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Editorial

An Editorial for the Special Issue “Pervasive Computing in IoT”

Spyros Panagiotakis * and Evangelos K. Markakis

Department of Electrical & Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece;
emarkakis@hmu.gr
* Correspondence: spanag@hmu.gr

In the era of Internet of Things (IoT) we have entered, the “Monitoring–Decision–
Execution” cycle of typical autonomic and automation systems is extended, so it includes
distributed developments that might scale from a smart home or greenhouse to a smart
city and from autonomous driving to emergency management. In such highly distributed
and scalable architectures, each of the three processes can take place in isolation from the
others, situated at any physical or virtual computing system and located, ideally, at any
place. Hence, communication and interoperation between the subsystems that comprise
the total system, namely extreme edge, edge, fog, and cloud deployments, is of critical
importance. To this end, new machine-to-machine protocols, as well as emerging serverless
and decentralized architectures, enable the formation of ad hoc user groups for personalized
communication and interaction.

Context awareness is of equal importance, since it enables situation awareness, event
recognition, and pervasiveness across the system. The latter can dynamically provide
customized service provision to end users via content adaptation to the user’s situation
and needs. Toward this direction, modern sensor technology extends typical ambient
sensing to social and cyber sensing, triggering various interactions among connected
devices or human beings. The same happens with modern human–computer interfaces
that bring input and output capabilities to a plethora of everyday items, transforming them
to enchanting and intelligent ones. In parallel, the crowdsensing paradigm vividly emerges
on top of various networking topologies as a means for rapidly enabling social sensing.
Very recently, researchers have promised the implementation of a full Internet of Senses
(IoS) by 2030, where not only typical data will be transferred over the network but also
data that will trigger senses like taste, smell, touch, etc.

Despite the richness of the available data, the key problem for application designers
remains the same: How to fuse and mine reliable information from the data collected
from largely unknown and possibly unreliable sources or how to dynamically extract user
preferences, behaviors, and needs from the received events beyond the maintenance of static
user profiles. Furthermore, recent advances in IoT management platforms, microcontrollers,
and data science bring machine learning and computational intelligence closer to the source
of data generation (end users, fog layers, edge, and extreme edge), enabling broader context
awareness. However, despite the progress made to date, we are still far from providing low-
power autonomous IoT devices, which could deal with a large amount of data processing
or a frequent need for communication, or both.

This Special Issue presents a collection of research papers, each providing insights
into the multifaceted landscape of this wide and transformative research area. These high-
quality, state-of-the-art papers deal with challenging issues in pervasive computing across
the different parts of the IoT ecosystem. A short introduction to the contributions of these
collected works follows.

A notable theme of the articles in this Special Issue is the focus on customized IoT
frameworks. Four papers falling in this thematic area can be found in this collection. Agapi
Tsironi Lamari et al., in (Contribution 1), propose a methodology for the low-cost crafting
of an interactive layered dashboard using domestic materials that are easily available in
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every household. For demonstration purposes, they developed projection mapping for
the pervasive and interactive projection of multimedia content to the users of this tangible
interface. Manos Garefalakis et al., in (Contribution 2), at first summarize the common
architectural characteristics found in most modern remote laboratories specializing in teach-
ing microcontroller programming. Then, they propose the extension of this architecture
with features for monitoring and assessing users’ activities over remote labs in the context
of pervasive and supervised learning. For the latter, the experience API (xAPI) standard
is exploited to store users’ learning analytics. Panduman Yohanes Yohanie Fridelin et al.,
in (Contribution 3), propose an edge framework for remotely optimizing and configuring
edge devices in three phases. With this framework, they extend the functionality and
usability of their IoT application server platform for smart environmental monitoring and
analytics in real time. Koball Carson et al., in (Contribution 4), propose an unsupervised
machine learning approach for correctly identifying each unique device in an IoT network.
Machine learning-assisted approaches are promising for device identification since they
can capture dynamic device behaviors and traffic patterns to this end.

In this collection, we can also find three papers dealing with issues of ambient intelli-
gence and assisted living of the aging population. Thakur Nirmalya et al., in (Contribution
5), present innovative machine learning-driven methodologies that analyze the data from
BLE beacons and scanners or from accelerometers and gyroscopes to detect users’ indoor
locations in a specific ‘activity-based zone’ during their daily activities. Also, in (Contribu-
tion 6), they present an intelligent decision-making algorithm that can analyze behavioral
patterns and their relationships with the contextual and spatial features of the environment
to detect any anomalies in user behavior that could constitute an emergency. Chen Lei et al.,
in (Contribution 7), investigate activity recognition with postural transition awareness.
Three feature selection algorithms are considered to select the optimal feature subset from
inertial sensor data for posture classification.

The next three papers in this Special Issue consider blockchain technology in vari-
ous IoT applications. Calo James et al., in (Contribution 8), propose a method leverag-
ing blockchain and federated learning to train neural networks at the edge, effectively
bypassing limited computational resources of edge devices and privacy concerns. The
decentralized nature of blockchain enables the authors to replace the centralized server
in typical federated learning scenarios with a P2P network, providing distributed train-
ing across multiple devices. Samia Masood Awan et al., in (Contribution 9), discuss the
cyberthreats and vulnerabilities in IoT environments and propose a novel secure frame-
work that monitors and facilitates device-to-device communications with different levels
of access/control based on environmental parameters and device behaviors. A zero-trust
system provides dynamic behavioral analysis of IoT devices by calculating devices’ trust
levels and enforcing variable policies specifically generated for each instance. Blockchain
is used to ensure that anonymous devices and users are registered, as well as confirming
that immutable activity logs are recorded. Kristin Cornelius, in (Contribution 10), analyzes
records produced by non-fungible token (NFT) blockchain applications and compares
them to ‘document standards’ to see if they act to the extent that has been set by a body
of literature concerned with authentic documents. Through a close reading of the current
policies on transparency, compliance, and recordkeeping, as well as the consideration of
blockchain records (such as user-facing interfaces), this study concludes that without an
effort to design these records with the outlined concerns in mind and from the perspectives
of all three stakeholders (Users, Firms, and Regulators), any transparency will only be
illusory and could serve the opposite purpose for bad actors if not resolved.

The collection closes with two survey papers related to sensors and their applications.
Paul D. Rosero-Montalvo et al., in (Contribution 11), survey various sensor and filtering
technologies and propose a new sensor taxonomy, which deploys data pre-processing
on an IoT device by using a specific filter for each sensor type. Statistical and functional
performance metrics are defined to support filter selection. Kim Anh Phung et al., in
(Contribution 12), conduct a comprehensive survey of pervasive computing in various
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healthcare IoT applications and provide a broad view of the key components, their roles,
and connections in such use cases. In total, 118 research works are surveyed and summa-
rized into categories concerning sensors, communication technologies, artificial intelligence,
infrastructure, and security methods.

As this Special Issue demonstrates, the intersection of pervasive computing with
the Internet of Things continues to be a thriving hub of innovation and discovery. This
Special Issue provides a snapshot of the progress in this research domain, which is aimed
at inspiring future work. Collectively, the curated papers contribute to the expanding
knowledge in this realm and offer insights in the evolving landscape. By sharing diverse
views, we hope to highlight the potential that can be found at their intersection.

Author Contributions: Conceptualization, S.P. and E.K.M.; methodology, S.P. and E.K.M.; writing,
S.P. and E.K.M. All authors have read and agreed to the published version of the manuscript.
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Abstract: In the present work, a methodology for the low-cost crafting of an interactive layered
dashboard is proposed. Our aim is that the tangible surface be constructed using domestic materials
that are easily available in every household. Several tests were performed on different capacitive
materials before the selection of the most suitable one for use as a capacitive touch sensor. Various
calibration methods were evaluated so that the behavior of the constructed capacitive touch sensors
is smooth and reliable. The layered approach is achieved by a menu of few touch buttons on the
left side of the dashboard. Thus, various different layers of content can be projected over the same
construction, offering extendibility and ease of use to the users. For demonstration purposes, we
developed an entertaining plus an educational application of projection mapping for the pervasive
and interactive projection of multimedia content to the users of the presented tangible interface.
The whole design and implementation approach are thoroughly analyzed in the paper and are
presented through the illustration and application of various multimedia layers over the dashboard.
An evaluation of the final construction proves the feasibility of the proposed work.

Keywords: capacitive sensing; low cost; tangible sensing; interactive surface; tactile sensing; human-
computer interaction (HCI); IoT; pervasive computing

1. Introduction

With the continuous development in the technological sector and especially in the
Internet of Things industry in recent years, the way we think is changing drastically. The
Internet of Things (IoT) is one of the top three technological developments of the next
decade and is becoming an increasingly debated topic, especially as an enabler for the
implementation of pervasive cyber-physical applications [1–4]. The interaction between
user and computer was initially limited to the simple use of input devices such as a mouse
and keyboard. In recent years, however, there has been rapid progress and new ways of
communicating and interacting with computers have emerged [5]. In particular, the use of
touch is an important sensory organ that provides multiple possibilities to the interaction
with machines. The operation of an interactive surface with capacitive sense is based on
the use of touch as a means for human-computer interaction and is a more integrated
way of communication. Interactive tangible surfaces often found in public spaces having
informational, advertising, educational, and entertainment purposes [6,7]. They are a very
smart means of advertising and learning as they arouse intense interest and reach a large
number of people who aim to know their functions and capabilities.

Although capacitive sensing is a very popular technology for electronically imple-
menting the sense of touch [8], existing products are far too expensive for considering them
as easily replaceable consuming goods. On the other hand, there are several daily uses

Information 2022, 13, 304. https://doi.org/10.3390/info13060304 https://www.mdpi.com/journal/information4



Information 2022, 13, 304

for such dashboards that would benefit from low-cost implementations of this type. For
example, schools of all levels are always asking for accessible interactive panels for use
in their curricula or announcing news for their students but they cannot afford buying
industrial grade solutions with the risk to be damaged by such daily use. The same states
also for hospitals, public transportation stations, airports, etc. Hence, building cost-effective
interactive dashboards that can, however, be reliable and robust for use in a public space
can be a challenging task [9].

The main purpose of the present work is to propose a methodology for crafting an
interactive tangible and mutlifunctional dashboard integrating capacitive sensing that can
be easily and inexpensively implemented from electronics novices in a ‘do-it-yourself’
(DIY) manner. Such a dashboard, combined with a typical projector to display graphics
on it, can find several uses from information kiosks and advertising to education and
amusement. The key target of our application is the accommodation of different layers
of functionality over the same construction. To this end, a menu is provided that leads
to different layers of content. This means that for each layer, the touch sensors arranged
in the dashboard are assigned different roles, providing us with more touch events, thus
eliminating the necessity for the use of more physical sensors. In our pilot construction,
the physical touch sensors in place are sixteen, but with the use of the menu thirty-nine
different actions can be supported. Our intention is not to present a new way for creating
capacitive sensors, but to use the existing science and methods in order to find the optimal
case for our implementation using materials that can be found in every home. Different
materials with capacitive behavior were tested in order to select the most suitable one for
the creation of the touch sensors that control the interaction events. Along with the above,
which mainly concern the hardware implementation of the approach, a filtering method
were applied in a software basis, so that the signal produced from the touch sensor is stable
and reliable. In order for our work to be attributed, an indicative educational use case that
deploys projection mapping for the pervasive and interactive projection of multimedia
content to the users of our tangible surface was selected.

The main motivation of the present work can be summarized in the following research
questions:

• Is it feasible to construct an interacive dashboard by using everyday materials?
• Is it possible for this interactive construction to be made multifunctional so different

layers of information are projected over the dashboard?
• Is it possible for this development to operate reliably and be robust for use in a

public space?
• Is it possible this contruction to be content agnostic so several use cases can be accom-

modated over the same dashboard?

The present paper is divided into five sections covering the study, design, and con-
struction of an interactive surface, as well as of the information system for the support
of our use case. The first section refers to the tangible technology and the interaction
between user and computer. In the second section, we discuss related work, how other
researchers approach crafting and capacitive sensing in terms of technology. In section
three the architecture of the proposed implementation is presented. Subsequently, section
four introduces the construction and operation of our information system and finally, in
section five, the conclusions that emerged as well as suggestions for future improvement of
the system are discussed.

2. Related Work

Many of the implementations in the literature that we studied were a source of
inspiration and a motivation for our work. Researchers at Carnegie Mellon University
in collaboration with Disney Research, Disney, Pittsburgh, presented Wall ++ [10], a wall
with a capacitive feel, a large-scale project with low installation costs. As they mention,
walls are everywhere and often occupy more than half the area in buildings, offices, homes,
museums, hospitals, and almost any interior. Nevertheless, to this day they remain static,
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with the sole function of separating spaces and hiding the infrastructure of buildings. Their
goal was to install a surface on walls, thus giving them multiple possibilities such as body
position detection, touch, and even electromagnetic waves. The basic principle of Wall ++
was based on drawing large electrodes on a wall using conductive paint. Thus, as a first
step, it was necessary to develop a reliable and economically feasible way to place large
electrodes on the walls. To identify the appropriate materials and procedures, the team
performed a series of tests with different conductive paints, different application methods,
and a number of coats. They then researched the different electrode standards suitable for
the applications they wanted and optimized them for detection range and analysis.

The Dalziel and Pow [11] studio as part of the London Retail Design Expo, in February
2015, aroused special interest having implemented an interactive surface created from
conductive ink. Large sheets of plywood were used for the application as canvases. Dalziel
and Pow then collaborated with the K2 printing lab to print the conductive ink on the
canvases, which formed the interaction surfaces. The custom design allowed the team to
have multiple points of contact and create interactions around them. Starting with the
content, the team compiled a list of stories and possible interactions based on “The Future
of Retail.” Having the stories, they laid the foundation of the screen and were used to depict
a series of 48 cartoons, the number of which then rose to 250. After printing the canvases
with the base layer of conductive ink, the team applied a layer of non-conductive white ink
on top so they could project the animations there. The conductive ink was then connected
to a capacitive touch board called Ototo, designed specifically to convert touch to sound.
With the installation of Ototo, the plywood walls became a living circuit of entrances, which
would cause various sounds and visual elements with each contact. To project the various
animations on each canvas, multiple projectors were used, which were mounted on the
ceiling and were controlled through an existing Projection Mapping software.

An earlier implementation of Dalziel and Pow’s, which inspired the above installation,
was the new Zippy [12] children’s store in Setúbal, Portugal. They designed two interactive
installations and built both inside D&P for testing, before heading to Portugal to present and
install the project. ’Sound Poster’ is a panel with printable characters made of conductive
ink and is used to make sounds. ’Fun Receipt’ is a children’s receipt, which you print
from a giant mouth on the store’s counter and includes characters for painting, mazes, and
other toys.

Sam Jacoby and Leah Buenchley looked at conductive ink as a means of expressing
storytelling and interaction design with children and presented StoryClip [13], a toolbox
that incorporates functional everyday materials, calculations, and drawings. It consists of
conductive ink, ordinary painting inks, and a hardware-software tool, allowing a child’s
drawing to function as an interface for recording and playing audio. Taking advantage
of the artistic nature of children to motivate them in technological exploration, turning
a conventional display into a multimedia interface that promotes multilevel interaction
with children.

The Living Wall [14] project explores the construction and implementation of interac-
tive wallpaper. Using conductive, durable, and magnetic colors, they created a wallpaper
that allows the creation of dynamic, remodelable, and programmable spaces. The wall-
paper consists of circuits that are painted on a sheet of paper and a set of electrodes are
attached to it with the help of magnets. Wallpaper can be used for a variety of functional
and stunning applications that can include lighting, environment detection, device control,
and environmental information display. Additionally, they contain a set of detachable
electronic modules for processing, detection, and wireless communication.

Jie Qi and Leah Buechley developed an interactive pop-up book called Electronic
Popables [15] to explore paper-based computing. Their book incorporates traditional
emerging mechanisms with thin, flexible paper-based electronics and the result looks
and works such as a regular emerging book except that interaction elements have been
added. They first made individual pop-up interactive cards and then assembled them into
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a book. They used three basic materials, self-adhesive copper tape, conductive fabric, and
conductive paint, to create the circuits on the paper.

Researchers from the MIT Media Lab presented the implementation of Sticking To-
gether [16]. They built sticky sensors and actuators that children can use to create handmade
personalized remote communication interfaces. By attaching I/O stickers to special wireless
cards, children can invent ways to communicate with their loved ones over long distances.
A special interactive way of communication for children while learning new technologies
in a fun and creative way.

Pen-on-Paper Flexible Electronics [17] offers a unique approach to making flexible
devices using a configuration instrument that is as ubiquitous and portable as paper.
Rollerball pens are commercially available and are specially designed for precision writing
on paper. Using a rollerball pen filled with conductive silver ink, it is possible to write and
draw conductive text, diode interfaces, electronic circuits, LED arrays, and 3D antennas
on paper.

3. Materials and Methods

3.1. Low-Cost DIY Capacitive Sensors
3.1.1. Introduction to Capacitive Sensing

In electrical engineering, capacitive sensing is a technology based on the capacitive
coupling that can detect and measure anything that is conductive or has a dielectric different
from that of air, such as the human body or hand. This is achieved by the effect of each
object on the electric field created around the active face of a capacitive sensor. A capacitive
sensor works like an open capacitor. An electric field is formed between the measuring
electrode and the ground electrode. If a material with a dielectric constant greater than air
enters the electric field, the field capacitance increases according to the dielectric constant
of that material. The electrodes measure the increase in capacitance and generate an output
signal that corresponds to the trigger. Figure 1 illustrates the operating principle behind
capacitive sensing. Such metering is based on the RC circuits’ time constant. The time
constant of an RC circuit is defined as the time required for the capacitor’s voltage to reach
63.2% of its maximum value when the capacitor is fully charged [18,19].

Figure 1. Operating principle of capacitive sensing.

3.1.2. Selection of Conductive Materials

To carry out the present work, three conductive materials, easily accessible and eco-
nomically affordable, were evaluated. These are: conductive paint, self-adhesive aluminum
tape, and pencil graphite. In order to highlight the material with the best properties, some
experiments were performed. The experiments were conducted over a piece of paper on
top of which the materials under test were applied. Each material was placed on the paper
with two different widths, 0.5 cm and 1 cm. The aim was to find the material with the
lowest ohmic sheet resistance, making it the best conductor. Measurements were made for
each material to find the ohmic resistance using a multimeter. In the first test, the terminals
of the multimeter were 3.5 cm apart, while in the second they were twice as far, in 7 cm.
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Starting with the graphite (Figure 2), the ohmic sheet resistance of the Thin Line (0.5 cm),
consisting of a set of two hundred pencil strokes, was first measured. The result was quite
high as in the first distance (3.5 cm) the ohmic resistance was measured at 178 kOhms,
while at twice the distance (7 cm) the result was 321 kOhms. In the Wide Line (1 cm), sheet
ohmic resistances of 150 kOhms and 306 kOhms were obtained for the short and the long
distance correspondingly. Finally, in the third and last line, the strokes were less, and the
resistance measured was 5.32 MOhms (3.5 cm) and 12.3 MOhms (7 cm).

Figure 2. Ohmic sheet resistances for Graphite.

A noticeable difference was observed during the ohmic sheet resistance measurement
of the aluminum tape’s strips (Figure 3), in which the result for the Thin Line (0.5 cm)
was 3.2 Ohms (3.5 cm) and 3.3 Ohms (7 cm), respectively. In the Wide Line (1 cm), the
measurements did not show large variations from those of the Thin Line and as a result,
we obtained 3 Ohms and 3.1 Ohms (7 cm), respectively. As a result, we can notice that the
amount of material in the given case has minimal effect on the change of its conductivity.

Figure 3. Ohmic sheet resistances for aluminum Tape.

To measure the sheet ohmic resistance of conductive paint (Figure 4), two coats of
paint were applied. The measurement results correspond to 0.65 kOhms (3.5 cm) and
1.39 kOhms (7 cm) for the Thin Line. For the Wide Line, 0.5 kOhms (3.5 cm) and 1.1 KOhms
(7 cm) were measured respectively.

Examining the above measurements, we can notice that our results confirm what is
known theoretically: (a) The longer a material, the larger its resistance, and hence lower
its conductivity. (b) The wider a material, the lower its resistance, and hence higher its
conductivity. After the successful completion of the experiments for the materials, it was
obvious that the aluminum tape had the lowest sheet ohmic resistance and consequently the
best conductivity (Table 1). Therefore, the aluminum tape was selected for the construction
of the DIY capacitive sensors in this work.
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Figure 4. Ohmic sheet resistances for conductive paint.

Table 1. Conductivity tests in the materials used in this study.

Graphite Aluminum Tape Conductive Paint

Thin Line
R1 178 kOhms 3.2 Ohms 0.65 kOhms
R2 321 kOhms 3.3 Ohms 1.39 kOhms

Wide Line
R1 150 kOhms 3 Ohms 0.5 kOhms
R2 306 kOhms 3.1 Ohms 1.1 kOhms

Light Line R1 5.32 kOhms - -
R2 12.3 kOhms - -

3.1.3. Calibration of the Sensors

Figure 5 illustrates the connection of our DIY capacitive sensors with the touch pins
of an Espressif ESP32 development board [20]. The integrated touch pins of the EPS32
microcontroller were found to be a great advantage as it was not necessary to use two
different pins as shown in Figure 1 in order to create an equivalent RC circuit for reading
the capacitance change, nor a capacitive sensing library. This process (e.g., reading) is
automatically completed inside the ESP32′s firmware thus the touch pins are easily and
reliably processed just using the touchRead() function, as is depicted in the following quote
from our code. This also saves pins on the microcontroller for future use.

 
Figure 5. Connection of our capacitive sensors with an ESP32 microcontroller.

// reading input values
touch_sensor_value = touchRead(touch_pin);
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// process value with Median Filter Library
test.in(touch_sensor_value);
touch_sensor_value = test.out();

Quote 1. Reading the Capacitive Sensors

As it is depicted in Quote 1, the Median Filter Library [21] is used as a means for
smoothing sensor readings and outliers’ cancellation. In Figure 6a,c,e the noise that occurs
during the continuous reading of the sensor is noticeable counter to Figure 6b,d,f, that
show the application of the Median Filter over the input signals. The values read by the
touch pins are displayed on the vertical axis and the time is displayed on the horizontal
axis. To achieve the best possible filtering, sample windows of different sizes were tested
(10, 20, 30 number of samples). Regarding the smallest sample window (10 samples), a
faster response of all three was observed but with a slight instability. Then, for the sample
window of 20 samples, it was observed that its responsiveness was slightly slower but
with improved stability and finally, for the value window of 30 samples the responsiveness
was slower but with better stability in random disturbances compared to the other three.
Taking into consideration that the application domains of our sensors require relatively
fast response from the sensors, we concluded that the best choice for our case was a value
window of 20 samples. Hence, this is the size of the Median filter window used hereafter.
Figure 6 illustrates the behavior of the proposed capacitive sensor without filtering and
when applying filtering with the Median filter window of 20 samples. It is obvious that
the behavior of the sensor after such filtering is quite stable, and the readings acquired
very reliable.

 
Figure 6. Plots of our sensors with and without median filtering. In (a,b) a plot of sensor at
rest without/with filter, is showing. In (c,d) similar plots but with the hand at 5cm distance and
without/with filter, respectively. Finally, in (e,f) the plots of the sensor are when touching, again
without/with median filter applied, respectively.
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3.2. Development of the Interactive Dashboard with Capabilities for Projection Mapping
3.2.1. High-Level Architecture and Requirement Analysis

As it was mentioned in the Introduction, the present work focuses on the craft of
an interactive tangible and layered dashboard integrating capacitive sensing that can be
easily and inexpensively implemented from electronics novices, in a DIY way. Our aim is
this dashboard, along with a typical projector displaying graphics on it, to be used as an
interactive surface oriented mainly to educational, advertising, or entertaining purposes.
The projection of graphics over the surface will take place by applying the Projection
Mapping technique, so an impressive result is achieved for the users [22,23]. The purpose
is capacitive sensing in combination with the Projection Mapping technique to compose
a fully functional and interactive system. Figure 7 illustrates the high-level architecture
of our system. For demonstration purposes, an educational scenario was selected, that is
oriented mainly to children.

Figure 7. High-level architecture of our system.

For the proper development of the project, it was necessary to design it having in
mind the requirements towards the final application. A step-by-step analysis was logically
followed. The first step involved the creation and evaluation of our tangible surface. To
this end, as was shown in Figure 5, a smaller-scale simulation was created at first, where
the performance of sensors to each press by the users were tested. As it was mentioned
previously, the ESP32 was selected to be the “heart” of our implementation. A basic
requirement for the final system was the microcontroller to have built-in Wi-Fi support,
which the ESP32 microcontroller meets. Also, it is powerful enough to meet soft real
time requirements, since the final system is expected to operate with several users in
parallel, hence, simultaneous touches are expected to take place. Finally, an open-source
software implementation was considered that would be able to undertake the Projection
Mapping functionality and the rendering of graphics. Processing [24] is a very powerful
programmable software, with many enriched libraries and features, that could help us
complete the project.

Definitely, the communication between the individual parts of the system determines
the proper operation of the final application. According to the adopted architecture, the
communication of the microcontrollers behind the tangible surface with our server run-
ning Processing is based on TCP/IP socket communication following the Client-Server
paradigm and takes place on top of a WLAN network. The role of the Server is undertaken
by a Processing-based Internet application and the role of the Clients by two ESP32 micro-
controllers situated behind the surface. Each microcontroller running the client application
is responsible for: (a) detecting the change in capacity of various aluminum touch sensors
spread over the surface; (b) receiving the status of the sensors, and then (c) sending the
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status to the Processing application only when the capacity change meets the desired
conditions (less than a predefined threshold). Once the data are received, the Processing
application manages each interaction independently and orchestrates the projection of the
respective audio and multimedia content over the surface. The projector used to play back
the media content over the interactive surface is serially connected to the computer hosting
the server application.

3.2.2. Layout and Layered Design of the Tangible Surface

Having decided on the high-level architecture of our system, the next step was to
assure that the dashboard could be multi-functional and able to accommodate several
different scenarios. Layers are the appropriate solution to this end. To enable them, two
different levels of operation on our surface were developed. In the first level, which is called
the Menu Area, the user is given the opportunity via buttons to choose the scenario/layer
she/he wants to interact with on the second level. The Menu is permanently exposed
to the user so the navigation between scenarios/layers can be performed at will. When
the user selects the scenario/layer she/he wishes to (e.g., by pressing one of the available
touch sensors in the Menu Area), this leads her/him to the second level where the basic
interactions of the selected scenario/layer has been enabled. Hence, the second level is
the Working Area of the surface. With this visual separation of the surface at two levels,
emphasis is given on the sensors of each scenario/layer that implement its functionality.
This enhances the usability of the dashboard and the convenience for the users. Figure 8
illustrates the leveled architecture of the surface.

    
(a) (b) (c) (d) 

Figure 8. The different layouts tested for the surface; each with a discrete Menu (first level) and
Working Area (second level). In (a,b) the second level of the surface is exposed higher than the first
level. In (c) the first level is situated higher than the second and in (d) both levels of operation are
exposed at the same height.

Then, the optimal layout for the placement of the sensors on the surface had to be
found. To this end, four different layouts were considered, which are shown in Figure 8.
Among them, the first two (Figure 8a,b) expose the second level of the surface, higher than
the menu level. These seem to be ideal for users with medium height, since they prohibit
shorter persons from reaching the sensors on the second level, while forcing taller persons
to stoop. Exactly the opposite takes place with the third layout (Figure 8c), where the first
level is situated higher than the second one. The fourth layout (Figure 8d) exposes both
levels of operation at the same height, so it seems to be more convenient for domestic
use. Taking into consideration that the target group of the proposed construction is mostly
children, we decided to go with the fourth layout (Figure 8d).

3.2.3. Crafting of the Tangible Surface

As a basis for the construction of our dashboard, a piece of thick brown cardboard
about 70 cm × 150 cm in size, was selected. This is a very affordable solution, trivial
to find, and at the same time easy to manage. Moreover, its easy portability is a plus,
considering the final implementation. The cardboard offers this as it can be wrapped even
in a roll without affecting the sensors. For the latter, pieces of adhesive aluminum tape
were placed on the front side of the cardboard, which were thereafter the touch sensors
(Figure 9). To keep the front side as simple and flat as possible, slits were made in the
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cardboard, so the self-adhesive aluminum tape passes through to the backside of the
surface. With this technique continuity was achieved between the front and the backside
of the construction. All the wiring between sensors and microcontrollers, as well as the
microcontrollers themselves, were placed at the backside, thus keeping the front-side of the
surface tidy. Figure 10 illustrates the front and the back side of the surface. The front-side
was finally covered with white paper for hiding the sensors from users and demonstrating
a uniform layout ready for projection.

  
(a) (b) 

  
(c) (d) 

Figure 9. (a) Aluminum adhesive tape (b) Cutting the tape (c) Preparing for installation (d) Placement
on the surface.

   
(a) (b) (c) 

Figure 10. (a) Final layout of sensors on the front-side of the surface (b) Front-side of the surface
covered with white paper (c) Wiring at the backside of the surface.

3.3. Programming of the System

Having decided on the high-level architecture of the system, the next step was to
define the size, shape, and position on the surface of each sensor to cover with aluminum
tape the necessary area. This required the design of each sensor individually based on
the scenarios that had to be implemented. Knowing the scenarios that make up the final
application, it is possible to find how many, and on the same time of what type, interactions
each sensor should recognize. The scenarios considered for construction are as follows:

• Scenario 1: Music Wall with six different music instruments
• Scenario 2: English Alphabet Wall
• Scenario 3: Non-Interactive animation based on projection mapping

In our case, the total number of sensors on the tangible surface are sixteen and are
grouped according to the performed scenario, each time. The scenarios are interchanged
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via a three-button menu at the first level of the surface; one button for each scenario. For
example, when Scenario 1 is activated by pressing the associated button, thirteen different
interactions are enabled at the second level of the surface. The same sensors are also
available for Scenarios 2 and 3, so the total interactions that can be potentially supported
over our surface are thirty-nine. However, not all of them have been enabled, since it was
the authors’ choice for each scenario to demonstrate a different number of interactions to
the users. So, thirteen interactions are enabled for the first scenario, four for the second
and none for the third one. This layered architecture of the second level of the surface,
also spares the inputs of the microcontrollers since each touch sensor does not need to
correspond to just one action. The distinction between layers is achieved via software.
Hence, in the current version of the proposed surface three different layers of operations are
supported at present, one layer for each menu button. For each layer, as it was mentioned,
up to thirteen different actions can be supported. With one more menu button, one more
layer of operation with the same number of actions could be supported, etc.

As it was mentioned in Section 3.2.1, the implementation is based on the Client-Server
paradigm: as Clients act two Esp32 microcontrollers and as a Server a PC running the
Processing software. Initially, when the association of microcontrollers with the WLAN
network is successful, a message is printed on the serial monitor with the IP addresses
assigned to them by the access point. The microcontrollers use the IP address and port
number assigned to the Server for communicating with it. Running the Clients and the
Server in the same network, definitely simplifies the communication among them. The
microcontrollers are responsible for receiving the status of each touch sensor (sensor
touched, sensor released) and sending it to the server. On the other hand, when the server
receives the touch events, it manages each interaction and orchestrates the projection of the
respective audio and multimedia content over the second level of the surface.

Figure 11 illustrates the interactions considered for Scenario 1. The Scenario starts
when the user touches the corresponding button in the Menu Area. Then, a Music Wall
with various available instruments is projected in the Working Area and the thirteen
designated touch interactions are enabled. Whenever each of the thirteen sensors is touched,
a sound is played-back, and some colors appear on the sensor area with projection mapping.
Figures 12 and 13 illustrate the interactions that have developed for Scenarios 2 and 3,
respectively. Scenario 2 activates four touch sensors and Scenario 3 none.

As it was discussed in Section 3.1.3, due to the ‘prone to noise’ nature of our touch
sensors, all readings from the sensors are filtered via a median filter with window size of
20 samples. This eliminates the outliers in a certain degree and makes the readings very
reliable. The output of this filter is stored into a variable and when its value is less than the
threshold already set, the microcontroller understands that a sensor has been activated. As
it is shown in Figure 14, the sensors implemented in the final construction return values
close to 40 when they are not touched (Figure 14a). On the contrary, when they are touched,
the values they return decrease close to 13 (Figure 14b). After several tests it was decided
that the appropriate threshold for safely differentiating a sensor touch event from a sensor
release, was the value of 30. A separate variable is assigned to each touch sensor, so the
server can identify the sensor that its status has changed.

As the sensor values are read continuously, it was necessary in the implementation
to find a way to avoid debouncing and understand the prolonged touch events on the
sensors. In our implementation, a prolonged touch of a sensor is treated as a single touch
and not as multiple, so every interaction with our Server remains active as long as a sensor
is touched. In order to properly recognize touch events, release events and prolonged
touch events, over our sensors, the two following checks are performed: (a) threshold check
and (b) counter check. As it was previously discussed, the threshold differentiates a touch
event from a release event. In addition, a counter is used as a flag to keep only the first
reading from the sensor and ignore the rest, until the status of the sensor changes again.
This way a prolonged touch of a sensor is treated as an individual one. Figure 15 depicts
the algorithm that determines when a touch event or a release event is sent to the server.
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When the reading from the sensor is below the threshold and the counter equals zero, a
touch event is sent to the Server. Then the counter increases to 1 so all next sensor readings
with values below the threshold are not communicated to the Server. A release event is
sent to the Server only when the reading from the sensor is above the threshold and the
counter equals 1. Then the counter decreases again to zero so only one release event is sent
to the Server.

Figure 11. Interactions for Scenario 1 (Music Wall).

Figure 16 illustrates the behavior of the system across distinct and prolonged sensor
touches. In the left side plot, two distinct touches are made over a sensor and hence
two curves with sensor readings less than 30 are captured, respectively. We observe the
response time of the sensor to reach its minimum value, which depends on the pressure
that is exercised over it and how it is exercised over time. In the right plot it can be seen that
the touch is one but longer in duration. This represents a prolonged touch of the sensor.
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Figure 12. Interactions for Scenario 2 (English Alphabet).

Figure 17 illustrates the result of the counter flag in our implementation. In the left plot
of Figure 17, the counter flag is not used, so a large amount of touch and release events are
recognized by our system. On the right plot of Figure 17, the use of the counter flag helps
our system to differentiate distinct from prolonged touches and releases, so the amount
of touch and release events that are recognized are far less. As we can also see here, the
first values obtained in each touch event differ from touch to touch. This is again due to the
level of pressure that is exercised on the sensor with each touch. The use of this counter flag
also enables our surface to accommodate several users simultaneously since it enhances
the availability of the server.

Figures 18 and 19 illustrate the Finite State Machines (FSM) for our Client and Server,
respectively. The value sent by the Client to the Server after each touch event is unique
for each sensor, so the Server is able to activate the corresponding multimedia content.
In Figure 19, with x1 the sensor touch is represented and with x2 the sensor, the release
events, respectively.
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Figure 13. Interactions for Scenario 3 (Non-Interactive animation).

  

(a)                                                                                (b) 

Figure 14. Sensor readings when not touched (a) and when touched (b), shown side by side.
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Figure 15. Touch and release events sent to the server.

  

Figure 16. Behavior of the system across distinct and prolonged sensor touches. On the left, a plot
with filter and threshold when touched is shown. On the right, plot of the sensor when touched with
longer duration.

  

Figure 17. Result of the counter flag in our implementation.

Figure 18. Finite state machine of our client.
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Figure 19. Finite state machine of our server.

4. Results

4.1. Use Cases

As happens with applications that involve projection mapping, the alignment of
projectors with the projection area is critical since this type of application is supported by
the illusion it provides to the user. So, several tests were performed before the optimal
position and orientation of both projector and tangible surface, were found. Also, the
displayed content was tested in many different layouts to find the best one. Then, the
content was mapped using Processing with the touch sensors of the surface, so each sensor
matches to the corresponding interactive content. The tests were completed, and the
position, height, and orientation of the projector were noted on the floor of the room for
easy repositioning for future use. The audio playback was achieved through the speakers
of the computer unit, which was quite convenient. Initially, the computer’s USB ports
were used in the test application to power the microcontrollers. However, this was not
possible in the final deployment as the personal computer was placed at least two meters
away from the dashboard and the microcontrollers. For this reason, power was supplied
to the microcontrollers with the help of power banks, which were placed at the back of
the construction along with the wiring and the microcontrollers. Figure 20 illustrates the
welcome page of our application which calls the users to start interacting with it using the
left-sided menu.

The first scenario that is demonstrated is called Music Wall and from Figure 21 one
can easily understand what she/he is going to encounter. Our Music Wall consists of six
interactive musical instruments (tambourine, mandolin, trumpet, maracas, accordion, and
metallophone) projected by the projector over the tangible surface. The first five correspond
to one touch sensor each, as opposed to the last one which uses eight, one sensor for each
note of the metallophone. Figure 21a illustrates the mapping of each instrument with
the corresponding touch sensor behind the white paper. Each touch sensor activates an
acoustic and a visual interaction. The musical interaction corresponds to the sound of each
musical instrument, and the playback is carried out with the help of the speakers of the
computer unit. Visual interaction is achieved with the help of the projector and makes each
object change color with each touch (Figure 21b–d). Figure 22 reveals the simultaneous use
of our interactive surface by several users as it was discussed in Section 3.3. The music wall
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is a very interesting interaction game for children and adults, it is fun and at the same time
easy to understand.

 

Figure 20. Welcome page of our application.

  
(a) (b) 

  
(c) (d) 

Figure 21. Musical wall scenario. In (a), the mapping of instruments with the corresponding touch
sensor behind the white paper is shown. Visual interaction achieved with the projector making each
object to change color. Touching the trumpet (b), the accordion (c) and the mandolin (d), respectively.

The second scenario (Figure 23) is based on the English alphabet and aims to let the
children interact with the English alphabet, so they learn English words in an interactive
way. This layer consists of four touch sensors each associated with a letter of the English
alphabet. The letters are projected by the projector over specific areas of the surface and
each time they are randomly selected. By selecting one of the four letters, the user reveals
the corresponding word. Then, the word appears on the screen along with a related image.
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Figure 22. Simultaneous use of our interactive surface by several users.

Figure 23. English alphabet scenario. The layer consists of four touch sensors, each associated with a
letter of the English alphabet. Here is an example run of the scenario with the letters “L” in (a), “U” in
(b), “N” in (c) and “F” in (d), projecting the corresponding English words associated with each letter.

The third and final scenario is not interactive and is dedicated to the projection
mapping technique. Its aim is to demonstrate to the users what can be carried out with
projection mapping on surfaces with different positions, angles, and inclinations in relation
to the projector. To this end, a simple 2D animation downloaded from the internet was
projected over a 3d construction made by cardboard and placed over our surface (Figure 24).
The positions of the sensors used in the previous scenarios had also to be taken into account,
so the construction did not cover the sensors and did not obstruct the use of the surface
when another scenario is active. A part of the animation is projected on each board, and
this gives the final result.
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Figure 24. Non-interactive Scenario. Demonstration of projection mapping technique on surfaces
with different positions, angles, and inclinations, that appear in (b–d) in relation to the projector. In
(a) the 3d construction, made by cardboard and placed in the surface, is shown.

4.2. Evaluation

To evaluate the performance of the whole construction under different circumstances
of use, we set up a small benchmark in our premises, emulating realistic user behaviors
over the touch sensors. Figure 25 illustrates the touch sensors that were evaluated during
this benchmark. Sensor 4 is the sensor behind the tambourine, Sensor 5 is the sensor behind
the maracas, Sensor 6 is the sensor behind the mandolin, Sensor 7 is the sensor behind the
trumpet, and Sensor 8 is the sensor behind the accordion. Each experiment was repeated
eleven times and the values that are presented here correspond to the median value that
was recorded for each set of measurements.

 

Figure 25. Sensors under evaluation.

4.2.1. Touching the Sensors with One or More Fingers

In this experiment the sensors were touched at first with just one finger and then with
four. Figure 26 illustrates this experiment. The results proved that our touch sensors are
not sensitive to the number of fingers pressed on them.
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Figure 26. Touching the sensors with one or more fingers.

4.2.2. Touching the Sensors at Different Frequencies

In this experiment the behavior of our sensors was tested when they are touched
frequently. This is some kind of stress test for the sensors. To perform this experiment a
common music metronome was activated and the success rate for each sensor at different
beats-per-minute (bpm) of the metronome was recorded. Table 2 shows the results from
the evaluation of Touch Sensor 4 and Figure 27 illustrates instances from this experiment.
Similar results were recorded also for the other four touch sensors. We believe that the
recorded mean success rate of 95% proves that our touch sensors behave sufficiently steadily
for the use under consideration.

Table 2. Success rate of touches for touch Sensor 4 under different BPM.

BPM 50 80 100 120 150

Success Rate 19/20 20/20 18/20 19/20 19/20

Figure 27. Touching the sensors with different frequencies.
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4.2.3. Touching the Sensors with Lighter Pressure

Considering that this implementation will be used by children among others, we
wished to evaluate the behavior of the sensors when touched with lighter pressure. Table 3
summarizes the success rate for the five sensors under evaluation. The results show less
sensitivity of the sensors when less pressure is applied over them. We still believe, however,
that this performance is adequate for the intended use. The slightly different performance
of Touch Sensor 8 is attributed to the fact that at this area of the construction the white
paper has slightly unstuck and air has intruded between the sensor and the white paper.

Table 3. Success rate of touches for touch sensors under lighter pressure.

Touch Sensor 4 5 6 7 8

Success Rate 86% 83% 86% 84% 80%

4.2.4. Simultaneous Use of the Touch Sensors

The last experiment that was conducted was the evaluation of sensors when they were
used simultaneously by several users. To this end, two users started touching the sensors
together, so four sensors were activated in parallel. More specifically, three sensors were
permanently touched when the same time the sensor under evaluation was repeatedly
touched and released to measure its success rate.

Figure 28 illustrates instances from this experiment, in particular the evaluation of
Sensor 6 under simultaneous use is presented. The results showed similar behavior of
the sensors with their independent use (that is, a success rate of 95% for each sensor was
recorded again).

Figure 28. Simultaneous use of the touch sensors.

4.2.5. Comparison of Our Touch Sensors with a Commercial Touch Sensor

To compare the robustness of our touch sensors with commercial ones, we used a
commercial 3.5” touch display, connected directly to our system, as touch sensor. We used a
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touch pen (see Figure 29) and proceeded 100 times by repeatedly pressing the touch display,
while we repeated the same process for some of our sensors independently. The results
recorded, showed a comparable behavior of the sensors developed and a mean success rate
of 95% for each one in comparison to the commercial one touch display that had a 100%
success rate. In this test, no information is used from the projected content, but it is aimed
as a quick comparison of our touch sensors with a commercial one.

 
Figure 29. Comparing our touch sensors with a commercial 3.5” touch screen.

5. Conclusions

The present work showed that using simple low-cost materials in combination with
open-source software tools, one is able to build a functional interactive surface. This surface
was used as a simplified example demonstration of the research that is carried out by our
Sensor Networks laboratory during the visits of various schools in our university. Figure 30
illustrates the use of our surface by the students. The comments received from them were
very positive not only for the attractiveness and the simplicity of this construction but also
for its performance.

  

Figure 30. Use of our interactive surface by pupils during school visits in our laboratory.

Regarding the construction of the surface, the material chosen for this work was
cardboard, mainly for the easy management and portability that it provides. The cardboard
offered many advantages in the construction and made the connection of the front side and
the backside easy. On the backside all the wiring was connected to the microcontrollers,
this way the front side was not burdened with unnecessary materials and cables. However,
the choice of cardboard also brings several disadvantages and some limitations to the final
result. One such disadvantage is that since all the wiring is on the back of the surface, the
cardboard was not always in a good contact with the wall behind the construction. As a
result, in certain cases the touch sensors can be unstable. Another limitation seems to be
that the way of sticking the white paper over the interactive surface, so we did not avoid
air intruding in the middle. The addition of a frame where the cardboard can be placed
would play an important role and would significantly improve the stability of the surface.
Alternatively, a different rigid material can be used, for example plywood or plexiglass
sheets. With these options, the surface will be more stable and efficient, but it will be
difficult to be managed and easily moved.
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As it concerns software, the design and programming of the multimedia interactions
through Processing was also a challenge. For example, the playback of multiple videos
at the same time caused significant delays in the system, resulting in avoiding the use
of video content on the final implementation. Moreover, although processing is a very
promising tool for the creative industries, its requirement for programming dexterity limits
the audience it targets. Instead, a multimedia editing tool would offer more flexibility and
would greatly speed up the development of such dashboards.

In our immediate future plans, now that our first proof-of-concept implementation
has been positively evaluated, is to construct a revised version of this dashboard accommo-
dating the above improvements. Such an interactive surface, made by more rigid materials
than cardboard, and projecting guidance information, will be placed for use in a public
place in our university campus to test its performance under non controllable conditions,
as well as its acceptance by the audience. Apart from this alternative approach, our future
plans also include the creation of an interactive touch grid, similar to the logic of the
touch screens, using same low-cost philosophy. Such an implementation will eliminate the
restriction of putting touch sensors in strict positions over the dashboard and will make
our construction open to host dynamic scenarios for use in more demanding use cases.
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Abstract: As it concerns remote laboratories (RLs) for teaching microcontroller programming, the
related literature reveals several common characteristics and a common architecture. Our search of
the literature was constrained to papers published in the period of 2020–2023 specifically on remote
laboratories related to the subject of teaching microcontroller programming of the Arduino family.
The objective of this search is to present, on the one hand, the extent to which the RL platform
from the Hellenic Mediterranean University (HMU-RLP) for Arduino microcontroller programming
conforms to this common architecture and, on the other hand, how it extends this architecture
with new features for monitoring and assessing users’ activities over remote labs in the context of
pervasive and supervised learning. The HMU-RLP hosts a great number of experiments that can be
practiced by RL users in the form of different scenarios provided by teachers as activities that users
can perform in their self-learning process or assigned as exercises complementary to the theoretical
part of a course. More importantly, it provides three types of assessments of the code users program
during their experimentation with RLs. The first type monitors each action users perform over
the web page offered by the RL. The second type monitors the activities of users at the hardware
level. To this end, a shadow microcontroller is used that monitors the pins of the microcontroller
programmed by the users. The third type automatically assesses the code uploaded by the users,
checking its similarity with the prototype code uploaded by the instructors. A trained AI model is
used to this end. For the assessments provided by the HMU-RLP, the experience API (xAPI) standard
is exploited to store users’ learning analytics (LAs). The LAs can be processed by the instructors for
the students’ evaluation and personalized learning. The xAPI reporting and visualization tools used
in our prototype RLP implementation are also presented in the paper. We also discuss the planned
development of such functionalities in the future for the use of the HMU-RLP as an adaptive tool for
supervised distant learning.

Keywords: remote laboratory; Arduino microcontroller programming; xAPI; LRS; assessment types;
pervasive learning; supervised learning

1. Introduction

Remote laboratories (RLs) have been extensively studied in the literature, with a
prominent highlighted issue being the lack of a common design pattern among online
laboratory systems. This lack of standardization has constrained scalability, integration,
interoperability, traceability, reliability, security, and privacy. Addressing this concern, the
IEEE 1876-2019 standard [1] was developed to facilitate the design, implementation, and
usage of online laboratories in education. The fundamental purpose of remote labs is to
afford students the opportunity for practical experimentation (PEX) and laboratory experi-
mentation (LEX), leveraging components and equipment typically found in university labs.
Through remote labs, students can apply theoretical knowledge gained in the classroom,
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accommodating their learning styles, at their convenience. Whether utilizing PCs for E-
learning or smartphones for M-learning, students can engage with learning objects ranging
from simple tasks to more complex scenarios, within the parameters set by the remote lab.
This educational approach fills a crucial gap between simulated environments (full virtual
labs) and real-world lab experiences, enabling the provision of distant courses focused on
hardware equipment usage and software programming. The demand for remote access to
educational lab facilities was further underscored during the COVID-19 pandemic, where
such labs became essential for mobile learning, enabling students to practice and experi-
ment with specialized equipment and tools from any location to acquire practical skills and
fulfill course requirements.

In the paper [2], the classification of laboratories is presented. They are divided into
local and remote laboratories. The remote laboratories are classified into real remote lab-
oratories (remote laboratories), hybrid remote laboratories, and virtual laboratories. In
this paper, we review and propose a real remote laboratory, where the user works at a dis-
tance on real equipment, especially on programming microcontrollers like Arduino boards.
Working on an RL is different from working on a remote simulation, like Tinkercad [3],
which also provides learning skills (circuit design, coding, etc.), but only to some extent. An
RL can implement more experiments, more complex and with real components, working
in real situations and not based on a mathematical model [4], because they can connect to
an existing infrastructure such as LoRa Gateway, MQTT servers, etc. It must be highlighted
that there is no discrimination between the two types of laboratories, real or virtual, but on
the contrary, they are used in a complementary way to each other and both provide skills
to the user.

The HMU-RLP is a project designed and implemented by the Sensor Network LAB
of the HMU. It started from an Erasmus+ KA2 project named SYS-STEM, which included
five partners from European universities and is described in the paper [4]. During SYS-
STEM, a qualitative evaluation from teachers and students that used the SYS-STEM RL
was organized [4]. The evaluation highlighted some technical issues with the SYS-STEM
infrastructure, such as the need for more inherent interaction of the user with the RL as well
as the need for loading an initialization sketch in the experiment controller at the end of
each user session. Also, teachers of secondary education declared their willingness to run
pilot testing of the SYS-STEM methodology and ARDLAB with their students, although
they welcomed a tool providing analytics for their students’ actions over the lab. From
the logs of this evaluation, we noticed that students used ARDLAB for LAB exercises
especially during the late hours and, also, that many students repeated the courses more
than once, which potentially showed that it might be helpful for them or that they needed
some help to complete the tasks. The experience acquired from SYS-STEM led to the design
and implementation of a different platform that provides more capabilities and functions
toward pervasive and supervised learning, concepts that require more than an RL on which
the user only monitors the results of the code uploaded on the experimental microcontroller.
A first presentation of the HMU-RLP was issued in the paper [5], where we described
the ability of an RL to connect with a learning management system (LMS) and how the
experiments it provides can be used as learning objects (LOs) within an LMS course.

In the present paper, we proceed one step further toward pervasive learning, describ-
ing how an RL can supervise user actions over its infrastructure for potentially providing
more powerful analytics to the instructors and/or intelligent tutoring to the learners. The
need for these features was revealed by the outcomes of [4] and is implemented in this
paper with the three assessment types we introduced in the HMU-RLP.

This paper also implements a literature search for finding other remote laboratories
(RLs) that are used for teaching microcontroller programming of the Arduino family. This
search was underlined by our need to understand how education based on modern remote
labs is built today and what new features could potentially be added as a complement.
The literature search revealed similarities in the architecture of remote laboratories but did
not show any type of assessment apart from monitoring the results of the coding of the
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microcontrollers. The HMU-RLP is a use case for teaching programming in the Arduino
ecosystem. The HMU-RLP implements three different types of assessment of the user’s use
of the RL and the uploaded code, which is used for further processing of adaptive learning
concepts and aligns with the concept of pervasive and supervised learning. Furthermore,
the experimental microcontroller is connected to many sensors and actuators, which aligns
it with the concept of one RL for many experiments.

The literature search also revealed concepts that should be considered for implementa-
tion in the HMU-RLP and will be included in future work, such as hosting of the RL on a
remote laboratory management system, remote H/W configuration, and user complements
with augmented and virtual reality value-added concepts. Also, the need for an extended
qualitative review of our RLP from teachers and students.

The paper is organized as follows: Section 1 presents an overview introduction of the
paper. Section 2 includes the related literature search. Section 3 presents the architecture of
the remote lab. Section 4 presents the remote lab assessment types. Section 5, Experience
API Statements and Tools, presents the experience API used for the users’ learning analytics
reporting, while Section 6 presents the remote lab experiments. Finally, Section 7 presents
the conclusion and future work.

2. State of the Art

Remote laboratories seem to be a necessity in recent years because they cover a gap
between theory and hands-on laboratories, real on-site laboratories. The users work on
real equipment remotely. Under this context, there are advantages and disadvantages. The
advantage is that more users can practice on experiments from the comfort of their homes
and at any time they wish, 24/7, and RLs promote inclusion and diversity, providing lab
access to persons with special needs.

The disadvantages are that users do not acquire hands-on skills, and the experiments
are dependent on network communication and the quality of video and audio streaming.

The literature search that was performed revealed the number of papers published per
year. Queries were issued on the following databases: Google Scholar, Scopus, Semantic
Scholar, and OpenAlex. The keywords used were “Remote Labs”, ”Remote Laborato-
ries”, “Remote experiments”, “Online Labs”, “Online Laboratories”, and “Online Experi-
ments”. The keywords were limited to the paper’s title only. The initial search returned
13,544 results and after removing duplicates, and again filtering keywords in the title for a
second time, the number was reduced to 1615, as can be seen in Table 1.

Table 1. Results of analysis.

Data Source Initial Search
1st Stage

(Identification)
2nd Stage

(Screening)

Google Scholar 2267 620

Scopus 2152 842

Semantic Scholar 5186 492

OpenAlex 3939 16

Total 13,544 1970 1615

In Figure 1, the number of papers related to remote laboratories published per year
can be seen. What we can comment on in the graph is that, during the period of 2012–2015,
there was a peak in the number of papers published related to remote laboratories. After
the period of 2016–2019, there was a decrease in the number of papers on the topic of
remote laboratories, which then increased again during the period of 2020–2023, probably
due to the COVID-19 pandemic period, where remote laboratories were an important and
required solution for teaching, apart from the fact that technologies were developed.
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Figure 1. Papers on remote laboratories published per year.

Another literature research was performed to reveal the differences between the
proposed RL platform and other relevant use cases. Since the proposed RL is about
programming Arduino ecosystem boards, the keyword Arduino was added to the search
keywords. For this particular literature research, a search in the Scholar Google database
issued the following statement: “Remote Labs” OR “Remote Laboratories” AND Arduino.

The criteria set for the eligibility of a paper were the following:

• Recent papers that were published during the second peak period (see Figure 1),
which included also the COVID-19 and post-COVID-19 period. Additionally, it re-
vealed new generation RLs that included new technologies, e.g., complying with
IEEE 1876-2019 [1].

• RLs related to teaching microcontroller programming, specifically Arduino, because
the proposed RL is about teaching programming of Arduino boards.

• Access to the article using the institutional credentials of Hellenic Mediterranean
University.

• Papers written in the English language.

The initial results were 1590 papers and, after applying the selection criteria, the re-
turned number of results was reduced to 625 papers (query performed on 21 January 2024).

The screening was performed on the title and the abstract, and we present the selected
papers in Table 2.

By reviewing the related literature listed in Table 2, we saw some common charac-
teristics. These characteristics are the following: RL name, project website, programming
board, programming language, RL controller, hosted in platform, direct access, assessment,
GUI for access, statistics, monitoring, remote H/W reconfiguration, LMS integration, and
logging learning analytics.

Some RLs have a name that can be found in the literature and a website for the project
they belong to, for example, VISIR+, etc. The RLs are for programming microcontrollers,
so knowing the board that is programmed is important (Arduino, STM, etc.) and also the
programming language used. For example, in some cases of Arduino programming, it is
C/C++ coding or visual programming.

31



Information 2024, 15, 209

Table 2. List of reviewed papers.

Reference
No

Title
Publication

Year

[5] Integration of a Remote Lab with a Learning System for training on
Microcontrollers’ programming 2023

[6] LabsLand Electronics Laboratory: Distributed, Scalable and Reliable
Remote Laboratory for Teaching Electronics 2023

[7] Remote Laboratory for the Development of Customized Low-Power
Computing and IoT Systems 2023

[8] ARM Distributed and Scalable Remote Laboratory for Texas
Instruments Launchpad Boards 2023

[9]
Mobile Arduino Robot Programming Using a Remote Laboratory in
UNAD: Pedagogic and Technical Aspects: Experience Using a
Remote Mobile Robotics

2021

[10] Learning CAN bus communication with a remote laboratory 2022

[11] Learning Management Systems as a platform for deployment of
remote and virtual laboratory environments 2022

[12] ERPLab: Remote Laboratory for Teaching Robotics and Programming 2023

[13] Fpga-based remote laboratory for digital electronics 2020

[14] Practice Projects for an FPGA-Based Remote Laboratory to Teach and
Learn Digital Electronics 2023

[15] Teaching programming and microcontrollers with an arduino remote
laboratory application 2023

[16] Remote Experimentation Through Arduino-Based
Remote Laboratories 2021

[17] Remote laboratory for microcontroller programming course 2022

[18] An Implementation of a Web Laboratory Converting Off-Line
Experiments into Remotely Accessible Experiments 2022

[4] Remote Arduino Labs for Teaching Microcontrollers and Internet of
Things Programming 2022

[19] Remote Laboratory Offered as Hardware-as-a-Service Infrastructure 2022

[20] A Remotely Configurable Hardware/Software Architecture for a
Distance IoT Lab 2021

[21] Internet of things network infrastructure for the educational purpose 2020

[22] IOT-OPEN.EU: Introduction to the IoT Practical Projects in
English–IOT-Open 2024

[23] μLAB A remote laboratory to teach and learn the ATmega328p μC 2020

[24] Block. Ino: Remote lab for programming teaching and learning 2020

[25] Training Laboratories with Online Access on the ITMO.
cLAB Platform 2020

[26] Design and development of remote laboratory system to facilitate
online learning in hardware programming subjects 2020

[27] Implementation of an Arduino remote laboratory with Raspberry Pi 2019

[28] Improving the scalability and replicability of embedded systems
remote laboratories through a cost-effective architecture 2019
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RLs are either autonomous, where the user connects directly to the RL, the direct
access characteristic, or they are hosted in platforms like remote laboratory management
systems (RLMSs), massive online open courses (MOOCs), small private online courses
(SPOCs), learning management systems (LMSs), repositories like remote lab management
systems (RLMSs), etc., see the hosted in platform characteristic. These platforms handle user
authentication and interoperability with the RL. There are also cases where the RLs can work
in both cases autonomously or provided via a platform. All of these are suggested in the
IEEE 1876-2019 Standard for Networked Smart Learning Objects for Online Laboratories [1],
which defines methods for storing, retrieving, and accessing online laboratories. According
to the standard, an online laboratory (RL) is defined as a lab as a service (LaaS).

The assessment type characteristic is whether the RL provides an assessment type and
reports grading to the user profile, like it is presented in the HMU-RLP in the next sections.

The type of access to the RL is another characteristic, via a web interface, an appli-
cation, or via remote desktop application. Another characteristic is the monitoring of the
RL’s experiment and equipment. In most cases, there is a web camera or an RPI camera
module connected, but we also found a paper in which there was no monitoring but
images of the board were displayed with the current status. In most of the use cases, the
H/W experiments are ready connections, but in one case they suggested an online H/W
reconfiguration to expand experiment scenarios.

Finally, the last two characteristics are very important in the concept of pervasive and
supervised learning. The possibility of integration in a learning management system (LMS)
and the logging of learning analytics on the user’s learning experience. According to the
paper [5], when an RL is integrated into an LMS, as a learning object (LO), then there are
learning analytics that can be stored in the LMS user profile, for example, updating the
user grade book, marking an LO as completed, etc. The use of these LAs can be used in
updating and planning the learning path of a user. For example, imagine a user who cannot
complete an experiment that has to turn on some LEDs. Then, the course path in the LMS
can be updated to simpler experiments to help the user complete the learning task and
acquire the learning skill. On the other hand, when a user archives directly to complete the
experiment, then the LMS enables a more complex experiment to be assigned to the user.

All of the characteristics mentioned above are about working in an LMS and the
RL is an LO. Now what about when the RL is not integrated into an LMS and works
independently. Then, the learning analytics are stored in learning record storage (LRS), the
database defined in the xAPI standard. With the use of tools, the instructor may follow
the learning path of the user and accordingly assign experiments to the user. This process
needs to be developed in such a way as to automate it and is currently under research
by the team developing the HMU-RLP. The Table 3, presents the summary of the paper’s
review characteristics.
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3. The Architecture of the HMU-RLP

The literature search revealed similarities in the architecture of remote laboratories but
did not show any type of user assessment apart from monitoring the results of the coding
of the microcontrollers. The HMU-RLP attempts to fill this gap by implementing, as we
will present, three different types of assessment of the user’s interaction with the RL and of
the code the user uploads. Furthermore, the experimental microcontroller is connected to
many sensors and actuators, which aligns with the concept of one RL for many experiments.
The literature search also revealed concepts that should be considered for implementation
in the HMU-RLP and will be included in future work, such as hosting of an RL on a remote
laboratory management system and user complements with augmented and virtual reality
value-added concepts.

The presented platform for remote labs has a similar architecture to most RLs presented
in Section 2. There is a main server, which is a Raspberry PI single-board computer, that
runs an application developed in the Flask framework. The application provides the user
interface and all necessary tasks needed for the function of the RL.

In most of the cases reviewed, the user connects to the RL via the Internet from any-
where the user wishes and by any device s(he) prefers (PC, laptop, tablet, or smartphone),
exploiting distance learning positives. Such an architecture is proposed in [28].

The application provides a platform for the users to use the RL. There are tasks granted
to administrators and users. Table 4 lists the main tasks of the application for users and
administrator groups.

Table 4. Tasks per users and administrators.

Users:

• User creation
• User profile update
• User Arduino sketch storage
• User sketch compilation and uploading
• Remote lab monitoring
• Remote lab user interaction
• Activating activities
• Monitoring activity status

Administrators:

• Setting configuration parameters
• Shadow controller check

(Enable/Disable)
• Booking system (Enable/Disable)
• Clearing users’ sessions
• Setting user group

(Student/Administrator)
• Setting xAPI status (enable/disable)
• Creating activities

Additionally, the application implements the learning tools interoperability (LTI),
which allows the platform to act as an external tool in a learning management system
like Moodle.

From the above discussion, the platform can work in two modes. The first mode is
“LMS-Free”, which handles everything, like users’ creation and authentication, security
issues, activities, learning analytics, etc. The second mode is the LMS external tool, where
the platform is called from an LMS for a particular activity (learning object), and the user
executes the activity according to the instructions and finally submits the activity. The
performed activity is assessed by the RL and the grade is updated in the LMS users’ grade
book. Additionally, the users’ learning analytics are stored in a learning record store (LRS)
as part of the experience API standard.

This is what differentiates the remote lab presented from the other cases mentioned
in Section 2. The RL can assess the uploaded code, but on the contrary, the other re-
mote labs only stay in the phase of monitoring the results of the sketch uploaded on the
Arduino board.

To summarize the above-mentioned information and visualize it, we can see Figure 2.
The user logs in to the HMU-RLP via the Internet using a web browser. The HMU-RLP is
located on the campus of the HMU, in the Sensor Networks LAB.
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Figure 2. Generic architecture of remote laboratories.

HMU–RLP User Workflow

The user’s workflow of the HMU-RLP is presented in Figure 3. After the user logs in
to the HMU-RLP, the user then has to activate an activity.

The main object in the RLP is the activity. The activity is the scenario or the experiment
that will run on the RLP; everything begins with activity activation. The user activates
an activity in the RLP and receives instructions about the scenario and also relevant
documentation. After activation, the user creates the code required from the activity’s
scenario in the Arduino IDE. It must be reassured that the code contains no syntax errors
using the Arduino IDE Compiler. After verifying that the code is correct, the code is
stored in the RLP users’ profile. The code must be compiled and uploaded in the Arduino
experimental microcontroller.

When the new code is uploaded, then the user can remotely monitor the execution of
the code via the camera/s of the RLP. Additionally, the user can interact with the experiment
(turn on/off the lights, the heater, the FAN, or pressing the red or the yellow buttons); in
this way, the activity’s scenario is tested. After testing the scenario, the user can check that
they have followed the correct instructions from the activity status report.

When the user is ready, they can submit the activity for assessment. The activity
submission concludes the experiment.

During the whole process, the user’s learning analytics profile is updated using
xAPI statements.

As we mentioned, there are three types of assessments in the RLP. The logging of the
path of the actions assesses the actions instructed to the user. The shadow microcontroller
verification checks the code at a hardware level. And last, the machine learning check
of the code, which uses a decision tree algorithm to verify that the code adheres to the
instructions. All assessment test results are stored in the xAPI LRS as statements.

Finally, instructors can use reporting and visualization tools for further processing,
the user’s learning path, and adaptive learning.
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Figure 3. HMU-RLP user workflow.

4. Remote Lab Assessment Types

We will begin by explaining what we mean by the term assessment of experiment
in the context of a remote lab. When a user is assigned an activity (experiment), the user
needs to have the instructions for the activity, the relevant theory documentation, and the
schematic of the connections on the microcontroller. The user has to make the required
code and compile it to the Arduino IDE to verify that there are no syntax errors and store
it in his profile sketches in the remote laboratory. Consequently, the user has to compile
the code and upload it to the microcontroller via the remote laboratory. After this, the
user has to check that the code created is doing what it is supposed to do, according to the
activity instructions. This is where the assessment starts. How is the instructor informed
that the code is correct and aligned with the activity’s instructions? One way is to show the
teaching assistant the results, but this cannot be performed since we are working remotely
and there is not an available assistant. Another way is to send the code to the teaching
assistant, which is time-consuming. Another way is to create a report, but also in this case
there is no guarantee that the user is the one who performed the experiment or that the user
did not copy the report of somebody else. So, the best way is for the code to be assessed
automatically by the RL.

The remote lab has three types of assessment that can be implemented. The following
subsections will present the HMU-RLP assessment types.

4.1. Actions Assessment

The first one is to monitor the “microactivities”, each action that the user performs
on the RL, for example, login, logout, create, update, delete, compile, and upload a sketch,
and interactions with the experiments, such as turn on/off the lights, the fan, the heating
resistance, and change the position of the potentiometer.
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Every action performed is logged and compared to the required “microactivities” path
of the exercise. This type of assessment shows what exactly the user is doing on the RL.
Also, it is very useful in a simulation scenario of an operator. In case there is a need to train
an operator, when an alarm occurs indicating what sequence of action must be followed.

All of these “microactivities” are logged via xAPI statements to an LRS for learning
analytics. Using xAPI reporting tools, the instructor can obtain conclusions about the
user and how they performed in the experiment. For example, the number of experiment
attempts, the duration of the experiment session, how many times the code was uploaded,
what experiments the user performed, etc.

4.2. Shadow Microcontroller Assessment

The second type is to monitor the experimental microcontroller by another microcon-
troller called a “shadow” microcontroller. Ideally, the “shadow” microcontroller must be
the same as the experimental microcontroller because the pins must be the same in both
cases. All pins between the two microcontrollers are connected (exp. Mc A0-sha. Mc A0 . . .
exp. Mc Pin13-sha. Mc Pin13).

Using the shadow microcontroller, the instructor assesses the activity on a hardware
level. The shadow microcontroller monitors what happens on the pins of the experimental
microcontroller and reports it to the RPI.

The communication between the RPI and the shadow microcontroller is implemented
via the I2C bus. We must mention that for protecting the I2C bus of the RPI, we must use a
Bi-Directional Logic Level Converter due to different voltage levels between RPI (3.3 V)
and the Arduino UNO (5 V).

There are two ways that we can implement the shadow microcontroller assessment.
The “Activity Specific Firmware” and the “General Firmware”.

4.2.1. Activity-Specific Firmware

The “shadow” microcontroller is loaded with a specific firmware when an activity
is activated. This firmware instructs the shadow microcontroller what to monitor from
the experimental microcontroller. If the shadow microcontroller obtains the expected
results, it reports to the RPI. The validity of the activity’s code is reported by the shadow
microcontroller sending “success” or “failure” when it is inquired from the RPI. Then, the
RPI sends an xAPI statement of the shadow controller report.

To elaborate on this case, we will present an example. Suppose that the activity
instructs the user to create a code that will flash the green LED connected to pin 2 on the
experimental microcontroller. As mentioned before, pin 2 of the shadow microcontroller is
also connected with pin 2 of the experimental microcontroller (see Figure 4).

The shadow microcontroller is programmed to set pin 2 as the input and monitor
the pulses that come to pin 2. The shadow firmware is created and stored from the
instructor/creator of the activity (see Figure 5, section C), where the activity creation is
enabled only for administrators/instructors.

The user, from their side, is instructed to create a code that flashes the green LED
every 1 s. If the code is correct, then the green LED flashes every 1 s and the shadow
microcontroller starts counting pulses from its side. Then, the shadow microcontroller
reports “success” when it is inquired from the RPI. Now, in case the user made a mistake
and instead of flashing the green LED flashes the red, which is connected to pin 4, which
is a logical error, then the shadow microcontroller will not count any pulses on pin 2 and
then will report “failure” when it is inquired from the RPI. The same result will occur if the
user loads a different code, different than the code instructed.

As a second example, we have a scenario where the user is instructed to control the
RL environment temperature. The user creates a code that monitors the temperature using
pin A5 (see Table 5), and when the temperature exceeds the threshold value, then the user’s
code must activate the fan connected to pin 11 (see Table 5). The shadow microcontroller
firmware will monitor the value of the analog pin A5, and if it exceeds the threshold, pin
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11 should be set to HIGH. If these conditions exist, then the shadow microcontroller will
set the activity as successful; as long these conditions never occur, then the activity is set
as failed.

It must be highlighted that the shadow microcontroller is transparent to the user, that
the user does not know of its existence, so it is hidden in the RL. The drawback of this
option is that when activating an activity, there is a delay in compiling and uploading the
shadow microcontroller firmware, which may confuse the user.

Additionally, it must be clarified that the shadow controller-specific firmware is created
by the instructor and creator of the activity. The code is in Arduino programming and it is
based on a template of code that at the end sends the report SUCCESS or FAILURE to the
RPI when it is requested from the RPI.

 

Figure 4. Experiment and shadow microcontrollers.

Table 5. Sensors and actuators connected to the experimental microcontroller.

1. LED Three LEDs connected to pins 2, 3, and 4

2. Servomotor One servo motor connected to pin 5

3. Buzzer One buzzer connected to pin 6

4. Push Buttons Two push buttons connected to pins 7 and 8

5. H-Bridge One HW95 H-Bridge connected on pins 9, 12, and 13

6. Relay One relay connected on pin 10, which turns on an LED stripe
One relay connected on pin 11, which turns on a fan

7. LCD Display One LCD connected to A0 and A1

8. Potentiometer One potentiometer connected on pin A3

9. Photoresistor One photoresistor connected on pin A4

10. Temperature sensor LM35 One temperature sensor connected on A5
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Figure 5. Activity creation/update.

4.2.2. General Firmware

In the case of the general firmware, we upload a general firmware on the shadow
microcontroller, which monitors all the pins of the experimental microcontroller. When
there is a change in the pin status, the shadow microcontroller sends a report to the RPI
of a string with the status of all of the pins (High/Low for digital pins and the value read
from analog pins). Then, the RPI sends the pins’ status reports as xAPi statements to the
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LRS. The instructor, using the xAPI tools and filtering, can view the sequence of pin status
in the specific activity and understand that the code is working as it should.

As can be understood, in this case, there is the option for bigger users’ learning
analytics and reporting. We will use the above two examples to elaborate on this case.

In the first example, where the user is assigned to flash (turn on/off) the LED connected
to pin 2, each time that pin 2 changes status, the RPI is triggered and the pin status report
is sent. Next, the RPI sends the xAPI statement to the LRS. Then the teacher can filter the
users’ profile statements for the specific activity and see the status of all of the pins. It will
be visible that pin 2 flashes, changing from LOW to HIGH and from HIGH to LOW.

In the second example, where the user has to control the environment temperature, as
the temperature increases, the value of pin A5 increases. As long as the value increases, the
status of the pins changes, and for each change, the RPI receives the pins’ status reports
from the shadow microcontroller, which are sent as xAPI statements. When the value of
pin A5 reaches the threshold, then pin 11 will be set to HIGH. Filtering the xAPI statements,
the instructor will see that the value of pin A5 increases and after the value of A5 exceeds
the threshold value, pin 11 will be set to HIGH.

The positive aspect of this method is that the shadow controller is loaded once with
the generic firmware and there is no delay in loading the firmware each time an activity is
activated. The drawbacks of this method are that there are a large amount of data stored
in the LRS and that the instructor must check for the validity of the user’s code, which is
time-consuming. We are working on automating this process.

The report that the Arduino sends and is received from the RPI is in the following format:
{‘digital_pin_statuses’: [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], ‘analog_pin_values’: [1023, 993,

929, 816, 25, 25]}
The drawback in this case is that there are a lot of data sent due to unstable analog

pins values, which is why in the code we have implemented a percentage threshold of
difference. This method of assessment is a work in progress, and we suggest the use of
activity-specific firmware.

4.3. Artificial Intelligence Assessment

The third type of assessment in the RL is to use artificial intelligence (AI) to assess
the uploaded code. Before we start the presentation, we must highlight that this type of
assessment is a broad topic that needs particular research and development. Different
algorithms can be implemented, like neural networks, decision trees, etc., or even using
Ghat-GPT. For this paper, we created a simple use case for proof of concept, which will be
elaborated on in future works.

In this use case, we created an algorithm based on a decision tree. For each activity
activated, there are stored defined accepted codes and wrong codes. When the user uploads
the required code and submits the activity for assessment, the code is compared with the
AI model and replies if it is successful or wrong.

The model is stored during the activity creation, as shown in section D in Figure 5. The
model is created by the instructor and can be enriched gradually using users’ successful or
wrong submitted codes.

In the paper [38], they propose a generic AI-based technique for assessing student
performance in conducting online virtual and remotely controlled laboratories. Their
suggestion is based on the dynamic use of the mouse, which is different than our suggestion,
but has a similarity in breaking an experiment into different stages or user steps, which in
our case we call “microactivities”.

Based on these three types of assessment, the RL can reply if the code submitted by
the user aligns with the scenario of the experiment or not, and reply accordingly, updating
the grade book or sending the relevant xAPI statements for the profile of the user.

42



Information 2024, 15, 209

4.4. Assessment Types Roles

For a better understanding, we must clarify that each assessment type is independent
and has a particular role in the assessment process. Also, each activity’s assessment type
result is logged separately to obtain the final activity grade.

Action assessment: Each activity has a set of paths of actions to be followed. This is
used for training purposes in a use case where a scenario has to be followed. For example,
a user who receives an alarm or an indication has to perform a specific workflow. In this
assessment, it is monitored that the users use the experiment and test it, and we can avoid
cases where users log in to the RL and only log their session time.

Shadow microcontroller assessment: The role of the shadow microcontroller is to re-
port the status of the experimental microcontroller. For example, if there is an activity where
the user has to log and report some analog values on the experimental microcontroller,
who will verify that the values reported are correct and not copied from another report?
The comparison of the user’s report and the statements of the shadow microcontroller will
show the real activity testing.

Artificial intelligence assessment: This is used to verify that the code used by the
user is according to the code expected. In this case, if the instructor wants to teach a specific
programming method, for example, “while loops”, and does not want the use of “for loop”,
this can be easily traced.

4.5. Activity Creation

In Figure 5, it can be seen how an activity is created in the platform. In the fields from
A to F, we can see the information that needs to be filled in by the activity creator.

A. Activity Title
B. Activity Description–User Instructions
C. Shadow Controller Code
D. Machine Learning Models
E. Activity Image
F. Microactivities–User action path

5. Experience API Statements and Tools

In the paper, we have mentioned the experience API (xAPI), formerly known as
Tin Can API. It is a specification for learning technology that allows for data collection
about a wide range of a person’s experiences (both online and offline). Developed by the
Advanced Distributed Learning Initiative (ADL), xAPI provides a way to store, manage,
and share data about learning experiences in a consistent format and can be used to
integrate various learning tools and platforms. It is often seen as a successor to SCORM
(Sharable Content Object Reference Model), offering more flexibility and capabilities for
tracking learning experiences.

The basic components of xAPI are the following:

1. Statements: At the heart of xAPI are “statements” that record what a learner has
done. A statement is usually formatted as “I did this” or “[Actor] [Verb] [Object]”. For
example, “Manos logged in the Remote Lab 1”, “Manos activated activity No 1 on
Remote Lab 1”, or “Manos passed activity No 1 on Remote Lab 1”.

2. Actor: The individual or group that the statement is about.
3. Verb: Describes the action taken by the actor.
4. Object: What the action is performed on.
5. Result: Additional data about the outcome (optional).
6. Context: Additional data to help understand the context in which the action occurred

(optional).

xAPI statements can be generated by tools, simulations, quizzes, serious games, or
learning environments. Depending on the learning analytics required, the designer decides
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what kind of user activities need to be stored. The xAPI statements are stored in and
retrieved from the learning record store (LRS).

The project uses an LRS, which is a learning locker [39] hosted in the site
https://lrs.nile.hmu.gr/ (accessed on 28 March 2024) and provided by the Natural In-
teractive Learning Games and Environments Lab (NILE) of the HMU. While the learning
locker primarily serves as an LRS, it also offers some basic reporting and visualization
features. Users can build custom dashboards and reports using the built-in reporting engine
or by integrating with external visualization tools (see Figures 6 and 7).

 

Figure 6. Learning locker reporting features.

 

Figure 7. Learning locker visualization features.

During our research, we also found other commercial LRS reporting and visualizing
tools, like Watershed LRS, Rustici LRS, etc.

Using the experience works of the HMU in the papers [40,41], we created a use case
webpage (https://garefalakis.eu/xAPI-Dashboard/examples/verbs2.html (accessed on 28
March 2024)) where a graph of the statements stored in the LRS of the RL can be viewed
(Figure 8).
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Figure 8. xAPI graph representation.

Additionally, the xAPI statement viewer can be seen in the webpage (https://garefalakis.
eu/xAPI/1.0/original_prototypes/StatementViewer/ (accessed on 28 March 2024)), which
can show all of the statements stored in the LRS (Figure 9). The two web pages were
created for demonstration purposes and will be developed shortly on the project’s site
(https://iot.hmu.gr (accessed on 28 March 2024)).

 

Figure 9. xAPI statement viewer.

6. Remote Lab Experiments

To give RL flexibility, the experiment controller is connected to many sensors and
actuators. This gives the flexibility to create different activities and scenarios for the users’
training. In Table 5, the list of electronic parts and the pins they are connected to can be seen.
In Figure 10, is depicted the schematic, of all the components connected to the experiment
controller, and in Figure 11, are depicted all the components connected.
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Figure 10. Tinkercad sensors and actuators connected to the experimental microcontroller.

Figure 11. Experimental microcontrollers with connected sensors and actuators.
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Apart from the components connected to the experimental microcontroller, other parts
are connected to the RPI. These parts are activated by the user from the user interface. The
user, by using these parts, changes some conditions in the RL, and the sensors sense the
changes. For example, an experiment is to write a code that the microcontroller monitors
when the environmental light of the RL is turned off and the microcontroller turns on the
LED stripe connected to pin 10. The list of these parts is given in Table 6.

Table 6. External parts.

Relay 1–Activates RL lights

Relay 2–Pushes red button

Relay 3–Pushes yellow button

Relay 4–Activates heating resistor

Relay 5–Activates fan

Relay 6–Future use

Relay 7–Future use

Relay 8–Future use

7. Discussion and Conclusions

In this paper, we presented the related literature on the subject of remote laboratories,
specifically on the RLs that aim to teach microcontroller programming of the Arduino
family. The literature revealed the remote laboratory management systems (RLMSs) that
exist and host a great number of such RLs, some of which are Labsland, GO-LAB, and
RELLE. Also in this review, it was found that the RLP we have created in the Sensor
Network LAB of the HMU shares the same architecture with a great number of RLs found
in the literature. The different features of the HMU-RLP that were not found in the literature
relate to the fact that, in our platform, the assessment of the experiments is not performed
only by the users. In most RL cases, the user uploads his code to the microcontroller and
then monitors the results on the streaming video and also interacts with the RL to verify
that the code is doing what it is supposed to do.

In the HMU-RLP, we have introduced three types of user assessment: The first type
monitors each action users perform over the web page offered by the RL. The second type
monitors the activities of users at the hardware level. To this end, a shadow microcontroller
is used that monitors the pins of the microcontroller programmed by the users. The third
type automatically assesses the code uploaded by the users, checking its similarity with the
prototype code uploaded by the instructors. A trained AI model is used to this end. For the
assessments provided by the HMU-RLP, the experience API (xAPI) standard is exploited
to store users’ learning analytics (LAs). The LAs can be processed by the instructors for
the students’ evaluation and personalized learning. These assessment types work together
toward the pervasive and supervised learning with which the HMU-RLP project intends
to comply.

Future work planned for development of the HMU-RLP includes the following topics:

• We intend to further develop the features of our platform that exploit xAPI statements
with users’ learning analytics data to create personalized learning paths according to
the adaptive and pervasive learning paradigm. We intend to follow a hybrid approach
so that this process works both manually, under the supervision of the instructors with
decision support offered by our system, and automatedly, so users are automatically
assessed and tutored by the system.

• Further development of the AI type of assessment offered by our platform for automat-
ically checking user coding. To this end, we plan to fine-tune a pretrained open-source
large language model (e.g., Llama2) to assist the user with the coding actions that
must be followed for a specific activity or provide feedback on a sketch that is not
aligned with the activity scenario.
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• The literature revealed that many RLs are hosted in remote laboratory management
systems (RLMSs). Although the HMU-RLP can currently accommodate several RLs, it
cannot be considered an RLMS. Such an option will help in RL sharing and dissemina-
tion via the HMU-RLP.

• Creation of an RL that will be used in teaching microcontroller programming for the
Internet of Things. There will be two remote laboratories, one of which will have
an experimental microcontroller connected with sensors and actuators, like ESP32,
that will communicate with an MQTT server, and one software RL that will host a
Node-RED server where the user will develop an application that will interact with
the MQTT server and will display in the user interface controls and charts.

• Thorough evaluation and testing of the HMU-RLP into real training and learning
environments so we can scale its readiness level from an experimental proof-of-concept
platform to a production-ready toolkit. The HMU-RLP has already been presented
to teachers of Greek secondary education and we will soon have their opinions and
evaluation. Next, it is planned for the teachers to use the HMU-RLP in their classes for
teaching Arduino and IoT programming, and students will be able to further evaluate
the HMU-RLP.

• The implementation of the H/W configuration of the RL by the user remotely, as is
described in the paper [20]. The user will be able to use more components connected
to the Arduino board by switching and enabling different connections to new circuits
remotely, using relay matrixes.

• Implementation of augmented and virtual reality applications for the user to see the
experiments working and interact with them using AR and VR technology.
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Abstract: Nowadays, the Internet of Things (IoT) has become widely used at various places and
for various applications. To facilitate this trend, we have developed the IoT application server
platform called SEMAR (Smart Environmental Monitoring and Analytical in Real-Time), which offers
standard features for collecting, displaying, and analyzing sensor data. An edge device is usually
installed to connect sensors with the server, where the interface configuration, the data processing, the
communication protocol, and the transmission interval need to be defined by the user. In this paper,
we proposed an edge device framework for SEMAR to remotely optimize the edge device utilization
with three phases. In the initialization phase, it automatically downloads the configuration file to the
device through HTTP communications. In the service phase, it converts data from various sensors
into the standard data format and sends it to the server periodically. In the update phase, it remotely
updates the configuration through MQTT communications. For evaluations, we applied the proposal
to the fingerprint-based indoor localization system (FILS15.4) and the data logging system. The results
confirm the effectiveness in utilizing SEMAR to develop IoT application systems.

Keywords: Internet of Things; edge device; framework; application server platform; SEMAR

1. Introduction

Currently, the Internet of Things (IoT) is receiving much attention from both industries
and academics as an emerging technology that uses the Internet infrastructure to connect
physical worlds to cyberspaces [1]. The IoT application infrastructure is continuously being
extended to become more ubiquitous around the world and is composed of numerous
physical devices distributed across multiple domains [2]. In this context, the success of
an IoT application system depends on the ability to collect, manage, and analyze the data
easily and flexibly, as well as to distribute it to users and other systems efficiently [3,4].
Nowadays, the amount of data generated by sensor devices is increasing rapidly with the
availability of diverse network connectivity and various protocol services; IoT application
system developers should design and build these systems considering standardizations
with heterogeneous device management.

In an IoT application system, edge computing is often adopted to bring computing
capabilities for data processing to locations closer to sensors or target devices [5]. Some IoT
applications may require low latency and real-time data processing, which cloud servers
cannot provide [6,7]. Due to the diversity of sensor resources, the introduction of edge
computing devices has become a valuable solution to reducing the computational complexity
of data processing in cloud servers [8]. Edge computing devices enable various functions
at the edges of networks before sending data to the server and can increase the efficiency
of data processing [9]. It also offers the data conversion capability to convert raw data
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to the standard data format. It is expected that the edge device framework was introduced
to facilitate application developments in edge computing devices [10]. The framework
interacts with devices in the physical world that may change over time [11]. Therefore, it
should support the dynamic development of edge systems.

Recently, cloud-based solutions have been widely used for IoT application systems [12].
Instead of focusing on the implementation details, the prepared tools allow developers to
focus on the implementation of logic by using functions that efficiently support the design
and implementation of IoT applications [13]. However, most of the existing cloud-based
solutions did not support effective and efficient developments at the edge devices level,
and their technologies have often limited the interoperability with third parties.

Previously, we designed and implemented the IoT application server platform as
a cloud-based solution for integrating various IoT application systems, called SEMAR
(Smart Environmental Monitoring and Analytical in Real-Time) [14]. SEMAR provides standard
features for collecting, displaying, processing, and analyzing sensor data from different do-
mains. It offers built-in functions for data synchronizations, aggregations, and classifications
with machine learning in Big Data environments, and plug-in functions for allowing other
systems to access the data through the Representational State Transfer Application Programming
Interface (REST API).

Unfortunately, the current implementation of SEMAR does not facilitate deployments
and implementations of edge devices within the context of IoT ecosystem application deploy-
ments. As an effective IoT application server platform, SEMAR should be able to control
and manage various IoT devices remotely. It must be capable of reconfiguring IoT devices
to improve their performance and utilization.

In this paper, we proposed an edge device framework and its implementation for SEMAR
to facilitate the development of edge devices for IoT applications. As a popular edge device,
the Raspberry Pi was selected for this implementation, and the image was created in the
SEMAR server. This framework can remotely optimize the utilization of this edge device by
configuring the connectivity of sensor interfaces, a data conversion approach, a data model,
transmitted data, local data storage, local visualization, and the data transmission interval
on the server. Actually, it provides features for downloading configuration files to the
devices using HTTP communications, converting data from diverse sensor resources into
standard data formats before delivering them to SEMAR, processing data using rules and
filter functions, offering multiple output components for utilizing the acquired data, and
enabling remote configuration updates using Message Queue Telemetry Transport (MQTT)
services [15].

For evaluations of the proposal, we applied the edge device framework to the fingerprint-
based indoor localization system (FILS15.4) [16,17] and the data logging system. These integrated
systems were deployed in #1 and #2 Engineering Buildings at Okayama University, Japan.
In addition, we evaluated the effectiveness of the edge device framework by investigating
its computing performance and comparing it with similar research works. The results
confirm the feasibility of utilizing the edge device framework in developing IoT application
systems with SEMAR.

The rest of this paper is organized as follows: Section 2 presents related works.
Section 3 describes the IoT application system architecture. Section 4 briefly reviews
our previous works on SEMAR. Section 5 presents the design and implementation of the
edge device framework. Sections 6 and 7 briefly describe the implementation in two IoT
application systems. Section 8 presents comprehensive performance evaluations and a
comparative analysis with similar related work. Finally, Section 9 concludes this paper
with future works.

2. Related Works

In [18], Mahmood et al. presented a simulation of an edge computing implementation
for resource allocation in IoT applications for smart cities. The result shows the effectiveness
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of the edge computing layer in reducing the energy and computational resources for IoT
networks.

In [19], Sarangi et al. proposed IoT applications for digital farming by using a micro-
controller that connects soil moisture sensors with the mobile system as edge gateways.
The edge device captures and transmits sensor data to the mobile system through Wi-Fi
communications. Then, the mobile system processes the data and sends them to the cloud
server. This approach presented the utilization of the mobile system for collecting and
processing information at edges to reduce computational processes at the cloud level.

In [20], Oueida et al. proposed an integration of the edge computing device and
the cloud service in the smart healthcare system. Edge computing was used to gather
information from smart devices, process it to obtain the necessary data, and transmit it to
the cloud server. The proposed system was suitable for emergency departments and other
types of queuing systems.

In [21], Mach et al. proposed the concept of the mobile edge computing, which
enables IoT applications to perform massive data processing at the device level. However,
developers should consider three key aspects, namely, the computation decision, the
resource allocation for computational processes, and the mobility management. This
approach can reduce the latency of the network in IoT application systems.

In [22], Yousafzai et al. introduced a light-effect migration-based paradigm for manag-
ing computational offloading in edge networks in mobile edge computing. They investi-
gated the impacts of edge networks on IoT applications. The evaluation results showed
that the execution time for data processing and the amount of transmitted data should be
considered to optimize the utilization of edge devices.

In [13], Berta et al. proposed a general end-to-end IoT platform that is composed
of the cloud-based service for managing sensor data and devices of IoT applications
called Measurify, and the tool for facilitating the construction of edge devices called Edgine.
Edgine requests the local configuration and executable scripts. Then, it collects data from
the sensors, processes them using downloadable scripts and stores it in the cloud. The
proposed system has been installed and used for several IoT application systems. The
results demonstrated the efficiency of the system by enabling developers to focus on
application requirements and design decisions to define the edge system rather than on
implementations.

In [23], Yang et al. proposed an edge computing framework suitable for IoT device
development. This framework provides functions to configure the module hardware
security, the data conversion, control, and communication to the server. It also offers
advanced data processing capabilities at the edge computing level, including rule engines,
data analysis, and application integration. By accessing the cloud service, this framework
allows users to update the configuration through MQTT communications. This approach is
similar to our method for updating the configuration remotely.

In [24], Kim et al. proposed plug-and-play in IoT platforms, using a web page to
manage IoT devices. They utilized Arduino boards as edge devices that were connected
to the sensors and actuators. The proposed system allows configuring the device for data
collection or control actions by accessing the platform website. The implementation results
indicate that the system was able to reduce the deployment complexity and increase the
IoT environment dynamicity. However, they only considered the device layer and did not
address the data visualization and analysis at the cloud level.

In [25], Iera et al. introduced the Social Internet of Things (SIoT) architecture paradigm.
This architecture comprises IoT applications in objects that are registered on a social
networking platform, where each object collaborates and interacts with other objects to
provide specialized services. The architecture includes three elements: objects, gateway,
and an SIoT server. Each component may consist of three layers: sensing, network, and
application. It enables IoT objects to conduct high-computational processes, in contrast
to only the server performing these tasks. As a common IoT architecture, the network
layer is only used to connect the server and the objects. However, this architecture allows
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the integration between IoT objects and provides interfaces for IoT objects and humans
through network layers. Thus, it provides the development of IoT applications that interact
with one another. This architecture can be considered a reference with which to improve
the design of the IoT application system architecture proposed in this paper.

In [26], Cauteruccio et al. proposed the Multi-Internet of Things (MIoT) architecture
to improve object communication in the SIoT architecture. In the SIoT architecture, IoT
objects connect and collaborate with one another. It makes the complexity of data trans-
fer increase. Thus, MIoT architecture solves this issue by considering data-driven and
semantics-based aspects of data exchange between objects. Unfortunately, the proposed
communication model is not suitable for dynamic IoT application scenarios, where IoT
devices are dynamically added and removed.

3. Design of The IoT Application System Architecture

3.1. System Overview

In this section, we describe the design of the IoT application system architecture for
generalization. Currently, there are many IoT architecture references that can be considered
for developing IoT application systems. However, each IoT application system has unique
designs and requirements. The common IoT application system architecture consists of
three layers. The perception layer represents the physical devices for sensing and actuating
that interact with the environment. The network layer represents the transport layer for data
communications between layers. The application layer represents the application software
to offer specific services for data processing [27]. There are many IoT application system
architectures that need to be addressed to enhance the development of IoT applications
and platforms.

In [28], Lombardi et al. presented commonly used IoT architectures such as cloud-based
architecture, edge-computing-based architecture, and Social Internet of Things (SIoT) archi-
tecture. Cloud-based architecture utilizes services deployed on a cloud server to generate,
process, and visualize large amounts of data for users. This architecture allows users and
other services to access data at any time. Edge-computing-based architecture offers computa-
tional services close to the device layer by offering data processing, storage, and control
capabilities. It is frequently used for industrial devices and IoT application systems that
demand a quick response as a result of data processing.

In SIoT architecture, IoT applications are comprised of objects registered on a social
networking platform, where each object collaborates and interacts with other objects
to provide specific services [25]. This architecture enables IoT objects to conduct high-
computational processes, as opposed to only the server performing these tasks. It enables
the development of IoT applications that interact with one another. In addition, the MIoT
architecture has been added to the SIoT architecture. In order to reduce the complexity of the
SIoT architecture system, the MIoT architecture considers data-driven and semantics-based
aspects for data exchange between objects [26].

In this paper, the concept of the IoT application system architecture was based on
these references. Figure 1 illustrates the proposed architecture. It is composed of the sensors
and actuators, edge, and cloud layers.
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Figure 1. Design overview of general IoT application system architecture.

3.2. Sensor and Actuators Layer

In the context of the IoT application system, perception devices as IoT objects are
sensors and actuators connected to a controller. Sensors are primarily used to monitor
the environment by converting physical parameters into measurable electrical quantities
(often voltage), while actuators provide physical actions when presented with an electrical
quantity. However, with the rapid development of technologies, Internet-connected devices
have become common and diverse in their application purposes.

For instance, in smart homes, developers have often utilized smart devices to improve
living experiences and reduce energy consumption. These smart devices are controlled by
smartphones and are integrated with cloud services through wireless networks.

The Industrial Internet of Things (IIoT) has been presented to connect IoT technologies
to industrial machines or instruments to analyze the obtained data and optimize existing
industrial processes [29]. It uses smart instrument devices for automatic data collection to
enhance the condition monitoring of industrial instruments. Recently, industrial devices
in the market have contained features to enable Internet-based data access to central
operation management systems through Ethernet and wireless technology. In this paper,
we considered smart devices and smart instruments as components in the sensor and
actuator layers of the proposed architecture.

3.3. Edge Layer

The edge layer addresses the issue of the growing data volume in an IoT application
system by utilizing computing capabilities of edge devices. In this section, we explain the
components of the edge device—input, processing, output, and other components.

3.3.1. Input Components

Input components should consider the connectivity of IoT devices and the method for
collecting valuable data from them. The connectivity component refers to the input/output
(I/O) and the network interfaces of the IoT device for data communications. Currently,
a single-board computer, such as Raspberry Pi, has enabled various interfaces to accept
data from a variety of devices. Among them, General Purpose Input Output (GPIO) is the
standard interface for receiving and sending commands to/from IoT sensors and actuators.
General Purpose Interface Bus (GPIB) is the I/O interface included in the IEEE-488 standard
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for industrial instrumentation data. While GPIO only transmits data in signals, GPIB is
able to handle both text data and numeric expressions.

In the context of IoT data communications, serial communication protocols are often
used to transfer data among IoT devices. Each device may support different serial interfaces
based on its hardware specifications. These include the RS-232 protocol, Universal Serial Bus
(USB), the Serial Peripheral Interface (SPI), the Universal Asynchronous Receiver Transmitter
(UART), and the Inter-Integrated Circuit (I2C). It is necessary to build an edge system that is
able to handle different interfaces.

Various network interfaces, including Bluetooth, Ethernet, and Wi-Fi, have been intro-
duced to connect IoT objects and edge computing devices. Bluetooth is widely applicable
in smart devices due to its capability of low-power communications. Ethernet provides
stability and security by wired connectivity. However, it is difficult to communicate over
long distances. In IoT application systems, IEEE 802.11 wireless LAN (Wi-Fi) is the most
popular network interface used by current smart devices and smart instruments.

Sensor devices usually generate data in different and non-standard formats. It is
challenging to enable the interoperability among sensors from different companies that
have different communication technologies. Therefore, the edge device requires the data
conversion component to generate data in the standard format from various sensor devices.
This component represents the translation process of sensor data. It requires a data model
to define the valuable data structures of sensor data that are used for further processing
in the edge system. JavaScript Object Notation (JSON) format data are frequently used for
this purpose.

3.3.2. Processing Components

As an extension of cloud services, edge computing has similar characteristics to
cloud computing. Edge computing is able to perform local data processing with minimal
computational resources. Processing components in the edge layer are designed to optimize
data collections and enable immediate analysis and decision-making. The filtering and
the rules engine are included in these components. The filtering component reduces data
noise and inaccuracies by applying digital filters to sensor data. Several sensors, such as
the accelerometer and the gyroscope, may produce noisy data. It is necessary to reduce
noises before transmitting data to a cloud server.

The rules engine component makes data-driven decisions in real-time. It applies various
output services when rule patterns are matched. They include delivering notification
messages to users and issuing action commands to actuators. The rules contain basic
operations in the format of “if the specific conditions are fulfilled, then trigger the specific
actions” or defined as IF-THIS-THEN-THAT form—for example, in an IoT application
system for smart homes, “if the temperature is higher than 30 ◦C, then turn on the air
conditioner”. The rules engine in the edge layer can reduce the time required to generate
the response action, compared to waiting for the server response. However, it should avoid
complex rule models due to the limited computational resources of edge devices.

3.3.3. Output Components

The output components concern the ability of edge devices to utilize the collected
data and transmit it to the cloud server or other systems. Several output components, such
as the visualization interface, notification/alert, data transfer, trigger action operations,
and data access API, should be considered for this purpose. The visualization interface
component provides web-based user interfaces to monitor IoT data at the edge continu-
ously. The notification/alert component communicates with users through email or push
notification services.

The data transfer component represents the ability of the edge device to send data
across different networks to its cloud server or other systems. Network interfaces of the
edge device and communication protocols need to be considered. The edge device, such as
Raspberry Pi, has enabled diverse network interfaces. Wi-Fi, Ethernet, and 5G cellular are
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standard network interfaces used to connect edge devices to cloud servers. Communication
protocol services consist of the publish–subscribe and request–response messaging models.
MQTT communication is the most popular publish–subscribe protocol for IoT application
systems. It can operate on an edge device with limited processing power and memory.
HTTP communication is often used for the request–response messaging model. In addition,
the standardization format of data transfer should be addressed for this component. In this
case, the JSON format is utilized.

The action component consists of functions that send commands to actuators through
connectivity interfaces. Due to the complexity of action functions becoming more diverse, it
should be able to execute different action functions in parallel or sequentially. The data access
API is another output component that should be considered in the edge layer. It provides
a function to allow external systems to access local data through HTTP communication,
which is relevant to the current IoT trends of cross-vendor capabilities and interoperability.
Thus, it enables the development of complex IoT systems that utilize multiple vendor
services simultaneously.

3.3.4. Other Components

For developing the edge device, we should consider additional components that
are not included in the input, processing, and output components. These components are
management, scheduling, security, local data storage, remote debugging, and dynamic
configuration. The management component controls and monitors the lifecycle of the edge
device. The scheduling component controls the time cycle for executing data streams in
the edge device. The security component provides privacy and security capabilities of the
edge device.

When sensor data cannot be transmitted to the server, the system must provide the
reliable local data storage service to archive sensor data records. The local data storage
component should consider the battery consumption, latency, and CPU utilization. The
lightweight embedded database engine, such as SQLite, can be the suitable database option
with which to develop this component.

Currently, the edge management system provides dynamic configuration capabilities.
It allows users to modify edge system parameter settings by changing environments.
Parameter settings include connected sensors and actuators, data processing methods, and
data transmission services. However, this component may cause problems and errors if the
configuration does not match the current environment of the edge device. Therefore, the
remote debugging component will be the solution. It allows running and verifying the new
device configuration without affecting the existing system running on the edge device.

3.4. Cloud Layer

The cloud layer components are responsible for processing, analyzing, managing,
storing, and visualizing IoT data using cloud-based services. These components per-
form computations that are not feasible on edge devices. In this paper, we present the
cloud layer components in Figure 1. We organized them into input, processing, output,
and other components.

The input components provide the services to receive sensor data from different de-
vices using different communication protocols. It consists of the IoT gateway and the data
aggregator. The components contain a variety of data processing functions for IoT data
stream processing, filtering, rules engine, data synchronization, and analytics, with plug-in
function capabilities, where each function should be implemented as a standalone one
to prevent system failures. The output part concerns the ability of the cloud system to
provide capabilities for users or other systems to access IoT data. The output components
may include visualization functions, notification/alert functions, REST API services, busi-
ness application integrations, and IoT collaboration capabilities. The other components
provide additional components that will support the main services of the cloud server.
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They include management, data storage, device management, user authentication, and
security components.

Figure 1 shows the components of the cloud layer in the edge device framework.
It consists of the IoT gateway, the data aggregation, and the device management com-
ponent. The IoT gateway provides communication protocol services such as HTTP and
MQTT to receive data from edge devices. The MQTT broker service was implemented to
enable MQTT communication. The REST API service was developed for accepting sensor
data through HTTP POST communications. Additionally, the IoT gateway component
should consider potential utilizations of communication protocols provided by other cloud
service providers.

The data input process at the cloud layer usually starts when the IoT gateway receives
sensor data. It will be followed by data aggregation. Then, data will be forwarded to data
processing functions and be stored in the data storage. The data aggregation component
collects data from several data sources, applies data processing, and reassembles data in a
usable format.

In this paper, we emphasized the importance of the device management component in
the development of the edge device framework. The component manages the devices in
the cloud system. It identifies device specifications, such as sensors that are connected to
the edge device, and handles the integration between edge devices and the cloud server. It
allows the dynamic configuration component of the edge to be triggered remotely from the
cloud server. The device management data are stored in cloud server data storage.

4. SEMAR IoT Application Server Platform

In this section, we introduce SEMAR as an IoT application server platform to facilitate
the development of a cloud layer system. In previous studies, we designed and imple-
mented the SEMAR IoT application server platform in consideration of the cloud layer for
the general IoT architecture described in Section 3. The current implementation of SEMAR
has been used in several IoT application systems [30]. It provides the integration functions
of collecting, displaying, processing, and analyzing sensor data, including built-in and
plug-in functions. Figure 2 shows the system overview of the SEMAR.

Figure 2. Design overview of SEMAR IoT application server platform.

58



Information 2023, 14, 312

The built-in function allows the use of new functions without implementing or modify-
ing the original source codes. The components of the built-in function are grouped according
to data input, data processing, and data output that are controlled by the management system.

The data input provides components for gathering sensor data from various IoT re-
sources that accept connection through network interfaces and communication protocols.
It consists of the IoT cloud gateway for communication services through HTTP POST and
MQTT communication protocols, and the data aggregator for gathering and processing
sensor data with the consumable format based on the sensor format stored in the device
management data. It transmits the results to the data processing component and stores them
in the MongoDB data storage [31].

The data processing components consist of the data filter for reducing noises and in-
accuracies in the data obtained, the data synchronization for synchronizing the data from
different devices and storing it in the dynamic database called the schema data storage, and
the data analytics for analyzing large amounts of data.

The last component employs machine learning techniques and real-time data classifi-
cation services. The machine learning techniques enable the user to construct a data model
for the real-time data categorization feature using sample data from the data storage. In
addition, the SEMAR IoT application server platform enables plug-in functions that can be
implemented as system extensions or as the other IoT application systems to access the
data through REST API services.

The SEMAR IoT application server platform includes several output components.
Users can access the sensor and synchronized data through the user interface based on a
website. It enables the data export function to download sensor data in CSV, JSON, Excel,
or text format at a specific time by accessing the user interfaces. The notification function
enables the user to set the threshold for each sensor data point as the message notification
trigger. If the value fulfills the threshold, the system will generate and send an alert to
users. In accordance with the current trend of IoT platforms, we implemented capabilities
that enable IoT collaboration, which allows for the connections and integrations of other
systems. We used the REST API service for data integrations and exchanges through HTTP
POST communications using the JSON format. The REST API retrieved data from storage
and translated it into the JSON format.

The management service has been implemented in the SEMAR to manage user authen-
tications, devices data, and its communication protocol. In this paper, we improved the
device management feature by adding the function to create, update, and delete the edge
configuration file for the edge device. Users are able to operate and monitor the device
remotely. Users can access this service through the user interface.

The procedure for integrating the SEMAR platform with a new IoT application system
is described as follows:

• The user registers the devices and the sensors of the IoT application system on the
SEMAR platform;

• The system prepares the IoT cloud gateway services, including the HTTP POST and
MQTT communication protocols, to receive data;

• The device sends data to the server through the defined communication service in
JSON format;

• The data are received by the IoT cloud gateway, processed by the data aggregator based
on the registered sensors, and are stored in the sensor data storage.

• The SEMAR provides the capability of synchronizing data from several devices by
accessing the sensor data storage and storing the results in the schema data storage;

• The user interface of SEMAR displays the data. The user can integrate their programs
as plug-in functions by utilizing the REST API.

5. Design and Implementation of Edge Device Framework

In this section, we present the design and implementation of the edge device framework.
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5.1. System Overview

The following section presents the edge device framework as a collection of tools that
will make it easier to create edge computing systems. Figure 3 provides the overview of the
integrated system of the edge device framework in SEMAR. It functions in three phases. In
the initialization phase, it offers web services that enable the automatic downloading of the
configuration file to the device via HTTP communications. In the service phase, it transforms
data from various sensors into the standard data format and periodically transmits them
to the server. In the update phase, it remotely updates the configuration through MQTT
communications.

Figure 3. Design overview of the edge device Framework.

5.2. Initialization Phase

In the initialization phase, the framework is installed on the edge device, and the initial
connection is established between the edge device and the SEMAR platform. First, the user
registers a new device and configures the edge device on the SEMAR platform via the user
interface. Then, the user downloads the Raspberry Pi image from the SEMAR platform and
deploys it to the edge devices. The user needs to ensure that the devices are connected to
the Internet. Next, the user accesses the web services of the edge device framework through
the user interface. The system verifies the user account by accessing the REST API services
of the SEMAR platform. If the user account is authenticated, the system retrieves all the
device data of the user from the SEMAR platform, generates the edge ID of the device, and
grants the access to the web services.

In the initialization phase, the user needs to choose the data to be applied to the edge
device from the user interface. Then, the system downloads the edge configuration, saves it
to the JSON file, and runs the main service program. Algorithm 1 illustrates the process flow
of this program for both the initialization and update phases. Figure 4 shows the sample
edge configuration file used in the framework. It includes the device, the device identity,
and the configuration parameters such as the sensor interface, the data conversion method,
the data model, transmitted data, the local data storage, and the local visualization. The
required libraries to run the system have been installed in the edge device framework.
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Algorithm 1 Edge configuration service.
Input : Edge ID (edgeID)
Output : Edge configuration file (EdgeCon f ig)
begin

Set EdgeCon f ig ← read EdgeCon f ig from the “config.json”
if EdgeCon f ig not NULL then

Run Main Service program(EdgeCon f ig)
Connect to the MQTT broker in SEMAR
Subscribe for the “edgeID” MQTT topic
while true do

if Message ← receive data from server through MQTT communication then
Set EdgeCon f ig ← convert Message to JSON format
Save EdgeCon f ig to the “config.json”
Restart Main Service program(EdgeCon f ig)

end

end

end

end

Figure 4. A sample of the edge configuration file in JSON format.

5.3. Service Phase

In the service phase, which is the primary phase of the edge device framework, the
framework collects and transmits sensor data to SEMAR. Figure 3 illustrates the lifecycle
of the edge device framework for this purpose. Based on the general IoT application
architecture illustrated in Figure 1, the functions of the main edge framework services
are classified into data input, data processing, and data output. Algorithm 2 describes the
program flow. To collect the raw sensor data, the edge device must be connected to the
sensor or device. The service program then reads the edge configuration file, which was
downloaded by the edge configuration services. The program can process the raw sensor
data by converting them to the standard data format, reducing inaccuracies in the data
using the filtering function, generating the decisions based on predefined rule models using
the ruling function, saving it to local data storage, and sending it to the server in JSON
format using a defined communication protocol. The communication protocol can be
either MQTT or HTTP POST. The SEMAR platform receives, processes, and analyzes the
sensor data using built-in systems on the server and displays the sensor data as output
in the user interface. Additionally, the system can send notifications/alerts to the user
and trigger actuators based on the rule model results. The program runs periodically at
specific intervals and only transmits the sensor item values defined in the configuration
file. Therefore, the framework enables the user to manage edge devices and optimize their
performance by defining edge configuration files.
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Algorithm 2 Service phase.
Input : Edge configuration(EdgeCon f ig)
begin

Set TimeInterval, CommService, Inter f ace, TransmitData, FilterModel, RuleModels,
LocalData, ActionModels ← read the configuration of time interval, communication
service, resource interface, transmitted data from EdgeCon f ig
Set SensorResource ← connect to the network interface of sensor device(Inter f ace)
while true do

Set RawSensor ← read raw data of sensor from SensorResource
Set ConvertData ← convert raw data of sensor to the standard
format(RawSensor, Inter f ace)
if FilterModel not empty then

Set ConvertData ← procces sensor data using digital
filter(ConvertData,FilterModel)

end
if RuleModels not empty then

Set RullingResults ← applying rule models(ConvertData,RuleModels)
end
Save sensor data to the local storage(ConvertData,LocalData)
Set Data ← select transmitted sensor data(ConvertData, TransmitData)
Send transmitted data to the server through communication service
(Data, CommService)
if RullingResults not empty then

Send commands to control actuators(RullingResults,ActionModels)
end
sleep(TimeInterval)

end

end

One difficulty in inputting data into the edge device framework involves the connec-
tivity of the sensor interface. The aim of the edge device framework is to create a versatile
edge computing device that can automatically gather and transmit sensor data to the server.
Therefore, it is essential to establish connectivity services and data models that can support
multiple sensors. Currently, our system can capture and transform sensor data through the
GPIO, USB serial, and wireless interfaces. We have created multiple functions with which
to collect data from the GPIO interfaces. To use the system, the user must first specify the
GPIO ports and modes in the configuration file. Then, the system periodically reads the
port value, converts it into a JSON object based on the configuration file, and returns the
results to the data processing components.

To use the USB serial interface, the user needs to specify the serial port, the timeout
time, and the baud rate that determines the data transmission speed. The user also needs
to define the delimiter that the system will use to extract the relevant information when
it receives a line of serial communication data. Algorithm 3 shows the data conversion
process for serial communications.
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Algorithm 3 Data conversion procedure for serial communication.
Input : Raw sensor data (RawSensor), Edge configuration(EdgeCon f ig)
Output : Converted sensor data (ConvertData)
begin

Set Delimeter, ObjectUsed ← read configuration of delimiter and object used, from
EdgeCon f ig
Initialize ConvertedData, Result ← empty JSON object
Set DataList ← SPLIT(RawSensor,Delimeter[0])
for each item in DataList do

Set Bu f f er ← SPLIT(item,Delimeter[1])
Set Result[Bu f f er[0]] ← Bu f f er[1]

end
for each sensor in ObjectUsed do

if sensor in Result then
Set ConvertData[sensor] ← Result[sensor]

end

end
return ConvertData

end

To use the wireless interface, the user needs to provide the URL of the web service to
receive the HTML data through HTTP GET communications. The web scraping technique
is used to extract the necessary information from the HTML data and to transform it into
an array format. The user needs to define the index array that includes the channel name
and sensor value. The data conversion process for the wireless interface data is shown in
Algorithm 4, which illustrates the data conversion procedure for the wireless interface data.

Algorithm 4 Data conversion procedure for wireless interface.
Input : Raw sensor data in HTML format (RawSensor), Edge configuration(EdgeCon f ig)
Output : Converted sensor data (ConvertData)
begin

Set ChannelIndex, ValueIndex, MaxSequence, ObjectUsed ← read configuration from
EdgeCon f ig
Initialize ConvertedData, Result ← empty JSON object
Set DataList ← WEBSCRAPING(RawSensor)
for i ← 0 to length(DataList) do

if i % MaxSequence == ChannelIndex then
Set ChannelName ← DataList[i]

end
if i % MaxSequence == ValueIndex then

Set SensorValue ← DataList[i]
end
if i % MaxSequence == ( Maxsequnce - 1 ) then

Set Result[ChannelName] ← SensorValue
end

end
for each sensor in ObjectUsed do

if sensor in Result then
Set ConvertData[sensor] ← Result[sensor]

end

end
return ConvertData

end

The data transfer system has been implemented to enable the transmissions of sensor
data to not only the SEMAR platform but also to any other IoT gateway service the user
prefers for the cross-vendor capability in edge computing. It currently supports HTTP
POST and MQTT communications using the standard JSON format. The data transfer
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function uses the "time_interval" configuration to regulate the data transfer frequency, the
"data_transmitted" configuration to determine the output data to be transferred, and the
"communication_protocol" configuration to describe the destination and communication
service. While developing edge devices, the communication network is the critical factor
for avoiding the unsuccessful data transfer. The data caching function is implemented by
using SQLite and Python to store sensor data locally, with the "local_data" configuration
specifying which data are saved in the local data storage.

The current implementation allows the user to visualize data in the forms of tables
and graphs. It is accomplished using the "visualization" setting, which retrieves sensor data
from an SQLite database. The user can access these data through the web interface or the
REST API service. To make IoT application system developments more flexible, we suggest
the use of the REST API service at the edge layer to integrate edge device frameworks with
other systems.

5.4. Update Phase

In the update phase, the user has the ability to remotely modify the edge configuration
file on the edge device using the SEMAR user interface. This process involves modifying the
edge configuration and utilizing the deploy button to initiate the remote update function.
The device management service transmits the updated edge configuration in the JSON format
to the relevant edge device using MQTT communications with the edge ID as the topic. The
edge configuration service connects to the MQTT broker within SEMAR and subscribes to
the same topic with the edge ID. After receiving the new edge configuration through MQTT
communications, the service saves it in the designated folder and triggers the function
to restart the service program. As a result, the user can easily add new sensor devices or
modify device configurations by making adjustments through the user interface. Figure 5
illustrates the flow process of the update phase.

Figure 5. Flow diagram of update phase.

6. Application for Fingerprint-Based Indoor Localization System

As the first application, we integrated the FILS15.4 into the SEMAR IoT application
platform [30]. This system is used to detect the user locations in indoor environments based
on the fingerprints of the target location. The procedure consists of a calibration phase and a
detection phase [16,17].

6.1. System Architecture

Figure 6 illustrates the overview of the FILS15.4 architecture. The FILS15.4 system
utilizes the transmitting and receiving devices produced by Mono Wireless that operate on
the IEEE802.15.4 standard at 2.4 GHz [32]. The transmitter Twelite 2525 has the dimensions
of 2.5 × 2.5 cm, and is powered for a long time by a coin battery. The receiver Mono Stick is
connected to the Raspberry Pi through a USB connection.
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Figure 6. System overview of FILS15.4.

Raspberry Pi collects the data from a transmitter by receiving data at the Mono Stick
through USB serial communications. It determines the link quality indication (LQI) for
each transmitter and sends the data consisting of the LQI value and the transmitter ID
to the server through the MQTT communication protocol. The server receives the data,
synchronizes the data from all the receivers by calculating the average LQI with the same
transmitter ID, and stores the results in one record in the database.

6.2. Calibration Phase

The calibration phase produces and records the fingerprint dataset. Each fingerprint
consists of n LQI values, where n represents the number of receivers. It indicates the
features of LQI values when a transmitter is placed at the specified location (room in
FILS15.4).

6.3. Detection Phase

The detection phase identifies the current location of the transmitters by measuring
the Euclidean distance between the current LQI values from the receivers and the finger-
print dataset for each room stored in the database and selecting the fingerprint with the
shortest distance.

6.4. Evaluation of Implementation

The implemented edge device framework for FILS15.4 was deployed on two floors
in the #2 Engineering Building at Okayama University for evaluations. Our evaluations
intended to verify the adaptability and the validity of the edge device framework in SEMAR.
Table 1 presents the device and software specifications for this evaluation.

Table 1. Device and software specifications of FILS15.4.

Components Items Specifications

Edge Device Model Raspberry Pi 4B
Operating System Linux Raspbian

Sensor Device

Model Twelite Mono Stick
Sensor Interface USB

Communication Method Serial Communication
Collected Data id, lqi, accelero x, y and z

We evaluated the ability of the edge device framework to automatically install the
edge configuration built on SEMAR to the edge device, collect sensor data, convert them,
and send them to the server by following the configuration file. In addition, we evaluated
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the configuration update feature by modifying the edge configuration setting and remotely
deploying it to the edge device through the user interface of SEMAR.

Figure 7 shows the initial configuration file for FILS15.4. The interface includes the
configuration of the serial communication for collecting data from a USB receiver and the
parameter for obtaining the necessary data by converting them to the standard format.
According to the edge configuration, the system sends sensor data that consist of ID,
LQI, and accelerometer x, y, z, to the server at every 0.5 s (500 ms) through the MQTT
communication.

Figure 7. Edge configuration for receiver device of FILS15.4.

Figure 8 illustrates the updated edge configuration for FILS15.4. It is changed from
the initial configuration. The configuration was modified by removing the accelerometer
data from the result of the data converter process, and only transmitting ID and LQI data
to the server. The data transmission interval is similar to the previous configuration.

Figure 8. Updated edge configuration for receiver device of FILS15.4.

Figure 9 shows the data visualization of FILS15.4 through the SEMAR user interface.
The initial configuration part indicates that the edge device can collect data from the USB
receiver, convert them, and send them to the server by following the initial configuration
in Figure 7. The updated configuration part represents the edge device when it collects,
processes, and transmits data by following the updated configuration in Figure 8.

Figure 9. Data visualization of the FILS15.4 receiver device.
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7. Application for Data Logging System

As the second application, the data logging system is integrated to enable real-
time monitoring of the temperature data of some materials during the quenching heat
treatment process.

7.1. System Overview

Figure 10 illustrates the overview of the data logging system architecture. This system
uses midi Logger GL240 with WLAN B-568 that is provided by Graphtec [33] to capture the
temperature data during the quenching heat treatment process by attaching the sensor to
the material. The treatment process is used for hardening steel by putting the material into
the heater machine to improve metal performances. WLAN B-568 provides the HTML web
service for displaying the data collected by the data logger. The integration of the data
logger with the IoT application server platform is as follows:

• The edge device for the data logging system captures raw sensor data in the HTML
format by accessing the data logger web services through wireless communications;

• It reads the input HTML data, extracts the temperature value using web scraping
techniques, and transforms it into JSON format;

• It transmits the JSON data to the SEMAR platform through the MQTT communication
protocol;

• The SEMAR platform receives, processes, and saves the sensor data in the database;
• The SEMAR platform displays the sensor data through the user interfaces.

Figure 10. System overview of data logging system.

7.2. Evaluation of Implementation

We evaluated the implementation of the edge device framework for the data logging
system by running it in the #1 Engineering Building at Okayama University. Our evaluations
intended to verify the adaptability and the validity of the edge device framework in SEMAR.
Table 2 presents the device and software specifications for this evaluation.

Table 2. Device and software specifications for data logging system.

Components Items Specifications

Edge Device Model Raspberry Pi 4B
Operating System Linux Raspbian

Sensor Device

Model midi Logger GL240 and
WLAN B-568

Sensor Interface Wireless Connection
Wireless LAN Mode Access Point

Wireless LAN IP 192.168.230.1

Web Services URL
http://192.168.230.1/digital.
cgi?chgrp=0 (accessed on 19

December 2022)
Communication Method HTTP Communication

Collected Data temperature
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Figure 11 shows the initial configuration file for the data logging system. The edge
configuration indicates that the edge device collects data from the data logger through the
wireless network. It transmits the measured temperature data from channels 1 and 5 to the
server every five seconds through the MQTT communication.

Figure 11. Edge configuration for edge device in the data logging system.

Figure 12 shows the updated edge configuration of the data logger monitoring system.
It was modified from the initial configuration. In this configuration, the transmitted data
were changed by only sending the temperature data from channel1 every 2 s through the
MQTT communication.

Figure 12. Updated edge configuration for edge device of data logging system.

Figure 13 illustrates the data visualization of the data logging system. The initial con-
figuration part represents the edge device for collecting, processing, and transmitting data
according to the initial configuration in Figure 11. Additionally, the updated configuration
part shows the data sent by the edge device when the configuration is modified according
to Figure 12.

Figure 13. Data visualization of the data logging system.

8. Evaluations

In this section, we evaluated the implementation of the SEMAR IoT server platform.

68



Information 2023, 14, 312

8.1. Performance Analysis

The first evaluation of the edge device framework’s performance involved investigat-
ing the average CPU and memory usage of the main service program while collecting and
transmitting sensor data at various time intervals. This evaluation was crucial for assessing
the computational performance of the framework during the main phase. To carry out this
evaluation, we employed the data logging system application and measured the average
memory and CPU usage during the experiment time as shown in Figures 14 and 15. We
tested different time intervals ranging from 0.1 s to 10 s for three minutes each and utilized
the feature described in Section 5.4 to modify the time interval configuration.

Figure 14. Average CPU usage rate of main services with different time intervals.

Figure 15. Average memory usage of main services with different time intervals.

The second evaluation involved examining the average response time of the web
services when accessed by multiple users simultaneously via HTTP POST communications.
The edge device framework was installed on a Raspberry Pi, and a considerable amount of
sensor data were stored. To simulate multiple users, we developed a simulation program
that generates virtual users, and ran it on personal computers connected to the Raspberry Pi
via Ethernet in the local area network. During the experiments, we increased the number
of user accesses from 5 to 150, with each virtual user representing an actual user or system
using the device data. All the virtual users used similar parameter requests to access sensor
data stored in local data storage.

To measure the response time, we calculated the time difference between the case
where a virtual user sends a request to the web services and the case where it receives
the response message. The response message is the 56 KB JSON message containing
500 records of data. During the experiment, we also evaluated the throughput of web
services, which was 2.3 MB/s. It can handle 41 requests per second. Figures 16 and 17
illustrate the average response time and the average CPU usage rate, respectively, when
the number of virtual users increased from 5 to 150.
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Figure 16. Average response time of web services with different numbers of users connected.

Figure 17. Average CPU usage rate of web services with different numbers of users connected.

8.2. Comparative Analysis

We compared features of the edge device framework with eight research works taking
similar approaches in the literature. We compiled a list of features to be considered for
comparing different edge computing systems frameworks. They were used to characterize
each proposal, and included the following:

• The main purpose was to identify the issue that the proposed system intends to address
and the key reason for selecting it to run edge IoT applications.

• Edge devices represent devices that installed an edge computing framework system.
• Dynamic deployment shows the ability to allow users to dynamically configure the

flow system to run their own edge applications based on hardware and process
requirements (Yes or No).

• Remotely update indicates the capability to remotely update the system (Yes or No).
• Data conversion implies the capability to preprocess data across several devices into a

standard format (Yes or No).
• Scalability demonstrates the ability to expand their applications and to execute the

number of data processing requests simultaneously (Yes or No).
• Interoperability indicates the capability to connect through several widely adopted and

supported protocols provided by multiple devices (Yes or No).
• Cross-vendor capabilities illustrate the capacity of edge computing to collaborate with

multiple vendors to develop complex IoT application platforms (Yes or No).

Table 3 compares the fulfillment of the eight features among the eight related works
and our proposed edge devices framework.
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Table 3. The comparative evaluation between the proposed framework and the existing related
studies.
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[34] Data stream process-
ing and task manage-
ment

Wi-Fi Home
Gateway

� � � � � �

[35] Edge devices gate-
ways and support
tool

Personal Com-
puter and
Server

� � � � � �

[36] Edge devices for
smart manufacturing

Single-Board
Computer

� � � � � �

[37] Edge framework for
smart farming

Personal Com-
puter

� � � � � �

[38] Edge computing gate-
ways

Server � � � � � �

[39] Edge computing
framework

Personal Com-
puter

� � � � � �

[40] Edge devices for
smart home

Personal Com-
puter

� � � � � �

[13] Edge computing
framework

Single-Board
Computer

� � � � � �

Our
Proposal

General edge comput-
ing framework

Single-Board
Computer

� � � � � �

8.2.1. Overview

Sajjad et al. in [34], Banerjee et al. in [35], and Ullah et al. in [38] developed systems
that are consistent with the main objective of the edge computing framework by collecting
data from diverse devices. Moreover, Rong et al. in [39] and Berta et al. in [13] created
an edge computing framework that can gather data and connect to the actuator as the
system output, which is similar to our edge device framework. Our framework is a general
framework for edge computing and has the ability to connect with several IoT networks
and to offer multiple output components that utilize the acquired data.

8.2.2. Edge Devices

Multiple works have used personal computers for installing and operating the frame-
works. Nevertheless, they do not support the GPIO connectivity that is commonly used in
sensor devices. Chen et al. in [36] and Berta et al. in [13] have implemented framework
systems using single-board computer devices, such as the Raspberry Pi, which has signifi-
cant benefits. Hence, we chose to deploy the proposed framework on these devices. This
approach enables sensors to connect directly to the single-board computer devices for data
collections, making the development of IoT application systems more straightforward.

8.2.3. Framework Features

In terms of framework features, all the related works offer capabilities for gathering
data from IoT devices and sending them to a cloud server. However, as in our proposal, the
works by Chen et al. in [36] and Rong et al. in [39] included the feature to process sensor
data by converting them based on user-defined configurations.

All the works examined provided the capability to dynamically set up and deploy the
framework using the connected devices as the main requirement. Some works required
direct access to the devices for operations. Notably, Banerjee et al. [35], Chen et al. [36],
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Rong et al. [39], Berta et al. [13], and our proposed framework allow users to remotely
update the configuration from the cloud server.

8.2.4. Scalability, Interoperability, and Cross-Vendor Capabilities

All the works that have been reviewed focus on incorporating the scalability and inter-
operability in the functionality. However, some of them have the limited methods of connec-
tivity for linking IoT devices to the edge framework. For instance, Sajjad et al.’s work [34]
only allows the connectivity via Wi-Fi communications, whereas Zamora et al. [37] and
Sharif et al.’s works [40] only permit connections from control unit devices to receive sensor
data. Some works consider the cross-vendor capabilities of edge computing frameworks,
particularly regarding data output components. Banerjee et al. [35], Ullah et al. [38], and
the proposed framework allow the user to access to sensor data from edge devices using
the REST API. However, only the proposed framework provides the additional features
that allow data transmissions to various cloud computing vendors through MQTT and
HTTP POST communications.

8.3. Discussions

This sub-section outlines the performance evaluation outcomes of the proposed edge
device framework in this paper. The framework was developed for the universal edge
computing device with the primary objective of enhancing the effectiveness of building IoT
application systems. The framework provides the flexibility to specify system configura-
tions, such as time intervals for collecting and transmitting data to the server periodically.
As the optimal time interval may vary depending on the purpose, we assessed the comput-
ing performance of the edge device framework across various time interval settings.

Figures 14 and 15 exhibit the mean CPU and memory usage during the execution
of the main services across different time intervals. The results indicate that shorter time
intervals require higher percentages of the CPU usage, where all the experimental results
fall below 25%. Moreover, the amount of the memory usage remains relatively stable across
time intervals, suggesting that the proposed system operates without demanding excessive
computational resources.

The advent of SIoT has increased the complexity and universality of IoT application
systems by enabling other services to access to sensor data beyond merely transmitting
them to the server. As a result, it is crucial to include features that simplify data accessi-
bility. To this end, we integrated web services that enable users to access sensor data via
HTTP communications. Furthermore, we evaluated the communication and computing
performance of the edge device framework when multiple users access it simultaneously.

Figures 16 and 17 illustrate the average response time and the CPU usage rate when the
number of virtual users increases from 5 to 150. The average response time is 824 ms, and
the CPU usage rate is 55% for 100 devices with the response message containing 500 data
records. These results indicate that the proposed edge device framework can accommodate
hundreds of users with the reasonable response time and the CPU usage rate.

To illustrate the latest developments in edge computing frameworks, we evaluated
several comparable models and extracted relevant information from their published papers.
Our analysis results, presented in Table 3, lead us to believe that the edge device framework
offers advanced features and functionality that are highly valuable, especially given the
growing trend towards developing more complex and general IoT application systems.

Furthermore, the evaluation results for the fingerprint-based indoor localization sys-
tem and the data logging system demonstrate that the edge device framework can auto-
matically retrieve the edge configuration file from the server. It can execute the service
program by following the configuration file, gather data from the sensor, convert it to
the standard format, and send it to the server within the pre-defined time frame using
the communication protocol service. In addition, Figures 9 and 13 indicate that it allows
users to remotely update the device configurations through the web interface of SEMAR.
Hence, the implemented edge device framework in this paper can enhance the usage of
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device sensors and contribute to the efficient development of IoT application systems
utilizing SEMAR.

8.4. Generalization

According to the results of this paper, the edge device framework can improve utilizations
of IoT devices by enabling users to remotely configure the parameters, including the
connectivity of sensor interfaces, data conversions, data models, local data storage, local
visualizations, and data transmission intervals to the server. All of the configuration
parameters will be stored in the database to be used as templates for future use of similar
sensors.

This framework was built on Python and can be utilized on any single-board com-
puter supporting Python. It includes NVIDIA Jetson Nano [41], BeagleBone Black [42],
UDOO X86 [43], and Odroid XU4 [44].

The SIoT architecture [25] was considered to develop a general edge computing device.
Each IoT object in the SIoT architecture provides the computation and communication
capabilities. The framework functions can be classified as data input, data processing, and
data output. In data input, the functions to handle various sensor connectivities and data
converters are implemented, including GPIO, GPIB, serial, and wireless communications.
It offers multiple data output components to utilize the sensor data obtained. REST API data
access is included for data transmissions to cloud services.

In the MIoT architecture [26], the function to manage the data communication model
between IoT objects in static scenarios was implemented. This framework architecture
includes the function that allows data communications in dynamic scenarios. It is possible
to add new interactions between sensors and edge devices using data input components,
and to manage data communications between the edge layer and the cloud layer through
data output components, allowing cross-vendor data communications in the standard
JSON format.

9. Conclusions

This paper presented the design and implementation of the edge device framework in
the SEMAR IoT application server platform. It can remotely optimize device utilizations by
configuring it through the SEMAR interface. The framework defines the connectivity of
sensor interfaces, the data processing, the transmitted sensor elements, the communication
protocol, the local data storage, the local visualization, and the data transmission interval
on the server. It enables connection to a variety of sensor interfaces, transforms the data
into a standard format, and provides multiple output components for data utilization.

Our evaluation results through applications with two IoT application systems verified
the adaptability and validity of the proposed framework. IoT edge systems were developed
in dynamic scenarios by allowing users to add or remove sensor devices flexibly.

In future works, we will continue enhancing the proposed framework, including
implementations of the edge configuration validation function and the remote debugging
function in SEMAR. They are necessary to prevent errors and guarantee consistency and
reliability, and to find and fix problems in the edge systems. Then, we will continue to
evaluate it through applications to other IoT application systems.
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Abstract: Device identification is a fundamental issue in the Internet of Things (IoT). Many critical
services, including access control and intrusion prevention, are built on correctly identifying each
unique device in a network. However, device identification faces many challenges in the IoT. For
example, a common technique to identify a device in a network is using the device’s MAC address.
However, MAC addresses can be easily spoofed. On the other hand, IoT devices also include dynamic
characteristics such as traffic patterns which could be used for device identification. Machine-
learning-assisted approaches are promising for device identification since they can capture dynamic
device behaviors and have automation capabilities. Supervised machine-learning-assisted techniques
demonstrate high accuracies for device identification. However, they require a large number of
labeled datasets, which can be a challenge. On the other hand, unsupervised machine learning can
also reach good accuracies without requiring labeled datasets. This paper presents an unsupervised
machine-learning approach for IoT device identification.

Keywords: internet of things; device identification; machine learning; unsupervised machine learning

1. Introduction

The Internet of Things (IoT) is a term used to describe the interconnection of comput-
ing devices embedded in everyday objects to the Internet through the home, business, or
institutional networks [1]. IoT devices and applications present significant security chal-
lenges, including limited device capabilities, lack of standardization, insufficient trust and
integrity, and software vulnerabilities [2]. As a result, device identification is challenging in
the IoT. Many critical services, such as access control and intrusion detection, are built on
correctly identifying each unique device [3].

As users are identified in a digital network by their unique identities, IoT devices
also require their unique identities when connecting to a network. Identities of Things
(IDoT), a general term, has been adopted to describe IoT entities (e.g., users and devices).
Four primary authentication factors could be used to identify users: something you know
(e.g., username and password), something you possess (e.g., a physical token or a smart
card), something you are (e.g., fingerprint or face recognition), and something you do (e.g.,
voice or sign). IoT devices can only be identified by something they have. A common
technique to identify a device in a network is using the device’s MAC address. However,
MAC addresses can be easily spoofed.

Identity in IoT devices consists of attributes and dynamic values along with the
member in varying contexts [4]. It can be a collection of things, should have a purpose,
and should be treated uniformly across platforms. There are many representations of
identities, and they can rely on globally unique identifiers [5,6], a combination of user
characteristics [7], a set of attributes of the users [8], or a set of claims [9]. These approaches
all possess a commonality based on the fact that they link an identity unique to a particular
entity [4].

Machine-learning (ML)-assisted approaches attract many research interests because
they can capture dynamic characteristics from the devices for device identification [10–17].
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ML-assisted approaches fall into two general categories, i.e., supervised ML-assisted ap-
proaches [10,11] and unsupervised ML-assisted approaches [12–15,17]. Supervised ML-
assisted approaches demonstrate great accuracy when used for device identification. How-
ever, they often require a large number of labeled datasets, which could be a challenge.
On the other hand, unsupervised ML can reach reasonable accuracies without labeled
datasets [12–15,17]. Additionally, the unsupervised method allows for greater flexibility
regarding dynamic IoT networks where devices may join or leave at any time. Therefore,
this paper focuses on unsupervised ML approaches for device identification.

The unsupervised approach presented in the paper utilizes an ensemble-based ap-
proach for device identification. A K-Nearest Neighbors classifier is used to identify each
IoT device. The dataset proceeds through four steps: preprocessing, outlier removal, feature
selection, and clustering before a device prediction is made. The key contributions of this
paper include, but are not limited to, (1) demonstrating how to use unsupervised ML for
device identification; (2) evaluating the performance of supervised ML and unsupervised
ML using the same dataset; (3) discussing possible benefits that unsupervised ML may
bring to the field of device identification.

The remainder of this paper is structured as follows. Section 2 introduces related
work. Section 3 presents the proposed unsupervised ML-assisted approach for IoT device
identification. The evaluation results are presented in Section 4. Finally, the conclusion and
discussion for future research are discussed in Section 5.

2. Related Work

The surveys in [18,19] show that supervised, unsupervised, semi-supervised, and
deep-learning approaches could all be used for device identification. Supervised ML is
used in [10,11,20–22]. The authors in [20] proposed a supervised ML-assisted approach for
identifying known IoT devices. A proprietary tool developed in [23] was used in [20] to
extract features from captured network traffic. Using the same feature extraction tool, a
two-stage meta classifier for IoT device identification was studied in [10]. The first stage
classifier differentiates IoT and non-IoT devices. The second stage classifier identifies a
specific IoT device class. The classifier considered in [20] is Random Forest-based. Other
classifiers considered in the supervised ML include Decision Trees, Logistic Regression
models, Support Vector Machines (SVM), GBM, and XGBoost models [10,11]. These papers
show the utmost accuracy in identifying devices in the IoT. However, supervised ML
requires labeling to train the models, which may be expensive or impossible to acquire.

In [12], authors used unsupervised clustering to identify IoT device types in network
flow traffic. Network traffic was broken up into time granularities of 1–8-min packet flows
for each device on the network. Depending on the device, the final clustering used K-Means
with 128 or 256 clusters. This research takes a heuristic approach to identify flows in a
packet capture by taking the data in 1–8-min intervals of packets. In [13], authors used data
captured directly from the devices to identify cycles in the flow data relating to how often
and how predictable the transmission of data is. They then use K-Nearest Neighbors and
arbitrary labeling to cluster devices. This approach is much slower than other algorithms.

Unsupervised deep learning is used in [14,15], where ML autoencoders are combined
with clustering algorithms to identify arbitrary device types. Work in [14] focused on
identifying compromised devices using packet statistics, whereas [15] considered how
variational autoencoders arbitrarily identify devices on a network using a combination of
periodic features such as those in [13] and flow statistics [15].

As discussed in [12–15,17], unsupervised learning can reach accuracies as good as or
better than those in supervised approaches, while having much higher accuracy in both
unseen and compromised devices.

3. Unsupervised Machine-Learning-Assisted Approach for IoT Device Identification

The unsupervised process detailed in this paper utilizes an ensemble-based approach
to device identification, where each base model that comprises the ensemble network is a
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one-class classifier. Figure 1 details the various steps that comprise the one-class classifiers
implemented in this paper. These steps will be discussed more thoroughly later in this
section.

Figure 1. An overview of a one-class classifier.

The combined results from each base model will ultimately decide what a given
sample will be classified as, as seen in Figure 2. The goal of a one-class classifier is to
distinguish which samples do and do not belong to the class it represents. In the discussion
of IoT device identification, the class would be an IoT device. This approach differs from a
one-vs-rest scheme for two reasons. The first reason is that introducing a new device or
removing an existing device from the network will require the entire ensemble network to
be retrained in the one-vs-rest scheme. In the one-class scheme, however, introducing a
new device will only require a new model for that device to be trained, whereas removing
an existing device will only require that the existing model for the said device is discarded.
The second reason this approach differs from a one-vs-rest scheme is that this approach
allows a sample to be considered to be an unknown sample, such as the case where the
sample belongs to a device not in the network. In many one-vs-rest schemes, this unknown
sample would have been predicted as one of the devices in the trained model network.
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As a result, the approach used in this paper allows for better scalability as the number of
devices increases in a given network.

Figure 2. An overview of a one-class ensemble network.

3.1. Pre-Processing

The first step of the training stage is to process the data to augment the model’s ability
to capture information from the dataset. One such method of processing is through one-hot
encoding. To include nominal features, such as the network protocol used in a flow, said
features must be encoded to remove any inferred order between values. Additionally, since
the proposed model utilizes distance-based algorithms in both the training and predicting
stages of its lifespan, it is imperative to properly scale the raw data the model takes as
input. Without scaling, features with inherently larger ranges will dominate features with
inherently smaller ranges in Euclidean-based distance comparisons. Furthermore, the
information found in these features with smaller ranges can be overlooked without scaling.
In the implementation of the model in this paper, standardization is performed on each
feature, where each feature is independently scaled to fit a normal distribution.

3.2. Feature Selection

The second step in the training stage is the selection of relevant features that will be
used for analysis. The first portion of this step is using Feature Agglomeration (FA) [24]. A
total of 100 clusters from the FA algorithm were used in the model. The second portion of
this step is the use of Principal Component Analysis (PCA) [25]. All 100 features extracted
from the PCA were also used in the model.

3.3. Clustering

The third step in the training stage is clustering the processed data. Clustering allows
for more effective capture of each device’s traffic patterns and reduces computation time in
predicting. The model in this paper utilizes K-Means clustering [26]. A low K value would
result in the K-Means algorithm overgeneralizing the data, creating centroids that are
insignificant to the traffic patterns of each device. Alternatively, a K value too high would
result in the K-Means algorithm overfitting on the data, creating centroids that are fitted
extremely well to sampled noise in the training data, leaving little room for generalization
in unseen data. As with [12], the K value for each model was determined by testing an
incrementally larger K to a maximum of 1000. The sum of averaged squared distances of
each sample to its closest centroid, or inertia, was recorded for each value of K tested. An
elbow point was then identified where an increase in K would not substantially reduce the
inertia of the data points, and this K value was chosen for the model. Additionally, each
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centroid will be assigned a corresponding training distribution value based on the total
training samples assigned to the centroid. This will be used as a tie-breaking metric in the
predicting stage of the model’s lifespan, detailed in Section 3.5.

3.4. Threshold Creation

The final step in the training stage is to create the threshold that decides classification
behavior. This threshold defines whether an input sample is or is not predicted as the
device of a given model. As with [12], each centroid created with the K-Means algorithm
has an assigned set of samples that belong to it. The distance between each point and its
centroid is then calculated, and the threshold for the centroid is defined as the distance that
includes no more than 99% of the samples that belong to it. As a result, each centroid will
have a corresponding threshold distance value that will exclude 1% of the samples that
belong to it from the training dataset. Another method of identifying a distance threshold
was explored utilizing DBSCAN [27].

3.5. Predicting

From the training stage of the model, a series of centroids, as well as their respec-
tive training distribution values and distance thresholds, are stored. Additionally, the
preprocessing models, FA, and PCA models are stored after being fitted from the training
dataset. The model is given the sample as input to predict a new test sample, where the
preprocessing models transform its feature values. Next, the sample’s features are selected
based on the FA and PCA models, which ultimately reduce the number of features that
will be observed. To make the prediction, the model implements a K-Nearest Neighbors
classifier fitted with the centroids defined by the K-Means algorithm in the training stage.
The centroid closest to the transformed test sample is then considered the centroid to which
the testing sample belongs. However, if the distance between the centroid and the testing
sample is greater than the distance threshold set for the centroid, the testing sample will
be considered a negative sample. Conversely, if the distance between the centroid and the
testing sample is equal to or smaller than the distance threshold set for the centroid, the
testing sample would be considered a positive sample, as seen in Figure 3.

Figure 3. Example of a distance threshold and its effect on predicted samples in a 2-dimensional
space.

This model could effectively act as a classifier for the device it represents in a single-
device environment. However, in environments with more than one device, any given
sample can be predicted positively for multiple device models. Consequently, the network
must distinguish which positive sample will be assigned to which device. This final tie-
breaking comparison utilizes the training distribution value assigned to each cluster in the
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clustering step. The training distribution value for each centroid of these device models is
compared to all the devices considered sample positive. The device model whose centroid
has the highest training distribution value will ultimately claim the sample as its own.

3.6. Testing Dataset

As shown in Figure 4, a testing network was established to generate a testing dataset.
A total of 16 IoT devices are connected to the testing network. The network traffic is
collected through nTAP and RaspAP [28]. nTAP is a passive, full-duplex monitoring device
that provides visibility into the network regardless of traffic. nTAP collects network traffic
before it reaches the firewall. RaspAP provides Internet access for IoT devices and is used
to collect network traffic at the Wi-Fi access point. tcpdump is used to collect network traffic
in nTap and RaspAP.

Figure 4. Experimental network testbed.

Data were collected between 31 March 2022 and 9 May 2022. Multiple datasets were
collected during different periods during the experiment. tcpdump was used on both the
RaspAP and the nTAP data to collect network traffic. Data collected through RaspAP is
used for ML training. Furthermore, data collected through nTAP is used to validate the
ML classifier on the network perimeter. Approximately 150 GB and 200 GB of data were
collected from RaspAP and nTAP, respectively.

3.7. Feature Extraction

Network traffic from IoT devices is collected through tools such as tcpdump and
Wireshark. The network traffic is saved in pcap files. An open-source tool, CICFlowMeter,
extracts network features from pcap files [29,30]. CICFlowMeter can generate bidirectional
flows and calculate time-related features in both the forward and backward directions.
Originally, CICFlowMeter was created to identify malicious traffic that might contain
malware. The features that could be extracted from each traffic flow include flow duration,
total forward packets, and total backward packets. In addition to the flow features, flow
ID, source IP, source port number, destination IP, destination port number, protocol, and
timestamps are also recorded for each flow. After feature extraction, CICFlowMeter creates
a CSV file with all the features for each pcap file. In this study, we have developed a tool,
CICFlowMeter++ by enhancing the original CICFlowMeter. CICFlowMeter++ can extract
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233 features from a TCP flow and includes many new features from [10] for comparison. In
addition to these 233 features, 9 more features, including source device, destination device,
source medium, destination medium, source state, destination state, source manufacturer,
destination manufacturer, and flow device, are also added to the CSV file. A total of
242 features are available in the CSV file.

Our preliminary testing and results indicated that ML was ineffective in identifying
a device if the device did not generate sufficient data for training. Furthermore, similar
devices, e.g., Amazon Echo, Amazon Echo Dot, and Amazon Echo Show, or the same type
of devices, e.g., K Smart Plug 1 and 2, also present challenges for device identification.
After removing three devices that did not meet the criteria and combining similar devices,
eight devices remained in the dataset. Table 1 shows the number of TCP flows for each
device in the dataset.

Table 1. Datasets generated by the devices in the experiments (* combined TCP flows from similar
devices).

Device Dataset

Amazon Echo Show 47,804
Lenovo Chromebook 9307
Google Nexus Tablet 9388

K Smart Plug * 79,160
Raspberry Pi * 19,481

ZMI Smart Clock 7185
Amazon Smart Plug 5227
Samsung Smart TV 94,976

4. Results and Discussions

Using the approach presented in Section 3, the performance of the unsupervised
ML approach for device identification is studied. We also compare the supervised ML
approaches for device identification using the same dataset. For the unsupervised approach,
a maximum of 10,000 samples for each of the eight devices are selected for training from the
training subset. Exactly 1000 samples for each of the eight devices are selected for testing
from the testing subset.

4.1. Feature Selection

A total of 242 features are available after data processing. Using FA and PCA, the
number of features used by the model decreased from 242 to 100. Since the PCA model has
transformed these 100 features, these features can be seen as combinations of the original
features. Thus, the 100 features used for unsupervised ML are not directly mapped to any
original features.

4.2. Clustering

Based on the elbow point method for identifying K values for K-Means clustering,
each device had varying values of K used. Table 2 shows the number of clusters used for
each device in the clustering step.
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Table 2. K values identified for each device’s model for K-Means clustering.

Device Number of Clusters

Amazon Echo Show 400
Lenovo Chromebook 100
Google Nexus Tablet 300

K Smart Plug 60
Raspberry Pi 300

ZMI Smart Clock 70
Amazon Smart Plug 70
Samsung Smart TV 100

4.3. Device Identification

Two approaches, DBSCAN, and 1% Dropoff, are used for threshold creation. Table 3
shows the accuracies from both approaches. As shown in Table 3, the testing accuracy from
using 1% Dropoff for threshold creation is slightly higher than when using the DBSCAN
method.

Table 3. Distance threshold methods and their results.

Metric DBSCAN 1% Dropoff

Macro Precision 0.821 0.828
Macro Recall 0.777 0.799

Macro F1 Score 0.797 0.813

Figure 5 shows the confusion matrix for device identification. As shown in Figure 5,
unsupervised ML shows excellent accuracy values when identifying the Smart TV, K Smart
Plug, and Amazon Smart Plug devices. The accuracy for identifying the Nexus Tablet
device is not ideal.

Figure 5. Confusion matrix utilizing 1% dropoff.
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4.4. Unsupervised ML vs. Supervised ML

We evaluate the supervised ML approach for device identification using the same
dataset, as shown in Table 1. The testing dataset is divided into two datasets, i.e., the
training dataset and the testing dataset, using an 80/20 split. The Random Forest classifier
is used to evaluate the importance of the features for device identification. We further
evaluate six supervised ML classifiers for device identification, including AdaBoost, Deci-
sion Tree, K-Nearest Neighbor, Logistic Regression, Random Forest, and LinearSVC. Our
evaluation shows that the AdaBoost with 200 features achieves the best testing accuracies
for device identification. Table 4 shows the accuracy values for the eight IoT devices from
the AdaBoost with 200 features. Furthermore, Table 5 shows the precision, recall, f1 score,
and accuracy values from the proposed unsupervised approach.

Table 4. Supervised ML vs. Unsupervised ML.

Device Supervised ML Unsupervised ML

Amazon Echo Show 92.4% 88.5%
Lenovo Chromebook 87.5% 84.9%
Google Nexus Tablet 100.0% 79.3%

K Smart Plug 91.0% 96.5%
Raspberry Pi 97.5% 89.7%

ZMI Smart Clock 98.8% 88.3%
Amazon Smart Plug 90.4% 96.4%
Samsung Smart TV 99.1% 95.2%

Table 5. Unsupervised ML.

Device Precision Recall F1 Score Accuracy

Amazon Echo Show 0.87 0.89 0.88 88.5%
Lenovo Chromebook 0.89 0.85 0.87 84.9%
Google Nexus Tablet 0.90 0.79 0.84 79.3%

K Smart Plug 1.00 0.96 0.98 96.5%
Raspberry Pi 0.85 0.90 0.87 89.7%

ZMI Smart Clock 0.98 0.88 0.93 88.3%
Amazon Smart Plug 0.97 0.96 0.97 96.4%
Samsung Smart TV 1.00 0.95 0.97 95.2%

As shown in Table 4, supervised ML generally provides better accuracies in device
identification than unsupervised ML. For certain devices, e.g., K Smart Plug and Amazon
Smart Plug, the unsupervised ML performs better than the supervised ML approach.

Our results show that both supervised and unsupervised ML could be used for
device identification. Although supervised ML methods provide better accuracy values
for device identification in this environment, the supervised paradigm requires labeled
datasets that may not be attainable. In scenarios where labeling is not possible, our results
further indicate that an unsupervised approach to device identification may still be a viable
option. Additionally, the one-class nature that is inherent to our method allows for separate
device classifiers to be added and removed from an ensemble model without the need for
retraining the entire model. This modular property suggests that an unsupervised approach
may be preferred in dynamic networks where devices frequently join and leave a network.
Consequently, a hybrid approach including both supervised ML and unsupervised ML can
be considered.

5. Conclusions and Outlook

This paper studies unsupervised ML for device identification. Our unsupervised ML
approach employs a series of one-class classifiers that each includes five steps, i.e., prepro-
cessing, feature selection, clustering, threshold creation, and predicting. The presented
approach was applied to a dataset that includes eight devices. The obtained results show
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reasonable accuracies for these eight devices during our testing. Our analysis indicates
that unsupervised ML may have similar challenges as supervised ML in identifying similar
devices or devices of the same type. However, an unsupervised approach may provide
additional benefits, such as scalability in dynamic networks and the removal of labeling
processes not found in supervised methods, to the challenge of IoT device classification.
Potential avenues for future work include utilizing a hybrid approach, including both
supervised ML and unsupervised ML approaches for device identification, and studying
how ML-assisted approaches perform in untrusted environments and in real-time traffic
environments.
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Abstract: This work makes multiple scientific contributions to the field of Indoor Localization for
Ambient Assisted Living in Smart Homes. First, it presents a Big-Data driven methodology that
studies the multimodal components of user interactions and analyzes the data from Bluetooth Low
Energy (BLE) beacons and BLE scanners to detect a user’s indoor location in a specific ‘activity-based
zone’ during Activities of Daily Living. Second, it introduces a context independent approach that
can interpret the accelerometer and gyroscope data from diverse behavioral patterns to detect the
‘zone-based’ indoor location of a user in any Internet of Things (IoT)-based environment. These
two approaches achieved performance accuracies of 81.36% and 81.13%, respectively, when tested
on a dataset. Third, it presents a methodology to detect the spatial coordinates of a user’s indoor
position that outperforms all similar works in this field, as per the associated root mean squared
error—one of the performance evaluation metrics in ISO/IEC18305:2016—an international standard
for testing Localization and Tracking Systems. Finally, it presents a comprehensive comparative study
that includes Random Forest, Artificial Neural Network, Decision Tree, Support Vector Machine,
k-NN, Gradient Boosted Trees, Deep Learning, and Linear Regression, to address the challenge of
identifying the optimal machine learning approach for Indoor Localization.

Keywords: big data; machine learning; indoor localization; ambient assisted living; internet of things;
smart homes; elderly population; indoor location; human–computer interaction; assistive technology

1. Introduction

Technologies like Global Positioning Systems (GPS) and Global Navigation Satellite
Systems (GNSS) have revolutionized navigation research by being able to track people,
objects, and assets in real-time. Despite the significant success of these technologies in
outdoor environments, they are still ineffective in indoor settings [1]. This is primarily
for two reasons, first, these technologies depend on line of sight communication between
GPS satellites and receivers which is not possible in an indoor environment and second,
GPS provides a maximum accuracy of up to five meters [2]. With Industry 4.0, there has
been an increasing need for developing systems for indoor navigation and localization for
the future of living and working environments, which would involve human–computer,
human–machine, and human–robot interactions in a myriad of ways. These environments
could involve Smart Homes, Smart Cities, Smart Workplaces, Smart Industries, and Smart
Vehicles, just to name a few. There are multiple application domains that are in need for
a standard methodology for Indoor Localization. A system for Indoor Localization may
broadly be defined as a system of interconnected devices, networks, and technologies that
help to detect, track, and locate the position of people and objects inside closed or semi-
closed environments, where technologies such as GPS or GNSS do not work [3]. As per [3],
the market opportunities of Indoor Localization related systems are expected to be in the
order of USD 10 billion by 2024 due to the diverse societal needs that such systems can
address. Some potential applications of such Indoor Localization related technologies could
include (1) tracking the location of products during smart manufacturing in automated or
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semi-automated manufacturing sites; (2) tracking the location and operation of unmanned
vehicles or robots in industrial settings; (3) detecting the precise location of an elderly fall for
communicating the same to emergency responders; (4) helping older adults with various
forms of Cognitive Impairments (CI) to perform their daily routine tasks by directing
them to specific locations for performing these activities; (5) tracking the precise location
of individuals with Dementia or Alzheimer’s when they face freezing of gait to alert
caregivers; (6) assisting the visually impaired to reach specific objects of interest in both
living and working environments; (7) helping individuals suffering from delirium to
navigate from one place to the other for performing different activities; (8) detection of the
precise location of the elderly when they face cramps or other forms of motor impairments;
(9) detecting the location of patients in hospitals to avoid the need for in-person monitoring;
and (10) automated tracking of different kinds of physical assets in Internet of Things
(IoT)-based functional and work-related environments.

Only one area of interest, Ambient Assisted Living (AAL) of Elderly People during
Activities of Daily Living (ADLs) in the future of technology-laden living environments, for
instance, Smart Homes and Smart Cities, will be addressed in this work. AAL may broadly
be defined as a computing paradigm that uses information technology and its applications
to enhance user abilities, performance, and quality of life through interconnected systems
that can sense, anticipate, adapt, predict, and respond to human behavior and needs.
Human behavior in the confines of their living and functional environments is characterized
by activities that they perform in these environments. In a broad scope, an activity may
be defined as an interaction between a subject and an object, for the subject to achieve a
desired end goal or objective. Here, the subject is the user who performs the activity and
the set of environment parameters that they interface with during this activity are known as
the objects. Based on the variations in the environment in which the activity is performed,
the same activity may involve different objects that a user interfaces with, to reach the end
goal. Similarly, the diversities in the user can also lead to different interaction patterns
with objects for performing the same activity in the same or in a different environment [4].
Activities can have various characteristic features. These include—sequential, concurrent,
interleaved, false start, and social interactions. Those activities that are crucial for one’s
sustenance and which one performs on a daily routine basis are known as Activities of
Daily Living (ADLs). There are five broad categories of ADLs—Personal Hygiene, Dressing,
Eating, Maintaining Continence, and Mobility [5].

People live longer these days due to advanced healthcare facilities. The population
of elderly people has been on a constant rise and there are around 962 million elderly
people [6] across the world. According to [7], by 2050, the population of elderly people is
expected to become around 1.6 billion and outnumber the population of younger people
globally. To add, the population of older adults, aged 80 years or more, is expected to
increase three times and reach around 425 million by 2050. Increasing age is associated with
physical disabilities, cognitive impairments, memory issues, and disorganized behavior
which limit a person’s ability to carry out their daily routine tasks in an independent
manner. The worldwide costs of looking after elderly people with various forms of
cognitive impairments, such as Dementia, is estimated to be around USD 818 billion and is
increasing at a very fast rate [8]. In the United States alone, approximately 5.8 million elderly
people currently have Dementia and 1 in every 3 seniors dies from Dementia. In 2020, care
of people with Dementia accounted for approximately USD 305 billion to the U.S. economy,
out of which the caregiver costs are estimated to be around USD 244 billion. It is predicted
that these costs are going to rise steeply over the next few years [8]. A major challenge
in this field is to make the future of Internet of Things (IoT)-based ubiquitous living
environments, such as Smart Homes and Smart Cities aware, adaptive, and personalized
so that they can contribute towards independent living and healthy aging of the elderly
while fostering their biological, psychological, behavioral, physical, mental, and emotional
well-being. Indoor Localization has an immense role to play towards addressing these
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challenges—both in terms of independent living and healthy aging of the elderly as well as
for addressing the huge burden of their caregiving costs.

Despite several advances [9–59] in this field, which have been reviewed in a detailed
manner in Section 2, multiple research challenges remain to be addressed. These include—
(1) inability of the activity recognition and the activity analysis-based AAL systems to track
the indoor location of the user during ADLs; (2) dependency of Indoor Localization systems
on context parameters local to specific IoT-based settings which limit the functionalities of
such systems to those specific environments; (3) need for better precision and accuracy for
detection of the indoor location of a user; and (4) need to deduce and identify the optimal
machine learning-based approach in view of the wide variety of learning approaches that
have been investigated by researchers for development of Indoor Localization systems.
Thus, addressing these above-mentioned challenges by exploring the intersections of Big
Data, Machine Learning, Indoor Localization, Ambient Assisted Living, Internet of Things,
Activity Centric Computing, Human–Computer Interaction, Pattern Recognition, and
Assisted Living Technologies to provide a long-term, robust, feasible, easily implementable,
sustainable, and economic solution to these global research challenges serves as the main
motivation for the work presented in this paper. To summarize, the scientific contributions
of this paper are as follows:

1. Big-Data driven methodology that studies the multimodal components of user inter-
actions and analyzes the data from BLE beacons and BLE scanners to track a user’s
indoor location in a specific ‘activity-based zone’ during Activities of Daily Living.
This approach was developed by using a k-nearest neighbor (k-NN)-based learning
approach. When tested on a dataset it achieved a performance accuracy of 81.36%.

2. A context independent approach that can interpret the accelerometer and gyroscope
data from diverse behavioral patterns to detect the ‘zone-based’ indoor location of
a user in any IoT-based environment. Here, the ‘zone-based’ mapping of a user’s
location refers to mapping the user in one of the multiple ‘activity-based zones’
that any given IoT-based environment can be classified into based on the associated
context attributes. This methodology was developed by using a Random Forest-based
learning approach. When tested on a dataset it achieved a performance accuracy
of 81.13%.

3. A methodology to detect the spatial coordinates of a user’s indoor position based on
the associated user interactions with the context parameters and the user-centered
local spatial context, by using a reference system. The performance characteristics
of this system were evaluated as per three metrics stated in ISO/IEC18305:2016 [31],
which is an international standard for testing Localization and Tracking Systems.
These metrics included root mean squared error (RMSE) in X-direction, RMSE in
Y-direction, and the Horizontal Error, which were found to be 5.85 cm, 5.36 cm,
and 7.93 cm, respectively. A comparison of the performance characteristics of this
approach with similar works in this field that used the RMSE evaluation method
showed that our system outperformed all recent works that had a similar approach.

4. A comprehensive comparative study of different machine learning approaches that
include—Random Forest, Artificial Neural Network, Decision Tree, Support Vector
Machine, k-NN, Gradient Boosted Trees, Deep Learning, and Linear Regression,
with an aim to address the research challenge of identifying the optimal machine
learning-based approach for Indoor Localization. The performance characteristics of
each of these learning methods were studied by evaluating the RMSE in X-direction,
the RMSE in Y-direction, and the Horizontal Error as per ISO/IEC18305:2016 [31].
The results and findings of this study show that the Random Forest-based learning
approach can be considered as the optimal learning method for development of
Indoor Localization and tracking related technologies.

This paper is organized as follows. We present a comprehensive overview of the
related works in this field in Section 2. In Section 3, a brief overview is given about
RapidMiner [60], a data science and machine learning software development platform, that

89



Information 2021, 12, 114

has been used for development of all the methodologies proposed in this paper. Section 4
presents the methods and the steps associated with the development of the three novel
methodologies for Indoor Localization that have been proposed in this work. Section 5
discusses the results and findings associated with each of these methodologies. In Section 6,
we present the comparative study of different machine learning approaches that include—
Random Forest, Artificial Neural Network, Decision Tree, Support Vector Machine, k-NN,
Gradient Boosted Trees, Deep Learning, and Linear Regression, with an aim to address
the research challenge of identifying the optimal machine learning-based approach for
Indoor Localization. Section 7 elaborates the research challenges in this field and discusses
how the work presented in this paper outperforms all similar works while addressing the
associated research challenges. It is followed by Section 8 where conclusion and scope for
future work are outlined.

2. Literature Review

In this section, we have reviewed different kinds of AAL-based systems and technolo-
gies that have primarily focused on Indoor Localization, Activity Recognition, and Activity
Analysis in Smart and Interconnected IoT-based environments, such as Smart Homes and
Smart Cities.

Machine learning approaches have been widely used by researchers to track people
and objects in indoor environments and settings. Musa et al. [9] developed a system that
used a non-line of sight approach and multipath propagation in the context of using the
ultra-wide band methodology. The system used a cross-fold validation method to train
a decision tree that could detect the indoor location of a user. A similar decision-tree
driven machine learning framework was developed by Yim et al. [10]. The framework
was equipped with the functionality to build the decision tree in the off-line phase and it
used the fingerprinting approach for Indoor Localization. Sjoberg et al. [11] developed a
visual recognition approach using the support vector machine (SVM) classifier. The system
consisted of a visual bag-of-words model and other visual features of the environment
that were used to train this classifier for Indoor Localization. A method of 2.5D indoor
positioning was proposed by Zhang et al. [12]. Here, the SVM classifier was trained to
detect the specific floor where a user is located based on the WiFi signal strength and
thereafter it obtained the user’s position information by analysis of other characteristics of
the associated altitude data. Zhang et al. [13] developed a k-NN classification approach
for Indoor Localization that used the signal strength fingerprint technology. The system
assigned weights to the samples based on their associated signal strengths to divide them
into clusters, where each cluster represented a specific location.

In [14], Ge et al. proposed an algorithm for indoor location tracking that was de-
veloped by using the k-NN approach. The algorithm used signal processing principles
to detect and analyze the data coming from access points in the user’s location to train
the k-NN classifier. In [15], Hu et al. proposed another k-NN based learning approach
that detected the location of the user based on the nearest access points of the user. One
of the key findings of the work was that the condition of k = 1 led to the best position-
ing performance accuracy. The artificial neural network approach (ANN) was used by
Khan et al. [16] for developing an indoor position detection system. The architecture of the
approach involved studying and interpreting the data from Wireless Local Area Network
(WLAN) access points and Wireless Sensor Networks (WSN) to train the artificial neural
network (ANN) that could perform virtual tessellation of the available indoor space. An-
other neural network driven system was proposed by Labinghisa et al. [17]. This approach
was based on the concept of virtual access points with an aim to increase the number of
access points without the requirements of any additional hardware. These additional access
points helped to track more user movement related data for training of the neural network.

A Wi-Fi fingerprint-based indoor positioning system was proposed by Qin et al. [18]
that was neural network driven. The system used a convolutional denoising autoencoder
to analyze and extract key features from the RSSI data, which were then used to train
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the neural network. The authors evaluated their system on two datasets to discuss its
performance characteristics. In [19], Varma et al. used the Random Forest learning approach
to perform Indoor Localization in an Internet of Things (IoT)-based environment during
real-time experiments. The authors set up an IoT-based space with 13 beacons. The signals
coming from these beacons, based on the user’s varying position, were used to train the
Random Forest model. A Wi-Fi signal analysis based indoor position detection system was
proposed by Gao et al. [20] that also used the Random Forest classifier. It was developed
and implemented by using the region-based division of location grids method to minimize
the maximum error. The system adopted the method of adjusted cosine similarity to match
the user’s position with the exact grid by analyzing the fingerprint information. Linear
regression methods have also been used by researchers to develop Indoor Localization
systems and technologies. For instance, in [21], the authors developed a learning model
where each anchor node had its own linear ranging method. Their linear regression
model studied the distance between different anchors to perform anchor distance-based
location detection.

The work proposed by Barsocchi et al. [22] involved development of a linear regression-
based learning approach that calculated the user’s distance from a reference point based
on RSSI values. The approach consisted of the methodology to map these values into
distances to detect the position of the user in the given environment. Zhang et al. [23]
developed a deep learning-based 3D positioning framework for a hospital environment.
The system used the data from the cell phone network as well as the Wi-Fi access points to
determine the exact position of the user in terms of the latitude, longitude, and the level of
the building at which they were present. Another deep learning-based Indoor Localization
system was proposed by Poulose et al. [24]. The system developed heat maps from the RSSI
signals obtained from the access points, to train the deep learning model. By conducting
experiments, the authors evaluated the effectiveness of their system for its deployment
in an autonomous environment. A Gradient Boosted Decision Tree approach was pro-
posed by Wang et al. [25] that used the fingerprint methodology to detect the location of a
user in an indoor setting. The authors used the concept of wavelet transform to filter the
noises in the channel state information data, which was then used by the system to update
the associated fingerprint information for the machine learning model. As can be seen
from [9–25] a range of machine learning approaches have been used for development of
various types of Indoor Localization systems for IoT-based environments. However, none
of these works implemented multiple machine learning models to evaluate and compare
their working to deduce the best machine learning approach in terms of the associated
performance accuracy. Due to the differences in the datasets used or the real-time data that
was collected, the associated data preprocessing steps that varied from system to system,
the differences in train to test ratio of the data, and several other dissimilar steps that were
associated with the developments of each of these machine learning models, their final
performance accuracies cannot be directly compared to deduce the best approach. The
challenge is therefore to identify the optimal machine learning model that can be used
to develop the future of Indoor Localization systems, Indoor Positioning systems, and
Location-Based Services.

In addition to machine learning-based approaches, context reasoning-based approaches
have also been investigated by researchers to develop Indoor Localization systems. Such
approaches are limited and functional only in the confines of the specific environments for
which they were developed. In [26], Lin et al. developed an indoor positioning system spe-
cific for the factory environments of the Hon-Hai Precision Industry. An intelligent indoor
parking system was developed by Liu et al. [27] that could help with indoor parking. The
system was implemented in a shopping mall environment to test its performance charac-
teristics. Jiang et al. [28] proposed an Indoor Localization system for hospital environments
that used concepts from GPS and UWB technologies. Barral et al. [29] developed a method-
ology that could track the location of forklift trucks in an industry-based environment.
Zadeh et al. [30] proposed an Indoor Localization framework for an academic environment
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to help with taking attendance of students. As can be seen from [26–30], these Indoor
Localization systems are specific to certain environments, as they are dependent on the
associated features and characteristics of the environment for which they were designed.
For instance, the system proposed in [29] cannot be deployed in any of the environments
described in [26–28,30]. The environments described in [26–30] represent just a few of the
IoT-based environments associated with the living and functional areas of humans in the
future of interconnected Smart Cities. As such context reasoning-based systems are not
functional in other IoT-based settings, the challenge is thus to develop a means for Indoor
Localization that is not environment dependent and can be seamlessly deployed in any
IoT-based setting irrespective of the associated context parameters and their attributes.

Here, we also review ISO/IEC 18305:2016, which is an international standard for
evaluating localization and tracking systems [31]. This standard was jointly prepared
and developed by the Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 31. ISO/IEC JTC 1/SC 31 is a standardization subcommittee of the joint
committee ISO/IEC JTC 1 of the International Organization for Standardization (ISO) and
the International Electrotechnical Commission (IEC), which develops and facilitates inter-
national standards, technical reports, and technical specifications in the field of automatic
identification and data capture techniques. This standard is one of the outcomes of the
EU FP7 project EVARILOS—Evaluation of RF-based Indoor Localization Solutions for the
Future Internet [32]. The main objective of this standard is to define a standard set of testing
and evaluation measures or methods that can be used to evaluate the performance metrics
of different types of Indoor Localization systems, Indoor Positioning systems, and Location
Based Services in different scenarios. It provides a comprehensive list of 14 such scenarios
and 5 types of buildings where this standard can be implemented. It is worth mentioning
here that the standard discusses these settings from the viewpoint of localization of a
person, object as well as a robot in such scenarios. Such definitions of scenarios include the
characterization of the associated motion as well as the definition of the number of entities
(human, objects, or robots) that are required to be tracked in that given scenario. It also lists
30 metrics for evaluating the performance characteristics in each case. The metrics related
to calculation of different kinds of errors are introduced in Chapter 8 of this standard.
Some of these metrics that have been widely used by researchers since the inception of this
standard include—RMSE, Mean of Error, Covariance Matrix of Error, Mean of Absolute
Error, and Mean and Standard Deviation of Vertical Error.

While several of these metrics have been used by researchers to evaluate their Indoor
Localization systems, we focus on one specific performance metric—the RMSE. The stan-
dard presents the formulae for determination of the RMSE in the X-direction, RMSE in the
Y-direction, and RMSE in the X-Y plane. When the RMSE is determined in the X-Y plane,
it is referred to as Horizontal Error as per the definitions of the standard [31]. Next, we
review some of the works related to Indoor Localization systems that have used the RMSE
method for evaluating their performance characteristics. In [33], the authors analyzed
the RSSI data coming from multiple anchor nodes set up in a Wireless Sensor Network
system. They used Kalman filter to determine the direction and speed of the user and their
system had a RMSE of 1.4 m. In [34], the authors developed a new RFID-based device that
could sense proximity tags in the environment to detect the indoor location of a user with a
RMSE of 0.32 m. Angermann et al. [35] developed a Bayesian estimation-based framework
for pedestrian localization and mapping that had a RMSE of 1 to 2 m. Evennou et al. [36]
used signal processing-based methods to develop an Indoor Localization system that had
a RMSE of 1.53 m. Wang et al. [37] used particle filters and extended the traditional WLAN
methods to develop a pedestrian tracking system that had a RMSE of 4.3 m. A Monte
Carlo-based Indoor Localization algorithm was proposed in [38]. The RMSE of this system
was 1.2 m. A SVM classifier was proposed in [39] that used smartphone data for performing
Indoor Localization. The performance characteristics presented in the paper show that
the value of the RMSE of this system was 4.55 m. Another smart phone-based system,
known as HIVE [40], that was Hidden Markov Model driven was proposed by Liu et al.
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The system had a RMSE of 3.1 m. The work by Chen et al. [41] involved fusion of data com-
ing from smartphone sensors, WiFi, and Landmarks, which were analyzed by a Kalman
Filter for Indoor Localization. This method had a RMSE of 1 m. Li et al. [42] proposed a
sensor technology-driven smartphone-based pedestrian location detection system that had
a RMSE of 2.9 m. In [43], the authors analyzed iBeacon measurements and a calibration
range, which was thereafter used to develop a Kalman filter for pedestrian dead reckoning.
The system had a RMSE of 1.28 m. As per [44] and [45], (1) the average dimensions of
newly built one-bedroom apartments and two-bedroom apartments in United States in
2018 were 757 square feet (70.3276 square meters) and 1138 square feet (105.7236 square
meters), respectively. Considering such dimensions of living spaces in the context of AAL
in Smart Homes, it is the need of the hour that the Indoor Localization systems and tracking
related technologies become more precise in terms of detecting the exact indoor location of
the user. The challenge is this context is thus to develop Indoor Localization systems that
have lesser RMSE as compared to [33–43].

AAL in Smart Homes is not only about tracking the indoor location of the user, it also
involves analyzing their behaviors and activity patterns to enhance their quality of life and
user experience in the context of diverse user interactions. Next, we review some of the
recent AAL-based technologies that have focused on activity recognition and analysis in
Smart Homes. An activity recognition framework was proposed by Ranieri et al. [46] for
AAL of elderly in Smart Homes. The framework focused on studying various parameters
of user interaction data from videos, wearable sensors, and ambient sensors to analyze
activities. An activity analysis approach for monitoring elderly behavior during daily
activities was proposed by Fahad et al. [47]. The objective of the work was to track elderly
behavior and detect any possible anomalies in the same that could have resulted from
cognitive or physical impairments or decline in abilities. A smart phone accelerometer-
based activity recognition framework was proposed by Suriani et al. [48]. The authors
developed the system by using spiking neural networks and used datasets to evaluate its
performance characteristics. A similar smartphone-based application was proposed by
Mousavi et al. in [49] which could detect falls in elderly. The system was trained using SVM
and had a performance accuracy of 96.33%. A wearable sensor driven fall detection system
was proposed by Alarifi [50]. The wearables were placed on six different locations on the
user’s body to track multimodal components of motion and behavior data, which were
studied and analyzed by a convolution neural network. In [51], Al-Okby proposed a smart
wearable device for detection of elderly falls. The device analyzed multimodal components
of the user’s motion and had the functionality to alert caregivers in the event of a fall.
As can be seen from these works [46–51], multiple components of human postures, pose,
motion, and behavior can be tracked and analyzed for development of AAL-based activity
recognition and fall detection systems. However, the main limitation of these systems is
their inability to track the location of the user. For instance, consider the example of an
elderly staying alone in an apartment located in a multistoried building. When this elderly
person experiences a fall, a fall detection system such as [51] could alert caregivers but the
lack of the precise location information could cause delay of medical attention or assistive
care. This is because the location of the elderly can be tracked in terms of the building
information from GPS, but the specific floor, apartment, or room-related information is
not available to the caregivers or emergency responders. Such delay of care can have both
short-term and long-term health-related impacts to the elderly. Thus, it is the need of
the hour that AAL-based systems not only track, monitor, and analyze elderly behavior
but they should also be equipped with the functionality to detect the indoor location of
the elderly.

Cloud computing-based approaches have also been used in recent studies [52–55] for
development of AAL-based systems and applications that can monitor human behavior
and trigger alarms as well as track the location of the user. While this concept of cloud
computing applied to AAL technologies holds potential, but these existing systems also
have several limitations. For instance—the system proposed by Navarro et al. [53] is
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environment specific and was designed, adapted, and built specifically for Fundació
Ave Maria [56], which is a non-profit organization in Spain, so, the same design cannot
not be seamlessly applied to any other environment consisting of varying environment
parameters that would be associated with diverse range of human behavior and user
interactions; the system proposed by Nikoloudakis et al. [52] uses an outdoor positioning
mechanism that can only detect whether the user leaves the premises of their location; the
work proposed by Facchinetti et al. [55] is a mobile app and that brings into context these
challenges—(i) elderly people are less likely to download a mobile app as compared to the
other age groups [57], (ii) elderly people are naturally resistant to using different kinds
of technology-based apps on their phones, tablets, and other interactive devices [58], and
(iii) older adults face multiple usability issues with such apps [59]; even though another
system proposed by Nikoloudakis et al. [54] presents approaches for both indoor and
outdoor positioning, it cannot model and analyze the fine grain levels of human activity
such as atomic activity, context attributes, core atomic activity, and core context attributes
along with their associated weights, in the context of dynamic user interactions during
ADLs. To add to the above, for all these systems [52–55], the RMSE for detection of the
indoor location of the user is also not less than 1 m. Thus, to summarize, the main research
challenges in this field are as follows:

1. The AAL-based activity recognition, activity analysis, and fall detection systems
currently lack the ability to track the indoor location of the user. It is highly essential
that in addition to being able to track, analyze, and interpret human behavior, such
systems are also able to detect the associated indoor location information, so that
the same can be communicated to caregivers or emergency responders, to facilitate
a timely care in the event of a fall or any similar health related emergencies. Delay
in care from a health-related emergency, such as a fall, can have both short-term and
long-term health related impacts.

2. Several Indoor Localization systems are context-based and are functional only in the
specific environments in which they were developed. For instance, [26] was developed
for factory environments, [27] was developed for indoor parking, [28] was developed
for hospital settings, [29] was developed for tracking forklift trucks in industry-based
settings, and [30] was developed for performing Indoor Localization in academic
environments for taking attendance of students. The future of interconnected Smart
Cities would consist of a host of indoor environments in the living and functional
spaces of humans, which would be far more diverse, different, and complicated
as compared to the environments described in [26–30]. The challenge is thus to
develop a means for Indoor Localization that is not environment dependent and can
be seamlessly deployed in any IoT-based setting irrespective of the associated context
parameters and their attributes.

3. In view of the average dimensions of the living spaces in Smart Homes, the RMSE
of the existing Indoor Localization systems are still high and greater precision and
accuracy for detection of indoor location in the need of the hour.

4. A range of machine learning-based approaches—Random Forest, Artificial Neural
Network, Decision Tree, Support Vector Machine, k-NN, Gradient Boosted Trees,
Deep Learning, and Linear Regression, have been used by several researchers [9–25]
for development of various types of Indoor Localization systems for IoT-based envi-
ronments. Identification of the optimal machine learning model that can be used to
develop the future of Indoor Localization systems, Indoor Positioning Systems, and
Location-Based Services is highly necessary.

Addressing these above-mentioned challenges by exploring the intersections of Big
Data, Machine Learning, Indoor Localization, Ambient Assisted Living, Internet of Things,
Activity Centric Computing, Human–Computer Interaction, Pattern Recognition, and
Assisted Living Technologies to contribute towards AAL in Smart Homes serves as the
main motivation for this work.
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3. Technology Review

This section briefly reviews RapidMiner, formerly known as Yet Another Learning
Environment (YALE) [60], which we have used for the work presented in this paper.
RapidMiner is a software tool that allows development and implementation of a wide
range of Machine Learning, Data Science, Artificial Intelligence, and Big Data related
algorithms and models. The initial version of this tool was developed back in 2001 at
the Technical University of Dortmund. From 2006, a company called Rapid-I started
implementing additional functionalities and features in the tool. A year later, the name of
the software was changed from YALE to RapidMiner and six years from then, the name of
the company was changed from Rapid-I to RapidMiner. As of current day, RapidMiner
is used both for educational research and for development of commercial applications
and products.

RapidMiner is available as an integrated development environment that consists
of—(1) RapidMiner Studio, (2) RapidMiner Auto Model, (3) RapidMiner Turbo Prep,
(4) RapidMiner Go, (5) RapidMiner Server, and (6) RapidMiner Radoop. For all the work
related to the methodologies proposed in this paper, we used RapidMiner Studio. For the
remainder of this paper, wherever we have mentioned “RapidMiner”, we have referred to
“RapidMiner Studio” and not any of the other development environments associated with
this software tool.

RapidMiner is developed as an open core model that provides a rich Graphical User
Interface (GUI) to allow users to develop different kinds of applications, generate work-
flows, and implement various algorithms. These applications, workflows, or algorithms are
known as “processes” and they consist of multiple “operators”. In a RapidMiner “process”,
each of its “operators” are associated with a specific functionality which is required for
working of the “process”. RapidMiner provides a range of built-in “operators” that can be
directly used with or without any modifications for development of a specific “process”.
There is also a certain category of “operators” that can be used to modify the characteristic
features of other “operators”. The tool also allows developers to create their own “opera-
tors” and these can be shared and made available to all other users of RapidMiner via the
RapidMiner Marketplace.

For development of any RapidMiner “process”, the associated “operators” are always
connected either in a linear fashion or in a hierarchical manner as shown in Figures 1 and 2,
respectively. In Figure 1, ‘Learner’, ‘Model Applier’, and ‘Evaluator’ refer to different
“operators” in RapidMiner. The inputs to these “operators” are shown by arrows pointing
towards these respective “operators” and the outputs of these “operators” are shown by
arrows pointing away from these respective “operators”. For instance, the input to the
‘Evaluator’ “operator” is Example-Set and the output produced by this “operator” is the
Performance Vector. Here, only three “operators” have been shown for representation of
the linear arrangement amongst “operators”, however, in an actual RapidMiner “process”,
the number of “operators” can vary as well as the specific “operators” could be different
from the three “operators” shown in Figure 1. Similarly, a typical RapidMiner “process” is
shown in Figure 2 which shows hierarchical arrangement amongst Methods 1, 2, and 3, each
of which are “operators” Here, the “operators” ‘Learner’, ‘Model Applier’, and ‘Evaluator’
are also connected in a hierarchical manner. In an actual RapidMiner “process” the number
and types of “operators” connected hierarchically could be different as compared to the
number and types of “operators” shown in Figure 2.
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Figure 1. Layout of a typical linear “process” in RapidMiner Studio. This “process” shows linear
arrangement amongst three RapidMiner “operators”—the ‘Learner’ operator, the ‘Model Applier’,
and the ‘Evaluator’ [4].

Figure 2. Layout of a typical hierarchical “process” in RapidMiner Studio. This “process” shows hier-
archical arrangement amongst Methods 1, 2, and 3 each of which are “operators”. The “operators”—
‘Learner’, ‘Model Applier’, and ‘Evaluator’ are also connected in a hierarchical manner [4].

The following are some of the salient features of RapidMiner Studio:

1. It provides built-in “operators” with distinct functionalities that can be directly used
or modified for development and implementation of Machine Learning, Data Science,
Artificial Intelligence, and Big Data related algorithms and applications.

2. RapidMiner is developed using Java. This makes RapidMiner “processes” platform
independent and Write Once Run Anywhere (WORA), which is a characteristic feature
of Java.

3. The tool allows downloading multiple extensions for seamless communication and
integration of RapidMiner “processes” with other software and hardware platforms.

4. Scripts written in any programming language, such as Python and R can also be
integrated in a RapidMiner “process” to add additional functionalities to the same.

5. The tool allows development of new “operators” and seamless sharing of the same
via the RapidMiner community.
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6. It also consists of “operators” that allow this software tool to connect with social
media profiles of the user, such as Twitter and Facebook, to extract tweets, comments,
posts, reactions, and related social media activity.

RapidMiner is developed as a client-server model. The server is made available as
on-premise, in public or as a private cloud infrastructure. There are two different versions
of RapidMiner available—the free version and the commercial version. The primary
difference between these two versions is that the free version has a data processing limit of
10,000 rows for any “process”. For all the work presented in this paper, the free version of
RapidMiner 9.8.001 was downloaded and installed on a Microsoft Windows 10 Computer
with Intel (R) Core (TM) i7-7600U CPU @ 2.80GHz, 2904 MHz, 2 Core(s) and 4 Logical
Processor(s). The datasets that were studied and analyzed in this paper did not have more
than 10,000 rows of data so this limitation of the free version of RapidMiner did not have
any effect on the methodologies or the associated results and findings.

There are a few similar software tools that allow seamless development and im-
plementation of Machine Learning, Data Science, Artificial Intelligence, and Big Data
related algorithms and applications. Two such software tools which are very popular
are—(1) Waikato Environment for Knowledge Analysis (WEKA) [61] and (2) MLC++ [62].
WEKA, developed in Java, allows development and implementation of various kinds
of machine learning methods—such as regression, classification, feature selection, cross-
validation, and bootstrapping. MLC++ is a C++ library that allows development and
implementation of only supervised machine learning algorithms. The primary limitation
of both WEKA and MLC++ is that they do not allow nesting of “operators” as supported
by RapidMiner. In RapidMiner, “operator” nesting can be done either in a linear form
or in a hierarchical form as shown in Figures 1 and 2, respectively. The only means for
implementing such a feature in WEKA or MLC++ is by creating duplicate copies of the
original dataset. However, this process is time consuming and requires a lot of memory
space. To add to the above limitation of WEKA, it needs the current dataset to be available
in the main memory of the system in which it is being executed. This also contributes
towards consumption of computer memory. Neither WEKA nor MLC++ allow inclusion
of programming scripts, such as scripts written in Python or R in their respective appli-
cations. To add to the above, MLC++ is not platform independent and neither does it
have the WORA feature. In view of the above limitations of WEKA and MLC++ and the
contrasting salient features of RapidMiner, RapidMiner was used for development of all
the methodologies outlined in this paper.

4. Development of the Proposed Methodologies for Indoor Localization

For development of the proposed methodologies for Indoor Localization for AAL
during ADLs performed in an IoT-based environment, such as a Smart Home, we posit
the following:

(a) The Received Signal Strength indicator (RSSI) data coming from BLE scanners and BLE
beacons can be studied and analyzed to detect the changes in a user’s instantaneous
location during different activities, which are a result of the varying user interactions
with dynamic context parameters.

(b) The dynamic changes in the spatial configurations of a user during different activities
can be interpreted by the analysis of the behavioral patterns that are localized and
distinct for different activities.

(c) Tracking and analyzing the user interactions with the context parameters along with
the associated spatial information, by using a reference system, helps to detect the
dynamic spatial configurations of the user.

Here, we use the concept of complex activity analysis for analysis of ADLs at a
macro and micro level. A complex activity may be broadly defined as a collection of
atomic activities (Ati), context attributes (Cti), core atomic activities (γAt), and core context
attributes (ρCt) along with their characteristics [63]. The atomic activities refer to the small
actions and tasks associated with an activity. The environment variables or parameters
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on which these tasks are performed are known as the context attributes. The core atomic
activities refer to the atomic activities that are crucial for completion of the given complex
activity and the context attributes on which these core atomic activities occur are known
as the core context attributes. The atomic activities that are performed at the beginning
and end of a given complex activity are known as start atomic activities (AtS) and end
atomic activities (AtE), respectively. The associated context parameters are known as
start context attributes (CtS) and end context attributes (CtE), respectively. This is further
elaborated in Figure 3. Figure 4 describes a few atomic activities and complex activities
in a typical environment [4]. Tables 1 and 2 show the complex activity analysis of two
typical ADLs, Preparing Breakfast and Eating Lunch [4], studied in terms of the associated
atomic activities, context attributes, core atomic activities, and core context attributes
along with their associated weights, which can be determined by probabilistic reasoning
principles [63]. As per [63], a greater weight of an Ati or Cti signifies greater relevance of
the same towards the given complex activity. Therefore, weights of all γAt and ρCt are
higher as compared to the rest of the Ati or Cti. The weights associated with the Ati, Cti,
γAt, ρCt, AtS, AtE, CtS, and CtE are used to determine the threshold function of the given
complex activity. The threshold function underlines the condition for completion of the
complex activity [63].

Figure 3. Representation of Atomic Activities and Complex Activities [4].

Figure 4. Description of Atomic Activities associated with two different Complex Activities in a
typical environment [4].
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Table 1. Analysis of a typical ADL, Preparing Breakfast (PB) from [4], studied in terms of the
associated atomic activities, context attributes, core atomic activities, core context attributes and their
threshold values.

Complex Activity WCAtk (PB Atk)—PB (0.73)

Ati

At1: Standing (0.10)
At2: Walking Towards Toaster (0.12)
At3: Putting bread into Toaster (0.15)

At4: Setting the Time (0.15)
At5: Turning off toaster (0.25)
At6: Taking out bread (0.18)

At7: Sitting Back (0.05)

Cti

Ct1: Lights on (0.10)
Ct2: Kitchen Area (0.12)
Ct3: Bread Present (0.15)

Ct4: Time settings working (0.15)
Ct5: Toaster Present (0.25)

Ct6: Bread cool (0.18)
Ct7: Sitting Area (0.05)

AtS and CtS At1, At2, and Ct1, Ct2
AtE and CtE At6, At7, and Ct6, Ct7
γAt and ρCt At3, At4, At5, At6 and Ct3, Ct4, Ct5, Ct6

Table 2. Analysis of a typical ADL, Eating Lunch (EL) from [4], studied in terms of the associ-
ated atomic activities, context attributes, core atomic activities, core context attributes, and their
threshold values.

Complex Activity WCAtk (EL Atk)—EL (0.72)

Ati

At1: Standing (0.08)
At2: Walking Towards Dining Table (0.20)

At3: Serving Food on a Plate (0.25)
At4: Washing Hand/Using Hand Sanitizer (0.20)

At5: Sitting Down (0.08)
At6: Starting to Eat (0.19)

Cti

Ct1: Lights on (0.08)
Ct2: Dining Area (0.20)
Ct3: Food Present (0.25)
Ct4: Plate Present (0.20)

Ct5: Sitting Options Available (0.08)
Ct6: Food Quality and Taste (0.19)

AtS and CtS At1, At2, and Ct1, Ct2
AtE and CtE At5, At6, and Ct5, Ct6
γAt and ρCt At2, At3, At4 and Ct2, Ct3, Ct4

As can be seen from Table 1, for the complex activity of Preparing Breakfast in the
environment described in [4], the atomic activities (Ati) are—Standing, Walking Towards
Toaster, Putting bread into Toaster, Setting the Time, Turning off toaster, Taking out bread,
and Sitting Back. The weights associated with these Ati are—0.10, 0.12, 0.15, 0.15, 0.25, 0.18,
and 0.05, respectively. The associated context attributes (Cti) are—Lights on, Kitchen Area,
Bread Present, Time settings working, Toaster Present, Bread cool, and Sitting Area. The
weights associated with these Cti are—0.10, 0.12, 0.15, 0.15, 0.25, 0.18, and 0.05, respectively.
These weights were assigned as per the probabilistic reasoning principles outlined in [63].
The Ati with the highest weights were identified as the Core Atomic Activities (γAt) as per
the definition of γAt in [63]. The corresponding context attributes were identified as Core
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Context Attributes (ρCt). Therefore, the list of γAt for this complex activity are—At3, At4,
At5, and At6. Their corresponding context attributes—Ct3, Ct4, Ct5, and Ct6 were therefore
considered as Core Context Attributes (ρCt). The Ati associated with the start and end of
this complex activity, or in other words the Start Atomic Activities (AtS) and End Atomic
Activities (AtE) are—At1, At2 and At6, At7, respectively. The corresponding context
attributes—Ct1, Ct2 and Ct6, Ct7 were therefore considered as Start Context Attributes
(CtS) and End Context Attributes (CtE), respectively. It is worth mentioning here that this
complex activity analysis was performed based on the specific environment parameters
described in [4] and this analysis can change if the same complex activity is performed in
an environment which has a different set of environment parameters as compared to the
environment described in [4].

As can be seen from Table 2, for the complex activity of Eating Lunch in the environ-
ment described in [4], the atomic activities (Ati) are—Standing, Walking Towards Dining
Table, Serving Food on a Plate, Washing Hand/Using Hand Sanitizer, Sitting Down, and
Starting to Eat. The weights associated with these Ati are—0.08, 0.20, 0.25, 0.20, 0.08, and
0.19, respectively. The associated context attributes (Cti) are—Lights on, Dining Area,
Food Present, Plate Present, Sitting Options Available, and Food Quality and Taste. The
weights associated with these Cti are—0.08, 0.20, 0.25, 0.20, 0.08, and 0.19, respectively.
These weights were assigned as per the probabilistic reasoning principles outlined in [63].
The Ati with the highest weights were identified as the Core Atomic Activities (γAt) as
per the definition of γAt in [63]. The corresponding context attributes were identified as
Core Context Attributes (ρCt). Therefore, the list of γAt for this complex activity are—At2,
At3, and At4. Their corresponding context attributes—Ct2, Ct3, and Ct4 were therefore
considered as Core Context Attributes (ρCt). The Ati associated with the start and end of
this complex activity or in other words the Start Atomic Activities (AtS) and End Atomic
Activities (AtE) are—At1, At2 and At5, At6, respectively. The corresponding context
attributes—Ct1, Ct2 and Ct5, Ct6 were therefore considered as Start Context Attributes
(CtS) and End Context Attributes (CtE), respectively. It is worth mentioning here that this
complex activity analysis was performed based on the specific environment parameters
described in [4] and this analysis can change if the same complex activity is performed in
an environment which has a different set of environment parameters as compared to the
environment described in [4].

In the following sub sections, we outline the methodologies for development of the
multimodal approaches for Indoor Localization for AAL for testing and evaluation of the
above three hypotheses.

4.1. Indoor Localization from BLE Beacons and BLE Scanners Data during ADLs

The following are the steps for development of this proposed functionality:

i. Set up an IoT-based environment, within a spatial context such as indoor layout
of rooms with furniture’s and appliances, using wearables and wireless sensors
to collect the Big Data related to different ADLs. The associated representation
scheme involves mapping the entire spatial location into non-overlapping ‘activity-
based zones’, distinct to different complex activities, by performing complex activity
analysis [63].

ii. Analyze the ADLs in terms of the associated atomic activities, context attributes, core
atomic activities, and core context attributes and their associated threshold values by
probabilistic reasoning principles [63].

iii. Infer the semantic relationships between the changing dynamics of atomic activities,
context attributes, core atomic activities, and core context attributes associated to
different ADLs to study and interpret the spatial and temporal features of these ADLs.

iv. Study the characteristics of the data coming from the wireless sensors to analyze the
associated RSSI data from BLE beacons and BLE scanners, recorded during different
ADLs, based on the user’s proximity to the context attributes in each ‘activity-based
zone’. This information helps to infer the user’s presence or absence in each of
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these ‘activity-based zones’. For instance, when the user performs a typical complex
activity—cooking using microwave, based on the user’s proximity to the microwave,
the user’s presence can be deduced in a ‘zone’ where the microwave is present.

v. Associate the relationships from (iii) with the characteristics of the RSSI data from
BLE beacons and BLE scanners and map the entire IoT-based environment into non-
overlapping ‘activity-based zones’, that are distinct to each ADL, by taking into
consideration all possible complex activities that may be performed in the confines
of the given IoT-based space. For instance, in a typical IoT-based environment [4],
if the complex activities performed include—Watching TV, Using Laptop, Listening
to Subwoofer, Using Washing Machine, Cooking Food, and Taking Shower; the
associated ‘activity-based zones’ could be TV zone, Laptop zone, Subwoofer zone,
Washing Machine zone, Cooking zone, and Bathroom zone. This inference of the
respective ‘zones’ is based on the complex activity analysis [63] of all these activities
as presented in [4].

vi. Split the data into training set and test set and train a learning model to study these
relationships and patterns in the data to detect the indoor location associated with the
given ADL, based on detecting the user’s presence or absence in a specific ‘activity-
based zone’ at a specific point of time.

vii. Analyze the performance characteristics of the learning model by using a confu-
sion matrix.

Step (i) above involves setting up a Big Data collection methodology to study, track,
and interpret the multimodal components of user interactions associated with different
complex activities performed in each of these ‘activity-based zones’. The data collection
could be performed by using the Context-Driven Human Activity Recognition Framework
that has already been developed, implemented, and tested at the Multimedia and Aug-
mented Reality Lab, in the Department of Electrical Engineering and Computer Science
at the University of Cincinnati. The results of the same were published in [64]. This
framework was developed based on the work by Ma [65]. This framework, developed in
the form of a software package, has multiple functionalities related to Big Data collection
and we briefly review the same here.

First, it uses Microsoft Kinect Sensors to track the varying changes in the postures,
gestures, and user behavior by performing skeletal tracking. In this process of skeletal
tracking, the human body is represented in the form of a skeletal with 20 joint points and
their associated characteristics. These joint points include—hip center, spine, shoulder
center, head, left shoulder, left elbow, left wrist, left hand, right shoulder, right elbow,
right wrist, right hand, left hip, left knee, left ankle, left foot, right hip, right knee, right
ankle, and right foot. Characteristics of these joint points—such as joint point distance,
joint point rotation, and joint point speed are tracked by this framework to detect and
reason various movements and behavioral patterns for performing activity recognition. For
instance, when a person is clapping, the distance between the joint point pairs (7,11) and
(8,12) decreases and then increases in a periodic manner, where 7, 11, 8, and 12 represent
the left wrist, right wrist, left hand, and right hand joint points, respectively. Based on
these joint point characteristics, the framework can classify behaviors as Type-1 and Type-2.
Behaviors associated with the lower limb are classified as Type-1 and behaviors associated
with the upper limb are classified as Type-2, respectively. The Type-1 behaviors that can
be recognized by this framework include—standing, walking, and sitting. The Type-2
behaviors that can be recognized by this framework include—waving, talking over cell
phone, reading book or magazine, sleeping while seated, seated relaxed, and making hand
gestures while talking. The third layer of the framework analyzes the relationships between
changing behaviors associated with different activities by interpreting the user interactions
with context parameters as well as the object behaviors in the user’s spatial environment.
It uses context-driven reasoning principles to perform complex activity recognition and
analysis. To add, this layer can also track the sequence in which different complex activities
are performed. The fourth layer of this framework allows capturing of social interactions
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and can perform all the functionalities of the above three layers while considering two
users in the given IoT-based space at any point of time. This framework was developed as
a Microsoft Windows-based application [64] that can seamlessly communicate and connect
with both wireless and wearable sensors used to collect Big Data related to different
complex activities. It consists of an intuitive user interface that shows the real-time Big
Data coming from the IoT-based sensors as well as it shows the analysis of the same to
deduce the associated activity being performed as per the methodologies outlined above.

For development of the proposed Big-Data driven methodology that studies the
multimodal components of user interactions and analyzes the data from BLE beacons and
BLE scanners to track a user’s indoor location in a specific ‘activity-based zone’ during
ADLs, we used an open-source dataset by Tabbakha et al. [66]. This dataset was chosen
because its attributes were same as the real-time data that could be collected and analyzed
by the Context-Driven Human Activity Recognition Framework [64] as outlined above.
This dataset contains activity and human behavior related data collected from both wireless
sensors and wearables in an IoT-based environment. The data attributes present in this
dataset include the accelerometer data, gyroscope data, and the RSSI data obtained from
BLE beacons and BLE scanners. The simulated smart home environment in which this
data was collected consisted of four rooms or ‘zones’—kitchen, bedroom, office, and toilet.
For collecting the data as presented in this dataset [66], the authors developed a wearable
device by using the Linkit 7697 and the MPU6050 sensors. This device was placed on the
user’s waist during each experimental trial. This wearable device tracked the behavior
related information of the user as well as collected position related data with respect to
the user’s location in each of the four rooms or ‘zones’. A BLE beacon was incorporated in
this wearable and Raspberry Pi-based BLE scanners were installed at different locations
of the IoT-based space. These scanners tracked the position of the user by sensing the
BLE beacon and interpreting the associated RSSI data. Each of these rooms or ‘zones’
had one BLE scanner placed on or near a context attribute associated with the distinct
complex activity that would be performed in that ‘zone’. The scanners were placed on the
kitchen table in the kitchen ‘zone’, on the bed in the bedroom ‘zone’, next to the working
table in the ‘office’ zone, and next to the toilet door in the toilet ‘zone’. The authors set
the advertising interval of the BLE beacon to 100 ms with the transmitting power of up
to −30 dBm. The scanner was programmed to report to the data collection server if the
beacon was missing or in other words if the user was not present in that ‘zone’. For such
scenarios, the associated RSSI value was updated to −120 in the dataset to indicate that the
BLE beacon was out of range. The behavior related data was collected by this wearable by
tracking the acceleration data (along the X, Y, and Z axes) and gyroscope data (along the X,
Y, and Z axes) associated with the user’s movements. The data of the accelerometer and
gyroscope from the wearable were sampled at the rate of 20 Hz. A total of 20 volunteers
(10 males and 10 females) had participated in the experimental trials. The attributes that
we used for development of this functionality included the RSSI data from BLE beacons
and BLE scanners in the simulated environment and the location information that was
associated with the different ADLs performed in this environment.

To study, analyze, and interpret these relationships that exist in the dataset, to detect
the associated spatial context, i.e., to infer the location of the user within a specific ‘activity-
based zone’ during ADLs, in the indoor room layout at a specific point of time, we used
RapidMiner [60], because of its salient features and characteristics that make it highly
suitable for development of such an application. These features and characteristics of
RapidMiner as well as additional details about the relevance for selection of RapidMiner
for this work were outlined in Section 3.

4.1.1. System Architecture of the Methodology for Indoor Localization from BLE Beacons
and BLE Scanners Data during ADLs

The flowchart of this proposed methodology is shown in Figure 5. This figure outlines
the operation of this methodology, as discussed in the previous section, at a broad level.
Here, by “Split Data”, we refer to splitting the data into training set and test set, with
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80% data being selected for the training and the remaining 20% being selected for the
testing. The “performance” in Figure 5 refers to evaluation of the performance of the k-NN
approach when tested on the test dataset. This was evaluated by using a confusion matrix.
Next, we outline how this flowchart was used for development of this methodology. We
used an open-source dataset by Tabbakha et al. [66] for development of this methodology.
This dataset was chosen because its attributes were same as the real-time data that could be
collected and analyzed by the Context-Driven Human Activity Recognition Framework [64]
as outlined above (Step i). The functionalities of this proposed approach, i.e., Steps (ii) to
(vii), were developed and implemented in RapidMiner as a “process” as shown in Figure 6.

Figure 5. The flowchart for the proposed methodology for detection of indoor location in a specific
‘activity-based zone’ by analysis of the RSSI data coming from BLE beacons and BLE scanners during
different ADLs.

Figure 6. The RapidMiner “process” for detection of indoor location in a specific ‘activity-based zone’
by analysis of the RSSI data coming from BLE beacons and BLE scanners during different ADLs.
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This “process” was developed as a combination of built-in “operators” and user
defined “operators” in RapidMiner. An overview of built-in “operators” and user-defined
“operators” in RapidMiner was presented in Section 3. We used the ‘Dataset’ “operator” to
import this dataset into the RapidMiner “process”. This “operator” was then renamed to
‘ADL & RSSI Data’ as for development of this “process” we needed to use only the activity-
based data and the associated RSSI signals coming from BLE Beacons and BLE scanners
during these ADLs. The semantic relationships between the changing dynamics of atomic
activities, context attributes, core atomic activities, and core context attributes associated to
different ADLs were then studied to interpret the spatial and temporal features of these
ADLs (Step iii). This was done as per the methodology used to analyze complex activities
(examples shown in Tables 1 and 2) and the associated “operator” that was developed was
named as ‘ADL Data Analysis’. The characteristics of the data coming from the sensors to
analyze the associated RSSI data from BLE beacons and BLE scanners, recorded during
different ADLs, were then studied and analyzed (Step iv) and the corresponding “operator”
that was developed was named as ‘Interpret RSSI Data’. Thereafter, we associated these
relationships obtained from the ‘ADL Data Analysis’ “operator” with the characteristic
features obtained from the ‘Interpret RSSI Data’ (Step v) to develop the ‘activity-based
zones’. We performed the same by developing an “operator”—‘ADL-based RSSI’. Then, we
used the built-in ‘Split Data’ “operator” to split the data into training set and test set with
80% of the data for training and 20% of the data for testing. A k-NN learning approach
was used to develop the machine learning model which was tested on the test set by using
the ‘Apply Model (k-NN)’ “operator”. K-NN and ‘Apply Model’ are built-in “operators”
in RapidMiner that can be directly used in any “process”. Thereafter, we used the built-in
‘Performance’ “operator” in RapidMiner to evaluate the performance characteristics of the
model in the form of a confusion matrix.

Figure 7 further clarifies the architecture of the proposed methodology as developed in
RapidMiner [60]. This figure shows the flow of control depicting the sequence of operation
of the different “operators” in this RapidMiner “process”. As can be seen from Figure 7, the
“operator” ‘ADL & RSSI Data’ is executed first, which is followed by the executions of the
‘ADL Data Analysis’, ‘Interpret RSSI Data’, ‘ADL-based RSSI’, ‘Split Data’, ‘k-NN’, ‘Apply
Model (k-NN)’, and ‘Performance’ “operators”, respectively. This RapidMiner “process”,
that studies the multimodal components of user interactions during ADLs and analyzes
the data from BLE beacons and BLE scanners to track a user’s indoor location in a specific
‘activity-based zone’—which could be either the kitchen or the bedroom or the office or the
toilet ‘zone’, achieved an overall performance accuracy of 81.36%. Further discussion of
these results, the associated performance characteristics, and the rationale behind using
confusion matrix for evaluation of this methodology are presented in Section 5.1.

Figure 7. The flow of control showing the sequence of operation of the different “operators” in the
RapidMiner “process” for detection of indoor location in a specific ‘activity-based zone’ by analysis
of the RSSI data coming from BLE beacons and BLE scanners during different ADLs.
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4.2. Context Independent Indoor Localization from Accelerometer and Gyroscope Data

The following are the steps for development of this functionality:

i. Set up an IoT-based environment, within a spatial context such as indoor layout
of rooms with furniture’s and appliances, using wearables and wireless sensors
to collect the Big Data related to different ADLs. The associated representation
scheme involves mapping the entire spatial location into non-overlapping ‘activity-
based zones’, distinct to different complex activities, by performing complex activity
analysis [63] as outlined in Section 4.1.

ii. Analyze the ADLs in terms of the associated atomic activities, context attributes, core
atomic activities, and core context attributes, and their associated threshold values
based on probabilistic reasoning principles [63].

iii. Infer the semantic relationships between the changing dynamics of atomic activities,
context attributes, core atomic activities, and core context attributes along with the
associated spatial and temporal information.

iv. Study and analyze the semantic relationships between the accelerometer data (in X, Y,
and Z directions), gyroscope data (in X, Y, and Z directions) and the associated atomic
activities, context attributes, core atomic activities, and core context attributes within
each ‘activity-based zone’.

v. Study and analyze the semantic relationships between the accelerometer data (in X, Y,
and Z directions), gyroscope data (in X, Y, and Z directions) and the associated atomic
activities, context attributes, core atomic activities, and core context attributes across
different ‘activity-based zones’ based on the sequence in which the different ADLs
took place and the related temporal information.

vi. Integrate the findings from (iv) and (v) to interpret the interrelated and semantic rela-
tionships between the accelerometer data and the gyroscope data with respect to dif-
ferent ADLs performed in all the ‘activity-based zones’ in the given IoT-based space.

vii. Split the data into training set and test set and develop a machine learning-based
model to detect the location of a user, in terms of these spatial ‘zones’ based on the
associated accelerometer data (in X, Y, and Z directions) and gyroscope data (in X, Y,
and Z directions).

viii. Evaluate the performance characteristics of the model by using a confusion matrix.

4.2.1. System Architecture of the Methodology for Context Independent Indoor
Localization from Accelerometer and Gyroscope Data

The flowchart of the proposed methodology is shown in Figure 8. For convenient rep-
resentation in this flowchart, accelerometer has been represented as “Acc” and gyroscope
has been represented as “Gyro”. This figure outlines the operation of this methodology,
as discussed in the previous section, at a broad level. Here, by “Split Data”, we refer to
splitting the data into training set and test set, with 70% data being selected for the training
and the remaining 30% being selected for the testing. The “performance” in Figure 8 refers
to evaluation of the performance of the Random Forest approach when tested on the test
dataset. This was performed by using the confusion matrix. Next, we outline the steps that
we followed for implementation of this methodology as a RapidMiner process. As outlined
in Section 4.1, for implementation of Step (i) above and for collection of Big Data related to
ADLs, the Context-Driven Human Activity Recognition Framework could be used, that
has already been developed, implemented, and tested at the Multimedia and Augmented
Reality Lab, in the Department of Electrical Engineering and Computer Science at the
University of Cincinnati. The results of the same were published in [64]. As this dataset
by Tabbakha et al. [66] already had the data that we could have collected by setting up
this data collection framework, so we used this dataset for development of the remaining
functionalities of this methodology from Step (ii) in the form of a RapidMiner “process” as
shown in Figure 9 by following the flowchart shown in Figure 8.
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Figure 8. Flowchart of the proposed methodology for detection of indoor location based on the
varying accelerometer and gyroscope data associated with distinct behavioral patterns related to
distinct ADLs performed in distinct ‘activity-based zones’.

Figure 9. The RapidMiner “process” for detection of indoor location based on the varying ac-
celerometer and gyroscope data associated with distinct behavioral patterns related to distinct ADLs
performed in distinct ‘activity-based zones’.

This “process” was developed as a combination of built-in “operators” and user
defined “operators” in RapidMiner. An overview of built-in “operators” and user-defined
“operators” in RapidMiner was presented in Section 3. We used the ‘Dataset’ “operator”
to import this dataset into the RapidMiner “process”. This “operator” was then renamed
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to ‘Acc & Gyro Data’ as for development of this “process” as we needed to use only the
activity-based data and the associated accelerometer and gyroscope data. The semantic
relationships between the changing dynamics of atomic activities, context attributes, core
atomic activities, and core context attributes associated to different ADLs were then studied
to interpret the spatial and temporal features of these ADLs (Step iii). This was done
as per as per the methodology used to analyze complex activities (examples shown in
Tables 1 and 2) and the associated “operator” that was developed was named as ‘ADL Data
Analysis’. The functionality to study the semantic relationships between the accelerometer
data (in X, Y, and Z directions), gyroscope data (in X, Y, and Z directions) and the associated
atomic activities, context attributes, core atomic activities, and core context attributes
within each ‘activity-based zone’ was then developed (Step iv) in the form of an “operator”
which we named as ‘Analyze Acc & Gyro’. Thereafter, we developed the functionality to
study the semantic relationships between the accelerometer data (in X, Y, and Z directions),
gyroscope data (in X, Y, and Z directions), and the associated atomic activities, context
attributes, core atomic activities, and core context attributes across different ‘activity-based
zones’ based on the sequence in which the ADLs took place as well as the associated
temporal information, in the form of an “operator” which we named as ‘Acc & Gyro
2nd Step’ (Step v). The characteristic features of these “operators” were then merged to
develop the functionality to interpret the interrelated and semantic relationships between
the accelerometer data and the gyroscope data with respect to different ADLs performed in
all the ‘activity-based zones’ (Step vi). This was done by developing an “operator” which
we named as ‘ADL-based Acc, Gyro’. Then, we used the built-in ‘Split Data’ “operator”
to split the data into training set and test set with 70% of the data for training and 30%
of the data for testing. A Random Forest-based learning approach was used to develop
the machine learning model which was tested on the test set by using the ‘Apply Model’
“operator”. ‘Random Forest’ and ‘Apply Model’ are built-in “operators” in RapidMiner
that can be directly used in any “process”. Thereafter, we used the built-in ‘Performance’
“operator” in RapidMiner to evaluate the performance characteristics of the model in the
form of a confusion matrix.

Figure 10 further clarifies the architecture of the proposed methodology as developed
in RapidMiner [60]. This figure shows the flow of control depicting the sequence of
operation of the different “operators” in this RapidMiner “process”. As can be seen from
Figure 10, the “operator” ‘Acc & Gyro Data’ is executed first, which is followed by the
executions of the ‘ADL Data Analysis’, ‘Analyze Acc & Gyro’, ‘Analyze Acc & Gyro—2nd
Step’, ‘ADL-based Acc, Gyro’, ‘Split Data’, ‘Random Forest’, ‘Apply Model (RF)’, and
‘Performance’ “operators”, respectively.

Figure 10. The flow of control showing the sequence of operation of the different “operators” in
the RapidMiner “process” for detection of indoor location based on the varying accelerometer and
gyroscope data associated with distinct behavioral patterns related to distinct ADLs performed in
distinct ‘activity-based zones’.
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This methodology is based on interpretation of the accelerometer and gyroscope data
from diverse behavioral patterns to detect the ‘zone-based’ indoor location of a user in
any IoT-based environment. Here, the ‘zone-based’ mapping of a user’s location refers to
mapping the user in one of the multiple ‘activity-based zones’ that any given IoT-based
environment can be classified into based on the specific activity being performed by the
user. This classification of any given environment can be performed by the ‘ADL Data
Analysis’ “operator” by using the complex activity recognition and analysis principles.
The functionality of this “operator”, as described above, is neither environment specific
nor context parameter specific, thus its methodology can be applied for spatial mapping
of any given IoT-based space. The accelerometer and gyroscope data that are analyzed
and interpreted by this approach are a result or function of human behavior—that can
be studied in the form of associated postures, gestures, movements, and motions, found
in any IoT-based environment. Analysis of such behavior by the ‘Analyze Acc & Gyro’,
‘Acc & Gyro 2nd Step’, and ‘ADL-based Acc, Gyro’ is thus not dependent on a specific
set of context parameters local to any specific IoT-based setting. All built-in data analysis
related “operators” in RapidMiner are developed in a way so that they can be applied
to any kind of data and they do not need any specific features in the environment to
be present for their operation or function. The other “operators” that are a part of this
“process”—‘Split Data’, ‘Random Forest’, ‘Apply Model’, and ‘Performance’ are built-in
“operators” in RapidMiner and are therefore context independent. To summarize, all the
operators that were used to develop this RapidMiner process, shown in Figure 9, are
associated with distinct functionalities and characteristics that are not a function of any
specific context-based or environment-based features local to any specific environment.
In other words, these “operators” and thus the entire RapidMiner “process” as shown in
Figure 9, would function for analysis and interpretation of any kind of user interaction
data for performing the Indoor Localization of the user in that environment, based on
the associated behavioral patterns distinct to different ‘zones’ local to that environment.
This upholds the context independent nature of the entire RapidMiner “process” and thus
the proposed methodology in Section 4.2. When tested on a dataset, this methodology,
as shown in Figure 9, achieved a performance accuracy of 81.13%. Further discussion of
these results, the associated performance characteristics, and the rationale behind using
confusion matrix for evaluation of this methodology are presented in Section 5.2.

4.3. Detection of the Spatial Coordinates of the User in any ‘Activity-Based Zone’

The following are the steps for development of this functionality in the proposed framework:

i. Set up an IoT-based environment, within a spatial context such as indoor layout
of rooms with furniture’s and appliances, using wearables, and wireless sensors to
collect the Big Data related to different ADLs.

ii. The associated representation scheme involves setting up a context-based reference
system in the given IoT-based environment. This system would track the instanta-
neous X and Y coordinates of the user’s position information with respect to the origin
of this reference system.

iii. Study each ADL performed in a specific ‘activity-based zone’ in terms of the multi-
modal user interactions performed on the context parameters local to that ‘zone’. This
involves studying the atomic activities, context attributes, core atomic activities, core
context attributes, start atomic activities, start context attributes, end atomic activities,
and end context attributes.

iv. For each of these user interactions with the context parameters, track the spatial
configurations and changes in the user’s position information, by using this refer-
ence system.

v. Study the changes in the instantaneous spatial configurations of the user as per this
reference system with respect to the dynamic temporal information associated with
each user interaction performed in the given ‘activity-based zone’.
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vi. Study and record all the user interactions as per (v), specific to the given ADL, in a
given ‘activity-based zone’.

vii. Split the data into training set and test set and use the training set to train a machine
learning-based model for detection of the varying X and Y coordinates of the user’s
position information in any ‘activity-based’ zone, as per the dynamic user interactions
with context parameters.

viii. Evaluate the performance characteristics of the model by using the root mean squared
error method.

4.3.1. System Architecture of the Methodology for Detection of the Spatial Coordinates of
the User in any ‘Activity-Based Zone’

The flowchart for the proposed methodology is shown in Figure 11. This figure
outlines the operation of this methodology, as discussed in the previous section, at a
broad level. The distances from the three Bluetooth beacons that were used to develop the
context-based reference system are represented as Distance A, Distance B, and Distance C,
respectively. These distances were measured in meters. The actual X and Y coordinates of
the user were measured in centimeters with an accuracy of +/−1 cm in the dataset [67] by
analyzing the user’s relative position with respect to these three beacons at a given point
of time by using this reference system. In this figure, by “Split Data”, we refer to splitting
the data into training set and test set, with 70% data being selected for the training and
the remaining 30% being selected for the testing. The “performance” in Figure 11 refers
to evaluation of the performance of the machine learning approach when tested on the
test dataset. This was evaluated by using the RMSE method, where RMSE errors were
calculated separately in the X-direction and Y-direction as per ISO/IEC 18305:2016 [31].
This learning approach has been developed as a Random Forest model in this section.
However, instead of a Random Forest model, other learning approaches such as Artificial
Neural Network, Decision Tree, Support Vector Machine, k-NN, Gradient Boosted Trees,
Deep Learning, and Linear Regression can also be seamlessly used for development of
this methodology by following the flowchart shown in Figure 11. In Section 6, we have
presented a comparative study where we implemented all these machine learning models—
Random Forest, Artificial Neural Network, Decision Tree, Support Vector Machine, k-
NN, Gradient Boosted Trees, Deep Learning, and Linear Regression for development of
this methodology and compared their performance characteristics to deduce the optimal
learning model for development of such an Indoor Localization system for detection of the
spatial coordinates of the user in any ‘activity-based zone’.
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Figure 11. Flowchart for development of the methodology for detection of the varying X and Y
coordinates of the user’s position in any ‘activity-based’ zone, as per the dynamic user interactions
with context parameters related to different activities.

Next, we outline the steps for development of the methodology as a RapidMiner
process. As outlined in Section 4.1, for implementation of the Steps (i) and (ii) above and for
collection of Big Data, the Context-Driven Human Activity Recognition Framework could
be used, that has already been developed, implemented, and tested at the Multimedia and
Augmented Reality Lab, in the Department of Electrical Engineering and Computer Science
at the University of Cincinnati. The results associated with the same were published in [64].
As this dataset [67] already had the data and the corresponding data attributes, that we
could have collected by setting up this data collection framework, so we used this dataset
for development of the remaining functionalities of this methodology from Step (iii) in the
form of a RapidMiner “process”, as shown in Figure 12. This “process” was developed
as a combination of built-in “operators” and user defined “operators” in RapidMiner.
An overview of built-in “operators” and user-defined “operators” in RapidMiner was
presented in Section 3.
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Figure 12. The RapidMiner “process” for detection of the varying X and Y coordinates of the user’s
position in any ‘activity-based’ zone, as per the dynamic user interactions with context parameters
related to different activities.

This dataset used a reference system that was based out of comparing the user’s spatial
configuration, in terms of the actual distances—Distance A, Distance B, and Distance C,
with respect to 3 Bluetooth beacons while analyzing the associated temporal information.
This helped to detect the actual X and Y coordinates of the user in the given IoT-based
space. The data consisted of 250 rows. We used RapidMiner [60] to develop a “process”
to implement this functionality and evaluated its performance by using this dataset. The
same version of RapidMiner and the same computer, as outlined in Section 3, were used
for development of this “process”. We used the ‘Dataset’ “operator” to import this dataset
into the RapidMiner “process”. The ‘Data-Preprocess’ “operator” was developed and
then used to perform multiple preprocessing steps (Steps iii to vi) prior to splitting the
data for training and testing. We used 70% of the data for training and the rest was
used for testing. This data splitting was performed by the built in ‘Split Data’ “operator”.
A Random Forest learning approach was used to train the model by using the built-in
‘Random Forest’ “operator”. The ‘Apply Model’ “operator”, another built-in “operator”,
was used to apply the learning model on the test data and its performance characteristics
were evaluated by using the ‘Performance’ “operator” in RapidMiner. We used the root
mean square error (RMSE) method of evaluating the performance characteristics as per
ISO/IEC18305:2016 [31]. This RapidMiner “process” is shown in Figure 12.

Figure 13 further clarifies the architecture of this proposed methodology as developed
in RapidMiner [60]. This figure shows the flow of control depicting the sequence of
operation of the different “operators” in this RapidMiner “process”. As can be seen from
Figure 13, the “operator” ‘Dataset’ is executed first, which is followed by the executions
of the ‘Data Preprocess’, ‘Split Data’, ‘Random Forest’, ‘Apply Model’, and ‘Performance’
“operators”, respectively. The RMSE for detection of X and Y coordinates of the user’s
position were found to be 5.85 cm and 5.36 cm, respectively. The Horizontal Error, as
defined in ISO/IEC18305:2016 [31], was found to be 7.93 cm. Further discussion of these
results, the associated performance characteristics, and the rationale behind using RMSE
for evaluation of this methodology are presented in Section 5.3.
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Figure 13. The flow of control showing the sequence of operation of the different “operators” in
the RapidMiner “process” for detection of the varying X and Y coordinates of the user’s position in
any ‘activity-based’ zone, as per the dynamic user interactions with context parameters related to
different activities.

5. Results and Findings

5.1. Indoor Localization from BLE Beacons and BLE Scanners Data during ADLs

In this section we present and discuss the results associated with the development
of the proposed Big-Data driven methodology that studies the multimodal components
of user interactions and analyzes the data from BLE beacons and BLE scanners to track a
user’s indoor location in a specific ‘activity-based zone’ during Activities of Daily Living,
to test our first hypothesis—“The RSSI data coming from BLE scanners and BLE beacons can
be studied and analyzed to detect the changes in a user’s instantaneous location during different
activities, which are a result of the varying user interactions with dynamic context parameters”, as
outlined in Section 4.1.

Upon development of the RapidMiner “process” as shown in Figure 6 by following the
methods for development of this functionality (Section 4.1), we first studied the RSSI data
from BLE beacons and BLE scanners associated with the varying atomic activities, context
attributes, core atomic activities, and core context attributes associated with each of these
ADLs performed in the different ‘activity-based zones’. This is shown in Figures 14–16. In
each of these figures, the X-axis represents the specific rooms or ‘zones’ modelled in the
simulated Smart Home. The Y-axis represents the BLE scanner readings in different rooms
or ‘activity-based zones’. For instance, in Figure 14, the X-axis represents the different
locations and the Y-axis represents the RSSI data recorded by the different BLE scanners
present in the environment. From the dataset, it was observed that a BLE scanner provided
an RSSI value of −120 when the BLE beacon was far away from the scanner or was out of
its range. Therefore, for any value greater than −120, it could be concluded that the person
was in that room or ‘activity-based zone’. This is represented on the Y-axis. For instance, in
Figure 14, the RSSI data is greater than −120 for the kitchen sensors but equal to −120 for
sensors in all other rooms. This infers the presence of the person in the kitchen area.
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Figure 14. Analysis of RSSI data coming from different BLE scanners and BLE beacons when different
activities were performed in the kitchen.

Figure 15. Analysis of RSSI data coming from different BLE scanners and BLE beacons when different
activities were performed in the office area.

Figure 16. Analysis of RSSI data coming from different BLE scanners and BLE beacons when different
activities were performed in the toilet.
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The plots in each of these figures are color coded based on different complex activities
that were performed by the user in each of these rooms or ‘activity-based zones’—sleeping,
changing clothes, relaxing, moving around, cooking, eating, working, defecating, and an
emergency. An emergency constituted detecting the user in a lying position (either from a
fall or unconsciousness) in an environment where a user is not supposed to lie down, for
instance in the toilet. Figure 17 shows the output of the RapidMiner “process” (for the first
13 rows) which involved predicting the user’s location in a specific ‘activity-based zone’
during different ADLs based on the associated RSSI data coming from the different BLE
scanners and BLE beacons.

Figure 17. Output of the RapidMiner “process” (first 13 rows) shown in Figure 6 to detect a user’s
location during different ADLs based on the RSSI data coming from BLE scanners and BLE beacons.

The output of the RapidMiner “process” assigned a confidence value for predicting
the user’s location in each of these ‘activity-based zones’. The ‘activity-based zone’ with
the highest confidence value was the final prediction of the model—in terms of predicting
the user’s location. For example, in Row number 3 of Figure 17, the confidence values of
the model for the user’s presence in the bedroom, kitchen, office and toilet ‘zones’ were,
respectively, 0.607, 0.393, 0, and 0. As the confidence value of the model was highest for
the bedroom ‘zone’, so, the final prediction of the model (third attribute from the left in
Figure 17) was that the user was present in the bedroom. Table 3 consists of the description
of all the attributes represented in the output shown in Figure 17.

Table 3. Description of the attributes of the output of the RapidMiner “process” shown in Figure 17.

Attribute Name Description

Row No The row number in the output table
Location The actual instantaneous zone-based location of the user

Prediction (Location) The predicted instantaneous zone-based location of the user
Confidence (bedroom) The degree of certainty that the user was in the bedroom
Confidence (kitchen) The degree of certainty that the user was in the kitchen
Confidence (office) The degree of certainty that the user was in the office area
Confidence (toilet) The degree of certainty that the user was in the toilet

The performance characteristics of this model, in terms of predicting whether the user
was in the bedroom or kitchen or office area or toilet were evaluated by using a confusion
matrix. Here, the data attribute being predicted by this methodology was the ‘activity-
based zone’ and the associated values of the same were bedroom, kitchen, office, and toilet,
as per the characteristics of the dataset used [64] and the associated functionalities of this
approach (Section 4.1). As can be seen from Figure 17 and Table 3, none of these values
of the ‘activity-based zone’ were numerical values. Even though ISO/IEC18305:2016 [31]
recommends evaluating Indoor Localization systems either by using RMSE, or Mean of
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Error, or Covariance Matrix of Error, or Mean of Absolute Error, or Mean, or Standard
Deviation of Vertical Error, etc.; such performance metrics can only be used when the
predicted attribute is of numerical type—such as the numerical value of the X-coordinate,
the numerical value of the Y-coordinate, the distance of the user from a specific reference
point, etc. For non-numeric data types such performance metrics do not work. This is
because one of the steps towards using the RMSE method of performance evaluation
involves calculation of the arithmetic mean of the squares of a set of numbers [68] and
similar mathematical operations are performed on the data when the other performance
metrics as stated in ISO/IEC18305:2016 [31] are used. For non-numerical data neither can
an arithmetic mean be computed nor can any mathematical operation be performed on the
data. Evaluating the performance characteristics of an approach that involves prediction
of non-numeric data by using a confusion matrix is a well-known practice in the field
of machine learning, pattern recognition, data science, and their interrelated fields [69].
Therefore, we used a confusion matrix to study the performance characteristics of this
methodology as proposed in Section 4.1.

The tabular representation and plot view of the performance characteristics, as ob-
tained from RapidMiner, are shown in Figures 18 and 19, respectively. As can be observed
from Figures 18 and 19, the model achieved an overall performance accuracy of 81.36%.
The respective class recall values were 85.00%, 70.00%, 88.89%, and 90.00% for predicting
the location of a user in bedroom, kitchen, office, and toilet, respectively. Further discussion
about how this approach and the associated results and findings address multiple research
challenges in this field is presented in Section 7.

Figure 18. A confusion matrix (tabular view) representing the performance accuracy of the Rapid-
Miner “process” shown in Figure 6 to detect a user’s location during different ADLs based on the
RSSI data coming from BLE scanners and BLE beacons.

Figure 19. A confusion matrix (plot view) representing the performance accuracy of the RapidMiner
“process” shown in Figure 6 to detect a user’s location during different ADLs based on the RSSI data
coming from BLE scanners and BLE beacons.
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5.2. Context Independent Indoor Localization from Accelerometer and Gyroscope Data

In this section we present and discuss the results associated with the development
of the proposed context independent approach that can interpret the accelerometer and
gyroscope data from diverse behavioral patterns to detect the ‘zone-based’ indoor location
of a user in any IoT-based environment, to test our second hypothesis—“The dynamic
changes in the spatial configurations of a user during different activities can be interpreted by
the analysis of the behavioral patterns that are localized and distinct for different activities”, as
outlined in Section 4.2. By using the RapidMiner “process” as shown in Figure 9 and
by following the proposed functionalities of our framework (Section 4.2), we studied the
variations of the accelerometer data (in X, Y, and Z directions) and gyroscope data (in
X, Y, and Z directions) as per the variations in behavioral and user interaction patterns
in the distinct ‘activity-based zones’ in the confines of the given IoT-based space. These
variations in behavioral patterns were a result of the user performing different ADLs,
characterized by distinct user interactions with the varying context parameters, in each of
these ‘activity-based zones’. This study is represented in Figures 20–25.

Figure 20. Analysis of the accelerometer data (in the X-direction) for different behavioral patterns
associated with different ADLs performed in the given simulated smart home environment.

Figure 21. Analysis of the accelerometer data (in the Y-direction) for different behavioral patterns
associated with different ADLs performed in the given simulated smart home environment.
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Figure 22. Analysis of the accelerometer data (in the Z-direction) for different behavioral patterns
associated with different ADLs performed in the given simulated smart home environment.

Figure 23. Analysis of the gyroscope data (in the X-direction) for different behavioral patterns
associated with different ADLs performed in the given simulated smart home environment.

Figure 24. Analysis of the gyroscope data (in the Y-direction) for different behavioral patterns
associated with different ADLs performed in the given simulated smart home environment.
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Figure 25. Analysis of the gyroscope data (in the Z-direction) for different behavioral patterns
associated with different ADLs performed in the given smart home environment.

Figure 26 shows the output of the RapidMiner “process” (for the first 13 rows) which
involved predicting the user’s location in a specific ‘activity-based zone’ based on the
associated accelerometer and gyroscope data. The output of the RapidMiner “process”
assigned a confidence value for predicting the user’s location in each of these ‘activity-
based zones’. The ‘activity-based zone’ with the highest confidence value was the final
prediction of the model—in terms of predicting the user’s location. For example, in Row
number 7 of Figure 26, the confidence values of the model for the user’s presence in the
bedroom, kitchen, office, and toilet were, respectively, 0.985, 0.003, 0.010, and 0.002. As
the confidence value of the model was highest for the bedroom so the final prediction of
the model (third attribute from the left in Figure 26) was that the user was present in the
bedroom. Table 4 consists of the description of all the attributes represented in the output
shown in Figure 26.

Figure 26. Output of the RapidMiner “process” (first 13 rows) shown in Figure 9 to detect a user’s
location during different ADLs based on the associated accelerometer and gyroscope data.

Table 4. Description of the attributes of the output of the RapidMiner “process” shown in Figure 26.

Attribute Name Description

Row No The row number in the output table
Location The actual instantaneous zone-based location of the user

Prediction (Location) The predicted instantaneous zone-based location of the user
Confidence (bedroom) The degree of certainty that the user was in the bedroom
Confidence (kitchen) The degree of certainty that the user was in the kitchen
Confidence (office) The degree of certainty that the user was in the office area
Confidence (toilet) The degree of certainty that the user was in the toilet
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The performance characteristics of this model in terms of predicting whether the
user was in the bedroom or kitchen or office area or toilet were evaluated by using a
confusion matrix.

Here, the data attribute being predicted by this methodology was the ‘activity-based
zone’ and the associated values of the same were bedroom, kitchen, office, and toilet, as
per the characteristics of the dataset used [64] and the associated functionalities of this
approach (Section 4.2). As can be seen from Figure 26 and Table 4, none of these values
of the ‘activity-based zone’ were numerical values. Even though ISO/IEC18305:2016 [31]
recommends evaluating Indoor Localization systems either by using RMSE, or Mean of
Error, or Covariance Matrix of Error, or Mean of Absolute Error, or Mean, or Standard
Deviation of Vertical Error, etc.; such performance metrics can only be used when the
predicted attribute is of numerical type—such as the numerical value of the X-coordinate,
the numerical value of the Y-coordinate, the distance of the user from a specific reference
point, etc. For non-numeric data types such performance metrics do not work. This is
because one of the steps towards using the RMSE method of performance evaluation
involves calculation of the arithmetic mean of the squares of a set of numbers [68] and
similar mathematical operations are performed on the data when the other performance
metrics as stated in ISO/IEC18305:2016 [31] are used. For non-numerical data neither can
an arithmetic mean be computed nor can any mathematical operation be performed on the
data. Evaluating the performance characteristics of an approach that involves prediction
of non-numeric data by using a confusion matrix is a well-known practice in the field
of machine learning, pattern recognition, data science, and their interrelated fields [69].
Therefore, we used a confusion matrix to study the performance characteristics of this
methodology as proposed in Section 4.2.

The tabular representation and plot view of the performance characteristics as obtained
from RapidMiner are shown in Figures 27 and 28, respectively. As can be observed from
Figures 27 and 28, the model achieved an overall performance accuracy of 81.13%. The
class recall values were 86.36%, 68.75%, 83.33%, and 88.89% for predicting the location of a
user in bedroom, kitchen, office, and toilet, respectively. Further discussion about how this
approach and the associated results and findings address multiple research challenges in
this field is presented in Section 7.

Figure 27. A confusion matrix (tabular view) representing the performance accuracy of the Rapid-
Miner “process” shown in Figure 9 to detect a user’s indoor location based on the associated
accelerometer and gyroscope data.
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Figure 28. A confusion matrix (plot view) representing the performance accuracy of the RapidMiner
“process” shown in Figure 9 to detect a user’s indoor location based on the associated accelerometer
and gyroscope data.

5.3. Detection of the Spatial Coordinates of the User in Any ‘Activity-Based Zone’

In this section we present and discuss the results associated with the development
of the proposed methodology to detect the spatial coordinates of a user’s indoor position
based on the associated user interactions with the context parameters and the user-centered
local spatial context, by using a reference system, to test our third hypothesis—“Tracking
and analyzing the user interactions with the context parameters along with the associated spatial
information, by using a reference system, helps to detect the dynamic spatial configurations of the
user”, as outlined in Section 4.3. The process involved setting up a context-based reference
system to track the user’s location in the confines of the given IoT-based environment
during different ADLs and consisted of multiple steps. The first step was to study each
ADL performed in a specific ‘activity-based zone’ in terms of the multimodal user in-
teractions performed on the context parameters local to that ‘activity-based zone’. This
involved studying the atomic activities, context attributes, core atomic activities, core
context attributes, start atomic activities, start context attributes, end atomic activities,
and end context attributes associated with all the complex activities. The second step
involved tracking the spatial configurations and changes in the user’s position information,
by using the reference system (Section 4.3), during all the varying interactions with the
context parameters. The methodology then studied the changes in the instantaneous spatial
configurations of the user as per this reference system with respect to the dynamic temporal
information associated with each user interaction performed in any given ‘activity-based
zone’ to train a machine learning model. Upon development of the RapidMiner “process”
as shown in Figure 12, we first studied the dynamic changes in the user’s distance from the
three beacons that were used to develop the reference system of this dataset [67]. This is
shown in Figures 29–32. The distances from these three beacons, measured in meters, are
represented as Distance A, Distance B, and Distance C, respectively, in these figures. These
distances were measured in meters and the actual X and Y coordinates of the user were
measured in centimeters with an accuracy of +/−1 cm in the dataset [67].
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Figure 29. Analysis of the variation of Distance A (user’s actual distance from one of the beacons)
at different timestamps, based on the associated changes in behavioral patterns. Due to paucity of
space the data associated with a few timestamps are shown here.

Figure 30. Analysis of the variation of Distance B (user’s actual distance from one of the beacons)
at different timestamps, based on the associated changes in behavioral patterns. Due to paucity of
space the data associated with a few timestamps are shown here.

Figure 31. Analysis of the variation of Distance C (user’s actual distance from one of the beacons)
at different timestamps, based on the associated changes in behavioral patterns. Due to paucity of
space the data associated with a few timestamps are shown here.
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Figure 32. Analysis of the variation of Distances A, B, and C plotted together at different timestamps,
based on the associated changes in behavioral patterns. Due to paucity of space the data associated
with a few timestamps are shown here.

The Random Forest model that we developed in RapidMiner (Figure 12) consisted
of 100 random trees, and used the least square criterion for splitting at each node. The
maximum depth of a tree was 10. This learning model assigned weights to each of these
distances—Distance A, Distance B, and Distance C to accurately track the user based on
the provided reference system. The weights that the model associated with Distance A,
Distance B, and Distance C were 0.531, 0.287, and 0.183, respectively, for determination of
the X-coordinate of the user’s location and these respective weights were 0.639, 0.170, and
0.191 for determination of the Y-coordinate of the user’s location.

Figure 33 shows one of these random trees that was developed by the Random Forest
model, as shown in Figure 12, and the reasoning-based description of this tree is shown
in Figure 34. This random tree was associated with detecting different values of the X-
coordinate of the user based on the associated rules at each node. We explain the working of
the tree for one such detection here, when the user was located at the X-coordinate—79.000
as per this reference system. This is marked in blue in Figure 33. The comparison started at
the topmost node—which for this tree was Distance A. This distance was lesser than or
equal to 1.331 m, so the control moved to the right half of the tree. Then, it checked the
value of Distance B, which was greater than 1.038 m, so it went to the left half of this node,
where it checked the value of Distance A again. This value was greater than 1.078 m so
it went to the right half and checked Distance B at the next node, which was less than or
equal to 1.373 m, so the control moved to the right half of this node for checking Distance
C. At this node, after performing the condition check, it moved to the left side of the node
as Distance C was greater than 0.729 m. Then, the control compared the values of Distance
A and Distance B with respect to a couple of more conditions at the respective child nodes
to finally deduce the X-coordinate of the user as 79.000.
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Figure 33. Representation of one of the Random Trees developed by the Random Forest-based
RapidMiner “process” shown in Figure 12. This random tree was associated with detecting different
values of the X-coordinate of the user based on the associated rules at each node.

Figure 34. Reasoning-based description of the Random Tree shown in Figure 33, that was associated
with detecting different values of the X-coordinate of the user based on the associated rules at
each node.

Figure 35 shows another of these random trees that was developed by the Random
Forest model, as shown in Figure 12, and the reasoning-based description of this tree
is shown in Figure 36. This random tree was associated with detecting different values
of the Y-coordinate of the user based on the associated rules at each node. We explain
the working of the tree for one such detection here, when the user was located at the
Y-coordinate—137.000 as per this reference system. This is marked in blue in Figure 35.
The comparison starts at the topmost node—Distance A and it is greater than 1.0008 m,
so the control moves to the left side of the tree to check Distance B. Here, the value of this
distance was greater than 1.334 m, so the control moved to the right side of this node to
check for another condition associated with Distance B. Here, it checked if the value of
Distance B was greater than 1.286 m or not. For this specific condition as Distance B was
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greater than 1.286 m so the control traversed to the left side of the node to its child node
which is associated with checking another condition at Distance A. This value was less
than or equal to 1.095 m, so the Y-coordinate of the user was deduced to be 137.000.

Figure 35. Representation of one of the Random Trees developed by the Random Forest-based
RapidMiner “process” shown in Figure 12. This random tree was associated with detecting different
values of the Y-coordinate of the user based on the associated rules at each node.

Figure 36. Reasoning-based description of the Random Tree shown in Figure 35, that was associated
with detecting different values of the Y-coordinate of the user based on the associated rules at
each node.

Figures 37 and 38 show the output of the RapidMiner “process” (for the first 12
rows), shown in Figure 12, which detected the X-coordinate and Y-coordinate of the user’s
location based on this methodology, as outlined in Section 4.3. This output was shown
by RapidMiner after taking into consideration all the predictions done by each of these
100 Random Trees which were a part of the developed Random Forest-based learning
model (Figure 12). The maximum depth of all these random trees was 10. Tables 5 and 6
consist of the description of all the attributes represented in Figures 37 and 38, respectively.
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Figure 37. Output (first 12 rows) of the RapidMiner “process” shown in Figure 12 for detection of the
spatial coordinates (X-coordinate) of the user in each ‘activity-based zone’.

Figure 38. Output (first 12 rows) of the RapidMiner “process” shown in Figure 12 for detection of the
spatial coordinates (Y-coordinate) of the user in each ‘activity-based zone’.

Table 5. Description of the attributes of the output of the RapidMiner “process” shown in Figure 37.

Attribute Name Description

Row No The row number in the output table
Position X The actual X coordinate of the user’s position

Prediction (Position X) The predicted X coordinate of the user’s position
Distance A The actual distance of the user from the first Bluetooth beacon
Distance B The actual distance of the user from the second Bluetooth beacon
Distance C The actual distance of the user from the third Bluetooth beacon

Time The associated timestamp information

Table 6. Description of the attributes of the output of the RapidMiner “process” shown in Figure 38.

Attribute Name Description

Row No The row number in the output table
Position Y The actual Y coordinate of the user’s position

Prediction (Position Y) The predicted Y coordinate of the user’s position
Distance A The actual distance of the user from the first Bluetooth beacon
Distance B The actual distance of the user from the second Bluetooth beacon
Distance C The actual distance of the user from the third Bluetooth beacon

Time The associated timestamp information
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The performance characteristics of this RapidMiner “process”, shown in Figure 12,
were evaluated by using the RMSE in RapidMiner and the findings are outlined in Table 7.
Here, as the predicted attributes were X-coordinate and the Y-coordinate values, both of
which were of numerical type, so we were able to use the RMSE method for performance
evaluation [68] as recommended by ISO/IEC18305:2016—an international standard for
evaluating localization and tracking systems [31]. While RMSE is sometimes calculated by
using vector analysis where a single value of RMSE is calculated instead of RMSE along X
and Y directions, but as ISO/IEC18305:2016 [31] provides 3 different formulae in Chapter 8,
for calculation of RMSE in X-direction, Y-direction, and the associated Horizontal Error, so
we calculated these performance metrics separately. The formulae for calculation of these
three performance characteristics, as mentioned in ISO/IEC18305:2016, are represented in
Equations (1)–(3).

εx,rms =

√√√√ 1
N

N

∑
i=1

ε2
x,i (1)

εy,rms =

√√√√ 1
N

N

∑
i=1

ε2
y,i (2)

εh,rms =
√

ε2
x,rms + ε2

y,rms (3)

where:

εx,rms stands for RMSE in the X-direction
εy,rms stands for RMSE in the Y-direction
εh,rms stands for Horizontal Error that considers RMSE in the X-direction and RMSE in the
Y-direction
ε2

x,i stands for squared errors in the X-direction
ε2

y,i stands for squared errors in the Y-direction

N stands for sample size

Table 7. Description of the performance characteristics of the Random Forest-based RapidMiner
“process” shown in Figure 12.

Description of Performance Characteristic Value

Root Mean Squared Error for detection of X-coordinate 5.85 cm
Root Mean Squared Error for detection of Y-coordinate 5.36 cm

Horizontal Error 7.93 cm

As can be observed from Table 7, the root mean squared error for detection of the
instantaneous X-coordinate and Y-coordinate values of the user’s position were found to
be 5.85 cm and 5.36 cm, respectively. To add to the above, the Horizontal Error was found
to be 7.93 cm. Further discussion about how this approach and the associated results and
findings address multiple research challenges in this field is presented in Section 7.

6. Deducing the Optimal Machine Learning Model for Indoor Localization

As outlined in Section 2, one the research challenges in this field of Indoor Localization
is the need to develop an optimal machine learning model for Indoor Localization systems,
Indoor Positioning Systems, and Location-Based Services. In [9–25], researchers have
used multiple machine learning approaches—Random Forest, Artificial Neural Network,
Decision Tree, Support Vector Machine, k-NN, Gradient Boosted Trees, Deep Learning, and
Linear Regression. However, none of these works implemented multiple machine learning
models to evaluate and compare the associated performance characteristics to deduce the
optimal machine learning approach. Due to the differences in the datasets used or the real-
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time data that was collected, the associated data preprocessing steps that were different,
variations in train and test ratio of the data, and several other dissimilar steps that were
associated with the developments of each of these machine learning models as presented
in [9–25], their final performance accuracies cannot be directly compared to deduce the best
approach. Thus, analyzing the performance characteristics of multiple machine learning
models, developed, implemented, and tested as per the same methodology, to deduce the
optimal approach for development of such Indoor Localization systems serves as the main
motivation for the work presented in the section.

In Section 4.3, we outlined the steps associated with the proposed methodology to
detect the spatial coordinates of a user’s indoor position based on the associated user
interactions with the context parameters and the user-centered local spatial context, by
using a reference system. Upon development of the same, as a RapidMiner “process”, as
shown in Figure 12, by using the Random Forest-based learning approach, we evaluated
its performance characteristics by calculating the RMSE for X coordinate, the RMSE for Y
coordinate, and the Horizontal Error—these are performance evaluation metrics mentioned
in ISO/IEC18305:2016 [31]. The RMSE for detection of the X-coordinate and Y-coordinate
were found to be 5.85 cm and 5.36 cm as per Equations (1) and (2), respectively. The
associated Horizontal Error as per Equation (3) was found to be 7.93 cm. These results are
shown in Table 7. In this section, we followed the same steps as outlined in Section 4.3 and
as per the flowchart shown in Figure 11, to develop, implement, and test this methodology
by using all the machine learning methods that have been used by researchers [9–25] in
this field. These machine learning methods included—Random Forest, Artificial Neural
Network, Decision Tree, Support Vector Machine, k-NN, Gradient Boosted Trees, Deep
Learning, and Linear Regression. As we had already developed this approach by using
the Random Forest approach (Figure 12 and Section 5.3), so, we did not repeat the same in
this section and we performed this study on all the other machine learning methods. For
each of these methods we developed a RapidMiner “process” by using the same version
of RapidMiner on the same computer as outlined in Section 3. Each of these processes
were developed as a combination of built-in “operators” and user defined “operators”
in RapidMiner. An overview of built-in “operators” and user-defined “operators” in
RapidMiner was presented in Section 3. We used the same system architecture as outlined
in Figure 11 for development of all the machine learning-based “processes” in RapidMiner
as discussed here, so, a separate system architecture is not provided in this section. The
specific steps that we followed for development of each of these RapidMiner processes
corresponding to these different machine learning methods are as follows:

i. Use the ‘Dataset’ “operator” to import the dataset [67] into the RapidMiner “process”.
ii. Utilize the ‘Data-Preprocess’ “operator” to perform multiple preprocessing steps

(Steps iii to vi in Section 4.3) prior to splitting the data for training and testing. We
developed this ‘Data-Preprocess’ “operator”.

iii. Use the built-in “operator” called ‘Split Data’ to divide the dataset into training set
and test set. The dataset [67] consisted of 250 rows. We used 70% of the data for
training and the remaining 30% for testing.

iv. Use the specific machine learning model to train the system. By specific machine
learning model, we mean either the usage of the Artificial Neural Network or Decision
Tree or Support Vector Machine or k-NN or Gradient Boosted Trees or Deep Learning
or Linear Regression. These machine learning models are present in RapidMiner
as built-in “operators” that can be directly used. However, a few of these learning
models in RapidMiner such as Artificial Neural Network, Support Vector Machines,
and Linear Regression sometimes need the ‘nominal to numerical’ “operator” for
training and testing of the model, based on the characteristics and nature of the
dataset being used.

v. Utilize the built-in ‘Apply Model’ “operator” to apply the learning model on the test
data. This “operator” was renamed in each of these “processes”, as per the specific
learning model that was being developed and evaluated, to indicate the differences
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in the associated functionalities of this “operator” for each of these RapidMiner
“processes”. For the RapidMiner “process” that used the Artificial Neural Network,
the ‘Apply Model’ “operator” was renamed to ‘Apply Model—ANN’. Similarly,
for the machine learning models—Decision Tree, Support Vector Machine, k-NN,
Gradient Boosted Trees, Deep Learning, and Linear Regression, this “operator” was
renamed to ‘Apply Model—DT’, ‘Apply Model—SVM’, ‘Apply Model—kNN’, ‘Apply
Model—GBT’, ‘Apply Model—DL’, and ‘Apply Model—LR’, respectively.

vi. Use the built-in ‘Performance’ “operator” to evaluate the performance characteristics
of the “process” by calculating the RMSE in X-direction, the RMSE in Y-direction,
and the Horizontal Error as per Equations (1)–(3), respectively. This “operator”
was renamed in each of these “processes”, as per the specific learning model that
was being developed and evaluated, to indicate the differences in the associated
functionalities of this “operator” for each of these RapidMiner “processes”. For the
RapidMiner “process” that used the Artificial Neural Network, the ‘Performance’
“operator” was renamed to ‘ANN-Performance’. Similarly, for the machine learning
models—Decision Tree, Support Vector Machine, k-NN, Gradient Boosted Trees, Deep
Learning, and Linear Regression, this “operator” was renamed to ‘DT-Performance’,
‘SVM-Performance’, ‘kNN-Performance’, ‘GBT-Performance’, ‘DL-Performance’, and
‘LR-Performance’, respectively.

These RapidMiner “processes”, that were developed by using the learning approaches—
Artificial Neural Network, Decision Tree, Support Vector Machine, k-NN, Gradient Boosted
Trees, Deep Learning, and Linear Regression, are shown in Figures 39–45, respectively.
The corresponding performance metrics in terms of the RMSE in X-direction, the RMSE in
Y-direction, and the Horizontal Error are shown in Tables 8–14, respectively. We did not
develop the RapidMiner “process” by using the Random Forest approach in this section as
we had already developed the same in Figure 12 and discussed its performance charac-
teristics in terms of the RMSE in X-direction, the RMSE in Y-direction, and the Horizontal
Error in Table 7.

Figure 39. “Process” developed in RapidMiner that used an Artificial Neural Network (ANN)-
based learning approach and followed the steps outlined in Section 4.3 for detection of the spatial
coordinates of the user in each ‘activity-based zone’.

Table 8. Description of the performance characteristics of the Artificial Neural Network (ANN)-based
RapidMiner “process” shown in Figure 39.

Description of Performance Characteristic Value

Root Mean Squared Error for detection of X-coordinate 28.00 cm
Root Mean Squared Error for detection of Y-coordinate 16.16 cm

Horizontal Error 32.33 cm
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Figure 40. “Process” developed in RapidMiner that used a Decision Tree (DT)-based learning
approach and followed the steps outlined in Section 4.3 for detection of the spatial coordinates of the
user in each ‘activity-based zone’.

Table 9. Description of the performance characteristics of the Decision Tree (DT)-based RapidMiner
“process” shown in Figure 40.

Description of Performance Characteristic Value

Root Mean Squared Error for detection of X-coordinate 12.52 cm
Root Mean Squared Error for detection of Y-coordinate 6.19 cm

Horizontal Error 13.97 cm

Figure 41. “Process” developed in RapidMiner that used a Support Vector Machine (SVM)-based
learning approach and followed the steps outlined in Section 4.3 for detection of the spatial coordi-
nates of the user in each ‘activity-based zone’.

Table 10. Description of the performance characteristics of the Support Vector Machine (SVM)-based
RapidMiner “process” shown in Figure 41.

Description of Performance Characteristic Value

Root Mean Squared Error for detection of X-coordinate 27.92 cm
Root Mean Squared Error for detection of Y-coordinate 27.17 cm

Horizontal Error 38.96 cm
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Figure 42. “Process” developed in RapidMiner that used a kNN-based learning approach and
followed the steps outlined in Section 4.3 for detection of the spatial coordinates of the user in each
‘activity-based zone’.

Table 11. Description of the performance characteristics of the kNN-based RapidMiner “process”
shown in Figure 42.

Description of Performance Characteristic Value

Root Mean Squared Error for detection of X-coordinate 10.11 cm
Root Mean Squared Error for detection of Y-coordinate 2.96 cm

Horizontal Error 10.54 cm

Figure 43. “Process” developed in RapidMiner that used a Gradient Boosted Trees (GBT)-based learn-
ing approach and followed the steps outlined in Section 4.3 for detection of the spatial coordinates of
the user in each ‘activity-based zone’.

Table 12. Description of the performance characteristics of the Gradient Boosted Trees (GBT)-based
RapidMiner “process” shown in Figure 43.

Description of Performance Characteristic Value

Root Mean Squared Error for detection of X-coordinate 28.12 cm
Root Mean Squared Error for detection of Y-coordinate 27.65 cm

Horizontal Error 39.44 cm
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Figure 44. “Process” developed in RapidMiner that used a Deep Learning (DL)-based learning
approach and followed the steps outlined in Section 4.3 for detection of the spatial coordinates of the
user in each ‘activity-based zone’.

Table 13. Description of the performance characteristics of the Deep Learning (DL)-based RapidMiner
“process” shown in Figure 44.

Description of Performance Characteristic Value

Root Mean Squared Error for detection of X-coordinate 29.67 cm
Root Mean Squared Error for detection of Y-coordinate 12.04 cm

Horizontal Error 32.02 cm

Figure 45. “Process” developed in RapidMiner that used a Linear Regression (LR)-based learning
approach and followed the steps outlined in Section 4.3 for detection of the spatial coordinates of the
user in each ‘activity-based zone’.

Table 14. Description of the performance characteristics of the Linear Regression (LR)-based Rapid-
Miner “process” shown in Figure 45.

Description of Performance Characteristic Value

Root Mean Squared Error for detection of X-coordinate 28.064 cm
Root Mean Squared Error for detection of Y-coordinate 27.630 cm

Horizontal Error 39.382 cm
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The performance metrics—RMSE in X-direction, RMSE in Y-direction, and Horizontal
Error for all these machine learning models—Random Forest, Artificial Neural Network,
Decision Tree, Support Vector Machine, k-NN, Gradient Boosted Trees, Deep Learning,
and Linear Regression are summarized in Table 15. The analysis of these metrics is shown
in Figure 46.

Table 15. Comparison of the performance metrics of the different learning approaches—Random
Forest, Artificial Neural Network, Decision Tree, Support Vector Machine, k-NN, Gradient Boosted
Trees, Deep Learning, and Linear Regression.

Learning Approach Performance Metrics

RMSE in
X-Direction

RMSE in
Y-Direction

Horizontal
Error

Random Forest 5.85 cm 5.36 cm 7.93 cm
Artificial Neural Network 28.00 cm 16.16 cm 32.33 cm

Decision Tree 12.52 cm 6.19 cm 13.97 cm
Support Vector Machine 27.92 cm 27.17 cm 38.96 cm

k-NN 10.11 cm 2.96 cm 10.54 cm
Gradient Boosted Trees 28.12 cm 27.65 cm 39.44 cm

Deep Learning 29.67 cm 12.04 cm 32.02 cm
Linear Regression 28.06 cm 27.63 cm 39.38 cm

Figure 46. Comparison of the performance metrics of the different learning approaches—Random Forest, Artificial Neural
Network, Decision Tree, Support Vector Machine, k-NN, Gradient Boosted Trees, Deep Learning, and Linear Regression,
shown in the form a Bar (Column) Style Plot.

From Table 15 and Figure 46 the following can be observed and deduced:

i. The Random Forest-based learning approach has the least Horizontal Error of 7.93 cm
and the Gradient Boosted Trees-based learning approach has the highest Horizontal
Error of 39.44 cm. Considering Horizontal Error as a function, where Horizontal
Error (x) gives the Horizontal Error of ‘x’, where ‘x’ is a machine learning model; the
Horizontal Errors of these machine learning models can be arranged in an increasing
to decreasing order as: Horizontal Error (Random Forest) < Horizontal Error (k-NN)
< Horizontal Error (Decision Tree) < Horizontal Error (Deep Learning) < Horizontal
Error (Artificial Neural Network) < Horizontal Error (Support Vector Machine) <
Horizontal Error (Linear Regression) < Horizontal Error (Gradient Boosted Trees).

ii. The RMSE in X-direction is least for the Random Forest-based learning approach
and is highest for the Deep Learning-based learning approach with the respective
values being 5.85 cm and 29.67 cm, respectively. Considering RMSE in X-direction as
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a function, where RMSE in X-direction (p) gives the RMSE in X-direction of ‘p’, where
‘p’ is a machine learning model; the RMSE in X-directions of these machine learning
models can be arranged in an increasing to decreasing order as: RMSE in X-direction
(Random Forest) < RMSE in X-direction (k-NN) < RMSE in X-direction (Decision Tree)
< RMSE in X-direction (Support Vector Machine) < RMSE in X-direction (Artificial
Neural Network) < RMSE in X-direction (Linear Regression) < RMSE in X-direction
(Gradient Boosted Trees) < RMSE in X-direction (Deep Learning).

iii. The RMSE in Y-direction is least for the k-NN-based learning approach with a value
of 2.96 cm and this metric is highest for the Gradient Boosted Trees-based learning
approach with a value of 27.65 cm. Considering RMSE in Y-direction as a function,
where RMSE in Y-direction (q) gives the RMSE in Y-direction of ‘q’, where ‘q’ is a
machine learning model; the RMSE in Y-directions of these machine learning models
can be arranged in an increasing to decreasing order as: RMSE in Y-direction (k-
NN) < RMSE in Y-direction (Random Forest) < RMSE in Y-direction (Decision Tree)
< RMSE in Y-direction (Deep Learning) < RMSE in Y-direction (Artificial Neural
Network) < RMSE in Y-direction (Support Vector Machine) < RMSE in Y-direction
(Linear Regression) RMSE in Y-direction (Gradient Boosted Trees)

As can be seen from (i) and (ii) above, the Random Forest-based learning approach
has the least RMSE in X-direction as well as the least Horizontal Error. The respective
values being 5.85 cm and 7.93 cm, respectively. Even though the k-NN based learning
approach has a lesser RMSE in Y-direction (2.96 cm) as compared to RMSE of Random
Forest in Y-direction (5.36 cm), the overall Horizontal Error for the k-NN based learning
approach is much higher as compared to the Horizontal Error of the Random Forest-based
learning approach with the respective values being 10.54 cm and 7.93 cm. Thus, for all
practical purposes it may be concluded that the Random Forest-based learning approach
is the optimal machine learning model for development of Indoor Localization systems,
Indoor Positioning Systems, and Location-Based Services. Further discussion about how
this comparative study and the associated results and findings address multiple research
challenges in this field is presented in Section 7.

7. Comparative Discussion

Despite several advances in the fields of Indoor Localization, Indoor Positioning
Systems, Human Activity Recognition, Activity Analysis, and Ambient Assisted Living,
there exist several research challenges in this field. The work presented in this paper at the
intersection of Big Data, Machine Learning, Indoor Localization, Ambient Assisted Living,
Internet of Things, Activity Centric Computing, Human–Computer Interaction, Pattern
Recognition, and Assisted Living Technologies, and their related application domains
aims to take a comprehensive approach to address these challenges. We introduced these
research challenges in Section 2. In this section, we further discuss the same and outline
how the work presented in this paper and the associated results and findings addresses
these challenges and outperform similar works in this field. This is discussed as follows:

1. Need for AAL-based activity recognition and activity analysis-based systems to be
able to track the indoor location of the user: The AAL-based systems currently lack
the ability to track the indoor location of the user. There have been several works
done [46–51] in these interrelated fields of activity recognition, activity analysis, and
fall detection, but none of these works have focused on Indoor Localization. Being
able to track the indoor location of a user is of prime importance and of crucial need
for AAL-based systems to be able to contribute towards improving the quality of
life of individuals in the future of living environments, such as, Smart Homes. For
instance, an elderly person could be staying in an apartment which is a part of a
multistoried building such as Taipei 101 [70] or Burj Khalifa [71]—both of which are
amongst the tallest buildings in the world. When this elderly person experiences a
fall, a fall detection system such as [51], could detect a fall and alert caregivers but the
current GPS-based technologies would only provide the building level information.
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The lack of the precise location information in terms of the specific floor, apartment,
and room, could cause delay of medical attention or assistive care. Such delay of care
can have both short-term and long-term health-related impacts to the elderly such as
long lie [72], that can cause dehydration, rhabdomyolysis, pressure injuries, carpet
burns, hypothermia, pneumonia, and fear of falling, which could lead to decreased
independence and willingness in carrying out daily routine activities. Long lie can
even lead to death in some cases. Thus, it is the need of the hour that AAL-based
systems should not only be able to track, monitor, and analyze human behavior but
they should also be equipped with the functionality to detect the indoor location of the
users. The work presented in this paper addresses this challenge by proposing a novel
Big-Data driven methodology that can study the multimodal components of user
interactions during Activities of Daily Living (ADLs) (Tables 1 and 2) and analyze the
data from BLE beacons and BLE scanners to track a user’s indoor location in a specific
‘activity-based zone’ during different ADLs (Figure 6). This approach was developed
by using a k-nearest neighbor (k-NN)-based learning approach (Section 4.1). When
tested on a dataset (Figure 17, Table 3) it achieved a performance accuracy of 81.36%
(Figures 18 and 19).

2. Need for context-independent Indoor Localization systems: As outlined in Section 2,
several recent works related to Indoor Localization systems are context-based and are
only functional in the specific environments for which they were developed [26–30].
These specific environments include—factories [26], indoor parking [27], hospi-
tals [28], industry-based settings [29], and academic environments [30]. For instance,
the methodology proposed in [29] is not functional in any of the settings described
in [26–28,30]. The future of interconnected Smart Cities would consist of a host of
indoor environments in the living and functional spaces of humans, which would
be far more diverse, different, and complicated as compared to the environments
described in [26–30]. The challenge is thus to develop a means for Indoor Localization
that is not environment dependent and can be seamlessly deployed in any IoT-based
setting irrespective of the associated context parameters and their attributes. The
work proposed in this paper addresses this challenge by proposing a novel context
independent approach that can interpret the accelerometer and gyroscope data from
diverse behavioral patterns to detect the ‘zone-based’ indoor location of a user in any
IoT-based environment (Section 4.2). This proposed approach (Figure 9) can study,
analyze, and interpret the distinct behavioral patterns, in terms of the associated
accelerometer and gyroscope data, local to each such ‘zone’, in the confines of any
given IoT-based space without being affected by the changes or variations in the
context parameters or environment variables. It uses a Random Forest-based learn-
ing approach for the training and the same was evaluated on a dataset (Figure 26,
Table 4). The performance accuracy of this method for detecting a user’s location in
each of these ‘zones’, that were present in this dataset [66], was found to be 81.13%
(Figures 27 and 28). Here, the ‘zone-based’ mapping of a user’s location refers to map-
ping the user in one of the multiple ‘activity-based zones’ that any given IoT-based
environment can be classified into based on the specific activity being performed by
the user. The accelerometer and gyroscope data are user behavior dependent and
not context parameter dependent and neither is this approach of spatially mapping
a given IoT-based space into ‘activity-bases zones’ dependent on any specific set of
context parameters, as explained in Section 4.2. This upholds the context indepen-
dent nature of this methodology. In other words, this proposed methodology can be
seamlessly applied to any IoT-based environment, including all the environments
described in [26–30], as well as in any other IoT-based setting that involves different
forms of user interactions on context parameters or environment variables, which can
be characterized by the changes in the associated behavioral data.

3. The RMSE of the existing Indoor Localization systems [33–43] are still high and
greater precision and accuracy for detection of indoor location is the need of the
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hour. Several performance metrics have been used by researchers for studying
the characteristics of Indoor Localization systems, Indoor Positioning Systems, and
Location-Based Services. However, ISO/IEC18305:2016, an international standard
for evaluating localization and tracking systems [31], which is one of the recent
works in this field, lists several metrics and the associated formulae for evaluating
the performance characteristics of such systems. These include the formulae for
determination of the RMSE in the X-direction, Y-direction, and in the X-Y plane.
When the RMSE is determined in the X-Y plane, it is referred to as Horizontal Error
as per the definitions of the standard [31]. We have presented and discussed the
associated formulae in Equations (1)–(3). Upon reviewing the recent works [33–43]
related to this field, as presented in Section 2, it can be observed that the RMSE
of the works are still significantly high in view of the average dimensions of an
individual’s living space. As per [44,45], (1) the average dimensions of newly built
one-bedroom apartments and two-bedroom apartments in United States in 2018 were
757 square feet (70.3276 square meters) and 1138 square feet (105.7236 square meters),
respectively. In view of these dimensions of these apartments, it can be concluded
that higher precision is needed for the future of Indoor Localization systems. Such
systems should have much lower values of RMSE in X and Y directions as well as their
overall Horizontal Error should be low. The work presented in this paper addresses
this research challenge by proposing a methodology to detect the spatial coordinates
of a user’s indoor position based on the associated user interactions with the context
parameters and the user-centered local spatial context, by using a reference system. In
Section 4.3 we have presented the steps for development of this approach for Indoor
Localization and the results of the same are discussed in Section 5.3. While RMSE
is sometimes calculated by using vector analysis where a single value of RMSE is
calculated instead of RMSE along X and Y directions, but as ISO/IEC18305:2016 [31]
presents two separate formulae (Equations (1) and (2)) for calculation of RMSE in
X-direction and RMSE in Y-direction and a third formula (Equation (3)) for Horizontal
Error calculation, so, we calculated RMSE in X and Y directions separately and then
calculated the Horizontal Error as per Equations (1)–(3), respectively. As can be seen
from the results (Table 7), the performance characteristics of our approach are—RMSE
in X-direction: 5.85 cm, RMSE in Y-direction: 5.36 cm, and Horizontal Error: 7.93
cm. As can be seen from [33–43], RMSE is usually represented in meters, so upon
converting these metrics from Table 7 to meters (correct to 2 decimal places) the
corresponding values are: RMSE in X-direction: 0.06 m, RMSE in Y-direction: 0.05 m,
and Horizontal Error: 0.08 m. The RMSE of these existing works [33–43], in increasing
to decreasing order are shown in Table 16.

Table 16. Summary of the various Indoor Localization approaches that used RMSE for evaluation of
the performance metrics.

RMSE Value (in Meters) Work(s)

0.32 Bolic et al. [34]
1.00 Chen et al. [41]

1 to 2 Angermann et al. [35]
1.20 Klingbeil et al. [38]
1.28 Chen at al. [43]
1.40 Correa et al. [33]
1.53 Evennou et al. [36]
2.90 Li et al. [42]
3.10 Liu et al. [40]
4.30 Wang et al. [37]
4.55 Pei et al. [39]

From Table 16, it can be concluded that Bolic et al.’s work [34] has the best performance
accuracy out of all the works reviewed in [33–43] with the RMSE being 0.32 m. Upon
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comparing the performance metrics of our approach (Table 7) with Bolic et al.’s
work [34], it can be easily concluded that our work outperforms the same in terms of
performance accuracy as the RMSE values (RMSE in X-direction: 0.06 m, RMSE in Y-
direction: 0.05 m, and Horizontal Error: 0.08 m) of our methodology are significantly
lower. As our work outperforms Bolic et al.’s work, which has the best accuracy
out of all the works reviewed in [33–43], so, it can also be concluded that our work
outperforms all the other works as well [33,35–43], in terms of the RMSE method of
performance evaluation, as recommended by ISO/IEC18305:2016 [31].

4. Need for an optimal machine learning-based approach for Indoor Localization: A
range of machine learning approaches—Random Forest, Artificial Neural Network,
Decision Tree, Support Vector Machine, k-NN, Gradient Boosted Trees, Deep Learning,
and Linear Regression, have been used by several researchers [9–25] for development
of various types of Indoor Localization systems for IoT-based environments. While
each of these systems seem to perform reasonably well but none of these works
attempted to develop an optimal machine learning model for Indoor Localization
systems. Additionally, due to variations in the data source, differences in the types
of data, varied methods of data collection, different training set to test set ratios,
dissimilar data preprocessing steps, as well as because of differences in the simu-
lated or real-world environments in which these respective systems were developed,
implemented, and deployed, the performance metrics of these systems cannot be
directly compared to deduce the optimal approach. These works [9–25] along with
the machine learning approaches that were used in each are outlined in Table 17.

Table 17. Summary of the various machine learning approaches that have been investigated by
researchers in this field.

Learning Approach Used Work(s)

Random Forest Varma et al. [19], Gao et al. [20]
Artificial Neural Network Khan et al. [16], Labinghisa et al. [17], Qin et al. [18]

Decision Tree Musa et al. [9], Yim et al. [10]
Support Vector Machine Sjoberg et al. [11], Zhang et al. [12]

k-NN Zhang et al. [13], Ge et al. [14], Hu et al. [15]
Gradient Boosted Trees Wang et al. [25]

Deep Learning Zhang et al. [23], Poulose et al. [24]
Linear Regression Jamâa et al. [21], Barsocchi et al. [22]

There is a need to address this research challenge of identifying the optimal machine
learning methodology for Indoor Localization. The work presented in this paper
addresses this challenge. In Section 6—we developed, implemented, and tested the
performance characteristics of different learning models to perform Indoor Local-
ization by using the same dataset [67], the same data preprocessing steps, the same
training and test ratios, and the same methodology, which we presented in Section 4.3.
The learning models that we developed and studied included—Random Forest, Artifi-
cial Neural Network, Decision Tree, Support Vector Machine, k-NN, Gradient Boosted
Trees, Deep Learning, and Linear Regression. These models were developed to detect
the spatial coordinates of a user’s indoor location as per the methodology outlined
in Section 4.3. RapidMiner was used to develop these machine learning models,
and the corresponding RapidMiner “processes” are shown in Figures 12 and 39–45,
respectively. We evaluated the performance characteristics of these models based
on three performance metrics as outlined in ISO/IEC18305:2016—an international
standard for evaluating localization and tracking systems [31]. These include—RMSE
in X-direction, RMSE in Y-direction, and Horizontal Error (Equations (1)–(3)). The
performance characteristics of these respective machine learning models are shown
in Tables 7–14. In Table 15 and Figure 46, we present the comparisons amongst these
learning models to deduce the optimal machine learning approach for development
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of an Indoor Localization system. Based on the findings presented in Table 15 and
Figure 46, the following can be observed:

i. Out of all these learning approaches, the Random Forest-based learning ap-
proach has the least Horizontal Error of 7.93 cm. In an increasing to decreasing
order, the Horizontal Errors of these machine learning models can be arranged
as: Horizontal Error (Random Forest) < Horizontal Error (k-NN) < Horizontal
Error (Decision Tree) < Horizontal Error (Deep Learning) < Horizontal Error
(Artificial Neural Network) < Horizontal Error (Support Vector Machine) <
Horizontal Error (Linear Regression) < Horizontal Error (Gradient Boosted
Trees).

ii. Out of all these learning approaches, the RMSE in X-direction is the least for
the Random Forest-based learning approach, which is equal to 5.85 cm. In
an increasing to decreasing order, the RMSE in X-direction of these machine
learning models can be arranged as: RMSE in X-direction (Random Forest) <
RMSE in X-direction (k-NN) < RMSE in X-direction (Decision Tree) < RMSE in
X-direction (Support Vector Machine) < RMSE in X-direction (Artificial Neural
Network) < RMSE in X-direction (Linear Regression) < RMSE in X-direction
(Gradient Boosted Trees) < RMSE in X-direction (Deep Learning).

iii. Out of all these learning models, the RMSE in Y-direction of the k-NN-based
learning approach is the lowest and the RMSE in Y-direction of the Random
Forest-based learning approach is the second lowest. Their respective values
being 2.96 cm and 5.36 cm, respectively. In an increasing to decreasing order,
the RMSE in Y-direction of these machine learning models can be arranged
as: RMSE in Y-direction (k-NN) < RMSE in Y-direction (Random Forest) <
RMSE in Y-direction (Decision Tree) < RMSE in Y-direction (Deep Learning)
< RMSE in Y-direction (Artificial Neural Network) < RMSE in Y-direction
(Support Vector Machine) < RMSE in Y-direction (Linear Regression) RMSE in
Y-direction (Gradient Boosted Trees)

iv. From (i) and (ii), it can be deduced that for the RMSE in X-direction and for the
Horizontal Error (Equations (1) and (3)) methods of performance evaluation,
the Random Forest-based learning approach outperforms all the other learn-
ing approaches—Artificial Neural Network, Decision Tree, Support Vector
Machine, k-NN, Gradient Boosted Trees, Deep Learning, and Linear Regres-
sion. Even though the k-NN-based learning approach performs better than
the Random Forest-based learning approach for determination of the RMSE in
Y-direction, as can be seen from (iii), however, the difference between RMSE in
Y-direction for the k-NN based learning approach and the RMSE in Y-direction
for the Random Forest based learning approach is not high. To add, for the
other two performance metrics—RMSE in X-direction and Horizontal Error,
the k-NN based learning approach does not perform as good as the Random
Forest-based learning approach and its error values are much higher. Thus,
based on these findings and the discussions, which are presented in an elab-
orate manner in Section 6, it can be concluded that a Random Forest-based
learning approach is the optimal machine learning model for development of
Indoor Localization systems, Indoor Positioning Systems, and Location-Based
Services.

8. Conclusions and Scope for Future Work

The future of technology-laden living and functional environments, for instance,
Smart Homes, Smart Cities, Smart Workplaces, Smart Industries, and Smart Vehicles,
would involve Human–Computer, Human–Robot, Human–Machine, and other forms
of human interactions with technology-laden gadgets, systems, or devices. Although
Global Positioning System (GPS) and Global Navigation Satellite Systems (GNSS) have
significantly revolutionized navigation research by being able to track people, objects, and
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assets in real-time, such technologies are still ineffective in indoor settings [1]. Indoor
Localization has multiple applications in the context of such forms of human interactions
with technology. As per [3], the market opportunities of Indoor Localization related systems
are expected to be in the order of USD 10 billion by 2024 due to the diverse societal needs
that such systems can address. There can be multiple use cases and applications of Indoor
Localization systems that can be investigated and studied. This paper focuses on one
specific application domain—Ambient Assisted Living (AAL) of elderly people in the
future of Internet of Things (IoT)-based living environments, such as Smart Homes and
Smart Cities. The work presented in this paper addresses multiple research challenges and
makes several scientific contributions to this field by integrating the latest advancements
from Big Data, Machine Learning, Indoor Localization, Ambient Assisted Living, Internet
of Things, Activity Centric Computing, Human–Computer Interaction, Pattern Recognition,
Assisted Living Technologies, and their related application domains.

First, to address the research challenge that the AAL-based systems and technolo-
gies [46–51] for activity recognition, activity analysis, and fall detection, currently lack the
ability to track the indoor location of the user; this paper proposes a novel Big-Data driven
methodology that studies the multimodal components of user interactions and analyzes
the data from BLE beacons and BLE scanners to track a user’s indoor location in a specific
‘activity-based zone’ during Activities of Daily Living. This approach was developed by
using a k-nearest neighbor (k-NN)-based learning approach. When tested on a dataset this
methodology achieved a performance accuracy of 81.36%.

Second, to address the limitation in several Indoor Localization systems [26–30], that
they are context-based and are only functional in the specific environments in which they
were developed; this paper proposes a context independent approach that can interpret
the accelerometer and gyroscope data from diverse behavioral patterns to detect the
‘zone-based’ indoor location of a user in any IoT-based environment. Here, the ‘zone-
based’ mapping of a user’s location refers to mapping the user in one of the multiple
‘activity-based zones’ that any given IoT-based environment can be classified into, based
on the specific activity being performed by the user. This methodology was developed by
using the Random Forest-based learning approach. When tested on a dataset this novel
methodology achieved a performance accuracy of 81.13%.

Third, to address the challenge that the RMSE of the existing Indoor Localization
systems are still high [33–43] and greater precision and accuracy for detection of indoor
location is the need of the hour; this paper proposes a methodology to detect the spatial
coordinates of a user’s indoor position based on the associated user interactions with the
context parameters and the user-centered local spatial context, by using a reference system.
The performance characteristics of this system were evaluated as per three metrics stated
in ISO/IEC18305:2016 [31], which is an international standard for testing Localization and
Tracking Systems. These metrics included root mean squared error (RMSE) in X-direction,
RMSE in Y-direction, and the Horizontal Error which were found to be 5.85 cm, 5.36 cm, and
7.93 cm, respectively. A comparison study of this approach with similar researches [33–43]
in this field showed that our system outperformed all these works that had used a similar
approach of performance evaluation.

Finally, in view of the fact that multiple machine learning-based approaches have been
used by researchers [9–25] and there is a need to identify the optimal machine learning
model that can be used to develop the future of Indoor Localization systems, Indoor
Positioning Systems, and Location-Based Services; the paper presents a comprehensive
comparative study of different machine learning approaches that include—Random Forest,
Artificial Neural Network, Decision Tree, Support Vector Machine, k-NN, Gradient Boosted
Trees, Deep Learning, and Linear Regression. The performance characteristics of each of
these learning methods were studied by evaluating the RMSE in X-direction, the RMSE
in Y-direction, and the Horizontal Error as per ISO/IEC18305:2016 [31]. The results and
findings of this study show that the Random Forest approach can be considered as the
optimal learning method for development of such technologies for all practical purposes.
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To the best knowledge of the authors, no similar work has been done yet and no
work in the field of Indoor Localization thus far has achieved such a superior performance
accuracy (RMSE for detection of X coordinate: 5.85 cm, RMSE for detection of Y coordinate:
5.36 cm, and Horizontal Error: 7.93 cm) as presented in this work. Future work would
involve—(1) Implementing and deploying all these proposed approaches for Indoor Lo-
calization in real-time in different IoT-based environments by using the Context-Driven
Human Activity Recognition Framework [64]. For real-time implementation of all these
proposed approaches, we plan on conducting experiments as per Institutional Review
Board (IRB) approved protocols by setting up an experiment procedure for data collec-
tion and analysis. The specific functionalities and characteristic features of the different
methodologies that we have outlined in Section 4.1, Section 4.2, Section 4.3 would then be
implemented in real-time. Thereafter, the performance characteristics from the real-time
data would be studied and compared with the findings presented in Section 5.1, Section 5.2,
Section 5.3 (2) Extending the functionalities of the two ‘zone’-based Indoor Localization ap-
proaches and evaluating their performance characteristics by using the RMSE approach as
well as by using some of the other performance metrics defined in ISO/IEC18305:2016 [31].
This would be performed either by analyzing the real-time data collected from (1) or by
using a different dataset that consists of user interaction data related to different ADLs and
the spatial coordinates of the user’s varying position recorded during the dynamic user
interactions associated with these different activities.
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Abstract: This framework for human behavior monitoring aims to take a holistic approach to study,
track, monitor, and analyze human behavior during activities of daily living (ADLs). The framework
consists of two novel functionalities. First, it can perform the semantic analysis of user interactions
on the diverse contextual parameters during ADLs to identify a list of distinct behavioral patterns
associated with different complex activities. Second, it consists of an intelligent decision-making
algorithm that can analyze these behavioral patterns and their relationships with the dynamic
contextual and spatial features of the environment to detect any anomalies in user behavior that
could constitute an emergency. These functionalities of this interdisciplinary framework were
developed by integrating the latest advancements and technologies in human–computer interaction,
machine learning, Internet of Things, pattern recognition, and ubiquitous computing. The framework
was evaluated on a dataset of ADLs, and the performance accuracies of these two functionalities
were found to be 76.71% and 83.87%, respectively. The presented and discussed results uphold the
relevance and immense potential of this framework to contribute towards improving the quality
of life and assisted living of the aging population in the future of Internet of Things (IoT)-based
ubiquitous living environments, e.g., smart homes.

Keywords: ambient intelligence; human behavior monitoring; smart homes; activities of daily living;
elderly population; machine learning; internet of things; ubiquitous computing

1. Introduction

The elderly population across the globe is increasing at a very fast rate. It has been
estimated [1] that by the year 2050, around 20% of the world’s population will be aged
60 years or more. Aging is associated with several issues and limitations that affect a
person’s quality of life. According to [2], in the United States, approximately 8 out of every
10 elderly people have some form of chronic diseases, and approximately 5.4 million older
adults have Alzheimer’s. People living longer are causing a significant increase in the
old-age dependency ratio, which is the ratio of the count of elderly people to that of the
working population. On a global scale, this ratio is expected to increase from 11.7% to
25.4% over the next few years [2]. In addition to this, the population of elderly people
with ages 80 and above is expected to triple within the next few years [3]. This increase
in the population of older adults would bring several sociological and economic needs to
the already existing challenges associated with aging. This constantly increasing elderly
population is expected to impact society in multiple ways, as outlined below [3]:

i. A rise in cost of healthcare: at present, the treatment of older adults’ accounts for
40% of the total healthcare costs in the United States even though older adults
account for around 13% of the total population.

ii. Diseases affecting greater percentage of the population: with the increasing elderly
population, there will be an increased number of people with diseases like Parkin-
son’s and Alzheimer’s, for which there is yet to be a proper and definitive cure.
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iii. Decreased caregiver population: the rate of increase of caregivers is not as high as
the increasing rate of the elderly population.

iv. Quality of caregiving: caregivers would be required to look after multiple older
adults, and quite often they might not have the time, patience, or energy to meet
the expectations of caregiving or to address the emotional needs of the elderly.

v. Dependency needs: with multiple physical, emotional, and cognitive issues associ-
ated with aging, a significant percentage of the elderly population would be unable
to live independently.

vi. Societal impact: the need for the development of assisted living and nursing facili-
ties to address healthcare-related needs.

With the decreasing count of caregivers, it is necessary that the future of technology-
based living environments, e.g., smart homes and smart cities use technology-based ser-
vices to address these needs and create assisted living experiences for the elderly. Over the
last few years, researchers [4] have focused on developing assistive systems and devices
according to a new paradigm, “ambient intelligence.” Ambient intelligence may broadly
be defined as a computing paradigm that uses information technology and its applications
to enhance user abilities and performance through interconnected systems that can sense,
anticipate, adapt, predict, and respond to human behavior and needs.

Human behavior is associated with performing activities in various environments and
settings. An activity may broadly be defined as an interaction between a subject and an
object for the subject to achieve a desired end goal or objective. This is typically represented
as “S <–> O,” where S stands for the ‘subject’ and O stands for the ‘object.’ Here, the subject
is the user or the individual performing the activity, and the objects can be one or more
context parameters present in the confines of the user’s spatial orientation that are a part
of the activity. To complete any given activity, the subject performs a set of related and
sequential tasks or actions on one or more objects that depends on the kind of activity to
be performed. These tasks or actions, along with their associated characteristic features,
represent the user interactions related to the specific activity [5].

There can be various kinds of activities that a user performs in different environments
with different spatial configurations. Activities that are crucial to one’s sustenance and are
performed within the confines of one’s living space, e.g., personal hygiene, dressing, eating,
maintaining continence, and mobility, are collectively termed as activities of daily living
(ADLs) [6]. Based on the interaction patterns of the subject and object during activities,
there are five broad characteristics of ADLs—(1) sequential, (2) concurrent, (3) interleaved,
(4) false start, and (5) social interactions [5]. When multiple ADLs occur either at the
same time or in a sequence or in a combination, they may exhibit more than one of these
characteristics. Figure 1 shows four typical scenarios of different ADLs—A1, A2, A3, and
A4—that can occur, where a number of these characteristics were exhibited by the activity
sequences and combinations.

Elderly people need assistance to carry out ADLs due to the various bodily limitations
and disabilities that they face with aging. An important aspect towards creating assisted
living experiences in smart homes for the aging population is to monitor their interactions
with their surroundings during ADLs [7]. The semantic analysis of user interactions during
any ADL involves the monitoring of the associated behavioral patterns with respect to
contextual, spatial, and temporal information. This analysis helps in interpretation of user
performance during ADLs, as well as allowing for the detection of any anomalies that
could constitute an emergency. For example, a person lying on a bed in a bedroom for
several hours at night would mean that the person is taking rest, but if the same activity
of lying is tracked to be taking place at the bathroom at the same time, it could mean an
emergency situation resulting from a fall or unconsciousness, which needs the attention of
caregivers or medical practitioners. In addition to aiding during ADLs, human behavior
monitoring allows for the early detection of various forms of cognitive impairment, demen-
tia, Alzheimer’s, and a range of other limitations associated with old age [8]. Since it is not
practically possible to manually access an older adult’s behavior, it is the need of the hour

144



Information 2021, 12, 81

to develop technology-based solutions with ambient intelligence to address this challenge.
This served as the main motivation for the development of this framework that lever-
ages the potential at the intersection of multiple disciplines including human–computer
interaction, the Internet of Things (IoT), ubiquitous computing, machine learning, and
pattern recognition.

Figure 1. Representation of four typical scenarios of different activities of daily living (ADLs)—(a) A1,
(b) A2, (c) A3, and (d) A4—that can occur, where different characteristics of ADLs are exhibited by
the activity sequences and combinations.

To summarize, the scientific contributions of this paper are as follows:

1. It provides a novel approach to perform the semantic analysis of user interactions on
the diverse contextual parameters during ADLs in order to identify a list of distinct
behavioral patterns associated with different complex activities performed in an IoT-
based environment. These behavioral patterns include walking, sleeping, sitting,
and lying. This functionality was developed and implemented by using a k-nearest
neighbor algorithm (k-NN) classifier. The performance accuracy of this approach was
found to be 76.71% when it was evaluated on a dataset of ADLs.

2. It provides a novel intelligent decision-making algorithm that can analyze such
distinct behavioral patterns associated with different complex activities and their
relationships with the dynamic contextual and spatial features of the environment in
order to detect any anomalies in user behavior that could constitute an emergency,
such as a fall or unconsciousness. This algorithm was developed and implemented
by using a k-NN classifier, and it achieved an overall performance accuracy of 83.87%
when tested on a dataset of ADLs.

This paper is organized as follows. We present an overview of the related works in
Section 2. The proposed framework is introduced and explained in Section 3. Section 4 dis-
cusses the results and performance characteristics of this framework. In Section 5, we discuss
the limitations and drawbacks in the existing works and outline how our framework ad-
dresses these challenges and outperforms these existing systems in terms of their technical
characteristics, functionalities, and operational features. It is followed by Section 6, where
the conclusion and scope for future work are outlined.
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2. Literature Review

This section outlines the recent works in the fields of human behavior research, i.e.,
assistive technology, Internet of Things, human–computer interaction, and their related
disciplines for creating assisted living experiences in the future of technology-laden living
environments, e.g., smart homes and smart cities.

A system comprised of wireless sensors to track and interpret human motion data for
performing activity recognition was proposed by Azkune et al. [9]. The system consisted
of an approach of activity clusters that were developed by using knowledge engineering
principles. Based on these clusters, the associated patterns of human motion related to
different activities could be tracked and interpreted by this system. Boualia et al. [10]
proposed a Red Green Blue (RGB) frame analysis-based activity recognition framework
with a specific focus on the study of human poses during different activities. The framework
used a Convolutional Neural Network (ConvNet) architecture that was adapted for a
regression problem and a support vector machine (SVM) classifier to detect activities.
The authors evaluated the performance characteristics of their framework by testing it on
two activity recognition datasets. Kasteren et al. [11] proposed a hidden Markov model-
based architecture that analyzed the multimodal characteristics of sensor data for activity
recognition. The authors used a recorded dataset and developed its annotation by using an
off-the-shelf sensor, the Jabra BT250v. The Jabra BT250v was used to develop annotations
for all the activities performed during each day, and these annotations were then used to
train the hidden Markov model-based architecture for activity recognition. Cheng et al. [12]
developed a framework that used concepts from computer vision, image processing, and
video-data analysis to track and detect activities for both one and multiple users in the
confines of a given IoT-based space. The approach combined characteristic features of
motion data and user appearance information, as well as the spatiotemporal features of
user behavior to train multiple learning models. The authors evaluated their approach by
testing it on a dataset of activities. Skocir et al. [13] developed an artificial neural network-
driven architecture that tracked human motion during different activities, with a specific
focus on detecting enter and exit events in the confines of a given spatial environment, e.g.,
entering and exiting a room. The architecture used two IoT-based sensors with distinct
functionalities to develop its foundation. One of these sensors was used to detect the
presence or absence of the user, and the other sensor was used to detect whether the door
was opened or closed. A dataset of different activities was used by the authors to test and
discuss the performance characteristics of their approach.

The work done by Doryab et al. [14] involved the development of a task recom-
mendation system to augment performances of medical practitioners in hospitals. This
recommendation system was sensor technology-driven and focused on recommending
tasks specifically related to different kinds of surgeries. The sensor data were used to
detect the current action being performed by the user, and based on the same action, tasks
associated with co-located activities were recommended by the system. A sensor network-
driven activity assistance framework with the aim to assist users to perform different
kinds of activities was proposed by Abascal et al. [15]. This work was specifically focused
on helping elderly people with different kinds of impairments such as sensory, motor,
or cognitive. In addition to performance characteristics, the authors also evaluated the
accessibility, usability, and validity of their system. A system for the behavior monitoring
of older adults in smart homes that used concepts of activity recognition and analysis was
proposed by Chan et al. [16]. This system collected human motion data related to specific
ADLs—walking, sleeping, and using the bathroom. The authors conducted real-time
experiments in an Alzheimer’s unit with a specific focus on studying and analyzing the
human behavior and activities of people with Alzheimer’s. Rashid et al. [17] developed a
wearable neckband for human eating activity recognition and analysis. The system had a
functionality to automatically update its database to adjust depending on the changing
eating styles and eating habits of users. It used an artificial neural network-based approach
that could detect four eating states—chewing, swallowing, talking, and idle. Siraj et al. [18]
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developed a framework to recognize small activities, such as cooking, that are performed
with other complex activities during a day. The authors used multiple machine learning
models including those of deep learning, convolutional neural network, and gated recur-
rent unit to train their framework for the recognition of tasks and actions associated with
the activity of cooking. They evaluated their framework on a dataset which consisted of
various actions and tasks related to cooking. Mishra et al. [19] proposed a system that used
video data for activity recognition and analysis. The system consisted of a spatiotemporal
approach defined by considering the fuzzy lattices of the video frames. These lattices were
described by kinetic energy, which was calculated by the Schrödinger wave equation. The
system could detect any changes in human behavior or motion based on the change in
kinetic energy associated with these lattices. In [20], Fu et al. proposed a wireless wearable
sensor-driven device that could perform activity recognition. The device consisted of an air
pressure sensor and an inertial measurement unit to study and analyze human behavior
related to different activities. The wearable used a transfer learning approach to perform
personalized activity recognition. The work done by Yared et al. [21] involved the develop-
ment of an intelligent activity analysis framework to reduce accidents in the kitchen area.
The authors analyzed multiple activities performed in the kitchen to identify characteristic
features such as gas concentration, smoke, the temperature of utensils, and the temperature
of burner that needed to be monitored to detect any accidents. The findings of this work
listed a set of factors that were responsible for most kitchen accidents. Angelini et al. [22]
developed a smart bracelet that could collect multiple features of a user’s movement data
to interpret the health status of the user. It also had the functionality to remind the user of
their routine medications. The bracelet was developed to work for different kinds of indoor
and outdoor activities. The authors conducted usability studies to discuss the effectiveness
of this bracelet.

In the work done by Dai et al. [23], the dynamics of the motion data coming from
the user’s android phone were analyzed to detect falls. The authors developed a proof-
of-concept model that was based on an Android phone that collected real-time behavior-
related data of the user. The architecture of the system was developed in a specific way
to ensure that it did not contribute to high central processing unit (CPU) usage and did
not occupy a significant percentage of the computer’s random-access memory (RAM).
The results discussed by the authors showed that the average CPU usage was 7.41% by
the system, and it occupied about 600 KB on the RAM. Kong et al. [24] proposed a depth
recognition and distance-based algorithm for detecting falls. The algorithm tracked the
distance between the neck of the user and the ground, and if the distance was found to
decrease with a situation lasting greater than a minute, then the algorithm interpreted the
situation as a fall. Shao et al. [25] proposed an approach that analyzed the characteristics
of floor vibrations to detect falls. The authors performed experiments with objects and
humans falling on the ground to study the characteristics of floor vibrations. The system
consisted of a k-means classification approach to detect falls. Chou et al. [26] proposed
an Electrocardiography (ECG)-based system for fall detection. The system consisted of a
smart cane with an ECG detection circuit along with other sensors to study the behavioral
patterns of the user. The authors developed and implemented a microcontroller-based
circuit that could detect falls based on the data collected from the ECG circuit and the
associated sensors. In [27], Keaton et al. proposed an WiFi channel state-based approach
for the detection of falls in IoT-based environments. The authors developed a neural
network-based learning model that could study, track, and analyze the changes in WiFi
channel state data based on normal behaviors and falls. Anceschi et al. [28] proposed a
machine learning-based wearable system for fall detection in a workplace environment. To
develop and train the machine learning model, the authors merged four different datasets
that consisted of diverse activities performed in a workplace. This device used a couple of
IoT-based off-the-shelf products that worked in coordination with a microcontroller circuit
to detect falls from human motion data. Mousavi et al. [29] used acceleration data available
from smartphones to develop a fall detection system. This system consisted of an SVM
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classifier that interacted with the triaxial accelerometer data coming from a smartphone
that had an IOS operating system. The system also had a feature to alert caregivers via
either an SMS or email when a fall was detected.

Despite these recent advances in this field, there are still several limitations and
challenges. For instance, (1) a number of these works have superficially focused on
activity recognition without an analysis of the fine grain characteristics of activities and
the associated dynamics of human behavior; (2) several activity analysis approaches are
confined to specific tasks and cannot always be applied seamlessly to other activities;
(3) a number of these methodologies have been developed and implemented for specific
settings with a fixed set of context parameters and environment variables, and their real
world deployment is difficult because the real world environments are different compared
to such settings; (4) the video-based systems may have several challenges related to the
categorization and transcription of data, the selection of relevant fragments, the selection
of camera angle, and the determination of the number of frames; (5) some of the fall
detection technologies are built for specific operating systems, devices, or gadgets and
cannot be implemented on other platforms; (6) some of these systems have a dependency on
external parameters, such as floor vibrations, that can affect the readings and performance
characteristics; and (7) some of the systems are affected by user diversity such as the user’s
height and weight. To add to the above, some of these works have focused on activity
recognition and analysis, while others have focused on fall detection. None of these works
have focused on both of these challenges at the same time. Thus, it can be concluded that
it is the need of the hour to leverage the immense potential at the intersection of ambient
intelligence and the IoT to develop a framework that can not only track, study, analyze, and
anticipate human behavior but also detect any anomalies, such as a fall or unconsciousness,
that could constitute an emergency. It is also necessary that such systems are developed
in way so that they are not environment-specific and can be seamlessly implemented and
deployed in any IoT-based real world setting. This framework aimed to address these
challenges by developing an approach for the analysis of human behavior at a fine-grain
level with respect to the associated dynamic contextual, spatial, and temporal features to
detect any anomalies that could constitute an emergency. The work involved the integration
of advancements and technologies from multiple disciplines. This framework is introduced
in Section 3, and a further discussion of how the salient features of this framework address
these challenges and the drawbacks in the existing systems is presented in Section 5.

3. Proposed Work

In this section, we first present the steps towards the development of the functionality
in our framework for the semantic analysis of user interactions on the context parameters
during ADLs in order to identify a list of common behavioral patterns associated with
different complex activities performed in any given IoT-based environment. In a real-
world scenario, human activities are highly complex and involve multiple forms of user
interactions that include a myriad of tasks and their dynamic characteristics, performed
on the context parameters, based on the associated need related to the activity. Such
complex real-world activities are referred to as complex activities. A complex activity
can be broken down into atomic activities, context attributes, core atomic activities, core
context attributes, other atomic activities, other context attributes, start atomic activities,
end atomic activities, start context attributes, and end context attributes [30]. Here, atomic
activities refer to the macro and micro level tasks and sub-tasks associated with the complex
activity, and the environment parameters on which these atomic activities are performed
are collectively known as context attributes. Those specific atomic activities that are crucial
to a complex activity and without which the complex activity can never be completed are
referred to as core atomic activities, and their associated context attributes are known as
core context attributes. The atomic activities that are necessary to start a given complex
activity are known as start atomic activities, and the atomic activities that are necessary to
successfully end a given complex activity are known as end atomic activities. The context
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parameters on which these two types of atomic activities take place are known as start
context attributes and end context attributes, respectively. All the atomic activities other
than the core atomic activities are known as other atomic activities, and their associated
context attributes are known as other context attributes. The semantic analysis of user
interactions during complex activities involves analyzing all these characteristic features of
activities with respect to contextual, spatial, and temporal information. The following are
the steps for the development of this functionality in the proposed framework:

i. Deploy both wireless and wearable sensors to develop an IoT-based intercon-
nected environment.

ii. Set up a data collection framework to collect the big data from these sensors during
different ADLs performed in the confines of a given IoT-based space.

iii. Use context-based user interaction data obtained from the wireless sensors to spa-
tially map a given environment into distinct ‘zones,’ in terms of context attributes
associated with distinct complex activities. Here, we define a ‘zone’ as a region
in the user’s spatial orientation where distinct complex activities take place. For
instance, in the cooking zone, the complex activity of cooking could take place, but
other complex activities like sleeping or taking a shower could not.

iv. Analyze the atomic activities performed on different context attributes for a given
complex activity, along with their characteristic features.

v. Track user behavior in terms of joint point movements and joint point characteris-
tics [31] for each atomic activity associated with any given complex activity.

vi. Analyze the user behavior, atomic activities, and context attributes to form a general
definition of a complex activity in each context-based spatial ‘zone.’

vii. Repeat (vi) for all the complex activities with respect to the context attributes as
obtained from (iii) for a given IoT-based environment.

viii. Analyze the activity definitions to find atomic activities and their characteristic
features for all the complex activities associated with the different ‘zones.’

ix. Study the activity definitions to record the human behavior for all the atomic
activities obtained from (viii).

x. Analyze the behavior definitions in terms of joint point movements and character-
istics to develop a knowledge base of common behaviors associated with all the
complex activities in the different ‘zones.’

xi. Develop a dataset that consists of all these behavioral patterns and the big data
from user interactions for each of these ‘zones’ in a given IoT-based environment.

xii. Preprocess the data to detect and eliminate outliers and any noise prior to develop-
ing a machine learning model.

xiii. Split the data into training and test sets and then test the machine learning model
on the test set to evaluate its performance characteristics.

Upon the development of the above-discussed functionality in our framework, we
implemented the following steps to develop the proposed intelligent decision-making
algorithm that can detect emergencies or anomalies in user behavior based on studying the
multimodal components of user interactions during complex activities in each ‘zone.’ Each
‘zone’ is associated with distinct complex activities that are further associated with a set
of atomic activities, context attributes, core atomic activities, core context attributes, other
atomic activities, other context attributes, start atomic activities, end atomic activities, start
context attributes, and end context attributes. An analysis of the user behavior in terms
of joint point characteristics [31] allows for the detection and analysis of these behavioral
patterns and their relationships with the dynamic spatial features of the environment to
detect any anomalies in user behavior that could constitute an emergency. For instance,
the atomic activity of lying at night in the sleeping or bedroom zones could be interpreted
as the person taking rest. However, the detection of the same atomic activity in the
bathroom at the same time could indicate an emergency that could have resulted from a
fall or unconsciousness. Such a situation would need the attention of caregivers or medical
practitioners. The proposed intelligent decision-making algorithm was built on this concept
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for the detection of emergencies during complex activities, and the following are the steps
for the development of this functionality:

i. Classify the complex activities from this dataset as per their relationships with
atomic activities, context attributes, other atomic activities, other context attributes,
core atomic activities, core context attributes, start atomic activities, end atomic
activities, start context attributes, and end context attributes to develop semantic
characteristics of complex activities.

ii. Track user movements to detect start atomic activities and start context attributes.
iii. If these detected start atomic activities and start context attributes match with the

semantic characteristics of complex activities in the database, run the following
algorithm: emergency detection from semantic characteristics of complex activi-
ties (EDSCCA).

iv. If these detected start atomic activities and start context attributes do not match
with the semantic characteristics of complex activities in the knowledge base, then
track the atomic activities, context attributes, other atomic activities, other context
attributes, core atomic activities, core context attributes, start atomic activities, end
atomic activities, start context attributes, and end context attributes to develop a
semantic definition for a complex activity (SDCA).

v. If an SDCA is already present in the knowledge base, go to (vi), else update the
database with the SDCA.

vi. Develop a dataset that consists of all these semantic definitions for complex activities
and the big data from user interactions associated with them.

vii. Preprocess the data to detect and eliminate outliers and any noise prior to develop-
ing a machine learning model.

viii. Split the data into training and test sets and then test the machine learning model
on the test set to evaluate its performance characteristics.

Next, we outline the steps for developing the proposed EDSCCA algorithm:

i. Track if the start atomic activity was performed on the start context attribute.
ii. Track if the end atomic activity was performed on the end context attribute.
iii. If (i) is true and (ii) is false:

a. Track all the atomic activities, context attributes, other atomic activities, other
context attributes, core atomic activities, and core context attributes.

b. For any atomic activity or other atomic activity that does not match its associ-
ated context attribute, track the features of the user behavior.

c. If the user behavior features indicate lying and no other atomic activities are
performed, the inference is an emergency.

iv. If (i) is true and (ii) is true:

a. The user successfully completed the activity without any emergency detected,
so the inference is no emergency.

v. If (i) is false and (ii) is true:

a. Track all the atomic activities, context attributes, other atomic activities, other
context attributes, core atomic activities, and core context attributes.

b. For any atomic activity or other atomic activity that does not match its associ-
ated context attribute, track the features of the user behavior.

c. If the user behavior features indicate lying and no other atomic activities
performed, the inference is an emergency.

vi. If (i) is false and (ii) is false:

a. No features of human behavior were associated with the observed activities
or, in other words, the user did not perform any activity, so the inference is
no emergency.

We used one of our previous works [31] that presented a framework for human
behavior representation in the context of ADLs based on joint point characteristics. These
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joint point characteristics primarily include joint point distances and joint point speeds.
By studying these joint point characteristics associated with diverse behavioral patterns,
this framework tracks the dynamic changes in the skeleton that point to interpretations
of human pose and posture. The dynamics of human pose and posture are then used by
the framework to analyze human behavior and its associated features during multimodal
interactions in the context of ADLs. This concept is outlined in Figure 2. According
to this methodology, each point on the skeletal tracking, as obtained from a Microsoft
Kinect sensor, is assigned a joint number and a definition based on the kind of underlining
movements associated with that joint point. The associated joint point characteristics, in
terms of the individual joint point speeds and the distance between two or more joint
points, undergo changes based on the behavioral patterns of the user. We applied this
concept to analyze the ADLs in terms of the atomic activities, context attributes, other
atomic activities, other context attributes, core atomic activities, and core context attributes
in order to identify the list of behavioral patterns associated with each of these ADLs.
This analysis also involved modelling all possible instances of each complex activity while
assigning weights to the individual atomic activities, context attributes, other atomic
activities, other context attributes, core atomic activities, and core context attributes based
on probabilistic reasoning. This was done by using Equations (1)–(3), which were proposed
in [32].

α = atC0 + atC1 + atC2+ . . . . . . . atCat = 2at (1)

β = (at−ct)C0 + (at−ct)C1 + (at−ct)C2 +...+ (at−ct)C(at−ct) = 2(at-ct) (2)

γ = 2at − 2(at−ct) = 2(at−ct) * (2ct−1) (3)

where α represents all possible ways by which any complex activity can be performed
including false starts; β represents all the ways of performing any complex activity where
the user always reaches the end goal; γ represents all the ways of performing any complex
activity where the user never reaches the end goal; Ati represents all the atomic activities
related to the complex activity, where i is a positive integer; Cti represents all the context
attributes related to the complex activity, where i is a positive integer; AtS represents a
list of all the Ati that are start atomic activities; CtS represents a list of all the Cti that are
start context attributes; AtE represents a list of all the Ati that are end atomic activities; CtE
represents a list of all the Cti that are end context attributes; γAt represents a list of all the
Ati that are core atomic activities; ρCt represents a list of all the Cti that are core context
attributes; at represents the number of Ati related to the complex activity; bt represents the
number of Cti related to the complex activity; ct represents the number of γAt related to
the complex activity; and dt represents the number of ρCt related to the complex activity.

Figure 2. The methodology to represent skeletal tracking in terms of joint points and their associated
definitions [31].

The work in [32] presented a mathematical foundation for modelling all possible user
interactions related to atomic activities, context attributes, other atomic activities, other
context attributes, core atomic activities, and core context attributes associated with any
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given complex activity. The objective of the work in [32] was to develop a knowledge
base that would consist of all possible tasks and actions performed on context parameters,
related to any given complex activity, arising from universal diversity and the variations
in the context parameters based on the associated spatial and temporal characteristics of
user interactions. In this work, these equations were developed by integrating complex
activity analysis [30], the principles of the binomial theorem [33], and permutation and
combination principles. These equations represent the diverse ways by which a complex
activity may be performed. Equation (1) represents all possible ways by which a complex
activity can be modelled, including distractions, false starts, one or more missed Ati, one or
more missed Cti, one or more missed AtS, one or more missed CtS, one or more missed AtE,
one or more missed CtE, one or more missed γAt, and one or more missed ρCt. Equation (2)
represents all those scenarios where the user reached the end goal or, in other words, the
user performed all the γAt on the ρCt related to a given complex activity. Equation (3)
represents all those scenarios where the user did not perform one or more γAt on the
ρCt related to a given complex activity, as well as one or more missed AtS, one or more
missed CtS, one or more missed AtE, and one or more missed CtE. Weights were assigned
to the individual Ati and Cti by probabilistic reasoning principles, as outlined in [30]. The
weights indicate the relevance or importance of the task or action towards helping the user
reach the end goal or desired outcome. A higher value of the weight indicates a greater
relevance, and a lower value of the weight indicates a lesser relevance of the associated
Ati and Cti. The γAt and ρCt are assigned the highest weights as compared to the other
Ati and Cti. The weights associated with all the Ati and Cti can be analyzed to determine
the threshold weight of the complex activity, which determines whether a given complex
activity was properly performed. Here, properly performed refers to whether the user
was able to successfully reach the end goal or outcome associated with a given complex
activity. The threshold weight varies based on the nature and number of AtS, CtS, AtE, CtE,
γAt, and ρCt related to a complex activity. Each instance of a complex activity, denoted by
Equation (1), is also assigned a different weight based on the number of AtS, CtS, AtE, CtE,
γAt, and ρCt, as well as the nature and sequence in which these actions were performed.
When this weight exceeds the threshold weight, it indicates that the user reached the end
goal, and such activity instances are represented by Equation (2). Table 1 outlines the
analysis for a typical ADL, eating lunch, as described by this methodology. In Table 2,
we represent the analysis of this complex activity as per Equations (1)–(3) to study the
characteristics of the associated Ati, Cti, AtS, CtS, AtE, CtE, γAt, ρCt, at, bt, ct, and dt.

Table 1. Analysis of the complex activity of eating lunch in terms of joint point characteristics [31].

Atomic Activities Context Attributes
Joint Points Pairs That

Experience Change

At1: Standing (0.08) Ct1: Lights on (0.08) No change
At2: Walking towards dining table (0.20) Ct2: Dining area (0.20) (13,17), (14,18), (15,19), and (16,20)

At3: Serving food on a plate (0.25) Ct3: Food present (0.25) (7, 11) and (8,12)
At4: Washing hand/using hand sanitizer (0.20) Ct4: Plate present (0.20) (7, 11) and (8,12)

At5: Sitting down (0.08) Ct5: Sitting options available (0.08) No change

At6: Starting to eat (0.19) Ct6: Food quality and taste (0.19) (6,3), (7,3), (8,3), (6,4), (7,4), (8,4) or (10,3),
(11,3), (12,3), (10,4), (11,4), and (12,4)

As can be seen from Table 2, where α = 64, there are 64 different ways by which this
complex activity can be performed. However, the value of γ = 60 means that 60 out of these
64 ways would not lead to the end goal or the desired outcome. The remaining activity
instances indicated by β = 4 refers to those instances when the user would always reach
the end goal of this complex activity. One such instance is shown in Table 1.
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Table 2. Analyzing multiple characteristics of a typical complex activity—eating lunch.

Complex Activity Characteristics Value(s)

Ati, all the atomic activities related to the complex activity At1, At2, At3, At4, At5, and At6
Cti, all the context attributes related to the complex activity Ct1, Ct2, Ct3, Ct4, Ct5, and Ct6

AtS, list of all the Ati that are start atomic activities At1 and At2
CtS, list of all the Cti that are start context attributes Ct1 and Ct2
AtE, list of all the Ati that are end atomic activities At5 and At6
CtE, list of all the Cti that are end context attributes Ct5 and Ct6
γAt, list of all the Ati that are core atomic activities At2, At3, At4, and At6
ρCt, list of all the Cti that are core context attributes Ct2, Ct3, Ct4, and Ct6

at, number of Ati related to the complex activity 6
bt, number of Cti related to the complex activity 6
ct, number of γAt related to the complex activity 4
dt, number of ρCt related to the complex activity 4

α, all possible ways by which any complex activity can be performed including false starts 64
β, all the ways of performing any complex activity where the user always reaches the end goal 4
γ, all the ways of performing any complex activity where the user never reaches the end goal 60

To develop this framework, we used an open-source dataset [34] that contains the
big data of user interactions recorded during multiple ADLs in an IoT-based environment.
The complex activities and their associated characteristics in this dataset can be distinctly
mapped to four spatial ‘zones’—kitchen, bedroom, office, and toilet—in the simulated
and interconnected IoT-based environment. The big data in this dataset consisted of data
attributes that provided the location, or the ‘zone’-related data associated with all these
ADLs. These data were used to analyze the indoor location of the user with respect to the
context attributes of interest for a given complex activity in the IoT-based environment. The
context attributes associated with different instances of each of these ADLs were studied by
the approach discussed in Tables 1 and 2. The dataset also consisted of accelerometer and
gyroscope data that were collected from wearables and that represented diverse behavioral
patterns during different instances of each of the ADLs performed in each of these spatial
‘zones.’ These data were used to study, analyze, and interpret the multimodal characteristics
of human behavior distinct to different complex activities. Here, as per the data and their
characteristics present in the dataset, we defined lying and being unable to get up in any
other location other than a bedroom as an emergency. This definition of an emergency can
also be modified, e.g., to detect a long lie, as per the complex activities and their semantic
characteristics for a given IoT-based environment.

We used RapidMiner, previously known as Yet Another Learning Environment
(YALE) [35], for the development of this framework. RapidMiner is a software tool that
consists of several built-in functions known as ‘operators’ that can be used to implement a
range of computational functions including machine learning, artificial intelligence, and
natural language processing algorithms. The tool also allows for the seamless customiza-
tion of these ‘operators’ as per the needs of the model being developed. Multiple ‘operators’
can be put together in the tool to develop an application, which is known as a ‘process.’
There are two versions of RapidMiner available—the free version and the paid version.
The free version has a processing limit of 10,000 rows. The dataset that we used for this
study did not exceed 10,000 rows, so this limitation of the free version did not affect our
results and findings. The version of RapidMiner that we used was 9.8.000, and the same
was run on a Microsoft Windows 10 computer with an Intel (R) Core(TM) i7-7600U CPU @
2.80 GHz, 2 core(s) and 4 logical processor(s) for the development and implementation of
the proposed framework.

4. Results

In this section, we present the results obtained from the proposed framework by
using the dataset [34]. The big data present in the dataset represented various kinds of
ADLs—sleeping, changing clothes, relaxing, cooking, eating, working, and defecating, as
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well as emergency situations in the kitchen, bedroom, office, and toilet. The emergency
corresponded to the user lying on the ground in any location other than the bedroom, which
could have resulted from a fall or unconsciousness. As per the methodology discussed
in Figure 2 and Tables 1 and 2, we developed definitions of all the complex activities
that occurred in a given IoT-space. Then, we developed a process in RapidMiner to
identify and interpret the list of common behavioral patterns associated with each of these
ADLs in this dataset, performed in the spatial locations or ‘zones’—bedroom, kitchen,
office, and toilet. We used the ‘Dataset’ operator to import this dataset into RapidMiner.
The ‘Data Preprocessing’ operator was used to preprocess the data and to study the
various characteristics of human behavior as outlined in Section 3. The data processing
involved the studying, analysis, and interpretation of the dynamic characteristics of human
behavior data associated with the diverse complex activities performed in each of the
spatial ‘zones’ represented in the dataset. The dataset that we used for these pre-processing
steps consisted of 295 rows. First, we studied the different ADLs performed in each of
these ‘zones’—bedroom, kitchen, office, and toilet. This is shown in Figure 3, where the
location or ‘zone’ is plotted on the x-axis, and the different ADLs are represented on the
y-axis. As there were nine different ADLs, so we represented each ADL with a different
color; this color coding is mentioned in the figure. Each occurrence of an ADL in a specific
‘zone’ is represented with a bubble corresponding to that zone. For instance, in the toilet
zone, the activities of defecating and emergency were observed, so these two activities
were tracked using distinct colors for this ‘zone.’

 
Figure 3. Analysis of different ADLs performed in the different spatial locations or ‘zones’ in a given
Internet of Things (IoT)-based environment.

After detecting and studying the different ADLs local to each ‘zone,’ we studied
the associated atomic activities, context attributes, other atomic activities, other context
attributes, core atomic activities, and core context attributes associated with each of these
ADLs to study the common behavioral patterns local to each ADL in each zone that we
observed from Figure 3. This analysis is shown in Figure 4, where the x-axis represents
the location, and the common behavioral patterns of lying, standing, sitting, and walking
are represented on the y-axis. As there were multiple ADLs to which these common
behavioral patterns belonged, so we represented each ADL by using a different color. Each
occurrence of an ADL in a specific ‘zone’ is represented with a bubble corresponding to
that zone. For instance, from Figure 3, we can observe that in the toilet zone, the activities
of defecating and emergency occur multiple times. The behavioral patterns associated with
these activities are sitting and lying, so these behaviors were represented using different
colors, as shown in Figure 4.
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Figure 4. Representation of common and distinct behavioral patterns associated with the different
ADLs performed in the different spatial locations or ‘zones’ in a given IoT-based environment.

After studying these activity patterns distinct to different ADLs local to each zone,
we studied the characteristics of the human behaviors at a fine-grain level associated with
each of these ADLs. This was done by analyzing the accelerometer and gyroscope data
corresponding to occurrences of each of the common behavioral patterns—lying, standing,
sitting, and walking—for different ADLs in each of these spatial ‘zones.’ The study and
analysis of the accelerometer and gyroscope data for these common behavioral patterns
for all these ADLs performed in the kitchen, bedroom, office area, and toilet are shown
in Figures 5–8, respectively. In each of these figures, the common behavioral patterns are
plotted on the x-axis. The y-axis represents the accelerometer data and gyroscope in the x,
y, and z directions, each of which is plotted with a distinct color.

Figure 5. The study and analysis of the accelerometer and gyroscope data for the common behavioral
patterns—lying, standing, sitting, and walking—for all ADLs performed in the kitchen. Due to
paucity of space, analyses of a some of the ADLs are shown here.
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Figure 6. The study and analysis of the accelerometer and gyroscope data for the common behavioral
patterns—lying, standing, sitting, and walking—for all ADLs performed in the bedroom. Due to
paucity of space, analyses of a some of the ADLs are shown here.

Figure 7. The study and analysis of the accelerometer and gyroscope data for the common behavioral
patterns—lying, standing, sitting, and walking—for all ADLs performed in the office area. Due to
paucity of space, analyses of a some of the ADLs are shown here.

Figure 8. The study and analysis of the accelerometer and gyroscope data for the common behavioral
patterns—lying, standing, sitting, and walking—for all ADLs performed in the toilet. Due to paucity
of space, analyses of a some of the ADLs are shown here.
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After performing this analysis, we used the ‘Split Data’ operator to split the data into
training and test sets; 75% of the data were used for training, and the remaining 25% were
used for testing. We used a k-NN classifier to develop the machine-learning functionality
of our framework. k-NN [36] is a non-parametric machine learning classifier. k-NN works
by comparing an unknown data sample to ‘k’ closest training examples in the dataset to
classify the unknown data into one of these samples. Here, closeness refers to the distance
in a space represented by ‘p,’ where ‘p’ is the number of attributes in the training set.
There are various approaches for the calculation of this distance. For the development
of the proposed approach, we used the Euclidean distance approach in RapidMiner [35].
The Euclidean distance [37] between two points ‘m’ and ‘n’ is computed as shown in
Equation (4):

d(m, n) =
√

∑p
i = 1(mi − ni)

2 (4)

where m and n are two points in the Euclidean space, d (m,n) represents the distance
between the two points m and n in the Euclidean space, mi represents the vector in the
Euclidean space that connects the point m to the origin, ni represents the vector in the
Euclidean space that connects the point n to the origin, and p represents the p-space.

The k-NN model that we developed consisted of 11 nearest neighbors. The model
was developed using 222 examples consisting of three dimensions of each of the activity
classes representing lying, standing, walking, and sitting. We tested the classifier by using
the ‘Apply Model’ operator and evaluated its performance characteristics by using the ‘Per-
formance’ operator. This RapidMiner process is shown in Figure 9, and the order in which
the ‘operators’ associated with this RapidMiner process were executed when the process
was compiled and run is shown in Figure 10. Thereafter, we studied the effectiveness and
performance characteristics of our framework to detect these behavioral patterns—walking,
sleeping, sitting, and lying—in different spatial locations. The RapidMiner process stud-
ied each row of the test dataset, which constituted a user interaction with the context
parameters and detected the associated behavioral patterns.

 
Figure 9. RapidMiner process for the development of the functionality of the framework to perform
the semantic analysis of user interactions on the diverse context parameters during ADLs to identify
a list of distinct behavioral patterns associated with different complex activities performed in a given
IoT-based environment.
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Figure 10. The order of execution of all the operators upon the compilation and execution of the
RapidMiner process shown in Figure 9.

The output of this RapidMiner process was in the form of a table where each row
consisted of the attributes as outlined in Table 3. Here, the degree of certainty expresses the
certainty of prediction of the associated behavioral pattern of the user by the developed
k-NN-based machine learning model. To predict the same, the k-NN model in RapidMiner
assigned a confidence value to each of these behavioral patterns, and the behavior with the
highest confidence was the final prediction of the model for that specific user interaction.
For instance, in row number 2, the confidence values associated with lying, standing,
sitting, and walking are 0.818, 0.182, 0, and 0, respectively, so the prediction of the model
was lying. This output table had 73 rows, but only the first 13 rows are shown in Figure 11.

Table 3. Description of the attributes of the output of the RapidMiner process shown in Figure 11.

Attribute Name Description

Row No The row number in the output table
Activity The actual behavioral pattern associated with a given ADL

Prediction (Activity) The predicted behavioral pattern associated with a given ADL
Confidence (lying) The degree of certainty that the user was lying during this ADL

Confidence (standing) The degree of certainty that the user was standing during this ADL
Confidence (sitting) The degree of certainty that the user was sitting during this ADL

Confidence (walking) The degree of certainty that the user was sitting during this ADL

 

Figure 11. The output table of the RapidMiner process shown in Figure 3 for the detection of distinct
behavioral patterns associated with the different ADLs. This output table had 73 rows, but only the
first 13 rows are shown here.
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The performance accuracy of this model was evaluated by using a confusion matrix,
where both the overall performance and the individual class precision values were com-
puted. Figures 12 and 13 show the tabular representation and plot view of the confusion
matrix, respectively. A confusion matrix [38] is a method of evaluating and studying
the performance characteristics of a machine learning-based algorithm. The number of
instances of a data label in the predicted class is represented by each row of the matrix,
and the number of instances of a data label in the actual class is represented by each
column of the matrix. The matrix can also be inverted to have the rows represent the
columns and vice versa. Such a matrix allows for the calculation of multiple performance
characteristics associated with the machine learning model. These include overall accuracy,
individual class precision values, recall, specificity, positive predictive values, negative
predictive values, false positive rates, false negative rates, and F-1 scores. To evaluate
the performance characteristics of our proposed approach, we focused on two of these
performance metrics—the overall accuracy and the individual class precision values, which
are calculated by the formula as shown in Equations (5) and (6), respectively:

Acc =
True(P) + True(N)

True(P) + True(N) + False(P) + False(N)
(5)

Pr =
True(P)

True(P)+False(P)
(6)

where Acc is the overall accuracy of the machine-learning model, Pr is the class precision
value, True(P) means true positive, True(N) means true negative, False(P) means false
positive, and False(N) means false negative.

Figure 12. The performance accuracy (studied via a confusion matrix—tabular view) of the Rapid-
Miner process shown in Figure 9 for the detection of distinct behavioral patterns associated with the
different ADLs performed in the different spatial locations in a given IoT-based environment.

As can be seen from Figures 12 and 13, this machine learning model achieved an
overall performance accuracy of 76.71%, with respective class precision values for lying,
standing, sitting and walking of 63.33%, 75.00%, 81.48%, and 100.00%. Our understanding
is that out of lying, standing, sitting and walking, only walking constitutes a movement of
the user from one location to the other, which is distinct compared to the other behaviors
on the dataset—lying, sitting, and standing. This makes the associated user interactions
and behavior-related data very different from the other behaviors. Thus, the detection of
walking by the machine learning model could achieve 100.00% accuracy.

Thereafter, we developed the other functionality of our framework—the intelligent
decision-making algorithm that can analyze these behavioral patterns and their relation-
ships with the dynamic spatial features of the environment to detect any anomalies in user
behavior that could constitute an emergency, as outlined in Section 2. This functionality
of our framework was developed as a RapidMiner ‘process’ that is shown in Figure 14,
and the order in which the various operators of this RapidMiner process were executed
upon the compilation of the same is shown in Figure 15. For the purpose of evaluating
the efficacy of this framework, we were interested in developing a binary classifier that
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could classify a situation as an ‘emergency’ or ‘non-emergency.’ Thus, all instances of
activities other than an emergency were labelled as ‘non-emergency’ in this dataset for
the development of this RapidMiner ‘process.’ The ‘Dataset’ operator allowed for the
importation of the data into the RapidMiner platform for developing this ‘process.’ The ‘Set
Role’ operator was used to inform RapidMiner of the data attribute and its characteristics
that should be predicted. In this case, it was either ‘emergency’ or ‘non-emergency.’ The
‘Data Processing’ operator was used to implement the knowledge base and make the model
aware of the rest of the relationships and dependencies amongst the data attributes as per
the characteristics of our framework and the proposed EDSCCA. The ‘Data Preprocessing’
operator also consisted of the of the ‘Split Data’ operator, which was used to split the data
into training and test sets. We used 75% of the data for training and 25% of the data for
testing after the removal of the outliers, as per the data preprocessing steps outlined in
Section 3. Next, we used a k-NN classifier to develop this binary classification model. This
k-NN classifier was also developed based on the Euclidean distance approach represented
in Equation (4). This classification model consisted of five nearest neighbors and 186 exam-
ples with eight dimensions of the two classes—emergency and non-emergency. The ‘Apply
Model’ operator was used to apply this learning model to the test data. The ‘Performance’
operator was used to evaluate the performance characteristics of the learning model. For
the performance metrics, we used the confusion matrix to study the overall accuracy of the
model, as well as the individual class precision values.

Figure 13. The performance accuracy (studied via a confusion matrix—plot view) of the RapidMiner
process shown in Figure 9 for the detection of distinct behavioral patterns associated with different
ADLs performed in the different spatial locations in a given IoT-based environment.

This RapidMiner process studied each row of the dataset, which consisted of differ-
ent behavioral patterns associated with an ADL, to classify the associated behavior as
emergency or non-emergency.

The output of this RapidMiner process was in the form of a table where each row
consisted of the attributes outlined in Table 4. Here, the degree of certainty expresses the
certainty of prediction of emergency or non-emergency by the developed k-NN-based
machine learning model. To predict the same, the k-NN classification model in RapidMiner
assigned a confidence value to each of these behavioral patterns, and the behavior with
the highest confidence value was the final prediction of the model for that specific user
interaction. For instance, in row number 2, the confidence values associated with non-
emergency and emergency are 0.811 and 0.189, respectively, so the prediction of the model
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was non-emergency for the specific user interaction represented by this row. This output
table had 62 rows, but only the first 13 rows are shown in Figure 16.

 
Figure 14. RapidMiner process for the development of the intelligent decision-making algorithm of
the framework that can analyze distinct behavioral patterns and their relationships with the dynamic
contextual and spatial features of the environment to detect any anomalies in user behavior that
could constitute an emergency.

Figure 15. The order of execution of all the operators upon the compilation and execution of the
RapidMiner process shown in Figure 14.

Table 4. Description of the attributes of the output of the RapidMiner process shown in Figure 16.

Attribute Name Description

Row No The row number in the output table

Complex Activity The actual user behavior (either emergency or non-emergency)
associated with a given complex activity (ADL)

Prediction (Complex Activity) The predicted user behavior (either emergency or
non-emergency) associated with a given complex activity (ADL)

Confidence (Non-Emergency) The degree of certainty that the user behavior associated with a
given complex activity did not constitute an emergency

Confidence (Emergency) The degree of certainty that the user behavior associated with a
given complex activity constituted an emergency
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Figure 16. The output table of the intelligent decision-making algorithm of the framework, developed as a RapidMiner
process, that can analyze distinct behavioral patterns and their relationships with the dynamic contextual and spatial
features of the environment to detect any anomalies in user behavior that could constitute an emergency. This output table
had 62 rows, but only the first 13 rows are shown here.

The performance characteristics of this framework were evaluated in the form a
confusion matrix, as shown in Figures 17 and 18, with Figure 17 representing the tabular
view and Figure 18 representing the plot view of the confusion matrix. By using the
confusion matrix, both the overall performance and individual class precision performance
values were computed.

As can be observed from Figures 17 and 18, the framework achieved an overall
performance accuracy of 83.87%, with the sub-class precision for the detection of ‘non-
emergency’ being 85.42% and the sub-class precision for the detection of ‘emergency’
being 78.57%.

 
Figure 17. The performance accuracy (studied via a confusion matrix—tabular view) of the Rapid-
Miner process shown in Figure 14 that involves the development of the intelligent decision-making
algorithm of the framework that can analyze distinct behavioral patterns and their relationships
with the dynamic contextual and spatial features of the environment to detect any anomalies in user
behavior that could constitute an emergency.
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Figure 18. The performance accuracy (studied via a confusion matrix—plot view) of the RapidMiner
process shown in Figure 14 that involves the development of the intelligent decision-making algo-
rithm of the framework that can analyze distinct behavioral patterns and their relationships with the
dynamic contextual and spatial features of the environment to detect any anomalies in user behavior
that could constitute an emergency.

5. Comparative Discussion

Despite several advances and emerging technologies in the fields of human activity
recognition, human behavior analysis, and their related application domains, the existing
systems [9–29] have several limitations and drawbacks, as outlined in Section 2. This frame-
work, which integrates the latest advancements and technologies in human–computer
interaction, machine learning, Internet of Things, pattern recognition, and ubiquitous com-
puting, aims to take a rather comprehensive approach to addressing these challenges in this
field. In this section, we discuss these specific challenges and outline how our framework
addresses the same and outperforms these existing systems in terms of their technical
characteristics, functionalities, and operational features. This is presented as follows:

1. Several researchers in this field have only focused on activity recognition and that too
at a superficial level. Various methodologies such as sensor technology-driven [9],
RGB frame-based [10], hidden Markov model-based [11], and computer vision-
based [12] methodologies have been proposed by researchers, but the main limitation
of such systems is their inability to analyze complex activities at a fine-grain level
to interpret the associated dynamics of user interactions and their characteristic fea-
tures. Our framework addresses this challenge by being able to perform the semantic
analysis of user interactions with diverse contextual parameters during ADLs. By
semantic analysis, we refer to the functionalities of our framework to (1) analyze
complex activities in terms of the associated postures and gestures, which are in-
terpreted in terms of the skeletal joint point characteristics (Figure 1); (2) interpret
the interrelated and interdependent relationships between atomic activities, context
attributes, core atomic activities, core context attributes, other atomic activities, other
context attributes, start atomic activities, end atomic activities, start context attributes,
and end context attributes associated with any complex activity (Table 1); (3) detect
all possible dynamics of user interactions and user behavior that could be associated
with any complex activity (Table 2); (4) identify a list of distinct fine-grain level be-
havioral patterns—walking, sleeping, sitting, and lying—associated with different
complex activities (Figures 9 and 11), which achieved a performance accuracy of
76.71% when tested on a dataset of ADLs (Figures 12 and 13); and (5) use an intelli-
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gent decision-making algorithm that can analyze these distinct behavioral patterns
and their relationships with the dynamic contextual and spatial features of the envi-
ronment to detect any anomalies in user behavior that could constitute an emergency
(Figures 14 and 16), which achieved an overall performance accuracy of 83.87% when
tested on a dataset of ADLs (Figures 17 and 18).

2. Some of the recent works that have focused on activity analysis were limited to certain
tasks and could not be generalized for different activities. For instance, in [17], the
work focused on eating activity recognition and analysis; in [13], the activity analysis
was done to detect enter and exit motions only in a given IoT-based space. In [18],
the methodology focused on the detection of simple and less complicated activities,
such an cooking, and [22] presented a system that could remind its users to take
their routine medications. The analysis of such small tasks and actions are important,
but the challenge in this context is the fact that these systems are specific to such
tasks and cannot be deployed or implemented in the context of other activities. With
its functionalities to perform complex activity recognition and analysis of skeletal
joint point characteristics, our framework can analyze and interpret any complex
activity and its associated tasks and actions, thereby addressing this challenge. When
tested on a dataset, our framework was able to recognize and analyze all nine com-
plex activities—sleeping, changing cloth, relaxing, moving around, cooking, eating,
emergency, working, and defecating—that were associated with this dataset. It is
worth mentioning here that our framework cannot only recognize these specific nine
complex activities, because its characteristics allow it to recognize and analyze any
set of complex activities represented by the big data associated with user interactions
in a given IoT-based context, which could be a from a dataset or from a real-time
sensor-based implementation of the IoT framework.

3. A number of these methodologies have focused on activities in specific settings
and cannot be seamlessly deployed in other settings consisting of different context
parameters and environment variables. For instance, in [14,16], the presented systems
are specific to hospital environments, the methodology presented in [21] is only
applicable to a kitchen environment, and the approach in [28] is only applicable to
a workplace environment. While such systems are important for safe and assisted
living experiences in these local spatial contexts, their main drawback is the fact that
these tools are dependent on the specific environmental settings for which they have
been designed. Our framework develops an SDCA by analyzing the multimodal
components of user interactions on the context parameters, from an object centered
perspective, as outlined in Section 3. This functionality allows our framework to detect
and interpret human activities, their associated behavioral patterns, and the user
interaction features in any given setting consisting of any kind of context attributes
and environment variables.

4. Video-based systems for activity recognition and analysis, such as [12,19] may have
several drawbacks associated with their development, functionalities, and perfor-
mance metrics. According to [39], video ‘presents challenges at almost every stage
of the research process.’ Some of these are the categorization and transcription of
data, the selection of relevant fragments, the selection of camera angle, and the de-
termination of the number of frames. By not using viewer-centered image analysis
but by using object centered data directly from the sensors, our proposed framework
bypasses all these challenges.

5. Some of the frameworks that have focused on fall detection are dependent on a
specific operating system or platform or device. These include the smartphone-based
fall detection approach proposed in [23] that uses an Android operating system,
the work presented in [29] that uses an IOS operating system, the methodology
proposed in [26] that requires a smart cane, and the approach in [15] that requires
a handheld device. To address universal diversity and ensure the wide-scale user
acceptance of such technologies, it is important that such fall detection systems are

164



Information 2021, 12, 81

platform-independent and can run seamlessly on any device that uses any kind of
operating system. Our framework does not have this drawback because it does not
need an Android or IOS operating system or any specific device for running. Even
though it uses RapidMiner as a software tool to develop its characteristic features,
RapidMiner is written in Java—which is platform-independent. RapidMiner allows
for the exportation of any process in the form of the associated Java code. Java
applications are known as write once run anywhere (WORA). This essentially means
that when a Java application is developed and compiled on any system, the Java
compiler generates a bytecode or class file that is platform-independent and can be
run seamlessly on any other system without re-compilation by using a Java virtual
machine (JVM). Additionally, RapidMiner also consists of multiple extensions that
can be added to a RapidMiner process and used to seamlessly integrate a RapidMiner
process with other applications or software based on the requirements.

6. Several fall detection systems are dependent on external parameters that cannot
be controlled and could affect the performance characteristics. For instance, Shao
et al. [25] proposed a fall detection methodology based on measuring the vibrations
of the floor. Several factors such as the weight of the user, the material of the floor, the
condition of the floor, and other objects placed on the floor can impact the intensity of
vibrations that could affect the performance of the system. Kong et al.’s [24] system
used the distance between the neck of the user and the ground to detect falls. The
performance of such a system could be affected by the height of the user, the posture
of the user, and any elevations on the ground such as high objects or stairs. The
work proposed in [27] by Keaton et al., which used WiFi channel state data to detect
falls, could be affected by external factors that tend to influence the WiFi channel
state data. Similarly, the methodology developed in [20] worked by using an air
pressure sensor, the readings of which could be affected by environmental factors and
external phenomena. Such influences or effects of external conditions could have a
negative effect on the operational and performance characteristics of the system, and
it could even lead to false alarms, thus causing alert fatigue [40] in caregivers and
medical personnel. Such false alarms and alert fatigue can decrease the quality of
care, increase response time, and make caregivers and medical personnel insensitive
to the warnings of such fall detection systems. The challenge is therefore to ensure
that such fall detection systems can seamlessly function without being dependent on
external factors that could affect its operation or performance metrics. Our framework
uses concepts of complex activity recognition [30] and two related works [31,32], as
well as taking the context-driven approach outlined in Section 3, for the analysis of
diverse components of user interactions performed on context parameters to interpret
the dynamics of human behavior and their relationships with the contextual and
spatial features of an environment to detect any anomalies that could constitute an
emergency. The performance, operation, and functionality of such an approach is
independent of the effect of any external factors or conditions, such as floor vibrations,
WiFi channel state data, and the distance between the user and the ground.

6. Conclusions and Scope for Future Work

Ambient intelligence in the future of smart homes and smart cities has the potential to
address the multiple elderly needs during ADLs due to the behavioral, physical, mental,
psychological, and other forms of impairments or limitations that they face with increasing
age. A key to developing ambient intelligence in order to address and access these needs
lies in monitoring human behavior while analyzing the multimodal components of user
interactions with the dynamic contextual, spatial, and temporal features of a given IoT-
based ubiquitous environment in which these activities are performed. Therefore, this work
provides an interdisciplinary framework that takes a comprehensive approach to study,
track, monitor, and analyze human behavior during ADLs. Based on the understanding of
the behaviors associated with ADLs, abnormal behaviors leading to situations that might
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have resulted in health-threatening situations, such as from a fall or unconsciousness, that
would need the immediate attention of caregivers or medical practitioners can be detected,
and necessary actions can be taken accordingly.

The framework has two novel functionalities that were implemented and tested with
an existing dataset. First, it is able to analyze multimodal components of user interactions
to identify a list of distinct behavioral patterns associated with each ADL. Using the given
dataset, the results showed that it achieved an overall performance accuracy of 76.71%.
Second, it uses an intelligent decision-making algorithm that can analyze these behavioral
patterns and their relationships with the dynamic contextual and spatial features of the
environment to detect any anomalies in user behavior that could constitute an emergency,
such as from a fall or unconsciousness. This algorithm achieved an overall performance
accuracy of 83.87% when tested on a dataset consisting of multiple ADLs.

To the best of the authors’ knowledge, no similar work has been done yet. The pre-
sented and discussed results uphold the immense potential and relevance of the framework
for the development of ambient intelligence in the future of ubiquitous living environments,
e.g., smart homes, to address multiple needs associated with the aging population. Our
framework addresses several limitations and challenges in this field, but at this point,
its functionality is limited to one user in the confines of a given IoT-based space. Future
work along these lines would involve extending the functionality of the framework to
incorporate multiple users. We also plan to implement this framework in real-time by
setting up an IoT-based environment and incorporating relevant practices and measures to
address the healthcare- and safety-related needs of the elderly.
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Abstract: Human activity recognition (HAR) has been increasingly used in medical care, behavior
analysis, and entertainment industry to improve the experience of users. Most of the existing works
use fixed models to identify various activities. However, they do not adapt well to the dynamic nature
of human activities. We investigated the activity recognition with postural transition awareness.
The inertial sensor data was processed by filters and we used both time domain and frequency domain
of the signals to extract the feature set. For the corresponding posture classification, three feature
selection algorithms were considered to select 585 features to obtain the optimal feature subset for
the posture classification. And We adopted three classifiers (support vector machine, decision tree,
and random forest) for comparative analysis. After experiments, the support vector machine gave
better classification results than other two methods. By using the support vector machine, we could
achieve up to 98% accuracy in the Multi-class classification. Finally, the results were verified by
probability estimation.

Keywords: activity recognition; posture transitions; inertial sensor; feature selection; support
vector machine

1. Introduction

The human activity and posture transformation recognition is useful to provid users with
valuable situational awareness, thus become one of the hotspots in many fields such as medical
care, human-computer interaction, film and television production, and motion analysis [1]. The two
dominant approaches for human activity classification used in literature are Vision-based systems
and Wearable Sensor-based systems. Vision-based systems are widely used to detection of human
parts and identification of daily activities [2]. These systems process the collected visual data for
activity classification.

Wearable Sensor based systems consist of multiple inertial sensors connected to a human sensor
network. After receiving and executing system commands, the raw human body data would be given
feedback [3,4]. Inertial measurement (accelerometers and gyroscopes) units are used to measure the
triaxle angular velocity and the triaxle acceleration signals generated during human body movement [5].
Sensors available in smartphones, such as temperature sensors and pressure sensors, are useful to know
the surroundings [6]. The data collected from the sensors attached to the user and sensors installed in
the surroundings are proceed to provide situational awareness to the user [7]. One of the problems
of using accelerometer to detect the motion of an object is that it often affected by the gravitational
field in the measurement, and its value (g = 9.81 m/s2) is relatively high. However, many studies have
found that gravity factors can be separated from body motion by filtering. When using three-axis
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accelerometer, the induced gravity vector can also help determine the direction of the object relative
to the gravity axis [8]. The gyroscope measures the direction indirectly; that is, it first estimates the
angular velocity, and integrates the angular velocity to obtain the direction. However, a reference
initial angular position is needed to obtain the direction from the gyroscope [9]. Gyroscopes are also
prone to noise, resulting in different offsets which can be eliminated by filtering.

At present, many scholars have studied the problem of human behavior recognition based on
video data [10]. In [11], the authors proposed depth video-based HAR system to utilize skeleton joints
features indoors. They used processed depth maps to track human silhouettes and produce body joints
information in the of skeleton, then the hidden Markov model was trained by features calculated from
the joint information. The trained model was adopted to recognize various human activities with a
mean rate of 84.33% for nine daily routine activities of the elderly. Basbiker M, etc. [12] developed
an intelligent human recognition system. In multiple stages of the system, a series of digital image
processing technologies were used to extract the human activity feature data from the frame sequence,
and a robust neural networks was established to classify the activity models by using a multi-layer
feedforward perceptor network. However, the vision-based HAR is limited by spatial location, and
video data is relatively complex. It is easier to cause privacy leakage. In contrast, data based on inertial
measurement unit can avoid these problems very well, thus it is becoming a new trand of HAR.

The human activity recognition system has three types of feature extraction methods: temporal
features, frequency features, and a combination of the two [13]. The authors of [14] put forward an
algorithm named S-ELM-KRSL, which is more suitable for processing large-scale data with noises or
outliers to identify the motion sequence of body. After experiment, the scheme could detect symptoms
of mild cognitive impairment and dementia with satisfactory accuracy. In [15], Zhu, etc. proposed a
semi-supervised deep learning approach using temporal Ensembling of deep long short-term memory
to extract high-level features for human activity recognition. They investigated temporal Ensembling
with some randomness to enhance the generalization of the neural networks. Besides the use of
ensemble approach based on both labeled and unlabeled data, they also combined the supervised
and unsupervised losses and demonstrated the effectiveness of the semi-supervised learning scheme
in experimental results. The authors of [16] brought up a novel ensemble extreme learning machine
(ELM) algorithm, in which Gaussian random projection is employed to initialize the input weights of
base ELMs and more diversities had been generated to boost the performance of ensemble learning.
The algorithm demonstrated recognition accuracies of 97.35% and 98.88% on two datasets. However,
the training time of the algorithm is slightly longer. In [17], a feature selection algorithm based on
fast correlation filtering was developed to achieve data preprocessing and demonstrated that the
classification accuracy can reach up to 100%. However, the classification model only used the AIRS2
algorithm which may not be suitable for other classifier. Feature selection is based on well-defined
evaluation criteria to select the original feature set, which eliminates small correlations and unnecessary
features. The selected features don’t change the original representation of the feature set, and feature
selection helps online classification to be more flexible [18].
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Most human behavior recognition systems developed in the past ignored posture transitions
because the incidence of posture transitions is lower and the duration is shorter than other basic
physical activities [19]. However, the above assumptions depend on different applications and are not
applicable when multiple activities must be performed in a short period of time. On the other hand,
in many practical scenarios, such as fitness or disability monitoring systems, determining posture
transitions is critical because in these cases the user performs multiple tasks in a short period of
time [20]. In fact, in the case of human behavior recognition system and transient posture perception,
the classification will change slightly, and the absence of specified posture transformation may lead to
poor system performance [21].

A posture transition is a finite duration event determined by its start and end times. In general,
the time required for posture transitions between different individuals is different. The posture
transition is limited by the other two activities and represents the transition period between the
two activities [22]. Basic activities like standing and walking can be extended for a longer period of
time than posture transitions. The data collection of the two types of activities is also different. The
posture transformation needs to be repeated to obtain a separate sample. Since the basic activities are
continuous, multiple window samples can be obtained from a single test according to the limitation of
its time range [23].

The other works related to this paper are referred in [24,25]. We have researched a large number
of features on HAR assisted by an inertial measurement unit in the past. The various activity features
are classified hierarchical, and six basic activities can be identified with an average accuracy of 96.4%.
However, the transition period of activities was out of account.

This paper focuses on Human Activity Recognition with postural transition awareness. In this
paper, the motion of the human body was sensed by an accelerometer and a gyroscope of the inertial
measurement unit. The magnitude and direction of the acceleration can be measured by vertically
arranging the sensors in three-dimensional space. It can also be built on a single chip, and it is now
common to use three-axis accelerometers in some commercial electronic devices [26]. First, we analyzed
the six-axis signal data acquired by the inertial measurement unit, and thenpreprocessed to obtain a
variety of signals that can represent the action. The various signals obtained from the preprocessing
were extracted in the time domain and the frequency domain using various standard and original
measurement methods to characterize each active sample. Thereafter, we perform feature selection
according to the specific classification condition by using various feature selection algorithms. A variety
of machine learning methods are used to classify and selected the one with the highest classification
accuracy. Finally, we use support vector machine to classify the posture. Different kernel functions and
specific parameters are used to optimize the model.

Figure 1 shows the framework followed in this paper for Activity Recognition. The framework
consists of four modules: Data preprocessing, Feature Extraction and Selection, Classifier Selection,
and Classifier Evaluation. The details of each module are given in next sections. In Section 2,
we described the Data preprocessing, Feature extraction, and Data selection. Section 3 is focused on
the Classifier Selection. In Section 4, we discussed Classifier Selection and Results. We concluded the
paper in Section 5.
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Figure 1. System Framework.
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2. Data Preprocessing and Feature Selection

2.1. Data Preprocessing

The role of this module is to process the activity data received from the sensors and extract the
variety of signals useful for activity recognition.

In this paper, we used the second generation human behavior recognition database available in
the University of California Irvine (UCI) public platform [27]. The data set includes 6 basic activities:
3 static poses (standing, sitting, lying) and 3 dynamic poses (walking, downstairs, upstairs) for
30 different volunteers (everyone, aged between 19 and 48, who was instructed to follow the activity
protocol when wearing an SGSII Smartphone at the waist as shown in Table 1), each volunteer was
asked to do it twice. In addition, all possible pose transitions that occur between the existing three
static poses are also available, including: standing-sitting (St-Si), sitting-standing (Si-St), sitting-lying
(Si-Li), lying-sitting (Li-Si), standing-lying (St-Li), and lying-standing (Li-St). The frequency of the
IMU was 100 Hz.

Table 1. Human activity recognition experiment protocol.

Serial Number Static Poses Time (s) Serial Number Dynamic Poses Time (s)

0 Start (standing) 0 8 Walk (1) 15
1 Stand (1) 15 9 Walk (2) 15
2 Sit (1) 15 10 Downstairs (1) 12
3 Stand (2) 15 11 Upstairs (1) 12
4 Lay down (1) 15 12 Downstairs (2) 12
5 Sit (2) 15 13 Upstairs (2) 12
6 Lay down (2) 15 14 Downsairs (3) 12
7 Stand (3) 15 15 Upstairs (3) 12

16 Stop 0

Table 1 shows all the activity tasks in order, and the corresponding time. In the process
of experiment, every posture transformation performed twice by each volunteer. 60 labels were
generated for each posture transformation which is accounting for 9% of all recorded experimental
data. The duration of each posture tranformation is different, and even reverse transitions (for example,
Stand-Sit and Sit-Stand). The average duration of posture transition is 3.7 s, while the basic activity is
about 20.1 s. The signals collected from one volunteer were extracted and the data of 12 movements
(6 basic movements and 6 posture transformation) were statistically analyzed as shown in Figure 2.

Figure 2. The statistics of posture data.

We process the original sensor signals obtained from the accelerometer (ar (t)) and the gyroscope
(wr (t)) in three steps. First, we used a third-order median filter and a third-order low filter with a
cutoff frequency of 20 Hz. Second, Battworth filter is applied for (transfer function is H1 (ω)) noise
reduction, high-pass filter with a cutoff frequency of 0.3 Hz (transfer function is H2 (ω)) to eliminate
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the influence of DC bias in the gyroscope. Third, the acceleration signal is divided into gravity g (t)
and object motion acceleration a (t).

The sensor data is plotted as Figures 3 and 4. The red line is the acceleration signal in the X-axis,
the green line is the acceleration signal in Y-axis, and the blue line is the acceleration signal in Z-axis. It is
evident from Figures 3 and 4 that the sensor data in the attitude transition phase changes significantly.
The units used for the accelerations are g’s, while the gyroscope units are rad’seg. The horizontal axis
describes the sampling points which is corresponding to the time. All the preprocessed signals are
summarized in Table 2.

Figure 3. Acceleration X, Y, Z axis data.

Figure 4. Angular velocity X, Y, Z axis data.

Table 2. Sensor inertial signal preprocessing.

Name Quantity Formula

Acceleration signal tAcc (X,Y,Z) aτ(t) = H1(ar(t))
Body acceleration signal tAccBody (X,Y,Z) a(t) = H2(aτ(t))

Gravity signal tGravity (X,Y,Z) g(t) = aτ(t) − a(t)
Angular velocity signal tGyro (X,Y,Z) ω(t) = H2(H1ωr(t))

Acceleration differential signal tAccJerk (X,Y,Z) di f f (aτ(t))
Angular velocity diff- erential signal tGyroJerk (X,Y,Z) di f f (ω(t))

Acceleration amplitude signal tAccMag ‖aτ(t)‖
Angular velocity amp- litude signal tGyroMag ‖ω(t)‖

Gravity amplitude signal tGravityMag ‖g(t)‖
Acceleration and gravity angle signal tAccAng ∠(aτ(t), g(t))

Angular velocity and gravity angle signal tGyroAng ∠(ω(t), g(t))
Acceleration frequency domain signal fAcc (X,Y,Z) f f t(aτ(t))

Angular velocity fre- quency domain signal fGyro (X,Y,Z) f f t(ω(t))
Acceleration differential frequency domain signal fAccJerk (X,Y,Z) f f t(di f f (aτ(t)))
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2.2. Feature Extraction

We used both the time and the frequency domain to extract the features. Table 3 shows the various
measures and formulas used for generating feature sets on a fixed width window of length N, and there
is 50% overlap between the two windows. The length of the window used in experiment is 2.56 s,
since a person typically takes 1.5 steps per second on average, each window requires at least one full
walking cycle.

Table 3. Feature Vector.

Function Function Description Formula

Mean (v) Sample mean v = 1
N

N∑
i=1

vi

Var (v) Sample variance 1
N−1

N∑
i=1

(vi − v)2

RMS (v) Root mean square RMS =
(

1
N
∑N

i=1 v2
i

)1/2

Energy (v) Average of the sum of squares P(v) = 1
N
∑N

i=1(vi)
2

Entropy (v) Information entropy E = − N∑
i=1

vi log vi

Distance (v) Euclidean distance L2 = 1
N−1

√∑N
i=2(vi−1 − vi)

2

MaxfreqInd (v) Maximum frequency component argmax(vi)

MeanFreq (v) Frequency signal weighted average
∑N

i=1(ivi)∑N
j=1vj

EnergyBand (v,a,b) Spectral energy in the [a,b] band 1
a−b+1

∑ b
i=avi

2

In our past work, we extracted a total of 585 features to describe each active window [25]. From the
various features tabulated in Table 3, some new features are taken into account. These features are
extracted from each axis of the acceleration signal and the angular velocity signal. The statistical
features in Table 3 are also applicable to the x-axis, y-axis, z-axis, Mag, differential, and tilt angle
of acceleration and angular velocity. Table 3 shows the feature representation form calculated by
generating the metrics of the data set and the window signal of length 128. Taking the Mean (v) as
an example to perform feature calculation on different processed signals and corresponding feature
descriptions. Table 4 shows the characterization of the average value.

Table 4. Signal processing methods for feature average.

Characterization Explanation

tAcc-X-Mean The x-axis body acceleration signal after noise removal is averaged
according to the window length

tAcc-Y-Mean The y-axis body acceleration signal after noise removal is averaged
according to the window length

tAcc-Z-Mean The z-axis body acceleration signal after noise removal is averaged
according to the window length

tGyro-X-Mean The x-axis angular velocity signal after noise removal is averaged
according to the window length

tGyro-Y-Mean The y-axis angular velocity signal after noise removal is averaged
according to the window length

tGyro-Z-Mean The z-axis angular velocity signal after noise removal is averaged
according to the window length

tGravityAcc-X-Mean The gravity component of the x-axis acceleration signal is averaged
according to the length of the window

tGravityAcc-Y-Mean The gravity component of the y-axis acceleration signal is averaged
according to the length of the window

tGravityAcc-Z-Mean The gravity component of the z-axis acceleration signal is averaged
according to the length of the window
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Table 4. Cont.

Characterization Explanation

tAccJerk-X-Mean The derivative of the x-axis body acceleration signal is averaged
according to the length of the window

tAccJerk-Y-Mean The derivative of the y-axis body acceleration signal is averaged
according to the length of the window

tAccJerk-Z-Mean The derivative of the z-axis body acceleration signal is averaged
according to the length of the window

tGyroJerk-X-Mean The derivative of the gravity component of the x-axis acceleration
signal is averaged according to the length of the window

tGyroJerk-Y-Mean The derivative of the gravity component of the y-axis acceleration
signal is averaged according to the length of the window

tGyroJerk-Z-Mean The derivative of the gravity component of the z-axis acceleration
signal is averaged according to the length of the window

tAccMag-Mean The amplitude of the triaxial body acceleration signal is averaged
according to the length of the window

tGyroMag-Mean The amplitude of the three-axis angular velocity signal is averaged
according to the window length

tGravityAccMag-Mean The amplitude of the gravity component of the three-axis acceleration
signal is averaged according to the length of the window

tAccAng-Mean The angle between the acceleration signal and the direction of gravity
is averaged according to the length of the window

tGyroAng-Mean The angle between the angular velocity signal and the direction of
gravity is averaged according to the length of the window

2.3. Feature Selection

The objective of this step is to select the significant features from the feature set obtained in the
feature extraction module to the training model [28,29]. The feature selection methods adopted by
most researchers include Filter, Embedded, Wrapper. In this step, we used the filtering methods in the
feature selection algorithm. The basic principle of feature selection algorithm is shown in Figure 5.

Figure 5. Filtered feature selection algorithm.

The algorithm uses divergence or correlation indicators to score each feature, and selects features
with scores greater than a threshold or selects the top K features with the largest scores. Specifically,
calculate the divergence of each feature, remove the features whose divergence is less than the
threshold/select the top k features with the largest score; calculate the correlation between each feature
and the label, and remove the features/selection with a correlation less than the threshold the top k
features with the largest scores.

The advantages of the filtered feature selection algorithm are mainly versatility, low complexity,
and fast running speed [30]. In this paper, three filtering feature selection algorithms, Relief-F,
Fisher-Score, and Chi-Square, were applied to select the features.
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The purpose of selected feature set is to classify the posture transformation between six basic
movements (walking, going upstairs, downstairs, sitting, standing, and lying) and to achieve this,
we selected 585 features. First, feature selection is made for the two categories: one is six basic actions,
and another is six posture transformations. The results are shown in Figure 6. Secondly, the multiple
classifications are characterized. The six basic movements are six categories, and another is all posture
transformations. The results are shown in Figure 7.

Figure 6. Three feature selection algorithm results in two categories.

Figure 7. Three feature selection algorithm results in multiple classification.

In Figures 6 and 7, the abscissa refers to the number of features selected by the three feature
selection algorithms, and the ordinate refers to the classification accuracy. It can be seen from Figures 6
and 7 that the classification accuracy increases gradually with increase in the number of selected
features and approaches to 1. The ordering of the abscissa features in the three feature selection
algorithms is sorted according to the scores of the features in the three algorithm principles.

In order to further select features of smaller dimensions to classify human poses with higher
accuracy, we first input the first feature selected by each algorithm, that is, the three features into the
classifier for training, obtain a classification model, and test it. If the test accuracy does not reach
the ideal value, the first two features selected by each feature selection algorithm are selected for
classification training, and so on, the feature combination with the highest classification accuracy
is selected.

Finally, the features with highest score got from three feature selection methods were selected in
the two categories: the maximum value in the fAcc (X) sequence, the frequency signal kurtosis in the
fAcc (Y) sequence, and the sample range of the fAcc (X) sequence. In order to ensure classification
accuracy in multiple classifications, 30 features (The top ten features selected by each feature selection
method) were selected as shown in Table 5.
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Table 5. Selected features.

SF. no. Feature Description Symbol Used

1, 2 sequence mean tAcc (Y), tGravity (Y)
3, 4 sequence median tAcc (Y), tGravity (Y)
5, 6 maximum value in the sequence fAcc (Y), fGyro (X)

7 standard deviation tAccJerk (X)
8 frequency signal skew fAcc (Y)
9 range fGyro (X)

10, 11, 12, 13 quartile of the sequence tAccJerk (X), tGyroJerk (Z), tAccMag, tGravityMag
14, 15, 16, 17 10th percentile tGyroJerk (Z), tAccMag, tGravityMag, tGyroAng

18, 19, 20 25th percentile tAccMag, tGravityMag, fGyro (X)
21, 22 50th percentile tAcc (Y), Gravity (Y)

23, 24, 25, 26 75th percentile tGravity (Y), tGyroJerk (Z), tAccMag, tGravityMag
27, 28, 29, 30 90th percentile tGyroJerk (Z), tAccMag, tGravityMag, tGyroAng

3. Classifier Selection

We used Support Vector Machine (SVM), which is a supervised machine learning algorithm
developed in the last century and often used in statistical classification problems [31]. It was more often
applied to the two-classification problem. The basic model is a linear classifier, which is transformed
into a convex quadratic programming problem by maximizing the interval [32]. SVM is effective in
high-dimensional space and suitable for situations where the dimensions are larger than the samples.
Different kernel functions can be formulated for different scenarios. Linear separable samples can be
classified by linear function. In diverse dimensions, the classifier shows different forms, such as a
straight line for two-dimensions as shown in Figure 8, a plane for three-dimension and hyperplane for
high-dimensional space.

Figure 8. Support vector machine in two-dimensional space.

The decision tree is a tree that is constructed according to different strategies. By training the
input data, the decision tree can be constructed, which can classify the unknown data efficiently, that is,
predict the future based on the known [33]. It is a tree structure algorithm composed of root node,
internal node, and leaf node. The core idea of the decision tree algorithm is to select attributes based
on information gain and select the attribute with the largest information gain as the root [34]. The
root is the top classification condition, each node of the tree acts as a test point on the property. The
leaf node represents each category number, and the branch is on behalf of the output of each criteria.
A binary tree has two branches on each node, while a node in a multi-tree has more than two branches.

The random forest algorithm is mainly based on the model aggregation idea, and has high
precision in the classification and regression of high dimensional uncertainties [35]. The key idea under
the random forest classifier is to grow a large number of unbiased decision trees from the guided
samples, where each tree is voted for an activity class, and the random forest finally selects the most
voted classification in the forest [36]. The random forest starts by selecting guide samples from the
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original training data. Then learning each guide sample through the decision tree. Only a small
number of variables are available for binary partitioning on each node.

In the previous section, three filtering feature selection algorithms were used to select three
features for the two-category case, and 30 features were selected for the multi-classification case. Next,
for the different classification cases, three features and 30 features were respectively applied to the
three classifiers, and the test set classification accuracy is shown in Tables 6 and 7. According to the
analysis of the classification results, there is no significant difference between the classification accuracy
of the three sets of testers. We found that the results of the SVM are better than the other two. Precision,
recall and F1-score is the evaluation index of the classification results. Avg/total calculates the mean
value of entirety, which represents the overall situation of evaluation index. We used the features
selected by Fisher-Score, Relief-F and Chi-Square to train the SVM, and the training set accuracy is
shown in Table 8.

Table 6. Three classifier experimental results of two categories.

Test Set Classification Accuracy Precision Recall F1-Score

SVM 1.0
Class 1 1.00 1.00 1.00
Class 2 1.00 1.00 1.00

Avg/total 1.00 1.00 1.00

Decision tree 0.9767
Class 1 0.97 1.00 0.99
Class 2 1.00 0.75 0.86

Avg/total 0.98 0.98 0.98

Random forest 0.9827
Class 1 0.97 1.00 0.99
Class 2 1.00 0.75 0.86

Avg/total 0.98 0.98 0.98

Table 7. Three classifier experimental results of multiple classification

Test set Classification Accuracy Precision Recall F1-Score

SVM 0.9827 Avg/total 0.99 0.98 0.98
Decision tree 0.9792 Avg/total 0.98 0.98 0.98

Random forest 0.9801 Avg/total 0.98 0.98 0.98

Table 8. Training set results of SVM.

Fisher-Score Relief-F Chi-Square

Accuracy 0.954 0.988 0.976

4. Classification Results Analysis and Improvement

4.1. Classifier Parameter Selection

In this Module, we used the support vector machine as a common classifier to classify the pose.
The role of the kernel function is to map the input space to a high-dimensional space with certain
rules, and construct an optimal separation hyperplane in it, and finally achieve the effect of separating
nonlinear data [37]. We mainly used linear and Radial Basis Function.

If we learn and test the classifier model on the same subset of data, it will lead over-fitting
phenomenon which can be avoided by cross-validation.

The data of 30 volunteers in the original data set were divided: the data of the first 15 people were
used as the feature selection set, the data from th 16th to 26th person were used as the training set of
the classifier, and the others were used as the test set of the classifier.
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4.1.1. Classifier Linear Kernel Parameter Selection

A commonly used parameter in a linear kernel is the penalty factor C. When the value of C is large,
the misclassification is less, the fitting to the sample is better, but it is easy to cause overfitting [38].
Although the possibility of misclassification becomes larger and the fit to the sample is degraded,
the prediction effect may be more desirable due to the influence of noise between the samples [39].

First, based on the three features selected in the previous section, the linear kernel support vector
machine is used to solve the two-class problem in behavior recognition. Figure 9 shows the selection
process for parameter C in the two classifications. Next, based on the 30 features selected in the previous
section, we used the linear kernel support vector machine to solve the seven classification problem in
behavior recognition. Figure 10 shows the selection process of parameter C in the multi-class.

Figure 9. Selection of penalty factor C in the two categories.

Figure 10. Selection of penalty factor C in multiple classification.

In Figures 9 and 10, the upper line represents the test set classification accuracy, and the lower
line represents the cross-validation average. The abscissa shows the change of the penalty factor C,
and the ordinate indicates the classification accuracy. It can be seen that with the increase of the penalty
factor C, the classification accuracy and cross-validation average of the test set increase, but when
the value of C is too large, the classification accuracy decreases slightly. In the process of processing
the data, the larger the value of C, the more the error cannot be tolerated, and the time required for
data processing will be longer. However, if the value of C is too small, we cannot guarantee that the
parameter can be applied to other data sets. However, It still has a better effect. Therefore, considering
the comprehensive consideration, we used the penalty factor value equals to 1. The 27th–29th people
in the database were used for cross-validation to calculate the average precision value, mean value
and standard deviation. We noticed that the classification accuracy of the test set is 0.973, the average
cross-validation is 0.956, and the standard deviation of cross-validation is 0.042, which can achieve the
desired effects. The factor C has a value of 1, and the classification accuracy of the test set is 0.975,
the cross-validation average is 0.972, and the cross-validation standard deviation is 0.033, which can
achieve the desired effect.
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4.1.2. Classifier RBF Kernel Parameter Selection

The radial basis function (RBF) is a localized kernel function whose role is to map samples to
high dimensional space. There are two main parameters in the classifier of RBF: the penalty factors C
and σ [40]. The parameter σ reflects the clustering of the points after the mapping. The smaller the
parameter σ, the distance between the mapped points tends to be equal, and the classification of the
points will be finer, which will easily lead to overfitting. The larger the parameter σ, the coarser the
classification will be, making it impossible to distinguish the data.

In the process of selecting the penalty factor C and the parameter σ, when the value of C is too
large, over-fitting is easy to occur. When the value of σ is too small, the more support vectors are,
the finer the classification is, and over-fitting easily occurs. And the increasing of the number of
support vectors affects the speed of training and prediction [41]. The cross-validation is also used to
determine whether the classification result has been over-fitted.

First, based on the three features selected in the previous section, the classifier of the radial basis
kernel was used to solve the two-class problem in behavior recognition. Figure 11 shows the selection
process of parameters C and σ in dichotomies. We used radial basis kernel support vector machine to
solve the seven classification problem in behavior recognition based on the 30 features selected in the
previous section. Figure 12 shows the selection process for parameters C and σ in the multi-category.

  
(a) (b) 

Figure 11. Selection of parameters C and σ in two categories: (a) Test set classification accuracy;
(b) Cross validation mean.

 
(a) (b) 

Figure 12. Selection of parameters C and σ in multiple classification: (a) Test set classification accuracy;
(b) Cross validation mean.

There are two subgraphs in Figures 11 and 12. The abscissa shows the change of the parameter σ
and the ordinate shows the change of the parameter C. While Figures 11 and 12a shows the classification
accuracy of the test set, and Figures 11 and 12b represents the cross validation average. The darker the
color, the larger the value. When the penalty factor C is too small and the parameter value σ is too large,
the classification accuracy may not reach the ideal value. However, excessive pursuit of classification
accuracy may cause computational complexity. Considering comprehensively, when the penalty factor
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C is selected as 100 and the parameter is selected as 0.00001 in the second classification, the classification
accuracy of the test set is 0.973, the cross-validation average is 0.975, and the cross-validation standard
deviation is 0.011, which can achieve the desired effect, the penalty factor C in the seven classification.
When the parameter is selected and the parameter is 0.001, the classification accuracy of the test set
is 0.978, the average cross-validation is 0.938, and the cross-validation standard deviation is 0.057,
which can achieve the desired effect.

4.2. Probability Estimation

Commonly used SVM can only generate categories without probability. The probability estimation
can be used to transform the classification result of the support vector machine, that is, the probability
that a sample belongs to each category [42].

The probabilistic calibration used in this study is isotonic regression, which is a nonparametric
method. The core idea is to fit the deviation between the current classifier output and the real results.
Isotonic regression is suitable for cases with large sample sizes, and over-fitting is prone to occur
when the sample size is small. The Brier score can be used to evaluate the results of the probabilistic
calibration. The Brier score is a loss, so the smaller score is better [43]. In all categories in which N
predictions are aggregated, the Brier score measures the mean square error between the predicted
probability and the actual probability assigned to the category. Therefore, for a set of predictionsmeans
the lower the Brier score, the better the prediction calibration effects.

In this paper, we used data of five volunteers on which we used the support vector machine to
learn and classify, and then uses isotonic regression to probabilistically estimate the data compiled by
the volunteers. Due to individual differences, they completed each activity in different time actually.
In order to maintain the integrity of a whole set of actions, result of one volunteer was presented
only in Figure 13. In Figure 13, the abscissa is the test set data corresponding to different postures
randomly selected from the volunteer data, and the ordinate is the predicted probability value obtained
by estimating the probability of the data. The seven different colored lines represent the probability
that the data is predicted into seven categories.

Figure 13. Seven classification probability estimation result.

182



Information 2020, 11, 416

The Brier score is then used to evaluate the results of theprobability estimates. The average results
of five volunteers are shown in Table 9. The column labels in the table represent which actions the
selected data comes from, the row labels represent the seven categories, and the values in the table are
the obtained Brier scores. The Brier score on the diagonal in the table is relatively small, so the result
of the probability estimation achieves the desired effects. Comparing with the experiments adopted
SVM in the literature [44], SVM with kernel parameter selection adjustment has a significantly higher
effectiveness and accuracy in identifying “walking”, ”upstairs”, and “downstairs”.

Table 9. Brier score evaluation result of probability estimation.

Brier-Score Walking Upstairs Downstairs Sitting Standing Laying
Posture

Transitions

Walking 0.0105 0.2801 0.2432 0.2746 0.2332 0.2702 0.1980
Upstairs 0.2741 0.0107 0.2648 0.3023 0.2332 0.3344 0.2365

Downstairs 0.2532 0.2890 0.0204 0.2833 0.2374 0.2562 0.2087
Sitting 0.2820 0.3172 0.2741 0.0116 0.2714 0.3172 0.2293

Standing 0.2046 0.2231 0.1968 0.2341 0.0082 0.2701 0.1753
Laying 0.2820 0.3321 0.2840 0.3187 0.2622 0.0181 0.2543

Posture transitions 0.1861 0.2142 0.1602 0.2194 0.1793 0.2433 0.0356

5. Conclusions

In recent years, research on behavioral recognition methods for transitional attitude perception
has become more and more widely used in many fields such as medical care. Based on the evaluated
human behavior recognition data set it is found that the three-axis acceleration values of different static
actions are significantly different, the three-axis angular velocity values are basically the same, and the
posture conversion data between static actions changes significantly. It is undeniable that the data of
the static posture is not always stable, as it cannot be guaranteed that the volunteer was completely
still while sitting (or standing or lying) during the experiment.

We used Fisher-Score, Relief-F, and Chi-Square to select 585 features to obtain relatively good
features set for classification. The features with higher scores were calculated using methods
such as maximum value, minimum value, variance, skewness, kurtosis, and information entropy.
The investigation shows that support vector machine gives better results than decision tree and random
forest. In the second classification, the classification accuracy of the linear kernel (C = 1) is 97%, and
the classification accuracy of the RBF kernel (C = 1, σ = 0.001) in the multi-class is 98%. Probability
estimation overcomes some of the shortcomings of SVM and can directly output the probability that
the data belongs to each category, thus making the results more intuitive.
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Abstract: Machine learning, particularly using neural networks, is now widely adopted in practice
even with the IoT paradigm; however, training neural networks at the edge, on IoT devices, remains
elusive, mainly due to computational requirements. Furthermore, effective training requires large
quantities of data and privacy concerns restrict accessible data. Therefore, in this paper, we propose
a method leveraging a blockchain and federated learning to train neural networks at the edge
effectively bypassing these issues and providing additional benefits such as distributing training
across multiple devices. Federated learning trains networks without storing any data and aggregates
multiple networks, trained on unique data, forming a global network via a centralized server. By
leveraging the decentralized nature of a blockchain, this centralized server is replaced by a P2P
network, removing the need for a trusted centralized server and enabling the learning process to be
distributed across participating devices. Our results show that networks trained in such a manner
have negligible differences in accuracy compared to traditionally trained networks on IoT devices
and are less prone to overfitting. We conclude that not only is this a viable alternative to traditional
paradigms but is an improvement that contains a wealth of benefits in an ecosystem such as a hospital.

Keywords: IoT; machine learning; neural networks; federated learning; blockchain; learning on the edge

1. Introduction

The number of and use cases for IoT devices are increasing exponentially [1]; this is
due in part to the increase in their ability to handle complex tasks that were once only
possible on full-sized computers. One of the core use cases is within the medical field,
referred to as the IoMT, with the market share of these devices on the rise. In 2017, the
IoMT market was worth USD 28 billion and is projected to be USD 135 billion by 2025 [2].
Therefore, a solution that leverages this infrastructure while utilizing technologies proven
to be effective is essential.

IoT architecture contains two main boundaries, cloud computing and edge computing,
which differ primarily by the location where the computations take place and additionally
differ in computing power. Additionally, there are three primary layers: cloud, fog and
mist [3], as depicted in Figure 1. These layers are analogous to their namesakes, clouds are
large and furthest away from the ground, fog is lighter and hovers between the ground and
the clouds and mist is a thin layer of water molecules suspended just above the ground.
The distance from the ground can be thought of as the distance from the users and the size
of the water molecules are analogous to the computing resources at each layer.

Cloud computing is still the most prevalent [4,5] , allowing complex computations
to be run on dedicated machines with the results streamed to IoT devices on demand,
significantly reducing the need for IoT devices to perform complex calculations and instead
act as a go-between for the client and server. This is effective but requires a connection
to work; any disruption, due to congestion or network cutout, will cause a delay or even
complete loss of results. This is unacceptable in many contexts such as during surgery or
within a self-driving vehicle.
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Figure 1. IoT Architecture Archetypes: Cloud and Fog both require an external server for handling
the computations requested by the IoT device. The primary difference is the server’s location, which
is local for fog and external for cloud, and communication protocol. Mist, on the other hand, requires
no external communication and all computations are performed on the device itself.

Fog computing [6,7] attempts to overcome these issues by exchanging the cloud server
for a local server in the same location as the IoT devices; for example, a fog server may
be housed in a hospital so that every internal IoMT device can connect directly to it as
opposed to an external connection such as via the internet as is commonly the case in cloud
computing. However, fog computing may still experience connection issues and requires
space for dedicated hardware in close proximity. This is not ideal for situations where
users either cannot be in close proximity or servers cannot be installed in the required
location, such is the case with IoT sensors used in remote locations such as the Antarctic.
Fog computing is a hybrid approach and is thus in the intersection of cloud computing and
edge computing.

Therefore the most useful archetype is mist computing [8], where all computations
are run on the IoT device itself or another (local) participant. Whilst this too requires a
connection and is therefore prone to the same issues as fog computing, all participating
devices are autonomous and can act individually as required. Unfortunately, this is also
the most challenging archetype as the available resources are heavily limited and often
require more specific solutions dependent upon the abilities of the individual device.
However, whilst mist computing itself is completely within the edge computing boundary,
it is frequently used in concert with the other layers. Therefore, when we refer to edge
computing we refer to using only the mist layer, with each IoT device communicating only
to each other without the requirement of dedicated (and more powerful) external servers.

Finally, there are additional paradigms that use software approaches to allow for
additional benefits; dew computing, for example, caches and mirrors data on the cloud or
fog in order to respond as if the data were local but requires syncing with the true servers.
The most prevalent examples of dew computing are in cloud file storage where a local
computer may contain cached copies of the files which are then synced with the cloud
whenever changes are made or a refresh is requested.

Edge and fog computing, as a whole, have made great strides. Mobile Edge Com-
puting (MEC), for example, allows for cloud computing capabilities with vastly reduced
latency, high bandwidth and real-time access to network information [9]; therefore big data
techniques can be applied with real-time feedback. However, this system does not actually
leverage edge computing, instead using a fog computing architecture and as such must
overcome issues such as reliance on users being in proximity to the fog servers, ensuring
the connection does not interfere with the user’s ability to access the internet (mobile data).

187



Information 2023, 14, 318

In order to overcome these issues, there are a small number of IoT systems that utilize
true edge computing; however, these solutions either do not leverage machine learning at all
or cannot be trained at the edge. For example, research by A.A. Abdellatif et al. developed
an edge-based classifier for seizure detection and compressed sending of results [10,11].
Whilst this is a great step towards edge computing there is no machine learning being
leveraged and so these types of systems are not able to use some of the recent advances
in the field of machine learning for health. On the other hand, IoT devices using machine
learning do exist and bringing machine learning, particularly neural networks and their
collective family (convolutional, deep, etc.), onto the edge is a wide area of research [12].
TensorFlow has the TensorFlow Lite [13,14] framework which is designed to convert a
trained neural network to run on edge devices; it is a very popular toolkit and is used
in the book, TinyML [15] for running neural networks on embedded devices. However,
whilst it can be used for on-device training, to our best knowledge, there are no systems
that employ this.

Given the accelerated demand for faster training of more complex neural networks,
there has been a focus on dedicated hardware such as GPUs and application-specific inte-
grated circuits such as Google’s Tensor Processing Unit (TPU) and field-programmable gate
arrays (FPGAs), which are inherently cohesive with the matrix multiplication operations
that underpin neural networks.

Whilst improvements to these specialized hardware components have accelerated our
machine learning abilities, due to their high cost, large footprint and high energy draw,
they are often missing from IoT devices, where smaller and less obtrusive devices are
preferred. Even IoT devices that do contain specialized hardware, such as modern mobile
phones which may have GPUs, require smaller, embedded, versions that are significantly
less powerful than their full-sized counterparts. Furthermore, the less hardware required
the lower the baseline battery draw is, a vital factor in IoT.

As a result, learning on a CPU on the edge is paramount! Removing dependency on
specific hardware and providing all benefits via software allows existing devices to use
this framework and keep the footprint of new devices small and focused on efficiency.
Intel developed the Intel Xeon Scalable processor, which is geared towards learning and
inference, focusing on three main features: the computation and memory capacity of the
CPU, software optimizations for the CPU within machine learning tasks, specifically DNNs,
and the use of distributed training algorithms for supervised deep learning workloads [16].
All three of these features translate to edge computing perfectly; for example, the memory
capacity allows for better batching of input data and by not using a GPU there is no
overhead between moving data from the CPU to GPU and back again. Furthermore, edge
computing and IoT are inherently distributed and as such learning can be offloaded and
computed at the source or destination, potentially increasing the efficiency of the whole
system allowing each device to act autonomously and only interact with other devices
when needed [7]. Furthermore, since training occurs upon observation of new data, which
may not be consistent, inference, via the previous globally updated network, may be used
simultaneously resulting in an online, continuous learning paradigm where networks
are incrementally improved while running; this could be further improved by leveraging
unsupervised techniques [17] or by using the inferring network as the supervisor.

Therefore, a privacy-ensuring, low-powered and generalizable method is required
for training neural networks running at the edge. Federated learning allows multiple
networks (of the same architecture) to train simultaneously on non-iid data without ever
storing them and aggregate their knowledge into a global network, thereby learning at the
edge. However, vanilla federated learning requires a centralized server for the aggregation;
when privacy is involved, trust can be an issue. Therefore, we propose a hybrid approach
utilizing the decentralization of a blockchain to create a framework that runs efficiently on
multiple IoT devices across a P2P network, removing the need for a trusted centralized
server, thereby improving privacy and adding robustness to data integrity. Furthermore,
this enables the learning process to be distributed across participating devices (which
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federated learning does not implicitly do) leveraging the ubiquity of IoT devices to offset
their lack of power by increasing the number of devices that are able to run in parallel.

1.1. Contributions

In this paper, we utilized our previous federated blockchain learning framework [18]
to propose a pure mist solution to train a consortium of neural networks on a single Android
phone to perform image classification on the CIFAR-10 dataset [19] Therefore, the main
contributions of this work are as follows:

1. We developed a novel IoT federated learning framework, using Tensorflow Lite and
our previously developed blockchain framework, to perform training at the edge
(LotE) that is fully decentralized, leveraging our blockchain framework, ensuring
that the data are private and secured against malicious attacks and requiring no trust
between participants. This system requires no intermediary servers, which results in
a mist-only architecture.

2. Using this framework, we build a configurable system for the training of neural
networks on IoT devices and tested it on the CIFAR-10 dataset using a physical
Pixel 4 Android smartphone running Android 13 with a Qualcomm Snapdragon 855
Octa-core CPU (1 × 2.84 GHz Kryo 485 Gold Prime, 3 × 2.42 GHz Kryo 485 Gold
and 4 × 1.78 GHz Kryo 485 Silver) in order to obtain practical, and not simulated,
results [19].

3. This system utilizes TensorFlow Lite as our machine learning framework (as opposed
to our own framework’s implementation) since standard TensorFlow is so widely
used, is compatible with our existing federated blockchain learning framework and
TensorFlow Lite converts TensorFlow models for use on IoT devices. Therefore, any
existing system using Tensorflow will be able to receive the full benefit of our system
with next to no overhead.

1.2. Related Works

Federated learning using blockchains has had an exponential surge in interest in recent
years, especially for designing privacy enhancing and trustworthy AI, resulting in systems
such as that by Yang et al. [20], which proposed a federated blockchain method using the
PBFT consensus protocol. It can resist 33% of malicious users with a drastically lower energy
cost than PoW but requires “Authorized” edge servers. Additionally, they use Multi-Krum as
the federated aggregation scheme in order to achieve Byzantine-resilience. However, to the
best of our knowledge, this proposed scheme has not been implemented on real hardware
and utilizes cluster computing on the fog layer, requiring edge servers with significantly more
power than standard IoT devices have to validate the blocks in the chain.

Islam et al. [21], on the other hand, utilizes drones as a method to ensure connection
between devices running on the edge (pure mist computing) and utilizes differential privacy
alongside federated blockchain learning to further enhance privacy. However, each entity
in the system must register before being allowed to participate, which can cause issues if
the system is required to grow and shrink dynamically.

1.3. Organization

The rest of this paper is organized as follows: Section 2 introduces federated learning and
the blockchain as well as how we utilize these two different theories into a cohesive system.
Section 3 analyzes the computational complexity and latency. Section 4 presents the results
of our system running on a physical Android smartphone against the CIFAR-10 dataset in
order to obtain results that demonstrate the real-world ability of our system. Finally, Section 5
discusses our findings and the direction we believe our future work will take.
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2. Materials and Methods

2.1. Federated Learning

In the standard case, neural networks aim to approximate a function by minimizing
the prediction loss with respect to the network’s parameters:

min
ω∈Rd

T (ω) = �(x, y, ω) (1)

where � is a chosen loss function, x, y are the training (input and desired output) vectors
and ω is the network’s parameters.

However, with federated learning there are many networks training (potentially
simultaneously) to form a global network, which may not have any training data of its own,
and is an aggregation of these participating networks. Therefore, the FedAvg algorithm [22]
(Equation (2)) is used to obtain the global weights for the global network, which may then
be used as the initial network for the next round of federated learning.

F (ω) � 1
|χ|

N

∑
i=1

|χi| · Ti(ωi) (2)

where for N participating networks, |χi| is the number of examples seen by network i (for
i ∈ {1. . .N}), Ti(ωi) is the trained weights of network i as defined in Equation (1) and
|χ| = ∑N

i=1 |χi| is the total amount of data seen by all participants. Note that only the
number of examples seen by each network is sent to the blockchain, no data are ever stored.

2.2. Decentralization with Blockchain

In order to replace vanilla federated learning’s requirement for a centralized server we
propose using a blockchain to tweak the paradigm to use a decentralized distributed ledger.
This changes federated learning’s architecture from the cloud/fog to the edge, where every
device is independent and autonomous. The system will work even with only one node, and,
in the event that all nodes go down, the system can recover fully since each node contains a
copy of the accepted blockchain. This may not have been possible with a central server. The
following details our design regarding the fundamental components of the blockchain.

2.2.1. Block

Our block format closely mirrors Bitcoin’s format but with two major changes: the
target formula and the federated components. The target is used to decide when the block
has been mined via proof of work (PoW), which we chose over alternative, more green (both
environmentally and chronologically) consensus mechanisms, such as proof of stake (PoS)
[23–25]. Unfortunately, the downside of PoW is the energy cost; a miner who performs
PoW must continually guess, in a deterministic manner, a hash that is less than the target,
since the target is in big endian hexadecimal format we refer to it as a hash with more
leading zeros than the target.

The criticism stems from the high computational cost of computing the hash which
provides no computational benefit, other than the required effect of making it infeasible for
a malicious node to pervert the system. However, as the blockchain is used to calculate the
global update, the mining process provides some benefit, albeit tangentially. Furthermore,
in an IoT system, this cost is somewhat negated as there are likely to be many interconnected
devices and as such the problem can be split across them, much like mining pools.

Moreover, since the blockchain is primarily used as a trust mechanism for federated
learning, the mining target difficulty can remain lower, reducing the computational cost;
this additionally increases the rate of block addition to the chain which in turn reduces the
time between each global network update. Therefore, lower-powered devices will have
enough computing resources to generate hashes competitively, whilst still providing the
same protection. As a result, we decided on a block rate of approximately one every 1.5 min.
This rate is long enough for multiple local updates from different sources to be included in
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a block prior to the block being added to the chain, without being so long that the global
update is outdated or a local device that misses out on the federated update grows stale.

PoS, on the other hand, would not be as suitable since it relies heavily on transactions, has
no mining step, would give too much power to larger contributors, whose networks are likely
to be less diverse. It also promotes coin hoarding, which negates the side benefit of blockchain
rewards; this is what incentivizes institutions to utilize their spare computing power.

2.2.2. Mining

Mining of local updates via PoW requires storing the target in the block; however,
the target size has the same number of bits as the hash. Therefore, much like bitcoin, we
encode the target in 4 bytes:

Target hex

= 0x

Φ︷︸︸︷
φ1φ2

Θ︷ ︸︸ ︷
θ1θ2θ3θ4θ5θ6 � Θ ∗ 28∗(Φ−4) (3)

where the first byte (φ1φ2) is an exponential scale and the lower three bytes contribute
the linear scale. As with Bitcoin, we scale the exponential by 8, as there are 8 bits in a
byte, simplifying the bit manipulation calculations. However, unlike Bitcoin, we scale the
exponent by 4 (whereas Bitcoin scales by 3) in order to generate target values at the lower
end of the spectrum since we use a lower block mining rate than Bitcoin.

2.2.3. Cryptography

We opted to use Keccak-256 for our cryptographic hashes instead of SHA256 and
RIPEMD160, which Bitcoin uses. Keccak-256 is stronger compared to both and is used by
Ethereum, which is a distributed state machine as opposed to a distributed ledger. Since we
plan on adopting some of Ethereum’s changes to the plain distributed ledger, such as smart
contracts, keccak-256 is a more natural fit. However, we continue to use double hashing as
Bitcoin does.

2.2.4. Networking

Using a peer-to-peer (P2P) network for our communication layer provides an essential
benefit; whilst a single node will still be functional, the benefits of federated learning would
be severely reduced. P2P networks are ideally suited to handle two vital situations: first,
each node must be able to request a copy of the blockchain, including a list of addresses
of other nodes which will receive the address of the connecting node and, secondly, the
ability to broadcast information to all nodes accessing the chain, even those that may not
be directly connected to this node.

By using a pair of UDP sockets (Algorithm 1), we can parallelize the communication
and allow the communication to be distributed amongst different (local) devices. A hospital,
for example, may have many IoMT devices but none with networking capabilities, just
Bluetooth; they could therefore connect all IoMT devices to a single, network-capable IoT
device, which would handle the networking and correct forwarding, much like Network
Address Translation (NAT) with regards to WiFi routers. Consequently, any IoT device may
participate, with the only requirement being a connection to a networking node, potentially
via Bluetooth or even hardwired to a communication module, at some point downstream.
Moreover, if a collection of IoT devices train as one unit, only one device needs to connect
to the outbound UDP connection with all devices gaining the benefits.

2.3. IoT Federated Learning

All devices contain an instance of a, potentially pre-trained, TensorFlow lite model
and train on incoming data, private to each participant. After a number of epochs, each
participant may submit their network’s weights and the number of different examples seen
to the blockchain (Figure 2). The chain then contains the globally aggregated model that
can then be used as the new initial network for the next round of local training.
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Algorithm 1 UDP Pair Communication.

procedure INBOUND
loop

msg ← incomingMsg
if ValidateIsNewestChain(msg) then

chain ← msg
else if msg /∈ addresses then

addresses.append(msg)
Outbound(Inbound.Address, msg)

end if
end loop

end procedure

procedure OUTBOUND(msg, addr = NULL)
if msg == JoinNetwork then

Broadcast(Join + Inbound.Address)
else if addr == NULL then

Broadcast(msg)
else

SendDirectMsg(msg, addr)
end if

end procedure

Participant 1
Dataset χ1
Weights ω1

Participant 2
Dataset χ2
Weights ω2

Participant 3
Dataset χ3
Weights ω3

Proposed Block:

Globalnetwork =

1

∑3
i=1 |χi|

·
3

∑
i=1

|χi| · Ti(ωi) =

(
1

|χ1|+ |χ2|+ |χ3|
)·

( |χ1| · T1(ω1)+

|χ2| · T2(ω2)+

|χ3| · T3(ω3) )

Chain

|χ
1 |,ω

1

|χ2|, ω2

|χ 3|,
ω

3

Mine
Add global network

Figure 2. Example of three clients contributing to the blockchain. Each participant trains a local
network for a set amount of epochs over their observed dataset χi resulting in the network’s weight
set ωi. The number of examples seen |χi| and the weight set are passed to the proposed block to be
aggregated into the global model using Equation (2). Once the proposed block is mined, it is added
to the chain with the new global network in the block; this may be used by anyone with access to the
chain and used for the next iteration of local training. Note ( x ∪ y ∪ z ) ⊆ all_possible_data.

3. System Complexity

In this section, we analyze the complexity and latency of the proposed system, includ-
ing actual timings taken from the system running in debug mode on a physical Pixel 4
Android smartphone running Android 13 with a Qualcomm Snapdragon 855 Octa-core
CPU (1 × 2.84 GHz Kryo 485 Gold Prime, 3 × 2.42 GHz Kryo 485 Gold and 4 × 1.78 GHz
Kryo 485 Silver) to give real, practical values to fairly evaluate the system.
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The first step of the system is the local training; using ω to denote the number of CPU
cycles to execute one step of training (i.e., applying backpropagation to one input) then the
complexity of an epoch of local training is defined as

Θlocal_training = max
Dk∈D

(
βDk · ω

ΩDk

)
(4)

where βDk is the batch size of the input data used in each epoch, Dk is a participating device
(from the set of all devices D) and ΩDk is the CPU frequency of the participating device Dk.
In our experiments (averaging over 144 epochs) the latency of Θlocal_training = 23.68 s.

Each participant then sends their model to the blockchain for validation, which consists
of the PoW consensus algorithm followed by the aggregation of all models into a global
model (using Equation (2)). Therefore the complexity of the global aggregation is as follows:

Θglobal_aggregation =
ρ + ωagg

ΩV
(5)

where ρ is the number of CPU cycles to execute the PoW algorithm and
ωagg = (N + 1) · Ξ + (N − 1) · σ is the number of CPU cycles to execute the aggregation of
N models (where Ξ denotes scalar matrix multiplication and σ denotes matrix addition)
and ΩV is the CPU frequency of the validator. In our experiments, consisting of four
models, the latency of Θglobal_aggregation = 106.83 milliseconds which is a negligible cost
owing to the large target for the PoW algorithm. However, in general, ρ >> ωagg unless
there are a large number of participating devices.

Running the entire system on our single device (sequentially, with no concurrency or
optimizations applied) yielded a complete run time of 19.79 min consisting of 4 models
training for 50 epochs each with global aggregation occurring every 25 epochs (i.e., twice
in the complete run).

4. Results

To test our system, we used a simple convolutional network comprising two convolu-
tional and max pooling layers, a final convolutional layer and two dense layers, to classify
the CIFAR-10 dataset. Ordinarily, the model would be first pre-trained using TensorFlow
before being converted to the TensorFlow lite format. However, we wished to train almost
entirely on-device and so only ran for one epoch (against 100% of the CIFAR-10 training
data) so as to have a starting point over a network with completely randomized weights;
although we also pre-trained another instance of the network with 100 epochs to compare
the effects of pre-training. The results of non-federated learning on these two networks are
shown in Table 1 with the loss and accuracy after training further on the device (against
only 25% of CIFAR-10’s training data) for 50, 100 and 150 epochs. These results imply that
the pre-training caused the model to overfit and is likely only useful if the data the device
observes will differ from the pre-training data.

Table 1. Loss and accuracy of a neural network against CIFAR-10 test data trained and evaluated
on an Android phone. Each network was pre-trained on a laptop for the specific number of epochs
on 100% of the CIFAR-10 training dataset and then trained further on the Android phone for the
specified number of epochs against 25% of the CIFAR-10 training data.

Pre-Trained Epochs On-Device Trained Epochs Final Loss Final Accuracy

1
50 1.43 48.04%

100 1.65 49.43%
150 3.08 47.97%

100
50 1.73 48.02%

100 3.43 46.94%
150 4.42 46.67%
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Next, we trained multiple instances of the single epoch pre-trained network via
federated learning. Globally updating all participating networks after either 25 or 50 epochs
and training for 50, 100 and 150 epochs, we tested the federated setting for 2, 4 and
8 participating networks. All participants were trained on an even split of 25% of CIFAR-
10’s training data such that no 2 networks saw the same example (an example of the case
with 8 participating networks is shown in Figure 3. The results in Table 2 show that the
accuracy is very similar to the non-federated context with the main difference within each
configuration being loss increasing with more training despite the accuracy remaining
virtually constant.

0000-- --¼¼¼¼¼¼¼
¼¼¼¼--

--½½½½½½½½½½½½½½----¾¾¾¾
¾¾¾¾¾--

--11
GGlloobbaall
NNeettwwoorrkkk

Figure 3. Federated Training of 8 models with an even split of the dataset. Given a dataset, χ, each
local network, i ∈ {1. . .N}, trains on an even split of the dataset proportional to the number of
networks such that for χ = {χ1, χ2 . . . χk}, network i is trained on {χ(i−1)k . . . χik}. These networks
are then aggregated into a global network that performs as if it had been trained on χ despite not
actually receiving any data, thereby preserving privacy.

Table 2. Loss and accuracy of a neural network against CIFAR-10 test data trained via federation and
evaluated on an Android phone. Each participating network was trained on an even split of 25% of
the CIFAR-10 training dataset with no participant seeing the same data.

Epochs per
Global Update

Number of
Participating

Networks
Total Epochs Final Loss Final Accuracy

25 2
50 1.43 48.04%
100 1.66 49.44%
150 3.07 48.20%

50 2
50 1.43 48.03%
100 1.66 49.19%
150 3.05 47.93%
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Table 2. Cont.

Epochs per
Global Update

Number of
Participating

Networks
Total Epochs Final Loss Final Accuracy

25 4
50 1.43 48.04%
100 1.64 49.62%
150 3.06 48.12%

50 4
50 1.43 48.04%
100 1.64 49.65%
150 3.08 48.10%

25 8
50 1.43 48.04%
100 1.65 49.46%
150 3.08 48.28%

50 8
50 1.43 48.18%
100 1.65 49.33%
150 3.03 47.97%

5. Discussion

A new IoT-based, federated, decentralized and distributed learning approach is pro-
posed with the aim of allowing learning on the edge by training multiple networks on
multiple IoT devices and aggregating them into a global network that has seen no individ-
ual examples but is generalized for the specific task. We have produced a fully customizable
Android application that allows on-device training of an arbitrary neural network via Ten-
sorFlow lite, allowing for existing networks to become federated and usable on an Android
device in an extremely secure and privacy-enhancing manner.

However, there are a few components that we would like to address in future work:
Smart contracts would be invaluable for automating tasks and sharing processing capa-
bilities. Additionally, allowing the previous network iteration to supervise the next in
a bootstrapping manner, forming a truly autonomous system. Finally, we wish to add
homomorphic encryption to our system to further enhance the distributed manner of
the system and to provide a novel, additional layer of privacy enhancement for both the
machine learning models and the associated data.
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Abstract: The connected or smart environment is the integration of smart devices (sensors, IoT
devices, or actuator) into the Internet of Things (IoT) paradigm, in which a large number of devices are
connected, monitoring the physical environment and processes and transmitting into the centralized
database for advanced analytics and analysis. This integrated and connected setup allows greater
levels of automation of smart systems than is possible with just the Internet. While delivering
services to the different processes and application within connected smart systems, these IoT devices
perform an impeccably large number of device-to-device communications that allow them to access
the selected subsets of device information and data. The sensitive and private nature of these
data renders the smart infrastructure vulnerable to copious attacks which threat agents exploit for
cyberattacks which not only affect critical services but probably bring threat to people’s lives. Hence,
advanced measures need to be taken for securing smart environments, such as dynamic access
control, advanced network screening, and monitoring behavioural anomalies. In this paper, we
have discussed the essential cyberthreats and vulnerabilities in smart environments and proposed
ZAIB (Zero-Trust and ABAC for IoT using Blockchain), a novel secure framework that monitors and
facilitates device-to-device communications with different levels of access-controlled mechanisms
based on environmental parameters and device behaviour. It is protected by zero-trust architecture
and provides dynamic behavioural analysis of IoT devices by calculating device trust levels for
each request. ZAIB enforces variable policies specifically generated for each scenario by using
attribute-based access control (ABAC). We have used blockchain to ensure anonymous device and
user registrations and immutable activity logs. All the attributes, trust level histories, and data
generated by IoT devices are protected using IPFS. Finally, a security evaluation shows that ZAIB
satisfies the needs of active defence and end-to-end security enforcement of data, users, and services
involved in a smart grid network.

Keywords: smart cities; cyber security; Internet of Things; cyber-physical systems; zero-trust; ABAC;
blockchain; IPFS

1. Introduction

The Industrial Revolution, benefiting from advancements within artificial intelligence,
5G, the Internet of Things, and blockchain technology has introduced a massive surge in
technology inclusion, expansion, innovation, and research. Such paradigm shifts have
highlighted the need for machine-to-machine and machine-to-human interactions where a
huge amount of data transfer occurs during the process of communication devices setting
up an Internet of Things network [1]. Alongside the need to transfer data at high speeds
with low latency, the security of such systems is crucial due to applications dealing with
sensitive user data or critical national infrastructure [2].

These types of massive communication handling require fool-proof security because
whether the data come from home users or the data are being dealt with by any commercial
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company, such as smart industries or smart grid stations, a security breach can risk multiple
human lives or the unavailability of resources offered by critical cyber-physical systems [2].
Smart grids have long been a crucial component of energy networks, incorporating a
variety of instruments, such as IoT devices, sensors and linked gadgets, that monitor and
analyse the physical processes. It has aided in the optimization of energy production,
distribution, consumption, and storage. In 2007, the sophisticated attack on Iran’s nuclear
power plant disturbed the distribution and development of the country’s nuclear energy
resources [3,4]. On 25 December 2015, in the midst of a civil war, an electrical power grid in
Ivano-Frankivsk was hit by the cyber attacker that left 80,000 people without electricity and
affected many critical services [5]. Hence, security is the most crucial aspect of these cyber-
physical systems nowadays. With the increase in the number of technologies coming out,
the security risks associated with them are also increasing exponentially. It is impossible
for security systems to achieve 100% efficiency, and even military-grade technologies are
somewhat vulnerable when they are attached to the Internet [6–8].

Hackers have several ways to compromise systems if traditional boundary security
measures are deployed. Detecting an intrusion in such a setup becomes increasingly
challenging if an attacker successfully breaches that parameter layer of defence. In contrast
to these trust-based systems, authentication provides a way to present the credentials that
the user or machine is the legitimate user of the network. The traditional authentication and
authorization system might not be directly deployed in the IoT network because of resource
limitations and the dynamic nature of the network. The network requires a dynamic
policy-based system that enforces policies in real-time considering the user’s constraints
as well as the dynamic nature of the network [9]. Within this setup, a zero-trust (ZT)
model applies some kind of policy decision to authorise every action of a user or device.
Every attempt to access data or resources is verified by the organisation, hence common
modern attacks make it very difficult for intruders to impersonate or masquerade as an
authenticated device or authorized user. ZT promotes a host-based monitoring approach
where every host or owner device gets to set the criteria required to access it. Fine-grained
data access control allows the host to dictate the intended audience and makes sure that the
data cannot be accessed by any undesired user. Hence, ZT opens up new ways for security-
enabled collaboration opportunities between organizations. On the implementation side,
only regular updates of new technologies and methodologies with the pace of research
and innovation, such as ZT, ABAC, and blockchain, can support a system to become less
vulnerable against intruder attacks.

With the changing environment of networks and the new ways of communication
among devices, a lot of effort is required to manage network security in real-time in a
dynamic environment. The best practices of cybersecurity are becoming obsolete with
the passage of time and new approaches are coming into the realization stage with every
passing day. The issues associated with network security are no longer general, and
the same policy and standards for each network cannot be replicated for every network.
Therefore, aggressive encounter measures are required that not only support the network
as a gatekeeper but also secure the system from malicious activities [10]. Access and
authentication policies should be uniform at one end but must also be dynamic to reduce
the vulnerabilities within the network in real-time. The Internet of Things deals with
machine–machine and machine–human interactions over the Internet and blockchain is
a distributed ledger primarily available for tamper-proof, hack-proof, and immutable
recording of transactions into the ledger [11]. The combination of the IoT and blockchain-
based networks somehow sorts out the problems associated with the domain. Similarly,
access control generally implemented through MAC address, IP, and other tags is not
sufficient. A modern and evolved approach is required to deal with network security [12].
In this paper, we have introduced a method to make security as efficient as possible
compared to conventional ways. We proposed a system that ensures the security of
IoT devices and users through the use of emerging concepts of zero-trust architecture,
attribute-based access control, blockchain, and IPFS. The system will be used to sustain a
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network and communication as efficiently as possible to reduce real-time attacks through
the implementation of real-time monitoring, dynamic policy generation mechanisms, and
interminable monitoring of the various aspects of network security and communication.

Approach

A novel approach is required to deal with the above-mentioned challenges, the
advanced technologies and techniques will play a vital role to get this job done. For
example, the use of blockchain technology can secure the data and allow only recognized
participants to join the network [13]. Similarly, a dynamic policy mechanism is required to
create, authenticate, and recognize participants (IoT devices) in the non-trusted
environment [14]. Each node/participant must authenticate first, before interacting with
the system or the participants associated with the network. The non-trusted environment
will reduce the chances of hackers exploiting the network by masquerading,
man-in-the-middle attacks, and brute force attacks, which are the most commonly used
techniques to attack the network [15]. The creation of blockchain wallets for each
participant (each IoT device) at the time of registration of the new device will help to
recognize and record the device details better in an automated way using smart contract
technology, and IPFS secures all the information about the devices and the data generated
by these IoT devices for any further pre-processing [16]. The ZTA is associated in such a
way that the entire system has multiple divisions, and each division has its categories and
priorities. Each division may be called a “Zone”, and must have a PEP that enforces all
policies within the network zone, and also routes all device communication requests
through to the PDP where decisions are made to accept or reject the request, and when
accepted it will create encrypted channels to entertain the interactions [17]. These PDPs are
further connected to the PE that generates dynamic access policies. Due to the nature of
IoT, devices are multivariant; therefore, the policy-making must be designed as per the
variable attributes of the object and the subject of a certain request, hence the
attributed-based access control should be introduced on top of ZTA [15].

The rest of the paper is organized as follows. Section 2 discusses the background of
zero-trust architecture and the challenges for designing such architecture for IoT networks.
Section 3 discusses related work in this domain. Section 4 provides the system architecture
of zero-trust-based access control. Section 5 defines policies and Section 6 defines device
attributes and management. Section 8 evaluates the approach and Section 9 concludes
the paper.

2. Background

Zero-trust architecture (ZTA) is a practical implementation of the concept; trust is
nothing but a vulnerability when it comes to network security [18,19]. The notion of
zero trust is centred on network segmentation into “Microcores and Perimeters” (MCAP).
Instead of having a trusted domain built by a perimeter around the network, ZT suggests
everything, and everyone is untrusted even within the network perimeters [17]. Hence, it
promotes the “never trust and always verify” principle even within the enterprise network.

ZTA divides the entire network into microcores and sets perimeters around each core.
ZTA implementation includes a policy engine (PE) which generates access control policies,
a policy administrator (PA) that evaluates a request to access an enterprise resource by
applying the policies generated by PE, and a policy enforcement point (PEP) that enforces
these policies by accepting or rejecting the received request as per the decision made by the
PA. The core components of ZTA are shown in Figure 1.
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Figure 1. Core zero trust logical components.

Setting perimeter-based security is neither efficient nor possible for IoT networks as
they are distributed in nature. Therefore, ZT is the perfect solution for all IoT security
problems [1]. ZT provides a complete scheme for guaranteeing users access across amalgam
infrastructures and networks through smartphones, computers, cloud applications, and
other IoT devices [11].

2.1. Challenges

Network security, which deals with the high-volume data traffic from multiple sources,
such as millions of IoT devices, is the top priority for any enterprise. The conventional
ways of securing networks, such as firewalls, access control, etc., are becoming obsolete
day by day and new innovative methods are required to deal with network topology, IoT
device management, and overall the entire process of end-to-end communication, data
storage devices, and data management [6]. The challenges presented in IoT networks
are real-time monitoring, data handling, data storage, access management, trust-based or
trust-less criteria to deal with the participant nodes and their behaviour, accessibility, roles,
modes, and parameters and factors compromising security in real-time monitoring and
management [2].

Some challenges that need to be addressed to enhance system security are as follows:

• Authentication refers to the verification of user credentials. Robust authentication
mechanisms are required to identify valid users from ill-intended impersonators who
try to gain illegal access to IoT devices and their data. Therefore, all the users and IoT
devices should be registered, and their baseline behaviours need to be analyzed for
instant detection of any behaviour anomalies such as impersonation or masquerade
attacks due to the illicit use of valid user credentials.

• Authorization is another key aspect of IoT networks. The device owners have
comprehensive rights and complete authority over the data generated by it, hence the
type of access (read/write) to any device and its data can be granted or revoked based
on the criteria set by the owner. Successful implementation of generic access control
policies that evolve dynamically based on the current scenarios is one of the key
challenges for huge IoT infrastructures.

• Confidentiality can be defined as the protection of system resources against
unauthorized access. The degree of authorization required to access devices and data
in an IoT network needs to be set intelligently in order to maintain the confidentiality
of the classified information. Smart cities have every aspect of human life being
connected and controlled with IoT devices. A data breach may result in
life-threatening situations as sensitive information, such as the daily schedules or
healthcare records of citizens, needs to remain concealed for their safety and
well-being.

• Privacy means having full control or decision-making authority on how the user’s data
can be collected and used. Users have the right to protect their personal information,
such as their daily schedules and medical and financial records, from being revealed
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without their consent. Hence upholding the privacy of data generated by handheld
gadgets, surveillance devices, or home IoT networks is one of the most important
goals for any smart city infrastructure. The proposed framework needs to address all
of these challenges and provide efficient solutions for them.

2.2. Attribute-Based Access Control

In attribute-based access control (ABAC), any access request is approved based on the
attributes of the subject and the object. The identities, roles, functions, and other complex
features of a subject are all posited as its attributes [17]. The attributes of the requester
(subject) and the attributes of the requested (object) are both combined to form an access
control policy to fulfil the security demand of the object’s owner. Specified access policies
are set by the object owners to determine whether the subject has appropriate privileges for
the requested access based on these attributes [20]. Figure 2 shows the policy creation logic
and components of ABAC.

Figure 2. ABAC logical components.

Traditional access control models, such as discretionary access control (DAC),
mandatory access control (MAC), and role-based access control (RBAC), are completely
centralized. Based on the distributed, decentralized, and dynamic architectures of IoT
networks, attribute-based access control (ABAC) is regarded as the most suitable approach
for IoT scenarios. ABAC provides the strong dynamicity, scalability, and flexibility
required for IoT environments to implement fine-grained control over the access requests
for every device [21].

2.3. Interplanetary File System

Another vital component of our proposed system is the InterPlanetary File System
(IPFS). It is a file system where data are stored in the form of uniquely identifiable blocks
by multiple peers following a distributed approach [22]. The IPFS maintains all versions of
a file as separate individual blocks and cryptographic hashes are assigned to each block as
a unique identifier, which means no two different blocks in the system can have the same
cryptographic hash. While searching for some content, it is located and accessed by its
assigned hash value [16]. In a huge IoT infrastructure with millions of devices, the amount
of data generated by these devices cannot be stored on-chain and large off-chain storage
reserves are required. IPFS provides a distributed and secure solution to all storage issues
as it has such a massive data storage capacity [23].
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3. Related Works

With the vastly used cloud applications and IoT networks, traditional network security
approaches such as building a wall between trusted and untrusted devices and the trusted
local networks do not work anymore. The need for secure and smart access control where
no trusted networks or devices exist has been fulfilled by ZTA. Various variants of ZT have
been proposed and implemented by researchers to satisfy their network’s unique security
demands. In [24], Pedro Assunacao discussed a ZTA that eliminates static credentials,
applies multi-factor authentication, and maintains a log of all devices and network traffic.

In [25], authors suggested context-based ZT access control to overcome the challenge
of a secure and heterogeneous Moodle application. This framework is an application of
a model that provides access control to an e-Learning platform called Moodle. Through
the implementation of the zero-trust model, a positive performance on the webserver has
been seen. However, to evaluate the non-functional performance of the zero-trust model,
additional tests need to be carried out.

With the scalability of IoT networks, there is a need for trust management controls
that could safeguard the systems against malicious attacks. To overcome this, a centralized
validation mechanism is required. The authors in [11] have presented an IoT-based
zero-trust model which enables a novel hierarchical mining concept. According to the
authors, IoT infrastructure is a zero-trust model, and cannot be trusted. To overcome this, a
blockchain-based middleware, Amatista, has been introduced. The mining platform
integrates distributed validation authorities for the IoT at different levels of trust. Firstly,
context-based mining has been introduced. Secondly, publish/subscribe provisioning of
data has been introduced. Amatista has been evaluated using IoT sensors and edge
networks, and it has been concluded that the system can handle not only the infrastructure
but the transactions as well.

In [19], authors have suggested a similar mechanism in the context of smart cities. The
authors have applied the network classification to extend the idea of zero trust. As per
ZTA, the framework divides the system into separate MCAPs for web access, mobile
access, and database, and a blockchain node is attached to each MCAP for request
authentication. The IoTs are also divided into eight different categories based on their risk
analysis calculated on three factors, i.e network capability, risk score, and data risk. All the
MCAPs are connected by a segmented gateway. Every time an access request is generated,
the blockchain node attached to the targeted MCAP verifies it using a smart contract, and
access is granted if the request is considered genuine and is verified. Although the system
has no implementation in the real-life IoT network, the authors claim to address multiple
security concerns including the risk-based MCAPs for IoT devices. However, the IoT data
transferred over the network are not secured.

Chen and Qiao in [1] implemented a smart healthcare system for 5G networks where
they divided their entire system into four dimensions, i.e., object, subject, environment,
and behaviour. Fine-grained access policies are being defined by using machine learning
and deep learning that use real-time threat and trust levels generated for all IoMT devices
and users. In Fabric-IoT [21], the authors have implemented hyper-ledger Fabric-based
access control for IoT using smart gateways where every IoT device sends its encrypted
data to a URL. The framework comprises three smart contracts: one creates, modifies, and
deletes policies, the second one assigns URLs to IoT devices, and the third one enforces
access control. Nevertheless, to achieve better performance, the system’s scalability needs
to be improved.

In [26], the researchers implemented attribute-based access control on IoT sensor data
by using a rule-based proactive engine which helps to generate new rules and policies,
monitors the environment, and helps the PDP decide on what to do in case of any sudden
changes by creating a behaviour baseline saving all the previous transactions in the PIP
database. However, details on how these policies will be implemented need further
description. In [27], a secure IoT system using ABAC is implemented by IPFS and smart
contracts. All transactions generated by IoT devices along with all the policies are saved in
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the IPFS database in the form of hashed blocks. When a user sends a request to access any
IoT device’s data, the PDP requests attributes from PIP and policy rules from PAP, matches
the two, and decides whether to grant this access or deny it.

In [28], to preserve the privacy of e-health data authors have proposed using
blockchain with non-interactive zero-knowledge proof-based key authentication to
manage the device authentication process for millions of medical things joining the
network. While the process ensures that no unauthorized device joins the e-health
network, it does not deploy any dynamic mechanism to identify intrusions caused by
device compromise after they have completed their authentication process.

The authors in [29,30] have presented a blockchain-based data provenance system
which uses the Merkel chain blockchain property to maintain a chain of custody for
data. While the system maintains complete data access logs, it does not provide any trust
management to handle the dynamics of machine-to-machine communication. Analysing a
baseline machine behaviour can help to revoke access whenever a machine misbehaves.
Through a complete analysis of related works as mentioned in Table 1, we discovered that
most of the already proposed architectures either lack proper dynamic policy generation,
which allows the systems to automatically create new policies for previously unseen
situations, or they lack a completely decentralized architecture where any IoT device can
get its request instantly processed by any available node without any delay or a centralized
authority being involved in the process [31]. Even if we use secure and anonymous device
authentication using zero-knowledge proofs, it does not guarantee that the device will
remain uncompromised [32]. In this paper, we have proposed an architecture that is
truly decentralized, completely dynamic, and will process every request based on the
current environment and the behaviour of the IoT device instead of old-school role-based
or identity-based authentication for processing access requests. The Internet of Things
(IoT) has introduced a smart lifestyle. Home appliances, power plants, vehicles, and
healthcare, we are aiming to automate the entire metropolitan infrastructure [33]. With
all our systems connected with the IoT, the most crucial concern is if we can trust the
current IoT authentication and access control infrastructure after connecting it to millions
of “things” [34]. The current systems are not trustworthy enough to have our lives depend
on them. The following design is inspired by ZTA and helps to curtail the mistrust of the
current systems.

Table 1. Analysis of existing approaches to zero trust for IoT.

Paper ID IoT Domain
Utilized

Techniques
Contribution Limitations

[1] IoT in Healthcare
5G, Zero Trust,

Attribute-based
Access Control

The system uses trust
assessment and risk level of
objects to dynamically grant

access based on attributes and
performs traffic monitoring, load

matching, access control, and
auditing by using ML and DL.

Specific to healthcare scenario
and therefore focused on

access to resources rather than
communication requests.

[11]
Hierarchical

Management in
IoT

Blockchain

Introduced a novel hierarchical
mining the concept of using

twotier miners for contextbased
validation.

Other hierarchies of
validation should be

introduced as consensus on
twotiers is time expensive.

Authors should also include
more specialized smart

contracts for IoT.

[19]

Securing IoT
devices using

Zero Trust and
blockchain

Zero Trust,
Blockchain

The proposed framework
divides the system into separate
MCAPs and it uses risk factors
to categorize IoT devices into
different zones. Blockchain
nodes are attached to each

MCAP for request
authentication.

All data is to be stored in
blockchain where transaction
per second rate is very slow

and the management server is
a single centralized server

that defies the decentralized
nature of the proposed model.

[21]

Fabric-IoT: A
blockchain-based

Access Control
System in IoT

Hyper-Ledger
Fabric, ABAC

Using smart gateways, Fabric
IoT uses a hyper-ledger-based
approach to implement ABAC.

Scalability is the biggest
limitation for fabric-IoT along
with minimal support for IoT

application integration.
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Table 1. Cont.

Paper ID IoT Domain
Utilized

Techniques
Contribution Limitations

[25]

Context-based
Access Control

and Trust Scores
in Zero Trust

Campus
Networks

Zero Trust

Secures the Moodle Application
for university-wide open and

heterogeneous research
network using zero trust

It lacks policies for the policy
engine as well as for trust

score metrics.

[35]

FairAccess: a new
Blockchain-based

access control
framework for the
Internet of Things

Bitcoin-based
Blockchain and

OrBAC

Secures the IoT devices by
using identity-based and

permission-based access control
policies

The approach does not
analyse the dynamic IoT

device behaviours and hence
is not ideal for evolving

scenarios of
machine-to-machine

communications.

[36]

CES Blocks—A
Novel

Attribute-Based
Access Control
Scheme Using

Blockchain for IoT

Consortium
Blockchain,

ABAC

Secures the IoT devices using
ABAC and records all attributes

and requests as blockchain
transactions by using a simple

hash and signature protocol

It lacks creation of new
policies along with calculation

for device trust scores.

[26]

Context-aware
and

Attribute-based
Access Control

Applying
Proactive

Computing to IoT
System

ABAC access
control,

rule-based
proactive engine

Implemented ABAC on IoT
sensor data using rule-based

Proactive Engine which helps to
generate new rules and policies,
monitors the environment, and
helps the PDP to decide what to

do in case of any sudden
changes by creating a behaviour
baseline, saving all the previous
transactions in the PIP database.

The paper only discusses the
data received from IoT

sensors and actions to be
initiated based on this data
but does not mention how

users’ access requests will be
entertained.

[27]
IoT architecture
based on ABAC
smart contract

ABAC, IPFS

A secure IoT system using
ABAC is implemented by using

IPFS and smart contracts. All
transactions generated by IoT
devices are saved in the IPFS
database along with all the

policies in the form of hashed
blocks based on which it is

decided whether to grant access
or deny it.

Static ABAC policies do not
consider environmental or

behavioural attributes while
granting any access control

request.

[37]

Securing Home
IoT Environments

with
Attribute-Based
Access Control

ABAC access
control, NIST

NGAC

The proposed framework
suggests securing IT devices by

using ABAC policies by
defining attributes for Subject,

Object, and Network.

Uses a set of predefined
policies and no new smart

dynamic policies can be made
by the system at run-time to

counter a new undefined
scenario.

[38]

BlockShare: A
Blockchain-
Empowered
System for

Privacy-
Preserving

Verifiable Data
Sharing

Blockchain,
Zero-Knowledge

Proof

Uses a newly defined data
structure to store all e-health

records for sharing.

While the approach
emphasises anonymous data
sharing, it does not consider
access control and hence is

not suitable for D2D
communication.

[28]

Preserving
Privacy in Mobile
Health Systems

Using
Non-Interactive
Zero-Knowledge

Proof

Blockchain, ABE,
Non-Interactive
Zero-Knowledge

Proof, IPFS

An authentication scheme that
is lightweight enough to run on
e-Health devices with minimal
resources to provide a secure

device authentication
mechanism.

It does not detect a
compromised device once it

has completed the secure
device authentication process.

4. System Architecture

The framework contains a consortium blockchain network and a network of IoT
devices whose attributes serve as policy components for policy creation and implementation
processes. A block architecture of the proposed ZAIB system is shown in Figure 3.
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Figure 3. Architecture of the ZAIB framework.

A blockchain component is added to ZAIB for facilitating different IoT devices to
communicate freely, securely, and anonymously on the network. To ensure device and data
security, ABAC access control mechanisms are being implemented through smart contracts
for device communication management. The policy engine (PE) oracle receives requests to
make new policies and triggers the policy engine smart contract (PESC) to make new access
policies for ABAC. To save IoT device attributes for ABAC, the data generated by them,
all the policies generated by the policy engine (PE), and trust-level histories for device
behaviour analysis, we are using IPFS. IPFS stores large-sized files easily, hence small-block-
size issues are resolved. IPFS provides secure storage due to automatic resource mapping
and hashed data; it is also connected with smart contracts, hence the authenticity of all
information stored on the IPFS can be checked by comparing it with the transactions stored
on the blockchain ledger. To implement zero-trust architecture, a trust engine oracle triggers
the trust calculation smart contract which calculates the trust level of different devices
considering several factors from their behaviour history stored in the ledger. Lastly, PDP
smart contracts approve or reject IoT device requests for device-to-device communication.

4.1. Device Registration on Blockchain

Blockchain is a vital component of the system as it provides anonymous and secure
D2D communication using smart contracts and its immutable distributed ledger [39].
Cryptographic key pairs provide the security feature in blockchain wallets. On registration
of every new IoT device, an account is assigned to it to call contracts or initiate transactions.
The system architecture of registration of new IoT devices is shown in Figure 4. The device’s
authentication and transaction anonymity are ensured due to the blockchain wallet [40].
The PBFT consensus algorithm is selected, as the frequency of requests is very high, and
consensus needs to be reached very quickly. All the device attributes are saved in PIP
which is implemented as an IPFS storage, and device management smart contracts are
installed on the device.

Whenever an IoT device generates a communication request, the PEP acts as a gateway
to pass it along to the PDP oracle, which triggers the PDP smart contract, hence recording
this request as a transaction on the ledger. The PDP smart contract checks if any policies
regarding such a request exist and decides to accept or reject the request based on these
policies and the decision is recorded as a transaction. If it is found that such a request
does not exist, it generates a request to create a new policy and triggers the PESC; this
transaction is also recorded on the chain. Whenever a request is processed, the trust level
smart contract is triggered and the new trust value for the IoT devices is saved both as a
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transaction on the chain and also in the PIP. A hashed link of all the data, trust levels, and
policies stored in a block on the IPFS-based PIP is also stored in the chain which later on
can be used for data validation.

Figure 4. New IoT device registrations.

4.2. Hashed Storage of IoT Data Using IPFS

In our proposed system, the IPFS is responsible for storing the attributes of all
connected IoT devices, smart contracts, access policies, trust level history for all the
connected devices, and the data generated by our IoT devices in a very secure manner.
Data generated by IoT devices, even the audio, video, and images can be encrypted and
stored in blocks [30]. At any instance, the authenticity of the policies or trust levels stored
in the IPFS can be checked by comparing the IPFS hashed blocks with the on-chain
transaction to ensure that data or policies on IPFS have never been tampered with or
corrupted. Figure 5 presents how data is stored in our blockchain system.

Figure 5. Storage of IoT data.

4.3. Zero-Trust Architecture

Since there are no trusted devices, trusted systems, or trusted users, all access and
device-to-device communication requests need to be monitored and granted only when
they are tested as valid access requests [15]. The integration of ZT in the IoT network
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and all its connected devices to provide complete and utmost security requires the key
features of ZTA, such as micro-core, perimeters, and trust calculations, to be added to the
infrastructure [17].

4.3.1. Zone Division

To implement ZTA, our entire IoT network is divided into different micro-cores, called
“Zones”. On any network, IoT devices can be categorized into zones based on their physical
location, device categories, and priorities [41]. For example, if ZT is applied to a smart
home, various similar category devices can be grouped to form different zones, for example,
all kitchen appliances, which may include microwaves, refrigerators, coffee makers, juicers,
blenders, etc., can be assigned a separate zone. Similarly, a home surveillance and security
devices zone may contain all the cameras, smoke detectors, and smart locks. When applied
to a huge smart edifice such as a smart city, separate zones can be identified in every
division of the metropolitan infrastructure [42].

Each zone has its own policy enforcement point (PEP) that receives every
communication request from all the devices and routes it to the connected policy decision
point (PDP) which makes all policy decisions and accepts or rejects them based on the
policies defined by the policy engine (PE). If a request is accepted, the PEP creates an
encrypted channel to facilitate IoT device interactions.

4.3.2. Policy Enforcement

Each policy decision point oracle (PDPO) has multiple PEPs attached to it. To make
decisions for all requests submitted by the PEPs, the PDPO reads the policies and device
attributes from the PIP and the current trust levels of each device from the TE. It makes
continuous dynamic decisions to accept or reject the request by putting the acquired data
depicting the run-time status of the system, the network, and its involved devices into
the policy. If no suitable policy is found to review the present request, it demands PEO to
generate a new policy for the current scenario as shown in Figure 6.

Figure 6. Zero-trust architecture for IoT devices.

The policy engine (PEO) generates new policies when the PESC is triggered, these
policies are based on the set of policy frameworks provided by the network administrator
dynamically. A detailed description of the policy creation process of these policies and the
basic guidelines to be followed during this policy generation is shown in Section 5.
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4.4. Trust Engine

One very important component of the system is the trust engine (TE) that calculates
trust levels for IoT devices on the network [25]. The TEO is connected to the PDPO to
provide updated trust levels of subject (S) and object (O) IoT devices for policy evaluation
as shown in Figure 7.

Figure 7. Trust calculation mechanism.

Possible Inputs for Trust Score Calculations

The most important feature for trust calculation is behaviour analysis. This behaviour
analysis is carried out by the TESC by accessing the request history of devices from the
PIP [43]. The device access history helps to determine the baseline behaviour for each
device which is then saved periodically in IPFS storage [1]. A new trust score is generated
for each device by comparing its current behaviour with its baseline behaviour [25]. A
drastic change in behaviour results in a decrease in its trust level, whereas a persistent
behaviour increases the trust level of the device, as shown in Figure 8.

Figure 8. Suggested trust level calculations.

4.5. Access Control Model for Device-to-Device Communication

The decision-making policies for granting or denying a certain device-to-device
communication request are generated using the ABAC model based on the features
discussed below.

209



Information 2023, 14, 129

4.5.1. Attributes of IoT Network

Due to the multivariate nature of possible IoT interactions, attributes play a vital role
in the decision-making process. Policies are designed based on these variable attributes of
both the object and subject of a certain interaction request [26]. This section defines and
describes the attributes for object and subject IoTs, the basic entities for ABAC. The next
phases define how these attributes inhabit the policy information point (PIP) and how the
policy engine (PE) uses these attributes to create new policies.

Every ABAC request must have a subject (S) that initiates the request, an object (O)
that is the device the subject wants to commence communication with, a nature (N) which
represents the nature of communication, and an environment (E) which represents the
network at the time of generation of the request [37]. Based on these factors, the ABAC
request format can be represented as

IoT Access Request = < Subject(S), Object(O), AccessType(A), Environment(E) >

A received request can be allowed or denied based on the ABAC policies for the
combination of attributes of the subject (S), object (O), the access type (A) of the
communication request, and the environment (E). We described various key attributes that
can be examined by ABAC policies.

Device Attributes: An IoT device can be a subject if it initiates the data request from
another device or it wants to transmit data to another device. The object is the device the
subject wants to communicate with [44]. Conventional device attributes are

• DeviceIdenti f ier: =The unique blockchain wallet id assigned to every IoT device.
• DeviceType: =The devices can be categorized into different types, such as smart TV,

cameras, drones, sensory devices, and smart vehicles.
• DeviceAge: =The number of days since the device was first registered on the IoT

network.
• DevicePriority: =Devices may be assigned different priority levels depending on the

sensitive nature of their data and the security clearance level required to access them.
• DeviceTrustLevel: =Device trust level is to be calculated by the TESC based on the

device’s previous behaviour and its request pattern on the IoT Network.
• DeviceCategory: =Devices can be categorized as entertainment, healthcare, controllers,

surveillance, monitoring, diagnostic, etc. A certain category of devices can be allowed
to communicate with each other or with devices from other categories.

• DeviceZone: =Every device is assigned a zone or group once it registers on the network.
Before a certain age and trust level is achieved, a device can only communicate with
the devices in its zone.

• DeviceLocation: =The physical location of the device can also be stored as some of the
policies can depend on the proximity of the devices.

• DeviceStatus: =Once a write connection is established with a monitoring device, the
object device enters a locked status for all other write requests.

• Networkidenti f ier: =For some devices that might need the network identifier, this
attribute will be a combination of sub-fields such as IP address and subnet mask.

Subject (S) is an IoT device requesting to initiate communication with an IoT device
object (O), both IoT devices will have all these attributes assigned to them. Based on the
values assigned to these attributes of subject (S) and object (O), different policies will be
generated to accept or reject a generated communication request.

Access Type (A): The operations permitted on an IoT device are accessing the data
from the devices or sending new control messages to the devices. The sending of new
control messages can also be called a “Write” operation while accessing the device data
can be termed as a “read” operation [45]. The nature of access demanded by a user is
mentioned in this access type (A) field. The attributes for Access_Type are:

1. read: =data size
2. read_all: =data size
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3. write: =size of message
4. write_all: =size of message

Environment (E): The environment for any communication is the network itself; these
are the external parameters for both the subject (S) and the object (O). An example of
environmental attributes that need to be recorded are date and network time, assuming
that the standard synchronization policies such as network time protocol (NTP) are in
place [44].

4.5.2. Attribute-Based Access Control Policy Model

Numerous kinds of data can be generated by IoT devices. For example, cameras
capture videos, a microphone captures sound, and sensors capture humidity, temperature,
and light. All of these features are very important and if someone with malicious intent gets
access, it might even end up putting lives at risk [21]. To ensure that only trusted devices
can communicate with IoT devices on the network, ABAC access policies are implemented.
The establishment of a connection between two devices is shown in Figure 9.

Figure 9. ABAC access policy implementation in ZAIB.

A brief description is also shown in steps 1 to 5.

1. Subject (S) requests to initiate communication with object (O).
2. The request is received by the smart gateway.
3. The request is forwarded to PDP.
4. PDP requests PIP for attributes of both subject (S) and object (O).
5. Based on device type, category, priority, and current trust levels (provided by the trust

engine), the policy engine decides to accept/reject the request.
6. The PDP enforces the decision made by PE and, if access is granted, establishes a

secure encrypted channel for safe D2D communication.

Based on the steps discussed previously, the ABAC device access policies can be
defined as mentioned in Algorithm 1:
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Algorithm 1 An algorithm for policy

Require: Policy = Subjectattributes, Objectattributes,
Require: Subjectattributes = Device Identifier, Device Type, Device Age, Device Priority,

Device Category, Device Zone.
Require: Objectattributes = Device Identifier, Device Type, Device Status, Device Priority,

Device Category, Device Zone.
Require: Environmentattributes = Date, Time
Require: TrustLevels = Subject Trust Level, Object Trust Level, Network Trust Level

if Permission == 0 then
AccessGranted

else if Permission == 0 then
AccessDenied

5. Policy Creation Framework

To generate automated policies, some ground rules have been set that help the PE in
its policy-making activities. The policies required for the efficient and secure operation of
an IoT infrastructure can be characterized as follows:

5.1. Device Acceptance Policies

Whenever a new device joins the network, it needs to be characterized and the current
devices on the network need to be protected from it until it is verified as a trusted and safe
device [46]. These policies should be independent of the specific device features for them
to be applied to all kinds of devices. After running the diagnostics for the security state of
the device and registration of the device, it will take some time to communicate with a few
devices slowly and gradually as it ages and the baseline behaviour remains consistent to
build up the trust level, only then can the new device request to communicate with highly
trusted devices. To secure the network against a new device, some generic policies should
be defined. A few sample protective policies for limiting access are provided in this section.

Sample Policy 1: A new IoT device cannot request communications with more than a certain
number of devices in a specific acceptance time.

The new IoT device is the subject (S), another IoT device is the object (O), and the
generation of object access requests by the subject is the desired action. The environment
time and the registration time of the device help to calculate the age of the device on our
network. A specific time interval is set as device acceptance time during which a new
device can only access a limited number of devices. This policy ensures that the new device
does not try to access and communicate with all devices on the network before it gains
a certain trust, and that its security status is checked. The attribute fields critical for the
mentioned access policy are

- Subject: 〈 Device Identifier, Device Age 〉
- Object: 〈 Device Type, Device Identifier 〉
- Environment: 〈 Date, Time 〉

Now, such a policy is very generic and essentially captures the security essence.
Sample Policy 2: a new IoT can only communicate with devices in its zone until it reaches a

specific age.
The new IoT device is the subject, another IoT device is the object, and the generation

of object access requests by the subject is the desired action. The purpose behind setting
such a policy is to ensure that the new device does not try to send broadcast messages to
devices across all different zones. This policy also helps in the development of a baseline
behaviour of the devices and helps limit access to all zones until a certain age and trust
level is achieved by this new device. The attribute fields critical for the mentioned access
policy are
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- Subject 〈 Device Identifier, Device Age, Device Zone 〉
- Object 〈 Device Identifier, Device Zone 〉
- Environment 〈 Date, Time 〉

5.2. Device Access Policies

Access to every IoT device cannot be granted to every other IoT device if it generates a
request. The access limitation policies make sure that only valid requests get accepted while
all other requests get rejected. Attributes such as device type, device category, and device
priority of both subject and object are considered while creating these access policies [37].
A device access request is accepted only when the subject has a certain priority, and trust
level that matches the object, and the device category allows the kind of access type of the
generated request. Some of the sample access policies are defined as

Sample Policy 3: An IoT device can only communicate with another IoT device if it matches
the priority combined with the trust level required to access that device.

Here an IoT device is the subject, another IoT device is the object, and the acceptance
of object access requests by the subject is the desired action. This policy allows access to an
IoT device if and only if the subject has a combined value of its priority and current trust
level greater than or equal to that of the object device. As the write access is granted to a
monitoring device, the device status of the object is set to Lock. The attribute fields critical
for the mentioned access policy are

- Subject: 〈 Device Identifier, Device Priority, Device Trust Level 〉
- Object: 〈 Device Identifier, Device Priority, Device Trust Level 〉
- Access_Type: 〈 read 〉
- Environment: 〈 Date, Time 〉

Sample Policy 4: only monitoring type devices can not send control data to any other device.
Here, one IoT device is the subject, another IoT device is the object, and transmission

of a control message is the desired action. We do not want any device to be able to change
the settings of another IoT device unless it is an authorized and trusted monitoring device.
The attribute fields critical for the mentioned access policy are

- Subject: 〈 Device Identifier, Device Priority, Device Trust Level 〉
- Object: 〈 Device Identifier, Device Status, Device Priority, Device Trust Level 〉
- Access_Type: 〈 write〉
- Environment: 〈Date, Time〉

Sample Policy 5: an IoT device can receive control data from only one monitoring device at
a certain instance of time.

Here, an IoT device is the subject, another IoT device is the object, and transmission
of a control message is the desired action. While a monitoring device has established a
connection with an IoT device and is sending some control instructions, hence changing
the other device’s settings, no other device should be allowed write access to such an
object. We do not want multiple devices to be able to change the settings of another IoT
device simultaneously. Hence, the device status of the object is checked whenever a written
request is received, and the request is set as pending until the device is set free and its status
is turned back to unlock. The attribute fields critical for the mentioned access policy are

- Subject: 〈 Device Identifier, Device Priority, Device Trust Level 〉
- Object: 〈 Device Identifier, Device Status, Device Priority, Device Trust Level 〉
- Access_Type: 〈 write 〉
- Environment: 〈 Date, Time 〉
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5.3. Device Access Limitation Policies

Countermeasures need to be taken to avoid the possibility of any flooding attack. No
device should be allowed to access all the devices available on the network simultaneously.
In ZTA, the traffic is monitored and zones are mentioned; hence, a rogue device that tries
to initiate broadcast requests is sent to a quarantine zone where the device is reset, hence
setting its age back to zero and a full scan of the device’s security status is performed
to detect the cause of such malicious activities. To achieve this goal, the trust level of a
device is decreased as it initiates any broadcast request. To enforce a guaranteed rejection
of random access requests, some rules can be set to create regional broadcast boundaries as
follows:

Sample Policy 6: A monitoring device can send control data to multiple IoT devices at a
certain instance of time if they all belong to the same zone.

Here a monitoring IoT device is the subject, a set of multiple IoT devices in a certain
zone is the object, and transmission of a control message is the desired action. Monitoring
devices can establish multiple concurrent write connections with other IoT devices and send
some control instructions if and only if they all belong to the same zone. We do not want a
change of control settings for multiple devices in multiple zones to occur simultaneously.
Hence, the device zone of the object is checked whenever a “write-all” request is received.
The attribute fields critical for the mentioned access policy are

- Subject: 〈 Device Identifier, Device Priority, Device Trust Level 〉
- Object: 〈 Device Identifier, Device Status, Device Priority, Device Trust Level, Device

Zone 〉
- Access_Type: 〈 write_all 〉
- Environment: 〈 Date, Time 〉

Sample Policy 7: Only a controlling/monitoring device can initiate connections to all devices
in a zone simultaneously.

Here, a monitoring IoT device is the subject, a set of all the IoT devices in a zone is the
object, and transmission of a control message is the desired action. To ensure the security
of our IoT network, only supervising devices are allowed to have concurrent access to all
devices in a certain zone. This guarantees that no rouge device is allowed access to multiple
devices. If any non-controlling device initiates a “write” request or a “read_all” request,
its trust level is depleted, and it is quarantined until a complete security clearance. The
attribute fields critical for the mentioned access policy are

- Subject: 〈 Device Identifier, Device Status, Device Priority, Device Trust Level, Device
Zone 〉

- Access_Type: 〈 read_all / write_all 〉
- Environment: 〈Date, Time〉

Sample Policy 8: Broadcast messages cannot be sent across the network by any device.
Here the subject IoT device tries to transmit a write_all control message to all the

devices connected across the IoT network. To safeguard our IoT network from flooding
attacks, broadcasting messages across the entire network is strictly prohibited. This
behaviour is considered malicious and such a device is quarantined instantly. The attribute
fields critical for the mentioned access policy are

- Subject: 〈 Device Identifier, Device Priority, Device Trust Level 〉
- Access_Type: 〈 write_all 〉
- Environment: 〈 Date, Time 〉
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Table 2 summarises the aforementioned sample policies. Numerous other rules may
be developed in the same way to handle various events depending on the requirements of
the system.

Table 2. Description of all sample ABAC policies.

Policy Description

Policy 1 A new IoT device cannot request communications with more than a certain
number of devices in a specific acceptance time.

Policy 2 A new IoT can only communicate with devices in its zone until it reaches a
specific age.

Policy 3 Any IoT device can only communicate with another IoT device if it matches
the priority combined with the trust level required to access that device.

Policy 4 Only monitoring-type devices can send control data to any other device.

Policy 5 An IoT device can receive control data from only one monitoring device at
a certain instance of time.

Policy 6 A monitoring device can send control data to multiple IoT devices at a
certain instance of time if they all belong to the same zone.

Policy 7 Only a controlling/monitoring device can initiate connections to all devices
in a zone simultaneously.

Policy 8 Broadcast messages cannot be sent across the network by any device.

6. Attribute Management Framework

The attribute management framework is a fundamental component of our system,
which extracts and stores all the required attributes of every IoT device connected to the
network by working persistently with the policy information point (PIP). The attribute
management framework consists of several modules responsible for the compilation and
preservation of the attributes of the overall system. In this section, we have discussed the
modules that will be useful in extracting the attributes from the respective entities.

6.1. Device Attribute Management

ZAIB’s entire ABAC mechanism works on device attributes, hence obtaining and
maintaining a proper and updated storage of these attributes is one of the most important
aspects of the ZAIB framework. ZAIB requires every IoT device to get registered as soon
as it joins the network. To extract device attributes, a device fingerprinting mechanism
will vigorously fingerprint different devices and record them. These attributes will be
associated with the device wallet ID assigned to each device and hence will be stored in
PIP’s device database maintained on the chain for active devices and stored on the IPFS for
all non-active devices that ever joined the network. The basic fingerprinting techniques
defined in [47,48] represent different ways of identifying different device-related attributes,
for example in [49] the authors suggest that a TCP port scan reveals enough information to
help classify an IoT device. None of the mentioned approaches can individually satisfy our
needs but a combination of a few approaches depending on the numerous network-level
header fields, payload classification, and other cyber-physical features of devices can help
to identify a device successfully.

6.2. User Attribute Management

Our smart citizens and network administrators will be the ones controlling our cyber
city’s one or more IoT devices. The trust engine determines the extent of access assigned to
each user based on the device attributes, user attributes, and additional behaviour attributes
such as the device and user’s access histories and trust levels. We will be counting on the
fingerprinting mechanism to distinguish between data and control packets.
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6.3. Network Traffic Attribute Management

Each network device will request the PEP to access any other device on the network,
which, when processed according to the policies, will result in being granted or denied.
Hence, each transaction will be recorded in the public ledger. The network traffic attributes
comprise the packet header fields and the traffic flow statistics. For extracting the packet
header fields, we will use the packet capture module and extract the necessary fields.
Within the same module, we will incorporate scripts that will appropriately record the
necessary flow metrics and record them in a flow monitor module.

7. ZAIB Workflow and Scenario

To explain the working of ZAIB, a complete system workflow is presented as a common
use case example of access request of an IoT device, such as a weight sensor, to another IoT
device, such as an industrial conveyer belt motor

7.1. ZAIB Workflow

Every new user or device needs to be registered on the network to gain a blockchain
wallet with public and private key pairs. This makes the entire communication anonymous
and hence completely secured. Since all the communications are encrypted, this further
improves the security. The entire workflow of the system is defined in the steps below:

1. After registration, a new device becomes a part of the IoT network and it can request
to access any device on the network.

2. Once the request is made, it is received by the PEP from where it is forwarded to the
PDPO.

3. The PDPO collects the attributes and trust levels from the PIP and requests the PIP to
check if any policy regarding the access of the object by the subject exists.

4. If the policy exists, the PDP SC is triggered that implements the policy and accepts or
rejects the request.

5. If such a policy is not found, a request for policy generation is sent to the PEO.
6. After receiving the request, the PEO triggers PE SC that generates the policy based on

the role of the subject, its trust level, the type and category of the device, along with
the trust level, type, and category required to access the object.

7. Once the policy is generated, the PEP enforces it.
8. If access is allowed, PEP generates an encrypted channel to facilitate secure

communication between subject and object. If it is denied, the PEP informs the subject
about the request rejection.

9. Every transaction is recorded in the PIP as it is used for determining device trust level
and identifying behaviour anomalies.

10. The request and the decision taken on that request are both stored in the distributed
ledger as transactions, creating an immutable history of all device activities on the IoT
network. Any alteration in PIP can easily be detected by matching its records with the
ledger transactions.

11. The TE SC is triggered every time a transaction is accepted or denied and it updates the
device trust level based on this new transaction and the device’s previous behaviour.

An overall workflow of the system is shown in Figure 10.
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Figure 10. Overall workflow of ZAIB.

7.2. Working Scenario

As a “proof of concept” ZAIB, the proposed framework is a generic access control
framework that can be applied to several IoT application systems, including those for smart
homes, transportation, smart industries, and health. The following scenario is taken into
consideration as a typical use case to exemplify the user experience and practicality of the
provided framework. In this scenario, the object is a smart security camera set outside the
main door while the subject requesting a picture and approval is a door lock, which will
unlock automatically whenever the house owners arrive at the door. The smart security
camera can be built using a Raspberry Pi 2 board with its dedicated camera while the lock
will also consist of a Raspberry Pi 2 that will unlock whenever the facial image received
from the camera matches one of the owner’s images recorded in the SD card. Both the
Raspberry Pi will be connected to WiFi to provide remote access. The door lock might take
several different actions depending on the privileges as stated by the policies, whereas
the camera serves as a resource whose access requests need to be managed. In the current
scenario, the camera will take a snapshot and save it on the Raspberry Pi SD card. As per
rules set by the access control policies, the lock will request to access the screenshot of the
person at the door to compare it to its presorted data and give the requester remote access
using a request transaction through our PEP. Hence, the access request will consist of the
following four major components:

* Subject: the smart door lock;
* Object: the smart security camera at the door;
* Access_Type: request to take an image and read it;
* Environment: current date, current time.

An initial implementation of the proposed protocol is demonstrated in Figure 11.
After registration, both devices become a part of the IoT network. The subject (Lock)

now requests to access the snapshot captured by the object (Camera). The request is
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received by the PEP of the smart home zone from where it is forwarded to the PDPO. The
PDPO collects the attributes and trust levels from the PIP and requests the PIP to check
if any policy regarding the access of the object (Camera) by the subject (Lock) exists. As
the policy exists, the PDP SC has triggered and implements the policy and accepts this
request. If the policy does not exist, a policy generation request is sent to the PEO. The PEP
enforces the policy, but generates an encrypted channel to facilitate secure communication
between subject and object. The PIP records this transaction as it will be used later on for
determining device trust level and identifying behaviour anomalies. The request and the
decision taken on that request are both stored in the distributed ledger as transactions,
creating an immutable history of all device activities on the IoT network.

Figure 11. A working scenario of ZAIB implementation.

8. Evaluation

The distributed and vastly scattered nature of IoT devices, actuators, and sensors
work flawlessly devoid of any human interventions. The standard centralized access
control mechanisms cannot secure extremely distributed massive IOT infrastructures,
such as smart cities where administration, traffic, business, hospitals, and citizens, i.e., all
stakeholders, need everything to be connected to the Internet [50]. Millions of IoT devices
and sensors will come together to form smart networks for smart transmission grids, smart
security, smart healthcare, smart roads, and smart cars. A vulnerability in security will
not only end in financial losses but also risks the lives of thousands of citizens [19]. The
proposed framework provides fail-safe security as it not only ensures the authentication and
authorization of users and devices but also maintains data privacy and confidentiality. This
section discusses how these security requirements have been met by ZAIB. The analysis of
all proposed sample ABAC policies is shown in Table 3.

8.1. Device Authentication

ZAIB ensures device and user authentication by using blockchain wallets. Public
key cryptography certifies the device credentials, whereas the device security check is
conducted periodically to have the latest update on the device status. After making sure
that only certified devices join the network, device behaviour history is also secured which
helps identify any anomalies in device behaviour and immediately decreases its trust level
while initiating a security check to verify if the device was tampered with in any way. To
prevent a malicious device from misbehaving and infecting other devices, it is quarantined
immediately and is only allowed to rejoin the network and communicate with other devices
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when they have been restarted and have obtained security clearance. Therefore, ZAIB
offers protection against attacks such as impersonation or masquerade attacks.

Table 3. Analysis of all proposed sample ABAC policies.

Policy Authentication Authorization Confidentiality Privacy

Policy 1 � � � �
Policy 2 � � � �
Policy 3 � � � �
Policy 4 � � X X

Policy 5 X � � X

Policy 6 � � X X

Policy 7 � � � �
Policy 8 X X � �

8.2. Authorization

ZAIB provides a dynamic access authorization by implementing attribute-based
access control in a massive IoT infrastructure. Monitoring dynamic parameters like the
latest trust and risk levels of IoT devices along with static device attributes such as the
priority, category, and device network for every respective request ensures that access will
not be granted to any device with behaviour anomalies. Hence, the proposed scheme
provides comprehensive dynamic access control compared to DAC, MAC, RBAC, or even
static ABAC.

8.3. Confidentiality

ZAIB provides the protection of system resources against unauthorized access. The
degree of authorization required to access devices and data in ZAIB is set intelligently by
using public-key authorization with smart wallets and continuous behaviour analysis of all
IoT devices to ensure security against identity theft or masquerade attacks to maintain the
confidentiality of classified information.

8.4. Privacy

Privacy means having full control or decision-making authority on how the user’s
data can be collected and used. ZAIB ensures that no unauthorized person or device can
gain access to devices owned by an individual or data generated by them, hence ensuring
the basic right to privacy for every individual.

To evaluate the effectiveness of the suggested policies, let us assume a scenario like a
smart home. With all the home appliances and security equipment attached to the Internet
and being monitored by central controlling devices, the proposed policies will make sure
that no unauthorized perpetrator gets access to your devices. In case an attacker gets access
to your home network and tries to plant a new IoT device of their own, policies 1 and 2
limit their communication requests and also limit their access to only a certain zone, hence
reducing the attacker’s access radius to a minimum area. Policies 3 and 4 stop the subject
from communicating with any object device on the home network by applying the priority,
age, trust level, and device type filters, allowing communication if the above-mentioned
attributes are matched. Here, priority, age, and trust level are all dynamic attributes that
change with time and hence provide improved security as devices once deemed eligible for
communication will be denied the same privilege if any behaviour anomalies are detected
and their trust levels are reduced. This dynamic behaviour analysis ensures security even if
any device on the home network is compromised by an intruder. Policies 5 and 6 dictate the
behaviour of monitoring devices and keep check on their commanding areas by limiting
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them to particular zones. Hence, if a malicious device is registered in the kitchen, it can
not access security devices or devices in other zones such as the bedrooms or lounges.
Policies 7 and 8 ensure that only a monitoring device can connect to multiple devices
simultaneously and broadcasting any message on the network is prohibited, hence the
chances of an intruder infecting all devices on networks are very slim and almost down
to zero. Therefore, the discussion suggests that the proposed system provides complete
security, authentication, data privacy, and confidentiality to all users utilizing IoT devices
registered on the network.

8.5. Computational and Storage Tradeoff

We have identified a trade-off between computational and spatial complexity for the
realistic implementation of this system. Keeping all device attribute data on-chain will
result in processing all access requests more quickly, but the larger ledger size will raise
computation costs. However, if an off-chain data repository is maintained, the smaller
ledger size will result in greater costs and delays while reducing computing complexity.

9. Conclusions

This paper addresses the security challenges for large IoT-based infrastructures such
as smart cities and provides a zero-trust and ABAC-based dynamic solution for
confronting these challenges. Issues such as user privacy, device authentication, and
authorization have been resolved by modelling a framework that provides a completely
secure device-to-device communication mechanism by not only considering the existing
security levels of the network but also considering the behaviour anomalies of the devices
to instantaneously detect any kind of intrusion or device misconduct by using device trust
levels. The framework is modelled by dividing IoT networks into various zero-trust zones
and an ABAC framework that specifies subject, object, and network attributes. Several
policies were defined based on these attributes to enforce reliable and secure
machine-to-machine communication which is being recorded by the immutable distributed
ledger for advanced accountability. We have also discussed an attribute management
framework that captures and calculates the important device attributes required for
implementing the ABAC policies. In future, some still-relevant major problems in this field,
such as computation and space overheads, need to be addressed to find the optimal
equilibrium for the best system performance.
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Abbreviations

The following abbreviations are used in this manuscript:

ABAC Attribute-Based Access Control
D2D Device-to-Device
DAC Discretionary Access Control
IoT Internet of Things
IPFS Interplanetary File System
MAC Mandatory Access Control
MCAP Microcore And Perimeter
PA Policy Administrator
PAP Policy Administration Point
PDP Policy Decision Point
PDPO Policy Decision Point Oracle
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PE Policy Engine
PEO Policy Engine Oracle
PEP Policy Enforcement Point
PIP Policy Information Point
RBAC Role-Based Access Control
SC Smart Contract
TE Trust Engine
TEO Trust Engine Oracle
ZAIB The name of the proposed architecture (ZTA and ABAC for IoT using Blockchain)
ZT Zero Trust
ZTA Zero-Trust Architecture
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Abstract: Transparency and accountability are important aspects to any technological endeavor and
are popular topics of research as many everyday items have become ‘smart’ and interact with user
data on a regular basis. Recent technologies such as blockchain tout these traits through the design
of their infrastructure and their ability as recordkeeping mechanisms. This project analyzes and
compares records produced by non-fungible tokens (NFTs), an increasingly popular blockchain
application for recording and trading digital assets, and compares them to ‘document standards,’ an
interdisciplinary method of contract law, diplomatics, document/interface theory, and evidentiary
proof, to see if they live up to the bar that has been set by a body of literature concerned with
authentic documents. Through a close reading of the current policies on transparency (i.e., CCPA,
GDPR), compliance and recordkeeping (i.e., FCPA, SOX, UETA), and the consideration of blockchain
records as user-facing interfaces, this study draws the conclusion that without an effort to design
these records with these various concerns in mind and from the perspectives of all three stakeholders
(Users, Firms, and Regulators), any transparency will only be illusory and could serve the opposite
purpose for bad actors if not resolved.

Keywords: blockchain; records; non-fungible tokens; transparency

1. Introduction

Broadly, transparency and accountability are current topics of interest. Researchers
from several fields, regulators from various sectors, and the vast general public are search-
ing for the best way forward to keep the major technology companies that shape our daily
behavior accountable for the data they collect and sell. We know these practices have
a manipulative effect, more profound than any other data capture/advertising business
model of the past [1]. Developments in technology have allowed for a sophisticated Wizard
of Oz-like presentation that hides how its algorithms interpret the data it collects and aggre-
gates; however, concepts of transparency are thrown around as claims that the increasingly
sophisticated technology can provide these qualities implicitly [2,3]. Some applications
(i.e., Google, Facebook, Microsoft), for instance, make use of design capabilities to influence
users’ data privacy settings, a practice now being deemed “dark patterns” [1]. Yet, the
‘smart’ software embedded in many of our daily practices such as with pervasive comput-
ing and the internet of things (IoT) brings with it new opportunities for hidden contracts,
automated data collection, and increasingly context algorithms. In response, new techno-
logical infrastructures such as blockchain applications explicitly tout anonymity, making
use of decentralized computing systems that render tracing users nearly impossible. This
has many benefits including encrypted records that are reportedly immutable, allowing
for them to act as currency, notaries, authentication markers, even contracts [4], with
the downside being that the anonymity offered can attract bad actors [5]. As blockchain
proponents tout the transparency and accountability they say is built into its architecture,
it is important that it is not considered a solution to the aforementioned issues without a
rigorous critique of its methods for solving them.

Since its recent spike in use and popularity around 2016–2017, blockchain technology’s
uses have included cryptocurrencies, smart contracts, and non-fungible tokens (NFTs),
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increasingly among others. Broadly, as a blockchain creates a ledger of immutable records, it
can be diced up into portions that can be given value as currency (e.g., Bitcoin), can be coded
to execute automated transactions (e.g., Ethereum), and can be tied to assets as a record of
ownership (e.g., non-fungible tokens or “NFTs”). Past work in this space has discussed
the potential dangers of assuming some of these blockchain technologies can replace
certain types of documents that have standards and practices which have been around
for centuries. For instance, the issues with standard form contracts can be exacerbated
in this blockchain environment [6,7], the freedom of contract principle can be exploited
to allow for the cementing of unfair terms [8], and, claiming that blockchain produces
immutable records when the technology has facilitated nefarious activity can cause all sorts
of issues for regulators—especially when these records are used for evidence [5]. Other
research has noted the inconsistencies with the technology and some of its claims [5,6,9].
A sample of this research suggests that to solve some of these transparency issues the
roles of responsibility should be considered; should blockchain applications have fiduciary
responsibilities, for example? What are the proper notation practices as NFTs are essentially
documentation of ownership? [9]. And who is responsible for solving its environmental
impact? There are still many unanswered questions that need to be addressed to figure out
the possible issues with this new digital environment.

Of the examples of blockchain technology mentioned, NFTs have gained renown for
their large purchase price, bringing in sometimes millions of dollars to own one. Recently
an NFT was auctioned off at Christie’s for $69 million that a represented digital artwork,
for instance [10]. At the time of writing (Aug 2021), the total trading value of NFTs in the
last 24 h is $3,656,194,242.58 [11]. NFTs are generally created with the ERC-721 standard
written in the Solidity language and make use of public blockchain protocols and platforms
such as Ethereum, EOS, Cardano, Flow, and Tron, among others [10–13]. They are called
“non-fungible” since they do not exist in a one-to-one ratio with other assets (such as
cryptocurrencies do). Essentially, NFTs make ownership of an asset verifiable and since
each asset is unique, each NFT record has a unique value relevant to the value of the asset
itself. While NFT applications make use of other cryptocurrencies and are tied to their
markets in some respects [13], they are not currencies themselves, but rather more like
records of ownership. The IoT environment is increasingly making use of decentralized
computing systems and blockchain applications to tie real world items to digital records
that can prove ownership and trading rights. Sales of assets, transfers of ownership, even
rental or insurance agreements might have a NFT associated with it. However, these
applications will need to make use of automated smart contracts that control the terms
associated with the transaction, bringing about a host of issues that go back to how users
have engaged with standard form contracts for decades [7]. Additionally, industry has yet
to reckon with the compliance issues presented with an anonymous technology, and, along
those lines, regulators will need a method that will aid in updating outdated regulatory
schema so that it can address these issues.

This paper adds to past research on the critical application of document standards
to blockchain applications, in this instance, a study of NFTs as records. By ‘document
standards’ it is referring to the types of mechanisms that have been applied to records
and documents over time to maintain their authenticity. This draws upon contract law,
document theory, diplomatics, records management, evidence and the descriptions for
compliance as outlined in regulatory schema. These standards have been developed in
nuanced, iterative ways with details that describe markers which provide actual validity
and thus viability with documents. This could include chain of custody, records life cycles,
even interrogating the epistemological underpinnings of how documents function and
how users engage with them. As a methodology, it is not only theoretical and qualitative,
but also pragmatic since there are real issues that need to be solved in a regulatory sense.
Moreover, if these blockchain records are not interrogated sufficiently, the consequences
would be that they exacerbate the issues with records and their possible nefarious uses, so
it is imperative that these studies take place now. And although blockchain technology

225



Information 2021, 12, 358

is proving to contribute to environmental issues [14], when this aspect becomes more
sustainable, it seems like this technology is here to stay and could transform business
practices and records management across the space entirely.

While the conversation is being had around transparency for regular technology
companies, blockchain technology has sat comfortably within this sphere due to the public
nature of its records, the immutability of the information, and the supposed ease of which
it is queried [10]. However, this paper argues that the transparency provided by blockchain
technology largely serves either as a checkmark for firms or, at most, an easier information
dump to sift through for regulators. The transparency that it provides does not necessarily
translate to accountability. In fact, too much information can have the opposite effect if not
curated properly [2,3].

This study examines current blockchain NFT implementations to test to assess their
output to see if there is enough information to produce a viable record. NFTs were
chosen since they blur the line between financial token and record of proof [9]. As the
records produced from these applications act as both representative of value but also as
something attached to another thing (being a digital file or real-world asset), the needs
associated with the record are unique and worth rigorous analysis that could be generalized
across the field. This space still needs much more work in terms of exploring the benefits
of document standards for blockchain technology as a way of interrogating its actual
levels of transparency. It should be made clear that this study is not conclusive in scope—
rather, it simply examines the idea that the use of these document standards as points of
measurement for various audiences or perspectives (i.e., Users, Firms, Regulators) could be
helpful, and details a methodology to this purpose. It also calls for more research in these
areas by highlighting where the work needs to be done. The results of this preliminary
study show document standards are indeed necessary for this technology to grow and
thrive in the way that is fair and transparent and in line with its motivation.

2. Materials and Methods

This section outlines the methods and materials used in this study of NFTs and
provides a way of looking at blockchain records more generally. It builds upon the body
of past research on the critical application of document and recordkeeping standards to
blockchain applications, as well as appropriate document and records theories that have
not yet been applied. This section defines the phrase ‘document standards,’ or the types
of mechanisms that have been employed over centuries to records and documents to
maintain their authenticity. This proposed method draws upon these fields that deal with
documents, records, interfaces, and evidence to determine standards of measurement,
rather than take for granted that an encrypted technological architecture will produce it
automatically. These standards have been developed in nuanced, iterative ways over time
and promote particular features that designate qualities such as validity, reliability, and
authenticity to records and other types of documents [15,16].

This rest of this section details the terms that are operationalized and provides brief
summaries of which document standards affect which stakeholder. It is intentionally hefty
as a large part of this project is to provide a novel methodology, in addition to the case
study, that can be used to study other NFT or blockchain instances in the future.

2.1. Terms Defined

This section explains the terms and concepts used throughout this study. Some of
these terms are more self-evident than others. For instance, “blockchain” and “non-fungible
tokens” are described in terms that other scholars and industry people have described
several times [10,12,17]. Others, such as “document standards” are laid out in terms that
have been aggregated from prior research. It is useful to define these terms so that this
method is as apparent and replicable as possible. It is imperative that this space continues
to get interrogated so that the research can help create the best possible uses for each
instantiation of this technology.
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2.1.1. “Blockchain”

A blockchain is a secure, distributed ledger comprised of a chain of record-type entities.
These entities are cryptographically chained together and publicly replicated across each
node of a decentralized computer network. There are generally two types of blockchain
technology infrastructures—public and private (‘permissioned’). Public blockchain in-
frastructure uses the transparency of multiple public copies of the ledger to ensure the
accountability and accuracy of the entities. Since these are publicly copied onto each node
of the peer-to-peer network, there is no centralized point of attack [18]. To fraudulently
change records on the publicly distributed ledger, an attacker must control the major-
ity of nodes in the network, a computationally expensive and improbable event. Some
blockchain technology supporters promote variations of this technology such as smart con-
tracts that aim to overturn centralized governance provided by third-party oversight with
“immutable, unstoppable, and irrefutable computer code” that instantiates the “tamper-
proof” records [19], which allows these ‘contracts’ the ability to “self-enforce” [20]. For a
permissioned blockchain, the records are distributed within a closed network that requires
permission; however, it still sports the features of consensus amongst multiple computing
devices. Examples of public blockchains include Bitcoin, Ethereum, EOS, Cardano, Flow,
and Tron.

2.1.2. “Non-Fungible Tokens” (NFTs)

An NFT is a unique cryptographic record linked to an asset, typically a piece of art,
music, collectable, or another presumed valuable object [10,12]. These could be thought
of as similar to trading cards for the digital age. Basically, NFT protocols provide an
underlying distributed ledger for records, and combine it with transactions that make them
exchangeable in a peer-to-peer network [12]. These records are called ‘tokens’ that can
be bought, traded, or sold much like physical assets in some ways and radically different
in others. Since they run on blockchain technology that claims to prove validity of the
ownership of an asset, ideally all transactions associated with this relationship (i.e., between
record and actual object) are recorded. NFTs are generally bought, sold, and traded from
‘wallets’ and can be explored, if public, on websites such as Blockchain.com, TokenView,
and BTC.com.

There are a few notable features of NFTs that have been suggested to promote stability
and consistency [12]. Figure 1 is a helpful diagram that shows the NFT process and the
roles of each actor, reproduced from one of the first systemized studies of NFTs [12].

Figure 1. “Model of NFT Systems” (taken from Wang, Qin, et al. “Non-fungible token (NFT):
Overview, evaluation, opportunities and challenges.”).

Essentially this process consists of two roles: NFT owner and NFT buyer. An NFT
owner digitizes the raw data from the transaction into the proper format, then stores it on a
database external to the blockchain (or on a blockchain, but that is more costly). The owner
then signs the transaction with a hash (or cryptographic signature made of a string of
numbers) and sends the data to a smart contract. The smart contract processes the data, then
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mint or trades it on the blockchain as a transaction. Once it has been confirmed through
mathematical consensus, the NFT is linked permanently to the unique hash identifier and
the distributed blockchain record, where it cannot be changed.

2.1.3. “Document Standards”

This paper utilizes the phrase ‘document standards,’ which stands in for the multiple,
interdisciplinary mechanisms that have been applied to records and documents over the
centuries in order to maintain their authenticity. This draws upon document theory [21,22],
diplomatics [12,13], interface theory [23,24], evidence [25–27], and regulatory schema that
depend on records management, thus speaking to the interdisciplinarity of this method.
These standards have been developed in nuanced, iterative ways over time with details
that describe markers that provide actual validity and thus viability with documents and
records. This includes how chain of custody and ownership is maintained, which infor-
mation on users should be stored, even interrogating the epistemological underpinnings
of how documents function and how users engage with them. This body of work was
compiled organically from various fields, but they all share a common humanistic or
sociological attention to the subject or user position that allows for a type of activism
throughout their arguments. As a methodology, it is not only theoretical and qualitative,
but also pragmatic since there are real issues that need to be solved in a practical and
regulatory sense.

2.1.4. “Users”

This project separates off each of the stakeholders into general categories. The first
of these categories is ‘Users,’ which includes any person that makes use of blockchain
technology in any capacity. This may include people who are using a public blockchain
administerd in a decentralized way, and also those who administer the technology in
permissioned chains for their own purposes. It does not include the technology itself, for
which there is a good argument to be made that there is a certain amount of agency that can
be coded into the technology (for example, as a ‘user’ who perpetuates certain transactions
on the blockchain such as smart contracts). Rather, this category is purporsely excluding
technology from this category and looks to any real person whom did the coding at some
point. This helps determine where the responsibilty lies when studying accountability and
transparency issues in practice.

2.1.5. “Firms”

The category called ‘Firms’ is defined as any business entity that adminsters, facilitates,
or incorporates a blockchain into its infrastructure. This includes public blockchain offer-
ings that create the design for tokens which are ‘mined’ for consensus with the computing
power across peer-to-peer devices. It also includes the permissioned blockchain admin-
isters whom incorpoarate blockchain databases into their current business environment.
Lastly, it includes the intermediary companies that provide the services which facilitate
blockchain applications; for instance, those that offer ‘wallets’ to allow for the buying,
selling, and holding of tokens, or ‘explorers’ that allow for the reading of the cryptographic
records of public systems. Examples of ‘firms’ include Ethereum (which provides the
protocol and public blockchain), eToro (which is a platform that makes use of Ethereum
protocols to create NFTs), and even Christie’s Auction house (which is now selling NFTs).

2.1.6. “Regulators”

The third study looks at blockchain technology from the perspective of ‘Regulators,’
which includes any entity whose job it is to produce policies and practices that would
protect those in the category ‘users’ from any malfeasance that originated in the ‘firms
listed in the second category. These institutions have the vast task of sorting through a
technology that may have already outpaced current policy. This is especially important
since some of the orignal motivations behind blockchain technology was to sidestep these
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exact regulatory bodies [19]. Current regulatory schemas are being developed for big tech
companies across the board, including the General Data Protection Regulation (GDPR) by
the EU and the California Consumer Privacy Act (CCPA) in the US, which push for more
transparent disclosure practices and protections for patrons of these applications. In the
financial space, regulatory agencies have already begun to tackle blockchain applications
(e.g., Financial Crimes Enforcement Network [FinCen], Office of Foreign Assets Control
[OFAC], Internal Revenue Service [IRS]). This study tries to be aware of the financial
regualtory space as it is highly specialized and developing, yet stll applicable to NFTs in
a similar fashion as cryptocurrencies and smart contracts. Moreover, it draws upon the
new consumer protection regimes (e.g., GDPR and CCPA) to consider that other types of
regulatory schema that no doubt will be applied to blockchain applications as well.

2.2. Project Design

This project is designed so that it provides a methodology for examining certain
qualities of blockchain records that would provide transparency and accountability. It takes
the definitions in the previous subsection and applies the category ‘document standards’ to
‘blockchain technology’ (specifically NFTs) to see if they are up to par and to imagine how
they might be improved. It does so from the three perspectives of (1) Users, (2) Firms, and
(3) Regulators. The following details the queries that were conducted for each perspective.
The results of these queries are in the next section.

2.2.1. Queries for Users

• Copyright: How do you clearly and conspicuously “attach” terms and conditions to
an NFT and ensure that those terms follow the NFT and bind subsequent owners?
How are evolving copyright issues handled (public domain laws, estate changes, etc.)?

• Standard form contracts: Do these tokens present the same issues as other standard
form contracts if this same genre of contract is used to lay out terms?

• Interface design: Do these records match user expectations and follow usability and
design best practices? Are they designed with users in mind? Who is their audience?

2.2.2. Queries for Firms

• Jurisdiction: If a Firm makes use of a public blockchain to create their NFTs, do they
streamline transactions or obscure necessary data (e.g., accd. to FCPA, SOX, UETA)?

• Liability: Do the current records protect from liability or increase risk?
• Compliance: Do the current NFT records aid or hinder other compliance or record-

keeping efforts?

2.2.3. Queries for Regulators

• Investigation: Do the records produced by NFTs allow for the same procedures when
investigating a bad actor?

• Evidence: Do the current records serve as viable evidence? What are the consequences
if they do (accd. to the US Federal rules of Evidence) but do not have the required
components of legitimate records (accd. to document standards)?

• Policy: How does blockchain aid or hinder the regulations set forth by KYC, OFAC,
FASB, SOX, and GDPR, among others?

2.3. Limitations

Although effort was put into ensuring that this study is as sound and replicable as
possible, it does have its limitations. This methodology follows the dominant research
method from the past several decades, “interdisciplinarity,” which has benefits in its
application to the perspectives of multiple involved parties or stakeholders. The limits to
this method, however, are that it has been accused of overlooking potentially contrasting
assumptions in each discipline, promoting what was identified early on as “conceptual
confusion” [28]. This often occurs through the motivation to find similarities between
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the disciplines that may not exist; but it can be remedied by noting explicit differences
and contexts throughout the analysis, including between vastly different origins, history,
objects of study, and interest [29]. While there is not enough space in this paper to give each
of these fields the full treatment they deserve, the interdisciplinarity of this study is still
useful as the fields utilized (that make up the category called “document standards”) work
toward the common goal of maintaining the qualities that determine whether a record
is viable.

Additionally, some of the advantages of interdisciplinary research that this method
hopes to benefit from include some logistical advantages such as a wider audience and
other, loftier goals such as possibly more ‘normative’ conclusions, which might be more
well-rounded and humane and consider “trade-offs” and “principles” (including ethical
concerns) [30]. Also, writing for a larger, multi-disciplinary audience not only encourages
more productive solutions that may not have occurred otherwise, but also provides a close
textual study that is qualitative and holistic.

3. Results

This section describes the results of exploring the above questions, including the
interpretation of the results and what it might mean for blockchain technology going
forward. Below, the results of the application of document standards to the aforementioned
queries from each of the three perspectives (i.e., Users, Firms, Regulators) is shown.

3.1. Description of Results

This section will describe in clear, succinct summaries how these queries were consid-
ered in this study. The document standards that were applied to each query are explained,
as well as a brief acknowledgment of the context within which these standards were devel-
oped. The purpose of these results is not to prove that these queries have been answered by
this study; rather, it is to show that these questions exist and that they can be answered.

3.1.1. Results for Users

In the case of NFTs, their purpose is to tie a record to prove the ownership of an asset,
whether it be a digital file or a real-world item. While at first this may seem promising
because it is a more immutable record due to its cryptographic qualities, this record can
present very significant issues. First, most records of ownership that are used for this
purpose generally need to have several qualities for them to be viable, including reliability,
validity, and authenticity [12,13]. These qualities come from certain information being
documented, demonstrating chain of custody and ownership, and most importantly to
answer the queries for Users, the terms of this ownership over time. This last concern
requires that the record makes use of a contract that will lay out the terms of copyright,
use, transfer of ownership, etc. The concern here centers around two issues; (1) that the
NFT record will begin to use standard form contracts for this purpose, which includes all
the issues associated with this genre of contract [31–35], (2) that the immutability of the
record will enforce these terms beyond even what normative contracts negotiate, not
allowing for the flexibility that contracts require, and (3) that the design of the NFT record
will further obscure any important information for the User with unfamiliar or deceptive
design practices. These queries are answered within the history and context of contracts
and design since they are a vital part of these records being viable for asset ownership.

As warned about in the literature around standard form contracts (e.g., Terms of
Service), these ‘zombie contracts’ may appear as traditional contracts on the surface, but
under deeper scrutiny, have “several distinct features that sit in very deep tension with
contract [doctrine]” [31]. Contract law is generally viewed as a remedial “institution”
whose function is to adjudicate any issues that arise between two individuals or entities
after transactional activity as they arise [32]. Generally, contract law enables two or more
self-governing parties to document shared goals. With standard form contracts, however,
one party drafts the terms, relying on past types of similar contracts. In other words,

230



Information 2021, 12, 358

notions of ‘standardization’ here are being defined and perpetuated by ‘standard practice.’
Without regulatory response to inhibit egregious terms, one party of these contracts is at a
vast advantage in the arrangement and, further, there are concerns that powerful players
could take control of their governance, ensuring any regulations result in their favor. [33].

Recent studies confirm that standard form contracts reinforce certain inequities be-
tween classes—not only through unregulated clauses, but also in terms of who advocates
for fairness. Because of a difference of perception and knowledge of contracts amongst
users, which varies according to socio-economic class, “elite customers” are less likely to
advocate for the fairness of the agreement and are only motivated to stop egregiousness
when it threatens them personally, further solidifying the distance between the “haves”
and “have nots” [31,34]. This both reinforces a general distrust in the legal system for the
lower classes as well as reactionary costs for the Firm such as evasion measures (e.g., piracy,
hacking, misuse of services) that might come about consequently. Since there is a great
amount of anonymity with blockchain, contracts used in an NFT situation where owners
and traders/buyers are not identified could exacerbate some of these power imbalances
with more immutable, boilerplate terms—an even stronger win for the more powerful
entity with no path toward restitution other than those that are illegal and put other users
at risk.

However, there are some areas where blockchain technology could help with securing
contract terms. One of these areas is with unilateral modification clauses. These common
clauses allow for a service provider to change the other terms of the contract at will,
essentially making the other promises in the contract “completely illusory” and at the
determination of only one party [35]. In other words, for a user, the concept of a contract
document as a stable entity is disrupted by the mere fact that it could change at any time
without their knowledge of this change. As Preston and McCann (2011) ask: “If the service
provider can change the contract at will, why bother to call it a contract at all?” [35] If
the records provide more concrete documentation, it could potentially provide a chain of
records that prevents this clause from being enforced, which is significantly better than
the Terms of Service agreements that change at will without a record of the past terms.
There are normative benefits to contracts that have the flexibility to change terms as the
relationship between the parties develop, and blockchain-made smart contracts have been
critiqued from this standpoint prior [6]. These issues are not unfixable if thought is put
into them before the issues that are already present are cemented into the genre. There
is a body of research that is dedicated to studying the regulation of the issues associated
with these contracts and it should be considered if they become a part of the purpose and
practice of the records that support NFTs.

An additional area of study that could help NFT records from the perspective of Users,
especially since the result is user-facing, would be the area of interface and document theory.
These disciplines work toward understanding the concepts of documents and interfaces,
both of which would be useful in the process of understand what users expect from
these records. If they remain somewhat exclusive and specific to the realm of blockchain
output, the average user will not find them meaningful, and consequently not be as
transparent as they purport to be. For instance, information and media theorists have
expanded on earlier ideas but locates the ‘informativeness’ of a document (and thus and
definition of information itself) in its materiality, institutional embeddedness, and historical
contingency, and recognition of user subjectivity, rather than in a theory that assumes an
‘intentional substance’ of a phenomenon [21–24]. In other words, once all the social and
political forces that configure documentary practices are considered, “the genie is out of
the bottle: the informativeness of documents, when recognized as dependent on practices
is also dependent on what shapes and configures them” [21]. This body of work provides
an analysis of documentary agency and seeks to understand how even fundamental
understandings of a document, text, or interface can be undermined by a design that is
inaccessible and unfamiliar [23,24]. This way of thinking is not only beneficial for Users,
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but for all stakeholders as it considers the audience and context of the record, thereby
making the outcome more useable, more transparent, and, ultimately, more accountable.

3.1.2. Results for Firms

The biggest concern for Firms in regards to blockhain technology is the issues that
come about from compliance policy and regulation. Some US laws that affect blockchain
applications include recordkeeping determinations of the Foreign Corrupt Practices Act
of 1977 (FCPA), the Sarbanes-Oxely Act (SOX), and the Uniform Electronic Transaction
Act (UETA) of 2000. Civil systems such as the E.U. have also sought to find ways to keep
coroporations accountable with the information they store and disclose, including GDPR
(and subsequently California’s CCPA), for which eventually Firms from the blockchain
space will also be held accountable. As a new sphere of corporate activity has surrounded
blockchain technology, these new companies, which are often start-ups, are concerned with
liability and compliance as they coud become major issues to their endeavors.

Produced in reaction to a string of several major corporate scandals such as Enron
and WorldCom, SOX was the most comprehensive accounting reform enforcement since
the FCPA from the late 1970s [36]. Both regulatory schema outlined accounting and
bookkeeping requirements for companies, with FCPA handling transparency in dealing
with foreign officials and SOX concentrating on the alteration and destruction of records.
Both acts also endorse the need for more thourough recordkeeping requirements to prevent
and prosecute white collar crime and fraud. Specifically, the FCPA requires companies
to make accurate and complete records and devise methods for an internal system of
accounting controls [31]. SOX expanded on these basic requests, asking for transparent and
accurate corporate records (Title III, Section 302) and both internal and external auditing
assessments. It also outlines specific actions regarding the destruction of or tampering
with records involved in “official proceedings” (Title VIII also called the “Corporate Fraud
Accountability Act of 2002”). Although blockchain records claim to be immutable, there are
ways to code in acts of deletion with smart contracts or to fork the chain, which changes the
outcome of the order of the records. If this happened with a public blockchain application,
a bad actor could code in the deletion of the record, violating SOX and making the Firm
liable for sanctions and fines.

On the other hand, the UETA laws of the early 2000s were meant to streamline
commercial activity online across multiple jurisdictions [37], yet in doing so, lowered the
recordkeeping requirements for digital transactions, including removing the retention of
paper copies and relaxing the types of actions that signal agreement amongst parties. These
laws ultimately benefit NFTs and blockchain technology as they lower the standard for
compliance and do not require any extra disclosures on the part of whomever is managing
the blockchain (the viewers and wallet companies, for instance). This only goes so far,
however, as other more recent laws supercede these and require these types of companies
to retain knowledge of their customers for money-laundering reasons (remember, this does
not the blokchain itself, as no one is responsible exactly for those records).

Newer EU policies, including the General Data Protection Regulation (GDPR) that was
enacted in May 2018, specifies, among other principles, an accountability mechanism re-
ferred to as “the right to know” that describes corporate responsibility to inform consumers
about any collected personal data and the algorithms that affect a user’s experience in this
regard [38]. Clarity of information to the public is one of the major principles of GDPR
and requires transparency in terms of the contracts that govern the way this information is
handled. From these nerw regulations came other regulatory schema have been formed
such as the California Consumer Protection Act (CCPA) that requires transparency and
disclosuresfor technology companies and complicates this already complex regulatory
landscape. It is difficult to know how these new regulatory paradigms will play out with
blockchain technology since NFTs are built publically and are used for many different
purposes and for various ‘audiences.’ And while the one of the limitations of this study
is the simplification of these groups of interested parties, the study overall is useful in its
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ability to consider the liability that the firms whom facilitate these applications might be
subjected to.

3.1.3. Results for Regulators

Regulatory bodies are concerned with how they might protect consumers and the
public from corporate activity they deem harmful. Generally, this process of account-
ability involves either preventative measures such as compliance requirements or ac-
countability measures after the fact that investigate and collect evidence for prosecution.
With blockchain technology, this process can be hindered by the issues with authentic doc-
uments and how these documents serve as proof for investigative purposes. As mentioned
in the last section, preventive measures and compliance do not always lead to easier culling
for regulatory bodies or prosecuting entities. This section focuses on their perspective and
the difficulties blockchain technology presents when building a case against a Firm, which
looks to the rules and uses of evidence to determine how effective these records are in
this realm.

Records have long been associated with manifestations of evidence, even if evidence
can take many other forms and instantiations [26,27]. The history and uses of evidence
suggest that understandings of what comprises evidence are dependent upon the paradigm
within which evidence will be acquired, assessed, and introduced, not just simply how they
support an argument logically. For example, even if a record is produced that seemingly
claims to prove something over something else objectively, the record itself must prove
that it is an authentic document before it can be used in the case. Thus, the circumstances
around the record and its creation, history, uses, etc. must also be rigorously considered.
This project makes the case that considering legal conceptions of evidence from a more
holistic, philosophical perspective such as in the research of legal scholar John Henry
Wigmore (1863–1943), is a more useful route than simply relying on static definitions such
as those laid out in legal doctrine.

Wigmore’s work argued that “facts are evidence insofar as they play a role in a
teleologically directed argument” [25]. In other words, his work found that the process of
using evidence to prove a case required viewing it as three distinct layers of information:
(1) as a proposition (hypothesis); (2) as specific elements of law that need to be satisfied;
and (3) as material evidence and facts that make up the narrative of the case. This view
of evidence fixes the “worn out legal system” of the nineteenth century that relied mostly
on numerical systems and had “no understanding of the living process of belief.” This
paradigm, while over a century old, is useful to consider as it brings back the nature of
human judgement and essentially what is overlooked if blockchain technology stands in
for legitimate records.

Wigmore distinguishes the uses of evidence into two categories: (1) the analysis that
details the informal logic of reasoning and argumentation, which he called Proof, and (2) the
“rules of procedure,” which he called Admissibility. Proof consists of the practice concerned
with “the ratiocinative process of continuous persuasion.” Admissibility consists of the
procedural rules developed by the law and based on “litigious experience and tradition, to
guard the [jury] against erroneous persuasion.” These distinctions can help us consider
the “probative force” of a piece of evidence, which describes its tendency to support or
to negate the first piece of information, the proposition or hypothesis. A record in this
paradigm could have two outcomes once it is interpreted in a trial: Proof or non-Proof.
Currently, the Federal Rules of Evidence govern the process of evidence admissibility
and discretion in trial court. A difference in Wigmore’s conception of evidence is that he
makes distinctions between other aspects Proof, including argumentation, inference, and
probative value, rather than superficially codifying them into procedure doctrines [25].
This project confirms the usefulness of these early distinctions by Wigmore, providing a
rigorous method of logical inquiry that benefits current evidentiary paradigms in which
these aspects might be discounted.
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A more holistic and humanistic understanding of evidence is especially important
since blockchain records could give the false sense that somehow, they implicitly have the
qualities needed for Proof—the issue being that unless the technology and infrastructure of
the blockchain being considered is scrutinized properly and understood thoroughly, these
qualities are not ensured. In other words, if an investigator or regulator or even a jury or
judge misunderstand the technology behind a blockchain record and think that somehow
it purports some type of reliable information because of its cryptographic features or
architectural design, these records will be more dangerous than had they not been made of
blockchain. The technology could provide a misleading testament to validity when actually
they could aid in nefarious activity.

3.2. Interpretation of Results

The results (Table 1) can mean only one thing for blockchain environments—more
work is needed before they accomplish the transparency it claims to provide. Below
a screenshotted is provided of two recent NFT records taken from the blockchain ex-
plorer Adapools.com. These records show the information that is typically displayed on a
blockchain record. It is also useful to see a real example of a NFT record to analyze how it
might be improved to address the issues just mentioned. Newly proposed methods [39]
that take apart the components of a document could consider the components as they
currently exist and reconstruct the design of the record to include appropriate context and
information from each of the three perspectives. The rest of this section details how a few
important aspects of this example NFT record could be improved.

Table 1. Description of Results.

Perspective/Stakeholder Area of Concern Applicable Document Standards Examples

User • Design
• Usability
• Ownership

• UX/Human Factors Principles
• Contract Literature (esp.

standard-form)
• Copyright Literature

• Clear coherent design that considers
the needs of user ownership over time,
including:

(1) “Name”
(2) “Publisher”
(3) “Collection”
(4) “Artist”

• Fair contract terms
• Appropriate contextual elements that

utilize familiar design conventions
• No deceptive design that perpetuates

inequities

Firm • Assets
• Recordkeeping
• Compliance
• Risk Assessment

and Reduction

• Recordkeeping standards (i.e.,
validity/reliability)

• Asset document conventions and
standards

• Electronic contract standards and
compliance (e.g., UETA, FCPA,
AML, SOX)

• Transparency requirements such
as data disclosures (e.g., GDPR,
CCPA)

• Storing customer information for AML
and preventing deletion of records for
SOX

• Current asset record requirements:

(1) Description
(2) Location
(3) Procurement
(4) Life Cycle
(5) History
(6) Depreciation value
(7) Insurance
(8) Maintenance
(9) Ownership distinctions
(10) Barcode or serial number
(11) Warranty information
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Table 1. Cont.

Perspective/Stakeholder Area of Concern Applicable Document Standards Examples

Regulator • Evidence
• Protection
• Transparency

• Evidentiary requirements
• Discrete regulatory schema that

are effective

• Viable evidentiary components, including:

(1) Parallel contracts in other
mediums

(2) Searches, subpoenas
(3) Payment history between parties
(4) Communication between parties

(e.g., phone calls, email)
(5) Witness accounts
(6) Blockchain environment-specific

conditions, (e.g., authentication
protocols, automated features,
triggers, oracles)

(7) Personal computer evidence
(acquired through search warrants)

(8) Wallet managing services, along
with ISPs, phone records

For Users, the two most important considerations are attached contract terms and
usability. From Figure 2a,b it is apparent that the information is neither contextualized
nor understandable in terms of the normative conception of asset records of ownership.
Further, although the cryptographic hash promises to make the record unique (which is
does in a technological sense), it is difficult to decipher the difference between the digital
objects when similar records are inquired about as you can see in Figure 2b. In terms of the
contract issues, this record is not sophisticated enough to have attached terms; however,
one could imagine what that might look like in this instance. Some of the initial, basic
information for a contract arrangement is present, yet not clear—the two parties could be
the “Name,” “Collection,” “Artist,” or “Publisher.” It is not apparent from the information
shown what the relationship is between these entities. Moreover, if the basic ownership
information is not clear, then the projected trajectory of their relationship is even more
unclear. In a contract situation, this information would be clarified upfront in a Preamble,
for instance. As an example of how much contracts could be skewed in this environment,
consider the effort that generally goes into the conventions and allowances of very nuanced
language choices in a non-blockchain produced contract [40].

Additionally, the anonymity of these entities allows for the record to exist publicly
and be authenticated on a public blockchain. While this is important for ‘transparency’ in
this respect, if a contract situation is entered, which in the case of a NFT it seems would be
quite common, then it could preclude clear and conspicuous terms from also benefiting
from this transparency. If there is a power imbalance (or information asymmetry) between
the two contracting parties, this might be especially concerning [34].

For Firms, the current design of NFTs could confuse some of the requirements and
responsibility of a corporate entity. As Firms are concerned with liability, an ambiguous
set of metadata might not satisfy the information needed for FCPA. As the anonymity
can obscure the location information, the rules for foreign transaction are also obscured.
This might cause the company to be at risk for compliance issues unless this information
has been obtained and stored, which would then reduce the anonymity that allows for
the transparency that produces immutable records. This is one area that needs much
more focused attention—sorting out personal information, privacy, and compliance while
negotiating the needs of a decentralized architecture and maintain the integrity it claims
to promote.
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Figure 2. This is a figure. Schemes follow another format. If there are multiple panels, they should be listed as: (a) An
example of a public NFT record; (b) A search from the “Similar” link on Figure 1. Source: Adapools.org.

Moreover, it could be argued possibly that blockchain records have simply been
streamlined for easy transaction under the UETA laws. Yet, if nefarious activity such as
money laundering took place—for instance, if someone ‘bought’ an asset with tainted
currency and makes use of the anonymity that it provides, the transaction could be a
liability for the company. Like foreign transactional requirements, if the company does not
retain the information about the parties behind the NFT, the laws that require financial
institutions to have this data such as Know-Your-Customer (KYC) laws. If a participant in a
NFT transaction is sanctioned by the Office of Foreign Assets Control (OFAC), this could be
a major violation of the rules set forth by FinCen or other agencies. Since NFTs are records
of ownership, it makes sense to look at how these types of records have been considered
previously. This includes how they are situated, criticized, used as evidence, retain their
authenticity, and more. For example, is important to know what information has been
required on these types of records. Then, when concerning NFTs, it should be negotiated
how this information will be displayed or retained with privacy concerns. For instance,
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blockchain technology in general might have trouble complying with new disclosure laws
(i.e., GDPR and CCPA) and something like ‘privacy by design’ could be necessary. Making
use of UX and interface design theories (as outlined in the Users’ section) could also aid
firms in this task [41].

Additionally, it is in the interest of a firm to correctly manage their assets so that
they can accurately document the value of their company and avoid unnecessary risk.
This is where considering previous document standards are useful. Asset records, to be
useful, must contain certain information according to the financial and business world.
This includes: (1) a description of the asset, (2) the exact location of the asset (what about
link rot? is it hybrid of local/cloud etc.), (3) procurement details including purchase dates
and price history, (4) life expectancy, (5) depreciation value, (6) insurance and compliance
details, (7) maintenance history, including repairs and downtime, (8) the owner of the asset
versus the user of the asset, (9) the barcode or serial number, (10) warranty information,
and the list goes on. It benefits the business to have all this information since a lot of these
transactions are financial and money laundering is a real concern. Anti-money laundering
(AML) rules require that a company know their customer (KYC) and have certain data on
them or else they become liable. In the video game world, it would be worth considering
who would be responsible in this case—the video game creators or the group that maintains
the NFT protocol? In the blockchain world, this needs to be negotiated with the movement
that is motivated to be both transparent and anonymous. Obviously, including all that
information on an NFT record would be a task that needs some thinking in terms of design.

For Regulators, the main concern in terms of blockchain technology is how it aids
or hinders their goal of keeping Firms accountable and providing the proper scrutiny
to stop the disreputable uses of its features. This includes the rigorous examination of
blockchain records as evidence, including not accepting that the technology itself creates
validity or reliability in a diplomatic sense [15,16]. As Wigmore points out, the creation of
an argument using evidence such as those used in litigation, does not depend solely on the
qualities of the records. These arguments are contextual and if all parties involved do not
understand the records fully, which is nearly impossible with NFT records in their current
form (Figure 2a), then the case will not be fully examined appropriately. This could have
major consequences down the road if the precedent is set that the records are viable in their
current form. The qualities they purport to have will never actually be developed. For
instance, in previous work, a criminal investigator from the U.S. Internal Revenue Service
(IRS) provided a list of all the information needed for prosecution of a blockchain case that
involved smart contracts [7]. This list includes:

(1) A parallel paper contract with agreements from both parties (public records
(2) Searches, subpoenas to record keeping authorities)
(3) A history of payments between A and B (subpoenas to corresponding financial institutions)
(4) Email, Phone, other types of communication (subpoenas or search warrants)
(5) Undercover, if necessary (to reveal and confirm any allegations of fraud on the part of

the various parties)
(6) Witness accounts from the inception of the agreement through the present (interviews)
(7) Conditions on the blockchain that would reveal payment/non-payment
(8) Their corresponding truth/falseness in real life
(9) Authentication protocols for both users and their conditions (are the transactions

automated or triggered by one party or the other, and for what reason?)
(10) Personal computer evidence (acquired through search warrants or consent searches)
(11) Wallet managing services, along with ISPs, phone records and other third-party record

keepers would be acquired through subpoena or court order.

The list is quite thorough, but it gives a sense of what could be required to build a case
against a Firm. While it is not practical to assume or even hope that a Firm will be required
to provide this information since one of the major features of blockchain application is the
benefits of an anonymous system, if Regulators are serious about preventing or prosecuting
bad actors, then some thought is due in this area. Perhaps there is a way to keep the
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information in a secured location so that the Firm can comply with regulatory schema—
however, this would require that it be kept in a centralized system, which ultimately would
undermine the protection that a public chain offers, and which patrons currently enjoy.

4. Discussion

One of the most important aspects of the issues highlighted by this discussion is that
the main feautre of a public blockchain—its transparency, which allows it to perpetuate
claims of accountability—does not ensure that this accountability takes place without other
considerations. While private information is generally protected, this anonymity also
allows for the easier facilitation of nefarious activity such as contracts with unfair terms
created by asymmetric power arrangements, ambigous and unfamiliar design, compliance
issues, money-laundering issues, and more. Thinking through some of these issues premp-
tively and prior to these practices becoming normalized could help begin a real, sustainable
future for blockchain. Future research on this topic could help negotiate privacy concerns
and anonymity benefits with transparency claims, for instance. Pinpointing responsible
parties and maintenance issues, deletion concerns, and record metadata requirements is a
daunting task with distributed infrastructure in some respects, but is also a worthwhile
endeavor so as to make sure that the features of the technology are not abused.

There can be a few conclusions drawn from this preliminary study. The first is that the
current implementations of blockchain technology need a bit of brainstorming and creative
work in terms of its records and the audiences for which they are intended. Simplified
conclusions from this study are as follows:

• Users: Blockchain records for Users could be developed with standard form contract
issues in mind, as well as with usability and interface theory conceptualizations of
how users engage with the technology and the records it produces. This might include
designing the records so that they include context and familiarity, which would be
useful in holding the parties of a contract accountable and providing those with the
information they need to litigate a more powerful party. It could also normalize
some of these design conventions so that the average person could understand their
information, creating best practices that could iteratively be made better moving
forward. This is especially important for IoT applications as they are embedded into the fabric
of everyday life, proliferating contracts for each instance of each transaction.

• Firms: Blockchain records for Firms could be improved with some research that
focuses on the information that should be required for companies to retain on their
own records. Also, it should be considered how this would contribute to compliance
or a lack thereof. Negotiating privacy concerns with the information that the company
needs to be compliant is one of the biggest concerns for Firms at the moment. Reducing
risk and liability for this new type of company encourages innovation in this space as
well as sustainability. More users will begin to make use of blockchain applications as
trust in the companies increases, which will help streamline some of the compliance
requirements into more practical applications.

• Regulators: Blockchain records present several quagmires for Regulators. Since the
decentralization of the blockchain ledger offers protection for Users, it is difficult to
negotiate this protection with the necessary information needed to keep the Firms
accountable. One possible way forward is to create personal data stores for consumers
that could be accessed in an investigation [41]. There are still issues with this idea
such as the inability to access this data due to multiple entities being involved, yet it
could be studied as a model to prompt the sorting out of what information needs to
be on the blockchain and who is responsible for its retention. Making nuanced and
effective regulatory schemes is a concern being tackled for all technology applications.
Along these lines, new disclosure laws such as GDPR and CCPA can be satisfied as
effort is put forth in this space.

Ultimately the main conclusion that can be drawn from this study, and why it is
named ‘Betraying Blockchain . . . ,’ reiterates that although it seems like the technology
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associated with these records proves a sense of viability in its immutability or transparency,
those qualities should not be taken for granted as there is still much work to do in this
space. And while blockchain, smart contracts, and NFTs are seemingly solving some of
the issues present in the currently popular centralized data-collection application model,
they cannot solve them adequately unless the context and situation of the application is
considered. That includes looking at how this new technology replaces the past functions
of records and how well it lives up to solving the problems associated with that practice.
The IoT future will include applications that are involved in many aspects of our lives and
involve sensitive data, so simply switching to a different type of infrastructure should not
be thought of as a cure-all. Hopefully this work will free up interested parties to make
use of more interdisciplinary research that moves from just cryptography to document
and record theory and practices. The technology is exciting, but the future that awaits
is dependent on us making use of and building upon the work that has come before us.
This will then, in turn, support the goals of those utilizing the qualities that the technology
should provide as the records can live up to the standards that have been developed over
many centuries; only then can blockchain technology can be considered a ‘development’ in
its truest sense.
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Abstract: IoT devices play a fundamental role in the machine learning (ML) application pipeline,
as they collect rich data for model training using sensors. However, this process can be affected by
uncontrollable variables that introduce errors into the data, resulting in a higher computational cost to
eliminate them. Thus, selecting the most suitable algorithm for this pre-processing step on-device can
reduce ML model complexity and unnecessary bandwidth usage for cloud processing. Therefore, this
work presents a new sensor taxonomy with which to deploy data pre-processing on an IoT device by
using a specific filter for each data type that the system handles. We define statistical and functional
performance metrics to perform filter selection. Experimental results show that the Butterworth
filter is a suitable solution for invariant sampling rates, while the Savi–Golay and medium filters are
appropriate choices for variable sampling rates.

Keywords: Internet of Things; sensor; machine learning; computational intelligence; data analytics;
data pre-processing

1. Introduction

Internet of Things (IoT) technology allows electronic devices to be deployed in indoor
and outdoor environments to collect data [1]. Commonly, these IoT devices consist of a
microcontroller, sensors, a battery, and wireless communicationelectronic devices to be
deployed in indoor and outdoor environments to collect data. IoT devices can be installed
in harsh scenarios due to their flexible development [2]. Nowadays, about 22 billion IoT
devices are uploading data to the cloud. Every year, this number increases exponentially to
continue collecting data through a wide variety of sensors. These data are used to train
machine learning (ML) models, powerful tools that can find hidden knowledge in data that
describes a phenomenon or human behavior [3]. However, constantly uploading data to
the cloud causes bottlenecks in the communication channel, and in some cases, the stored
data are not processed for a specific purpose [4]. Hence, cloud computing servers have to
delete data periodically to avoid storage overload. Consequently, data quality is essential
to reduce the complexity of the ML model, and it is necessary to send only relevant data
to be processed. Therefore, after the data gathering process, a data pre-processing step
is required to eliminate errors, which means both stages are part of the ML pipeline [5].
There are several repositories in different areas where researchers and developers can
obtain databases to deploy and test ML models. They assume that the data are cleaned
before being put into the repository. Nevertheless, this is not the case for IoT environments,
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where sensors gather data in situ because they describe specific parameters such as envi-
ronmental conditions, gas concentration, and location. In conclusion, data gathering and
pre-processing are obligatory stages of building an ML application in IoT environments.

The data collection stage in IoT environments needs to handle uncontrolled conditions
such as environmental changes, construction failures of microcontrollers and sensors that
cause poor calibration, and vibrations in their working environment, among others [6].
Therefore, model inference can reduce performance, resulting in the use of complex models
when describing a phenomenon or human behavior [7]. The pre-processing stage produces
reliable, accurate, repeatable, and error-free data [8]. Thus, the electrical signal obtained
by the sensors should be acquired with an adequate sampling rating and proper tuning of
analog-to-digital converters [9]. On the software side, digital filters are applied when data
have been stored on servers. However, sensors have different data collecting procedures,
such as digital-analog converters, communication ports, and pulse trains [10]. Therefore,
the cloud can not apply a standard filtering process to all the features stored. Additionally,
this data flow over communication channels increases security concerns and decreases user
confidence in the system. Therefore, new computational paradigms propose decentralized
computing where some ML stages run closer to the user, which means performing data-
preprocessing locally [11]. It is worth pointing out that these algorithms can be deployed
on IoT devices due to the microcontrollers’ increasing computing capacity, which will not
affect battery consumption [12]. Additionally, sensors vendors are working to give the IoT
developer robust libraries to improve sensor management [13]. However, sensor data need
to be pre-processed before sending it to the cloud [14].

Data filtering removes noise by comparing each signal component to the rest and
eliminating the unusual ones. The most relevant criteria and their principal algorithms are
infinite impulse response (IIR) with the approximations Butterworth, Bessel, and Cheby-
shev; finite impulse response (FIR) with the windows Hamming, Tayler, Barlett, and
Blackman; and smoothing filters with the algorithms: mean, average, Gaussian, and Savi–
Golay [14]. For more information about digital filter design, we suggest following these
works [15,16]. These filter criteria depend on the sampling rate at which the IoT device is
configured, the collection procedure of each sensor, and the application. However, previous
sensor taxonomies focus on hardware characteristics without considering their primary
purpose of collecting data. In addition, data filtering criteria are applied for each IoT
development, which consumes additional time for IoT researchers and developers.

It is necessary to define a new sensor taxonomy related to the data collection and pre-
processing processes that fits the filtering criteria to be part of the whole ML pipeline [17].
Therefore, this work introduces a new sensor taxonomy oriented to pre-processing data
on-device according to the type of sensor used in the IoT application. Consequently, we
need to define how IoT devices collect data through sensors to determine the suitable filter
for each case. Our summarized contributions are:

• We define a new sensor taxonomy related to data gathering and data pre-processing
on-device.

• We determined that the main sensor characteristic for classification is sampling rate.
• We introduce a data filtering scheme using the most representative algorithms/models

of infinite impulse response (IIR), finite impulse response (FIR), and smoothing filters
by setting specific sampling rates for each sensor type.

• We compare data filtering criteria to select the suitable ones for the proposed taxonomy
of sensors and ensure its usefulness in computationally constrained IoT environments.

• We performed tests on sensor data with statistical and functional metrics.

The main result of this work is defining the Butterworth filter as a suitable criterion for
analog sensors with invariant sampling rates. Meanwhile, Savi–Golay fits analog sensors
with varying sampling frequencies. The average filter is adequate with this signal in digital
pulse train sensors. Savi–Golay and medium filters remove noise and preserve the main
signal characteristics regarding communication protocol sensors.
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The rest of the manuscript is structured as follows: Section 2 shows related works
and signal filtering background. Then, Section 3 introduces the proposed sensor taxonomy.
Next, the methodology is shown in Section 4. Results are presented in Section 5 with the
statistical and sensor functionality metrics to define the filter algorithm we chose. Finally,
Section 6 shows conclusions and future work.

2. Background

In this section, we present a summary of previous sensor taxonomy and data filter-
ing works.

2.1. Early Studies Sensors

The increasing use of electronic devices in the industry has opened up opportunities
to develop different types of sensors. Indeed, new technology trends such as the Internet
of Things (IoT) allowed expanding the research areas where sensors are used. Therefore,
new ways to describe/classify them are relevant, since they play a significant role in the
data-gathering stage of the entire machine learning application pipeline. Thus, in the early
stages of sensor development, works such as MacRuairi et al. [18] presented sensor require-
ments taxonomies to match specific sensors with real scenarios. Then, Fowler et al. [19]
presented a survey related to the materials that sensors are made from. Following this clas-
sification scheme, works such as Tuukkanen et al. [20], Noel et al. [21], Cornacchia et al. [22],
and Khanh et al. [23] presented sensors surveys for specific areas, such as piezoelectric sen-
sors, health monitoring, wearable sensors, and intelligent agriculture, respectively. In recent
years, Abdel Azeem et al. [17] have shown the fundamentals, challenges, opportunities,
and taxonomy of sensors in IoT environments describing the needs and usages of each one.
They also presented a wide array of previously proposed solutions, comparing them to
each other and providing brief descriptions of the issues addressed by each category of that
taxonomy. Finally, works such as Latifi et al. [24] and Anajeba et al. [25] presented early
intuitions about improving the security of the communication channel in IoT environments.

In the ML application pipeline, Morrison et al. [26] present an innovative survey in
sensor data collection and analytical systems. Additionally, Infanteena et al. [27] showed
a survey on compressive data collection techniques for IoT devices and analyzed their
features. Finally, in this research area, Tiboni et al. [28] described sensors and actuators in
exoskeletons using the machine learning pipeline.

2.2. Data Pre-Processing

The most relevant works in this field started with Zhang et al. [14] presenting a
relevant work about a data H∞ filtering approach for wireless sensor networks (WSNs) in
nonuniform sampling periods with optimization techniques. Then, Deepshukha et al. [29]
designed a low-power digital FIR filter on FPGA for noise reduction in a WSN. Later,
Bose et al. [2] presented an analysis of contemporary lossy compression algorithms using
the signal characteristics of sensor data. At the same time, Safaei et al. [30] showed a
novel approach to integrating time-series analysis, entropy, and random forest-based
classification. For their part, Kowalski et al. [31] presented a review and comparison of
smoothing algorithms for one-dimensional data noise reduction in specific sensors and
environments. Timo et al. [12] presented outlier detection from non-smooth sensor data, as
they worked in spatial discontinuities in the data, such as those arising from shadows in
photovoltaic (PV) systems. Saad et al. [32] analyzed how quantization affects distributed
graph filtering over both time-invariant and time-varying graphs. We bring insights into the
quantization effects of the two most common graph filters: the finite impulse response (FIR)
and auto-regressive moving average (ARMA) graph filters. In addition, we have proposed
robust filter design strategies that minimize the quantization noise for time-invariant and
time-varying networks.

Several works have delved into data pre-processing in IoT devices, but most intro-
duced approaches for specific scenarios without a rationale for the selected filter criterion.
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On the one hand, outlier detection is a complex task for determining if external causes
have corrupted the data. Therefore, as mentioned in [33], the filtering process must be
carried on before the outlier detection stage. On the other hand, filtering can avoid physical
constraints by giving a clean dataset to implement different stages. Finally, the literature
review allowed us to observe open challenges in data filtering, such as the lack of a sen-
sor taxonomy related to the data acquisition process and the establishment of adequate
sampling rates for each type of sensor.

3. Proposed Sensor Taxonomy

We propose classifying sensors into three groups considering the sampling rate and
how sensors send information to the microcontroller. Figure 1 illustrates this taxonomy.

Figure 1. Proposed taxonomy of IoT sensors considering data processing characteristics.

3.1. Analog Sensors

These sensors mostly have passive elements and operational amplifiers for the hard-
ware conditioning of the electrical signal and deliver it analogously to the microprocessor to
convert it to digital form (analog–digital conversion) [34]. The ability to recreate the original
signal is related to the resolution of the ADC, which is the number of bits that the micropro-
cessor has for this process. Therefore, the sampling rate is the most relevant characteristic
of the filter implementation criteria. Hence, we divide them into two categories:

• Invariant sampling rate: These sensors are developed for collecting signals continu-
ously to detect changes in a main characteristic. For example, the processing of human
electrical activity through electromyography (muscle), electrocardiogram (heart), elec-
troencephalogram (EEG), or galvanic skin response (hands).

• Variant sampling rate: These sensors run a couple of times a day due to their applica-
tions. They do not have a specific sampling frequency because the system focuses on
taking the same number of samples each time it is activated [6].

3.2. Digital Sensors

These sensors each contain a tiny microcontroller to perform the ADC process by
themselves and send the data to the main microcontroller in two ways:

• Pulse train sensors: variate their pulse train frequency when the transducer detects
that a physical magnitude such as temperature, humidity, or distance is changing.
Therefore, capacitors are often used in this type of sensor.

• Logic states sensors: use only two logical values, 3.3 vs. or 5 vs., when detecting a
physical magnitude, no matter their variations, and 0v when the sensor cannot catch
the magnitude. Thus, for example, the human presence sensor can not give us more
information about the phenomenon, just its presence.

3.3. Sensors by Communication Protocol

They are the most complex sensors because they have a microcontroller inside whose
main objective is to obtain the best signal of the physical magnitude. These sensors also
implement a communication protocol to connect sensors in series. Therefore, only a few
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pin connections are necessary to handle many sensors. Furthermore, these communication
protocols define a master device (microcontroller) to coordinate the slave devices’ (sensors)
communication. Nowadays, sensor vendors, such as SparkFun, perform new socket
connections to develop the electronic systems quickly.

• Serial communication: A sensor uses one pin to transmit messages and another pin to
receive them. This protocol extensively adds wireless protocols to the IoT device, such
as Bluetooth.

• I2C: They have a new socket connection called Qwiic (Connect System uses 4-pin JST
connectors to quickly interface development boards with sensors). This standard also
allows connecting 127 sensors using just two pins. One is the clock rate, and the other
is the transmitter line.

4. Methodology

The proposed methodology determines the sensors used and the data sampling
required to implement filters. First, it is necessary to mention that the FIR and IIR filters are
implemented only in the sensors with invariant sampling rates and the signal smoothing
technique on the rest. However, the metrics used for both criteria are: signal-to-noise ratio
(SNR), mean squared error (MSE), mean absolute error (MAE), root-mean-square error
(RMSE), and R2 score. Figure 2 shows the mentioned process.

Figure 2. Sensor data and pre-preprocessing analysis.

4.1. Sensors’ Characteristics

The most commonly used sensors were identified from the reviewed related works.
As a result, the relevant research areas are smart farming, cities’ environmental conditions
analysis, and human illness. Therefore, sensors chosen regarding the proposed taxonomy
were ECG Pulse Sensor (Bio-signal), Force Sensitive Resistor (FSR) (specific propose), Flex
Sensor (Specific propose), Humidity and Temperature Sensor DHT-22 (pulse train), Gas
Sensor MQ-135 (pulse train), and CO2 sensor-SCD30 (I2C/serial), UV sensor-VEML6075
(I2C/serial). These sensors are from the same sensor vendor company SparkFun. We
avoided using logical state sensors because they would not allow us to have data filtering
criteria with only two values. Moreover, the sensors’ communication protocol offers us the
same ability to use I2C and serial protocol. Table 1 shows the principal characteristics of
each sensor used.

245



Information 2022, 13, 241

Table 1. Most commonly used sensors in IoT devices regarding the proposed taxonomy.

Sensor Type Sensor Characteristics

Bio-Signals ECG (pulse sensor)

Detects changes in the volume of a blood vessel that
occur when the heart pumps blood. To do so, they emit
infrared, red or green light (550 nm) towards the body
and measure the amount of reflected light with
a photodiode or phototransistor. It has an operating
voltage between 3.3 and 5 volts with a power
consumption of 4 mA.

Specific Propose

Flexometer
Produces a variable resistance according to the degree
to which it is bent. In this sense, the sensor converts the
bending into different values of electrical resistance.

Force

The force-sensing resistance sensor (also called FSR)
varies its internal resistance when pressure is applied
to its sensing area. As of this effect, the output
voltage changes as well. Thus, the higher the pressure,
the higher the output voltage.

Pulse train

Humidity and Temperature (DTH11)

This sensor sends a calibrated digital signal containing
an 8-bit microcontroller. In addition, it contains two
resistive sensors (NTC and humidity). It uses one-wire
communication (pulse train).

gas NOx (MQ135)
This air quality sensor detects gas concentration in
various percentages. The output signal presents TTL
voltage levels to be processed by a microcontroller.

Cx I2C

CO2 (SCD 30)
This is a high quality non-dispersive infrared (NDIR)
based CO2 sensor capable of detecting from 400 to
10,000 ppm with an accuracy of ± (30 ppm + 3%).

UV (VEML)

This sensor implements a simple photodiode to
measure UVA (320–400 nm) and UVB (280–320 nm)
radiation levels. With this data, it can read the intensity
of these types of light in irradiance and, from there,
calculate the UV index.

4.2. Data Samples Acquisition

First, we started with the ECG Pulse Sensor of the invariant sample rate sensors.
The sample rate was 1 kHz (Nyquist theorem) because the signal has main components
until 100 Hz. Therefore, 1400 samples were obtained in 10 controlled experiments. Second,
the variable sample rate sensors were exposed to their physical magnitude for 10 s, and then
they returned to their initial condition (flexometer and force sensors). Consequently,
this process was carried out ten times to store 1000 samples with a 100 Hz sample rate.
A similar procedure was carried out with pulse train sensors, such as DTH11 and MQ135.
Finally, communication protocol sensors (SCD30 and VMLE) were tested in 10 controlled
experiments. As a result, we stored 500 samples with a 50 Hz sample rate because their
response times are higher than those of the other sensors.

5. Results

The sensors were tested with statistical metrics according to the experiments per-
formed for each one. Then, they were evaluated with functional metrics such as accuracy,
reproducibility, repeatability, and stability. These metrics represent the sensors working
in real conditions. Thus, for a better understanding of each metric result, four evaluation
levels were established for the sensors: (i) excellent, (ii) good, (iii), normal, and (iv) poor.
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Finally, Figure 3 shows all the sensors used in this research and their connections with a
sample board, such as Arduino.

Figure 3. Sensors used in this work according to the new proposed taxonomy. (—) Analog connection,
(—) Digital connection, (—) Prot. Communication connection (SDA), ( —) Prot. Communication
connection (SCL), (—) VCC, (—) GND.

5.1. Invariant Sampling Rate (ISR)

The signal needs to be converted to the frequency domain to detect the principal
components. Therefore, a fast Fourier transform was implemented to define that the EMG
components were between 5 and 40 Hz, which are presented in Figure 4. Then, IIR filters
were the first approach with Chebyshev, Butterworth, and Bessel approximations with 3,
5, and 7 orders of band-pass filter design. We noticed that the filters in order 5 fit better than
the rest. Table 2 summarizes the results of the statistical metrics mentioned before. The
Butterworth filter demonstrated superior SNR, MAE, and R2 metrics. Additionally, it is
visible that Butterworth reduced the noise with few signal alterations. The second approach
was FIR filters. They focus on a time-domain analysis through windows. Reference [35]
defines that using 10% as a window size of sample rate is recommended. Thus, we defined
window sizes of 150, 250, and 300 components to compare with the ECG signal. Table 3
summarizes that windows size equal to 150 components produced a better SNR when
Nutall window was applied. However, the differences between the windows were minimal
when we tried to improve the signal. As a result, FIR filters are a better option than IIR.
Finally, Figure 4 shows the components in the frequency domain and the graphical results
of FIR and IIR filters.

Table 2. EMG signal statistical analysis and IIR filters.

Approximation SNR (dB) MSE MAE RMSE R2

Butterworth 4.44 0.13 0.31 0.36 −6.83

Bessel 4.20 0.20 0.38 0.44 −10.66

Chebyshev 4.12 0.12 0.30 0.34 −6.26

Table 3. EMG signal statistical analysis and FIR filters.

Window SNR (dB) MSE MAE RMSE R2

Nutall 4.48 0.04 0.18 0.20 −1.55

Hamming 3.77 0.13 0.33 0.36 −7.15

Taylor 4.21 0.80 0.81 0.9 −8.43

Blackman 4.09 0.06 0.22 0.25 −3.0
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(a)

(b)

(c)

Figure 4. EMG signal analysis. (a) EMG signal in the frequency domain. (b) IIR filters: (—) Butter-
woth, (—) Chebyshev, (—) Bessel, (—) original samples. (c) FIR filters: (—) Hamming, (—) Nutall,
(—) Taylor, (—) Blackman, (—) original samples.

5.2. Variable Sample Rate (VSR)

For experimental purposes, the Force Sensitive Resistor sensor was tested with 40 lbs
of pressure, and the Flex sensor bent it 45 degrees. Both were tested with the sample rate
mentioned above (100 Hz). Additionally, their datasheet recommends using an analog
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amplifier in follow-up configuration to avoid DC voltage. Therefore, we applied smoothing
filters. The average filter has a better SNR metric; however, the R2 score indicates that
this filter affects the original signal. Additionally, the Gaussian filter tends to round off
the maximum values obtained and modifies the output signal due to sigma parameter
(Gaussian bell size). The Savi–Golay filter eliminates noise in VSR signals: see the strong
results in R2 score and SNR metrics (Table 4). Figure 5 shows the graphical results of each
smoothing filter.

Table 4. Statistical analysis of sensors with various sampling rates.

Sensor
Average Medium Gaussian Savi–Golay Statistical
k = 20 k = 20 Sigma = 7 k = 9, Poly = 4 Metrics

Flex sensor

9.07 8.28 8.97 7.90 MSE

1.49 1.60 0.65 1.27 MAE

1.91 1.96 0.98 2.81 RMSE

0.642 0.56 0.99 0.99 R2 score

2.65 2.16 2.47 2.49 SNR

Force sensor

195.39 198.23 205.31 158.2 MSE

5.25 5.29 3.20 4.96 MAE

18.85 15.78 14.32 15.67 RMSE

0.75 0.65 0.99 0.99 R2 score

2.91 2.65 2.86 2.87 SNR

(a) (b)

Figure 5. Smoothing graphical analysis in the proposed sensor taxonomy. (—) Original samples.
(—) Average filter. (—) Medium filter. (—) Gaussian filter. (—) Savi–Golay filter. (a) FLEX sensor.
(b) FORCE sensor.

Sensor performance metrics: These sensors have a variable resistor as their main
component. Therefore, they are stable in operation, and similar data can be obtained
in each data gathering process. However, their wear and tear is very high, subject to
human activity. For this reason, they are dependent on their location and use, and their
reproducibility tends to decrease over time.

5.3. Digital Pulse-Train

The data collection process was based on having a closed box with an incandescent
bulb, a fan, and extra space for sensors. First, we used the DTH11 to get measurements when
the temperature inside the box increased due to the bulb and then decreased when the
fan was powered. Then, for the gas sensor MQ135, we used a gas emitter (lighter) instead
of the bulb and a fan, and a sensor inside to change the gas concentration inside quickly.
These experiments demonstrated that Savi–Golay and average filters fit with these kinds
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of signals and have better SNR metrics. Consequently, we noticed that the average filter
reduces the dc voltage (peaks), producing good R2 score, MAE, and MSE results (Table 5).
Moreover, Figure 6 represents the smoothing signal applied in pulse train sensors, from
which we can notice that medium and Savi–Golay filters do not modify the electric signal.

Sensor performance metrics: These sensors have standard accuracy and stability due to
their calibrated modes. However, they have restrictions on repeatability and reproducibility
metrics because they sense physical magnitudes that do not vary in short periods, such as
temperature and humidity, among others.

(a) (b)

Figure 6. Smoothing graphical analysis in the proposed sensor taxonomy. (—) Original samples
(—) Average filter. (—) Medium filter. (—) Gaussian filter. (—) Savi–Golay filter. (a) DHT-22 sensor.
(b) MQ-135 sensor.

Table 5. Digital pulse-train sensors’ statistical analysis.

Sensor
Average Medium Gaussian Savi–Golay Statistical
k = 30 k = 30 Sigma = 7 k = 9, Poly = 4 Metrics

DHT-11

6.40 6.51 0.2 4.29 MSE

2.15 2.14 0.07 0.29 MAE

1.03 1.04 0.15 0.54 RMSE

0.75 0.77 0.99 0.96 R2 score

9.72 9.60 9.61 9.69 SNR

MQ-135

13.55 11.79 10.48 13.73 MSE

1.35 2.29 0.29 1.62 MAE

3.77 3.49 0.69 3.70 RMSE

0.51 0.35 0.99 0.98 R2 score

1.36 1.27 1.26 1.28 SNR

5.4. I2C Communication Protocol

These sensors were exposed to their corresponding physical features (UV rays and
CO2 gas). Gausian and Savi–Golay filters removed the noise better than the other algo-
rithms. However, the Gausian modifies the signal output significantly. Additionally, the
average does not fit with these types of electrical signals due to the sizes of their windows
affecting the signal with few samples of data. Therefore, medium and Savi–Golay can be
applied to these sensors. Table 6 represents the statistical analysis, and Figure 7 shows the
graphical results.

Sensor performance metrics: They have poor repeatability and reproducibility because
UV rays do not have considerable variability during the day. Moreover, CO2 can increase
exponentially in fires, smoking zones, etc., but it needs a few hours to normalize. As a
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result, the sensor has restrictions concerning returning to the initial state. Figure 7 shows
the smoothing graphical results of both sensors.

Table 6. Communication protocol sensors’ statistical analysis.

Sensor
Average Medium Gaussian Savi–Golay Statistical
k = 30 k = 20 Sigma = 7 k = 9, Poly = 4 Metrics

SCD30

540.16 650.66 435.10 475.0 MSE

47.89 69.5 62.14 105.78 MAE

178.05 111.02 124.23 182.96 RMSE

0.55 0.77 0.94 0.86 R2 score

1.51 1.47 2.01 2.37 SNR

VEML6075

2.51 3.44 2.14 2.43 MSE

0.97 0.98 0.39 0.9 MAE

1.58 1.85 1.2 0.20 RMSE

0.42 0.22 0.10 0.99 R2 score

1.0 0.88 0.89 0.92 SNR

(a) (b)

Figure 7. Smoothing graphical analysis in the proposed sensor taxonomy. (—) Original samples.
(—) Average filter. (—) Medium filter. (—) Gaussian filter. (—) Savi–Golay filter. (a) SCD30 sensor.
(b) VEML6075.

5.5. Real Tests

Sensors were evaluated under natural conditions to test each filter selected. In addi-
tion, we compare the voltage obtained through sensors using a multimeter KEYSIGHT
DIGITAL MULTIMETER U1282A, which has a 0.025% voltage accuracy. Therefore, for a
better understanding of each metric’s result, four levels of evaluation were established
for the sensors: (i) excellent, (ii) good, (iii), normal, and (iv) poor. Table 7 shows the
results obtained.

Finally, we obtained the system response time for each sensor with the filter deployed
on the device. For example, the Butterworth filter takes 2.5 ms to process an array with
300 samples, the Savi–Golay takes 1.2 ms to process the same number of samples, and the
medium filter takes 0.68 ms. Therefore, this pre-processing technique is a suitable solution
to run in real-time scenarios when the IoT system can define threads for each procedure
to reduce the time response of each task. Additionally, filters have a small footprint in
memory, leaving enough space to run the IoT application.
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Table 7. Sensor performance metrics.

Sensor Taxonomy

Performance Metrics Analog Sensors Pulse Comm.

ISR VSR train Protocol

Accuracy Good Good Normal Excellent

Reproducibility Good Poor Poor Excellent

Repeatability Good Normal Excellent Poor

Stability Normal Poor Good Normal

Noise Poor Normal Good Good

6. Conclusions and Future Works

This work introduced a new taxonomy of sensors focused on data pre-processing
on-device to upload reliable data to the cloud. Furthermore, filter implementation criteria
were established to prevent erroneous data from being part of the ML model. We now
present the conclusions of this work:

• This taxonomy of sensors is appropriate for the new trend of executing some ML stages
on-device. Therefore, this work prevents data that do not describe the phenomenon
being studied from being part of the ML model. Thus, the sampling frequency used in
the sensors is a fundamental part of implementing filters.

• The proposed methodology demonstrates which filter is adequate and does not deform
the original signal.

• Performance metrics in real environments define the ability to reduce noise and
provide new trends to improve this process for coming sensors.

• We declare the Butterworth filter suitable for analog sensors with invariant sampling
rates. Savi–Golay fits analog sensors with variant sampling rates. The average filter is
adequate for digital pulse train sensors. Regarding communication protocol sensors,
Savi–Golay and medium filters remove noise and provide improved signal for the
proposed data gathering.

Finally, we understand that the next step is to detect anomalies in sensor data due to
manipulation or sensor failure.
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Abstract: Thanks to the proliferation of the Internet of Things (IoT), pervasive healthcare is gaining
popularity day by day as it offers health support to patients irrespective of their location. In emergency
medical situations, medical aid can be sent quickly. Though not yet standardized, this research
direction, healthcare Internet of Things (H-IoT), attracts the attention of the research community,
both academia and industry. In this article, we conduct a comprehensive survey of pervasive
computing H-IoT. We would like to visit the wide range of applications. We provide a broad
vision of key components, their roles, and connections in the big picture. We classify the vast
amount of publications into different categories such as sensors, communication, artificial intelligence,
infrastructure, and security. Intensively covering 118 research works, we survey (1) applications,
(2) key components, their roles and connections, and (3) the challenges. Our survey also discusses the
potential solutions to overcome the challenges in this research field.

Keywords: Internet of Things; healthcare; pervasive computing

1. Introduction

Pervasive computing, or ubiquitous computing, is a computing paradigm that lever-
ages the user interaction with microprocessors or gadgets in an “anywhere and anytime”
manner. The users do not need to access a PC or laptop; instead, they can use their body-
worn devices. Due to the rapid proliferation of handheld and wearable devices, the Internet
of Things (IoT) enabled technology is evolving healthcare in the era of pervasive computing.
The development of cloud technology empowers pervasive computing even more by pro-
viding communication across different objects for data sharing. Thanks to that, IoT offers a
stage to associate heterogeneous devices from smart homes, and smart urban communities,
to smart healthcare. These interconnected objects and sensors harvest the information
for complicated tasks such as recognition, prediction, planning, and recommendation [1].
With the tremendous growth in recent years, smart IoT systems are expected to play a
vital role in many pervasive healthcare applications. Indeed, IoT integrated with other
advanced technologies could significantly transform the landscape of pervasive healthcare
in an uninterrupted and ubiquitous monitoring manner. This new direction is regarded
as the Healthcare Internet of Things (H-IoT), which is very important, especially during
the pandemic era. For example, to prevent the spread of the virus, social distancing can be
implemented by deploying IoT devices, including smart watches and monitoring devices.
Here, we would like to highlight the differences between generic IoT and H-IoT. The generic
IoT is usually deployed over a large-scale area such as smart cities or urban planning. On
the other hand, H-IoT is usually deployed in a small-scale area such as the human body
or a smart home or hospital. H-IoT nodes, miniaturized to be unobtrusive, are used to
monitor human body vitals. These nodes can collect energy from a human via body heat
or motion.

Information 2022, 13, 360. https://doi.org/10.3390/info13080360 https://www.mdpi.com/journal/information255



Information 2022, 13, 360

In this paper, our overarching goal is thus to provide a comprehensive survey of
pervasive computing in H-IoT. We would like to provide a broad vision of its components
and their connections. We classify the vast amount of publications into different categories
such as applications, sensors, communication, storage infrastructure, security, and artificial
intelligence. Intensively covering more than 100 publications, we survey (1) applications,
(2) key components and their roles, and (3) the challenges.

The remainder of this paper is organized as follows. Section 2 compares this work to
other existing surveys. Section 3 surveys the applications of pervasive computing in H-IoT.
The key components of H-IoT are reviewed in Section 4. Section 5 reviews the existing
challenges. Finally, Section 6 concludes this paper.

2. Comparison with Other Surveys

There have been many surveys on H-IoT in the literature. Qi et al. [2] discussed the
applications, the data sensing and processing, and their challenges in H-IoT. However,
this survey is outdated since it did not address the latest technology in cloud computing
or security issues in personalized healthcare systems. In 2018, Alam et al. [3] surveyed
the roles of communication technologies in H-IoT applications. They introduced four
applications on infectious diseases, cardiovascular diseases, musculoskeletal disorders,
and neuromuscular disorders. They also discussed the issues and challenges along with
the emerging communication technologies. However, this survey disregards the impact
of artificial intelligence, which is a key component in HIoT applications. Meanwhile,
Shaikh et al. [4] reviewed smart healthcare systems using the Internet of Things, for
example, e-health systems, telehealth and home monitoring systems, and RFID-based
monitoring systems. They also discussed issues related to smart healthcare systems
such as reliability, low-latency tolerance, and interoperability. However, Shaikh et al. [4]
did not discuss the key components within HIoT systems. In another work, Ahmadi
et al. [5] reviewed the applications of the Internet of Things in healthcare. In particular,
they reviewed the main components and their functions along with the main issues
and challenges. Still, they did not consider the security and privacy issues in H-IoT.
In addition, artificial intelligence is not addressed in the survey. Similarly, Rajini [6]
reviewed different applications and services in smart healthcare systems. However, the
survey is lacking discussions regarding the key components of such systems.

Habibzadeh et al. [7] surveyed the H-IoT from a clinical perspective. They reviewed
the key components such as sensing, communication, and data analytics. They also
discussed the open issues and future trends in this field. This survey, however, did not
discuss the importance of artificial intelligence and cloud computing in this research
field. In a different survey, Usak et al. [8] reviewed the health care service delivery
based on IoT. They also discussed the pros and cons of other surveys. However, the
key components within the IoT healthcare system are not visited. This is not helpful
for readers to gain an understanding of the existing IoT healthcare system. Dhanvijay
and Patil [9] introduced a survey of technologies in H-IoT and their applications. Like
other surveys, open issues and the main challenges are discussed. Similarly, artificial
intelligence and cloud computing were not addressed in this survey. Recently, Ali Tunc
et al. [10] compiled a survey on emerging technologies, applications, challenges, and
future trends for IoT-smart healthcare. The key components such as sensors and privacy
issues were not addressed in the survey.

Table 1 shows the comparison between our survey with the existing surveys in the
literature. Our survey covers all the important content related to pervasive computing
in H-IoT.
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Table 1. Literature survey comparison. The checkmark (�) denotes the availability of the mentioned
content in the survey.

Surveys
Survey

Comparison
Review of

Applica-tions

Key Components

Challenges
Devices/Sensors

Commu-
nication

Artificial
Intelligence

Cloud
Computing

Security and
Privacy

Qi et al. [2] � � � � �

Alam et al. [3] � � � �

Shaikh et al. [4] � �

Ahmadi et al. [5] � � � �

Rajin [6] �

Habibzadeh et al. [7] � � � � � �

Usak [8] � � �

Dhanvijay and Patil [9] � � � � �

Ali Tunc et al. [10] � � � � � �

Ours � � � � � � � �

3. Applications of Pervasive Healthcare Internet of Things

Pervasive computing in H-IoT can be found in various application domains as shown
in Figure 1. We summarize some notable applications below.

Figure 1. Some applications of pervasive computing in the healthcare Internet of Things. Section 3
reviews these components in detail.

3.1. Activity Recognition

Activity recognition is crucial in the sense that it provides a context of what is hap-
pening so that the IoT system can respond appropriately. Note that the activity can be
recognized via various sensors. Nguyen et al. [11] used a spatial-temporal attention-aware
pooling for action recognition in video. First, the visual saliency is predicted from the input
video. Saliency-aware matching kernels are thus derived as the similarity measurement
of these channels. The kernels are then fed into support vector machines for activity clas-
sification. Falls are one of the major health threats to independent living, especially for
elderly people. Note that the elderly often live alone and receive only irregular visits. Thus
there is a legitimate need to detect a fall or abnormal activities. Ni et al. [12] used Kinect,
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an RGB-D camera for fall detection in hospitals. From both color and depth video frames,
the motion and shape features are extracted. Then, the extracted features are fused via a
multiple kernel learning model to detect the anomalous events. Once the system detects a
patient getting up from the bed, nursing staff are informed to provide immediate assistance.
Wang et al. [13] detect falls by using a WiFi signal. In particular, they take advantage of
the wireless physical information-Channel State Information (CSI) in widely deployed
commercial wireless infrastructure. They found that the static human body does not affect
CSI in the time domain. Instead, human activities, such as walking, sitting, standing up,
and falling will change the variance of CSI. Therefore, the variance change of CSI can be
used to detect the anomaly of human activities. Ruan et al. [14] used Radio-frequency
identification (RFID) tags to determine the fall in an unobstructed manner. The RFID tags
are used to sense regular actions and fall events simultaneously. When a person falls from
standing, the Received Signal Strength Indicators (RSSI) show different fluctuation patterns,
indicating the potential for detecting a fall. The detected fall event is sent to caregivers
along with the contexts of fall orientations. Uddin and Soylu [15] proposed a body sensor-
based activity modeling and recognition system using a time-sequential information-based
deep learning algorithm. First, data are obtained from multiple wearable sensors while the
subjects perform their daily routine activities. The collected time-sequential information
then goes through the feature extraction component. The extracted time-sequential features
are later fed to the deep learning model, i.e., long short-term memory (LSTM) for activity
recognition. Wang et al. [16] recognized multiuser activities by using wireless body sensor
networks. An RFID reader is located on each hand to detect the presence of a tagged object
within a few centimeters. There is an ultra-high frequency (UHF) RFID reader located in
each room to sense the proximity of a person wearing an UHF tag. The sensor data consist
of the 3-axis acceleration data for both hands, object use for both hands, temperature,
humidity, light, and user location. The sensor data is then used to recognize the activity
via a pattern recognition model. Zhu et al. [17] proposed ambient radar for indoor human
activity recognition. In particular, they used a 7.8 GHz radar to emit 16 pulse signals
per second and sample the reflected signals at 128 kHz to recognize the fine dynamics of
human activities.

3.2. Rehabilitation Monitoring

The assessment after stroke is very important for patients, especially for outpatients
who need to be evaluated often like inpatients but can still come back to their normal lives
as soon as possible [18]. Furthermore, in America, the risk of a second stroke in the first year
is 23% in 2022 [19]. Standen et al. [20] introduced a virtual reality system for home-based
arm rehabilitation for a post-stroke patient. The proposed system uses Kinect and smart
glass to monitor patients after stroke to predict and assess the recovery process. In [21],
Hoda et al. designed and developed a prototype to simulate real post-stroke rehabilitation
exercises. To find the correlation between the kinematics of the upper limb and the muscle
strength, they use least-square regression method. Like [20], a Kinect depth sensor and
a force sensing resistors glove are used to track the subject’s data such as limb joints and
muscle strength. The data are collected while the subjects are performing their exercises.
The evaluation on 13 subjects demonstrates the usefulness of the system in recognizing
the muscle strength of stroke patients without wearing any devices. Meanwhile, Bobin
et al. [22] introduced a system to monitor and guide stroke patients. The system consists of
a smart mug that tracks the patient’s drinking activities. For example, the information such
as drinking frequency, liquid level, drinking orientation, and liquid type, i.e., water, coffee.
This solution allows therapists to monitor the patient and assign the suitable exercises for
rehabilitation sessions.

3.3. Wellness Monitoring

According to the American Diabetes Association, about 37.3 million people (11.3%
US population) suffer from diabetes [23]. Blood sugar monitors play an important role
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in managing the blood glucose level. Al-Taee et al. [24] suggested a method to assist in
improving diabetes in young people by using smart robots. Fioravanti et al. [25] used a
texting system for helping patients who have problems with abnormally high blood sugar
levels. Kaiya et al. [26] used wireless devices to set up a diabetic meal plan by gathering the
figures from IoT tag systems. About 116 million (nearly 47%) adults in the United States
have problems with blood pressure, especially hypertension (high blood pressure) [27].
Janjua et al. [28] introduced a Bluetooth chest wearable device to monitor vital signs.
Since then, we can detect and prevent the chance of hypertension. This early intervention
can significantly reduce the risk of mortality caused by abnormally high blood pressure.
Meanwhile, Iakovakis and Hadjileontiadis [29] monitored orthostatic hypotension (low
blood pressure caused by postural changes) by using smartwatch sensors.

Cardiovascular disease is one of the most common causes of mortality globally, occur-
ring in both men and women, and it is also the number one killer in the United States [30].
There are 659,000 people in America who die from heart disease every year, comprising
25% of total deaths [31]. Kiranyaz et al. [32] designated an individual monitoring device
and advanced alert notification system for patients with an irregular heartbeat (cardiac
arrhythmias). Schmier et al. [33] developed a small sensor (the size of a paper clip) placed
in the pulmonary artery to check the heart rate with the cardioMEMS HF system like a
remote home monitoring unit. Xia et al. [34] presented an automatic wearable electrocar-
diogram (ECG) to classify and monitor patients with the diagnosis of cardiac arrhythmia.
Hijazi et al. [35] proposed the effectiveness of electronic monitoring by using machines for
supporting victims of a cardiac-related disease. Arppana et al. [36] analyzed cardiac rate
and rhythm from real-time face images to extract the activity of the heart in a cycle by a
non-contact-based method.

Respiration Rate Monitoring: respiration is one of five vital signs (heart rate, temperature,
blood pressure, oxygen saturation, and blood glucose level) that reflect patient breathing
problems. The respiration rate also plays an important role which is useful to be admitted
to ICU (Intensive Care Unit). Tan et al. [37] presented a real-time vision-based respiration
activity monitoring platform. Ferreira et al. [38] presented a smart system dubbed Baby Night
Watch to protect children from SIDS (Sudden Infant Death Syndrome) by wearing a chest belt.
In addition, Raji et al. [39] introduced a system for doctors to regularly monitor asthmatic
patients by using multiple remote sensors through an Android application.

Sleep is an essential state of rest that recharges the body and refreshes the mind.
Appropriate sleep can help one stay healthy and fight off diseases [40]. Therefore, pervasive
H-IoT systems can be used to monitor patients during sleep. Phan et al. [41] proposed
SeqSleepNet to automatically recognize the sleep stages. Nguyen et al. [42] developed a
system called LIBS (Light-weight and Inexpensive In-ear Bioelectrical Sensing System) to
monitor patients’ whole-night sleep and then classify four stages in sleep cycles through the
activity of the brain, eye, and muscle. Meanwhile, Yang et al. [43] used millimeter waves to
monitor vital signs, particularly with regard to detecting posture and irregular breathing
rhythms during sleep.

With the fast rhythms of developing society, work-related stress becomes more and
more common. People living with high stress suffer the risk of cardiovascular diseases,
mental health problems, eating disorders, and menstrual problems. Many pervasive H-IoT
systems have been designed to detect stress using wearable sensors. Clarke et al. [44]
presented a recommendation mobile application for just-in-time adaptive interventions to
recognize and reduce stress by detecting heart rate and suggesting the adapted treatment
model. McWhorter et al. [45] innovated a remote wearable sensor for PTSD (Post Traumatic
Stress Disorder) patients. Vidal et al. [46] developed a smartwatch-based platform to
support autistic people’s self-control of their emotions. Oti et al. [47] presented a real-time
stress level estimation approach for pregnant women. They adopted an unlabeled response
method to estimate the stress level from the heart rate during pregnancy.
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3.4. Disease Monitoring

In 2020, it is estimated that 5.8 million Americans are diagnosed with Alzheimer’s
Disease [48]. One new dementia case occurs every three seconds. Alzheimer’s patients
generally require daily assistance during their lives given their existing condition. IoT-based
systems can provide day-to-day support in many areas. Ishii et al. [49] introduced a system
for early dementia recognition using the machine-to-machine/IoT platform. Tamamizu
et al. [50] proposed a device to detect anomalous activities for home dementia care. The
users can define the anomaly and the corresponding cares. Once the anomaly is detected,
the corresponding care will be provided. In another work, Szeles and Kubota [51] used
smartphones for location monitoring for elderly people. The mobile application gives them
reminders based on their current location.

Parkinson’s and Huntington’s diseases are neurodegenerative and are characterized
by movement disorders. Huntington’s disease is an inherited condition caused by a mu-
tated gene from a parent. However, Parkinson’s disease may happen as a result of many
genetic or non-genetic factors. About one million people live with Parkinson’s disease
(PD) in the US [52]. This number is projected to rise to 1.2 million in the next eight years.
Nearly 60,000 Americans are living with PD every year and more than 10 million people
are diagnosed with PD worldwide [52]. Meanwhile, about 30,000 Americans suffer from
Huntington’s disease (HD) and another 200,000 have a chance of developing the condi-
tion [53]. The IoT systems provide a significant platform for screening the movement
disorders associated with PD/HD and managing disease status, advancement, and treat-
ment effectiveness. Dinesh et al. [54] and Adams et al. [55] proposed methods to affix
multiple wearable sensors detecting unusual movement symptoms in people with PD and
HD. These sensors can distinguish between individuals with motor symptoms and those
that do not have them. The combination of medication and the sensor-based system is
needed to apply in treatments effectively. Flagg et al. [56] introduced real-time virtual
monitoring of posture and gait valuation for PD.

From the summarized applications, we found that sensors, communication, artificial
intelligence, storage and computing infrastructure, security, and privacy are the key compo-
nents. Figure 2 shows the key components inside an H-IoT system. The following section
will review the key components in detail.

Figure 2. The key components in an H-IoT system, namely sensors, communication, AI,
fog/edge/cloud computing, and security. Section 4 reviews these components in detail.

4. Key Components in the Pervasive Healthcare Internet of Things

4.1. Sensors

Sensors are essential in pervasive H-IoT systems. They are used to collect user data
such as heart rate and body temperature. In addition, sensors are used for sensing envi-
ronmental information such as humidity, temperature, light, noise, and air quality. In this

260



Information 2022, 13, 360

subsection, we consider two types of sensors, namely, wearable sensors and environmental
sensors [57–82].

Regarding wearable sensors, the most common inertial sensors yield valuable in-
formation such as accelerometers [70] (position change) and gyroscopes [71] (rotational
change) are suitable for assessing human physical movement. They are worn on different
body parts to detect human motions such as bending the knees and walking up stairs.
Moncada-Torres et al. [57] categorized activity based on inertial and barometric pressure
sensors at separate positions of body parts. In addition, identifying the location of humans
is very important. There are many location sensors such as the Global Positioning System
(GPS) [72], the Death Reckoning Module (DRM) [73], and RFID [74,83]. Next, the sensors
reading vital signs are very crucial in any pervasive H-IoT. These sensors read the heart rate,
blood oxygen, and pressure [75]. The advancement of hardware integrates these sensors
into wearable devices for convenience, and the data can be transmitted via the Internet.
Bulling et al. [61] fused different data modalities from body-worn sensors to recognize
human activity. Recently, ego-centric cameras have become more popular. Therefore, the
images/videos captured from the head-mounted camera can be used in H-IoT for activity
analysis [76]. Journal et al. [63] used a wearable sensor for limbic encephalitis patients to
improve their biographical memory by using a camera as an image diary. After viewing a
visual diary, the user is able to recall approximately 80% of recent, personally experienced
events. Meanwhile, 49% of an event can be remembered by reading a written diary.

Regarding environmental sensors, modern thermostats [77] can be connected to WiFi
and provide information such as temperature and humidity. In addition, there are position
trackers such as Beacon [78], AirTags [79], and RFID tags [80] which are used to localize
certain physical objects. For example, Yang et al. [68] efficiently found objects by using
sparsely distributed passive RFID tags. Lastly, other sensors such as the doorbell, bulb, and
motion sensors [80–82] are important within an H-IoT system. Table 2 shows the categories
of sensors in pervasive H-IoT.

Table 2. Categories of sensors and devices used in pervasive healthcare Internet of Things, namely
wearable sensors and environmental sensors.

4.2. Communication

The data retrieved from the aforementioned sensors will be transmitted for further
processes such as activity recognition, anomaly detection, or recommendation. In this
subsection, we review the popular communication standards used in pervasive H-IoT.

4.2.1. Wireless Sensor Networks and Smart Body Area Networks

Wireless sensor networks (WSNs) consist of spatially dispersed sensors that collect
environmental data such as temperature, sound, pollution levels, humidity, and wind.
The collected data will then be forwarded to a central station [84]. With the ubiquitous
setting, WSN suits pervasive IoT systems with many devices or sensors [65–67]. The
sensors can communicate with each other via WiFi, Bluetooth, or Zigbee connections.
However, there exist several well-known limitations in WSNs such as power consumption,
communication range, and body-to-body communications. Therefore, Smart Body Area
Network (SmartBAN) technology [83,85–87] was proposed to support a range of medical,
health improvement, personal safety, and wellbeing via a network of small, low-power
devices. In particular, SmartBAN is designed for supporting body-to-body communications.
SmartBAN is based on a multi-radio approach to connect devices via radio standards.
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Furthermore, SmartBAN has separate control channels, namely, a data channel and a control
channel for data transmission and control message transmission. Takabayashi et al. [87]
evaluated SmartBAN in H-IoT applications. Javaid et al. [83] studied the feasibility of using
SmartBAN in monitoring COVID-19 [88] cases.

4.2.2. Cellular Technologies

The aforementioned WSNs and SmartBAN can be deployed for a small area such as a
home or hospital. To increase the deployment scale, cellular communication technology
needs to be involved [89]. Cellular technology has evolved from 1G to 5G. At the moment,
5G supports faster and more secure connectivity that is advancing everything from self-
driving vehicles to AI-enabled robots. This benefits a massive-scale IoT ecosystem of billions
of connected devices. There have been many studies on 5G and IoT architecture [90,91].

4.3. Artificial Intelligence

Artificial intelligence (AI) and machine learning (ML) is the brain of any health IoT
system. Figure 3 illustrates the application of AI/ML in H-IoT. We categorized the AI/ML
applications into the following groups.

Figure 3. The application of artificial intelligence in a pervasive healthcare Internet of Things
system. Orange and red dots denote the annotated training data, whereas the blue dots represent
the unlabeled training data.

4.3.1. Activity Detection

Machine learning techniques such as modern deep learning can be used to understand
and analyze the users’ heterogeneous data. In [92], Zhou et al. introduced deep learning
to improve activity recognition in IoT. They proposed a semi-supervised deep learning
framework to recognize motion from sensor data. Note that semi-supervised learning only
uses partially labeled data, so it saves labor costs for data annotation. Nguyen et al. [11]
used a supervised method, namely, kernel Support Vector Machine (SVM) to classify the
input features such as visual and motion cues into different action labels. Meanwhile, Ni
et al. [12] extracted 3D block features from RGB-D videos to efficiently classify the fall
activity in hospitals.

4.3.2. Disease Diagnosis

Machine learning is used in diagnosing some of the most popular eye problem disor-
ders such as angle-closure glaucoma and age-related macular degeneration [93]. Some of
the ML techniques used in various disease diagnosis applications include support vector
machines, deep learning systems, convolutional neural calculates, and backpropagation
calculates [94]. The input information varies based on the diagnoses being established.
Machine learning is normally used in media image processing to give the diagnosis. In
parallel, chronic diseases are diagnosed based on time progress data, including other factors
such as patient history, demographics, genes, and symptoms [48].

The most-reported information includes vital signs, age, X-ray features, and blood cell
count [60]. Machine learning algorithms are significantly effective, as they can access many
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pulmonary images of patients during the COVID-19 pandemic and can distinguish between
those infected by COVID-19 or not. Therefore, images, tabular, text, and time series are the
input data types for these prediction models. For example, X-rays can be supported with
ML classifiers to recognize COVID-19 [90]. Wynants et al. [95] developed prediction models
to diagnose the COVID-19 cases. Another study demonstrated significant accuracy in the
diagnosis of COVID-19 by using eight binary features: sexagenarian, gender, exposure to
COVID-19 virus, and five other vital signs [96].

4.3.3. Disease Prediction

AI can help physicians by suggesting more options for diagnosis or prediction. Yan
et al. [97] studied the application of AI and ML in predicting heart disease. The physicians
can give the diagnosis through an AI model for another round of screening. This may lower
the risk of misdiagnosis. In [98], Almustafa predicted cardiovascular disease by assessing
different ML methods such as KNN, SVM, Adaboost, and Decision Tree. The user enters
the features such as age, gender, cholesterol level, blood pressure, and fasting glucose. The
experiments show that the KNN classification is the best since it is a data-driven method.
Another patient with similar health conditions tends to have the same diagnosis.

4.3.4. Medical Decision Recommendation

Artificial intelligence can analyze the activity of users and recommend changes; for
example, doing exercise, changing one’s diet, or visiting the doctor. Michie et al. [99]
analyzed the behavior of individuals to determine the necessary changes. In particular,
they modeled the features and the series of activities in the form of ontologies and they
executed ontology reasoning for the final recommendation outcome. Asthana et al. [100]
proposed a recommendation system for personalized advised wearables. Given the user’s
medical history, the system identifies the diseases that this person is at risk for. The system
then provides recommendations via a computational model. Almeida et al. [101] proposed
a recommendation system to automatically discover cohorts of interest. The cohort here is a
group of users sharing common information. The system uses context-aware retrieval and
collaborative filtering to localize relevant cohorts regarding Alzheimer’s disease. Erdeniz
et al. [102] introduced virtual nurses to help chronic patients (i.e., diabetes, asthma) reach
their goals. The system reads the patient’s data via IoT sensors such as a wristband
or smartwatch. It then calculates the distance from the current health condition to the
predefined target and provides suitable recommendations.

4.4. Cloud Computing Infrastructure

Cloud computing (cloud storage) [103] is an available system model to deliver differ-
ent services for enabling ubiquitous, convenient, on-demand internet access to a shared
pool of customizable computing resources: networks (horizontal, physical, or virtual),
servers, storage, software, databases, analytics, and intelligence. This method can minimize
the management and interaction from the provider rapidly and effectively [104]. Large
clouds usually have functions diffused over various regions/locations, each region being a
data center (traditional cloud). According to the National Institute of Standards and Tech-
nology (NIST), fog computing is also known as an architecture located between traditional
cloud and smart end-devices. This paradigm delivers vertically isolated, latency-sensitive
services for ubiquitous, scalable, federated, and distributed computing. The cloud now
becomes a hierarchical structure since the edge is usually confined to some peripheral
layers. In practical terms, edge computing can be described as the system layer including
the peripheral devices and their users. This network encourages the edge to support local
computing proficiencies for mIoT devices. These edge and fog infrastructures show a
tendency to bypass the gap between the data and the end user. Recently, Laroui et al. [105]
conducted research on current activities and future directions of cloud and edge computing
for many different fields. Figure 4 shows the relationship between edge, fog, and cloud
computing in the context of IoT-based smart healthcare.
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Figure 4. The relationship between edge (sensors), fog (nodes), and cloud (data centers/cloud
services) computing in the context of pervasive healthcare Internet of Things.

4.5. Security

Security issues include security, authentication, privacy, identity management, and
ethical challenges.

Security is always considered in H-IoT communication, whenever the communications
happen: in body, on body, or around body. Synchronizing those of any other type of
communication device protecting vulnerable data is not simple. Security problems such as
accuracy and data privacy must be addressed to ameliorate confidentiality. Diminution of a
variety of threats and attacks (some types of attack are active, authentication, access control,
and availability) becomes more and more essential in cybersecurity [106]. Moreover, evil
twin access points, eavesdropping, and man-in-the-middle attacks are common strategies
that can threaten the security of a system, while replay attacks, denial-of-service (DoS),
or frame injection attacks confront the system’s integrity. Beacon flood, radio frequency
jamming, and association/authentication flood can damage the availability and constitute
a menace to the individuality of patients. In some cases, vindictive hackers may abuse
other ways of extreme and occasionally undignifying types to obtain private data. As
discussed by Yu et al. [107], audio signal processing and machine learning are secretly
used to eavesdrop on handwriting and can be executed using nearby smart devices. The
authors emphasize that they can obtain up to 50–60% of word recognition with certain
support conditions. This approach has been customized to other areas, such as a hand
motion tracking technique to upgrade the work of the eavesdropping, thus enhancing
the performance to 70–80% [108]. The variety of attacks prove that cybersecurity and
individuality for H-IoT are seriously important for the viability of smart healthcare.

Authentication is the act of proving an assertion, such as the identity of a system
user. Recently, biometric information such as face photos and fingerprints has been used
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for authentication. However, deepfakes, synthesized images, and videos generated by
generative adversarial networks (GAN) [109] pose a cybersecurity threat. A deepfake
superimposes one person’s face and voice onto another to create fake videos that appear
authentic. Thus deepfakes may fool electronic devices/sensors for authentication.

Privacy in the context of IoT-based healthcare may be considered as the right of each
individual to decide how much of their private information is shared. Therefore, patient
privacy may be in danger when security is violated. Privacy issues have become the biggest
challenge for analysts and also for patients using the smart healthcare service [110], where
they share their s-Health records (SHRs) [111] and trust that only authorized professional
healthcare staff can access them. As discussed in [111], in the situation where traditional
access conduct techniques are applied, either data security is violated or only coarse-
grained access policies are approved. To attenuate this matter, Zhang et al. [111] suggested
a privacy-aware s-health access control system (PASH). In PASH, privacy information
related to access permissions is invisible, and generic attribute names are available. A
competitive decoding test is attached before full decoding to boost efficiency. Hackers may
access any wearable or in-body, off-body sensor devices that can penetrate the privacy data
of patients (e.g., loss or change of data) or loss of device managing rights. This can lead to
the unexpected operation of the medical device system [112]. It is therefore compulsory to
improve the protection of data security and privacy.

Identity management is very important since patients expect their personal data,
such as social security numbers, their medical records, and even credit card numbers, to¸
remain confidential. However, such valuable information can be illegally retrieved through
ransomware and phishing attempts, unrestricted access to computers, and even patients’
lack of adequate knowledge. Abdullah et al. [113] proposed using digital signatures for
identity verification. The signing operation utilizes a hash function and a private key to
encrypt the data. Meanwhile, the verification operation utilizes the hash function and the
public key to decrypt the data. If the output of the hash function and the data decryption
match, the signature is valid.

Ethics challenges and legal issues are worthy of being addressed in H-IoT. Most of the
ethical challenges are about accessibility rights and the private use of information. In the
IoT attacks, the losses will reach the point that they will affect people’s lives. For example,
if an attacker can log in to a medical application and make a small change in a patient’s
file. The unauthorized change may result in the wrong medication, which could affect the
patient’s life. Meanwhile, there are many legal issues related to questions raised in H-IoT.
For example, who will be responsible when the Internet is down in medical applications?
What will happen if a medical service provider goes out of business? How does this affect
patients? And how will the patient’s data be used? AboBakr and Azer [114] introduced
new policies to address the ethical challenges and legal issues. New laws and standards
should be introduced to maintain complete security and privacy and cover all legal issues.

5. Existing Challenges

From the extensive review of previous surveys, applications, and key components, we
observe the following challenges. The first challenge is computational intensity. We have a
loss of information; for example, the interruption of data collection from wearable devices.
The second challenge comes from the restricted storage in mobile devices. For example,
thanks to wearable cameras, people can easily do lifelogging. However, how to design
an architecture to store and update huge volumes of image data is a big challenge. Such
time-series data requires a huge volume of storage space. One potential solution is to apply
machine learning to retrieve the intrinsic information of the data by reducing the number
of feature dimensions.

The training process of artificial intelligence models also requires large amounts of
data and high computational costs. Furthermore, we have difficulty in filtering an authentic
and reliable correlation among various health information. Due to heterogeneous data,
the network overhead may continuously change patient data. In the future, we expect a
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real-time and interactive decision-making IoMT system that provides accurate monitoring
and diagnosis in medical fields. Such systems can support data from various sources and
multimodal deep learning frameworks for decision making.

Regarding the recommendation of healthcare systems, the suggestions should be
characterized and related to the guideline of every user’s specific data. The suggester could
play an important role in gathering data from patients and characterizing a plan that accom-
modates available objectives. In addition, a physician (semi-supervised recommendation)
should be the key in the filtering stage and in collecting the information that is more related
to the health issues of the patient.

Security and privacy become more severe when there are more and more users in
pervasive H-IoT. There may be an abuse of a patient’s personal information, false medical
data, and unauthorized access to data. Lately, 5G massive machine-type communications
was introduced to link millions of different medical kinds of sensors together to the service
network. Patient lives might be in danger if such sensor security is vulnerable. 5G networks
are estimated to be attacked more and more in comparison to the previous 4G networks. In
the future, with the powerful processing capabilities of quantum computing, public-key
cryptography will be vulnerable. Therefore, this challenge must be addressed with more
advanced cryptography [115] in the near future. For other communication standards for
both short-range and long-range distance communication technologies, please refer to the
extensive reviews [116,117].

Lastly, power may pose a big issue. On the one hand, for smart devices to execute
multiple tasks, a significant amount of power must be used. In particular, devices and nodes
must be charged with sufficient energy. On the other hand, the high-power consumption
of smart devices and device shutdown may result in vital consequences. Therefore, the
research on batteries for prolonged periods will attract more attention in the near future. In
addition, the introduction of compact models [118] is appreciated since they can greatly
reduce storage space and computational cost resulting in less power consumption.

6. Conclusions

In this paper, we conducted an extensive review of 118 papers on pervasive computing
in H-IoT. In particular, we compared our survey with others with a strong emphasis on
applications, key components, and existing challenges in this field. We observed the wide
range of applications of H-IoT. We summarized the key components with cutting-edge
technologies. We discussed many applications such as fall detection, rehab monitoring, and
early medical disease detection which will greatly benefit future healthcare systems. Such
systems will minimize the need for dedicated medical personnel for patient monitoring
and provide the patients with high-quality medical services.

We believe this survey will significantly contribute to the existing body of research.
There are a few research challenges in H-IoT systems, including privacy, security, and trust
issues. In addition, there exist energy optimization issues and challenges of dealing with
big data. We can see a lot of stakeholders affected by this research direction such as AI
researchers, policy makers, governments, municipalities, and healthcare organizations.
We foresee the future of medical IoT systems with more innovative and modern kinds
of sensors such as nanotechnology. We also expect the future utilization of advanced
communication technologies as well as advanced artificial intelligence in terms of accuracy,
speed, and human-centric personalization.
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