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Preface

Neutron stars are considered extraordinary astronomical laboratories for the physics of nuclear

matter as they have the most fascinating constitution of energy and matter in the universe. Recently,

the detection of gravitational waves from the merging of two neutron stars in a binary neutron

star system has created a new opportunity for exploring the physics of neutron stars. It is widely

acknowledged that the majority of the static and dynamic processes of neutron stars are sensitively

dependent on the equation of the state of dense nuclear matter employed. However, knowledge

of the equation of state is very uncertain, especially at high densities. The main purpose of the

present Special Issue, which comprises a collection of various contributions, is to shed light on some

of the open problems concerning the nuclear physics of neutron stars and how they can possibly be

addressed or even answered. In particular, as a part of this Special Issue, topics such as modern

applications of the theory of nuclear matter in neutron stars, ideas for constraining the equation of

state for both cold and hot nuclear matter with the help of recent observations, applications of recent

modified theories of gravity to the properties of neutron stars, the astrophysical jets emerging from a

wide variety of astrophysical compact objects, the possible existence of exotic particles, including, for

example, the hypothetical X17 boson in the interior of neutron stars, applications of the so-called

“pseudo-conformal model” that addresses dense compact star matter and is confronted with the

astrophysical observables available at present, and ideas for a possible existence of compact objects

called “Ghost stars” endowed with an arbitrarily small mass. In any case, the study of neutron stars

still has many open problems to address. These problems arise from different aspects of physics

including nuclear physics, particle physics, the theory of gravity, and statistical physics. Solving

these problems requires not only the expansion of theoretical study via the introduction of new ideas

and models but also the procurement of observational and experimental data via more systematic

and extensive methods. The set of open problems–issues is quite large and only a few of them have

been addressed in this Special Issue. Regardless, new observations or the results of new experiments

may provide answers to these problems and may also lead to the creation of new open issues.

Charalampos Moustakidis

Editor
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Editorial

The Nuclear Physics of Neutron Stars
Charalampos Moustakidis

Department of Theoretical Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
moustaki@auth.gr

Neutron stars are considered extraordinary astronomical laboratories for the physics
of nuclear matter as they have the most fascinating constitution of energy and matter in
the Universe [1–3]. Recently, the detection of gravitational waves from the merging of
two neutron stars in a binary neutron star system created a new opportunity for exploring
the physics of neutron stars [4,5]. In particular, the majority of the static and dynamical
processes of neutron stars are sensitively dependent on the equation of state of dense
nuclear matter employed [6,7]. However, knowledge of the equation of state is very
uncertain, especially at high densities; therefore, relevant predictions and estimations suffer.
For example, there are strong speculations that a phase transformation from hadronic to
quark matter takes place inside stars [8]. This theory needs to be thoroughly researched.
Moreover, a long-standing goal in astrophysics is the determination of the maximum mass
of neutron stars (both non-rotating and rotating) [9]. Neutron stars are directly related
to the formation of black holes (Kerr black holes), connecting two of the most important
astrophysical objects. As a consequence, the maximum mass of neutron stars is of great
interest in studying the effects of both neutron stars and black holes on the dynamics
of supernovae explosions. Furthermore, neutron stars, due to their compactness, may
rotate very quickly compared to other astrophysical objects. In particular, the measurement
of specific properties of rapidly rotating neutron stars (including their mass and radius,
frequency, moment of inertia, and quadrupole moment) may lead to robust constraints
on the equation of state as well as on the star’s nuclear matter constitution at very high
densities [10].

This Special Issue is a collection of various contributions dedicated to (a) modern
applications of the theory of nuclear matter in neutron stars, (b) proposing ideas for
constraining the equation of state for both and hot nuclear matter (low/high densities) with
the help of recent observations as well as the detection of gravitational waves originating
from neutron stars mergers, (c) relating the application of recent modified theories of gravity
to the properties of neutron stars, (d) discussing some issues in relation to the astrophysical
jets emerging from a wide variety of astrophysical compact objects, (e) discussing the
possibility of the existence of exotic particles, including, for example, the hypothetical
X17 boson in the interior of neutron stars, (f) presenting and analyzing the application of
the so-called “pseudo-conformal model” that addresses dense compact star matter and is
confronted with the astrophysical observables available at presents, and (g) exploring the
existence of compact objects called “Ghost stars” endowed with arbitrarily small mass.

In contribution 1, the authors address the GW190814 Puzzle. In particular, the
LIGO/Virgo collaboration observed a compact object with a mass of 2.59+0.08

−0.09 M� as
a component of a system in which the main companion was a black hole with a mass of
23 M� [11]. This observation immediately invited speculation as to whether this object
falls into the neutron star–black hole mass gap. In any case, understanding nature of the
GW190814 event will offer rich information concerning open issues, the speed of sound
and possible phases transition into other degrees of freedom. The authors made an effort
to examine possible constraints on the equation of state which were inferred from the
consideration that the low-mass companion is a slow or rapidly rotating neutron star,
also paying attention on the study of the tidal deformability and the radius of a possible
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high-mass candidate existing as an individual or component star in a binary neutron star
system. They concluded that similar isolated neutron stars or systems may exist in the
universe, and their possible future observation will shed light on the maximum neutron
star mass problem.

The authors of contribution 2 proposed several constraints on the nuclear equation
of state (EOS) currently available from neutron star (NS) observations and laboratory
experiments and studied the existence of possible correlations among the properties of
nuclear matter at saturation density using NS observables [12]. In particular, they used
a set of different models that included several phenomenological EOSs based on Skyrme
and relativistic mean field models as well as microscopic calculations based on different
many-body approaches, i.e., the (Dirac–)Brueckner–Hartree–Fock theories, quantum Monte
Carlo techniques, and the variational method. They concluded that while no correlation
exists between tidal deformability and the value of nuclear symmetry energy at saturation
for any NS mass value, very weak correlations seem to exist with the derivative of the
nuclear symmetry energy and with the nuclear symmetry energy and with the nuclear
incompressibility.

To overcome the problem that some Gogny-type [13] interactions lead to soft equations
of state, the authors of contribution 3 built new Gogny parametrizations by modifying
the density dependence of the symmetry energy predicted by the force in such a way that
they could be applied to the neutron star domain and could also reproduce the properties
of finite nuclei as well as their predecessors. These new parametrizations allowed the
authors to obtain stiffer EOSs based on Gogny interactions which predict the maximum
masses of neutron stars around two solar masses. Moreover, other global properties of
stars determined, such as their moment of inertia and deformability, were in harmony
with those obtained using other well-tested EOSs based on the SLy4 Skyrme force or the
Barcelona–Catania–Paris–Madrid (BCPM) energy density functional.

Neutron stars are perfect candidates for investigating the effects of a modified gravity
theory since curvature effects are significant and, more importantly, potentially testable.
In most cases studied in the literature in the context of massive scalar–tensor theories,
inflationary models were examined. The most important scalar–tensor model is the Higgs
model, which depends on the values of the scalar field [14]. In view of the above, the
author of contribution 4 investigated which potential form of the Higgs model is more
appropriate for consistently describing a static neutron star. He proved numerically that
the non-inflationary Higgs potential, which is valid for certain values of the scalar field
in the Jordan frame, leads to extremely large maximum neutron star masses. Finally, he
concluded that these results show the uniqueness of the inflationary Higgs potential since
it is the only approximation for the Higgs model that provides self-consistent results.

The authors of contribution 5 examined collimated outflows of magnetized astro-
physical plasma known as astrophysical jets, which have been observed to emerge from
a wide variety of astrophysical compact objects. These systems can be considered either
hydrodynamic (HD) or magnetohydrodynamic (MHD) in nature, which means that they
are governed by non-linear partial differential equations [15]. The authors mainly focused
on appropriate numerical solutions for the MHD (and/or RMHD) equations as well as a
transfer equation for inside the jet and simulated multi-messenger emissions from specific
astrophysical compact objects. They performed numerical simulations for neutrino, gamma
ray, and secondary particle emissions. As concrete examples, they chose the galactic Cygnus
X-1 and extragalactic LMC X-1 systems.

The author of contribution 6 described the mapping at high density of topological
structure of baryonic matter to a nuclear effective field theory that implements hidden
symmetries emergent from strong nuclear correlations [16]. The results are found to be
consistent with the presently available observations in both normal nuclear matter and
compact-star matter. The hidden symmetries involved are “local flavor symmetry” of the
vector mesons identified to be (Seiberg-)dual to the gluons of QCD and hidden “quantum
scale symmetry” with an IR fixed point with a “genuine dilaton (GD)” characterized by
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non-vanishing pion and dilaton decay constants. Both the skyrmion topology for N f ≥ 2
baryons and the fractional quantum Hall (FQH) droplet topology for N f = 1 baryons are
unified in the “homogeneous/hidden” Wess–Zumino term in the hidden local symmetry
(HLS) Lagrangian. The possible indispensable role of the FQH droplets in going beyond
the density regime of compact stars approaching scale-chiral restoration is explored by
moving toward the limit where both the dilaton and the pion go massless [17].

The authors of contribution 7 complemented the nuclear equation of state (EOS) with
a hypothetical 17 MeV boson [18] and observed that only instances with an admixture of
30–40% satisfied all the relevant constraints. The successful EOS resulted in a radius of
around 13 km for a neutron star with a mass of MNS ' 1.4 M� and a maximum mass
of around MNS ' 2.5 M�. They found that the value of the radius is in agreement with
the recent measurement by NICER, while the maximum mass is also in agreement with
the mass of the remnant of the gravitational wave event GW190814. They concluded that
it appears that these EOSs satisfy all the existing experimental constraints and can be
considered universal nuclear equations of state.

The author of contribution 8 discussed and analyzed the so-called “pseudo-conformal
model” that addresses dense, compact star matter and is confronted with the astrophysical
observables available at present, with a focus on those obtained from gravity waves [17].
Their predictions were made nearly free of parameters as the model involving “topology
change” remained more or less intact and “un-torpedoed” by the data.

The authors of contribution 9 focused on computing the saturation properties of sym-
metric and asymmetric nuclear matter using the finite-range simple effective interaction
with the Yukawa form factor [19]. The results of higher-order derivatives of the energy
per particle and the symmetry energy computed at saturation were compared with corre-
sponding values extracted from studies involving theory, experiments, and astrophysical
observations. In particular, the ability of the resulting equations of state to predict the
threshold mass for prompt collapse in a binary neutron star merger and gravitational
redshift was examined in terms of the compactness of the neutron star and the level of
incompressibility at the central density of the maximum-mass star. Finally, they analyzed
and compared the correlations existing between neutron star properties and nuclear matter
saturation properties with the predictions of other models.

In contribution 10, the authors explored an idea proposed many years ago by Zeldovich
and Novikov concerning the existence of compact objects endowed with arbitrarily small
mass [20]. The energy density of such objects, which are called “Ghost stars”, is negative
in some regions of the fluid distribution, producing a vanishing total mass. Thus, on the
boundary surface, the interior is matched to Minkowski space-time [21]. The authors
provided some exact analytical solutions and analyzed their properties. With the help of
observational data, they confirmed or dismissed the existence of this type of stellar object.

In general, the study of neutron stars still has many open problems to address. These
problems arise from different aspects of physics including nuclear physics, particle physics,
the theory of gravity, and statistical physics. Solving these problems requires not only
the expansion of theoretical study via the introduction of new ideas and models but also
procurement of observational and experimental data via more systematic and extensive
methods. Since the set of open problems–issues is quite large, we only some below. Regard-
less, new observations or the results of new experiments may provide answers to these
problems and may also lead to the creation of new open issues. In summary, some of the
key problems associated with the study of neutron stars and the physics behind them are
as follows (also see the relevant Ref. [22]):

1. The experimental determination of nuclear symmetry energy close to and above the
nuclear saturation density.

2. The hyperon “puzzle”: the problem of the strong softening of the equation of state of
dense matter induced by the presence of hyperons, which leads to a maximum mass
value incompatible with observations.
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3. The Bose condensation in nuclear matter: the effects of pion and kaon condensation
in the interior of neutron stars.

4. Hadron–quark phase transitions in dense nuclear matter, which have implications for
the structure of neutron stars.

5. Determining what other phases exist in the phase diagram of dense matter at low
temperatures and how we can use neutron star observations to learn about these phases.

6. Hybrid stars as confirmations of phase transitions in dense nuclear matter: the twin
star and backbending phenomena.

7. The possible existence of a mass gap between neutron stars and black holes and its
implications for the formation of neutron stars.

8. The maximum and minimum masses of neutron stars; the maximum mass has impli-
cations for the minimum mass of a black hole and, consequently, the total number of
stellar-mass black holes in our Universe, the progenitor mass, and the EOS of dense
matter. The minimum mass is related to its formation through stellar evolution.

9. The accurate measurement of the radius of a neutron star. If possible, simultaneous
measurements of the masses and radii of several individual stars could pin down an
EOS free from the applied nuclear model.

10. Determining what limits the spin frequencies of millisecond pulsars and why; addi-
tionally, determining how effective mechanisms are for reducing the rotation speed of
pulsars (r-modes, f-modes, etc.).

11. Determining how rich information from a neutron star cooling curve can be used, which
microscopic mechanisms are responsible for this process, and what their roles are.

12. Investigating the mystery of the appearance of glitches and starquakes. What are the
roles of superfluidity and the crust–core interface? What are the relevant dissipative
processes?

13. Studying the neutron star–dark matter admixture and its application to the existence
and possible determination of dark matter in the Universe.

14. Determining the origin of the strong magnetic field in neutron stars and elucidating
the physics of magnetars.

15. Investigating neutron star mergers as a major source of gravitational wave radiation
and the roles of star structure and deformability.

16. Investigating neutron star binary mergers: can they explain the creation (nucleosyn-
thesis) and existence of heavy elements in the universe?

17. The lifetime and final-stage possibilities of binary neutron star merger remnants.
18. Determining the origin of X-rays on the surfaces of rapidly rotating neutron stars and

the role of the strong magnetic field; investigating accreting neutron stars in binary
star systems as the strongest sources of X-rays in our galaxy.

19. Investigating collisions between neutron stars as sources of short gamma-ray bursts,
some of the most powerful and violent explosions in the known universe. What we
can learn from the interiors of neutron stars?

20. Investigating exotic stars (quark stars, strange stars, pion stars, preon stars, Thorne–
Zytkow objects, and gravastars): their origin, structure, observation, and verification.

Although the above list is quite extensive, we have robust indications that in the com-
ing years, both improvements in experimental methods and the accuracy of astrophysical
observations, in close cooperation with theoretical research, will provide solutions for the
majority of the aforementioned open problems.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflicts of interest.
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Abbreviations
The following abbreviations were used in this manuscript:

NS Neutron star
EOS Equation of state
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Abstract: On 14 August 2019, the LIGO/Virgo collaboration observed a compact object with mass
∼ 2.59+0.08

−0.09 M�, as a component of a system where the main companion was a black hole with mass
∼ 23 M�. A scientific debate initiated concerning the identification of the low mass component, as
it falls into the neutron star–black hole mass gap. The understanding of the nature of GW190814
event will offer rich information concerning open issues, the speed of sound and the possible phase
transition into other degrees of freedom. In the present work, we made an effort to probe the nuclear
equation of state along with the GW190814 event. Firstly, we examine possible constraints on the
nuclear equation of state inferred from the consideration that the low mass companion is a slow
or rapidly rotating neutron star. In this case, the role of the upper bounds on the speed of sound
is revealed, in connection with the dense nuclear matter properties. Secondly, we systematically
study the tidal deformability of a possible high mass candidate existing as an individual star or as a
component one in a binary neutron star system. As the tidal deformability and radius are quantities
very sensitive on the neutron star equation of state, they are excellent counters on dense matter
properties. We conjecture that similar isolated neutron stars or systems may exist in the universe and
their possible future observation will shed light on the maximum neutron star mass problem.

Keywords: equation of state; neutron star; GW190814; maximum mass; tidal deformability

1. Introduction

In Ref. [1] the authors reported the observation of a compact binary coalescence
involving a 22.2–24.3 M� black hole and a compact object with a mass of a 2.50–2.67 M�
(all measurements quoted at the 90% credible level). The announcement of the GW190814
event [1] triggered various theoretical studies concerning the equation of state (EoS) of
dense nuclear matter, in order to explain the possibility of the second partner to be a very
massive neutron star (NS). It is worth pointing out that the authors in Ref. [1] did not
exclude the possibility that the second partner to be a NS or an exotic compact object, i.e.,
quark star, boson star or gravastar.

It is worth to point out the observation of the GW190814 event has some additional
general benefits apart from the measurement of 2.6 M� of the second partner [1]. Firstly,
this binary system has the most unequal mass ratio yet measured with gravitational waves
close to the value of 0.112. Secondly, the dimensionless of the spin of the primary black
hole is constrained ≤0.07, where various tests of general relativity confirm this value, as
well as its predictions of higher-multiple emission at high confidence interval. Moreover,
the GW190814 event poses a challenge for the understanding of the population of merging
compact binaries. It was found after systematic analysis that the merger rate density of
GW190814-like binary system to be 7+16

−6 Gpc−3 year−1 [1]. More relevant to the present
study, the observation of the GW190814 event led to the following conclusion: due to
the source’s asymmetric masses, the lack of detection of an electromagnetic counterpart

Symmetry 2021, 13, 183. https://doi.org/10.3390/sym13020183 https://www.mdpi.com/journal/symmetry7
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and of clear signature of tides or spin-induced quadrupole effect in the waveform of the
gravitational waves we are not able to distinguish between a black hole-black hole and black
hole-neutron star system [1]. In this case, one must count only to the comparison between
the mass of the second partner with the estimation of maximum NSs mass Mmax [2]. This is
one of the subjects of the present work. It should be emphasized that the measurements of
NSs mass can also inform us about a bound on the Mmax independently of the assumptions
of specific EoS. For example, Alsing et al. [3] fitting the known population of NSs in binaries
to double-Gaussian mass distribution obtained the empirical constraint that Mmax ≤
2.6 M� (with 90% confidence interval ). Moreover, Farr and Chatziionannou [4] updated
the previous study including recent measurements. Their study constraint the maximum
mass Mmax = 2.25+0.81

−0.26 M� leading to the conclusion that the posterior probability (for
the mass of the second partner m2 ≤ Mmax) is around only 29%. However, the prediction
of Mmax is sensitive on the selection rules mass of NSs (not only on binary systems but
also isolated) as well as on the discovery of new events and consequently remains an
open problem. Finally, the conclusion of the recent GW190814 event in comparison with
previous ones (for example the GW170817 event [5]) may shed light on the problem of the
Mmax. For example, the spectral EoSs which are conditioned by the GW170817 event, are
once more elaborated to include the possibility that of the prediction of Mmax at least equal
to m2. This approach lead to significant constraints on the radius and tidal deformability of
a NS with mass of 1.4 M� (R1.4 = 12.9+0.8

−0.7 km and Λ1.4 = 616+273
−158 respectively [1]).

The consideration of a NS as the second partner has been studied in recent Refs. [6–17].
On the other hand, the case that the second partner is a quark or hybrid star has been
explored in Refs. [18–24]. Finally, some modified theories of gravity have also been applied
as possible solutions to the problem [25–27]. In particular, Tsokaros et al. [6] showed using
viable equations that rapid uniform rotation is adequate to explain the existence of a stable
2.6 M� NS for moderately stiff EoSs but may not be adequate for soft ones. Huang et al. [7]
concluded that using the density-dependent relativistic mean field model one cannot
exclude the possibility of the secondary object to be a NS composed of hadronic matter.
Zevin et al. [8] performing a systematic study led to the conclusion that the formation of
GW190814-like systems at any measurable rate requires a supernova engine model that acts
on longer timescales such that the proto-compact object can undergo substantial accretion
immediately before the explosion. This conclusion hinds that if GW190814 is the result
of a massive star binary evolution, the mass gap between NSs and black holes may be
narrower or nonexistent. Fattoyev et al. [9] speculated that the maximum NS mass cannot
be significantly higher than the existing observational limit and also the 2.6 M� compact
object is likely to be the lightest black hole ever discovered. Essick and Landry [10] found
that there is a ≤6% chance that GW190814 involved a slowly spinning NS, regardless of
their assumed population model (considering no overlap between the NS and black hole
mass distributions). Safarzadeh and Loeb [11] suggested that the secondary partner was
born as a NS where a significant amount of the supernova ejecta mass from its formation
remained bound to the binary due to the presence of the massive black hole companion.
The bound mass forms a circumbinary accretion disk and its accretion onto the NS created
a mass gap object. Godzieba et al. [12], showed how a lower limit on the maximum mass of
NSs, in combination with upcoming measurements of NS radii by LIGO/Virgo and NICER,
would constrain the EoS of dense matter and discussed the implications for the GW190814
event. Sedrakian et al. [13], allowing the hyperonization of dense matter, found that the
maximal masses of hypernuclear stars, even for maximally rotating configurations, are
inconsistent with a stellar nature interpretation of the light companion in GW190814. They
concluded that the GW190814 event involved two black holes rather than a NS and a black
hole. Biswas et al. [14] concluded that the odds of the secondary object in GW190814 being
a NS improved by considering a stiff high-density EoS or a large rotation. Zhang and Li [15]
showed that one possible explanation for GW190814’s secondary component is a super-
fast pulsar spinning faster than 971 Hz. Most et al. [16] stated that based on our current
understanding of the nuclear matter EoS, it can be a rapidly rotating NS that collapsed to a
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rotating black hole at some point before the merger. Tan et al. [17] constructed heavy NSs
by introducing non-trivial structure in the speed of sound sourced by deconfined Quantum
Chromodynamics (QCD) matter. Within this approach they can explain the high mass of
the second partner.

Zhang and Mann [18] indicated a new possibility that the currently observed compact
stars, including the recently reported GW190814’s secondary component can be quark
stars composed of interacting up-down quark matter. Bombaci et al. [19] investigated the
possibility that the low mass companion of the black hole in the source of GW190814 was a
strange quark star. This possibility is viable within the so-called two-families scenario in
which NSs and strange quark stars coexist. Demircik et al. [20] studied rapidly spinning
compact stars with EoSs featuring a first-order phase transition between strongly coupled
nuclear matter and deconfined quark matter and also compatible with the interpretation
that the secondary component in GW190814 is an NS. Cao et al. [21] provided circumstantial
evidence suggesting the recently reported GW190814’s secondary component could be
an up-down quark star. Dexheimer et al. [22] showed that state-of-the-art relativistic
mean field models can generate massive stars reaching ≥2.05 M�, while being in good
agreement with gravitational-wave events and x-ray pulsar observations when quark vector
interactions and higher-order self-vector interactions are introduced. Roupas et al. [23]
showed not only that a color-flavor locked quark star with this mass is viable, but also they
calculated the range of the model parameters, namely the color superconducting gap ∆
and the bag constant B , that satisfies the strict LIGO constraints on the EoS.

In the study of Moffat [25], the modified gravity (MOG) theory is applied to the
gravitational wave binary merger GW190814. He demonstrated that the modified Tolman–
Oppenheimer–Volkoff (TOV) equation for a NS can produce a mass M = 2.5–2.7 M�
allowing for the binary secondary component to be identified as a heavy NS in the hy-
pothesized mass gap M = 2.5–5 M�. Astashenok et al. [26] showed that a NS with this
observed mass can be consistently explained with the mass-radius relation obtained by ex-
tended theories of gravity. Nunes et al. [27] found that from an appropriate and reasonable
combination of modified gravity, rotation effects, and realistic soft EoSs, it is possible to
achieve high masses and explain GW190814 secondary component.

Another issue worth mentioning is the transition of hadron matter to unconfined
quark matter at a sufficiently high density (a few times the saturation density, see previous
discussion). Recently, Annala et al. [28] claimed that the recent observation of gravitational
waves from NSs merger could shed light on the possibility of hadrons to quark phase
transition. Moreover, the emergence of strange hadrons (hyperons, etc.) around twice the
nuclear saturation density, leads to an appreciable softness of the EoS, and consequently, in
most cases the observed values of high mass NSs never reached. As NSs provide a rich
testing ground for microscopic theories of dense nuclear matter, combining this study with
the experimental data from ultra-relativistic heavy ion collisions may help significantly to
improve our knowledge on phase transition theory in hadronic matter. In particular, the
so-called hyperon puzzle may be addressed (or even more solved) in NS studies. To be
more specific, following the discussion of Ref. [29], the hyperon puzzle is related to the
difficulty to reconcile the measured masses of NSs with the presence of hyperons in their
interiors. The presence of hyperons in the interior of NSs is due to the fermionic nature of
nucleons. The chemical potential of neutron and proton increasing rapidly, as a function
of the density. When the chemical potential of neutrons becomes sufficiently large, the
most energetic neutrons can decay via the weak interaction into Λ hyperons and form and
new Fermi sea for this hadronic species. Other hyperons can be formed with similar weak
processes [29]. However, the inclusion of hyperons in NS matter was found that leads to
an appreciable decrease of maximum NS mass, incompatible with the recent observations.
It is stated that this is a common feature of various hyperon star structure calculations (see
Ref. [29] and reference therein). Thus, although the presence of hyperons in NSs seems
unavailable, their presence leads to low values of NS mass, far from observation. This
problem is briefly summarized as hyperon puzzle. Of course, there are other studies where
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the authors stated that hyperon consideration on the EoS is not in contradiction with the
predictions of very high NS masses (see Ref. [13]). In the the present study, we do not
consider the case of additional degrees of freedom (hyperons, quarks, etc.) in the interior of
NSs. In any case, additional theoretical calculation in combination with specific observation
may lead to the solution of the hyperon puzzle and the reveal of the existence of free quark
matter in the interior of NSs.

In the present work we concentrate our study on the case where the EoS of NS matter
is pure hadronic and the hydrostatic equilibrium is described by the general relativistic
equations (TOV equations) [30–34]. Moreover, we focus on two possible cases, that the
second partner to be a slow rotating NS and, in the extreme case, to be a very rapidly rotat-
ing one (even close to the Kepler limit). Firstly, we consider that the dense nuclear matter
properties are described by the MDI-APR [35] (MDI: momentum dependent interaction,
APR: Akmal, Pandharipande and Ravenhall) nuclear model. This model has recently been
applied successfully in similar studies and, according to our opinion, is a robust guide for
NS studies. However, since the behavior of dense nuclear matter at high densities remains
uncertain, the parametrization of the EoS via the speed of sound is almost inevitable, at
least in the framework of hadronic EoSs. To be more specific, we construct large number
of EoSs where for low densities (concerning the NS crust), we employ well established
results, but for the EoS concerning the core, we apply a twofold consideration. For the
outer part we employ the EoS predicted by the MDI-APR model and for the inner one, a
parametrization based on the speed of sound upper limits is applied. In this study, the
transition density and the upper limit of the speed of sound are the two free parameters.

In the first part of our study we concentrate on the effect of the speed of sound
and transition density on the bulk NS (non-rotating and rapidly rotating) properties
including the maximum mass, the Kepler frequency, the Kerr parameter, and the maximum
central density. We explore under which circumstances the prediction of the mass range
2.5–2.67 M� of the second partner is possible. More importantly, we provide the constraints
which are inferred by the above consideration.

In the second part of the paper we systematically study the tidal deformability of NSs
by employing the large set of EoSs. We mainly focus in the case of high mass candidates
existing as an individual star or as a partner in binary NSs system. Until now, there are no
observations of an individual, or as a partner of binary system, very massive NS (close to
2.5 M�). However, we consider that it is worth to examine this possibility, by focusing on
the predictions of the tidal deformability and the radius, quantities that are very sensitive
on the NS EoS. These quantities are excellent counters on dense matter properties. In
the present work, we provide predictions about both the individual and averaged tidal
deformability of a hypothetical binary NS system where the most massive partner has a
mass in the region 2.5–2.67 M�.

The article is organized as follows: in Section 2, we present the MDI-APR nuclear
model along with quantities at the rotating configuration while in Section 3, we present the
speed of of sound parametrization of the EoS. In Section 4 we provide the basic formalism
for the tidal deformability. The results and the discussion are provided in Section 5 while
Section 6 includes the concluding remarks of the present study. Finally, Section 7 contains
information about the rotating configuration code.

2. The MDI-APR Model and the Rapidly Rotating Neutron Star

The structure of the EoS and the properties of NSs are studied under the MDI model.
In this model, the energy per particle is available through the form [36,37]
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where u = n/ns, with ns denoting the saturation density (ns = 0.16 fm−3),
I = (nn − np)/n is the asymmetry parameter, X0 = x0 + 1/2, and X3 = x3 + 1/2. The
parameters A, B, σ, C1, C2, and B′ appear in the description of symmetric nuclear matter
(SNM) and are determined so that the relation E(ns, 0) = −16 MeV holds. Λ1 and Λ2
are finite range parameters equal to 1.5k0

F and 3k0
F, respectively, with k0

F being the Fermi
momentum at the saturation density. The rest of the parameters, x0, x3, Z1, and Z2 appear
in the description of asymmetric nuclear matter and, with a suitable parametrization, are
used in order to obtain different forms for the density dependence of symmetry energy
as well as the value of slope parameter L and the value of symmetry energy S2 at the
saturation density, defined as [35]

L = 3ns
dS2(n)

dn

∣∣∣∣
ns

and S2(n) =
1
2

∂2E(n, I)
∂I2

∣∣∣∣
I=0

, (2)

and as a consequence different parametrizations of the EoS stiffness. In fact, for a specific
value of L, the density dependence of symmetry energy is adjusted so that the energy of
pure neutron matter is comparable with those of the existing state-of-the-art calculations.

The MDI model, that combines both density and momentum dependent interaction
among the nucleons, is suitable for studying NS matter at zero (present study) as well
as at finite temperature. In particular, although it was introduced by Gale et al. [38,39]
to examine the influence of momentum dependent interactions on the momentum flow
of heavy-ion collisions, the model has been modified, elaborated, and applied also in
the study of the properties of nuclear matter at NSs. The advantages of the MDI model
are: (a) reproduces with high accuracy the properties of SNM at the saturation density,
including isovector quantities, (b) reproduces the microscopic properties of the Chiral
model for pure neutron matter and the results of state-of-the-art calculations of Akmal
et al. [40], (c) predicts maximum NS mass higher than the observed ones [41–43], and
(d) maintains the causal behavior of the EoS even at densities higher than the ones at the
maximum mass configuration.

In this work we apply the EoS produced in Ref. [35], where for the construction of the
EoS, the MDI model and data from Akmal et al. [40] had been used (for more details see
Ref. [35]). This EoS not only has the mentioned advantages, but also reproduces the mass
of the second component of GW190814 event.

In addition, as a possible scenario is the rotation, we apply rotating configuration in
the EoS. In fact, we are interested about the Kepler frequency and the maximum mass
of the NS at this configuration. This frequency is considered as the one where the star
would shed matter at its equator and consequently is the maximum one (mass-shedding
limit). An interesting quantity, which connects the gravitational mass with the angular
momentum of the star, is the Kerr parameter defined as

K =
cJ

GM2 , (3)

where M and J are the gravitational mass and angular momentum, respectively. For the
construction of the rotating equilibrium model we used the RNS code [44].

Furthermore, in Ref. [45] had been found an analytical relation which connects the
Kerr parameter with the gravitational mass of the non-rotating case (TOV), expressed as
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Mrot = MTOV

(
1 + a1

( K
Kmax

)2
+ a2

( K
Kmax

)4
)

, (4)

with a1 = 0.132, a2 = 0.071, and Kmax being the Kerr parameter at mass-shedding limit,
which is used by the authors to imply constraints on the possible Kerr parameter of the
second component, as well as the upper limit of a NS mass [16].

3. Speed of Sound Formalism and Stiffness of Equation of State

Another scenario that is followed to reproduce the mass of the second component is
the possible stiffness of the EoS. This is achievable by studying the upper and lower limit
on the speed of sound, as well as the possible transition density. In this consideration, we
have parametrized the EoS, according to Refs. [3,46–52], as

P(E) =





Pcrust(E), E ≤ Ec−edge

PNM(E), Ec−edge ≤ E ≤ Etr

( vs
c
)2
(E − Etr) + PNM(Etr), Etr ≤ E ,

(5)

where P and E denote the pressure and energy density, respectively, and Etr is the transition
energy density. For the construction of the EoSs, we adopted the following: (a) in region
E ≤ Ec−edge, we used the equation of Feynman et al. [53] and also of Baym et al. [54]
for the crust and low densities of NS, (b) in the intermediate region, Ec−edge ≤ E ≤ Etr,
we employed a specific EoS based on the MDI model and data from Akmal et al. [40],
and (c) for Etr ≥ E region, the EoS is maximally stiff with the speed of sound, defined as
vs = c

√
(∂P/∂E)S (where S is the entropy) fixed in the present work in the range [c/

√
3, c].

The lowest allowed value of the speed of sound, that is (vs/c)2 = 1/3, is introduced in
order to be consistent with the possibility of a phase transition in quark matter. In this
case, all the theoretical predictions lead to this value as an upper bound of the speed of
sound. The implementation of speed of sound values between the limited ones will lead
to results well constrained by the two mentioned limits. Although the energy densities
below the Ec−edge have negligible effects on the maximum mass configuration, we used
them in calculations for the accurate estimation of the tidal deformability. The cases which
took effect in this study can be divided into two categories based on the fiducial baryon
transition density, ntr = pns, and the speed of sound as: (a) the ones where p takes the
values [1.5, 2, 3, 4, 5], while the speed of sound is parametrized in the two limiting cases,
(vs/c)2 = 1/3 and (vs/c)2 = 1 and (b) the ones where p takes the values [1.5, 2], while the
speed of sound is parametrized in the range (vs/c)2 = [1/3, 1]. The predicted EoSs are
functional of ntr and (vs/c) and implemented to study the possibly existence of a NS with
∼2.6 M�, either non-rotating or a rotating one.

In approach followed in Equation (5), while the continuity on the EoS is well ensured,
the continuity in the speed of sound at the transition density, due to its artificial character, is
not. Therefore, in order to ensure the continuity and a smooth phase transition, we employ
a method presented in Ref. [55]. We proceeded with the matching of the EoSs on the
transition density by considering that, above this value, the speed of sound is parametrized
as follows (for more details see Ref. [55])

vs

c
=

(
a− c1 exp

[
− (n− c2)

2

w2

])1/2

, a ∈ [1/3, 1] (6)

where the parameters c1 and c2 are fit to the speed of sound and its derivative at ntr, and
also to the demands vs(ntr) = [c/

√
3, c] [46] according to the value of α. The remaining

parameter w controls the width of the curve, where in our case is equal to 10−3 fm−3

12



Symmetry 2021, 13, 183

in order to preserve the NS properties. Using Equation (6), the EoS for n ≥ ntr can be
constructed with the help of the following recipe [55]

Ei+1 = Ei + ∆E , Pi+1 = Pi +
(vs

c
(ni)

)2
∆E , (7)

∆E = ∆n
(Ei + Pi

ni

)
, (8)

∆n = ni+1 − ni. (9)

The treatment with both discontinuity and continuity in the speed of sound is pre-
sented in Table V of Ref. [46]. The outline was that the two approaches converge and
consequently the effects of the discontinuity are negligible.

In Figure 1 we present the pressure as a function of the rest mass density (ρrest = nbmn)
and the square speed of sound in units of speed of light as a function of the transition
density for the EoSs constructed in cases (a) and (b). In addition, we display the credibility
intervals proposed by Ref. [5] from LIGO/Virgo collaboration for the GW170817 event. It is
clear from these figures that the pure MDI-APR EoS is well-defined in the proposed limits
of LIGO/Virgo collaboration and also fulfills the speed of light limit at high densities.
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4. Tidal Deformability

It has mentioned that the gravitational waves emitted from the final stages of an
inspiraling binary NS system are one of the most important sources for the terrestrial gravi-
tational waves detectors [56–64]. In such case, properties like the mass of the component
stars can be measured. As Flanagan and Hinderer [58] articulated, the tidal effects can be
measurable during this final stage of the inspiral.

The response of a NS to the presence of the tidal field, is described by a dimen-
sionless tidal parameter, the tidal Love number k2. This parameter depends on the NS
structure; hence its mass and EoS. The tidal Love number k2 is the coefficient of proportion-
ality between the induced quadrupole moment Qij and the applied tidal field Eij [58,65],
given below

Qij = −
2
3

k2
R5

G
Eij ≡ −λEij, (10)

where R is the NS radius and λ = 2R5k2/3G is the other tidal parameter that we use in our
study, the so-called tidal deformability. The tidal Love number k2 is given by [58,59]

k2 =
8β5

5
(1− 2β)2[2− yR + (yR − 1)2β]×

[
2β(6− 3yR + 3β(5yR − 8))

+ 4β3
(

13− 11yR + β(3yR − 2) + 2β2(1 + yR)
)

+ 3(1− 2β)2[2− yR + 2β(yR − 1)]ln(1− 2β)
]−1

, (11)

where β = GM/Rc2 is the compactness parameter of a NS. The quantity yR is determined
by solving the following differential equation

r
dy(r)

dr
+ y2(r) + y(r)F(r) + r2Q(r) = 0, (12)

with the initial condition y(0) = 2 [61]. F(r) and Q(r) are functionals of E(r), P(r) and
M(r) defined as [56,61]

F(r) =
[

1− 4πr2G
c4 (E(r)− P(r))

](
1− 2M(r)G

rc2

)−1

, (13)

and

r2Q(r) =
4πr2G

c4

[
5E(r) + 9P(r) +

E(r) + P(r)
∂P(r)/∂E(r)

]
×
(

1− 2M(r)G
rc2

)−1

− 6
(

1− 2M(r)G
rc2

)−1

− 4M2(r)G2

r2c4

(
1 +

4πr3P(r)
M(r)c2

)2(
1− 2M(r)G

rc2

)−2

. (14)

The numerical solution requires that the Equation (12) must be integrated self con-
sistently with the TOV equations using the boundary conditions y(0) = 2, P(0) = Pc and
M(0) = 0 [56,59]. From the solution of TOV equations the mass M and radius R of the
NS can be extracted, while the corresponding solution of the differential Equation (12)
provides the value of yR = y(R). This parameter along with the quantity β are the basic
ingredients of the tidal Love number k2.

One parameter that is well constrained by the gravitational waves detectors is the chirp
massMc, which is a combination of the component masses of a binary NS system [66,67]

Mc =
(m1m2)

3/5

(m1 + m2)1/5 = m1
q3/5

(1 + q)1/5 , (15)
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where m1 is the mass of the heavier component star and m2 is the lighter’s one. Hence, the
binary mass ratio q = m2/m1 is within the range 0 ≤ q ≤ 1.

In addition, another binary parameter that can be measured from the analysis of the
gravitational wave signal is the effective tidal deformability [66,67]

Λ̃ =
16
13

(12q + 1)Λ1 + (12 + q)q4Λ2

(1 + q)5 , (16)

where the key quantity q characterizes the mass asymmetry, and Λi is the dimensionless
deformability defined as [66,67]

Λi =
2
3

k2

(
Ric2

MiG

)5

≡ 2
3

k2β−5
i , i = 1, 2. (17)

By combining Equations (17) and (11), one can find that Λi depends both on star’s
compactness and the value of y(R).

We notice that Λi depends directly on the stiffness of the EoS through the compact-
ness β and indirectly through the speed of sound which appears in Equation (14). The
dependence of Λi on the behavior of y(R) can lead to useful estimations or constraints on
the tidal deformability itself. To be more specific, the applied EoS affects also the behavior
of Λ regarding the NS’s mass M and radius R . In our study we use the secondary very
massive component of GW190814 system (see Ref. [1]) to examine the tidal deformability
and the behavior of dense nuclear matter in the extreme scenario of such a massive NS.

5. Results and Discussion

The merger of a very massive black hole (∼23 M�) with a ∼2.6 M� compact object
has recently been announced by the LIGO/Virgo collaboration, as the GW190814 event.
The scenarios that follow the second merger component are that of (a) the lightest black
hole, (b) the most compact NS, (c) a rapidly rotating NS, and (d) an exotic compact object.
In the present work we studied only the second and third case scenarios, that is either a
compact non-rotating NS or a rapidly rotating one.

5.1. Slow/Rapid Rotation: Implications to Neutron Star Properties

In Figure 2 we display the gravitational mass as a function of the Kerr parameter
for the pure MDI-APR EoS. In addition, we note the universal relation Equation (4) for
two limiting cases: (a) MTOV = 2.08 M� and (b) MTOV = 2.3 M� [16], and Kmax = 0.68.
The limiting cases were the minimum and maximum possible mass, respectively, for a NS
based on the calculations provided in Ref. [16]. In accordance, the maximum value of the
Kerr parameter was also calculated in Ref. [16] with respect to the minimum possible mass.
With regard to the pure MDI-APR EoS, the relevant dependence was constructed through
the RNS code having as input the angular momentum of the star until it reached its mass-
shedding limit. This figure represents the limited area where the compact object should
lie. The area was marked by the intersection of the gravitational mass, M = 2.59+0.08

−0.09 M�,
with the Kerr parameter, K = [0.49, 0.68] [16]. We note that the pure MDI-APR EoS was
in the range of the described limits for the gravitational mass and Kerr parameter, as well
as the ones introduced in Figure 1, being a suitable hadronic EoS to simulate the compact
object of ∼2.6 M�.
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Figure 2. Gravitational mass as a function of Kerr parameter for the MDI-APR (MDI: momentum
dependent interaction, APR: Akmal, Pandharipande and Ravenhall) equation of state (EoS). The
solid lines from bottom to top represent the Equation (4) with MTOV = 2.08 M� and MTOV = 2.3 M�.
The mass range of the second component of GW190814 is noted with the horizontal shaded region,
while with the vertical one (left), the possible region of Kerr parameter K = [0.49, 0.68] from Ref. [16]
is shown. In addition, the region for the Kerr parameter Kmax = [0.67, 0.69] from Ref. [35], if the low
mass component was rotating at its mass-shedding limit, is presented with the vertical shaded region
(right). The markers point the maximum mass configuration at the mass-shedding limit.

In addition, taking into consideration the limiting case that the compact object was
rotating at its mass-shedding limit, then constraints on the maximum value of the Kerr
parameter, the corresponding equatorial radius, and the central energy density were
possible. In particular, firstly we employed the relation found in Ref. [35]

Kmax = 0.488 + 0.074
(

Mmax

M�

)
, (18)

for the observable gravitational mass. For the mass of the second component, the Kerr
parameter lay in the range Kmax = [0.67, 0.69], which is also noted in Figure 2. Secondly,
using the derived relation from the recent Ref. [68], which connected the maximum value
of Kerr parameter with the one of compactness parameter, as

Kmax = 1.34
√

βmax with βmax =
G
c2

Mmax

Rmax
, (19)

it was possible to extract a specific range for the corresponding equatorial radius. In this
case, the corresponding equatorial radius lay in the range Rmax = [14.77, 14.87] km.

We concentrated now on the microscopic properties of the NS, the speed of sound and
the transition density. In Figure 3 we display the gravitational mass and Kerr parameter as
a function of the transition density for the two limiting cases of the speed of sound based on
Ref. [46]. From Figure 3a, the intersection of GW190814 mass area with the extracted curves
provided us two regions of the possible transition density with respect to the applied speed
of sound. By employing the formula from Ref. [46]

Mmax

M�
= α1 coth

[
α2

(
ntr

ns

)1/2
]

, (20)
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where the coefficients a1 and a2 are given in Table 1, we were able to restrict the transition
density with respect to the speed of sound. More precisely, we took under consideration
two possible cases: (a) non-rotating and (b) maximally-rotating NS. In the first case, as
Figure 3a shows, the possible transition density region was restricted between the two
limiting cases of the speed of sound. However, as the lower limit in the speed of sound
was not able to represent the gravitational mass of the low mass component, we found
the lower possible speed of sound value that reproduced this mass at the specific value of
the transition density. Consequently, the transition density was constrained in the range
ntr = [1.5, 3.2] ns and the speed of sound in the range (vs/c)2 = [0.45, 1].
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Figure 3. (a) Gravitational mass and (b) Kerr parameter as a function of transition density at the maximum mass configura-
tion for the two limiting speed of sound bounds. The data at the maximum mass configuration is presented with diamonds
for the (vs/c)2 = 1/3 bound and crosses for the (vs/c)2 = 1 bound. The plus marker denotes the lower bound in the speed
of sound, (vs/c)2 = 0.45, assuming that the second component was a non-rotating neutron star (NS). The mass range of
the second component of GW190814 is noted with the horizontal shaded region. (a) The lighter shaded region marks the
allowed range for the transition density at the maximally-rotating (M.R.) configuration, while the darker one, marks the
allowed region at the non-rotating (N.R.) configuration. (b) The darker shaded region marks the allowed range for the
transition density at the maximally-rotating (M.R.).

In the second case, the possible transition density could be constrained both from the
gravitational mass and the Kerr parameter. From Figure 3a it is clear that the transition den-
sity could take all the values in the area under consideration. However, from Figure 3b the
transition density was constrained from the lower limit of the speed of sound. According
to the derived formula from Ref. [46]

Kmax = α3 coth

[
α4

(
ntr

ns

)1/2
]

, (21)

where the coefficients a3 and a4 are given in Table 1, the rotating case allowed the existence
of the low mass component at the whole range of speed of sound values and at transition
densities in the range ntr = [1.6, 5] ns.
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Table 1. Coefficients of Equations (20) and (21) for the two speed of sound bounds. The abbreviation
“N.R.” corresponds to the non-rotating configuration and the “M.R.” to the maximally-rotating one.

Speed of Sound Bounds α1 α2 α3 α4
N.R. M.R. N.R. M.R. N.R. M.R. N.R. M.R.

c 1.665 1.689 0.448 0.352 – 0.683 – 1.053
c/
√

3 1.751 2.069 0.964 0.883 – 0.645 – 1.348
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Figure 4. Gravitational mass as a function of the central energy/baryon density at the maximum mass
configuration both at non-rotating and maximally-rotating case. Circles correspond to 23 hadronic
EoSs [35] at the non-rotating case (N.R.), squares to the corresponding maximally-rotating (M.R.)
one, stars to data of Cook et al. [69], and triangles to data of Salgado et al. [70]. In addition, rhombus
and pluses mark the non-rotating configuration at the two limiting values of the sound speed, while
crosses and polygons marks the maximally-rotating one. The horizontal dashed lines correspond
to the observed NS mass limits (2.01 M� [41], 2.14 M� [42], and 2.27 M� [43]). Equation (22) is
noted with the dashed-dotted line, while for comparison the Tolman VII analytical solution [35] is
shown with the solid line. The mass range of the second component of GW190814 is noted with the
horizontal shaded region.

One more interesting property of NSs is the central energy density, as it is connected
with the study of the time evolution of pulsars and the appearance of a possible phase
transition. In Ref. [35] a relation was found describing the upper bound for the density of
cold baryonic matter, as

M
M�

= 4.25

√
1015 gr cm−3

εc/c2 . (22)

Figure 4 presents the maximum gravitational mass as a function both of the central
energy density and the central baryon density. In particular, we present the results of
23 hadronic EoSs [35], for the non-rotating and maximally-rotating case, Tolman VII
analytical solution, Equation (22), data from Cook et al. [69] and Salgado et al. [70], as
well as the newly added data for the non-rotating and maximally-rotating case, both in
(vs/c)2 = 1/3 and (vs/c)2 = 1, at the transition densities under consideration. Adopting
the Equation (22) for the range of the gravitational mass of the low mass component
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in the GW190814 event, the central energy density could be constrained in the range
εc/c2 = [2.53, 2.89] 1015 gr cm−3, meaning that NSs with higher values of central energy
density could not exist. Furthermore, from Figure 4, we could also extract the corresponding
region for the central baryon density, that is nc = [7.27, 8.09] ns. Finally, all the extracted
EoSs met the limit for the central energy/baryon density as they are included in the region
described under Equation (22).

5.2. Tidal Effects and Speed of Sound: A Very Massive Neutron Star Hypothesis
5.2.1. Isolated Non-Rotating Neutron Star

Firstly, we concentrated our study of tidal deformability on the isolated non-rotating
NS case, by using two transition densities ntr = [1.5, 2]ns and eight values of speed of sound
bounds (vs/c)2 = [1/3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. The values of transition density were
taken to be close to the constraints of Ref. [71]. The numerical solution of TOV equations’
system, by using the previous bounds for sound speed, provided the mass-radius diagram
presented in Figure 5.

Figure 5. Mass vs. radius for an isolated non-rotating NS, for each transition density ntr and all speed
of sound cases. The higher values of speed of sound correspond to lighter curves’ color. The purple
horizontal line and region indicate the mass estimation of the massive compact object of Ref. [1]. The
dashdot (dotted) curve corresponds to the MDI-APR (APR) EoS.

In Figure 5 one can observe two main branches, related to the transition density;
the solid (dashed) curves correspond to the ntr = 1.5ns (ntr = 2ns) case. In each branch,
there are bifurcations in the families of EoSs, in analog to each speed of sound boundary
condition. The higher the speed of sound, the lighter the representing color of the curves in
the figure. The purple solid horizontal line, with the shaded region, indicates the estimation
of the recently observed massive compact object of Ref. [1]. As Figure 5 shows, the branch
of EoSs with ntr = 1.5ns provides stiffer EoSs compare to the ntr = 2ns branch. The EoSs
of the ntr = 1.5ns case are more likely to provide such a massive non-rotating NS, than
the ntr = 2ns case in which three EoSs of the total sum lay outside of the shaded region.
Especially, between the same kind of transition density ntr the EoSs with higher speed of
sound bounds led to higher values of NS mass and radius, hence a high bound of the speed
of sound (even more close to the causality as the transition density is getting higher) was
needed for the description of such a massive compact object.

From the observation of Figure 5 a trend across the maximum masses contained in
each branch of EoSs, characterized by the speed of sound bound, seemed to be inherent.
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Therefore, we constructed the appropriate diagram of Figure 6. The cross (star) marks
represent the maximum masses of ntr = 1.5ns (ntr = 2ns) case. As the speed of sound
bound was getting higher, the marks’ color lightened. Similarly to the previous figure, the
purple solid horizontal line, with the shaded region, indicates the estimation of the recently
observed massive compact object of Ref. [1]. The red (green) curves represent the following
fit formula for the ntr = 1.5ns (ntr = 2ns) case, given below

Mmax = c1dc2 + c3d + c4, (23)

where d = (vs/c)2. The coefficients are given in Table 2.

Figure 6. Dependence of a non-rotating NS’s maximum mass Mmax on the speed of sound values
(vs/c)2 for each transition density ntr (in units of saturation density ns). The red vertical shaded
region corresponds to the ntr = 1.5ns case, while the green one corresponds to the ntr = 2ns case.
The red (green) vertical line indicates the corresponding value of the speed of sound for a massive
object with M = 2.59 M�.

By using the mass estimation of the secondary component of GW190814 system,
in combination with the fitting formulas mentioned above, we obtained estimations on
the speed of sound values for each transition density ntr scenario. In particular, for a
non-rotating massive NS with M = 2.59 M� the value of the speed of sound must be
(a) (vs/c)2 = 0.485 (ntr = 1.5ns), and (b) (vs/c)2 = 0.659 (ntr = 2ns). The exact values’
interval is given in Table 2. We observed that for higher values of transition density ntr
the fitted curve and marks were shifted downwards; hence the higher the point of the
transition in density, the smaller the provided maximum mass. The higher values of speed
of sound were more suitable to describe such massive NSs, until a specific boundary value
of transition density ntr in which even the causality would not be suitable. Therefore, a
very massive non-rotating NS favored higher values of speed of sound than the vs = c/

√
3

limit. We noticed that a lower bound on the transition density ntr was needed to be able in
the description of the observed NS mergers [71]. Therefore there was a contradiction since
the transition density ntr must be above a specific lower limit and not big enough to predict
very massive masses. This kind of remark arose in the speed of sound value, respectively.
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Table 2. Parameters of the Equation (23) and bounds of speed of sound value of Figure 6. The parameters c1, c3, and c4 are
in solar mass units M�.

ntr c1 c2 c3 c4 (vs/c)2
min (vs/c)2 (vs/c)2

max

1.5ns −1.6033× 103 −7.56× 10−4 −1.64× 10−1 1.6068× 103 0.448 0.485 0.52
2ns 5.5754 0.2742 −0.6912 −1.9280 0.597 0.659 0.72

Moving on to the tidal parameters, we investigated the tidal Love number k2 and
the tidal deformability λ. In Figure 7 we display the two tidal parameters for the single
NS case that we examined. In both diagrams, the vertical purple shaded region and line
correspond to the GW190814 system’s secondary component compact object. There were
two main families of EoSs, distinguished by the transition density ntr. In general, the EoSs
with higher values of speed of sound bounds led to larger values on both tidal parameters.
Therefore, a NS with a higher speed of sound more easily deformable, rather than a more
compact star (smaller tidal deformation) with lower speed of sound. As Figure 7 shows,
the EoSs with smaller transition density ntr and higher (vs/c)2 values were more likely
to predict a very massive NS of M = 2.59 M�. We postulate that a further study with
higher transition density ntr would lead to smaller values of tidal parameters, therefore
to more compact stars and more difficult to be deformed. In this case, a very high value
of speed of sound, even close to the causal limit, would be necessary to predict such a
massive non-rotating NS.

Figure 7. Tidal parameters (a) k2 and (b) λ as a function of a NS’s mass. The purple vertical line and shaded region indicate
the estimation of the recently observed massive compact object of Ref. [1]. The solid (dashed) curves correspond to the
ntr = 1.5ns (ntr = 2ns) case. As the speed of sound is getting higher values, the curves’ color lightens.

5.2.2. A Very Massive Neutron Star Component

Regarding the binary NS system case, we considered the scenario of a very heavy
component NS, in agreement with the recent observation of GW190814 event [1]. Especially,
we consider a heavy mass of m1 = 2.59 M� and we let the second star to fluctuate
within the range m2 ∈ (1, 2.59) M�. By subtracting the component masses m1, m2 in
Equation (15) we obtained the corresponding range for the values ofMc. Since the masses
were defined, from the Equations (16) and (17), the effective tidal deformability Λ̃ could
be determined.

Figure 8a shows the effective tidal deformability Λ̃ as a function of the chirp massMc,
for all the possible binary NS systems with such a massive NS component. We noticed that
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from the total sum of EoSs that we studied in the single NS case above, in the binary case
we used only those who can predict a NS with 2.59 M� mass. In general, there were two
families of EoSs, distinguished by the transition density ntr. Inside each family of EoSs, the
EoSs with higher speed of sound value provided higher values of Λ̃. We noticed that for a
binary system with m1 = 2.59 M� and m2 = 1.4 M� the chirp mass wasMc = 1.642 M�.
In addition, binary NS systems with both heavy components, therefore higherMc, led to
smaller values of Λ̃. In such cases, possible limits on the lower bound of Λ̃ may be more
suitable to extract constraints on the EoS.

Figure 8. The effective tidal deformability Λ̃ as a function of (a) the chirp massMc and (b) binary mass ratio q, in the case
of a very massive NS component, identical to Ref. [1]. As the speed of sound bound is getting higher, the color of EoSs
lightens. The black dashed vertical line indicates (a) the corresponding chirp massMc and (b) mass ratio q, of a binary NS
system with m1 = 2.59 M� and m2 = 1.4 M� respectively.

In the same way, Figure 8b shows the dependence of Λ̃ to the corresponding binary
mass ratio q. We notice that this kind of Λ̃− q diagram is different from the usual ones (see
in comparison Figure 3 of Ref. [71]) because the chirp massMc has not a unique value. To
be more specific,Mc is a variable and each point of Figure 8b corresponds to a different
binary NS system with the heavier component in all cases to be a very massive NS of
2.59 M�. One can observe a similar behavior of the curves, in analogue to Figure 8a; two
main families and the EoSs with higher speed of sound provide higher values of Λ̃. As
the binary NS systems were more symmetric (q → 1), the binary tidal deformability got
smaller. The highest values of Λ̃ corresponded to the most asymmetric binary NS systems.
We notice that for a binary system with m1 = 2.59 M� and m2 = 1.4 M� the asymmetry
ratio was q = 0.541.

Beyond the general behavior of Λ̃ that we studied above, it is in our interest to
examine the radius and possible constraints that can be derived from it. Following the
previous steps, we focused on the R1.4 case of a m2 = 1.4 M� secondary component NS,
as these values can be extracted from Figure 5. The heavier component NS is taken to be
m1 = 2.59 M�. By combining these values with Figure 7b and Equations (16) and (17),
we obtained the Λ̃. In Figure 9 we display this dependence; the EoSs were in five main
groups, characterized by the transition density ntr. We noticed that we expanded our
study to transition densities ntr = [1.25, 1.75, 2.25] to be more accurate in calculations and
study in more detail the curves’ behavior. The higher speed of sound values correspond
to lighter marks’ color. In analog to the remarks of the previous Figure 8, the high speed
of sound bounds lead to higher Λ̃ and R1.4. Moreover, we applied a fitting expression to
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the (vs/c)2 = [0.8, 0.9, 1] cases. The expression was taken to be in the kind of the proposed
relations of Refs. [72,73].

Λ̃ = c5Rc6
1.4, (24)

where the coefficients for each case are given in Table 3. A recent study suggested a similar
power-law relation that connects the tidal deformability of a single NS to the R1.4 [74]. The
significance of the tidal deformability Λ1.4 and R1.4 in order to extract information about
microscopic quantities was studied in Ref. [75].

Figure 9. Effective tidal deformability Λ̃ vs. radius R1.4 of a m2 = 1.4 M� NS. The heavier component
of the system was taken to be m1 = 2.59 M�. The lighter colors correspond to higher values of speed
of sound bounds. The grey lines indicate the expression of Equation (24). The black dotted vertical
line shows the proposed upper limit of Ref. [76].

By applying an upper limit on R1.4 one can obtain an upper limit on Λ̃ for each case.
We adopted the general limit of Ref. [76] that led us to the constraints of Table 3.

Table 3. Parameters of the Equation (24) and bounds of Λ̃ of Figure 9.

(vs/c)2 c5 (km−1) c6 Λ̃

0.8 4.1897× 10−9 9.3518 109.536
0.9 5.3213× 10−9 9.2652 111.416
1 6.1109× 10−9 9.2159 112.729

6. Concluding Remarks

The GW190814 puzzle and its nature through the nuclear EoS has been addressed in
this study. In particular, an effort to explain the existence of a ∼2.6 M� NS, which falls into
the NS - black hole mass gap, had been made both for non-rotating and maximally-rotating
NSs. For this reason, the MDI-APR EoS and its parametrization for various values of
sound speed and transition density in the ranges (vs/c)2 = [1/3, 1] and ntr = [1.5, 5] ns,
respectively, have been studied.

Firstly, we compare the MDI-APR EoS with the applicable range of the proposed
Kerr parameter from Ref. [16], where the authors restraint it using an analytical relation
connecting this property with the maximum mass of a non-rotating NS. The results shown
that the MDI-APR EoS lies in the range of the gravitational mass of the low mass component,
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as well as the one for the Kerr parameter. In fact, the MDI-APR EoS proposes that the
∼2.6 M� compact star is a rapidly rotating NS, close to its mass-shedding limit.

By considering that the ∼2.6 M� compact star had been rotating at its mass-shedding
limit, possible constraints can be extracted for the corresponding equatorial radius. The
Kerr parameter at the mass-shedding limit can be expressed as a relation with the gravi-
tational mass, and hereafter a region of Kmax = [0.67, 0.69] is extracted. This region also
includes the upper limit of the relevant region from Ref. [16] in a narrow range. In addition,
using a relation that connects the Kerr parameter and the compactness parameter at its
mass-shedding limit, a possible tight region for the equatorial radius of the star is implied
as Rmax = [14.77, 14.87] km.

The upper limit on the central energy/baryon density is a very interesting property,
as it is connected with the evolution of the NS and the possible appearance of a phase
transition. From this analysis, the central energy density must be lower than the values
in the range εc/c2 = [2.53, 2.89] 1015 gr cm−3, while for the central baryon density, the
corresponding range is nc = [7.27, 8.09] ns. The latter can inform us about the stability of
the NS, as a NS with higher values of central energy/baryon density cannot exist, as well
as the appearance of the back-bending process.

The transition density, along with the speed of sound, can infer various structures for
the EoS. Assuming that the NSs is a non-rotating one, the transition density is constrained
in the region ntr = [1.5, 3.2] ns while the corresponding value of sound speed must be in
the range (vs/c)2 = [0.45, 1]. Otherwise, if the NS is considered as a maximally-rotating
one, although the speed of sound implies no constraints, the transition density must be
higher than 1.6 ns.

In the case of non-rotating NS, the construction of the M-R diagram showed at first
glance the cases that can describe the extreme scenario of our study. Moving to a more
detailed diagram of the mass vs. the speed of sound bounds, it was feasible to extract strin-
gent constraints on the speed of sound bounds for each case of transition density ntr. For
ntr = 1.5ns this bound is (vs/c)2 ∈ [0.448, 0.52] while for ntr = 2ns is (vs/c)2 ∈ [0.597, 0.72].
We observe that the first lower bound is in agreement with the bound extracted above,
which is a good validation of our result. We postulate that for higher transition densities
ntr it is more difficult to achieve such a massive non-rotating NS. As the transition density
ntr grows the speed of sound would need to be even close to the causal limit.

The study of the tidal parameters for a single non-rotating NS allowed us to examine
the behavior of EoSs in each case. This lead to the general conclusion that the lower
transition densities ntr lead to higher tidal parameters. Therefore the transition density
ntr = 2ns corresponds to a more compact and less deformable NS. Among the same kind
of transition density ntr, the EoSs with higher speed of sound values provide higher tidal
parameters. Hence, in a second level across the same kind of ntr EoSs, the higher speed of
sound bound signifies that the tidal deformation is higher and the star is less compact.

Concerning the binary NS system case, the adoption of a very massive component
with m1 = 2.59 M� allowed us to investigate a variety of possible binary NS systems
with such a heavy component. We notice that as the binary NS system consists of both
heavy component stars, therefore high chirp massMc, the effective tidal deformability Λ̃ is
taking smaller values. Hence, the binary deformation is smaller in such systems. Similarly,
the same behavior was noticed in the Λ̃− q diagram in which the increasing binary mass
symmetric ratio q leads to smaller values of Λ̃. In the case that the second component has a
mass m2 = 1.4 M�, the chirp mass of the systemMc and the ratio q areMc = 1.642 M�
and q = 0.541 respectively.

Lastly, we considered the case of a binary NS system with m1 = 2.59 M� with a
secondary component m2 = 1.4 M�. This selection permitted the study of the radius R1.4
and the extraction of possible constraints. In general, the transition density ntr = 1.5ns
provides higher values of R1.4 and Λ̃ than the ntr = 2ns case. The examination of other
transition densities ntr permitted us to confirm this behavior. In addition, the high values
of speed of sound (vs/c)2 exhibits a similar behavior; high speed of sound bounds provide
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higher values on both referred parameters. The adoption of an upper limit on the radius,
allowed us to extract some upper limits on Λ̃ for each case of sound speed. Nevertheless the
value of ntr, as the speed of sound bound is getting higher the upper limit on Λ̃ performs
an analogous course. We conclude that the existence of such a massive non-rotating NS
would require a significant differentiation from all the so far known cases, consisting in
any case a unique and very interesting challenge for physics.

7. Materials and Methods

The numerical integration of the equilibrium equations for NSs is under the publicly
available RNS code [44] by Stergioulas and Friedman [77]. This code was developed based
on the method of Komatsu, Eriguchi, and Hachisu (KEH) [78], while modifications were
introduced by Cook, Shapiro, and Teukolsky [79]. The input of the code was the EoS in
a tabulated form which included the energy density, the pressure, the enthalpy, and the
baryon density.
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Abstract: Background: We analyze several constraints on the nuclear equation of state (EOS) cur-
rently available from neutron star (NS) observations and laboratory experiments and study the
existence of possible correlations among properties of nuclear matter at saturation density with NS
observables. Methods: We use a set of different models that include several phenomenological EOSs
based on Skyrme and relativistic mean field models as well as microscopic calculations based on
different many-body approaches, i.e., the (Dirac–)Brueckner–Hartree–Fock theories, Quantum Monte
Carlo techniques, and the variational method. Results: We find that almost all the models considered
are compatible with the laboratory constraints of the nuclear matter properties as well as with the
largest NS mass observed up to now, 2.14+0.10

−0.09 M� for the object PSR J0740+6620, and with the upper
limit of the maximum mass of about 2.3–2.5 M� deduced from the analysis of the GW170817 NS
merger event. Conclusion: Our study shows that whereas no correlation exists between the tidal
deformability and the value of the nuclear symmetry energy at saturation for any value of the NS
mass, very weak correlations seem to exist with the derivative of the nuclear symmetry energy and
with the nuclear incompressibility.

Keywords: nuclear matter; neutron star; equation of state; gravitational waves; binary mergers

1. Introduction

A neutron star (NS) is the collapsed core of a massive star (8 − 25M�, with
M� ≈ 2 × 1033 g the mass of the sun), which at the end point of its evolution cannot
be supported by hydrostatic pressure and collapses, producing a supernova explosion. A
huge amount of gravitational energy is released, mainly in the form of neutrino radiation,
and this leads to the complete destruction of the progenitor star. NSs may have masses in
the range M ∼ 1 − 2M� and radii of about 10–15 km. A huge amount of data has been
collected from more than 50 years of NS observations, performed with ground-based and
on-board telescopes covering all bands of the electromagnetic spectrum. In 2017, the obser-
vations witnessed an important breakthrough thanks to the direct detection (GW170817) of
gravitational waves from such an event by the Advanced LIGO and Virgo collaborations
Ref. [1–3]. In fact, it has been found that the observations of NS mergers can potentially
provide strong constraints on the nuclear equation of state (EOS), as discussed in Refs. [4,5].

The EOS of isospin-asymmetric nuclear matter plays a major role not only in the study
of NS structure and composition but also in the evolution of core-collapse supernovae
and binary compact-star mergers [6,7]. Additionally, matter flows generated in heavy ion
collisions (HIC) and the properties of nuclei in their ground state are strongly affected by the
relevant features of the EOS, in particular the symmetry energy and its first derivative and
the compressibility. In principle, it can be expected that in high-energy HICs as well as in
supernova explosions and binary NS mergers, thermal effects are quite important, and thus
they should be correctly included in the EOS. Besides that, the large density reached in
the inner core of a NS can pose several theoretical problems because a complete theory
of nuclear interactions based on QCD cannot be solved yet on the lattice for arbitrarily
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large values of density, temperature and isospin asymmetry, because of the well-known
sign problem. Therefore, one has to rely on theoretical models and methods of the nuclear
many-body theory in order to build the nuclear EOS.

Among possible observables regarding NSs, the mass and radius are the most promis-
ing ones, and they could ideally be used to infer the NS EOS within a certain observational
uncertainty. While the masses of several NSs are known with good precision [8–12], infor-
mation on their radii is less accurate [13,14]. However, simultaneous measurement of both
quantities for several objects is required in order to constrain the EOS of NS matter and
allow robust conclusions. The recent observation of gravitational waves (GWs) emitted
during the merger of two corotating NSs [1–3] has opened the door to new possibilities
of obtaining information on their masses and radii, by means of the measurement of the
tidal deformability [15,16], and us allowed to deduce upper and lower limits on it [2,17].
The tidal deformability measures the linear response of the quadrupole deformation to a
(weak) external gravitational field, and thus could be well constrained by the new data. It is
therefore of interest to examine these quantities and their relations with other observables
in theoretical calculations of the EOS. Moreover, the improved accuracy for the radius
reached in recent observations by NICER (Neutron Star Interior Composition Explorer)
Ref. [18,19], and the future planned missions like eXTP [20], will allow us to statistically
infer NS mass and radius to better accuracy.

In this work we analyze the available constraints on the nuclear EOS, and compare
with those derived from both phenomenological and ab-initio theoretical models. Possible
correlations among the properties of nuclear matter close to saturation density with related
quantities deduced from NS observations and nuclear physics experiments will be analyzed.
We limit ourselves to the description of NS matter considering only nucleonic degrees of
freedom, thus ignoring the possible appearance of hyperons [21] and a phase transition to
the quark phase [22].

The article is organized as follows. In Section 2 we briefly review the different the-
oretical approaches for the nuclear EOS and illustrate the ones we adopt in the present
study. We then discuss the experimental constraints on the nuclear EOS in Section 3. A brief
overview of different EOSs of betastable matter is given in Section 4, and in Section 5 we dis-
cuss the comparison and correlations between NS EOS, nuclear physics and astrophysical
constraints. Conclusions are drawn in Section 6.

2. Equations of State

The most commonly used theoretical approaches to determine the nuclear EOS can be
classified into phenomenological and microscopic ones. (Non-)relativistic phenomenolog-
ical approaches are based on effective interactions that are built to describe finite nuclei
in their ground state, and therefore predictions at high isospin asymmetries should be
considered with care [23]. In fact, at larger densities no experimental data are available, and
therefore their behaviour can be very different. Skyrme interactions [24,25] and relativistic
mean-field (RMF) models [26] are among the most used ones.

In this work we use a limited sample of Skyrme forces, namely GS and Rs [27],
SLy4 [28] of the Lyon group, the old SV [29], SkI4 [30] of the SkI family, SkMP [31] and
SkO [32]. We also include three EOSs derived within the modern Brussels-Montreal family
of unified models, i.e., BSk22,24,26, which are commonly used in NS calculations [33].
We also consider two types of RMF models, which are based on effective Lagrangian
densities where the interaction between baryons is described in terms of meson ex-
changes. In particular, we adopt models with constant meson-baryon couplings described
by the Lagrangian density of the nonlinear Walecka model (NLWM), and models with
density-dependent couplings [hereafter referred to as density-dependent models (DDM)].
Within the first type, we consider the models GM1 and GM3 [34]. For the DDM, we con-
sider the models DDME1, DDME2 [35] and TW99 [36]. A further phenomenological RMF
EOS, the SFHO EOS [37], has been used for comparison. A larger sample of RMF models,
consistent with the analysis of Ref. [38], has been studied in Refs. [39,40], where the Love

30



Symmetry 2021, 13, 400

number and corresponding tidal deformabilities show very good agreement with the recent
data from the GW170817 merger event.

Realistic two- and three-nucleon forces, that describe nucleon scattering data in free
space and the properties of the deuteron, are the essential input for the microscopic
approaches. These interactions are based on meson-exchange theory [41,42], or the recent
chiral perturbation theory [43–46]. The main theoretical challenge is the treatment of the
short-range repulsive core, which characterizes the nucleon-nucleon interaction, and this
makes the difference among the available many-body approaches. The most well-known
are the Brueckner–Hartree–Fock (BHF) [47] and its relativistic version, the Dirac–Brueckner–
Hartree–Fock (DBHF) [48–50] theories, the variational method [51], the self-consistent
Green’s function technique [52,53], the Quantum Monte Carlo techniques [54,55], the chiral
effective field theory [56] and the Vlow k approach [57].

In this paper we adopt several BHF EOSs based on different nucleon-nucleon poten-
tials, namely the Bonn B (BOB) [41,58], the Nijmegen 93 (N93) [42,59], and the Argonne
V18 (V18) [60]. In all those cases, the two-body forces are supplemented by nucleonic three-
body forces (TBF), which are needed in all non-relativistic many-body methods in order to
reproduce correctly the saturation properties of nuclear matter. Since a complete theory of
TBF starting from first principles is not available yet, we adopt either phenomenological
or microscopic models [61–64]. The phenomenological approach is based on the Urbana
model (labelled as UIX) [62,65,66], whereas the microscopic TBF employes the same meson
exchange as in the two-body force, as described in detail in Refs. [64,67]. Within the BHF
framework, we also examine an EOS based on a potential model which includes explicitly
the quark-gluon degrees of freedom, named FSS2 [68,69]. This reproduces correctly the
saturation point of symmetric nuclear matter (SNM) and the binding energy of few-nucleon
systems, and does not need TBF. We use two different EOS versions labelled respectively as
FSS2CC and FSS2GC. Moreover, we compare these BHF EOSs with the often-used results of
the Dirac-BHF method (DBHF) [49], which employs the Bonn A potential, in the following
labelled DBHF(A), and a more recent calculation performed with the Bonn B potential [50],
and labelled DBHF(B). We also compare with the APR EOS [51] based on the variational
method and the V18 potential, and a parametrization of a recent Auxiliary Field Diffusion
Monte Carlo (AFDMC) calculation [70].

3. Bulk Properties of Nuclear Matter

Around saturation density ρ0 and isospin asymmetry δ ≡ (ρn − ρp)/ρ = 0, being ρn(ρp)
the neutron (proton) density and ρ the total nucleonic density, the nuclear EOS can be
characterized by a set of few isoscalar (E0, K0) and isovector (S0, L, Ksym) parameters,
which can be constrained by nuclear experiments. The parameters are related to the
coefficients of a Taylor expansion of the energy per particle of asymmetric nuclear matter
as a function of density and isospin asymmetry,

E(ρ, δ) = ESNM(ρ) + Esym(ρ)δ2 , (1)

ESNM(ρ) = E0 +
K0

2
x2 , (2)

Esym(ρ) = S0 + Lx +
Ksym

2
x2 , (3)

where x ≡ (ρ − ρ0)/3ρ0, E0 is the energy per particle of symmetric nuclear matter at ρ0,
K0 the incompressibility and S0 ≡ Esym(ρ0) is the symmetry energy coefficient at saturation.
These parameters are defined as
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K0 ≡ 9ρ2
0

d2ESNM

dρ2 (ρ0) , (4)

S0 ≡ 1
2

∂2E
∂δ2 (ρ0, 0) , (5)

L ≡ 3ρ0
dEsym

dρ
(ρ0) , (6)

Ksym ≡ 9ρ2
0

d2Esym

dρ2 (ρ0) . (7)

The values of these parameters at ρ0 for the various considered EOSs are listed in Table 1.

Table 1. Saturation properties and NS observables predicted by the considered EOSs.

Model EOS ρ0 [fm−3] −E0 [MeV] S0 [MeV] L [MeV] K0 [MeV] Mmax [M�] Λ1.2 Λ1.4 Λ1.6

Micro. BOB 0.170 15.4 33.6 70 238 2.50 1366 570 252
V18 0.178 13.9 32.3 67 207 2.36 1082 442 188
N93 0.185 16.1 36.5 77 229 2.25 1234 473 190
UIX 0.171 14.9 33.5 61 171 1.96 848 309 112
APR 0.159 15.9 33.4 51 233 2.20 720 274 110
DBHF(A) 0.181 16.2 34.4 69 218 2.31 1635 681 295
DBHF(B) 0.186 16.2 32.8 67 272 - 830 327 133
FSS2CC 0.157 16.3 31.8 52 219 1.94 814 295 106
FSS2GC 0.170 15.6 31.0 51 185 2.08 697 262 101
AFDMC 0.160 16.0 31.3 60 239 2.21 822 293 109

Skyrme Gs 0.158 15.6 31.2 94 239 2.13 1769 659 253
Rs 0.158 15.1 30.8 86 248 2.12 1652 618 238
SLy4 0.160 16.0 31.8 45 232 2.05 756 287 111
SV 0.155 16.0 33.0 97 305 2.43 2224 914 393
SkI4 0.158 16.2 33.7 106 245 2.17 1203 474 194
SkMP 0.158 15.6 34.3 82 244 2.11 1295 487 188
SkO 0.157 15.8 29.7 70 230 2.01 1252 451 164
BSk22 0.158 16.1 32.0 69 246 2.26 1553 632 268
BSk24 0.158 16.1 30.0 46 246 2.28 1260 523 227
BSk26 0.159 16.1 30.0 38 241 2.17 830 327 133

NLWM SFHO 0.157 16.2 32.8 53 244 2.06 862 334 132
GM1 0.153 16.3 32.5 94 300 2.36 2223 913 393
GM3 0.153 16.4 32.5 90 241 2.02 1688 617 228

DDM DDME1 0.152 16.2 33.1 55 245 2.47 1765 773 355
DDME2 0.152 16.1 32.3 51 251 2.51 1834 806 374
TW99 0.153 16.2 32.8 55 240 2.08 1041 404 162

Exp. ∼ 0.14–0.17 ∼ 15–17 28.5–34.9 30–87 220–260 > 2.14+0.10
−0.09 70–580

Ref. [71] [71] [6,72] [73,74] [6,72] [12] [2]

From the measurements of nuclear masses [75] and density distributions [76] the
values E0 = −16 ± 1 MeV and ρ0 = 0.14 − 0.17 fm−3 are obtained, whereas the value of
K0 can be extracted from the analysis of isoscalar giant monopole resonances in heavy
nuclei. For the latter, results suggest K0 = 240 ± 10 MeV [77], or K0 = 248 ± 8 MeV [78],
thus pointing to a rather soft EOS, as confirmed by HIC experiments [79].

Experimental information on the symmetry energy at saturation S0 and its first
derivative L can be obtained from the analysis of giant [80] and pygmy [81,82] dipole
resonances, isospin diffusion measurements [83], isobaric analog states [84], measure-

32



Symmetry 2021, 13, 400

ments of the neutron skin thickness in heavy nuclei [85–88] and the meson production in
HICs [89]. However, whereas S0 is more or less well established (≈ 3 MeV), the values of L
(30 MeV < L < 87 MeV), and especially those of Ksym (−400 MeV < Ksym < 100 MeV) are
still quite uncertain and poorly constrained [90,91], and therefore we disregard them in
our analysis.

From Table 1, we notice that all the adopted EOSs in this work agree fairly well with
the empirical values, except the slightly too low E0 and K0 for V18, too large S0 for N93,
and too low K0 for UIX and FSS2GC. We notice that several phenomenological models
predict too large L values, whereas all the microscopic EOSs are largely compatible. This is
clearly displayed in Figure 1, where L is plotted as a function of the symmetry energy
at saturation S0. The shaded areas represent the experimental data currently available.
In particular, we report the constraints inferred from the study of isospin diffusion in
HICs [92] (blue band), electric dipole polarizability [93] (violet band), the neutron-skin
thickness in Sn isotopes [94] (grey region), the finite-range droplet mass (FRDM) model [95]
and the isobaric-analog-state (IAS) phenomenology combined with the skin-width data
(green diagonal region) [96]. Moreover the horizontal (red) band is obtained from a
Bayesian analysis of mass and radius measurements of NSs [97], and the dashed curve
is the unitary gas bound on symmetry energy parameters [90]. Only values of (S0, L) to
the right of the curve are permitted, and therefore all the microscopic and some of the
phenomenological models fulfill these constraints. We observe that there is no area of
the parameter space where all constraints are simultaneously fulfilled, and this is likely
due to the current uncertainties that plague the interpretation of the raw data. It should be
stressed that the constraints on the EOS result from combining the raw data with theoretical
models, and therefore they show some model dependence. On this basis, no theoretical
model can be ruled out.

Figure 1. The relation between the symmetry energy at saturation density S0 and its slope L. The full
symbols represent the predictions of microscopic approaches (black circles), Skyrme EOSs (green
triangles), NLWM models (red squares) and DDM approaches (blue diamonds), see Table 1 for the
numerical values. The shaded areas represent experimental bands, see text for details.
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We report in Figure 2 the symmetry energy Esym as a function of the baryon density.
The results in the left (right) panel are plotted for the microscopic (phenomenological)
EOSs, and are compared with the experimental data displayed by the shaded areas. In
particular, the grey area represents the diffusion data of HICs, the green area includes the
flow data obtained by the FOPI-LAND collaboration [98] on the collective flow, and the
blue area is the experimental region checked by the ASY-EOS collaboration [99]. The full
orange contour shows the results on the isobaric analog states (IAS), obtained in Ref. [96].
We see that most of the EOSs, both microscopic and phenomenological ones, are compatible
with experimental data up to around the saturation density, whereas for larger densities
some EOSs tend to predict smaller values for the symmetry energy that are below the
experimental areas. This is a clear sign of discrepancy, which results in a much larger
difference at larger values of the baryon density, such as the ones characterizing the inner
core of a NS. We stress once again that the inferred constraints are model dependent, since
the data interpretation requires theoretical simulations.

Figure 2. The symmetry energy vs. the baryon density for all the discussed EOSs. The green, blue and
grey bands represent experimental data from HICs, whereas the orange contour represents the IAS
calculations. See text for details.

4. EOS for Betastable Matter

Once the EOSs for symmetric and pure neutron matter are defined, one can calcu-
late the composition and the EOS of cold, neutrino-free, catalyzed matter. For charge-
neutral matter in beta-equilibrium with neutrons, protons, and leptons (e−, µ−), the EOS
is computed in the following standard way [100]. One starts from the energy density
of lepton/baryon matter as a function of the different partial densities ρi of the species
i = n, p, e, µ,

ε(ρn, ρp, ρe, ρµ) = (ρnmn + ρpmp) + (ρn + ρp)E(ρn, ρp) + ε(ρe) + ε(ρµ) , (8)

where mi are the corresponding masses, E(ρn, ρp) is the energy per particle of asymmetric
nuclear matter, and the leptonic contribution is calculated assuming ultrarelativistic and
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relativistic expressions for the energy densities of electrons ε(ρe) and muons ε(ρµ), respec-
tively [100]. We have used the parabolic approximation [101,102] of the energy per particle
of asymmetric nuclear matter in Equation (1), with the symmetry energy calculated simply
as the difference between the energy per particle of pure neutron matter and symmetric
nuclear matter,

Esym(ρ) ≈ E(ρn = ρ, ρp = 0)− E(ρn = ρ/2, ρp = ρ/2) . (9)

From the energy density, Equation (8), the various chemical potentials can be computed,

µi =
∂ε

∂ρi
, (10)

and imposing the beta-equilibrium conditions, µi = biµn − qiµe (bi and qi denoting baryon
number and charge of species i), along with the charge neutrality, ∑i ρiqi = 0, one can find
the equilibrium composition ρi at fixed baryon density ρ, and finally the EOS,

p(ε) = ρ2 d
dρ

ε(ρi(ρ))

dρ
= ρ

dε

dρ
− ε = ρµn − ε . (11)

Once the EOS of betastable matter is known, one can solve the Tolman-Oppenheimer-
Volkoff (TOV) [100] equations which describe the structure of a non-rotating spherically
symmetric star in general relativity

dp
dr

= −G
εm
r2

(
1 +

p
ε

)(
1 +

4πpr3

m

)(
1 − 2Gm

r

)−1
,

dm
dr

= 4πr2ε , (12)

where G is the gravitational constant, p the pressure, ε the energy density and m the mass
enclosed within a sphere of radius r. For each given central density, the integration of
the TOV equations gives the mass and radius of the star corresponding to that density;
this way one can construct an entire family of static configurations. It turns out that the NS
mass has a maximum value as a function of the radius (or central density), above which the
star is unstable against collapse to a black hole. The value of the maximum mass depends
strongly on the nuclear EOS, hence the observation of a mass higher than the maximum
mass allowed by a given EOS simply rules out that EOS.

We notice that the above mentioned theoretical methods cannot describe inhomoge-
neous and clusterized matter, and therefore for the low-density part ρ < ρt ≈ 0.08 fm−3,
one has to adopt the well-known Negele-Vautherin EOS [103] in the medium-density
regime (0.001 fm−3 < ρ < ρt), and the ones by Baym-Pethick-Sutherland [104] and
Feynman-Metropolis-Teller [105] for lower densities ρ < 0.001 fm−3.

5. Constraints on the EOS from Terrestrial Laboratories and Astrophysical Observations

As already mentioned in Section 3, HICs at energies ranging from few tens to several
hundreds MeV per nucleon have been exploited for extracting the gross properties of the
nuclear EOS from the data. In fact, at a large enough energy, the two colliding nuclei
produce flows of matter due to the large compression, resulting in a strong emission
of nucleons and fragments of different sizes. The transverse flow, which is measured,
depends sensitively on the pressure developed in the fireball at the moment of maximum
compression during the collision. Additionally, the subthreshold K+ production in heavy
ion reactions has been demonstrated to probe the fireball density reached during the
collision, with this being the ideal situation for exploring the EOS and its incompressibility.

In Ref. [106] the flow and kaon production analysis was summarized by plotting
the region in the pressure versus density plane. A reasonable EOS should pass through
it, and this is displayed in Figure 3 (left panels) as an orange area for the subthreshold
kaon production [107], and as a grey area for the flow data [98]. Those results point in the
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direction of a soft EOS, i.e., values of the compressibility in the range 180 ≤ K ≤ 250 MeV
at density close to saturation. Those values are compatible with the ones extracted from
the data on monopole oscillations [77]. In the upper (lower) panels of Figure 3 we plot the
results for the microscopic (phenomenological) EOSs. We notice that most of the adopted
EOSs are compatible with laboratory data, but some of them are too repulsive and therefore
incompatible with experiments. In particular, among the considered microscopic EOSs,
UIX, APR, and N93 are well compatible with the data extracted from HICs over the whole
density range, whereas BOB, DBHF, and V18 are only marginally compatible large density
(actually never reached in HICs), and those are characterized by a larger stiffness.

The EOS also rules the dynamics of NS mergers, in particular the final fate of the
merger, a prompt or delayed collapse to a black hole or a single NS, as well as the amount
of ejected matter which undergoes the nucleosynthesis of heavy elements, which strongly
depends on the EOS. During the inspiral phase, the influence of the EOS is evident on
the tidal polarizability, Λ = 2

3 k2β−5, where k2 is the Love number and β = GM/R is the
compactness. An upper limit of Λ < 800 was initially given in the first GW170817 analysis
for a 1.4 M� NS [1], but later on the analysis was improved by assuming that both NSs
have the same EOS, thus giving different limits of Λ = 190+390

−120, which translates into a
measure of radius R = 11.9+1.4

−1.4 km [2]. In this latter analysis, the values of the pressure as
a function of density were extracted, and those are displayed as the blue hatched areas in
Figure 3 (right panels). We notice that in this case the comparison has to be performed for
the betastable case. We observe that almost all microscopic EOSs, except UIX, turn out to
be compatible with the GW170817 data at density ρ > 2ρ0, whereas the nuclear collision
data look more restrictive. Additionally, for the phenomenological case some EOSs turn
out to be marginally compatible with the observational data, as for the flow data in the
symmetric case.

A very important constraint to be fulfilled is the value of the maximum mass for the
different EOSs, which has to be compatible with the observational data. In Figure 4 we
display the mass-radius relations obtained with microscopic and phenomenological EOSs,
shown respectively as solid and broken curves. We observe that most models give values
for the maximum mass larger than 2 M�, except the soft microscopic UIX and FSS2GC,
which therefore are compatible with current observational data [9–11], in particular with
the largest mass observed up to now, 2.14+0.10

−0.09 M� at 68% confidence interval for the
object PSR J0740 + 6620 [12] (dark orange band). For completeness, we also display the
observational limits at 95% confidence interval (light orange band). Analogous limits are
plotted also for the object PSR J0348 + 0432 [11] (grey bands), which are more restrictive at
high confidence level. Apart from these lower limits, some recent theoretical analyses of the
GW170817 event indicate an upper limit on the maximum mass of about 2.33 M� (68%) or
2.5 M� (95%) (displayed by red horizontal lines) [108–111], with which several of both the
microscopic and phenomenological EOSs would be compatible as well. We also display
the Bayesian parameter estimation of the mass and equatorial radius of the millisecond
pulsar PSR J0030 + 0451 [18,19], as recently reported by the NICER mission. The M, R
values inferred from the analysis of the collected data (green and light grey zones) are
1.36+0.15

−0.16 M� and 12.71+1.14
−1.19 km [18], or 1.44+0.15

−0.14 M� and 13.02+1.24
−1.06 km [19].

Let us now turn to the discussion of the tidal deformability and its possible corre-
lations with nuclear matter properties in its ground state. As already anticipated, the
analysis of the GW170817 event [1–3] produced a value of Λ̃ < 730, assuming equal mass
merging. If both NSs have the same EOS, this leads to the constraints 70 < Λ1.4 < 580
and 10.5 < R1.4 < 13.3 km [2] for a 1.4 M� NS. A more stringent lower limit Λ̃ > 400 [17]
on the average tidal deformability was imposed by the high luminosity of the kilonova
AT2017gfo following the NS merger event. This constraint could indicate that R1.4 & 12 km
[112–115], but it has to be taken with great care [116,117].
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Figure 3. Pressure vs. baryon density for the symmetric case (left panels), and the beta-stable case
(right panels). The upper (lower) panels display results for microscopic (phenomenological) EOSs.
Constraints derived from HIC data are displayed in the left panels as orange (KaoS experiment) and
grey (flow data) bands. Limits deduced by the GW170817 event are labelled by blue bands in the
right panels. See text for details.

The possibility of finding correlations between properties of nuclear matter and NS
observables has been recently explored [118,119]. In the following we further explore this
issue, using the set of microscopic and phenomenological EOSs listed in Table 1. In Figure 5
we show the tidal deformability of a 1.2 (upper panels), 1.4 (central panels) and 1.6 (lower
panels) solar-mass NS as a function of the symmetry energy at saturation S0 (left panels),
its first derivative L (central panels) and K0 (right panels). The light- and dark-shaded
bands in the central panels represent the limits inferred from the observational data of the
GW170817 event [2] together with the experimental limits reported in Table 1. The degree
of correlation is quantified by the correlation factor

r(x, y) =
1

n − 1
∑x ∑y(x − x̄)(y − ȳ)

σxσy
, (13)

with n being the number of data pairs, x̄ and ȳ being the mean values of x and y, and σx
and σy being their standard deviations. We obtain the following values
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.png
Figure 4. Mass-radius relations predicted by the different EOSs listed in Table 1. The observed
masses of the millisecond pulsar PSR J0740 + 6620 [12] and of J0384-0432 [11] are also shown, as well
as constraints inferred from the analysis of the GW170817 event and observations reported by the
NICER mission [18,19]. See text for details.

r([S0, L, K0], Λ1.2) = [0.006, 0.635, 0.709] , (14)

r([S0, L, K0], Λ1.4) = [0.206, 0.551, 0.702] , (15)

r([S0, L, K0], Λ1.6) = [0.145, 0.459, 0.682] . (16)

As can be seen the correlation factor is rather small in the case of S0 for the three
values of the tidal deformability, indicating that no correlation at all exists between Λ and
S0 for any value of the NS mass. Instead, a very weak correlation of Λ seems to exist with
L and a slightly stronger, although still weak, exists with K0. We observe that in the case of
Λ1.4 all but two (SFHO and TW99) of the NLWM and DDME models are incompatible with
the observational constraint [2]. On the contrary, most of the Skyrme models lie within
the shaded bands, except for a few cases. Regarding the microscopic models, they are
almost all in agreement with the GW observations and experimental constraints on S0 and
L, although only four are compatible with the constraints on K0.
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Figure 5. See Table 1 for the numerical values. displayed as a function of S0, L and K0 for the various
EOSs. See Table 1 for the numerical values.

6. Conclusions

In this work, we have analyzed several constraints on the nuclear EOS currently
available from NS observations and laboratory experiments. For this purpose, we have
used a set of different models that include several phenomenological EOSs based on
Skyrme and relativistic mean field models as well as microscopic calculations based on the
(Dirac–) Brueckner–Hartree–Fock theories, the variational method and Quantum Monte
Carlo techniques. To select the most compatible EOSs among the ones considered in this
work, we have employed in particular the experimental constraints on several proper-
ties of nuclear matter at saturation density derived from different experiments as well
as observational constraints on the mass, radius and tidal deformability imposed by re-
cent measurements of the masses of millisecond pulsars [12], the data of the NICER
mission [18,19] and the GW170817 NS merger event [1–3]. We have found that almost all
considered models are compatible with the laboratory constraints of the nuclear-matter
properties as well as with the largest masses observed up to now, 2.14+0.10

−0.09 M� for the
object PSR J0740 + 6620 [12], and with the upper limit of the maximum mass of about
2.3–2.5 M� [108–111] deduced from the analysis of the GW170817 event. Our study of
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possible correlations among properties of nuclear matter at saturation density with NS
observables, particularly with the tidal deformability, has shown that no correlation exists
between Λ and S0 for any value of the NS mass, but weak correlations of Λ do exist with L
and with K0.

We would like to finish by noticing that while the isoscalar part of the nuclear EOS is
rather well constrained by the major experimental, observational and theoretical advances,
the isovector one is less well known mainly due to our still limited knowledge of the
nuclear force and, particularly, of its in-medium modifications and its spin and isospin
dependence. Future NS observations, such as the precise simultaneous measurement
of the mass and radius of a single NS, together with laboratory experiments planned in
next-generation radioactive ion beam facilities, are fundamental to provide more stringent
constraints on the nuclear EOS, and are very much awaited for.
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Abstract: The effective Gogny interactions of the D1 family were established by D. Gogny more
than forty years ago with the aim to describe simultaneously the mean field and the pairing field
corresponding to the nuclear interaction. The most popular Gogny parametrizations, namely D1S,
D1N and D1M, describe accurately the ground-state properties of spherical and deformed finite
nuclei all across the mass table obtained with Hartree–Fock–Bogoliubov (HFB) calculations. However,
these forces produce a rather soft equation of state (EoS) in neutron matter, which leads to predict
maximum masses of neutron stars well below the observed value of two solar masses. To remove
this limitation, we built new Gogny parametrizations by modifying the density dependence of the
symmetry energy predicted by the force in such a way that they can be applied to the neutron star
domain and can also reproduce the properties of finite nuclei as good as their predecessors. These
new parametrizations allow us to obtain stiffer EoS’s based on the Gogny interactions, which predict
maximum masses of neutron stars around two solar masses. Moreover, other global properties of the
star, such as the moment of inertia and the tidal deformability, are in harmony with those obtained
with other well tested EoSs based on the SLy4 Skyrme force or the Barcelona–Catania–Paris–Madrid
(BCPM) energy density functional. Properties of the core-crust transition predicted by these Gogny
EoSs are also analyzed. Using these new Gogny forces, the EoS in the inner crust is obtained with the
Wigner–Seitz approximation in the Variational Wigner–Kirkwood approach along with the Strutinsky
integral method, which allows one to estimate in a perturbative way the proton shell and pairing
corrections. For the outer crust, the EoS is determined basically by the nuclear masses, which are
taken from the experiments, wherever they are available, or by HFB calculations performed with
these new forces if the experimental masses are not known.

Keywords: unified equation of state; Gogny interaction; neutron star; symmetry energy; tidal deformability;
moment of inertia

1. Introduction

The standard Gogny interactions of the D1 family [1] consist of a finite-range part,
which is modeled by two Gaussian form-factors including all the possible spin and isospin
exchange terms, a zero-range density dependent term, which simulates the effect of the
three-body forces, and a spin-orbit force, which is also of zero-range as in the case of
Skyrme forces. Large-scale Hartree–Fock–Bogoliubov (HFB) calculations performed in a
harmonic oscillator basis with the D1S parametrization [2,3] reveal that there is a systematic
drift in the binding energy of neutron-rich nuclei (see [4] for more details). To overcome this
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deficiency, new parametrizations of the Gogny interaction, namely D1N [5] and D1M [6]
were proposed. Unlike the D1S and D1N forces, whose parameters were obtained following
the fitting protocol established in Ref. [1], the parameters of the D1M interaction were
obtained by minimizing the energy rms deviation of 2149 measured nuclear masses of
the AME2003 evaluation [7]. It is worthwhile to mention that, in the calibration of the
D1N and D1M forces, in order to improve the description of neutron-rich nuclei, it was
imposed that these interactions would follow the trend of the microscopic neutron matter
EoS of Friedman and Pandharipande [8]. The D1M force reproduces the experimental
nuclear masses of 2149 nuclei with an energy rms deviation of 798 keV. As an example, we
display in the right panel of Figure 1 the binding energy differences between theoretical,
computed with the D1M force at HFB level [9,10], and experimental binding energies,
taken from the 2012 mass evaluation [11], of 620 even–even spherical and deformed nuclei.
The theoretical binding energies include the HFB contribution and the rotational energy
correction. However, the quadrupole zero point energy correction, which was included
in the original fit, is approximated by a constant shift in the energy. We see that these
differences are scattered around zero and do not show any energy drift for large neutron
numbers. In the left panel of the same Figure, we display the same differences but computed
with the D1S force. In this case the previously mentioned drift of binding energies can be
clearly appreciated.

Figure 1. Differences between the computed and the experimental binding energies of 620 even–even
nuclei. Theoretical calculations are performed with the Gogny D1S (left panel) and D1M (right panel)
interactions. The experimental values are taken from [11].

However, the use of Gogny interactions in the neutron star (NS) domain does not
work so well. In recent years it has been shown [12,13] that the most successful Gogny
parametrizations, namely D1S, D1N and D1M, fall short in predicting a maximum
NS mass of two solar masses (M�), as required by some well contrasted astronomical
observations [14–17]. A new extension of the Gogny force with a finite–range density–
dependent term has been recently postulated [18]. This interaction, denoted as D2, has
not been used much in finite nuclei calculations due to the complexity introduced by the
finite range of the density–dependent term, but its EoS is able to reproduce the correct
limit for the NS masses [19,20]. The structure of a standard NS composed by neutrons,
protons and leptons (electrons and muons) in charge and in β–equilibrium is driven by
its EoS, which allows the expression of the total pressure P of the system to be written as
a function of the baryonic density ρ. The EoS is the essential input needed to solve the
Tolman–Oppenheimer–Volkov (TOV) equations, whose solution provides the mass–radius
relationship of the NS. Throughout this work we consider that the NS is non-rotating, cold
and locally charge neutral and in absolute thermodynamic equilibrium. This is a reasonable
picture for an NS that was created a long time ago and had enough time to cool down.
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In the uniform core of the star, the total pressure is given by the sum of the baryonic
(Pb) and leptonic (Pl) contributions:

P = Pb + ∑
l

Pl = ρ2 ∂Eb
∂ρ

+ ∑
l

ρ2
l

∂El
∂ρl

, (1)

where l = e, µ. In (1) Eb and El are the baryon and lepton energies per particle and
ρ = ρn + ρp is the total baryon density with ρn and ρp being the neutron and proton
densities, respectively. The lepton densities ρl , owing to the charge equilibrium, are
related to the proton density by ρp = ρe + ρµ, where ρe and ρµ are the electron and muon
densities. Changing from the neutron and proton densities to the total density ρ and to the
isospin asymmetry δ = (ρn − ρp)/ρ, each contribution to the total pressure (1) can also be
written as

Pb = µnρn + µpρp −Hb(ρ, δ)

Pl = µlρl −Hl(ρl), (2)

whereHb andHl are the baryonic (b) and leptonic (l = e, µ) energy densities and µn, µp, µe
and µµ are the neutron, proton, electron and muon chemical potentials, respectively, which
are defined as

µn =
∂Hb
∂ρn

; µp =
∂Hb
∂ρp

; µe =
∂He

∂ρe
; µµ =

∂Hµ

∂ρµ
. (3)

In stable neutron star matter (NSM) the direct Urca processes

n→ p + l + ν̄l and p + l → n + νl (4)

take place simultaneously. Assuming that the neutrinos eventually leave the star, the
β-equilibrium condition leads to

µn − µp = µe = µµ. (5)

The EoSs for NSM in logarithmic scale as a function of the baryonic density com-
puted for some of the Gogny interactions used in this work and obtained previously in
Refs. [12,13] are displayed in Figure 2 together with the EoS provided by the BCPM en-
ergy density functional [21], which we will use here as a benchmark, as well as the EoS
obtained using the SLy4 [22] and BSk22 [23] Skyrme forces. The BCPM EoS, derived in the
framework of the microscopic Brueckner–Bethe–Goldstone theory (see [21] and references
therein), is in very good agreement with the EoS provided by the SLy4 force [22], which
was specifically built for astrophysical calculations. We can also see that the EoS corre-
sponding to the BSk22 Skyrme force obtained by the Brussels–Montreal group and reported
in Ref. [23] (also see Ref. [24]) is stiffer than the EoSs computed with the SLy4 Skyrme
force and the BCPM energy density functional. From this Figure we can see that the EoSs
obtained with the D1N and D1M forces show an increasing trend with growing baryon
density but softer than the behavior exhibited by the BCPM EoS. We can also see that the
EoS for NSM calculated with the D1S force reaches a maximum value at around twice
the normal saturation density and decreases for larger densities. As a consequence of this
anomalous behavior, the TOV equations cannot be solved in the D1S case, which implies
that the D1S interaction is not well suited for astrophysical calculations. The shaded area
in Figure 2 depicts the region in the P-ρ plane consistent with the experimental collective
flow data in Heavy-Ion Collisions (HIC) [25]. From this Figure we can see that none of the
EoSs computed with the standard Gogny interactions are able to clearly pass through the
region constrained by the collective flow in HIC.
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Figure 2. Equation of state (total pressure in logarithmic scale against baryon density) for neutron
star matter computed with the D1M*, D1M, D1N and D1S Gogny interactions, with the BCPM energy
density functional and with the SLy4 and BSk22 Skyrme forces. Constraints coming from collective
flow in heavy-ion collisions are also included [25].

The baryonic part of the EoS is basically driven by the energy density of highly
asymmetric nuclear matter (ANM)Hb(ρ, δ), where the isospin asymmetry δ takes values
around 0.9. To characterize this energy density, which is close to the pure neutron matter,
it is extremely useful to introduce the symmetry energy, which can be understood as the
energy cost to convert all protons into neutrons in symmetric nuclear matter. The energy
per particle Eb(ρ, δ) =Hb(ρ, δ)/ρ in ANM can be written as a Taylor expansion with respect
to the isospin asymmetry around δ = 0:

Eb(ρ, δ) = Eb(ρ, δ = 0) +
∞

∑
k=1

Esym,2k(ρ)δ
2k, (6)

where we have assumed the charge symmetry of the strong interaction, which implies that
only even powers of δ appear in (6). The first term of the expansion, Eb(ρ, δ = 0) is the
energy per baryon in symmetric nuclear matter and the coefficients of the Taylor expansion
are given by:

Esym,2k =
1

(2k)!
∂2kEb(ρ, δ)

∂δ2k

∣∣∣∣∣
δ=0

. (7)

The symmetry energy coefficient Esym is usually defined as the second-order coefficient
in the expansion (6), i.e., Esym ≡ Esym,2. In many cases the energy per particle in ANM is
well approximated taking only the quadratic term in the expansion (6), that is,

Eb(ρ, δ) = Eb(ρ, δ = 0) + Esym(ρ)δ
2. (8)

Therefore, it is also possible to define the symmetry energy as the difference between
the energy per particle in pure neutron matter and in symmetric nuclear matter,

E′sym = Eb(ρ, δ = 1)− Eb(ρ, δ = 0). (9)

Taking into account (6), it is clear that the definition (9) corresponds to the whole sum
of the coefficients Esym,2k. The difference between both definitions of the symmetry energy
depends on the importance of the contribution of the terms higher than the quadratic
one in the expansion (6). A detailed discussion about the higher-order symmetry energy
contributions in the case of Gogny interactions can be found in Refs. [13,20]. In Figure 3
we display the symmetry energy, defined as Equation (7) with k = 1, as a function of the
baryonic density computed with different Gogny forces available in the literature and
taken from Refs. [12,13]. In the same Figure we also show the symmetry energy constraints
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extracted from the isobaric analog states (IAS) and from IAS combined with neutron
skins [26], the constraints from the electric dipole polarizability αD in 208Pb [27] and from
transport simulations in heavy-ion collisions in Sn isotopes [28].
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Figure 3. Symmetry energy, defined as Equation (7) with k = 1 against the baryon density predicted
by the D1M*, D1M, D1S and D1N Gogny interactions, the BCPM energy density functional and the
SLy4 and BSk22 Skyrme forces. Some constraints coming from isobaric analog states (IAS) (green),
from IAS plus neutron skins (IAS + n.skin) (yellow), electric dipole polarizability αD in 208Pb (αD in
208Pb) (dashed red) and heavy-ion collisions (dashed blue) are also included [26–28].

From Figure 3 we can see that, below the saturation density, the symmetry energy
behaves in a very similar way for all the considered forces taking values around 30 MeV at
saturation. This is due to the fact that in this region the symmetry energy is well constrained
by the nuclear masses to which the parameters of the different effective interactions have
been fitted (see Refs. [29–31] for a review about the range of the symmetry energy obtained
from different constraints). Above the saturation density, the symmetry energy predicted
by the different interactions differ more among them. For example, we can see that the
symmetry energy computed with the D1S and D1N parametrizations reaches maximum
values of 30–40 MeV, and then decrease with increasing density until vanishing around
3–4 times the saturation density, where the isospin instability starts. In the case of the
D1M force the symmetry energy also reaches a maximum value, which remains practically
constant in the whole density range needed to solve the TOV equations. From the same
Figure 3 we also observe that the symmetry energy computed with the BCPM energy
density functional shows a different trend, growing with increasing density. The symmetry
energy computed with the SLy4 and BSk22 Skyrme forces, which provide realistic EoSs,
also shows an increasing trend with growing density, BSk22 being stiffer and SLy4 softer
in the high-density domain above 0.20 fm−3. These results show that the behavior of the
symmetry energy as a function of the density above the saturation is crucial for describing
properly the EoS of neutron-rich matter in the high-density regime, which, in turn, is the
most relevant input for the study of many NS properties.

An important feature of the symmetry energy is its density content calculated at
saturation density. This quantity is usually characterized by the slope of the symmetry
energy L, which is defined as

L = 3ρ0
∂Esym(ρ)

∂ρ

∣∣∣∣
ρ0

. (10)
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The slope parameter is connected with different properties of finite nuclei, as for ex-
ample the neutron skin thickness in heavy nuclei such as 208Pb (see [32–35] and references
therein). The numerical values of the slope parameter L predicted by different models
span a very large range between 10 and 120 MeV, pointing out that this quantity is poorly
constrained by the available experimental data. A compilation of possible L values ex-
tracted from different laboratory experiments and astronomical observations can be found
in Refs. [19,36,37]. From the theoretical side, some recent microscopic calculations have
estimated the slope parameter in the ranges L = 43.8–48.6 MeV [38], L = 20–65 MeV [39]
and L = 45–70 MeV [40]. The values of the slope parameter predicted by the standard
Gogny forces of the D1 family are relatively small, L = 22.43 MeV (D1S), L = 24.83 MeV
(D1M) and L = 33.58 MeV (D1N) [12]. These values, which are clearly smaller than the
value L = 52.96 MeV predicted by the BCPM energy density functional and those of the
SLy4 and BSk22 Skyrme forces, clearly explain the soft behavior of the symmetry energy
displayed in Figure 3 and consequently the softness of the EoS in NS matter predicted by
such forces (see Figure 2). In Figure 4 we display some bounds of the symmetry energy
at saturation Esym(ρ0) and its slope L provided by recent laboratory data, astronomical
observations and ab initio calculations using chiral interactions [30,36,41,42]. We see that
the symmetry energy and its slope predicted by the Gogny forces D1M and D1N lie outside
the constrained region in the Esym(ρ0)-L plane, while the point corresponding to the D1S
interaction is at the lower edge of the region estimated from the measured electric dipole
polarizability in 68Ni, 120Sn and 208Pb [41].
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Figure 4. Slope of the symmetry energy L against the symmetry energy at saturation density for
some Gogny interactions, the BCPM energy density functional and the SLy4 and BSk22 Skyrme
forces. We have included some constraints extracted from the literature [30,36,41,42].

From this discussion it is clear that the standard Gogny interactions of the D1 family
are not well suited for applications in the NS domain. To overcome this situation we
designed some parametrizations of the Gogny type of forces starting from the D1M inter-
action [19,20,43,44] aimed to predict a maximum mass in NS of 2M� without losing its
ability to describe finite nuclei with a quality similar to those found using the D1M force.
The purpose of this paper is to review those new parametrizations and compare them with
previous results. The paper is organized as follows. In the second section we describe
the method used to fit these new Gogny parametrizations, namely D1M* and D1M**. In
the third section we describe how the EoS in the inner and outer crust using the D1M*
interaction is obtained. In the same section the study of the core–crust transition using
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the thermodynamical and dynamical methods is briefly summarized. The fourth section
is devoted to discussing some global NS properties such as the mass–radius relation, the
moment of inertia, its crustal properties and the tidal deformability estimated with the
new Gogny interaction D1M*. We also compare in this section the D1M* results with the
predictions provided by other different models. Finally, our conclusions are presented in
the last section.

2. Gogny Interactions Adapted for Astrophysical Calculations

The standard Gogny interaction of the D1 family consists of a finite range term, which
is modeled by two form factors of Gaussian type and includes all possible spin and isospin
exchange terms, plus a zero-range density-dependent contribution. To describe finite
nuclei, a spin–orbit interaction—which is zero-range like in the case of Skyrme forces—is
also added. With all these ingredients the Gogny interaction reads:

V(r1, r2) = ∑
i=1,2

(
Wi + BiPσ − HiPτ −MiPσPτ

)
e
− r2

µ2
i + t3(1 + x3Pσ)ρα(R)δ(r)

+iWLS(σ1 + σ2){k′ × δ(r)k}, (11)

where r and R are the relative and the center of mass coordinates of the two nucleons, and
µ1 ' 0.5–0.7 fm and µ2 ' 1.2 fm are the ranges of the two Gaussian form factors, which
simulate the short- and long-range components of the force, respectively. The Skyrme-type
t3 and x3 parameters control the density dependent part of the force.

To determine the parameters of the new Gogny interactions, denoted D1M* and
D1M**, we start from the D1M force and modify the parameters of the finite-range part of
the interaction, which are the ones that control the stiffness of the symmetry energy, keeping
the binding energy and charge radius of finite nuclei predicted by these interactions as close
as possible to the values obtained with the original D1M force. This way of proceeding
is similar to the one used with some Skyrme forces and RMF parametrizations, such as
SAMi-J [45], KDE0-J [46] or FSU-TAMU [47,48].

Therefore, we readjust the eight parameters Wi, Bi, Hi and Mi (i = 1, 2) of the finite-
range part of the Gogny interaction. The ranges of the two Gaussian form factors and
the zero-range part of the force are kept fixed to the original values of D1M. The open
parameters are constrained by imposing in symmetric nuclear matter the same values of the
saturation density, energy per particle, incompressibility modulus and effective mass as the
ones predicted by the original D1M force. It has been claimed in earlier literature that finite
nuclei energies constrain the symmetry energy at a subsaturation density of about 0.1 fm−3

better than at saturation density [32,49]. Hence, we impose that the symmetry energy of the
modified interaction at this particular density also equals the corresponding value provided
by the D1M force. In order to preserve the pairing properties of D1M we also require that,
in the new force the combinations Wi − Bi − Hi + Mi (i = 1,2), which govern the strength
of the pairing interaction, take the same value as in the original D1M force. There is still an
open parameter, which we chose to be B1. This parameter is used to modify the slope of
the symmetry energy at saturation L, which in turn determines the maximum mass of the
neutron star. We adjust this parameter B1 in such a way that the maximum mass computed
with the new parametrizations of the Gogny force are 2M� (D1M*) and 1.91M� (D1M**).
Finally, we perform a fine tuning of the strength t3 of the density-dependent term of the
interaction in order to optimize the description of the masses of finite nuclei. To this end
we compute the energies of 620 spherical and deformed even–even nuclei of the AME2012
database [11] at HFB level using the HFBaxial code [9]. As it is customary with Gogny
forces, we carry out the HFB calculations in a harmonic oscillator basis. The parameters
and size of the basis are chosen as to optimize the binding energies for each value of mass
number A. An approximate second-order gradient is used to solve with confidence the
HFB equations [10]. It has been known for a long time that some Skyrme parametrizations
present numerical instabilities when the finite-nuclei calculations are performed on a mesh
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in a coordinate space, see e.g., [50] and references therein. It has been recently shown
that the Gogny parameter sets may also display finite-size instabilities [51] that lead to
diverging results in the coordinate-space calculations of finite nuclei [51,52]. This is the
case of the D1N and D1M* forces [51,52] and, to a lesser extent, of D1M [52]. Therefore, the
HFB calculations of finite nuclei with the new parameter set D1M* are to be performed in a
harmonic oscillator basis [19,52]. The numerical values of the parameters of the new forces
D1M* and D1M** were reported in Refs. [19,20,43]. For the sake of completeness, we collect
them also here in Table 1, along with the parameters of D1M. In Table 2 we report the
nuclear matter properties predicted by the D1M* and D1M** forces, as well as by the BCPM
energy density functional, which is used in this work as a benchmark for comparison with
the results provided by the new Gogny parametrizations D1M* and D1M**.

From Table 1, we observe that the finite-range parameters Wi, Bi, Hi and Mi of the
modified D1M* and D1M** forces are larger in absolute value than the ones in the original
D1M interaction. However, as can be seen in Table 2, the saturation properties of symmetric
nuclear matter (namely, the saturation density ρ0, the energy per particle E0 at saturation,
the incompressibility K0, and the effective mass m∗/m) and the symmetry energy at a
density 0.1 fm−3, predicted by the D1M** interaction coincide with the values computed
with the D1M force as a consequence of the fitting protocol used to obtain the parameters of
the modified forces. In the case of the D1M* force we also slightly changed the t3 parameter
by an amount of 1 MeV to improve the finite nuclei description with this interaction. As a
consequence of this small change in t3, the symmetric nuclear matter properties involved in
the reparametrization changes slightly compared to the corresponding values predicted by
the D1M force, as can be seen in Table 2. The properties that differ significantly between the
new parametrizations and D1M are the symmetry energy at saturation density (Esym(ρ0))
and, visibly, the density dependence of the symmetry energy, which governs the isovector
part of the interaction. The latter is quantified by the slope parameter L, which varies
from a value L = 24.84 MeV in the original D1M force to L = 43.18 MeV for D1M* and to
L = 33.91 MeV for D1M**, as required to obtain a stiffer EoS in NS matter, which in turn
allows predictions of the maximum mass of 2M� and 1.91M�, respectively.

Table 1. Parameters of the D1M, D1M* and D1M** Gogny forces. The coefficients Wi, Bi, Hi and Mi

are given in MeV, µi in fm and t3 in MeV fm4. The values of the other parameters of the modified
interactions are the same as in the D1M force (namely, x3 = 1, α = 1/3 and WLS = 115.36 MeV fm5).

D1M Wi Bi Hi Mi µi

i = 1 −12,797.57 14,048.85 −15,144.43 11,963.81 0.50
i = 2 490.95 −752.27 675.12 −693.57 1.00

t3 x3 α WLS
1562.22 1 1/3 115.36

D1M* Wi Bi Hi Mi µi

i = 1 −17,242.0144 19,604.4056 −20,699.9856 16,408.3344 0.50
i = 2 675.3860 −982.8150 905.6650 −878.0060 1.00

t3 x3 α WLS
1561.22 1 1/3 115.36

D1M** Wi Bi Hi Mi µi
i = 1 −15,019.7922 16,826.6278 −17,922.2078 14,186.1122 0.50
i = 2 583.1680 −867.5425 790.3925 −785.7880 1.00

t3 x3 α WLS
1562.22 1 1/3 115.36

Let us now briefly discuss the main properties and predictions of these modified
Gogny forces. As can be seen from Figure 3, the symmetry energy as a function of the
baryon density obtained using D1M* shows a different behavior compared to the one
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exhibited by the standard Gogny interactions D1S, D1N and D1M. Above saturation the
symmetry energy computed with D1M* increases with growing density and takes values
close to the ones predicted by the BCPM energy density functional. As a consequence
of this behavior, in the high–density domain the EoS predicted by the D1M* interaction
follows closely the trend of the BCPM EoS, passing nicely through the region of the P− ρ
plane constrained by the experimental data of the heavy-ion collisions as can be seen in
Figure 2. Finally let us point out that the representative points of the D1M* force lie within
the region of the Esym(ρ0)-L plane constrained by the majority of the experimental data, as
is seen in Figure 4. In order to check the ability of the D1M* force to describe finite nuclei,
we plot in Figure 5 the differences between the binding energies of a set of 620 even–even
nuclei computed with this new force and with the original D1M interaction along different
isotopic chains covering the whole nuclear chart. We see that these differences are actually
very small, lying within a window of ±3 MeV for all the computed nuclei. As a general
trend, the binding energy predicted by D1M* is larger than the one provided by D1M for
neutron deficient nuclei of the isotopic chains and the opposite happens for neutron rich
nuclei of the chain.

Table 2. Nuclear matter properties predicted by the D1M*, D1M** and D1M Gogny interactions and
by the BCPM energy density functional.

ρ0 E0 K0 m∗/m Esym(ρ0) Esym(0.1) L
(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV)

D1M 0.1647 −16.02 224.98 0.746 28.55 23.80 24.83
D1M* 0.1650 −16.06 225.38 0.746 30.25 23.82 43.18
D1M** 0.1647 −16.02 224.98 0.746 29.37 23.80 33.91
BCPM 0.1600 −16.00 213.75 1.000 31.92 24.20 52.96

0 10 20 30 40

3
2
1
0
1
2
3 Z,N=8, 4 Z,N=10, 6 Z,N=12, 8 Z,N=14, 10 Z,N=16, 12 Z,N=18, 14 Z,N=20, 16 Z,N=22, 18 

Z,N=24, 22 Z,N=26, 24 Z,N=28, 26 Z,N=30, 28 Z,N=32, 32 Z,N=34, 34 Z,N=36, 36 Z,N=38, 38 

Z,N=40, 40 Z,N=42, 44 Z,N=44, 46 Z,N=46, 48 Z,N=48, 50 Z,N=50, 50 Z,N=52, 54 Z,N=54, 56 

Z,N=56, 58 Z,N=58, 68 Z,N=60, 70 Z,N=62, 74 Z,N=64, 76 Z,N=66, 78 Z,N=68, 78 Z,N=70, 82 

Z,N=72, 84 Z,N=74, 86 Z,N=76, 88 Z,N=78, 90 Z,N=80, 92 Z,N=82, 96 Z,N=84, 104 Z,N=86, 108 

Z,N=88, 114 Z,N=90, 118 Z,N=92, 126 Z,N=94, 134 Z,N=96, 138 Z,N=98, 142 Z,N=100, 146 Z,N=102, 150 

Z,N=104, 152 Z,N=106, 154 Z,N=108, 156 Z,N=110, 160 

NN0

B
D

1
M

*
B

D
1

M
 (

M
e
V

)

B(D1M*)  B(D1M) (MeV) HFB  

Figure 5. Difference between the binding energies provided by the D1M* and D1M force ∆B (in MeV)
plotted as a function of the shifted neutron number N-N0 for isotopic chains covering the periodic
table. The values of the atomic number Z and neutron reference number N0 are given in each panel.
The vertical scale covers from +3.5 MeV to −3.5 MeV, with long ticks every MeV and short ticks
every half MeV. The horizontal line in each panel at ∆B = 0 is plotted guide the eye.
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3. Neutron Star Crust with Gogny Forces

The outer layer of an NS encircling the homogeneous core is denoted as “crust”. It is
further subdivided into two or three layers depending on its composition. At the surface
of the star, namely the “outer crust”, the matter is distributed in a lattice of neutron-rich
nuclei immersed in an electron gas. After a certain density ∼0.003 fm−3 going towards the
center of the star, neutrons start to drip from the nuclei forming a background neutron gas
but keeping a lattice structure of nuclear clusters. This region is denoted as the NS “inner
crust”. At a density∼0.08 fm−3, also known as the “crust–core transition density”, the inner
crust dissolves into an homogeneous core, sometimes with pasta phases in the transition
region. As these complicated structures incorporate in-medium many-body effects, a full
quantum mechanical treatment of the inner-crust is very difficult and computationally
expensive. Nevertheless, there exist some calculations of the EoS in this region of NSs of
different degrees of sophistication available in the literature (see for example [21,53–55]
for references and a more detailed discussion on this topic). Simplified calculations based
on the Thomas–Fermi (TF) approximation or its extended versions are often employed
to obtain the EoS of the neutron star crust with different interactions (see [21,53–57] and
references quoted therein). Even though global properties like the mass or the radius are
not heavily influenced by the crustal properties of the NS, pulsar glitches, quasi-periodic
oscillations in soft γ-ray repeaters or thermal relaxations in soft X-ray transients are strongly
influenced by the crustal composition of the NS (see for example [54,55,58] and references
quoted therein). The crust also might be one of the possible places where the r-process
nucleosynthesis occurs during the NS–NS or NS–Black Hole merger events [59–61].

We have organized the description of the crust in this section as follows. In the first
subsection we outline the variational Wigner–Kirkwood (VWK) method for describing
finite nuclei. After that we describe the restoration of quantum effects like the shell cor-
rection with the Strutinsky integral method and the residual pairing correction with state
dependent Bardeen–Cooper–Schrieffer (BCS) calculations. In the next subsection we com-
pute with Gogny interactions the structure of the outer crust of a cold, non-accreting star.
These calculations are performed within the so-called Wigner–Seitz (WS) approximation,
which assumes that the space can be described by non-interacting electrically neutral cells,
each one containing a single nuclear cluster embedded in electron (outer crust) or electron
and neutron (inner crust) gases. In the inner crust, we restrict ourselves to spherically
symmetric nuclear clusters disregarding pasta phases for the sake of simplicity. The results
obtained with different Gogny forces are also displayed in the relevant subsections. At the
end, we discuss the crust–core transition obtained with different Gogny interactions.

3.1. Variational Wigner-Kirkwood Method in Finite Nuclei

Semiclassical estimates of the binding energy of nuclei throughout the whole nuclear
chart have been used since the Bethe–Weizsäcker mass formula was proposed [62,63].
The smooth part of the energy can be estimated by considering a Fermi gas-like system
of nucleons with different choice of interactions. Further, one can treat quantum shell
corrections perturbatively on top of it, using the techniques established by Strutinsky [64].
The residual pairing energy can also be calculated perturbatively using the shell structure
corresponding to the average mean-field. The smooth part of the binding energy, i.e.,
neglecting quantal effects, of a set of non-interacting fermions in an external potential, can
easily be obtained using the Wigner–Kirkwood (WK) h̄-expansion of the single particle
partition function [65–69]. An important feature of this expansion is that the variational
solution of the minimization of WK energy at each h̄-order is simply the WK expansion
of the density at the same order. This method of solving a variational equation by sorting
order-by-order the h̄-expansion is called the VWK theory, which is discussed in detail in
Refs. [68,70,71]. A primary feature of this method is that one needs to calculate one less
order in the density expansion to accurately calculate the energy in the next order. For
example, a VWK prediction on the energy containing h̄2-order contribution only needs the
information on the h̄0-order densities, i.e., the bare TF densities.
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To calculate the smooth part of the energy with the VWK method using the Gogny
interaction (11), we use in this work the extended TF density matrix [72], which allows us
to obtain the kinetic and exchange energy densities up to h̄2 order as a functional of the
particle densities of each type of nucleons [53,73]. Therefore we write the VWK energy as

EVWK =
∫
HdR =

∫
(H0 +H2)dR

=
∫
(Hkin,0 +Hdir +Hexch,0 +Hzr +HCoul)dR

+
∫
(Hkin,2 +Hexch,2 +HSO)dR, (12)

where we have decomposed the energy into TF (subindex 0) and h̄2 (subindex 2) terms. For
a detailed derivation of the energy density in (12), the reader is referred to Refs. [53,73].

To find the density profiles, which in turn will allow one to determine the VWK energy,
one should solve first the variational TF equations for each type of particles with respect to
the TF densities ρq(q = n, p),

δ

δρq

[
EVWK,0 − µq

∫
ρq(R)dR

]
= 0, (13)

where µq are the chemical potentials that ensure the right number of nucleons of each type.
Using the solutions of Equation (13) in Equation (12), one can calculate the semiclassical
energy up to h̄2-order in the VWK approach.

Instead of solving the set of Equation (13), we perform a restricted variational calcula-
tion by minimizing the TF part of the VWK energy Equation (12) using a trial density of
the Fermi type for each type of particles,

ρq(r) =
ρ0,q

1 + exp
(

r−Cq
aq

) , (14)

where the radius Cq and the diffuseness parameter aq of each trial density are the variational
parameters and the strengths ρ0,q are fixed by normalizing the neutron and proton numbers.
Finally, using these trial densities the h̄2 part of the VWK energy in Equation (12) is added
perturbatively. This restricted minimization of the energy with parametrized neutron
and proton densities has been applied successfully in many semiclassical calculations of
the energy of finite nuclei using Skyrme interactions [69], the differences with the full
variational calculation being very small [74].

3.2. Shell and Pairing Effects

Once the average smooth part of the energy is determined, we add perturbatively the
quantum shell energy that is obtained using the so-called Strutinsky integral method [75,76].
In this approximation, the shell correction is estimated as the difference between the quan-
tal energy and its semiclassical counterpart of a set of nucleons moving under the action of
an external single-particle Hartree–Fock Hamiltonian (see Refs. [53,73] for more details)
generated by the parametrized neutron and proton densities (14). The corresponding
Schrödinger equations read,

hqφi,q =

{
−∇ h̄2

2m̃∗q(r)
∇+ Ũq(r)− iW̃q(r)(∇× σ)

}
φi = ε̃i,qφi,q. (15)

It should be noticed that the local particle ρ̃q, kinetic energy τ̃q and spin J̃q densities,
which are used to calculate the effective mass m̃∗q , the mean-field Ũq and the spin-orbit
potential W̃q appearing in Equation (15), are obtained semi-classically by the restricted
variational approach described above.
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After the single-particle energies ε̃i,q are obtained by solving Equation (15), the shell
correction energy for each type of particles is given by

Eshell
q = ∑

i
ε̃i,q −

∫ [ h̄2

2m̃∗q
τ̃q + ρ̃qŨq + J̃q · W̃q

]
dR. (16)

These single-particle energies ε̃i,q can be further used to calculate perturbatively the
residual neutron and proton pairing energy through a BCS pairing calculation as,

Epair
q = −1

4 ∑
k,q

∆2
k,q

Ek,q
, (17)

where Ek,q and ∆k,q are the quasiparticle energy and the gap in the state k of the type of
particles q, respectively. The quasi-particle energy in the state k reads

Ek,q =
√
(ε̃k,q − µq)2 + ∆2

k,q , (18)

which in addition to the state-dependent gap ∆k,q also depends on the eigenvalue ε̃k,q of
(15) corresponding to the state k and on the chemical potential µq, which is determined by
the particle number condition given by

Nq = ∑
k

ñ2
k,q , (19)

where the occupation number ñ2
k,q of the state k is given by,

ñ2
k,q =

1
2

[
1−

ε̃k,q − µq

Ek,q

]
. (20)

For each type of particles the state-dependent gap in a given state i is obtained as the
solution of the so-called gap equation

∆i,q = −∑
k

vpair
iī,kk̄

∆k,q

2Eq,k
. (21)

Here, the single particle indices denote the usual quantum numbers, i ≡ nlj and
k ≡ n′l′ j′ for each type of particle. We emphasize that the pairing interaction vpair used in
(21) is also determined from the same finite range Gogny interaction (11). The sums over k
in Equations (17), (19) and (21) run over bound and quasi-bound states. These quasi-bound
states of positive energy are retained by the centrifugal (neutrons) or centrifugal plus
Coulomb (protons) barriers [77].

Finally, the total binding energy of a nucleus is given by the sum of the smooth part
of the energy computed at VWK level (12) plus the quantal shell correction (16) and the
pairing energy (17) calculated perturbatively, i.e.,

EB = EVWK + ∑
q

[
Eshell

q + Epair
q

]
. (22)

This method of obtaining the binding energy, which we call VWKSP, was applied for
∼160 even-even nuclei across the whole nuclear chart using three different Gogny forces
of D1 type, including D1M* [53]. For D1M*, the relative deviation from the experimental
values or the ones obtained with HFB method were found to be within 1%, with only a
few exceptions.
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3.3. Outer Crust

As we have mentioned before, the external region of the NS crust consists of a lattice
of fully ionized atomic nuclei embedded in a free electron gas. In the outer layers of the
outer crust, the nuclei are the ones which are also observed in terrestrial experiments.
However, near the inner crust neutron-rich nuclei whose masses have not been measured
experimentally start to appear. To determine the composition and EoS of the outer crust, the
essential ingredient is the mass table, which is provided by the experimental masses, when
they are known, supplemented by the predictions from theoretical models for the unknown
masses. In the present calculation of the outer crust we use the experimental masses from
the AME2016 atomic mass evaluation [78] and the recently measured masses of the 75−79Cu
isotopes [79]. When the relevant masses are unknown experimentally, we compute them
at HFB level [9] using the D1M and D1M* Gogny interactions. D1M was also used in the
calculations of the outer crust of Ref. [80], together with the experimental masses known at
that moment (our results with D1M may differ a little from those of Ref. [80] for the layers
of the outer crust where new experimental masses available in [78,79] were unmeasured
when [80] was published).

The energy of the outer crust at a given density ρav is computed within the WS
approximation, where the energy of each cell containing a nucleus with Z protons and A
nucleons has primarily three contributions [81]

E(A, Z, ρav) = ENuc + Ee + Elat, (23)

where, ENuc, Ee and Elat are the nuclear, electronic and lattice contribution to the energy,
respectively. The number density of the outer crust ρav is determined by the volume V of
the cell as ρav = A/V. The nuclear contribution essentially comes from the mass as

ENuc = M(A, Z) = (A− Z)mn + Zmp − EB(A, Z). (24)

Here, mn and mp are the rest masses of the neutron and the proton, respectively. For
masses of nuclei which are not measured experimentally, we use the HFB predictions [9]
computed with the D1M* interaction. The electronic contribution Ee is determined by the
electronic energy densityHe for a degenerate relativistic free Fermi gas as

Ee = HeV, (25)

where

He =
kFe

8π2

(
2k2

Fe
+ m2

e

)√
k2

Fe
+ m2

e −
m4

e
8π2 ln




kFe +
√

k2
Fe
+ m2

e

me


, (26)

with me as the rest mass of electron and kFe the electron Fermi momentum, which is given
by kFe = (3π2ne)1/3. In (26) ne = (Z/A)ρav is the electron number density. The lattice
contribution to the energy is given by

Elat = −C
Z2

A1/3 kFav , (27)

where kFav = (3π2ρav)1/3 is the average Fermi momentum connected with the elec-
tron Fermi momentum as kFav = (A/Z)1/3kFe due to charge equilibrium. The constant
C = 0.00340665 for the bcc lattice is taken from Ref. [82].

At zero temperature, the pressure exerted by the outer crust comes completely from
the electrons and the lattice while the nuclei produce no pressure. Therefore,

P = −
(

∂E
∂V

)

A,Z
= Pe + Plat = ne

√
k2

Fe
+ m2

e −He −
ρav

3
C

Z2

A4/3 kFav . (28)
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To obtain the optimal configuration in a WS cell, we proceed as follows. For a given
pressure, at zero temperature, the Gibbs free energy G per nucleon is minimized for
different nuclei in the nuclear chart,

g =
G
A

=
E(A, Z, ρav)

A
+

P
ρav

=
M(A, Z)

A
+

Z
A

√
k2

Fe
+ m2

e −
4
3

C
Z2

A4/3 kFav . (29)

It is worth mentioning here that recently a new analytical method to evaluate the
internal composition of the outer crust has been presented in Ref. [83].

In Figure 6 we plot the composition of the outer crust in terms of the proton number
Z and the neutron number N at different average densities ρav, obtained with the nuclear
masses measured experimentally (from AME2016 [78] and from [79] for 75−79Cu) assisted
by theoretical HFB calculations [9] using the D1M and D1M* interactions, where the
experimental values are not available. For comparison, we also display in the Figure the
composition predicted by the BCPM energy density functional [21]. At very low densities
(up to ρav ∼ 10−6 fm−3), the primary contribution comes from Ni and Fe isotopes with
neutron numbers N = 30, 34 and 36. After that the contribution comes from Kr, Se, Ge
and Zn isotopes up to ρav ∼ 5× 10−5 fm−3, with N = 50. All three interactions in Figure 6
have the same predictions up to this point because the information primarily comes from
the experimental masses. The differences start to appear beyond this density. The elements
beyond ρav ∼ 5× 10−5 fm−3 are primarily Ru, Mo, Zr, Sr, Kr or Se isotopes. At these higher
densities relevant for the outer crust, the optimal configuration of the WS cell comes from
N = 82. In the region of the outer crust where the nuclear masses are unknown, the D1M*
force predicts the nuclei 78Ni, 128Ru, 122Zr and 120Se, while the calculations performed
with the Skyrme interactions BSk19-BSk21 in Ref. [80] and BSk22 and BSk24-BSk26 in
Ref. [23] show a somewhat richer composition, as can be seen in Tables I-III of Ref. [80] and
Tables 3–6 of Ref. [23], respectively. The composition of the outer crust critically depends on
the nuclear masses, which can be slightly different when computed with different models
and extrapolated to the region of unknown masses.

3.4. Inner Crust

We resort to the spherical WS approximation for describing the inner crust of NSs.
We consider a density range between 0.0004 fm−3 and 0.08 fm−3 for the inner crust. For
the present calculation, we have not considered pasta structures such as cylindrical rods,
planar slabs, cylindrical tubes or spherical bubbles, which might be present in between the
inner crust and the core of the star. These non-spherical structures may modify the optimal
composition of the bottom layers of the inner crust but they do not change the core–crust
transition density nor the EoS of the crust in a significant way (see [21] for details). At a
given average density of the inner crust, we look for the optimal values of N and Z that
satisfy the β-equilibrium condition

µn = µp + µe, (30)

where µ designates the chemical potential of the corresponding particles in the subindex.
Once N and Z are fixed, the size of the WS box is determined. The electrons are treated as a
free relativistic Fermi gas, with a constant density throughout the WS box. In practice, we
proceed as follows. First, we fix the average density and an integer proton number Z and
vary the neutron number N, which in general is not integer, until the β-equilibrium condi-
tion (30) is reached. Next, keeping the average density fixed, we repeated the procedure
for a wide range of Z values searching for the optimal configuration, which corresponds to
the WS cell of minimal energy.
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Figure 6. Neutron numbers N and proton numbers Z for the outer crust of NSs with the experimental
masses from the AME2016 [78] tabulation plus the recently measured masses of 75−79Cu [79] aided
by theoretical HFB calculations when experimental values are not available, using the D1M and
D1M* Gogny forces and the BCPM energy density functional.

For a given N and Z, we calculate the energy of the WS box with the VWKSP method
as explained before for finite nuclei in Section 3.1. We have taken a different form of the
density profile for the inner crust unlike the finite nuclei, adapted from Refs. [23,76] as

ρq(r) = ρB,q +
ρ0,q

1 + exp
{(

Cq−RWS
r−RWS

)2
− 1
}

exp
(

r−Cq
aq

) . (31)

The first term in the right hand side is well suited to obtain a background density at
certain average densities of the inner crust. The first exponential in the denominator of
the second term is a damping factor tuned by the size of the WS cell (RWS), which makes
sure that the density reaches the background value (or zero) at the edge of the box. It
is worthwhile mentioning here that we added the quantum shell and pairing energies
only for protons by the reasons pointed out in [84]. A systematic comparison between
the predictions of the extended TF plus Strutinsky integral method including pairing
correlations and the fully quantal HFB results demonstrates that the perturbative treatment
of shell effects and pairing correlations on top of a self-consistent semiclassical calculation
provides a very accurate description of the structure of the NS inner crust [85].

In Figure 7 we plot the binding energy per nucleon (E/A) subtracted by the bare
nucleon mass mN for 13 different average densities ρav in the inner crust, which are
indicated in the different panels. For comparison, we provide for each average density ρav
the energy obtained in each of the four steps of the calculation of the energy in a WS cell
of the inner crust. The orange line with circles denotes the energy containing only the TF
contribution, the blue line with squares additionally contains the h̄2 contributions. The
green line with triangles and the red line with diamonds successively take into account
the contribution from the shell correction and the pairing energy, respectively. One can
clearly observe that once the shell correction is added, the evolution of E/A−mN produces
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some local minima. Further addition of the pairing energy (red) somewhat smoothens this
feature out. For all average densities but ρav = 0.0789 fm−3 the global minimum appears
at Z = 40. At ρav = 0.0789 fm−3 it shifts to Z = 92. At ρav = 0.0004 fm−3 one can observe
shell closures at Z = 20, 28, 40, 50, etc., which are similar to ones found in finite nuclei.
With the increase in the average density some of these shell closures like Z = 28 and 50 are
washed away (see the panel with ρav = 0.07 fm−3). A systematic study of the inner crust
composition performed using the extended TF approach including pairing correlations
with a large set of Skyrme forces has been very recently reported [86]. It is shown that the
proton content of the WS cells is correlated to the soft or stiff character of the slope of the
pure neutron matter EoS for low average densities below 0.05 fm−3. In this region the D1M
and D1M* interactions predict a relatively stiff neutron matter EoS, which favors Z = 40 in
the minimal energy configuration (see Figure 7 and Table II of [53]) in agreement with the
conclusions drawn in [86].
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Figure 7. Binding energy per nucleon excluding the bare nucleon mass as a function of proton
numbers at different average densities ρav of the inner crust calculated with D1M* Gogny interaction.

In Figure 8 we show the neutron (red solid line) and proton (blue dashed line) density
profiles inside the WS cell at different ρav in the inner crust calculated with the D1M*
interaction. With the increase in the ρav, the size of the WS cell shrinks significantly and
the cells contain more dense neutron gas. With an increase in the density the diffuseness,
particularly for protons, increases significantly. However, the central proton density of the
cells increase with decrease in ρav.
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Figure 8. Neutron and proton density distribution inside the Wigner–Seitz cells obtained with
variational Wigner–Kirkwood method at different average densities ρav obtained with D1M* Gogny
interaction.

3.5. Core–Crust Transition

From our calculation in the inner crust we observe that the transition from the crust
to the core takes place at an average density around ∼0.08 fm−3. To find the core–crust
transition density within a given model requires, in principle, the computation of the
complete EoS of the inner crust, which is not a simple task, as we have seen along this
section. However, the search of the crust–core transition density can be considerably
simplified by performing the calculation from the core side. In this case one searches for
the violation of the stability conditions of the homogeneous core under small amplitude
oscillations, which indicate the appearance of nuclear clusters and therefore the transition
to the inner crust. There are different ways to determine the core–crust transition from
the core side, namely the thermodynamical method (Vther), the dynamical method (Vdyn),
random phase approximation and the Vlasov equation method (see Refs. [13,20,87] for
more details and further references).

In the thermodynamical method the stability of the NS core is discussed in terms
of bulk properties only, where the mechanical and chemical stability conditions set the
boundaries of the homogeneous core:

−
(

∂P
∂v

)

µnp

> 0, −
(

∂µnp

∂q

)

v
> 0, (32)

where P is the total pressure of neutron star matter (1)–(2), µnp is the difference between the
neutron and proton chemical potentials, v = 1/ρ is the inverse of the baryon density and q
is the charge per baryon. In the low density regime of interest for the core–crust transition
the chemical stability is always fulfilled and the mechanical stability condition can be recast
through the so-called thermodynamical potential Vther(ρ) [13,20]. The thermodynamical
potential is a function of the baryon density only and the transition density corresponds to
the value of ρ for which Vther(ρ) changes sign (see [13] and references therein).
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The dynamical method, introduced in Ref. [81], assumes that the nuclear energy
density can be expressed as the sum of a bulk homogeneous part and an inhomogeneous
contribution, which depends on the gradient of the neutron and proton densities as well
as on the direct part of the Coulomb potential. The Skyrme forces fit this scheme [88].
However, for finite-range interactions, such as the Gogny forces, the calculation is more
involved. Quite often the energy density functional for finite-range forces can be approxi-
mated very accurately by a local form using the extended TF density matrix [72] instead
of the full HF density matrix. Within this scheme, the energy density can be written as a
homogeneous term, provided by the Slater density matrix (h̄0 term), plus an additional
h̄2 contribution written in terms of the gradients of the neutron and proton densities and
of the inverse of the momentum and position dependent effective masses [87]. This inho-
mogeneous contribution also contains the gradient expansion of the direct nuclear and
Coulomb potentials (see [20,87] for more details). Thus,

E = E0 +
1
2 ∑

i,j

∫ dk
(2π)3

δ2E
δni(k)δn∗j (k)

δni(k)δn∗j (k), (33)

where E0 is the unperturbed density and ni(k) are the momentum distributions (inverse
Fourier transform of the density perturbation) for each type of particles. The second
variation of the energy defines the so-called curvature matrix, which is the sum of three
different terms. The first is the bulk contribution, which defines the stability of uniform NS
matter and corresponds to the equilibrium condition in the thermodynamical method. The
second term collects the gradient contributions in the energy density functional and is a
function of the momentum k. For zero-range Skyrme forces it is a quadratic function [88],
but it is a more involved function in the case of finite-range interactions [20,87]. The last
contribution is due to the direct Coulomb interactions between protons and electrons. The
stability condition requires the curvature matrix to be convex. This allows one to write
a dynamical potential Vdyn(ρ, k), which is now momentum- and density-dependent. To
compute the transition density one first minimizes for each value of the density ρ the
dynamical potential respect to k. Next, as in the case of the thermodynamical method,
one determines the transition density as the value of the density for which Vdyn(ρ, k(ρ))
vanishes (see Refs. [20,87] for a detailed description of the dynamical method). Table 3
collects the main core–crust transition properties, namely density, pressure and isospin
asymmetry, derived with the thermodynamical and dynamical methods using the D1M,
D1M* and D1M** Gogny forces as well as with the BCPM energy density functional, which
is used here as a benchmark.

It is known from earlier literature that the core–crust transition density, estimated in
the thermodynamical approach, using Skyrme and Relativistic Mean Field (RMF) models,
shows a decreasing trend with an increasing value of the slope of the symmetry energy
(see [13,87] and references therein). In Refs. [13,87] we have computed the core–crust
transition density predicted by finite-range interactions using the thermodynamical and
dynamical methods. We find that our results are in harmony with earlier calculations
obtained with the Skyrme interactions and RMF parametrizations. This can be seen in
Figure 9, where we plot the transition density (left panels) and the transition pressure (right
panels) obtained using the thermodynamical (upper panels) and the dynamical (lower
panels) methods. We have obtained the transition properties for a large set of Skyrme
forces and also for most of Gogny interactions available in the literature. These sets of
interactions cover a large range of values of the slope of the symmetry energy L going from
around 15 MeV up to 130 MeV. We see that the values of both the transition density and the
transition pressure have larger values when they are obtained using the thermodynamical
method instead of the dynamical method. The reason behind this is, as we have mentioned,
that the dynamical method takes into account the surface and Coulomb contributions
that tend to stabilize more the liquid core. Comparing between the transition density and
pressure we observe different behaviors. On the one hand the values of the density of the
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core–crust transition follow a rather linear decreasing trend with respect to the slope of the
symmetry energy L for both Skyrme and Gogny forces. On the other hand, the correlation
between the transition pressure and L is less obvious, being more visible for Skyrme forces
than for the Gogny ones. For example, we can see from Table 3 the decreasing trend of
the transition density with the increasing value of L of the different models considered
in this Table (see Table 2 in this respect), while the transition pressure is roughly similar
computed with the D1M, D1M* and D1M** forces and differs from the prediction of the
BCPM energy density functional.
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Figure 9. Transition density (left panels) and transition pressure (right panels) against the slope of the
symmetry energy computed for some Skyrme and Gogny interactions. The upper panels correspond
to the values obtained using the thermodynamical method whereas the lower panels display the
results extracted using the dynamical method.

Table 3. Core–crust transition density ρt, pressure Pt and and isospin asymmetry δt predicted by the
D1M, D1M* and D1M** Gogny forces and the BCPM energy density functional.

ρt Pt δt
(fm−3) (MeVfm−3)

D1M
Vther 0.1027 0.3390 0.9241
Vdyn 0.0949 0.2839 0.9257

D1M*
Vther 0.0909 0.3301 0.9275
Vdyn 0.0838 0.2702 0.9300

D1M**
Vther 0.0960 0.3368 0.9257
Vdyn 0.0886 0.2786 0.9279

BCPM
Vther 0.0889 0.5137 0.9339
Vdyn 0.0816 0.4132 0.9382

4. Global Properties of Neutron Stars Predicted by Gogny Forces

The unified EoS is obtained from the consistent calculation of the core and the crust,
as we have shown in the previous sections. We provide the unified EoSs and the associated
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stellar matter composition obtained for D1M and D1M* in the Supplementary Material. In
addition, for the sake of clarity we display in the left panel of Figure 10 the unified EoS
in logarithmic scale computed with these interactions as well as with the BCPM energy
density functional. From this panel we see that practically no differences can be observed
in the outer crust. In the inner crust the EoSs provided by the different Gogny forces
are similar and show some differences with the BCPM predictions. However, in the core
region the differences between the original D1M and modified D1M* Gogny forces are
more prominent.

Figure 10. Left: Unified EoS computed with the the D1M and D1M* Gogny force and with the BCPM
energy density functional. Right: Particle fractions and the proton fraction corresponding to the
onset of the direct Urca (DU) process (see text for details) as functions of the nucleonic density from
the D1M and D1M* interactions.

In the right panel of Figure 10 we compare the predictions of the D1M and D1M* EoSs
for the particle populations in the beta-equilibrated npeµ matter of the NS core. The impact
of the stiffer symmetry energy of the D1M* interaction with respect to D1M, as reflected
by the total EoS displayed in the left panel of the Figure, can be clearly seen in the right
panel. D1M* predicts a persistent population of protons and leptons in the core of the star
with increasing nucleon density. In stark contrast, in the results calculated with D1M we
see that matter becomes soon deprotonized and deleptonized when the density increases.
This is because in D1M it is much less costly to convert protons into neutrons due to the
softer symmetry energy of this interaction. Actually, according to D1M the stellar core
would be composed practically of only neutrons after a density ρ ≈ 0.65 fm−3 (≈4ρ0), as
can be seen from the D1M particle fractions in Figure 10. Notice also that D1M* predicts
a growing population of muons with higher density, whereas in D1M the appearance of
muons is nominal. According to recent studies in the literature, the presence of muons
in NSs may play a significant role in addressing several new physics questions about
the interactions and the astrophysical effects of muonphilic dark matter particles, see
Ref. [89] and references therein. The proton fraction inside the beta-equilibrated matter also
determines whether a proto-neutron star will go through the direct Urca process or not. In
npeµ matter this is attributed to the condition that the proton fraction satisfies ρp/ρ > xDU ,
where xDU is defined as [90]

xDU =


1 +

{
1 +

(
ρe

ρp

)1/3
}3


−1

. (34)

In Figure 10, we plotted this quantity as a function of density, denoted by “DU” (black
lines). The density point at which the proton fraction (red) surpasses the quantity xDU
indicates the onset of direct Urca. One can see that only D1M* fulfills this condition, though
at fairly large densities (ρ > 0.93 fm−3). This behavior can be directly attributed to the
stiffer symmetry energy for D1M* at suprasaturation densities compared to D1M.
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Once the full EoS is obtained, one can look for different global properties of NSs. In
this review we will concentrate on three relevant aspects, namely the mass-radius relation
in an NS, which provides a detailed information about the structure of the star, the moment
of inertia of the NS, and in particular its fraction enclosed by the crust, which may be
important for the description of pulsar glitches. Finally, the last aspect to be discussed
is the tidal deformability in binary systems of NS. This quantity can be accessed by the
detection of gravitational waves (GW), coming for example from the merger of a NS binary
as in the GW170817 event recorded recently.

4.1. The Tolman–Oppenheimer–Volkov Equations

In order to study the mass-radius relation of NSs, one has to solve the TOV equa-
tions [54,91], which need as an input the full EoS along all of the star. The TOV equations
take into account within the general relativity framework the hydrostatic equilibrium in
the star between the pressure given by the gravitational field and the pressure coming from
the baryons and leptons inside the star. The TOV equations are given by

dP(r)
dr

=
G

r2c2 [ε(r) + P(r)]
[
m(r) + 4πr3P(r)

][
1− 2Gm(r)

rc2

]−1

(35)

dm(r)
dr

= 4πr2ε(r), (36)

where ε(r), P(r) and m(r) are, respectively, the energy density (including free nucleon
mass), pressure and mass at each radius r inside the NS. Starting with a central energy
density ε(0), a central pressure P(0) and a central mass m(0) = 0, one integrates out-
wards the differential equations until reaching the NS surface, where the pressure is zero,
P(R) = 0. At the same time, the location of the surface of the star determines its total
radius R and its total mass M = m(R).

In Figure 11 we plot the mass–radius (MR) relation for the D1M and D1M* Gogny
interactions, as well as for the BCPM energy density functional. We stress that all three
EoSs used in the calculations are unified EoSs, where the outer crust, the inner crust and
the core have been obtained using the same interaction. In the same plot we include
constraints coming from different sources. First, we include constraints for the maximum
mass obtained from the observation of the highly massive NSs [14,15]. The green vertical
constraint comes from cooling tails of type-I X-ray bursts in three low-mass X-ray binaries
and a Bayesian analysis [92], and the blue vertical constraint is from five quiescent low-
mass X-ray binaries and five photospheric radius expansion X-ray bursters after a Bayesian
analysis [93]. The pink–red rectangular constraint at the front is from a Bayesian analysis
with the data from the GW170817 detection of gravitational waves from a binary NS
merger [94]. Finally, we inserted the constraints coming from the very recent NICER
observations for the mass and radius of the pulsars PSR J0030+0451 and PSR J0740+6620
with one-sigma deviation [95,96]. As mentioned in previous sections, we observe that
the D1M interaction predicts the NS maximum mass of only 1.74M�. Moreover, the MR
relation obtained from D1M falls outside all considered constraints. If we look at the MR
relation obtained using the EoS given by the D1M* interaction, we see that it reaches a
maximum NS mass of around 2M�, similarly to the one given by the BCPM energy density
functional, which we included here as a benchmark. The MR relations given by both
D1M* and BCPM lie inside most of the constraints for the mass and radius included in the
same Figure.

We plot in Figure 12 the mass (left panel) and radius (central panel) enclosed in the
NS crust. The values of the crustal mass for the BCPM energy density functional are larger
than the ones obtained using Gogny interactions, but are close to the ones computed with
D1M* once one approaches the NS maximum mass values. On the other hand, the crustal
masses obtained using the D1M interaction are lower than the ones obtained with D1M*.
For the crustal radius, or thickness of the crust, we see that the values predicted by D1M*
are very similar to the results one achieves for BCPM, at least above 1.4M�, while the
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crustal radius computed with D1M is smaller than that for the D1M* interaction or for the
BCPM energy density functional.
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Figure 11. Mass-radius relation obtained using the D1M* and the D1M Gogny forces and the
BCPM energy density functional. Constraints from the measurements of M ≈ 2M� (yellow and
grey) [14,15], from cooling tails of type-I X-ray bursts in three low-mass X-ray binaries and a Bayesian
analysis (green) [92], from five quiescent low-mass X-ray binaries and five photospheric radius
expansion X-ray bursters after a Bayesian analysis (blue) [93] and from a Bayesian analysis with the
data from the GW170817 detection of gravitational waves from a binary NS merger (red) [94] are
shown. Finally, the very recent constraints coming from the NICER mission are also included [95,96].
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Figure 12. Crustal mass (left), crustal radius (center), and crustal fraction of the moment of inertia
(∆Icrust/I) (right) obtained with the D1M*, D1M and BCPM interactions.

66



Symmetry 2021, 13, 1613

4.2. Moment of Inertia

The moment of inertia of slowly-rotating NSs can be computed from the static mass
distribution and the gravitational potentials that one finds when solving the TOV equa-
tions [97]. If one studies the slow-rotation limit, the moment of inertia is given by [81,97,98]

I ≡ J
Ω

=
8π

3

∫ R

0
r4e−ν(r) ω̄(r)

Ω
(ε(r) + P(r))√
1− 2Gm(r)/rc2

dr, (37)

where G is the gravitational constant and c the speed of light and one has assumed
spherical symmetry. In Equation (37), J is the angular momentum, Ω is the stellar rotational
frequency, ν(r) and ω̄ are radially dependent metric functions and m(r), ε(r) and P(r) are,
respectively, the NS mass, energy density and total pressure enclosed in a radius r. The
metric function ν(r) satisfies [98]

ν(r) =
1
2

ln
(

1− 2GM
Rc2

)
− G

c2

∫ R

r

(M(x) + 4πx3P(x)
x2(1− 2GM(x)/xc2)

dx, (38)

and the angular velocity of the fluid measured in a local reference frame is given by the
relative frequency ω̄(r) ≡ Ω−ω(r), where ω(r) is the frequency that appears because of
the slow rotation of the star. On the other hand, the relative frequency ω̃(r) ≡ ω̄(r)/Ω can
be obtained by solving the differential equation [98]

d
dr

(
r4 j(r)

dω̃(r)
dr

)
+ 4r3 dj(r)

dr
ω̃(r) = 0, (39)

with

j(r) =
{

eν(r)
√

1− 2Gm(r)/rc2 if r ≤ R
1 if r > R

. (40)

The relative frequency ω̃(r) obtained as a solution of (39) and (40) has to fulfill the
following boundary conditions

ω̃′(0) = 0 and ω̃(R) +
R
3

ω̃′(R) = 1. (41)

Notice that in the slow-rotation regime the solution of the moment of inertia does not
depend on the stellar frequency Ω. Starting from an arbitrary value of ω̃(0), one integrates
Equation (39) up to the surface. Usually, it will be necessary to re-scale the function ω̃(r)
and its derivative with an appropriate constant in order to fulfill (41). One can test the
accuracy of the final result by checking the condition [98]

ω̃′(R) =
6GI
R4c2 . (42)

The ratio between the fraction of the moment of inertia ∆Icrust and the total moment
of inertia I is intrinsically connected to pulsar glitches and to the location of the core–crust
transition [31,54,99,100]. We plot in the right panel of Figure 12 the ratio between ∆Icrust/I
against the total NS mass for the D1M and D1M* interactions and the BCPM energy density
functional. Similarly to what happens for the crustal mass and crustal radius, the crustal
fraction of the moment of inertia is larger when obtained using the BCPM EoS. On the other
hand, the values that one obtains with D1M* fall between the ones of BCPM and the ones
given by D1M, which provides the lower values of ∆Icrust/I from these three interactions.
As can be seen in the rightmost panel of Figure 12, the values obtained using the D1M*
interaction lie between the results predicted by the BCPM and D1M EoSs. Notice that this
later provides the lower values of the ratio ∆Icrust/I among all the interactions used in
this calculation. To account for the size of the pulsar glitches, the pinning model requires
that some amount of angular momentum is carried out by the crust, which can be recast
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as a constraint on the crustal fraction of the moment of inertia. For example, to explain
Vela and another source of glitches, first estimates suggested that ∆Icrust/I > 1.4% [101],
although more recent estimates, which take into account the neutron entrainment in the
crust, increases the minimal crustal fraction up to 7% in order to explain the glitching
phenomena [102,103]. When the Gogny forces D1M and D1M* are used to evaluate the
moment of inertia, the first constraint is fulfilled for NS with masses smaller than 1.4 and
1.7M�, respectively, while the second constraint is only fulfilled by very small NS masses,
as can be seen in the rightmost panel of Figure 12. If the calculation of the moment of inertia
is performed using the BCPM energy density functional instead of the D1M and D1M*
forces, the behavior is similar, although the glitching sources have slightly larger masses.

The left panel of Figure 13 encloses the total moment of inertia against the total NS
mass for the same interactions as the previous Figure. The values of the moment of inertia
obtained with D1M* and BCPM are very similar from low masses up to 1.5M�, from where
the moment of inertia computed with D1M* is slightly larger than that for BCPM. For
these two interactions, the maximum values of the moment of inertia are 1.95× 1045 g cm2

and 1.88× 1045 g cm2, respectively, which are reached a little bit before the maximum
mass configuration. Contrary to these two interactions, the D1M Gogny force gives much
smaller values for I, reaching maximum values of only 1.30× 1045 g cm2. It is expected
that binary pulsar observations can provide new information about the moment of inertia
and, therefore, put additional constraints on the EoS of NS [100]. The moment of inertia
of the primary component of the pulsar PSR-J0737-3039, which has a mass of 1.338M�,
has been estimated by Landry and Kumar in the range I = 1.15+0.38

−0.24 × 1045 g cm2 [104].
From the left panel of Figure 13 it can be seen that this constraint is fulfilled by the moment
of inertia computed using the EoSs based on the D1M and D1M* forces and the BCPM
energy density functional (see Ref. [20] for more details). Finally, let us mention that the
dimensionless quantity I/MR2 is found to scale with the NS compactness χ = GM/Rc2

and to be almost independent of the mass and radius of the NS [99,100,105]. We checked
that this is the situation when the moment of inertia is computed using the D1M and D1M*
and the BCPM energy density functional on the one hand, and also that the universal
relation I/MR2 vs. χ lies within the region estimated by Lattimer and Schutz [100] and
Breu and Rezolla [105] when studied with the same interactions.

4.3. Tidal Deformability

The detection of GW coming from mergers of binary NS systems, and of NS–Black
Hole systems, will open new possibilities to study the EoS of highly asymmetric nuclear
matter, which one uses to describe the interior of NSs. If we focus on binary NS systems,
each of its components induces a gravitational tidal field on its companion. This phe-
nomenon leads to a mass-quadrupole deformation on each member of the binary. To linear
order, the tidal deformability Λ describes this tidal deformation of each star in the system,
and it is defined as the ratio between the induced quadrupole moment and the external
tidal field [106,107].

For each of the stars in the binary, the tidal deformability is given by [106–108]

Λ =
2
3

k2

(
Rc2

GM

)5

, (43)

where k2 is the dimensionless tidal Love number, R is the NS radius, M its total mass. As
previously stated in this paper, the solution of the TOV equations provides the values of
the mass and radius of a NS, while the Love number k2 is obtained as
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k2 =
8χ5

5
(1− 2χ)2[2 + 2χ(y− 1)− y]×

{
2χ[6− 3y + 3χ(5y− 8)]

+ 4χ3
[
13− 11y + χ(3y− 2) + 2χ2(1 + y)

]

+ 3(1− 2χ)2[2− y + 2χ(y− 1)]ln(1− 2χ)
}−1

, (44)

where χ is the compactness of the star and

y =
Rβ(R)
H(R)

. (45)

In Equations (44) and (45), β(R) and H(R) are given by the solution of the following
set of coupled differential equations [107,108]:

dH(r)
dr

= β(r) (46)

dβ(r)
dr

=
2G
c2

(
1− 2Gm(r)

rc2

)−1

H(r)

{
− 2π

[
5ε + 9p +

dε

dp
(ε + p)

]
+

3c2

r2G

+
2G
c2

(
1− 2Gm(r)

rc2

)−1(m(r)
r2 + 4πrp

)2
}

+
2β(r)

r

(
1− 2Gm(r)

rc2

)−1{
−1 +

Gm(r)
rc2 +

2πr2G
c2 (ε− p)

}
, (47)

where m(r) is the mass enclosed inside a radius r, and ε and p are the corresponding energy
density and pressure. One solves Equations (46) and (47) along with the TOV equations by
integrating outwards, with the boundary conditions H(r) = a0r2 and β(r) = 2a0r as r → 0.
The constant a0 is arbitrary, as it cancels out in the expression for the Love number [108].
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Figure 13. Left: Total moment of inertia against the total mass of neutron stars computed using the
D1M* and D1M Gogny forces and the BCPM energy density functional. The constraint proposed
in [104] is also displayed. Right: Mass weighted tidal deformability (for symmetric binaries) against
the chirp mass of binary neutron star systems obtained using the same interactions as in the left
panel. The constraint for Λ̃ coming from the GW170817 event is also included [109,110].

69



Symmetry 2021, 13, 1613

When studying the full NS binary system, the mass-weighted tidal deformability
Λ̃ takes into account the contribution from the tidal effects to the phase evolution of the
gravitational wave spectrum of the inspiraling NS binary, and it is defined as

Λ̃ =
16
13

(M1 + 12M2)M4
1Λ1 + (M2 + 12M1)M4

2Λ2

(M1 + M2)5 , (48)

where Λ1 and Λ2 are the tidal deformabilities of each NS conforming the system and M1
and M2 are their corresponding masses. Notice that the definition (48) fulfills Λ̃ = Λ1 = Λ2
when M1 = M2.

The LIGO and Virgo Collaboration have already detected some GW signals coming
from the merger of two NSs [109,110], which allow constraining of the mass-weighted tidal
deformability Λ̃ and the chirp mass of the systemM, which is given by

M =
(M1M2)

3/5

(M1 + M2)1/5 . (49)

In this paper we will use the constraints coming from the GW170817 detection [109,110],
as it is at the moment the one that further constrains Λ̃ andM, at values of Λ̃ = 300+420

−230,
M = 1.186+0.001

−0.001M�. Additional constraints for the single NS masses are also given as
M1 ∈ (1.36, 1.60)M� and M2 ∈ (1.16, 1.36)M�.

We plot in the right panel of Figure 13 the mass-weighted tidal deformability against
the chirp mass obtained using the D1M* and D1M Gogny forces and the BCPM energy
density functional. The mass-weighted tidal deformability Λ̃ predicted by the BCPM and
D1M* EoSs have very similar values, lying well inside the constraint of the GW170817
detection, which is plotted in green in the same Figure. On the other hand, the values
obtained with the D1M Gogny interaction are lower than the ones obtained with D1M*
and BCPM, even though they also lie inside the GW constraints, but near the lower limit.
Finally, let us mention that in Ref. [111] an analysis of the GW170817 constraints has been
performed using both Gogny forces and momentum-dependent interactions (MDI). One of
the conclusions of this study has been that the successful Gogny and MDI interactions that
are compatible with GW170817 restrict the radius of a canonical NS of 1.4M� to within the
range of 9.4 km ≤ R1.4 ≤ 13.1 km [111].

5. Conclusions

In this review article we revised and summarized the most relevant aspects of our
investigations about the application of effective forces of Gogny type to the NS scenario that
have been previously reported in a series of papers. The Gogny interactions were proposed
more than forty years ago with the purpose to describe simultaneously the mean field and
the pairing field, which usually are disconnected in almost all of the mean field models
available in the literature. Although the standard parametrizations of the Gogny force,
such as D1S, D1N and D1M, reproduce rather accurately the nuclear masses as well as
pairing and deformation properties of finite nuclei, these interactions fail when applied to
the NS domain. The basic reason for that is the too soft symmetry energy predicted by these
forces at high baryon densities, which are unable to produce heavy enough stellar masses.
To cure this limitation, we proposed a reparametrization of the Gogny D1M force in such a
way that preserves the accurate description of finite nuclei, the isovector properties of the
interaction, in particular the slope of the symmetry energy are modified to obtain a stiffer
EoS able to predict maximal NS masses of about 2M�, in agreement with well-contrasted
astronomical observations. Our renormalization procedure has been applied using the
D1M force as starting point, because the D1S and D1N interactions are too far from the
2M� target. In this way we have built up two new Gogny parametrizations, denoted as
D1M* and D1M**, which predict maximal masses of NS of 2M� and 1.91M�, respectively.

Apart from the description of the core of NSs, we also used these new Gogny forces
to build up the EoS of the crust of NSs aimed to obtain a unified EoS from the surface
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to the center of the star. The outermost region of a NS, called outer crust, consists of a
lattice of atomic nuclei, which are more neutron rich as the depth increases, embedded in a
free electron gas. The basic ingredient to determine the EoS in this region are the nuclear
masses, which are taken from the experiment or obtained from a HFB calculation with
the same Gogny force when the masses are unknown. After a density around 0.003 fm−3,
neutrons cannot be retained by the nuclei and above this density, the matter is arranged still
as a lattice structure but now permeated by free neutron and electron gases. The treatment
of this region is complicated owing to the presence of the neutron gas. To describe this
scenario, called inner crust, we use the Wigner–Seitz approximation and compute the rep-
resentative nucleus inside each cell using the semiclassical Variational Wigner–Kirkwood
approximation, which includes h̄2 corrections added perturbatively. Moreover, the quantal
shell corrections and the pairing correlations for protons are also added perturbatively,
using the so-called Strutinsky integral method and the BCS approximation, respectively. At
a density roughly around one-half the saturation density the inner crust structure dissolves
in a homogeneous core. The precise value of the crust–core transition density is strongly
model dependent. To determine the transition point is not an easy task when looking from
the crust, as it requires an accurate description of the inner crust. However, it is easier to
determine the transition point from the core side searching for the density for which the
homogeneous core is unstable against the cluster formation. The simplest approach is the
so-called thermodynamical method that only considers the stability of the homogeneous
core. A more precise approximation is provided by the dynamical method, which on top of
the stability of the homogeneous core, also considers finite-size effects. We have shown that
the dynamical method predicts transition densities and pressures in rather good agreement
with the estimate obtained from the crust side.

Once the full EoS based on the modified D1M* Gogny force was obtained, we used it
to predict different NS properties. In addition to the mass–radius relation, we analyzed
the behavior of the moment of inertia and the tidal deformability of the star, which can
be related to information extracted from observations in some binary pulsars and from
the GW170817 event. We also analyzed some global crustal properties such as the mass
and radius of the crust, as well as the crustal fraction of the moment of inertia, which
can be relevant for the description of the glitches. We find that these global properties
obtained with the Gogny-based EoS are in good agreement with the predictions of other
well contrasted EoS as the ones based on the SLy4 Skyrme force [22] or the microscopic
BCPM energy density functional [21], which is used as a benchmark in this work. Although
a detailed study of some other nuclear structure phenomena, such as the description of
odd nuclei, fission phenomena or giant resonances computed with the new D1M* and
D1M** Gogny forces is still pending, we conclude that these new interactions are promising
alternatives to describe simultaneously finite nuclei and neutron stars providing results in
harmony with the experimental data and astronomical observations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/sym13091613/s1. This supplementary material consists of the D1M and D1M* EoS from the
outer crust to the core, files D1M_complete_EOS.dat and D1MSTAR_complete_EOS.dat, respectively,
as well as a README.txt with details about how the these EoS files are written.
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Abstract: Neutron stars are perfect candidates to investigate the effects of a modified gravity theory,
since the curvature effects are significant and more importantly, potentially testable. In most cases
studied in the literature in the context of massive scalar-tensor theories, inflationary models were
examined. The most important of scalar-tensor models is the Higgs model, which, depending on
the values of the scalar field, can be approximated by different scalar potentials, one of which is the
inflationary. Since it is not certain how large the values of the scalar field will be at the near vicinity
and inside a neutron star, in this work we will answer the question, which potential form of the
Higgs model is more appropriate in order for it to describe consistently a static neutron star. As we
will show numerically, the non-inflationary Higgs potential, which is valid for certain values of the
scalar field in the Jordan frame, leads to extremely large maximum neutron star masses; however,
the model is not self-consistent, because the scalar field approximation used for the derivation of
the potential, is violated both at the center and at the surface of the star. These results shows the
uniqueness of the inflationary Higgs potential, since it is the only approximation for the Higgs model,
that provides self-consistent results.

Keywords: neutron stars; scalar-tensor gravity; Higgs inflationary model

1. Introduction

The next two decades will possibly bring sensational observational results to the cos-
mology, theoretical physics and theoretical astrophysics community. All of these observa-
tions are related to gravitational wave detections, either stochastic inflationary gravitational
waves, such as the LISA [1,2] and DECIGO [3,4], or ordinary astrophysical originating
gravitational waves. With regard to astrophysical sources of gravitational waves, neutron
stars are in the epicenter of current theoretical and experimental research. This is because
neutron stars (NSs) [5–9] are superstars among stars, a wide range of physics research areas
must be used to describe these accurately, such as nuclear and high energy physics [10–24],
modified gravity can also describe NSs [25–37], and theoretical astrophysics [38–49]. Four
decades passed since the first observation of a NS, and to date serious questions remain
regarding the inner structure and physics of NSs. The equation of state (EoS) of nuclear
matter is still a mystery in addition to the fundamental question whether general relativity
(GR) or modified gravity [50–57] controls the physics of the star. A particularly appealing
form of modified gravity is scalar-tensor gravity, and many works on NSs in the context of
scalar-tensor gravity already exist in the literature [58–71]. Also scalar-tensor gravity is pop-
ular in cosmological contexts too [72–84], where viable inflationary models can be realized.
The model with the highest importance in scalar-tensor gravity is the Higgs model, since
the Higgs boson is the first fundamental (elementary) scalar elementary particle that has
ever been observed [85]. The Higgs inflationary potential is capable of producing a viable
inflationary era [76] and this occurs for a specific range of values of the scalar field and
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the non-minimal coupling constant to the Ricci scalar, usually denoted as ξ. In a previous
work we studied NSs in the context of scalar-tensor theories, using the inflationary Higgs
potential [34]. In this work we extend our work to account for different limiting values
of the scalar field and the combined non-minimal coupling of the form ∼ ξφ2. We shall
be interested in values ξφ2 � 1 in Geometrized units. In this approximation, we shall
derive the Einstein frame potential and the relevant conformal transformation function
A(φ). Accordingly, we shall derive the corresponding Tolman–Oppenheimer–Volkoff
(TOV) equations in the Einstein frame, for static NSs, and we shall solve these numerically,
assuming piecewise polytropic EoSs [86,87]. We shall find the M− R relations for static
NSs. Our results indicate an important fact, that the only correct description of the Higgs
potential for static NSs is the one we developed in Ref. [34]. The results of the current article
indicate that the maximum masses of NSs exceed the 3 M� limit, but the approximation
ξφ2 � 1 fails to hold true at the center and at the surface of the NSs. This result indicates
how unique is the inflationary Higgs potential, for providing a self-consistent neutron star
phenomenology.

2. Non-Inflationary Higgs Scalar-Tensor Gravity in the Einstein Frame and Static NSs
Phenomenology

We are interested in extracting the Einstein frame counterpart theory of the Jordan frame
Higgs theory, and we shall do so by using a conformal transformation, see [58,79,88–91] for
details on conformal transformations. The Jordan frame action of the Higgs model as it
appears in cosmological contexts [76], in Geometrized units (G = 1) is the following,

S =
∫

d4x
√−g
16π

[
f (φ)R− 1

2
gµν∂µφ∂νφ−U(φ)

]
+ Sm(ψm, gµν) , (1)

where f (φ) is the non-minimal coupling function and U(φ) is the potential, defined as
follows,

f (φ) = 1 + ξφ2, U(φ) = λφ4 , (2)

where φ denotes the Jordan frame scalar field. In addition, gµν, Sm(ψm, gµν), g and R
denote the metric tensor, the action for the matter fluids, the determinant of the metric
tensor and the Ricci scalar in the Jordan frame.

Performing the conformal transformation g̃µν = A−2gµν, where the function A(φ) is
defined as,

A(φ) = f−1/2(φ) , (3)

and the Einstein frame action in terms of the canonical scalar field ϕ reads,

S =
∫

d4x
√
−g̃
( R̃

16π
− 1

2
g̃µν∂µ ϕ∂ν ϕ− V(ϕ)

16π

)
+ Sm(ψm, A2(ϕ)gµν) , (4)

where the “tilde” denotes quantities evaluated in the Einstein frame. Specifically, g̃µν,
Sm(ψm, A2(ϕ)gµν), g̃ and R̃ denote the metric tensor, the action for the matter fluids, the
determinant of the metric tensor and the Ricci scalar in the Einstein frame.

Recall that A(φ) enters in the conformal transformation g̃µν = A−2gµν and by using
Equations (2) and (3) we have,

A(φ) =
(

1 + ξφ2
)−1/2

. (5)

Also the Einstein frame potential is,

V(φ) =
U(φ)

f 2(φ)
, (6)
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and when expressed in terms of φ this is written as,

V(φ) =
λφ4

(1 + ξφ2)
2 , (7)

Using relation between the Einstein frame canonical scalar field ϕ and the Jordan
frame scalar field φ,

dϕ

dφ
=

1√
4π

√(3
4

1
f 2

( d f
dφ

)2
+

1
4 f

)
, (8)

and combined with Equation (2), we get,

dϕ

dφ
=

1√
16π

√
1 + ξφ2 + 12ξ2φ2

1 + ξφ2 . (9)

For the Higgs inflationary potential, the field values approximations are the following

ξ2φ2 � 1, ξ2φ2 � ξφ2 , (10)

however, we shall use another approximation relevant in Higgs potential physics,
namely [76],

1√
12ξ
� φ� 1√

ξ
, (11)

which is equivalent to the following two approximations,

ξφ2 � 1 , (12)

12ξ2φ2 � 1 . (13)

In view of the approximations (12) and (13) we get approximately at leading order,

dϕ

dφ
'
√

12√
16π

ξφ . (14)

Thus, integrating the above we get the final relation between ϕ and φ,

ϕ =

√
12

2
√

16π
ξφ2 . (15)

At leading order the function A(ϕ) reads,

A(ϕ) = 1− 2
√

12√
16π

ϕ , (16)

thus, at leading order α(ϕ) = d ln A
d’ = −2

√
16π
12

(
1 + 2

√
16π
12 ϕ

)
. Moreover, the potential as

function of ϕ is,

V(ϕ) ' λ

(
2
√

16π√
12

)2
ϕ2

ξ2 . (17)

For phenomenological reasoning [76], we shall choose ξ ∼ 11.455× 104 with λ = 0.1.
With regard to the EoS, we shall use a piecewise polytropic EoS, the details of which can be
found in [34].

For ξ ∼ 11.455 × 104, the requirement (13) can in principle be satisfied, but the
constraint of Equation (12) is not necessarily satisfied. As we will show, this is the case for
the non-inflationary Higgs potential, and we shall verify this numerically. For the study we
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shall consider static NSs, which are described by a spherically symmetric static spacetime
of the form,

ds2 = −eν(r)dt2 +
dr2

1− 2m
r

+ r2(dθ2 + sin2 θdφ2) , (18)

where m(r) denotes the gravitational mass of the stellar object confined inside a radius r.
For Geometrized units (c = G = 1), the TOV equations for the spherically symmetric

spacetime are,
dm
dr

= 4πr2 A4(ϕ)ε + 2πr(r− 2m)ω2 + 4πr2V(ϕ) , (19)

dν

dr
= 4πrω2 +

2
r(r− 2m)

[
4πA4(ϕ)r3P− 4πV(ϕ)r3

]
+

2m
r(r− 2m)

, (20)

dω

dr
=

rA4(ϕ)

r− 2m

(
α(ϕ)(ε− 3P) + 4πrω(ε− P)

)
− 2ω(r−m)

r(r− 2m)
+

8πωr2V(ϕ) + r dV(ϕ)
dϕ

r− 2m
, (21)

dP
dr

= −(ε + P)
[
α(ϕ)ω + 2πrω2 +

m− 4πr3(−A4P + V)

r(r− 2m)

]
, (22)

dϕ

dr
= ω , (23)

The TOV equations must be solved numerically subject to the following initial condi-
tions,

P(0) = Pc, m(0) = 0, ν(0) ,= −νc, ϕ(0) = ϕc, ω(0) = 0 , (24)

where Pc, νc, φc are the pressure of the NS, the value of the function ν(r) and the value of
the scalar field at the center of the NS. The values of nuc and ϕc at the center of the star,
shall be obtained using a double shooting method, in order for the optimal values of them
to be obtained. The requirement for obtaining the optimal values is the scalar field values to
vanish at numerical infinity, which proves to be the same numerically as in the inflationary
Higgs potential, namely r ∼ 67.94378528694695 km in the Einstein frame, see [34]. In
addition, for the derivation of the M− R gravity we need to consider the ADM Jordan
frame mass and the Jordan frame radius. Denoting with rE the Einstein frame radius at

large distances, and dϕ
dr = dϕ

dr

∣∣∣
r=rE

, the Jordan frame mass MJ ≡ M is related to the Einstein

frame mass as follows,

MJ = A(ϕ(rE))

(
ME −

r2
E
2

α(ϕ(rE))
dϕ

dr

(
2 + α(ϕ(rE))rE

dϕ

dr

)(
1− 2ME

rE

))
, (25)

with dϕ
dr = dϕ

dr

∣∣∣
r=rE

and rJ = ArE, and rJ is the Jordan frame radius. The Einstein frame ra-

dius Rs of the star can be obtained by the numerical code by using the condition P(Rs) = 0,
so it is basically determined by the condition that the pressure of the star vanishes at the
surface of the star. Accordingly, by finding Rs we can obtain the Jordan frame radius R
using the relation R = A(ϕ(Rs)) Rs, where ϕ(Rs) is the value of the scalar field at the
surface of the star. Finally and important note is to verify numerically the validity of the
approximation (12) in the Jordan frame. For the numerical analysis, we shall use a freely
available PYTHON code pyTOV-STT [92], and we shall derive the solutions for both the
interior and the exterior of the NS, using the “LSODA” numerical method. The EoSs we
shall use are the WFF1 [93], the SLy [94], and the APR EoS [95]. Let us proceed to the
results of our analysis, and we start off with the M− R graphs for all the EoSs which we
present in Figure 1. The purple curve corresponds to the WFF1 EoS, while the red and
blue to the SLy and APR EoSs respectively. From the graphs it is apparent that for the
non-inflationary Higgs model, the maximum masses are comparably higher with regard to
the GR ones. In addition, in Table 1 we present all the maximum masses for all the EoSs
corresponding to the alternative Higgs model. As it can be seen in Table 1, the maximum
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masses for the alternative Higgs model are quite elevated compared to the GR ones. In
addition, the GW170817 constraint which indicates that the radius corresponding to the
maximum NS mass must be larger than is satisfied R = 9.6+0.14

−0.03 km.

Figure 1. M− R graphs for the alternative non-inflationary Higgs model for the WFF1 EoS (purple
curve), the APR EoS (blue curve), and the SLy EoS (red curve). The y-axis is expressed in M/M�
units, with M denoting the Jordan frame ADM mass, and the x-axis is the circumferential radius.

Table 1. Maximum Masses and the of Static NS for the non-Inflationary Higgs Model and for GR.

Model APR EoS SLy EoS WFF1 EoS

GR Mmax = 2.18739372 M� Mmax = 2.04785291 M� Mmax = 2.12603999 M�

Alternative Higgs ξ ∼ 104 Mmax = 4.55374471 M� Mmax = 4.41766131 M� Mmax = 4.33460622 M�

The results are deemed quite interesting; however, the non-inflationary Higgs model
has inherent issues with the approximation (12) as we proved numerically. Particularly it is
not satisfied neither at the center nor at the surface of the star. This feature can be clearly
seen in Figure 2, where we present the values of ξφ2 in the Jordan frame for all the EoS for
the surface scalar field values. The same applies for the values of the scalar field in the
center of the star. Therefore, to our original question whether inflationary scalar potentials
or other approximations must be used for static NSs phenomenology, the answer seems to
be that only inflationary potentials provide consistent results.

Figure 2. The quantity ξφ2 (y-axis) in Geometrized units, versus the central densities in CGS units,
for ξ ∼ 11.455× 104, for the WFF1 (red curve), APR (blue curve) and Sly (green curve) EoSs. As it
can be seen the constraint (12) is not satisfied.
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3. Concluding Remarks

In the field of cosmology, there exist several massive scalar field theories which can
potentially play an important role for describing NSs phenomenology. From these theories,
the most important is the Higgs inflationary theory in its various forms. Specifically,
depending on the scalar field values, the Higgs potential can take various forms, each
of which may describe a different era in the cosmological theory. Thus, the question
is which approximate Higgs potential can describe in a viable and consistent static NS
phenomenology. In this paper we addressed this question for the most fundamental of all
the scalar field cosmologies, the Higgs inflationary theory. We considered the theory in
the Jordan frame and upon conformally transforming it, we derived the Einstein frame
theory. Accordingly, assuming a specific range for for the scalar field values, we derived the
appropriate quantities which are relevant for studying static NSs in the Einstein frame. For
a static spherically symmetric spacetime we derived the TOV equations and we numerically
solved them using a double shooting method for optimizing the results. The numerical
analysis yielded the Einstein frame masses and radii of the static NS, and also the Einstein
frame values of the scalar field, from which we found the corresponding Jordan frame
quantities. We constructed the M − R graphs and we investigated the validity of the
approximations holding true for the non-inflationary Higgs model. As we showed, the
maximum masses for the alternative Higgs model are quite elevated, compared with the
GR case; however, for all the EoSs studies, the approximation we assumed for deriving
the theory break down. Thus, although the theory provides interesting result, the inherent
structure of it is not correct and consistent. This indicates strongly the suitability of
inflationary potentials for studying NSs phenomenology, regardless how well motivated
other forms of potentials might be. Moreover, it seems that the approximations for the
scalar field values used for deriving the inflationary potentials, are well respected on
the surface, center and at numerical infinity of the NS. Hence, in conclusion the Higgs
potential that is used for inflationary phenomenology is the only suitable for describing
consistently NSs.

We need to note with regard to the EoSs we used, that we used the PAR, and more
importantly the WFF1, known as FPS EoS, and the SLy, which both are known to provide a
unified description of the crust and core of NSs. However, all these EoSs are to date rather
old (nearly 20 years old); thus, it is compelling to incorporate to the analysis more timely
and to date EoSs, such as the BSk24 [96,97].
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Abstract: In this work, we deal with collimated outflows of magnetized astrophysical plasma known
as astrophysical jets, which have been observed to emerge from a wide variety of astrophysical
compact objects. The latter systems can be considered as either hydrodynamic (HD) or magnetohy-
drodynamic (MHD) in nature, which means that they are governed by non-linear partial differential
equations. In some of these systems, the velocity of the jet is very high and they require relativistic
MHD (RMHD) treatment. We mainly focus on the appropriate numerical solutions of the MHD
(and/or RMHD) equations as well as the transfer equation inside the jet and simulate multi-messenger
emissions from specific astrophysical compact objects. We use a steady state axisymmetric model
assuming relativistic magnetohydrodynamic descriptions for the jets (astrophysical plasma outflows)
and perform numerical simulations for neutrino, gamma-ray and secondary particle emissions. By
adopting the existence of such jets in black hole microquasars (and also in AGNs), the spherical sym-
metry of emissions is no longer valid, i.e., it is broken, and the system needs to be studied accordingly.
One of the main goals is to estimate particle collision rates and particle energy distributions inside
the jet, from black-hole microquasars. As concrete examples, we choose the Galactic Cygnus X-1 and
the extragalactic LMC X-1 systems.

Keywords: XRBs; astrophysical jets; photo-pion production; extragalactic; γ-ray emission; lepto-
hadronic model

1. Introduction

The last decades, collimated plasma outflows have been observed to emerge from
a wide variety of astrophysical objects. These include the proto-planetary nebulae, the
compact objects (like galactic black holes or microquasars and X-ray binary stars), as well
as the nuclei of active galaxies (AGNs) [1,2]. Despite their different scales concerning the
size, the velocity, the amount of energy transported, etc., these cosmic structures have
strong similarities. The observations of multi-wavelength and multi-particle emissions
from the black-hole X-ray binaries (BHXRBs) [3–5] and the AGNs have shown that they
are mainly due to the mass accretion onto the compact object (black hole or neutron star).
The accreted matter comes from a companion (donor) star which is often a nearby main
sequence star [6,7]. Thus, the inflow (from the companion star) into the accretion disc and
the outflow in the jet motivate the investigation of the disc–jet connection [8] in the latter
systems. They are governed by non-linear partial differential equations that must be solved
through the use of advanced numerical techniques [9–11].

Recently, the X-ray binary systems (XRBs) and the microquasars (MQ) along with their
astrophysical magnetohydrodynamical outflows have aroused great interest among the re-
searches dealing with the mechanisms of production and emission of high-energy particles
(mostly neutrinos) and/or photons (X-rays, gamma-rays, etc.) from such cosmic structures.
This is not restricted only in the analysis of the very large amount of observations [3–5,12]
compared to emissions of smaller energy ranges but also in their advanced theoretical
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modeling [9–11,13,14]. Up to now, multidimensional numerical simulations and theoretical
calculations have attempted to shed light on the nature of the interaction mechanisms
as well as on the dynamics involved in the associated emissions [7,11]. They offer good
support for experimental efforts of astrophysical particles and radiation detection (for more
details the reader is referred to References [13,15]).

From an astronomy and astrophysics viewpoint, XRBs are binary systems consisted of
a compact object (mostly stellar black hole or neutron star) and a donor star in rotational
trajectory around the central star. Due to the presence of very high gravitational field
around the compact object, mass is absorbed out of the companion star. The result is the
creation of a rotating accretion disc of very high temperature matter and gas along the
equatorial plane of the compact object. Subsequently, the magnetic field lines created by the
rotating charged matter of the disc, collimate the ejected plasma. This way two oppositely
directed astrophysical jets are formed [16]. From a magnetohydrodynamical point of view,
the jets (astrophysical plasma outflows) are considered as fluid flows emanating from the
region of the compact object. Then, they may be strongly accelerated within a cone of
radius r(z) dependent on its half-opening angle ξ (r = ztanξ). It is worth noting that,
in some systems (e.g., the M87 and some AGNs) the consideration of a parabolic jet is
geometrically more realistic. For example, in describing the jet acceleration, the parabolic
shape favors the region near the jet’s base. In the conical geometry, however, assumed in
this work the acceleration region is put at greater distances from the base.

The plasma ejection is closely connected with the accretion disc formation and its
thickness as well as the jet creation mechanisms. Ideally, spherical symmetry would be
well suited to describe thin accretion-disc plasma outflows. Initially, prominent theoretical
models have been developed by assuming isotropic emissions from the jets (in such models
solution through analytic calculations are possible). Realistically (even under slow black-
hole rotation and small-scale magnetic fields) there are rather strong deviations from a
perfectly symmetrical geometry. In addition, the formation of two oppositely directed jets
destroys the spherical symmetry of many systems which become mostly axisymmetric
(around the z-axis, the jet-ejection axis). That is why in various types of microquasars (and
AGNs) the statistical analysis was made on the basis of the jet’s orientation. Moreover,
astrophysical jets are often observed to be one-sided and associated with a Doppler factor
that confirms the existence of bulk relativistic motion inside the jet. Recently, with the
development of advanced efficient computational tools, the employment of more realistic,
anisotropic emission (non-symmetric) models became possible. A prominent example
would be the relativistic hydrocode PLUTO implemented in References [9–11,17].

For the purposes of our present study, we adopt a lepto-hadronic model for neutrino
and gamma-ray production [18–20]. Therefore, we consider that the jet’s matter consists
mainly of hadrons and electrons (their portion is determined by defining the ratio α of
protons to leptons) that are strongly collimated by the system’s magnetic field. Further-
more, we assume that a portion of the main jet’s content (electrons and protons) [21] is
accelerated to rather relativistic velocities through shock-waves [22–25]. A power-law is
best suited to describe the energy distribution of the fast protons N′(E′), which in the jet’s
rest frame, is given by the expression:

N′(E′) = K0E′−2 GeV−1cm−3 , (1)

where K0 is a normalization constant. The accelerated fast protons scatter with the cold
protons of the jet or the protons of the stellar wind [26–28]. They can also scatter with the
radiation fields (gamma-rays) emanating from sources inside or outside the jet. The result
is high-energy secondary particles (pions, muons, neutrinos, etc.) production as well as
secondary gamma-ray photons emission through various reaction chains [18,19,29].

In this work, initially, we discuss some of the possible interactions resulting in sec-
ondary particle and radiation production. In our previous works, we have addressed the
proton-proton (p-p) mechanism and estimated the respective energy distributions as well
as the emissivities of neutrino and gamma-ray emissions [7,30,31]. In the current study,
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we concentrate on the proton-photon (p-γ) interaction mechanism and its dependence on
geometric characteristics of the binary systems of our interest. These include the Galactic
Cygnus X-1 microquasar [32] and the extragalactic LMC X-1 system [33] located at the
neighboring galaxy of the Large Magellanic Cloud. For the detection of such emissions,
extremely sensitive detector facilities, like the IceCube (at the South pole), the ANTARES
and KM3NeT (at the Mediterranean Sea), etc., are in operation to record the relevant signals
reaching the Earth [34,35].

2. Radiation Field Density and Transport Equation in Microquasar Jets

The radiation fields that interact with the accelerated (fast) protons of the jet, may
consist of soft X-ray photons emanating from the system’s accretion disc. They could
also include synchrotron radiation emitted by the charged particles (accelerated by the
magnetic field inside the jet), or ultra violet (UV) photons originated from the corona
region [18,19,36]. In the context of this study, we will take into account the first two cases
that are involved in p-γ collisions leading to a reaction chain producing neutrinos and
gamma-rays of high energies. We note that UV photons do not contribute significantly to
the energy range of our interest.

2.1. Microquasar Jet Mechanisms Leading to Neutrino and Gamma-Ray Production

In our previous works [7,9], we have adopted the proton-proton (p-p) interaction
mechanism taking place inside the relativistic astrophysical outflows of microquasar jets.
This also leads to the particle (pions, muons, neutrinos, etc.) production and radiation
emission (gamma-rays, etc.) (see Ref. [7]). Such emissions present axial symmetry around
the jet’s ejection z-axis. In Refs. [10,11], the employed PLUTO hydro-code permits emission
calculations without the assumption of axial symmetry which are considered more realistic
jet emission simulations. In this paper, however, we focus on the proton-photon (p-γ)
interactions described below.

The p-γ mechanism reflects the collisions of the relativistic protons with the photons
of the radiation fields discussed before. This results in the known photo-pion production
shortly represented by the following scattering and/or decay reactions:

p + γ→ p + π0

p + γ→ p + π0 + π+ + π− (2)

p + γ→ n + π+ .

The above pions (π0, π+, π−) decay to gamma-ray photons, charged muons, neutrinos,
etc., according to the following reactions:

π0 → γ + γ

π+ → µ+ + νµ → e+ + ν̄µ + νe + νµ (3)

π− → µ− + ν̄µ → e− + ν̄e + νµ + ν̄µ .

In the above reaction chains (2) and (3), gamma-ray photons are emitted through the
neutral pions decay. Furthermore, through the subsequent decay of the secondary muons
which create electrons e− (or positrons e+), neutrinos or anti-neutrinos are produced too.
By implementing the p-γ mechanism, the above reactions constitute the main processes
feeding the neutrino and gamma-ray production channels in the lepto-hadronic model
employed [18,19].

In general, the radiation density that interacts with the non-thermal (relativistic)
protons, is due to mainly two contributing factors. The first is the synchrotron emission,
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by accelerated charged particles, that create a photon distribution, nphS (produced by
relativistic electrons as well as protons). It is given by [18,19]:

nphS(ε, z) ≈ εsynr(z)
εc

, (4)

where εsyn corresponds to the total power radiated by electron and proton distributions
and is given in Appendix A.1. The second contributing factor is an X-ray distribution, nphX
(for 2 keV < ε < 100 keV), originated from the corona that surrounds the inner accretion
disc. For the latter distribution, we have [19,36]:

nphX(ε, z) =
LXe−ε/kTe

4πcz2ε2 , (5)

where X-ray luminosity is LX = 1036 ergs−1 and kTe ' 30 keV.
Furthermore, within our approximation it holds nph = nphX + nphS. It should be noted

that, the primary particles (protons, electrons) as well as the secondary particles take part
also in energy loss interactions and processes. These include the energy losses due to jet
adiabatic expansion, the losses due to inelastic collisions with the cold protons and losses
due to the emission of synchrotron radiation [30,31,37].

Concerning the fast (non-thermal or relativistic) proton distribution, its shape in the
one-zone approximation, resembles to a power-law type (defined by a normalization
constant K0) [38] assumed in our model (see Equation (1)).

2.2. Solution of the Transfer Equation

In the lepto-hadronic model employed in the present work, the acceleration mecha-
nism (it is not included in the transport equation) is used to fix the injection function of
the primary electrons and protons. Then, it determines the maximum energies that can
be acquired by the relativistic particles inside the jet. To this aim, the particle transfer
(transport) equation must be solved which, assuming a steady-state model, is written
as [9–11]:

∂N(E, z)b(E, z)
∂E

+ t−1N(E, z) = Q(E, z) . (6)

N(E, z) represents the particle density per unit of energy (cm−3GeV−1) and Q(E, z) denotes
the particle source function (in units of cm−3GeV−1s−1). Obviously, this is not a spherical
but an axisymmetric model, hence the particle distributions and injection functions depend
on z (i.e., the distance to the central object on the ejection-axis of the jet). In the latter
equation, b(E) stands for the total energy loss rate given by:

b(E) =
dE
dt

= −Et−1
loss , (7)

while t−1 represents the particles’ reduction rate as:

t−1 = t−1
esc + t−1

dec . (8)

Here, t−1
dec is the decay rate (in the case of pions and muons) and t−1

esc the escape rate of
the particles from the jet’s region. The latter rate is given by:

t−1
esc =

c
zmax − z0

, (9)

with (zmax − z0) being the length of the acceleration zone inside the jet.
The solution of the differential Equation (6) is written as:

N(E, z) =
1

| b(E) |
∫ Emax

E
Q(E′, z)e−τ(E,E′)dE′ , (10)
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where the maximum proton energy is approximated by Emax
p ' 107 GeV, while:

τ(E, E′) =
∫ E′

E

dE
′′
t−1

| b(E′′) | . (11)

The source function Q(E, z), for the relativistic particles (in the jet’s rest frame) is given
by [19]:

Q(E′, z) = Q0

( z0

z

)3
E′−2 . (12)

In the observer’s reference frame, Q(E, z) takes the form given in the Appendix (see
Equation (A8) of Appendix A.2) where the normalization constant Q0 of Equation (12) is
also given in the Appendix A.

3. Interaction Frequency and Particle Emission through p-γ Mechanism

The injection function for the pions produced through the p-γ interaction mechanism
is the following:

Q(pγ)
π (E, z) = 5Np(5E, z)ωpγ(5E, z)N̄(pγ)

π (5E) , (13)

where Np(E, z) denotes the proton energy distribution. Furthermore, ωpγ is the p-γ

collision frequency that results in pion production. The mean number N̄(pγ)
π of positive or

negative pions produced per p-γ collision is given by:

N̄(pγ)
π = pp→n p1 + 2p2 , (14)

where the parameter pp→n ' 0.5 is to express the probability of conversion of a primary
proton to a neutron. Furthermore, p1 and p2 are defined as:

p1 =
K2 − K̄pγ

K2 − K1
, (15)

and p2 = 1− p1. Moreover, we have K1 = 0.2 and K2 = 0.6. In the latter equation, for the
mean inelasticity parameter K̄pγ it holds:

K̄pγ =
t−1

pγ

ωpγ
. (16)

The p-γ collision frequency ωpγ in Equations (13) and (16) is given by [19,39]:

ωpγ(Ep, z) =
c

2γ2
p

∫ ∞

εth/2γp

nph(ε, z)
ε2 dε

∫ 2εγp

εth

σ
(π)
pγ (ε′)ε′dε′ , (17)

where γp = Ep/mpc2, nph(ε, z) is the radiation field density that was discussed in Section 2.
The threshold energy εth is assumed to be εth = 0.15 GeV [39].

After the above definitions, the respective cross-section σ
(π)
pγ is given by [39,40]:

σ
(π)
pγ = [3.4Θ(ε′ − 0.2)Θ(0.5− ε′) + 1.2Θ(ε′ − 0.5)]× 10−28cm2 , (18)

where Θ(x) denotes the well-known step function. In the latter relationships, the proton-
photon collision rate t−1

pγ was obtained from the expression [39]:

t−1
pγ =

c
2γ2

p

∫ ∞

εth/2γp

nph(ε, z)
ε2 dε

∫ 2εγp

εth

σ
(π)
pγ (ε′)K(π)

pγ (ε′)ε′dε′ . (19)
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In the above expression, K(π)
pγ (ε′) is the respective inelasticity function [39,40] which is

equal to:
K(π)

pγ (ε′) = 0.2Θ(ε′ − 0.2)Θ(0.5− ε′) + 0.6Θ(ε′ − 0.5) . (20)

4. Results and Discussion

In the context of the model chosen in this study, at first the p-γ collision rate t−1
pγ of

Equation (19) was calculated for the X-ray binary systems Cygnus X-1 and LMC X-1. The
geometric properties and other parameters of these systems are listed in Table 1. The results
obtained for the t−1

pγ in the latter microquasars are presented in Figure 1. In the upper two
sub-figures, we illustrate the interaction rate as a function of the proton energy E for three
different distances of the studied point up to the system’s central object (z). The range
of z covers the length of the acceleration zone (from z0 to zmax = 5z0). It is supported by
theoretical calculations that, for greater distances, the p-γ collision rate decreases. The
reason is the dependence of X-ray photon density (see Equation (5)) as well as the fast
particle density on z. It is reasonable that as the jet expands (e.g., its radius increases), the
mean-free path of the particles and photons involved in the collisions increases as well.
That leads to reduced collision rates.
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Figure 1. Proton-photon (p-γ) interaction rate t−1
pγ as a function of proton energy E for the binary

systems Cygnus X-1 (left column) and LMC X-1 (right column). In the upper two sub-figures (a,b),
we show the p-γ interaction rate for three different values of the distance z (in factors of z0) inside
the jet from the compact object. In the lower two sub-figures (c,d), we plot the t−1

pγ for three different
values of the jet’s half-opening angle ξ.

90



Symmetry 2022, 14, 485

Table 1. Model parameters describing geometric characteristics of the Galactic Cygnus X-1 binary
system and the extragalactic LMC X-1 located at the Large Magellanic Cloud.

Description Parameter Cygnus X-1 LMC X-1

Jet’s base z0 (cm) 191RSch 95RSch
Acceleration zone limit zmax (cm) 956RSch 477RSch
Mass of compact object MBH 14.8M� [41] 10.91M� [42]
Angle to the line-of-sight θ (◦) 27.1 [41] 36.38 [42]
Jet’s half-opening angle ξ (◦) 1.5 [43] 3 *
Jet’s bulk velocity υb 0.6c [43] 0.92c *

* Indicative values that we consider for our calculations.

In the lower two sub-figures of Figure 1, we illustrate the p-γ collision rate for three
different values of the half-opening angle ξ of the jet. This angle strongly depends on the
magnetic field strength and characterizes the jet’s collimation. The values of ξ considered
are representative and cover the assumed range extended up to 10◦. We notice that the
collision rate decreases as the jet expands perpendicularly to its ejection axis (i.e., for greater
angles). This is validated by the corresponding theoretical expressions if we consider the
decrease of the synchrotron emission which is due to the magnetic field that controls the
jet’s collimation. In addition, the mean-free path of the proton-photon collisions increases
causing the reduction of the respective rate.

We have, also, calculated the pion energy distributions for different typical values
of the angle (θ) between the jet axis and the direction of the line of sight as well as the
bulk velocity of the jet’s matter (ub) for the Cygnus X-1 binary system, see Figure 2. It
is evident that the particle production is higher for smaller values of θ as demonstrated
in Equation (A8) in the Appendix A.2. Furthermore, the particle production increases
for greater bulk velocities ub (i.e., it is ub=β jc where c corresponds to the speed of light
constant) as shown in sub-figure (b) of Figure 2. This result is justified by considering
the relation of bulk velocity to the jet’s collimation and the proton-photon interaction rate
which increases for larger energies. It is hoped that, our present results would be helpful
for future relevant experimental and observational measurements.
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Figure 2. For Cygnus X-1, we present pion distributions for different values of the system’s angle to
the line of sight (a) and bulk velocity of the jet’s ejected matter (b). The pions in this case have not
been subjected to energy loss mechanisms.

In this work, we, furthermore study the pion distributions produced by p-γ interac-
tions for three different values of the parameter α defined as:

α =
Lh
Le

. (21)
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Lh and Le denote the hadronic and leptonic luminosity, respectively. These values corre-
spond to: (i) a leptonic model (α = 0.001), (ii) a hadronic model (α = 100) and (iii) an
extreme-hadronic model (α = 1000). The results are shown in Figure 3. Our main purpose,
here, is the comparison between the particle (pions) production in these well-implemented
models (leptonic and hadronic). For that reason, we have not considered the possible
energy losses that the aforementioned particles are subjected through the various mech-
anisms [30,31]. In Figure 3, we notice the reasonable decrease in pion production in the
leptonic case as the protons are reduced compared to electrons inside the jet. However, as
can be seen, there is no essential difference between the hadronic and the extreme-hadronic
model, therefore, a ratio of α ' 100 is deemed sufficient enough.
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Figure 3. Pion energy distributions from p-γ collisions in the jets of binary systems Cygnus X-1 (a)
and LMC X-1 (b) for three different values of hadron-to-lepton ratio α.

5. Summary and Conclusions

Astrophysical binary systems, consisted of a high-mass compact object (black hole or
neutron star) that absorbs mass out of a companion star (forming a rotating accretion disc)
are studied extensively in recent years. More specifically, their magnetohydrodynamical
astrophysical flow ejection and high-energy radiation as well as particle emissions have
been the research subject of many authors working in this field. In our present work, we
go beyond the spherically symmetric models of neutrino and gamma-ray emissions and
adopt conical jets, i.e., axially symmetric plasma outflows from microquasar jets.

We, furthermore, assume that strong shock-waves accelerate a portion of the jets’
charged particles (mostly protons but also electrons) to rather relativistic energies obeying a
power-law energy-dependent distribution. Under the above circumstances, these particles
interact with thermal protons of the jet (or of stellar winds) or with the radiation fields
originating from energy-exchanging mechanisms (i.e., between electrons and low-energy
photons) inside or outside the jet’s region. The outcomes of these interactions are secondary
particles and photons such as pions, muons, neutrinos, gamma-ray photons, etc. The multi-
messenger signals created this way are detectable by the terrestrial extremely sensitive
detectors like the IceCube, ANTARES, KM3NeT, etc.

In our study, we mainly focus on the p-γ interaction mechanism (which was not
taken explicitly into account in our previous works) and the parameters (e.g., geometric
characteristics of the binary systems, the jet’s matter composition of leptons or hadrons,
etc.) which affect the associated emissions of particle and radiation. In particular, we have
selected two concrete examples, the Galactic Cygnus X-1 and the extragalactic LMC X-1
binary systems, to study with the model chosen and present numerical calculations for the
collision rates and energy distributions of particles that come out (pions). Our results show
that the particle density production strongly increases in more collimated flow ejections
which is highly dependent on the prevailing magnetic field. In addition, we find that the
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smaller the distance z from the central region the larger the production of particles and
radiation is emitted.
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Appendix A

Appendix A.1. Synchrotron Power Radiation by Particle Distributions

When a charged particle of energy E is being accelerated by a magnetic field with
pitch angle a, it emits synchrotron radiation. The power of the radiation per units of the
emitted photons’ energy and pitch angle a is given by [37]

Psyn(ε, E, z, α) =

√
3e3B(z)sin(a)

hmc2
ε

Ecr

∫ ∞

ε
Ecr

K5/3(ζ)dζ , (A1)

where B(z) is the binary system’s magnetic field responsible for the jet’s collimation. e
is the electric charge, h denotes the Planck constant and Ecr corresponds to the critical
frequency of the emitted radiation which is written as

Ecr =
3heB(z)sin(a)

4πmc
γ2 . (A2)

In Equation (A1), we integrate over the modified Bessel function of order 5/3 which
we calculate through the following relationships

K 1
3
(ζ) =

√
3
∫ ∞

0
exp

[
−ζ

(
1 +

4x2

3

)√
1 +

x2

3

]
dx (A3)

K 2
3
(ζ) =

1√
3

∫ ∞

0

3 + 2x2
√

1 + x2

3

exp

[
−ζ

(
1 +

4x2

3

)√
1 +

x2

3

]
dx (A4)

K 5
3
(ζ) = K 1

3
(ζ) +

4
3ζ

K 2
3
(ζ) . (A5)

After calculating Psyn, we integrate over the pitch angle a as well as the particle en-
ergy distribution in order to obtain the total power radiated per unit energy by a particle
(electron or proton) distribution such as those we discussed before. The result for electron
or proton distributions is given below

ε
(e,p)
syn (ε) =

∫
dΩα

∫ E(max)
e,p

E(min)
e,p

PsynNe,p(E, z)dE , (A6)

where Emin
p = 1.2 GeV and Emin

e = 0.001 GeV are the minimum proton and electron ener-
gies, respectively. For the maximum energies, we have Emax

p ' 107 GeV and Emax
e ' 7 GeV.
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The total power radiated by both electrons and protons is given by

εsyn(ε) = ε
(e)
syn(ε) + ε

(p)
syn(ε) . (A7)

Appendix A.2. Injection Function in Observer’s Reference Frame

The transformation of the proton injection function to the observer’s reference frame
is given by [10,11,44]

Q(E, z) = Q0

( z0

z

)3 Γ−1
b (E− βbcosθ

√
E2 −m2c4)−2

√
sin2θ + Γ2

b

(
cosθ − βbE√

E2−m2c4

)2
. (A8)

Here, Γb is the Lorentz factor responding to the jet’s bulk velocity (ub = βbc and
Γb = (1− β2

b)
− 1

2 ) and Q0 is given by

Q0 =
8qrLk

z0r2
0ln(Emax

p /Emin
p )

, (A9)

where r0 is the jet radius that corresponds to the distance z0 from the central object. More-
over, the kinetic luminosity that is transferred in the jet Lk is considered to be 10% of the
central object’s Eddington luminosity [8]. We, also, adopt the value qr = 0.1 for the portion
of relativistic protons and electrons inside the jet.
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Mapping Topology of Skyrmions and Fractional Quantum Hall
Droplets to Nuclear EFT for Ultra-Dense Baryonic Matter
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mannque.rho@ipht.fr

Abstract: We describe the mapping at high density of topological structure of baryonic matter to
a nuclear effective field theory that implements hidden symmetries emergent from strong nuclear
correlations. The theory constructed is found to be consistent with no conflicts with the presently
available observations in both normal nuclear matter and compact-star matter. The hidden symme-
tries involved are “local flavor symmetry” of the vector mesons identified to be (Seiberg-)dual to
the gluons of QCD and hidden “quantum scale symmetry” with an IR fixed point with a “genuine
dilaton (GD)” characterized by non-vanishing pion and dilaton decay constants. Both the skyrmion
topology for N f ≥ 2 baryons and the fractional quantum Hall (FQH) droplet topology for N f = 1
baryons are unified in the “homogeneous/hidden” Wess–Zumino term in the hidden local symmetry
(HLS) Lagrangian. The possible indispensable role of the FQH droplets in going beyond the density
regime of compact stars approaching scale-chiral restoration is explored by moving toward the limit
where both the dilaton and the pion go massless.

Keywords: topology for baryons; hidden symmetries; ultra dense matter; compact stars

1. Introduction
1.1. The Problem

In nuclear processes going from low density near-normal nuclear matter to high
density relevant to massive compact stars, two or possibly more density regimes are
involved. They are most likely delineated by changes of degrees of freedom (DoF). At low
densities up to slightly above the equilibrium nuclear matter density (n0 ' 0.16 fm−3), say,
to n ∼< 2n0, the relevant degrees of freedom are the nucleons N and pions π figuring in
what is referred to as “standard chiral effective field theory” (given the acronym sChEFT)
with a cut-off scale set, typically, at ΛsChEFT ∼ (400− 500) MeV. When treated to NmLO for
m = (3− 4) in systematic chiral power expansion, ab initio calculations in sChEFT have
been seen to work highly satisfactorily for nuclear structure in finite nuclei, as well as for
properties of nuclear matter. This impressive success in nuclear physics could be taken
as a convincing proof of Weinberg’s “Folk Theorem for EFT” as applied to QCD [1]. This
sChEFT is expected to be extendable to ∼2 times n0, but it is to break down by the premise
of EFT at a high density as the relevant degrees of freedom are no longer just the nucleons
and pions but more massive hadronic degrees of freedom, and ultimately the QCD degrees
of freedom, i.e., quarks and gluons, must figure as density increases. Thus, there must be
one or more changes of DoFs from hadronic to quarkonic.

Due to the paucity of trustful theoretical tools for guidance in the absence of lattice
approach to QCD in dense medium—in contrast to thermal matter—there is no clear
indication how many and in what form(s) these changeovers of DoFs could take place,
in the density regime relevant to the center of massive compact stars, ∼(5− 7)n0. This
presents a totally uncharted domain that could very well encompass several different fields,
say, condensed matter, nuclear, and particle, in addition to astrophysics.

There are several treatments in the literature that invoke quarks in various different
forms, perturbative or nonperturbative, to explore this uncharted domain. We describe a
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possible strategy that exploits the topological structure of baryonic matter—without explicit
QCD variables—as density increases beyond ∼2n0 to access the putative baryon-quark
continuity. In this approach, no explicit quark-gluon DoFs are invoked, but fractional
(baryon-charged) quasiparticles induced from topology change(s) seem to figure.

Among various topological structures of baryons, we adopt the skyrmion topology for
the number of flavor N f ≥ 2 and the fractional quantum Hall (FQH) topology for N f = 1.
The former is intricately relevant to QCD—i.e., large Nc limit—in nuclear physics at low
density involving the u(p) and d(own) quarks and the latter will be relevant at a high
density. The s(trange) quark does enter essentially in the formulation both in the way the
scalar dilaton and η′ figure, but we will focus first on the N f = 2 systems and then come to
the case where η′ could enter in FQH topology.

Ultimately this feat should be feasible in terms of skyrmions—ignoring FQH topology—
with a Lagrangian modeling QCD with all relevant degrees of freedom and work out the
full topological structure of baryons going beyond the Skyrme model [2] with pions only
(denoted as skyrmionπ), but this is currently out of reach. There is an on-going effort with
the skyrmionπ at suitable chiral derivative orders [3], but it is mathematically daunting to
do realistic calculations even with the truncated model to confront Nature. Our strategy is
to map what are considered—though not firmly confirmed—as robust topological inputs,
independent of the details of the Lagrangian, to an EFT going beyond sChEFT—that we
shall give the acronym GnEFT standing for “generalized nuclear EFT”—and treat it in
terms of a Landau Fermi-liquid approach to baryonic matter which we put in the class of
the density functional (“DF”) à la Hohenberg–Kohn theorem.

This type of approach is highly unconventional and admittedly incomplete in various
aspects. Nonetheless, it is found not only to successfully post-dict the overall properties of
nuclear matter at density ∼n0 in quality more or less comparable to high chiral-order (i.e.,
N≥3LO) sChEFT but also account for the properties of massive compact stars at n � n0
in fair consistency with what has been established in astrophysical observations. There
is, however, a surprising new prediction—which is extremely simple—that follows from
the topology-change exploited in the approach, namely, the “pseudo-conformal” sound
velocity of the star and its impact on the structure of the core of compact stars. Our claim is
that it exposes certain emergent symmetries hidden in QCD at low density.

1.2. The Motivation

The basic idea figuring here was largely inspired and motivated by the predominant
role topology plays in quantum critical phenomena in condensed matter systems, stun-
ningly exemplified, among others, by the fractional quantized Hall (FQH) effects [4]. This
idea is germinated by the observation that many-body interactions in strongly correlated
condensed matter systems and in nuclear many-body systems, although the basic inter-
actions are different, i.e., QED vs. QCD, intricately share certain common features. In the
former, there have been remarkable breakthroughs by formulating correlated electron
problems in terms of topology, thereby mapping many-electron interactions to topological
field theories and also the other way around. The strategy we describe here is prompted
to do something analogous to what has been done in the physics of the quantum Hall
effects (QHEs), with certain arguments—and ideas—borrowed therefrom. This effort is
currently largely unrecognized in the nuclear community. Of course they are necessarily of
different nature given that we are dealing with strong interactions (QCD) with inherently
more complex dynamics than in QED. Furthermore strong interactions have much less
direct access to experiments than in condensed matter systems.

1.3. The Objective

Let us first state briefly what the problem is and what the objective of this article is.
The main stream of current activities in nuclear/astro-physics community motivated

by what is heralded as “first-principles” approaches to nuclear physics and gravity-wave
signals of merging neutron stars is anchored on ab initio treatments of the sChEFT at
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higher chiral orders and its related density-functional-type theories defined and valid at
the density regime ∼<2n0. They are then extrapolated, resorting to various sophisticated
“meta-modelings”, relying on the Bayesian inference, high-order “uncertainty analysis”,
etc., to higher densities relevant for massive compact stars. In doing this, one confronts the
inherent obstacles due to the paucity of trustful theoretical tools, given the inaccessibility
of lattice QCD to high density.

The spirit of this article is drastically different from the majority of approaches pursued
in the field.

The aim of the approach adopted is to construct as simple and economical an effective
field theory as possible, implementing what are deemed to be necessary to meet the
requirement for the “Folk Theorem for EFT” appropriate for normal as well as compact-star
matter. The philosophy is then to see how far one can go forward with this extremely simple
theory—never mind the nitty-gritty “error uncertainties”—before being hit by “torpedoes”.
That is, In the spirit of Farragut’s famous uttering “Damn the torpedoes. Full speed ahead!”

In a nutshell, this article attempts to explain why the approach developed by us—
which is admittedly (over)simplified and more intuitive than of rigor—seems to work
surprisingly well for nuclear dynamics ranging from low density at n∼n0 – where the
sChEFT is believed to be applicable – to high density n∼ (5− 7)n0 where it is suspected to
break down. The objective of this article is to see to what extent we can offer justifications
and what need to be improved upon for the results obtained up to date.

Although the approach presented here predates the arrival of sChEFT in the 1990s,
the core idea was the principal theme of the five year “World Class University Project”
(WCUP) established at Hanyang University in Seoul in 2007 funded by the Korean Govern-
ment. This WCUP was in some sense in anticipation of the upcoming ambitious Institute of
Basic Science (IBS) with the purpose to put Korean basic science on the world’s frontier. We
will base our discussion on what was initiated in 2007 and continued after the termination
of the WCUP/Hanyang up to today.

The results that we will refer to are mostly available in the literature. Their up-to-
date status will be discussed in an accompanying contribution by Yong-Liang Ma [5] to
which we will refer for quantitative details. The development up to 2018 was summarized
in [6], written in tribute to Gerry Brown who had made invaluable contributions to the
development of theoretical nuclear physics in Korea. More recent developments, which
make the story more exciting, are found in [7,8]. We must say that this development
remains more or less unrecognized in the field. We hope that this note makes the basic idea
involved better understood.

1.4. The Strategy

The best way to motivate the reliance on topology to go from nucleons and pions at
low density to quarks (and gluons) at high density is to think of a possible parallel of the
approach adopted to how the physics of quantum Hall effects is formulated in terms of a
topological field theory. What we have in mind in particular is the mapping of the fractional
quantum Hall effect (FQHE) given in Chern–Simons topological field theory to the Kohn–
Sham density functional theory (DFT) [9,10]. The parallel is, of course, far from direct,
given the totally different physics involved, but what figures in both the fractional quantum
Hall effect and compact-star matter involves mapping between the microscopic description,
DFT, and the macroscopic description, Chern–Simons field theory. The possible presence of
such a parallel, although present from the very beginning of the WCU/Hanyang program,
was only very recently recognized by us thanks to the on-going works of string-theory-
oriented theorists. It is suggested that both the KS-DFT-type microscopic approach and
the Chern–Simons field theory-type macroscopic approach figured conceptually in the
development made at the WCU/Hanyang and since then.

Briefly, the parallel that we see is as follows.
In [9,10], the system of strongly interacting electrons in the FQHE regime is formu-

lated in terms of composite fermions of electrons bound with even number of quantum
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vortices involving an U(1) gauge field emergent from strong correlations of the electrons.
The complex effects of many-electron interactions are cast in a single-particle formalism in
Kohn–Sham (KS) density functional theory incorporating the emergent U(1) gauge inter-
actions between weakly interacting composite fermions (CFs), i.e., quasiparticles, induced
by the quantum mechanical vortices. The gist of the approach then is that the topology of
Chern–Simons field theory is translated into the effective field theory, DFT. What is remarkable in
this approach is that their DFT does “faithfully capture the topological characteristics” of
the FQHE.

The approach that we will follow is inspired from the analogy of accessing the strongly
correlated strong interactions in the density regime n ∼> (2 − 4)n0—where sChEFT is
presumably broken down—to the mapping of the FQHE to the problem of nearly non-
interacting composite electrons in the KS-DFT subject to an emerging “magnetic field”. This
analogy is not totally unfamiliar in its generic form in nuclear dynamics where the effective
field theories of QCD, e.g., sChEFT at low density, are extended to higher density regime
with the cut-off set higher than ΛsChEFT in the form of “relativistic mean-field theory”
with heavier meson DoFs included. In fact one could consider these EFT approaches—
including the GnEFT discussed in this note—to generically belong to the class of Kohn’s
DFTs (including KS-DFT) applied in nuclear physics. In the literature, there is a huge
variety of “mean-field theories”, both relativistic and non-relativistic, for treating both finite
nuclei and infinite nuclear matter. Some of them are capable of explaining the ensemble
of available terrestrial and astrophysical observables with success. However, they remain
mostly phenomenological, having little if any to do with the fundamental theory QCD,
at the densities relevant to massive compact stars.

We define our principal strategy as follows: Incorporate into an EFT—called “GnEFT”
from here on to be distinguished from the standard ChEFT—what are deemed to be “robust”
properties of the dense skyrmion matter built with the DoFs heavier than the pion. This EFT
is to capture as “faithfully” as feasible the topological characteristics of the skyrmion matter.
The basic assumption made is that, at high density and in the large Nc limit, the skyrmion
matter is a crystal with a negligible contribution from the kinetic energy term [11].

The ω meson figuring as the U(1) component of the hidden local symmetry (HLS) can
be identified with the U(1) Chern–Simons field playing a role in the fractional quantum
Hall droplet structure for the N f = 1 baryon associated with the η′ singularity. We will
return to the η′ singularity because it is currently argued to be crucial for chiral restoration
involving topology at high density, which is most likely outside of the range of densities
relevant to compact stars, an issue that has only very recently been raised.

In short, what comes out from the approach treated in this note, simple in concept—
and albeit unorthodox—turns out to work well ranging from nuclear matter density to
high density relevant to massive compact stars. Up to date we see no serious tension with
Nature as reviewed in [5] for this Special Issue of MDPI.

2. Topology in Baryonic Matter
2.1. Change of DoFs: Hidden Symmetries

Limiting our considerations for the moment to the density regime relevant to stars of
mass ∼ 2M�, we will ignore the role that the FQH droplets may play in strong correlations
involved. We will return to that matter later. To simulate the change of DoFs in terms of
topology as density goes up from below to above the putative baryon-quark continuity
density denoted as nBQC, two hidden symmetries invisible in QCD in the vacuum are found
to be absolutely essential. One is hidden local symmetry (HLS) [12] and the other is hidden
scale symmetry (HSS). The cut-off scale involved for the GnEFT should be greater than the
cut-off effective for sChEFT. The precise value of the relevant cut-off scale is not needed
for what follows, but to be specific, one can take the HLS scale to that given by the vector
meson (V = (ρ, ω)) mass mV∼700 MeV. The scale symmetry is associated with the possible
dilaton scalar f0(500) which will be later considered as a pseudo-Nambu–Goldstone boson
of broken scale symmetry.
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As for the baryon-quark crossover density, we will be considering nBQC ≈ (2− 4)n0
which will be identified later with the topology change density n1/2.

Defining precisely what the hidden symmetries to be incorporated are requires the
details which have been given in review articles, e.g., [7]. The basic ideas can however be
explained rather simply without losing physical content. Here, we will summarize the key
ingredients that enter in the GnEFT.

One of the two symmetries that play a crucial role in the GnEFT is the hidden local
symmetry (HLS) first formulated in [12] and made powerfully applicable to nuclear physics,
as comprehensively reviewed in [13]. An important property of the HLS concerned is that
it is a gauge symmetry dynamically generated giving rise to “composite” gauge field of
pions. The existence of such a composite gauge boson is proven to be “inevitable” if such
a symmetry is implicit in the dynamics [14] as assumed in our approach. It implies that
the vacuum could be tweaked under extreme conditions, say, by high temperature or high
density, such that

mV ∝ gV → 0 (1)

where gV is the gauge coupling for the vector mesons V. The point (1) is called the “vector
manifestation (VM) fixed point” [13]. How to expose such a symmetry at high temperature,
as in heavy-ion dilepton experiments or at high density as in compact stars, is an extremely
subtle issue. An important point to note in this connection is the modern realization that
there is a possible duality à la Seiberg (referred to as “Seiberg-(type) duality”) between the
vector mesons of HLS and the gluons of QCD. This involves a conjecture, but our study
points to its validity as we will try to argue.

The other hidden symmetry that figures equally importantly is the scale symmetry.
There is a long history with a still on-going controversy on how the scale symmetry is
manifested in gauge theories, e.g., in strong-interaction physics, and in going beyond the
Standard Model (BSM). In the literature are found strong arguments that “dilatons do
not exist in QCD for N f ∼ 3”. We differ from such arguments and eschew going into
that highly controversial issue for which we refer to [7,8] viewed vis-à-vis with nuclear
physics. As argued there, what is relevant to GnEFT is the “genuine dilaton (GD)” scenario
of [15,16]. (Note added in proof: While this article was being drafted, an article appeared
in which a very similar IR fixed-point structure with a “conformal dilaton” was arrived
at [17]. In our view, at a high density, the genuine dilaton will coincide with the conformal
dilaton when the IR fixed point is approached. This matter will be discussed elsewhere.).
The GD scenario posits that there is an infrared (IR) fixed point with β(αsIR) = 0 in
the chiral limit (with u(p), d(own) and s(trange) quark masses equal to 0) and that the
f0(500) is the scalar pseudo-Nambu–Goldstone (pNG) boson of spontaneously broken
scale symmetry which is also explicitly broken by quantum (scale) anomaly. One of the
most distinctive characteristics of this scenario is that the IR fixed point, which is most
likely non-perturbative, is realized in the NG mode with non-zero dilaton condensate (or
decay constant) and non-zero pion condensate (or decay constant). (As a side remark,
we note that this scenario differs basically from the scenario popular in the Beyond the
Standard Model circle working with N f ∼ 8 in the conformal window of the IR fixed point
realized in the Wigner mode.) Given that the dilaton χ is a pNG boson as the pions π are
and both satisfy soft theorems, one can make a systematic power counting expansion in
chiral-scale-symmetric theory as in chiral-symmetric theory. The power counting in chiral
expansion is well established. Scale symmetry brings an additional power counting in
terms of the expansion of the β function. Expanding the gluon stress-tensor β function in
the QCD coupling αs near the IR fixed point,

β(αs) = εβ′(αsIR) + O(ε2) (2)
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where ε = αs − αsIR and β′ > 0. The non-zero mass of f0 is attributed to |β′(αsIR)ε|. Thus,
the power counting in the scale symmetry is

ε ∼ O(p2) ∼ O(∂2). (3)

One can, in principle, make a systematic chiral-scale counting comparable to chiral
symmetry [15,18].

The matter-free-space mass of the dilaton ∼500 MeV is comparable to that of kaons, so
the dilaton is put on the same mass scale as the octet pions. In principle, one has an SU(3)
chiral Lagrangian coupled to the dilaton. In the background of nuclear medium, however,
as is well known from nuclear phenomena, the lowest-mass meson of the scalar quantum
number is expected to undergo significant mass-drop whereas kaons do not appreciably.
Therefore, in medium, identifying the scalar meson to be the dilaton, one can ignore the s
quark in chiral-scale dynamics at high density. Unless otherwise stated, this will be what
we will do.

We write the dilaton field as

χ = fχeσ/ fχ (4)

which is referred, in the literature, to as “conformal compensator” field that figures in the
notion of “quantum scale invariance (QSI)”. As written, χ transforms linearly under scale
transformation whereas σ transforms nonlinearly. One can use either. In what follows,
we find it more convenient to employ the linearly transforming field χ. The Lagrangian
that combines the (octet) pion field π, the HLS fields V = (ρ, ω) and the dilaton field χ,
suitably written in a chiral-scale invariant way with the scale-symmetry breaking term put
in the dilaton potential V(χ), will be denoted LχHLS with χ standing for the dilaton. It is of
the form

LχHLS =

(
χ

fχ

)2(
f 2
πTr
[
α̂⊥µα̂

µ
⊥
]
+ a f 2

πTr
[
α̂‖µα̂

µ

‖
])

− 1
2g2 Tr

[
VµνVµν

]
+ · · ·

+ LhWZ +
1
2

∂µχ∂µχ + V(χ) (5)

where α̂‖µ and α̂⊥µ are Maurer–Cartan 1-forms and V(χ) is the dilaton potential. LhWZ
is what is known as “homogeneous” (or “hidden”) Wess–Zumino term which is scale-
invariant that will figure later. For N f > 2, there is the 5-D topological Wess–Zumino term
which we have left out as it does not figure in our discussions.

2.2. Topology Change

There is a growing evidence that skyrmions as nucleons could describe finite nuclei as
well as infinite nuclear matter [19], but at present it is far from feasible to address dense
compact star matter quantitatively in terms of the pure skyrmion structure. It is however
found feasible to extract topological properties of dense baryonic matter by simulating
skyrmions on crystal lattice. In doing this, it is assumed that the topological characteristics
extracted from the skyrmion crystal can be taken as robust and be exploited for making the
mapping of topology to density-functional (DF) theory. Of course, considering skyrmions
on the crystal cannot be a good approximation for low-density matter. Clearly it would
make little sense to think of nuclear matter, which is best described as a Fermi liquid, as a
crystalline. However, at high density and in the large Nc limit, baryonic matter could very
well be in the form of a crystal [11,20]. It appears quite reasonable—and it is assumed in
this note—that the baryonic matter at a density greater than the putative baryon-quark
transition density denoted as nBQC could encapsulate certain characteristic features of
topology that are not captured in sChEFT-type approaches.
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Consider skyrmions constructed with LχHLS put on FCC crystal lattice. The skyrmions in
the system undergo interactions mediated by the DoFs in the way described, e.g., in [21,22].
What transpires from the calculation focusing on essentials without going into details are
(see [7]):

• Skyrmion-half-skyrmion “transition”

There takes place a topology change from the state of matter with skyrmions to that of
half-skyrmions at a density above the nuclear matter density. The transition density n1/2
we equate to nBQC is not predicted by the theory. It turns out from the detailed analysis of
the data available by astrophysical observation [7] that

2 ∼< n1/2/n0 < 4. (6)

In the discussion that follows, we will take this range. In our approach, the transition
density n1/2/n0 = 4 seems to be ruled out [23]. It is plausible that further development in
astrophysical observations, e.g., the maximum mass of compact stars, might increase the
upper limit of n1/2 in (6).

A characteristic feature of this transition is the resemblance to the pseudo-gap phe-
nomenon in superconductivity. (Possible pseudo-gap phase was also discussed at high
temperature [24].). The quark condensate Σ ≡ 〈q̄q〉, identified as the order parameter in
the absence of baryonic matter background, goes to zero when space averaged (denoted
Σ̄), whereas the pion decay constant fπ remains nonzero. Thus, the changeover is not a
phase transition in the Landau–Ginzburg–Wilson-type sense. For lack of a better term we
will continue to refer to it as “transition” unless otherwise noted. This feature will play the
crucial role in formulating GnEFT in the class of field theoretic density-functional approach.

• Soft-to-hard transition in the equation of state

One of the most important observations in the skyrmion-to-half-skyrmion transition is
the cusp at n1/2 in the symmetry energy Esym [23]. The symmetry energy, the coefficient of

the term proportional to ζ2 =
(
(N − P)/(N + P)

)2 in the energy per particle of the system
E(n, ζ), plays the key role in neutron stars with large excess of neutrons. The Esym decreases
as it approaches n1/2 from below in density, providing attraction, and then after the cusp
at n1/2, increases rapidly, thus giving repulsion. Thus, the cusp provides the main—as it
turns out—mechanism for the EoS going from soft-to-hard at ∼ n1/2. This feature will
be found crucial for the maximum mass of neutron stars, as well as certain gravity-wave
signals coming from merging neutron stars. It turns out also intricately connected to the
onset of the pseudo-conformal sound speed at n ∼> 3n0 [23].

An interesting observation to make here is that this cusp structure that appears at
the leading Nc order in the skyrmion lattice treatment of the symmetry energy is present
as an “inflection” at about the same density as n1/2 in phenomenological energy density
functional approaches [25].

What is given in the skyrmion-crystal simulation is, roughly speaking, a mean-field
effect and correlation-fluctuations above the mean field would largely smoothen the cusp,
but the soft-to-hard effect remains unaffected in the EoS. It has been shown that this
topological feature can be translated into the nuclear tensor force in GnEFT, reproducing
precisely the cusp structure [8,22,23]. Another important consequence of this cusp structure
is that in going up in density from n1/2, the HLS gauge coupling constant gρ is forced to
move toward the “vector manifestation (VM)” fixed point [13] at the density nVM at which
the vector meson mass vanishes [14]

mρ ∼ gρ → 0 as n→ nVM ∼> 25n0. (7)

• Parity-doubling

The skyrmion-1/2-skyrmion topology change exposes the emergence of another hid-
den symmetry in strong interactions, namely, the parity doubling. At high density ∼>n1/2,
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the effective nucleon mass deduced from the skyrmion mass tends to converge to the
chiral-invariant mass m0 ∼ (0.6− 0.9)mN

m∗N → f ∗χ ∼ m0 6→ 0 as Σ̄→ 0. (8)

It will be seen below that this implies that the trace of the energy-momentum tensor
(TEMT) becomes—in the chiral limit—a function solely of fχ ∼ m0 independent of density
at some density > n1/2. This symmetry is not explicit in QCD, so one could say it is
also emergent. This turns out to have a striking impact on the sound velocity of the
massive stars.

2.3. Quasi-Free Composite Fermions

Though unproven yet, it seems very likely that the parity-doubling structure described
above is closely related to that the “quasi-fermion” in the half-skyrmion phase is a nearly
non-interacting quasiparticle of baryon number 1. This object can be classed neither as a
pure baryon nor as a pure quark. In the absence of a better name, let us just, for simplic-
ity, call it “quasi-fermion.” The first indication came in the Atiyah–Manton approach to
skyrmions on crystal lattice [26]. This turns out to be a highly pertinent observation in the
current development in the context described below. This observation has been discussed
in the reviews cited above, but it is worth recounting it here in terms of insights which were
not recognized before. We revisit the result obtained in Figure 11 of [27] reproduced here in
Figure 1.

Figure 1. The field configurations φ0 and φ1
π as a function of t = x/L along the y = z = 0 line. The left

panels correspond to n < n1/2 and the right panels to n ∼> n1/2. The half-skyrmion phase sets in
when L = L1/2 ∼< 2.9 fm where L is the crystal lattice size inversely related to the baryon density of
the matter. What is to be noticed is the (near) density independence of the configurations φ0 and φ1

π

which engenders what signals “scale invariance” in the half-skyrmion phase.

What is given here are the field configurations as a function of t = x/L along the
y = z = 0 line. They figure in the energy density of the skyrmion matter given by the
scale-symmetric HLS Lagrangian LχHLS. We focus on the chiral field as studied in [26]

U(~x) = φ0(x, y, z) + iφj
π(x, y, z)τ j. (9)
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The χHLS fields lead to similar results. The field configurations φ0,π correspond
effectively to the mean fields in GnEFT which transcribed into Fermi-liquid theory [27], can
be taken equivalent to the Fermi-liquid fixed point (FLFP) quantity in the baryonic χ-HLS
Lagrangian LψχHLS with ψ standing for baryonic field. Those configurations, varying
strongly due to nuclear correlations with increasing densities in the skyrmion phase at
n < n1/2 become nearly density-independent in the half-skyrmion phase at n ∼> n1/2. This
means that those configurations representing non-interacting quasiparticles behave scale-
invariantly. This was reflected in the linear density dependence in the cusp for the symmetry
energy in the half-skyrmion phase both in the crystal lattice and in Vlowk-RG calculations
which go beyond the FLFP approximation described in [27] and below.

Particularly interesting is the density-independent configuration φ0. Since this quantity
is proportional to the pion decay constant fπ—and the dilaton condensate fχ gets locked
to fπ going toward the IR fixed point in Crewther’s “genuine dilaton” scenario [15], this
behavior of φ0 impacts two important quantities at high density, first the sound velocity vs
of the compact-star matter, elaborated below, and second, what is significant at this point
is its link to the possible Kohn–Sham energy density functional approach to topology.

One way to understand what we have is to notice that the half-skyrmion is attached
with a monopole associated with a hidden U(1) gauge field (say, the ω field in HLS)
whose energy diverges when separated from the other half-skyrmion, but the divergence
gets cancelled when the two half-skyrmions are bound, or more precisely, confined [28].
The resulting “composite” skyrmion (baryon) made up of two half-skyrmions in the
crystal—with the kinetic energy suppressed—resembles the composite fermion (electron)
in the FQHE with the kinetic energy absent in the limit of large magnetic field [10]. What
the skyrmion crystal shows verifies that the quasi-fermions behave scale-invariantly when
the lattice size is varied in the half-skyrmion regime n ∼> n1/2.

It should be stressed at this point the quasi-fermion cannot be at or near the IR fixed
point. The quasi-fermion that we have is identified as a quasiparticle in Fermi liquid away
from the IR fixed point. It is generally considered likely that the Fermi-liquid structure
breaks down in electronic systems in the “unitary limit” at which conformal invariance is
present (see [29] for a recent discussion). This would be the case when the dilaton mass
goes to zero in dense-matter systems. When we discuss pseudo-conformal sound speed in
compact stars, v2

pcs ≈ 1/3, we are not dealing with the, what is known as, “conformal sound
speed” v2

conformal = 1/3 expected to set in at asymptotic density. The density involved in
the stars is far from the IR fixed point density nsIR with non-zero dilaton mass.

Pushing further the analogy to the FQHE, one may wonder whether the anyonic struc-
ture encountered in the FQHE as discussed in [10] has any relevance in the present problem.
Indeed there are observations in skyrmion physics obtained with powerful mathematical
techniques that there can be 1/q (baryon-)charged objets with q odd integer [30], and even
other more exotic varieties. These may appear to be mathematical oddities, but in our
approach they are physical. We will return to this issue in the second part of this note
where fractional quantum Hall droplets (pancakes or pitas) could figure at high density.

3. Translating Topological Inputs into Effective Field Theory GnEFT

Given the topological inputs extracted from the skyrmion–half-skyrmion transition,
the next step is to incorporate them into the EFT. To build the EFT concerned as an “analog”
to the KS-DFT in the FQHE in [10] in the strategy to map topological properties to an
EFT, we introduce baryon fields explicitly and couple them to χHLS fields chiral-scale
symmetrically to LχHLS. Let us denote it LψχHLS with ψ standing for baryons. It is of
the form

LLψχHLS = N̄iγµDµN − h fπ
χ

fχ
N̄N + gvρN̄γµα̂‖µN

+ gv0N̄γµTr
[
α̂‖µ
]

N + gAN̄γµα̂⊥µγ5N. (10)
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In the presence of explicit baryons, both the topological and “homogeneous” Wess–
Zumino terms [13] (or “hidden WZ” terms of [31] with the coefficients vector-dominated
and the FQH droplet “visible”) in the mesonic Lagrangian LχHLS from which topological
baryons are built are absent. This is of course familiar in sChEFT with the standard (nuclear)
chiral Lagrangian with or without strangeness.

3.1. Density Functional via Fermi-Liquid Fixed-Point Theory

We confine to one unique Lagrangian defined only with the relevant hadronic variables
LψχHLS and eschew “hybridization” with non-hadronic degrees of freedom. The topology
change will be encoded in the parameters of the Lagrangian LψχHLS that change at the
density n1/2. Below the transition density, the Lagrangian endowed with the well-defined
scaling of the pion and dilaton decay constants as dictated by the matching with QCD—
i.e., via correlators—as proposed a long time ago [32] should reproduce sChEFT. How well
the predicted results fare with the established data of nuclear matter has been extensively
reviewed (e.g., [7]). Of course with the extreme simplification, one cannot hope to match
the precision enjoyed by sChEFT treated at high chiral orders. However, the property of
the equation of state (EoS), in particular the symmetry energy Esym approaching n1/2 from
below, does have certain potentially nontrivial features associated with the properties, such
as tidal polarizability (TP), measured in the recent gravity waves which differs from the
prediction of sChEFT.

As expected for possible hadron-quark continuity, the parameters of LψχHLS are
drastically affected by the topology change at n1/2. They can differ qualitatively in the
half-skyrmion phase from what was predicted in [32] and, hence, from naive extrapolation
to n ∼> n1/2 in sChEFT. The most important impact is on the property of the bound
half-skyrmions behaving as a scale-invariant quasi-fermion described in Section 2.3. It is
represented in the Lagrangian LψχHLS as an effective baryonic field ψ with its physical
properties—the mass and coupling constants—dictated by the topological properties of the
half-skyrmion phase, i.e., the near density independence of the effective mass and coupling
constants and suppressed kinetic energy. Equally important is the (assumed) composite
(HLS) gauge symmetry à la Suzuki theorem with the VM fixed point with the vanishing
vector mass at nVM ∼> 25n0. It makes the vector field coupling to the quasi-fermion strongly
weakened, leading to what we propose as the emergence of (pseudo-)conformal symmetry.

It should, in principle, be feasible to develop chiral-scale symmetric EFT in a parallel
to high-order sChEFT successful in nuclear physics at density ∼n0. The cut-off could be
set at ΛGnEFT ∼> mV . This feasibility in HLS was already discussed in [13] and initiated in
χHLS [18]. Unfortunately, it is not in a form to perform high enough order scale-chiral
perturbation calculations. Here, we will resort to a strategy resembling what is done in the
FQHE [10], a sort of an application to dense nuclear matter of density functional theory
consistent with Hohenberg–Kohn theorem [33].

In a nut-shell, the chain of reasonings goes as follows.
As well recognized in nuclear theory circles, the relativistic mean field theory as

first formulated in Walecka’s linear model [34] belongs to the class of density functional
approaches. It has been extensively exploited in terms of the Kohn–Sham density functional
in nuclear structure studies. Furthermore, in conjunction with sChEFT, ab initio calculations
in Kohn–Sham density functional are being explored, with the possibility of doing precision
nuclear structure calculations. All these efforts are however limited at present to the density
regime ∼< n1/2.

It is also known, though perhaps not so widely, that the Walecka model captures
Landau Fermi-liquid theory [35]. Next, a chiral Lagrangian implemented with the HLS
mesons is established [36,37] to lead to the Wilsonian renormalization-group approach to
Fermi-liquid fixed-point theory [38,39]. It follows then that the Lagrangian LψχHLS with
the parameters encoding the topology change and matched to QCD in medium is expected
to give in the mean field a highly powerful Fermi-liquid fixed point theory that can access
densities ∼> n1/2. The reliability of the large N̄ approximation (where N̄ = kF/(ΛFS − kF)
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with ΛFS the cut-off on top of the Fermi surface) the Fermi-liquid fixed point approximation
indicates the validity of the mean field for densities near and higher than n0 and more
specially for high density [34]. In fact it is feasible to go beyond the mean-field by including
1/N̄ corrections taken into account in what is known as VlowkRG.

3.2. “Quenched gA” as Precursor to Emergent Scale Symmetry at n ∼> n1/2

In nuclear physics, the Vlowk renormalization-group method has been applied to go
beyond the FLFP approximation [27] along the line of the Wilsonian renormalization-group
strategy [38,39]. What happens as the IR fixed point density nsIR is approached has not
been addressed. This density is never likely arrived at in compact stars where the dilaton
mass is not zero, but it will become relevant at higher densities considered in what follows.
In a recent development in condensed matter physics, the approach to soft modes—gapless
phase—on top of the Fermi surface going beyond what amounts to the FLFP theory is
being formulated by nonlinear bosonization of the quasiparticles on the Fermi surface
leading to an order-by-order counting of the beyond-the-FLFP higher-order terms [40].
This would provide a systematic calculation of higher-order terms resembling that of chiral
perturbation theory leading to sChEFT, illuminating the role of heavy DoFs in GnEFT.
An approach of this type may give possible corrections to the solution to the quenched
gA problem, as well as the pseudo-conformal property of massive stars, both of which are
discussed below.

The ultimate goal of GnEFT is to access the high density regime relevant to massive
compact stars. Most intriguingly there is a hint however already at low density n ∼< n0 to
what might be happening with the emergent scale symmetry at high density. Without going
into details here (readily found in the reviews, such as [7]), we illustrate a case at low density
∼n0 which shows a predictive power not shared (up-to-date) by sChEFT, with a close link
to what takes place at n ∼> n1/2. It is found to provide a simple and elegant resolution to a
long-standing mystery lasting several decades of the “quenched” gA observed in nuclear
Gamow–Teller transitions in light nuclei [41]. The key element of the solution is that at
the mean field level, i.e., at the Fermi-liquid fixed point, the superallowed Gamow–Teller
transition described in GnEFT is precisely given by the soft-pion and soft-dilaton theorems,
namely, the Goldberger–Treiman relation involving the density-dependent Landau Fermi-
liquid fixed-point parameters F1 that enter in the Landau effective mass.

The quantity identified as the Fermi-liquid fixed point axial constant gLandau
A in EFT

approach is found to encode “hidden scale invariance” emerging from strong nuclear
correlations [42]. As discussed in [41] it can be equated to the effective gA given by the
“extreme single-particle shell-model (ESPSM)” defined for doubly closed-shell nuclei cor-
responding to the “scale-symmetric effective gA” (denoted as gss

A ). To render a precise
physical meaning to this quantity, imagine that one were able to obtain the up-to-date,
non-existent, exact wave functions of the parent and daughter states involved in the superal-
lowed (zero momentum transfer) Gamow–Teller transition. Now the exact transition matrix
element in the doubly closed-shell nuclei would then be given by the Gamow–Teller matrix
element given by the ESPSM multiplied by the constant gss

A = 1 modulo scale-anomaly
correction factor qssb [42]. This means that the total nuclear correlations are encapsulated
in the constant gss

A multiplying the ESPSM matrix element MESPSM/gA where gA is the
axial constant in neutron decay. In terms of Landau Fermi-liquid fixed point effective field
theory, it corresponds to the quasiparticle sitting on top of the Fermi surface making the
superallowed Gamow–Teller transition. Therefore, gLandau

A = gss
A = 1. Now the expression

for the Fermi-liquid fixed point relation for gLandau
A which corresponds to the Ward identity

is essentially the nuclear matter version of the Goldberger–Treiman relation established to
hold within a few percentage accuracy in matter-free space [37]. What this means is the
more correlations are taken into account, the closer the axial-vector constant that multiplies
the single-particle Gamow–Teller operator will come to the unquenched value gA = 1.27.
In very light nuclei where powerful numerical techniques are available, this is in fact
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what is found with possible many-body (exchange-current) contributions amounting to

∼<2% [43].
In short, that gss

A ≈ 1 in nature would indicate an emergence of quantum scale
invariance as suggested in [42]. That the putative dilaton mass in nuclei is ∼600 MeV, so
scale symmetry is certainly broken, at least spontaneously, so the quantum scale invariance
must be hidden at low density. Deviation of the factor qssb from 1 would indicate that
quantum scale invariance is broken in nature. A more precision re-measurement of the
RIKEN experiment of the superallowed GT transition in the doubly magic nuclei discussed
in [41] would be valuable on this issue.

At the dilaton-limit fixed point at high density that we discuss below, however, gA
does approach 1. What is particularly interesting is that the quantum scale invariance
hidden at low density, presumably responsible for the quenching of gA, seems to emerge in
the “pseudo-conformal” sound velocity v2

s /c2 ≈ 1/3 in massive compact stars as discussed
below. Whether this result holds beyond the FLFP approximation could be addressed in
this nonlinear bosonization technique [40]. One could also address neutrinoless double β
decay where the momentum transfer could involve ∼100 MeV.

4. Going toward Massive Compact-Star Matter

As long as the density of the core of massive stars is not in the vicinity of the IR fixed
point, we may assume that the notion of the Fermi-liquid fixed point applies to the density
regime n ∼> n1/2 as it does at n ∼< n1/2. One can then make simple calculations of the
EoS to go toward the density relevant to massive compact stars. Given the paucity of the
trustful knowledge about the structure of the state involved, the guidance available is the
presumed constraints provided by the symmetries assumed to underlie the dynamics: The
HLS (of the composite gauge symmetry [14]) with the vector manifestation (VM) density
nVM ∼> 25n0 and the HSS with the IR fixed point at nsIR which we assume is near nVM.
(It must be admitted that in the present framework there is no compelling reason to believe
that nVM ' nsIR. The only thing one can say—and assumed here—is that both n(VM,sIR) are
higher than what is relevant to the maximum density supported by massive compact stars
stable against gravitational collapse).

4.1. Dilaton-Limit Fixed Point

Consider LψχHLS for n ≥ n1/2 with the parameters of the Lagrangian taken density-
dependent, but totally arbitrary, unconstrained by the topology change discussed above.
Assume that the mean-field approximation holds at n ∼> n1/2 in the sense defined in the
large Nc and large N̄ ∼ kF limit. Now what we would like to do is to take what corresponds
to going toward the IR fixed point of [15]. This can be done by following Beane and van
Kolck [44]: First, do the field re-parametrization Z = Uχ fπ/ fχ = s + i~τ · ~π in LψχHLS,
have the Lagrangian treated in the mean field and take the limit Tr(ZZ†)→ 0. This limit
is referred to as “dilaton-limit fixed point” (acronymed DLFP). Two qualitatively different
terms appear from this manipulation: one is regular and the other singular in the limit.
The singular part is of the form

Lsing = (1− gA)A(1/Tr
(
ZZ†)

)

+ ( f 2
π/ f 2

χ − 1)B
(
1/Tr(ZZ†)

)
. (11)

The first (second) term is with (without) the nucleons involved. The requirement that
there be no singularities leads to the “dilaton-limit fixed point (DLFP)” constraints

gA → gDL
A = 1 (12)

and

fπ → fχ 6= 0. (13)
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We have denoted the gA arrived at the DLFP as gDL
A to be distinguished from the

gLandau
A in [41] arrived at the Landau Fermi-liquid fixed point at n ∼ n0. It turns out that

the ρ meson decouples from fermions in dense matter going toward the DLFP even though
the gauge coupling gρ 6→ 0 [27]. Therefore, the ρ meson drops out before reaching the VM
fixed point.

These “constraints” are the same as what are in the genuine dilaton properties ap-
proaching the IR fixed point [15]. This suggests that the topological characteristics of the
half-skyrmion phase are consistent with the genuine dilaton scenario. We should mention
that there are other constraints in dense matter associated with the DLFP, among which
highly relevant to the EoS at high density is the “emergence” of parity doubling in the
nucleon structure mentioned above.

4.2. Emerging Pseudo-Conformal Symmetry

Next, consider LψχHLS, in contrast to what is done above, with its parameters con-
strained by the skyrmion–half-skyrmion topology change at n1/2. As shown, in the half-
skyrmion phase, as the system flows toward the IR fixed point (or perhaps equivalently the
VM fixed point)—although n1/2 � nsIR, the parameters set in precociously as

fπ → fχ, (14)

and

mN → fχ ∝ 〈χ〉 → m0 (15)

leading to the parity doubling (8).
In the mean field, that is, in the Landau Fermi-liquid fixed-point approximation in

GnEFT, the energy-momentum tensor is easily calculable. It comes out to be [27]

〈θµ
µ〉 = 4V(〈χ〉)− 〈χ〉∂V(χ)

∂χ
|χ=〈χ〉 6= 0 (16)

where all the conformal anomaly effects (and also quark mass terms) are lumped into the
dilaton potential V(χ). Thus, 〈θµ

µ〉 is a function of only fχ which does not depend on density
(far below nVM) via (15). It follows that

∂

∂n
〈θµ

µ〉 = 0 (17)

and, hence,

∂ε(n)
∂n

(1− 3v2
s /c2) = 0 (18)

where v2
s = ∂P(n)

∂n ( ∂ε
∂n )
−1 is the sound velocity and ε and P are, respectively, the energy

density and the pressure. It is fair to assume that there is no Lee–Wick-type anomalous
nuclear state at the density involved, so ∂ε(n)

∂n 6= 0. Therefore, we have

v2
pc:s/c2 ≈ 1/3. (19)

Note that this is not to be identified with the “conformal sound velocity” v2
s /c2 = 1/3

expected at asymptotic density. The trace of the energy–momentum tensor is not zero at
the compact-star density, so we call this pseudo-conformal (PC) sound velocity vpc:s.

We should mention at this point a surprising observation in the VlowkRG calculation
that takes into account higher 1/N̄ corrections in E/A of the A-nucleon ground state.
The emergence of the PC symmetry is found to be intricately tied to whether the VM fixed
point is lodged in the vicinity of the core of massive stars or at a much higher density. If it
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is taken far above the core density, say, at nVM ∼> 25n0, then E/A at n ∼> n1/2 can be very
accurately reproduced by the two-parameter formula [7,27]

E/A = −mN + Xζ(n/n0)
1/3 + Yζ(n/n0)

−1 (20)

where ζ = (N − Z)/(N + Z) and X and Y are the constants to be fixed by equating (20) to
the E/A given in VlowkRG at n = n1/2 by continuity in the chemical potential and pressure.
X and Y depend on where n1/2 is located. One can show that 〈θµ

µ〉 is a constant independent
of density for any values of X and Y. This then gives rise to the PC sound velocity (19).
On the contrary, if nVM were taken at n ∼ 6n0, say, in the center of massive stars, then the
sound speed v2

s /c2 could not set in at the PC value in the range of star density but would
exceed 1/3. This brings another surprise: That the PC symmetry is intimately tied to the
VM property of hidden local symmetry. Why this is so is not understood.

Note that (19) is an approximate equality (with non-vanishing TEMT), not the equality
which would hold at the asymptotic density� n1/2. In the density regime concerned, n ∼<
7n0, there can, however, be deviations due to the quark mass term, and also higher-order
terms of the anomaly-induced symmetry breaking involving the anomalous dimension
β′ that could make the sound speed deviate from (19). However, there are no reasons to
suspect that the corrections would make vs deviate appreciably from vpc:s.

What is most glaringly different between the prediction of the GnEFT and that of all
other models in the literature is the onset of the pseudo-conformal (PC) sound speed (19) at
a relatively low density ∼3n0 which stays more or less constant up to the central density
∼6n0 of massive star Mmax ∼< 2.3M�.

As already stated, as far as we are aware, there are no observables so far measured
with which the results of the GnEFT (including the recent GW observables) are at odds [5].
Because of the change of parameters of the Lagrangian LψχHLS controlling the EoS obtained
from GnEFT, the most drastic of which is the cusp in Esym at the leading order, there occur
strong fluctuations in the density regime ∼ (2− 4)n0 at which the topology change takes
place. This gives rise to a spike in the sound velocity in that region after which the sound
velocity v2

pcs/c2 stabilizes quickly to 1/3 above ∼3n0. The strength of the spike below
the transition region can vary depending on the value of n1/2. It can even overshoot the
causality limit, for instance, for n1/2 ∼> 4n0. This was the result that set the upper limit of
n1/2 to 4 n0 in the bound (6. This strong enhancement in the sound speed going over the
normal hadronic-to-non-hadronic crossing can also be seen with the transition mediated
by hadronic-quarkyonic continuity [45]. Thus, this aspect of the sound speed could very
well depend on how the changeover from hadronic to other forms of the state of matter
takes place. This, of course, would be too difficult an issue to accurately sort out in the
(over)simplified description. What is less unambiguous is the precocious onset of the PC
sound velocity.

The robust takeaway from this result is that in the way the PC symmetry perme-
ates from low density (∼<n0) in the gLandau

A ≈ 1 to high density (>n1/2) in the gDL
A = 1,

the PC sound velocity simply reflects the precocious emergence of the same PC symmetry.
Among others it predicts that in the core of massive stars at a density ∼6n0, the objects
found there are the composite quasi-fermions of bound half-skyrmions.

The question then is: Are these quasi-fermions unrelated to what might be described
as “deconfined quarks”?

It has recently been argued in [46], based on detailed analyses combining astrophysical
observations and theoretical calculations, that the matter in the core of maximally massive
stars exhibits the characteristics of “deconfined phase” and suggests that the fermions
residing in the core are most likely “deconfined quarks”. The prediction of GnEFT differs
from this interpretation: The objects found in the core are neither purely quarks nor
purely baryons but quasi-fermions of the confined half-skyrmions [47]. The resemblance is,
however, uncanny if one compares the predictions P/ε where P is the pressure and ε is the
energy-density as function of density n and the polytropic index γ = d(lnP)/d(lnε) made
in the description given above with the analysis of [46]. This, we suggest, is the reflection
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of the topology change, a.k.a., baryon-quark continuity. We now turn to this issue in terms
of what might be called “hadron-quark duality”.

5. Hadron-Quark Duality and Cheshire Cat Phenomenon

The description given above involves composite fermions made of half-skyrmions
in some sense “masquerading” as fractionally charged quarks. As noted above, however,
half skyrmions are not the only objects that skyrmions can turn into. There could be other
fractional objects, such as mentioned in [30], and others to be mentioned below.

Thus far we have ignored the possible role that the FQH droplet might play in dense
matter. Although the skyrmion description applies to the octet baryons coming from the
octet mesons for the flavor SU(3), there is no skyrmion for the UA(1) meson η′, i.e., the
“dichotomy problem”. A possible solution to this dichotomy is that at large Nc limit,
the baryon coming from the η′ is a FQH droplet or more appropriately “pancake” described
in Chern–Simons field theory [48], not a skyrmion. In nature, the η′ associated with the
chiral anomaly is massive given that N f � ∞, so could be ignored in low-energy/density
dynamics of baryons. Indeed there seems to be no indication that it figures directly at least
at low density. It does however figure, though indirectly, in the proton’s suppressed flavor-
singlet axial coupling-constant g(0)A << 1 [49] explained as due to the color anomaly [50,51]
we will return to below. The question arises as to what happens at high density (and
also at high temperature) where “deconfined” quarks are naively expected to intervene.
There is a highly original and provocative—and, viewed from the point of view of our
approach, compelling—argument [31,52,53] that indeed the FQH pancake is essential at
some high density (and/or temperature) in the vicinity of chiral restoration with the
possible restoration of UA(1) symmetry linked with the dropping η′ mass [54]. It has, thus
far unexplored, implications on how the vector mesons ρ and ω in χHLS behave near the
chiral transition [53], for instance in heavy ion physics, with a possible paradigm change in
the field. This could also be relevant to the inescapable question in confronting the theory
with experiments in massive stars, say, as “deconfined quarks” [46] or pseudo-quarkonic
phase suggested in the literature.

This brings us to the old question of what heavy nuclei are in QCD, an issue hotly
discussed in the 1970s.

Consider Nc = 3 “confined quarks” in, say, the MIT bag for a nucleon in nuclear
matter of mass number A. When squeezed in dense matter, as the bags overlap, one can
visualize the quarks ultimately percolating from one bag to another bag and then coalesce
into one big bag of Nc × A quarks. In the 1970s, this is the way some nuclear theorists
thought of the 208Pb nucleus as 624 quarks interacting via perturbative QCD confined
within a giant bag. Such a picture was not—and still is not—a feasible one for the reason
by now well-known at least for low density. Even so, incorporating the MIT bag structure
with asymptotic free interactions at high density could make at least qualitative sense at
asymptotic densities. Indeed many papers have been written where low-density hadronic
description is hybridized with MIT bag description at increasing density. They typically
involve phase transitions. We cite just a couple of the most recent of them [55,56] where
other relevant references can be found.

One possible alternative was put forward for nuclear dynamics at low energy (and
low density) by what was called the “Cheshire Cat Principle” [57–59] whereby Nc quarks
in a bag transform into a topological soliton, skyrmion, so the quarks disappear into the
“smiles” of the Cheshire Cat with the solitons interacting via fluctuating meson exchanges,
in the way Weinberg admitted as what “nuclear physicists knew what they were doing”
before the advent of the sChiEFT as prescribed in the Folk Theorem.

5.1. “Infinite Hotel” for N f ≥ 2: Skyrmions

What takes place can be imagined as a quark in a “jail” trying to escape from the jail,
fully occupied, such as the filled Dirac sea This “jail-break” scenario is beautifully described
in [60]. Actually Nc quarks are involved, but we focus on only one of them. A massless
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quark swimming on top of the sea, say, to the right in one spatial dimension, in an attempt
to escape the jail, gets blocked at the “jail wall”, so is unable to escape. It cannot swim back
on top of the Dirac sea, because chiral symmetry forbids it. But it can plunge into the Dirac
sea which is feasible, because the Dirac sea is infinite, and swim back to the left inside the
sea. This infinite Dirac sea can be likened to an “infinite hotel (IH)” [60]. This exploitation
of the infinity is a quantum effect known as “quantum anomaly”.

There is one serious problem in this scenario, however. The fermion (baryon) charge
carried by the quark disappears into the Dirac sea, so the baryon number is apparently
“violated” in the process. In QCD, the baryon charge is absolutely conserved, so the fermion
charge cannot disappear. Here takes place a miracle. The fermion charge is relayed to the
“pion” that clouds the outside wall, with the pion (boson) turning into a baryon (fermion).
This is by now the well-known story of skyrmions in (3 + 1)D mathematically characterized
by the homotopy group π3(S3) = Z for the N f ≥ 2 systems.

This IH phenomenon can be considered to involve two domains, one the quark-gluon
one and the other the hadronic one. There are two modes of a global symmetry, i.e., chiral
symmetry, involved: Wigner–Weyl (WW) mode inside the bag and Nambu–Goldstone
(NG) mode outside the bag. Therefore, the jail wall can be taken as a thin “domain wall”
that delineates two vacua. This is the “jail-break” scenario for the N f = 2 (i.e., proton and
neutron) case.

The upshot is that the leaking baryon charge is taken up by the pion as a soliton. So in
nuclear physics, we argue that for the given soliton chiral angle θ(R), the leaking baryon
charge 1− θ(R)/π (in 1 spatial dimension) is lodged in the skyrmion cloud while the rest
of the charge θ(R)/π remains in the bag, yielding the total baryon number 1 for a single
baryon. When the bag is infinite the whole baryon charge is lodged inside the bag, while
when the bag shrinks to zero size the whole baryon charge goes into the skyrmion cloud.
So the size of the bag has no meaning for the property of the quark. The confinement size
identified with the bag size R is, therefore, an unphysical quantity. One can think of this
process as the pion fields giving rise to the baryons as solitons. This is what is referred to as
the “Cheshire Cat Phenomenon” or “Cheshire Cat Principle (CCP)” [57]. This is akin to the
disappearance of the Cheshire Cat in “Alice in the Wonderland” with the baryon number
playing the role of the cat’s smile. In fact it could be more appropriate to identify this
phenomenon as a gauge artifact and formulate a gauge theory for the phenomenon [61].

This discussion of the CC “smile” applies straightforwardly to (3 + 1) dimensions. It
has indeed been verified by Goldstone and Jaffe [62] in terms of the spectral asymmetry
η(s) (defined in (26) below) which renders the baryon charge lodged inside the bag for a
given chiral angle θ(R). The fractionalization of the baryon charge is exact thanks to the
topology involved. In (1 + 1)D, an exact bosonization allows an in-principle CCP also for
non-topological processes. However, in the absence of bosonization, such exact CCP does
not exist in nuclear processes in (3 + 1)D—except for the topological quantity, so much of
what one can say of the processes in nature that are not topological is at best approximate.

5.2. No Infinite Hotel for N f = 1 Baryons

The IH scenario discussed above famously turns out not to work when the number
of flavors is one. This is because π3(U(1)) = 0. One then wonders whether there is no
soliton for baryon coming from the flavor singlet meson η′. As mentioned, this puzzle was
recently resolved by ideas developed in condensed matter physics by Komargodski [48]
who suggested that the η′ can turn into a flavor singlet baryon—denoted from here on
as B(0)—as a fractional quantum Hall (FQH) droplet. At first sight this FQH droplet
(pancake or pita) is unrelated to the usual skyrmion corresponding to the nucleon and,
hence, the dichotomy.

There are two questions raised regarding this dichotomy [63] between the skyrmions
and the FQH droplets. The first is: is there any relation between the two topological
objects, the FQH droplet for B(0) and the skyrmion for nucleons? The second is: is the
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phenomenon of the FQH droplets relevant to the EoS at high density? Both questions are
in some sense related.

5.3. Baryon for N f = 1

Let us first discuss whether Komargodski’s FQH pancake model can be given a
formulation in terms of a Cheshire Cat phenomenon. This rephrases what was done in [64].

Suppose the quark in the bag is of N f = 1 in the jailbreak scenario. Let the quark be
coupled at the wall x = R to the flavor-singlet meson η′. Again, the confinement leads to
the breaking of the baryon charge and gives rise to an anomaly, but since π3(U(1)) = 0, it
cannot go into the infinite hotel because the topology does not allow it. We will come later to
how and why the topology might “dictate” the flow. So where does it go? The answer [64]
is that the quark moving in the x direction is allowed to escape by flowing in the y direction
and go into a quantum Hall-type pancake, taking care of the anomaly generated by the
boundary condition for what can be identified with a thin domain wall and keeping the
baryon charge conserved. This is known as the “anomaly in-flow” mechanism leading to
the Chern–Simons topological term [65], which in 3-form reads

Nc

4π

∫

2+1
ada (21)

where aµ is the Chern–Simons field which is to capture strong correlations in QCD—and
will be identified later with the U(1) field in HLS, namely the ω meson [31,52]. The Cheshire
Cat Principle, if held, would imply that the baryon charge leaks completely into the FQH
droplet, with the “smile” reducing to a U(1) vortex line on the pancake. That the resultant
FQH droplet correctly carries the baryon charge is assured by the gauge invariance of
the Chern–Simons term (21). How this comes about can be explained in terms of a chiral
bosonic edge mode [52] which will be found to play a key role in accessing the EoS for
massive compact stars [7]). In accordance with the global symmetries of QCD, the B = 1
baryon with Nc = 3 quarks must then have spin J = Nc/2 = 3/2. This yields the high-spin
baryon. Thus, when the bag is shrunk by fiat to zero size, the Cheshire Cat smile will
go into the vortex line in the FQH droplet. For instance for Nc = 3, this picture yields
the ∆(3/2, 3/2). The same ∆(3/2, 3/2) also appears in the rotational quantization of the
skyrmion with N f = 2 which comes from the ∞-hotel mechanism which does not work for
the N f = 1 baryons. These two descriptions present an aspect of the dichotomy problem:
whether or how they are related?

Baryons for N f ≥ 2

Instead of a flavor-singlet quark, now consider the jail-breaking scenario of the doublet
u and d quarks. There seems to be nothing to forbid the quark from flowing, instead of
dropping into the infinite hotel giving rise to a skyrmion, into the y direction as the flavor-
singlet quark did to compensate the anomaly generated by the bag wall. Or is there? This
is the question raised.

Now, let us blindly apply the same anomaly-flow argument in CCP to the N f -flavored
quark. The spin-flavor symmetry for the flavor N f 6= 1 will of course be different. Given
N f = 2, we expect to have a non-abelian Chern–Simons field Aµ in place of the abelian
aµ [64],

Nc

4π

∫

2+1
Tr
(
AdA+

2
3
A3
)

. (22)

This presents an alternative jail-break scenario to the infinite-hotel one.
However, there arises the question: What makes nuclear matter (at n ∼ n0) realized as

a state of skyrmions as Nature seems to indicate, instead of stacks of fractional quantum
Hall pancakes or pitas [52] or combinations of the two? Is the non-abelian Chern–Simons
droplet a meta-stable state absent at low density but could figure at high density? This
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question is addressed below following the recent developments on the role of two hidden
symmetries, flavor local and scale, intervening at high density involving fractional quantum
Hall droplets [31,52,53].

5.4. Fermion Number and Hall Conductivity on Domain Wall

The Cheshire Cat Principle posits that physics should not depend on confinement size.
It could be more appropriately phrased even as a gauge dependence in gauge theories [61].
This CCP on the confinement size was proven by showing that the baryon charge does not
depend on R [57]. This follows from that the baryon charge is topological in any dimension.
In (3+1)D, however, there is no exact bosonization and, hence, there is no exact CCP for
other than the baryon charge, although approximate CCP holds for certain quantities like
the flavor singlet axial charge of the proton [49]. In [64], the CCP was established also
for the N f = 1 baryon for the baryon charge with the fractional quantum Hall droplet
replacing the skyrmion for N f ≥ 2. (A remark is in order for completeness. In [64], the bag
boundary is taken as a domain wall. Whether the bag boundary can indeed be thought
in terms of a domain wall is not clear and remains to be examined in detail. In modern
developments in gauge theories, the concept of domain wall (together with “interface”)
plays a singularly important role. This is particularly so, in particular in QCD, and is a
huge subject in the literature. The θ dependence in QCD with massless quarks makes the
pertinent case in this note as will be elaborated below).

As is well known, the CP symmetry is spontaneously broken for the vacuum angle
θ = π. Suppose θ varies from 0 to 2π. There results a domain wall with Chern–Simons
theory on it. Now, when quarks are massless, since the bulk property of the theory depends
on mN f eiθ , the θ dependence is eliminated, replaced by a shift of η′. This is the anomaly
cancelation restoring CP symmetry in 4D. Thus, the emergence of η′ in the problem.

In order to understand what’s going on, let us re-derive the CCP result for N f = 1
baryon of [64] in (3 + 1)D by considering the bag boundary as an extremely thin “domain
wall” located at x3 = 0. Following [66], we will consider quantized Dirac fermions—
say, “quarks”—in interaction with a background U(1) gauge field aµ, and scalar σ and
pseudo-scalar π fields

L = ψ̄Dψ (23)

with

D = iγµ(∂µ − igaµ)− (σ + iγ5π), σ2 + π2 = 1. (24)

aµ, the U(1) component of HLS, will be more precisely specified below.
Consider the background fields changing rapidly near x3 = 0 and going to asymptotic

values. One is interested in the vacuum baryon number B given by

B = −1
2

η(0, H) (25)

where η(s, H) is the spectral asymmetry that was computed in [62] (for the infinite—hotel
scenario)

η(s, H) = ∑
λ>0

λ−s − ∑
λ<0

(−λ)−s (26)

where λ is the eigenvalues of the Dirac Hamiltonian H. With some reasonable approxima-
tions, it was obtained in [66] that

B = − g
4π2 θ|x3=+∞

x3=−∞

∫
d2x f12 (27)
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where θ ≡ (arctan(π/σ)) and fµν is the gauge field tensor. Note that the vacuum fermion
number B has two components, first the Goldstone–Wilczek fractionalized fermion num-
ber [67] and the other the magnetic flux through the (x, y) 2-d plane

Consider next a domain wall background defined by the fields σ and π that depend
on x3 only. The one-loop effective action in the non-static background is found to give the
parity-odd action (why the parity-odd action becomes relevant is explained below)

S = εµνρ3
∫

d4xd4yG(x, y)aµ(x)∂y
νaρ(y) (28)

where G is a complicated non-local function of x3, y3 and zα = xα − yα, α = 0, 1, 2. In the
long-wavelength limit in the form factor G, the action can be written as a Chern–Simons
term

S = g2 k
4π

εµνρ3
∫

d3yαaµ(yα, 0)∂νaρ(yα, 0) (29)

with

g2 k
4π

=
∫

d3xαdy3dx3G(zα, x3, y3). (30)

Here, k can be identified as the “level” in the level-rank duality of the Chern–Simons term.
At this point, one can make contact with what was done in the CCP structure [64].

For this, consider the domain wall located at x3 = 0 with the “quark” modes inside the
bag x3 < 0 corresponding to the Cheshire Cat smile. The U(1) field in (23) could be
considered, as suggested in [52,53], to be the ω field when the vector mesons ρ and ω in
HLS are treated as the color–flavor locked U(N f ) gauge fields dual to the gluon fields in
QCD [68]. Then, the ω field can be taken as the Chern–Simons field that captures à la CCP
the strongly-correlated excitations outside the bag. Now for U(N f )−Nc dual to SU(Nc)N f
spontaneously broken, the vortex configurations in three dimensions made up of ρ and ω
carry magnetic and electric charges of U(1)N f . The electric charge in the CS term can then
be identified with the baryon charge [53,68]. This allows one to obtain the vector current
from the action S (29), the time component of which is

J0(x) =
1
g

δ

δa0(x)
S. (31)

The baryon number is [66]

B =
∫

d3xJ0(x) =
gk
2π

∫
f12d2x. (32)

Setting the Dirac quantization for the magnetic flux threading the vortex [68]

g
2π

∫
f12d2x = 1 (33)

one finds the baryon charge equal to the level

B = k. (34)

This is the baryon charge lodged in the vacuum.
Now to make the connection à la [66] to the Cheshire Cat scenario discussed in [64], we

identify the chiral angle for θ which is = η′/ fη′ in [64], and impose at x3 = 0 the Cheshire
Cat boundary condition

(1− iγ3eiγ5θ)ψ|x3=0 = 0. (35)
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Then, the change in baryon charge is given by

∆B ≈ ∆θ

2π
(36)

where ∆θ is the jump of the η′ field across the chiral bag boundary. This is the same result
obtained in [64]. The Cheshire Cat dictates the baryon charge Bout = 1− Bin to be lodged
in the Chern–Simons action

S′ = g2 k′

4π
εµνρ3

∫
d3yαaµ(yα, 0)∂νaρ(yα, 0) (37)

so it must be that

k′ = 1− k. (38)

Here are two important points, among others, to note. First of all, as pointed out
in [66], the Chern–Simons term (29) or (37) by itself is not topological. This is because the
level k or k′ separately as defined is not an integer so the action is not gauge invariant,
hence unphysical, for R 6= 0 or ∞. The sum of the baryon charges of inside and outside
is required by the anomaly cancellation. We believe this is related to the color anomaly
found in the Cheshire Cat in (3 + 1)D [50] explaining the tiny flavor-singlet axial charge
g(0)A ∼< 0.3 [49].

Second, one could have naively done the same analysis for the N f = 2 case with the
pion fields included. That would have given rise to nonabelian CS theory with the same
results as in the CCP strategy. So one is back to the dichotomy problem.

6. The Dichotomy Problem
6.1. Indispensable Role of Vector Mesons

We suggest that the key elements that provide the resolution of the dichotomy problem
are the symmetries that led to the density-functional formalism GnEFT, namely, the hidden
local symmetry and the scale/conformal symmetry. The degrees of freedom associated with
these symmetries, the vector mesons and the dilaton, can be taken as emergent symmetries
from strong nuclear correlations “dual” to QCD.

To see how one arrives at this aspect, let us incorporate the η′ field in the two-flavor
chiral field in HLS Lagrangian as

U = ξ2 = eη′/ fη eiτaπa . (39)

The notable observation made by Karasik [31,52] is that what is called “hidden” Wess–
Zumino term in the HLS Lagrangian (replacing the “homogeneous” Wess–Zumino term
of [13]) unifies the baryon currents for both the FQH droplet and the skyrmions [63]. It was
noted that in the effective field theory that contains both η′ and the HLS fields, the η′ cusp
that accounts for the jump from one vacuum to the other at η′ = π does not appear. Thus,
the effective theory containing the HLS fields in the presence of η′ captures the emergent
theory on the η′ domain wall. This suggests that it is more efficient and simpler to resort to
the bosonic Lagrangian from which both the skyrmions and the FQH droplets emerge as
solitons. It is not clear how to bring GnEFT to the density regime involved which could be
higher than what is relevant in compact stars. It seems feasible to formulate this problem
via nonlinear bosonization of the Fermi surface [40]) giving rise to soft modes of hidden
symmetries at high density.

Now, let us consider tweaking the baryonic matter by increasing density in χHLS
Lagrangian where the hWZ terms figure. The density for compact stars is ∼< 10n0. The rele-
vant structure is more or less captured by the approach to the dilaton limit fixed point—
Section 4.1—and the emergent pseudo-conformal symmetry (PCS)—Section 4.2—which
say that gDL

A → 1 and fπ → fχ ∼ m0 in the range of density involved in massive stars.
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As argued in [63], the FQH droplet should become relevant at some high density at which
fχ → 0. This density must then be (much) higher than that reached at the DLFP close to the
GD’s IR fixed point. It is at this point the hWZ term exposes the Chern–Simons η′ coupling
term carrying the information on the FQH droplet with the correct baryons number. There
the ω field in HLS Lagrangian can be identified as the Chern–Simons field.

In [53], a scenario different from that of [31,52] is suggested for the role of hidden
local symmetry. There the coupling of the Chern–Simons fields in the bulk couple with the
edge modes of vector mesons making the vector mesons gauge bosons. At the moment
which scenario is preferred is not clear. However, what is absolutely clear is that hidden
symmetries “dual” to QCD symmetries (e.g., HLS vector mesons as Seiberg-dual to the
gluons [68]) must be essential for the correct description of the phase structure at high
density. One cannot say whether the compact star density reaches the appropriate density
beyond the PC regime. If future refined gravity wave observations were to indicate
significant deviations from the PC sound speed predicted in our approach, this would give
a hint to the possible role of the FQH droplets.

An interesting observation here is that the Chern–Simons field coupling to the FQH
droplet in the hWZ term

LCSη′ = −ζ
Nc

4π
Jµναωµ∂νωα (40)

with the topological U(1) 2-form symmetry current

Jµνα =
1

2π
εµνα∂βη′ (41)

requires ζ = 1 to have gauge invariance. (In the GD scheme [15] we are adopting,
in the absence of the η′ field, each of the four hWZ terms a = 1, 2, 3, 4 can have a fac-

tor
(

ca + (1− ca)
( χ

fχ

)β′
)

with ca an unknown constant and β′ the anomalous dimension of
the gluon stress tensor that multiplies the scale-invariant term.) This means that the “scale-
symmetry breaking constant” chWZ in front of the hWZ term is ζ = chWZ = 1 whereas in
the absence of the FQH droplets it could be that ζ = chWZ << 1 at scale-chiral symmetry
restoration with fχ = fπ = 0 [69].

6.2. Dense Matter as “Sheets” of Pancakes/Pitas

As noted, at low density, the N f = 2 quarks in the bag must be tending to fall into
the infinite hotel, hence giving rise to skyrmions in (3 + 1)D. This may be “driven” by
the parameters of the Lagrangian that unifies the N f ≥ 2 and N f = 1 baryons to have
the B(0) effect suppressed at low density. However, as density increases, the parameter
change in the baryonic scale-symmetric Lagrangian LψχHLS in GnEFT that distorts the
baryon current from the unified current to the N f = 1 current could transform the EoS
state toward the Chern–Simons QFT structure. One possible scenario for this is indicated
in the recent skyrmion crystal analyses of dense matter where an inhomogeneous structure
is found to be energetically favored over the homogeneous one at n > n1/2 – but not
asymptotically high density. It has been found that the baryonic dense matter consists of a
layer of sheets of “lasagne” configuration with each sheet supporting half-skyrmions [70].
The constituents of this layer structure are quasi-fermions consisting of fractionalized
quasiparticles of 1/2 baryon charge, possibly deconfined as conjectured below, appearing
in baryon-quark continuity at a density ∼n1/2, drastically different from those of the pasta
structure discussed for the dilute outer layer of compact stars. In the Skyrme model
(with pion field only) used in [70], the quartic (Skyrme) term effectively encodes massive
degrees of freedom, including the hidden local fields, the monopole structure hidden in
half-skyrmions, etc., described above. It appears feasible to formulate this “sheet dynamics”
by a stack of FQH pancakes or pitas with tunneling half-skyrmions between the stacks,
somewhat like arriving at the Chern–Simons field theory structure of FQHE in (2 + 1)D
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with a stack of (1 + 1)D quantum wires [71] (there are many papers on this matter in
the literature. A good article with many relevant references is [71]). In the tunneling
process it may be possible that the half-skyrmions transform to 1/3-charged quasiparticles
resembling quasi-quarks as discussed in [72]. On the domain wall, the 1/3-charged objects
could behave as “deconfined” quarks as discussed in [73]. This could then explain why the
composite quasi-fermions given in GnEFT behave similarly to the “deconfined quarks” in
the core of massive compact stars [46].

7. Conclusions

The question addressed in this note was: Is it feasible with a single unique effective
Lagrangian to address the equation of state from normal nuclear matter to massive compact-
star matter resorting to only one set of degrees of freedom with the vacuum sliding with
density but without phase transitions? Put in another way, how far can one go with such a
“unified” formalism without getting into fatal conflict with either empirical or theoretical
constraints?

Influenced by strikingly successful developments in strongly correlated condensed
matter physics together with impact on particle physics, an extremely simplified approach
to the EoS for massive compact stars is formulated in terms of topology change to account
for possible “continuity” from seemingly hadronic variables to QCD variables at high
density n1/2 ∼> 3n0. The single Lagrangian adopted in this study consists entirely of
hadronic variables, the pion and the nucleon that figure in the standard nuclear EFT
plus the massive degrees of freedom ρ, ω, and χ associated with hidden local and scale
symmetries. The role of the topology change is to endow what could be identified as Kohn–
Sham-type “density-functional” structure in the parameters of the effective Lagrangian
that are supposed to capture the topological structure of QCD variables in dense medium.
We further extended the scenario with the possible intervention of the FQH droplets B(0)s
going beyond the DLFP, brining in non-Fermi baryonic matter with scale-chiral restoration.

In this approach, there are neither explicit quark degrees of freedom nor strangeness
flavor as in the standard approaches [74,75] and in other variations with bag models [55].
It is possible of course that there be corrections to the approximations made—given the
admittedly drastic oversimplification—that could, quantitatively though not qualitatively,
modify the results. There is, however, one serious potential obstruction to GnEFT. Should
future measurements map out precisely the behavior of the sound velocity in the range of
density 3 ∼< n/n0 ∼< 7 and falsify the precocious onset of, and the convergence to, the PC
sound velocity, then that would bring a serious obstruction to the notion of the emergent
symmetries, particularly hidden scale symmetry distinctive of the theory. That would then
“torpedo” the GnEFT. If however it is not “torpedoed”, then our approach with the encoded
“duality” to QCD in approaching the chiral phase transition, as well as confinement, as
argued recently by string-theory-inclined theorists [31,48,52,53,68] will bring a totally new
perspective to nuclear physics, a paradigm almost totally foreign to nuclear theories.

A most interesting future direction would be to map the “generalized” sheet structure
of Chern–Simons QFT in the topological sector conjectured above to an improved GnEFT
phrased in Wilsonian-type Fermi-liquid theory more powerful and realistic than what
has been achieved so far, perhaps along the line of the nonlinear bosonization approach
accessing non-Fermi liquid state. It would offer a clear resolution of the dichotomy problem
and escape the possible obstruction to the GnEFT.
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Abstract: Within the scope of the Symmetry journal special issue on: “The Nuclear Physics of Neutron
Stars”, we complemented the nuclear equation of state (EoS) with a hypothetical 17 MeV boson
and observed that only instances with an admixture of 30%–40% satisfy all of the constraints. The
successful EoS resulted in a radius of around 13 km for a neutron star with mass MNS ≈ 1.4M�
and in a maximum mass of around MNS ≈ 2.5M�. The value of the radius is in agreement with
the recent measurement by NICER. The maximum mass is also in agreement with the mass of the
remnant of the gravitational wave event GW190814. Thus, it appears that these EoSs satisfy all of the
existing experimental constraints and can be considered as universal nuclear equations of state.

Keywords: X17; EoS; neutron star

1. Introduction

In 2016, Krasznahorkay et al. [1] reported an anomaly in the angular correlation
of the electron–positron decay of the 1+ excited level of a 8Be nucleus at 18.15 MeV. An
enhancement at a folding angle close to 140 degrees was interpreted as a signature of decay
via the emission of a neutral boson with a mass of around mX = 17 MeV. Subsequently,
a similar effect was reported by the same group in the decay of the lower 1+ excited
state of 8Be at 17.6 MeV [2] and later in the 0− excited state of 4He at 21.01 MeV [3], at a
folding angle close to 115 degrees. Also recently, the same group investigated the 17.2 MeV
1− → 0+ transition of the 12C nucleus, resulting in an excess in the folding angle of around
155 degrees [4]. These reported observations placed the hypothetical X17 boson as a dark
matter candidate, and, in that spirit, since then, several theoretical works pursued this
claim [5,6].

However, an explanation relating this particle to the QCD vacuum was also pro-
posed [7]. In this picture, the 17 MeV particle mediates nucleon–nucleon interactions
at large distances between nucleons in the otherwise unbound cluster configuration. A
corresponding equation of state was obtained, which was also applied to neutron stars [8].

Since the assumption that the 17 MeV boson is the only carrier of nuclear interactions
is somewhat extreme, we explored the possibility of constructing a nuclear equation of
state (EoS), introducing both an ω meson with mass 782.5 MeV and a 17 MeV boson in
an admixture, which were then tested using experimental constraints on nuclear matter,
finite nuclei and heavy ion collisions. The presented analysis falls within the scope of the
Symmetry journal special issue on: “The Nuclear Physics of Neutron Stars”.

The paper is organized as follows: in Section 2, we introduce the universal nuclear
EoS, in Section 3 we present our findings and in Section 4, we discuss the results.
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2. Tolman–Oppenheimer–Volkoff Equations and the Equation of State

The structure of a neutron star is usually described using the Tolman–Oppenheimer–
Volkoff (TOV) equations (Equations (1) and (2)) based on general relativity:

dP
dr

=
−G
c2

(P + ε)(m + 4πr3P
c2 )
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(1)

dm
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= 4πr2 ε
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where m(r) is the total mass contained within radius r and pressure P. The only model-
dependent input is the EoS of nuclear matter, which is what makes the neutron star
an ideal laboratory for nuclear physics. The EoS of nuclear matter can be described by
relativistic mean field theory [9]. The corresponding equations for infinite symmetric
nuclear matter are:
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where ε is the energy density, P is the pressure for pure neutron matter, gs and gv are the
couplings of the scalar and vector boson, respectively, ms and mv are the rest masses of
scalar and vector bosons, κ and λ are the couplings of the cubic and quartic self-interaction
of the scalar boson, mN and m∗N are the rest mass and the effective mass of the nucleon,
ρN is the nucleonic density, kF is the Fermi momentum of nucleons at zero temperature
and γ is the degeneracy (with value γ = 4 for symmetric nuclear matter and γ = 2 for
neutron matter).

The EoSs (Equations (3) and (4)), which are regularly used with the ω-meson in the
role of the vector boson, were used in [8] for TOV calculations under the assumption that
the nuclear force is being mediated by a 17 MeV boson, as reported in the study of the
anomalous electron–positron pair production in the excited states of 8Be [1,2], 4He [3]
and 12C [4]. Here, we extended our previous work by using the assumption that both the
ω-meson and the 17 MeV boson mediate the nuclear force as vector bosons.

After writing the corresponding relativistic mean field (RMF) Lagrangian:
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(5)

with duplicate vector boson terms, we conclude that the resulting EoS will be identical to
the above, with “effective” vector boson mass:

m∗2v = q2m2
X + (1− q)2m2

ω (6)

where q is the admixture coefficient of the mX = 17 MeV boson to the total vector potential.
Depending on the value of q, the effective mass can range from mω = 782.5 MeV to 17 MeV.
We decided to test this theory using various available constraints, ranging from properties
of finite nuclei, through heavy ion collisions all the way to the neutron stars.
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3. Analysis Results

As a first step, we generated the EoS of infinite symmetric nuclear matter using values
of the vector boson effective mass corresponding to an admixture of a 17 MeV boson
ranging between 20% to 50% and choosing the values of couplings within corresponding
ranges depicted in Table 1. Each set of parameters was tested for binding energy (16 MeV)
and saturation density ρ0 = 0.15–0.16 fm−3. Successful sets of parameters were further
tested for incompressibility within the range: K0 = 250 ± 20 MeV.

Table 1. Constrained parameter sets for three EoSs with three admixtures q and incompressibility
K0 = 250 ± 20 MeV.

K0 q κ λ gv gs m∗
v [MeV] mσ [MeV]

235.95 0.3 21.50 −163.33 8.38 9.20 547.77 482.16
269.14 0.4(A) 11.00 −50.00 6.85 7.23 469.55 391.44
257.50 0.4(B) 11.50 −60.00 6.85 7.23 469.55 391.44

The parameter sets that passed the first step were used to calculate properties of
the finite nucleus 208Pb; in particular, its binding energy (1636 MeV) and neutron skin
∆RPREX2 = 0.283± 0.071 fm. The latter value is of special interest since recent measure-
ments [10] reported a value larger than the predictions of theory. The RMF code of Ring,
Gambhir and Lalazissis from CPC [11] was used for calculation. The code also uses the ρ-
meson as a mediator of the isovector interaction and thus a measure of the symmetry energy.
We kept the ρ-meson coupling identical to the NL3 EoS [12]. The NL3 EoS can reproduce
the values of the binding energy and neutron skin of 208Pb; however, the incompressibility
is unrealistically high and constraints from nuclear reactions are not satisfied.

A typical picture is shown in Figure 1, where the values of the binding energy and
the neutron skin ∆R = Rn − Rp are plotted. The main sequence does not seem to fulfill
both constraints; nevertheless, several combinations of parameters appeared to satisfy both
constraints. These were parameter sets with the 17 MeV boson admixture ranging between
20% and 40%. However, the parameter sets with a 20% admixture fail to satisfy constraints
from heavy ion collisions [13], and thus only parameter sets with an admixture of 30%
to 40% remain, signalling that there is some range of admixtures that satisfies all of the
constraints. Such an observation can have physical meaning.

Figure 1. (Color online). Binding energy (BE) of the 208Pb versus its neutron skin using 30% admixture
of the 17 MeV boson in an EoS.

For the TOV calculations, the equation of state P(ρ) needed to be expressed in
the form of polytropes. For that reason, three transition densities were defined—ρ1 =
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2.8 × 1014 g/cm3, ρ2 = 1014.7 g/cm3 and ρ3 = 1015 g/cm3—and four parameters were
calculated: three exponents of the power law polytropes Γ1, Γ2, Γ3, respectively, and the
value a0 (where a0 = log(p(ρ1)) + Γ1(log(ρ2)− log(ρ1)). In the last step, the remaining
equations of state, specifically their versions for pure neutron matter, were used as an input
to the TOV equation, and the resulting mass–radius plot is shown in Figures 2 and 3. The
three EoSs listed in Table 2 result in a radius of the neutron star of 1.4 solar masses around
13 km and a maximum mass of the neutron star of around 2.5 solar masses. The value of
the radius is in agreement with the recent measurement by NICER [14,15], and the value of
the maximum mass is in agreement with the recently reported mass of pulsar 2.35 solar
masses [16] and potentially also with the mass of the remnant of the gravitational wave
event GW190814 [17]. Thus, it appears that these three EoSs satisfy all of the existing exper-
imental constraints and can be considered as universal equations of state of nuclear matter.

Figure 2. (Color online). The pressure as function of nuclear density for three EoSs with admixtures
of 30% and 40% of the 17 MeV boson plus the NL3 EoS. The parameters are defined in Table 2.

Figure 3. (Color online). The mass–radius relation for three EoSs plus the NL3 with admixtures of
30% and 40% of the 17 MeV boson plus the NL3 EoS.
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Table 2. Polytropes for three EoSs plus the NL3 EoS used for the Tolman–Oppenheimer–Volkoff
calculations. The 0.3 EoS represents a 30% admixture of the X17 boson and the 0.4A and 0.4B EoSs
represent a 40% admixture with different values of parameters κ and λ.

EoS q-Admixture (%) a0 Γ1 Γ2 Γ3 K0 (MeV)

0.3 (30%) 34.703 3.741 3.118 2.497 235.95
0.4(A) (40%) 34.673 3.744 3.036 2.517 269.14
0.4(B) (40%) 34.653 3.643 3.095 2.540 257.50
NL3 (0%) 34.846 3.872 2.925 2.394 332

4. Conclusions

In summary, within the scope of the Symmetry journal special issue on: “The Nuclear
Physics of Neutron Stars”, we implemented a hypothetical 17 MeV boson to a nuclear EoS
complementing the ω meson and observed that only instances with an admixture of 30–40%
satisfy all of the experimental constraints. When applied to TOV equations, the successful
EoSs result in a radius of around 13 km for a neutron star with a mass of MNS ≈ 1.4M�
and in a maximum mass of around MNS ≈ 2.5M�. The values of our results are in good
agreement with the recent measurement reported by NICER [14,15]. The obtained value of
the maximum mass is also in agreement with the recently reported mass of a pulsar [16]
and potentially also with the mass remnant of the gravitational wave event GW190814 [17].
Thus, it appears that these EoSs satisfy all of the existing experimental constraints and can
be considered as universal EoSs of nuclear matter.

Author Contributions: M.V., Conceptualization; V.P., Writing-review-editing and scientific research;
J.L., Software; L.N., investigation. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Czech Science Foundation-GACR Contract No. 21-24281S.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Acknowledgments: This work is supported by the Czech Science Foundation (GACR Contract No.
21-24281S). The simulations were performed at the Supercomputing facility of Czech Technical
University in Prague.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Krasznahorkay, A.J.; Csatlós, M.; Csige, L.; Gácsi, Z.; Gulyás, J.; Hunyadi, M.; Kuti, I.; Nyakó, B.M.; Stuhl, L.; Timár, J.; et al.

Observation of Anomalous Internal Pair Creation in 8Be: A Possible Indication of a Light, Neutral Boson. Phys. Rev. Lett. 2016,
116, 042501. [CrossRef] [PubMed]

2. Krasznahorkay, A.J.; Csatlós, M.; Csige, L.; Gulyás, J.; Hunyadi, M.; Ketel, T.J.; Krasznahorkay, A.; Kuti, I.; Nagy, A.; Nyakó, B.M.;
et al. New experimental results for the 17 MeV particle created in 8Be. EPJ Web Conf. 2017, 137, 08010. [CrossRef]

3. Krasznahorkay, A.J.; Csatlós, M.; Csige, L.; Gulyás, J.; Koszta, M.; Szihalmi, B.; Timár, J.; Firak, D.S.; Nagy, Á.; Sas, N.J.; et al. A
new anomaly observed in 4He supporting the existence of the hypothetical X17 particle. J. Phys. Conf. Ser. 2020, 1643, 012001.
[CrossRef]

4. Krasznahorkay, A.J.; Krasznahorkay, A.; Begala, M.; Csatló, M.; Csige, L.; Gulyás, J.; Krakó, A.; Timár, J.; Rajta, I.; Vajda, I.; et al.
New anomaly observed in 12C supports the existence and the vector character of the hypothetical X17 boson. arXiv 2022, arXiv:
2209.10795

5. Feng, J.F.; Fornal, B.; Galon, I.; Gardner, S.; Smolinsky, J.; Tait, T.M.P.; Tanedo, P. Protophobic Fifth-Force Interpretation of the
Observed Anomaly in 8Be Nuclear Transitions. Phys. Rev. Lett. 2016, 117, 071803. [CrossRef]

6. Feng, J.F.; Fornal, B.; Galon, I.; Gardner, S.; Smolinsky, J.; Tait, T.M.P.; Tanedo, P. Particle physics models for the 17 MeV anomaly
in beryllium nuclear decays. Phys. Rev. D 2017, 95, 035017. [CrossRef]

7. Veselský, M.; Petousis, V.; Leja, J. Anomaly in the decay of 8Be and 4H—Can an observed light boson mediate low-energy
nucleon-nucleon interactions? J. Phys. G Nucl. Part. Phys. 2021, 48, 105103. [CrossRef]

125



Symmetry 2023, 15, 49

8. Petousis, V.; Veselský, M.; Leja, J. Neutron star structure with nuclear force mediated by hypothetical X17 boson. EPJ Web Conf.
2021, 252, 04008. [CrossRef]

9. Serot, B.D.; Walecka, J.D. Recent Progress in Quantum Hadrodynamics. Int. J. Mod. Phys. E 1997, 6, 515. [CrossRef]
10. Adhikari, D.; Albataineh, H.; Androic, D.; Aniol, K.; Armstrong, D.S.; Averett, T.; Barcus, S.; Bellini, V.; Beminiwattha, R.S.;

Benesch, J.F.; et al. Accurate Determination of the Neutron Skin Thickness of 208Pb through Parity-Violation in Electron Scattering.
Phys. Rev. Lett. 2021, 126, 172502. [CrossRef]

11. Ring, P.; Gambhir, Y.K.; Lalazissis, G.A. Computer program for the relativistic mean field description of the ground state properties
of even-even axially deformed nuclei. Comput. Phys. Commun. 1997, 105, 77–97. [CrossRef]

12. Lalazissis, G.A.; König, J.; Ring, P. New parametrization for the Lagrangian density of relativistic mean field theory. Phys. Rev. C
1997, 55, 540. [CrossRef]

13. Danielewicz, P.; Lacey, R.; Lynch, W.G. Determination of the Equation of State of Dense Matter. Science 2002, 298, 1592. [CrossRef]
[PubMed]

14. Riley, T.E.; Watts, A.L.; Bogdanov, S.; Ray, P.S.; Ludlam, R.M.; Guillot, S.; Arzoumanian, Z.; Baker, C.L.; Bilous, A.V.; Chakrabarty,
D.; et al. A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation. Astrophys. J. Lett. 2019, 887, L21. [CrossRef]

15. Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Harding, A.K.; Ho, W.C.G.;
Lattimer, J.M.; et al. PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star
Matter. Astrophys. J. Lett. 2019, 887, L24. [CrossRef]

16. Romani, R.W.; Kel, D.; Filippenko, A.V.; Brink, T.G.; Zheng, W. PSR J0952-0607: The Fastest and Heaviest Known Galactic Neutron
Star. Astrophys. J. Lett. 2022, 934, L18. [CrossRef]

17. Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et
al. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object.
Astrophys. J. 2020, 896, L44. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

126



Citation: Rho, M. Dense Baryonic

Matter Predicted in

“Pseudo-Conformal Model”.

Symmetry 2023, 15, 1271. https://

doi.org/10.3390/sym15061271

Academic Editor: Charalampos

Moustakidis

Received: 25 May 2023

Revised: 12 June 2023

Accepted: 14 June 2023

Published: 16 June 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Dense Baryonic Matter Predicted in “Pseudo-Conformal
Model”
Mannque Rho

Institut de Physique Théorique, Université Paris-Saclay, CNRS, CEA, 91191 Gif-sur-Yvette, France;
mannque.rho@ipht.fr

Abstract: The World-Class University/Hanyang Project launched in Korea in 2008 led to what is now
called the “pseudo-conformal model” that addresses dense compact star matter and is confronted
in this short note with the presently available astrophysical observables, with focus on those from
gravity waves. The predictions made nearly free of parameters by the model involving “topology
change” remain more or less intact “un-torpedoed” by the data.

Keywords: massive compact stars; EoS; topology change; hadron-quark continuity; Cheshire Cat
Principle; hidden symmetries dual to gluons; GnEFT; psuedo-conformality

1. Introduction

In 2008, the Korean Government launched a five-year “World-Class University (WCU)”
Project, and the Hanyang University in Seoul was chosen as one of the projects to be
under the directorship of Hyun Kyu Lee in the Physics Department. The objective of the
WCU/Hanyang was to elevate the university in basic science to the world-class level, in
anticipation of the forthcoming establishment of an ambitious research institute called the
Institute of Basic Science (IBS). The subject matter picked was “Baryonic Matter under
Extreme Conditions in the Universe”, which focused on the superdense matter expected
to be found in massive compact stars on the verge of gravitational collapse. This subject
matter was already one of the major themes at the Korea Institute of Advanced Studies
(KIAS) in late 1990s and early 2000s while I was an invited professor in its School of Physics,
working in collaboration with Hyun Kyu Lee, Dong-Pil Min, and Byung-Yoon Park of
Korea and Vicente Vento of Spain, all at the KIAS as visiting scholars.

The property of dense baryonic matter in compact stars is in the realm of QCD
involving both low and high densities. However, QCD cannot access the density regimes,
famously non-perturbative, of nuclear and compact star matter. Therefore, there was no
reliable theoretical tool to access the regimes concerned. Neither could it be accessed
experimentally, since no accelerators probing dense matter at low temperature involved
were available then. What started at the WCU/Hanyang Project was the construction of a
single unified theoretical framework to explore these uncharted density regimes starting
with what was explored in KIAS. The objective was to formulate an effective field theory
approach with a minimal number of unknown parameters, post-dict correctly the known
nuclear matter properties at n ∼ n0 ' 0.16 fm−3, and predict the terrestrial nuclear and
compact star properties that were yet to be measured. It was, in our mind, in anticipation
of what is to be studied at the costly RIB machine “RAON” approved to be constructed at
the IBS.

The status of the model in nuclear physics and astrophysics up to early 2017 before
the advent of the recent gravity wave measurements was sketched in [1]. The gravity wave
data made feasible the direct confrontation of some of the predictions made then with the
oncoming observables.

To the utter surprise—and perhaps more to the incredulity—of the workers in the
field, what appears to be an over-simplified “coarse-grained framework” with no param-
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eter fiddling—in stark contrast to the currently favored approaches of hybridizing with
“artificially revamped” quark descriptions—has met, so far, with no serious tension in ex-
plaining satisfactorily all up-to-date available data. In this paper, I will list the most relevant
observables—there are too many to be fair to all—both nuclear and astrophysical, just to
show how the predictions that followed from the formulation initiated at the KIAS and
pursued at the WCU/Hanyang fare, and how the possible discrepancies, if any, between
what is predicted and what is measured can be reconciled within the model. It should be
stressed that the spirit of this presentation is basically different from the current activities
in the field where various sophisticated statistical analyses in the theoretical inputs and
experimental results are focused on. All the results I will give are found essentially in the
two papers [2,3], which constituted an important part of the PhD thesis of Won-Gi Paeng
and are extensively reviewed in [4,5]. Some trivial numerical errors committed in [3] that
remained in [4,5] will be corrected in the predicted results cited in what follows. Only if
necessary will I refer to the specific articles for more precision or explanation. Otherwise I
will avoid entering into details as much as possible.

2. GnEFT

In going from nuclear matter to dense compact star matter, as is commonly believed,
there must be present a transition, either a phase change or just a continuous crossover, from
the (low-)density regime, say, ∼2n0, of hadrons to the (high-)density regime, say, ∼>6n0, of
compact stars. This transition is commonly referred to as “hadron-quark continuity (HQC)”,
presumed—but not proven—to be encoded in QCD. The strategy that was adopted in the
WCU/Hanyang was that this HQC could be effectuated by a change in topology from
baryons in the baryonic matter to fractionally charged objects in the compact star matter,
an idea anchored on what is referred to as the “Cheshire Cat Principle (CCP)”. This idea
followed from the notion that in QCD, a nucleon can be described as a topological object,
say, a skyrmion and half-skyrmions at large Nc and at high density when put on a crystal
lattice. An early review on this matter can be found in [6].

The key idea of how to implement the skyrmion–half-skyrmion transition—referred
to in what follows as “topology change” **(**The topology change involved here could
be different in character from what is taking place in condensed matter systems.)—as a
mechanism for the HQC was worked out first in early 2000 but appeared in the literature
a decade later [7]. The publication of this work was delayed so long due to the referees’
objections to the novel ideas developed in the paper, dismissing them as mere “conjectures”
without any counter arguments.

The topology change involved here is best described in terms of skyrmions put on
crystal lattice, although it is well known that the skyrmion-half-skyrmion changeover
actually makes no sense. This is because whereas the 1/2-skyrmion phase can be justified
on crystal lattice at high density (and large Nc limit), low-density matter cannot be in
crystal, so the transition, whether bona-fide phase transition or smooth cross-over, cannot
be established with skyrmions on crystal lattice [8]. This of course does not mean that the
crossover in the skyrmion description in a more general setting does not exist. In fact it is
this point that was resolved in [7]; it involves hidden local symmetry (HLS) and hidden
scale symmetry (HSS) entering into the baryonic structure. The details given in [4,5] on
how the hidden symmetries must figure appear to be somewhat complicated at first sight,
but the basic structure is rather simple as I will try to explain. See [9] for more details.
I believe this accounts for the lack of attention paid to this development in nuclear and
astrophysical communities.

The most crucial ingredient for the topology change is the cusp structure in the
symmetry energy (denoted Esym). It reflects the isospin asymmetry in the energy functional
E(n). The cusp is seen when the nucleons are put on a crystal lattice. It appears at the
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density, denoted n1/2, lying above the normal matter density n0. Identified as the putative
HQC density, it is found to be in the range

nHQC ∼ n1/2 ≈ (2− 4)n0. (1)

This cusp is displayed by the dotted red curve in the schematic figure, Figure 1.

n1/2n0 n

Esym

Figure 1. Schematic illustration of the symmetry energy Esym(n) by the skyrmion crystal (red dashed
line)) and by nucleon correlations dominated by the nuclear tensor forces (solid line).

While one can reasonably assume that Esym(n) for n ∼> n1/2 makes sense on the crystal
lattice, the behavior for n < n1/2, however, cannot be taken seriously, as mentioned above.

First, how does the topology change take place?
It is triggered on the crystal lattice by the bilinear quark condensate 〈q̄q〉, when

averaged, going to zero, whereas the pion decay constant remains non-zero. So it does not
involve chiral symmetry restoration. It implies that the non-vanishing order parameter
may be the quartic quark condensate 〈q̄q̄qq〉. There are arguments in the literature that such
a symmetry structure is at odds with ’t Hooft anomaly constraints. However, it remains
controversial whether such a no-go theorem holds in the present case. In fact there are
some cases in condensed matter where this no-go theorem does not seem to hold [10].

To exploit this cusp structure requires knowing how the topology change can be
modified in reality. Now how can the topology change be incorporated in a realistic theory?

As shown in [7], it is the hidden symmetries that bring in heavy degrees of freedom
to an effective Lagrangian. It is now recognized that Weinberg’s chiral effective field
theory (chiEFT) with the nucleons and pions as the only relevant degrees of freedom, which
will be called SchiEFT in what follows, with “S” standing for “standard”, works well
with a suitable cutoff ΛsEFT ∼< mρ up to the density n0 and slightly higher. It is bound
to break down at higher densities, say, ∼>2n0. This success can be considered as a case
where Weinberg’s “Folk Theorem” on EFT is “proven”. What was shown in [7] is that the
vector mesons V = (ρ, ω) and the scalar meson (σd), which is related to what is known as
“conformal compensator”, with the former endowed with “vector manifestation fixed point”
(VMFP) (at which the mass mρ → ε ≈ 0 [11]) and the latter with the “genuine dilaton” with
an IR fixed point (at which the dilaton mass tends to mσd → 0), enable one to go across, in
the Esym (more generally the EoS), “smoothly” from below to above n1/2. What is in action
is the interplay between the VMFP and the nuclear tensor force that leads to mV → 0 at
high density (∼>25n0) and the “genuine dilaton” with an IR fixed point at nIR ∼> 25n0 at
which scale symmetry is restored. The net effect of the interplays at n1/2 is displayed by the
black solid curve in Figure 1. It will be shown later that the cusp, smoothed to an inflection,
will play an important role in confronting some of the important gravity wave data, such
as the tidal deformability, sound velocity, etc.
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The effective theory GnEFT detailed in the reviews [4,5] is formulated with the La-
grangian LψπHLSχ with the HLS mesons and the genuine dilaton (GD) scalar included
as the relevant degrees of freedom in addition to the ψ, π that figure in SchiEFT. The
heavy degrees of freedom (HDFs for short) are to mediate the crossover from hadrons to
quark/gluons. In our approach, it is here that the topology change enters as a mechanism
for hadron–quark continuity.

Given the Lagrangian LψπHLSχ, there can be several ways of setting up a GnEFT. What
is required is the implementation of the HQC at a density nHQC > n0.

It turns out to be feasible to set up a scale-HLS-invariant Lagrangian (with HLS gauge-
equivalent to non-linear sigma model, so chiral symmetry is encoded therein [11].) with
a power expansion going beyond the chiral expansion employed in the standard chiral
EFT by taking into account the hidden symmetries including HLS. The expansion has been
worked out to NLO in scale-chiral expansion following [11–13]. Unfortunately there are
much too many parameters even at NLO that it has remained unexplored.

An alternative approach exploited in the WCU/Hanyang program was to use the
“double-decimation” strategy developed in [14], which is to apply (Wilsonian) renormal-
ization group approach to the strongly correlated fermions on the Fermi sphere. The
first decimation is made to the Landau(-Migdal) Fermi liquid fixed point (FLFP) with the
cutoff ΛFL on top of the Fermi sea along the line developed in [15] for electrons. Then
we carry out the second decimation going beyond the FLFP. It was shown a long time
ago that a chiral Lagrangian of the LψπHLSχ-type, somewhat simplified, can be mapped
to Landau(-Migdal) Fermi liquid structure, which worked remarkably well at the FLFP
level [16,17]. This structure is incorporated into the GnEFT with the possibility of going
beyond the FLFP in the VlowK-RG approach, as developed by Tom Kuo with Gerry Brown
and collaborators at Stony Brook. Tom Kuo’s role in the initial development resulted in the
crucial publication of [2,3]. In the predictions discussed below, it will be primarily at the
level of the FLFP approximation. The corrections in the VlowK-RG will be quoted to justify
the FLFP approximation.

For those who are not familiar with the GnEFT strategy sketched above, let me just
mention that this approach can be considered as a “refined” version of covariant density
functional approaches anchored on the Hohenberg–Kohn theorem on DFT. The refinement,
among others, has to do with the replacement of the high-dimension field operators,
injected (arbitrarily) to improve the Walecka-type linear model (e.g., the excessively high
nuclear matter compression modulus K0), by the parameters of the Lagrangian with the
dilaton condensate 〈χ〉 encoded by the scale-chiral symmetry. The approach is free of
arbitrariness and thermodynamically consistent [17].

3. Predictions

Here I will give the predictions obtained in [3] and listed in [4,5]. What is given
involves no fiddling in the parameters in the Lagrangian LψπHLSσd . Only some numerical
errors committed in [3] will be corrected.

3.1. Density Regime n ∼< n0

First up to n1/2, at which the HQC intervenes, what is more or less equivalent to what
is given in SchiEFT is reproduced by the mean-field of LψπHLSχ, the parameters of which
are controlled by BR scaling Φ sliding in density in the dilaton condensate 〈χ〉∗ (where ∗
stands for the density dependence) known up to n0. At the equilibrium density n0, one
post-dicts

n0 = 0.16 fm−3, E/A = −16.7 MeV, K0 = 250 MeV.

Just to give an idea what the significance of this result is, let me quote what the present
state-of-the-art high-order (N∼>2LO) SchiEFT calculation obtains: n0 = 0.164± 0.07 and
E/A = −15.86± 0.37± 0.2 MeV. All other nuclear matter properties at the equilibrium
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density n0 (including the symmetry energy J = Esym(n0)) do come out essentially the same
as what are calculated in SchiEFT at N≥2LO. The only parameter needed is the mass of the
“genuine dilaton” identified with f0(500). The BR scaling relates the scaling of the dilaton
condensate to that of the pion condensate

Φ(n) = f ∗σd
/ fσd ' f ∗π/ fπ (2)

which is measured in deeply bound atomic nuclei Φ(n0) ≈ 0.8. This is given by chiral
symmetry, so is not a parameter. Roughly speaking, the linear HLS with the BR scaling does
what covariant density functional models with higher-dimension operators do. The power
of this approach over covariant density functional models is that the parameters of higher
derivative terms are fixed by hidden local symmetry with thermodynamic consistency [17].
It also captures higher chiral power terms, say, N3LO in SchiEFT.

On the other hand, the symmetry energy slope L could be different from what one
obtains in SchiEFT. This is because of the onset of the cusp, as shown in Figure 1 at n > n1/2.
The cusp as discussed in [7] involves the tensor force structure controlled by the behavior of
the HLS gauge coupling gρ running in the RG flow toward the vector manifestation gρ → 0.
If n1/2 were not too far above n0, then the slope of Esym(n) at n0 would be inevitably
affected by the hidden cusp structure. I will not go for higher derivatives of Esym—such as
Ksym with two derivatives—since they will depend more sensitively on where n12 lies.

The GnEFT predicts for n1/2 ∼ (2− 3)n0

J ≡ Esym(n0) = 30.2 Mev, L = 67.8 MeV (3)

to be compared with the SchiEFT results

J = 32.0± 1.1 Mev, L = 51.9± 7.9 MeV. (4)

It should be noted that while J is more or less the same as what SchiEFT gives,
“soft” in the EoS, L is significantly greater than that of SchiEFT, showing the (smooth)
onset of hardness, tending toward what is observed in the PREX/Jefferson experiment
L = 106± 37 [18,19]. What is noteworthy is that the behavior of Esym(n) near n0 in GnEFT
manifesting the “pseudo-gap” behavior of the chiral condensate in the topology change
predicts naturally the soft-to-hard crossover tendency of the EoS at∼n1/2, which is attributed
to the putative HQC in QCD.

3.2. Density Regime n > n1/2

Although the slope L given in (3) can be considered as a prediction, not as a post-
diction, of the PCM, one cannot, however, have a great confidence in its precision. The
reason is that it is the most difficult density regime in the EoS to theoretically control.
At n1/2, EFT valid at low density and perturbative QCD valid at high density “meet”.
Therefore, the slope L will be sensitive to the location with interplay of different degrees of
freedom that can be treated with the least confidence. This aspect will appear significantly
in the tidal deformability Λ measured at 1.4 M� and also in the sound velocity of the star.

While the n ∼< n1/2 region is controlled essentially by the scaling factor Φ, accessible
both by theory and experiment, the topology change brings in major modifications in the
properties of the LagrangianLψπHLSχ. This is explained in terms of a series of “Propositions”
in [4]. I admit that some of them are superfluous or redundant and could be largely
weeded out.

Basically what happens is rather simple.
Phenomenology in nuclear processes suggests the crossover density regime overlaps

with the point nDD at which the double decimation is to be made [14]. It has been taken to
be [2,3]

nDD ' n1/2. (5)
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The primary mechanism that produces the cusp in the symmetry energy Esym, namely,
the skyrmion-1/2-skyrmion transition density, is driven in GnEFT by the nuclear tensor
forces sliding with density, going to ∼0 at the range most effective, say, ∼1 fm in nuclear
interactions. What was required was that the VM fixed point density nVM be nVM ∼>
25n0 [3], much greater than the ∼(6–7)n0 thought to be present in the core of massive stars.
This feature required that while the pion decay constant fπ does not go to zero at nVM, it is
the gauge coupling gρ that should tend to zero [11]. (I note as a footnote that this feature,
which presumably takes place also in temperature, was not taken into account in heavy-ion
experiments looking for the dropping ρ mass near the chiral restoration temperature Tc.
It led to the erroneous “ruling out of BR scaling” following the NA60 data.) The scenario
with nVM ∼> 25n0 differs from nVM ∼ 6n0 [2] in the prediction for the sound speed vs in
compact stars. How the VM density nVM intervenes in the pseudo-conformal behavior of
the sound velocity however remains mysterious.

Another important property in n ∼> n1/2 is that the dilaton decay constant** (**From
here on, I will use the linear conformal compensator field χ instead of the nonlinear field
σd for the dilaton field, χ = fχeσd/ fχ .) f ∗χ gets locked to the pion decay constant f ∗π in the
GD scheme [12] and remains more or less constant:

I : f ∗χ ' f ∗π ∝ m0 for n > n1/2 (6)

where m0 is a chiral symmetric mass of the quasiparticle in the 1/2-skyrmiom phase. This
follows from the emergent parity doubling in the baryon structure. This feature differs
from other parity-doubling scenarios where the symmetry is present intrinsically, not
emergent, in the effective Lagrangian [20]. It is not clear at the moment how this difference
impacts on the properties of compact stars. One of the crucial consequences of this parity
doubling is that the U(2) symmetry for the ρ and ω, fairly good in n < n1/2, gets broken
by the dynamics involved in the quasiparticle interactions with ω and χ exchanges in the
1/2-skyrmion phase

m∗ρ/mρ 6= m∗ω/mω (7)

and leads to weakly interacting quasiparticles of two 1/2-skyrmions bound or confined by
hidden monopoles [21] with the quasiparticle mass

II : m∗Q → f ∗χ → m0. (8)

I will speculate below how the suppression of the monopoles could liberate the half-
skyrmions and transform them into fractionized quasiparticles that mimic fractionally
charged quarks.

What is given in (6) can also be obtained in what is referred to as “dilaton-limit fixed
point” [22] when Tr(ΣΣ̄) → 0 where Σ = fπ

fχ
eiπ/ fπ χ in the mean field of GnEFT. In that

limit one finds

III : g∗A → 1, f ∗χ → f ∗π . (9)

Since QCD cannot be solved nonperturbatively for the various limiting conditions, the
locations of the DLFP, the vector manifestation (VM) fixed point, the IR fixed point, etc.,
though not too far apart, are not precisely known. For the issue concerned, i.e., the physics
of compact stars, whether or not and where they overlap cannot be addressed. They may,
however, be irrelevant for the qualitative properties we are interested in near the density
regime of HQC.

To be more quantitative, one needs to go beyond the mean-field-level approxima-
tion of GnEFT. To do this, the 1/N̄ corrections to the Landau Fermi-liquid fixed point
approximation—in VlowK RG in the double-decimation strategy [14]—could be made as
described in [3]. In this reference, a rather involved scaling behavior of the ρ gauge coupling
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constant g∗ρ in the vicinity of the crossover density n1/2 was used. Although it has not
been checked in detail, it seems most likely that such a complicated scaling behavior is
unnecessary because it simply reflects how the gauge coupling moves toward the vector
manifestation density nVM that lies way above the density involved in the star. This is in-
deed supported in the “pseudo-conformal model (PCM)” (defined below) used for making
predictions.

In listing the predictions made in GnEFT, there are two additional remarks to make.
First, the predictions have been made for the range of the crossover density

IV : 2 < n1/2/n0 < 4. (10)

The predictions are roughly the same within that range so I will not favor any specific
values in between. The extremes n1/2/n0 = 2 and 4 are somewhat disfavored, although
they cannot be dismissed, as we will see. Second, the prediction made in the PCM is
checked with the double decimation VlowK RG only for n1/2/n0 ∼ 2. It was concluded that
the same should hold for the range (10).

Second, the PCM** ** I must admit that the term “pseudo-conformal” could be a
misnomer. It simply indicates that conformal symmetry, both explicitly and spontaneously
broken, emerges in dense matter driven by nuclear interactions.) was constructed by
replacing the VlowK RG for n ≥ n1/2 in the energy density of the nucleon by two-parameter
analytic form matched at n = n1/2 to the VlowK for n ≤ n1/2. The matched energy density
(PCM) is found to precisely reproduce VlowK RG data for the whole range of density. For
example, in Figure 2, the symmetry energy Esym in the PCM (solid line) is shown to match
exactly the full VlowKRG. It also shows that the higher-order terms beyond the mean-
field approximation do indeed smoothen the cusp singularity—schematically indicated in
Figure 1—as well as correctly treat the density regime > n1/2.
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Figure 2. Esym (solid circle) obtained in the full Vlowk RG approach for n1/2 = 2n0. It is reproduced
exactly by the pseudo-conformal model (solid line). Idem for n1/2 ∼ (2–4)n0.

This result strongly suggests that the complicated scaling for the HLS gauge coupling
used in the VlowK RG calculation could well be made much simpler, as mentioned above.

As mentioned, the smooth matching of the skyrmion-1/2-skyrmion property at n1/2
could be deceptive given the oversimplified joining of hadron–quark degrees of freedom.
The PCM may therefore hide complex structure lying just above the crossover density,
say, in the density regime ∼(2–4)n0. I will point this out in connection with some of the
astrophysical observables to be discussed below.
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What transpires from the properties ( I)–(IV) incorporated into GnEFT for the PCM is
that the trace of the energy-momentum-tensor θ

µ
µ for n ∼> n1/2 goes as

θ
µ
µ ∝ χ4 → constant. (11)

This feature, the crucial element in the theory, is reproduced in the VlowKRG double-
decimation approach, as shown in Figure 2.

3.3. Predictions vs. Observables

Avoiding extensive references, both theory and experiment, I will list only those considered
to be well-determined to the extent that it is feasible with the source from [18,19].

• Smoothed cusp of Esym(n) at n ∼> n1/2:
The bending-over of Esym influences the slope L and induces the “soft-to-stiff” changeover.
It also plays a crucial role in giving rise to the pseudo-conformal sound velocity (to be
addressed below). Although as stressed the detailed structure and magnitude cannot
be precisely pinned down, its simplicity with intricate topology change in the jungle
of theories (as depicted in [9]) is a distinctive prediction of the PCM. It is at odds with
the PREX-II/Jefferson data, which give generally stiff EoS, although there are some
caveats [18,19]. To date, there are no trustworthy experimental data to quantitatively
compare with.

• Maximum mass star: Mmax:

PCM prediiction : Mmax ≈ 2.05M�,

R2.0 ≈ 12.8 km,

(ncentral ≈ 5.1n0), (12)

PSRJ0740 + 6620 : Mmax = 2.08± 0.07M�,

R2.0 = 12.35± 0.75 km,

(ncentral = ??), (13)

No empirical data are known to be available at present for the central density ncentral .
The only information on this quantity inferred—not extracted—from PSR J0740 + 6620
is violently at odds with the PCM prediction. I will address this issue below.

• 1.44 M� star:

PCM prediction : R1.44 ≈ 12.8 km

PSRJ0030 + 0451 : R1.44 = 12.45± 0.65 km. (14)

The stunning agreements between the PCM predictions and the NICER and XMM-
Newton measurements—with the exception of the sound velocity to be addressed
below—could not be accidental. Not only does the maximum star mass come out
the same, but also the radii agree. Furthermore, the difference ∆R = R2.0 − R1.4 ≈ 0,
in agreement with the data. We will note later that this support of the PCM by
the NICER/XMM-Newton has an even more surprising implication on scale-chiral
symmetry in nuclear medium so far unsuspected.

Let me make some further comments here on the PCM results.
What is given falls in the range of n1/2 ∼ (2.5–3.0)n0. The maximum mass comes out

to be ∼2.4 M� for n1/2 = 4n0. However, at this crossover density, although other global
properties are not drastically different from the lower values of n1/2, the sound speed
overshoots the causality bound with a more pronounced bump and the pressure greatly
exceeds what is indicated in heavy-ion data. It seems to be ruled out in the PCM of GnEFT.

One observes that the radius comes out to be ∼12.8 km in the wide range of the star
mass and central density involved. Thus, the stars of masses ∼1.4 solar mass and ∼2.4
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solar mass have almost the same radius. This is in agreement with what is being observed
in the gravity wave data.

• Tidal deformability Λ1.4

The Λ1.4 predicted in the PCM comes out to be ∼550, to be compared with
Λ1.4 = 190+390

−120 (GW1700817). This may seem to signal a tension. However, there is a
basic difficulty in theoretically pinning down Λ1.4. In the PCM, the density at which
Λ1.44 is measured is ∼2.4n0. This density sits very close to where the topology change
takes place. It is here the SchiEFT is most likely to start breaking down as the cusp
in Esym indicates and the pQCD cannot access. This is an “uncharted wilderness” for
theory. As can be seen in [4], a small increase in the central density, say, from 2.3n0 to
2.5n0 (or increase in corresponding star mass), makes Λ drop to 420 while involving
no change at all in radius. This means that the location of the HQC will strongly
influence the Λ. One can associate this behavior with the increase in attraction in going
from n0 toward n1/2 in the cusp structure as one can see in the schematic plot Figure 1. This
clearly suggests that it would be extremely difficult to theoretically pin down Λ in the
vicinity of the crossover regime.
As noted below, the sound velocity has a complex “bump” structure in the vicinity
of the topology change density. This is due to the interplay, encoding the putative
HQC, between the hadronic degrees of freedom and the “dual quark-gluon” degrees
of freedom. This would complicate significantly the linking of Λ1.4 to the structure of
the sound velocity below or near n1/2. To give an example, let me quote [23] where
the bump structure—“the slope, the hill, the drop, the swoosh, etc.”—associated with
the possible phase structure of QCD is proposed to pin down Λ1.4 by up-coming
measurements. The hope here is to determine the possible phase transition near
the HQC density. Given the theoretical wilderness inevitably involved, this seems a
far-fetched endeavor.
In short, contrary to what is claimed by some workers in the field, ruling out an EoS
based on the precise value of Λ1.4 would be premature.

• Sound speed vs

The most striking prediction of the PCM, so far not shared by other models, is the
sound speed for n ∼> n1/2. It predicts the pseudo-conformal sound speed

vpcss
s /c2 ≈ 1/3 for n ∼> n1/2. (15)

It is not to be identified with the conformal sound speed vcon f orm
s /c2 = 1/3 because the

energy-momentum tensor is not traceless, i.e., scale symmetry is spontaneously broken.

This prediction can be understood as follows.

As noted above, the quasiparticle mass m∗Q goes ∝ 〈χ〉∗ as the density goes above
n1/2 and the dilaton condensate becomes independent of density, reaching m0. This
has to do with a delicate interplay between the attraction associated with the dilaton
exchange and the ω repulsion, which leads to the parity doubling. Where this interplay
starts taking place cannot be pinned down precisely but it must be in the density
regime where the symmetry energy is involved, going from n1/2 to the core of massive
stars, say, ∼>6n0. In this density regime, the Landau fixed-point approximation with
N̄−1 = (ΛF − k f )/kF ∼ 1/kF → 0 can be taken to be reliable. One can then calculate
the trace of the energy-momentum tensor in the mean-field approximation of GnEFT,
i.e., LFL fixed-point approximation, which will become density-independent as given
by (11). In this density range we will have

∂

∂n
〈θµ

µ〉 =
∂ε(n)

∂n

(
1− 3

v2
s

c2

)
≈ 0 (16)

where ε(n) is the energy density and v2
s /c2 = ∂P(n)

∂n / ∂ε(n)
∂n . It is approximate since

there can easily be terms that are compounded with EFT and pQCD at the point where
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the symmetry energy has the cusp structure. Since there is no Lee-Wick-type state,
one must have

(
1− 3

v2
s

c2

)
≈ 0 (17)

which gives the pseudo-conformal sound speed

(vpcs
s /c)2 ≈ 1/3. (18)

The “approximate zero” here stands for the fact that it is pseudo-conformal with scale
symmetry broken both explicitly and spontaneously, the dilaton mass and the ω mass
balancing so as to lead to parity doubling in the dense system. The true conformal
velocity, within the model, should be reached only at a density much higher than that
of the core density of the massive stars. Where precisely the conformality sets in is not
relevant to the compact star physics.

In Figure 3 is shown the sound speed vs/c for α = 0 (nuclear matter) and 1 (neutron
matter) calculated in VlowK RG for n1/2. They are of the same form for 2 < n1/2/n0 < 4
except for the slight shift in the density and the height of vs. This result serves as an
illustration of the arguments to follow.

Figure 3. vs vs. density for α = 0 (nuclear matter) and α = 1 (neutron matter) in Vlowk RG for
n1/2 = 2n0 and vvn = 25n0.

What is noticeable is the large bump in vs in the vicinity of n1/2 and the rapid conver-
gence to the speed 1/3. The approximation involved on top of the pseudo-conformality
would of course give fluctuations on top of v2

pcs/c2 ≈ 1/3 but the point here is it is
the pseudo-conformality that “controls” the general structure. The large bump sig-
nals a complex interplay between hadronic and non-hadronic degrees of freedom
manifested through the pseudo-gap structure of the chiral condensates. I will discuss
below how the degrees of freedom in the core of the massive stars could masquerade
as “deconfined quarks”.

• Quenched gA in nuclei
Though it is not directly connected with the star properties, a relevant and intriguing

observation is what I would call “quasibaryon” gA in nuclear matter. It follows from
the possible existence of the IR fixed point associated with the “genuine dilaton (GD)."
The effective gA in the Gamow–Teller transitions in nuclei, ge f f

A , is observed to be

ge f f
A ≈ 1 from light nuclei to heavy nuclei and even to the dilaton-limit fixed point

at n ∼> 25n0. It has been argued that an approximate scale invariance “emerges” in
nuclear interactions [24], in a way most likely related to the way (vpcs

s /c)2 ≈ 1/3 sets
in precociously.
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Returning to vs, is there any indication in recent astrophysical observations for such
a precocious onset of the pseudo-conformal sound velocity?
To date, there is no known “smoking-gun” signal for the sound velocity from observa-
tions. In the literature, however, there are a gigantic number of articles on the structure
of sound velocity deduced from the gravity wave data as well as theoretically. Some
argue for phase transitions or continuous ones or simply no crossovers, etc. Some
extreme cases are discussed in [9]. I will no go into this wilderness here. Let me just
describe one case which illustrates most transparently what can very well be involved.

Let us take the case of NICER and XMM-Newton observables (NXN for short)
discussed, namely (13) and (14). This case brings out how puzzling the problem can
be.

In [25], the properties of high-density matter were inferred in most detailed analyses
of the NXN data. Ruling out essentially all other scenarios, with or without phase
changes, the authors arrive at the sound velocity (“H-bump”) plotted in Figure 4.

Figure 4. ρ in unit of g/cm3 (the “H-bump” scenario) taken from [25]. The red contour stands for
50% and 90% inferred sound speed and central density.

The central density and the maximum sound velocity inferred were

ncent/n0 = 3.0+1.6
−1.6 ,

v2
s /c2 = 0.79+021

−0.20 . (19)

While the star properties they took into account are exactly those reproduced by the
PCM, i.e., (13) and (14), the central density and the sound velocity are totally different
from the PCM predictions. One can understand the low central density accounting
for the sound speed overshooting the conformal bound, characteristic of strongly
interacting hadronic phase. In fact there are in the literature numerous scenarios
anchored on a variety of density-functional approaches giving rise to the wilderness of
one form or other in the sound velocity—including bumps similar to the H-bump—but
I am not aware of any that can survive the battery of bona fide constraints coming
from the current observations both in theory and experiment as claimed by [25].

A puzzle immediately raised is this: How can the PCM with an emergent (pseudo-
)conformality and the strong H-bump with no hint of conformal symmetry give the
almost identical global star properties (13) and (14)? The only statement one can make at
this point is (A) either the sound velocity and the global star properties are totally unrelated
or (B) there is something wrong either in the strong H-bump scenario or in the simple PCM
structure. Option (A) is hard to accept, so perhaps option (B) is a plausible possibility.
My bet is option (B) and the H-bump scenario are at odds with nature.
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• Conformailty
In this connection, let me make a remark on the role of conformal symmetry in the

sound velocity currently being discussed in the literature. This issue is a focused topic
in MDPI’s Special Issue on “Symmetries and Ultra Dense Matter of Compact Stars”
being edited with contributions devoted to the issue. Without going into detail, let me
just mention that there are a variety of models hybridizing hadronic degree of freedom
and “revamped” quark/gluon degrees of freedom at a density nHQC ∼> 2n0. Some of
the models such as quarkyonic and holographic QCD do tend to see the conformal
symmetry (perhaps involving percolation, etc.) emerge at certain density ∼>nHQC in
going up in density [26–28]. Going down the density ladder from asymptotic density
where v2

con f /c2 = 1/3, one seems to observe the approximate conformality which
persists down to the crossover regime where the big bump develops as it does in the
PCM [29]. This may represent a microscopic rendition of HQC in contrast to the PCM,
which presents a coarse-grained picture permeating in dense medium. This point is
evidenced in Figure 6 in [30] where the results of quarkyonic models are compared
with the PCM prediction Figure 3.

4. Conclusion: The Duck Story

Briefly summarized, I have shown how to go from low density to high density cap-
turing the putative hadron-quark continuity (HQC) by formulating baryonic matter as
Landau-Migdal Fermi-liquid matter resulting via renormalization group [15]. It is a sort
of generalized density-functional approach (à la the Hohenberg–Kohn theorem), imple-
menting heavy degrees of freedom in terms of hidden symmetries involving a mass scale
above that given by standard chiral EFT, which is shown to be valid at nuclear matter
density. The resulting effective field theory, GnEFT, exploits the possibility of simulating
via duality the HQC in terms of a topology change from skyrmions at low density ∼n0 to
1/2-skyrmions at high density ∼6n0. The resulting EoS has so far successfully accounted
for nuclear matter as well as dense compact star matter. The structure that is arrived at in
compact star matter, coined as pseudo-conformality, can be considered as a coarse-grained
description of the hadron-to-quarks changeover, e.g., quarkyonic “IdylliQ” [31], captured
in terms of “emergent” scale symmetry permeating from low to high density.

The formulation made so far is valid at zero temperature. Upcoming terrestrial
laboratory observations complimentary to astrophysical data, e.g, at FAIR of GSI, however,
will necessarily involve relatively high temperature. It remains to be formulated in the
GnEFT framework to meet the conditions of the terrestrial laboratories. How topology
enters in the hot and dense matter is a totally open issue as indicated in recent puzzling
manifestations of scale invariance at high temperature [32].

Finally, I touch on fractionalzed “quasibaryon” structure inside the core of the mas-
sive star.

When a paper appeared in 2020 [33] with the suggestion that the cores of the most
massive neutron stars are characterized by approximate conformal symmetry, with the
speed of sound v2

s /c2 → 1/3, the polytropic index γ = d ln p/d ln ε → 1, and the
normalized trace anomaly ∆ = (ε− 3p)/(3ε)→ δ ≈ 0, indicating that the cores are most
likely populated by deconfined fractionally charged objects, identified as quarks, those
quantities were quickly calculated in the PCM formulated in 2017 [3]. I considered this as a
prediction of the PCM. The predicted results [34] were quite consistent with the conclusion
of [33].

Now the question was this: Given that the degrees of freedom in the PCM are quas-
ibaryons, albeit fractionalized, how do they carry the characteristics of fractionally charged
quarks?

I do not have an immediate answer to this question. However, there are certain
ideas that could lead to an understanding of this puzzle [35]. One of them is this: In the
skyrmion-half-skyrmion crystal simulation, the half-skyrmions “confined” into a skyrmion
by monopoles [21] could be liberated at high density and propagate freely with little
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interactions as seen in skyrmion crystals [3]. Two half skyrmions can then be rearranged
into three 1/3-charged objects as in a schematic model [36]. In fact, in condensed matter
physics, with domain walls, there can be stacks of sheets containing deconfined fractionally
charged objects behaving like “deconfined quarks” coming from the bulk in which the
objects are confined [37].

This reminds one of the “duck test”: “If it looks like a duck, swims like a duck, and quacks
like a duck, it probably is a duck.”
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Abstract: The saturation properties of symmetric and asymmetric nuclear matter have been computed
using the finite range simple effective interaction with Yukawa form factor. The results of higher-order
derivatives of the energy per particle and the symmetry energy computed at saturation, namely,
Q0, Ksym, Kτ , Qsym, are compared with the corresponding values extracted from studies involving
theory, experiment and astrophysical observations. The overall uncertainty in the values of these
quantities, which results from a wide spectrum of studies described in earlier literature, lies in
the ranges −1200 . Q0 . 400 MeV, −400 . Ksym . 100 MeV, −840 . Kτ . −126 MeV and
−200 . Qsym . 800 MeV, respectively. The ability of the equations of state computed with this
simple effective interaction in predicting the threshold mass for prompt collapse in binary neutron
star merger and gravitational redshift has been examined in terms of the compactness of the neutron
star and the incompressibility at the central density of the maximum mass star. The correlations
existing between neutron star properties and the nuclear matter saturation properties have been
analyzed and compared with the predictions of other model calculations.

Keywords: nuclear matter saturation properties; landau parameters; incompressibility of nuclear
matter; neutron star properties; binary neutron star merger; gravitational redshift

1. Introduction

The empirical properties of infinite nuclear matter (NM) at saturation are key features
in the study of any phenomenon resulting from the nucleon–nucleon (NN) interactions
in a many-body system. Ideally, the solution to the many-body problem with the NN
interaction would be the way to determine the NM properties. But in the absence of
comprehensive knowledge of NN interaction, microscopic many-body models, such as
Dirac-Brueckner-Hartree-Fock (DBHF) and its non relativistic counterpart BHF [1–9], vari-
ational methods [10,11], chiral effective field theory [12,13], etc., use realistic potentials
whose parameters are fitted to phase shift data in different partial wave channels and
properties of few-body systems (deuteron and triton). The inadequacy of our understand-
ing of the in-medium NN interaction is reflected by the fact that in the aforementioned
many-body calculations, the saturation density ρ0 of symmetric nuclear matter (SNM) is
over-predicted. This could be brought within the empirical range by incorporating the
three-body and higher-order many-body effects in an ad hoc phenomenological manner.
The consensus range for the value of saturation density ρ0 = 0.17± 0.03 fm−3 has been
estimated from studies of various kinds, which include different variants of the liquid drop
model, optical model of NN scattering, muonic atoms, and Hartree–Fock (HF) calculations
of nuclear density distributions [14]. The values of energy per nucleon at saturation density
e(ρ0) have been extracted to be ∼−16 MeV from the mass analysis over the periodic table.
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An alternate method, adopted in contrast to the microscopic realistic calculations to
handle the many-body problem, is to use phenomenological effective interactions. Though
less fundamental compared to the microscopic calculations, its ability in the analytical
calculations of nuclear properties makes it highly popular. Skyrme [15], Gogny [16], and
M3Y effective forces [17] are some of those successful forces. The basic idea to build up
these interactions is to parameterize the effects of the microscopic NN interaction upon
averaging over the spin, parity and isospin of the interacting nucleons and constrain the
parameters from the ground state properties of finite nuclei and nuclear matter. A drawback
of this approach is that the parameter set is not unique, and higher-order nuclear matter
properties at saturation cannot be unambiguously predicted. Moreover, many parameters
of the effective force become strongly correlated in the course of their fixation. Of late,
another effective force, the so-called finite range simple effective interaction (SEI) [18],
which has a similar predicting ability as that of Skyrme and Gogny in the NM and finite
nuclei domain, has been established. The parameter fitting protocol adopted in the case
of SEI makes it different from other effective forces, minimizing the correlation effects.
The SEI parameters are systematically fitted in SNM and pure neutron matter (PNM),
which allows the study of both SNM and asymmetric nuclear matter (ANM). Moreover,
the parameters responsible for the momentum dependence of the mean-field are fixed
from the experimental/empirical constraints exclusively so that each of the two aspects
of the mean-field, the density dependence and the momentum dependence, could be
studied independently without altering the predictions of the other one [19]. Further, in
the determination of nine parameter combinations of the eleven SEI parameters required
for the study of ANM, one is required to assume only three standard values of saturation
properties, namely, ρ0, e(ρ0) and symmetry energy Esym(ρ0). Within this parameter fixation
protocol, we shall use the SEI to compute higher-order derivatives of the energy per particle
and the symmetry energy at saturation density and compare these values with the results
extracted from various different studies. The stability conditions, in terms of Landau
parameters of the interacting Fermi liquid model, serve as an acid test for the reliability
of an effective force for its applicability in the different channels of spin and isospin. We
shall check to which extent the observance of the Landau stability conditions is fulfilled by
our SEI.

In Section 2, we have given a brief account of SEI and its parameter-fitting protocol.
In Section 3, we have obtained different properties of SNM at saturation, which are re-
evaluated in the framework of the interacting Fermi liquid model by computing the Landau
parameters using SEI. In the same section, the high-order derivatives of the energy per
particle and the symmetry energy are calculated and compared with the empirical range of
values extracted from theory, experiment and astrophysical observations. In Section 4, we
explore the predictive power of the SEI EoSs in the domain of high-density neutron-rich
matter pertaining to the recent NS phenomenology associated with the binary neutron
star merger (BNSM) and gravitational redshift. Finally, Section 5 contains the summary
and outlook.

2. Formalism

The SEI in this work was initially proposed by Behera et al. [18] and has the following
explicit expression if a form-factor of Yukawa type is used.

Ve f f = t0(1 + x0Pσ)δ(~r) +
t3

6
(1 + x3Pσ)

(
ρ(R)

1 + bρ(R)

)γ

δ(~r)

+ (W + BPσ − HPτ −MPσPτ)
e−r/α

r/α
+ Spin-orbit part (1)

We denote this force as SEI-Y thereafter.
The SEI-Y in Equation (1) has 12 parameters in total, namely, α, γ, b, x0, x3, t0, t3, W, B, H,

and M plus the spin-orbit strength parameter W0, which enters in the description of finite
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nuclei. The energy density in isospin asymmetric nuclear matter for the SEI-Y interaction
in Equation (1) is given by,

HY(ρn, ρp) =
3h̄2
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where ρn, ρp are neutron (n) and proton (p) densities, ρ = ρn + ρp is the total NM den-
sity, Λ(=1/α) is the inverse of the range of the Yukawa form-factor, and ki = (3π2ρi)

1/3

(i = n, p) is the respective Fermi momentum. The study of ANM involves altogether nine
parameters, γ, b, α, εl

0, εul
0 , εl

γ, εul
γ , εl

ex, εul
ex. The connection of these new parameters to the

interaction parameters of Equation (1), which was derived in Ref. [20], is also reported
in Appendix A. Here, the indexes l and ul denote the interaction between like and unlike
pairs of nucleons, respectively.

The Fitting Procedure of SEI

The formulation of NM and PNM using SEI and the parameter fixation protocol has
been discussed at length in Refs. [20,21]. We briefly outline it in the following. The SNM
only requires the following three combinations of the strength parameters,

(
εl

0 + εul
0

2

)
= ε0,

(
εl

γ + εul
γ

2

)
= εγ,

(
εl

ex + εul
ex

2

)
= εex, (3)

which, together with γ, b and α, are the six parameters needed to determine the SNM
completely. For a given value of the exponent γ, which characterizes the stiffness parameter
and determines the incompressibility K in SNM, the remaining five parameters ε0, εγ, εex, b
and α of SNM are determined as follows assuming the standard values of the nucleon mass
(mc2 = 939 MeV), the saturation density ρ0 and the energy per particle at saturation e(ρ0).
The range α and the exchange strength εex are determined simultaneously by adopting an
optimization procedure [18], using the condition that the nuclear mean-field in SNM at sat-
uration density vanishes for the kinetic energy of the nucleon of 300 MeV, a result extracted
from the optical model analysis of nucleon–nucleus scattering data [22–25]. The parameter
b is determined to avoid supra-luminous behavior [26]. The two remaining parameters,

namely εγ and ε0, are obtained from the saturation conditions, Tf0 =
h̄2k2

f0
2m = 37 MeV, which

allow us to obtain k f0 and, therefore, the saturation density ρ0, and e(ρ0) = −16 MeV.
The stiffness parameter γ, kept as a free parameter, is chosen from the range of values
for which the pressure–density relation in SNM lies within the region extracted from the
analysis of flow data in heavy-ion collision experiments at intermediate energies [27]. It
is verified that γ = 1 is the upper limit for which the pressure-density relation is obeyed,
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which corresponds to the nuclear matter incompressibility K(ρ0) = 269 MeV for the SEI-Y
model. Therefore, we can study the nuclear matter properties by assuming different values
of γ up to a limiting value γ = 1. In this work, we will use three EoS corresponding to
γ = 1/3, 1/2, and 2/3. In order to study ANM, we need to know how the strength param-
eters εex, εγ and ε0 of Equation (3) split into the like and unlike components. The splitting
of εex into εl

ex and εul
ex is decided to be εl

ex = 2εex/3 [28] using the condition that the entropy
in PNM does not exceed that of the SNM [28]. The splittings of the remaining two strength
parameters, εγ and ε0, are decided from the values of the symmetry energy parameter

Esym(ρ0) and its derivative E
′
sym(ρ0) = ρ0

dEsym(ρ0)
dρ0

at saturation density ρ0. For a given
Esym(ρ0) within its empirical range [29], we can produce different density dependence of
symmetry energy Esym(ρ) by assigning arbitrary values to E

′
sym(ρ0). The slope parameter

in each case will be L(ρ0) = 3E
′
sym(ρ0). In the study where the variation in L(ρ0) is not an

explicit requirement, the value of E
′
sym(ρ0) is fixed from the condition that the asymmetric

contribution of the nucleonic part of the energy density in charge-neutral β-equilibrated
neutron star n + p + e + µ matter (NSM), i.e., SNSM(ρ) = [H(ρ, Yp)− H(ρ, Yp = 1/2)] is
maximum, where Yp is the equilibrium proton fraction. The characteristic E

′
sym(ρ0) value

thus obtained predicts a density dependence of the symmetry energy, which is neither
stiff nor very soft [30]. With the parameters determined in this way, the SEI is able to
reproduce the trends of the EoS and the properties of the momentum dependence of the
mean-field with similar quality as predicted by microscopic calculations [10,28,31–33]. As a
consequence of this fitting procedure, one can also vary the n and p effective mass splitting,
which only depend on the εl

ex and εul
ex parameters, while the density dependence of Esym(ρ),

i.e., the slope parameter L, which depends on the splitting of εγ and ε0, remains invariant
and the vice-versa [28,33].

We now have three open parameters that we have chosen as t0, x0 and W0. However,
to describe ANM, the explicit value of the t0 and x0 parameters is not necessary because
they enter as specific combinations that can be determined from the εl

0 and εul
0 [21]. In our

work [20], we further constrained x0 by using the DBHF predictions on the effective mass
splitting between spin-up and spin-down neutrons in spin-polarized neutron matter. It was
found that the SEI predictions agree well with the DBHF ones [34] for εl,l

ex = εl
ex/3, where

the superscript (“l,l”) (and its counterpart (“l,ul”)) symbolizes the exchange strength for
parallel (and anti-parallel) spin orientations in polarized neutron matter. This consideration

allows us to determine x0 in a unique way as [20], x0 = 1− 2εl
0−εl

ex
ρ0t0

, if t0 is known. The two
remaining free parameters, t0 and W0, have to be fitted to finite nuclei data, as explained
in detail in Refs. [21,35], in the case of a SEI with a Gaussian form factor. For the sake
of completeness, the twelve numbers of parameters of the SEI-Y EoSs corresponding to
γ = 1/3, 1/2 and 2/3 are given in Table 1. The inputs corresponding to the saturation den-
sity, energy per particle in SNM, and symmetry energy needed to obtain these parameters
are given in Table 2.

Table 1. The twelve parameters for the SEI-Y EoSs corresponding to γ = 1/3, 1/2 and 2/3.

γ b [ f m3] α [fm] εex [MeV] εl
ex [MeV] ε0 [MeV]

1/3 0.4161 0.4232 −129.344 −86.229 −82.245
1/2 0.5880 0.4242 −127.707 −85.138 −50.600
2/3 0.7796 0.4250 −126.390 −84.260 −34.904

εl
0 [MeV] εγ [MeV] εl

γ [MeV] t0 [MeV f m3] x0 W0 [MeV f m5]

−47.189 104.428 74.006 333.5 1.151 119.3
−27.509 73.124 54.250 566.7 0.664 118.4
−17.859 58.095 44.690 647.4 0.520 118.2
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Table 2. Nuclear matter properties at saturation density ρ0 for three EoSs—SEI-Y (γ = 1/3), SEI-Y
(γ = 1/2) and SEI-Y (γ = 2/3).

SEI-Y (γ = 1/3) SEI-Y (γ = 1/2) SEI-Y (γ = 2/3)

ρ0 [fm−3] 0.161 0.158 0.156
e0 [MeV] −16.04 −16 −16
(m∗s /m) 0.664 0.686 0.666
(m∗v/m) 0.685 0.621 0.622

K0 [MeV] 220.346 237.643 253.219
Q0 [MeV] −478.763 −461.807 −437.529

ρsat,2 [fm−3] −0.163 −0.149 −0.138
Esym [MeV] 35.5 35 34.5

L [MeV] 74.4 74.7 74.7
Ksym [MeV] −103.487 −101.471 −99.252
Qsym [MeV] 273.008 252.462 234.0525

Kτ [MeV] −388.232 −404.509 −418.381
ePNM [MeV] 19.46 19 18.5
KPNM [MeV] 116.858 136.172 153.966
QPNM [MeV] −205.754 −209.345 −203.476

3. Symmetric and Asymmetric Nuclear Matter Properties

The equation of state of ANM can be expressed as a power series in the isospin
asymmetry δ = (ρn − ρp)/ρ, as given by

e(ρ, δ) = e0(ρ) + Esym(ρ).δ2 + O(δ4) (4)

where e0(ρ) is the energy per nucleon in SNM, while Esym(ρ) is the symmetry energy. The
energy per nucleon in SNM can also be Taylor expanded around the saturation density as:

e0(ρ) = e0(ρ0) +
K0

2!
χ2 +

Q0

3!
χ3 + O(χ4), (5)

where χ =
(

ρ−ρ0
3ρ0

)
and K0 = 9ρ2

0
∂2e0(ρ)

∂ρ2 |ρ=ρ0 and Q0 = 27ρ3
0

∂3e0(ρ)
∂ρ3 |ρ=ρ0 are the incompress-

ibility and skewness parameter, respectively, in SNM. Notice that the first derivative does
not appear in this expansion due to the saturation condition.

The symmetry energy is the energy cost to convert SNM in PNM [6,36,37]. It is
defined as

Esym(ρ) =
1
2!

∂2e(ρ, δ)

∂δ2 |δ=0 (6)

The odd-order terms in δ will not appear in Equation (4) due to the isospin invariance of
nuclear force in nuclear matter when one neglects the Coulomb interaction. The nuclear
symmetry energy Esym(ρ) corresponds to the lowest-order coefficient in the expansion of
the energy per particle in ANM in terms of the isospin asymmetry. The contribution from
higher-order terms δn, n ≥ 4 is very small and has been estimated to be less than 1 MeV
in microscopic many-body, as well as effective model calculations [37]. Keeping up to the
δ2-term in Equation (4) refers to the parabolic approximation (PA) of the EoS of ANM. The
density dependence of e0(ρ) is much better understood than that of Esym(ρ), which is still
elusive, even more so in the supra saturation regime that makes the study of ANM an
important area of contemporary nuclear research. The analysis of the density dependence
of Esym(ρ) is performed in terms of the various coefficients in its Taylor expansion about
normal NM density ρ0, given by,

Esym(ρ) = Esym(ρ0) + Lχ +
Ksym

2!
χ2 +

Qsym

3!
χ3 + O(χ4) (7)
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where χ has been defined before. The coefficients

L = 3ρ0
∂Esym(ρ)

∂ρ
|ρ=ρ0 , Ksym = 9ρ2

0
∂2Esym(ρ)

∂ρ2 |ρ=ρ0 , and Qsym = 27ρ3
0

∂3Esym(ρ)

∂ρ3 |ρ=ρ0 (8)

are the slope parameter, curvature parameter and skew symmetry parameter, respectively,
and they characterize the density dependence of the nuclear symmetry energy around the
normal nuclear density ρ0, and thus carry important information about the properties of
nuclear symmetry energy at both high and low density regions.

The incompressibility of ANM, which depends on both the density and isospin asym-
metry, is given by

K(ρ, δ) = 9
∂P(ρ, δ)

∂ρ
= 18ρ

∂e(ρ, δ)

∂ρ
+ 9ρ2 ∂2e(ρ, δ)

∂ρ2

= 18
P(ρ, δ)

ρ
+ 9ρ2 ∂2e(ρ, δ)

∂ρ2 , (9)

where P(ρ, δ) = ρ2 ∂e(ρ,δ)
∂ρ is the pressure in ANM, and e(ρ, δ) is given in Equation (4). At

saturation density ρsat(δ) of ANM, the pressure P(ρsat, δ) = 0 and the incompressibility in

Equation (9) becomes a function of δ only, Ksat(δ) = 9ρ2
sat

∂2e(ρ,δ)
∂ρ2 |ρ=ρsat , and is referred to

as the isobaric incompressibility coefficient. The saturation density in ANM, ρsat(δ), is a
function of isospin asymmetry and differs from normal NM density ρ0. The corrections to
ρ0 on account of the isospin asymmetry δ have been worked out in Ref. [37] in terms of
expansion in even powers of δ. For the lowest-order correction ρsat(δ) = ρ0 + ρsat,2δ2 =

ρ0 −
(

3L
K0

ρ0

)
δ2. Under the PA of EoS of ANM, the isobaric incompressibility coefficient

reads Ksat(δ) = K0 + Kτ(ρ0)δ
2, where K0 is the incompressibility of SNM at saturation

density and Kτ =
(

Ksym − 6L− Q0
K0

L
)

is the isospin part of Ksat(δ) [37,38]. The value of
the nuclear matter saturation properties, such as isoscalar effective mass (m∗s /m), isovector
effective mass (m∗v/m), energy per particle in PNM (ePNM), neutron matter incompressibility
(KPNM = K0 + Ksym), neutron matter skewness (QPNM = Q0 + Qsym), etc., for the SEI-Y
(γ = 1/3, 1/2, and 2/3) EoSs at saturation density are given in Table 2.

The incompressibility of SNM at saturation density K0(ρ0) is mainly obtained from
the analysis of experimental data of the giant monopole resonance (GMR) in open- and
closed-shell nuclei. Theoretical studies using non-relativistic and relativistic mean-field
models and the analysis of PREX-II and CREX data also provide useful information about
K0(ρ0). Relevant works using these techniques, which predict different values of K0(ρ0),
are collected in Table 3. The K0(ρ0) values predicted by the SEI-Y models, which are given
in Table 2, lie in the range 220–253 MeV within the limiting values extracted from the
analysis of the experimental GMR [39,40] and PREX-II and CREX [41] data as well from the
compilation of the predictions of a large set of relativistic and non-relativistic mean-field
models [29,42].

Table 3. Symmetric nuclear matter incompressibility.

Expt./Theory K0 [MeV]

Analysis of experimental data of the GMR
S. Shlomo et al. (2006) [39] 240± 20
U. Garg et al. (2018) [40] 240± 20
J.R. Stone et al., 2014 [43] 250–315

P. Avogadro and C.A. Bertulani, 2013 [44] 200
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Table 3. Cont.

Expt./Theory K0 [MeV]

Relativistic and non-relativistic mean-field calculations of the GMR
E. Khan et al., 2012 [45] 230± 40

D. Vretenar et al., 2003 [46] 250–270
M. Dutra et al., 2012 [29] 246 ± 41
M. Dutra et al., 2014 [42] 271 ± 86

Analysis of PREX-II and CREX data
S. Tagami et al., 2022 [41] 210–275

3.1. Landau Parameters

In the framework of the Landau theory of normal Fermi liquids [47–50], the bulk
properties of nuclear matter can be written in terms of a two-body interaction expressed as
a functional of the second derivative of the energy per particle with respect to the occupation
numbers at the Fermi surface. The interaction energy has the following form [51,52],

〈k1k2|V|k1k2〉 = N−1
0 {F(θ) + F′(θ)τ1.τ2 + G(θ)σ1.σ2

+ G′(θ)σ1.σ2τ1.τ2}, (10)

where N−1
0 = h̄2π2

2kFm∗s
is the inverse of the level density at the Fermi surface. The quantity

m∗ is the effective mass associated with the interaction, and σ and τ are the Pauli matrices
in spin and isospin space, respectively. Since both particles are on the Fermi surface, F, F′,
G, and G′ are functions of θ, the angle between k1 and k2, which are expanded in terms of
Legendre polynomials [53] as,

F = ∑
l

Fl Pl(cosθ) (11)

and likewise for F′, G, and G′. For a spherical Fermi surface to be stable against any
deformation, the parameters must satisfy the relations

Fl > −(2l + 1) (12)

F′l > −(2l + 1) (13)

Gl > −(2l + 1) (14)

G′l > −(2l + 1). (15)

We have calculated the Landau parameters for the SEI-Y interaction. The corresponding
analytical expressions for Fl , F′l , Gl , and G′l with l = 0, 1 and 2 are given in Appendix B.
Landau parameters at ρ0 predicted by the SEI-Y (γ = 1/3, 1/2, and 2/3) EoSs together
with the results of different Skyrme, Gogny, and chiral effective interactions are shown in
Figure 1. The density dependence of different Landau parameters is shown for the SEI-Y
(γ = 1/2) parameter set in Figure 2. All the Landau parameters satisfy the condition given
in Equations (13)–(15) at all densities, except F0, which violates the condition Equation (13)
for densities less than 0.09 fm−3. The violation of the stability condition of F0 in the
density range ρ ≤ 0.09 fm−3, as shown in Figure 2, has no significance, as the physical
quantity associated with it, the incompressibility K0, has no physical meaning in this range
of density.

The values of the Landau parameters at saturation for the three SEI-Y sets for
(γ = 1/3, 1/2, and 2/3) are given in Table 4.
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Figure 1. Landau parameters for SEI-Y (γ = 1/2) parameter sets compared with different Skyrme sets
(SLy4, SLy5, SLy6, SLy7, SLy10, SLy230a, SLy230b, SI, SII, SIII, BLV1, SGII, SkM∗, RATP, SkP, T6, KDE0,
KDE0v1, SK255, SKI2, SKI3, SKI4, SKI5, SkMP, LNS, SV-bas, SV-m56-O, SV-m64-O, SV-min, MSk7,
T5, KDEX, NRAPR, SAMi, SK272, SkUFF [54–63]), Gogny interaction (M3Y-P1, M3Y-P2, D1S [64]),
and chiral effective interactions [65].

Figure 2. Landau parameters as a function of density using the SEI-Y (γ = 1/2) set. Saturation
density ρ0 = 0.158 fm−3 is denoted by a grey dashed vertical line.

These dimensionless parameters Fl , F′l , Gl , and G′l are directly related to quantities
describing SNM and ANM properties, such as effective mass, incompressibility, symmetry
energy, the speed of sound, etc., through relationships [66,67],

Incompressibility, K = 3
h̄2k2

F
m∗s

(1 + F0) (16)

Isoscalar effective mass,
m∗s
m

= 1 +
F1

3
, (17)
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Isoscalar/Isovector effective mass ratio,
m∗s
m∗v

= 1 +
F′1
3

, (18)

Symmetry energy, Esym =
h̄2k2

F
6m∗s

(1 + F′0) (19)

Spin asymmetry coefficient, Eσ =
h̄2k2

F
6m∗s

(1 + G0) (20)

Spin-Isospin asymmetry coefficient, Eστ =
h̄2k2

F
6m∗s

(1 + G′0) (21)

The sound velocity is directly related to the compression modulus K(ρ), which can be
expressed in terms of the Landau parameters F0 and F1 :

mv2
s =

h̄2k2
F

3m∗s
(1 + F0) =

1
9

K =
h̄2k2

F
3m

1 + F0

1 + F1
3

. (22)

The values of these NM properties at saturation are listed in Table 5 for the three EoSs
of SEI-Y, corresponding to γ = 1/3, 1/2, and 2/3. These results are in agreement with the
saturation properties predicted under the parameter fitting protocol given in Table 2.

Table 4. Landau parameters at the saturation density for SEI-Y (γ = 1/3), SEI-Y (γ = 1/2), and SEI-Y
(γ = 2/3) EoS.

EoS F0 F1 F2 F′0 F′1 F′2
SEI-Y (γ = 1/3) −0.31 −0.913 −0.247 0.89 0.304 0.0826
SEI-Y (γ = 1/2) −0.257 −0.939 −0.253 0.914 0.313 0.0845
SEI-Y (γ = 2/3) −0.195 −0.9091 −0.2447 0.8771 0.303 0.0816

EoS G0 G1 G2 G′0 G′1 G′2
SEI-Y (γ = 1/3) 0.617 0.0321 0.0087 0.474 0.3739 0.1013
SEI-Y (γ = 1/2) 0.627 0.0479 0.0129 0.514 0.3690 0.0998
SEI-Y (γ = 2/3) 0.584 0.0744 0.02001 0.5401 0.3297 0.0887

Table 5. Nuclear matter properties predicted using Landau parameters at saturation density for SEI-Y
(γ = 1/3), SEI-Y (γ = 1/2), and SEI-Y (γ = 2/3) sets.

SEI-Y (γ) ρ0 K0 m∗s
m

m∗s
m∗v

Esym Eσ Eστ mv2
s

(γ) [fm−3] [MeV] [MeV] [MeV] [MeV] [MeV]

(1/3) 0.161 230.59 0.695 1.101 35.10 30.02 27.38 24.47
(1/2) 0.158 237.74 0.686 1.104 34.048 28.95 26.94 26.38
(2/3) 0.156 263.14 0.696 1.101 34.10 28.79 27.97 27.94

3.2. High-Order Derivatives of the Energy per Particle in Asymmetric Nuclear Matter

The symmetry energy is an important quantity in nuclear physics, which rules many
properties in the isovector sector of the energy density and has a relevant impact in nuclear
astrophysics. The symmetry energy parameter, Esym(ρ0), is constrained somewhat less
rigorously as compared to the energy per particle, e(ρ0), of SNM. It is determined from
the analysis of the predictions of a large set of mean-field models [29] and from data
of astrophysical observations [68–70] but also using experimental nuclear data, such as
charged pion spectra at high transverse momenta [71] or charge exchange and elastic
nuclear reactions [72]. The values of Esym(ρ0) extracted from these works are reported
in the upper panel of Table 6. The symmetry energy values used in the SEI-Y models lie
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between 34.5 and 35.5 MeV (see Table 2), which are within the ranges predicted by almost
all the analyses displayed in Table 6. Heavy-ion collision (HIC) studies have provided
relevant constraints on the EoS of SNM at supra-saturation densities, which allow us to
predict e0(ρ) up to about 4.6 times the normal nuclear matter density [27]. In the recent work
of Ref. [73], the value for e0(4ρ0) is constrained in the range 63.3+19.7

−6.6 at a 68% confidence
level. However, the EoS of the high-density neutron-rich matter is still highly uncertain due
to the limited progress in the analysis of isospin-sensitive observables of HIC experiments.
It also remains an open question whether the symmetry energy is stiffer or super-soft at
supra-saturation densities.

In Table 6, the available data found in the literature on nuclear symmetry energy
at two times the saturation density, Esym(2ρ0), together with the corresponding predic-
tions provided by the SEI-Y (γ = 1/3, 1/2, and 2/3) EoSs, are given. These results are
based on theoretical analysis of data from laboratory experiments, such as the ASY-EoS
experiment at GSI [74] and HIC [75,76], astrophysical data of different types, as outlined in
Refs. [73,77–83], theoretical calculations within chiral EFT [84,85] and effective mean-field
models [86]. From this table, we see that the SEI-Y predictions are in good agreement with
the available data reported in Table 6, in particular with the predictions of Refs. [75,77–82]
obtained using different techniques. The symmetry pressure at twice saturation density pre-
dicted by the SEI-Y (γ = 1/3, 1/2, and 2/3) EoSs are 10.659, 10.572, and, 10.488 MeV fm−3,
respectively, which lies within the range Psym(2ρ0) = (35± 32) MeV fm−3 extracted from the
experimentally derived density functional [87]. The nuclear symmetry energy at three
times the saturation density, Esym(3ρ0), for SEI-Y (γ = 1/3, 1/2, and 2/3) EoS are 69.64,
69.38, and 69 MeV, respectively. These SEI-Y values are consistent with the results extracted
from the GW170817 data (76.91+25.96

−25.96 MeV) [79] but are slightly higher than the predictions
of Dutra et al., 2012, which range from 33.65 to 60.92 MeV [29].

Table 6. Symmetry energy at several densities.

Expt./Observation/Theory Esym(ρ0) [MeV]

Mean-field calculations and Astrophysical Observations
Dutra et al., 2012 [29] 27–36

B A Li and Han, 2013 [68] 31.6 ± 0.92
Oertel et al., 2017 [69] 31.7 ± 3.2

PREX II Experiment Reed et al., 2021 [70] 38.1 ± 4.7
Charged Pion Spectra at high momenta Estee et al., 2021 [71] 32.5–38.1

Charge exchange and elastic scattering data Danielewicz et al., 2017 [72] 33.5–36.4

Expt./Observation/Theory Esym(2ρ0) [MeV]

SEI-Y (γ = 1/3) 55.74
SEI-Y (γ = 1/2) 55.38
SEI-Y (γ = 2/3) 54.93

HIC and Transport Calculations
ASY-EoS experiment at GSI [74] 46–54

UrQMD transport calculation [75] 55 ± 5
Zhang et al., 2020 [76] 35–55

Gravitational Waves Zhang and Li, 2019 [77] 46.9± 10.1
Xie and Li, 2019 [73] 39.2+12.1

−8.2
Tong et al., 2020 [78] 60.7 ± 10.9

Chiral Effective Field Theory
Drischler et al., 2020 [84] 45 ± 3

Lonardoni et al., 2020 [85] 45 ± 5
Neutron Star Observables B A Li et al., 2021 [79] 51 ± 13

Nakazato and Suzuki, 2019 [80] 40–60
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Table 6. Cont.

Expt./Observation/Theory Esym(ρ0) [MeV]

Yue et al., 2022 [81] 62.8 ± 15.9
Xie and Li, 2020 [82] 47+23

−22
Zhou et al., 2019 [83] [39.4−6.4

+7.5, 54.5−3.2
+3.1]

Mean-Field Calculations Chen et al., 2015 [86] 40.2 ± 12.8

The parameters associated with higher-order derivatives of the energy per particle
and symmetry energy at saturation, specifically Q0, L, Ksym, and Qsym, remain poorly
constrained and present challenges for experimental measurements. Among these param-
eters, the slope of the symmetry energy L is of particular relevance, as this quantity is
nicely correlated with some finite nuclei properties; for example, the neutron skin thickness
in heavy neutron-rich nuclei is 208Pb. This parameter has been estimated using infor-
mation extracted from the analysis of terrestrial nuclear experiments and astrophysical
observations [68,69,73,82,88], the analysis of the PREX-II data [70], from results of charge ex-
change and elastic scattering involving isobaric analog states [72], charged pion spectra [71]
and isospin diffusion [89], and, very recently, from the charge radii difference in mirror
nuclei [90]. The range of the values of the slope parameter L is relatively large and covers
from about 40 MeV to 120 MeV depending on the inputs used in the different analyses
carried out, as can be seen in the upper panel of Table 7. The L value predicted by the SEI-Y
models is about 75 MeV, which lies approximately in the middle of the range of the various
estimates considered.

Table 7. L, Ksym and Kτ at saturation density from different experimental and theoretical analyses
along with the results of SEI-Y (γ = 1/3, 1/2, and 2/3) EoS.

Expt./Observation/Theory L [MeV]

Terrestrial Experiments and Astrophysical Observations
Li and Han, 2013 [68] 58.9 ± 16.5
Oertel et al., 2017 [69] 58.7 ± 28.1

Lattimer and Lim, 2013 [88] 40.5–61.9
Xie et al., 2019, 2020 [73,82] 66+12

−20
PREX-II Experiment
Reed et al., 2021 [70] 106 ± 37

Charge exchange and elastic scattering data Danielewicz et al., 2017 [72] 70–101
Charged Pion Spectra at high momenta Estee et al., 2021 [71] 42–117

Isospin Diffusion Data Chen et al., 2005 [89] 63–113
Charge radii difference in mirror pairs

Bano et al., 2023 [90] 70–100

Expt./Observation/Theory Ksym [MeV]

Analysis of Different Neutron Star Observables Li et al., 2020 [91] −120+80
−100

d’Etivaux et al., 2019 [92] −85+82
−70

Carson et al., 2019 [93] −259 to +32
Choi et al., 2021 [94] −128 to −33

Chiral Effective Field Theory
Drischler et al., 2016 [95] −240 to −70

Newton and Crocombe, 2021 [96] −209+270
−182

Grams et al., 2022 [97] −200 to +50
Terrestrial Nuclear Experiments and Mean-Field Predictions

Sagawa et al., 2019 [98] −120± 40
Tews et al., 2017 [99], Zhang et al., 2017 [100] −400 to +100

Mondal et al., 2017 [101] −118.8± 71.3
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Table 7. Cont.

Expt./Observation/Theory L [MeV]

Expt./Theory Kτ [MeV]

Experimental data of Isoscalar Giant Monopole Resonances
Sagawa et al., 2008 [102] −500± 50
Li et al., 2010 [103,104] −550± 100
Stone et al., 2014 [43] −840 to −350

Theoretical calculations of GMR with MDI interactions Chen et al., 2009 [37] −370± 120
Cozma, 2018 [105] −354± 228

Neutron skin sizes across the mass table
Centelles et al., 2009 [106] −500+125

−100

The incompressibility parameter in ANM, Ksym, has been estimated from astrophysical
inputs provided by astrophysical observations [91–94], from nuclear and neutron matter
calculations using chiral effective field theory [95–97], from terrestrial experiments [98] and
from the analysis of mean-field predictions [99–101]. This parameter is, in general, negative
and of the order of a few hundred MeV. The SEI-Y predictions, given in Table 2, are in line
with the estimates obtained from terrestrial experiments and astrophysical observations
reported in the middle panel of Table 7.

In Ref. [101], a correlation between the Ksym and 3Esym − L parameters is obtained
from the analysis of 500 Skyrme and RMF models. However, in the case of SEI-Y, Ksym is
also strongly correlated with L in addition to the 3Esym − L correlation. In particular, in
the case of SEI-Y (γ = 1/2), we find the linear relation Ksym = 4.1165L− 408.98 MeV. The
isovector incompressibility parameter Kτ is mainly extracted from experimental data of
the isoscalar giant monopole resonance [43,102–104] from theoretical mean-field model
calculations for different MDI interactions [37,105] and from information extracted from
measurements of neutron skins across the mass table [106]. These estimates have an average
value of approximately -500 MeV but with large error bars, as can be seen in the lower panel
of Table 7. The values predicted by the SEI-Y models, given in Table 2, are in agreement
with the values extracted using different techniques given in the lower panel of Table 7.

Experimental constraints on the skewness parameter in both symmetric and asym-
metric nuclear matter, Q0 and Qsym, respectively, are currently lacking in precision. Based
on the analysis of different experimental and observational data [99,107–110], it is found
that the skewness in SNM is negative, and its range is approximately between '−1200
and 400 MeV. The situation is similar for the skewness parameter of the symmetry en-
ergy, where different estimates constrain its value within the range between −200 and
800 MeV [77,99–101]. The values of Q0 in SNM predicted by SEI-Y (γ = 1/3, 1/2, and 2/3)
EoSs are listed in Table 2 and lie consistent with the values extracted from other different
analyses. In the same table, we display the skewness parameter of the symmetry energy
computed with the SEI-Y models, which are in the range 234–273 MeV, which is in good
agreement with the value of Qsym = 296.8± 73.6 MeV suggested in Ref. [101]. With the
SEY-Y model, we also find a strong anti-correlation between the Qsym and L parameters,
which in the case of SEI-Y (γ = 1/2) EoS reads Qsym = −8.805L + 910.26 MeV.

4. Neutron Star Phenomenology
4.1. The Radius of Neutron Stars and the Slope of the Isoscalar Incompressibility

The density derivative of the isoscalar incompressibility of symmetric nuclear matter,
which is defined as K

′
(ρ) = 3ρ

dK(ρ)
dρ , can be written at saturation density as a combination

of the skewness and the incompressibility of SNM as K
′
0(ρ0) = Q0 + 12K0 [111]. The

value of this parameter, estimated from a large set of non-relativistic and relativistic mean-
field models, lies in the range K

′
0 = 1800− 2400 MeV [112]. A relatively wider range,

1556 ≤ K
′
0 ≤ 4971 MeV, is extracted from the analysis of the tidal deformability measure-
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ment in the BNSM event GW170817 [93]. In Ref. [112], the correlation of the radius of
the NS with the linear combinations of the slopes of the nuclear matter incompressibility
and the symmetry energy coefficients at saturation, which is almost independent of the
NS mass in the range 0.6 M�–1.8 M�, is shown. Here, we explore, using the SEI-Y EoSs
with (γ = 1/3, 1/2, and 2/3), the possible correlations between the NS radius and the
slope of the incompressibility at saturation for NS of 1.4 M� and 1.6 M�. To obtain the
radii predicted by these EoSs, we solve the Tolman–Oppenheimer–Volkoff (TOV) equation,
where the BPS-BBP EoS [113,114] is used up to 0.07468 fm−3 (the crust-core transition
density for SEI) and our EoS thereafter.

The values of the radii of these 1.4 M� and 1.6 M� NSs, R1.4 and R1.6 are shown as a
function of the slope of the incompressibility parameter K

′
0 in Figures 3 and 4, respectively,

for the three aforementioned SEI EoSs. The vertical shaded region in brown in the Figures
correspond to the K

′
0 values predicted in Refs. [112,115]. The data for NS radii, obtained

from various recent studies, are taken from Refs. [70,92,116–121] (for R1.4) and [122,123] (for
R1.6) and displayed by different color areas in Figures 3 and 4, respectively. The LIGO-Virgo
measurement leads to an upper limit of R1.4 at 13.6 km [124], and that from the BNSM
ascertained to be R1.4 < 13.76 km [125]. The minimum limit for an R1.6 radius of non-
rotating NS, constrained from GW170817 data by Bauswein et al., is 10.68+0.15

−0.04 km [126].
This value is shown as an orange band in Figure 4. R1.4, R1.6 and K

′
0 values predicted by

44-EoSs of Skyrme, RMF and microscopic interactions, which are taken from Table I of the
Supplemental Material given in Alam et al., 2016 [112], are also shown in the two figures
by green squares.

Figure 3. R1.4 of 1.4 M� neutron stars versus the slope of the incompressibility obtained using
different EoS of SEI-Y of γ = 1/3, 1/2, and 2/3. The green square are the results taken from
supplementary material given in Alam et al., 2016 [112]. The horizontal shaded region data of R1.4

are taken from: cyan [Reed et al., 2021 [70]], dark green [Capano et al., 2020 [116]], yellow and orange
[Raaijmakers et al., 2021 (PP model and CS model), respectively [117]], blue [Miller et al., 2021 [118]],
maroon [Baillot d’ Etivaux et al., 2019 [92]], magenta [Pang et al., 2021 [119]], black dashed [Jiang et
al., 2019 [120]], brown [Abbott et al., 2020 [121]], indigo dotted line [Annala et al., 2018 [124]] and
Maroon line [Fattoyev et al., 2018 [125]]. The vertical shaded region in brown [De et al., 2015 [115]].

Using these 44-EoSs data, a moderate linear correlation between the NS radii and K
′
0

is obtained, as was also pointed out by Alam et al. in Ref. [112], whereas a rather strong
correlation over the mass range 0.8 M�–1.8 M� was obtained with a linear combination of
K
′
0 and L0, as we mentioned before. However, our three SEI-Y EoSs, with the γ parameter
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equal to 1/3, 1/2 and 2/3, show a strong correlation between the radii and the slope of
the incompressibility alone for both NS masses, namely, 1.4 M� and 1.6 M�. We have also
verified that another strong linear correlation exists between R1.4 and R1.6 and the linear
combination of K

′
0 and L0, which is in agreement with the previous findings in [112].

Figure 4. R1.6 of 1.6 M� neutron stars versus the slope of the incompressibility obtained using
different EoS of SEI-Y of γ = 1/3, 1/2, and 2/3. The green square are the results taken from
supplementary material given in Alam et al., 2016 [112]. The violet and cyan horizontal shaded
region data of R1.6 are calculated from Table IX of [122] and Table I of [123]. The orange band refers
to the minimum limit of R1.6 in the work of Bauswein et al., 2017 [126]. The vertical shaded region in
brown [De et al., 2015 [115]].

4.2. Neutron Star Merger and Incompressibility of Asymmetric Nuclear Matter

The incompressibility of ANM in Equation (9) depends on both density and isospin
asymmetry, and it is found to have important implications in BNSM studies [127,128].
The threshold mass Mth for prompt collapse (PC) to form a black hole (BH) in BNSM is
scaled in terms of maximum mass Mmax of the non-rotating NS as Mth = κMmax, where the
scaling parameter κ is EoS dependent [129,130]. Bauswein et al. [127], from a simulation
study of the BNSM for symmetric binary NS, found that using temperature-dependent
nuclear EoSs, there was a strong correlation of κ with the compactness Cmax = GMmax

c2Rmax
of

the TOV configuration (Mmax, Rmax) of the NS, where c and G are the speed of light and
the gravitational constant, respectively. A universal ansatz proposed by Bauswein et al.
(2013) is

κ = aCmax + b, (23)

which is independent of the EoS. Such a linear ansatz represents a reasonable first approxi-
mation to the data, but it is not the most general one [131]. By using weighted averaged
values of the linear-fit constants a and b of different works, given in Table II of Ref. [132],
we computed the threshold mass Mth predicted by the three EoSs of SEI-Y (γ = 1/3, 1/2,
and 2/3), which are reported in Table 8. In the case of delayed/no collapse, the estimated
total binary mass of GW170817 provides a lower bound on the threshold mass for direct
BH formation, Mth > MGW170817

tot = 2.74+0.04
−0.01 M� [126]. SEI-Y predictions of Mth for the

three sets of values of a and b in Table 8 closely conform to this limiting value.
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Table 8. Threshold mass Mth for the three EoSs of SEI-Y (γ = 1/3, 1/2, and 2/3) using the values of
constants a and b from the literature, given in Table II of Ref. [132].

SEI-Y (γ = 2/3)

Ref a b RTOV
max CTOV

max k Mth

[127] −3.342 2.42 10.523 0.275 1.499 2.937
[126] −3.38 2.43 10.523 0.275 1.498 2.936
[132] −3.36+0.20

−0.20 2.35+0.06
−0.06 10.523 0.275 1.424+0.115

−0.115 2.790+0.225
−0.225

SEI-Y (γ = 1/2)

Ref a b RTOV
max CTOV

max k Mth

[127] −3.342 2.42 10.243 0.272 1.5095 2.846
[126] −3.38 2.43 10.243 0.272 1.5091 2.845
[132] −3.36+0.20

−0.20 2.35+0.06
−0.06 10.243 0.272 1.434+0.114

−0.114 2.705+0.215
−0.215

SEI-Y (γ = 1/3)

Ref a b RTOV
max CTOV

max k Mth

[127] −3.342 2.42 9.943 0.267 1.5252 2.7437
[126] −3.38 2.43 9.943 0.267 1.5250 2.7434
[132] −3.36+0.20

−0.20 2.35+0.06
−0.06 9.943 0.267 1.45+0.113

−0.113 2.609+0.204
−0.204

In recent work, Perego et al. [128] performed a BNSM simulation study taking asym-
metric masses in the NS binary. These authors have shown that the nuclear incompress-
ibility at the central density ρc of Mmax, Kmax = K(ρmax

c , δ), contains information on Mth
for PC in the BNS merger. Consequently, if Mth is known, then Kmax can potentially be
predicted, which is not possible nowadays in any laboratory experiment. In Ref. [128], the
authors examined the correlation between Kmax and compactness Cmax of maximum mass
NS considering a large sample of EoSs comprising the nucleonic part, as well as containing
hyperons and the transition to the quark phase.

A strong power law correlation has been obtained among these data. We have com-
puted the density dependence of K(ρ, δ) for the three SEI-Y EoSs, where δ for each ρ is
obtained by solving the charge neutral β-equilibrated NSM, and the results are shown
as a function of the density in panel (a) of Figure 5. The values of the Kmax computed
at the central density of Mmax predicted by the SEI-Y EoSs are shown as a function of
the compactness Cmax in panel (b) together with the data of the 66-EoSs taken from the
supplementary material of Ref. [128]. The values of the Cmax, shown in panel (b) of Figure 5
for different EoSs, lie below the empirical limit of compactness allowed by general relativity,
C = 4/9 [133], and the Tolman VII analytical solution of the TOV equation, C = 0.3428.
These limiting values are the universal upper bounds for compactness, as corroborated
by the incorporation of realistic EoS [134,135]. The three SEI data points lie in the tighter
threshold region of Kmax ≈ 12 GeV of Perego et al., 2022 (Figure 4 of [128]). They have also
suggested that the information of Mth at different mass asymmetries q of the two NSs in
the binary can provide constraints on the velocity of sound vs close to the central density ρc
of Mmax.
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Figure 5. (a) K (ρ, δ) as a function of density in NSM for the SEI-Y (γ = 1/3), SEI-Y (γ = 1/2), and
SEI-Y (γ = 2/3) EoS, (b) Kmax as a function of the compactness of the heaviest NS for the three EoSs
of SEI-Y. The green diamonds are the 66 EoS results taken from [128].

4.3. Sound Speed in Neutron Star Matter

The adiabatic speed of sound in ANM evaluated at constant entropy is given
by [97,136,137].

v2
s

c2 =

(
∂P
∂H

)

s
=

K(ρ, δ)

9(mc2 + e(ρ, δ) + P(ρ, δ)/ρ)
(24)

where H is the energy density given by Equation (2), and m is the average nucleon mass.
The square of the speed of the sound vs in NSM, where δ for each ρ in Equation (24)

is the equilibrium value obtained from the β-stability condition, predicted by the three
SEI-Y EoSs γ = 1/3, 1/2, and 2/3, is displayed as a function of density in panel (a) of
Figure 6. From this figure, we can see that the square of the speed of sound increases with
the density without exceeding the causality limit, and it also increases linearly with the
incompressibility of nuclear matter, as predicted by Equation (24). The magenta line in
panel (a) of Figure 6 represents the conformal limit ( vs

c 6 1√
3
) [138]. More recently, by

studying maximally rotating neutron stars, Margaritis et al., 2020, claimed that the sound
speed likely exceeds the conformal limit [134,139].

In panel (b) of Figure 6, we display the speed of sound in NSM as a function of
nucleonic pressure at density 1.85ρ0 computed with the SEI-Y (γ = 1/2 and 2/3) EoSs
with different slopes of the symmetry energy L in the range 60–110 MeV, together with
the results of the EoSs from Bauswein et al., 2012 [123]. The SEI-Y predictions show a
nice linear behavior between the speed of the sound and the pressure, with a correlation
coefficient r = 0.998 for both EoSs. This linear behavior is, however, weaker with the set
of EoSs selected by Bauswein et al. [123], probably due to the different origin and fitting
protocols of these EoSs.

Panels (c), (d) and (e) of Figure 6 show, as a function of the NS radius, the square of the
speed of sound, v2

s , computed at the central densities, ρc, of the 1.8 M�, 1.6 M� and 1.4 M�
NSs obtained by solving the TOV equations using the SEI-Y (γ = 1/2 and 2/3) EoSs with
different values of the slope parameter L in the range 70–110 MeV. For the three considered
masses, the square of the speed of the sound shows an inverse linear relationship with the
radius of NS, with correlation coefficients close to unity, which show a moderate decreasing
trend as the NS mass decreases. The inverse linear relationship in each given mass NS
is due to the following. When the slope of the symmetry energy L increases in an EoS
of given γ, the M

R ratio decreases owing to the growth of the radius R, and therefore, the
compactness also decreases, which implies a reduction in the incompressibility K(ρ, δ).
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Figure 6. (a) Speed of sound in NSM as a function density, where δ for each ρ is the β−equilibrium
value, obtained for the three EoS corresponding to γ = 1/3, 1/2, and 2/3 of SEI-Y. The magenta
and green lines are the conformal and casual limit, respectively. (b) Speed of sound as a function
of pressure at density (1.85ρ0) in NSM for SEI-Y (1/2 and 2/3) EoS compared with the results of
Bauswein et al., 2012 [123]. The square speed of sound at the central densities of 1.8 M�, 1.6 M� and
1.4 M� NSs as a function of radius R1.8, R1.6 and R1.4 for the SEI (1/2 and 2/3) EoSs corresponding
to different values of L in the range 70–110 MeV are shown in panels (c–e), respectively.

4.4. Gravitational Redshift

The gravitational redshift of a signal from the star’s surface can be written as,

Zsur f =

(
1− 2GM

c2R

)−1/2
− 1. (25)

Measurements of the gravitational redshift of spectral lines can provide direct insights
into the stellar compactness parameter and, as a result, can constrain the EoS for dense
matter. The Zsur f calculated using the SEI-Y (γ = 1/2) and SEI-Y (γ = 2/3) EoSs as a
function of gravitational mass is shown in Figure 7. From this figure, we can see that Zsur f
increases as the mass of the NS rises for both considered EoSs. In the lower mass range,
the Zsur f values for both EoS models are almost the same, but they diverge notably in the
higher mass range. EoS having a higher value of incompressibility predicts a lower value
of Zsur f .

The magenta horizontal line in Figure 7 corresponds to Zsur f = 0.35. This value
was obtained by Cottam et al. from the X-ray burst source in the low-mass X-ray binary
EXO 07482-676 [140]. The gravitational redshift of RBS 1223, RX J0720.4-3125, and RX
J1856.5-3754, which are members of the so-called “The Magnificent Seven”, are 0.16+0.03

−0.02
[green shaded region], 0.205+0.006

−0.003 [orange shaded region], and 0.22+0.06
−0.12 [maroon shaded

region] [141,142] with masses 1.08+0.2
−0.11 M�, 1.23+0.10

−0.05 M�, and 1.24+0.29
−0.29 M�, respectively, at

68% confidence level [143]. These observational data, which are also displayed in Figure 7,
are well reproduced by our theoretical calculation using the SEI-Y EoSs, which pass well
through the shaded areas representing the uncertainties in the respective observed data.
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Figure 7. Gravitational redshift at the neutron star surface as a function of the stellar gravitational
mass for the SEI-Y (γ = 1/2) and SEI-Y (γ = 2/3) EoSs. The magenta horizontal line corresponds to
the results of Cottam et al., 2002 from the X-ray burst source in the low-mass X-ray binary EXO 07482-
676 [140]. The extracted ranges for the three members of the so-called “The Magnificent Seven” NSs
are RBS 1223 [Green shaded region], RX J0720.4-3125 [orange shaded region], and RX J1856.5-3754
[maroon shaded region] [141–143].

The gravitational redshift Zsur f in different masses, NSs, namely (a) 1.8 M�, (b) 1.6 M�,
and (c) 1.4 M�, are shown as a function of the auxiliary parameter η = (K0L2)1/3 in Figure 8
for the SEI-Y (γ = 1/2) and SEI-Y (γ = 2/3) EoSs. The auxiliary parameter η, which was
proposed in Refs. [144,145], is a combination of incompressibility in SNM, K0, and the
slope of the symmetry energy, L. The values of L and K0 extracted from different nuclear
experiments and observations constrain the value of η in the range 60.8 ≤ η ≤ 174.5 MeV
from SπRIT, RCNP and PREX-II data, as can be seen in Figure 8. From this figure, we can
also observe a strong anti-correlation between Zsur f and η predicted by the two considered
SEI-Y EoSs for the three NS masses analyzed, namely 1.8 M�, 1.6 M�, and 1.4 M�. The
correlation coefficient results for the two EoSs are displayed in the respective panels, which
predict a relatively strong correlation coefficient for the stiffer EoS. The Zsur f values as a
function of η, predicted by the 44 EoSs of Skyrme, RMF and microscopic interactions used
by Alam et al. [112], have been computed for the same masses and shown in the respective
panels of Figure 8 as green diamonds. The inverse relation between Zsur f and η is also
observed for these EoSs (although it is much weaker) can be assigned due to the different
origins of the EoSs considered in [112].
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Figure 8. Zsur f as a function of η for (a) 1.8 M�, (b) 1.6 M�, and (c) 1.4 M� NS for SEI-Y (γ = 1/2)
and SEI-Y (γ = 2/3) EoSs. The shaded region is the constrained value of η for PREX II [Blue], RCNP
[magenta], and SπRIT [yellow] [145]. The green diamonds are the data for the 44-EoSs of Ref. [112].

4.5. Neutron Star Mass, Radius and Gravitational Redshift at Different Central Densities

The correlations between the mass M, radius R, and gravitational redshift Zsur f of NSs
with central densities of ρ0, 2ρ0, 3ρ0, 4ρ0, and 6ρ0 are studied as a function of the slope L in
the range 60–110 MeV, using the SEI EoS (γ = 2/3). The corresponding results are shown in
the three panels of Figure 9, which correspond to masses, radii and gravitational redshift
from left to right, respectively.

(a) (b) (c)

Figure 9. (a) Neutron star masses, (b) neutron star radius (c) Zsur f corresponding to central densities
of ρ0, 2ρ0, 3ρ0, 4ρ0, and 6ρ0 as a function of L.

A linear correlation has been observed between L and mass M for the NSs at all central
densities ρ0, 2ρ0, 3ρ0, 4ρ0, and 6ρ0. The correlation coefficients are r = 0.999, 0.993, 0.966,
0.926, and 0.858, respectively. The correlation becomes weaker as the density increases—a
trend similar to the one found in the work of Ref. [146]—which reflects the role of other
empirical parameters governing the density dependence of the EoS [146]. For NSs with
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central densities 2ρ0, 3ρ0, 4ρ0, and 6ρ0, a strong linear correlation between the NSs radii
and L is also found. However, for a central density ρc = ρ0, the radius decreases as the slope
of the symmetry energy L increases. The reason for this behavior is given in Ref. [146].
A higher value of L implies a softer EoS for densities below ρ0, which explains the anti-
correlation observed in the central panel of Figure 9 for NSs having a central density ρ0. In
contrast, at higher densities, a larger value of the slope parameter L results in a stiffer EoS
above ρ0 and, consequently, the radius, which is correlated with L in this region, shows an
increasing trend. In the right panel of Figure 9, we also found a strong linear correlation
between the Zsur f and L for NSs with central densities ρ0, 2ρ0, 3ρ0, 4ρ0, and 6ρ0, which
gradually degrades as the central density increases and is a feature similar to the correlation
between mass M and L displayed in the left panel of Figure 9.

5. Summary and Outlook

We have used the so-called finite-range simple effective interaction with a Yukawa
form-factor to study some non-standard properties of symmetric and asymmetric nuclear
matter, such as the Landau parameters associated with this interaction and the high-order
derivatives of the energy per particle in symmetric matter and the symmetry energy at
saturation density. In addition, we have explored the predictive power of SEI-Y in the high-
density neutron-rich domain in describing recent neutron star phenomenology associated
with a binary neutron star merger and gravitational redshift.

SEI-Y is a phenomenological effective interaction whose parameters, except the one
fitted to finite nuclei data, are systematically fitted under very generic considerations to
experimental or empirical data of symmetric nuclear matter and pure neutron matter, which
provides a satisfactory account of the nuclear matter properties. An important characteristic
of SEI-Y is the fact that the parameters that determine the momentum dependence of the
mean-field are decoupled from the ones that fix their density dependence in such a way
that each part in the isovector sector can be studied independently of the other without
affecting the isoscalar predictions.

We have computed the Landau parameters for the SEI-Y EoSs that give an overall
satisfactory account of the nuclear matter saturation properties as well as the sum rules.
The nuclear matter properties predicted from the Fermi liquid formulation given in Table 5
are reproduced within a relative difference of approximately ∼ 4 % by the corresponding
values computed directly with the parameters of the SEI-Y interaction (see, in this respect,
Table 2 for comparisons).

The properties of the higher-order derivatives of the energy per particle e0(ρ) and
the symmetry energy Esym(ρ) in nuclear matter at saturation density, namely, Q0, L, Ksym
and Qsym, have remained unconstrained, and their extraction from theoretical calculations,
various terrestrial laboratory experiments and astrophysical observations predict values
with largely differing uncertainties, as can be seen in Table 7. The results obtained with the
different SEI-Y EoSs considered in this work are −478 . Q0 . −437 MeV, −103 . Ksym .
−99 MeV, −418 . Kτ . −388 MeV and 234 . Qsym . 273 MeV, at it can be seen in Table 2.
These values are found to lie within the range of values extracted from the different studies
summarized in Table 7.

However, the main aim of this study is to discuss some recent phenomenology of
neutron stars related to the binary neutron star merger and gravitational redshift. The
compactness Cmax of the maximum mass of a neutron star predicted by the three SEI-Y
EoSs lies in the range of 0.267 . Cmax . 0.275, which approximately covers the range of
incompressibilities between 220 and 260 MeV, predicting the threshold mass Mth for prompt
collapse in the range between 2.61 and 2.94 M�, which satisfies the minimum threshold
mass constraint assessed from the binary masses in the GW170817 event. The Kmax of these
SEI-Y EoSs lies in the tighter threshold region of Kmax ≈ 12 GeV of Perego et al.’s, 2022,
analysis using 34 EoSs of different types. The velocity of sound, vs, computed with the
SEI-Y model EoSs, is also found to remain causal in neutron star matter and does not exceed
the velocity of light. Using SEI-Y EoSs with given symmetry stiffness (given γ) but different
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slope parameter L in a given neutron star, we find an antilinear relationship between its
radius, R, and the square of its sound speed, vs

2, computed at its central density. These
results are shown in panels (c), (d) and (e) of Figure 6 for neutron stars with masses 1.8 M�,
1.6 M� and 1.4 M�. We have also used the SEI-Y EoSs to study the gravitational redshift
at the surface of a neutron star, Zsur f , which is intrinsically connected to the compactness
parameter, as a function of the mass of the neutron star. The SEI-Y predictions of Zsur f
conform to the values constrained from the astrophysical observations on the three neutron
stars, namely, RBS 1223, RX J0720.4-3125, and RX J1856.5-3754 in the X-ray binary shown in
Figure 7 and whose observed redshifts are 0.16+0.03

−0.02, 0.205+0.006
−0.003, and 0.22+0.06

−0.12, respectively.
In a neutron star of a given mass, the redshift parameter Zsur f shows a decreasing trend
if the slope parameter, L, increases when the incompressibility modulus, K0, is kept fixed.
This implies that for a neutron star of a given mass, when the slope parameter L increases,
the compactness, C, decreases. This behavior is also verified using the 44 EoSs of Skyrme,
RMF and microscopic type given in the work of Alam et al. shown in Figure 8. On the
other hand, Zsur f in a neutron star also grows with increasing central density, which in turn
increases the compactness parameter that is a relevant parameter in order to understand
the EoS of dense neutron-rich matter. Our immediate objective is to use SEI-Y to study the
neutron star phenomenology at finite temperature and finite nuclei properties at non-zero
temperature, as well as taking deformation into account.
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Appendix A. Relations between the Six Strength Parameters and the
Interaction Parameters

The relationships between the six strength parameters in Equation (2) and the interac-
tion parameters in Equation (1) are as follows:

εl
0 = ρ0

[
t0

2
(1− x0) +

(
W +

B
2
− H − M

2

)
(4πα3)

]
(A1)

εul
0 = ρ0

[
t0

2
(2 + x0) +

(
W +

B
2

)
(4πα3)

]
(A2)

εl
γ =

t3

12
ρ

γ+1
0 (1− x3) (A3)

εul
γ =

t3

12
ρ

γ+1
0 (2 + x3) (A4)
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εl
ex = ρ0

(
M +

H
2
− B− W

2

)
(4πα3) (A5)

εul
ex = ρ0

(
M +

H
2

)
(4πα3) (A6)

where the superscript indices l and ul denote the contributions resulting from the nucleon
interactions between a like-pair and an unlike-pair. By inverting this set of equations
and replacing the strength parameters with their values given in Table 1, one obtains the
interaction parameters that are reported in Table A1.

Table A1. The twelve parameters for the SEI-Y EoSs corresponding to γ = 1/3, 1/2, and 2/3.

γ b [ f m3] α [fm] x3 t3 [MeVfm3(γ+1)] W [MeV]

1/3 0.4161 0.4232 −0.0630 9536.129 −1380.539
1/2 0.5880 0.4242 −0.112 9277.281 −1321.847
2/3 0.7796 0.4250 −0.153 10228.257 −1214.475

B [MeV] H [MeV] M [MeV] t0 [MeV f m3] x0 W0 [MeV]

128.0918 −630.968 −808.871 333.5 1.151 119.3
100.950 −575.215 −832.339 566.7 0.664 118.4
49.094 −470.284 −881.144 647.4 0.520 118.2

Appendix B. Landau Parameters

The expression of Landau parameters for SEI-Y EoS are given as follows:
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, (A18)

where the normalization constant N0 = 2kFm∗s
h̄2π2 is the level density at the Fermi surface.

The numerical values of the Landau parameters reported in Table 4 are obtained with the
help of the interaction parameters given in Table A1 and the effective mass and Fermi
momentum at saturation taken from Table 2.
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Abstract: We explore an idea put forward many years ago by Zeldovich and Novikov concerning
the existence of compact objects endowed with arbitrarily small mass. The energy density of such
objects, which we call “ghost stars”, is negative in some regions of the fluid distribution, producing a
vanishing total mass. Thus, the interior is matched on the boundary surface to Minkowski space–time.
Some exact analytical solutions are exhibited and their properties are analyzed. Observational data
that could confirm or dismiss the existence of this kind of stellar object are discussed.

Keywords: relativistic fluids; interior solutions; spherically symmetric sources

PACS: 04.40.-b; 04.40.Nr; 04.40.Dg

1. Introduction

In their book on relativistic astrophysics, Zeldovich and Novikov (ZN) [1] (see also [2]),
raise the question about the possibility of packaging the constituents of a self–gravitating
fluid distribution in such a way that the total mass of the resulting compact object is
arbitrarily small.

Specifically, they consider static spherically symmetric fluid distributions, for which
the line element may be written as

ds2 = eνc2dt2 − eλdr2 − r2
(

dθ2 + sin2 θdφ2
)

, (1)

where ν(r) and λ(r) are functions of r, and c is the light velocity. In this section, we shall
follow the notation of [1]; however, in the rest of the manuscript we shall use relativistic
units, in which case we put c = G = 1.

The fluid distribution is bounded from the exterior by a surface, Σ, whose equation is
r = rΣ = constant.

From (1) and the Einstein equations we may write

e−λ = 1− 8πG
rc2

∫ r

0
µr2dr, (2)

and for the three-dimensional volume element we have

dV = 4πeλ/2r2dr, (3)

where µ denotes the energy density of the fluid.
Then, we have for the total mass (energy) the well-known expression

Symmetry 2024, 16, 562. https://doi.org/10.3390/sym16050562 https://www.mdpi.com/journal/symmetry169
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E = Mc2 = 4πc2
∫ rΣ

0
µr2dr. (4)

ZN also introduce the rest energy of the constituent particles, E0, given by

E0 = M0c2 = Nm0c2, (5)

where m0 is the particle mass and N denotes the total number of particles that may be
expressed through the particle density, n, as

N =
∫

V
ndV. (6)

Also, denoting by E1 the rest energy, E0, plus the kinetic energy and the interaction
energy of the constituents (excluding the gravitational interaction) we may write

E1 = M1c2 = c2
∫

V
µdV = 4πc2

∫ rΣ

0
eλ/2µr2dr. (7)

Since eλ/2 ≥ 1, then the mass defect ∆M = M1 −M should be positive.
Thus, the original question posed by ZN may be rephrased as: can the constituents of

a star be packaged in such a way that the mass defect equals M1?
They answer affirmatively to the above question, and illustrate their point by analyzing

the case of an ideal Fermi gas. Although their analysis is flawed, as we shall see below, the
case for the existence of stars with arbitrarily small total mass should not be dismissed.

Let us first reproduce the analysis of ZN, following strictly their line of arguments
(with only slight changes in notation).

Thus, let us consider an ultra-relativistic Fermi gas, characterized by an equation of
state given by

µ = βn4/3, β ≡ 3
8

h̄(3π2)1/3, (8)

where h̄ is the Planck constant over 2π.
Next, ZN assume for the distribution of energy density the form

µ =
a
r2 , a = constant. (9)

It is worth emphasizing that the above choice is justified by the fact that it coincides
with the well-known Tolman VI solution [3], whose equation of state for large values of µ
approaches that for a highly compressed Fermi gas.

Then, using (9) in (4), it follows at once

M = 4πarΣ. (10)

On the other hand, using (2), (3), (6), (8) and (9), we obtain for N

N =
αr3/2

Σ√
1− 8πGa

c2

, α ≡ 8π

3

(
a
β

)3/4
, (11)

implying

rΣ = α−2/3N2/3
(

1− 8πGa
c2

)1/3
. (12)

Feeding back (12) into (10) produces

M ∼ N2/3
(

1− 8πGa
c2

)1/3
. (13)
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From (13), ZN conclude that, in the limit when a → c2

8πG , the total mass, M, tends
to zero.

Such a conclusion is incorrect, as (11) and (12) imply that, in the limit a → c2

8πG , N
diverges as N2/3 ∼ 1

(1− 8πGa
c2 )1/3 , thereby canceling the term (1− 8πGa

c2 )1/3 in (13). This is also

evident from (10), which shows that M does not tend to zero for any value of a (different
from zero).

In general, it should be clear from its very definition (4), that M cannot be zero for any
positive defined energy-density function, µ. Thus, vanishing total mass is only possible if
we accept the existence of fluid distributions allowing negative energy density, or in the
trivial case µ = 0.

The appearance of negative energy density (mass) in general relativity has been
considered in the past by several researchers, starting with a paper by Bondi [4]. This issue
also appears in relation to the Reissner–Nordstrom solution and classical electron models
(see [5–8] and references therein). More recently, negative masses have been invoked in
the construction of some cosmological models (see [9,10] and references therein). Also, it
is worth mentioning that negative energy density appears in hyperbolically symmetric
fluids (see [11,12] and references therein). In all the cases above, quantum effects were not
taken into account. However, in spite of these examples, we believe that it is fair to say
that the assumption of positive energy density is well justified, at the classic level, for any
realistic fluid.

Notwithstanding, the situation is quite different in the quantum regime. Indeed, as it
has been argued in the recent past (see [13–17] and references therein), the appearance of
negative energy density is possible, whenever quantum effects are expected to be relevant.

Thus, the idea of compact objects with arbitrarily small total mass is still feasible, if we
accept the possibility of negative energy density. We call such objects “ghost stars”, in anal-
ogy with a somehow similar situation observed in some Einstein–Dirac neutrinos (named
ghost neutrinos), which do not produce a gravitational field but still are characterized by
non-vanishing current density [18–20].

In this work, we shall explore such a possibility by presenting explicit analytical
models of ghost stars.

2. The Einstein Equations for Static Locally Anisotropic Fluids

In what follows, we shall briefly summarize the definitions and main equations
required for describing spherically symmetric static anisotropic fluids. We shall heavily
rely on [21], and therefore we shall omit many steps in the calculations, details of which
the reader may find in that reference.

We consider a spherically symmetric distribution of static fluid, bounded by a spherical
surface, Σ. The fluid is assumed to be locally anisotropic (principal stresses unequal).

The justification to consider anisotropic fluids, instead of isotropic ones, is provided
by the fact that pressure anisotropy is produced by many different physical phenomena of
the kind expected in a gravitational collapse scenario (see [22] and references therein). In
particular, we expect that the final stages of stellar evolution should be accompanied by
intense dissipative processes, which, as shown in [23], should produce pressure anisotropy.

In curvature coordinates (using relativistic units), the line element reads (please notice
that we are using signature −2, instead +2, as in [21])

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + r2sin2θdφ2), (14)

which has to satisfy the Einstein equations. For a locally anisotropic fluid they are

8πµ =
1
r2 − e−λ

(
1
r2 −

λ′

r

)
, (15)
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8πPr = −
1
r2 + e−λ

(
1
r2 +

ν′

r

)
, (16)

8πP⊥ =
e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
, (17)

where primes denote derivatives with respect to r, and µ, Pr and P⊥ are proper energy
density, radial pressure and tangential pressure, respectively.

The above is a system of three ordinary differential equations for the five unknown
functions ν, λ, µ, Pr and P⊥, and accordingly their solutions would depend on two
arbitrary functions.

From the above field equations, the Tolman–Oppenheimer–Volkof equation follows

P′r = −
(m + 4πPrr3)

r(r− 2m)
(µ + Pr) +

2(P⊥ − Pr)

r
, (18)

where we have introduced the mass function, m [24], defined by

e−λ = 1− 2m(r)
r

. (19)

In [21], a general algorithm to express any solution for anisotropic fluids in terms of
two generating functions was proposed (see also [25]). It generalizes a previous work by
Lake for isotropic fluids [26].

Specifically, it was shown that the general line element corresponding to any solution
to the system (15)–(17) may be written as

ds2 = e
∫
(2z(r)−2/r)drdt2 − z2(r)e

∫
( 4

r2z(r)
+2z(r))dr

r6(−2
∫ z(r)(1+Π(r)r2)e

∫
( 4

r2z(r)
+2z(r))dr

r8 dr + C)

dr2

− r2dθ2 − r2sin2θdφ2. (20)

with Π(r) = 8π(Pr − P⊥) and

eν(r) = e
∫
(2z(r)−2/r)dr (21)

where C is a constant of integration.
The expression (20) follows from (21) and the formal integration of Π(r) = 8π(Pr − P⊥),

after replacing Pr and P⊥ by their expressions in (16) and (17) (see [21] for details).
In the next sections, z will be obtained from specific restrictions on the fluid distribution

(e.g., conformal flatness, vanishing complexity factor).
The physical variables may be written as

4πPr =
z(r− 2m) + m/r− 1

r2 , (22)

4πµ =
m′

r2 , (23)

and

4πP⊥ =

(
1− 2m

r

)(
z′ + z2 − z

r
+

1
r2

)
+ z
(

m
r2 −

m′

r

)
. (24)

In order to match smoothly the metric (14) with the Schwarzschild metric on the
boundary surface r = rΣ = constant, we require the continuity of the first and the second
fundamental forms across that surface, producing

eνΣ = 1− 2M
rΣ

, (25)
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e−λΣ = 1− 2M
rΣ

, (26)

[Pr]Σ = 0, (27)

where subscript Σ indicates that the quantity is evaluated on the boundary surface, Σ.
The above conditions hold for any value of M, including M = 0.
For configurations with M = 0, we obtain from (22) and (27)

zΣ =
1
rΣ

. (28)

We shall next present solutions describing fluid spheres with vanishing total mass. To
do that, we shall resort to a variety of assumptions, some of which are usually invoked in
the modeling of relativistic stars.

3. Conformally Flat Ghost Stars

The Weyl tensor is known to play a very important role in the structure and evolution
of compact objects (see [27] and references therein), which explains why the vanishing
Weyl tensor condition (conformal flatness) has been used so frequently in the study of
self-gravitating objects.

If we assume the space–time within the fluid distribution to be conformally flat, then
the two generating functions read

z =
2
r
± e

λ
2

r
tanh

(∫ e
λ
2

r
dr

)
. (29)

and

Π = r
(

1− e−λ

r2

)′
. (30)

In (29), we shall choose the minus sign, since the plus sign leads (in this case) to a
model not satisfying the boundary condition (28).

We shall present two conformally flat models of ghost star. For that purpose, we shall
complement the conformal flatness condition with some additional restrictions.

3.1. Ghost Star with a Given Density Profile

Let us assume a density profile of the form

4πµ =
n

∑
i=0

airi−2, (31)

which using (23) produces

m =
n

∑
i=0

ai
i + 1

ri+1. (32)

Since the total mass is assumed to vanish, then the following condition has to be satis-
fied

n

∑
i=0

āi
i + 1

= 0, (33)

with āi = airi
Σ.

In order to describe a specific model, let us restrict the expression (31) to n = 2.
Thus, we obtain for the energy density and the mass function

4πµ = − 3
2r2 +

a1

r
+ a2, (34)
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and
m = −3

2
r +

a1

2
r2 +

a2

3
r3, (35)

where we have chosen a0 = − 3
2 to simplify the calculation of the second term on the right

of (29).
Then the condition (33) reads

a2 =
9

2r2
Σ
− 3a1

2rΣ
, (36)

and using (35) and (36) in (19) we obtain

e−λ = 4− 3r2

r2
Σ
− a1r

(
1− r

rΣ

)
. (37)

With the expression for λ given by (37), the two generating functions for this case become

z =
5
2r
−
√

a2

−24 + 6a1r + 4a2r2 , (38)

and
Π =

6
r2 −

a1

r
. (39)

The constant a1 may be easily obtained from (38), and, using condition (28), it reads

a1 =
12
rΣ

, (40)

which combined with (36) produces

a2 = − 27
2r2

Σ
. (41)

With the two expressions above, we finally obtain for z and m

z =
6r− 5rΣ

r(3r− 2rΣ)
, (42)

m = −3
2

r +
6r2

rΣ
− 9r3

2r2
Σ

, (43)

and using using (22), (34) and (39) we obtain for the energy density, the radial pressure
and Π

4πµ = − 3
2r2 +

12
rΣr
− 27

2r2
Σ

, (44)

4πPr =
27
2r2

Σ
− 21

rrΣ
+

15
2r2 , (45)

Π =
6
r2 −

12
rrΣ

. (46)

Using (44 ) and (46), the reader can easily check that the condition of conformal flatness
(see Equation (29) in [28])

Pr − P⊥ =
1
r3

∫ r

0
r3µ′dr, (47)

is satisfied.
From (44), we see that µ is negative in the intervals 0 < r / 0.15rΣ and r ' 0.73rΣ.

As it is apparent from the expressions of the physical variables, the fluid distribution has
a singularity at the origin (r = 0), and therefore the center should be excluded from the
discussion. The best way to handle this drawback consists in assuming that a vacuum
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cavity surrounds the center. Denoting the equation of the boundary of the cavity by
r = ri = constant, we obtain from (43) ri =

rΣ
3 , which ensures the continuity of the mass

function on that surface. However, the radial pressure is discontinuous on that surface, and
therefore it is a thin shell, endowed with a singular matter distribution satisfying the Israel
conditions [29].

3.2. Ghost Star with the Gokhroo and Mehra Ansatz

We shall now complement the conformal flatness condition with an ansatz proposed
by Gokhroo and Mehra [30]. Its virtue consists in providing physically satisfactory models
for compact objects.

Thus, we shall assume for λ the condition

e−λ = 1− αr2 +
3Kαr4

5r2
Σ

, (48)

producing, because of (15) and (19),

µ = µ0

(
1− Kr2

r2
Σ

)
, (49)

and

m(r) =
4πµ0r3

3

(
1− 3Kr2

5r2
Σ

)
, (50)

where K is a constant, µ0 is the central density and

α ≡ 8πµ0

3
. (51)

Since we must impose m(rΣ) = 0, then K = 5
3 .

Feeding back this value of K into (48)–(50), we obtain

4πµ =
6
r2

Σ

(
1− 5r2

3r2
Σ

)
, (52)

m =
2r3

r2
Σ

(
1− r2

r2
Σ

)
, (53)

and

e−λ = 1− 4r2

r2
Σ

+
4r4

r4
Σ

, (54)

where we have chosen α = 4
r2

Σ
, in order to facilitate the calculation of the second term on

the right of (29). Thus, we obtain for z

z =
3
r
− 2r

2r2 − r2
Σ

, (55)

whereas for Π we obtain from (30)

Π = −8r2

r4
Σ

, (56)

and from (22) we obtain the expression for Pr

8πPr =
4
r2

(
1− 4r2

r2
Σ

+
3r4

r4
Σ

)
. (57)
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As it follows from (52), the energy density becomes negative for r ' 0.77rΣ.
As in the precedent model, there appears a singularity at the center, which could be

embedded in a vacuum cavity bounded by a thin shell.

4. Ghost Stars with Vanishing Complexity Factor

The complexity factor, usually denoted by YTF, is a scalar function intended to measure
the degree of complexity of a given fluid distribution, and was introduced in [28] for static
spherically symmetric configurations. A rigorous definition of complexity has been the
goal of many scientists in different branches of sciences, with such interest being motivated
by the intuitive idea that complexity should, somehow, measure a basic property describing
the structures existing within a system.

Mathematically, the complexity factor describes the trace-free part of the electric
Riemann tensor and may be written as (see [28] for details)

YTF = Π− 4π

r3

∫ r

0
r̃3µ′dr̃, (58)

and, accordingly, the vanishing complexity factor condition reads

Π =
4π

r3

∫ r

0
r̃3µ′dr̃, (59)

and please notice that the symbol Π here differs from the one in [28] by a factor 8π.
Using (22)–(24) and (59), we are led to the following differential equation for z

2
(

1− 2m
r

)(
z′ + z2

)
−
(

2
r
− 5m

r2 +
m′

r

)(
2z− 1

r

)

+
2
r
− 4m

r3 = 0. (60)

The first integral of the above equation (for m) reads

1− 2m
r

= e
∫ rΣ

r
4(r2z′+r2z2−2rz+2)

2r2z−r
dr, (61)

from which we see that, for any z satisfying (28), we have a model with a vanishing
complexity factor. However, we shall follow here a different strategy, and we shall present
two models of ghost stars satisfying the vanishing complexity factor condition, by imposing
two different additional restrictions.

4.1. A Model with a Given Energy-Density Profile

In order to specify this model, we shall propose the following energy-density profile,

8πµ =
1− 9( r

rΣ
)8

r2 , (62)

producing for m

m =
r
2

[
1−

(
r

rΣ

)8
]

, (63)

the reason behind this choice being simply that it allows the integration of (60).
Indeed, feeding back (63) into (60), we may easily integrate this equation for z, obtaining

z =
1

c1r2 − r
, (64)

where c1 is a constant of integration, which according to (28) reads
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c1 =
2
rΣ

. (65)

Having obtained the two generators of the solution, we may write for Pr and P⊥

8πPr = − 1
r2 +

r6

r8
Σ

(
3− 2r

rΣ
2r
rΣ
− 1

)
, (66)

8πP⊥ =
4r7

r9
Σ

(
2r
rΣ
− 1
) . (67)

In this model, the energy density becomes negative for values of r in the interval
[0.76rΣ < r, r = rΣ]. As in the previous model, the fluid presents a singularity at the origin,
which could be surrounded by a cavity bounded by a thin shell.

4.2. Ghost Star with Vanishing Active Gravitational Mass

For this model, we shall additionally assume that the active gravitational (Tolman)
mass [31] vanishes.

This last condition implies (see Equation (7.30) in [22])

m + 4πPrr3 = 0. (68)

Feeding the above condition into (18) and using (59), we obtain

P′r +
Π

4πr
= 0, (69)

which can be easily transformed into

P′′r +
4P′r

r
+

µ′

r
= 0. (70)

In order to find a solution to the above equation, we shall split it in two equations, as

P′′r +
3P′r

r
= 0, (71)

and
P′r
r
+

µ′

r
= 0, (72)

whose solutions reads

Pr = b

(
1
r2 −

1
r2

Σ

)
, (73)

and

µ = b

(
3
r2

Σ
− 1

r2

)
, (74)

where boundary condition (27) has been used and b is a constant of integration.
Using (73) in (68), we obtain for the mass

m = 4πr3b

(
1
r2

Σ
− 1

r2

)
, (75)

while using (74) in (59), we obtain for Π

Π =
8πb
r2 . (76)
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In this model, the energy density becomes negative in the interval 0 < r / 0.58rΣ (if
we assume b > 0). As in the previous models, the physical variables exhibit a singular
behavior at the center, and any surface delimiting a vacuum cavity surrounding the center
would be a thin shell.

5. Discussion

Exploring the possibility of the existence of compact objects endowed with vanishing
total mass (energy), we have presented four exact solutions to Einstein equations for static
spherical distribution of anisotropic fluids, sharing this property. Such solutions must,
within some regions of the distribution, be endowed with negative energy density. Negative
energy-density values appear indistinctly in outer or in inner regions, depending on the
model, not a universal pattern of distribution having been detected.

Although some of the assumptions adopted to obtain the presented solutions (e.g., the
vanishing complexity factor or the conformal flatness) are physically meaningful, the ob-
tained solutions are intended only to illustrate the above-mentioned possibility but not
to describe any specific astrophysical scenario. A pending problem regarding this issue
consists in finding exact solutions for ghost stars, directly related to relevant astrophysi-
cal data.

In the same order of ideas, an important open question concerning ghost stars is
related to possible astrophysical observations that could confirm (or dismiss) the existence
of this kind of object. We have in mind, for example, a new trend of investigations based
on the recent observations of shadow images of the gravitationally collapsed objects at
the center of the elliptical galaxy M87 and at the center of the Milky Way galaxy by the
Event Horizon Telescope (EHT) Collaboration (see [32–35] and references therein). More
specifically, we wonder if it could be possible to establish the existence of a ghost star by
its shadow.

The solutions we have presented should be considered as the final state of collapsing
stars, where quantum effects become relevant during the evolution process. Accordingly,
it is of utmost interest to describe the process leading to the final stage with vanishing
total mass. To do that, we should find non-static exact solutions describing such a process.
Additionally, a detailed description of the mechanism by means of which quantum effects
allow negative energy density should be provided. These two problems are out of the scope
of this manuscript, but remain among the most relevant questions to solve concerning the
physical viability of ghost stars.

Regarding the formation of a ghost star, it should be clear from elementary physical
considerations that, as a final product of gravitational collapse, the formation of such
configurations must be preceded by an intense radiative process. The problem regarding
the efficiency of energy release in gravitational collapse has been discussed by several
authors (see [36–38] and references therein). Some of these authors conclude that a 100%
efficiency (all the mass is radiated away) is possible under rather mild restrictions [36,38],
while others [37] claim that 100% efficiency is forbidden under physically meaningful
conditions, among which positive energy density plays a relevant role. Thus, the violation
of such a condition, as it happens in our models, is a strong argument to believe that 100%
efficiency could be a likely possibility. In such a case, the detection of a strong emission of
radiation might indicate the location of a ghost star.

We would like to conclude with five remarks oriented to encourage future research on
this issue

• We have explored the possibility of ghost stars within the context of general relativity.
It would be interesting to explore such a possibility under some of the extended
theories of gravity [39].

• For reasons exposed before, we have considered anisotropic fluids. However, it seems
clear that ghost star models described by isotropic fluids should also exist. It could be
interesting to find some models of this kind.
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• All the models presented here exhibit a singularity at the origin. In order to exclude
such a region, we have proposed to surround the center with a vacuum cavity. How-
ever, in all examples analyzed, the boundary surface of such a cavity appears to be
a thin shell. It would be interesting to find singularity-free solutions and/or singu-
lar solutions whose center could be embedded in a vacuum cavity delimited by a
regular boundary.

• We would like to insist on the importance of finding exact (analytical or numerical)
solutions describing the evolution leading to a ghost star.

• Alternatively, it could be also of interest to find solutions describing the evolution of
an initial ghost star leading to a M > 0 object, by absorbing radiation. As strange as
this scenario might look like (compact object absorbing radiation), it is worth noticing
that it has been invoked in the past to explain the origin of gas in quasars [40]. A
semi-numerical example for such a model is described in [41].
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