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Preface

Dear Readers,

We are pleased to introduce this Special Issue dedicated to cutting-edge digital technologies.

It presents advanced challenges, including process control strategies, and studies of various

technological and physical systems that are simultaneously affected by various disturbances. Digital

transformation brings together leading research addressing the global challenges of transitioning

to a resource-efficient, process-safe, and sustainable future. By analysing the flow symmetry of

liquids and gases, the distribution of bulk materials, mechanical damage, temperature drops, and

electromagnetic radiation, it is possible to study the operation of technological processes and control

systems. If the task is limited to only one discipline, or several disciplines in control and design,

then there is a high probability that the forecast of the system’s behaviour will be insufficiently

accurate or completely incorrect. Interdisciplinary analysis solutions can help engineers investigate

the individual and collective effects of symmetric or asymmetric actions, thereby identifying the most

detailed solution, as needed.

In this Special Issue on symmetry, we mainly discuss the application of symmetry to process

modelling and control systems, such as when modelling a process by obtaining the static or dynamic

characteristics of an object via methods of numerical modelling, artificial intelligence, or neural

networks. These process modelling techniques can also be effectively applied to control system

design, Big Data collection and synthesis, data processing, and problem identification. For this reason,

it is necessary to consider many parameters and knowledge of the dynamics of transient processes,

which will contribute to the rapid development of advanced control systems.

Rudolf Kawalla and Beloglazov Ilya

Editors
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Editorial

Review of Advanced Digital Technologies, Modeling and
Control Applied in Various Processes
Ilia Beloglazov

Department of Mineral Processing, Automation of Technological Processes and Production,
St. Petersburg Mining University, 199106 St. Petersburg, Russia; beloglazovii@pers.spmi.ru

This special issue reviews advanced digital technologies in modeling and control of
technological processes. Methods of numerical modeling, artificial intelligence, machine
learning, automatic control and optimization theory were considered in the published
manuscripts of the special issue. It is especially noteworthy that this special issue is
devoted to solving specific applied problems based on international standards, which has
recently become of paramount importance for the scientific and professional community [1].

Conducting applied research by international scientific teams is of great importance
for the development of science and the unification of scientific teams, especially given the
current tensions in the world. The presented special issue includes a number of studies
carried out by international teams. Collaboration between scientists from different countries
allows the sharing of knowledge, experience and resources, which contributes to a better
understanding of complex problems and the development of innovative solutions. Such
research leads to new discoveries and technological breakthroughs that can have important
implications for critical areas of science and technology.

Considering the impact of advanced digital technologies in artificial intelligence and
big data, the authors presented their research manuscripts in various fields such as mining
and mineral processing, mineral processing, vision and image processing systems. Invited
editors and reviewers conducted a comprehensive review process for each manuscript in
accordance with the journal’s policies and guidelines. Twenty-seven papers were submitted
to this special issue, and after comprehensive review, 12 high-quality papers were accepted
for publication. It should be noted that this special issue is one of the most viewed (Viewed
by 32,481), over the past 2 years, the total number of citations, at the time of writing this
review is 231, and the average citation per article is more than 19. The contributions are
listed in List of Contributions.

The challenge of energy efficiency in medium and high voltage networks is of great
importance to reduce energy losses and improve overall energy efficiency. Some of the
key aspects of this challenge include the development of more efficient transmission and
distribution methods, the use of intelligent control and monitoring systems, and improved
power transformation and switching technologies. In addition, introducing renewable
energy sources into the grid can also help increase energy efficiency. Overall, these measures
can significantly reduce energy losses and improve the sustainability and reliability of
energy supply. Thus, contribution 1 focuses on developing the structure of a fast and flexible
data acquisition system based on the proposed approach for measuring power quality
indicators in three-phase distribution networks. contribution 2 presents a computational
tool for evaluating the energy produced by low-power photovoltaic systems based on the
specific conditions of the region under study. The approach presented in this work will
allow to determine the relationship between climatic factors affecting energy production in
PV systems operating in any region, as well as to evaluate the most favorable geographical
location of PV panels, which contributes to improving the efficiency of solar-to-electric
energy conversion.
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Another relevant challenge is the use of predictive models for fault detection. This is
of great importance in various fields including mineral processing, equipment maintenance,
aviation and many others. Predictive models based on data analytics and machine learning
can help predict possible malfunctions and failures of equipment based on historical
performance data. In contribution 3, the authors review an approach to study metallurgical
processes using analysis of a large array of operational control data. Using steel rolling
production as an example, they consider the development of a predictive model based on
the processing of a large array of operational control data. The purpose of the work is to
implement a predictive model of roll wear of rolling mill rolls based on a large array of
operational control data. The predictive model of mill roll wear will allow rational use of
rolls in terms of minimizing the total roll wear.

Another example of control of process parameters is the approach to create a vir-
tual soft sensor, which allows to establish a correct relationship between the fractional
composition and individual composition of hydrocarbons (contribution 4). The virtual
soft sensor is based on chemical and mathematical principles. The paper shows the ap-
plication of this technique on data from a real refinery. Obtaining accurate data on the
individual composition of the feedstock using the virtual soft sensor will optimize the
catalytic reforming process and thus indirectly improve its environmental friendliness and
enrichment efficiency.

An important direction is the development of autonomous transportation control
systems, where artificial intelligence, machine learning, sensor and automation technologies
play a key role. These systems can be applied to various modes of transportation, including
cars, buses, trains, unmanned aerial vehicles (drones), and even marine vessels. In this
regard, the authors of contribution 5 propose the use of a self-optimizing controller structure
with trajectory tracking based on reinforcement learning. For lateral vehicle control, a
steering method based on combining reinforcement learning methods and traditional
PID controllers is developed to adapt to different tracking scenarios. The interactive
learning mechanism based on advanced control structures can realize online optimization
of PID controller parameters to better handle tracking error under complex trajectories and
dynamic changes of vehicle model parameters.

A similarly excellent example is the manuscript: contribution 6 on machine learning
for the oil and gas industry. This work is devoted to the most relevant issues of machine
learning and artificial intelligence. One of the goals of this research was to build a model
for predicting possible risks arising in the process of well drilling. Drilling wells for oil and
gas production is a very complex and expensive part of reservoir development. Therefore,
along with preventing injuries, the task of saving the cost of downtime and repair of drilling
equipment is worthwhile. Nowadays, companies have started looking for ways to improve
drilling efficiency and minimize downtime using digital technologies.

The author of contribution 7 devotes a large dissertation research to solving the
problem of improving the accuracy of determining the main shape-forming dimensions
of axisymmetric parts using an inspection system that implements the optical method
of spatial resolution. This work shows the influence of the projection error of a passive
optical system for controlling the geometric parameters of bodies of rotation by the image
of its sections obtained by a digital camera with non-telecentric optics on the accuracy of
measurements. In the field of image processing, the authors of contribution 8 proposed an
algorithm for symmetric encryption using multi-parameter fractional Fourier transform.
The presented algorithm with two vector parameters has enhanced security, which becomes
the main technical means to protect information security.

In the field of molecular dynamics modeling, the authors of contribution 9 proposed a
cross-scale critical velocity prediction model for superhydrophobic surfaces with symmetric
structure based on mechanical equilibrium system. The study of the critical velocity
of a droplet at transition is very important for many applications such as windshield
glass fogging protection, medical cooling spray, anti-icing of aircraft surfaces and circuits,
and fouling protection of photovoltaic panels. Another example of the use of numerical
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modeling methods is the work contribution 10 where the authors determined stable zones
in the gas duct of an ore-heat furnace on the basis of computational fluid dynamics methods.
This approach is necessary to improve the efficiency of control of the composition of waste
gases in the production of metallurgical silicon. This work allowed solving the practical
problem of determining the place for installation of measuring equipment.

Another important direction of the presented special issue was a series of scientific
papers by Boykov et al. devoted to modeling of various processes. The contribution
11 describes the development of a universal calibration approach for modeling using
the discrete element method (DEM). The discrete element method is the most popular
approach for computer simulation of the behavior of bulk materials. The corresponding
software implementing DEM in a graphical user interface is a highly efficient tool for
mining equipment optimization. Recently, DEM is often used in combination with CFD
and other methods, which opens up the possibility of calculating complex multiphase
processes. contribution 12, which deserves special attention, presents a methodology for
training neural networks for vision tasks on synthesized data using the example of steel
defect recognition in automated production control systems. The process of procedural
generation of a dataset of steel slab defects with symmetric distribution is described. The
results of training two neural networks Unet and Xception on the generated data grid and
their testing on real data are presented.

Acknowledgments: I dedicate this manuscript to the memory of a remarkable scientist, friend and
colleague of Boikov Alexey, author of two relevant scientific articles in this special issue, who left
a great scientific contribution to the development of modern digital technologies. His ideas and
approaches have already been further developed and are a reminder of his good deeds for us.
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Abstract: This article takes an approach to creating a machine learning model for the oil and gas
industry. This task is dedicated to the most up-to-date issues of machine learning and artificial
intelligence. One of the goals of this research was to build a model to predict the possible risks arising
in the process of drilling wells. Drilling of wells for oil and gas production is a highly complex and
expensive part of reservoir development. Thus, together with injury prevention, there is a goal to save
cost expenditures on downtime and repair of drilling equipment. Nowadays, companies have begun
to look for ways to improve the efficiency of drilling and minimize non-production time with the
help of new technologies. To support decisions in a narrow time frame, it is valuable to have an early
warning system. Such a decision support system will help an engineer to intervene in the drilling
process and prevent high expenses of unproductive time and equipment repair due to a problem.
This work describes a comparison of machine learning algorithms for anomaly detection during well
drilling. In particular, machine learning algorithms will make it possible to make decisions when
determining the geometry of the grid of wells—the nature of the relative position of production and
injection wells at the production facility. Development systems are most often subdivided into the
following: placement of wells along a symmetric grid, and placement of wells along a non-symmetric
grid (mainly in rows). The tested models classify drilling problems based on historical data from
previously drilled wells. To validate anomaly detection algorithms, we used historical logs of drilling
problems for 67 wells at a large brownfield in Siberia, Russia. Wells with problems were selected
and analyzed. It should be noted that out of the 67 wells, 20 wells were drilled without expenses for
unproductive time. The experiential results illustrate that a model based on gradient boosting can
classify the complications in the drilling process better than other models.

Keywords: machine learning; drilling problems; artificial intelligence; risk factor evaluation; gradient
boosting

1. Introduction

Today, the use of machine learning (ML) capabilities in the oil and gas industry is
becoming a central topic in various research centers and universities in the modern world.
ML algorithms can provide practical solutions for analyzing and leveraging big historical
data. ML technology has long been successfully used in computer science, engineering,
mathematics, physics and astronomy, neuroscience, and medicine [1–10].

However, for the oil and gas industry, the use of such technologies has significantly
increased in recent years [11–18]. An important task in the development of the oil and

5



Symmetry 2021, 13, 1293

gas industry in the coming years is to increase the efficiency of producing oil and gas and
drilling wells, and the main impetus to the introduction of methods of ML was the fall
in oil prices. Oil and gas companies have concentrated on resource efficiency, optimizing
their production processes [19–30].

This challenge should be solved at the expense of the overall development of fun-
damental and applied research and the rapid introduction of the results obtained. In
drilling, one of the main issues in improving the quality of well construction is a reduction
in the number and severity of problems, which is closely related to the use of modern
computer–mathematical methods and computer technology. The use of such tools will help
to identify wells with problems during drilling and further determine the symmetry or
asymmetry of the well placement. The use of a symmetrical arrangement is advisable when
operating a reservoir with fixed oil-bearing contours, i.e., with an equal distribution of the
reservoir energy. The placement of wells on an asymmetric grid is distinguished according
to the density of the grid, according to the rate of well commissioning, and according to
the order in which wells are commissioned.

It is worth noting that the use of high-performance data analysis software is not a
novelty for the oil industry. Since the 1990s, technologies for the collection and analysis of
well data have been widely used. However, large capital expenditures on the implemen-
tation of these tools scared off many companies since their implementation could not be
financially justified.

Currently, one of the main challenges facing the oil and gas industry is to improve the
efficiency of well drilling.

The requirements of the practice of drilling deep oil and gas wells require a wide
range of requirements for the theory of machine learning. In this case, the theory should be
defined as a normal process at the time of origin, and during development, considering
any problem as an integral part of the drilling processes. It is desirable that a theoretical
description of drilling problems (DPs) allows not only judging them at a qualitative level
but also quantifying the interrelation of their essential variables. Several years ago, these
tasks seemed laborious.

Existing works were aimed at improving the drilling process using methods of artificial
intelligence (AI).

Zhan and colleagues [31], in their work, used a nonparametric system of fuzzy infer-
ences to predict the state of the rotary steerable system (RSS) by forecasting the state of the
RSS in real time based on the operating mode and drilling parameters. This method allows
reducing the cost of repair and maintenance of the drilling equipment.

Wang [32] presented an approach that uses multilayer neural network modeling to
predict nonlinear optimization of DPs. The proposed model can not only predict the pump
pressure, as the desired parameter, but can also ensure the impact of each input parameter
in this model.

The mechanism of damage to drilling equipment is usually accompanied by several
successive incidents that contribute to the loss of efficiency. Consequently, recognition,
classification, elimination of breakdowns, and calculation of the remaining useful life are
impossible without constant monitoring of the health of the system. Therefore, Camci
and colleagues [33], with the help of the hidden Markov model, created a model capable
of monitoring the current state of the mechanism, through signals sent by sensors. In
particular, this model has shown excellent results for diagnosing the condition of drill bits.

At present, methods of programming neural networks for solving problems in various
fields have been widely used. An artificial neural network is an interconnected group of
nodes, similar to our brain system [34]. For example, Lind and Kabirova [35] used the
neural programming method to predict possible problems that may arise when drilling
wells, based on information about the oil field reserves. The results obtained showed the
effectiveness of the neural network application for solving this problem.

A Bayesian neural network was used in the work by Al-yami and Schubert [36]. The
method used allowed creating a system for making expert decisions in drilling. This

6



Symmetry 2021, 13, 1293

method can be used to train young engineers. The system can also provide advice during
all stages of well construction. This advice can be on well completion, monitoring of
drilling and cementing of wells, selection of drilling fluids, etc.

Drilling engineers are always looking for methods to predict unexpected drilling
situations and to improve the associated parameters accordingly. The prediction of the
drilling rate is given high priority because of its impact on the optimization of various
parameters, which directly reduces costs. Jahanbakhshi and colleagues used a neural
network to predict the rate of penetration (ROP) [37]. The type of rock, mechanical
properties of the formation, hydraulics, the type of bit and its features, and rotor speed
were chosen as input parameters. Monazami and colleagues [38], in their article, also used
a neural network to estimate the ROP. The authors considered this method as the most
useful tool in forecasting in comparison with the currently available procedures. The model
allows the drilling crew to assess the ROP not only at the planning stage but also during
drilling. The results of this work showed that neural programming for the quality of ROP
prediction is superior to conventional methods. Amer and colleagues [39] used the method
of backpropagation to predict the ROP, which showed its success in their work.

Gidh and colleagues [40] also used an artificial neural network to develop a program
to optimize drilling parameters. The result of this work was a model capable of choosing
the optimal ROP and weight on the bit to extend the life of the bit. This model selects the
necessary drilling parameters based on the expected characteristics of the rock on which the
drilling will take place. Further, all parameters were adjusted for the relevant conditions.

In another publication, the ROP, together with the specific mechanical energy found
by Rashidi and colleagues [41], was used to calculate the bit wear in real time. Between the
specific mechanical energy and the weight on the bit, a linear relationship was obtained.
Based on the analysis of a vast number of experiments, the authors believe that this model
can become a valuable tool in the analysis of bit wear in real time.

Valisevich and colleagues [42], using an artificial neural network, created a model
optimizing the development of bits in real time. All this led to an increase in the drilling
speed, and a decrease in bit wear during drilling.

Another application of neural networks was presented by Dashevskiy and
colleagues [43]. This work allowed simulating a nonlinear drilling system with a minimal
error share by monitoring its dynamic behavior. The authors achieved the primary aim of
the work—the use of neural networks for the intelligent control of drilling in dynamics.

GirirajKumar and colleagues [44], for an improvement in drilling, suggested using an
optimally tuned proportional–integral–differential (PID) controller in high-performance
drilling systems. The primary aim of their work was to obtain a stable, reliable, and
controlled system by tuning the PID controller, using the optimization algorithm for swarm
intelligence. The results of their work showed that tuning the PID controller using RI
(swarm intelligence) provides a smaller overshoot.

Using a neural network, Lind and colleagues created an algorithm for predicting the
loss of drilling fluids [45]. This system allows one to receive a recommendation for the
selection of drilling fluids.

Static training methods for predicting torque and friction in real time were applied
by Hegde and colleagues [46]. They considered algorithms such as regression, random
forest, and the support vector method. These methods can be used to predict DPs and take
appropriate measures to eliminate them. For example, an unexpected change in the value
of torque may be a sign of a complication.

Another common complication—the instability of the walls of the well—with the help
of a neural network, was predicted by Okpo and colleagues [47]. The program developed by
the authors was used to predict the geomechanical parameters of the formation. The model
was developed in a Neuroph Studio, and the platform of the neural network was Java and
Netbeans IDE. The main advantage of this model is its simplicity and open-source code.

Unrau and colleagues [48], using an ML method, improved the existing alarm system
on a drilling rig. The standard alarm systems used for drilling can register too many false
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alarms that significantly affect the drilling process. The ML algorithm proposed by the
authors can be used to reduce false alarms while maintaining the efficiency of the alarm
system. The model successfully detects kicks and loss.

As noted above, the integration of AI methods in a drilling process has great practi-
cal importance.

A DP is a violation of the continuity of the technological process of the construction of
a well, requiring, for its liquidation, carrying out special works not planned in the project.
In the process of drilling oil and gas wells, due to phenomena of a geological nature, there
are, from time to time, problems in the technological process. This could be loss of drilling
mud and fluid, kicks, or a stuck drill and casing columns [49].

Drilling crews constantly face a lot of difficult situations, the exits from which can
be very expensive, and even impossible. A drill string may be stuck, by pressing against
the wall of the well during a draw-down, or as a result of key seating. To eliminate these
problems, additional efforts will be required to free the drill string. Sometimes, these efforts
can fail. Then, drilling a side track is required [50].

Making a decision to eliminate these problems is a complex process. The damage
from complications consists of the time spent for the elimination of DPs, and costs for
materials and energy. To minimize the risks of drilling problems, work is being carried
out to minimize vibrations of the bottom of the drilling assembly [51]; a mathematical
model of a screw downhole motor (SDM)–drilling string (DS) system is being developed,
which allows predicting the range of DS self-oscillations and boundaries of rotational and
translational wave disturbances for the case of string modeling as a heterogeneous rod
when drilling directionally straight sections of a well [52]. Thus, preventing problems and
accordingly minimizing the risks of their occurrence are an actual problem today.

The aim of this work was to find a learning algorithm to recognize and classify DPs
while drilling wells. Of the eight methods of ML, gradient boosting (GB) was chosen.
This algorithm showed a high-performance precision, recall, and F-score (see below). This
learning algorithm, based on historical data from previously drilled wells, classifies the
DPs better than other algorithms. Such a decision support system will help engineers
to intervene in the drilling process and prevent high expenses due to unproductive time
and equipment repair. Another significant plus is worth noting. That is, the algorithm,
in addition to the classification of DPs, accurately determines the standard drilling mode.
This minimizes the possibility of triggering false alarms, which will also save drilling time.
False alarms are also one of the problems when drilling wells which take up a significant
amount of time and money.

2. Existing Methodologies

In order to create a program that classifies the problems in the drilling process, the
main methods of ML with which the calculation was performed were considered. These
methods have shown successful applicability in solving problems in various industries.

2.1. Logistic Regression

Logistic regression is a statistical technique for analyzing a dataset that has one or
more independent variables that determine the outcome. The outcome is measured using
a dichotomous variable (which has only two possible outcomes). It is used to predict the
binary outcome (1/0, Yes/No, True/False) given a set of explanatory variables [53].

It is worth noting that this method is based on fairly strong probabilistic assumptions,
which have several interesting consequences. First, the linear classification algorithm turns
out to be the optimal Bayesian classifier. Secondly, the forms of the activation function
(it is the sigmoid function) and the loss function are uniquely determined. Thirdly, an
interesting additional possibility arises, along with the classification of the object, to obtain
numerical estimates of the probability of problems belonging to each of the classes [54].
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2.2. Naive Bayesian Classifier

A naive Bayesian classifier is a simple probabilistic classifier based on the application
of Bayes’ theorem with strict (naive) assumptions about independence.

In other words, a naive Bayesian classifier assumes that the presence of a particular
feature in a class is not related to the presence of any other feature. For example, circulation
loss can be detected by the following signs: the fluid flow from the well decreases, the
level in the tanks decreases, and the outlet pressure decreases. Even if these parameters are
dependent on each other or on the presence of other parameters, a naive Bayesian classifier
will consider all of these properties independently of each other to create the likelihood
that well loss is occurring [55].

Depending on the exact nature of the probabilistic model, naive Bayesian classifiers
can be trained very effectively. In many practical applications, the maximum likelihood
method is used to estimate the parameters for naive Bayesian models. In other words, one
can work with a naive Bayesian model not believing in Bayesian probability and not using
Bayesian methods [56].

2.3. Method K-Nearest Neighbors

The method of k-nearest neighbors is a metric algorithm for automatic classification of
objects. The main principle of the method of nearest neighbors is that the object is assigned
to the class that is the most common among the neighbors of this element.

Neighbors are taken based on a set of objects whose classes are already known, and,
based on the key value for this method, the value of k is calculated, in order to find which
class is the most numerous among them. Each object has a finite number of attributes.

It is assumed that there is a certain set of objects with an already existing classifica-
tion [57].

In the learning process, the algorithm simply remembers all the feature vectors and
the corresponding class labels. When working with real data, i.e., observations whose class
labels are unknown, the algorithm calculates the distance between the new observation
vector and the ones previously stored. Then, k-nearest vectors are selected, and the new
object belongs to the class that owns most of them.

2.4. Decision Tree

Decision trees are a simple and widely used classification method. This method
applies a simple idea to solve a problem. Decision trees ask thoughtful questions about the
attributes of a test record. Each time the tree receives a response, the next question is asked
until a conclusion is drawn about the class label of the record [58].

A decision tree is a graphical method that describes solutions and their possible
outcomes. Decision trees consist of three types (Figure 1):

1. Decision node: This is often represented by squares that show what can be con-
ducted. The lines coming out of the square show all the available options available on
the node.

2. Probability knot: This is often represented by circles showing random results. Exodus
odds are events that can occur but are beyond the control of the manager.

3. Closing node: This is represented by triangles or lines that do not have additional
solution nodes or random nodes. Terminal nodes represent the final outcomes of the
decision process.
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2.5. Support Vector Machine

The support vector method is a set of similar algorithms of the form “learning with
the teacher”, used for classification problems and regression analysis. This method belongs
to the family of linear classifiers. A special property of the support vector method is
a continuous decrease in the empirical classification error and an increase in the gap.
Therefore, this method is also known as the classifier method with the maximum gap.

The basic idea of the method of support vectors is the translation of the original
vectors into a space of higher dimension, and the search for a separating hyperplane with
the maximum gap in this space. Two parallel hyperplanes are constructed on both sides
of the hyperplane that separates the classes. The separating hyperplane is a hyperplane
that maximizes the distance to two parallel hyperplanes. The algorithm works under
the assumption that the greater the difference or the distance between these parallel
hyperplanes, the smaller the average classifier error [59].

2.6. Random Forest

A random forest is a set of decision trees. In regression problems, their answers are
averaged, and in classification problems, a decision is made by voting on the majority.

The method is based on the construction of a large number (assembly) of decision trees,
each of which is constructed from a sample obtained from the initial training sample using
a sample with a return. In contrast to the classical algorithms for constructing decision
trees, in the method of random forests, when building each tree in the stages of vertex
splitting, only a fixed number of randomly selected attributes of the training sample are
used, and a complete tree is built, i.e., each sheet. The tree contains observations of only
one class. Classification is carried out by voting classifiers, defined by individual trees,
and regression estimation by averaging the regression estimates of all trees. It is known
that the accuracy of ensembles of classifiers essentially depends on the variety of classifiers
that make up the ensemble, or, in other words, on how correlated their decisions are. That
is, the more diverse the classifiers of an ensemble, the higher the probability of a correct
classification [60].

2.7. Gradient Boosting

Boosting is a procedure for the sequential construction of a composition of ML algo-
rithms, where each subsequent algorithm seeks to compensate for the shortcomings of the
composition of all previous algorithms. Boosting is a «greedy» algorithm for composing
the final algorithms (Figure 2).
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Boosting over decision trees is considered one of the most effective methods in terms
of the quality of classification. In many experiments, there was an almost unlimited re-
duction in the error rate on an independent test sample, as the composition was increased.
Moreover, the quality of the test sample often continued to improve even after achieving
an unmistakable recognition of the entire training sample. This overturned the ideas that
existed for a sufficiently long time that it is necessary to limit the complexity of the algo-
rithms in order to increase the generalizing ability. With the example of boosting, it became
clear that a good quality can have arbitrarily complex compositions, if properly tuned.

Subsequently, the booster phenomenon received a theoretical justification. It turned
out that weighted voting does not increase the effective complexity of the algorithm
but only smooths out the answers of the basic algorithms. Quantitative estimates of
the generalization of the boosting capacity are formulated in terms of indentation. The
effectiveness of the boost is explained by the fact that as the basic algorithms are added,
the indentation of the learning objects increases. Additionally, the booster continues to
expand classes, even after achieving an unmistakable classification of the training sample
(Figure 2) [61,62].

2.8. Neural Network

An artificial neural network is a mathematical model, as well as a software or hardware
implementation, built on the principle of the organization and functioning of biological
neural networks—the nerve cell networks of a living organism. This concept arose when
studying the processes occurring in the brain, and when trying to simulate these processes.
The first such attempt was the neural networks of McCulloch and Pitts [63]. After the
development of learning algorithms, the resulting models began to be used for practical
purposes: in forecasting problems, for pattern recognition, in control tasks, etc.

A neural network is a system capable of changing its structure under the influence
of external factors. An artificial network is trained on input data. During the training,
the internal parameters of the artificial neural network are adjusted to the input data,
which makes it possible to isolate patterns in the data or to solve problems of prediction,
classification, and clustering. When using an artificial neural network for data analysis, the
researcher solves several problems: what learning algorithm to use, what is the network
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configuration, etc. The required internal parameters are found automatically, according to
the chosen algorithm and configuration [63].

2.9. Evaluation of the Quality of Machine Learning Methods

Metrics are used to evaluate model quality and compare algorithms. Before moving
to the metrics, we need to introduce an important concept for describing these metrics in
terms of classification errors—the confusion matrix.

Having two classes and an algorithm that predicts the belonging of each object to one
of the classes, the classification error matrix will look similar to that shown in Table 1.

Table 1. Metrics by model.

y = 1 y = 0

y’ = 1 True Positive (TP) False Positive (FP)
y’ = 0 False Negative (FN) True Negative (TN)

In Table 1, “y’” is the answer of the algorithm on the object, and “y” is the true label of
the class on this object.

Thus, classification errors are of two types: false negative (FN) and false positive (FP).

2.10. Precision, Recall, and F-Score

Recall demonstrates the ability of the algorithm to detect a given class, and precision
demonstrates the ability to distinguish this class from other classes.

To assess the quality of the models used to classify the complications in the drilling
process, the widely used precision, recall, and F-score metrics were used.

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

where TP—positive observation which was expected to be positive; FN—observation is
positive, but it was predicted negatively; FP—observation is negative, but it was pre-
dicted positively.

There are several different ways to combine precision and recall in an aggregated
quality criterion. The F-score is an average harmonic of precision and recall:

Fβ =
(

1 + β2
)
· precision·recall
(β2·precision) + recall

(3)

where β, in this case, determines the weight of accuracy in the metric, and for β = 1, this
is the average harmonic (with a factor of 2, meaning that in the case of precision = 1 and
recall = 1, we have Fβ = 1); the F-score reaches a maximum for completeness and accuracy
of one, and is close to zero if one of the arguments is close to zero.

The sklearn library in Python has a convenient function metric, classification_report,
which returns the recall, precision, and F-score for each of the classes, as well as the number
of instances of each class [64].

3. Given Data

As initial data, reports on drilling 67 wells were assessed. Many of the wells have
had DPs that have led to rig downtime and loss of productive drilling time. The analysis
of the total time spent on drilling all wells showed that about 10.33% of this time was
unproductive operating time.
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It is worth noting that 10.33% is an important value, considering that the average cost
per hour of drilling varies from RUB 15,000 to 55,000. Additionally, in this database, there
is a well in which the unproductive time was 50% of the total operating time.

The main causes of unproductive drilling time at one specific field are shown in
Figure 3. The greatest losses of time were due to rig downtime in waiting for contractors
and equipment. Then, there is unproductive time due to the liquidation of penalties
(unscheduled work, redrilling due to the fault of the contractor, etc.). In this project, we are
interested in the trouble (DPs) that arises during the drilling process. This includes kicks,
loss of circulation, and borehole instability.
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Wells with problems were identified and analyzed. It should be noted that out of
67 wells, 20 wells were drilled without expenses for unproductive time. The most common
problem is related to the seizure that occurs when the casing runs down. It is worth
noting that in this project, calculations were made for complications arising directly during
drilling. For three wells, trouble arose during drilling, and detailed records are available.

For further analysis, all drilling parameters that were recorded for each well were
considered. The analysis of the data showed that not all the wells from the sample have
the same number of corresponding recorded drilling parameters. Some wells recorded
the minimum number of parameters. We would like to note that drilling reports were
provided for 67 wells, but the files with the recorded drilling parameters were provided for
78 wells. Therefore, data representing 78 wells were analyzed. For a wide analysis of the
drilling parameters recorded on the wells, reports from 78 wells were taken into account. It
can be seen from Figure 4 that only eight parameters are the most commonly reported for
all wells; these are highlighted in red. Additionally, these parameters will be used as input
parameters for the classification of complications.

After the work was conducted, for the three wells in which the DPs were plotted, the
recorded drilling parameters were plotted. The graphs were constructed using the Python
programming language, Figures 5–7.
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Well 1. The DP was associated with borehole instability due to technical water entering
at a depth of 2882 m (Figure 5). It can be noted that this problem was accompanied by
steep changes in drilling parameters. In particular, the value of the hook load, rotary table
torque, etc., steeply increased. To eliminate this problem, the drilling crew spent 231 hours
working on it.

Well 2. During well drilling, in the interval 239–263 m, the drilling fluid was lost at
a volume of 40 m3 (Figure 6). A total of 7.1 hours of unproductive time were spent on
solving this problem. It is worth noting that the graph clearly shows that during the loss,
circulation significantly decreased the level of the fluid capacity to mud tank № 2. A mud
tank is an open-top container, typically made of square steel tubes and steel plates, to store
drilling fluid on a drilling rig. They are also called mud pits, as they were once simple pits
in the ground.

Well 3. When drilling to 2493 m, the drilling fluid was lost. The total loss was 55 m3

(Figure 7). To eliminate the complication, colmatage fluid was injected. The total time taken
to combat the DP was 27.9 hours. This well is one of those that did not record the complete
list of required drilling parameters.
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4. Results

According to the algorithms of machine training given in the previous chapter, cal-
culations were performed to classify (forecast) the problems in the drilling process. For
calculations, the Python programming language and the scikit-learn library were used.

The percentage of training and test samples among the data was set as 65/35%,
respectively. The training sample is a sample based on which the chosen algorithm adjusts
the dependency model. The test sample is the sample by which the accuracy of the model
used is checked. The following drilling parameters were used as input parameters:

• Standpipe pressure;
• Tank level 02;
• Input flow rate;
• Hook load;
• Rotary table torque;
• Rate of penetration;
• Weight on bit;
• Gas content.

As a result of the calculations, the following metrics were obtained, for the subsequent
detection of the most accurate model.

Table 2 shows that the following algorithms of machine learning (ML) have the highest
values of the metrics: decision tree; random forest; gradient boosting (GB).

17



Symmetry 2021, 13, 1293

Table 2. Metrics by model.

Algorithm
Metrics (Determination of Drilling Problems)

Precision Recall F-Score

Logistic regression 0.00 0.00 0.00
Naive Bayesian classifier 0.03 1.00 0.06

Method of k-nearest neighbors 0.83 0.64 0.73
Decision tree 0.97 0.87 0.92

Support vector method 0.00 0.00 0.00
Random forest 0.98 0.93 0.95

Gradient boosting 1.00 0.93 0.97
Neural network 1.00 0.53 0.70

Next, we considered the number of correct and incorrect assumptions in the calculation
of algorithms. Table 3 presents the case for situations where there are no problems while
drilling, and in Table 4, the classification of problems while drilling is shown. The goal
is to see how the algorithm can misclassify the drilling process. “Right” is the number of
correctly predicted values; “False” is the number of misplaced predictions when drilling
without a problem being recognized. From the data presented, it can be seen that the
greatest number of correct and accurate classifications of situations is obtained using the
ML method of gradient boosting (GB). GB allowed, with the lowest number of errors,
classifying the complication from the available dataset.

Table 3. Accuracy of prediction of a normal situation.

Algorithm Situation Right False

Logistic regression Normal 3916 1
Naive Bayesian classifier Normal 2484 1433

Method of k-nearest neighbors Normal 3911 6
Decision tree Normal 3916 1

Support vector method Normal 3917 0
Random forest Normal 3915 2

Gradient boosting Normal 3917 0
Neural network Normal 3917 0

Table 4. Accuracy of prediction of a problem situation.

Algorithm Situation Right False

Logistic regression Problem 0 45
Naive Bayesian classifier Problem 45 0

Method of k-nearest neighbors Problem 29 16
Decision tree Problem 39 6

Support vector method Problem 0 45
Random forest Problem 39 6

Gradient boosting Problem 42 3
Neural network Problem 27 18

Then, a sensitivity analysis was performed (Figure 8), when the drilling parameters
were removed from the gradient boosting, in turn, by their weight coefficients from the
smallest to the largest. This allowed understanding how many parameters at the input are
needed in this situation for the correct operation of gradient boosting. It was established
that when the parameters such as “Gas content”, “Weight on bit”, and “Rate of penetration”
are removed from the model, the system classifies the drilling problems with the same
accuracy. Accordingly, it can be concluded that this algorithm, in the event of an emergency
situation, can classify drilling problems according to the five available parameters without
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a loss of accuracy: “Rotary table torque”, “Standpipe pressure”, “Hook load”, “Tank level
02”, and “Input flow rate”.
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5. Discussion

Based on the results of this work, an algorithm of gradient boosting is capable of
recognizing and classifying complications in the process of drilling wells better than other
algorithms. This algorithm has the highest value of the test metrics and the greatest number
of correct and accurate classifications. The algorithm returned the correct prediction of a
normal situation 3917 times out of 3917, and the correct prediction of a problem situation
42 times out of 45. It can be argued that using the gradient boosting algorithm while
drilling wells will help, in terms of time, in assisting with the drilling process and prevent
high expenses for rig downtime and equipment repair. The program will signal a possible
problem. It is worth noting that in this work, we did not use too much initial data. Therefore,
it is recommended to increase the efficiency of the model, in order to test it on a higher
number of initial data.

Worth noting is another significant plus. The algorithm, in addition to the classifica-
tion of DPs, accurately determines the standard drilling mode (without problem). This
minimizes the possibility of triggering false alarms, which will also save drilling time.
False alarms are also one of the problems when drilling wells, which take up a significant
amount of time and money. Additionally, if new technologies are introduced by companies
in oil and gas production, this will allow businesses to save their costs. For example,
in the construction of a drilling rig that reaches hundreds of millions of dollars, even a
5% reduction in planning time can have a significant positive impact on the company’s
profits [65].

Nybø [66,67] solved a similar problem. In this work, a hybrid system was developed
that includes a physical model and AI. Together, they allow one to recognize the problems
when drilling much better than individually. Additionally, in this paper, the problem of the
small number of studies on the introduction of methods of ML in the drilling sector was
addressed. The authors of this work are also convinced that this integration of machines
and people will significantly increase the efficiency of drilling wells.

Based on the results of the analysis using eight algorithms, it can be seen that the
logistic regression and support vector method show metrics equal to zero for the recognition
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of complications. Perhaps these values are associated with the small number of initial data
of complications. Therefore, these algorithms show such poor results. As noted above, for
further work, it is recommended to experiment with a much larger number of initial data.

6. Conclusions

In trying to avoid the problems in the drilling process, their classification and timely
elimination remain an urgent problem to date. The aim of this work was to create a program
capable of recognizing and classifying drilling problems (DPs). Following the results of
this work, the following achievements were made:

1. Based on the literature review, a wide application of AI in drilling was shown, from
the creation of training programs to the prediction of the rate of penetration.

2. During the analysis of the initial data, wells with problems that were encountered
during drilling were identified. To model the presented DPs, a computer model was
set up.

3. During the analysis of the drilling reports, a list of the main parameters was compiled,
which participated as input for the model: standpipe pressure; tank level; input flow
rate; hook load; rotary table torque; rate of penetration; weight on bit; gas content.

4. Of the eight methods of machine learning (ML), the GB method was chosen. This
algorithm showed a high-performance precision, recall, and F-score.

5. For the GB method, the parameters that make the greatest contribution to the opera-
tion of the algorithm were established using the feature importation parameter. These
are the rotary table torque, standpipe pressure, and hook load.

6. During the GB analysis, it was established that in the case of removing parameters
such as gas content, the model continued to work without changing the accuracy of
the classification of the DPs.

7. Although the ultimate goal of this work was to teach the program to classify the
problems in the drilling process, in the future, it is necessary to consider the possibility
of predicting the drilling problems in real time, for example, using time series. Such a
model will avoid problems, preventing high costs.

8. In the future, it is necessary to train the algorithm on a larger number of data on wells
with problems. This will expand the application of the program and elucidate how to
classify various types of drilling problems.

9. It will be useful to test the model by specifying not only drilling parameters but also
geophysical logging data, on the input. This will allow models to take into account
such a parameter as lithology. Depending on the different rocks, the log data will
show the different behaviors of the curves.

10. It is also recommended to use geomechanical parameters of the formation as input
data. These data will allow predicting possible problem areas of the well in advance
that are prone to collapse.
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Abstract: The article proposes a solution to the problem of increasing the accuracy of determining
the main shaping dimensions of axisymmetric parts through a control system that implements
the optical method of spatial resolution. The influence of the projection error of a passive optical
system for controlling the geometric parameters of bodies of revolution from the image of its sections,
obtained by a digital camera with non-telecentric optics, on the measurement accuracy is shown.
Analytical dependencies are derived that describe the features of the transmission of measuring
information of a system with non-telecentric optics in order to estimate the projection error. On the
basis of the obtained dependences, a method for compensating the projection error of the systems for
controlling the geometry of the main shaping surfaces of bodies of revolution has been developed,
which makes it possible to increase the accuracy of determining dimensions when using digital
cameras with a resolution of 5 megapixels or more, equipped with short-focus lenses. The possibility
of implementing the proposed technique is confirmed by the results of experimental studies.

Keywords: axisymmetric parts; optical control; control of geometric parameters; method with spatial
resolution; projection method; error compensation

1. Introduction

Currently, production efficiency depends on the ability to control the quality of the
processed workpieces in a timely manner, the condition of technological equipment and
the progress of technological processes at all stages of production. To solve these problems,
it is proposed to use optoelectronic devices (including machine vision systems), which
make it possible to create automated control systems for various industries [1].

As examples of the use of tools that implement the optical method of control, one can
cite the tasks of assessing the cryolite ratio [2], determining the position of the electrodes of
ore-thermal furnaces [3] in the metallurgical industry, assessing the efficiency of flotation [4]
at obage fabrics, monitoring of self-oscillations in the process of cutting materials based
on the registration of the light field [5] and roughness measurement [6,7] in mechanical
engineering. Technical vision systems are also used in studies of the mechanical properties
of bulk materials [8,9].

The problem of automated control of geometric parameters is an urgent one [10].
Currently, optoelectronic measuring systems have been implemented that implement the
projection method [11] and use telecentric optical systems with a collimator illumination
system [12]. The main advantage of telecentric optics is a constant magnification factor
over the entire operating range and, therefore, the absence of perspective distortions for
extended objects, but at the same time, its use greatly increases the cost of the system,
limits layout solutions (product inspection only in transmitted light) and the control area to
340 mm, determined by the field of view of existing lenses. The use of digital cameras with
non-telecentric optics makes it possible to remove these restrictions. As examples, we can
consider the control of the geometry of the current-carrying rods of electrolyzers [13] in
metallurgy and the nature of chip formation [14] in the machine-building industry.
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The use of active control systems with structured illumination is known [15]; however,
an example of a significant drawback of the presented system is the determination of the
size of the product in only one section. Comprehensive control of spatial geometry is
provided by active optical 3D scanning systems, individual samples of which are certified
as measuring instruments [16,17]; however, problems with the control of products with
a surface with a pronounced indicatrix of reflection (typical for mechanical engineering
products) increase digitization errors [18].

Thus, it can be noted that the use of passive projection systems that implement the
spatial resolution method for solving problems of controlling the main shaping dimensions
of axisymmetric objects is a promising direction of development. The use of digital cameras
with entocentric optics in such systems makes it possible to reduce the cost of control
systems and expand their functionality by increasing the variety of possible layout solutions
that allow working in both transmitted and reflected light. The latter is an important
condition for their use in conjunction with mirror converters, [19] the use of which meaning
it is possible to solve the problem of compensating for the positioning error without
increasing the number of cameras.

2. Statement of Research Objectives

The main problem of using control systems with entocentric optics for solving prob-
lems of controlling the geometric parameters of products is the dependence of the results
on many external factors. These include aberrations of the optical system, errors in deter-
mining coordinates, positioning of the control object, extraneous illumination, refraction
of the medium etc. with the relative position of the control object and the digital camera,
and taking into account the imperfection of the optical system, the calibration procedure
of the control systems is used [20,21]. Calibration techniques are constantly being im-
proved [22–24] and allow for a reduction in systematic error in determining the size of
products from their images to a value equivalent to 1–2 px for digital cameras with a
resolution of up to 5 Mp, equipped with long-focus lenses. Together with the method of
complex error compensation [25], which compensates for background illumination errors
and noise components, they provide the ability to control flat products with an error of up
to 0.1%.

If until recently digital cameras with a resolution of 0.3–2 Mp were used (in 2017—
85% [26]), then the current trend is to increase the resolution of cameras to 5 . . . 10 Mp [27],
and, in the near future, up to 16 . . . 25MP. The use of high-resolution cameras makes it
possible to expand the application of machine vision systems to the tasks of controlling
geometric parameters, providing the ability to control with a relative error of less than 0.1%.

However, an increase in resolution leads to the fact that when measuring the dimen-
sions of bodies of revolution, previously imperceptible components of systematic errors
appear in the projection, in which the visible image is not located in the plane of symmetry
of the part (Figure 1). In this regard, the analysis of the sources of such errors and methods
of their compensation becomes an urgent task of the study.
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2. Statement of Research Objectives 
The main problem of using control systems with entocentric optics for solving 
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A feature of the formation of an image of bodies of revolution in reflected light by
an entocentric system (Figure 2) is that the observed image is not located in the plane of
symmetry but is displaced by a distance of l along the optical axis towards the camera.
This leads to the fact that, on the one hand, the observed size d is less than the controlled
size of the section D, but it is located closer to the calibration plane (coinciding with the
axis of symmetry), which leads to a change in the linear increase in V for the observed size
d upward. In addition, the displacement of the body of revolution relative to the optical
axis by a distance y leads to the rotation of the image by an angle α. Figure 2 shows a
geometric model of the formation of an image of an axisymmetric part by entocentric optics
for f = 7 mm, L = 200 mm and D = 100 mm. For clarity of presentation of changes in the
main parameters, they are shown in Figure 2 next to their corresponding designations.
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Figure 2. Formation of an image of an axisymmetric part by an entocentric optical system. 

Figure 2 shows the fixed inverse image of the section of the body of revolution D has 
an apparent size d 

d = D ∙ ඩ1 − ൭ D 2ൗL − f൱ଶ
 (1)

where: L—working distance, f—focal length. 
The visible image is smaller than the object, and this difference only grows with 

decreasing focal length. In this case, the image is displaced along the optical axis by l = Dଶ4 ∙ ሺL − fሻ (2)

Observation angle γD of controlled size D. 

γୈ = аsin ൭ D 2ൗL − f൱ (3)

All this leads to errors in estimating the size of products. The dependences of the 
calibration errors δv, the projection error δd and the total error δ∑ on the ratio of the 
determined dimensions D to the width of the field of view B are shown in Figure 3 for 12 
and 25 mm lenses. 
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To assess the influence of these factors on the error in determining the dimensions,
we determine the values of these parameters.

Figure 2 shows the fixed inverse image of the section of the body of revolution D has
an apparent size d

d = D·

√√√√1−
(

D
2

L− f

)2

(1)

where: L—working distance, f—focal length.
The visible image is smaller than the object, and this difference only grows with

decreasing focal length. In this case, the image is displaced along the optical axis by

l =
D2

4·(L− f)
. (2)

Observation angle γD of controlled size D.

γD = а sin

(
D
2

L− f

)
(3)

All this leads to errors in estimating the size of products. The dependences of the
calibration errors δv, the projection error δd and the total error δ∑ on the ratio of the
determined dimensions D to the width of the field of view B are shown in Figure 3 for
12 and 25 mm lenses.
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Figure 3. Calibration error and projection error in determining the dimensions of the body of revolution, for systems with
focal length: (a) 12 mm and (b) 25 mm.

It can be seen from the graphs that when the size of the test object almost completely
coincides with the field of view, the error for a 12 mm objective can reach 1%, and for a
25 mm objective—0.25%. Thus, when measuring the dimensions of parts that occupy most
of the field of view of a digital camera, the influence of these errors can be considered
significant for the control of products according to 8–9 qualities. With product sizes less
than 50% of the field of view, the considered error for a 25 mm lens is ~0.07% and becomes
insignificant for cameras with a resolution of up to 5 Mp.

3. Materials and Methods

Numerical simulation and experimental research was carried out based on the use
of cameras for image registration: Basler Pilot piA2400-17 (sensor: CCD 2/3 “; resolution
2456 × 2058), with Ricoh FL-CC2514-2M lenses (f = 25 mm), Ricoh FL- HC0612A-VG with
f = 12 mm; ACE acA640-120gm (sensor: CCD 1/4 “; resolution 659 × 494) and 5,0 MпUSB
camera (sensor: CMOS 1/2.5”, resolution 2592 × 1944) with Computar M1214-MP2 lens
with f = 6 mm.

The software implementation was carried out in the LabVIEW environment using the
Vision library (technical vision module) [28]. The built-in calibration function was used
based on the image obtained using the Calibration Training utility against a standard point
pattern with a step of 10 × 10 mm, made by laser graphing with an error of no more than
0.01 mm (Figure 4a).
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Figure 4. Point pattern (a) and sample parts Ø 25 mm (b).

For control, 3 samples of parts were made, which were shafts 75 mm long with four
separated grooved surfaces Ø 15, 20, 25 mm (Figure 4b). The actual dimensions of the
samples were estimated using a digital micrometer CDWAS 0–25 ∆ = ±0.002 mm and a
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linear displacement transducer with a rod LIR14-20-01 of the 2nd accuracy class with a
digital display device LIR-510A-00 using plane-parallel gauge blocks.

The position of the test object, which affects the accuracy of the calibration proce-
dure, was estimated using the developed software in the LabVIEW environment [29],
the operation algorithm of which is described in [30].

The study of the error compensation technique was carried out in reflected light.
Figure 5 shows fragments of experimental studies, illustrating the comparative results of
the evaluation of the sample sizes with calibration—Distortion Model: Polynomial (Kl, K2,
K3), using the developed compensation algorithms and without these same algorithms.
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Figure 5. The value of the error in determining the diametrical dimensions of the body of revolution
when the optical axis does not intersect with the axis of rotation of the controlled part.

4. Results

To determine the amount of compensation, you need to derive the inverse relationship.
The initial data are the parameters f,Dk—the calculated size, based on the calibration data
in the symmetry plane nd—the number of pixels that make up the image of the visible
size d′.

The following dependencies can be used to compensate for the perspective error:

D = DK· cos
(

tan−1
(

d′

2f

))
(4)

or

D = DK· cos
(

tan−1
(

DHK

2(L− f)

))
(5)

where DHK is the diameter obtained as a result of measurements from the image.
To compensate for the manifestation of a perspective error in the horizontal plane, it is

necessary to take into account the change in the linear magnification factor when mixing
the visible image along the x axis by l, which can be determined by formula (3).

The cross section is observed at an angle ν, which can be determined from the dependence

ν = sin−1 z
L− f

(6)

where z is the displacement relative to the optical axis along the axis of symmetry of the
body of revolution.

The change in ∆l can be determined from the dependence

∆l =
D2(1− cosν)

4·(L− f)
. (7)

To take into account the displacements of the shaft axis in the vertical plane relative to
the axis of symmetry of the body of revolution by y, we define the rotation of the observed
section by the angle α

α = tan−1
(

y
L− l

)
.
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This will displace the image horizontally and resize the image by

∆α = D· cosα. (8)

Figure 5 shows a graph of the dependence of the relative error in determining the
dimensions of bodies of revolution in case of violation of the condition of crossing the axis
of symmetry of the body of rotation of the optical axis of a digital camera, presented in
a relative form of dependence for lenses: with f = 6 mm L = 39 mm and f = 12 mm and
L = 145 mm.

Notes for algorithm for complex compensation of errors:
1. correction of the horizontal component, takes into account the rotation of the test

object relative to the vertical axis by changing the parameter z of expression (7).
2. correction, takes into account the violation with respect to the condition of perpen-

dicularity of the test object of the optical axis of the digital camera and can be determined
by the expression ∆α = D· cosβ, where β is the angle of inclination of the test object.

3. correction, taking into account the position of the test object, can be performed
based on the linear magnification measurement dependence, which can be calculated by
the formula δVP = XP1−f

XP−f = XP±∆X−f
XP−f , where: ∆X—displacement of the controlled rod

Based on the obtained regularities, an algorithm for image processing and correction
of the calculated values was developed for the complex compensation of errors in the
control system of axisymmetric products, which is shown in Figure 6.
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Figure 6. Algorithm for complex compensation of errors of the control system of axisymmetric products.
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To assess the developed compensation technique, we calculate the main parameters
shown in Figure 2. The results of modelling the error compensation process are presented
in Table 1. Its results show the possibility of full compensation of the considered errors for
an ideal optical system.

Table 1. Results of numerical simulation of compensation of projection error of the system for
controlling the dimensions of axisymmetric objects.

f,
mm

D,
mm

L,
mm γ, ◦ V l, mm D,

mm
d’,

mm
Dk,
mm γp, ◦ Dp,

mm

6 49.27 72 21,916 0.0909 9.1952 45.709 4828 53,108 21,916 49.27

6 30.77 72 13,480 0.0909 3.5863 29.922 2876 31,642 13,480 30.77

6 25.38 72 11,085 0.0909 2.4399 24.906 2351 25,863 11,085 25.38

6 15.43 72 6712 0.0909 0.9018 15.324 1412 15.5363 6712 15.43

f,
mm

D,
mm

L,
mm γ, ◦ V l, mm m d’,

mm
Dk,
mm γp, ◦ Dp,

mm

f D L α V l d Dk αp Dp

12 49.27 153 10,062 0.0851 4.3041 48.512 4258 50,040 10,062 49.27

12 30.77 153 6264 0.0851 1.6787 30.586 2634 30,955 6264 30.77

12 25.38 153 5163 0.0851 1.1421 25.277 2168 25,483 5163 25.38

12 15.43 153 3136 0.0851 0.4221 15.406 1315 15,453 3136 15.43

In Figure 7—graphs of errors in determining the dimensions of a sample with a
nominal Ø 25 mm: using only the calibration procedure (Cal.), using the projection error
compensation algorithm (CA) and complex compensation (CC) errors for digital cameras
whith f = 25 mm and f = 12 mm entocentric optics. The error graph for a camera with
an f = 12 mm lens additionally shows a constant factor calibration (Const.) to clearly
demonstrate lens distortion. Examples of measurement results with 60 sampling points
are given.
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Figure 7. Errors in determining the dimensions of the bead in the absence and use of compensation
algorithms for f = 25 and f = 12 mm—60 measurement points.

The results of a quantitative assessment of the results of the correction are presented
in Table 2. A column was added showing correction results, combining projection error
compensation and test object position error.
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Table 2. Evaluation of methods for correction of dimensions for f = 25 mm.

Parameters Calibration
(Cal.)

Compensation of Projection
Error
(CA)

Compensation of Projection
Error + Position of

Test-Object

Complex
Compensation

(CC)

f, mm 25 12 25 12 25 12 25 12

m 20 48 48 20 48 48 20 48 48 48 48

M, mm 0.079 0.073 0.224 0.042 0.042 0.118 0.034 0.033 0.098 −0.004 0.006

S, 0.079 0.081 0.237 0.048 0.053 0.135 0.041 0.046 0.118 0.026 0.057

δ *, mm 0.174 0.171 0.489 0.107 0.112 0.285 0.090 0.098 0.242 0.055 0.11

* t0,04;48 = 2112; t0,04;20 = 2204.

While analyzing the obtained values, it can be concluded during the use of cameras
with a resolution of 5 Mp with long-focus lenses (with f = 25 mm and more) that the projec-
tion error is comparable to the positioning error, and the dominant error is the binarization
error. For a 5-megapixel camera with a short-focus lens f = 12 mm, the projection error and
displacement errors of the body of revolution have a significant effect on the accuracy of
determining the dimensions of the bodies of revolution. Their compensation practically
eliminates the systematic component, which decreases from approximately 1% to 0.024%,
which is less than 1

2 pix for the camera under consideration. It can be seen from the graphs
that, as before, the dominant random component is the image binarization error equal to
±1.5 pix.

Figure 8 shows an example of comparing different calibration algorithms for a camera
with lenses f = 25 mm and f = 25 mm. The object position error for 23 control points has
not been corrected for clarity. The results of a quantitative assessment of the results of the
correction are presented in Table 3.
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Figure 8. Errors in determining the roller diameter Dnom = 25 mm when using standard NI calibra-
tions for f = 25 and 12 mm.

Comparison of the results of image correction for a lens with f = 25 mm shows that the
use of standard calibrations of optical distortions NI with three coefficients makes it possible
to almost completely eliminate the systematic component determined by distortions of the
optical system −M = 0.001 . . . 0.002 mm. The random component is mainly determined by
the image binarization errors. The division of the field of view into two binarization areas
(top and bottom) is insufficient. For a lens with f = 12 mm, due to the absence of image
rotation, the Divison calibration provided a lower systematic error, with practically equal
values of the random error, the spread of the values of which is within the statistical error
of the estimate.

The effect of threshold binarization values can be clearly represented in Figure 9,
from which it can be seen—when the threshold values are changed by 3 . . . 4 units at the
top of the image from 180/255 to 183/255 and from 140/255 to 136/254 at the bottom,
results in a change in ± 1–2 pxs.
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Table 3. Errors in determining the dimensions of a 25 mm diameter roller at different calibrations
with a lens with f = 25 and 12 mm at m = 20.

Parameters Sim. Div. Pol. k1 Tan. k1 Pol. k3 Tan. K3

f = 25 mm

M, mm −0.002 0.014 0.008 0.009 −0.002 −0.001

S, mm 0.049 0.035 0.036 0.033 0.036 0.035

δ*, mm 0.109 0.078 0.080 0.072 0.080 0.078

f = 12 mm

M, mm 0.05 −0.003 0.018 0.020 0.010 0.034

S, mm 0.092 0.025 0.030 0.034 0.033 0.044

δ *, mm 0.203 0.056 0.066 0.075 0.072 0.097
* t0,04;20 = 2204.
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Figure 9. Sample dimensions Ø 25 mm, obtained in reflected light for two threshold binarization values for f = 25 mm.

A numerical estimate of the influence of the binarization threshold values during
measurement of the dimensions of a detail for a 5MP camera with a long-focus lens
f = 25 mm is given in Table 4.

Table 4. Evaluation of the effect of binarization threshold values for a long-focus lens with f = 25 mm.

Parameters 180/255 &140/255 183/255 & 136/254

Bias Compensation No Yes No Yes

M, mm 0.036 0.006 0.035 0.005

S, mm 0.049 0.033 0.044 0.027

δ *, mm 0.108 0.073 0.098 0.059
* t0,04;46 = 2114.

Due to the irregularity of illumination at the edges of the image, an error arises in
determining the dimensions according to a fixed threshold binarization value, which affects
the accuracy of determining the dimensions. The operation of subtracting the background
does not always compensate for this component due to the appearance of a shadow when
installing a part, which is absent when fixing the background.

The filtering procedure eliminates the noise component. Figure 10 and Table 5 demon-
strate the application of Gausian and Smoothing filters with kernel sizes 3, 5, 7. Slight
blurring of the image smoothed out the random noise component and surface flare.

The results of the study show that the use of filters can reduce the confidence interval
by up to one and a half times. The values obtained show the preferred use of a 5-kernel
smoothing filter.

The results of studying the compensation of systematic errors of a 0.3 Mp camera with
an f = 6 mm lens at L = 275.5 mm are shown in Figure 11 and in Table 6. The developed
distortion compensation (DDC) model based on the use of the image space sampling
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algorithm [31] has been added to the previously considered algorithms with standard
NI calibrations.
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Figure 10. Dimensions of a specimen Ø 25 mm obtained in reflected light without the use of a filter
and with a Gaussian and Smoothing filter for f = 25 mm.

Table 5. Evaluation of filtration calibration methods for a telephoto lens f = 25 mm.

Parameters
No Filter

Filter

Gausian Smoothing

Kernel 3 5 7 3 5 7

M, mm 0.050 0.041 0.035 0.037 0.039 0.028 0.023

S, mm 0.063 0.051 0.045 0.048 0.049 0.041 0.043

δ *, mm 0.140 0.114 0.098 0.107 0.107 0.089 0.096
* t0,04;46 = 2114.
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Figure 11. Errors in determining the dimensions of the bead in the absence and use of compensation
algorithms for 0.3 Mp camera with a lens with f = 6 mm.

The results of comparison use the standard calibration Distortion Model: Polynomial
(Kl, K2, KZ) and the developed one are shown in Figure 12 and Table 7.

Analyzing the obtained values, it can be concluded during the use of cameras with
low resolution that the projection error is comparable to the positioning error, and the
dominant error is the binarization error.

33



Symmetry 2021, 13, 1218

Table 6. Errors in determining the dimensions of a 25 mm diameter roller in the absence and use of
compensation algorithms for a 0.3 Mp camera with a lens f = 6 mm.

Parameters
Constant

Koefficient
(Const.)

No Com-
pensation

(Cal.)

Compensation
of Projection

Error
(CA)

Complex
Compensation

(CC)

Complex
Compensation +
Developer Cal.

(DDC+CC)

M, MM −0.052 0.026 0.005 0.004 0.031

S, MM 0.118 0.080 0.075 0.075 0.012

δ *, MM 0.249 0.169 0.158 0.158 0.110
* t0,04;46 = 2114.

Symmetry 2021, 13, x FOR PEER REVIEW 11 of 14 
 

 

 
Figure 12. Errors in determining the dimensions of 15, 20 and 25 mm by a 0.3 Mp camera with a lens 
f = 6 mm by standard calibrations and a developed.  

Analyzing the obtained values, it can be concluded during the use of cameras with 
low resolution that the projection error is comparable to the positioning error, and the 
dominant error is the binarization error. 

Table 7. Measurement errors of 15, 20 and 25 mm with a 0.3 Mp camera with an f = 6 mm lens using 
standard calibration and developed. 

Parameters 15 mm 20 mm 25 mm 
Distortion 
Correction 
Methods 

Standard Developed Standard Developed Standard Developed 

M, mm −0.012 0.042 −0.003 −0.021 0.029 −0.005 Sത, mm 0.052 0.050 0.062 0.041 0.062 0.042 
δ *, mm 0.118 0.112 0.139 0.092 0.139 0.095 

* t0,04;20 = 2204. 

Investigation of algorithms for compensation of systematic errors for cameras with a 
resolution of 5.0 Mp was carried out using a USB camera with a 1/2.5” sensor camera with 
a Ricoh FL-HC0612A-VG f = 6 mm lens at L = 114.8 mm. 

The research results are shown in Figure 13 and in Table 8. 

 
Figure 13. Errors in determining the dimensions of the bead Dnom=25 mm with a 5 Mp camera with 
f = 6 mm in the absence and use of compensation algorithms.  

Table 8. Errors in determining the dimensions of the roller Dnom = 25 mm in the absence and use of 
compensation algorithms for a 5 Mp camera with f = 6 mm. 

Parameters 
Constant 

Coefficient 
(Const.) 

No 
Compensation 

(DDC) 

Compensation of 
Projection Error 

(DDC+CA) 

Complex 
Compensation 

(DDC+CC) M, мм 0.154 0.205 0.042 0.011 Sത, 0.264 0.211 0.057 0.042 

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

1 3 5 7 9 11 13 15 17 19 21 23

15 мм 20 мм 25 мм

ΔD, mm

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

1 6 11 16 21

15 мм 20 мм 25 мм

ΔD, mm

n,

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1 6 11 16 21 26 31 36 41 46 51 56

Const. DDC DDC+CA DDC+CC

ΔD, mm

n

Figure 12. Errors in determining the dimensions of 15, 20 and 25 mm by a 0.3 Mp camera with a lens
f = 6 mm by standard calibrations and a developed.

Table 7. Measurement errors of 15, 20 and 25 mm with a 0.3 Mp camera with an f = 6 mm lens using
standard calibration and developed.

Parameters 15 mm 20 mm 25 mm

Distortion
Correction
Methods

Standard Developed Standard Developed Standard Developed

M, mm −0.012 0.042 −0.003 −0.021 0.029 −0.005

S, mm 0.052 0.050 0.062 0.041 0.062 0.042

δ *, mm 0.118 0.112 0.139 0.092 0.139 0.095
* t0,04;20 = 2204.

Investigation of algorithms for compensation of systematic errors for cameras with a
resolution of 5.0 Mp was carried out using a USB camera with a 1/2.5” sensor camera with
a Ricoh FL-HC0612A-VG f = 6 mm lens at L = 114.8 mm.

The research results are shown in Figure 13 and in Table 8.
To assess the repeatability of measurement results by a control system with a 5-

megapixel camera and f = 6 mm lens, the measurement errors of parts of different sizes
were estimated. The results of measuring the diameters of parts with nominal Ø 15, 20 and
25 mm were compared using the developed calibration of the PDI. The results are shown
in Figure 14 and Table 9.
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Figure 13. Errors in determining the dimensions of the bead Dnom=25 mm with a 5 Mp camera with f = 6 mm in the absence
and use of compensation algorithms.

Table 8. Errors in determining the dimensions of the roller Dnom = 25 mm in the absence and use of
compensation algorithms for a 5 Mp camera with f = 6 mm.

Parameters
Constant

Coefficient
(Const.)

No
Compensation

(DDC)

Compensation
of Projection

Error
(DDC+CA)

Complex
Compensation

(DDC+CC)

M, MM 0.154 0.205 0.042 0.011

S, 0.264 0.211 0.057 0.042

δ *, MM 0.559 0.448 0.122 0.089
* t0,04;46 = 2114.
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Figure 14. Uncertainties of determination of Dnom = 15, 20 and 25 mm with a 5 Mp camera with f = 6 mm lens when using
the DTR calibration.

Table 9. Errors in determining the dimensions of the rollers during usage of compensation algorithms
with a 5 Mp camera (f = 6 mm).

Parameters
Dnom

15 mm 20 mm 25 mm

M, mm 0.003 0.001 0.001

S, 0.033 0.032 0.035

δ *, mm 0.072 0.070 0.077
* t0,04;20 = 2204.

5. Discussion

Compensation for systematic projection errors in the control of the main shaping
dimensions of axisymmetric parts by the spatial method of optical radiation with 2D
resolution from the images of their sections, when using digital cameras with lenses
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with a fixed focal length in transmitted light, is possible based on the obtained analytical
dependences, taking into account the position of the test object and projection component
errors. This allows for an increase in the accuracy of determining the main shaping
dimensions in reflected light with non-collimated illumination for digital cameras with a
resolution of 5 Mp or more, with lenses where the focal length is approximately 1.5 or more
of the frame diagonal (short-focus optics).

During analyzation of the results obtained, it can be concluded that with a significant
distortion of the Ricoh FL-HC0612A-VG lens, the developed calibration method, based on
the use of the image space sampling algorithm, can reduce the confidence interval by more
than four times.

Reduction of the error to 0.05% is possible with the use of more advanced image
binarization techniques [32,33].

6. Conclusions

The works were carried out to compensate the projection error in the control of
axisymmetric parts, solving the problem of increasing the accuracy of determining the
main shaping dimensions by optical control systems by the geometric method, using digital
cameras with a fixed focal length and receiving measurement information from the image
of sections.

Experimental studies have shown the possibility of increasing the accuracy of measur-
ing the diameters of bodies of revolution through control systems equipped with digital
cameras with a resolution of 5 Mp or more, with short-focus optics, by an algorithmic
method based on taking into account the peculiarities of transferring measurement infor-
mation about the geometry of bodies of revolution by entocentric optics.

The developed method and software for complex compensation of errors in deter-
mining the main shaping geometry of axisymmetric objects allows for a reduction in error
in determining dimensions in reflected light with non-colimated illumination for short-
focus optics to ∆ = ± 0.1 mm, corresponding to 9–10 accuracy grades for the investigated
ranges of sizes of the test object, with a confidence level of 96%.

The problems of compensation of random components of errors should be solved
in the future. It will make a full realization of the resolution of modern digital cameras
possible, and determination of the position of objects under control in space for their
non-fixed position.
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Abstract: DEM parameters calibration is the most important step in preparing a DEM model. At
the same time, the lack of a universal approach to DEM parameters calibration complicates this
process. The paper presents the author’s approach to creating a universal calibration approach
based on the physical meaning of the friction coefficients and conducting symmetrical experiments
at full scale and in a simulation, as well as the implementation of the approach in the form of a
physical test rig. Several experiments were carried out to determine the DEM parameters of six
material–boundary pairs. The resulting parameters were adjusted using a refinement experiment.
The results confirmed the adequacy of the developed approach, as well as its applicability in various
conditions. The limitations of both the approach itself and its specific implementation in the form of
a test rig were identified.

Keywords: DEM; discrete element method; calibration; ore; universal approach; experiment; friction;
friction coefficients; DEM parameters

1. Introduction

The discrete element method is the most popular approach for computer modeling of
bulk materials’ behavior. The corresponding software that implements DEM in the user
graphic interface is a highly effective tool for optimizing mining equipment. Lately, DEM
has often been used in conjunction with CFD and other methods, which opens up the
possibility of calculating complex multiphase processes [1–5].

A number of input parameters in DEM software directly represent material properties
(shape and size of particles, density, etc.). Friction coefficients (Table 1) have a direct
physical representation; however, in DEM software these parameters are integrated into
DEM codes of contact models and may affect the behavior of bulk materials in different
ways, that is, they are code dependent [6,7]. Since the values of the friction coefficients
(DEM parameters) significantly affect the behavior of bulk materials, in order to build an
adequate model, they have to be calibrated [8–10].

Table 1. DEM parameters of bulk materials.

Particle–Particle, PP Particle–Boundary, PB

Dynamic Friction (DF) DFPP DFPB
Static Friction (SF) SFPP SFPB

Coefficient of Restitution (CoR) CoRPP CoRPB

Many researchers offer their approaches and solutions for the DEM parameters cali-
bration. The whole set of existing calibration methods can be divided into two groups: the
bulk calibration approach (BCA) and the direct measuring approach (DMA) [11]. A collab-
orative approach is also often used. In BCA, a laboratory experiment is performed first (for
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example, measuring the angle of repose and flow time from the funnel). For the material
under study, the density, Young’s modulus, Poisson’s ratio, and particle-size distribution
are measured in advance. The shape of the particles can be simplified (e.g., to a sphere) and
the size increased to speed up the calculation. In this case, specific simplifications depend
on the conditions for the further use of the obtained DEM parameters’ value for modeling
technological processes. Then, in the DEM software, the simulation parameters are set,
and laboratory experiments are repeated in the model with varying DEM parameters. The
parameters can be obtained both iteratively or using various optimization algorithms. The
target is the minimum difference between the measured material properties (e.g., angle of
repose) in the laboratory experiment and the simulation [12–15]. In the case of DMA, each
parameter is measured separately using known techniques. Most often, BCA and DMA are
combined to achieve the most adequate bulk material behavior in the model [16–20].

The main problems for creating a universal DEM parameters calibration approach are:

1. Code dependence (depending on DEM software and contact model).
2. A possibility for several sets of DEM parameters to provide similar bulk responses in

the simulation.
3. The need to significantly simplify the model (including the shape and size of particles)

to speed up the calculation. Thus, the use of calibrated values of DEM parameters is
limited, as well as their dependence on a specific application (technological process).

4. Imperfection and inaccuracy of modern measuring tools (including visual estimation
of the bulk material responses using machine vision).

Nevertheless, a number of researchers have proposed approaches that can be called
universal with a number of limitations [21–23]. Many studies are aimed at reducing the
number of simulations required to achieve the desired result using optimization algorithms
or at obtaining a unique set of calibrated DEM parameters either by introducing special
criteria or by estimating all the possible factors that affect the bulk responses [24,25]. In this
case, BCA is applied, which indicates a possible loss of the physical meaning of the obtained
DEM parameters. The question also arises whether the obtained set of parameters is unique,
that is, the bulk responses values are achieved only with this set of DEM parameters values.

The article describes the developed author’s approach and a test rig for the bulk
materials’ DEM parameters calibration. The approach is based on the transfer of the
friction coefficients’ physical meaning into the measurement of bulk materials macro
parameters using a high-speed camera and the calibration of the obtained DEM parameters
set based on a refinement experiment.

2. Materials and Methods

The developed approach is a result of the research conducted by the authors since 2017.
Approaches to using the BCA method directly using the design of the experiment were
considered [26]. One way or another, this approach did not solve the main problems given
in the introduction. In the course of the research, the relationship between the physical
meaning of the friction coefficients and DEM parameters was confirmed.

The physical meaning of these coefficients is as follows:

• For static friction (SF), this is the slope (tangent of the repose angle) at which the
particle begins to slide over the surface (Figure 1a):

SF = tg(∝) (1)

where ∝—angle of shelf incline.

• For dynamic friction, the value is determined by the sliding time on a surface with a
certain angle of repose (Figure 1a):

DF = tg(∝)−
(

2S
gt2 cos(∝)

)
(2)
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where ∝—angle of shelf incline, S—distance of particle slide movement, t—time of sliding,
g—gravity acceleration.

• For the coefficient of restitution, the value is determined by the angles and velocities
of rupture and reflection (Figure 1b):

CoR =
cos
(

βre f lection

)
Vre f lection

cos
(

βrupture
)
Vrupture

(3)
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The dynamic friction coefficient can be determined by the sliding time of the material
along the inclined shelf. The coefficient of restitution can be determined by conducting
experiments on the collision of particles with a vertical shelf [27–29]. Based on the physical
meaning of the static friction coefficient, it can be determined by the angle of inclination of
the shelf. A series of numerical experiments were carried out. In the first version, similar
to [30], a box (without bottom) with particles was placed on a shelf, after which the shelf
was slowly raised and the angle at which the box began to slide on the shelf was fixed. The
second version involved the use of a counterweight for a box with particles standing on a
horizontal plane. The counterweight force was slowly increased, and the force at which the
box began to slide along the plane was recorded. However, the experiments carried out in
the simulations did not show a correlation between SFPP, SFPB, and the angle of inclination
of the shelf, as well as the force of the counterweight.

The approach was designed in such a way as to neutralize the main problems described
in the introduction. For this, when developing, the authors started from the physical
meaning of the coefficients, but transferring the meaning from a single particle to a portion
of the investigated bulk material. It is possible to preserve the physical meaning of the
calibrated DEM parameters, as well as reduce the number of possible parameter sets or
even get a unique set. However, the approach has to include the determination of bulk
material responses similar to the BCA method because of the problems with determining
SF according to the physical meaning. This makes it possible to keep the methodology
flexible and applicable to various DEM software and contact models.

The developed approach scheme is shown in Figure 2. For the investigated bulk
material Young’s modulus, Poisson’s ratio, and particle size distribution are determined
using well-known techniques [31–35]. A certain amount of material (portion) is poured
into the developed test rig, and then its rheological properties are studied. The flow of the
portion is recorded with a pre-installed high-speed camera. After that, the recording from
the camera is sent to the computing device. A video processing algorithm developed using
machine vision is used; values and parameters characterizing the rheology of the material
are recorded. For DF coefficients, these parameters are flow times along the inclined
shelves (Equation (1)); for CoR, these are angles and velocities of rupture and reflection
(Equation (2)) [36]. Then, the experiments are repeated in the DEM software within the
same conditions, but a series of numerical experiments are carried out, where the DEM
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parameters vary in a given range. For each experiment, an animation is recorded and then
processed using similar machine vision algorithms. The experiments in the simulation are
symmetrical to the full-scale experiments. A functional relationship is built between the
parameters obtained from the simulations and DEM parameters. The obtained function
depends on the particle size distribution and particle shape of the material, as well as on the
applied contact model and its specific implementation in the DEM software. This means
that the input data must be determined in advance. As a result, the obtained dependence is
substituted with the values from a full-scale experiment, which makes it possible to obtain
specific values of DEM parameters. In this case, the obtained values require clarification;
therefore, the repose angle and the flow time are additionally measured. Then, in DEM
software, DEM parameters are iteratively varied in a narrow range, which results in fairly
accurate results of DEM parameters values.
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The test rig at the current stage of research is shown in Figure 3. The test rig has the
shape of a rectangular parallelepiped measuring 1 × 1.5 × 0.13 m with inclined shelves
located inside, vertical partitions 1–2, bins for loading bulk material, and a funnel-shaped
device for testing the angle of rupture and repose, as well as a system of dampers for
controlling the flow of materials.
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The flow of the material portion in the test rig occurs under the gravity force and
is regulated by mechanical extraction of the partitions 1–2. Determination of CoRPP and
DFPP requires the preparation of shelf 3 with a uniformly poured bulk material under
study. The bulk material is poured into an adhesive (for example, epoxy resin, liquid nails,
ceramic glue). Particles of bulk material are mechanically embedded in the adhesive. After
a while, the substance solidifies and, as a result, a shelf is formed of particles of the bulk
material under study. The control of the uniformity of the formation of the shelf is carried
out visually. Figure 4 shows an analogue of the shelf used in the simulations.

Symmetry 2021, 13, 1088 5 of 14 

Figure 3. Design of the test rig (model). 1,2—vertical partitions, 3—shelf for DFPP, 4—shelf for DFPB, 5, 6—collision walls, 

7—discharge hopper, 8—upper partition (for angle of rupture), 9—lower partition (for angle of repose). 

The flow of the material portion in the test rig occurs under the gravity force and is 

regulated by mechanical extraction of the partitions 1–2. Determination of CoRPP and 

DFPP requires the preparation of shelf 3 with a uniformly poured bulk material under 

study. The bulk material is poured into an adhesive (for example, epoxy resin, liquid 

nails, ceramic glue). Particles of bulk material are mechanically embedded in the adhe-

sive. After a while, the substance solidifies and, as a result, a shelf is formed of particles of 

the bulk material under study. The control of the uniformity of the formation of the shelf 

is carried out visually. Figure 4 shows an analogue of the shelf used in the simulations. 

Figure 4. Shelf with particles used in the simulations. 

After the completion of the preliminary preparation of the test rig, the material por-

tions are divided into weighed portions for each type of testing. At the beginning of the 

experiment, portions of the investigated bulk material of the same mass are poured into 

the upper hoppers. The weight of the samples is determined using a laboratory balance 

and is about 700 g with an error of no more than 0.5 g. After mechanical removal (of the 

dampers 2), the bulk material begins to slide along shelves 3 and 4, which is fixed by the 

algorithm as the beginning of the experiment. Shelves are angled at 40 degrees with a 

sliding path of 800 mm. This makes it possible to visually distinguish bulk materials with 

different dynamic coefficients of friction. At the end of the flow of material from each 

shelf, the algorithm separately fixes the moment in time and calculates the flow time. The 

experiment is repeated several times. The results are converted to DFPP and DFPB, respec-

tively. 

Figure 4. Shelf with particles used in the simulations.

After the completion of the preliminary preparation of the test rig, the material
portions are divided into weighed portions for each type of testing. At the beginning of the
experiment, portions of the investigated bulk material of the same mass are poured into
the upper hoppers. The weight of the samples is determined using a laboratory balance
and is about 700 g with an error of no more than 0.5 g. After mechanical removal (of
the dampers 2), the bulk material begins to slide along shelves 3 and 4, which is fixed by
the algorithm as the beginning of the experiment. Shelves are angled at 40 degrees with
a sliding path of 800 mm. This makes it possible to visually distinguish bulk materials
with different dynamic coefficients of friction. At the end of the flow of material from
each shelf, the algorithm separately fixes the moment in time and calculates the flow
time. The experiment is repeated several times. The results are converted to DFPP and
DFPB, respectively.

The full-scale experiment continues, but the shelf with particles 3 and 4 moves to
position 5, as a result of which the flow from the shelf ends with the collision of particles
with walls 5 and 6. CoRPP and CoRPB parameters are determined using equation:

CoR = k ∗
cos
(

βre f l

)
Vre f l

cos
(

βrupt
)
Vrupt

(4)

where βre f l , βruptangles of reflection and rupture of bulk material flow, Vre f l , Vruptthe speed
of reflection and rupture at the point of impact, k—coefficient that depends on the specifics
of the experiment and is taken into account at the stage of refinement of the initially
obtained values (by default k = 1) [34].

As a refinement experiment for the investigated bulk material, the angles of repose
and rupture are determined using device 7. Bulk material is poured into the upper part.
After that, partition 8 is pulled out and the angle of rupture is fixed. Then, partition 9 is
pulled out, and the material is poured onto the lower shelf of the test rig. As a result, the
repose angle and time of flow from the funnel are recorded.

The computer vision system is implemented using LabVIEW software tools. The
image from the camera is taken in perspective. Using the reference points on the test
rig, the image is projected onto a vertical plane. The original image (Figure 5a) then
goes through several stages. It is first filtered and binarized using image thresholding
(Figure 5b), then reconstructed using morphological image processing (Figure 5c). Further,
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depending on the task, there is a search for geometric primitives, or the hit of particles in
the region of interest (ROI) is recorded. For example, when determining the angle of the
repose (Figure 5d), the boundaries of the object are determined, after which a geometric
primitive is built—a triangle. The resulting left and right angles of the triangle are averaged.
To determine the flow time, the first entry of particles into the ROI is recorded next to
shelves 3 and 4. It is recommended to use a camera with a speed of at least 100 frames
per second.
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Figure 5. Image processing algorithm example for angle of repose; (a)–original image; (b)–binarized image; (c)–
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3. Results

As an example of the work of the developed approach, a series of experiments were
carried out. For this, three different types of metal steels with different degrees of surface
roughness were used as the boundary material. Iron ore and waste rock were used as
bulk materials in the experiments. The task was to obtain DEM parameters for two bulk
materials and three steels (six boundary–material pairs). Physical implementation of the
developed test rig is shown in Figure 6.
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3.1. Experiment Setup

Before the start of the experiments, according to the developed methodology, shelves
with particles fixed with glue were prepared for ore and waste rock (Figure 7).
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Figure 7. Shelf with ore particles in a full-scale experiment.

In addition, a DEM model was prepared for simulations in Rocky DEM software. The
parameters of bulk materials and model are presented in Table 2.

Table 2. DEM parameters of bulk materials.

Parameter Ore Waste Rock Boundary (Steel)

Poisson’s ratio 0.3 0.3
Young modulus, kPa 106 2.95 × 106

Density, kg/m3 3120 2700 7700
Shape 10-sided polyhedron -
Particle size, mm
distribution 100% 9.5—12.5 -

Contact model Nonlinear Hertz–Mindlin
Gravity acceleration, m/s2 9.81

For simplicity, the particles are represented in the model as a 10-sided polyhedron (Figure 8).
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3.2. Determining DFPB and DFPP

The first step is to determine the dynamic coefficient of friction. For this, for each
boundary–material pair, experiments were carried out to determine the time of sliding on
an inclined shelf. Each experiment was performed three times. The measurement results
are presented in the Table 3.

Table 3. Results of full-scale experiments to determine dynamic friction based on the flow time.

Ore Flow Time, s

Material/Experiment I II III Average
Steel 1 0.45 0.47 0.49 0.47
Steel 2 0.47 0.45 0.46 0.46
Steel 3 0.56 0.47 0.43 0.49
Particle–particle 0.54 0.6 0.57 0.57

Waste Rock Flow Time, s

Material/Experiment I II III Average
Steel 1 0.45 0.43 0.42 0.43
Steel 2 0.46 0.48 0.47 0.47
Steel 3 0.47 0.47 0.50 0.48
Particle–particle 0.59 0.56 0.52 0.56

Next, a series of simulations were carried out in Rocky DEM. The DFPB and DFPP
coefficients varied from 0.1 to 0.9 with a step of 0.1. The flow time was recorded for each
experiment. According to the data, functional dependence was built (Figure 9).
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Figure 9. Dependence between flow time (T, s) and DF parameters in simulations.

From the obtained dependences, the DF coefficients were evaluated, presented in
Table 4. Figure 10 shows an example of a visual comparison of a full-scale experiment with
an ore–steel 1 pair and simulation with a DFPB value of 0.3. Visually, it is noticeable that
the flow time is almost identical. Moreover, according to the obtained dependence, the
value of the coefficient for this pair is 0.29.
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Table 4. Summary values of calculated friction coefficients.

Ore Steel 1 Steel 2 Steel 3

DFPB - 0.46 0.44 0.51
DFPP 0.20 - - -

CoRPB - 0.29 0.31 0.35
CoRPP 0.35 - - -

Waste Rock Steel 1 Steel 2 Steel 3
DFPB - 0.37 0.46 0.49
DFPP 0.16 - - -

CoRPB - 0.27 0.28 0.31
CoRPP 0.19 - - -
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3.3. Determining CoRPB and CoRPP

After the DF coefficients have been obtained for all pairs, it is possible to proceed
with the CoR coefficient determination. For this, the shelves (steel) are mounted vertically.
The angles of rupture and reflection, as well as the velocities before and after the collision
of particles with the shelves, were determined by software algorithms of the computer
vision system and recalculated into the values of the CoRPP and CoRPB coefficients ac-
cording to Equation (4). Simultaneously, numerical experiments were carried out with
varying CoR coefficients in the range from 0.1 to 0.9. Similarly, the values obtained by
Equation (4) made it possible to refine the values of the coefficients obtained in full-scale
experiments (coefficient k in formula 4). Figure 11 shows an example of a collision in a
full-scale experiment.

Based on the results, four coefficients were obtained for all pairs. The results are
presented in Table 4.

3.4. Determining SFPB and SFPP. Refinement of Results

The SFPB and SFPP coefficients are selected iteratively during the simulations of
material flow from the funnel and the formation of rupture and repose angles using the
bisection method. This takes into account the fact that SF < DF in most of the use cases.
In addition, an error is included in the values of the coefficients in Table 4. Full-scale
experiments were carried out to determine bulk responses for ore and waste rock. After
that, a series of numerical experiments was launched, in which DFPB and DFPP were
varied in the range of obtained value ± 0.05, SFPB in [0.1; DFPB], and SFPP in [0.1; DFPP].

47



Symmetry 2021, 13, 1088

The specified maximum tolerance was no more than four degrees or 10% of the obtained
value in a full-scale experiment. The obtained values of the repose angles in full-scale
experiments and in the model after calibration are presented in Table 5.
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Table 5. Obtained values of the repose and rupture angles.

Angle of Repose Angle of Rupture

Simulation Experiment Simulation Experiment
Ore 30 28 44 41
Waste Rock 34 35 42 38

Based on the results of the refinement experiment, the values of the DEM parameters
were recalculated. The calibrated values are presented in Table 6.

Table 6. Calibrated DEM parameters.

Ore Steel 1 Steel 2 Steel 3

SFPB - 0.33 0.32 0.35
SFPP 0.26 - - -
DFPB - 0.46 0.44 0.51
DFPP 0.20 - - -

CoRPB - 0.29 0.31 0.35
CoRPP 0.35 - - -

Waste Rock Steel 1 Steel 2 Steel 3

SFPB - 0.31 0.32 0.33
SFPP 0.32 - - -
DFPB - 0.37 0.46 0.49
DFPP 0.16 - - -

CoRPB - 0.27 0.28 0.31
CoRPP 0.19 - - -
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An example of an original image obtained from a video camera in a full-scale experi-
ment, and the result obtained in a calibrated model, are presented in Figure 12.
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4. Discussion

The developed approach was combined. Four coefficients (DFPB, DFPP, CoRPB, and
CoRPP) were determined by methods based on their physical meanings. However, then,
the SF coefficients were determined using a refinement test with the determination of the
macro parameters of the bulk material, where the values of other coefficients vary within a
narrow range. This made it possible to obtain a unique combination of DEM parameters
that do not lose their physical meaning and adequately reproduce the behavior of bulk
material in the DEM model.

The obtained results shown in Table 4 make it possible to judge that with different
surface roughness, DFPB parameters obtained using the developed approach have regular
differences. Thus, steel 1 and steel 2 have almost the same roughness (steel 2 is slightly
larger), and steel 3 has a much higher roughness. At the same time, DFPB for steel 3–ore and
steel 3–waste rock pairs is higher than for other pairs. The DF coefficients obtained after the
refinement experiment (Table 5) did not change compared to the initial ones (Table 4). This
was due to the fact that the regression algorithm in the refinement experiment achieved
the desired result immediately after the selection of the SF parameters. With a higher
required accuracy, the DF coefficients could change in the range of obtained value ± 0.05. In
general, possible differences in the values of the parameters before and after the refinement
experiment are associated with the inaccuracy of the motion measurement using a video
camera, as well as the image processing algorithms.

Although the approach was developed for the study of absolutely any bulk materials,
the specific implementation of the approach in the form of a physical test rig has a number
of limitations. These limitations arise due to the specific design features and the capabilities
and accuracy of the measuring devices. First, the test rig is designed for particles no larger
than 15 mm. In the opposite case, material sticking can form in narrow places of the test
rig, as well as possible errors in the representation of macro parameters (for example, the
angle of rupture in the refinement tests). At the same time, materials with particles more
than 15 mm can be crushed to the required size, and experiments can be carried out on
a test rig. For this, it is necessary that the shape of the particles in the initial and final
forms is the same. That is, for particles with specific shapes (ball, cube, etc.), this option
is not suitable. It is also recommended to examine materials with particles of at least
1 mm in size. On the one hand, particles can seep through the slits in the structure; on the
other hand, a low-resolution video camera may not detect their movement (in particular,
this concerns image processing algorithms). Secondly, the image processing algorithms
require refinement in order to improve the accuracy of the unambiguousness of the results
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obtained. It is planned to consider other algorithms for determining the repose angle of
bulk material and improve the accuracy of determining the flow time.

In general, the calculation time for all simulations was about 4 h on 10 cores of the
average processor in the Rocky DEM. With several GPUs, calculations can be significantly
sped up. This means that the calibration of DEM parameters could be a relatively quick
and easy process.

5. Conclusions

This paper describes the author’s approach to determining and calibrating the DEM
parameters of a wide range of bulk materials. Features of the approach are identification
of each DEM parameter accordingly to its physical meaning and conducting symmetrical
experiments in full-scale and simulation. The approach itself can be applied to any bulk
material. The test rig developed as an implementation of the methodology includes several
sections, where each section is responsible for determining a specific DEM parameter.
The use of a refinement test for the rupture and repose angles ensures that the material
with the obtained unique set of DEM parameters adequately reproduces the material
rheology in the DEM model. The presence of restrictions on the size and shape of particles
impose specific features of the test rig design, as well as cameras for recording material
movement. However, the test rig has wide applicability in various industries, from mining
and metallurgy to pharmaceutical.

It is planned to further develop the project and conduct additional tests of other
particle–material pairs in order to identify weaknesses in the test rig design and the ap-
proach as a whole. Other possible implementations of the approach will also be considered.
The introduction and use of the approach and the test rig in the modeling of specific
technological processes will increase the adequacy of the behavior of the material in the
DEM models and simplify the solution of engineering problems using the discrete elements
method software.
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Abstract: The paper presents a methodology for training neural networks for vision tasks on synthe-
sized data on the example of steel defect recognition in automated production control systems. The
article describes the process of dataset procedural generation of steel slab defects with a symmetrical
distribution. The results of training two neural networks Unet and Xception on a generated data grid
and testing them on real data are presented. The performance of these neural networks was assessed
using real data from the Severstal: Steel Defect Detection set. In both cases, the neural networks
showed good results in the classification and segmentation of surface defects of steel workpieces in
the image. Dice score on synthetic data reaches 0.62, and accuracy—0.81.

Keywords: computer vision; synthetic data; steel defect detection; machine learning

1. Introduction

Machine learning algorithms for computer vision are widely used in various industries.
A distinctive feature of such algorithms is the need for large arrays of labeled data on which
to train them. The quality of a machine-learning-based automation system largely depends
on the quality of the initial training sample. It should maximally reliably reflect the nature
of the process under study, in other words, be representative [1]. Obtaining such a sample
is very laborious; it is necessary to capture as many different variants of the object states
under investigation as possible [2]. For example, if you want to classify an object, you have
to include as many unique instances of each class in the sample as possible. However, this
may cause difficulties because of the intraclass variation of the object, i.e., objects belonging
to the same class may have a different representation (color, shape, size, etc.) [3].

In most cases, developers of industrial automation systems do not have at their
disposal the necessary amount of production data sufficient to implement machine learning
algorithms. This is due to the company not recording the necessary parameters beforehand
nor doing it properly; automatic markup of production data being difficult, and manual
markup requiring a high level of specialist competence; data collection must be performed
in long time intervals (months and years) [4,5]. As a consequence, these limitations, taken
together, significantly complicate the implementation of machine learning algorithms in
automated control systems for technological processes [6].

One of these tasks is to control the surface condition of steel blanks and identify defects.
Currently, machine learning methods applied as part of steel slab surface inspection systems
require a large number of defect images for training. This in turn increases the time required
to collect and markup the training dataset [7,8].

The use of synthesized datasets will solve these problems by accelerating the collection
and partitioning of training data. The use of synthesized data for training machine learning
algorithms has been gaining popularity recently. Artificial datasets based on computer
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graphics are already used for self-driving vehicles [9] and for cancer diagnostics [10]. This
study considers the possibility of applying synthesized data for semantic segmentation
and classification of defects in steel products. The developed approach is supposed to
be used in automatic control systems of steel rolling production. These systems include
vision-based quality control systems.

The task of determining defects on the workpiece surface is complex; it combines
several independent vision tasks. First of all, it is necessary to determine the presence of
surface defects in the image [11]. It is necessary to have a clear idea about the permissible
visual deviations, which can lead to false positive recognitions. For example, grease
residues, water drops, or fragments of slab markings can be such deviations (Figure 1).

Figure 1. Examples of defects in steel workpiece. From left to right: scratch, surface crack, network
cracks and caverns.

The next stage of slab surface analysis is the semantic classification of defects. The
complexity of this task is due to the wide intraclass diversity of defects [12–14]. Most slab
surface defects are cracks of various shapes, lengths, depths, and localization. An important
problem is the technical side of defect detection. Current methods of metal surface scanning
are based on optical systems: video imaging, laser triangulation, and their combination.
Depth cameras have also recently begun to be used. The choice of the technical means of
scanning the workpiece surface largely determines the further architecture of the system,
the type of the classification algorithm, and the physical possibility of determining certain
types of surface defects [15].

This publication presents the results of generating a synthetic dataset of steel defects
for training a machine learning model. On the data generated during the work, neural
networks of two types were trained—a classifier and a semantic segmentation network.
Both models were also trained and evaluated on the dataset. The resulting models can be
used in industrial quality control systems for rolled steel. Methods for evaluating neural
networks are in Section 2. The dataset generation methodology and model training results
are in Section 3.

2. Materials and Methods

To solve the issue described in the Introduction, a technique was developed that
allows for generating training datasets for training neural networks. The implementation
of the proposed methodology consists of the following stages. The process of build-
ing the above-described hardware and software complex can be divided into several
sequential stages:

1. Collecting data and forming training samples. At this stage, the collection, systemati-
zation, and marking of data on surface defects of steel workpiece are carried out in
a unified form [16].

2. Building a defect classifier model. A classifier model is built and trained based on the
obtained ideas about the types of defects on the surfaces of rolled steel and variations
in their manifestation [17].

3. Evaluating the quality of the classifier’s work. The chosen classifier model is tested
on a specially selected sample, and its samples were not part of the training one.
Additionally, distortions can be introduced into the test sample images to test the
robustness of the algorithm as a whole [18].
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The freeware 3D editor Blender was used to generate the training sample. It is also
equipped with built-in shader writing tools necessary for software generation of random
slab defect textures.

To test the proposed methodology, two neural networks were trained on the syn-
thesized data: Unet [19]—for segmentation of defects in the image and the Xception
classifier [20]. Trained neural networks were tested on a real dataset Severstal: Steel Defect
Detection [21] as a validation sample.

Metrics such as precision, recall, and Dice coefficient were used to evaluate the quality
of the models [22–24].

Algorithm accuracy within one class or intraclass accuracy is a metric that charac-
terizes the number of all records that really belong to a certain class, to the sum of all
exemplars that were assigned to that class by the algorithm. The metric is calculated using
the following Formula (1):

Precission =
TP

TP + FP
(1)

where TP—number of true positive answers, and FP—number of false positives.
Recall is another important metric that is defined as the proportion of samples from

a class that are correctly predicted by the model. This metric is the proportion of class
instances recognized by the algorithm as related to the total number of instances of the
class in the sample [25]. Recall is calculated using Formula (2):

Recall =
TP

TP + FN
(2)

where TP—number of true positive answers, FN—number of false-negative responses.
Dice’s coefficient [26] is used to compare the pixel match between the predicted

segmentation and the corresponding ground truth [27]. The Dice coefficient is determined
by Formula (3):

Dice(X, Y) =
2 · | X ∩ Y|
|X |+ | Y | (3)

where X—predicted pixel set, Y—true meaning.
The Dice coefficient is primarily a statistical measure used to assess the similarity of

two samples: the similarity coefficient [25].
The training and evaluating of the neural network model was carried out using the

Keras framework and the Python programming language. To assess the model quality
metrics, validation samples were fed to the input of the model, which the neural network
had not previously processed during training. We compared the neural network’s responses
to the ground truth values according to the chosen metric. To automate the evaluation of
the quality of the work of models, the function “evaluate”, built into the Keras framework,
was used.

The artificial training dataset was generated in the Blender 3 editor using the built-in
shader tool; the program texture generation was done in the Blender API. This software
product is widely used for generating artificial data for object detection using state-of-the-
art deep learning models [26].

The process of generating an artificial dataset of defects includes the following steps:

• Setting the 3D scene of the object;
• Procedural generation of the surface texture (defect);
• Image rendering;
• Render of the mask.

To generate synthetic data containing surface defects of steel workpieces, a scene simulating
the shooting of a steel by a camera was assembled in the Blender 3D graphical editor.

The slab model is a parallelepiped onto which the shader material is superimposed.
Depending on the input parameters passed to the shader, the texture displayed on the
surface of the parallelepiped changes. Thus, a unique combination of defects of the same
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kind can be reproduced with each new set of parameters. The disadvantage of this approach
is the need to create a new shader for each type of defect. Therefore, in this work, the
choice was limited to three basic types of defects: cracks, bubbles, foreign inclusions, and
surface irregularities.

The conditions of shooting the slab surface in the 3D scene mimic real industrial
conditions with cameras mounted vertically above the slab surface. The light source in the
scene was placed slightly above the camera, thus simulating the illumination provided by
the computer vision cameras (Figure 2).

Figure 2. Defective steel sheet model in Blender.

The surface texture of the workpiece, the type, and frequency of appearance of defects
on it were set through the shader of the material assigned to the workpiece model. Thus,
we were able to determine in advance, even before generation, the composition (by defects)
of our artificial dataset. Image generation for the dataset was performed automatically by
sequentially shifting the slab model in the scene relative to the camera, thus simulating
the movement of the workpiece along the roller conveyor. Shader parameters were also
changed with each iteration to create a greater variety of defect shapes and locations. Thus,
the effect of random distribution of surface defects was created, after which the image of
the surface was rendered.

The main algorithm for creating a synthetic dataset is the procedural generation of
a surface defect. It is a shader—a program that sequentially transforms the original noise
texture. A separate shader was written for each of the four defect types. The variety of
shapes of the generated defects was adjusted using the detorsion and noise parameter. For
example, such a defect as a crack is based on a procedural texture—a spherical gradient. It,
like the cracks themselves, has the shape of an ellipse, subjected in advance to numerous
deformations through changes in its UV coordinates and the symmetry of the original
figure. The fracture boundaries are subject to displacements along the normal. The textures
for chipping generation were created by transforming the Perlin noise. An overall scheme
of the procedural dataset generation algorithm is shown in Figure 3.

Parallel to the photorealistic images, their black and white masks are also created. The
pixels containing the defects of the slab surface are highlighted in white. The masks are
one of the variants of training data markup for segmenting architectures. They also can be
used to automate the markup of classifiers. Thus, one of the main difficulties encountered
in the preparation of real data—markup—was solved. In this approach, the partitioning
was done automatically, in parallel with the generation of the images themselves.

55



Symmetry 2021, 13, 1176

Figure 3. Scheme of the procedural dataset generation algorithm.

Since the data generation process for the dataset is fully controllable, we can predeter-
mine the distribution of surface defect classes within the sample. In this case, it is necessary
to ensure the most equal distribution between the classes of different defects. It is necessary
to normalize the distribution of instances in the dataset. This will increase the accuracy of
defect classification and reduce the influence of the predominant number of instances of
individual classes in the sample on the classification result as a whole. Synthetic data have
been tested over two artificial neural networks: U-Net and Xception.

U-Net is one of the standard CNN architectures for image segmentation tasks when
you need to segment its areas by class and create a mask that will divide the image into
several classes. The architecture consists of a contraction path for capturing context and
an asymmetrical expanding path that allows precise object localization. U-Net achieves
high results in various real-world problems using a small amount of data to achieve high
segmentation accuracy [27].

The Xception is a compact modification of the Inception classifier architecture based
on depthwise separable convolution. We used this architecture to classify defect types on
original image areas with steel defects that previously were recognized with the U-Net
model. This mode was chosen among many other classifiers because it requires less data
for correct object classification.

As the result of combining both of these models, the semantic segmentation problem
on steel defects models was solved.

3. Results

An artificial dataset consisting of 6000 defect images and including four defect classes
was generated during the experiment. A total of 1500 images were generated for each type
of defect to ensure an even distribution of samples in the sample.

Below, there are the results of generating synthetic data for different types of defects.
Figure 4 shows examples of defects and their masks in the generated dataset.

Two neural network architectures were trained: Unet—for defect segmentation in the
original image and Xception—for classification. Both neural networks were trained on
a synthesized dataset and tested on real data.

Below are the results of training the Unet neural network on synthetic data with
validation on real data. The neural network was trained entirely on a synthetic dataset for
30 epochs. Figure 5 shows charts of the change in the Dice coefficient for epochs for the test
and validation samples.
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Figure 4. Examples of defect renders of various types and their masks.

Figure 5. Dice Coefficient change graph.

As can be seen from the graph, the Dice coefficient for the training sample reaches
0.815 and 0.632 for the validation sample, represented by real defect images.

Figure 6 shows examples of segmentation of defects in an image from a real dataset
by the Unet neural network trained on synthetic data.

Figure 6. Defect segmentation by the Unet neural network.

As can be seen from the above images, the neural network with the Unet architecture
quite accurately and clearly identifies defects in the original image of real defects in
rolled steel.
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The Xception architecture was used to classify defects. This neural network was also
trained on synthetic data. The training was carried out in 15 epochs. As mentioned earlier,
the main metrics for assessing the quality of classification are accuracy and recall.

Figures 7 and 8 show graphs of the accuracy of defect recognition on synthetic (train-
ing) data and on real data.

Figure 7. Precision graphs during neural network training.

Figure 8. Plots of recall during neural network training.

As can be seen from the graphs, Xception classifies defects in training and validation
samples with a sufficiently high accuracy. At the same time, the recall of the classification
is somewhat lower and on the validation sample does not exceed 0.81, which indicates
a large number of false positive recognitions (Figure 8).

Let us compare the performance of architectures trained on synthetic data and on real
data. To do this, we train the presented Xception and Unet models on the real Severstal:
Steel Defect Detection dataset, which includes 7095 samples and four classes of defects.
Figure 9 shows the distribution of defects by type in the real dataset.
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Similar to the artificial dataset, the real data was divided into training and test dataset
in the ratio of 80% for training and 20% for test dataset. Neural network training was
also performed with the same settings as on synthetic data, i.e., 30 epochs for Unet
and 15 epochs for Xception. Thus, the only different condition in this experiment was
dataset. Table 1 shows the comparison of neural network quality metrics on real and
synthesized data.

Table 1. Summary ANN performance on real and synthetic dataset.

Unet Xception

Dice Score Precision Recall

Real dataset 0.56 0.87 0.91
Synthetic dataset 0.63 0.81 0.89

4. Discussion

The proposed approach makes it possible to develop and debug computer vision
algorithms without having access to the real object of research, as well as to automate the
process of marking up training data for segmentation and classification tasks. The results
of neural networks validation trained on artificial data were promising. This confirms the
viability of the proposed methodology for working with different types of vision algorithms
and the application of techniques for the development of industrial quality control and
defectoscopy systems.

The variety of scenes that can be rendered using 3D graphics does not limit the scope
of synthetic data to the steel industry. The proposed approach can be applied in other areas,
for example, in medicine, analysis of satellite images, and autonomous vehicles.

Synthetic data made it possible to correctly train neural networks for such basic tasks
of computer vision as image segmentation and image classification. During the variation
of neural networks on real data, the accuracy of recognition and segmentation of defects
noticeably decreased. This is primarily due to the fact that procedurally generated images
of defects are not realistic enough in comparison with their real counterparts, which, of
course, introduces certain distortions in the operation of the algorithm. In general, it should
be noted that the quality of defect classification is lower than segmentation. This proves
that the images of defects on artificial data are not realistic enough. This disadvantage can
be compensated by combining synthetic and real data as part of one dataset, whenever
possible, or by increasing the realism of generated images using computer graphics.
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5. Conclusions

In the course of this work, we investigated the possibility of using synthesized datasets
to train deep neural networks that solve the problems of computer vision on the exam-
ple of segmentation and classification of surface defects in steel workpieces. A training
dataset was generated using the 3D graphics editor Blender. Deep neural networks of
two architectures Unet and Xception were trained on the synthetic data set. The perfor-
mance of these neural networks was evaluated on real data from the Severstal:Steel Defect
Detection dataset.

In both cases, neural networks showed good results in the classification and segmenta-
tion of surface defects of steel blanks in the image. The results obtained in the course of this
experiment indicate the feasibility of applying the proposed methodology. These results
are especially valuable when access to the object under study is difficult and the collection
and markup of real data are time-consuming. In addition, the proposed technique can be
used to increase the variety of existing datasets with real data.

The considered methodology, in addition to its use in industrial flaw detection, can
also be useful in other computer vision tasks that require a large amount of data and are
difficult to mark up.
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Abstract: The paper is devoted to the development of the structure of a fast and flexible data collecting
system based on the proposed approach to measure power quality indicators in three-phase medium-
voltage distribution grids with an example of a Mikhailovsky mining and processing plant. The
approach utilizes the properties of a space vector, obtained from grid currents and voltages with
disturbed waveform, to allow faster extraction of the harmonic components compared to traditional
approaches, based on the direct Fourier-transform applied to a line or phase values. During the
study, the concept of a universal measurement device was introduced, which allows fast estimation
of the following values at the grid node: magnitudes and phases of voltage and current harmonic
components, active and reactive power of harmonics and fundamental components, positive and
negative instantaneous powers. The structure of interconnected measurement and control units
for the considered grid node with simultaneous operation of two active variable frequency drives
with active rectifiers was proposed in accordance with a concept of the Internet of things. The
benefits of the proposed solution are shown by the example of the model of the grid node with
two operating draglines and nonlinear load, which was developed in MATLAB/Simulink software.
The proposed approach was utilized to produce distributed references for control systems of grid
inverters to compensate nonlinear currents, which allowed to significantly improve THDi of the grid
node input power.

Keywords: digital signal processing; control systems; smart grids; Internet of things; flexible ac
transmission systems

1. Introduction

The Internet of things (IoT) in the industry and the number of connected devices, and
the amount of investment in IoT devices and infrastructure is growing at a tremendous
pace [1–3]. According to Rostech, the global industrial IoT market will grow at an average
annual rate of more than 14%, and by 2023, its volume will amount to US$ 700.38 billion [4].
Transport and industry will be the main drivers of growth. The greatest growth dynamics
of the implemented IoT devices are expected in mining and industrial production [5,6].
The main areas of application of IoT in mining are the monitoring of equipment operating
parameters, ensuring work safety, end-to-end digitization of production, the creation of a
digital twin of production, the introduction of unmanned technologies, the introduction
of AI for processing arrays of data from IoT sensors, the reduction of integral production
costs [7,8].

Remote monitoring of equipment operating parameters allows to quickly identify
work stoppages and make management decisions, which reduces production costs [1,9,10].
Large amounts of data on the operating parameters of a specific piece of equipment
and data obtained from the same equipment throughout the world are the basis for the
prediction system [5,11–13]. Predictive maintenance allows achieving significant economic
benefits and production safety by reducing the number of sudden equipment failures,
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reducing equipment downtime, reducing service costs by planning repairs and optimizing
spare parts logistics [14,15].

The growth of computing power and the increase in their availability accompanied
by the ever-decreasing dimensions of digital components made it possible to significantly
improve algorithms used to ensuring the controllability and safety of the technological
processes [16,17]. The distribution of real-time algorithms, examples of which are given
below, became integral parts of the control and information collection systems:

• Neural network, which is widely used to identify characteristic features of signals [18,19];
• Fast algorithms to identify spectra of signals [20,21];
• Adaptive filtering of signals that respond only to characteristic changes in signals [22,23].

These algorithms are widely used in the modern mining industry: from the control of
the gas atmosphere in the mine to maintaining the proper operation of draglines [10,24,25].
The provision of mining operations is directly related to the supply of power of the required
quality to the final consumers, whether it is mining equipment or heavily rated power
units [26]. Special requirements are placed on the operation of powerful equipment since
the continuity and safety of the process depend on their work. In order to achieve an
uninterruptable technological process, the grid quality must meet local standards [27,28].

The variety of power equipment to provide necessary power quality is commercially
available on the market–from passive capacitor banks aimed to reduce inductive currents
of the loads to dynamic synchronous compensators of series, shunt, or mixed types [29,30].
The latter devices are able to compensate for current and voltage harmonics introduced
by nonlinear loads and voltage imbalance caused by asymmetrical loads [31,32]. The
uninterruptable power supply of heavy-rated power equipment also depends on the
correct work of relay protection units and power quality monitoring systems [33–35].

To provide proper reaction for power quality disturbances, the control systems of relay
protection units and compensation devices must be capable of fast and accurate tracking of
both voltages and currents parameters in the industrial power grids [36–39]. To achieve
this, well-known algorithms based on space vector and instantaneous power estimation
are used [36,40,41]. In the presence of harmonics, the algorithms become more complicated
utilizing short-time Fourier transform to estimate fundamental and harmonic components
of signals [21,42].

The whole power supply system, therefore, generates large amounts of data, which
should be transmitted across numerous control and monitoring systems. According to
the Industry 4.0 concept, the interconnection of a variety of devices in a single network
with mesh topology allows providing additional scalability to the system [43,44]. However,
industrial networks usually consist of mediums with different bandwidth and reliability–
from short and medium-range wireless connections for IoT sensors to unstable connections
via LTE and power lines [45,46].

In such conditions, the ability of the power supply system to efficiently transmit
and distribute power quality data between voltage/current sensors and control systems
over different channels becomes its crucial property. In the recent literature, the real-
time power quality analysis usually means obtaining voltages and currents spectrum
components during one-half to one electrical period [25]. Such analysis has been typically
used in power conditioning devices, which are able to mitigate nonlinear and asymmetrical
currents flowing in the grid using onboard currents and voltage sensors. While there are
recent studies indicating effective real-time transmission of the data in industrial networks
via the protocols for time-critical applications [47], there is also a lack of studies that
consider the benefits of implementing real-time power quality tracking being used in
control systems of the power devices operating in different grid segments.

The paper is devoted to the development of an approach to collect and process power
quality data within 1 period of mains voltage and transmit it to the control system of relay
protection units and control systems of power conditioning devices. The novelty of the
approach lies in the combination of:
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• Cascade short-time Fourier transform used to estimate phase voltage and current
spectra from the sensors data;

• Estimation of positive and negative voltages and currents components according to
the instantaneous symmetrical components theory;

• Estimation of average and fluctuating power components;
• Transmitting the estimated power data via protocols for time-critical applications on

the example of precision time protocol;
• Limiting the number of considered harmonics or switching to the transmission of

average and oscillating power components depending on the transmission channel
bandwidth and type of receiving device.

The benefits of the proposed approach are shown in the example of distributing
references for mitigating harmonic currents between two simultaneously operating active
frontends of draglines.

2. Materials and Methods

As a subject of modernization, the monitoring and control system of the mining and
processing plant “Mikhailovsky GOK” is considered. The improvements are presented
on the example of the grid node with three connected draglines of ES-15.90 type. The
structure of the grid node is presented in Figure 1. The plant is supplied by power from
a generation and distribution company via 35 kV overhead lines. The grid voltage is
distributed from the main step-down substation 35/6 kV. Dragline #1 is connected near the
transformer bus, while draglines #2 and #3 are connected to the grid node located 1.5 km
from the substation.
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Figure 1. Structure of the site career distribution grid node.

Dragline contains several electrical motors to implement different operations: torso
rotation, boom manipulation, ground movement (walking). All of them are connected
to the grid drive, which is, in order, connected to the grid via variable frequency drive
(VFD) with diode rectifier (dragline #3) or active rectifier (draglines #1 and #2). The diode
rectifier (DR), despite its drawbacks, is still the most common rectifier used in VFD due to
its low-cost. DR supplies DC-link in a noncontrollable way and consumes non-sinusoidal
currents from the grid, introducing harmonics of 5, 7, 11, 13, . . . orders [48,49]. Therefore,
DR acts as a nonlinear load for the grid. Its structure is shown in Figure 2.
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Figure 2. Structure of the two-level ES-15.90 VFD with diode rectifier. Zl—equivalent impedance of
the load (variable depending on the operation cycle); il —load current; C —capacitor of the DC-link;
ix —input current in phase x; vgx —phase x to the neutral voltage at the PCC; vdc—DC-link voltage.

Active rectifier, which is also known as active frontend (AFE) as a part of VFD, is a
power converter with the ability to operate in four quadrants [50,51]. The power circuit
structure of the AFE, which is built according to the three-level neutral point clamped
topology, is shown in Figure 3 [52]. AFE is typically used to maintain the following functions:

• Bidirectional power flow, i.e., during regenerative braking [53,54];
• Correction of power factor at the input [55];
• Controllability of the DC-link voltage [56].
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Figure 3. Structure of the three-level ES-15.90 VFD with active rectifier. Zl—equivalent impedance
of the load (variable depending on the operation cycle); il—load current; C1, C2—capacitors of the
DC-link; Sxn—IGBT module in phase x with number n; i f x—filter current in phase x; vgx—phase x
to the neutral voltage at the PCC; L f —filter inductance, vdc—DC-link voltage.

Draglines operate in a stochastic manner because of the relative randomness of excava-
tion operations. The typical load profile of ES-15.90 draglines is shown in Figure 4, where
rapid changes of both active and reactive power can be seen. Considering the remoteness
of the dragline #2 and #3 from the transformer bus, the presented load profile will create a
significant voltage drop in the cable lines, connecting the grid node with the substation
bus, depending on the grid short-circuit impedance at the substation bus [57]. At the same
time, dragline #3 will consume harmonic currents with arbitrary magnitude, depending on
its load profile, therefore, introducing randomness to currents and voltages spectra at the
PCC [38,58,59].
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To maintain power quality within the acceptable limits, which are regulated according
to GOST (acronym for State Standard or Governmental Standard in Russian) 32144–2013,
the dynamic compensators are typical to be installed at the nodes depending on the grid
and load configuration. The most common device, used to mitigate harmonic currents
and rapid voltage fluctuations, is a STATCOM–four-quadrant power converter with a
DC-link, a part of flexible AC transmission systems family [60]. While STATCOM is a
standalone device for reducing grid power distortions of various factors, its similarity to
AFE increases interest in providing the ability to improve the grid power quality by the use
of VFD with AFE, which would reduce capital costs to install and maintain STATCOMS at
the grid nodes.

To maintain such functionality, AFE requires available current reserve, i.e., it should
not be fully loaded by the active current flowing to the load [23,61]. The AFE control
system also requires the implementation of special algorithms to be able to release available
current to improve the grid power quality and at the same time maintain normal operation
of the ES-15.90 grid motor. Such control algorithms rely on fast and accurate estimation of
current and voltage spectrum at the dragline PCC [62].

Dragline’s AFE sensors typically include current and voltage sensors per phase at
the grid side and voltage sensors at the DC-link side. Based on information from grid-
side sensors, it is possible to estimate current and voltage spectra via short-time Fourier
transform (STFT). According to Fourier transform, every non-sinusoidal periodical signal
can be represented as a sum of sine and cosine waves:

xp =
a0

2
+

∞

∑
n=1

an cos(nωt) + bn sin(nωt), (1)

where xp–instantaneous phase-to-neutral voltage; a0–DC Fourier coefficient; an, bn–sine
and cosine Fourier coefficients for n-th harmonic;ω = 2πf–angular frequency of the grid
voltage, equals to 100π rad/s for f = 50 Hz.
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Parameters of each harmonic component relate to an and bn values as follows:

X(n)
p =

√
a2

n + b2
n;ψ(n)

x = atan2(bn, an), (2)

where X(n)
p , ψ(n)

x —magnitude and phase shift of n-th harmonic in p-th phase; atan2–2-
argument arctangent.

According to STFT, it is possible to estimate parameters of each harmonic component
by accumulating the signal within some observation period–Tf:

an = 2
Tf

Tf∫
0

xp cos(nωt)dt;

bn = 2
Tf

Tf∫
0

xp sin(nωt)dt.
(3)

The obtained coefficients an and bn are substituted into expression (2) to calculate
the magnitude and phase shift for each harmonic of the phase voltages or currents [63].
The latency of the STFT algorithm is determined by the observation period of the signal
Tf. Moreover, if the period of consideration of the signal Tf is not equal and/or is not a
multiple of the period of the main signal, then there will be a loss of power of the spectrum
and the values of the calculated coefficients an, bn will be unreliable. Thus, the minimum
delay of the algorithm based on the Fourier transform will be determined by the period of
one oscillation of the mains voltage Tf = 20 ms.

To affect grid power quality in the case of the presence of voltages or currents un-
balance, it is also necessary to calculate the positive and negative components of each
harmonic, which are required to identify and mitigate voltage and current unbalance
between phases. This is achieved according to the instantaneous symmetrical components
theory [64].

Instantaneous symmetrical components of each harmonic extracted according to:

X+(n) = x(n)α + x(n)β j900; (4)

X−(n) = x(n)β − x(n)α j900,

where j900–quadrature operator, which is typically implemented as a digital delay for 1
4

period of the signal; X+(n), X−(n)–magnitudes of positive and negative components of
harmonic. However, as STFT provides information about the magnitude and phase of each
frequency components, it is possible to directly calculate X+(n) and X−(n).

To maintain monitoring of grid power quality and take proper control actions, it
is necessary to collect information about power flow. Akagi’s theory of instantaneous
powers suits the most complicated power calculations, which include harmonics and
symmetrical components data. According to the theory, active–p, and reactive–q powers
can be determined from the instantaneous projections of voltages and currents space
vectors onto αβ plane as follows:

p = vαiα + vβiβ; q = vαiβ − vβiα. (5)

However, in the case of harmonic distortions, it is useful to distinguish average–p,
q–and oscillatory–p̃, q̃–components of powers [65]. Average active power p is used to
maintain power flow between generators and loads and, in the ideal case, is the only power
that makes actual work and should pass through the grid. It is calculated based on the
fundamental components of currents and voltages as follows:

p = v(1)α i(1)α + v(1)β i(1)β . (6)
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Average reactive power is used to estimate reactive power flow between power plants
and stabilize voltage by injecting or absorbing the reactive power. It is calculated as follows:

q = v(1)α i(1)β − v(1)β i(1)α (7)

In a similar way, average powers may be calculated for specific harmonics.
Oscillatory components of powers are represented as high harmonics and should be

mitigated by the compensators and filters if possible [23]:

p̃ =
N

∑
n

v(n)α i(n)α + v(n)β i(n)β ; (8)

q̃ =
N

∑
n

v(n)α i(n)β − v(n)β i(n)α .

Based on the described equations, the concept of a multipurpose measurement unit
(MU) can be introduced, which collects enough information about power quality at the
grid node and transfers it to control devices, such as control systems of VFDs STATCOMs,
RPUs et cetera. The structure of the data packet is shown in Table 1:

Table 1. Values in the data packet generated by the measurement unit (MU).

Harmonic Currents Voltages Active
Power

Reactive
Power

Instantaneous I, θi V, θv p q
1 I+(1), θ

+(1)
i , I−(1), θ

−(1)
i V+(1), θ

+(1)
v , V−(1), θ

−(1)
v p q

5 I+(5), θ
+(5)
i , I−(5), θ

−(5)
i V+(5), θ

+(5)
v , V−(5), θ

−(5)
v p(5) q(5)

39 Similar to the 5th harmonic

Each data packet will contain 186 values, which equals 744 bytes of payload if each
value is considered as a floating-point of 4 bytes. To use the benefit of developed fast
algorithms, such packets should be generated by the MU at least every millisecond, which
allows to provide proper reaction for transients, improve grid power quality and prevent
emergency situations. The considered amount of data leads to approximately 1 MB/s of
data produced by one MU. In the case of a reliable connection with decent bandwidth,
such a system will work properly. However, if we consider unreliable channels or channels
with unpredictable bandwidth, such as 4G or power line communication, it is necessary
to reduce the amount of transmitted data and to shift part of calculations to controllers.
Depending on the receiving unit and channel bandwidth, it is possible to choose which
data to share between the MU and controller. For example, in the worst-case MU can share
only average and oscillatory power components per cycle. Considering each value is a
2-byte integer, this is only 400 bytes per second.

The flowchart of the algorithm to operate the proposed MU is shown in Figure 5.
The inputs for the algorithm are sampled instantaneous values, measured from current
and voltage sensors and passed through an analog to a digital converter (ADC). A typical
performance of ADC converters may vary from a few to hundreds of kHz. While 1 kHz
(1 measurement per millisecond) is enough for proper operation of MU, operating on
higher ADC frequencies allows adding filtering and predictive algorithms. After this,
sampled three-phase voltage and currents (6 measurements per cycle of calculations) are
transformed into voltage and currents space vectors according to Clarke transform (4, 6).
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Based on the calculated magnitude of the voltage space vector, the autocorrelation
signal is continuously produced. The time between the two most recent peaks of the
autocorrelation function is counted and is used to determine the length of the window
for Fourier transform. If two peaks are found lesser than in 1

4 of the fundamental period
Tf (Tf = 0.02 s for f (1) = 50 Hz), the time between peaks Tp is rounded to the nearest in
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. . . s, which is required to avoid interference of different harmonic

components. Then window length TSV is set to Tp value. Otherwise TSV is set to
Tf
4 .

When window length is set, the consequent Fourier transform is performed for every
odd harmonics to extract sine and cosine Fourier coefficients of each harmonic according
to (3). Then magnitude and phase of each component are calculated from coefficients
according to (2). These values are then used to estimate positive and negative sequence
components according to (4) and corresponding active and reactive instantaneous, average
and oscillatory components of power (6–8). The calculated values are used to build a data
packet according to Table 1.

The MU collects requests for transferring data packets to other devices in a network
segment, therefore, storing requesting devices’ addresses in the memory. The data are
transferred via protocols for time-critical applications. One of the good examples of
such protocol that may be utilized is a precision time protocol (PTP), which allows to
synchronization of clocks between devices in a network segment on a microsecond level.
The clock master may be selected automatically via built-in algorithms, i.e., best master
clock algorithm, or may be selected manually, and therefore, usually nearest controller unit
is chosen to be clock master. The PTP is suitable for any IP compatible network via wired or
wireless mediums and allows to ensure precise measurements of power quality indicators.

The effective joint operation of the power converters in the distribution grid segment
is determined by the possibility of distributing tasks between them depending on their
workload according to the active power consumed by the load (16):

p∗AFE = vDC·kPI(V∗DC − vDC)− p∗GC; (9)

q∗AFE = q∗GC,
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where p∗GC, q∗GC–references for active and reactive powers for grid converter; vDC–DC-link
voltage of the AFE; kPI–proportional/integral function of the vDC regulator, which was
designed according to [66].

Let us express the instantaneous total power distortion S∗GC (17):

s∗GC =

√(
p∗GC

)2
+
(
q∗GC

)2. (10)

The total available instantaneous power of the distortion s∗GCmax is determined by the
load on the active current:

s∗GCmax = vDC·|imax − il |, (11)

where imax–maximum available current through the IGBT module.
It is obvious that during the formation of tasks p∗AFE and q∗AFE for AFE, the condition

s∗GC ≤ s∗GCmax must be satisfied at each moment of time. In this case, it is effective to

decompose the signals p∗GC and q∗GC into separate harmonics p∗(n)GC and q∗(n)GC , as well as
extract the constant component of the reactive power responsible for maintaining the
voltage level of the network. Then:

p∗AFE =
N

∑
n=5

p(n); q∗AFE = q +
N

∑
n=5

q(n). (12)

In this case, addition by individual harmonics is performed, while the condition
s∗GC ≤ s∗GCmax is met. Overall, the structure of the AFE control system is shown in Figure 6.
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Local MUs send the processed information packages to the controller units as well as to
any unit, which requests the information and is allowed to access it. Controllers are placed
in accordance with hierarchy, so local controllers produce control signals for endpoint
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devices, while the main controller maintains the whole surface mine operation [62]. MU
are typically placed at each power or protection device, where MU usually measures the
voltage at the device’s PCC and current going through the device. Typical examples are
transformer buses, compensators, VFD. MU usually provides collected information to the
local control unit, which depends on the device. For example, for STATCOM, the control
system, which operates switches, obtains information from local measurement units.

Let us consider short-circuit at the arbitrary grid node to illustrate the advantages
of gathering information by MUs that might trigger control signals for different power
devices: control of RPU, control of VFD, control of compensation device, on the example
of STATCOM.

RPUs are essential devices that may break fault circuits include power grid branches
and segments as well as faulty loads. The most common use case of RPUs is the isolation
of circuits with short circuits. Therefore, using the fast estimation of negative sequence
voltage according to (4), MU positioned close to RPU may trigger it to isolate circuit with
the delay of 10–20 ms, which is much faster than the traditional use of RPUs.

At the same time, information about the negative sequence is to be used by STATCOM
to mitigate the negative effects of short circuits for all loads across the grid. STATCOM in 6–
10 kV grids is able to partially compensate unbalanced voltages and currents during several
periods without severe DC-link voltage fluctuations by injection of reactive and active
currents in each phase. If the STATCOM’s DC-link is supplied by a constant voltage source,
such as a battery or flywheel, the amount of injected active power gradually increases.

The VFD with AR obtaining information about short circuits may produce two main
functions. First of all, the control scheme is triggered to maintain low-field operation at the
load side of the converter to increase the voltage sag drive-through ability of the drive. At
the same time, the grid-side inverter may be used as a local STATCOM device to mitigate
short-circuit consequences for loads located nearby.

If we consider the usual grid operation, the information from MUs is to be used
by STATCOM and VFDs to improve grid quality by eliminating harmonic currents and
stabilize voltage levels by injection of reactive power to the grid nodes. It is also important
that the universalization of MUs allows for the production of compensation currents, which
will target the source of harmonic and/or reactive currents, therefore, increasing the effect
of compensation devices.

According to the proposed control schemes, the power units achieve autonomous
operation, as each device carries the local MU, which is able to produce enough information
to maintain fault protection and the ability to increase power quality at the load PCC. This,
according to the Internet of things (IoT), is considered as operation at the device level.
At the same time, the interconnection of MUs and controllers allows introducing the fog
level device–master controller (MC) of the power grid, which provides the following
functionality to maintain the effectiveness and safety of the open cast mining technological
process:

• Gathering of information from all MUs;
• Monitoring situation at every grid node, which has MU installed as well as monitoring

loads status;
• Distribution of reference signals for compensation devices to effectively stabilize grid

voltages across the whole grid and mitigate harmonic currents;
• Prediction of escalating the emergency situations, such as short-circuits and according

to the reaction by the generating control signals for loads, compensators and RPUs;
• Logging necessary part of gathering information as well as sending the whole infor-

mation to cloud storage.

While the device level provides individual operability of the power appliances, the
for level allows optimizing grid power distribution and maintaining necessary power
quality at the main step-down transformer buses. Fog level control also allows transmitting
necessary analytical data to display at the operators’ workstations via SCADA software
or web-interfaces. Therefore, complete monitoring of the grid situation is achieved at the
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fog level. Fog devices usually store logs for several days to a week to achieve a proper
response of grid devices and operators for estimated trends.

The cloud level devices are used to store a massive amount of information collected
by the MC, which allows analyzing emergency incidents in detail as well as to further
optimize the mining process using statistical processing of gathered logs. Cloud level
includes backup and analytics servers that are leased from the cloud hosting providers.

The modern development of communication systems allows a sufficient variety of
device interconnection approaches. At the device level, the interconnection of MUs and
device controller may be used via twisted pairs, optical links, CAN buses, etc. At the
same time, protocols to exchange measurement data are also presented in a wide variety:
MODBUS, ProfiBus, ProfiNet, standard TCP/IP stacks. However, as it is important to
maintain transmission of information packages, as the data calculated by MUs changes
at microseconds level, it is advised to use time-synchronized protocols, such as precision
time protocol, time-sensitive protocol.

At the fog level, it is necessary to monitor and maintain interconnection topology and
hierarchy as well as to maintain guaranteed collecting of all available signals by the MC.
Therefore, the main principles here are providing backup data channels and the application
of protocols that utilize grid topology. Data channels for transmitting information from
MUs to MC and control signals from MCs to device controllers are direct links where
possible (typically twisted pair and optical links) and radio communication. However, in
the recent decade, the power line communication concept has been significantly developed
and is to be used as a backup data channel across the grid. The MC is connected to cloud
servers via the leased primary link and one to several backup data links if possible.

3. Results

Based on the proposed algorithms and described structural features of the monitoring
and communications between power devices, aimed to improve grid power quality as well
as to mitigate consequences of emergency operation of the grid, the concept of the signal
collecting systems in an open-pit mining grid was developed. Its structure based upon the
power scheme of the open-pit mining grid node is shown in Figure 7.
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All digital devices are divided into two groups–MUs and controllers, which are usually
work in pairs. For example, MU at the dragline input first sends data to the dragline
controller. That pairs form the domains, interconnected and limited by the industrial
switching equipment. Devices are interconnected with the optical fiber data link. In the
case of damaging the cable, the reserve link is always maintained via PLC, however, with
significantly lower bandwidth. While optical fiber between MU and nearest controller is
operational, MU sends the full amount of gathered and computed data about the power
flows, voltage and current spectra.

In the case of malfunctioning of the optical link between the controller and MU, the
reserve channel via PLC becomes uplink. As the bandwidth of the PLC link is significantly
lower than that of the optical fiber, the devices measure the average bandwidth of the
channel and negotiate about the amount of information processed by MU. The whole
topology of the grid can be achieved by the use of standard neighbor discovery protocol
(NDP), which is perfectly suitable for enterprise networks [67].

All controllers are numbered in the hierarchy, so the controller with a higher available
priority always becomes a master controller in negotiations. For example, the controller
at the substation has the highest priority number and becomes the master controller. For
all negotiating devices, it becomes the clock master to realize time-sensitive protocol
throughout the network. At the same time, the master controller (MC) implements links
between the MUs and controllers if it is not overridden in a particular controller. Such a
scheme provides scalability and the possibility to make redundant connections to provide
whole network functionality in the case of MC failure.

To illustrate some of the benefits of the proposed system for monitoring and gathering
digital signals, the Simulink model of grid node of open suite mining was developed.
Its structure is shown in Figure 8. The main purpose of the model is to demonstrate
modes of operation of draglines’ VFDs, which are not available with traditional control
and measurement systems.
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Figure 8. Structure of the grid model to test signal collecting in the open suite mining network. 1—a model
of main step-down substation 35/6 kV—ideal voltage source with finite short-circuit resistance; 2—cable
lines models; 3—linear load model, implemented to vary relation between non-sinusoidal and sinusoidal
currents; 4—transformer 6/0.4 kV (star—star); 5—diode rectifier of the dragline #3; 6—LCL filters of
dragline #1 and #2; 7—signals from the control system of AFE for dragline #1 and #2; 8—three-level IGBT
AFE; 9—DC-link of VFD of draglines #1 and #2; 10—equivalent load of draglines #1 and #2.
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The dragline #3 becomes an unpredictable nonlinear load for the grid, which intro-
duces harmonics inherent for diode rectifiers, with a rapidly changing amount of absorbed
active and reactive power. Draglines #1 and #2 are able to operate as active filters for such
harmonics as well as to stabilize voltage fluctuations if they have enough current reserve
to release it into the grid node. However, as draglines #1 and #2 are located at the different
grid nodes, they sense the distortions caused by dragline #3 at the different periods of
time, which leads to either mutual compensation or uncontrollable overcompensation. This
situation is illustrated in Figure 9, where both draglines try to compensate fifth harmonics
as the most dominant, and their AFEs have not enough current reserve to compensate it
completely; instead, they try to react to each other’s actions.
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Figure 9a,b shows the currents absorbed by the draglines #1 and #2. Summary current,
absorbed by the substation, is shown in Figure 9c. The spectrum of absorbed current by the
substation is shown in Figure 9d—it can be seen that the 5th harmonic reaches a 15% value,
which is quite high for 2 VFDs working in the active filtering mode. That is explained by
their remoteness from each other’s, which leads to dealing with each other’s effects rather
than working with the harmonic content.

The simplest solution to improve the situation is to distinguish reference currents
for the elimination of specific harmonics between devices. Figure 10 shows the result of
such reference distribution. The latency introduced by communications between the MU
and AFE controllers is simulated as a discrete delay of 1 ms to every external reference
produced for each AFE controller.
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While dragline #1 deals with the 5th harmonic in the current, dragline #2 handles the 7th
harmonic component, as can be seen from Figure 10a,b. Comparing Figures 9d and 10d, it
can be seen that in the case of distinguished references, the 5th harmonic magnitude at the
substation bus does not exceed 4% of fundamental, in comparison with 15% in the case of
local references setup.

4. Discussion

It was shown that the simultaneous operation of two VFDs partially loaded by the
active current in the filtering mode of nonlinear currents does not effectively reduce the
current harmonic distortion at the input of the network node, which is a consequence of the
oscillatory process due to the overlapping of currents consumed by both joint ventures and
subsequent overcompensation in those parts of the electric period, where the form of the
current consumed by the network section is closer to the sinusoid and undercompensation
on other sites. The curves of the currents consumed by each of the AFEs, as well as the
current curve and its spectrum at the input of the distribution network section, are given
to form tasks for compensating all distortions (Figure 9) and separately for compensating
the fifth harmonic for AFE #1 and seventh harmonic for AFE #2 (Figure 10). From the
obtained graphs, it can be seen that in the first case, there is under-and over-compensation
of currents in the lines, which leads to a value of THDi current at the input of the network
section equal to 17.42%. In the case of separate tasks for harmonic compensation for each
AFE, such processes are not observed, and the THDi value of the current at the input of the
network section decreases to 8.16%.
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In the simulation, the reference signals are generated for each AFE with the frequency
of one electrical period and delayed by 1 ms, which simulates constant delay of using PTP
during the transmission of data packets. However, in real hardware, the AFE controller
will obtain measurements with different frequencies but with information accurate to
the microseconds when the packet was produced by the MU. This allows us to utilize
prediction strategies to further reduce the negative effects of communication over long
lines. Adaptive strategies of the measurements are to be used in the case of unreliable and
cluttered connections, which is a subject of further research.

The results of the simulation highlight the potential benefits of utilizing the proposed
approach to develop more complex control strategies for power conditioning units based on
data obtained from MUs placed at different grid nodes. However, extending the approach
to large-scale grids is expected to raise issues with communicating over different channels
while providing low latencies. The simple master-slave hierarchy used in a considered
network is to be improved for large-scale applications. Particular application cases of
utilizing approach in complex grids require further investigation.

5. Conclusions

During the study, the approach to fast and accurately determine power quality fac-
tors of the three-phase grid was developed. The approach is based on the introduction
of a multipurpose measurement unit, which calculates the following qualities from the
input current and voltage sensors: magnitudes of each current and voltage harmonics
component; symmetrical components of currents and voltages; instantaneous active and
reactive powers, as well as powers of specific harmonics and symmetrical components.
The novelty of the approach lies in the combination of measurement unit with time-critical
protocols, which allows producing packets with timestamp accurate to microseconds and
power quality data only necessary for a particular receiving device, which is suitable in the
case of low-bandwidth networks or a significant number of communicating devices.

The proposed approach utilizes a simple master-slave hierarchy, which, however, is
to be extended in further studies on large-scale grids. To verify the effectiveness of the
proposed solution, a computer model of the grid node with two simultaneously operating
VFDs was developed in Simulink. The results of the simulation have shown the potential
to develop complex control strategies based on the proposed approach, which in the case
of separating references for harmonic currents mitigations for simultaneous operating
variable-frequency drives with active rectifiers allowed to significantly reduce harmonic
distortions of currents flowing into the grid node.

Therefore, the proposed structure of the signaling system introducing the IoT concept
to a particular open cast mining suite is a viable and flexible solution, which implementation
is cost-effective in terms of technological process continuity given the low costs of its
implementation. While simulation proves the proposed approach to collect and process
power quality data, such an approach is to be investigated on the real hardware, especially
in the case of power line and wireless communications.

Author Contributions: Conceptualization, S.K. and M.K., methodology, A.M., software, S.K., vali-
dation, S.K., A.M., and M.K., formal analysis, M.K., investigation, S.K., resources, M.K., writing—
original draft preparation, S.K., writing—review and editing, M.K., visualization, S.K., supervision,
A.M., project administration, A.M., funding acquisition, A.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was carried out within the state assignment of the Ministry of Science and
Higher Education of the Russian Federation (theme No. FSRW-2020–0014).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or
in the decision to publish the results.

76



Symmetry 2021, 13, 460

Abbreviations

AC Alternate current
ADC Analog to a digital converter
AFE Active front–end
AI Artificial intelligence
AR Active rectifier
DC Direct current
DR Diode rectifier
FFT Fast Fourier transform
IGBT Insulated–gate bipolar transistor
IoT Internet of Things
IP Internet protocol
MC Master controller
MU Measurements unit
NDP Neighbor discovery protocol
PCC Point of common coupling
PLC Power line communications
PTP Precision time protocol
RPU Relay protection unit
SCADA Supervisory control and data acquisition
STATCOM Static synchronous compensator
STFT Short-time Fourier transform
VFD Variable-frequency drive
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Abstract: The paper discusses a method for obtaining a matrix of individual and group composition
of a hydrotreated heavy gasoline fraction in industrial conditions based on the fractional composition
obtained by the distillation method according to the ASTM D86 (the Russian analogue of such a
standard is GOST 2177). A method for bounds estimation of the retention index (RI) change is
considered on the basis of the symmetry of the RI change range relative to its arithmetic mean.
Implementation of this method is performed by simulation of individual composition of C6–C12
feedstock of the catalytic reforming unit in the software package. For this purpose, the boiling curve
of individual composition of hydrocarbon mixture is converted into the corresponding curve of
fractional composition. The presented technique of creating a virtual soft sensor makes it possible to
establish a correct relationship between the fractional composition and the individual hydrocarbon
composition obtained according to the IFP 9301 (GOST R 52714) (Russian GOST R 52714 and
international IFP 9301 standards for the determination of individual and group composition of
hydrocarbon mixtures by capillary gas chromatography). The virtual soft sensor is based on chemical
and mathematical principles. The application of this technique on the data of a real oil refinery is
shown. Obtaining accurate data by means of a virtual soft sensor on the individual composition
of feedstock will make it possible to optimize the catalytic reforming process and thus indirectly
improve its environmental friendliness and enrichment efficiency.

Keywords: virtual soft sensor; naphtha; composition model; method of pseudo-components; frac-
tional composition; simulated distillation; boiling point; gas chromatography

1. Introduction

Digitalization of the economy in general [1] and industry in particular [2] is a top
national priority of the Russian Federation. Digitalization of technological processes in this
case is associated with their advancement [3]. Currently, development of technological
processes of oil refining is carried out with the help of improvement of technology [4,5]
and control systems and control principles of these technological processes [6]. In this case,
technological development means everything that is related to technology: advancement
of apparatus design, replacement of equipment, reagents, etc. Improvement of control
systems and principles means creation of new control algorithms and principally new by
structure and functionality automated control systems. The development of primary oil
refining processes is mainly due to the introduction of so-called advanced control systems
(APC), which have already been proven to bring substantial profits to oil refineries [3].

However, secondary oil refining processes are directly related to improvements in
technology [7,8]. For example, moving bed catalyst reactors are used instead of a fixed bed
reactor or development of new types of catalysts that increase conversion and efficiency of
processes in chemical reactors [5]. Meanwhile, improving the control systems and control
principles of secondary oil refining processes is not considered a priority task. This is due
to several reasons: (1) Significant profit from technological advances overshadows the
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profit from system advances. (2) New techniques do not allow the formation of signifi-
cant experience in the automation of these processes, and therefore decisions concerning
advancements of systems can be considered hasty and lacking adequate substantiation.
(3) Low flexibility of the process, most parts of which can rather be perceived as a black
box with no chance to change the contents. (This is due to the peculiarity of reactor pro-
cesses. As a rule, the controls are made in such a way that those control actions that are
applied to the reactor input give their result at the output of the apparatus. We can only
change something with a loss of quality for a period of time. The change occurs intuitively,
because there are no control actions while the substance is in the apparatus; however, there
are many influencing factors: coke formation, reduction of the reactivity of the catalyst,
etc. Therefore, from the point of view of control, the apparatus is a black box, since it
is impossible to monitor the state of the substances inside the unit.) (4) The complexity
of chemical processes that are difficult to determine. (5) High cost of equipment for the
study of these processes, etc. However, taking into account these issues, the use of APC
algorithms along with technological developments will certainly increase the efficiency of
secondary oil refining processes, as well as bring additional profit to oil refineries [9,10].
Although advanced control systems are based upon mathematical models, it is difficult
to obtain accurate mathematical models describing a process in petroleum or a related
field [11]. This applies to both mathematical kinetic and empirical models. For kinetic
models, it is difficult to obtain a complete list of reactions of the process. For empirical
models, it is insufficient information about the process, which makes it complicated to
accumulate data to build empirical models. In this regard, the work aimed at improving
the information component of the system is relevant.

Data about the hydrocarbon components contained in naphtha is used to monitor the
catalytic reforming process, assess product quality, and control composition. Extended
hydrocarbon composition can be obtained by chromatography. If chromatography is used
to identify compounds, the retention time should be independent of the amount of sample
and the chromatographic peaks should be symmetrical to ensure correct identification of the
compounds. The extended hydrocarbon composition is also used as input for mathematical
modeling of the process. It should be kept in mind that data obtained by chromatography
cannot be extracted in real time. Usually, they are received in the laboratory over a period
of at least two hours with human participation. Soft-sensing technology is used in various
industries and technological facilities. The application, algorithmic and mathematical bases
for these sensors are very diverse and are mainly based on neural networks, regression
methods, and composition prediction. The paper by Tian et al. (2021) [12] presents soft
sensor applied in the monitoring system of a typical 330 MW CHP plant. This approach
uses the turbine’s Flugel formula as a static model, the turbine’s heat balance characteristic
to correct the coefficient in the model and the butterfly valve characteristic to realize
dynamic compensation to realize the soft sensor. The work Niño-Adan and colleagues
(2021) [13] discusses soft-sensor for class prediction of the percentage of pentanes in butane
at a debutanizer column. It includes the autoML approach that selects among different
normalization and feature weighting preprocessing techniques and various well-known
machine learning (ML) algorithms. The article by Winkler et al. (2021) [14] presents
soft sensor for real-time process monitoring of multidimensional fractionation in tubular
centrifuges. Reference [15] describes Soft sensor for industrial distillation column. The
authors Hsiao et al. (2021) propose soft sensor development methodology combining
first-principle simulations, and transfer learning was used to address these problems.

One of the elements of advanced control systems is the virtual sensor [16]. Virtual
sensors calculate parameter values using statistical dependencies (a polynomial), a neural
network, or other mathematical tools to determine correlation between variables [17,18].
This method involves the accumulation of a large volume of data and its further processing
using various approaches [19] including those mentioned earlier. For a catalytic reformer,
various variables can act as deterministic parameters for the virtual sensor. However, in
some cases, the creation and implementation of virtual sensors for some variable process is
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highly difficult and even impossible. This is due to the fact that the large sample of data
history for this segment does not exist, or their synchronization is troublesome. In particular,
to be more specific, the process of creating a virtual soft sensor of the feedstock composition
is a challenging task. The reason for this is the mismatch between the company’s capabilities
to measure individual hydrocarbon composition in a number of industrial processes and
the data requirements of the virtual sensor. In this case, data obtained on the individual
hydrocarbon composition of the feedstock in real time is an effective tool for optimizing
technological processes that take place in a catalytic reforming unit. The need to optimize
technological processes in this matter is caused by tough requirements for environment
protection [20] and the influence of the modern trends in the development of the global
energy sector [21,22].

It is important to reduce the uncertainty arising from infrequent composition control
in processes such as catalytic reforming where the individual and group composition of
the feedstock determines the target performance of the unit and the catalyst lifespan. Such
uncertainty in the feedstock composition can complicate the application of mathematical
models in the loop of an advanced control system or as an advisor to the operator [23],
which can result to fluctuations in product target performance over the specification limits
in the absence of the advanced control system. Studies of naphtha catalytic reforming
process have been carried out for a long period of time [24]. During this period, a large
number of [25] complex, highly precise, and detailed mathematical models of the catalytic
reforming process, simulating different naphthas with various amount of detail, have been
developed. The following steps were highlighted in the study of research and work: the
effect of changes in feedstock composition at the naphtha catalytic reforming unit is consid-
ered [26]; consider the parameters of the working process of coke combustion, comparing
the results with industrial data [27]; conduct a comprehensive sensitivity analysis of the
quality and quantity of the product [28] without taking into account the impact of changes
in the composition of raw materials of the process; the influence of the design parameters
of a catalytic reforming reactor, the molar flow rate on the hydrodealkylation side, the
molar ratio of hydrogen to hydrocarbons, the impact of catalyst deactivation on the system
performance are subjected to the research [29]; the modes of incoming and outgoing flows
in reactors with thermal coupling are analyzed [30].

A certain technological level of the unit that meets the requirement of the mathematical
model for the size of the input matrix is needed to introduce the developed mathematical
models in the existing production facilities. The model input matrix can be obtained
from the results of analytical control of the individual hydrocarbon composition of raw
materials, but inline control is not applied at all refineries. This raises the question of how
to provide the mathematical model with up-to-date input information about changes in
the composition of the workflow under operating production conditions, and whether this
control of the feedstock composition of a catalytic reforming unit can be performed more
frequently at an operating production facility.

A review Ren and colleagues (2019) [31] of methods for converting individual com-
position into fractional composition and vice versa showed several approaches. Most of
the approaches are formed on a multidimensional base for controlling several parameters
besides composition, which implies a preparatory stage of model development. Incomplete
data and checking their correctness results in the use of data processing and recovery
methods. The researchers consider the dependences of the mixture properties on the
compound identification parameters [32–34], individual constants, and characteristics of
the compound [35], which is an important and necessary basis for this study.

The paper discusses a method for obtaining a matrix of the carbon number and group
composition of the feedstock of a catalytic reforming unit in industrial conditions. A group
composition of petroleum fractions during an oil refining processes is the most important
factor influencing in the yield and composition of products, as well as an efficiency of the
catalysts. The fuels ASTM D86 distillation temperature distribution is divided into equal-
volume pseudo-component cuts, each of which is assigned a property volume blending
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index the aggregation of which provides an accurate estimation of the global property of
the whole petroleum fuel, or portions thereof. The list of these pseudo-components is the
group composition of petroleum fractions [36]. It is envisaged that it is possible to find
a matrix of carbon number and group composition of hydrotreated catalytic reforming
naphtha close to the experimental one by expressing [37] the desired composition through
close fractions of known individual hydrocarbon compositions. The evaluation of the
fraction proximity is determined by the associated boiling points. This is known due to the
fact that the heavier in molecular weight individual components that make up the fractions
have higher boiling points than the lighter ones.

The retention index is a common type of data used to identify chemical compounds
by gas chromatography. The retention index system is a widely used and recognized
system in gas chromatography for the identification of compounds. The paper by Yan et al.
(2015) [38] describes that the database retention indices of over 300 aroma compounds
that were determined on three capillary columns of different polarity can be used for
qualitative identification. The work [39] shows that retention indices of 28 polychlorinated
biphenyls in capillary gas chromatography referred to 2,4,6-trichlorophenyl alkyl ethers as
RI-standards. The paper by Morosini and Ballschmiter (1994) [39] presents that on the basis
of the TCPE, the retention indices of 28 polychlorinated biphenyls were determined using
the ECD, a 95% dimethyl 5% phenyl polysiloxane phase and six different temperature
programs. In addition, there are a number of studies in practice that have generated a
system of retention indices in different ways [40–42].

2. Materials and Methods

The development of a model for a virtual soft sensor of the feedstock composition
can be divided into two stages: preparatory and computational. The preparatory stage
includes the analysis and processing of the obtained data, determination of the method
of obtaining fractions from the individual composition, and the formation of a database
of individual components and associated boiling points of fractions. The description of
the preparatory stage is formed on the lack of information on the chromatographic system
and the fractional composition control system based only on the available measurement
data. A chromatographic system is defined as a set of hardware and methods that allow
chromatography to be performed. The need of these operations at each stage will be
discussed further.

According to the technological regulations of the enterprise, the individual and group
composition is controlled according to the IFP 9301 standard, which recommends the use
of gas chromatography with a 100 m long fused-silica capillary column with an inner
diameter of 0.25 mm. According to the standard, the capillary column is coated with
methylsilicone elastomer or dimethylsiloxane, 0.5 µm thick, and has to be equivalent to at
least 6000 theoretical plates/m; a linear retention index (n-alkane) is used to identify the
components. The fractional composition is controlled according to the ASTM D86 method.

2.1. Preparatory Stage

Check the presence and repeatability of the distribution law in the IFPi homologous
series. If the data obey the distribution law, then composition models based on these laws
can be used. Determine the retention time of non-absorbent substance and possible param-
eters of the chromatographic system for the identification of compounds [37]. However,
reference sources on retention indices provide single values for individual substances and
there are no confidence interval limits of their measurement, which leads to uncertainty
in identification [43]. If the report on the control of individual and group composition of
raw materials records the given time, then calculate the matrix of minimum ∆RI from all
reports for each homologous group by carbon number by Equation (1):

∆RI = RIi − RIi-1, (1)
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where ∆RI is the difference in the retention indices of adjacent compounds in the report, RIi
is the retention index of the i-th compound, and RIi-1 is the retention index of the previous
compound to the i-th. The chromatographic system identifies a component by its retention
index, and therefore it is important that the maximum deviation from the mean in the
retention index of each compound in different reports does not exceed the ∆RI value for the
corresponding homologous group of a matrix of minimum ∆RI. If the value of deviation
of the retention index exceeds the corresponding ∆RI, then this indicates that the data
are incorrect, and that compound cannot be correctly identified. Moreover, the matrix of
minimum ∆RI and average values of the retention indices can be used as an indicator of
the chromatographic system performance, automatically checking the deviations of the
new composition measurement, since visual assessment of the chromatogram allows for
human error.

For identified compounds with unknown boiling point the experimental values of
the parameter are taken from the reference sources [35]. Construct the function between
the normal boiling point of a compound and its retention index within one homologous
series [33,44]. For unidentified compounds, determine its boiling point according to the
constructed mathematical relation.

Determine actual ASTM boiling point intervals (min and max) for a given period of
unit operation. In this case, the period of operation of the unit should be representative (his-
torical data should cover the entire range of variation in the feedstock composition). This
will allow for assessment of the range of change in the fractional feedstock composition.

Construct theoretical curves [45] corresponding to the mixture distillation simulated
curves. The obtained simulated distillation curves are set in the Hysys/Pro II simulation
program, specifying the composition of the mixture, which is the beginning of its boiling.
Calculate the D86 boiling curve and enter the obtained values into the database as an
associated fractional composition with an individual and group composition.

Theoretical curves are derived from the characteristic boiling points of the mixture
from the individual hydrocarbon composition of the feedstock. The characteristic boiling
points of a mixture are close values to the boiling points of the mixture at the correspond-
ing cumulative fractions of the mixture. They uniquely characterize the entire mixture
fraction taken in the interval of the corresponding cumulative fractions of the mixture
by considering the boiling point of each compound of the fraction in accordance with
the fraction occupied by this component in the given fraction of the given hydrocarbon
com-position. Cumulative fractions are calculated in accordance with the principle of
additivity of fractions of mixture components. The fraction taken from the individual
hydrocarbon composition is considered separated from the rest of the mixture, and equated
to 100%, the fractions of individual components in it are recalculated and used as weight
coefficients when adding temperatures of each compound in the taken fraction. Thus, we
obtain a unique temperature characterizing the fraction through the temperatures of the
compounds of its constituents and close to the experimental boiling point of the mixture
at the corresponding cumulative fraction of the mixture. The beginning of boiling of the
mixture is determined on the basis of the algorithm of finding the experimental boiling
points of the mixture. The obtained characteristic boiling points of a mixture of individual
hydrocarbon composition are taken as a simulated distillation curve (SD) and, using the
procedure 3A.3.2 API-TDB 1997 [46], convert them to an ASTM fractional boiling curve.
We estimate the belonging of the obtained ASTM boiling curve according to the available
actual boiling point ranges according to ASTM.

The prepared IFPi and their corresponding boiling points of the fractional composition
are recorded in the non-relational database as the key value. The key in this case is the date
of chromatography, associating the data of the two compositions, and the values are the
report of the individual hydrocarbon composition and the corresponding boiling curve.
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2.2. Computational Stage

Compare each point of the measured D86 boiling curve with the corresponding point
by volume fraction point of the boiling curve from the prepared database. For comparison,
we use the module of the difference between the measured and associated boiling point
from the prepared database. A reference book with the keys of delta temperatures and
values of chromatography dates with a length equal to the number of keys in the prepared
database is created in the operating memory of the computer.

In the temperature delta reference book, search for the minimum temperature delta
for each boiling point of the hydrocarbon mixture. As a result, one obtains a list consisting
of an ordered sequence of dates and the corresponding boundary cumulative fraction of
the hydrocarbon mixture.

The IFPi fractions sequence is determined from the list of dates. To obtain a sequence of
fractions, we use the algorithm for obtaining a fraction from IFPi by cumulative fractions of
the mixture by referring by date to the IFPi in the prepared IFPi database and the boundary
cumulative fraction of the hydrocarbon mixture. We obtain a list of sequences of individual
mixture components expressed from the nearest IFPi fractions. The resulting sequence
is recorded in the database of estimated compositions for the possibility of performing
analysis and statistical assessment of changes in the composition over time.

Obtaining the MTHS matrix (MTHS—molecular type and homologous series). We
find the scoring matrix of the carbon number and group composition of the mixture.
The method used to assess the proximity of the sought individual composition and the
experimentally obtained composition requires reducing the IFPi to a matrix form. This
covers the cases of repeating the dates at step 2 and possible duplicates of the names of the
boundary components of the IFPi fractions. In this case, the values of the fractions of the
components, for which the individual composition was incremented, are not repeated for
the duplicate names, and do not violate the additivity principle of the mixture.

The Figure 1 shows the block diagram of the model for assessing MTHS composition
by the ASTMi boiling.

The measured ASTMi boiling curve of size 1 × 7 is fed to the input to the model.
On the basis of the minimum temperature difference, the model determines the closest
associated boiling point for each ASTMi boiling point fed to the input. According to the
mixing rule, the MTHS matrix of the hydrocarbon mixture composition is calculated on the
basis of the nearest boiling points of fractions found in the BPi virtual soft sensor database.

The presented virtual model of the soft sensor can be verified using four available
reports of individual and group composition of the hydrocarbon mixture. These reports
were created by monitoring the composition of the hydrotreated heavy gasoline fraction
of a catalytic reforming unit (CCR) in different months of different years according to
IFP 9301.

Let us conduct an experiment with the model, taking one of the four IFPi as unknown,
and feeding the associated ASTMi boiling curve, taken as unknown associated IFPi, to the
input to the model. As a result of the experiment with the model, we obtain the estimated
MTHS matrix of the unit feedstock composition, taken as unknown. The estimated matrix is
compared with the experimental matrix via reducing to the PIONA (paraffins, iso-paraffins,
olefins, naphthenes, aromatics) vector, obtained by adding the respective fractions of
compounds belonging to one of the five types of compound groups.

IFPi are represented by adsorption sequences of various lengths without repeating
names, consisting of a list of individual components with diverse fractions of compounds
in the mixture, with different boiling points. The various lengths of the reports and the
difference in the positions of the same compound complicate assessing the proximity of
the compositions in this form. However, the report on the considered raw materials can be
reduced to an 11× 5 matrix. The columns are the homological series, while the rows are the
carbon numbers of the compound or several compounds of the same group. This approach
will allow us to quantitatively assess the proximity of compositions by the components of
the vector PIONA.
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Figure 1. Block diagram of the model for assessing MTHS composition by the ASTMi boiling curve. 
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Figure 1. Block diagram of the model for assessing MTHS composition by the ASTMi boiling curve.
BPi Database is a list of associated boiling curves; sorting rules—sorting rules used to obtain the
desired elements; IFPi Database—list of associated reports on the individual hydrocarbon compo-
sition of the mixture; built-in-mixing rule—incrementing the fractions of individual components
is performed only with the corresponding fractions according to the principle of additivity of the
mixture fractions; measured ASTMi (1 × 7)—boiling points (minimum 7 boiling points of a mixture),
obtained during the in-process control of the fractional composition of the hydrocarbon mixture;
compare BPi—calculation of deltas of measured and prepared boiling points of the hydrocarbon
mixture; BPi selection—determination of the minimum deltas for each boundary value of the cumu-
lative fraction of the mixture; obtaining fractions sequence—generation of a sequence of fractions
of individual components; MTHS matrix calculation—calculation of the estimated MTHS matrix;
estimated composition (11 × 5)—the resulting estimated MTHS matrix.

The accuracy of the data taken is determined by the accuracy of the DCS (distributed
control system) and LIMS (laboratory information management system) systems operating
on the unit, as well as by the accuracy of the sensor equipment used.

In addition, when describing the experiment, it is worth noting that the enterprise
has internal standards that describe the required accuracy of the system operation and the
laboratory tests carried out, which indirectly indicates the sufficient reliability of the data
obtained in this manner.

3. Results
3.1. Statistical Descriptive Analysis of the Samples

Before developing the model, we subjected the IFPi data obtained at the enterprise
to statistical analysis. In particular, for each homologous series, a distribution histogram
was constructed for four samples of the same catalytic reforming feedstock process stream,
tested by the IFP 9301 method at different times (Figure 2a–e).
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Figure 2. Distribution histograms: (a) paraffins; (b) iso-paraffins; (c) olefins; (d) naphthenes; (e) aromatics.

As can be seen from the graphs, the distribution within each homologous group
(paraffins, iso-paraffins, olefins, naphthenes, and aromatics) did not statistically obey any
distribution function. This made it impossible to apply known models [9,47–50] based
on the assumption of a change in composition in accordance with the known statistical
distribution within the homologous group. The unevenness in the composition of raw
materials and distribution by homologous groups can also be seen. At the same time,
the low frequency of analysis of raw materials was associated with a stable composition;
however, Figure 2 shows a contradiction. This fact additionally indicates the relevance of
this work.
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3.2. Retention Indices as a Marker for Component Identification in Homologous Groups

It was not possible to set the time for non-adsorbent compound, because the report
recorded the adjusted retention time. When determining the matrix of minimum ∆RI, the
values given in Table 1 were obtained.

Table 1. Matrix ∆RImin for homologous groups of IFP1–IFP4.

I O N A

C6 3.8 - 32.37 -

C7 1.47 2.99 0.8 -

C8 0.48 50.26 0.8 1.13

C9 0.97 1.06 0.47 1.95

C10 0.7 1.12 0.96 1.07

C11 1.47 - 19.36 0.92

C12 35.79 - - 0.91

C13 - - - 42.46

The first column of the table contains the numbers of carbon atoms; the title of the
table contains the name of the homologous group. The least values of ∆RI from Table 1 are
contained in I8 and N9. These and other cases are shown in Figure 3.
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Figure 3 shows the RI range from its arithmetic mean for each identified compound
present in each IFPi. The RI ranges of the retention indices of the different compounds in
the various homologous groups show the differentiation in the ranges of the RI retention
indices of each compound and the inferred RI limits for the compounds. A symmetry with
respect to the arithmetic mean RI can be observed. The deviation values show a tendency
towards an increase in the spread of RI for light and heavy compound. The reason for
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this may be the methods and algorithms used to calculate the RI, as well as methods and
instructions for performing the composition control procedure in production.

Let us consider the case of I8 with RI in the range of mean values from 724.503 to
777.97, where the maximum upper and lower boundaries for this group were reached at
point 777.97 and its value was 0.27, which was less than 0.48 from Table 1. In the case of
N9 with RI in the range of mean values from 830.515 to 936.827, the maximum upper and
lower boundaries for this group were reached at point 902.905, with the value of maximum
deviations of 0.34, which was less than 0.47 from Table 1. The inequality was valid for all
PIONA corresponding pairs of RI values of all homologous series with the exception of a
few aromatics and one olefin. Thus, the retention index is considered a reliable parameter
for model development, therefore the reported data are valid. The retention index of
the identified components were close and coincided with the retention index obtained
in [51–53].

3.3. Identifying Components with “Drifting” RIs

The Figure 4 shows the search algorithm for component with “drifting” RI.
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Table 2. Search result for components with “drifting” RI. 

Component Group Report ΔmmRILi minΔRIui minΔRIBi 
1,2-Dimethyl-4-ethylbenzene A10 IFP4 0.81 0.85 0.79 

Undecene-1 O11 IFP4 1.02 1.28 0.98 
1,2-Dimethyl-3-ethylbenzene A10 IFP4 1.61 1.28 1.42 
1,2,3,5-Tetramethylbenzene A10 IFP4 2.24 1.27 1.83 
1,2-Ethyl-n-propylbenzene A11 IFP4 1.83 1.7 1.62 

4-Methylindan A10 IFP4 1.89 1.62 1.86 
n-Hexylbenzene A12 IFP4 2.44 1.76 14.79 

3.4. Evaluation of a Chromatographic System 

Figure 4. Search algorithm for component with “drifting” RI. ∆RIUi—difference between the retention
index of the current component and the retention index of the next component, ∆RIBi—difference
between the retention index of the current component and the retention index of the previous
component, RILi—list of retention indices of the current component, maxRILi—the maximum value
of the retention index of the current component, min∆RILi—the minimum value of the retention
index of the current component, ∆mmRILi—delta between the maximum and minimum value of
the retention index of the current component (∆mmRILi = max∆RILi-min∆RILi), min∆RIBi—the
minimum difference between the retention indices of the current compound name and the previous
value in all reports, min∆RIui—the minimum difference between the retention indices of the current
compound name and the next value in all reports.
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Table 2 shows the result of the algorithm for finding drifting retention indices on
experimental data. Components with drifting retention indices were identified. They all
belonged to groups A10, A11, A12, and O11.

Table 2. Search result for components with “drifting” RI.

Component Group Report ∆mmRILi min∆RIui min∆RIBi

1,2-Dimethyl-4-ethylbenzene A10 IFP4 0.81 0.85 0.79

Undecene-1 O11 IFP4 1.02 1.28 0.98

1,2-Dimethyl-3-ethylbenzene A10 IFP4 1.61 1.28 1.42

1,2,3,5-Tetramethylbenzene A10 IFP4 2.24 1.27 1.83

1,2-Ethyl-n-propylbenzene A11 IFP4 1.83 1.7 1.62

4-Methylindan A10 IFP4 1.89 1.62 1.86

n-Hexylbenzene A12 IFP4 2.44 1.76 14.79

3.4. Evaluation of a Chromatographic System

The change in the properties of the column during aging was assessed by the change
in the retention index and the capacity factor k of benzene. Experimental methods were
also used with a previously known composition of the mixture. Since the retention index
is a reproducible parameter within a single chromatographic system, it can be used to
evaluate a chromatographic system and change its properties over time. The Figure 5
shows the algorithm for evaluating the chromatographic system.
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Figure 5. Algorithm for evaluating the chromatographic system. IFPso—start of operation of the
chromatographic column, IFPeo—the last measurement before replacing the chromatographic column
(end of operation). Input reports should be on the same process stream. Only the corresponding
reports on the control of the composition were submitted to the entrance.
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3.5. Predicting Normal Boiling Points from RIs

In order to use the retention index as a parameter for assessing the normal boiling
points of compounds, we carried out an analysis of the reports. The IFPi analysis iden-
tified three categories of data: unidentified compounds with unknown boiling points,
unidentified compounds with known boiling points, and identified compounds with un-
known boiling points. The component contribution to the mixture by category is shown in
Tables 3–5.

Table 3. Unidentified C7-C13 compounds with unknown boiling point.

IFPi Numb.
Summarized Unidentified (numb.|wt %)

I O N A Summarized

IFP1 245 31|3.3334 4|0.0128 39|4.7344 7|0.0565 81|8.1371

IFP2 246 31|3.3705 3|0.0552 40|5.9527 11|0.0637 85|9.4421

IFP3 256 34|3.4353 2|0.0044 38|4.6287 16|0.0948 90|8.1632

IFP4 247 34|3.9115 4|0.0434 38|6.0251 10|0.0632 86|10.0432

Numb.—the number of components.

Table 4. Unidentified C9-C13 compounds with known boiling point.

IFPi
Summarized Unidentified with Known Temperature (numb.|wt %)

I O N A Summarized

IFP1 4|0.6811 1|0.0018 15|1.3249 14|0.1695 34|2.1773

IFP2 5|0.9755 0|0 17|1.9265 12|0.188 34|3.09

IFP3 5|0.6672 0|0 14|1.3254 17|0.2039 36|2.1965

IFP4 5|0.7675 0|0 14|1.442 11|0.1745 30|2.384

Table 5. Identified C9-C12 compounds with unknown boiling point.

IFPi
Summarized Identified with Unknown Temperature (numb.|wt %)

I O N A Summarized

IFP1 1|0.0665 7|0.1991 1|0.3499 6|0.0093 15|0.6248

IFP2 2|0.0998 6|0.1927 3|0.5018 5|0.0084 16|0.8027

IFP3 2|0.1599 7|0.2405 1|0.367 10|0.0208 20|0.7882

IFP4 2|0.1161 8|0.2675 2|0.3968 7|0.01 19|0.7904

These tables show the estimated normal boiling points contribution to the theoretical
curves shown in Figures 6 and 7.

The restored theoretical curves are shown in the Figure 6. In the Figure 7, the D86
boiling curves obtained from the theoretical curves by the pseudo-component method
are shown as solid lines. The triangular marker indicates the points of the D86 boiling
curves obtained by the procedure 3A.3.2 from API–TDB 1997 on the basis of a sample of
experimental data. The weight and volume percent of the mixture are located along the
ordinate axis, and the temperature is located along the abscissa axis. Blue color was chosen
for IFP1, green for IFP2, yellow for IFP3, and black for IFP4. The resulting D86 boiling
curves corresponded to the D86 boiling curves obtained by the method of converting
simulated distillation according to the ASTM D86. The difference in boiling points D86
from 10% to 90% inclusively did not exceed 1 ◦C. Differences more than 1 ◦C between
curves can be observed at the beginning and end of the mixture boiling, since the correlation
error for the beginning and end of boiling is more than 1 ◦C. That is due to the accuracy
of the fractional composition measurements according to the ASTM D86 method, used
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equipment and possible way of processing data of the theoretical curve. When the sample
was tested according to the ASTM D86 method, statistically the mixture boiled off by
98 vol %. The presented D86 curves fell within the range of ASTMi boiling points obtained
during the analysis of fractional composition statistics. It was seen that three boiling curves
were located close to each other on the segment of 10–70 vol %, and the boiling points at
the points of 10 vol %, 30 vol %, and 50 vol % were repeated in different curves. Thus, it
can be assumed that reducing the sampling interval of the measurements will provide a
more accurate difference in close compositions with the use of the presented method. This
can be seen from the D86 curves obtained by the method of pseudo-components.
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During the preparatory stage, the boiling curves were analyzed for a year and a half
of the unit’s operation (see Table 6).

Table 6. Boiling point intervals according to the ASTMi.

IBP, vol % 10, vol % 50, vol % 90, vol % FBP, vol %

Min 93.0 100.0 109.0 135.0 156.0

Max 103.0 110.0 127.0 160.0 183.0
IBP—initial boiling point; FBP—final boiling point.

The range of variation in the feedstock composition of the catalytic reforming was finite
and corresponded to the established specification limits of the technological regulations
for the catalytic reforming unit feedstock. This fact further indicates the relevance of the
research.

Let us take for unknown composition, for example, IFP3. We can feed the correspond-
ing D86 boiling curve to the input of the developed model. The result (Table 7) obtained
is not optimal in terms of possible combinations of fractions in order to minimize the
resulting error of the composition, and the result depends on the proximity of each fraction
through which the desired composition was expressed.

Table 7. The model calculation result.

Calculation Experiment ∆

P[wt %] 18.6676 16.2217 2.4459

I[wt %] 38.3471 40.8639 −2.5168

O[wt %] 0.4319 0.3978 0.0341

N[wt %] 30.0788 30.6024 −0.5235

A[wt %] 12.4747 11.9142 0.5604

RMSE = 2.581194; R2 = 0.991234046

4. Conclusions

The presented model of the virtual soft sensor is designed to reduce production costs
by using information about the composition stored in the databases of the catalytic re-
former, with the possibility of implementing advanced control systems with high-precision
mathematical models into the control loop. The main hypothesis of this work is the hy-
pothesis about the possibility of establishing the correct relationship between the boiling
curves of ASTM D86 (GOST 2177) and the individual hydrocarbon composition of the
mixture obtained by the IFP 9301 method (GOST R 52714). In the course of the study, it
was possible to show the consistency of the hypothesis put forward, develop a method,
and convert the boiling curve of D86 into MTHS. Thus, a virtual soft sensor based on the
developed technique can evaluate the composition of the feedstock in real time from the
D86 boiling curves. The following results were obtained:

(1) The quantitative change in the individual composition of catalytic reforming naphtha
over time did not obey the distribution laws.

(2) Methods for evaluating the results of the chromatographic system operation were
presented, which made it possible to determine compounds with a large “drift” of
the retention index, which can be used when setting up and operating the chromato-
graphic system, as well as in analyzing and processing data from the reports of the
chromatographic system.

(3) The data used were correct, since the retention index (n-alkane) was reproduced for
the corresponding components of the mixture in the same chromatographic system
and was repeated in the indicated studies for such components as benzene, 2,4-
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dimethylpentane, and methylcyclopentane with a difference of no more than 0.4 units
retention index.

(4) An algorithm for evaluating the chromatographic system and changing its properties
with time was proposed.

(5) A method for converting the fractional composition into a matrix of individual and
group composition was presented.

In addition, it should be noted that the developed model requires a more thorough
test on a larger sample of IFPi to determine the sensitivity in cases of close compositions.
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MTHS molecular type and homologous series
MES manufacturing execution system
ERP enterprise resource planning
PIONA paraffins, iso-paraffins, olefins, naphthenes, aromatics
IBP initial boiling point
FBP final boiling point
tm retention time of non-absorbable substance
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LIMS laboratory information management system
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Abstract: Big data analysis is becoming a daily task for companies all over the world as well
as for Russian companies. With advances in technology and reduced storage costs, companies
today can collect and store large amounts of heterogeneous data. The important step of extracting
knowledge and value from such data is a challenge that will ultimately be faced by all companies
seeking to maintain their competitiveness and place in the market. An approach to the study of
metallurgical processes using the analysis of a large array of operational control data is considered.
Using the example of steel rolling production, the development of a predictive model based on
processing a large array of operational control data is considered. The aim of the work is to develop a
predictive model of rolling mill roll wear based on a large array of operational control data containing
information about the time of filling and unloading of rolls, rolled assortment, roll material, and time
during which the roll is in operation. Preliminary preparation of data for modeling was carried out,
which includes the removal of outliers, uncharacteristic and random measurement results (misses), as
well as data gaps. Correlation analysis of the data showed that the dimensions and grades of rolled
steel sheets, as well as the material from which the rolls are made, have the greatest influence on the
wear of rolling mill rolls. Based on the processing of a large array of operational control data, various
predictive models of the technological process were designed. The adequacy of the models was
assessed by the value of the mean square error (MSE), the coefficient of determination (R2), and the
value of the Pearson correlation coefficient (R) between the calculated and experimental values of the
mill roll wear. In addition, the adequacy of the models was assessed by the symmetry of the values
predicted by the model relative to the straight line Ypredicted = Yactual. Linear models constructed
using the least squares method and cross-validation turned out to be inadequate (the coefficient
of determination R2 does not exceed 0.3) to the research object. The following regressions were
built on the basis of the same operational control database: Linear Regression multivariate, Lasso
multivariate, Ridge multivariate, and ElasticNet multivariate. However, these models also turned out
to be inadequate to the object of the research. Testing these models for symmetry showed that, in all
cases, there is an underestimation of the predicted values. Models using algorithm composition have
also been built. The methods of random forest and gradient boosting are considered. Both methods
were found to be adequate for the object of the research (for the random forest model, the coefficient
of determination is R2 = 0.798; for the gradient boosting model, the coefficient of determination is
R2 = 0.847). However, the gradient boosting algorithm is recognized as preferable thanks to its high
accuracy compared with the random forest algorithm. Control data for symmetry in reference to the
straight line Ypredicted = Yactual showed that, in the case of developing the random forest model,
there is a tendency to underestimate the predicted values (the calculated values are located below the
straight line). In the case of developing a gradient boosting model, the predicted values are located
symmetrically regarding the straight line Ypredicted = Yactual. Therefore, the gradient boosting
model is preferred. The predictive model of mill roll wear will allow rational use of rolls in terms
of minimizing overall roll wear. Thus, the proposed model will make it possible to redistribute the
existing work rolls between the stands in order to reduce the total wear of the rolls.
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1. Introduction

The metallurgical industry is one of the leading sectors of the Russian economy. The
products manufactured by this industry are used in construction, mechanical engineering,
the chemical industry, and many other industries [1–3].

Rolled steel production is one of the most important items of Russian export. By
deforming the metal in the space between the rotating rolls, you can get almost any kind of
metal product from steel and other alloys. This process is called metal rolling. One of the
major problems of rolled products is the wear of rolls that deform the metal.

In this work, wear refers to qualitative and quantitative changes in the roll surface
caused by physical and chemical processes, as well as mechanical effects of one body on
another [4–6].

Current trends in the development of metallurgy are characterized by the develop-
ment and implementation of information systems and technologies, which are based on
computers and computer networks with the richest software, as well as database manage-
ment systems and computer decision support systems, the methodological basis of which
is systems theory and systems analysis.

Scientific and technological progress creates prerequisites for improving the quality
of management through the use of computer technology, mathematical methods of data
processing, control theory, and control automation. All this has found concrete implemen-
tation in automated control systems. Owing to the development of information technology
(IT), there are modern software products and database management systems (DBMS) for
solving production management problems. Modern software and microprocessor technol-
ogy makes it possible to create high-level control systems with the inclusion of powerful
control algorithms.

The relevance of the work is thanks to the fact that the construction of linear and
multidimensional regression models based on a large data set does not provide a high-
quality result, as it does not allow taking into account complex and multi-connected
dependencies between the input variables. In this case, compositional models that are
resistant to overtraining, noise, and outliers show themselves in the best way. However,
with less data that can be described by a simple model, it makes more sense to use
multivariate regression.

The aim of the work is to develop a predictive model of rolling mill roll wear based
on a large array of operational control data containing information about the time of filling
and unloading of rolls, rolled assortment, roll material, and the time during which the roll
is in operation.

To achieve the set objective, it is necessary to solve the following tasks:

1. Prepare data for modeling (filter and aggregate data).
2. Conduct a correlation analysis of the data to identify the factors that have the greatest

impact on the wear of the mill rolls.
3. Build various models for predicting mill roll wear (linear models, multidimensional

models, and intelligent models). Test their adequacy and identify the most accurate one.

The predictive model of mill roll wear will allow rational use of rolls in terms of
minimizing overall roll wear. Thus, the proposed model will make it possible to redistribute
the existing work rolls between the stands in order to reduce the total wear of the rolls.

2. Theoretical Basis

In the technical literature, data on the durability and wear of mill rolls are extremely
rare. The amount and nature of work roll wear depend on many factors. The main factors
are as follows: force, temperature and speed conditions of rolling, properties and amount

98



Symmetry 2021, 13, 859

of rolled metal, hardness, and diameter of rolls. However, it is extremely difficult to study
the individual influence of each factor on roll wear [7,8].

The presence of a large number of factors makes it difficult to obtain dependencies
that would take them into account and makes it possible to calculate the wear of the rolls.

Based on the literature review, wear is associated with the number (length) of rolled
strips and this dependence is described using empirical equations, the coefficients of
which are determined experimentally at each rolling mill. The main disadvantage of these
dependencies is that they take into account the influence of a small number of factors and
cannot be used when changing the rolling conditions.

The existing theoretical methods are based on determining the path of friction in the
deformation zone and contact stresses or on calculating the work of deformation. They are
quite complex and lengthy, and often give a high error [9].

Therefore, to assess the wear of mill rolls, it is more convenient to use the methods of
statistical analysis and mathematical modeling, which make it possible to use statistical
data accumulated during operation to assess the condition and predict further roll behavior.
Here, the methods of statistical analysis and mathematical modeling are understood as a
certain computational algorithm implemented on computers and simplified simulating of
the functioning of objects.

Statistical analysis is divided into three sequential stages [10]:

- Statistical observation, i.e., collection of primary statistical material;
- Summary and development of observation results, i.e., their processing;
- Analysis of the received overall materials.

With the development of Big Data and IIoT technologies, finding dependencies be-
tween the parameters of the technological process can provide a company with a greater
effect than just methods of statistical analysis.

Big Data and data analysis technologies allow the following [11–13]:

- To find patterns that appear in mass phenomena under the influence of the law of
large numbers;

- To systematize and classify data based on similarities and differences;
- To analyze the overall material, identify patterns and relationships in the studied facts,

and calculate generalizing indicators (total, relative, and average values, as well as
statistical coefficients).

3. Object and Problem Statement

The data of the operational control of the technological process are characterized by a
different origin and are measured in different quantitative and qualitative scales. Bringing
operational control data to a form suitable for developing a model of a technological
process is a prerequisite for the effectiveness of the modeling process [14].

Initial data are presented in five sheets (Figure 1) in a Microsoft Office Excel file. The
data contains information about roll material (500 lines), roll workflow for 9 months of rolling
mill operation (18,080 lines), roll suppliers (25 lines), and rolled assortment (269,968 lines).

Symmetry 2021, 13, x FOR PEER REVIEW 4 of 11 
 

 

  

(a) Sheet 5 (b) Sheet 2 

Figure 1. Fragment of a file with initial data. 

The following were considered as initial data for modeling: minutes (time of rolling 

of a batch of products); stand number (set by a number); mill stand position (top or bot-

tom); number and material of the roll (in coded form, each of the parameters); the number 

of sheets rolled by a certain roll; gauge, width, and weight of the sheet; grade of rolled 

products; and roll wear. 

The column «mill stand position» is problematic, as it contains text data («top»–«bot-

tom»). For convenience, they are encoded with numbers 0 and 1. 

To correctly prepare data for the development of a predictive model, you first need 

to find out the data types presented in the source file and check them for integrity. It is 

easiest to delete «empty» values, but if there are a lot of them, it makes sense to replace 

the missing data with some number, for example, the arithmetic average of the entire col-

umn. 

As a result of the check, it was found that there are no gaps in the columns. In addi-

tion, some lines were found to contain zero roll wear after rolling steel. Such records 

should be disregarded, because, even if such «outliers» are not errors, but are rare excep-

tional situations, they can still hardly be used [15–17]. 

Calculation of the difference between filling up and unloading times allows to obtain 

the roll operating time for one rolled batch. By analyzing the rolling time of coils with the 

ranges of filling up and unloading of rolls indicated in the «rolls» sheet, it is possible to 

calculate the average weight, width, gauge, and number of coils rolled through these rolls. 

The resulting features can be used to build models. 

To determine the influence of each investigated factor on roll wear, the Pearson cor-

relation criteria (R) were calculated, characterizing the linear effects of the factors, and a 

cross-correlation matrix was constructed. With an insignificant value of the coefficient, 

certain features can be ignored when building models (Table 1). 

Checking the significance of the correlation coefficients according to the Student’s 

test showed that the correlation coefficients are significant, the absolute value of which 

exceeds 0.1; that is, the condition |R| ≥ 0.1 must be satisfied. 

From the data obtained, it follows that the position of the roll in the stand (R = 0.0011) 

and the serial number of the roll (R = −0.0029) do not have a linear effect on the wear of 

the rolls. In addition, the serial number of the roll (from 1 to 500) is not a technological 

parameter and is only for informational purposes. The position of the roll in the stand (top 

or bottom) is also for informational purposes only. These signs will not be taken into ac-

count in the construction of the future model. 

Despite the fact that such operational parameters as the roll material, width, weight, 

and grade of rolled steel also do not satisfy the condition |R| ≥ 0.1, it was decided not to 

exclude these parameters from consideration. 

Thus, the next stage of the study is to develop a predictive model of rolling mill roll 

wear based on a large array of operational control data containing information about the 

time of filling and unloading of rolls, rolled assortment, roll material, and time during 

which the roll is in operation [18]. 
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The following were considered as initial data for modeling: minutes (time of rolling of
a batch of products); stand number (set by a number); mill stand position (top or bottom);
number and material of the roll (in coded form, each of the parameters); the number
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of sheets rolled by a certain roll; gauge, width, and weight of the sheet; grade of rolled
products; and roll wear.

The column «mill stand position» is problematic, as it contains text data («top»–
«bottom»). For convenience, they are encoded with numbers 0 and 1.

To correctly prepare data for the development of a predictive model, you first need
to find out the data types presented in the source file and check them for integrity. It is
easiest to delete «empty» values, but if there are a lot of them, it makes sense to replace the
missing data with some number, for example, the arithmetic average of the entire column.

As a result of the check, it was found that there are no gaps in the columns. In addition,
some lines were found to contain zero roll wear after rolling steel. Such records should
be disregarded, because, even if such «outliers» are not errors, but are rare exceptional
situations, they can still hardly be used [15–17].

Calculation of the difference between filling up and unloading times allows to obtain
the roll operating time for one rolled batch. By analyzing the rolling time of coils with the
ranges of filling up and unloading of rolls indicated in the «rolls» sheet, it is possible to
calculate the average weight, width, gauge, and number of coils rolled through these rolls.
The resulting features can be used to build models.

To determine the influence of each investigated factor on roll wear, the Pearson
correlation criteria (R) were calculated, characterizing the linear effects of the factors, and
a cross-correlation matrix was constructed. With an insignificant value of the coefficient,
certain features can be ignored when building models (Table 1).

Table 1. Feature correlation diagram.

Minutes Stand
Number

Mill Stand
Position

Roll
Number

Roll
Material Sheets Gauge Width Steel

Grades Weight Wear

minutes 1
stand number 0.0037 1
mill stand
position 0.00012 −4 × 10−5 1

roll number 0.0089 0.0086 0.0041 1
roll material 0.009 0.0021 3 × 10−5 −0.014 1
sheets 0.87 0.0034 −9 × 10−5 0.0033 0.0046 1
gauge −0.34 −0.0011 4.2 × 10−5 −0.003 −0.0069 −0.025 1
width −0.27 0.00049 −0.00085 −0.0026 −0.0035 −0.016 0.35 1
steel grades 0.12 0.002 −0.00046 0.00047 −0.012 0.16 0.1 −0.032 1
weight −0.16 −0.00079 −4.1 × 10−5 −0.0091 −0.0045 −0.23 −0.0021 0.14 −0.087 1
wear 0.28 −0.35 0.0011 −0.0029 0.063 0.17 −0.23 −0.037 0.094 −0.021 1

(significant coefficients are in bold).

Checking the significance of the correlation coefficients according to the Student’s
test showed that the correlation coefficients are significant, the absolute value of which
exceeds 0.1; that is, the condition |R| ≥ 0.1 must be satisfied.

From the data obtained, it follows that the position of the roll in the stand (R = 0.0011)
and the serial number of the roll (R = −0.0029) do not have a linear effect on the wear of
the rolls. In addition, the serial number of the roll (from 1 to 500) is not a technological
parameter and is only for informational purposes. The position of the roll in the stand
(top or bottom) is also for informational purposes only. These signs will not be taken into
account in the construction of the future model.

Despite the fact that such operational parameters as the roll material, width, weight,
and grade of rolled steel also do not satisfy the condition |R| ≥ 0.1, it was decided not to
exclude these parameters from consideration.

Thus, the next stage of the study is to develop a predictive model of rolling mill roll
wear based on a large array of operational control data containing information about the
time of filling and unloading of rolls, rolled assortment, roll material, and time during
which the roll is in operation [18].
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4. Algorithm

The algorithm for the development of a predictive model of mill roll wear based on a
large array of operational control data is presented in Figure 2.
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Figure 2. Algorithm for developing a predictive model of mill roll wear.

4.1. Using Big Data to Develop Linear Predictive Models

Cross-validation (CV) and least squares are used to develop a linear predictive model.
The essence of the least squares method is that the sum of the squares of deviations of

the experimental values from the smoothing curve is reduced to a minimum:

N

∑
i=1

[yi − ϕ(xi)]
2 = min

where yi and xi—experimental data values in the i-th experiment, N—number of experi-
ments, ϕ(x)—desired linear regression y of x of the form ϕ(x) = b0 + b1x1 + b2x2 + b3x3 +
. . . + bkxk, and k—number of factors.

The essence of the CV method is that the entire array of operational control data is
divided into a certain number of subsamples (blocks). One of the blocks is used to test the
model (check the model for adequacy to the process under study), while the others are
used for training. Then, the test block is used for training, and the next block is selected for
the test. The cross-validation scheme is shown in Figure 3 (open blocks are model training
blocks, filled block is a test subsample). This method allows you to obtain an unbiased
estimate of the probability of error in the predictive model and to prevent optimistic
overestimation of the quality of the above-mentioned.
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4.2. Using Big Data to Develop Multi-Dimensional and Regularized Regression Models

The essence of regularization is to impose additional constraints on various param-
eters or to add a priori information, thus reducing the model error as its complexity
increases [19,20].

Based on the same operational control database, the following were built: multivariate
regression with L1 regulator (Lasso), multivariate regression with L2 regulator (Ridge),
and multivariate regression with mixed regulator (ElasticNet).

Regularization is a way to reduce the complexity of a model in order to prevent
overtraining or to fix an incorrectly posed problem. This is usually achieved by adding
some a priori information to the problem statement.

The essence of L1 regularization is to select from the entire array of factors only a small
number of the most important ones that set the trend, and to remove all the rest, which are
just noise. Thus, L1 regularization is aimed at decreasing the dimension of the model.

L2 regularization is aimed at reducing the dimension of space by prohibiting dispro-
portionately large weight coefficients, which prevents overtraining of the model.

The development of multivariate regression using both L1 and L2 regularization is
called a mixed regulator (ElasticNet) and takes into account the effectiveness of both meth-
ods: decreasing the model dimension and decreasing the dimension of the factor space.

4.3. Algorithm Composition for Model Development Based on Big Data

The main method of composing algorithms is to combine a large number of models
into one composition. The final quality of the resulting model will be significantly improved
owing to the fact that the individual ones will correct the errors of each other.

This study explores such methods as random forest and gradient boosting [21–23].
The random forest method is one of the most professional and high-quality machine

learning methods. The key idea of this method for finding regression dependencies is
averaging the result of several models built independently of each other on random
subsamples of one data array. Thus, a set of low-precision algorithms when combined into
one composition give an impressive result, despite the significant amount of randomness
represented in this method.

The advantage of the random forest method is its resistance to overfitting. As all
algorithms are developed independently of each other, an increase in their number in a
composition does not complicate the final model [24,25].

In this study, the random forest algorithm uses feature space dimensionality reduction
using principal component analysis (PCA). Using the technique of reducing the dimen-
sionality of the feature space, it is possible to represent the initial data set in terms of fewer
variables and, at the same time, reduce the amount of computing resources required to
ensure the operation of the model.

Gradient boosting method. The difference between this method and the previous one
is that, in this algorithm, when building a composition, all models are not independent, but
follow each other. Moreover, each subsequent algorithm tries to correct and compensate
for the errors of the previous one. So it takes less time to get the correct answer.
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In this study, gradient boosting uses a gradient descent technique to minimize the
error function right in these sequential models. This approach makes it possible to expand
the range of problems solved by this algorithm, as well as often leading to a gain in
prediction accuracy.

4.4. Assessment of the Model Quality

Model quality is assessed using the mean squared error (MSE) between the predicted
and actual roll wear, the correlation coefficient (R) between the actual and predicted mill roll
wear values, and the determination coefficient (R2) between the actual and the predicted
values of rolling mill roll wear.

The coefficient of determination clearly shows how the constructed model is more accurate
than the mean value of the target variable, and is in accordance with the following expression:

R2 = 1− ∑i(yi − ŷi)
2

∑i(yi − y)2 ≈ 1− MSE
VAR(y)

where yi—actual value of roll wear, ŷi—model predicted roll wear, and ȳ—average roll
wear according to the initial data. If the coefficient of determination R2 is equal to 1, then
the values of the rolling mill roll wear calculated by the model exactly repeat the actual
values, which indicate the adequacy of the mathematical model to the object of the research.
If the coefficient of determination R2 is close to zero, then this means that the model is
imperfect and it would be better to take the average value ȳ. Models are recognized as
adequate if the coefficient of determination is R2 ≥ 0.7.

5. Results

Figure 4 shows the results of comparing the actual and predicted roll wear for
different models.
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For clarity, you can compare the models built with and without cross-validation.
Instead of cross-validation, the entire array of operational control data is divided into

training and test samples by mixing all the features and choosing a certain percentage
between the training and test samples. Linear regression, found by the method of least
squares, is used as a model.

Analysis of the graphs (Figure 4) for symmetry regarding the straight line
Ypredicted = Yactual shows that, in all cases, there is an underestimation of the predicted
values. With real wear values of 0–4, the predicted values do not exceed 0–1.6.

In this case, the quality of the model changes depending on the amount of data
selected for training the model and test validation. More data per test reduces the amount
of training data and leads to a decrease in model accuracy, and vice versa [26,27].

The results of assessing the adequacy of the obtained models are shown in Table 2.

Table 2. Assessment of the adequacy of multivariate and regularized regression models. MSE, mean
square error.

Model
Assessment

MSE R2 R

30% test sample 0.109 0.257 0.513
10% test sample 0.112 0.257 0.505
5% test sample 0.108 0.253 0.503

Cross-validation 0.113 0.256 0.507
Lasso 0.113 0.253 0.504
Ridge 0.113 0.256 0.506

ElasticNet 0.113 0.256 0.507
Random forest 0.021 0.798 0.933

Gradient boosting 0.021 0.847 0.927

Thus, the results of this analysis indicate insignificant differences in the simulation
results. All models cannot be considered suitable for predicting the amount of roll wear in
a rolling mill. Therefore, it is necessary to choose another type of dependence [28,29].

The introduction of a regularizer into a linear or multidimensional model did not
lead to an increase in the accuracy of predicting the wear of the rolling mill rolls. It can be
clearly seen that the proposed models predict the value of the target parameter not more
accurately than the arithmetic mean of the wear of the rolling mill roll.

Based on the data obtained, it can be stated that, in this case, either rethinking or
intellectualization of the initial data is required, or the use of more complex models [30].

A comparison of the predicted by the random forest method and the actual values of
rolling mill roll wear is shown in Figure 5a. A comparison of the predicted by the gradient
boosting method and the actual values of the rolling mill roll wear is shown in Figure 5b.
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The results of assessing the adequacy of the random forest model and gradient boost-
ing model are far superior to previous models (Table 2).

Compared with linear, multivariate, and regularized models, the root mean square
error (MSE) has decreased by about five times, and the coefficients of determination and
correlation approximated to unity. That is to say that the random forest model can be
recognized as adequate to the object of research and can be used to predict the degree of
wear of the rolls of a rolling mill in the steel industry.

In terms of the coefficient of determination R2, gradient boosting is a more accurate
model compared with the random forest model (the coefficient of determination is closer
to unity). The root mean square errors of both models are equal, but, according to Figure 5,
it can be seen that, when using the gradient boosting method, there is a greater number of
coincidences of predicted and actual wear than when using the random forest method.

Analysis of the graphs (Figure 5) for symmetry regarding the straight line
Ypredicted = Yactual shows that, in the case of developing the random forest model, there
is a tendency to underestimate the predicted values. It is apparent that most of the values
are located below the straight line (Figure 5a). In the case of developing the gradient
boosting model, the predicted values are located symmetrically in reference to the straight
line Ypredicted = Yactual (Figure 5b). Therefore, the gradient boosting model is preferred.

If necessary, carrying out additional optimization of the model, it is possible to achieve
an even greater decrease in the forecast error [31]. Thus, the gradient boosting forecast
model is preferable.

6. Conclusions

Based on the above study, the following conclusions can be drawn.

1. The hypothesis of using a large volume of production data (Big Data) to find statisti-
cally significant dependencies turned out to be completely consistent [32]. Operational
control data are an inexhaustible source of information. Extracting useful information
from Big Data is an important production task [33].

2. To improve the accuracy of the models, it is necessary to prepare statistical material
in advance (remove outliers, «odd», and random measurement results; filter the data;
identify different modes of operation; and consider them separately) and select the
appropriate type of mathematical dependence. The quality of the developed models
directly depends on the quality of training material preparation [34].

3. The analysis of the correlation dependences of the data showed that the most signifi-
cant factors affecting the wear of the rolls are the dimensions and brands of rolled
steel sheets. In addition, not least important is the material from which the rolls
are made.

4. The construction of linear and multivariate regression models based on a large data set
does not provide a qualitative result, as it does not allow taking into account complex
and multi-connected dependencies between the input variables. Compositional
models that are resistant to overfitting, noise, and outliers perform best. However,
with a smaller amount of data that can be described by a simple model, it makes more
sense to use multivariate regression.

5. Thus, a predictive model of rolling mill roll wear will allow rational use of rolls in
terms of minimizing overall roll wear. The proposed model will make it possible to
redistribute the existing work rolls between the stands in order to reduce the total
wear of the rolls.
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Abstract: This paper presents a computational tool for estimating energy generated by low-power
photovoltaic systems based on the specific conditions of the study region since the characteristic
energy equation can be obtained considering the main climatological factors affecting these systems in
terms of the symmetry or skewness of the random distribution of the generated energy. Furthermore,
this paper is aimed at determining any correlation that exists between meteorological variables with
respect to the energy generated by 5-kW solar systems in the specific climatic conditions of the
Republic of Cuba. The paper also presents the results of the influence of each climate factor on the
distribution symmetry of the generated energy of the solar system. Studying symmetry in statistical
models is important because they allow us to establish the degree of symmetry (or skewness),
which is the probability distribution of a random variable, without having to make a graphical
representation of it. Statistical skewness reports the degree to which observations are distributed
evenly and proportionally above and below the center (highest) point of the distribution. In the case
when the mentioned distribution is balanced, it is called symmetric.

Keywords: solar power; solar systems; photovoltaic panel; mathematical modeling; statistics; corre-
lation; skewness; symmetry; random variable distribution

1. Disadvantages and Advantages of Renewable Energy Sources

The world’s population growth, as well as the development of industry and pro-
duction technologies, is accompanied by a significant increase in power consumption.
To meet the needs of the population, power-generating enterprises are forced to consume
an increasing number of fossil organic resources [1,2] since energy generation is usually
provided through the combustion of hydrocarbons (oil, gas, coal). However, over time,
reserves of this type of raw material are depleted, green fields are in increasingly complex
mining, geological, and climatic conditions [3,4], and projects for the implementation of
hydrocarbon production require the construction of several infrastructures: industrial
facilities for preparation, drilling, production, and transportation of oil, gas, and coal [5].
This results not only in significant investments but also in a negative impact on the envi-
ronment, due to construction and installation works, road embankments, trenching for
pipelines, and emissions arising from machine operation, resulting in soil disturbance,
pollution, littering, destruction of the soil cover, changes and destruction of animal habitats,
and occurrence of the greenhouse effect [6].

Therefore, the issue of transitioning from traditional energy production to alterna-
tive methods of generating electricity becomes more and more relevant [7]. Methods of
generating electric energy based on the use of renewable resources have the following
advantages: non-depletion, availability, no need for complex related infrastructure, as well
as reduction or complete elimination of carbon dioxide emissions [8]. However, despite all
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the advantages, the man-made impact on the environment still exists; this fact is confirmed
by studies conducted within the framework of China—United States cooperation [9]. Ac-
cording to the report, negative factors include changes to animal habitats and emission of
toxic substances from some photovoltaic cells of solar panels.

However, despite the disadvantages of renewable energy sources, it has a much less
significant impact on the environment than traditional types of electricity generation [10].
Therefore, the use of alternative types of energy, including solar power, has recently taken
a leading position in the global energy industry. From year to year, new problems arise,
and new tasks are assigned to improve systems [11,12] that use alternative energy sources
facilitated by the development of other fields of science and technology—automation,
materials science, and production technology. Furthermore, for today’s society, the problem
of reducing the negative impact on the environment is a burning issue that requires an
immediate solution [13].

In order to attract enterprises to transition to renewable types of electricity generation,
many countries are taking measures of state, political, legislative, and economic support,
including:

1. Increased funding from the state budgets of the United States, Japan, Germany, Italy,
and India [14];

2. Introduction of a system of “Green Certificates”, which operates in the European
Union and the United States, ensuring the implementation of the mechanism for
granting quotas for the generation/acquisition of energy from renewable sources;

3. Tax credits and benefits for renewable energy producers; grants and tenders for the
development of new projects and expansion of existing production facilities.

2. The Feasibility of Using Solar Energy

This paper discusses aspects of the use of solar power in electro-technical complexes.
The choice of solar power as a source is supported by the fact that the sun emits about
1 kW/m2 on the Earth’s surface per day, and within seven days, the energy entering the
planet exceeds the energy of all global reserves of fossil organic resources. According
to some estimates, the economic potential of solar power is 20 billion tons of standard
fuel, and this figure is two times greater than the production of all hydrocarbons per
year [15]. In addition, the raw-material base for producing photovoltaic panels has sig-
nificant resources: the amount of silicon, from which most solar cells are currently made,
is 100,000 times greater than the reserves of uranium used when generating electricity in
nuclear power plants.

Based on the above, it should be concluded that it is advisable to use solar energy [16]
and convert it into electrical energy [17] using solar panels (photovoltaic panels).

3. Factors Affecting the Efficiency of a Photovoltaic Panel

A photovoltaic panel is a direct-current generator, which principle of operation is
based on the physical property of semiconductors: photons of light knock electrons out
from the outer orbit of the semiconductor atoms, creating enough free electrons to generate
an electric current. When the circuit is closed, an electric current occurs [18]. To obtain the
required power, individual solar cells are combined in panels, where they are connected
in parallel or in series to obtain the required current and voltage parameters. Since the
electricity produced is directly proportional to the area of the panels, photovoltaic panels
occupy a large amount of space.

The efficiency of converting solar energy into electrical energy depends primarily on
the intensity of sunlight and the angle of incidence of the rays. The efficiency of the panel
depends on its location (latitude), climatic characteristics, time of year, and time of day.
Since the surface of the panel has reflective properties, not all of the sun’s rays are captured
by the module. However, it should be noted that since the panel has the ability to convert
not only direct solar radiation, but also scattered, into electrical energy, the photoelectric
module can also capture the radiation reflected from neighboring surfaces. According
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to the current-voltage characteristic of solar modules, the no-load voltage OSV depends
inversely on the operating temperature of the module, so the output power decreases when
the module is heated.

In addition, power is also lost when a current passes through the volumetric resistance
of the semiconductor [19], thereby heating the module, which leads to a decrease in its
energy efficiency [20–22]. The number of failures of PV power plants during operation
also affects the amount of electricity produced. The number of faults is small for about ten
years of operation but then rises rapidly [23]. The factors described above are the main
reasons that reduce the efficiency of photovoltaic panels. Therefore, theoretically, a silicon
solar cell has an efficiency of about 20%, but in practice–less [24].

Currently, increasing the efficiency of sunlight-to-electricity conversion is a highly
relevant task [25]. Widely known are two methods for increasing the generation of electric-
ity [26] obtained from a photovoltaic installation: improving the structure of a photovoltaic
panel to increase its performance [27] and increasing the amount of solar radiation captured
by the panel [28]. The first method is directly related to the development of new technolog-
ical solutions for creating materials and combining various semiconductor materials that
can capture a different spectrum. For example, in [29], an increase in the efficiency of a pho-
tovoltaic module is achieved by creating multilayer panels, the so-called heterostructures.
The paper [30] describes the use of thin films for two-sided silicon solar cells. The second
method includes technical solutions for the use of solar tracking systems–solar radiation
concentrators, or, in a word, the component composition of the equipment included in
a solar power plant.

This paper is aimed at determining the correlation that exists between climatological
factors in systems that use solar power with respect to the energy generated by these
systems. This is due to the fact that the efficiency of generation is affected by climatological
factors, for both increasing and decreasing efficiency. This research work is focused on
determining the impact of various climatological factors on electricity production, taking
into account the subject matter’s geographic location. Studying statistical models is im-
portant because it allows us to establish the degree of symmetry (or skewness), which is
the probability distribution of a random variable, without having to make a graphical
representation of it.

Based on the analysis of statistical data, accounting for the greatest impact on the
production of energy by a solar power plant at the design stage, it will be possible to
determine the most efficient geographical location of the power plant [31] or its component
composition. The obtained dependencies will allow one to increase the productivity of
direct conversion solar power plants.

This paper presents an analysis of an electro-technical complex with a low-power solar
power plant (5 kW) connected to the electrical network of the Santiago de Cuba Province,
the Republic of Cuba. To estimate the energy generated by a five-kilowatt solar system,
studies with different climatic conditions should be conducted. This approach will make it
possible to determine the dependence of climatic factors that affect electricity generation in
photovoltaic systems.

4. Modeling an Electro-Technical Complex with a Photovoltaic System

During previous studies, a model implemented via Matlab software for simulation of
a five-kilowatt photovoltaic system, as shown in Figure 1, was developed [32]. This model
allows us to study the main electrical variables, such as the energy generated by the
system in certain climatic conditions. The model includes the response surface equations
to estimate the energy generated. Thus, it is possible to compare the generated energy
calculated based on the mathematical model of the complex with the response surface
equations obtained using statistical models, as well as to check their efficiency when
estimating the energy generated. The system under study is located in the territory of
Santiago de Cuba (latitude 20.0208◦ N and longitude 75.8267◦ W).
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Figure 1. Model of an electro-technical complex with a 5-kW photovoltaic system.

The panels used in this photovoltaic energy system are from the NUMEN SOLAR
brand, model DSM-240-C, which are interconnected, allowing the generation of electricity.
Table 1 shows the technical parameters of the panels with emissions of 1000 W/m2 and
an ambient temperature of 25 ◦C.

Table 1. Technical characteristics of the solar module DSM-240-C.

Variables Technical Data

Module type polycrystalline
Open circuit voltage (VOC) 37
Short circuit current (ISC) 8.54

MPP voltage (VMPPT) 29.8
MPP current (IMPPT) 8.19

Efficiency (%) 16

Using a weather station installed within the study region, the following data were
obtained (2020):

• Horizontal global radiation;
• Wind speed;
• Ambient temperature;
• Relative humidity;
• Atmospheric pressure.

The measurement results were entered into the developed computer model. The math
needed for the photovoltaic generator simulation, and introduced into the solar generator
unit, included as follows: the response surface equations, found via the Minitab Statistical
Software; data, measured by the weather station. Next, the energy values obtained by
both models were compared. This approach made it possible to check the statistical
model efficiency.

In the automatic calculations of the developed program, the solar radiation is calcu-
lated in the inclined plane in correspondence with the inclination of the solar generator.

5. Correlation of Meteorological Variables

To determine the relationship between different variables, a correlation study was car-
ried out. For this purpose, the Pearson’s correlation coefficient (P) was calculated for each
of the selected variables (horizontal global radiation, wind speed, ambient temperature,
relative humidity, and atmospheric pressure) via Matlab (version R2018a) and Minitab
Statistical Software (version 18.0) packages. Based on the calculations, it was determined
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whether the correlation between the studied variables is significant so that the p-value is
less than 0.05.

The results obtained via both software packages are presented in Tables 2 and 3.
The first table presents the values for the correlation between the meteorological variables
and electrical energy, coming from a low-power solar system, calculated via the Matlab
and Minitab statistical software packages, and the second table presents the values for the
correlation between the meteorological variables of both software packages.

Table 2. Coefficients of correlation between energy and atmospheric variables, calculated via Matlab
and Minitab software.

Variables E E (kW) (Matlab) E (kW) (Minitab)

Ambient temperature AT (◦C) 0.75005 0.750
Wind speed WS (m/s) 0.54787 0.548

Relative humidity RH (%) −0.72428 −0.725
Solar radiation SR (W/m2) 0.69986 0.700

Atmospheric pressure AP (bar) −0.13067 −0.131

Table 3. Calculations of correlation coefficients via the Matlab and Minitab software.

V
Mat Min Mat Min Mat Min Mat Min

AT (◦C) WS (m/s) RH (%) SR (W/m2)

WS 0.407/0◦ 0.41 — — — — — —
RH −0.91/0◦ −0.91 −0.39/0◦ −0.39 — — — —
SR 0.74/0◦ 0.74 0.38/0◦ 0.38 −0.73/0◦ −0.73 — —
AP −0.05/0.85◦ −0.05 −0.2/0◦ −0.20 −0.01/0◦ −0.01 0.12/0◦ 0.12

Based on the results presented in Table 2, it is possible to conclude as follows:

1. The results of the correlation between the variables, found via both software packages,
are the same.

2. There are four meteorological variables having a greater correlation with electri-
cal energy generated by a solar power plant, solar radiation, ambient temperature,
and relative humidity, and to a lesser extent with wind speed.

3. There is a direct relationship between solar radiation and ambient temperature with
energy, which means they are directly proportional.

4. There is an inverse correlation between relative humidity and energy, which means
they are inversely proportional.

5. Atmospheric pressure has a very low correlation with the electrical energy coming
from the solar system produced by the solar power plant.

Table 3 presents the differences in the calculations of the correlation coefficients
obtained via the Matlab and Minitab software packages. As seen from the table, the results
for both software packages are the same.

Based on the results presented in Table 2, it is possible to conclude as follows:

1. There is a high and inverse correlation (K = −0.91) between relative humidity and
ambient temperature.

2. There is a high and direct relationship (K = 0.74) between solar radiation and ambi-
ent temperature.

3. There is a high and inverse correlation (K = −0.73) between solar radiation and
relative humidity.

4. There is an average and direct correlation (K = 0.407) between ambient temperature
and wind speed.

5. Other correlations, marked in red, are low or zero.
6. Atmospheric pressure has a low or zero correlation with other meteorological variables.
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Figure 2 shows a graphical representation of the relationship between the meteorolog-
ical variables obtained from a meteorological station located within the study region in the
Santiago de Cuba Province, the Republic of Cuba.
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Figure 2. The behavior of meteorological variables on an ordinary day (23 October 2020).

The behavior of the measured variables confirms the results obtained according to
Table 3 since the following phenomenon is observed—with an increase in solar radiation in
the time interval from 9:00 to 13:00, the ambient temperature also increases proportionally
and to a lesser extent, so does the wind speed. Relative humidity shows the opposite
behavior, decreasing, as previously obtained (Table 3).

The results of the correlation calculations confirm the efficiency of the mathematical
model since they coincide with the measurements by the weather station.

6. Calculation of the Main Partials

In statistics, principal component analysis (PCA) is a method used for a data set
definition in terms of new uncorrelated variables (“components”) [33]. The components
are ordered by the amount of initial variance they define; therefore, this method is effective
for reducing the data set dimensionality [34].

Technically, PCA is searching for a prediction, according to which data is best repre-
sented in terms of least squares [35]. It converts a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated variables called principal components.

As for its application, the principal component method is considered a method for
reducing the number of initial variables that were taken into account while analyzing [36].

This method is needed to determine five meteorological variables, the relationship
between which must be studied (solar radiation, ambient temperature, relative humidity,
wind speed, and atmospheric pressure). It is necessary to determine which variables have
the greatest impact on the electricity generation by the complex. This method allows one
to determine the most affecting variables; therefore, it is these variables that must be taken
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into account when calculating. Ultimately, it will be possible to reduce the number of
variables in the equation, thereby reducing estimation errors.

There are two main modes of PCA use:
A method based on a correlation matrix is used when the data is not uniform dimen-

sionally, or the order of the measured random variables is not the same [37].
A method based on covariance, used when the data is uniform dimensionally and has

similar mean values [38].
For the purposes of this study, the first PCA method was used since the variable data

are heterogeneous.
The method starts with a correlation matrix. Next, the values of each of m random

variables Fjβ are considered. For each of n individuals, the values of these variables were
taken, and the data set was written in matrix form [39]:

(Fβ
j )

β = 1, . . . ..n
j = 1, . . . ..m

(1)

where each set:
Mj =

{
Fβ

j

∣∣∣β = 1, . . . , n
}

(2)

can be considered a random sample for the variable Fj. From the m× n data, corresponding
to m random variables, one can construct a sample correlation matrix, which is defined
as follows:

R =
[
rij
]
ε Mmxm (3)

rij =
cov
(

Fi, Fj
)

√
var(Fi) ∗ var

(
Fj
) (4)

Since the correlation matrix is symmetric, it is diagonalizable, and its eigenvalues λi,
are checked:

m

∑
i=1

λi = m (5)

Due to the previous property, these eigenvalues are called the weights of each of m
principal components. The main mathematically identified factors are represented by the
base of the eigenvectors of the matrix R. Each of the variables can be expressed as a linear
combination of eigenvectors or principal components [40].

Using the PCA method, the AP coefficient (%) that contains the percentage of the total
variance, which in turn explains each principal component of the dependent variable being
studied, was calculated via Matlab software.

According to the results obtained in Table 4, from the calculation of the main compo-
nents, it can be concluded that the meteorological variables with the highest correlation
with the energy delivered by photovoltaic systems are solar radiation, ambient temperature,
and wind speed. Being solar radiation and ambient temperature, the climatic variables
with the highest correlation with the energy delivered by photovoltaic systems.

On the other hand, relative humidity greatly affected the behavior of ambient tem-
perature (see Table 2), so both ambient temperature and solar radiation are the main
meteorological variables that are taken into account when estimating the energy delivered
by photovoltaic systems.
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Table 4. Calculations of the principal components were obtained by the statistical program
Minitab software.

Variables E PC1 PC2 PC3 PC4 PC5

Ambient temperature AT (◦C) 0.488 0.076 0.283 0.367 0.067
Wind speed WS (m/s) 0.322 −0.39 −0.81 0.20 0.18

Relative humidity RH (%) −0.482 −0.13 −0.24 −0.47 −0.073
Solar radiation SR (W/m2) 0.451 0.23 0.01 −0.67 0.53

Atmospheric pressure AP (bar) −0.03 0.86 −0.44 0.12 −0.16
Energy E (kWh) 0.470 −0.1 −0.03 −0.35 −0.8

7. Response Surface Method

The concept of a response surface includes a dependent variable Y, called a response
variable, and several independent or controlled variables. If a provision is made that all
these variables are measurable, the response surface can be expressed as:

Y = f (X1, X2, . . . . . . , Xn) (6)

To obtain the response surface equation, several special experimental plans aimed
at an approximation of this equation using the smallest possible number of experiments
were developed.

In a two-dimensional problem, the simplest surface is the plane defined by the equa-
tion [41]:

Y = B0 ∗ X0 + B1 ∗ X1 + B2 ∗ X2 + ε (7)

where X is the values of the independent variable, and B is the coefficients calculated
for each of the independent variables. The observed response is taken to be equal to one,
and the estimates for B should be determined by the least-squares method, which minimizes
the sum of squared errors. This equation is called a first-degree equation since the exponent
of each independent variable is equal to one.

If there is any reason to believe that the surface is not flat, then the most suitable model
may be a second-degree equation with two unknowns [42]:

Y = B0 ∗ X0 + B1 ∗ X1 + B2 ∗ X2 + B11 ∗ X2
1 + B12 ∗ X1 ∗ X2 + B22 ∗ X2

2 + ε (8)

In order to effectively assess the model parameters, it is necessary to apply an appro-
priate experimental plan to collect the required data [43]. Some of the key features are
as follows:

1. Provides a reasonable distribution of data points and, therefore, information.
2. Does not require a large number of experiments.
3. Allows one to study the model adequacy.
4. Provides accurate estimates of the model coefficients.
5. Provides internal error estimation.
6. Allows one to conduct experiments in blocks.
7. Does not require too many levels of independent variables.

As the surface becomes more complex, a larger number of coefficients must be esti-
mated, and the number of experimental points will inevitably increase [44].

Based on the results obtained, the response surface equation was found for two factors,
namely, for two independent variables and one dependent variable, using the Minitab
18 software. The results of the simulation, on the basis of which it can be concluded that
in order to obtain the response equation, it is necessary to use only two independent
variables, which will be the ambient temperature and solar radiation, since more than
85% of the response variable, in this case, energy, can be explained with two independent
variables only.

Based on the calculations made, it is possible to conclude as follows:
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1. To determine the change in the energy generated by a solar power plant, taking into
account the five meteorological variables studied (wind speed, relative humidity,
ambient temperature, solar radiation, atmospheric pressure), the model used will
explain only 58% of the response.

2. If four meteorological variables (wind speed, relative humidity, ambient temperature,
solar radiation) are taken into account, the model used will explain only 67% of
the response.

3. If three meteorological variables (wind speed, ambient temperature, solar radiation)
are taken into account, the model used will explain only 85% of the response.

4. If only two meteorological variables (ambient temperature, solar radiation) are taken
into account, the model used will explain only 87% of the response.

Therefore, based on the results obtained, it can be concluded that in order to estimate
the energy generated by the complex in the specific climatic and geographical conditions
of the region, the three most affecting variables include: ambient temperature and solar
radiation (with an explanation of the dependent variable at 87%).

Where EC is the average energy per month, calculated using Matlab software, EE is
the calculated average energy per month according to the response surface equations, D is
the difference between the average energy obtained by both methods in October.

8. Results and Discussion

The results obtained give rise to the following conclusion: for two response sur-
face equations, the equation that relates the independent variables, ambient temperature,
and solar radiation, gives the best answer with respect to the equation that relates the
independent variables, ambient temperature, and relative humidity.

The results from Table 4 show that equation two (solar radiation and ambient temper-
ature) gives the best estimate of the energy produced by a five-kilowatt system.

In Figure 3, the average energy generated by an electro-technical complex with a five-
kilowatt photovoltaic plant per day, and calculated according to equation (Table 1), is rep-
resented via red columns. The average energy, produced by an electro-technical complex
with a five-kilowatt photovoltaic plant per day, and calculated using a mathematical model
(Figure 1), is represented via blue columns.

The results obtained give rise to the following conclusions:

1. The obtained energy values are estimated by the response surface equation in Table 5
(red columns); it approximates with high accuracy to the energy obtained using
the mathematical model of a five-kilowatt photovoltaic system, simulated via the
Matlab/Simulink software (blue columns).

2. Low average values of energy, generated per day, as shown in Figure 3 (area 1), are the
result of low average values of solar radiation and low average values of ambient
temperatures, associated with high average values of relative humidity and a decrease
in average wind speed during the day.

3. According to Figure 3 (area 2), the average energy produced on days 9, 10, 11, and 14,
despite the fact that the values of solar radiation and wind speed are lower than on
days 12, 13, and 15, by about 100 W/ m2, represents slightly higher values for the
energy produced on days 12, 13, and 15. On days 9, 10, 11, and 14, higher values of
relative humidity, which affect the decrease in ambient temperature, are observed.
The latter is directly related to the operating temperature of the solar panel.

4. The highest average values of energy, generated per day, as shown in Figure 3 (area 3),
are the result of high average values of solar radiation and high average values of
ambient temperature, associated with low average values of relative humidity and an
increase in average wind speed during the day.

5. When estimating the energy of a system, it is sufficient when only two meteorological
variables (ambient temperature and solar radiation) are taken into account since both
explain more than 85% of the system’s response and introduce a significant skewness
in the random variable distribution of the generated energy (Figure 3).
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6. Figure 3 shows that at high wind speeds, photovoltaic systems receive additional cool-
ing since it is known that with an increase in the operating temperature, the efficiency
of the photovoltaic module decreases. This circumstance also introduces a certain
skewness of energy.

7. There is a direct correlation between ambient temperature and solar radiation and an
inverse relationship between relative humidity with solar radiation and ambient tem-
perature.

8. It can be proved that the atmospheric pressure has little or almost no impact on the
energy performance of photovoltaic systems in the conditions under consideration,
which indicates that there is no random change in energy, but there is a theoretical
possibility that the atmospheric pressure affects the energy performance when the
geographical location of the subject matter changes.
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Table 5. Response surface equations.

No. Equation EC (kWh) EE
(kWh)

D
(kWh)

1 E =
(
604− 117.7 ∗ Ta + 1.4 ∗ Gh + 3.84 ∗ T2

a
)
∗ 10 214 213.6 −0.4

There are a number of articles devoted to the estimation of electricity generation by
solar panels depending on various factors, including climatic conditions, for example,
work [45–48]. In these studies, only solar radiation is taken into account; other climatic
factors are not represented. Also, these works do not provide a detailed description of
the calculation models, a statistical analysis of the influence of climatic factors on the
energy produced. Article [49] describes a model for determining the tilt angle with the
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horizon (with respect to the ground) of the solar energy system by estimating the monthly
mean daily global solar radiation on tilted surfaces facing directly towards the equator,
which is based on monthly average daily global solar radiation data produced from typical
meteorological year (TMY) data. The disadvantage of the proposed model is the lack of
correlation with other climatic factors, which can also randomly change and affect solar
radiation. The same assessment can be given to the model of the photovoltaic system
presented in article [50].

Furthermore, the article [51] presents a model and a self-learning system for dust
estimation of photovoltaic panels based on data on solar radiation, ambient temperature,
and output power generated by solar panels, as well as the amount of dust in these
conditions. This approach has many advantages, but data on wind speed and humidity,
which have a great influence on dust formation, are not used when constructing the model.

There are also currently clear sky models that take into account the influence of clouds
on solar radiation and do not take into account other climatic factors.

In solar applications, the most common CSI models provide broadband irradiance
predictions based on a number of simplifications and/or empirical components compared
to the rigorous radiative transfer models used in atmospheric sciences. Thus, these common
CSI models have to undergo continuous quality assurance evaluations to delineate the
range of validity of such simplifications. Traditionally, these evaluations have consisted of
direct comparisons against high-quality ground observations [52].

Taking into account the results of these studies and the limited experience of existing
systems and models for estimation of electricity generation by solar panels depending on
climatic conditions, it should be concluded that the proposed methods are appropriate for
use in specific geographical conditions.

9. Conclusions

The computational tool proposed in this paper is designed to estimate the energy
produced by low-power photovoltaic systems based on the specific conditions of the
study region. This approach will make it possible to determine the relationship between
climatic factors that affect energy production in photovoltaic systems operating in any
region. This approach allows us to evaluate the most favorable geographical location
of photovoltaic panels, which contributes to increasing the efficiency of converting solar
energy into electricity. The approach to assessing the significance of climate parameters
described in this paper will also allow us to determine the component composition of
a solar power plant from the point of view of automation and its algorithm of operation.
The energy estimation results, derived using the response surface equations, and obtained
during this study for the specific climatic conditions of the Republic of Cuba, correspond to
one month of the study (October 2020), which is a small sample. For an adequate estimation
of energy, annual meteorological data and the energy generated are needed.

According to the results obtained during this study, when estimating the energy gen-
erated by an electro-technical complex with a five-kilowatt photovoltaic plant, by statistical
methods, it can be stated that statistical skewness reports the degree to which observations
are distributed evenly and proportionally above and below the center (highest) point of the
distribution. In the case when the mentioned distribution is balanced, it is called symmetric.
Thus, based on the presented studies, three climatic factors contribute to the skewness and
the greatest influence in the random variable distribution of the generated energy: ambient
temperature, solar radiation and wind speed.
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Abstract: The aim of this paper is to define and select stable zones in the off-gas duct of an ore-thermal
furnace using a mathematical model. This is needed to increase the effectiveness of exhaust gas
composition control in metallurgical silicon production. Methods. The goals of this study were
achieved by means of computational fluid dynamics. A model with a water-cooled furnace roof as
well as a model comprising steel gas passes with a sliding shutter was developed using ANSYS Fluent
software. Both models were symmetrical to ensure a uniform gas-dust distribution, which allowed us
to test the adequacy of the obtained models. The models were based on the Navier–Stokes equations
system as well as on a discrete phase model (DPM) that was developed using the Euler–Lagrange
method. Results. As a result of the modelling, a transition flow mode (Re 0-7437) was revealed
behind the sliding shutter. As such, it can be assumed that the most suitable place for measuring
equipment to be installed is directly behind the closed part of the sliding shutter.

Keywords: silicon production; nanoparticles; ore-thermal furnace (OTF); gas cleaning; symmetry;
carbon footprint; CFD; ANSYS fluent

1. Introduction

A large number of fine particles with various compositions are emitted into the
atmosphere during carbothermic silicon reduction. Analyses of waste gases show that most
emissions are related to the consumption of carbon materials that contribute to the overall
carbon balance. These are carbon-graphite electrodes that are used for heating quartz and
charcoal to reduce the amount of silicon released from oxides (quartz) [1–3]. The main
component of waste fume emissions is SiO2 microsilica (up to 85 percent), which is present
in a mixture of solid carbon in various forms and states (7–8 percent) and in silicon carbide
(5 percent) [4,5]. As a rule, industrial emissions are not controlled, and dust is collected
from gas pass systems and from deposits on equipment and building structures.

Granulometric analyses of the fumes captured by GCS electro-filters indicate the
presence of particles in microsilica fumes that are 200–250 µm in size and have an elevated
carbon nanoparticle content (up to 8 percent) that can be removed with the off-gas.

Currently, carbon-free microsilica is widely used as a modifying additive to base materials
in the construction industry. Thus, the use of microsilica makes it possible to produce concrete
with special properties: increased durability (resistance to the action of weak acids and
seawater) and increased compression strength. Production methods for silicon-carbide powder
materials, such as micronized carbide (particle size < 1 m) for ceramics and nanocarbides
(particle size < 1 nm) for high-quality structural ceramics and galvanics, are being intensively
developed, as they create a high-value of the final product [6,7].

The main sources of exhaust gas carbon emissions are carbon electrodes, activated
carbon, and carbonaceous materials.

For electrodes, the main components of carbon flow are arc heating fractures, the main
quartz reduction reaction (stoichiometry), the decrease and oxidation of the lateral faces,
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and the destruction of the electrode soles upon contact with the charge. The key factor in
electrode mass erosion is the oxygen concentration in the furnace atmosphere. As a result
of the increased formation and oxidation of carbon monoxide, the oxygen concentration in
the furnace atmosphere will decrease [8–10].

There is scientific and technical interest in modelling the distribution of waste gas concen-
tration fields during carbothermic silicon reduction. It is necessary to ensure that the furnace’s
thermal conditions and the balance of consumable carbon are controlled effectively [11].

2. Problem Overview
2.1. Causes of Carbon Nanoparticle Formation during Carbothermic Silicon Reduction in
Ore-Thermal Furnaces

At present, reducing the carbon footprint in pyrometallurgical processes [6] is relevant
to the resolution of global decarbonization issues. The manufacturing process in ore-
thermal furnaces (OTFs) involves multi-component carbon systems (carbon electrodes
and lining, activated charcoal, modifying additives) that affect the overall carbon balance
during smelting. Activated carbon is consumed by the main silicon reduction reaction by
means of stoichiometry, as well as by the side reactions caused by interactions with the
impurities in quartz that take place according to thermodynamic conditions. For example,
one of these irrevocable losses can be attributed to the transfer of active carbon into the crust
and the subsequent production of silicon carbide when there are temperature disturbances
of more than 1700–1900 ◦C [12]. Additionally, thermal disturbances in the furnace and
increased carbon consumption are associated with carbon oxidation (an increase in CO and
CO2 content) or with the abrupt release of soot and carbon particles into the atmosphere of
the furnace and into the gaseous space [13].

Charge materials are consumed for the main silicon reduction reaction to form silicon
dioxide, which may be accompanied by a transition into carbon monoxide in parallel
with the formation of intermediate silicon monoxide, as well as silicon carbide during
overheating, especially at the start of the smelting process and during the primary arc [14]. A
separate consumption item is the unresponsive carbon that is derived from charcoal, which
forms nanoparticles in the form of amorphous carbon, active pure carbon, or fullerenes.

The carbon resulting from electrode chipping and falling passes into a fume mixture
together with microsilica. In this case, carbon particles without interaction are adsorbed
on the highly developed surface of the silica fumes to form microsilica, the main form of
silicon waste. This is an item of consumption due to the changes in the silicon balance that
range from 380 to 450 kg per ton of produced silicon and requires operational control. In
this instance, sampling and relevant data on the chemical composition of the microsilica
captured in the GCS are needed for analytical comparison with the source quartz and
impurities to ultimately determine the quality of silicon products [15–17].

2.2. Microsilica Monitoring and Nanoparticle Capture in the Ore-Thermal Furnace Gas
Cleaning System

The main problem with capturing and controlling nanoscale particles in the OTF
GSC is the timely determination of the emission composition of the gas fumes (in mass).
Conventional GSC implements a detailed analysis after the end of the electric filter cycle
and after the filter has been cleaned and the sediment has been weighed according to the
time. As a result, there is a delay in the response when the electric and technological modes
of the furnace are disrupted and when the electrodes are burned, which is indicated by an
increase in the carbon content in the waste gases [18]. Monitoring the waste composition
during the production of silicon and its alloys is associated with a number of industry-
specific problems:

• The temperatures of the gases in the immediate vicinity of the furnace roof are very
high (600–850 ◦C), resulting in the need to cool and ventilate the gas-dust flow before
it makes contact with the sensitive instruments when taking extractive measurements;
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• The high concentration of particulates in front of the filter can cause rapid abrasive
damage to the measuring instruments in the gas streams that are in contact with the
particles and can also affect the measured data [19,20];

• The turbulent mode of gas flow has a wide range of time and space scales for the
pulsations of all of the flow characteristics. This makes the gas flow faster than the
laminar flow and results in intensive mass exchanges with high-impulse and energy
levels between different stream regions due to the intensive mixing of the dispersed
medium. This results in the substance having an uneven distribution in the gas flow
and a consequent distortion of the measurement results.

Taking into account the described flow conditions in the furnace atmosphere and in
the gas duct system of GCSs, the question of how to determine the temperature and velocity
control points of the particles arises. For this purpose, it is necessary to define stable zones
on the mass transfer interaction path.

To effectively control the electric mode of the furnace, installing a gas analyzer between
the gas duct and the gas purification equipment in the stable flow region of the gas stream
is recommended. This allows additional data to be obtained to create a digital database of
information about the process [21].

The continuous growth of computing capacities and measuring technologies in re-
cent years has opened up radically new possibilities for the computer modelling of large
production units [22].

The novelty of the proposed solution is in justifying the location of the gas analyzer
installation with the aid of the created computational fluid dynamics (CFD) model. The
ANSYS software package, specifically its CFD modelling module ANSYS Fluent, was used
for the mathematical model.

2.3. Main Features of Flue Gas Movement in the Ore-Thermal Furnace Gas Cleaning System

In most cases, when taking the fundamental laws of gas-fluid dynamics [4] in the
furnace gas duct into account, the flue flow has a high Reynolds value and is turbulent due
to different densities.

This movement of gases with dust is accompanied by an intensive mixing with velocity
and pressure pulsations, and in addition to the main longitudinal movement, transverse
movements and rotational movements are observed in individual flow volumes, especially
in the vortex zones that are close to the filters and ejectors. As a result, the local cross-
sectional velocities of the entire gas content flow from the furnace vault to the GCS during
the mixing process under the influence of a temperature gradient between the layers for
the entire mixing period.

It should be noted that turbulence has a continuous influence on the main flow param-
eters such as the concentration of components, temperature, velocity, and heat state. Thus,
each turbulent vortex volume has its own substance and temperature concentration [23].

To avoid components and pulsations mixing and to thus obtain adequate data on flow
parameters and the adequacy of the matrix, it is necessary to define data for the transient
flow by taking the measurements into account in practice. On the other hand, the transient
flow mode is characterized by the low mixing rate of the pulsation particles compared with
the turbulence mode. In this instance, the key value for determining the flow of gas is the
Reynolds number (Re) that characterizes the mode changes.

For this process, it has been experimentally determined that the Re for straight, smooth
pipes with the most perturbed flow at the entrance of the pipe is 2300. However, at Re
values above this value and up to a certain limit, a transient (mixed) flow mode is observed,
and after this limit, turbulent flow is more likely [24]. In cylindrical receptacles (pipes),
this transition interval can be varied significantly by reducing the initial disturbance of
the medium by up to 50,000. For this process, we determined the factors influencing the
turbulent state of the system in the gas pass system from the furnace:
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• The current state of the fume environment (kinetics, thermodynamics, etc.): com-
pressibility (velocity of motion of silica fume) taking into account multi-phase flow
(interphase exchange).

• The outer limits of gas flow by zone: the movement along the side lining into the vault
and output into the gas channel without the influence of the channel geometry.

• The process limit stage and GCS outlet (GCS electric filter surface pressure): the flow
area on the surface of the electric filter and the pressure.

The Reynolds criteria for the different flow mode models are as follows:

1. At Re < 2 × 103 laminar flow is observed.
2. At Re > 104 the flow becomes turbulent, but when gases begin to exit the furnace

vault and move into the gas channel, it is preserved.
3. At Re > 5 × 104 a turbulent boundary layer begins to form during the beginning of

the gas flow process due to a sharp change in the temperature.
4. At 2 × 104 < Re 104 a transient flow and heat exchange mode are observed when the

flow approaches the electric filter. Thus, given the turbulent flow conditions, the ratio
of the average to maximum velocity increases with the turbulence. In the Re, this ratio
is asymptotically close to 1 [25–27].

3. Materials and Methods
3.1. Computer Simulation of the Dispersion Fluid Dynamics

Offsetting the limit values for transient flows is a major difficulty in determining the
flow parameters of a multi-component gas. This problem is particularly pronounced in the
case of flow limits since the existing standard models can only estimate the average flow
rate of a gas duct when averaging the Reynolds criteria values in ANSYS Fluent [28].

The exhaust ducts and flows of the carbothermic silicon reductions in the OTF were
simulated to detect stable flow zones in which the control point for determining the
concentration of the exhaust gases could be installed.

The classification of existing methods and approaches for the numerical modelling
of turbulent flows is based on the level of detail required to refine and detect turbulent
pulsations, as well as their energy spectrum and type of flow. Depending on this, methods
can be divided into three groups (DNS—direct numerical simulation, LES—large eddy
simulation, and RANS—Reynolds-averaged Navier–Stokes) [29].

For the current task, the best solution to account for large-scale turbulent vortices and
flows in the boundary layer is a hybrid approach in which an RANS model is activated in a
wall area with an LES model close to it. This is a detached eddy simulation (DES) method
for simulating disconnected vortices that takes into account the reduction in turbulent
vortices near a solid surface [30]. This method requires significant computational resources
but ensures its adequacy compared to others.

In the considered case, taking the influence of the boundary layer in the gas flow
transition zones on turbulence into account, the explicit resolution of even the largest
vortices in the boundary layer requires considerable grinding in the calculation grid,
resulting in an increase in the calculation time. Thus, a wall-adapted local eddy-viscosity
model (WALE) [31] can solve this problem, taking the particularities of the gas flow and its
thermal potential into consideration.

The WALE method requires a high-quality grid. The number of grid elements should
be more than 1,000,000 at least, and boundary layers should be used for inflation. Otherwise,
it is possible that uncorrected data will be obtained as a result of the numerical simulation.

3.2. Problem Statement: Modelling the Off-Gas Mixture under Ore-Thermal Furnace Conditions

The symmetry of the gas duct system ensures uniform flow separation. An increase
in the waste gas concentration in one part of the duct will result in changes in the pres-
sure drops in another part. This will consequently lead to asymmetric flows, making it
impossible to define a stable flow area. Gas duct system symmetry allows us to evaluate
the adequacy of the resulting models.
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The following boundary conditions (Tables 1–3) were used as input components for
modelling the furnace exhaust gas system: the water-cooled roof of the furnace and the
steel gas passes. A sliding shutter was placed at a 45-degree angle at the fork of the two
gas passes.

Table 1. Initial model data.

Parameter Unit Value

Volume (gas) Nm3/h * 1000

Temperature (gas) ◦C 500

Pressure (water) kPa 250,000

Volume (water) Nm3/h * 250,000

Temperature (water) ◦C 35–45

*—m3/h under normal conditions (0 ◦C, 100 kPa).

Table 2. Average composition of the waste gases in percentages [6].

Mixture Component Percent

CO 88.6
CO2 4.81
CH4 1.42
N2 2.5
H2 2.67

Table 3. Average composition of the fumes in percentages [7].

Mixture Component Percent

SiO2 85.41
Al2O3 0.46
Fe2O3 0.30
CaO 1.50
MgO 1.24

C 6.09
Na2O 0.08
SO3 0.16

P2O5 0.12
K2O 0.31
TiO2 0.02
SiC 5.03

The average values of the fumes in the off-gas mixture are 10–12 percent.
According to the goals of this research, two models were developed:

• A system with a water-cooled portion of the roof for gas passes.
• A gas pass system without water cooling.

3.3. Governing Equations

The mathematical modelling of turbulence is based on the set of ratios used to describe
the movement of a fluid/gas. The basic governing Navier–Stokes equation system consists
of the equation of continuity (1) and the equation of motion (2):

∂ρ

∂t
+

∂ρ · uj

xj
= 0 (1)

∂ρ · ui
∂t

+
∂ρ · uj · ui

xi
= −∂P

xi
+

∂τij

xj
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where:

P—pressure of the gas mixture;
µ—gas mixture density;
t—time;
ui,j—velocity components in the i and j directions; τi,j—shear strain tensor.

To simulate the particulate matter (fume), a discrete phase model (DPM) was devel-
oped using the Euler–Lagrange method. It was constructed by solving the time-averaged
Navier–Stokes equations for the liquid phase, which was treated as a continuum, while
the dispersed phase was described by tracing the trajectory of a large number of particles
through the calculated flow fields. The dispersed phase can exchange momentum, mass,
and energy with the liquid phase.

The balance of the forces acting on a particle predicts the trajectory of the discrete
phase particles by integrating the balance of the forces on the particle, which is written in
the Lagrangian reference frame. This force balance equates inertia with the forces acting
on the particle and can be written (based on the directions in the Cartesian coordinate
system) as:

∂Up

∂t
= FD(U −Up) +

gx · (ρp − ρ)

ρp
+ Fx (2)

where FD(U − Up) is the drag force per unit mass of the particle.

4. Results and Discussion
4.1. Model 1: Combination of the Furnace’s Roof and Water-Cooled Gas Passes

As initial data, in addition to the variables specified in Tables 1–3 as well as the
dimensions, the following parameters were made available: water-cooled thickness, 0.06 m;
side lining thickness, 0.05 m; and thickness of the non-water-cooled part of the roof made
of chamotte bricks, 0.5 m.

The grid of this model consisted of 2,037,611 elements to obtain adequate simulation
accuracy and had a minimum orthogonal quality of at least 0.1 (Figure 1). The LES WALE
turbulence model was used to solve the variable-density subsonic flow problem by means
of a pressure–based coupled solver. The real Soave–Redlich–Kwong gas model [32,33] was
used for the gas mixture.

Figure 1. Furnace roof model. (1, 5—exhaust gas outputs; 2, 6—cooling water outputs; 3, 7—concrete
refractory; 4—chamotte refractory; 8—exhaust gas input; 9—cooling water input.)
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The boundary conditions for both streams (exhaust gases and cooling water) are
shown in Tables 4–6.

Table 4. Model 1 boundary conditions for exhaust gas mixture.

Parameter Input Output

Type of boundary conditions Mass-flow inlet Pressure outlet
Hydraulic diameter, m 10.34 3
Mass flow rate, kg/s 29.16 -
Gauge pressure, Pa - 0

Temperature, ◦C 500 -
Re 60,889.4 236,962.6

Turbulence intensity,
percentage 10.34 3

Table 5. Model 1 boundary conditions for cooling water.

Parameter Input Output

Type of boundary conditions Mass-flow inlet Pressure outlet
Hydraulic diameter, m 0.06 0.06
Mass flow rate, kg/s 278 -
Gauge pressure, Pa - 0

Temperature, ◦C 35 -
Re 150,075 150,075

Turbulence intensity, percent 0.06 0.06

Table 6. Model 2 boundary conditions.

Parameter Input Output

Type of boundary conditions Mass-flow inlet Pressure outlet
Hydraulic diameter, m 3 2.7
Mass flow rate, kg/s 15.54 -
Gauge pressure, Pa - 0

Temperature, ◦C 430 0
Re 117,255.6 266,330

Turbulence intensity, percent 3.72 3.35

As a consequence of simulation, the temperature distribution and gas velocity profiles
were obtained to define the boundary conditions for the second model as the area in which
the intended gas analyzer could be installed.

At the outlet from the water-cooled part of the gas pass system, the gas flow rate was
5.5 m/s, which is equivalent to a mass flow rate of 15.54 kg/s. The temperature of the
mixture was 450 ◦C.

Because the model had a horizontal symmetry, we were able to evaluate the temper-
ature and velocity distribution using the cross-sectional area at the centre of one of the
water-cooled parts of gas ducts 2 (Figure 2). This model makes it possible to determine the
input parameters to assess possible variation among them. In this way, a prediction story
was created for the next part of the GCS, in which the steel gas passes through a sliding
shutter model. This provides stable initial characteristics for further modelling tasks.

4.2. Model: 2 Gas Passes without Water-Cooling

The simulated part of the exhaust gas system consists of gas passes with a rigid steel
frame and a sliding shutter, which acts as a gas velocity regulator and is located at the gas
pass junction. This part is of greatest interest for modelling and further analysis because
stable zones were predicted to be here.

There were 2,739,629 grid elements in this model (Figure 3). The grid had an acceptable
average orthogonal quality of 0.79.
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Figure 2. Sectional view of temperature and velocity distribution contours of model 1.

Figure 3. Pass model. (1, 2—exhaust gas inputs; 3—sliding shutter; 4—exhaust gas output.)

Based on the fact that the most stable flows in the models will not be laminar ones
because of the high velocities, considering the transient mode that was identified by means
of ANSYS Fluent is advised. The Re ratio was calculated using the conventional equation:

Re =
u · dmix · ρmix

µmix
(3)
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where:

u—velocity, m/s;
dmix—hydraulic diameter, m;
ρmix—mixture density, kg/m3;
µmix—dynamic viscosity of the gas mixture, Pa · s;
dmix—hydraulic diameter, m;
ρmix—mixture density, kg/m3;
µmix—dynamic viscosity of the gas mixture, Pa · s.

Sutherland’s formula was used to determine the dynamic viscosity:

µt = µ0 ·
273 + C
T + C

· T
3
2

273
(4)

where:
µt—dynamic viscosity of the gas at the temperature, Pa · s;
µ0—dynamic viscosity of the gas at 0 ◦C, Pa · s;
T—the absolute temperature of the gas, K;
C—Sutherland’s constant.
Thus, the dynamic viscosity of the gas mixture can be found using the following

equation:
Mmix
µmix

=
a1 ·M1

µ1
+

a2 ·M2

µ2
+ . . . +

an ·Mn

µn
(5)

where Mmix, M1, M2, and Mn are the molecular masses of the gas mixtures and their
components; a1, a2, and an are the volumetric fractions of the components in the gas
mixtures; and µmix, µ1, µ2, and µn are the dynamic viscosities of the gas mixtures and their
components, Pa · s [34,35].

The density of the furnace gas mixture is a very important indicator for determining
the concentration field profile that is repeated on the GCS electric filters:

ρmix = y1 · ρ1 + y2 · ρ2 + . . . + yn · ρn (6)

where y1, y2, and yn are the volumetric fractions, and ρ1, ρ2, and ρn are the densities of the
components, kg/m3.

ρ0 ·
273

273 + t
(7)

The kinematic viscosity was calculated using the following formula:

υ =
µmix
ρmix

(8)

As a result of calculating the required auxiliary parameters in ANSYS CFD-Post, the
contours of the main off-gas parameters, such as velocity and kinematic viscosity, were
obtained. These parameters have a direct impact on the Re as a key criterion for the
flow conditions.

Any obstacle in the gas flow path changes the dynamic flow characteristics. As such,
it is necessary to know what happens before and after the gas flow encounters the sliding
shutter to evaluate any changes in the cross-section of the gas path. Knowing this, we can
determine the control actions for the system.

Figure 4 illustrates the variations in the dynamic characteristics of the gas-dust
flowover and the volume of the gas duct. A transient flow mode can be observed in
the volume-rendering region behind the closed part of the sliding shutter (shown by the
pointer) with the smallest Re. Taking into account the initial conditions of developing the
best possible environment (laminar flow) for measurements to be taken in because of the
high velocities, the transition mode revealed here can be considered to be an appropriate
result of the modelling.
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Figure 4. Velocity and Re distribution contours in the gas passes.

The flow velocity is the most significant parameter affecting both the flow mode
and Re. The linear dependence of the Re on the flow velocity, as shown in Figure 5,
allows us to estimate the flow mode using the volumetric velocity profile alone for future
calculations. Based on this chart, the appropriate velocity should be less than 1 m/s to
reach the transient Re.

Histograms, such as those in Figure 6, are needed to confirm the existence of a tran-
sitional mode and to estimate the proportion of its volumetric distribution in particular
figures. A small fraction of transient off-gas flow (red column on the histogram (0-7437)
Re) can be observed. These values are appropriate for minimizing turbulent pulsations in
this case.

Thus, despite the wide variety of turbulence models in ANSYS Fluent, in cases where
there is strong turbulence, considering transient flow modes is advised.
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Figure 5. Re/velocity dependence chart.
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5. Conclusions

The silicon smelting process in OTFs is only controlled in the furnace and at the inlets
and outlets of the gas duct. Thus, everything that goes into the gas ducts is a “black
box”. Emissions can only be controlled when the electrostatic precipitators are clogged.
Modelling allows us to look inside the process and to react to the changes that take place in
a short period of time.

Something else that is important for process control is minimizing the effects of
turbulent pulsations on measurements in the gas duct. The main innovation of this paper
is the determination of stable zones by means of CFD modelling to avoid measurement
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errors. All of the methods mentioned above can profoundly increase the transparency and
controllability of the silicon production process.

When producing silicon in an OTF when the exhaust gas was at a volume flow rate
of 250,000 m3/h (under normal conditions), strong turbulence developed in the gas ducts,
preventing the adequate measurement of the concentrations of each gas mixture component.
In order to control the velocity at the fork of the two gas passes, a sliding shutter was
installed in one of them at a 45◦ angle. This resulted in a 4–5-fold reduction in the velocity
at the exit of the gas duct. A transient flow mode (Re < 10,000) was formed directly behind
the closed part of the shutter, allowing the concentrations of the flue gas components to be
measured with the required accuracy and to be controlled using an additional parameter.

In modern conditions, the production of silicon from quartz raw materials in OTFs
needs to address energy efficiency issues by taking into account the distribution of gas-fume
streams. As a result of the simulation presented here:

• The contours of the main parameters defining the flow mode in the exhaust gas transfer
line, namely the kinematic viscosity and velocity, were obtained.

• The flow mode was determined by calculating the Reynolds criterion along the exhaust
gas transfer line from the OTF to the GCS.

• It was revealed that the most suitable place for the installation of measuring equipment
is directly behind the closed part of the sliding shutter. In this area, there is a transient
flow mode with the lowest velocity and lowest Reynolds criterion value. In this
location, the flow is influenced by turbulent forces at least, allowing the concentrations
of the flow components to be measured with the required accuracy.
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Abstract: A droplet hitting a superhydrophobic surface will undergo the Cassie to Wenzel transition
when the wetting force exceeds the anti-wetting force. The critical velocity of the droplet’s Cassie to
Wenzel state transition can reflect the wettability of the surface. However, the critical velocity research
is still at the microscale and has not been extended to the nanoscale mechanism. A cross-scale critical
velocity prediction model for superhydrophobic surfaces with symmetric structures is proposed here
based on a mechanical equilibrium system. The model’s applicability is verified by experimental data.
It demonstrates that the mechanical equilibrium system of droplet impact with capillary pressure
and Laplace pressure as anti-wetting forces is more comprehensive, and the model proposed in this
study predicts the critical velocity more precisely with a maximum error of 12% compared to the
simulation results. Furthermore, the correlation between the simulation at the nanoscale and the
evaluation of the macroscopic symmetrical protrusion surface properties is established. Combined
with the model and the correlation, the relationship between the microscopic mechanism and the
macroscopic examination of droplet dynamics on the superhydrophobic surface be presented, and the
wettability evaluation method of macroscopic surfaces based on the molecular simulation mechanism
can be realized.

Keywords: droplet impact; superhydrophobic surface; critical velocity; Cassie to Wenzel transition;
cross-scale

1. Introduction

Cassie states and Wenzel states are two typical states of droplet impact on a super-
hydrophobic surface [1], as shown in Figure 1. A droplet that has transitioned from the
Cassie state to the Wenzel state (C-W) shows bigger contact angle hysteresis and slip angle,
which results in the gaps on the surface being occupied by droplets and the surface losing
its superhydrophobic properties [2]. When the superhydrophobic properties of the surface
are weakened, the surface is easily contaminated in the case of foreign body viscosity. It
has been verified that the wetting force of the droplet will be larger than the anti-wetting
force of the surface under a high enough impact velocity of the droplet, which causes the
C-W transition of the droplet [3]. The study of the critical velocity of the droplet at the
C-W transition is very important for many applications, such as anti-fogging of windshield
glasses [4], medical cooling spray [5], anti-icing of aircraft and circuit surfaces [6,7], and
anti-fouling of photovoltaic panels [8].

Therefore, efforts have been made to understand the mechanism of the C-W transition
of the droplet using experimental methods, and many models have been proposed to
predict the critical velocity of the C-W transition of the droplet. Reyssat et al. [3] found that
the critical velocity of the C-W transition of the droplet was closely related to the structure
distribution through an experiment of a droplet’s impact on a pillared surface, and proposed
a critical velocity model (V =

√
γlvh/ρd2, where γ is the surface tension of the droplet; h is

the pillar height; ρ is the droplet density; d is the pillar spacing). Barolo et al. [9] analyzed
the droplet impact on a model microfabricated surface and established a semi-quantitative
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model to predict the critical velocity of the C-W transition of the droplet based on the
surface resistance. Jung et al. [10] observed the wetting behavior of the droplet impact on a
pillared surface and proposed the critical velocity prediction model (V =

√
16γlvh/ρd2)

by the relationship between the impact velocity of the droplet and the surface parameters,
as shown in Figure 2b. Liu et al. [11] studied the critical parameter of the C-W transition
of the droplet and established physical and mathematical models of the C-W transition
of the droplet from the perspective of energy balance. The above models were based
on the equilibrium between the inertial force and the Laplace pressure of the droplet.
However, Shi et al. [12] concluded that whether a droplet underwent the C-W transition
was determined by the competition between the inertia force of the droplet and the capillary
force. Malla et al. [13] studied the wetting behavior of the droplet impact on a micro-
grooved surface and established a critical velocity model based on the relationship between
the impact velocity of the droplet and the groove spacing. Recently, Wang et al. [14] found
in their experiments that the actual critical velocity of the C-W transition of the droplet
was nearly 10 times higher than the theoretical value of the above models and proposed a
standard for the C-W transition of the droplet based on the height of the droplet meniscus,
as shown in Figure 2c.
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Although many critical velocity prediction models have been proposed, there is still a
lack of tests available to evaluate the applicability of the models for a variety of superhy-
drophobic surfaces. In addition, such trial-and-error research is costly, time-consuming,
and a waste of resources. Molecular dynamics (MD) simulation has been widely used
to study the dynamics of droplets on superhydrophobic surfaces due to the advantages
of high reliability, low cost, and a short research period [15,16]. Furthermore, the effects
of droplet impact velocity, height, width, and spacing of the protrusion structure on the
droplet wetting state have been studied deeply by MD simulation [17–20]. However, no
critical velocity prediction model at the nanoscale has been reported so far. Furthermore,
the results of MD simulation at the nanoscale are not practical because of the lack of cor-
relation with the macroscale, which means the results of MD simulation cannot directly
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evaluate superhydrophobic surface properties at the macroscale. Thus, it is very important
to establish the critical velocity prediction model of the C-W transition of a droplet at
the nanoscale and explore the correlation between the nanoscale and the macroscale of a
droplet’s wetting behavior on superhydrophobic surfaces.

In this paper, the MD simulation method was employed to study the effects of nanopil-
lar spacing and the droplet radius on the critical velocity of the C-W transition of a droplet.
It was found that the capillary pressure and the Laplace pressure must be considered in the
calculation of the critical velocity, and the critical velocity prediction model was established
based on the mechanical equilibrium system at the C-W transition of a droplet, while its
applicability was verified by the experiment data. In addition, the correlation between the
nanoscale and the macroscale of the C-W transition of the droplet was proposed based
on the model. Using the critical velocity prediction model and the correlation between
the nanoscale and the macroscale of the C-W transition of the droplet, the MD simulation
results can directly evaluate superhydrophobic surface properties at the macroscale.

2. Simulation Methodology

In this paper, the wetting behavior of droplets on a superhydrophobic surface was
calculated by the MD simulation method. The impact model consists of a spherical droplet
model and a substrate model with a nanopillar structure. Furthermore, the dimensions of
the model box are 20 nm, 20 nm, and 25 nm in the x, y, and z directions, respectively, as
shown in Figure 3. In the initial case, the positions of the centroid of the droplet and the
nanopillar top surface are 0 and −50 Å, respectively. The eight-atom chain liquid molecular
model that was often used to establish the molecular models of the polymer [21], silicone
oil [22], and water [23] was used to establish the droplet model. It has been proven that
the model can reflect the dynamic behavior and physical parameters of the liquid well
and has been widely used in molecular dynamic simulation of wetting and flow at the
solid–liquid interface. After the relaxation of the droplet model, the interatomic bond
length of the chain liquid molecule is 1.54 Å, the bond angle of the chain liquid molecule
is 109.5◦, and the dihedral angle of the chain liquid molecule is 0. The extra interaction
forces of the chain molecule model can force the atoms in a molecule together and reduces
evaporation [24]. In addition, we used carbon atoms as monomers in chain molecules,
which can significantly reduce the computational burden of the Coulomb force calculation.
This method of building chain molecules using uncharged particles was used in many
similar studies [23,25,26]. The single crystal Cu structure was used to establish the substrate
model, and the lattice type of the substrate model is a face-centered cubic lattice, while the
lattice constant is 3.615 Å.
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In the process of MD simulation, the Velocity-verlet method [27] was employed to
solve Newton’s equation of motion of the particles in the system to obtain the velocities and
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positions of the particles, and the Lennard–Jones (LJ) potential was employed to calculate
the force between unbonded atoms. The function is

Uij = 4εij



(

σij

rij

)12

−
(

σij

rij

)6

, (1)

where εij is the interatomic interaction strength coefficient, rij is the distance between atoms,
and σij is the distance between atoms at equilibrium. In this paper, the interaction strength
coefficients of liquid–liquid (ε ll), solid–solid (εss), and liquid–solid (ε ls) atoms are 0.931,
0.582, and 0.087 kcal/mol, respectively, and the distance between atoms at equilibrium
is 3.5 Å.

The Finite Extensible Nonlinear Elastic (FENE) potential was employed to calculate
the force between bonded atoms, and the function is

EFENE(r) =




−0.5KL2

0 ln
[

1−
(

r
L0

)2
]

r ≤ L0

∞ r > L0

, (2)

where L0 is the maximum distance the chain can extend and K is the elasticity modulus.
In this paper, L0 and K were calculated as L0 = 1.5σij, K = 30εij/σ2

ij according to Ref. [21].
The surface tension of the droplet (γlv) was calculated by the Test-area method [28], and
the surface tension of the droplet model at 298 K was calculated as 59.0 × 10−3 N/m.

LAMMPS software [29] was used to perform the MD simulations based on the above
potential functions and parameters, and the NVT ensemble was used in the simulation
process. The Nose–Hoover thermostat was used to keep the system temperature at 298 K,
and the temperature damping coefficient was 100 fs. The base atoms remained fixed, and
the truncation radius was set to 10 Å. The x and y directions were periodic boundaries, and
the z direction was an aperiodic boundary. The time step was 1.0 fs. After the relaxation
of 200 ps at 298 K, the droplet was loaded at a given initial velocity and the loading
lasted 200 ps.

3. Results and Discussion

The effect of nanopillar spacing and the droplet radius on the critical velocity of the
C-W transition of the droplet was investigated via MD simulation. Due to the scale effect,
the nanoscale droplets require a higher initial impact velocity to deform similarly to the
macroscale droplets [30]. As a result, in the MD simulation calculations, the initial velocity
of droplets is nearly three orders of magnitude greater than that of macroscopic droplets
to produce the Weber number (We) of droplets close to the macroscopic situation. In the
calculations, the droplet impact velocity ranged from 180 m/s to 730 m/s. The contact
angle was measured using the simulation results. To reduce the measurement error, the
contact angle of the droplet on each surface was measured five times, and the final value
was taken within the error range. Figure 4 shows the contact angle and the statistical error
of each case in Table 1.

Table 1. The parameters of surfaces.

Case Pillar Width r (Å) Pillar Spacing d (Å) Solid Area Fraction φ Contact Angle θ

1 10.8 Å 9.0 Å 0.29 160
2 10.8 Å 12.6 Å 0.21 155
3 10.8 Å 16.2 Å 0.16 152
4 10.8 Å 19.8 Å 0.12 151
5 10.8 Å 23.5 Å 0.09 150.5
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3.1. Effect of Different Pillar Spacing

Table 1 shows the parameters of different surfaces. Five cases were calculated to
investigate the effect of different pillar spacing on the critical velocity of the droplet. The
height of the pillar is 18 Å and the droplet models consist of 800 chain molecules with
a radius of 41 Å in all cases. The impact process was recorded in the first 40 ps with a
10 ps interval as shown in Figure 5. It shows that the varying pillar spacing affects the
wetting behavior of droplets significantly compared with the state of the five cases in
20 ps, and the droplet cannot wet the pillar gap when the spacing is 9.0 Å. Furthermore, the
droplet’s wetting state transitions from the Cassie state to the Wenzel state when the spacing
increases to 19.8 Å. The calculation results are similar to that in Ref. [31]. The wetting state
of the droplet impact on the nano-pillared surface was controlled by varying the initial
impact velocity of the droplet. The impact velocity at which the droplet undergoes the C-W
transition is the critical velocity. It also shows that the greater the nanopillar spacing, the
smaller the critical velocity of the C-W transition of the droplet.

Then, the variation trend of the critical velocity and the capillary pressure were
compared, as shown in Figure 6. The capillary pressure [32] can be calculated by

PC =
−4γlv cos θYφ

r(1− φ)
, (3)

where φ is the area fraction of nanopillar structure on the surface, θY is Young’s contact
angle, γlv is the surface tension of the droplet, and r is the pillar width. The results show
that the capillary pressure decreases with the increase in the nanopillar spacing, and the
variation trend is similar to that of the critical velocity. The air in the nanopillar gap is
more easily replaced by the droplet as the nanopillar spacing increases, which reduces the
hydrophobic properties of the surface. As a result, there is great relevance between the
critical velocity of the C-W transition of the droplet and the capillary pressure of the surface.
Therefore, capillary pressure plays an indispensable role in determining the critical velocity
of the droplet.
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3.2. Effect of the Droplet Radius

Table 2 shows the parameters of the droplets. The droplet radius was varied by
controlling the number of chain molecules. In cases 6 to 10, the nanopillar height, spacing,
and width are 18 Å, 10.8 Å, and 12.6 Å on the surface, which are the same as in case 2.

The impact process was recorded in the first 40 ps with a 10 ps interval, as shown in
Figure 7. The comparison of the wetting state of the droplet at 20 ps shows that the droplet
can only wet the part of the gap on the surface when its droplet radius is 24 Å but reaches
the Wenzel state when 41 Å. The phenomenon is the same as in Ref. [33]. As a result, the
droplet radius significantly influences the wetting behavior of the droplet on the surface.
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Table 2. The parameters of surfaces and droplets.

Case Number of Atoms Droplet Radius R (Å)

6 200 24
7 400 31
8 600 37
9 800 41
10 2000 45
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The change in droplet critical velocity, Laplace pressure, and capillary pressure with
droplet radius was calculated as shown in Figure 8. The Laplace pressure can be calculated by

PL =
2γlv

R
, (4)

where the R is the droplet radius. The result shows that the bigger droplet can readily
pin the gap in the surface and show the Wenzel state on the surface. The changing trend
of the critical velocity and the Laplace pressure of the droplet is the same. Besides, the
Laplace pressure and the capillary pressure are of the same order of magnitude. Thus, the
Laplace pressure is part of the anti-wetting pressure and must be taken into account in the
mechanical equilibrium system of the C-W transition of the droplet.
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3.3. Components Critical Velocity Prediction Model

It is well known that the water hammer pressure generated by high-speed impact and
the dynamic pressure generated by inertial force are the wetting forces during the process
of droplet impact on a superhydrophobic surface. Furthermore, the expressions of the
dynamic pressure and the water hammer pressure are

PD = 0.5ρV2, (5)

PWH = kρCV, (6)

where k is the coefficient of the water hammer pressure (obtained using k = 0.003 in Ref. [34]),
ρ is the density of the impact droplet (obtained using ρ = 0.997 g/m3 in Ref. [35]), and C is
the sound velocity in the liquid (obtained using C = 1497 m/s in Ref. [36]). In previous
experiments, it was found that the action time of the water hammer pressure was shorter,
but the magnitude of the water hammer pressure was much larger than that of dynamic
pressure [10]. However, the maximum wetting depth of droplet impact on the surface
can also be achieved in a short time [37]. Therefore, the water hammer pressure should
not be neglected due to the short action time. In addition, the capillary pressure and the
Laplace pressure are the anti-wetting forces. However, whether the capillary pressure or
the Laplace pressure is used as the anti-wetting force, the mechanical equilibrium system is
incomplete. It shows that considering the capillary pressure (the Laplace pressure) as the
anti-wetting force alone means that the change in the droplet radius (the surface parameters)
is independent of the anti-wetting force and the critical velocity of the C-W transition of
the droplet based on Equations (3) and (4). This is contrary to some reports [31,33] and the
calculation results in this paper.

Figure 9 shows the comparison of the critical velocity between the calculations in this
paper and the predicted values of the five existing models, as shown in Table 3. “Model in
study” presents the theoretical values of the model proposed in this study, and “Calculation”
presents the calculated values by the MD method in Figure 9. The results show a significant
difference. It is worth noting that model 1 and model 4 show a similar trend to the calculated
results. Model 1 is established based on the competition between the dynamic pressure
and the Laplace pressure. It causes that the predicted values of model 1 to be smaller than
the calculations due to neglecting the capillary pressure. For model 4, the height of the
protrusion structure is considered in the calculation of the capillary pressure, which results
in the capillary pressure in model 4 being larger than the calculated value. Therefore, its
predicted critical velocity values are larger than the calculated results. Compared with the
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calculation results, the model in this study has higher accuracy in predicting the critical
velocity, with a maximum error of 12%.
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Table 3. Existing models for the critical velocity V based on impact parameters.

Model Model Expression Reference

1 V =
√

γlvh/ρd2 Reyssat et al. [3]
2 V =

√
16γlvh/ρd2 Jung et al. [9]

3 V =
√

16γlv(h− h1)/ρd2 Wang et al. [10]
4 V =

√
−4γlv(r + h) cos θY/ρbh Shi et al. [13]

5 0.5ρV2 + kρCV + 2γlv/R =
−4γlv cos θYφ/r(1− φ)

Hu et al. [31]

Thus, the critical velocity prediction model of the C-W transition of the droplet was
established based on the mechanical equilibrium system of PD + PWH = PC + PL in this
paper (PD is the dynamic pressure, PWH is the water hammer pressure, PC is the capillary
pressure, and PL is the Laplacian pressure), as shown in Figure 10a, and the expression is

V =

√
k2C2 +

4γlv
ρR
− 8γlv cos θφ

ρr(1− φ)
− kC, (7)

Figure 10b compares the balance of wetting pressure and anti-wetting pressure be-
tween the prediction models and the experimental data in Ref. [32]. It must be noted that
not all models include the dynamic pressure, the water hammer pressure, the capillary
pressure, and the Laplace pressure, but these models are based on a balance between the
wetting force and resistance to wetting. The model proposed in this paper shows better
agreement with the experimental data. Therefore, the critical velocity prediction model
is applicable at the macroscale. However, the model can predict the critical velocity only
when the contact angle of a droplet on the surface is known in practice. The most common
method of obtaining the contact angle is test measurement, which is very troublesome.
Fortunately, MD simulation can be employed to measure the contact angle of the droplet
on the surface, which is consistent with the material and the solid area fraction (φ) of the
macroscopic surface. As proposed by Cassie in the study of surface wetting [38], the contact
angle of the droplet on a rough surface is unchanged when the material and the solid area
fraction of the surface remain unchanged. Therefore, it is feasible to measure the contact
angle of a droplet on a macroscopic surface using MD simulation and calculate the critical
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velocity according to Equation (7). In other words, the correlation between the simulation
at the nanoscale and the evaluation of the macroscopic surface properties are valid.
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Figure 10. (a) Schematic diagram of mechanical equilibrium mechanism of droplet wetting surface;
(b) comparison of the balance of wetting pressure and anti-wetting pressure between the prediction
models and the experiment data in Ref. [32].

Based on the model and the correlation, the transformation relationship between
the macroscopic test and micro-nano-scale mechanism of the studies of the wetting be-
havior of a droplet on a surface and the coupling relationship between molecular-scale
calculation mechanism and macroscopic experimental performance were realized, and the
wettability evaluation method of a macroscopic surface based on the molecular simulation
mechanism was presented. By predicting the critical velocity, the wetting resistance of
superhydrophobic surfaces can be rapidly evaluated. In addition, the impact velocity of
pollutants on the surface of different applications is different in different environments,
and this model can provide a theoretical basis for the design of superhydrophobic surfaces
for different applications.

However, it must be noted that this model can only be applied to surfaces with
symmetric structures. When a droplet impacts an asymmetric surface, the capillary pressure
will change with the location of the droplet impact, which is the factor that cannot be
calculated by this model.

4. Conclusions

In this paper, the effect of the nanopillar spacing and the droplet radius on the critical
velocity of the C-W transition of the droplet was examined. In addition, the critical velocity
prediction model was proposed based on the mechanical equilibrium system of the C-W
transition of the droplet. The study conclusions are as follows:

1. The capillary pressure and the Laplace pressure should be considered in the calcula-
tion of the critical velocity of the C-W transition of the droplet. Furthermore, a critical
velocity prediction model was proposed based on the mechanical equilibrium system
including the capillary pressure and the Laplace pressure. The model can predict the
critical velocity more accurately and be applied across scales.

2. The correlation between the simulation at the nanoscale and the evaluation of the
macroscopic symmetrical protrusion surface properties were presented. This correla-
tion can be used to guide the parameters set in the MD simulation.

3. This study established a method to directly evaluate the wettability of a surface based
on the results of the MD simulation and has practical application value for the design
and research of superhydrophobic surfaces.
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Abstract: The path tracking control system is a crucial component for autonomous vehicles; it is
challenging to realize accurate tracking control when approaching a wide range of uncertain situations
and dynamic environments, particularly when such control must perform as well as, or better than,
human drivers. While many methods provide state-of-the-art tracking performance, they tend to
emphasize constant PID control parameters, calibrated by human experience, to improve tracking
accuracy. A detailed analysis shows that PID controllers inefficiently reduce the lateral error under
various conditions, such as complex trajectories and variable speed. In addition, intelligent driving
vehicles are highly non-linear objects, and high-fidelity models are unavailable in most autonomous
systems. As for the model-based controller (MPC or LQR), the complex modeling process may
increase the computational burden. With that in mind, a self-optimizing, path tracking controller
structure, based on reinforcement learning, is proposed. For the lateral control of the vehicle, a
steering method based on the fusion of the reinforcement learning and traditional PID controllers is
designed to adapt to various tracking scenarios. According to the pre-defined path geometry and the
real-time status of the vehicle, the interactive learning mechanism, based on an RL framework (actor–
critic—a symmetric network structure), can realize the online optimization of PID control parameters
in order to better deal with the tracking error under complex trajectories and dynamic changes
of vehicle model parameters. The adaptive performance of velocity changes was also considered
in the tracking process. The proposed controlling approach was tested in different path tracking
scenarios, both the driving simulator platforms and on-site vehicle experiments have verified the
effects of our proposed self-optimizing controller. The results show that the approach can adaptively
change the weights of PID to maintain a tracking error (simulation: within ±0.071 m; realistic vehicle:
within ±0.272 m) and steering wheel vibration standard deviations (simulation: within ±0.04◦;
realistic vehicle: within ±80.69◦); additionally, it can adapt to high-speed simulation scenarios (the
maximum speed is above 100 km/h and the average speed through curves is 63–76 km/h).

Keywords: autonomous vehicle; path tracking; reinforcement learning; adaptive PID; self-optimizing
controller; vehicle control

1. Introduction

Autonomous driving is an active research topic that has attracted considerable atten-
tion from both academic institutions and manufacturing companies, owing to its broad
application prospects in intelligent transportation systems. Automated vehicle software
mainly involve environmental perception, decision planning, and motion control. In-
telligent vehicles are non-linear motion systems, and their dynamic parameters change
significantly with different speeds and road conditions, especially at high speeds of motion
and during complex trajectories. This makes the path tracking control problem one of the
most challenging aspects of this field. A closed-loop control system, which is composed of
people, vehicles, and roads, as shown in Figure 1, is influenced by inevitable disturbances
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both inside and outside the vehicle, such as road adhesion coefficients, driving air resis-
tance, and power output device, etc. As a result, the vehicle’s model parameters change in
real time, and there is a dynamic deviation between the vehicle’s operating state and the
desired state. Therefore, the human driver needs to constantly adjust the vehicle’s state of
motion to keep it on the desired path. The development process of the intelligent controller
should learn the control mechanism of the human driver. With that in mind, the question
of whether the path tracking controller can realize online self-optimization, according to
the changes of the environment, is a key point for research.
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Figure 1. Closed-loop control system for vehicles.

There are many methods of providing state-of-the-art tracking performance, which
can be divided into three typical categories, as follows: traditional classical control, model-
based control, and intelligent adaptive control.

With regard to classic approaches, proportional–integral–derivative (PID) control is
one of the most widely used methods in actual systems, with the advantages of a simple
structure and easy implementation [1]. Previous studies [2,3] have presented an algorithm
for using a PID controller to solve the path tracking problem for autonomous ground robots.
Their results showed that the PID controller was capable of tracking a path. Regarding the
traditional proportional–integral–derivative control strategy, due to the fixed constant PID
control parameters, its application scenarios have limitations. A detailed analysis shows
that a PID controller inefficiently reduces the lateral error under complex trajectories and
variable speed conditions; when the road curvature is large, or when the vehicle is driving
at high speeds, it is easy to deviate from the expected trajectory—as shown by the red
arrows in Figure 2.
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Figure 2. The performance of traditional PID control in different speed conditions.

As for the model-based categories, most of the proposed methods for path tracking
control are based on modeling the vehicle dynamics [4–6], including the tire forces and
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the moments generated by the wheels. Some previous studies [7–9] have used model
predictive control (MPC), in which an autonomous vehicle was directed to follow a pre-
planned trajectory and a dynamic model of the system was used to predict an optimal
sequence. However, MPC requires a heavy computational load, owing to its complex
design. Therefore, this algorithm is unsuitable for high-speed autonomous driving and
complex road trajectories. In [10], the authors modified the lateral dynamics of a vehicle
and used a linear quadratic regulator (LQR) controller. A bicycle model was used to
obtain the feedforward and feedback parts of the steering input. The optimal control
parameters were obtained, based on a cost function. The authors of [11] compared and
analyzed various control strategies for path tracking applications by running a vehicle
model in a prescribed environment. In general, as described in the literature, the results
may vary when additional control inputs, such as brake control and accelerator control,
are brought into the system. We can conclude that complex trajectories and high-speed
driving have important impacts on a vehicle motion model; thus, model-based controllers
have limitations and can only be applied to simple roads in low-speed driving scenarios. In
addition, intelligent driving vehicles are highly non-linear objects and a high-fidelity model
is unavailable in most autonomous systems. As for the model-based controller (MPC or
LQR), the complex modeling process may increase the computational burden; moreover,
changes in model parameters may lead to a decrease in control performance. Therefore,
for the vehicle motion control system, it is urgent to develop a tracking method with an
adaptive and effective control framework for real-time implementation.

More recently, approaches in the third category—i.e., intelligent adaptive approaches—
have been proposed to mitigate the aforementioned problems. These types of methods
provide the ability to adapt; for example, they can undertake corrective control actions
based on changes in the environment. Several studies have been conducted based on
these methods, aiming to solve the problems noted above. A fuzzy controller with a
parameter PID self-tuning module was introduced in [12,13] to provide a mobile robot with
complete path tracking control; this showed advantages in providing a rapid response,
high stability, and high tracking accuracy. However, the design of fuzzy adaptive PID
control requires a significant amount of prior knowledge, and, in reality, it is difficult to
obtain such comprehensive prior knowledge when a vehicle travels in unknown situations.
An adaptive PID control method, based on neural networks, was presented in [14,15].
Nevertheless, a neural network generally uses supervised learning to optimize parameters,
so it is also limited by some application conditions; for instance, it is difficult to obtain the
exact teacher signal for supervised learning. Moreover, it does not work in real-time in the
context of line optimization.

In order for automated vehicles to improve their adaptability, it is essential for them to
interact with their environments and promote the natural evolution of a control policy. The
essence of reinforcement learning is to learn an optimal control policy through interaction
with the environment, which provides an effective way to solve the online optimization
control problem of path tracking. In recent years, many exciting RL applications have been
proposed in the context of self-driving vehicle control; for example, previous studies [16–18]
proposed a framework for autonomous driving using deep RL. They adopted the deep
deterministic policy gradient (DDPG) algorithm to manage complex road curvatures, states,
and action spaces in a continuous domain and tested the approach in an open-source
3D car racing simulator called “TORCS” [19]. The Robotics and Perception Group at the
University of Zurich created an autonomous agent for a GT Sport car racing simulator [20]
that matched or outperformed human experts in time trials; this worked by defining
a reward function for formulating the racing problem and a neural network policy for
mapping input states to actions, then, the policy parameters were optimized by maximizing
the reward function using the soft actor–critic algorithm [21]. Reference [22] introduced a
robust drift controller based on an RL framework with a soft actor–critic algorithm and
used a “CARLA” simulator [23] for training and validation. The controller was capable of
making the vehicle drift through various sharp corners quickly and stably in an unseen map
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and was further shown to have excellent generalization ability. It could directly manage
unseen vehicle types with different physical properties, such as mass and tire friction.
Reinforcement learning, as a method for solving the optimization problem of continuous
action space under uncertain environments, has also been extensively researched in the
path tracking control process of UAVs and robots [24–30]. It is a data-driven control strategy
that does not depend on the precise model of the controlled object [31]; therefore, the path-
following control problem of autonomous vehicles can be quantitatively described as a
sequential data optimization control problem [32–36].

The success of the deep RL algorithms proves that control problems can be naturally
solved by optimizing policy-guided agents in a continuous state and action space. However,
so far, RL research on automated vehicle control is mainly limited to simulation environ-
ments, such as TORCS, GT Sport, and CARLA, and only a few, comparably simple examples
have been deployed in real systems, such as in references [37,38], which demonstrated the
first applications of deep RL to realistic autonomous driving. In those studies, the RL agent
evaluated and improved its control policy in a trial-and-error manner; thus, it would be
dangerous and costly to train such an agent on a real vehicle; moreover, particularly with
dynamically balancing systems, such a process is complicated and expensive.

Nevertheless, the generality of RL makes it a useful framework for autonomous
driving. Most importantly, it provides a corrective mechanism for improving an online
control policy, based on interacting with the environment. Thus, in this paper, a novel
RL-based method is proposed for use in path tracking control. We demonstrate a self-
optimizing controller structure incorporating a simple physics-based model and adaptive
PID control based on RL; additionally, we present a newly developed approach for training
an actor–critic network policy on a simulator and transferring it to a state-of-the-art realistic
vehicle. This system can be used to track a path under complex trajectories and different
speed conditions, and its performance is comparable to that of professional drivers. The
main contributions of this paper are as follows:

• In this paper, we propose a self-optimized PID controller with a new adaptive updating
rule, based on a reinforcement learning framework for autonomous vehicle path
tracking control systems, in order to track a predefined path with high accuracy and,
simultaneously, provide a comfortable riding experience.

• According to the pre-defined path geometry and the real-time status of the vehicle,
the environment interactive learning mechanism, based on RL framework, can realize
the online self-tuning of PID control parameters.

• In order to verify the stability and generalizability of the controller under complex
paths and variable speed conditions, the proposed self-optimizing controller was
tested in different path tracking scenarios. Finally, a realistic vehicle platform test was
carried out to validate the practicability.

The remainder of this paper is organized as follows. In Section 2, we introduce the ve-
hicle dynamics and kinetics models and define the state–action spaces and reward function.
In Section 3, we provide an overview of the proposed self-optimizing controller structure
and then introduce the actor–critic framework and algorithm. In Section 4, we introduce the
simulation system and realistic autonomous platform, describe the experimental settings,
and analyze the test results. Finally, we draw conclusions in Section 5 and propose future
work in Section 6.

2. Vehicle Dynamic Constraints and Reference Trajectory Generation

An intelligent vehicle is a multi-input and multi-output electrical system with non-
linear characteristics, and it is difficult to construct an accurate dynamic model for it. In
addition, the dynamic characteristics of the system are also affected by the operating speed
and environment, especially for unmanned vehicles running at high speeds, and the dy-
namic parameters will change significantly with the vehicle speed. When accounting for the
non-linearity and time-varying characteristics of an intelligent vehicle system, traditional
control methods, based on PID, LQR, and MPC, experience difficulties in meeting the
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current control requirements. Moreover, the design of a path tracking controller should
provide online learning and self-optimization abilities. Therefore, the development of
intelligent control algorithms combining mechanism models and data-driven methods has
become a popular research topic in the field of control engineering applications. Here,
we discuss a self-optimizing controller, based on online RL, and show that a simple path
tracking architecture can enable an automated vehicle to track a path accurately, while using
a complex trajectory. The essence of this approach is to reduce the error between the vehicle
and reference path by controlling the lateral and longitudinal movement of the vehicle.
Therefore, the key is to calculate control variables that satisfy the constraints of the dynamic
model and the geometric constraints of the actuator. The proposed self-optimizing control
structure, based on RL, begins with the vehicle dynamic constraints, which are based on a
simplified bicycle model. Schematics of the vehicle dynamic model and kinematic state
model are shown in Figure 3a,b, respectively. As shown in Figure 3, XOY is the inertial
coordinate system fixed on the ground and xoy is the vehicle coordinate system fixed on
the vehicle body.
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We can construct a 2 degrees of freedom (2-DOF) vehicle dynamic model for describing
the motion of the vehicle, based on the following key assumptions [39,40]:

1. By ignoring the movement in the Z-axis direction, only the movement in the XY
horizontal plane is considered; this is referred to as the planar bicycle model.

2. By assuming that the rotation angles of the tires on the left and right sides of the
vehicle body are identical, the tires on both sides can be combined into one tire.

3. The rear wheels are not considered as steering wheels; only the front wheels are.
4. The aerodynamic forces are ignored.

The actuation of the steering angle, δ f , at the front wheel results in the generation of
lateral tire forces. According to Figure 3a, Fc f and Fcr are the two lateral forces acting on the
front and rear tires, respectively, while a f is the slip angle of the front wheel. The two lateral
forces cause the vehicle to produce the yaw rate ω, which describes the angular rotation
of the vehicle. In addition to the vehicle dynamics model constraints, two additional
state variables are required, to account for the vehicle kinematics model, which shows the
vehicle’s position relative to the desired driven path. As shown in Figure 3b, the lateral
path deviation, also referred to as the lateral error, e, is the distance from the vehicle’s center
of gravity to the closest point on the desired driven path. The vehicle heading deviation,
also referred to as the heading error, ∆ϕ, is defined as the angle between the vehicle’s center
line and a tangent line drawn on the desired driven path at the closest point. The specific
descriptions and meanings of the remaining parameters are listed in Table 1.

151



Symmetry 2022, 14, 31

Table 1. Specific definitions and meanings of the vehicle model parameters.

Symbol Parameter Units

Fl f , Flr Front and rear tires longitudinal force N
Fc f , Fcr Front and rear tires lateral force N
Fx f , Fxr Front and rear tires force in the x direction N
Fy f , Fyr Front and rear tires force in the y direction N

a Front axle to center of gravity (CG) m
b Rear axle to CG m
δ f Steer angle input Rad
a f Front tire slip rad
ω Yaw rate rad/s
e Lateral path deviation m

∆ϕ Vehicle heading deviation rad
Vx Longitudinal velocity m/s

Figure 1 depicts a diagram of the two-wheel vehicle model, which considers the
longitudinal, lateral, and yaw motions. By analyzing the forces on the x-axis, y-axis, and
z-axis, respectively, the equations of motion for the 2-DOF states are given as follows:

X− axis direction max = 2
(

Fx f + Fxr

)
Y− axis direction may = 2

(
Fy f + Fyr

)
Z− axis direction Iz

.
ω = 2aFy f − 2bFyr (1)

The acceleration in the Y-axis direction consists of two aspects: the displacement
acceleration,

..
y, and centripetal acceleration, Vx·ω. Then, Formula (1) can be rewritten

as follows:
m
( ..
y + Vx·ω

)
= 2

(
Fy f + Fyr

)
(2)

According to the lateral force of the tire, the slip angle of the front wheel is α f = δ− δ f ,
where δ is front wheel angle, and δ f is the angle between the front wheel speed direction
and the vehicle speed direction. Then, the lateral force experienced by the front wheels can
be expressed as follows:

Fy f = Ca f

(
δ− δ f

)
(3)

Similarly, the lateral force of the rear wheel can be expressed as Fyr = Car(−δr), where
Ca f and Car are the cornering stiffness values of the front and rear wheels, respectively.

δ f and δr can be approximated by the following formula:

δ f =
(
Vy + aω

)
/Vxδr =

(
Vy − bω

)
/Vx (4)

As shown in Figure 3b, e is the lateral path deviation, ∆ϕ is the vehicle heading
deviation, ϕ is vehicle heading angle, and ϕdes is the road desired heading angle. According
to the kinematic formula, the desired angular velocity required by the vehicle at the turning
radius R can be denoted as the following formula:

∆ϕ = ϕ− ϕdes
.

ϕdes = Vx/R (5)

The desired lateral acceleration required by the vehicle at the turning radius R can be
written as the following formula:

aydes = V2
x /R (6)

The lateral acceleration error is recorded as
..
e, ω =

.
ϕ.

..
e = ay − aydes =

( ..
y + Vx∆ω

)
−V2

x /R =
..
y + Vx

( .
ϕ− .

ϕdes
)

(7)

That is:
..
e =

..
y + Vx

.
∆ϕ (8)

ϕdes is the desired heading angle of the reference driven path and is calculated using
the path planning formula, as follows:

.
ϕdes = Vx/R = Vx ∗ K (9)
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where K is the desired road curvature, which can be obtained from the collected high-
precision map data. Substituting Formulas (5) and (9) into Formula (1) can obtain the
following expression of

..
∆ϕ:

..
∆ϕ =

2aFy f − 2bFyr

Iz
− K

.
Vx −

.
KVx (10)





e = dx ∗ cosϕdes + dy ∗ sinϕdes.
e = Vx ∗ sin∆ϕ
∆ϕ = ϕ− ϕdes.
∆ϕ =

.
ϕ− .

ϕdes

(11)

Here, e is the lateral error,
.
e is the rate of the lateral error, ∆ϕ is the heading error, and

.
∆ϕ is the rate of the heading error. ϕ is the heading angle of the vehicle body, which can be
obtained using a vehicle-mounted inertial measurement unit (IMU) sensor.

{ .
X = AX + Bu
Y = CX + Du

(12)

According to the state space Equation (12), the dynamic model of the steering wheel
control can be obtained as follows:

d
dt




e
.
e

∆ϕ
.

∆ϕ


 =




0 1 0 0
0 A1/Vx −A1 A2/Vx
0 0 0 1
0 A3/Vx −A3 A4/Vx







e
.
e

∆ϕ
.

∆ϕ


+




0
B1
0
B2


δ +




0
A2
Vx
−Vx

0
A4/Vx




.
ϕdes (13)

For the above calculations, a, b, and c are, respectively, determined as follows:




A1 = −2
(

Ca f + Car

)
/m

A2 = −2
(

Ca f l f − Carlr
)

/m

A3 = −2
(

Ca f l f − Carlr
)

/Iz

A4 = −2
(

Ca f l2
f + Carl2

r

)
/Iz

(14)

{
B1 = 2Ca f /m

B2 = 2Ca f l f /Iz
(15)

The time series data, e,
.
e, ∆ϕ,

.
∆ϕ, are taken as the state variables, while δ is the

control variable. Aiming at the path tracking control problem of automatic driving, the
conventional PID control law is expressed as follows:

u(t) = Kp1e(t) + Kd1
.
e(t)− Kp2∆ϕ(t)− Kd2

.
∆ϕ(t) (16)

Here, Kp and Kd are the proportional and differential gain coefficients, respectively.
The above traditional PID control is just a preliminary approach under ideal dynamics

models; however, the dynamic characteristics of the system will, in fact, be affected by the
operating speed and environment. Especially for unmanned vehicles running at a high
speed, the dynamic parameters can change significantly with the vehicle speed, making it
difficult for automatic path tracking control to guarantee performance and stability over
a wide range of parameter changes. A key point of this paper is to set the path tracking
process of an autonomous vehicle as a Markov decision process (MDP) of sequence data.
Therefore, we need to accurately define the state space (S) and action space (A) and design
a reward function (R) in combination with the vehicle dynamics model.

(a) State space variable description

The parameters of the state space are the environmental observation data St received
by the controller at each time step. Many sensors are carried by driverless cars, including
cameras, light detection units, ranging units, IMU, and GPS units. However, this paper
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focuses on path tracking control, where the control of vehicle position and pose is the
key issue; therefore, the IMU and GPS output data are selected, together with the vehicle
dynamic constraints, and we can obtain the state space variable St. Figure 3b demonstrates
a desired driven path and the related error variables, which are the lateral track error, e,
its time derivative,

.
e, the heading angle error, ∆ϕ, and its time derivative,

.
∆ϕ. We use the

parameters mentioned above to describe the state of the vehicle in a specific traffic scene,
as given by St =

{
e,

.
e, ∆ϕ,

.
∆ϕ
}

(b) Action space variable description

As mentioned above, the dynamic characteristics of the system will be affected by
the operating speed and environment, especially for unmanned vehicles running at high
speeds. To allow the system to automatically adapt to changes in the environment and
parameters, we designed a self-optimizing PID controller based on an RL framework,
in which control parameters could be adjusted automatically online, based on real-time
performance requirements. The calculation can be expressed as follows:

K(t) = K0 + ∆K (17)

In the above, K0 is a constant vector, determined by expert experience, and ∆K is the
self-learning gain vector. Thus, the traditional PID control (Equation (16)) can be rewritten,
as follows:

u(t) = (Kp1 + ∆Kp1)e(t) + (Kd1 + ∆Kd1)
.
e(t)− (Kp2 + ∆Kp2)∆ϕ(t)− (Kd2 + ∆Kd2)

.
∆ϕ(t) (18)

The control parameters are adjusted to realize the dynamic compensation of the system.
We use the parameters mentioned above to describe the action space, which is given by
At =

{
∆Kp1, ∆Kd1, ∆Kp2, ∆Kp2

}
.

(c) Reward function description

As a key element of the RL framework, the reward signal drives the agent to reach the
goal by rewarding good actions and penalizing poor actions. In a path tracking control task,
the goal of the reward function design is to find the optimal control strategy for making the
vehicle follow the reference trajectory as closely as possible while reducing the tracking
error. To optimize the path tracking performance, in this paper we adopt a piecewise linear
error reward function. Its design criteria are as follows:

Rt1 =





k|y− yD|,
−c
0

|y− yD| > e1
e2 ≤ |y− yD| ≤ e1
|y− yD| ≤ e2

(19)

Here, k, c, e1, and e2 are preset constants; e2 ≤ e1, k ≤ 0 is a proportional coefficient;
and the lateral deviation is e = |y− yD|, as shown in Figure 3b. The design goal of the
above reward function is to make the vehicle’s lateral deviation as close as possible to
the given reference trajectory, which exhibits exponential convergence. In addition, by
combining the constraints of the vehicle dynamics model to design the reward function,
Rt2, such that the vehicle’s heading deviation is parallel to the road curvature as much as
possible (as shown in the figure), the reward function expression of Rt2 can be expressed
as follows:

Rt2 = Vxcos(∆ϕ)−Vysin(∆ϕ)−Vx|y− yD| (20)

As shown in Figure 4, the vehicle needs to drive along the centerline of the lane. In an
ideal state, the lateral deviation, e, and the heading angle deviation, ∆ϕ, between the center
axis of the vehicle and the centerline of the lane, are close to zero in value. The objective
of the controller is to minimize its lateral deviation, e, and heading angle deviation, ∆ϕ,
from the lane centerline. In the above, ∆ϕ is the heading angle deviation. The design
principle of the reward function is based on maximizing the axial speed of the vehicle
(Vx) and minimizing the lateral speed of the vehicle (Vy). We add a penalty term if the
control object continues to deviate significantly from the center of the road (the third term);
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this will greatly improve the stability of the control system. The final reward function is
Rt = Rt1 + Rt2. The optimization goal of the RL controller is to maximize the total reward,
as follows:

J =
T

∑
t=0

γ ∗ Rt (21)
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Figure 4. Schematic diagram of the vehicle lateral error deviation and heading angle deviation.

Here, γ is a discount factor and is usually a constant close to 1; in this paper, γ = 0.95.
The objective of the controller is to maximize the total reward, J, and to minimize its lateral
deviation (e) and heading angle deviation (∆ϕ) from the original lane. By optimizing
the performance indicators, the state of the controlled system can be made to follow the
reference state.

3. Self-Optimizing Path Tracking Controller Based on a Reinforcement Learning (RL)
Framework

We aimed to find a control policy that minimizes the distance to the center line of the
track for a given physical model and road trajectory, as well as for different vehicle speeds.
In contrast to previous approaches relying on classical trajectory control, our approach
leverages RL to train an actor–critic network that directly maps from observations and then
provides an input to the adaptive PID controller, to calculate the vehicle control commands.
To achieve this goal, we first introduced a physical model and defined a reward function
for formulating the path tracking problem; these were used to perform the online adaptive
tuning of the PID parameters so as to improve the path tracking effects of autonomous
vehicles under complex road trajectories. In this paper, we show that, in a self-optimizing
path tracking controller structure, based on reinforcement learning, the design of the
controller has three advantages. Firstly, it introduces an online self-learning mechanism
into the traditional controller, with the environment interactive learning mechanism, based
on reinforcement learning, which can realize the optimization of PID control parameters.
Secondly, it reduces the exploration space of the RL to find the optimal control parameters,
which will greatly improve the learning efficiency. Thirdly, it breaks through the limitations
of RL, in regard to only being used in simulation and game scenarios. To the best of our
knowledge, this is the first demonstration of a deep RL agent driving on real autobus
vehicle. In this section, we first present an overview of our proposed framework for the
self-optimization controller and then describe each module. Our architecture consists of
four modules, as follows: the operating environment, the data bridge, the RL framework,
and the vehicle control module. Figure 5 shows the structure of the self-optimizing PID
controller based on the RL framework.
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Figure 5. Structure of a self-optimizing proportional–integral–derivative (PID) controller based on a
reinforcement learning (RL) framework.

The operating environment receives a series of actions from the vehicle control module,
evaluates the quality of these actions, and converts them into a scalar reward, J, to be fed
back to the RL framework using a data bridge.

The data bridge (or data buffer) allows for the interactions between the operating
environment and the RL framework. Based on the physical model and reference trajectory,
the current state values St =

{
e,

.
e, ∆ϕ,

.
∆ϕ
}

are extracted from the operating environment.
The data bridge forwards the vehicle command (steering angle) to the environment object
(driving simulator platform and vehicle test platform) for execution. After execution, the
research object returns the corresponding reward value and the next state: St+1.

The RL framework consists of two parts: an actor network and a critic network.
The actor network comprises a policy function, responsible for generating the actions,
At =

{
∆Kp1, ∆Kd1, ∆Kp2, ∆Kp2

}
. The critic network comprises a value function used

to calculate the Q-value, which is responsible for evaluating the performance of the ac-
tor network, based on the DDPG algorithm, and for guiding the actor network to gen-
erate the appropriate actions, At+1, for the next state to maximize the future expected
cumulative reward.

The vehicle control module receives the output, u(t), from the self-optimizing PID
controller and then forwards it to the environment object for execution, using the data
bridge. To obtain the equations of motion for the self-optimizing controller, the expression
of u is defined as Formula (18).

In the above, Kp, Kd are fixed gain constants, determined based on the developer’s
experience, while ∆Kp and ∆Kd are the output values of the actuator network and are used
to adjust the fixed gain constant. The self-optimizing controller generates a time series
control quantity u(t) and acts on the steering wheel control command, for the vehicle to
realize the adaptive ability in the path tracking control. Compared with traditional PID
controllers (Equation (9)), our self-optimizing RL-based controller increases the system’s
ability to compensate for dynamic errors.

Summarizing the process in Figure 3, the self-optimizing PID controller, based on
RL, is mainly composed of two parts, as follows: an actor network and a critic network.
The actor network is a strategy function responsible for generating actions and interacting
with the environment. The critic network is a value function responsible for evaluating
the performance of the actor and guiding the output of the actor network in the next stage.
Based on the content discussed in Section 2, the design of the reward function needs to
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consider the tracking performance of the system with regard to the reference trajectory and
the constraints of the dynamic model. The calculation process and workflow architecture
of the self-optimizing PID controller, based on RL, are as follows:

(1) Initialize the state of the controlled object, including the initial position and heading
angle of the vehicle.

(2) Pre-set the parameters for the optimizing controller, including the weight of the actor–
critic network, the learning rate, the discount factor, and the selection of the activation
function.

(3) Adopt the DDPG algorithm to train the model, where the actor network outputs the
PID gain, and the critic network maximizes the total reward value.

(4) According to the calculation formula for the self-optimizing PID controller, calculate
the control commands.

(5) Use the time series control commands to act on the controlled object, while simultane-
ously observing the state of the environment at the next moment and calculating the
reward function value.

(6) The actor network uses the DDPG algorithm to update its own weights. The critic
network updates its weight, based on the mean squared error (MSE) loss function.

(7) If the system performance indicators meet the given requirements, or the maximum
number of run episodes is reached, the training is terminated, the execution process is
exited, and the experiment state is reset.

An overview of the workflow and architecture for the efficient training of the algorithm
is shown in Figure 6.
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(a) Workflow for self-optimizing PID controller based on reinforcement learning. (b) Software
execution architecture run episodes during model training or testing.

a. Actor–critic network architecture design

The objective of this research was to consider the path-following control problem as
an optimal control problem for minimizing the lateral position deviation and lateral angle
deviation of the controlled object from the reference trajectory. Summarizing the process
in Figure 1, the self-optimizing PID controller in this study, based on the RL framework,
mainly comprises two parts: an actor network and a critic network. The focus of the DDPG
algorithm is on the design and optimization of the actor–critic network structure, with
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the aim of finding the optimal control strategy. Through the method of RL, the control
policy of the agent is updated to maximize the value of the reward function. The actor
network is a strategy function that is responsible for generating actions and interacting with
the environment. The critic network is a value function that is responsible for evaluating
the performance of the actor and guiding the output of the actor network in the next
stage. Theoretically, a neural network with only one hidden layer is sufficient to achieve a
global approximation and a description of the arbitrary nonlinear functions. In the process
of training the model, a fully connected actor neural network and critic neural network
are initiated to approximate the optimal control policy and true value function. Figure 7
presents the architectures of the actor and critic networks [41]. Both consist of three layers:
an input layer, an output layer, and a hidden layer, with 600 neurons.
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The real-time environment state space data, St =
{

e,
.
e, ∆ϕ,

.
∆ϕ
}

, from a virtual simula-
tor and real-world autobus, are used as the original inputs to the deep RL, to solve the path
tracking problem for autonomous vehicles. The actor network takes the preprocessed data
as the input and connects with the fully connected layer; the sigmoid activation function
is used to map the action directly to the range of [−1, 1]. The final output of the actor
network represents the action space At =

{
∆Kp1, ∆Kd1, ∆Kp2, ∆Kp2

}
. The critic network

combines the reward value with the environment state as the input, connects through the
fully connected layer, and finally outputs the Q-value. In this paper, the parameters of
the networks were updated, based on the Adam [42] optimization algorithm. The DDPG
algorithm [43] was employed to iteratively update the actor network weights, θu; the critic
network weights, θQ, were updated to minimize the MSE loss function.

The input to the actor network is the number of features in the state space, whereas
the input to the critic network is the sum of the state features and rewards. Both networks
have only one fully connected layer between the input and output layers, with 600 neural
units. The adopted hyper-parameters (parameters set prior to the training process) are
presented in Table 2.
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Table 2. Actor–critic network structure hyper-parameters.

Hyper-Parameter Pre-Set Value

Actor network learning rate 0.001
Critic network learning rate 0.01

State space dimension 4
Action space dimension 4

Discount factor 0.95
Run max episode 200,000

The real-time environment state space data is St =
{

e,
.
e, ∆ϕ,

.
∆ϕ
}

, so that state space
dimension’s pre-set value is 4; the final output of the actor network represents the action
space, At =

{
∆Kp1, ∆Kd1, ∆Kp2, ∆Kp2

}
, so that action space dimension’s pre-set value

is 4. Here, γ is a discount factor, and is usually a constant close to 1; in this paper, the
discount factor’s pre-set value is 0.95. In fact, with a larger γ, the agent considers more
steps forward, but the difficulty of training is higher; whereas, with a smaller γ, the agent
pays more attention to the immediate benefits, and the training is less difficult. In short,
the principle of the value of the discount factor is to be as large as possible on the premise
that the algorithm can converge. The learning rate of the actor–critic network in this article
adopts the same default value as in Reference [43], where the pre-set values are 0.001 and
0.01, respectively.

b. RL deep deterministic policy gradient (DDPG) algorithm

The main research objective of this paper was to design an actor–critic network with
a DDPG algorithm to control the path tracking behaviors of autonomous vehicles and
characterize the adaptive ability, through considering different reference road paths and
designing the reward function. The process of automatic driving path tracking control
requires an autonomous agent system to address the current environmental situation
and vehicle status and then implement comprehensive lateral and longitudinal control;
the adaptive ability of the controller is especially important under variable speeds and
complex reference trajectories. Therefore, in order to address more complex scenarios, a
self-optimizing PID path tracking method for intelligent vehicles, based on RL, is presented.
This is a typical data-driven and self-learning method that enables an agent to find an
optimal control strategy to complete tasks through continuous “trial and error”, while
interacting with the environment and changes the action(s), based on a feedback reward
system, based on the environment. The RL framework is used to solve practical engineering
problems and can be described as an MDP [44–46].

In this paper, the environment state space and action space are continuous variables,
so we define the tracking control problem as an MDP of the sequence data, which comprises
a 5-tuple (S, A, R(st,at), P(st+1 |s t, at), γ). As shown in Figure 8, St is the state space set
and At is the action space set. At time step, t, the agent selects the action at ∈ At by
following policy π. After executing at, the agent is transferred to the next state, st+1, with
the probability P(st+1 |s t, at). Additionally, a reward signal, R(st,at), is received to describe
whether the underlying action, at, is beneficial for reaching the goal. By repeating this
process, the agent interacts with the environment and obtains a sequence of trajectories,
τ = s1, a1, r1, . . . , sT, aT, rT, at the terminal time step, T. The discounted cumulative reward

from each time step, t, can be formulated as Rt =
T
∑

t=1
γt−1rt, where γ ∈ (0, 1) is a discount

rate for determining the importance of future rewards. The goal is to learn an optimal
policy, π∗, that maximizes the expected overall discounted reward under this strategy,
which is defined as follows:

J = Es,a∼π,r

[
T

∑
t=1

γt−1rt

]
(22)
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π∗ =
arg maxEs,a∼π,r[Rt]

π
(23)
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The framework of the actor–critic algorithm is based on the concept of the DDPG
algorithm, which is widely used [47,48] and integrates the policy search and value function
approximation theories. As illustrated in Figure 3b, the actor is used to adjust the network
parameter, θu, and output determination action, A, based on the optimal control strategy,
π(s, a|θu) . The critic approximates the value function, Q(s, a), and updates the network
parameter, θQ. To iteratively update these neural network parameters until convergence in
a near-optimal control policy, we employed the DDPG algorithm to iteratively update the
actor network weights, θu. Additionally, the critic network weightings, θQ, were updated
so as to minimize the MSE loss function. The updated calculations are as follows:

∇θu J ≈ 1
N ∑∇aQ

(
s, a
∣∣∣θQ
)∣∣∣∣s=si ,a=π(si)

∇θu π(s
∣∣∣∣θu)

∣∣∣∣
s=si

(24)

L
(

θQ
)
=

1
N ∑

i
(yi −Q(si, ai

∣∣∣θQ))
2

(25)

yi = ri + γQ′(si+1, π′(si+1

∣∣∣θu′)
∣∣∣θQ′) (26)

For the sake of achieving a more stable training process, a target actor neural net-
work weighting parameter, θu′ , and target critic neural network parameter, θQ′ , were also
initialized, and these were updated as follows:

θu′ ← τθu + (1− τ)θu′ (27)

θQ′ ← τθQ + (1− τ)θQ′ (28)

Here, τ is a hyperparameter that is pre-set to prevent the overfitting of these neural
networks and to maintain the training stability. The pseudo-code programming process for
the DDPG algorithm is presented in Algorithm 1.

The entire procedure is repeated until the optimal control policy is learned, and we use
the same framework for both simulation and real-world experiments; the controller system
learns basic path tracking skills to adapt to different reference trajectories and dynamic
model parameters.
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Algorithm 1. Pseudo-code programming process of the deterministic policy gradient
(DDPG) algorithm

Actor uses a gradient algorithm to update the network parameters;
Critic uses the mean squared error (MSE) loss function to update the network parameters.
Algorithm input: Episode number, T; state dimension, n; action set, A; learning rate, α,β;
discount, γ; exploration rate, τ; actor–critic network structure; randomly initialize the
weighting parameter.
Algorithm output: Actor network parameters, θu, critic network parameters, θQ.
1: for Episode from 1 to (Max Episode -1) do
2: Receive initial observation state, obtain environment state vector st.
3: Initialize buffer replay data-buff.
3: for t from 1 to T do
4: Select action at = π(st|θu) +Nt.
5: Execute action at and observe new state st+1. Calculate instant reward feedback. rt
6: Store transition 〈st, at, st+1, rt〉 in data-buff.
7: Random mini-batch of N transitions 〈si, ai, si+1, ri〉 from data-buff.

8: Set yi = ri + γθQ′ (si+1, π′(si+1

∣∣∣θu′ )
∣∣∣θQ′ ) .

9: Update critic by minimizing MSE loss function:

10: L
(
θQ) = 1

N ∑
i
(yi −Q(si, ai

∣∣θQ))
2.

11: Update the actor policy using the policy gradient function:

12: ∇θu J ≈ 1
N ∑∇aQ

(
s, a
∣∣θQ)

∣∣∣s=si ,a=π(si)∇θu π(s
∣∣∣θu)

∣∣∣
s=si

.

13: Update the target networks:
14: θu′ ← τθu + (1− τ)θu′ ,
15: θQ′ ← τθQ + (1− τ)θQ′ .
16: End for time step
17: End for Episode

4. Experiment and Analysis of Results

Thisection describes the simulation environment, the path tracking controller training
process, and the employment of the physical autonomous system, with a controller perfor-
mance evaluation and a generalization ability verification. In the following, we describe
each step in detail.

4.1. Experimental Setting

a. Simulation experiment platform

We conducted a hardware-in-the-loop test on a driving simulator to analyze the
effectiveness of the proposed self-optimizing controller, based on RL. A schematic of the
simulation experiment platform is shown in Figure 9.
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To follow the desired driven path, we projected a set of trajectories onto our envi-
ronment map to examine the performance of the presented controller. We selected the
candidate that best minimized the lateral position deviation and lateral angle deviation of
the controlled object from the reference trajectory. Thus, five urban road maps (Figure 10)
with various levels of difficulty were designed for the self-optimizing path tracking con-
troller, with reference to the tracks of the car racing games TORCS [19] and GT Sport [20].
These road maps were generated using the SCANeR™ studio engine (OKTAL, France,
see: www.oktal.fr, 13 December 2019), a road and environment creation software for au-
tomotive simulation. This software was responsible for delivering the raw sensor data to
the control interface and for transferring the control commands (steer, brake, acceleration)
to the simulator engine for execution through a dedicated application program interface
function. The driving performance data were recorded at a frequency of 20 Hz.
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Figure 10. Trajectory virtual scene road maps.

For a specific traffic environment, we aimed to provide the path tracking controller
with a reference trajectory to follow. We invited an experienced driver to operate a car with a
steering wheel and pedals on the different urban road maps to generate the corresponding
reference trajectories. The collected data included the vehicle world location, heading
angles, and velocities in the x-direction, thereby providing environmental states for training
and test evaluations, based on the vehicle sensor IMU information and GPS data. At every
time step, the path tracking controller calculated the reference error based on the simplified
vehicle models. The vehicle’s location, relative to the specific reference coordinate system,
was denoted as (x, y, ϕ), where x and y were the coordinates of the midpoint of the vehicle’s
center of gravity and ϕ was the orientation angle of the vehicle’s body.

b. Realistic autobus experiment platform

The realistic autobus experiment platform provided radar, GPS, and IMU data, and
we could parse out obstacle distance and vehicle attitude information as well as genuine
road indicator values. The autobus platform could also execute control commands (steer,
brake, and acceleration) received from the path tracking controller through the vehicle’s
controller area network bus. The self-optimizing controller, based on the RL framework,
ran on NVIDIA’s computing unit Xavier and comprised two submodules. First, the actor–
critic network architecture mode obtained the proportional and derivative gain values by
training the network using the DDPG algorithm. Second, the self-optimizing PID controller
module received the gain values and calculated the real-time control commands for acting
on the vehicle steering wheel. A schematic diagram of the realistic autobus experiment
platform is shown in Figure 11, and the function description and precision of each sensor
are shown in Table 3.
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Table 3. Vehicle sensor configuration scheme. (* indicates the number of sensors).

Sensors Position Function Description Precision

GPS+IMU
*1 Top Precise location of the vehicle. Positioning accuracy: 5 cm

IBEO Lidar
*6 Front, Rear 1. Vehicle, pedestrian detection.

2. Relative distance, speed, angle
Detection accuracy: 90%
Effective distance: 80 m

ESR Radar
*6 Front, Rear 1. Long-distance obstacle detection.

2. Road edge detection.
Detection accuracy: 90%
Effective distance: 120 m

Vision Camera
*12

Front, Rear
Top sides

1. Traffic light status detection.
2. Lane line detection.

Detection accuracy: 95%
Effective angle: 178◦

Ultrasonic radar
*8

Front, Rear,
Both sides

1. Short-distance obstacle detection.
2. Blind field detection.

Detection accuracy: 90%
360◦ coverage

Our real-world driving experiment mimicked those conducted in simulations in
many ways. However, executing this experiment in the real world was significantly more
challenging, as the system could not automatically reset the starting state. In addition,
the RL agent evaluates and improves its control policy in a trial-and-error manner; thus,
it would have been dangerous and costly to train an agent on a real vehicle; moreover,
particularly with dynamic balancing systems, such an approach would be complicated
and expensive. We were motivated by the steady ability of the traditional PID controller
and learning mechanisms that interacted with the environment. As noted above, in this
paper, a self-optimizing PID path tracking controller, based on an RL framework, was
proposed for use with a realistic autonomous platform. The design of the controller
had three advantages, as mentioned above (reducing the exploration space of the RL,
introducing an online self-learning mechanism into the traditional controller design, and
using RL for practical engineering control). To the best of our knowledge, this was the first
demonstration of a deep RL agent driving a real autobus. We conducted our experiment
using a wire-controlled autobus (“New Energy Electric Bus”) (see Table 4 for the specific
vehicle parameters).
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Table 4. Specific parameter information of the wire-controlled autobus.

Vehicle Information Parameters

Length (mm) 8010 Maximum Total Mass (kg) 13000
Width (mm) 2390 Front Suspension/Rear Suspension (mm) 1820/1690
Height (mm) 3090 Approach Angle/Departure Angle (◦) 8/12

Wheelbase (mm) 4500 Maximum Speed (km/h) 69
Turning Radius (mm) 9000 Tire Size × Number 245/70R19.5 × 4

c. Software version and hardware computing platform

In this project, we used NVIDIA’s Jetson AGX Xavier computing module to run soft-
ware algorithms on virtual and realistic autonomous platforms. Thus, it was possible to
implement an autonomous machine domain controller using artificial intelligence (AI)
technology, which was sufficient for completing the following tasks: sensor fusion, high-
precision positioning, path planning, and executing tracking algorithms. The kit benefited
from NVIDIA’s rich set of AI tools and workflows, which can be used to quickly train and
deploy neural networks. Table 5 presents the path tracking controller software and comput-
ing hardware environments that the agents relied on in the training and testing processes.

Table 5. Software and hardware technical parameters.

Software and Hardware Technical Parameters of the On-Board Computing Unit
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GPU 512-core Volta GPU with Tensor Core
CPU 8-core ARM 64-bit CPU
RAM 32 GB

Compute DL-TOPs 30 TOPs
Operating system Ubuntu 18.04

RL framework Tensorflow-1.14

4.2. Performance Verification and Results Analysis

a. Simulation experiment setup and performance during training process

We trained our path tracking controller on four maps (Figure 10 Map-A~Map-D).
Map-A was relatively simple and was used for the first stage of training, in which the
vehicle learned a basic reference trajectory-tracking task, such as on long straight roads
and/or some simple corners. Map-B, Map-C, and Map-D had different levels of difficulty,
with diverse corner shapes. Map-E had the most complicated trajectory and was used for
testing based on the pre-trained weights from Map-A to Map-D to evaluate the control
performance and generalization ability of the controller. The training rewards of the
different tracks, based on the RL controller, are illustrated in Figure 12.

In the path tracking control experiments, we trained an optimal policy to achieve
continuous action control in the simulation platform. During the entire training process,
the ego vehicle (also referred to as host vehicle) was driven at a fixed speed of 30 km/h
and the experimental frequency was 20 Hz. If the vehicle was driven out of the lane or
collided and/or the vehicle speed dropped to 0, we penalized the model, and the current
episode was terminated. In Figure 12, which illustrates the total rewards against the number
of episodes, we can see that, as the training continues, the total reward in one episode
increases, because the model gradually finds the optimal control policy. In addition, the
complexity of the reference trajectory also directly affects the training time and number
of episodes. With the goal of completing a lap driving task, we recorded the number of
episodes, iteration steps, driving distances, and training times, and the results are shown in
Table 6.
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Table 6. Reinforcement learning (RL) training result statistics.

Number Episode Iteration Step Drive Distance Training Time

Map-A 180 8858 2387.64 0.75 h
Map-B 210 16,139 3242.83 1.2 h
Map-C 410 38,926 2935.72 2.3 h
Map-D 600 61,538 6470.38 3.6 h

During this study, although the RL agent learned the optimal control strategy, the
training process took a very long time; the training time reached 3.6 h during the training
process of Map-D, and the numbers of episodes and iteration steps reached 600 and 61,538,
respectively. The actor–critic neural network sometimes did not converge (overfitting),
causing the reward to drop sharply; the pink band represents the standard deviation of the
total reward, which fluctuated greatly during the training process on the roads of Map-C
and Map-D. For the training result of MSE, the loss value on the road of Map-D illustrates
that, at the 140th iteration step, the value converged to 4500, as shown in Figure 13.

The possible reasons for these results include the fact that the essence of the DDPG
algorithm is a trial-and-error method, which is based on random sampling during the
training process; thus, it can easily encounter excessive training time and overfitting
problems. The key is to properly balance exploration and utilization. In this paper, the
design of the controller reduces the exploration space of the RL to find the optimal control
parameters, which will greatly improve the learning efficiency. The training rewards for
the self-optimizing path tracking controller, based on the RL framework, are illustrated in
Figure 14.
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As training continues, the total reward in one episode increases linearly. Owing to
the introduction of the traditional PID control parameters (as constrained by experience
knowledge), the exploration space for the RL is greatly reduced, meaning that the optimal
control policy can be learned quickly. Based on the goal of completing a lap driving task,
the results for the number of episodes, iteration steps, driving distances, and training times
are shown in Table 7.
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Table 7. RL proportional–integral–derivative (PID–RL) training result statistics.

Number Episode Iteration Step Drive Distance Training Time

Map-A 2 3858 2987.4 9.8 min
Map-B 2 5139 3642.3 11.2 min
Map-C 3 6926 4732.8 13.1 min
Map-D 3 8738 6870.2 18.3 min

We can see that the self-optimizing PID path controller, based on RL (online frame-
work), enables us to obtain an acceptable control policy quickly. The ego vehicle can pass
Map-A and Map-B at the 2nd episode and Map-C and Map-D at the 3rd episode, respec-
tively. Simultaneously, it effectively solves the problem of network overfitting, allowing
for stable convergence (as shown in Figure 15). With regard to the training result for the
loss value in Map-D, the result illustrates that, at the 130th iteration step, the network
converges to 200. After 130 iterations, a highly effective path tracking control policy will
have been learned.
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Based on a comparative analysis of the above results (Figure 12 vs. Figure 14,
Figure 13 vs. Figure 15, Table 6 vs. Table 7), we can verify that the control policy, as con-
strained by prior experience, can help the RL agent learn relatively quickly.

b. Evaluating the performance of self-optimizing proportional–integral–derivative
(PID) controller, based on RL framework

The purpose of the evaluation is to verify the adaptive ability of the proposed con-
troller algorithm under complex reference trajectories and various driving speeds, as well
as different dynamic models. Additionally, for the further analysis of the proposed con-
troller, reference results from an experienced driver are presented for comparison in order
to verify whether the self-optimizing controller can learn a better control policy. This
paper adopted five indicators for measuring the performance of the self-optimizing path
tracking controller:

• The smoothness indicator represents the comfort resulting from the path-following
control. In this paper, the vibration amplitude of the steering wheel was used to
represent the smoothness indicator.

• The lateral track error, e, and heading angle error, ∆ϕ, evaluate the effects of the path
tracking.
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• The maximum speed and average speed indicators characterize the driving efficiency.

A traditional PID controller uses a more intuitive steering control law, where RL is a
more advanced self-optimal learning controller. Hence, in this study, the self-optimizing
path tracking controller proposed is based on the RL framework and combines traditional
PID control algorithms and RL mechanisms. The figure below shows a performance
comparison between a fixed-parameter PID controller, an RL controller, and the proposed
PID–RL self-optimizing controller, in a path-following control process at 30 km/h. It can be
observed that the self-optimizing controller learns a better control policy.

From Figure 16 and Table 8, it can be seen that the amplitude (min–max), mean, and
standard deviation are all reduced with the self-optimizing path controller, which can
quickly realize stable control and overcome the overshoots caused by PID control and the
unstable characteristics of the RL controller. In particular, the standard deviation value
is significantly reduced, indicating the smoothness of the steering wheel rotation and the
driving comfort.
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Figure 16. Steer angle of the path tracking controller with the iteration step. 

Table 8. Mathematical statistics of steering wheel angles. 

 Standard Deviation Minimum Maximum 

PID−Steer 0.11785 −0.5 0.17068 

RL−Steer 0.13907 −0.96124 0.18131 

PID−RL−Steer 0.04705 ↓ −0.49881 ↓ 0.07665 ↓ 

From Figure 17 and Table 9, it can be seen that the standard deviations of the lateral 

error for the two controllers are almost identical, whereas the amplitude of the 

self-optimizing path controller is the lowest, indicating that its control performance is 

more stable than that of the other two controllers. 

Figure 16. Steer angle of the path tracking controller with the iteration step.

Table 8. Mathematical statistics of steering wheel angles.

Standard Deviation Minimum Maximum

PID−Steer 0.11785 −0.5 0.17068
RL−Steer 0.13907 −0.96124 0.18131

PID−RL−Steer 0.04705 ↓ −0.49881 ↓ 0.07665 ↓

From Figure 17 and Table 9, it can be seen that the standard deviations of the lateral er-
ror for the two controllers are almost identical, whereas the amplitude of the self-optimizing
path controller is the lowest, indicating that its control performance is more stable than that
of the other two controllers.

Table 9. Mathematical statistics of lateral errors.

Standard Deviation Minimum Maximum

PID−cross−track error (CTE) 0.1616 −0.12305 0.33338
RL−CTE 0.1220 −0.17023 0.34481

PID−RL−CTE 0.0915 ↓ −0.0092 ↓ 0.29207 ↓
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Another important evaluation indicator for path tracking is the heading angle error;
from Figure 18 and Table 10, it can be seen that the standard deviation value is significantly
reduced with the self-optimizing path controller. Considering the smoothness indicator,
the lateral track error, e, and the heading angle error, ∆ϕ, the controller performance can be
expressed as follows.
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Figure 18. Heading error of path tracking controller with the iteration step.

Table 10. Mathematical statistics of heading errors.

Standard Deviation Minimum Maximum

PID-Head 0.0343 −0.0247 0.0625
RL-Head 0.0349 −0.0353 0.0534

PID–RL-Head 0.0073 ↓ −0.0061 ↓ 0.0208 ↓

Another important evaluation indicator for path tracking is the heading angle error;
from Figure 18 and Table 10, it can be seen that the standard deviation value is significantly
reduced with the self-optimizing path controller. Considering the smoothness indicator,
the lateral track error, e, and the heading angle error, ∆ϕ, the controller performance can be
expressed as follows:

self-optimizing controller > PID controller > RL controller
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The self-optimizing PID controller based on the RL framework can automatically
adjust the control parameters to realize the dynamic compensation of the control system
online and ultimately obtain a better path tracking control performance. The box chart dis-
tribution and mathematical statistics of the four control parameters are shown in Figure 19
and Table 11, respectively.
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Table 11. Mathematical statistics of path tracking control parameters.

Mean Standard Deviation Sum Minimum Median Maximum

∆P1 0.84623 0.21836 206.48024 0.15364 0.86328 1.49518
∆D1 0.59826 0.10214 145.97583 0.33797 0.59185 0.87246
∆P2 0.90078 0.05179 219.78983 0.75222 0.90156 1.0384
∆D2 0.30479 0.05151 74.36867 0.16412 0.30233 0.42815

According to the fluctuation results for the standard deviation, the lateral deviation
and its rate of change reached 0.2183 and 0.10214, respectively. It can be seen that when the
actual trajectory is far away from the reference trajectory, the proportional adjustment of
the lateral control parameters is the main factor. When approaching the reference trajectory,
the heading angle deviation and its rate of change have a greater impact, with average
values of 0.90078 and 0.30479, respectively. The controller can realize the self-optimization
tuning of the PID control parameters based on the RL algorithm, which can then be used
for online learning and the optimization of complex path tracking control.

It can be seen from the experimental results that RL can automatically optimize the
PID control parameters according to the objective reward function and offer real-time
online learning capabilities, providing a new solution to controller optimization problems
of complex and uncertain systems.

To further verify the dynamic compensation performance of the self-optimizing con-
troller, based on the RL framework, its performance is compared with that of an active
disturbance rejection controller (ADRC). As described in References [49–51], the ADRC
controller effectively alleviates the problem of vehicle jitter caused by road curvature
changes under the conditions of a complex trajectory by observing internal and external
disturbances of the system. This paper compared the lateral track error, e, of the two
controllers on Map-E, and the speed conditions were set to 50 km/h and 60 km/h, respec-
tively. The comparison results for the two controllers on the four corner types are shown in
Figures 20 and 21, and the statistical analysis results are shown in Table 12.
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Table 12. Mathematical statistics of lateral error for self-optimizing controller and ADRC controller
on the road of Map-E.

50 km/h Driving Condition on the Road of Map-E

Mean Standard
Deviation Minimum Maximum

PID–RL Controller −0.01017 ↓ 0.09325 −0.32759 0.39932 ↑
ADRC-Controller −0.06622 0.10941 −0.37658 0.18714

60 km/h Driving Condition on Road of Map-E

Mean Standard
Deviation Minimum Maximum

PID–RL Controller −0.00823 ↓ 0.10994 −0.35013 0.6918 ↑
ADRC-Controller −0.04492 0.10508 −0.37490 0.27655

From the results, we can conclude that the path tracking performances of the self-
optimizing controller and ADRC controller are almost unanimous. As shown in Table 12,
both controllers can achieve a stable control performance under 50 km/h and 60 km/h
driving conditions in terms of the standard deviation value of the lateral error. The ADRC
controller observes the disturbances during the operation of the vehicle (see Figure 22),
whereas the controller proposed in this study uses real-time online adjustment of controller
parameters to achieve dynamic compensation during the path tracking control process
(see Figure 23).
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c. Generalization of self-optimizing PID controller based on the RL framework

To test the generalization ability of the proposed self-optimizing PID controller, based
on the RL framework, we evaluated it with complex trajectories and variable speed condi-
tions on the road in Map-E. The different corner track types are shown in Figure 24 and
include an arc curve track, a right-angle curve track, an S-curve track, and a U-turn track.
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The self-optimizing path tracking controller is further tested under variable speed
conditions on the road of Map-E to evaluate whether the proposed controller can be
implemented in a complex corner scenario at a high speed, based on using the behavioral
data of professional drivers as a baseline for comparative analysis.

From Figures 25–27, and the analysis of the statistical results in Table 13, it can be seen
that the max absolute value of the PID controller’s lateral error reached 1.11 m, the max
driving speed was 54 km/h, and the average cornering speed was concentrated in the range
of 36–42 km/h (as shown in Figure 25). The analysis results show that the controller with
constant control parameters found it difficult to adapt to speed changes and large curvature
road trajectories. As for the self-optimizing controller, the above problems can be overcome;
the max absolute value of the PID–RL Controller‘s lateral error was 0.66m, the max driving
speed was more than 100 km/h, and the average cornering speed was concentrated in the
range of 63–76 km/h (as shown in Figure 26). Furthermore, we conducted a comparative
analysis with the human driver’s behavior data, the max absolute value of the human
driver’s lateral error was 0.61 m, the lateral path track error of the method proposed in this
paper is almost consistent with it. The maximum driving speed was 71 km/h; to avoid
leaving the curve track, the drivers were forced to brake early before entering the corner,
and the average cornering speed was concentrated in the range of 44–53 km/h (as shown
in Figure 27), while the average cornering speed of the self-optimizing controller was better
than that of the human driver.

Table 13. Statistical results of the generalization ability test of the self-optimizing controller.

Indicators Mean Standard Deviation Minimum Maximum

PID Controller
Speed 41.0455 8.4158 0 55

Lateral error −0.1030 0.3573 −1.1125 0.9966

PID–RL Controller
Speed 84.6887 16.9462 0 101

Lateral error −0.0137 0.1089 −0.3844 0.6640

Human Driver
Speed 51.5378 11.8857 0 71

Lateral error −0.0014 0.1135 −0.6068 0.5521
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In summary, we can draw the conclusion that our proposed path tracking approach
has the adaptability to cope with complex trajectory conditions and variation of speed by
optimizing the PID controller parameters in real time.
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d. Steering of a realistic autobus platform, based on the self-optimizing PID controller

Considering the achievements of self-optimizing controllers, based on the RL frame-
work in the simulation environment, a natural question is whether these learned control
policies can be deployed in real physical systems. The essence of the RL algorithm is a trial-
and-error method, based on random sampling during the training process; thus, it would
be dangerous to train an agent on a real vehicle. Furthermore, unlike the training process of
a control policy in a simulated environment, the initial state of the controlled object cannot
reset the state automatically between episodes in a real environment. The authors of [25]
required a human driver to reset the vehicle to a valid starting position and initial state
when the training episode terminated; however, this requires significant human labor costs.
In summary, the simulation-to-reality transfer is hindered by the reality gap, in terms of
how to effectively reset the initial state to ensure the stability of the control system, and
how to reduce the time spent during the training process. To solve the above-mentioned
problems, our real-world driving experiments imitated (in many aspects) those conducted
in simulations and in steering realistic autobuses, based on a self-optimizing PID controller.
This section describes in detail the deployment of the physically realistic autobus system
and training process. An overview of our training method is presented in Figure 28.

For both the simulations and the real-world experiments, we realized the symmetric
migration from a virtual simulation scene to a real vehicle platform, which resolved the
limitation that reinforcement learning can only be used in simulation scene. We used
the same actor–critic architecture and the same hyper-parameters that were found to be
effective in the simulation. The common training procedures required adjustments in
order to be deployed for a RL algorithm on a physical vehicle, running in a real-world
environment. To account for both effectively resetting the initial state to ensure the stability
of the control system and reducing the time spent during the training process, we created an
architecture for the training procedures, comprising a simple state machine, as presented in
Figure 28. It included five sub-modules: state initialization, model training, state automatic
reset, driver takeover, and training task termination.
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In fact, many environmental factors affect the training process; therefore, real-time
safety and state machine monitoring mechanisms must be implemented in a physical
vehicle control system. For these experiments, the vehicle was initialized at the starting
position of the road during preparation for training. However, when the distance of the
car from the center of the lane reached 0.5 m, the training episode was terminated and the
process entered the state automatic reset module; simultaneously, the common traditional
controller was used to control the vehicle, to revert to a valid state. At this point, the
training process was executed. When the autobus deviated from the center line of the lane
over a pre-set value (e > 0.7 m) and entered an unrecoverable state, a safety driver took over
and steered the vehicle to return to the center of the lane—that is, to the valid state. Then,
the next episode of training was begun. The introduction of the state machine effectively
reset the initial state to ensure the stability of the control system.

In addition, we built a cache buffer of driver’s behavior data. During the driver’s
driving process, the controller symmetrically learned the controllability of the human
driver, in order to obtain the optimal control parameters. The memory data buffer was used
to record the historical state and the action information of the vehicle. During the training
process, random batches of N historical data were sampled for the online training of the
network, and the actor–critic network mapped the vehicle state history to the intermediate
state variable, which was used to calculate the increment of the steering wheel control
sequence. Notably, if the data buffer stored positive sample data—that is, experience data
from excellent human drivers—then it would contribute to the actor–critic network by
quickly learning effective control policies, thus reducing the time spent on network training.

In general, the proposed self-optimizing controller learns the control policy by directly
interacting with a realistic vehicle operating environment. The observation state space used
by our method should be directly observable on a real vehicle equipped with sensors. The
GPS allows for the determination of its relative coordinates, based on the current track of
the road, and calculates the current lateral deviation error of the autobus from the given
track. The heading angle deviation is obtained using the IMU sensor, which measures the
difference in the change in the yaw angle with respect to the road track curvature. The
generated intermediate quantity is the gain parameter of the self-optimizing controller, and
its final output is the steering wheel angle control sequence data expanded over time, which
directly acts on the autonomous platform. It should be emphasized that the final output
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calculation result depends on the working mode selected by the state machine, as discussed
in the second section of this paper. The calculation method used for the self-optimizing
controller, based on the RL framework, is shown in Equation (18); whereas, the calculation
method for the common traditional controller, based on the PID paradigm, is shown in
Equation (16).

The path tracking task description follows a given reference trajectory by controlling
the steering angle of the steering wheel. The sensory inputs are the pose information of
the autobus (provided by the GPS and IMU systems) and the vehicle’s speed. The path
tracking controller output is the desired angle of the steering wheel in the range of ±620◦.
The controller acts at 20 Hz, corresponding to a control interval of 50 ms. The autobus’
drive-by-wire system will automatically disengage if the safety driver takes over, either by
lightly stepping on the accelerator or brake pedal or by turning the steering wheel.

The path tracking controller of the vehicle system was tested on an autobus with
different types of trajectories. Figure 29 is a screenshot from Google Maps, showing the
curve case, the straight case, the round island case, the corner angle case, and the lane
change case, etc. These were driven at speeds of 8 km/h and 10 km/h, with step speeds
of 0–20 km/h. The desired trajectory was reconstructed from the data points with a 0.5 m
spacing, as recorded from the GPS+IMU sensor. The 2-DOF bicycle model in vehicle
dynamics was used to describe the basic motion law of the intelligent autonomous system,
and the desired steering angle was determined by calculating the lateral error and the
heading angle error, according to Equations (16) and (18).

Symmetry 2021, 13, x FOR PEER REVIEW 33 of 38 
 

 

 

Figure 29. Schematic diagram of the test road map in the real world. 

The evaluation indicators were the same as those tested on the simulation platform, 

to verify the path tracking control performance of the self-optimizing controller on a re-

alistic physical vehicle platform. The resulting self-optimizing controller, based on the RL 

framework, showed much better behavior than the traditional controller—e.g., with re-

spect to smoother steering wheel control sequence data, as illustrated in Figure 30. 

From the experimental results in Figure 30 and Table 14, it can clearly be concluded 

that the human driver can complete the lateral motion control of the vehicle with a lower 

vibration amplitude (69.0577) in terms of the performance of the smoothness of the 

steering wheel control. Compared with the PID controller, the self-optimized RL con-

troller can obtain better control stability: the vibration amplitudes of the steering wheels 

were 88.8032 and 80.6986, respectively. The above results verify the effectiveness of the 

self-optimizing controller, based on reinforcement learning, in real vehicles. 

0 500 1000 1500 2000 2500 3000 3500
-800

-600

-400

-200

0

200

400

600

800

 

 

S
te

e
r 

a
n

g
le

 (
°)

Iteration－Step × 10

 Human－Steer

 PID－Steer

 PID－RL－Steer

 

Figure 30. Steer angle of the path tracking controller with the iteration step. 

Table 14. Mathematical statistics of steering wheel angles. 

 Mean Standard Deviation Minimum Maximum 

Human−steer −22.15445 69.05777 −386 325 

PID−Steer −42.81777 88.80323 −447 536 

PID−RL−Steer −22.06958 ↓ 80.69866 ↓ −390.8 ↓ 403.2 ↓ 

With respect to both the path tracking accuracy and efficiency, the self-optimizing 

controller can control the steering wheel angle with small lateral distance and heading 

Figure 29. Schematic diagram of the test road map in the real world.

The evaluation indicators were the same as those tested on the simulation platform,
to verify the path tracking control performance of the self-optimizing controller on a
realistic physical vehicle platform. The resulting self-optimizing controller, based on the
RL framework, showed much better behavior than the traditional controller—e.g., with
respect to smoother steering wheel control sequence data, as illustrated in Figure 30.

From the experimental results in Figure 30 and Table 14, it can clearly be concluded
that the human driver can complete the lateral motion control of the vehicle with a lower
vibration amplitude (69.0577) in terms of the performance of the smoothness of the steering
wheel control. Compared with the PID controller, the self-optimized RL controller can
obtain better control stability: the vibration amplitudes of the steering wheels were 88.8032
and 80.6986, respectively. The above results verify the effectiveness of the self-optimizing
controller, based on reinforcement learning, in real vehicles.
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Table 14. Mathematical statistics of steering wheel angles.

Mean Standard Deviation Minimum Maximum

Human−steer −22.15445 69.05777 −386 325
PID−Steer −42.81777 88.80323 −447 536

PID−RL−Steer −22.06958 ↓ 80.69866 ↓ −390.8 ↓ 403.2 ↓

With respect to both the path tracking accuracy and efficiency, the self-optimizing
controller can control the steering wheel angle with small lateral distance and heading
angle deviations, to keep the vehicle driving in the center of the lane. As shown in
Figures 31 and 32, the vehicle follows the reference trajectory quite satisfactorily with the
self-optimizing controller on the curved track, the straight track, and the roundabout track,
and its control performance was better than that of the traditional control method.

The memory data buffer stores the driver’s experience behavior data, including the
vehicle status information and operating sequences. Therefore, during the training process,
the amount of positive sample data required for network training increases, meaning that
the reward value of the controller shows an increasing trend (see Figure 33). The test results
prove that after 35,000 iteration steps, the actor–critic network has learned an excellent
control policy.
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Figure 33. Single-step reward value of path tracking controller on the test road map.

The intermediate state variables generated during the training process are the gain
parameters of the controller, which are used to compensate for the dynamic error of the
system to keep the vehicle always driving along the center of the lane, under different types
of road trajectories. The data distribution and statistical results are shown in Figure 34 and
Table 15, respectively.

Table 15. Mathematical statistics of path tracking control parameters.

Mean Standard Deviation Minimum Median Maximum

∆P1 53.84405 10.34426 16.2258 56.0301 79.3932
∆D1 92.10457 2.05332 85.6766 92.0764 98.2066
∆P2 39.07703 0.49852 37.5222 39.0849 40.747
∆D2 6.46417 0.24382 5.6081 6.46435 7.1453
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It can be seen that, when the actual trajectory is far away from the reference trajectory—
such as on the curve and the roundabout tracks—the percentage gain, ∆P1, increases with
the curvature of the reference track. The maximum value can reach 79; when the vehicle
is travelling in a straight line, the minimum value reaches 16. Therefore, the standard
deviation reaches a value of 10.34426. Thus, the controller responds faster to a decrease
in the lateral deviation. When approaching the reference trajectory, the heading angle
deviation and its rate of change have a greater impact, with average values reaching
39.07703 and 6.46417, respectively.

We can conclude that, in the absence of prior knowledge of the dynamic characteristics
of the vehicle’s physical model, the optimization problem of the path tracking controller
can be solved based on real-time interactive learning with the operating environment of
a real vehicle; moreover, the controller can realize the self-optimized tuning of the PID
control parameters, based on the RL algorithm, which can be used for online learning and
the optimization of complex path tracking control.

5. Conclusions

In this paper, we propose a self-optimized path tracking controller to simultaneously
track a predefined path with high accuracy and a well ride comfort experience. For the
lateral control of the vehicle, a steering method, based on the fusion of the reinforcement
learning with traditional PID controller, is designed to adapt to various tracking scenarios.
According to the pre-defined path geometry and the real-time status of the vehicle, com-
bined with the environment interactive learning mechanism, based on the RL framework,
the optimization of the PID control parameters can be realized. The adaptive perfor-
mance of velocity changes was also considered in the tracking process. Both the driving
simulator and the on-site vehicle experiments have verified the effects of our proposed
self-optimization controller. Nevertheless, there remains a gap between simulation and
real scenes; a transfer learning (sim-to-real) strategy can better adapt to controllers to real
vehicles, which should be emphasized in our further research.

6. Discussion of Limitations and Future Work

One challenge for the self-optimizing path tracking controller, based on RL, is the
question of how to design an accurate reward function and effectively balance exploration
and utilization, in order to avoid the network training falling into local optimality. In
addition, although the simulations can provide large amounts of cheap data for the training
and testing of the RL agent, the gap between simulation and reality is also the main
reason that these approaches are difficult to popularize and apply in real-word engineering
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problems. In future research, we will focus on the application of transfer learning in the
sim-to-real domain. The full name of sim-to-real is simulation to reality, which is a branch
of reinforcement learning and a kind of transfer learning [52]. In the field of robotics or
autonomous driving, the main problem that transfer learning solves is that of how to
directly allow the autonomous systems or agents to interact with the virtual environment
and the real environment [53,54]. Reinforcement learning is considered as a promising
direction for driving policy learning. However, training autonomous driving vehicle with
reinforcement learning in real environment involves non-affordable trial-and-error research
methods [55]. It is more desirable to first train in a virtual environment and then transfer to
the real environment.
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Abstract: As a symmetric encryption algorithm, multiple-parameter fractional Fourier transform
(MPFRFT) is proposed and applied to image encryption. The MPFRFT with two vector parameters
has better security, which becomes the main technical means to protect information security. However,
our study found that many keys of the MPFRFT are invalid, which greatly reduces its security. In this
paper, we propose a new reformulation of MPFRFT and analyze it using eigen-decomposition-type
fractional Fourier transform (FRFT) and weighted-type FRFT as basis functions, respectively. The
results show that the effective keys are extremely limited. Furthermore, we analyze the extended
encryption methods based on MPFRFT, which also have the security risk of key invalidation. The-
oretical analysis and numerical simulation verify our point of view. Our discovery has important
reference value for a class of generalized FRFT image encryption methods.

Keywords: multiple-parameter fractional Fourier transform; image encryption; weighted fractional
Fourier transform; information security

1. Introduction

With the rapid development of information technology, image transmission has be-
come an important means of communication. Traditional symmetric encryption algorithms
(such as DES, AES, etc.) are very time-consuming and costly when applied to image
encryption. The development of new image encryption algorithms has become the focus
of research. Therefore, many image encryption methods have been proposed [1,2]. These
include image encryption methods based on multiple-parameter fractional Fourier trans-
form (MPFRFT) [3]. In 2008, Tao et al. proposed an image encryption method based on
multiple-parameter fractional Fourier transform (MPFRFT) [3]. In the encryption process,
multiple keys are used to expand the key space of the system and thus have better security.
Since then, the MPFRFT has become an important means to protect information security,
and many research results have been proposed [4–18]. The MPFRFT is an extended def-
inition of multifractional Fourier transform [19]. Compared with previous encryption
schemes [19,20], the MPFRFT not only uses the period and the transformation order as the
keys, but also introduces two vector parameters, and vector parameters increase with the
increase of the period, so it has better security. The existing encryption schemes mainly
focus on two aspects: One is to use the MPFRFT combined with other encryption methods
to ensure security [4–9]. For example, its combination with chaos is currently the most
used encryption strategy [4–7], and its combination with other scrambling techniques [8,9],
and so on. The second is the improvement of the algorithm. The two vector parameters in-
troduced by the MPFRFT are integers, which will face security risks in applications [10,11].
Therefore, some improved schemes have been proposed [10–18]. For example, Ran et al.
proposed a modified MPFRFT (m-MPFRFT), which overcomes the security risk of param-
eter redundancy [10], Zhao et al. proposed the vector power MPFRFT (VPMPFRFT) to
overcome the security risk of parameter translation [16], and Kang et al. presented a unified
framework for the MPFRFT and proposed new types of transforms in signal processing
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and information security [17]. These new encryption methods improve the security of
image encryption to a certain extent [10,15–17]. However, it is not difficult to find that such
definitions have the same basis functions as MPFRFT. Whether the security risk of MPFRFT
for image encryption affects these encryption methods is also the focus of this paper.

In this paper, we propose a new reformulation of MPFRFT. With the help of the proposed
reformulation, the definition of MPFRFT is demonstrated to use eigen-decomposition-type
FRFT and weighted-type FRFT as basis functions, respectively. However, our research shows
that many parameter keys of either the MPFRFT or its modified schemes are invalid, and it
cannot obtain a larger key space with the increase of the weighting term. This is determined
by the periodicity of the basis function itself, and we will present a detailed analysis.

2. Reformulation of the MPFRFT

In order to demonstrate our point of view, we propose a new reformulation of the
MPFRFT. Firstly, Tao et al. proposed the MPFRFT [3], which is defined as:

Fα
M(M,N)[ f (t)] =

M−1

∑
l=0

Aα
l (M,N) fl(t), (1)

where the basic functions can be expressed as fl(t) = F4l/M[ f (t)]; l = 0, 1, 2, · · · , M− 1.
The weighting coefficient, Aα

l (M,N), is expressed as:

Aα
l (M,N) =

1
M

M−1

∑
k=0

exp
{

2πi
M

[(mk M + 1)α(k + nk M)− lk]
}

, (2)

where M = (m0, m1, · · · , mM−1) ∈ ZM, N = (n0, n1, · · · , nM−1) ∈ ZM. According to
Shih’s definition [21], the weighting coefficient, Aα

l , can also be expressed as:




Aα
0

Aα
1

...
Aα

M−1


 =

1
M




u0×0 u0×1 · · · u0×(M−1)

u1×0 u1×1 · · · u1×(M−1)

...
...

. . .
...

u(M−1)×0 u(M−1)×1 · · · u(M−1)×(M−1)







Bα
0

Bα
1
...

Bα
M−1


, (3)

where u = exp(−2πi/M), and

Bα
k = exp

[
2πiα(mk M + 1)(nk M + k)

M

]
, (4)

where k = 0, 1, 2, · · · , M− 1, mk ∈M and nk ∈ N.
Next, we will present a new reformulation of the MPFRFT, and Equation (1) can be

re-expressed as:

Fα
M(M,N)[ f (t)] = Aα

0(M,N) f0(t) + Aα
1(M,N) f1(t) + · · ·+ Aα

M−1(M,N) fM−1(t)

= Aα
0 F

0
M [ f (t)] + Aα

1 F
4
M [ f (t)] + · · ·+ Aα

M−1F
4(M−1)

M [ f (t)]

=

(
Aα

0 I + Aα
1 F

4
M + · · ·+ Aα

M−1F
4(M−1)

M

)
f (t)

=

(
I, F

4
M , · · · , F

4(M−1)
M

)



Aα
0

Aα
1

...
Aα

M−1


 f (t).

(5)
From Equations (3) and (5), we can obtain:
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Fα
M(M,N)[ f (t)] =

1
M

(
I, F

4
M , · · · , F

4(M−1)
M

)



u0×0 u0×1 · · · u0×(M−1)

u1×0 u1×1 · · · u1×(M−1)

...
...

. . .
...

u(M−1)×0 u(M−1)×1 · · · u(M−1)×(M−1)







Bα
0

Bα
1
...

Bα
M−1


 f (t), (6)

where u = exp(−2πi/M) and Bα
k is Equation (4). Here, we let:





Y0 = u0×0 I + u1×0F
4
M + · · ·+ u(M−1)×0F

4(M−1)
M

Y1 = u0×1 I + u1×1F
4
M + · · ·+ u(M−1)×1F

4(M−1)
M

Y2 = u0×2 I + u1×2F
4
M + · · ·+ u(M−1)×2F

4(M−1)
M

...

YM−1 = u0×(M−1) I + u1×(M−1)F
4
M + · · ·+ u(M−1)×(M−1)F

4(M−1)
M

(7)

Therefore, a new reformulation of the MPFRFT is obtained, as:

Fα
M(M,N)[ f (t)] = 1

M (Y0, Y1, · · · , YM−1)




Bα
0

Bα
1
...

Bα
M−1


 f (t)

= 1
M

M−1
∑

k=0
YkBα

k f (t).

(8)

where Bα
k is Equation (4).

3. Security Analysis

We know that the MPFRFT and the multifractional Fourier transform have the same
basis function, F4l/M; l = 0, 1, · · · , M− 1. Fractional Fourier transform (FRFT) has diversity,
so we will discuss the eigen-decomposition-type FRFT and linear weighted-type FRFT as
basis functions, respectively.

3.1. Eigen-Decomposition-Type FRFT as a Basis Function

In [3], the basis function involved in the MPFRFT is defined as:

Fα[ f (t)] =
∫ ∞

−∞
Kα(u, t) f (t)dt, (9)

where the transform kernel is given by:

Kα(u, t) =





Aαei u2+t2
2 cot φ−iut csc φ, α 6= kπ

δ(u− t), α = 2kπ

δ(u + t), α = (2k + 1)π.

(10)

where φ = απ/2 is interpreted as a rotation angle in the phase plane and
Aα =

√
(1− i cot α)/2π.

As we know, Equation (9) is a continuous FRFT, and a discrete FRFT is used for
numerical simulation. At present, the discrete definition [22] closest to the continuous
FRFT is:

Fα(m, n) =
N−1

∑
k=0

vk(m)e−i π
2 kαvk(n), (11)
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where vk(n) is an arbitrary orthonormal eigenvectors set of the N × N discrete Fourier
transform (DFT). Equation (11) can be written as:

Fα = VDαVH , (12)

where V = (v0, v1, · · · , vN−1), vk is the kth order DFT Hermite eigenvector, and Dα is a
diagonal matrix defined as:

Dα = diag
(

1, e−i π
2 α, · · · , e−i π

2 (N−2)α, e−i π
2 (N−1)α

)
, f or N odd, (13)

and
Dα = diag

(
1, e−i π

2 α, · · · , e−i π
2 (N−2)α, e−i π

2 (N)α
)

, f or N even. (14)

We only prove that N is odd (when N is even, the proof process is the same). In [23,24],
the eigenvalues of the DFT can be expressed as λn = enπi/2. Then, the possible values of
the eigenvalue are λn = {1,−1, i,−i}. Therefore, there is:

Dα = diag
(
(1)α, (−i)α, (−1)α, (i)α, (1)α, (−i)α, (−1)α, (i)α, · · · · · · , (1 or− 1)α). (15)

Thus, Equation (7) can be written as:

Yk = u0×k × I + u1×k × F
4
M + · · ·+ u(M−1)×k × F

4(M−1)
M , (16)

where u = exp(−2πi/M) and k = 0, 1, · · · , M− 1. The eigen-decomposition-type FRFT is
used as the basis function, and Equation (17) is obtained as:

Yk = u0×k × F0 + u1×k × F
4
M + · · ·+ u(M−1)×k × F

4(M−1)
M

= u0×kVD0VH + u1×kVD
4
M VH + · · ·+ u(M−1)×kVD

4(M−1)
M VH

= u0×kV




1 0 · · · 0
0 (−i)0 · · · 0
...

...
. . .

...
0 0 · · · (1 or− 1)0




VH + u1×kV




1 0 · · · 0

0 (−i)
4
M · · · 0

...
...

. . .
...

0 0 · · · (1 or− 1)
4
M




VH+

· · · +u(M−1)×kV




1 0 · · · 0

0 (−i)
4(M−1)

M · · · 0
...

...
. . .

...

0 0 · · · (1 or− 1)
4(M−1)

M




VH .

(17)

Therefore, we obtain Equation (18) as:

Yk = V




S(1)(k) 0 · · · 0
0 S(−i)(k) · · · 0
...

...
. . .

...
0 0 · · · S(1 or−1)(k)




VH . (18)

From Equation (18), the diagonal matrix only contains S(1)(k), S(i)(k), S(−1)(k), and
S(−i)(k).
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When the eigenvalue is 1, S(1)(k) can be expressed as:

S(1)(k) = u0×k10 + u1×k14/M + · · ·+ u(M−1)×k14(M−1)/M

= 1 + e−2πi1k/M + e−2πi2k/M + · · ·+ e−2πi(M−1)k/M

=
1−(e−2πik/M)

M

1−e−2πi(k−0)/M .

(19)

Therefore, we obtain:

S(1)(k) =
{

0 k 6≡ 0modM
M k ≡ 0modM.

(20)

When the eigenvalue is i, S(i)(k) can be expressed as:

S(i)(k) = u0×k(i)0 + u1×k(i)4/M + · · ·+ u(M−1)×k(i)4(M−1)/M

= 1 + e−2πi1(k−1)/M + e−2πi2(k−1)/M + · · ·+ e−2πi(M−1)(k−1)/M

=
1−(e−2πi(k−1)/M)

M

1−e−2πi(k−1)/M .

(21)

Therefore, there is:

S(i)(k) =
{

0 k 6≡ 1modM
M k ≡ 1modM.

(22)

When the eigenvalue is −1, S(−1)(k) can be expressed as:

S(−1)(k) = u0×k(−1)0 + u1×k(−1)4/M + · · ·+ u(M−1)×k(−1)4(M−1)/M

= 1 + e−2πi1(k−2)/M + e−2πi2(k−2)/M + · · ·+ e−2πi(M−1)(k−2)/M

=
1−(e−2πi(k−2)/M)

M

1−e−2πi(k−2)/M .

(23)

Then, we can obtain:

S(−1)(k) =
{

0 k 6≡ 2modM
M k ≡ 2modM.

(24)

When the eigenvalue is −i, S(−i)(k) can be expressed as:

S(−i)(k) = u0×k(−i)0 + u1×k(−i)4/M + · · ·+ u(M−1)×k(−i)4(M−1)/M

= 1 + e−2πi1(k−3)/M + e−2πi2(k−3)/M + · · ·+ e−2πi(M−1)(k−3)/M

=
1−(e−2πi(k−3)/M)

M

1−e−2πi(k−3)/M .

(25)

Therefore, there is:

S(−i)(k) =
{

0 k 6≡ 3modM
M k ≡ 3modM.

(26)

From Equations (20), (22), (24), and (26), then, Equation (18) can be written as:

Yk =

{
Yk k = 0, 1, 2, 3
0 k = 4, 5, · · · , M− 1.

(27)
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Thus, for Equation (8), the MPFRFT is expressed as:

Fα
M(M,N)[ f (t)] = 1

M (Y0, Y1, · · · , YM−1)




Bα
0

Bα
1
...

Bα
M−1


 f (t)

= 1
M (Y0, Y1, Y2, Y3, 0, · · · , 0)




Bα
0

Bα
1
...

Bα
M−1


 f (t)

= 1
M
(
Y0Bα

0 + Y1Bα
1 + Y2Bα

2 + Y3Bα
3
)

f (t).

(28)

From Equation (28), we find that there are only four effective weighted terms. That
is, for the vector parameters (M,N) of the MPFRFT, only (m0, m1, m2, m3; n0, n1, n2, n3) can
be used as valid encryption keys, and the other keys (m4, m5, · · · , mM−1; n4, n5, · · · , nM−1)
are invalid. This leads to the security of the MPFRFT being impaired.

3.2. Weighted-Type FRFT as a Basis Function

The MPFRFT is a generalized multifractional Fourier transform, which has the same
basis function, F4l/M. The multifractional Fourier transform is a generalized definition of
the weighted fractional Fourier transform (WFRFT) [21]. The basis functions of the WFRFT
are I, F, F2, and F3. Therefore, we can determine the time-frequency representation of the
basis function, as shown in Figure 1. We consider using the WFRFT as the basis function of
the MPFRFT.
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tion of fractional Fourier transform.

Shih proposed the WFRFT [21], which is defined as:

Fα[ f (t)] =
3

∑
l=0

Aα
l fl(t), (29)

with

Aα
l = cos

(
(α− l)π

4

)
cos
(

2(α− l)π
4

)
exp

(
3(α− l)iπ

4

)
, (30)
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where fl(t) = Fl [ f (t)]; l = 0, 1, 2, 3 (F denotes Fourier transform). Shih’s WFRFT with period
4 is also called the 4-weighted-type fractional Fourier transform (4-WFRFT). Equation (29)
can also be expressed as:

Fα[ f (t)] =
(

Aα
0 · I + Aα

1 · F + Aα
2 · F2 + Aα

3 · F3) f (t)

=
(

I, F, F2, F3)




Aα
0

Aα
1

Aα
2

Aα
3




f (t).
(31)

According to the definition of the weighting coefficient, Aα
l [21], then, Equation (31)

can be expressed as:

Fα[ f (t)] =
1
4

(
I, F, F2, F3

)



1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i







Bα
0

Bα
1

Bα
2

Bα
3




f (t), (32)

where Bα
k = exp

(
2πikα

4

)
, k = 0, 1, 2, 3. Here, we let:





P0 = I + F + F2 + F3

P1 = I − F ∗ i− F2 + F3 ∗ i
P2 = I − F + F2 − F3

P3 = I + F ∗ i− F2 − F3 ∗ i.

(33)

Therefore, the WFRFT can be represented as:

Fα[ f (t)] =
1
4
(P0, P1, P2, P3)




Bα
0

Bα
1

Bα
2

Bα
3




f (t). (34)

From Equations (7) and (34), we can obtain:

Yk = u0×k × F0 + u1×k × F
4
M + · · ·+ u(M−1)×k × F

4(M−1)
M

= 1
4 (P0, P1, P2, P3)




u0×k ×




B0
0

B0
1

B0
2

B0
3




+ u1×k ×




B
4
M

0

B
4
M

1

B
4
M

2

B
4
M

3




+ · · ·+ u(M−1)×k ×




B
4(M−1)

M
0

B
4(M−1)

M
1

B
4(M−1)

M
2

B
4(M−1)

M
3







= 1
4 (P0, P1, P2, P3)




u0×k × B0
0 + u1×k × B

4
M

0 + · · ·+ u(M−1)×k × B
4(M−1)

M
0

u0×k × B0
1 + u1×k × B

4
M

1 + · · ·+ u(M−1)×k × B
4(M−1)

M
1

u0×k × B0
2 + u1×k × B

4
M

2 + · · ·+ u(M−1)×k × B
4(M−1)

M
2

u0×k × B0
3 + u1×k × B

4
M

3 + · · ·+ u(M−1)×k × B
4(M−1)

M
3




,

(35)

where k = 0, 1, · · · , M − 1, u = exp(−2πi/M), and Bα
k = exp

(
2πikα

4

)
. Therefore,
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Equation (36) is obtained as:

Yk = 1
4 (P0, P1, P2, P3)




1 + exp
(
−2πi1k

M

)
+ exp

(
−2πi2k

M

)
+ · · ·+ exp

(−2πi(M−1)k
M

)

1 + exp
(−2πi1(k−1)

M

)
+ exp

(−2πi2(k−1)
M

)
+ · · ·+ exp

(−2πi(M−1)(k−1)
M

)

1 + exp
(−2πi1(k−2)

M

)
+ exp

(−2πi2(k−2)
M

)
+ · · ·+ exp

(−2πi(M−1)(k−2)
M

)

1 + exp
(−2πi1(k−3)

M

)
+ exp

(−2πi2(k−3)
M

)
+ · · ·+ exp

(−2πi(M−1)(k−3)
M

)




= 1
4 (P0, P1, P2, P3)




Q0(k)

Q1(k)

Q2(k)

Q3(k)




.

(36)

According to Equations (19), (21), (23), and (25), we can easily determine:

Q0(k) =
{

M k ≡ 0modM
0 k 6≡ 0modM,

(37)

Q1(k) =
{

M k ≡ 1modM
0 k 6≡ 1modM,

(38)

Q2(k) =
{

M k ≡ 2modM
0 k 6≡ 2modM,

(39)

and

Q3(k) =
{

M k ≡ 3modM
0 k 6≡ 3modM.

(40)

Thus, Equation (36) is simplified as:

Yk =

{
M
4 Pk k = 0, 1, 2, 3

0 k = 4, 5, · · · , M− 1.
(41)

From Equation (8), the MPFRFT can be expressed as:

Fα
M(M,N)[ f (t)] = 1

M (Y0, Y1, · · · , YM−1)




Bα
0

Bα
1
...

Bα
M−1




f (t)

= 1
4 (P0, P1, P2, P3, 0, · · · , 0)




Bα
0

Bα
1
...

Bα
M−1




f (t)

= 1
4
(

P0Bα
0 + P1Bα

1 + P2Bα
2 + P3Bα

3
)

f (t).

(42)

At present, the MPFRFT has only four weighted terms, so the effective parameter keys
are (m0, m1, m2, m3; n0, n1, n2, n3). This is consistent with our previous analysis.

4. Simulation Verification

In Equation (8), the MPFRFT encryption keys are (M, α,M,N). Here, M is a positive
integer to determine the number of weighted terms (M > 4), α is the transformation order
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α ∈ R, and M and N are vector parameters, where M = (m0, m1, · · · , mM−1) ∈ ZM and
N = (n0, n1, · · · , nM−1) ∈ ZM. We set the keys to:





M = 7

α =
√

5

M = (m0, m1, m2, m3, m4, m5, m6) = (45, 8, 20, 76, 657, 211, 7)

N = (n0, n1, n2, n3, n4, n5, n6) = (3, 234, 54, 687, 763, 5, 365)

Therefore, the encryption keys can be represented as:

(M; α;M;N) =
(

7;
√

5; 45, 8, 20, 76, 657, 211, 7; 3, 234, 54, 687, 763, 5, 365
)

and the decryption keys can be represented as:

(M; α;M;N) =
(

7;−
√

5; 45, 8, 20, 76, 657, 211, 7; 3, 234, 54, 687, 763, 5, 365
)

The simulation results are shown in Figure 2. Figure 2a is the original image, the
encrypted image (ciphertext) is shown in Figure 2b, and Figure 2c is the decrypted image.
Next, we select a set of wrong keys to decrypt the ciphertext. The selected wrong keys are:

(M; α;M;N) =
(

7;−
√

5; 45, 8, 20, 76, 98, 321, 65; 3, 234, 54, 687, 73, 425, 5
)
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The wrong keys are used to decrypt the ciphertext, and the result is that the original
image is well-recovered, as shown in Figure 2d.

Our theoretical analysis was verified by numerical simulation. In Appendix A, the Matlab
code of the MPFRFT is presented, and interested researchers can verify it by themselves.

5. Discussion

The m-MPFRFT and VPMPFRFT are generalized definitions based on MPFRFT and
are widely used in image encryption. Such image encryption methods will also have
security risks of key invalidation.

In 2009, Ran et al. proposed a m-MPFRFT [10]. If Bα
k in Equation (4) becomes:

Bα
k (rk) = exp

[
2πiα(rk M + k)

M

]
, (43)
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then the weighting coefficient Aα
l becomes:

Aα
l (<) =

1
M

M−1

∑
k=0

exp
{

2πi
M

[α(k + rk M)− lk]
}

, (44)

where < = (r0, r1, · · · , rM−1) ∈ RM. Thus, the m-MPFRFT is obtained by:

Fα
M(<)[ f (x)] =

M−1

∑
l=0

Aα
l (<) fl(x). (45)

Recently, Zhao et al. proposed the definition of VPMPFRFT [15,16]. If Bα
k in Equation (4)

becomes:

Bα
k (rk) = exp

[
2πiαk(rk M + k)

M

]
, (46)

then the weighting coefficient Aα
l becomes:

Aα
l (<) =

1
M

M−1

∑
k=0

exp
{

2πi
M

[αk(k + rk M)− lk]
}

, (47)

where α = (α0, α1, · · · , αM−1) ∈ RM, < = (r0, r1, · · · , rM−1) ∈ RM. Then, the definition of
the VPMPFRFT can be expressed as:

Fα
M(<)[ f (x)] =

M−1

∑
l=0

Aα
l (<) fl(x). (48)

In the above definition, when Bα
k is given a different form, the corresponding weighting

coefficient is Aα
l , and various definition forms are obtained. The common features of these

definitions have the same basis function, fl(t) = F4l/M[ f (t)].
According to the analysis in Section 2, when Equation (43) replaces Bα

k of Equation (8),
thus, the reformulation of m-MPFRFT can be obtained as:

Fα
M(<)[ f (t)] =

1
M

M−1

∑
k=0

YkBα
k (rk) f (t). (49)

Therefore, when Equation (46) replaces Bα
k of Equation (8), the reformulation of m-

MPFRFT can be obtained as:

Fα
M(<)[ f (t)] =

1
M

M−1

∑
k=0

YkBα
k (rk) f (t). (50)

Compared with the definition of MPFRFT, m-WFRFT and VPMPFRFT are only differ-
ent in the selection of Bα

k , while other basis functions are the same. That is, the effective
weighting terms of Equations (49) and (50) are only 4. Such image encryption methods also
have the security risk of key invalidation.

The m-MPFRFT is now applied to image encryption, and its keys are (M, α,<). Here,
M is a positive integer to determine the number of weighted terms, α is the transformation
order α ∈ R, and< is the vector parameters,< = (r0, r1, · · · , rM−1) ∈ RM. In the numerical
simulation, we take the keys as:





M = 8
α =
√

5
< = (r0, r1, r2, r3, r4, r5, r6, r7) =

(√
6,
√

51,
√

43, 30, 38/3,
√

19, 11,
√

62
)

Thus, the encryption keys are:
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(M; α;<) =
(

8;
√

5;
√

6,
√

51,
√

43, 30,38/3,
√

19, 11,
√

62
)

The original image and the encrypted image are shown in Figure 3a,b, respectively.
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Figure 3. Image encryption based on m-MPFRFT: (a) original image, (b) encrypted image, (c)
decrypted image with correct keys, and (d) decrypted image with wrong keys.

The correct decryption keys are:

(M;−α;<) =
(

8;−
√

5;
√

6,
√

51,
√

43, 30,38/3,
√

19, 11,
√

62
)

The decrypted image is shown in Figure 3c.
According to our analysis, the vector parameters (r4, r5, r6, r7) are invalid. Therefore,

when we use the wrong decryption keys as follows:

(M;−α;<) =
(

8;−
√

5;
√

6,
√

51,
√

43, 30, 45,
√

38,
√

3, 91
)

we obtain the decrypted image shown in Figure 3d, and the original image can still be
recovered intact.

The keys for an image encryption method based on VPMPFRFT are (M, α,<), where
M is a positive integer, α and < are vector parameters, α = (α0, α1, · · · , αM−1) ∈ RM, and
< = (r0, r1, · · · , rM−1) ∈ RM. In the numerical simulation, we take the keys as:




M = 9
α = (α0, α1, α2, α3, α4, α5, α6, α7, α8) =

(√
6, 17,

√
19, 30, 41/3,

√
52, 63,

√
65, 76

)

< = (r0, r1, r2, r3, r4, r5, r6, r7, r8) =
(

37/2,
√

48,
√

59, 70/3, 81,
√

2, 13/3, 24,
√

35
)

Thus, the encryption keys are:

(M; α;<) =
(

9;
√

6, 17,
√

19, 30, 41/3,
√

52, 63,
√

65, 76; 37/2,
√

48,
√

59, 70/3, 81,
√

2, 13/3, 24,
√

35
)

The original image is shown in Figure 4a, and Figure 4b shows the encrypted image.
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Figure 4. Image encryption based on VPMPFRFT: (a) original image, (b) encrypted image, (c)
decrypted image with correct keys, and (d) decrypted image with wrong keys.

The correct decryption keys are:

(M;−α,<) =
(

9;−
√

6,−17,−
√

19,−30,−41/3,−
√

52,−63,−
√

65,−76;

37/2,
√

48,
√

59, 70/3, 81,
√

2, 13/3, 24,
√

35
)

The decrypted image is shown in Figure 4c.
According to our analysis, the vector parameter keys (α4, α5, α6, α7, α8) and (r4, r5, r6, r7, r8)

are invalid. Therefore, when we use the following wrong decryption keys:

(M;−α,<) =
(

9;−
√

6,−17,−
√

19,−30,−3,−
√

5,−
√

6,−19,−
√

7;

37/2,
√

48,
√

59, 70/3,
√

8,
√

73, 9, 56,
√

58
)

we obtain the decrypted image shown in Figure 4d, and the original image can still be
recovered intact.

Both the image encryption method based on MPFRFT and the improved image
encryption methods (m-MPFRFT, VPMPFRFT) have the security risk of key invalidation.
The fundamental reason for this is caused by the period of the basis function. Since the
basis function has a period of 4, there are only 4 valid weighting terms for the definitions
(MPFRFT, m-MPFRFT, and VPMPFRFT). In practical application, the first parameter key is
also invalid due to Bα

k (k = 0).

6. Conclusions

MPFRFT is widely used in information security, and its security mainly depends on
parameter keys. However, our study found that many parameter keys are invalid. The
MPFRFT is a generalized definition of the WFRFT. Its basis function is extended from the
Fourier transform with period 4 to period M (M > 4). Our theoretical analysis shows that
the weighted terms of the MPFRFT do not increase with the increase of the period, and
there are only four weighted terms. Therefore, the keys of the system are limited, and the
proponent cannot obtain a larger key space with the increase of the period. In this way, the
security of the MPFRFT cannot be guaranteed. Moreover, we analyzed the generalized
definitions (m-MPFRFT and VPMPFRFT) of MPFRFT and proposed the reformulation of

195



Symmetry 2021, 13, 1803

the definitions, which also have the security risk of key invalidation. Finally, numerical
simulation verified our point of view.
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Appendix A

Algorithm A1. MPFRFT_code

%% Multiple-parameter Fractional Fourier Transform (MPFRFT);
%Shih’s fractional Fourier transform as basis function.
function F = MPFRFT(alpha,M,ml,nl,N)
%This code is written by Tieyu Zhao,E-mail:zhaotieyu@neuq.edu.cn;
% alpha is the transform order;
% M is the resulting weighting term (period);
% ml and nl are parameters;
% N is the length of the signal;
for l=0:M-1
yy=wfrft(N,4*l/M); % WFRFT
y{l+1}=yy;
end
Al=zeros(1,M);
for l=0:M-1
for k=0:M-1
Al(l+1)=Al(l+1)+exp(2*pi*i*((alpha*(M*ml(k+1)+1)*(M*nl(k+1)+k))-l*k)/M)/M;
end
end
F=zeros(N);
for k=1:M
F=F+Al(k)*y{k};
end

function F = wfrft(N,beta)
% Shih’s fractional Fourier transform (WFRFT)
Y=eye(N);
y1=fftshift(fft(Y))/(sqrt(N));
y2=y1*y1;
y3=conj(y1);
pl=zeros(1,4);
for k=0:3
pl(k+1)=pl(k+1)+exp(i*3*pi*(beta-k)/4)*cos(pi*(beta-k)/2)*cos(pi*(beta-k)/4);
end
F=pl(1)*Y+pl(2)*y1+pl(3)*y2+pl(4)*y3;
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