 m, the rated power of the engine is 6.3 Kw. Three units
were installed on both sides of the sprayer with a fan hood depth of 150 mm. Each of
the units, equipped with 20-inch carbon-fiber fan blades driven by a brushless motor,
were connected to the vertical support rod by a mechanical joint that ensured the manual
adjustment of installation height and tilt angle could be achieved. The rotation rate of each
brushless motor could be controlled independently through a specially made control box,
and both of the brushless motors and the box were powered by a 24 V storage battery
(Fengfan, Baoding, China) linked to a 3.5 kW range extender to provide stable working
voltage. Four hollow cone nozzles HCI4001 (ARAG, Rubiera, Italy) were equidistantly
installed at the air outlet of the unit. The spray angle of HCI4001 was 40◦, the volume
flow rate was 0.39 L/min, and the volume median diameter of the droplet was 121 μm at
a spray pressure of 0.3 MPa. The droplet diameter was tested by Spraytech Particle size
analyzers [32] (Malvern Panalytical, Worcestershire, UK) according to ISO 13320:2020 [33].

2.2. Spray Test Site

Figure 2a showed the spray test site in Haidian District, Beijing (116.19◦ E, 40.15◦ N),
which was a plain area. The 15-years-old pear (Pyrus bretschneideri) orchard covered an
area of 0.66 ha, trees were planted in a 6 m by 3 m row and tree spacing, and the average
tree height was 3.1 m. The 4-years-old cherry (Cerasus pseudocerasus) orchard covered an
area of 0.91 ha, the row and tree spacing were 4 m and 1 m, and the average tree height was
2.6 m. Tests were conducted in August 2021. During this period, the weather continued
without rain, the temperature remained at 27.6–33.4 ◦C in the daytime, and the wind speed
was below 1 m/s during the experiment—all of these provided a suitable meteorological
condition for spraying.
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Figure 1. The multi-unit air-assisted orchard sprayer used in this study: 1© Top Unit, 2© Electronic
Speed Control, 3© Middle Unit, 4© Bottom Unit, 5© Speed control box, 6© Proportional control valve
with pressure gauge, 7© Tank.

 

Figure 2. (a) Test fields for spray test (b) Layout of spray test: the red line showed the application
route, trees with red background were sampled; (c) Sample site: green marks represented samples.
The indicators L, M, R in the cherry canopy and the L1, L2, M, R2, R1 in the pear canopy represent
the sample positions in per layer.

2.3. Experimental Design
2.3.1. Spray Test

Five rows in the middle of the orchard were selected for application (Figure 2b).
Five consecutive trees were sampled in the middle row, and these trees were not less than
10 m from the beginning and end of the row to make sure the MAS was working stably
when passing through. There were 4 layers set on each of the sample trees of pear and
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5 sample points were set in each layer (Figure 2c). There were 3 layers for cherry trees
and 3 sample points in each layer. All of the layer and sample parameters, including layer
height, layer width, and the distance between sample and trunk, were measured and shown
in Table 1. A well-grown leaf was chosen within the area 15 cm from the sample point
and 2 white art papers (60 mm × 40 mm) were attached on the adaxial side (ADS) and
abaxial side (ABS) of it. The application volume was 225 L/ha. Ponceau 4R, a dye usually
used as a food coloring with no risk of environmental pollution and human and animal
poisoning, was added as a tracer with a concentration of 5 g/L. During each test, the time
when the MAS entered and left the test area was recorded to ensure that the deviation of
the actual application volume from the set value did not exceed 5%. All tests were repeated
3 times (Table 1).

Table 1. Layers and samples setting parameters of pear and cherry.

Plant Sample Layer Layer Height/m Width of Layer/m

Distance between Sample and Trunk/m

L
M

R

L1 L2 R2 R1

Pear

Top 2.8 2.8–3.2 1.3–1.6 0.5–0.9 0 0.4–0.7 1.0–1.2
Upper 2.3 2.9–3.4 1.4–1.7 0.5–0.8 0 0.5–0.8 1.1–1.3
Lower 1.8 2.6–3.1 1.3–1.5 0.6–0.9 0 0.5–0.8 1.2–1.4
Bottom 1.3 2.0–2.6 1.0–1.3 0.4–0.6 0 0.4–0.7 1.0–1.2

Cherry
Top 2.5 1.2–1.4 0.5–0.6 0 0.5–0.7

Middle 1.9 1.3–1.5 0.6–0.8 0 0.6–0.8
Bottom 1.3 0.7–0.8 0.2–0.4 0 0.3–0.5

According to the canopy characteristics of pear and cherry, 10 parameters were settled
within the adjustable range of the fan (Table 2). OSC1–OSC6 were used on cherry, the
fan speed was different between OSC1–OSC3, the installation height of the middle unit
between OSC4 and OSC5 was different by 100 mm, and the vertical installation angle of
the middle unit between OSC5 and OSC6 was different by 20◦.

Table 2. The test parameters of MAS used in spray tests.

Parameters Spray Units
Fan Speed

(rpm)
Installation Height

(m)
Tilt Angle

(◦)

OSC1
Top 2275 2.95 −40

Middle 2275 1.95 0
Bottom 2275 1.00 20

OSC2
Top 2635 2.95 −40

Middle 2635 1.95 0
Bottom 2635 1.00 20

OSC3
Top 2635 2.95 −40

Middle 3090 1.95 0
Bottom 2635 1.00 20

OSC4
Top 2635 2.95 −40

Middle 3090 1.75 20
Bottom 2635 1.00 20

OSC5
Top 2635 2.95 −40

Middle 3090 1.85 20
Bottom 2635 1.00 20

OSC6
Top 2635 2.95 −40

Middle 3090 1.85 0
Bottom 2635 1.00 20
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Table 2. Cont.

Parameters Spray Units
Fan Speed

(rpm)
Installation Height

(m)
Tilt Angle

(◦)

OSP1
Top 2635 2.95 −15

Middle 2635 1.85 10
Bottom 2635 1.00 20

OSP2
Top 2635 2.95 −15

Middle 3090 1.85 10
Bottom 2635 1.00 20

OSP3
Top 3090 2.95 −15

Middle 3090 1.85 10
Bottom 3090 1.00 20

OSP4
Top 2635 2.95 −15

Middle 3090 1.75 30
Bottom 2635 1.00 20

Note: Tilt angle < 0 means tilt down, Tilt angle > 0 means tilt up.

2.3.2. Airflow Pattern Test

The airflow pattern test of MAS was conducted in an open field outdoors in a static
way according to ISO 9898:2000 [34]. Figure 3 showed the test layout, a group of 3 Axis
wind sensors [35] (WindMaster 1590-PK-020, Gill Instruments Ltd., Hampshire, UK) was
installed from 0.6 m away from the ground to 3.2 m according to the vertical interval of
0.2 m. All parameters listed in Table 2 were tested at 0.5 m, 1.0 m, 1.5 m, and 2.0 m away
from the MAS, respectively. Fans on both sides of the sprayer opened simultaneously
to keep the working condition consistent with the orchard application. All sensors were
connected to the computer for the signal transmission, and the output data is received
by the software at a frequency of 10 Hz and further calculated in Cartesian coordinates
(X, Y, Z), including the airflow velocity and direction on the YZ plane and the air velocity
on the X-axis. For each measuring point and parameter, data were recorded at least 15 s.

Figure 3. Layout of airflow pattern test of MAS in an open field. The X-axis represented the
forward direction, the Y-axis represented the vertical direction, and the Z-axis represented the
cross-row direction.
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2.4. Data Analyses

All samples were scanned with a scanner (DS-1610, Epson (China), Beijing) at 400 dpi
to obtain images. An image processing program ImageJ [36] (National Institutes of Health,
United States) was used for the analysis to get spray coverage [37]. CAD and CAB represent
deposit coverage on ADS and ABS of the leaf (%), and the deposit coverage of whole leaf
(CW, %) was calculated as follows:

CW = CAD + CAB (1)

Where the ratio of deposit coverage on ABS and whole leaf (RBW) was calculated to
account for droplet distribution uniformity on leaves:

RBW =
CAB
CW

(2)

Where the ratio of deposit coverage on the center sample and the total sample in the
same layer (RCT) was calculated to account for the penetration effect of droplets:

RCT =
CWM

CWL + CWM + CWR
(3)

where L, M, and R are sample sites in cherry canopy. As for pear, Left means L1 and L2,
and R means R1 and R2 (Figure 2b).

The 3D airflow velocity and direction corresponding to all sample points are ob-
tained through interpolation for 2D gridded data in meshgrid format [38] by Matlab 2021a
(Mathworks, Natick, MA, USA). The interpolated value at a sample point is based on a
cubic interpolation of the values at neighboring grid points in each respective dimension.
The interpolation is based on a cubic spline using not-a-knot end conditions and 6 indica-
tors were obtained: X-axis, Y-axis, and Z-axis airflow velocities, ZY plane (0◦ on Z-axis),
ZX plane (0◦ on Z-axis), and YX (0◦ on Y-axis) plane airflow directions (X-v, Y-v, Z-v, ZY-d,
ZX-d, YX-d). For assessing the impact of these indicators on canopy deposition, the method
combining partial least square (PLS) and the variable importance in projection (VIP) scores
(also called the PLS-VIP method [39]) have been introduced to quantify the contribution.

All statistical analyses were performed using IBM SPSS Statistics (IBM Corp., Armonk,
NY, USA). The mean values of CAD, CAB, CW, RBW, and RCT in different test param-
eters were compared by using one-way analysis of variance (ANOVA) via the Duncan
test (α = 0.05). The bivariate correlation analysis was adopted to evaluate the correlation
between airflow indicators and CAD, CAB, CW, and RBW of all test parameters by using
Pearson test and two-tailed significance test.

3. Results

3.1. Deposit Coverage Distribution in Layers

Table 3 shows mean values of all deposit indicators, including CAD, CAB, CW, RBW,
and RCT, calculated from all samples in each layer of OSP1–OSP4 (results of all sample
trees and replicates are involved). Intercomparison of OSP1–OSP3 was made on account of
sharing the same installation height and tilt angle but different in fan speed. For the Top
layer, the CAD and CW of OSP3 were significantly lower than those of OSP1 and had no
significant difference with OSP2, and the CAB and RBW of OSP3 were significantly higher
than those of OSP2 and had no significant difference with OSP1. For the Upper layer, the
CAD of OSP3 was significantly lower than that of OSP1 and OSP2, the CAB of OSP3 was
significantly higher than OSP1 and had no significant difference with OSP2, and the RBW
of OSP3 was significantly higher than OSP1 and OSP2. The RCT of OSP1-OSP3 in all layers
had no significant difference with each other. In the comparison between OSP2 and OSP4,
the difference in deposition results was mainly due to the installation height and tilt angle
of the Middle unit, the CAD and RCT of OSP4 in the Top layer were significantly lower
than OSP2 but the CAB and RBW were higher. Meanwhile, in the Upper layer, the CAD of
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OSP4 was significantly lower than OSP2, and in the Lower layer the CAB of OSP4 was also
lower than OSP2.

Table 3. Results of spray tests on pear: CAD, CAB, CW, RBW, and RCT of OSP1-OSP4.

Sample Layer Test Parameters
CAD CAB CW RBW RCT

Mean/% SE Mean/% SE Mean/% SE Mean SE Mean SE

Top

OSP1 25.58 ab 3.19 6.91 bc 1.20 32.50 abc 2.96 0.28 cd 0.04 0.13 bcde 0.01
OSP2 22.54 abc 2.54 3.33 d 0.44 25.87 bcdef 2.55 0.19 c 0.02 0.16 abcde 0.02
OSP3 14.14 cdef 2.03 7.75 abc 1.55 21.89 def 2.30 0.37 bc 0.04 0.12 abcdef 0.03
OSP4 13.83 def 1.81 11.80 abc 2.05 25.62 bcdef 2.54 0.41 abc 0.04 0.08 f 0.01

Upper

OSP1 13.93 ef 1.27 6.26 c 0.93 20.18 ef 1.39 0.30 c 0.03 0.19 a 0.02
OSP2 16.26 bcde 1.69 7.67 bc 0.95 23.93 cdef 1.87 0.35 bc 0.03 0.17 abc 0.02
OSP3 7.81 g 0.93 11.00 ab 1.37 18.81 f 1.48 0.53 a 0.04 0.17 ab 0.02
OSP4 8.98 fg 1.15 13.25 ab 2.23 22.23 def 2.07 0.49 ab 0.05 0.11 bcdef 0.02

Lower

OSP1 29.97 a 3.11 14.40 a 2.10 44.37 a 3.17 0.33 bc 0.04 0.10 cdef 0.02
OSP2 22.14 abcd 2.51 13.88 a 1.88 36.02 ab 2.84 0.36 bc 0.04 0.10 cdef 0.02
OSP3 18.25 bcde 2.08 9.17 abc 1.62 27.42 bcde 2.38 0.33 bc 0.04 0.10 ef 0.02
OSP4 14.32 cdef 1.70 5.81 cd 1.27 20.13 def 2.01 0.30 ab 0.04 0.16 abcdef 0.04

Bottom

OSP1 17.49 bcde 1.54 11.03 abc 2.45 28.52 bcd 2.56 0.27 cd 0.04 0.15 abcde 0.02
OSP2 18.07 bcde 2.88 8.13 abc 1.82 26.20 bcdef 3.07 0.26 cd 0.04 0.15 abcd 0.01
OSP3 12.81 efg 1.65 7.93 abc 1.87 20.74 def 1.97 0.32 bc 0.05 0.11 def 0.02
OSP4 15.94 bcde 2.25 6.90 abc 1.95 22.84 cdef 2.65 0.24 cd 0.04 0.10 cdef 0.02

Note: SE means standard error. Different letters in the same column indicate significant differences at
p < 0.05 level.

The only difference between OSC1-OSC3 is the fan speed setting, which was similar
to OSP1-OSP3. There was no significant difference for CAD and RCT in all layers of
OSC1-OSC3 as shown in Table 4, however in the Middle layer, the CAB of OSC2 and OSC3
were significantly higher than OSC1. In the Bottom layer, OSC3 also showed a higher CAB
than OSC1. There was no significant difference in the deposition effect between OSC3
and OSC6, nor between OSC4 and OSC5, however, the CAB of OSC5 in the Top layer was
significantly higher than that of OSC6.

Table 4. Results of spray tests on cherry: CAD, CAB, CW, RBW, and RCT of OSC1-OSC6.

Sample Layers Test Parameters
CAD CAB CW RBW RCT

Mean/% SE Mean/% SE Mean/% SE Mean SE Mean SE

Top

OSC1 20.69 ab 2.65 4.00 bc 0.84 24.70 abc 2.78 0.22 bcd 0.04 0.27 a 0.04
OSC2 20.38 ab 3.33 8.53 abc 2.00 28.91 abc 3.78 0.31 abcd 0.05 0.23 ab 0.04
OSC3 20.54 ab 2.82 6.36 abc 1.50 26.90 abc 2.70 0.25 bcd 0.05 0.22 ab 0.03
OSC4 20.99 ab 3.17 7.85 abc 1.68 28.84 abc 3.03 0.33 abc 0.06 0.25 a 0.04
OSC5 19.71 ab 3.22 10.87 a 1.63 30.58 ab 3.34 0.46 a 0.06 0.27 a 0.05
OSC6 14.90 ab 2.35 3.61 bcd 0.94 18.52 c 2.36 0.29 abcd 0.05 0.24 abc 0.06

Middle

OSC1 18.94 ab 3.20 1.36 d 0.48 20.30 bc 3.30 0.14 d 0.04 0.12 bc 0.03
OSC2 20.78 ab 2.87 4.81 bc 0.80 25.59 abc 2.86 0.25 bcd 0.04 0.18 abc 0.04
OSC3 21.67 ab 2.88 9.04 ab 2.00 30.71 ab 2.62 0.31 abc 0.05 0.23 ab 0.03
OSC4 21.74 ab 3.72 8.60 abc 2.15 30.34 abc 3.83 0.37 ab 0.06 0.11 c 0.01
OSC5 21.76 ab 3.57 8.98 ab 1.90 30.74 ab 3.22 0.36 ab 0.06 0.15 abc 0.03
OSC6 27.65 a 3.40 7.43 abc 1.65 35.08 a 3.36 0.24 bcd 0.05 0.16 abc 0.03

Bottom

OSC1 19.09 ab 2.27 3.40 cd 0.63 22.48 bc 2.22 0.18 cd 0.03 0.20 ab 0.03
OSC2 20.57 ab 2.81 9.04 ab 2.02 29.60 ab 2.85 0.32 abcd 0.06 0.18 ab 0.02
OSC3 24.63 ab 2.75 6.90 abc 1.52 31.52 ab 2.52 0.23 bcd 0.05 0.27 a 0.04
OSC4 25.54 ab 3.49 5.01 bc 0.99 30.54 ab 3.54 0.21 bcd 0.04 0.23 ab 0.04
OSC5 22.18 ab 2.92 6.85 abc 1.39 29.02 ab 2.88 0.28 abcd 0.05 0.21 ab 0.04
OSC6 26.00a b 3.38 7.59 ab 1.38 33.60 a 3.21 0.27 abcd 0.05 0.22 ab 0.03

Note: SE means standard error. Different letters in the same column indicate significant differences at
p < 0.05 level.

3.2. Comparison between Airflow Velocity Distribution and Deposit Coverage Distribution

The distribution of both airflow and spray canopy deposit varied according to the fan
setting. For this reason, a comparison was made between them. As can be seen in Figure 4,
the airflow velocities of OSP1-OSP3 decreased with distance at Top, Lower, and Bottom
heights, while at Upper height the airflow showed the opposite trend. In the meantime, the
CAB of OSP3 improved, but the CAD decreased in the Top and Upper layers. Compared to
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OSP2, the air velocity of OSP4 attenuated less at Top height but was lower at Lower height.
As for the canopy deposit coverage, the CAB of OSP4 was higher in the Top but lower in
the Lower layer, meanwhile the CAD was lower in both of the Top and Upper layers, which
was consistent with the results shown in Section 3.1.

Figure 4. The airflow distribution at different distances from the MAS (left), CAD (black block), and
CAB (blue block) of samples in all layers (right) of OSP1–OSP4.

OSC1–OSC3 shared a similar airflow velocity distribution pattern just like OSP1. OSP3,
OSC2, and OSC3 have higher air velocities than OSC1 at Middle height, which made the
CAB of OSC1 less than OSC2 and OSC3 at the same height. OSC3 has a higher airflow
velocity at Middle height compared to OSC6, and OSC5 also has a higher airflow velocity
at Top height compared to OSC4, however in the corresponding layers OSC6 has a similar
CAB to OSC3 and OSC4 to OSC5. In addition, the OSC5 has a higher air velocity at Top
height as well as a CAB compared to the OSC6 (see Figure 5).
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Figure 5. The airflow distribution at different distances from the MAS (left); CAD (black block) and
CAB (blue block) of samples in all layers (right) of OSC1–OSC6.

3.3. PLS-VIP and Correlation Analysis between Airflow Velocity, Direction, and Deposit Indicators

3.3.1. Results of OSP1-OSP4

For OSP1-OSP4, a PLS-VIP analysis was carried out between deposit indicators (CAD,
CAB, CW, and RBW) and airflow indicators (X-v, Y-v, Z-v, ZY-d, ZX-d, YX-d). Results
exhibited in Figure 6 showed that Z-v represented a more significant influence on CAB and
RBW than the other indicators, while ZY-d made a greater contribution to CAD and CW. In
addition, the effect of X-v on CAB and Z-v on CW cannot be ignored as well.

Figure 6. PLS-VIP analysis results between the airflow indicators and the deposit indicators of
OSP1–OSP4. The red line indicates that the PLS-VIP = 1, PLS-VIP > 1 indicates a significant effect [40].
The red line marks the position where the PLS-VIP value is 1.
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According to Table 5, X-v and Z-v showed extremely significant positive correlations
(p < 0.001) with CAB and RBW in the total and outside canopy, but also negative correla-
tions (p < 0.05) with CAD in the outside canopy, while ZY-d showed significant negative
correlations (p < 0.01) with both CAD and CW in the total and outside canopy. All these
were largely consistent with the results represented in Figure 7.

Table 5. Results of the correlation analysis between airflow and deposit indicators at different parts
of pear canopy.

Deposit Indicators Canopy Parts X-v Y-v Z-v ZY-d ZX-d YX-d
r p r p r p r p r p r p

CAD
Total −0.067 0.060 −0.027 0.454 −0.060 0.092 −0.102 0.004 −0.007 0.845 −0.066 0.063

Inside −0.047 0.554 −0.008 0.916 −0.016 0.844 −0.115 0.148 −0.105 0.185 −0.013 0.868
Outside −0.083 0.036 −0.028 0.479 −0.128 0.001 −0.119 0.002 −0.006 0.873 −0.060 0.128

CAB
Total 0.203 0.000 −0.037 0.292 0.205 0.000 −0.002 0.945 0.093 0.009 0.001 0.966

Inside 0.118 0.136 0.163 0.039 −0.016 0.837 −0.074 0.351 −0.033 0.678 −0.079 0.319
Outside 0.192 0.000 −0.048 0.228 0.180 0.000 −0.006 0.870 0.097 0.014 0.028 0.483

CW
Total 0.075 0.033 −0.048 0.177 0.083 0.019 −0.091 0.010 0.055 0.119 −0.057 0.109

Inside 0.018 0.823 0.071 0.369 −0.021 0.793 −0.131 0.099 −0.103 0.194 −0.049 0.538
Outside 0.056 0.159 −0.058 0.143 0.007 0.864 −0.112 0.004 0.061 0.125 −0.035 0.370

RBW
Total 0.136 0.000 0.061 0.084 0.172 0.000 0.081 0.022 0.062 0.082 0.038 0.281

Inside 0.191 0.016 0.182 0.022 −0.064 0.424 0.024 0.765 0.063 0.427 −0.065 0.411
Outside 0.124 0.002 0.052 0.188 0.174 0.000 0.090 0.023 0.050 0.208 0.070 0.076

Note: The r value represents the Pearson correlation coefficient, p < 0.05 indicates a correlation between the two
indicators, p < 0.01 indicates a significant correlation, and p < 0.001 indicates an extremely significant correlation.

Figure 7. PLS-VIP analysis results between the airflow indicators and the deposit indicators of
OSC1–OSC6. The red line marks the position where the PLS-VIP value is 1.

3.3.2. Results of OSC1-OSC6

According to Figure 7, for the CAD and CW of cherry, the most influential indicator
was YX-d, followed by Y-v, then X-v showed a significant influence on CAB. Moreover, the
most influential indicator on RBW was ZY-d.

As represented in Table 6, X-v had a relatively complex effect on canopy deposit cover-
age, showing positive correlations with CAB (p < 0.05) and RBW (p < 0.001) on the outside
of the cherry canopy, but negative correlations with CAB and RBW (p < 0.05) on the inside
of the canopy and CAD (p < 0.01) on the outside of the canopy. Y-v showed a negative cor-
relation with CAD (p < 0.01) and CW (p < 0.05) inside the canopy, meanwhile YX-d showed
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the same negative correlation with CAD and CW of the total canopy (p < 0.05), in addition,
ZY-d showed a significant positive correlation with RBW inside the canopy (p < 0.001).
Although a few of the airflow indicators in Table 6 showed different contributions to those
in Figure 7, this does not prevent the overall results from being consistent.

Table 6. Results of the correlation analysis between airflow and deposit indicators at different parts
of cherry canopy.

Deposit Indicators Canopy Parts X-v Y-v Z-v ZY-d ZX-d YX-d
r p r p r p r p r p r p

CAD
Total −0.068 0.112 −0.053 0.217 0.052 0.230 −0.007 0.879 −0.039 0.364 −0.085 0.048

Inside 0.015 0.845 −0.202 0.007 −0.039 0.605 −0.156 0.037 0.011 0.884 0.116 0.121
Outside −0.157 0.003 −0.030 0.571 0.013 0.811 −0.060 0.259 −0.128 0.015 −0.034 0.518

CAB
Total 0.083 0.055 −0.004 0.923 0.028 0.521 0.034 0.435 0.011 0.805 −0.035 0.418

Inside −0.173 0.020 0.030 0.694 −0.146 0.051 0.147 0.049 −0.104 0.163 −0.113 0.131
Outside 0.130 0.014 −0.013 0.809 0.056 0.287 −0.036 0.499 0.045 0.390 0.034 0.516

CW
Total −0.027 0.539 −0.055 0.205 0.065 0.132 0.010 0.812 −0.033 0.439 −0.102 0.018

Inside −0.055 0.463 −0.157 0.036 −0.089 0.234 −0.073 0.332 −0.031 0.675 0.053 0.482
Outside −0.092 0.082 −0.040 0.450 0.047 0.372 −0.086 0.105 −0.110 0.036 −0.016 0.757

RBW
Total 0.068 0.112 0.036 0.403 −0.031 0.473 0.079 0.066 0.022 0.614 −0.019 0.658

Inside −0.174 0.020 0.190 0.011 −0.026 0.731 0.245 0.001 −0.086 0.253 −0.213 0.004
Outside 0.172 0.001 −0.005 0.930 −0.009 0.863 0.035 0.505 0.106 0.044 0.035 0.510

4. Discussion

In most cases, the air adjustments of AAS and ATS are based on the rotational speed of
the fan and on the position of air deflectors [41] which impact air velocity and air direction.
For this reason, there are limited options for adjusting the airflow pattern and vertical
spray distribution. In this research the MAS allowed for more adjustments by changing
the installation height, tilt angle, and fan speed, which offered a multivariate scenario
in this study. As mentioned before, in the absence of a tree canopy, the spray volume
distribution was directly influenced by the airflow pattern [4]. However, in the case of
pesticide applications, the effects of airflow velocity and direction (mainly determined by
fan parameters) on canopy deposition were relatively complex. By the influence of airflow,
droplets are forced into the canopy and attached to the leaves. In the meantime, leaves are
swung and lifted, which can somehow increase the deposition on the leaves, especially on
the ABS.

For the spray test conducted on pear in this study, the distance between spray units
and the trunk was 2.25 m, which means the airflow between 1.5 m and 2 m from the
fan entered the canopy and had a significant impact on droplet deposition, therefore the
velocity of airflow inside the canopy (AI) was used as the main reference for evaluating pear
canopy deposition. Compared to the airflow distribution patterns of OSP1, the AI velocity
of OSP3 was higher at Upper and lower at Top (Figure 4), which makes the leaves in both
the two layers more susceptible to be uplifted. Due to this, the exposed area of the ABS was
increased, resulting in a higher CAB for OSP3 (11.00%) than OSP1 (6.26%) at Upper. On the
other hand, considering that the distance between units and the cherry trunk is 1.25 m, the
airflow between 1.0 m and 1.5 m from the fan should be defined as AI for the evaluation
of the spray effect. For OSC1-OSC3 (Figure 5), the AI velocities of OSC2 and OSC3 were
higher than OSC1 at Middle height, which made the twisting frequency of leaves and the
exposure probability of the ABS increase, and thus both OSC2 (4.81%) and OSC3 (9.04%)
had greater CAB than OSC1 (1.36) in the Middle layer.

Compared to OSC6, OSC3 had greater AI velocity at Middle height, however there
was no significant difference in CAD and CAB at Middle layer between them, which did
not seem to be consistent with the previous analysis. On the other hand, OSC6 got higher
AI velocity at Bottom than OSC3, so it was presumed that under the combined effect of
airflow at both Middle and Bottom, the twisting frequencies of their Middle layer leaves
were close. A similar situation occurred between OSC4 and OSC5, where OSC5 got a higher
AI velocity at Top height but a lower AI velocity at Middle height compared to OSC4, from
this point the CAD and CAB of OSC5 in the Top layer were also not significantly different
from OSC4.
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In general, the enhanced velocity of airflow inside the canopy resulted in an increase
of deposition coverage on the ABS of leaves, for both pear and cherry, however it did
not provide a significant improvement to the spray penetration. The difference is that the
smaller pear leaves, compared to the cherry leaves, oscillated mainly in the longitudinal
direction by airflow, which made that an increased exposed area of the ABS which was
always accompanied by a decrease exposure of the ADS. For this reason, the increase of
CAB happened frequently in conjunction with the decrease of CAD. The cherry leaves were
slender and mainly twisted in the axial direction, which lead to an increase of CAB without
decreasing the CAD. Furthermore, in many cases the spray coverage in a particular layer
(e.g., Top layer of OSP3, Middle layer of OSC3, Top layer of OSC5) was simultaneously
influenced by the effect of both the airflow in this height and that above or below it, which
can be referred to as a regional airflow contribution, but the rationale for this phenomenon
is unclear and needs to be explored in further studies.

Over the years, many reports have focused on spray penetration [25,42], distribu-
tion [43,44], and the mass balance [8,45] in orchards, which helps to clarify the practical
application effects of different spray technologies and fan operating parameters. However,
from the point of disease and pest control, the deposit on the ADS and ABS of leaves should
also be taken into account.

The results of the PLS-VIP and correlation analysis showed that the enhanced X-v
and Z-v improved (p < 0.001) the CAB on the outside of pear canopy, but for cherry, none
of the airflow indicators had a significant impact on the CAB. On the other hand, for the
increased ZY-d (p < 0.01) for pear as well as the increased X-v and Y-v (p < 0.01) for cherry,
both showed negative effects on the CAD. Obviously, pear and cherry are very different
in canopy structure and leaf shape. By the influence of airflow, the pear leaves swung
violently and the exposure of the ABS increased, which resulted in the improvement of the
CAB. However, for the cherry leaves, the changes in airflow did not significantly increase
the exposure of the ABS. Moreover, it is worth noting that the reduction of CAD is very
detrimental to the efficacy of pesticide control and should be avoided in the application.
For pear and cherry orchards, we should adopt different airflow patterns to improve the
spraying effect. Based on the structure of the MAS, the adjustment of X-v can be achieved
by changing the angle between the unit and the travel direction, Z-v is mainly dependent
on the fan speed setting, while the ZY-d can be adjusted by changing the tilt angle.

In recent years, efforts have focused on improving the design of pesticide application
equipment. Grella et al. [46] tested the effect of different fan settings, air-conveyor orienta-
tion, and nozzle configuration on both airflow pattern and vertical spray distribution, and
the results showed that a forward air-conveyor orientation was selected as one of the most
optimal settings for spray applications in a trellised vineyard. Interestingly, in this study a
similar trend was observed (the enhanced X-v could be adjusted by changing the install
angle between the unit and the travel direction) that improved the deposit coverage in the
ABS. Therefore, to some extent we can conclude that the forward airflow has a positive
contribution to the spray effect.

In the last decade, agricultural unmanned aerial vehicle (UAV) has become a widely
used piece of equipment for orchard pesticide application, especially in East Asian coun-
tries [47]. The downwash airflow of the UAV plays an important role in the transportation
of droplets to the target [48,49], which was similar to the horizontal and/or vertical airflow
from air-assisted sprayers. However, the UAV had a much lower deposition on leaves
compared to the AAS [28,50,51]. Zhang et al. [52] pointed out that, in order to improve the
spraying efficacy of UAV sprayers and reduce off-target losses, it is essential to understand
the distribution characteristics of downwash airflow inside and around the target tree
canopy. From this point of view, we suggest that the velocity and directional distribu-
tion characteristics of the downwash airflow should be focused on, which is a key factor
affecting the droplets deposit distribution in the canopy, as reported in the present study.

Clearly, the airflow velocity and direction had a significant effect on spray deposit,
and the fundamental cause of this is that the behaviors of droplets [53] and leaves [54]
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are influenced by airflow, which will be the focus of our future research. Although there
is a correlation between the spray indicators, considering that this study aims to make a
preliminary exploration of the effects of airflow indicators on deposition indicators, a large
number of field tests for different fan parameters are still needed before we can build a
predictive model.

5. Conclusions

Spray tests and airflow distribution tests were conducted with ten different fan settings
using a multi-unit air-assisted sprayer. The effects of various airflow distribution patterns
on spray deposition coverage and penetration were compared, and the correlation between
airflow indicators and deposition indicators was evaluated. The results showed that the
increased AI improved the CAB of pear (from 3.33% to 11.80% in the Top canopy and from
6.26% to 11.00% in the Upper canopy) and cherry leaves (from 3.61% to 10.87% in the Top
canopy, from 1.36% to 9.04% in the Middle canopy, and from 3.40% to 9.04% in the Bottom
canopy) but had no significant effect on spray penetration. As a whole, spray deposition in
one part of the canopy was influenced by the combined effects of airflow in a wider area.
The enhanced X-v and Z-v improved the CAB on the outside of pear canopy (p < 0.001), but
for cherry, none of the airflow indicators had a significant impact on the CAB independently.
On the other hand, the increased ZY-d for pear as well as the increased X-v and Y-v for
cherry both showed negative effects on the CAD (p < 0.01).

According to our findings, for fruits with small leaves, such as pears, apples, citrus,
etc., it is recommended to increase the airflow velocity in the horizontal and forward
direction to optimize the spraying effect. As for cherry and other fruits with larger leaves,
such as mangoes, lychees, etc., an increase in the upward airflow and an appropriate
reduction of airflow velocity are suggested. For years, we have been committed to the
improvement of spray performance on the abaxial side of leaves in orchards by setting
optimal application parameters and improving the spray system. More research is still
needed to clarify the multiple correlations between airflow velocity/direction and spray
deposit distribution. Furthermore, the dynamical behavior of droplets and leaves in the
airflow, as a fundamental principle of droplet deposition in the canopy, will be further
investigated to improve our understanding of air-assisted spraying.
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